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Université Libre de Bruxelles

Brussels, Belgium

and

STUART A. RICE

Department of Chemistry
and

The James Franck Institute
The University of Chicago

Chicago, Illinois

AN INTERSCIENCE1 PUBLICATION

JOHN WILEY & SONS, INC.



Designations used by companies to distinguish their products are often claimed as trademarks. In all

instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial

capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more

complete information regarding trademarks and registration.

Copyright # 2001 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any

form or by any means, electronic or mechanical, including uploading, downloading, printing,

decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976

United States Copyright Act, without the prior written permission of the Publisher. Requests to the

Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,

Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:

PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the

subject matter covered. It is sold with the understanding that the publisher is not engaged in

rendering professional services. If professional advice or other expert assistance is required, the

services of a competent professional person should be sought.

ISBN 0-471-23149-5

This title is also available in print as ISBN 0-471-38932-3.

For more information about Wiley products, visit our web site at www.Wiley.com.



CONTRIBUTORS TO VOLUME 119

Part 3

NILS ABRAMSON, Industrial Metrology and Optics, Department of Production
Engineering, Royal Institute of Technology, Stockholm, Sweden

PETAR K. ANASTASOVSKI, Department of Physics, Faculty of Technology and
Metallurgy, Saints Cyril and Methodius University, Skopje, Republic of
Macedonia

TERENCE W. BARRETT, BSEI, Vienna, VA

FABIO CARDONE, Departimento di Fisica, Univeritá de L’Aquila, Italy
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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. PRIGOGINE

STUART A. RICE
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PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the

series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume

119 is largely a dialogue between two schools of thought, one school concerned

with quantum optics and Abelian electrodynamics, the other with the emerging

subject of non-Abelian electrodynamics and unified field theory. In one of the

review articles in the third part of this volume, the Royal Swedish Academy

endorses the complete works of Jean-Pierre Vigier, works that represent a view

of quantum mechanics opposite that proposed by the Copenhagen School. The

formal structure of quantum mechanics is derived as a linear approximation for

a generally covariant field theory of inertia by Sachs, as reviewed in his article.

This also opposes the Copenhagen interpretation. Another review provides

reproducible and repeatable empirical evidence to show that the Heisenberg

uncertainty principle can be violated. Several of the reviews in Part 1 contain

developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories

distinct from the Maxwell–Heaviside theory, the predominant paradigm at this

stage in the development of science. Other review articles develop electro-

dynamics from a topological basis, and other articles develop conventional or

U(1) electrodynamics in the fields of antenna theory and holography. There are

also articles on the possibility of extracting electromagnetic energy from

Riemannian spacetime, on superluminal effects in electrodynamics, and on

unified field theory based on an SU(2) sector for electrodynamics rather than a

U(1) sector, which is based on the Maxwell–Heaviside theory. Several effects

that cannot be explained by the Maxwell–Heaviside theory are developed using

various proposals for a higher-symmetry electrodynamical theory. The volume

is therefore typical of the second stage of a paradigm shift, where the prevailing

paradigm has been challenged and various new theories are being proposed. In

this case the prevailing paradigm is the great Maxwell–Heaviside theory and its

quantization. Both schools of thought are represented approximately to the same

extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of

opinion is represented so that a consensus will eventually emerge. The

prevailing paradigm (Maxwell–Heaviside theory) is ably developed by several

groups in the field of quantum optics, antenna theory, holography, and so on, but

the paradigm is also challenged in several ways: for example, using general

relativity, using O(3) electrodynamics, using superluminal effects, using an

ix



extended electrodynamics based on a vacuum current, using the fact that

longitudinal waves may appear in vacuo on the U(1) level, using a reproducible

and repeatable device, known as the motionless electromagnetic generator,

which extracts electromagnetic energy from Riemannian spacetime, and in

several other ways. There is also a review on new energy sources. Unlike

Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and

many thousands of papers are reviewed by both schools of thought. Much of the

evidence for challenging the prevailing paradigm is based on empirical data,

data that are reproducible and repeatable and cannot be explained by the Max-

well–Heaviside theory. Perhaps the simplest, and therefore the most powerful,

challenge to the prevailing paradigm is that it cannot explain interferometric and

simple optical effects. A non-Abelian theory with a Yang–Mills structure is

proposed in Part 2 to explain these effects. This theory is known as O(3)

electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous

logistical support and to the Fellows and Emeriti of the Alpha Foundation’s

Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at

the U.S. Department of Energy is thanked for a Website reserved for some of

this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MYRON W. EVANS

Ithaca, New York
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I. INTRODUCTION

If one takes as the birth of the quantum theory of light, the publication of

Planck’s famous paper solving the difficulties inherent in the blackbody spectrum

[1], then we are currently marking its centenary. Many developments have

occurred since 1900 or so and are briefly reviewed below. (See Selleri [27] or

Milloni [6] for a more comprehensive historical review). The debates concerning

wave–particle duality are historically rooted in the seventeenth century with the

publication of Newton’s Optiks [2] and the Treatise on Light by Christian

Huygens [3]. For Huygens, light was a form of wave motion propagating through

an ether that was conceived as a substance that was ‘‘as nearly approaching to

perfect hardness and possessing a springiness as prompt as we choose.’’ For

Newton, however, light comprised material particles and he argues, contra

Huygens, ‘‘Are not all hypotheses erroneous, in which Light is supposed to

consist of Pression, or Motion propagated through a Fluid medium?’’ (see

Newton [2], Query 28). Newton attempts to refute Huygens’ approach by

pointing to the difficulties in explaining double refraction if light is simply a form

of wave motion and asks, ‘‘Are not the Rays of Light very small bodies emitted

from shining substances? For such bodies will pass through uniform Mediums in

right Lines without bending into Shadow, which is the Nature of the Rays of

Light?’’ (Ref. 2, Query 29). The corpuscular theory received a major blow in the

nineteenth century with the publication of Fresnel’s essay [4] on the diffraction

of light. Poisson argued on the basis of Fresnel’s analysis that a perfectly round

object should diffract so as to produce a bright spot on the axis behind it. This

was offered as a reductio ad absurdum argument against wave theory. However,

Fresnel and Arago carried out the actual experiment and found that there is

indeed a diffracted bright spot. The nineteenth century also saw the advent of

accurate methods for the determination of the speed of light by Fizeau and

Foucault that were used to verify the prediction from Maxwell’s theory relating

the velocity of light to known electric and magnetic constants. Maxwell’s

magnificent theory of electromagnetic waves arose from the work of Oersted,

Ampère, and Faraday, which proved the intimate interconnection between

electric and magnetic phenomena.

This volume discusses the consequences of modifying the traditional, classi-

cal view of light as a transverse electromagnetic wave whose electric and mag-

netic field components exist only in a plane perpendicular to the axis of

propagation, and posits the existence of a longitudinal magnetic field com-

ponent. These considerations are of relatively recent vintage, however [5].

The corpuscular view was revived in a different form early in twentieth cen-

tury with Planck’s solution of the blackbody problem and Einstein’s adoption of

the photon model in 1905. Milloni [6] has emphasized the fact that Einstein’s

famous 1905 paper [7] ‘‘Concerning a heuristic point of view toward the

2 m. w. evans and s. jeffers



emission and transformation of light’’ argues strongly for a model of light that

simultaneously displays the properties of waves and particles. He quotes Einstein:

The wave theory of light, which operates with continuous spatial functions, has

worked well in the representation of purely optical phenomena and will probably

never be replaced by another theory. It should be kept in mind, however, that the

optical observations refer to time averages rather than instantaneous values. In

spite of the complete experimental confirmation of the theory as applied to

diffraction, reflection, refraction, dispersion, etc., it is still conceivable that the

theory of light which operates with continuous spatial functions may lead to

contradictions with experience when it is applied to the phenomena of emission

and transformation of light.

According to the hypothesis that I want here to propose, when a ray of light

expands starting from a point, the energy does not distribute on ever increasing

volumes, but remains constituted of a finite number of energy quanta localized in

space and moving without subdividing themselves, and unable to be absorbed or

emitted partially.

This is the famous paper where Einstein, adopting Planck’s idea of light

quanta, gives a complete account of the photoelectric effect. He predicts the lin-

ear relationship between radiation frequency and stopping potential: ‘‘As far as I

can see, there is no contradiction between these conceptions and the properties

of the photoelectric effect observed by Herr Lenard. If each energy quantum of

the incident light, independently of everything else, delivers its energy to elec-

trons, then the velocity distribution of the ejected electrons will be independent

of the intensity of the incident light. On the other hand the number of electrons

leaving the body will, if other conditions are kept constant, be proportional to

the intensity of the incident light.’’

Textbooks frequently cite this work as strong empirical evidence for the ex-

istence of photons as quanta of electromagnetic energy localized in space and

time. However, it has been shown that [8] a complete account of the photo-

electric effect can be obtained by treating the electromagnetic field as a classical

Maxwellian field and the detector is treated according to the laws of quantum

mechanics.

In view of his subsequent discomfort with dualism in physics, it is ironic that

Einstein [9] gave a treatment of the fluctuations in the energy of electromagnetic

waves that is fundamentally dualistic insofar that, if the Rayleigh–Jeans formula

is adopted, the fluctuations are characteristic of electromagnetic waves. How-

ever, if the Wien law is used, the fluctuations are characteristic of particles.

Einstein made several attempts to derive the Planck radiation law without invok-

ing quantization of the radiation but without success. There was no alternative

but to accept the quantum. This raised immediately the difficult question as to

how such quanta gave rise to interference phenomena. Einstein suggested that

perhaps light quanta need not interfere with themselves, but might interfere with

the present status of the quantum theory of light 3



other quanta as they propagated. This suggestion was soon ruled out by inter-

ference experiments conduced at extremely low light levels. Dirac, in his

well-known textbook [10] on quantum mechanics, stated ‘‘Each photon inter-

feres only with itself. Interference between two different photons never occurs.’’

The latter part of this statement is now known to be wrong [11]. The advent of

highly coherent sources has enabled two-beam interference with two separate

sources. In these experiments, the classic interference pattern is not observed

but rather intensity correlations between the two beams are measured [12].

The recording of these intensity correlations is proof that the electromagnetic

fields from the two lasers have superposed. As Paul [11] argues, any experiment

that indicates that such a superposition has occurred should be called an inter-

ference experiment.

Taylor [13] was the first to report on two-beam interference experiments un-

dertaken at extremely low light levels such that one can assert that, on average,

there is never more than one photon in the apparatus at any given time. Such

experiments have been repeated many times. However, given that the sources

used in these experiments generated light beams that exhibited photon bunching

[14], the basic assumption that there is only ever one photon in the apparatus at

any given time is not sound. More recent experiments using sources that emit

single-photon states have been performed [15–17].

In 1917 Einstein [18] wrote a paper on the dualistic nature of light in which

he discusses emission ‘‘without excitation from external causes,’’ in other words

stimulated emission and also spontaneous absorption and emission. He derives

Planck’s formula but also discusses the recoil of molecules when they emit

photons. It is the latter discussion that Einstein regarded as the most significant

aspect of the paper: ‘‘If a radiation bundle has the effect that a molecule struck

by it absorbs or emits a quantity of energy hn in the form of radiation (ingoing

radiation), then a momentum hn/c is always transferred to the molecule. For an

absorption of energy, this takes place in the direction of propagation of the

radiation bundle; for an emission, in the opposite direction.’’

In 1923, Compton [19] gave convincing experimental evidence for this pro-

cess: ‘‘The experimental support of the theory indicates very convincingly that a

radiation quantum carries with itself, directed momentum as well as energy.’’

Einstein’s dualism raises the following difficult question: If the particle carries

all the energy and momentum then, in what sense can the wave be regarded as

real? Einstein’s response was to refer to such waves as ‘‘ghost fields’’ (Gespen-

sterfelder). Such waves are also referred to as ‘‘empty’’ - a wave propagating in

space and time but (virtually) devoid of energy and momentum. If described

literally, then such waves could not induce any physical changes in matter.

Nevertheless, there have been serious proposals for experiments that might

lead to the detection of ‘‘empty’’ waves associated with either photons [20]

or neutrons [21]. However, by making additional assumptions about the nature
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of such ‘‘empty’’ waves [22], experiments have been proposed that might reveal

their actual existence. One such experiment [23] has not yielded any such

definitive evidence. Other experiments designed to determine whether empty

waves can induce coherence in a two-beam interference experiment have not

revealed any evidence for their existence [24], although Croca [25] now argues

that this experiment should be regarded as inconclusive as the count rates were

very low.

Controversies still persist in the interpretation of the quantum theory of light

and indeed more generally in quantum mechanics itself. This happens notwith-

standing the widely held view that all the difficult problems concerning the cor-

rect interpretation of quantum mechanics were resolved a long time ago in the

famous encounters between Einstein and Bohr. Recent books have been devoted

to foundational issues [26] in quantum mechanics, and some seriously question

Bohrian orthodoxy [27,28]. There is at least one experiment described in the

literature [29] that purports to do what Bohr prohibits: demonstrate the simul-

taneous existence of wave and particle-like properties of light.

Einstein’s dualistic approach to electromagnetic radiation was generalized by

de Broglie [30] to electrons when he combined results from the special theory of

relativity (STR) and Planck’s formula for the energy of a quantum to produce

his famous formula relating wavelength to particle momentum. His model of a

particle was one that contained an internal periodic motion plus an external

wave of different frequency that acts to guide the particle. In this model, we

have a wave–particle unity—both objectively exist. To quote de Broglie [31]:

‘‘The electron . . . must be associated with a wave, and this wave is no myth;

its wavelength can be measured and its interferences predicted.’’ De Broglie’s

approach to physics has been described by Lochak [32] as quoted in Selleri [27]:

Louis de Broglie is an intuitive spirit, concrete and realist, in love with simple

images in three-dimensional space. He does not grant ontological value to mathe-

matical models, in particular to geometrical representations in abstract spaces; he

does not consider and does not use them other than as convenient mathematical

instruments, among others, and it is not in their handling that his physical intuition

is directly applied; faced with these abstract representations, he always keeps in

mind the idea of all phenomena actually taking place in physical space, so that

these mathematical modes of reasoning have a true meaning in his eyes only

insofar as he perceives at all times what physical laws they correspond to in usual

space.

De Broglie’s views are not widely subscribed to today since as with ‘‘empty’’

waves, there is no compelling experimental evidence for the existence of phy-

sical waves accompanying the particle’s motion (see, however, the discussion in

Selleri [27]). Models of particles based on de Broglian ideas are still advanced

by Vigier, for example [33].

the present status of the quantum theory of light 5



As is well known, de Broglie abandoned his attempts at a realistic account of

quantum phenomena for many years until David Bohm’s discovery of a solution

of Schrödinger’s equation that lends itself to an interpretation involving a phy-

sical particle traveling under the influence of a so-called quantum potential.

As de Broglie stated:

For nearly twenty-five years, I remained loyal to the Bohr-Heisenberg view, which

has been adopted almost unanimously by theorists, and I have adhered to it in my

teaching, my lectures and my books. In the summer of 1951, I was sent the

preprint of a paper by a young American physicist David Bohm, which was

subsequently published in the January 15, 1952 issue of the Physical Review. In

this paper, Mr. Bohm takes up the ideas I had put forward in 1927, at least in one

of the forms I had proposed, and extends them in an interesting way on some

points. Later, J.P. Vigier called my attention to the resemblance between a

demonstration given by Einstein regarding the motion of particles in General

Relativity and a completely independent demonstration I had given in 1927 in an

exercise I called the ‘‘theory of the double solution.’’

A comprehensive account of the views of de Broglie, Bohm, and Vigier is

given in Jeffers et al. [34]. In these models, contra Bohr particles actually do

have trajectories. Trajectories computed for the double-slit experiment show

patterns that reproduce the interference pattern observed experimentally [35].

Furthermore, the trajectories so computed never cross the plane of symmetry

so that one can assert with certainty through which the particles traveled.

This conclusion was also reached by Prosser [36,37] in his study of the double-

slit experiment from a strictly Maxwellian point of view. Poynting vectors

were computed whose distribution mirrors the interference pattern, and these

never cross the symmetry plane as in the case of the de Broglie–Bohm–Vigier

models. Prosser actually suggested an experimental test of this feature of his

calculations. The idea was to illuminate a double-slit apparatus with very short

microwave pulses and examine the received radiation at a suitable point off-axis

behind the double slits. Calculations showed that for achievable experimental

parameters, one could detect either two pulses if the orthodox view were cor-

rect, or only one pulse if the Prosser interpretation were correct. However,

further investigation [38] showed that the latter conclusion was not correct.

Two pulses would be observed, and their degree of separation (i.e., distinguish-

ability) would be inversely related to the degree of contrast in the interference

fringes.

Contemporary developments include John Bell’s [39] discovery of his fa-

mous inequality that is predicated on the assumptions of both locality and

realism. Bell’s inequality is violated by quantum mechanics, and consequently,

it is frequently argued, one cannot accept quantum mechanics, realism, and

locality. Experiments on correlated particles appear to demonstrate that the Bell
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inequalities are indeed violated. Of the three choices, the most acceptable one is

to abandon locality. However, Afriat and Selleri [40] have extensively reviewed

both the current theoretical and experimental situation regarding the status of

Bell’s inequalities. They conclude, contrary to accepted wisdom, that one can

construct local and realistic accounts of quantum mechanics that violate Bell’s

inequalities, and furthermore, there remain several loopholes in the experiments

that have not yet been closed that allow for local and realist interpretations. No

actual experiment that has been performed to date has conclusively demon-

strated that locality has to be abandoned. However, experiments that approxi-

mate to a high degree the original gedanken experiment discussed by David

Bohm, and that potentially close all known loopholes, will soon be undertaken.

See the review article by Fry and Walther [41]. To quote these authors: ‘‘Quan-

tum mechanics, even 50 years after its formulation, is still full of surprises.’’

This underscores Einstein’s famous remark: ‘‘All these years of conscious

brooding have brought me no nearer to the answer to the question ‘‘What are

light quanta?’’ Nowadays, every Tom, Dick, and Harry thinks he knows it, but

he is mistaken.’’

II. THE PROCA EQUATION

The first inference of photon mass was made by Einstein and de Broglie on the

assumption that the photon is a particle, and behaves as a particle in, for example,

the Compton and photoelectric effects. The wave–particle duality of de Broglie

is essentially an extension of the photon, as the quantum of energy, to the photon,

as a particle with quantized momentum. The Beth experiment in 1936 showed

that the photon has angular momentum, whose quantum is �h. Other fundamental

quanta of the photon are inferred in Ref. 42. In 1930, Proca [43] extended the

Maxwell–Heaviside theory using the de Broglie guidance theorem:

�ho0 ¼ m0 c2 ð1Þ

where m0 is the rest mass of the photon and m0c2 is its rest energy, equated to the

quantum of rest energy �ho0. The original derivation of the Proca equation

therefore starts from the Einstein equation of special relativity:

pmpm ¼ m2
0c2 ð2aÞ

The usual quantum ansatz is applied to this equation to obtain a wave equation:

En ¼ i�h
q
qt
; p ¼ �i�hr ð2bÞ
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This is an example of the de Broglie wave–particle duality. The resulting wave

equation is

&þ m2
0c4

�h2

� �
c ¼ 0 ð3Þ

where c is a wave function, whose meaning was first inferred by Born in 1926. If

the wave function is a scalar, Eq. (3) becomes the Klein–Gordon equation. If c is

a 2-spinor, Eq. (3) becomes the van der Waerden equation, which can be related

analytically to the Dirac equation, and if c is the electromagnetic 4-potential Am,

Eq. (3) becomes the Proca equation:

&Am ¼ � m0c2

�h

� �2

Am ð4Þ

So Am can act as a wave function and the Proca equation can be regarded as a

quantum equation if Am is a wave function in configuration space, and as a

classical equation in momentum space.

It is customary to develop the Proca equation in terms of the vacuum charge

current density

&Am ¼ � m0c2

�h

� �2

Am ¼ �k2Am ¼ 1

e0

Jm vacð Þ ð5Þ

The potential Am therefore has a physical meaning in the Proca equation because

it is directly proportional to Jm(vac). The Proca equations in the vacuum are

therefore

qmFmn þ m0c2

�h

� �2

An ¼ 0 ð6Þ

qmAm ¼ 0 ð7Þ

and, as described in the review by Evans in Part 2 of this compilation [44], these

have the structure of the Panofsky, Phillips, Lehnert, Barrett, and O(3) equations,

a structure that can also be inferred from the symmetry of the Poincaré group

[44]. Lehnert and Roy [45] self-consistently infer the structure of the Proca

equations from their own equations, which use a vacuum charge and current.

The problem with the Proca equation, as derived originally, is that it is not

gauge-invariant because, under the U(1) gauge transform [46]

Am ! Am þ 1

g
qm� ð8Þ
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the left-hand side of Eq. (4) is invariant but an arbitrary quantity 1
g
qm� is added to

the right-hand side. This is paradoxical because the Proca equation is well

founded in the quantum ansatz and the Einstein equation, yet violates the funda-

mental principle of gauge invariance. The usual resolution of this paradox is to

assume that the mass of the photon is identically zero, but this assumption leads

to another paradox, because a particle must have mass by definition, and the

wave-particle dualism of de Broglie becomes paradoxical, and with it, the basis

of quantum mechanics.

In this section, we suggest a resolution of this >70-year-old paradox using

O(3) electrodynamics [44]. The new method is based on the use of covariant

derivatives combined with the first Casimir invariant of the Poincaré group.

The latter is usually written in operator notation [42,46] as the invariant

PmPm, where Pm is the generator of spacetime translation:

Pm ¼ iqm ¼ pm

�h
ð9Þ

The ordinary derivative in gauge theory becomes the covariant derivative

qm ! Dm ¼ qm � igAm ð10Þ

for all gauge groups. The generator Dm is a generator of the Poincaré group

because it obeys the Jacobi identityX
s;n;m

Ds; Dn;Dm
� �� �

� 0 ð11Þ

and the covariant derivative (10) can be regarded as a sum of spacetime

translation generators.

The basic assumption is that the photon acquires mass through the invariant

DmDm	c ¼ 0 ð12Þ

for any gauge group. This equation can be developed for any gauge group as

qm � igAm
� �

qm þ igAm	ð Þc ¼ 0 ð13Þ

and can be expressed as

&c� igAmq
mcþ igqm Amcð Þ þ g2AmAmc

¼ 0

¼&c� igAmq
mcþ igcqmAm þ igAmqmcþ g2AmAmc ð14Þ

¼ &þ igqmAm þ g2AmAm
� �

c

¼ 0
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This equation reduces to

&þ k2
� �

c ¼ �igqmAmc ð15Þ

for any gauge group because

g ¼ k
Að0Þ

; AmAm ¼ Að0Þ2 ð16Þ

In the plane-wave approximation:

qmAm ¼ 0 ð17aÞ

and the Proca equation for any gauge group becomes

&þ k2
� �

c ¼ 0 ð17bÞ

for any gauge group.

Therefore Eq. (18) has been shown to be an invariant of the Poincaré group,

Eq. (12), and a product of two Poincaré covariant derivatives. In momentum

space, this operator is equivalent to the Einstein equation under any condition.

The conclusion is reached that the factor g is nonzero in the vacuum.

In gauge theory, for any gauge group, however, a rotation

c0 ¼ ei�c � Sc ð18Þ

in the internal gauge space results in the gauge transformation of Am as follows

A0m ¼ SAmS�1 � i

g
qmS
� �

S�1 ð19Þ

and to construct a gauge-invariant Proca equation from the operator (16), a

search must be made for a potential Am that is invariant under gauge trans-

formation. It is not possible to find such a potential on the U(1) level because the

inhomogeneous term is always arbitrary. On the O(3) level, however, the

potential can be expressed as

Am ¼ Að2Þm eð1Þ þ Að1Þm eð2Þ þ Að3Þm eð3Þ ð20Þ

if the internal gauge space is a physical space with O(3) symmetry described in

the complex circular basis ((1),(2),(3)) [3]. A rotation in this physical gauge

space can be expressed in general as

c0 ¼ exp iMa�a xmð Þð Þc ð21Þ
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where Ma are the rotation generators of O(3) and where �ð1Þ;�ð2Þ, and �ð3Þ are

angles.

Developing Eq. (13), we obtain

ðqm � igAð1Þm Þðq
m þ igAmð2ÞÞc ¼ 0

ðqm � igAð2Þm Þðq
m þ igAmð1ÞÞc ¼ 0

ðqm � igAð3Þm Þðq
m þ igAmð3ÞÞc ¼ 0

ð22Þ

The eigenfunction c may be written in general as the O(3) vector

c � An ð23Þ

and under gauge transformation

An0 ¼ exp iMa�a xmð Þð ÞAn ð24Þ

from Eq. (21). Here, �ð1Þ;�ð2Þ, and �ð3Þ are angles in the physical internal gauge

space of O(3) symmetry.

Therefore Eqs. (22) become

&2An ¼ �k2An ¼ 1

e0

JnðvacÞ ð25Þ

where

Jn ¼ rðiÞ;
JðiÞ

c

� �
i ¼ 1; 2; 3 ð26Þ

and Eqs. (25) become

&Anð1Þ ¼ �k2Anð1Þ ¼ Jnð1Þ

e0

ð27Þ

&Anð2Þ ¼ �k2Anð2Þ ¼ Jnð2Þ

e0

ð28Þ

&Anð3Þ ¼ 0 ð29Þ

It can be seen that the photon mass is carried by Anð1Þ and Anð2Þ, but not by Anð3Þ.
This result is also obtained by a different route using the Higgs mechanism in

Ref. 42, and is also consistent with the fact that the mass associated with Anð3Þ

corresponds with the superheavy boson inferred by Crowell [42], reviewed in
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Ref. 42 and observed in a LEP collaboration [42]. The effect of a gauge

transformation on Eqs. (27)–(29) is as follows:

& Að1Þm þ
1

g
qm�ð1Þ

� �
¼ �k2 Að1Þm þ

1

g
qm�ð1Þ

� �
ð30Þ

& Að2Þm þ
1

g
qm�ð2Þ

� �
¼ �k2 Að2Þm þ

1

g
qm�ð2Þ

� �
ð31Þ

& Að3Þm þ
1

g
qm�ð3Þ

� �
¼ 0 ð32Þ

Equations (30) and (31) are eigenequations with the same eigenvalue, �k2, as

Eqs. (27) and (28). On the O(3) level, the eigenfunctions A
ð1Þ
m þ 1

g
qm�ð1Þ are not

arbitrary because �ð1Þ and �ð2Þ are angles in a physical internal gauge space. The

original Eq. (12) is gauge-invariant, however, because on gauge transformation

g2AmAm	 ! g2A0mAm	0 ; g0 ¼ k

Að0Þ
0 ð33Þ

and

Dm Dm	c! DmDm	 Scð Þ ¼ cDm Dm	Sþ SDmDm	c ¼ 0 ð34Þ

because S must operate on c.

In order for Eq. (34) to be compatible with Eqs. (30) and (31), we obtain

&ðqm�ð1ÞÞ ¼ �k2ðqm�ð1ÞÞ ð35Þ
&ðqm�ð2ÞÞ ¼ �k2ðqm�ð2ÞÞ ð36Þ

which are also Proca equations. So the >70-year-old problem of the lack of

gauge invariance of the Proca equation is solved by going to the O(3) level.

The field equations of electrodynamics for any gauge group are obtained

from the Jacobi identity of Poincaré group generators [42,46]:

X
s;m;n

Ds; Dm;Dn
� �� �

� 0 ð37Þ

If the potential is classical, the Jacobi identity (37) can be written out as

DsGmn þ DmGns þ DnGsm � GmnDs � GnsDm � Gsm Dn � 0 ð38Þ

This equation implies the Jacobi identity:

½As;Gmn� þ ½Am;Gns� þ ½An;Gsm� � 0 ð39Þ
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which in vector form can be written as

Am  ~Gmn ¼ As  Gmn þ Am  Gns þ An  Gsm

� 0 ð40Þ

As a result of this Jacobi identity, the homogeneous field equation

Dm ~G
mn � 0 ð41Þ

reduces to

qm ~Gmn � 0 ð42Þ

for all gauge group symmetries. The implication is that instantons or pseudo-

particles do not exist in Minkowski spacetime in a pure gauge theory, because

magnetic monopoles and currents vanish for all internal gauge group

symmetries. Therefore, the homogeneous field equation of electrodynamics,

considered as a gauge theory of any internal symmetry, can be obtained from the

Jacobi identity (42) of the Poincaré group of Minkowski spacetime. The homo-

geneous field equation is gauge-covariant for any internal symmetry. Analo-

gously, the Proca equation is the mass Casimir invariant (12) of the Poincaré

group of Minkowski spacetime.

There are several major implications of the Jacobi identity (40), so it is help-

ful to give some background for its derivation. On the U(1) level, consider the

following field tensors in c ¼ 1 units and contravariant covariant notation in

Minkowski spacetime:

~Fmn ¼

0 �B1 �B2 �B3

B1 0 E3 �E2

B2 �E3 0 E1

B3 E2 �E1 0

2
6664

3
7775; ~Fmn ¼

0 B1 B2 B3

�B1 0 E3 �E2

�B2 �E3 0 E1

�B3 E2 �E1 0

2
6664

3
7775

Frs ¼

0 E1 E2 E3

�E1 0 �B3 B2

�E2 B3 0 �B1

�E3 �B2 B1 0

2
6664

3
7775; Frs ¼

0 �E1 �E2 �E3

E1 0 �B3 B2

E2 B3 0 �B1

E3 �B2 B1 0

2
6664

3
7775
ð43Þ

These tensors are generated from the duality relations [47]

~Gmn ¼ 1

2
emnrsGrs; Gmn ¼ � 1

2
emnrs ~Grs

~Gmn ¼
1

2
emnrsGrs; Gmn ¼ �

1

2
emnrs ~Grs

ð44Þ
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where the totally antisymmetric unit tensor is defined as

e0123 ¼ 1 ¼ �e0123 ð45Þ

and result in the following Jacobi identity:

qm~Fmn ¼ qsFmn þ qmFns þ qnFsm � 0 ð46Þ

It also follows that

qmFmn ¼ qs~Fmn þ qm~Fns þ qn~Fsm ð47Þ

The proof of the Jacobi identity (46) can be seen by considering a development

such as

qm~Fmn ¼ 1

2
qmðemnrsFrsÞ

¼ 1

2
qm emn01F01 þ emn02F02 þ emn03F03

�
þ emn10F10 þ emn20F20 þ emn30F30

þ emn12F12 þ emn13F13 þ emn21F21 þ emn31F31 þ emn23F23 þ emn32F32

�
ð48Þ

If n ¼ 0, then

q1
~F10 þ q2

~F20 þ q3
~F30 ¼ �q1F23 � q2F13 � q3F12 � 0 ð49Þ

Equation (47) may be proved similarly. On the O(3) level there exist the analo-

gous equations (40) and

Am  Gmn ¼ As  ~Gmn þ Am  ~Gns þ An  ~Gsm ð50Þ

which is not zero in general.

It follows from the Jacobi identity (40) that there also exist other Jacobi iden-

tities such as [42]

A
ð2Þ
l  ðA

ð1Þ
m  Að2Þn Þ þ Að2Þm  ðAð1Þn  A

ð2Þ
l Þ þ Að2Þn  ðA

ð1Þ
l  Að2Þm Þ � 0 ð51Þ

The Jacobi identity (40) means that the homogeneous field equation of electro-

dynamics for any gauge group is

qm ~Gmn � 0 ð52Þ
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If the symmetry of the gauge group is O(3) in the complex basis ((1),(2),(3))

[42,47], Eq. (52) can be developed as three equations:

qm ~Gmnð1Þ � 0 ð53Þ

qm ~Gmnð2Þ � 0 ð54Þ

qm ~Gmnð3Þ � 0 ð55Þ

Now consider a component of the Jacobi identity (39)

eð1Þð2Þð3ÞA
ð2Þ
s Gð3Þmn þ eð1Þð2Þð3ÞA

ð2Þ
m Gð3Þns þ eð1Þð2Þð3ÞA

ð2Þ
n Gð3Þsm � 0 ð56Þ

and consider next the following cyclic permutation:

A
ð2Þ
0 G

ð3Þ
23 � A

ð3Þ
0 G

ð2Þ
23 þ A

ð2Þ
2 G

ð3Þ
30 � A

ð3Þ
2 G

ð2Þ
30 þ A

ð2Þ
3 G

ð3Þ
02 � A

ð3Þ
3 G

ð2Þ
02 � 0 ð57Þ

This gives the result

B
ð2Þ
X þ

E
ð2Þ
Y

c
� A

ð2Þ
Y E

ð3Þ
Z � 0 ð58Þ

Using Eq. (54), we obtain the result

E
ð3Þ
Z � 0 ð59Þ

thus E(3) vanishes identically in O(3) electrodynamics. The third equation (55)

therefore becomes the following identity:

qBð3Þ

qt
� 0 ð60Þ

In other words, B(3) is identically independent of time, a result that follows from

its definition [42,47]

Bð3Þ � �igAð1Þ  Að2Þ ð61Þ

The ansatz, upon which these results are based, is that the configuration of the

vacuum is described by the doubly connected group O(3), which supports

the Aharonov–Bohm effect in Minkowski spacetime [46]. More generally, the

vacuum configuration could be described by an internal gauge space more

general than O(3), such as the Lorentz, Poincaré, or Einstein groups. The O(3)
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group is the little group of the Poincaré group for a particle with identically

nonzero mass, such as the photon. If the internal space were extended from O(3)

to the Poincaré group, there would appear boost and spacetime translation

operators in the gauge transform (36), as well as rotation generators. The

Poincaré group is the most general group of special relativity, and the Einstein

group, that of general relativity. Both groups are defined in Minkowski space-

time. In all these groups, there would be no magnetic monopole or current in

Minkowski spacetime because of the Jacobi identity (37) between any group

generators. The superiority of O(3) over U(1) electrodynamics has been

demonstrated in several ways using empirical data [42,47–61] such as those

available in the Sagnac effect, so its seems logical to extend the internal space to

the Poincaré group. The widespread use of a U(1) group for electrodynamics is a

historical accident. The use of an O(3) group is an improvement, so it is expected

that the use of a Poincaré group would be an improvement over O(3).

Meanwhile, the Jacobi identity (40) implies, in vector notation, the identities

Að2Þ �Bð3Þ � Bð2Þ �Að3Þ � 0

Að3Þ �Bð1Þ � Bð3Þ �Að1Þ � 0

Að1Þ �Bð2Þ � Bð1Þ �Að2Þ � 0

ð62Þ

and

cA
ð3Þ
0 Bð2Þ � cA

ð2Þ
0 Bð3Þ þ Að2Þ  Eð3Þ � Að3Þ  Eð2Þ � 0

cA
ð1Þ
0 Bð3Þ � cA

ð3Þ
0 Bð1Þ þ Að3Þ  Eð1Þ � Að1Þ  Eð3Þ � 0

cA
ð2Þ
0 Bð1Þ � cA

ð1Þ
0 Bð2Þ þ Að1Þ  Eð2Þ � Að2Þ  Eð1Þ � 0

ð63Þ

It has been shown elsewhere [42] that the identities (63) correspond with the B

cyclic theorem [42,47–61] of O(3) electrodynamics:

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	

. . .
ð64Þ

which is therefore also an identity of the Poincaré group. Within a factor, the B

cyclic theorem is the rotation generator Lie algebra of the Poincaré group. In

terms of the unit vectors of the basis ((1),(2),(3)), the B cyclic theorem reduces to

eð1Þ  eð2Þ ¼ ieð3Þ	

. . .
ð65Þ
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which is the frame relation itself. This relation is unaffected by a Lorentz boost

and a spacetime translation. A rotation produces the same relation (65). So the B

cyclic theorem is invariant under the most general type of Lorentz transforma-

tion, consisting of boosts, rotations, and spacetime translations. Similarly, the

definition of B(3), Eq. (61), is Lorentz-invariant.

The Jacobi identities (63) reduce to the B cyclic theorem (64) because of

Eqs. (53)–(55), and because E(3) vanishes identically [42,47–61], and the B cyc-

lic theorem is self-consistent with Eqs. (53)–(55). The identities (62) and (63)

imply that there are no instantons or pseudoparticles in O(3) electrodynamics,

which is a dynamics developed in Minkowski spacetime. If the pure gauge

theory corresponding to O(3) electrodynamics is supplemented with a Higgs

mechanism, then O(3) electrodynamics supports the ‘t Hooft–Polyakov mag-

netic monopole [46]. Therefore Ryder [46], for example, in his standard text,

considers a form of O(3) electrodynamics [46, pp. 417ff.], and the ‘t Hooft–

Polyakov magnetic monopole is a signature of an O(3) electrodynamics with

its symmetry broken spontaneously with a Higgs mechanism. In the pure gauge

theory, however, the magnetic monopole is identically zero. It is clear that the

theory of ‘t Hooft and Polyakov is O(3) electrodynamics plus a Higgs mechan-

ism, an important result.

In order to show that the Proca equation from gauge theory is gauge-invar-

iant, it is convenient to consider the Jacobi identity

Dm ~G
mn � 0 ð66Þ

which is gauge-invariant in all gauge groups. Now use

DmGmn ¼ Ds ~G
lk þ Dk ~G

sl þ Dl ~G
ks ð67Þ

and let two indices be the same on the right-hand side. This procedure produces

DmGmn ¼ Ds ~Gsk þ ~Gks
� �

¼ 0 ð68Þ

showing that:

DmGmn ¼ 0 ð69Þ

is also gauge-invariant for all gauge groups. Finally, expand Eq. (69) as

DmGmn ¼ Dm DmAn � DnAmð Þ ¼ 0 ð70Þ

to obtain

DmDmAn ¼ 0 ð71Þ
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which is also gauge-invariant for all gauge groups.

On the U(1) level, for example, the structure of the Lehnert [45] and gauge-

invariant Proca equations is obtained as follows:

&þ k2
� �

An ¼ 0 ð72Þ

qm þ igA	m

� �
Gmn ¼ 0 ð73Þ

These are regarded as eigenequations with eigenfunctions An and Gmn in

configuration space. In this method, there is no need for the Lorenz condition.

The equivalent of Eq. (72) in momentum space is the Einstein equation (2), and

this statement is true for all gauge group symmetries. Comparing Eqs. (6) and (7)

with Eqs. (72) and (73), the following equation is obtained on the U(1) level:

k2An ¼ igA	mGmn ð74Þ

This equation may be developed as follows:

k2Að0Þ ¼ igA	 �
E

c
ð75Þ

In the plane-wave approximation

kAð0Þ ¼ Eð0Þ

c
¼ Bð0Þ ð76Þ

and it is seen that condition (74) is true on the U(1) level. Equation (73) can be

written as

qmGmn ¼ �igA	mGmn � Jm

e0

ð77Þ

in the vacuum, and this is the Lehnert equation [42,45]. The latter gives

longitudinal or axisymmetric solutions and can describe physical situations that

the Maxwell–Heaviside theory cannot.

On the O(3) level, one can write the Proca equation in the following form

(22):

ð&þ g2Að1Þm Amð2ÞÞAnð1Þ ¼ 0

ð&þ g2Að2Þm Amð1ÞÞAnð2Þ ¼ 0

ð&þ g2Að3Þm Amð3ÞÞAnð3Þ ¼ 0

ð78Þ
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The third equation of (22) reduces to a d’Alembert equation

&Anð3Þ ¼ 0 ð79Þ

because A
ð3Þ
m Amð3Þ ¼ 0 in O(3) electrodynamics. Equation (79) is consistent with

the fact that A
ð3Þ
m is phaseless by definition in O(3) electrodynamics. The first two

equations of the triad (78) are complex conjugate Proca equations of the form

ð&þ k2ÞAn ¼ 0

ð&þ k2ÞAn	 ¼ 0
ð80Þ

so we obtain the U(1) Proca equation, but with the advantages of O(3) electro-

dynamics inbuilt.

In summary, the structure of the Proca equation on the O(3) level is as

follows:

DmGmn ¼ 0 ð81Þ

which is equivalent to

qmGmn ¼ �gAm  Gmn ð82Þ

The latter equation can be expanded in the basis ((1),(2),(3)) as [42]

r �Dð1Þ	 ¼ igðAð2Þ �Dð3Þ � Dð2Þ �Að3ÞÞ

r �Dð2Þ	 ¼ igðAð3Þ �Dð1Þ � Dð3Þ �Að1ÞÞ

r �Dð3Þ	 ¼ igðAð1Þ �Dð2Þ � Dð1Þ �Að2ÞÞ

r Hð1Þ	 � qDð1Þ	

qt
¼ �igðcA

ð2Þ
0 Dð3Þ � cA

ð3Þ
0 Dð2Þ þ Að2Þ Hð3Þ � Að3Þ Hð2ÞÞ

r Hð2Þ	 � qDð2Þ	

qt
¼ �igðcA

ð3Þ
0 Dð1Þ � cA

ð1Þ
0 Dð3Þ þ Að3Þ Hð1Þ � Að1Þ Hð3ÞÞ

r Hð3Þ	 � qDð3Þ	

qt
¼ �igðcA

ð1Þ
0 Dð2Þ � cA

ð2Þ
0 Dð1Þ þ Að1Þ Hð2Þ � Að2Þ Hð1ÞÞ

ð83Þ

It can be seen that, in general, there are extra Noether charges and currents that

define the photon mass gauge invariantly. The magnetic field strength and

electric displacement is used in Eq. (83) because, in general, there may be

vacuum polarization and magnetization, defined respectively as

D ¼ e0Eþ P

B ¼ m0ðH þMÞ
ð84Þ
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There may be a vacuum charge on the O(3) level provided that the term

r �Dð3Þ	 ¼ igðAð1Þ �Dð2Þ � Dð1Þ �Að2ÞÞ ð85Þ

is not zero. For this to be the case, the vacuum polarization must be such that the

displacement D(1) is not the complex conjugate of the displacement D(2). It can

be seen as follows that for this to be the case, polarization must develop

asymmetrically as follows:

Dð1Þ ¼ e0Eð1Þ þ aPð1Þ

Dð2Þ ¼ e0Eð2Þ þ bPð2Þ
ð86Þ

If there is no vacuum polarization, then the photon mass resides entirely in the

vacuum current.

In the preceding analysis, commutators of covariant derivatives always act on

an eigenfunction, so, for example:

½Dm;Dn�c ¼ qm � igAm; qn � igAn
� �

c

¼ ðqmqn � qnqmÞc� igAmqncþ igqnðAmcÞ
� igqmðAncÞ þ igAnqmc� g2½Am;An�c
¼ �igAmqncþ igqnAmcþ igAmqnc� igðqmAnÞc
� igAnqmcþ igAnqmc� g2½Am;An�c
¼ �igðqmAn � qnAm � ig½Am;An�Þc

ð87Þ

giving the field tensor for all gauge groups:

Gmn ¼ qmAn � qnAm � ig ½Am;An� ð88Þ

In the literature, the operation ½Dm;Dn�c is often written simply as ½Dm;Dn� but

this shorthand notation always implies that the operators act on the unwritten c.

On the O(3) level, the clearest insight into the meaning of the Jacobi identity

(37) is obtained by writing the covariant derivative in terms of translation (P)

and rotation (J) generators of the Poincaré group:

Ds ¼ qs � igAs ¼ qs � igðAX
sJX þ AY

sJY þ AZ
sJZÞ

qs ¼ �iPs
ð89Þ

where JX, JY, and JZ are the rotation generators. The translation generator is

defined [42,46] as

Ps ¼ iqs ð90Þ
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The Jacobi identity of operators (37) therefore becomes, after index matching

½Ps þ gAX
sJX; ½Pk þ gAY

kJY ;Pl þ gAZ
lJZ ��

¼ ½PX þ gAX
XJX; ½PY þ gAY

Y JY ;PZ þ gAZ
ZJZ �� ð91Þ

Now consider the component

½PX ; ½PY þ gAY
Y ;PZ þ gAZ

ZJZ ��
¼ ½PX ; ½PY ;PZ � þ gAY

Y ½JY ;PZ � þ gAZ
Z ½PY ; JZ � þ g2AY

Y AZ
Z ½JY ; JZ �� ð92Þ

and use the Lie algebra [46]

½JY ;PX � ¼ �iPX ½PX;PX� ¼ 0

½PY ; JZ � ¼ iPX ½PX ; JX � ¼ 0

½JY ; JZ � ¼ iJX

ð93Þ

to find that it vanishes. In vector notation, this result implies Eq. (52)

qm ~Gmn � 0 ½Oð3Þ level� ð94Þ

and the result

½As;Gkl� þ ½Ak;Gls� þ ½Al;Gsk� � 0 ð95Þ

which can be developed as

½qm; ~Gmn�c � 0 ð96Þ

giving Eq. (94) again self-consistently. Similarly

½Am; ~G
mn�c � 0 ð97Þ

giving Eq. (40). In operator form, this is

½gAX
sJX ; ½Pk þ gAY

kJY ;Pl þ gAZ
lJZ �� � 0 ð98Þ

and the factor ½Am; ~G
mn� is a simple multiplication operation on c.

The overall result is that the homogeneous field equation for all group sym-

metries is the result of the Lie algebra of the Poincaré group, the group of spe-

cial relativity. The Jacobi identity can be derived in turn from a round trip or

holonomy in Minkowski spacetime, as first shown by Feynman [46] for all

gauge groups. The Jacobi identity is Lorentz- and gauge-invariant.
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III. CLASSICAL LEHNERT AND PROCA VACUUM CHARGE
CURRENT DENSITY

In this section, gauge theory is used to show that there exist classical charge

current densities in the vacuum for all gauge group symmetries, provided that the

scalar field of gauge theory is identified with the electromagnetic field [O(3)

level] or a component of the electromagnetic field [U(1) level]. The Lehnert

vacuum charge current density exists for all gauge group symmetries without the

Higgs mechanism. The latter introduces classical Proca currents and other terms

that represent energy inherent in the vacuum. Some considerable mathematical

detail is given as an aid to comprehension of the Lagrangian methods on which

these results depend.

The starting point is the Lagrangian that leads to the vacuum d’Alembert

equation for an electromagnetic field component, such as a scalar magnetic

flux density component, denoted B, of the electromagnetic field. The identifica-

tion of the scalar field, usually denoted f [46], of gauge theory with a scalar

electromagnetic field component was first made in the derivation [62,63} of

the ‘t Hooft–Polyakov monopole. In principle, f can be identified with a scalar

component of the vacuum magnetic flux density (B), or electric field strength

(E), or the Whittaker scalar magnetic fluxes G and F [64,65] from which all

potentials and fields can be derived in the vacuum. The treatment is classical,

and the field is regarded as a function of the spacetime coordinate xm, and not as

an eigenfunction of quantum mechanics. The general mathematical method

used is a functional variation on a given Lagrangian, and so it is helpful to il-

lustrate this method in detail as an aid to understanding. The basic concept is

that there exists, in the vacuum, an electromagnetic field whose scalar compo-

nents are B and E, or G and F, scalar components that obey the d’Alembert, or

relativistic wave, equation in the vacuum. The Lagrangian leading to this equa-

tion by functional variation is set up, and this Lagrangian is subjected to a local

gauge transformation, or gauge transformation of the second kind [46]. Local

gauge invariance leads directly to the inference, from the first principles of

gauge field theory, of a vacuum charge current density first introduced phenom-

enologically by Lehnert [45]. Inclusion of spontaneous symmetry breaking with

the Higgs mechanism leads to several more vacuum charge current densities on

the U(1) and O(3) levels, and in general for any gauge group symmetry. Each

of these charge current densities in vacuo provides energy inherent in the

vacuum.

The method of functional variation in Minkowski spacetime is illustrated first

through the Lagrangian (in the usual reduced units [46])

L ¼ � 1

4
FmnFmn ð99Þ
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where Fmn is the field tensor on the U(1) level [46–61]. The relevant Euler–

Lagrange equation is

qn
qL

qðqnAmÞ

� �
¼ qL

qAm
ð100Þ

Consider the component

q0
qL

qðq0AmÞ

� �
¼ 0 ð101Þ

For indices n ¼ 0 and m ¼ 1, summation over repeated indices gives

FmnFmn ¼ F10F10 þ F01F01 ð102Þ

Therefore

F10F10 ¼ ðq1A0 � q0A1Þðq1A0 � q0A1Þ
¼ ðq1A0Þðq1A0Þ � ðq0A1Þðq1A0Þ � ðq1A0Þðq0A1Þ þ ðq0A1Þðq0A1Þ
¼ �qXA0qXA0 þ q0AXqXA0 þ qXA0q0AX � q0AXq0AX

ð103Þ

using contravariant–covariant notation. In the same notation, we have

q
qðq0A1Þ

¼ � q
qðq0AXÞ

ð104Þ

so

qðF10F10Þ
qðq0A1Þ

¼ �qXA0 � qXA0 þ q0AX þ q0AX ð105Þ

Using the additional minus sign in the Lagrangian (99), we obtain

qð�F10F10=2Þ
qðq0A1Þ

¼ F10 ð106Þ

and repeating with the term

F01F01 ¼ ðq0A1 � q1A0Þðq0A1 � q1A0Þ
¼ �q0AXq0AX þ qXA0q0AX þ q0AXqXA0 � qXA0qXA0 ð107Þ
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gives the same as Eq. (103). So the final result of the functional variation is

qnFmn ¼ 0 ð108Þ

which is the vacuum inhomogeneous field equation in the Maxwell–Heaviside

theory. This equation is widely accepted, but it violates causality, because there is

a field (effect) without a source (cause). This flaw is usually overlooked by

stating that the field is in a source-free region, or that the field is infinitely distant

from its source. Both explanations are unsatisfactory.

Another example of functional variation is the Lagrangian

L ¼ � 1

4
FmnFmn þ 1

2
m2AmAm ð109Þ

which leads to the Proca equation in the received view [46]. The obvious

problem with this Lagrangian is that for identically nonzero m, the product AmAm

is not gauge-invariant on the U(1) level. Setting that problem aside for the sake of

argument, contravariant–covariant notation gives

AmAm ¼ A2
0 � A2

X � A2
Y � A2

Z ð110Þ

so that functional variation proceeds as follows:

qL
qA0

¼ 2m2A0

2
; � qL

qAX

¼ � 2m2AX

2
; � qL

qAY

¼ � 2m2AY

2
; � qL

qAZ

¼ � 2m2AZ

2

ð111Þ

The overall result is

qL
qAm
¼ m2Am ð112Þ

giving the received Proca equation [46]:

qmFmn þ m2An ¼ 0 ð113Þ

The Lagrangian (109) is not gauge-invariant, so Eq. (113) is not gauge-invariant.

However, the foregoing illustrates the method of functional variation that will be

used throughout this section.

In order to derive field equations in the vacuum that are self-consistent, cause

must precede effect and the classical current of the Proca current must be gauge-

invariant. The starting point for the development is the concept of scalar field
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[46], which is usually denoted f. The basic idea [46] behind the existence of the

scalar field f is a transition from a point particle at coordinate x(t) to a field

fðxmÞ ¼ fðX; Y ; Z; tÞ ð114Þ

which is a function of X, Y, Z and t in Minkowski spacetime. The scalar field f is

a classical concept and is governed by the Euler–Lagrange equation:

qL
qf
¼ qn

qL
qðqnfÞ

� �
ð115Þ

The source of electric charge in this view is a symmetry of the action in Noether’s

theorem, a symmetry that means that f must be complex, that is, that there must

be two fields:

f ¼ 1ffiffiffi
2
p ðf1 þ if2Þ ð116Þ

f	 ¼ 1ffiffiffi
2
p ðf1 � if2Þ ð117Þ

These fields are regarded as independent functions in the method of functional

variation. In developing their concept of a magnetic monopole, ‘t Hooft and

Polyakov identified f with a scalar component of the electromagnetic field, a

component that they denoted F [46]. It is convenient for our purposes to identify

f with a scalar component B of the electromagnetic field in the vacuum.

Therefore, there are two independent magnetic flux density components:

B ¼ 1ffiffiffi
2
p ðB1 þ iB2Þ ð118Þ

B	 ¼ 1ffiffiffi
2
p ðB1 � iB2Þ ð119Þ

The Lagrangian governing these scalar components is

L ¼ ðqmBÞðqmB	Þ ð120Þ

and is invariant under global gauge transformation, also known as ‘‘gauge

transformation of the first kind’’

B! e�i�B; B	 ! ei�B	 ð121Þ

where � is any real number. The Euler–Lagrange equation

qL
qB
¼ qn

qL
qðqnBÞ

� �
ð122Þ
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with the Lagrangian (120) gives the d’Alembert equations:

&B ¼ 0 ð123Þ
&B	 ¼ 0 ð124Þ

which are the relativistic wave equations in the vacuum satisfied by B and B*. For

example, if B and B* are components of a plane wave, they satisfy the

d’Alembert equations (123) and (124).

However, in special relativity, the number � is a function of the spacetime

coordinate xm. This property defines the local gauge transformation

B! e�i�ðxmÞB; B	 ! ei�ðxmÞB	 ð125Þ

L ¼ ðqmBÞðqmB	Þ � igðB	qmB� BqmB	ÞAm þ g2AmAmB	B� 1

4
FmnFmn

¼ ðqmBþ igAmBÞðqmB	 � igAmB	Þ � 1

4
FmnFmn ð126Þ

or gauge transformation of the second kind. The Lagrangian (120) is invariant

under the local gauge transformation (125) if it becomes [46]: The 4-potential

becomes

Am ! Am þ
1

g
qm� ð127Þ

where � is any number and the derivative qm becomes the covariant derivatives:

DmB ¼ ðqm þ igAmÞB ð128Þ
DmB	 ¼ ðqm � igAmÞB	 ð129Þ

acting respectively on B and B*. The Lagrangian (126) is gauge invariant under a

U(1) gauge transformation that introduces the electromagnetic field tensor Fmn.

Using the Euler–Lagrange equation (100) gives the vacuum field equation:

qn Fmn ¼ �igðB	qmB� BqmB	Þ þ 2g2Am Bj j2

¼ igðB	DmB� BDmB	Þ

� �gJmðvacÞ

ð130Þ

where

JmðvacÞ ¼ iðB	DmB� BDmB	Þ ð131Þ
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Therefore JmðvacÞ is a covariant conserved charge current density in the vacuum.

The coefficient g of the covariant derivative has the units [47–61] of k=Að0Þ in the

vacuum. Using

g ¼ k
Að0Þ

ð132Þ

has been shown recently [47–61] to explain the Sagnac effect and interferometry

in general using an O(3) invariant electrodynamics. The coefficient g is the same

on the U(1) and O(3) levels.

In SI units, Eq. (130) is

qnFmn ¼ �igcðB	DmB� BDmB	ÞAr ð133Þ

and shows that the electromagnetic field in the vacuum has its source in the

conserved JmðvacÞ, which is divergentless.

In Eq. (133), Ar is the area of the electromagnetic beam, c the vacuum speed

of light and m0 is the vacuum permeability in SI units.

The analysis can be repeated by identifying the scalar field f with a scalar

component A of the vacuum four potential Am. Thus Eqs. (118) and (119)

become

A ¼ 1ffiffiffi
2
p ðA1 þ iA2Þ ð134Þ

A	 ¼ 1ffiffiffi
2
p ðA1 � iA2Þ ð135Þ

and the Lagrangian (120) becomes

L ¼ ðqmAÞðqmA	Þ ð136Þ

Local gauge transformation is defined as

A! expð�i�ðxmÞÞA
A	 ! expði�ðxmÞÞA	

ð137Þ

and the gauge-invariant Lagrangian (126) becomes

L ¼ ðqmAþ igAmAÞðqmA� igAmA	Þ � 1

4
FmnFmn ð138Þ

Finally, the inhomogeneous field equation in the vacuum becomes

qnFmn ¼ �igcðA	DmA� ADmA	Þ ð139Þ
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in SI units. This form has the advantage of eliminating any geometric variable

such as Ar from the vacuum charge current density. The covariant derivatives

(128) and (129) become

DmA ¼ ðqm þ igAmÞA ð140Þ
DmA	 ¼ ðqm � igAmÞA	 ð141Þ

indicating the presence of self-interaction in the terms AmA and AmA	. This self-

interaction is observed empirically [47–61] in a number of ways, including the

inverse Faraday effect and the third Stokes parameter defining the circular

polarization of electromagnetic radiation.

So it is also possible to use the form (139) for the vacuum charge current

density, a form that eliminates any geometric unit such as Ar that is not fully

relativistic. However, A is, strictly speaking, a potential energy difference and

not a field.

Using the Euler–Lagrange equation (122) with the Lagrangian (126) pro-

duces the two complex conjugate equations (reduced units):

&B ¼ �igðBqmAm þ Amq
mBÞ þ g2AmAmB ð142aÞ

&B	 ¼ igðB	qmAm þ Amq
mB	Þ þ g2AmAmB	 ð142bÞ

or their representation in terms of the scalar A:

&A ¼ �igðAqmAm þ Amq
mAÞ þ g2AmAmA ð143aÞ

&A	 ¼ igðA	qmAm þ Amq
mA	Þ þ g2AmAmA	 ð143bÞ

Equations (133) and (142) or (139) and (143) can be solved simultaneously,

because they are each two equations in two unknowns (B and Am) or (A and Am).

It can be shown on this U(1) level that the introduction of a Higgs mechan-

ism [46], namely, spontaneous symmetry breaking, produces three more va-

cuum charge current densities in addition to the Lehnert-type charge current

density (133) or (139). One of these is a Proca vacuum charge current density

that is gauge-invariant on the classical level. The Higgs mechanism is intro-

duced by considering the usual Lagrangian [46]

L ¼ T � V ¼ ðqmfÞðqmf	Þ � m2f	f� lðf	fÞ2 ð144Þ

and adapting it for the electromagnetic field in the vacuum by writing it as

L ¼ T � V ¼ ðqmBÞðqmB	Þ � m2B	B� lðB	BÞ2 ð145Þ
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or

L ¼ T � V ¼ ðqmAÞðqmA	Þ � m2A	A� lðA	AÞ2 ð146Þ

depending on whether f is chosen to be B or A. The appearance of three new

currents occurs for both choices and of course B is related to A through the vector

equation:

B ¼ r A ð147Þ

In Eq. (144), it is well known that the mass m is regarded as a parameter that can

become negative and that l premultiplies the self-interaction term. The adapta-

tion of the Higgs mechanism for the vacuum electromagnetic field therefore

automatically implies that scalar components of that field self-interact. The self-

interaction of electromagnetic fields on the received U(1) level is observable in

the Stokes parameters, energy and Poynting vector for example, and in nonlinear

optical phenomena of various kinds [47–61].

Considering Eq. (145), we obtain

qV

qB
¼ m2B	 þ 2lB	ðB	BÞ ð148Þ

and if m2 < 0, there is a local maximum at B ¼ 0 and a minimum at

a2 � Bj j2¼ �m2

2l
; i:e:; a ¼ Bj j ð149Þ

The scalar fields B and B* therefore become

BðxmÞ ¼ aþ 1ffiffiffi
2
p ðB1 þ iB2Þ ð150Þ

B	ðxmÞ ¼ aþ 1ffiffiffi
2
p ðB1 � iB2Þ ð151Þ

so the Lagrangian becomes

L ¼ qmðaþ BÞqmðaþ B	Þ � m2ðaþ B	Þðaþ BÞ � lððaþ B	Þðaþ BÞÞ2

ð152Þ

It is interesting to develop this expression as

L ¼ BB	ðm2 � lBB	Þ þ � � �
¼ �lBB	ð2a2 þ BB	Þ þ � � � ð153Þ
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which can be expressed algebraically as

L ¼ �l a2 þ 2affiffiffi
2
p B1 þ

1

2
ðB2

1 þ B2
2Þ

� �
3a2 þ 2affiffiffi

2
p B1 þ

1

2
ðB2

1 þ B2
2Þ

� �
þ � � �

¼ qmBqmB	 � 2la2B2
1 �

ffiffiffi
2
p

lB1ðB2
1 þ B2

2Þ �
l
4
ðB2

1 þ B2
2Þ

2 � 3la4 ð154Þ

In contemporary thought, the Higgs mechanism has acted in such a way as to

produce a field component B1 with mass, specifically, a scalar field with mass that

is gauge-invariant. Therefore, spontaneous symmetry breaking of the vacuum

introduces fields with effective mass.

Considering a local gauge transformation of the Lagrangian (145) produces

the gauge-invariant Lagrangian:

L ¼ ðqm þ igAmÞðaþ BÞðqm � igAmÞðaþ B	Þ � m2ðaþ BÞðaþ B	Þ

� lðaþ BÞ2ðaþ B	Þ2 � 1

4
FmnFmn ð155Þ

Using this Lagrangian in Eq. (100) produces the following result (reduced units)

by functional variation:

qnFmn ¼ �igðB	DmB� BDmB	Þ � g2m2

l
Am þ 2

ffiffiffi
2
p

g2aB1Am þ
ffiffiffi
2
p

agqmB2

ð156Þ

The term �g2m2Am=l implies that the electromagnetic 4-potential Am has

acquired mass. Simultaneously there appear two other terms. All four vacuum

charge current densities produce vacuum energy through the equation

EnðvacÞ ¼
ð

JmðvacÞAm dV ð157Þ

Alternatively, Eq. (156) can be written from Eq. (146) in terms of the scalar A:

qnFmn ¼ �igðA	DmA� ADmA	Þ � g2m2 Am

l
þ 2

ffiffiffi
2
p

g2aA1Am þ
ffiffiffi
2
p

agqmA2

ð158Þ

Therefore, spontaneous symmetry breaking of the vacuum on the U(1) level

produces new vacuum charge current densities that act as sources for the

electromagnetic field and produce energy inherent in the topology of the vacuum.

The topology is described by gauge theory and group theory.
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In an O(3) electromagnetic sector [47–61], the Lagrangian (120) becomes

L ¼ 1

2
qmBiq

mBi ð159Þ

where there are internal indices i to indicate the existence of an internal gauge

group of O(3) symmetry. In the complex basis ((1),(2),(3)), the Lagrangian can

be expressed in terms of the physical magnetic field:

B ¼ Bð2Þeð1Þ þ Bð1Þeð2Þ þ Bð3Þeð3Þ ð160Þ

In vector notation, the Lagrangian (159) can be written as

L ¼ 1

2
qmB � qmB ð161Þ

and using the Euler–Lagrange equation

qL
qB
¼ qn

qL
qnB

� �
ð162Þ

produces the vacuum d’Alembert equation

&B ¼ 0 ð163Þ

which in component form becomes

&BðiÞ ¼ 0; i ¼ 1; 2; 3 ð164Þ

The Lagrangian (161) is invariant under a global O(3) transformation

B0 ¼ eiJi�i B ð165Þ

where Ji are rotation generators of the O(3) group, and where �i are angles in the

physical internal space ((1),(2),(3)).

The local O(3) transformation corresponding to Eq. (165) is

B0 ¼ eiJi�iðxmÞB ð166Þ

and the Lagrangian (161) is invariant under this if it becomes

L ¼ DmB �DmB� 1

4
Gmn �G

mn ð167Þ
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where the field B and the electromagnetic field Gmn are vectors of the internal

gauge space and where Gmn is a tensor of Minkowski spacetime. Field equations

are obtained from the Lagrangian (167) by functional variation using Euler–

Lagrange equations such as

qn
qL

qðqnAmÞ

� �
¼ qL

qAm ð168Þ

where Am is a vector in the internal gauge space and a 4-vector in Minkowski

spacetime. The field tensor in O(3) is defined [46–61] as

Gmn ¼ qmAn � qnAm þ gAm  An ð169Þ

In analogy with the Lagrangian (99), the factor � 1
4

is needed because of double

summation over repeated indices. So functional variation of the term�1
4
Gmn �G

mn

gives qnGmn. However, on the O(3) level, we must consider the additional terms

L1 ¼ �
1

4
gðGmn �Am  An þ Am  An �GmnÞ

¼ � 1

4
gðAm � ðGmn  AnÞ þ Am � ðGmn  AnÞÞ ð170Þ

which have the same premultiplier � 1
4

due to double summation over repeated

indices. From the terms (170)

qL
qAm ¼ gGmn  An ¼ �gAn  Gmn ð171Þ

So the sum of terms (which appear on the left-hand side of the field equation)

from variation in the term �1
4
Gmn �G

mnin the Lagrangian (167) is

DnGmn � qnGmn þ gAn  Gmn ð172Þ

which is a covariant derivative in electrodynamics invariant under a local O(3)

transformation. We must also consider functional variation of the term

L3 ¼ DmB �DmB ¼ ðqm þ gAmÞB � ðqm þ gAmÞB ð173Þ

which can be expressed as

L3 ¼ qmB � qmBþ gAm � ðB qmBÞ þ gAm � ðB qmBÞ

þ g2ððAm �A
mÞðB �BÞ � ðAm �BÞðB �AmÞÞ ð174Þ
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We obtain

qL3

qAm ¼ gðB qmBÞ þ g2ðAmðB �BÞ � ðAm �BÞBÞ

¼ gðB qmBÞ þ g2B ðAm  BÞ ð175Þ

So the complete field equation obtained from the Lagrangian (167) by functional

variation is

DnGmn ¼ �gðDmBÞ  B � �gJmðvacÞ ð176Þ

This equation in vector notation for the internal gauge space can be developed as

three equations in reduced units

qmGmnð1Þ ¼ igðAð2Þm Gmnð3Þ � Að3Þm Gmnð2Þ � Bð2ÞDnBð3Þ þ Bð3ÞDnBð2ÞÞ ð177Þ
qmGmnð2Þ ¼ igðAð3Þm Gmnð1Þ � Að1Þm Gmnð3Þ � Bð3ÞDnBð1Þ þ Bð1ÞDnBð3ÞÞ ð178Þ
qmGmnð3Þ ¼ igðAð1Þm Gmnð2Þ � Að2Þm Gmnð1Þ � Bð1ÞDnBð2Þ þ Bð2ÞDnBð1ÞÞ ð179Þ

where a covariant derivative acting on a component such as B(1) is

DnBð1Þ ¼ qnBð1Þ � igðAnð2ÞBð3Þ � Anð3ÞBð2ÞÞ ð180Þ

Therefore there are several more vacuum current terms on the O(3) than on the

U(1) level. The factor g is, however, the same on both levels. In SI units, the Eqs.

(177)–(179) become

qmGmnð1Þ ¼ igðAð2Þm Gmnð3Þ � Að3Þm Gmnð2ÞÞ
� igcðBð2ÞDnBð3Þ � Bð3ÞDnBð2ÞÞAr

. . .

ð181Þ

If the field f is identified with the space components of A in the basis

((1),(2),(3)), the following three vacuum equations are obtained

qmGmnð1Þ ¼ igðAð2Þm Gmnð3Þ � Að3Þm Gmnð2ÞÞ
� igcðAð2ÞDnAð3Þ � Að3ÞDnAð2ÞÞ

. . .

ð182Þ

in which the vacuum currents have no geometric factor.

The structure of these vacuum charge current densities can be developed as

follows in terms of time-like, longitudinal and transverse components. In this
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development, we take the real parts of A and Am. The complete inhomogeneous

field equation in the vacuum is

qnGmn þ gAn  Gmn ¼ �gðDmAÞ  A ð183Þ

where the right-hand side can be expanded as

JmðvacÞ � gqmA Aþ g2 A ðA AmÞ ð184Þ

The longitudinal current density in vacuo is investigated, first in the plane-wave

first approximation, by taking the real part of the potential

A ¼ Að0Þffiffiffi
2
p ðiiþ jÞeiðot�kZÞ ð185Þ

which is

Re A ¼ Að0Þffiffiffi
2
p ð�isinfþ J cosfÞ ð186Þ

where

f � ot � kZ ð187Þ

The longitudinal current density is (in SI units)

J3 ¼
g

m0c
q3A Aþ g2

m0c
A ðA A3Þ ð189Þ

and the vector magnitude is

Að0Þ ¼ Aj j ¼ ðA2
1 þ A2

2Þ
1=2 ð189Þ

In general, the vacuum current density has a definite structure in the vacuum that

is much richer than in the first plane-wave approximation: a structure that has to

be computed because analytical solutions to Eq. (183) are not available.

In the plane-wave first approximation, the current density is therefore

Jð3ÞðvacÞ ¼ 2k
m0c

Bð3Þ ð190Þ

in SI units and is directly proportional to the vacuum B(3) field. The structure of

Eq. (190) was first derived by considering the inverse Faraday effect as Eq. (243)

of Ref. 42. Equation (190) (above) was first derived phenomenologically on the
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O(3) level in Ref. 51 and first developed phenomenologically in Ref. 59.

Equation (190) is its rigorous first-principles description in the vacuum. The first

principles of gauge field theory therefore produce vacuum charge current den-

sities in the vacuum for all gauge group symmetries. There are several experi-

mental reasons [42,47–61] for preferring O(3) over U(1) for electrodynamics.

The vacuum charge density is also structured in general, but in the plane

wave, first approximation is given by

J0 ¼
k2A0

m0c
ð191Þ

because by definition, the time component of the vector A is zero. This is how it

differs from the 4-vector Am, and why it is an independent variable in the method

of functional variation used to derive Eq. (183) from an O(3) invariant

Lagrangian.

The vacuum transverse current densities are also structured, and in general

they are

J1 ¼
g

m0c
q1A Aþ g2

m0c
A ðA A1Þ ð192Þ

J2 ¼
g

m0c
q2A Aþ g2

m0c
A ðA A2Þ ð193Þ

In the plane-wave first approximation, they reduce to

J1 ¼ �g2A1A2
2 i ð194Þ

J2 ¼ g2A2
1A2 j ð195Þ

using the vector triple products:

A ðA A1Þ ¼ �A1A2
2i ð196Þ

A ðA A2Þ ¼ �A2
1A2 j ð197Þ

In SI units, the transverse vacuum current densities are given in the plane-wave

first approximation by

J1 ¼ �g2 A1A2
2

m0c
i ð198Þ

J2 ¼ g2 A2
1A2

m0c
j ð199Þ
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It is emphasized, however, that there is no reason to assume plane waves. These

are used as an illustration only, and in general the vacuum charge current

densities of O(3) electrodynamics are richly structured, far more so than in U(1)

electrodynamics, where vacuum charge current densities also exist from the first

principles of gauge theory as discussed already.

The complete vacuum inhomogeneous equation is

qnGmn ¼ �gAn  Gmn � gðDmAÞ  A ð200Þ

If m ¼ 2 and n ¼ 1, the left-hand side vanishes because G21 contains only B3,

which is phaseless. The right-hand side gives the equation

B3 ¼ gA1A2 ð201Þ

which reduces in the notation that we have been using to

Bð3Þ ¼ �igAð1Þ  Að2Þ ð202Þ

In the usual complex circular basis used for O(3) electrodynamics [42], this is the

definition of the field B(3).

Therefore, a check for self-consistency has been carried out for indices m ¼ 2

and n ¼ 1. It has been shown, therefore, that in pure gauge theory applied to

electrodynamics without a Higgs mechanism, a richly structured vacuum charge

current density emerges that serves as the source of energy latent in the vacuum

through the following equation:

En ¼
ð

Jm �Am dV ð203Þ

Therefore, on the O(3) level, there are several sources of energy latent in the

vacuum. This conclusion is gauge-invariant because the Lagrangian is O(3)

invariant. It is concluded that potentials can give rise to physical effects in the

vacuum on both the U(1) and O(3) levels. These effects are reviewed experi-

mentally by Barrett [50]. The best known is the Aharonov–Bohm effect, which

Barrett has shown [50] to be supported self-consistently only by O(3) electro-

dynamics and not by U(1) electrodynamics. Both the O(3) and the U(1) group are

non-singly connected, the O(3) group being doubly connected in topology [50].

The latter dictates the structure of the field equations in gauge theory applied to

classical electrodynamics.

The wave equation in the vacuum for O(3) electrodynamics can be obtained

by functional variation in the Euler–Lagrange equation

qL
qA
¼ qm

qL
qðqmAÞ

� �
¼ qm

qL
qðqmAÞ

� �
ð204Þ
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with the gauge-invariant Lagrangian

L ¼ Dm A �DmA� 1

4
Gmn �G

mn ð205Þ

obtained by a local gauge transformation on the Lagrangian:

L ¼ 1

2
qmA � qmA ð206Þ

The only assumption therefore is that the Maxwell vector potential A exists in the

physical internal space of O(3) symmetry. The gauge-invariant Lagrangian (205)

can be developed as

L ¼ qmA � qmAþ gðAm  A � qmAþ qmA �Am  AÞ þ g2ðAm  AÞ � ðAm  AÞ
ð207Þ

L ¼ qmA � qmAþ gðA � ðqmA AmÞ þ A � ðqmA �AmÞÞ þ g2ðAm  AÞ � ðAm  AÞ
ð208Þ

Using the vector identity

Am  A �Am  A ¼ ðAm �A
mÞðA �AÞ � ðAm �AÞðA �AmÞ ð209Þ

gives the results

qL
qA
¼ gqmA Am þ gqmA Am þ 2g2AðAm �A

mÞ

� g2ðAmðA �AmÞ � ðA �AmÞAmÞ ð210Þ

and

qm
qL

qðqmAÞ

� �
¼ 2qmq

mAþ 2gqmðAm  AÞ ð211Þ

The vacuum wave equation in O(3) electrodynamics is therefore

&A ¼ �gqmðAm  AÞ þ gðqmAÞ  Am þ g2ðAðAm �A
mÞ � AmðA �AmÞÞ ð212Þ

Using

Am  ðA AmÞ ¼ AðAm �AmÞ � AmðAm �AÞ ð213Þ
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Eq. (212) simplifies to

&Aþ gqmðAm  AÞ ¼ gðqmAÞ  Am � g2ðA AmÞ  Am ð214Þ

which can be written as

qmððqm þ gAmÞAÞ ¼ gðqmAÞ  Am þ g2Am  ðA AmÞ ð215Þ

This form further simplifies to

qmðDmAÞ ¼ gððqm þ gAmÞAÞ  Am ð216Þ

which becomes

qmðDmAÞ ¼ gðDmAÞ  Am ð217Þ

Therefore, we finally obtain the wave equation of O(3) electrodynamics in the

form

DmðDmAÞ ¼ 0 ð218Þ

which is a d’Alembert equation for A with O(3) covariant derivatives.

The derivation of Eq. (218) from Eq. (206) follows from local gauge invar-

iance, and it is always possible to apply a local gauge transform to the vector A,

the Maxwell vector potential. The ordinary derivative of the d’Alembert wave

equation is replaced by an O(3) covariant derivative. The U(1) equivalent of

Eq. (218) in quantum-mechanical (operator) form is Eq. (13), and Eq. (212)

is the rigorously correct form of the phenomenological Eq. (25). It can be

seen that Eq. (212) is richly structured in the vacuum and must be solved nu-

merically. The vacuum currents present in Eq. (218) can be computed from the

right-hand side of the wave equation (212), and these vacuum currents follow

from local gauge invariance.

On the U(1) level, the starting Lagrangian is

L ¼ qmAqmA	 ð219Þ

which on local gauge transformation becomes

L ¼ ðqmAþ igAmAÞðqmA	 � igAmA	Þ � 1

4
FmnFmn ð220Þ

Using the Euler–Lagrange equations

qL
qA
¼ qm

qL
qðqmAÞ

� �
;

qL
qA	
¼ qm

qL
qðqmA	Þ

� �
ð221Þ
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we obtain

&A	 ¼ igðqmAmÞA	 þ igAmðqmA	Þ þ g2AmAmA	 ð222Þ

which is Eq. (143), showing a richly structured vacuum charge current density.

Equation (222) can be developed as

qmðqmA	 � igAmA	Þ ¼ igAmðqmA	Þ þ g2AmAmA	 ð223Þ

that is

qmðDmA	Þ ¼ igAmðqmA	 � igAmA	Þ ð224Þ
DmðDmA	Þ ¼ 0 ð225Þ

which is a vacuum d’Alembert equation with U(1) covariant derivatives. To

obtain Eq. (225) from Eq. (219), the only assumption is that the Lagrangian is

invariant under the local U(1) gauge transform:

A! expð�i�ðxmÞÞA ð226Þ

Similarly, we obtain

qmDmA ¼ �igAmðqmAþ igAmAÞ ð227Þ

and the d’Alembert equation

DmðDm AÞ ¼ 0 ð228Þ

with covariant derivatives.

A possible solution of Eq. (228) is:

DmA ¼ 0 ð229Þ

specifically

qm ¼ �igAm ð230Þ

Define

km � gAm ¼
k

Að0Þ
Am ð231Þ

and Eq. (230) becomes the following quantum ansatz:

qm ¼ �ikm ¼ �
i

�h
pm ð232Þ

the present status of the quantum theory of light 39



On the quantum level, Eq. (229) becomes an operator equation, and, using the

quantum ansatz, we obtain

Dm	DmA ¼ 0; i:e:; &A ¼ �kmkmA ð233Þ

which is Eq. (12) (above). In fully covariant form, Eq. (233) becomes the gauge

invariant Proca equation:

&Am ¼ �kmkmAm ¼ �k2Am ¼ � m0c

�h

� �2

Am ð234Þ

Note that the Proca equation requires

kmkm 6¼ 0 ð235Þ

and has been obtained without the use of the Lorenz condition.

The equivalent procedure on the O(3) level is to choose a particular solution

DmA ¼ ðqm þ gAmÞA ¼ 0 ð236Þ

which, in the general notation of gauge field theory, is

qmc ¼ igAmð3Þc ð237Þ

giving again the quantum ansatz on the O(3) level. In the complex circular basis

Am ¼ Að2Þeð1Þ þ Að1Þeð2Þ þ Að3Þeð3Þ

A ¼ Að1Þ þ Að2Þ þ Að3Þ
ð238Þ

and Eq. (236) becomes

ðqm þ gamÞðAð1Þ þ Að2Þ þ Að3ÞÞ ¼ 0 ð239Þ

This equation can be developed as

q
qZ

Að1Þ ¼ �gAð3Þ  Að1Þ � � � ð240Þ

in other words, as

ikAð2Þ	 ¼ Að3Þ  Að1Þ ð241Þ
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which gives self-consistently the definition

Bð2Þ	 ¼ �igAð3Þ  Að1Þ ð242Þ

Similarly, we obtain

q
qZ

Að2Þ ¼ gAð2Þ  Að3Þ ð243Þ

which gives the following definition:

Bð1Þ	 ¼ �igAð2Þ  Að3Þ ð244Þ

Using the relation g ¼ k=Að0Þ in Eqs. (242) and (244) gives two equations of the

B cyclic theorem [42,47–61]:

Bð3Þ  Bð1Þ ¼ iBð0ÞBð2Þ	

Bð2Þ  Bð3Þ ¼ iBð0ÞBð1Þ	
ð245Þ

It follows from the quantum ansatz (237) that

� q
qX
ðAð1Þ þ Að2Þ þ Að3ÞÞ ¼ gA

ð3Þ
X  ðAð1Þ þ Að2Þ þ Að3ÞÞ ¼ 0

� q
qY
ðAð1Þ þ Að2Þ þ Að3ÞÞ ¼ gA

ð3Þ
Y  ðAð1Þ þ Að2Þ þ Að3ÞÞ ¼ 0

ð246Þ

which is self-consistent because

A
ð3Þ
X ¼ A

ð3Þ
Y ¼ 0 ð247Þ

Finally, the time-like component of Eq. (236) is

1

c

q
qt
ðAð1Þ þ Að2Þ þ Að3ÞÞ ¼ gA

ð3Þ
0  ðAð1Þ þ Að2Þ þ Að3ÞÞ ð248Þ

which gives again Eqs. (242) and (244).

Therefore the Proca equation can be recovered on the O(3) level from the

special solution (236) as the operator equation:

qmq
mc ¼ �g2Amð3ÞAð3Þm c ð249Þ

This result is given in Eq. (22) of the preceding section.
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A Lagrangian such as Eq. (219) is made up purely of a kinetic energy term:

L ¼ T ¼ qmAqmA	 ð250Þ

and a local gauge transformation on the Lagrangian produces

L ¼ T � V ¼ qmAqmA	 þ igðAmAqmA	 � AmA	qmAÞ þ g2AmAAmA	 � 1

4
FmnFmn

ð251Þ

where V is a potential energy term. In field theory [46], the ground state is the

vacuum, and the ground state is obtained by minimizing the potential energy V

with respect to a variable such as A or Am. The minimum of V in Eq. (251) with

respect to Am is the vacuum charge current density, which is a ground state of the

field theory and that is obviously a property of the vacuum itself. The ground

state defined by the minimum

qV

qðqnAmÞ
¼ Fmn ð252Þ

is the electromagnetic field, which is also a vacuum property. So the

inhomogeneous field equation

qnFmn ¼ JmðvacÞ
e0

ð253Þ

is a relation between ground states of the field theory, or a relation between

vacuum states. Similarly, a ground state such as

qL
qA
¼ igAm DmA	 6¼ 0 ð254Þ

is a vacuum property. It can be seen that Eq. (254) is a minimum because

q2L

qA2
¼ 2g2 Aj j2 ð255Þ

is always greater than zero.

The source of the potential energy V in Eq. (251) is local gauge transforma-

tion, and so the source of V is the vacuum itself, as described by special rela-

tivity and gauge theory. The kinetic energy T appearing in Eq. (250) has no role

in defining the ground state of the field theory, because the ground state is de-

fined by the minimum of V with respect to a given variable, as just argued. In
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these equations, the physical A and A* are excitations above the ground state or

vacuum, and the vacuum gives no contribution to the global Lagrangian (250).

The potential energy V is part of the locally gauge-invariant Lagrangian that

gives the field equation (253), a relation between vacuum properties. The va-

cuum charge current density gives energy latent in the vacuum, and rate of

doing work by the vacuum. These are given respectively by

En ¼
ð

JnðvacÞAmdV ð256Þ

and by

qW

qt
¼
ð

JðvacÞ �E dV ð257Þ

The volume V is arbitrary and, from Eq. (257) standard methods [66], give the

vacuum Poynting theorem

qU

qt
ðvacÞ þ r �SðvacÞ ¼ �JðvacÞ �E ð258Þ

or law of conservation of energy and momentum for various vacuum properties.

The vacuum energy flow is represented by the Poynting vector S(vac):

r �SðvacÞ ¼ �JðvacÞ �E ð259Þ

Integrating this equation gives

SðvacÞ ¼ �
ð

JðvacÞ �Edrþ constant of integration ð260Þ

where the constant of integration represents a physical component of energy flow

whose magnitude is not limited by any concept in gauge field theory. The

physical object J(vac) also emanates from the vacuum, and its magnitude is not

limited because the magnitude of Am is not limited by vacuum topology. The

energy flow represented by S(vac) is electromagnetic energy flow generated by

vacuum topology, and can be converted, in principle, to other forms of energy

with suitable laboratory devices.

The physical meaning of the vacuum Poynting theorem [46] in Eq. (258) is

that the time rate of change of electromagnetic energy within an arbitrary vo-

lume V, combined with the energy flowing out through the boundary surfaces of

the volume per unit time, is equal to the negative of the total work done by the

field (a vacuum property) on the source, interpreted as vacuum charge current
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density. This is a statement of conservation of energy applied within the vacuum

and in the absence of matter (electrons). In the received view

JmðvacÞ ¼ 0 ð261Þ

and there is no vacuum Poynting theorem, but as argued already, the received

view violates gauge invariance, special relativity, and causality. In the correctly

gauge-invariant Eq. (253), work is done by the source (a vacuum property) on the

field (another vacuum property), work that can be transmitted to rate of change of

mechanical energy as follows [46]:

dEn

dt
ðmechÞ ¼

ð
JðvacÞ �EdV ð262Þ

In general relativity, gravity is curvature of spacetime, and so the ordinary

potential energy mgh emanates ultimately from the vacuum topology itself. Here

m is mass, g is the acceleration due to gravity, and h is a difference in height. The

electromagnetic field is orders of magnitude stronger than the gravitational field.

Special relativity is a special case of general relativity, and sometimes Am is

known [46] as a connection, in analogy with the affine connection of general

relativity. The gravitational field is the vacuum, and the electromagnetic field is

the vacuum. Mass and gravitational field, and charge and electromagnetic field,

are therefore all consequences of relativity and vacuum topology.

In this view, the structures of the vacuum and matter currents are identical:

JmðvacÞ ¼ � ig

m0c
ðA	DmA� ADmA	Þ; g ¼ k

Að0Þ

JmðmatterÞ ¼ � ig

m0c
ðA	DmA� ADmA	Þ; g ¼ e

�h

ð263Þ

and one is transformed into the other for one electron and one photon by the

relation
k

Að0Þ
¼ e

�h
ð264Þ

Therefore, the momentum of one photon is transformed to the electron

momentum

�hk ¼ eAð0Þ ð265Þ

and the photon momentum and energy emanate from the vacuum itself, as just

argued. In this way, the elementary charge e on the proton also becomes a

topological property, arguing in analogy with the way in which mass in general
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relativity is a property of the vacuum. Again, in analogy with general relativity,

photons are formed out of the vacuum as gravitons are formed out of the vacuum.

The relation (265) is true for all internal gauge group symmetries. In the

foregoing, we happen to have been arguing on the U(1) level, but the concepts are

the same on the O(3) level. Therefore, charge e is the result of the field, which is a

vacuum property.

The above is a pure gauge field theory. The Higgs mechanism on the U(1)

level provides further sources of vacuum energy as discussed already. On the

O(3) level, the Higgs mechanism can also be applied, resulting in yet more

sources of energy.

Gauge theory of any symmetry must have two mathematical spaces:

Minkowski spacetime and the internal gauge space. If electromagnetic theory

in the vacuum is a U(1) symmetry gauge field symmetry, there is a scalar inter-

nal space of U(1) symmetry in the vacuum. This internal space is the space of

the scalar A and A* used in the foregoing arguments. In geometric form

A ¼ A1iþ A2 j ð266Þ

is a vector in a two-dimensional space with orthonormal basis vectors i and j.
This space is the internal gauge space of the U(1) gauge field theory applied to

vacuum electromagnetism. A global gauge transform is a rotation of A through

an arbitrary angle �. Such a process is described [46] by the O(2) group of

rotations in a plane, homomorphic with U(1). The invariance of action under the

same global gauge transformation results in a conserved charge Q and a

divergentless current:

dQ

dt
¼ 0; Q ¼

ð
J0 dV; qmJm ¼ 0 ð267Þ

These concepts stem from a variational principle applied to the action

S ¼
ð
LðAqm AÞd4x ð268Þ

which is stationary [46] under the condition

qL
qA
¼ qm

qL
qðqmAÞ

� �
¼ 0 ð269Þ

which is the Euler–Lagrange equation for A in the internal U(1) gauge space of

electromagnetic theory in the vacuum. The action is considered [46] in Noether’s

theorem to be unchanged by re-parameterization of xm and A, that is, is invariant
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under some group of transformations on xm and A. It follows [46] that there exist

conserved quantities that are combinations of fields and derivatives, which are

invariant under these transformations: energy, momentum, angular momentum,

and charge.

For example, it can be shown that the energy momentum tensor due to A is

[46]

ymn ¼ qmAqnA�
1

2
dmnqsAqsA ð270Þ

For translation of the origin of space and time [46], Noether’s theorem gives

Jm
n ¼ �y

m
n ¼ �q

mAqnAþ
1

2
dmnqsAqsA ð271Þ

The conserved quantity in this case is the energy momentum

d

dt

ð
y0
n d 3x ¼ 0 ð272Þ

in the internal gauge space. The energy and momentum of the field in the internal

gauge space are given by

En ¼
ð
y0

0 d3x; p ¼
ð
y0

1 d3x ð273Þ

Under the local gauge transformation (226) of the Lagrangian (219), the action is

no longer invariant [46], and invariance must be restored by adding terms to the

Lagrangian. One such term is

L1 ¼ �gJmAm ð274Þ

where g is a parameter such that gAm has the units of qm. It is important to realize

that this is true under all conditions, including the vacuum, so if electromagnetic

theory in the vacuum is a U(1) gauge theory, then both g and Am must be

introduced in the vacuum. It is clear that

g ¼ k
Að0Þ

ð275Þ

satisfies the requirement that gAm have the same units as qm. The 4-potential Am is

introduced from Minkowski spacetime and, under local U(1) gauge transforma-

tion

Am ! Am þ
1

g
qm� ð276Þ
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where � is arbitrary. Local gauge transformation therefore results in the total

Lagrangian (251) that is needed to render the action invariant.

Therefore the Lehnert equation (253) correctly conserves action under a local

U(1) gauge transformation in the vacuum. Such a transformation leads to a va-

cuum charge current density as the result of gauge theory itself, because U(1)

gauge theory has a scalar internal space that supports A and A	. These must be

complex in order to define the globally conserved charge:

Q ¼
ð

J0dV ð277Þ

from the globally invariant current:

Jm ¼ iðA	qmA� AqmA	Þ ð278Þ

in the internal U(1) space of the gauge theory.

The existence of a vacuum charge current density in the vacuum was first

introduced phenomenologically by Lehnert [45,49], and it has been shown

that the Lehnert equations can describe phenomena that the Maxwell–Heaviside

equations are unable to describe. The reason for this is now clear. The vacuum

Maxwell–Heaviside equations do not conserve action under a local gauge trans-

formation in the internal scalar space of a U(1) gauge field theory. In order to

conserve action, a locally gauge-invariant charge current density of the type ap-

pearing in Eq. (253) is needed in the vacuum, and it has just been argued that

such a conclusion has a solid basis in gauge theory. If the charge current density

were absent, there would be no scalar internal space for U(1) gauge theory ap-

plied in the vacuum to electromagnetism. It follows, as argued already, that the

vector potential Am and the electromagnetic field tensor Fmn are the result of lo-

cal gauge transformation and originate in the vacuum topology.

There is empirical evidence that electrons and positrons annihilate to give

photons, and this process is represented symbolically by

e� þ eþ ¼ 2g ð279Þ

This process cannot be described classically, because positrons are the result of

the Dirac equation, but it illustrates the fact that a vacuum current (of photons) is

made up of the interaction of two Dirac currents, one for the electron, one for the

positron, and these are both matter currents. Therefore, there is a transmutation

of matter current to vacuum current. On the classical level, this can be described

in the scalar internal gauge space as

fÐ A ð280Þ
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where f is a matter field and A is the scalar component of an electromagnetic

potential. As shown in Eqs. (263), the matter and vacuum fields have the same

structure. The coefficient g in the vacuum field is k=Að0Þ and is e=�h in the matter

field. The process

�hk! eAð0Þ ð281Þ

is therefore a transfer of photon linear momentum to an electron, as in the

Compton effect. As soon as �h is introduced, Planck quantization is also

introduced. Since e is a property of neither the electromagnetic field nor the

Dirac electron, the equation

�hk ¼ eAð0Þ ð282Þ

can be regarded [47–61] as a Planck quantization of the factor g in the vacuum:

g ¼ k
Að0Þ
¼ e

�h
ð283Þ

The Lehnert equations are a great improvement over the Maxwell–Heaviside

equations [45,49] but are unable to describe phenomena such as the Sagnac ef-

fect and interferometry [42], for which an O(3) internal gauge space symmetry

is needed.

IV. DEVELOPMENT OF GAUGE THEORY IN THE VACUUM

Gauge theory can be developed systematically for the vacuum on the basis of

material presented in Section II. Before doing so, recall that, on the U(1) level, Am

exists in Minkowski spacetime and there is a scalar internal gauge space that can

be denoted

A ¼ A1iþ A2 j ¼ AXiþ AY i ð284Þ

The internal gauge space has local symmetry, and is a physical space. In complex

circular notation, the vector in the internal gauge space can be written as

A ¼ Að2Þeð1Þ þ Að1Þeð2Þ ð285Þ

indicating two states of circular polarization. Therefore, we have Amð1Þ and Amð2Þ

in the vacuum. Circular polarization becomes a prerequisite for the conserved Q

of Eq. (277). In the notation of Eq. (285)

Að1Þ ¼ 1ffiffiffi
2
p ðAX � iAYÞ; Að2Þ ¼ 1ffiffiffi

2
p ðAX þ iAYÞ ð286Þ
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Circular polarization appears in general if

AX ¼ Að0Þ expð�iðot � kZÞÞ ð287Þ

AY ¼ Að0Þ expð�iðot � kZÞÞ ð288Þ

where we have included the electromagnetic phase on the U(1) level. The scalar

internal space in the vacuum is therefore described by the following two vectors:

A ¼ 1ffiffiffi
2
p ðAX þ iAYÞ; A	 ¼ 1ffiffiffi

2
p ðAX � iAYÞ ð289Þ

Global gauge transformation on these vectors produces a shift in the electro-

magnetic phase

AX ! Að0Þ expð�iðot � kZ þ �ÞÞ ð290Þ

AY ! Að0Þ expð�iðot � kZ þ �ÞÞ ð291Þ

where � is an arbitrary number. So under global gauge transformation, the

electromagnetic phase in the vacuum is defined only up to an arbitrary �. Under

local gauge transformation

AX ! Að0Þ expð�iðot � kZ þ �ðxmÞÞÞ ð292Þ

AY ! Að0Þ expð�iðot � kZ þ �ðxmÞÞÞ ð293Þ

and the U(1) electromagnetic phase is defined up to an arbitrary number �, which

is a function of the spacetime coordinate xm. In consequence, it has been shown

elsewhere [42,47–61] that U(1) gauge theory applied to electromagnetism does

not describe interferometry or physical optics in general.

There is an interrelation between the A and Am vectors of the scalar internal

gauge space and components of Amð1Þ and Amð2Þ in the vacuum

Að1Þ ¼ iAXeð1Þ ð294Þ

Að2Þ ¼ �iAYeð2Þ ð295Þ

so that Að1Þ ¼ Að2Þ	 is a vacuum plane wave. It can be seen that, on the U(1) level,

local and global gauge transformation introduce arbitrariness into the electro-

magnetic phase factor:

g ¼ expð�iðot � kZÞÞ ð296Þ
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Dirac attempted to remedy this flaw on the U(1) level by defining the electro-

magnetic phase factor by [42]

g ¼ exp ig

þ
AmðxmÞdxm

� �
ð297Þ

On the O(3) level, vacuum gauge theory is defined by a Clifford algebra

Am ¼ Að2Þm eð1Þ þ Að1Þm eð2Þ þ Að3Þm eð3Þ ð298Þ
A ¼ Að2Þeð1Þ þ Að1Þeð2Þ þ Að3Þeð3Þ ð299Þ

where Am is a vector in the internal gauge space of O(3) symmetry and a 4-vector

in Minkowski spacetime. In the internal gauge space, the Maxwell vector

potential is defined as

A ¼ AXiþ AY jþ AZk ¼ Að2Þeð1Þ þ Að1Þeð2Þ þ Að3Þeð3Þ ð300Þ

indicating by ansatz the existence of a nonzero A(3) in the vacuum. The latter

describes the Sagnac effect with precision as demonstrated elsewhere [42] using

a non-Abelian Stokes theorem. On the O(3) level, the electromagnetic phase

factor is a Wu–Yang phase factor denoted

g ¼ Pexp ig

þ
AmðxmÞdxm

� �
ð301Þ

where parallel transport is implied [42] with O(3) covariant derivatives. In the

vacuum, the factor g is given by Eq. (275) for all gauge group symmetries. There

is again a relation between the internal vector A and components in the vacuum

of the four vector Am. For example

Að1Þ ¼ iAXeð1Þ; Að2Þ ¼ �iAY eð2Þ; Að3Þ ¼ AZk ð302Þ

So it becomes clear that the description of the vacuum in gauge theory can be

developed systematically by recognizing that, in general, A is an n-dimensional

vector. On the U(1) level, it is one-dimensional; on the O(3) level, it is three-

dimensional; and so on. The internal gauge space in this development is a

physical space that can be subjected to a local gauge transform to produce

physical vacuum charge current densities.

So in the general case where A is an n-dimensional vector [46], a local gauge

transform on this vector is represented in the vacuum by

AðxmÞ ! A0ðxmÞ ¼ expðiMa�aðxmÞÞAðxmÞ
� SðxmÞAðxmÞ ð303Þ
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where Ma are the generators of the group that describes the symmetry of the

internal gauge space, and where the index a is summed from 1 to 3 when the

internal gauge group is O(3). It follows that

qmA0 ¼ SðqmAÞ þ ðqmSÞA ð304Þ

so qmA does not transform covariantly. This is the basis of the gauge principle and

the principle of parallel transport in the vacuum for any gauge group symmetry.

Parallel transport in the vacuum produces the vector dA, where

dA ¼ igMaAa
mdxmA ð305Þ

So the product gMaAa
m is the result of special relativity in the vacuum, and g is

adjusted for correct units. Ryder [46] simply describes Aa
m as ‘‘an additional field

or potential;’’ Feynman describes it as ‘‘the universal influence.’’ Therefore, as

argued in the foregoing section, both the potential and the electromagnetic field

in the vacuum originate in local gauge transformation, which, in turn, originates

in special relativity itself.

The covariant derivative in the vacuum for any internal gauge group symme-

try is therefore defined by

DmA ¼ ðqm � igMaAa
mÞA ð306Þ

and is valid for an n-dimensional A and for any internal gauge group whose

generators are represented by matrices Ma [46]. The U(1) covariant derivative in

the vacuum is given by M ¼ �1, resulting in

DmA ¼ ðqm þ igAmÞA ð307Þ

On the O(3) level, the covariant derivative in the vacuum is given by

DmA ¼ qmAþ gAm  A ð308Þ

Considering a rotation A ¼ SA in the vacuum, the covariant derivative transforms

as

DmA! D0mA0 ¼ SDmA ð309Þ

that is

ðqm � igA0mÞA0 ¼ Sðqm � igAmÞA ð310Þ
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which [42] leads to the law governing Am under gauge transformation in any

gauge group:

A0m ¼ SAmS�1 � i

g
ðqmSÞS�1 ð311Þ

It is also possible to consider the holonomy of the generic A in the vacuum.

This is a round trip or closed loop in Minkowski spacetime. The general vector

A is transported from point A, where it is denoted AA,0 around a closed loop with

covariant derivatives back to the point AA,0 in the vacuum. The result [46] is the

field tensor for any gauge group

Gmn ¼
i

g
½Dm;Dn� ¼ qmAn � qnAm � ig½Am;An� ð312Þ

and the field tensor is the result of rotating the vector A in the internal space of the

gauge theory in the vacuum. It is seen that the field tensor is a commutator of

covariant derivatives, and therefore originates in local gauge transformation. On

the U(1) level, the field tensor in the vacuum is

Fmn ¼ qmAn � qnAm ð313Þ

and on the O(3) level is

Gmn ¼ qmAn � qnAm þ gAm  An ð314Þ

The field tensor transforms covariantly [46] because

AA;0 ! A0A;0 ¼ SAA;0

AA;1 ! A0A;1 ¼ SAA;1

ð315Þ

in the vacuum.

Similarly, transport of the generic A around a three-dimensional closed loop

[46] produces the Jacobi identity

X
cyclic

½Ds; ½Dm;Dn�� ¼ 0 ð316Þ

for any gauge group symmetry in the vacuum. On the U(1) level, it is the

homogeneous field equation

qm ~Fmn � 0 ð317Þ
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and on the O(3) level, the homogeneous field equation:

Dm ~G
mn � 0 ð318Þ

The complete set of vacuum field and wave equations on the U(1) level is

therefore

qm~Fmn � 0 ð319Þ

qmFmn ¼ JmðvacÞ
e0

ð320Þ

DmDm A ¼ 0 ð321Þ

and the complete set on the O(3) level is

qm ~Gmn � 0 ð322Þ
DnGmn ¼ �gcðDmAÞ  A ð323Þ

DmðDmAÞ ¼ 0 ð324Þ

All these results are derived essentially by considering a rotation of the general

vector A in the internal space of the gauge theory in the vacuum.

In order to demonstrate that spontaneous symmetry breaking can affect the

energy inherent in the vacuum, consider the globally invariant Higgs Lagran-

gian:

L ¼ qmðaþ AÞqmðaþ A	Þ � m2ðaþ A	Þðaþ AÞ � lððaþ A	Þðaþ AÞÞ2

ð325Þ

It has been demonstrated already that local gauge transformation on this

Lagrangian leads to Eq. (153), which contains new charge current density terms

due to the Higgs mechanism. For our present purposes, however, it is clearer to

use the locally invariant Lagrangian obtained from Eq. (325), specifically

L ¼ ðqm þ igAmÞðaþ AÞðqm � igAmÞðaþ A	Þ

� m2ðaþ AÞðaþ A	Þ � lðaþ AÞ2ðaþ A	Þ2 � 1

4
FmnFmn ð326Þ

with the Euler–Lagrange equations:

qL
qA
¼ qm

qL
qðqmAÞ

� �
;

qL
qA	
¼ qm

qL
qðqmA	Þ

� �
ð327Þ
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Such a procedure produces the equations:

DmDmA	 ¼ �m2A	 � 2lA	ðAA	Þ
DmDmA ¼ �m2A� 2lAðA	AÞ

ð328Þ

where we have used a ¼ a	. So the effect of the Higgs mechanism is to generate

the inhomogeneous wave equations (328) from the homogeneous wave equations

(225) and (228) by spontaneous symmetry breaking [46] of the vacuum. The

charge current densities on the right-hand side of Eq. (328) can be used to

generate the equivalent matter charge current densities as discussed later in this

section.

Without the Higgs mechanism, the Lagrangian (325) is

L ¼ qmAqmA	 � m2A	A� lA	AA	A ð329Þ

and using Eqs. (327) produces the wave equations:

&A	 ¼ �ðm2 þ 2lA	AÞA	

&A ¼ �ðm2 þ 2lAA	ÞA
ð330Þ

At the Higgs minimum

a2 ¼ Aj j2¼ �m2

2l
ð331Þ

Eqs. (330) become

&A	 ¼ 0

&A ¼ 0
ð332Þ

At the local Higgs maximum [46] for m2 < 0, that is, at m ¼ 0, Eqs. (330)

become

&A	 ¼ �2lðA	AÞA	

&A ¼ �2lðAA	ÞA
ð333Þ

and Eqs. (328) become

DmDmA	 ¼ �2lA	ðAA	Þ
DmDmA ¼ �2lAðA	AÞ

ð334Þ
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So both the globally and locally invariant equations of motion of the internal

gauge space [the Euler–Lagrange equations (327)] are different at the Higgs

maximum and minimum. The minimum and local maximum are different ground

states of the field, and are different vacuum states. The difference between the

Higgs maximum and minimum represents potential energy difference within the

vacuum itself. The Higgs mechanism is well known to lead to electroweak theory

and to the existence of the Higgs boson, so it is well established that in the

vacuum, there is a usable difference of potential energy, the different minima of

which lead to different ground states of the field theory and to different vacua. In

nineteenth-century classical electromagnetism, on which a text such as that by

Jackson [66] is based, such concepts do not exist. There is no vacuum charge

current density, and there are no potential energy maxima or minima in the

vacuum itself.

It is well known that there is an interesting analogy between spontaneous

symmetry breaking of the vacuum and the Landau–Ginzburg free energy in

superconductors. The latter is obtained from the locally invariant Lagrangian

(325) in the static limit [46]

q0 A ¼ 0 ð335Þ

where the mass term is defined as m2 ¼ aðT � TcÞ near the critical temperature

Tc . At T > Tc, m2 > 0 and the minimum free energy is at jAj ¼ 0. When

T < Tc;m2 < 0 and the minimum free energy is at Aj j2¼ �ðm2=2lÞ > 0. This is

an analogy with the case of spontaneous symmetry breaking in the vacuum,

where there is a difference of free energy (or latent free energy) on the classical

level that can be used for practical devices.

The effect of the Higgs mechanism can be seen most clearly by minimizing

the Lagrangian (251) with respect to A:

qL
qA
¼ igAmDmA	 ¼ 0 ð336Þ

This minimum value defines the ground state and the true vacuum through the

equation

DmA	 ¼ 0

DmA ¼ 0
ð337Þ

This means, however, that the vacuum charge current density disappears:

JmðvacÞ ¼ � ig

m0c
ðA	DmA� ADmA	Þ ¼ 0 ð338Þ
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It thus becomes clear that the vacuum charge current density introduced by

Lehnert is an excitation above the true vacuum in classical electrodynamics. The

true vacuum is defined by Eq. (337). It follows that in the true classical vacuum,

the electromagnetic field also disappears.

Using the Higgs Lagrangian (326) however, the true vacuum is defined by

qL
qt
¼ igAmDmA	 � m2A	 � 2lA	ðAA	Þ ¼ 0 ð339Þ

and the true vacuum itself carries a charge current density. The charge current

density in the true vacuum is described by Eq. (339), which is consistent with the

fact that the Lehnert charge current density implies photon mass, as does the

Higgs mechanism.

The transfer of the energy associated with this true vacuum charge current

density to a matter current is achieved by adjusting the value of the coupling

constant g such that the vacuum value g ¼ k=Að0Þ becomes e=�h in matter.

The resulting equation is

g ¼ k
Að0Þ
¼ e

�h
ð340Þ

specifically

�hk ¼ eAð0Þ ð341Þ

which classically gives the minimal prescription:

p ¼ eA ð342Þ

The momentum p is derived from a limit of general relativity, and so is derived

from the structure of spacetime. Therefore eA is also derived from the structure

of spacetime, or from the vacuum itself. The meaning of e is reinterpreted as the

minimum value of

e ¼ �h
k

Að0Þ
ð343Þ

and this minimum value is the charge on the proton.

At the Higgs minimum, the Lagrangian in the internal space of the U(1)

gauge theory is

L ¼ qmaqma	 � m2a	a� lða	aÞ2 ð344Þ
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which, on local gauge transformation, becomes

L ¼ ðqm þ igAmÞaðqm � igAmÞa	 � m2aa	 � lðaa	Þ2 � 1

4
FmnFmn ð345Þ

The equations of motion of the field at the Higgs minimum (the minimum

potential energy of the vacuum) are the Euler–Lagrange equations

qL
qa
¼ qm

qL
qðqmaÞ

� �
;

qL
qa	
¼ qm

qL
qðqma	Þ

� �
ð346Þ

qL
qAm
¼ qm

qL
qðqnAmÞ

� �
ð347Þ

and using the globally invariant Lagrangian (344) in Eqs. (346) gives the result

&a	 ¼ �ðm2 þ 2la	aÞa	 ¼ 0

&a ¼ �ðm2 þ 2laa	Þa ¼ 0
ð348Þ

and, using the locally invariant Lagrangian (345) in Eqs. (346) gives the result

DmðDma	Þ ¼ �ðm2 þ 2la	aÞa	 ¼ 0

DmðDmaÞ ¼ �ðm2 þ 2laa	Þa ¼ 0
ð349Þ

Equation (348) is the globally invariant wave equation defining a, and Eq. (349)

is its locally invariant equivalent. Using the locally invariant Lagrangian (345) in

Eq. (347) gives the inhomogeneous field equation (SI units)

qnFmn ¼ �igcða	Dma� aDma	Þ ð350Þ

where the charge current density on the right-hand side is obtained from the pure

vacuum by local gauge transformation and local gauge invariance. Both the left-

and right-hand sides of Eq. (350) are defined by the minimum of potential

energy, and by the minimum value that A can attain. This minimum value is a,

and is the vacuum expectation value of A [46], associated with a nonzero potential

energy that gives rise to Am and Fmn by local gauge invariance. Therefore the

source of an electromagnetic field propagating in the vacuum is the Higgs

minimum value of A, which is denoted a. If we do not use a Higgs mechanism,

then the vacuum expectation value of A in the internal gauge space of the U(1)

gauge theory is zero, and the globally invariant Lagrangian disappears.
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Therefore, in the presence of a Higgs mechanism

0h jA 0j ij j2¼ a2 ð351Þ

and in its absence:

0h jA 0j ij j2¼ 0 ð352Þ

The Lagrangian (345) can be written as [see Eq. (158)]

L ¼ g2a2AmAm þ � � � ð353Þ

and if the photon mass is identified as

m2
p � 2g2a2 ð354Þ

the Lagrangian (353) gives a Proca equation that is locally gauge invariant on the

U(1) level. Therefore, application of the Higgs mechanism in this way has

produced one massive photon from one massless photon. The scalar field a

remains unaffected, so degrees of freedom are conserved. Therefore, this theory

identifies photon mass as the result of local gauge invariance applied at the Higgs

minimum, that is, the minimum value that the potential energy of the globally

invariant Lagrangian can take in the vacuum.

This minimum value provides the true vacuum energy

EnðvacÞ ¼
ð

JmðvacÞAm dV ð355Þ

and a rate of doing work:

dW

dt
ðvacÞ ¼

ð
JðvacÞ �EdV ð356Þ

The Poynting theorem for the true vacuum can be developed as in Eqs. (258)–

(262). The true vacuum energy (355) comes from the vacuum current in Eq.

(350), which is transformed into a matter current by a minimal prescription as

discussed already. This matter current in principle provides an electromotive

force in a circuit. It is to be noted that the local Higgs maximum occurs at A ¼ 0

[46], so the local Higgs minimum occurs below the zero value of A.

The overall conclusion is that there is no objection in principle to extracting

electromotive force from the true vacuum, defined by the minimum value, a,

which can be attained by A in the internal scalar space of the gauge theory,

which is the theory underlying electromagnetic theory.
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On the O(3) level, the globally invariant Lagrangian corresponding to Eq.

(344) is

L ¼ T � V ¼ 1

2
qma � qma� m2

2
a � a� lða � aÞ2 ð357Þ

with potential energy:

V ¼ m2

2
a � aþ lða � aÞ2 ð358Þ

Here, a is a vector in the internal space of O(3) symmetry. The equation of

motion is

qL
qa
¼ qm

qL
qma

� �
¼ qm

qL
qma

� �
ð359Þ

and produces, from the Lagrangian (357), the result

&a ¼ m2aþ laða � aÞ ¼ 0 ð360Þ

which is a globally invariant wave equation of d’Alembert type for the three

components of a. Local gauge transformation of the Lagrangian (357) produces

[cf. Eq. (205)] the following equation:

L ¼ 1

2
Dma �Dma� m2

2
a � a� lða � aÞ2 � 1

4
Gmn �G

mn ð361Þ

Use of Eq. (359) produces the wave equation

DmðDmaÞ ¼ m2aþ laða � aÞ ¼ 0 ð362Þ

The Euler–Lagrange equation

qL
qAm ¼ qn

qL
qðqnAmÞ

� �
ð363Þ

produces the field equation

DnGmn ¼ �gðDmaÞ  a ð364Þ

where the current on the right-hand side is a current generated by the minimum

value of A in the internal O(3) symmetry gauge space. This minimum value is the

vacuum and is denoted by the vector a
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The Lagrangian (361) can be written as

L ¼ g2Am  a �Am  aþ � � � ð365Þ

and produces three photons with mass from the vector identity

ðAm  aÞ � ðAm  aÞ ¼ ðAm �A
mÞða � aÞ � ðAm � aÞða �AmÞ ð366Þ

and the term

L ¼ g2ða � aÞðAm �A
mÞ þ � � � ð367Þ

One of these is the superheavy Crowell boson [42], associated with index (3) in

the ((1),(2),(3)) basis, and the other two are massive photons associated with

indices (1) and (2). The superheavy Crowell boson comes from electroweak

theory with an SU(2) electromagnetic sector and may have been observed in a

LEP collaboration at CERN [44,56].

On the O(3) level, the vacuum current (SI units)

JmðvacÞ ¼ g

m0c
ðDmaÞ  a ð368Þ

gives the vacuum energy

En ¼
ð

JmðvacÞ �AmdV ð369Þ

which can be transformed into a matter current by the minimal prescription

(342). This matter current is effectively an electromotive force in a circuit. Gauge

theory of any internal gauge symmetry applied to electromagnetism comes to the

same result, that energy is available from the vacuum, defined as the Higgs

minimum. This appears to be a substantial advance in understanding.

In order to check these results for self-consistency, the locally invariant

Higgs Lagrangian, when written out in full, is

L¼qmða0 þ AÞqmða0 þ AÞ	� igðða0 þ AÞ	qmða0 þ AÞ�ða0 þ AÞqmða0 þ AÞ	ÞAm

þ g2AmAmða0 þ AÞ2 � m2ða0 þ AÞða0 þ AÞ	

� lðða0 þ AÞða0 þ AÞ	Þ2 � 1

4
FmnFmn ð370Þ

where a0 is the minimum value and where the complex scalar field is

A ¼ 1ffiffiffi
2
p ðA1 þ iA2Þ ð371Þ
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in the internal space. In this Lagrangian, a0 is a constant so the Lagrangian (370)

can be written as

L ¼ � 1

4
Fmn Fmn þ g2a2

0AmAm þ 1

2
ðqmA1Þ2 þ

1

2
ðqmA2Þ2

� 2la2
0 A2

1 þ
ffiffiffi
2
p

ga0AmqmA2 þ � � � ð372Þ

At its minimum value, this Lagrangian is

L ¼ � 1

4
FmnFmn þ g2a2

0 AmAm ð373Þ

which gives the following locally gauge-invariant Proca equation:

qmFmn þ m2
p An ¼ 0 ð374Þ

The photon mass is identified as argued already by

m2
p ¼ 2g2 a2

0

�� �� ð375Þ

and if we further identify

g2 � k
2 a2

0

�� �� ð376Þ

we obtain the de Broglie guidance theorem in SI units:

�ho ¼ mpc2 ð377Þ

So, as argued already, the photon mass is picked up from the vacuum, that is,

from the minimum value of the locally invariant Higgs Lagrangian (370). This

conclusion means that the Lehnert charge current density that leads to the Proca

equation [45,49] is also a property of the vacuum, as argued above. In order to

show this result, the constant a0 is expressed as the product of two complex fields

a and a*. To illustrate this by analogy, one can show that the dot product of two

conjugate plane waves gives a constant

Að0Þ2 ¼ Að0Þffiffiffi
2
p ði� i jÞ � eif Að0Þffiffiffi

2
p ðiþ i jÞe�if ¼ Að1Þ �Að2Þ ð378Þ

but the individual plane waves are functions of coordinates and time.

Analogously, therefore, a and a* are functions of xm. The vacuum Lagrangian
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can therefore be written as

L ¼ qmaqma	 � igða	qma� aqma	ÞAm

þ g2AmAma2 � m2a	a� lða	aÞ2 � 1

4
FmnFmn ð379Þ

From Eq. (373), it is known that this Lagrangian is

L ¼ g2AmAma2 � 1

4
FmnFmn ð380Þ

There is therefore a balance between globally invariant Lagrangians:

L ¼ qmaqma	 � m2a	a� lða	aÞ2

¼ igða	qma� aqma	ÞAm ¼ gJmAm ð381Þ

The globally invariant vacuum energy is therefore:

En ¼
ð

JmAmdV ¼ 1

g

ð
qmaqma	 � m2a	a� lða	aÞ2dV ð382Þ

and is defined in the internal space of the gauge theory being considered [in this

case of U(1) symmetry]. It can be seen that the vacuum energy is essentially a

volume integration over the original globally invariant Lagrangian

L ¼ qmaqma	 � m2a	a� lða	aÞ2 ð383Þ

used in the Higgs mechanism. We have defined the mass of the photon by

Eq. (375), and so the locally gauge-invariant Proca wave equation is

&Am ¼ �2g2a2
0Am ð384Þ

Energy is usually written as the volume integral over the Hamiltonian, and not

the Lagrangian, and Eq. (382) may be transformed into a volume integral over a

Hamiltonian if we define the effective potential energy

V ¼ �m2a	a� lða	aÞ2 ð385Þ

which is negative.

The locally gauge-invariant Lehnert field equation corresponding to Eq. (374)

was derived as Eq. (350). The photon picks up mass from the vacuum itself, and

having derived a locally gauge-invariant Proca equation, canonical quantization

can be applied to produce a photon with mass with three space dimensions.
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V. SCHRÖDINGER EQUATION WITH A HIGGS MECHANISM:
EFFECT ON THE WAVE FUNCTIONS

In order to measure the effect of vacuum energy in atoms and molecules, in the

simplest case of the hydrogen atom, it is necessary to develop the nonrelativistic

Schrödinger equation with an inbuilt Higgs mechanism. The method used in this

section is to start with the Lagrangian for the Higgs mechanism in matter fields,

derive a Klein–Gordon equation, and from that, an Einstein equation, then to take

the nonrelativistic limit of the Einstein equation, and finally quantize that to give

the Schrödinger equation with a Higgs mechanism. It turns out that the Higgs

minimum is at an energy 1
2

mc2 below the vacuum minimum with no Higgs

mechanism, meaning that this amount of energy is available in the vacuum.

Some examples of the effect of this negative potential energy on analytical

solutions of the Schrödinger equation are given in this section.

The starting Lagrangian on the U(1) level for a free particle, such as an elec-

tron, is the standard Lagrangian for the Higgs mechanism:

L ¼ qmfq
mf	 � m2f	f� lðf	fÞ2 ð386Þ

Using Eqs. (115) and (221), this Lagrangian gives the Klein–Gordon equations

ð&þ ðm2 þ 2lf	fÞÞf	 ¼ 0 ð387Þ
ð&þ ðm2 þ 2lff	ÞÞf ¼ 0 ð388Þ

in which f and f	 are considered to be complex-valued one-particle wave

functions. It can be seen that the effect of the Higgs mechanism is to increase the

mass term m2 to m2 þ 2lf	f.

This additional effective mass is introduced from spontaneous symmetry

breaking of the vacuum. The two Klein–Gordon equations therefore take on

the form

ð&þ m2Þf	 ¼ �2lðff	Þf	 ð389Þ
&þ m2
� �

f ¼ �2lðff	Þf ð390Þ

The classical equivalent of these equations is the Einstein equation for one

particle

En2 ¼ p2c2 þ m2
0c4 þ 2lðff	Þc4 ð391Þ

The Higgs mechanism has produced an additional rest energy:

En0ðHiggsÞ ¼ 2lðff	Þc4 ð392Þ
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In Eq. (391), En is the total energy, and the equation can be written as follows:

p2c2 ¼ En2 � En2
0

¼ m2
0c4 1� u2

c2

� ��1

�m2
0c4 � 2l f2

� �
c4 ð393Þ

To reach the nonrelativistic limit of this equation, the right-hand side is expanded

as

p2c2 ¼ m2c4 u2

c2
� 2l f2

� �
c4 ðu� cÞ ð394Þ

which, for u� c, results in the nonrelativistic equation

p2c2 ¼ m2c4 u2

c2
� 2l f2

� �
c4 ¼ En2 � En2

0 ð395Þ

which has the same form as the original, fully relativistic, equation (393). The

nonrelativistic equation (395) can be written as

m2u2 ¼ p2 þ 2l f2
� �

c2 ðu� cÞ ð396Þ

that is

1

2
mu2 ¼ p2

2m
þ l

m
f2
� �

c2 ð397Þ

The left-hand side is the nonrelativistic kinetic energy of one particle. It can be

seen that the Higgs mechanism changes the classical nonrelativistic expression

En ¼ 1

2
mu2 ¼ p2

2m
¼ T ð398Þ

to Eq. (397). The Schrödinger equation without the Higgs mechanism is obtained

by applying the quantum ansatz

En! i�h
q
qt
; p! �i�hr ð399Þ

to Eq. (398), giving

�i�h
qf
qt
¼ �h2

2m
r2f ð400Þ
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The Schrödinger equation in the presence of the Higgs mechanism is therefore

�i�h
qf
qt
¼ �h2

2m
r2fþ l

m
f2
� �

c2 ð401Þ

where hf2i is the expectation value of the wave function. At the Higgs minimum,

this expectation value is [46]

hf2i ¼ �m2

2l
ð402Þ

and so the Schrödinger equation at the Higgs minimum is

�i�h
qf
qt
¼ �h2

2m
f� 1

2
mc2f ð403Þ

which can be written in the familiar form

Enf ¼ Hf ¼ ðT þ VÞf

T ¼ � �h

2m
r2

ð404Þ

where

V ¼ � 1

2
mc2 ¼ min

l
m

f2
� �

c2

� �
ð405Þ

is a negative potential energy produced by spontaneous symmetry breaking of

the vacuum. The Schrödinger equation (404) shows that the Higgs minimum (the

symmetry broken vacuum) is at an energy:

VðHiggsÞ ¼ 1

2
mc2 ð406Þ

below the vacuum for the ordinary Schrödinger equation (400). The vacuum

expectation value for the ordinary Schrödinger equation is

f2
� �

¼ 0 ð407Þ

We have therefore derived a nonrelativistic Schrödinger equation for a

free particle with an additional negative potential energy term V ¼ �1
2
mc2.

In order to apply this method to the hydrogen atom, the relevant Schrödinger
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equation is

� �h2

2m
r2 � VCoulomb þ V

� �
f ¼ Enf ð408Þ

VCoulomb ¼
e2

4pe0

1

r
ð408aÞ

where VCoulomb is the classical Coulomb interaction between one electron and

one proton and m is the reduced mass:

m ¼ memp

me þ mp

ð409Þ

The Higgs mechanism is the basis of electroweak theory and other elemen-

tary particle and gauge field theories, so it can be stated with confidence that to a

good approximation the energy 1
2

mc2 is released from the vacuum when a shift

occurs between the Higgs minimum and the ground state of the hydrogen atom.

The challenge is how to find a mechanism for releasing this energy. Mills [67]

has found a working device based on the postulated collapse of the H atom

below its ground state. The Schrödinger equation with a Higgs mechanism

shows that there is an extra negative potential energy term that may account

for the energy observed by Mills [67]. This possibility will be explored later

by solving Eq. (408) analytically to find the effect of V on the states of the H

atom. First, however, we illustrate the effect of V on analytical solutions of the

Schrödinger equation, starting with the free-particle solution.

The wave function for Eq. (404) is well known [68] to be of the form

f ¼ A0eik0Z þ B0e�ik0Z ; k0 ¼ 2mðE � VÞ
�h2

� �1=2

ð410Þ

where the particle momentum is given by �hk0. The scheme in the following

equation group explains the role of the two parts of the wave function:

! p ¼ �hk0; c ¼ A0eik0Z

 p ¼ �hk0; c ¼ B0e�ik0Z
ð411Þ

In the Schrödinger equation (404), the maximum value of the vacuum potential

energy is the Newton vacuum

V ¼ 0 ð412Þ

and its minimum value is the Higgs vacuum, or minimum of the symmetry-

broken vacuum:

V ¼ � 1

2
mc2 ð413Þ
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In Newtonian mechanics, the particle cannot be found below V ¼ 0, therefore

Newtonian mechanics always corresponds to V ¼ 0 [e.g., Eq. (398)], and this

represents, classically, an insurmountable barrier to a particle such as an electron

attempting to enter the Higgs region below V ¼ 0. In quantum mechanics,

however, an electron may enter the Higgs region by quantum tunneling, which

occurs when E < V ¼ 0. The wave function for this process is well known to

be [68]

f ¼ Ae�kZ ð414Þ

and has a nonzero amplitude. An electron of energy 1.6  10�19 J incident on a

barrier of height 3.2  10�19 J has a wave function that decays with distance

as e�5.12 (Z/nm), and decays to 1/e of its initial value after 0.2 nm, about the

diameter of an atom [68]. Therefore, quantum tunneling is important on atomic

scales. So quantum-mechanically, an electron can enter the Higgs region and

gain negative energy. This means that it radiates positive energy [46]. The

maximum amount of energy that can be radiated is determined by the minimum

value of the Higgs region, which defines the ground state, namely, the Higgs

vacuum. This is a result of Eq. (404) for a free electron. To see that negative-

energy states En are possible, write Eq. (395) as

En2 ¼ p2c2 þ En2
0 ð415Þ

and its solutions are

En ¼ �ðp2c2 þ En2
0Þ

1=2 ð416Þ

The states of the hydrogen atom must be found from Eq. (408). When V ¼ 0,

the ground state of the H atom is well known [68] to be determined by

the expectation value

En ¼ � me4

32p2e2
0�h

2

1

n
; n ¼ 1 ð417Þ

from the Schrödinger equation:

� �h2

2m
r2f� e2

4pe0r
f ¼ Enf ð418Þ

When V is not zero, Eq. (418) becomes

� �h2

2m
r2f� e2

4pe0r
f ¼ ðEn� VÞf ð419Þ
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and the electronic orbital energy becomes

En ¼ � me4

32p2e2
0�h

2

1

n
þ V ð420Þ

Here, n is the principal quantum number. So, for V ¼ 0 the electronic orbital

energy in the H atom becomes less negative as n increases. However, if we add

V < 0 from the Higgs region to the ground state of H determined by n ¼ 1, the

electronic orbital energy falls below its ground state. This emits energy in the

same way as an electron falling from a higher to a lower electronic atomic orbital

emits energy. The energy emitted by driving the H orbital below its ground state

has been observed experimentally by Mills et al. [67], repeatedly and repro-

ducibly. The Higgs mechanism on the U(1) level accounts for this energy

emission.

VI. VECTOR INTERNAL BASIS FOR
SINGLE-PARTICLE QUANTIZATION

Conventional single particle quantization is based on the quantum ansatz (399)

applied to the Einstein equation (415) to produce the Klein–Gordon equation

ð&þ m2Þf ¼ 0 ð421Þ

ð&þ m2Þf	 ¼ 0 ð422Þ

where f is regarded as a single-particle wave function. In the nonrelativistic

limit, the Schrödinger equation is obtained as demonstrated in Section IV.

Formally, the Klein–Gordon equations (421) can be obtained from the U(1)

Lagrangian [46]

L ¼ ðqmfÞðqmf	Þ � m2ff	 ð423Þ

which is globally invariant. Usually, the Lagrangian (423) is applied to complex

fields, but formally, these can also be wave functions. On the U(1) level, they take

the form

f ¼ fð1Þ ¼ 1ffiffiffi
2
p ðfX � ifYÞ ð424Þ

f	 ¼ fð2Þ ¼ 1ffiffiffi
2
p ðfX þ ifYÞ ð425Þ
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On the O(3) level, there are three wave functions:

fð1Þ ¼ 1ffiffiffi
2
p ðfX � ifYÞ

fð2Þ ¼ 1ffiffiffi
2
p ðfX þ ifYÞ

fð3Þ ¼ fZ

ð426Þ

and it is possible to collect these components in vector form through the relation

f ¼ fð2Þeð1Þ þ fð1Þeð2Þ þ fð3Þeð3Þ ¼ fXiþ fY jþ fZk ð427Þ

where fX ;fY ;fZ are real-valued. The unit vectors of the circular basis are

defined as

eð1Þ ¼ 1ffiffiffi
2
p ði� ijÞ

eð2Þ ¼ 1ffiffiffi
2
p ðiþ ijÞ

eð3Þ ¼ k

ð428Þ

On the O(3) level, therefore, the probability density of the Schrödinger equation

is

r ¼ fð1Þfð2Þ ¼ fð2Þfð1Þ ¼ fð3Þfð3Þ	 ð429Þ

and there are three Schrödinger equations:

�h2

2m
r2fð1Þ ¼ �i�h

qfð1Þ

qt

�h2

2m
r2fð2Þ ¼ �i�h

qfð2Þ

qt

�h2

2m
r2fð3Þ ¼ �i�h

qfð3Þ

qt

ð429aÞ

which identify fð1Þ;fð2Þ;fð3Þ as angular momentum wave functions. Atkins [48]

has shown that angular momentum commutator relations can be used to derive

the laws of nonrelativistic quantum mechanics. So the internal O(3) space, in this

instance, corresponds to ordinary three-dimensional space. In a U(1) internal

space, the third component fð3Þ of angular momentum is missing and the
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wave functions are fð1Þ and fð2Þ. In Newtonian and nonrelativistic quantum

mechanics, the internal space is therefore O(3). The probability currents of the

Schrödinger equation are

j ¼ i
�h

2m
ðfð2Þrfð1Þ � fð1Þrfð2ÞÞ ð430Þ

and

j ¼ i
�h

2m
ðfð3Þrfð3Þ	 � fð3Þ	rfð3ÞÞ ¼ 0 ð431Þ

in the complex circular basis. In a more general spherical harmonic [68] basis for

three-dimensional space, the angular momentum wave functions are eigenfunc-

tions such that

n;mj i ¼ Yðy;fÞ ð432Þ

where

Ylml
ðy;fÞ; l ¼ 1; m ¼ 0;�1 ð433Þ

are the spherical harmonics. Therefore, it is also possible to describe the internal

O(3) basis of electrodynamics in terms of spherical harmonics.

The probability densities of the Klein–Gordon equation [46] in an O(3) inter-

nal basis contains terms such as

r ¼ i
�h

2mc2
fð2Þ

qfð1Þ

qt
� fð1Þ

qfð2Þ

qt

 !
ð434Þ

This term is usually written as

r ¼ i
�h

2mc2
f	

qf
qt
� f

qf	

qt

� �
ð435Þ

and in general can become negative. So the Klein–Gordon equation is abandoned

in general as an equation for single-particle quantum mechanics. However, for

the photon with mass, the probability density from the Klein–Gordon equation is

positive definite, because it is possible to use the de Broglie wave functions:

f	 ¼ fð2Þ ¼ expðiðot � kZÞÞ

f ¼ fð1Þ ¼ expð�iðot � kZÞÞ
ð436Þ
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to give

r ¼ �ho
mc2

ð437Þ

When mass m is the rest mass, the de Broglie theorem states that

m0c2 ¼ �ho0 ð438Þ

and r ¼ 1. For the free photon with mass, the Klein–Gordon equation gives a

positive definite probability density because the derivative qfð1Þ=qt is not

independent of fð2Þ. The equation shows that the free photon with mass can also

take on negative energies. Therefore, the vector f in this case can be interpreted

as a single-particle wave function. The probability 4-vector for the photon with

mass is given by [46]

jm ¼ i
�h

2mc
ðf	qmf� ðqmf	ÞfÞ ð439Þ

which for the de Broglie wave function gives

jZ ¼ �
�hk
mc

ð440Þ

The 4-current jm is conserved:

qmjm ¼ i
�h

2mc
ðf	&f� f&f	Þ ð441Þ

If we define

A ¼ Að2Þeð1Þ þ Að1Þeð2Þ þ Að3Þeð3Þ

¼ AXiþ AY jþ AZk ð442Þ

there emerge four Klein–Gordon equations that all give a positive probability

density:

ð&þ m2ÞAðiÞ ¼ 0; i ¼ 0; 1; 2; 3 ð443Þ

for an O(3) invariant theory. In a U(1) invariant theory, there are only two

equations:

ð&þ m2ÞAðiÞ ¼ 0; i ¼ 1; 2 ð444Þ
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The four Klein–Gordon equations are for the photon regarded as a scalar particle

without spin. If the scalar components A(0), A(1), A(2), A(3) are regarded as fields

and quantized, a many-particle interpretation of the photon emerges, and they are

recognized as bosons, which have integral spin. Therefore, in an internal space

that is globally invariant under a gauge transform, the four equations (443) give,

after field quantization (second quantization), a globally gauge invariant Proca

equation

ð&þ m2ÞAm ¼ 0 ð445Þ

where the 4-vector is defined as

Am ¼ ðAð0Þ;Að1Þ;Að2Þ;Að3ÞÞ ð446Þ

To an excellent approximation, the four Klein–Gordon equations (443) are

d’Alembert equations, which are locally gauge-invariant.

However, there remains the problem of how to obtain a locally gauge-

invariant Proca equation. To address this problem rigorously, it is necessary

to use a non-Abelian Higgs mechanism applied within gauge theory.

The starting point of our derivation is the globally invariant O(3) Lagrangian

of the Higgs mechanism

L ¼ qmA � qmA	 � m2A �A	 � lðA �A	Þ2 ð447Þ

where A and A* are regarded as independent complex vectors in the O(3) internal

space of the gauge theory. Application of the Euler–Lagrange equations (204)

give the following results:

qL
qA
¼ �m2A	 � 2lA	ðA �A	Þ

qL
qA	
¼ �m2A� 2lAðA �A	Þ

ð448Þ

Therefore, at the Higgs minimum

A �A	 ¼ �m2

2l
� a2

0 ð449Þ

The wave equation obtained from Eqs. (204) and (448) with the Lagrangian

(447) is

qmqmA ¼ �m2A� 2lAðA �A	Þ ð450Þ
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and, at the Higgs minimum, reduces to

qmqmA ¼ 0 ð451Þ

If we define:

A ¼ Að2Þeð1Þ þ Að1Þeð2Þ þ Að3Þeð3Þ ð452Þ

then four globally invariant d’Alembert equations are obtained:

&Að1Þ ¼ 0

&Að2Þ ¼ 0

&Að3Þ ¼ 0

&Að0Þ ¼ 0

ð453Þ

The locally invariant Lagrangian obtained from the Lagrangian (447) is

L ¼ DmA �DmA	 � 1

4
Gmn �G

mn � m2A �A	 � lðA �A	Þ2 ð454Þ

where it is understood that

A! a0 þ A

A	 ! a	0 þ A	
ð455Þ

The following Euler–Lagrange equation is used next with the Lagrangian (454):

qL
qAm
¼ qn

qL
qðqnAmÞ

� �
ð456Þ

The Lagrangian (454) contains terms such as

DmA �DmA	 ¼ ðqm þ AmÞA � ðqm � AmÞA	

¼ qmA � qmA	 þ gAm  A � qmA	 � gqmA �Am  A	

� g2ðAm  AÞ � ðAm  A	Þ ð457Þ

and a field equation emerges from the analysis by using

qL
qAm
¼ gA qmA	 � g2ðAmðA �A	Þ � A	ðA �AmÞÞ

¼ �gqmA	  Aþ g2ðAm  A	Þ  A

¼ �gDmA	  A ð458Þ
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giving

DnGmn ¼ �gDmA	  A ð459Þ

At the Higgs minimum, this field equation reduces to the locally gauge-invariant

Proca equation

DnGmn ¼ �g2a0  ðAm  a	0Þ ð460Þ

and the Lagrangian reduces to

L ¼ � 1

4
Gmn �G

mn � g2ðAm  a0Þ � ðAm  a	0Þ ð461Þ

Therefore, it can be seen that the mass of the photon in this analysis is derived

from the Higgs vacuum, which is the minimum of the potential energy term in

the Lagrangian (454). The field equation (460) is O(3) invariant and, therefore,

the existence of photon mass is made compatible with the existence of the B(3)

field, as inferred originally by Evans and Vigier [42]. The Higgs mechanism is

the basis of much of modern elementary particle theory; thus this derivation is

based on rigorous gauge theory that is locally O(3) invariant.

VII. THE LEHNERT CHARGE CURRENT DENSITIES
IN O(3) ELECTRODYNAMICS

We have established that, in O(3) electrodynamics, the vacuum charge current

densities first proposed by Lehnert [42,45,49] take the form

JmðvacÞ ¼ gqm A Aþ g2A ðA AmÞ ð462Þ

In this section, we illustrate the self-consistent calculation of these charge current

densities in the plane-wave approximation, using plane waves in the X, Y, and Z

directions. In general, the solution of the field equation (459) must be found

numerically, and it is emphasized that the plane-wave approximation is a first

approximation only. In the internal space, there is the real vector:

A ¼ AXiþ AY jþ AZk ð463Þ

and by definition

Am ¼ Am;Xiþ Am;Y jþ Am;Zk ð464Þ
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First, we consider a plane-wave propagating in the Z direction, so that

A ¼ �Að0Þffiffiffi
2
p sinf iþ Að0Þffiffiffi

2
p cosf jþ AZk ð465Þ

and adapt the following notation:

A3 ¼ A3:Zk ¼ �AZk ð466Þ

Elementary vector algebra then gives

g2A ðA A3Þ ¼ k2ð�AXi� AY jþ AZkÞ ð467Þ

and

gqZA A ¼ k2Að0Þ kþ 1ffiffiffi
2
p sinf i� 1ffiffiffi

2
p cosf j

� �
ð468Þ

The i and j terms must cancel, so we obtain the following, self-consistently:

AX ¼ �
Að0Þffiffiffi

2
p sinf; AY ¼

Að0Þffiffiffi
2
p cosf ð469Þ

The Lehnert vacuum current density for a plane wave in the Z direction is

therefore

JZ ¼ 2
k2Að0Þ

m0

k ð470Þ

If this is used in the third equation of Eq. (83), the B cyclic theorem [47–61] is

recovered self-consistently as follows. Without considering vacuum polarization

and magnetization, the third equation of Eqs. (83) reduces to

r Bð3Þ ¼ 0 ð471Þ

because B is phaseless and E is zero by definition. This must mean that there is a

balance of terms on the right-hand side, giving

kBð3Þ	 ¼ �igAð1Þ  Bð2Þ

kBð3Þ	 ¼ �igAð2Þ  Bð1Þ
ð472Þ

so that

kAð0ÞBð3Þ	 ¼ �ikAð1Þ  Bð2Þ ð473Þ
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giving the B cyclic theorem self-consistently:

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	 ð474Þ

The Lehnert charge density for a plane wave propagating in the Z direction is

obtained similarly as

r ¼ 2k2Að0Þ

m0c
ð475Þ

If a plane wave is now considered propagating in the X direction, the vector

in the internal space is defined as

A ¼ �Að0Þffiffiffi
2
p sinf jþ Að0Þffiffiffi

2
p cosf kþ AXi ð476Þ

and it can be shown that the Lehnert vacuum current in the X direction is given

self-consistently from Eq. (462) by

JX ¼ 2
k2Að0Þ

m0

i ð477Þ

Finally, if we consider a plane wave propagating in the Y direction, the vector in

the internal space is given by

A ¼ �Að0Þffiffiffi
2
p sinf kþ Að0Þffiffiffi

2
p cosf iþ AY j ð478Þ

and the vacuum current density is given by

JY ¼ �2
k2Að0Þ

m0

j ð479Þ

Therefore, in order to obtain self-consistent results from Eq. (462), it is necessary

to consider plane waves in all three directions. This is as far as an analytical

approximation will go. In order to obtain solutions from the field equation (459),

computational methods are required.

In summary, the Lehnert current densities in the Z, X, and Y directions, re-

spectively, are

JZ ¼ 2
k2Að0Þ

m0

k; JX ¼ 2
k2Að0Þ

m0

i; JY ¼ �
k2Að0Þ

m0

j ð480Þ
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and are accompanied by a vacuum charge density:

r ¼ 2
k2Að0Þ

m0

ð481Þ

These results are obtained self-consistently from using plane waves in the X, Y,

and X directions.

VIII. EMPIRICAL TESTING OF O(3) ELECTRODYNAMICS:
INTERFEROMETRY AND THE AHARONOV–BOHM EFFECT

In order to form a self-consistent description [44] of interferometry and the

Aharonov–Bohm effect, the non-Abelian Stokes theorem is required. It is

necessary, therefore, to provide a brief description of the non-Abelian Stokes

theorem because it generalizes the ordinary Stokes theorem, and is based on the

following relation between covariant derivatives for any internal gauge group

symmetry: þ
Dmdxm ¼ � 1

2

ð
½Dm;Dn�dsmn ð482Þ

This expression can be expanded in general notation [46] as

þ
ðqm � igAmÞdxm ¼ � 1

2

ð
½qm � igAm; qn � igAn�dsmn ð483Þ

where g is a coupling constant, and Am is the potential for any gauge group

symmetry [44]. The coupling constant in the vacuum is

g ¼ k
Að0Þ

ð484Þ

as used throughout this review and the review by Evans in Part 1 of this three-

volume compilation [44]. The terms

þ
qm dxm ¼ ½qm; qn� ¼ 0 ð485Þ

are zero because by symmetry

qnqm ¼ qmqn ð486Þ
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so þ
qmdxm ¼ � 1

2

ð
½qm; qn�dsmn ¼ 0 ð487Þ

It can also be shown, as in the earlier part of this review, that

½Am; qn� ¼ �qn Am; ½qm;An� ¼ qmAn ð488Þ

Therefore a convenient and general form of the non-Abelian Stokes theorem isþ
Amdxm ¼ � 1

2

ð
Gmn dsmn ð489Þ

where the field tensor for any gauge group is

Gmn ¼ qmAn � qnAm � ig½Am;An� ð490Þ

Equation (489) reduces to the ordinary Stokes theorem when U(1) covariant

derivatives are used. First, define the units of the vector potential as

Am � ðf; cAÞ ð491Þ

and the units of the U(1) field tensor as

Fmn �

0
E1

c

E2

c

E3

c

�E1

c
0 B3 �B2

�E2

c
�B3 0 B1

�E3

c
B2 �B1 0

2
66666666664

3
77777777775

ð492Þ

Summing over repeated indices gives the time-like part of the U(1) Stokes

theorem: þ
fdt ¼ 1

2c2

ð
EX ds01 þ

ð
EY ds02

� �
ð493Þ

where the SI units on either side are those of electric field strength multiplied by

area. Summing over the space indices givesþ
Ai dxi ¼ � 1

2

ð
Fij dsij ð494Þ
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which can be rewritten in Cartesian coordinates asþ
AX dX ¼

ð
BX dsYZ

þ
AY dY ¼

ð
BY dsZX

þ
AZ dZ ¼

ð
BZ dsXY

ð495Þ

or as the vector relation þ
A � dr ¼

ð
B � dAr ð496Þ

which is the ordinary Stokes theorem in Maxwell–Heaviside electrodynamics. In

the vacuum, A is a plane wave and is perpendicular to the propagation axis, soþ
AZ dZ ¼ 0; r AZk ¼ 0 ð497Þ

which is self-consistent with AZ ¼ 0 for Maxwell–Heaviside electrodynamics.

If electrodynamics is a gauge theory with internal O(3) gauge group symme-

try, however, there are internal indices and the vector potential becomes

Am ¼ Að2Þm eð1Þ þ Að1Þm eð2Þ þ Að3Þm eð3Þ ð498Þ

The field tensor is similarly

Gmn ¼ Gð2Þmn eð1Þ þ Gð1Þmn eð2Þ þ Gð3Þmn eð3Þ ð499Þ

where

eð1Þ  eð2Þ ¼ ieð3Þ	 ð500Þ
. . .

In O(3) electrodynamics therefore, Eq. (482) gives a term such asþ
A
ð3Þ
3 dx3 ¼ �i

g

2

ð
½Að1Þ1 ;A

ð2Þ
2 �ds12 þ

ð
½Að1Þ2 ;A

ð2Þ
1 �ds21

� �
ð501Þ

which reduces to þ
A
ð3Þ
Z dZ ¼ �ig

ð
½Að1ÞX ;A

ð2Þ
Y �dAr ¼

ð
B
ð3Þ
Z dAr ð502Þ
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Both A(3) and B(3) are longitudinally directed and are nonzero in the vacuum.

Both A(3) and B(3) are phaseless, but propagate with the radiation [47–62] and

with their (1) and (2) counterparts. The radiated vector potential A(3) does not

give rise to a photon on the low-energy scale, because it has no phase with which

to construct annihilation and creation operators. On the high-energy scale, there

is a superheavy photon [44] present from electroweak theory with an SU(2)
SU(2) symmetry. The existence of such a superheavy photon has been inferred

empirically [44]. However, the radiated vector potential A(3) is not zero in O(3)

electrodynamics from first principles, which, as shown in this section, are

supported empirically with precision.

On the O(3) level, there are time-like relations such as

þ
A0 dx0 ¼ � 1

2

ð
q0 An � qn A0 � ig½A0;An�dsð0nÞ ð503Þ

which define the scalar potential on the O(3) level. The constant A(3) can be

expanded in a Fourier series:

AZ ¼ AZ
p2

3
� 4 cosf� 1

4
cos2fþ 1

9
cos3fþ � � �

� �� �
ð504Þ

where a is chosen so that

f ¼ ot � kZ þ a ð505Þ

is always one radian. So both the scalar and vector potentials in O(3) have

internal structure.

The non-Abelian Stokes theorem gives the homogeneous field equation of

O(3) electrodynamics, a Jacobi identity in the following integral form:þ
Dmdxm þ 1

2

ð
½Dm;Dn�dsmn ¼ 0 ð506Þ

To prove this, we again use

þ
Dm dxm ¼ � 1

2

ð
½Dm;Dn�dsmn ð507Þ

to obtain the identity

1

2

ð
ð½Dm;Dn� � ½Dm;Dn�Þdsmn � 0 ð508Þ
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whose integrand is the identity

½Dm;Dn� � ½Dm;Dn� � 0 ð509Þ

From this, we obtain the Jacobi identity

X
s;m;n

½Ds; ½Dm;Dn�� � 0 ð510Þ

straightforwardly for all group symmetries, including, of course, O(3). The

homogeneous field equation in O(3) can be written in differential form as

Dm ~G
mn � 0

� DlGmn þ DmGnl þ DnGlm ð511Þ

and the equivalent in U(1) electrodynamics in the differential form is

qm~Fmn � 0

� qlFmn þ qmFnl þ qnFlm ð512Þ

As discussed in the earlier part of this review, Eq. (511) is an identity between

generators of the Poincaré group, which differs from the Lorentz group because

the former contains the generator of spacetime translations

p ¼ iqm ð513Þ

a group generator that also obeys the Jacobi identity. So we can writeX
s;m;n

½Ps; ½Dm;Dn�� � 0 ð514Þ

which is:

Dm ~G
mn � 0 ð515Þ

and it follows that Eq. (515) can be written as

qm ~Gmn � 0

Am  ~Gmn � 0
ð516Þ
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The homogeneous field equation (515) of O(3) electrodynamics therefore

reduces to

r Eð1Þ þ qBð1Þ

qt
¼ 0

r Eð2Þ þ qBð2Þ

qt
¼ 0

qBð3Þ

qt
¼ 0

ð517Þ

Equation (515) can be expanded into the O(3) Gauss and Faraday laws

r �Bð1Þ	 ¼ igðAð2Þ �Bð3Þ � Bð2Þ �Að3ÞÞ ¼ 0 ð518Þ
. . .

r Eð1Þ	 þ qBð1Þ	

qt
¼ �igðcA

ð3Þ
0 Bð2Þ � cA

ð2Þ
0 Bð3Þ þ Að2Þ  Eð3Þ � Að3Þ  Eð2ÞÞ

. . . ð519Þ

which are homomorphic with the SU(2) invariant Gauss and Faraday laws given

by Barrett [50]:

r �B ¼ �iqðA �B� B �AÞ ð520Þ

r  Bþ qB

qt
¼ �iqð½A0;B� þ A E� E AÞ ð521Þ

The vacuum O(3) and SU(2) field equations, on the other hand, are more

complicated in structure and highly nonlinear. The O(3) inhomogeneous field

equation is given in Eq. (323) and must be solved numerically under all

conditions.

These field equations are therefore the result of a non-Abelian Stokes theo-

rem that can also be used to compute the electromagnetic phase in O(3) elec-

trodynamics. It turns out that all interferometric and physical optical effects are

described self-consistently on the O(3) level, but not on the U(1) level, a result

of major importance. This result means that the O(3) (or SO(3) ¼ SU(2)/Z2)

field equations must be accepted as the fundamental equations of electrody-

namics.

If we define

Að0Þ � jAð3ÞZ j; g ¼ k
Að0Þ

ð522Þ
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then an equation is obtained for optics and interferometry:

þ
dZ ¼ k

ð
dAr ð523Þ

which relates the line integral on the left-hand side to the area integral. Multi-

plying both sides of Eq. (523) by j gives a relation between the dynamical phase

and topological phase on the right-hand side [44]:

k
þ

dZ ¼ k2

ð
dAr ð524Þ

Application of an O(3) gauge transform to Eq. (502) results in

A
ð3Þ
Z ! A

ð3Þ
Z þ

1

g
qZ�

ð3Þ

B
ð3Þ
Z ! SB

ð3Þ
Z S�1

ð525Þ

So after gauge transformation

þ
A
ð3Þ
Z þ

1

g
qZ�

ð3Þ
� �

dZ ¼
ð

SB
ð3Þ
Z S�1 dAr ð526Þ

and if A
ð3Þ
Z is initially zero (vacuum without the Higgs mechanism), the gauge

transform produces the nonzero result:

þ
qZ�

ð3ÞdZ ¼ ��ð3Þ ¼ g

ð
SB
ð3Þ
Z S�1dAr ð527Þ

which is the Aharonov–Bohm effect, developed in more detail later.

The time-like part of the gauge transform gives the frequency shift [44]:

o! oþ q�ð3Þ

qt
� oþ � ð528Þ

The left-hand side of Eq. (523) denotes a round trip or closed loop in Minkowski

spacetime [46]. On the U(1) level, this is zero in the vacuum because the line

integral

þ
dZ ¼ k

ð
dAr ð529Þ

the present status of the quantum theory of light 83



reduces in U(1) to a line integral of the ordinary Stokes theorem and is zero. In

O(3) electrodynamics, Eq. (529) is a line integral over a closed path with O(3)

covariant derivatives and is nonzero.

In the Sagnac effect, for example, the closed loop and area can be illustrated

as follows:

C A

There is no Sagnac effect in U(1) electrodynamics, as just argued, a result that is

obviously contrary to observation [44]. In O(3) electrodynamics, the Sagnac

effect with platform at rest is given by the phase factor [44]

exp i

þ
A�C

jð3Þ � dr

� �
¼ expðik2ArÞ ð530Þ

because on the O(3) level, there is a component jð3Þ that is directed in the path r.
The phase factor (530) gives the interferogram

g ¼ cos 2
o2

c2
Ar � 2pn

� �
ð531Þ

as observed. The Sagnac effect with platform in motion is a rotation in the

internal gauge space given by Eq. (528), which, when substituted into Eq. (530),

gives the observed Sagnac effect to high accuracy:

�g ¼ cos 4
o�Ar

c2
� 2pn

� �
ð532Þ

The Sagnac effect is therefore due to a gauge transformation and a closed loop in

Minkowski spacetime with O(3) covariant derivatives.

If we attempt the same exercise in U(1) electrodynamics, the closed loop

gives the Maxwell–Heaviside equations in the vacuum, which are invariant un-

der T and that therefore cannot describe the Sagnac effect [44] because one loop

of the Sagnac interferometer is obtained from the other loop by T symmetry.

The U(1) phase factor is ot � kZ þ a, where a is arbitrary [44], and this phase

factor is also T-invariant. The Maxwell–Heaviside equations in the vacuum are
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also invariant under rotation, and are metric-invariant, so cannot describe the

Sagnac effect with platform in motion.

Physical optics, and interferometry in general, are described by the phase

equation of O(3) electrodynamics, Eq. (524). The round trip or closed loop in

Minkowski spacetime is illustrated as follows:

OA AO

A A0 0

λ λ

over one wavelength l of radiation. If k ¼ k=Að0Þ, the area is shown straight-

forwardly to be

Ar ¼ l2

p
ð533Þ

and if g is proportional to k=Að0Þ, the area is proportional to l2=p. Only the Z axis

contributes to the left hand side of Eq. (524), which correctly describes all

physical optical and interferometric effects. The closed loop is zero in U(1)

electrodynamics because the line integral in Eq. (524) is zero from the ordinary

Stokes theorem. Therefore Maxwell–Heaviside electrodynamics cannot describe

optics and interferometry. The root cause of this failure is that the phase is

random on the U(1) level.

The description of Young interferometry for electromagnetism is obtained

immediately through the fact that the change in phase difference over trajec-

tories 1 and 2 illustrated below

1

2

is given by

�d ¼ k
Að0Þ

þ
2�1

Að3Þ � dr ¼ k�r ð534Þ
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where A(0) ¼ | A(3)|, and where A(3) is directed along the path r in the vacuum.

Equation (536) gives the correct result for Young interferometry for vacuum

electromagnetism:

�d ¼ k�r ¼ 2p
l
�r ð535Þ

The change in phase difference of the Young experiment is related through the

non-Abelian Stokes theorem to the topological

�d ¼ g

ð
Bð3ÞdAr ð536Þ

which is an integral over the B(3) field of O(3) electrodynamics. The Young

interferometer can therefore be regarded as a round trip in Minkowski spacetime

with O(3) covariant derivatives, as can any type of interferometry or physical

optical effect. If an attempt is made to describe the Young interferometer as a

round trip with U(1) covariant derivatives, the change in phase difference (534)

vanishes because the vector potential in U(1) electrodynamics is a transverse

plane wave and is always perpendicular to the path. So on the U(1) level

�d ¼ 0 ð537Þ

and there is no Young interferometry, contrary to observation. The same result

occurs in Michelson interferometry and therefore in ordinary reflection [44].

The O(3) description of the Aharonov–Bohm effect relies on developing the

static magnetic field of a solenoid placed between the two apertures of the

Young experiment as follows

Bð3Þ	 ¼ �igAð1Þ  Að2Þ ð538Þ

where

Að1Þ ¼ Að2Þ	 ¼ Að0Þffiffiffi
2
p ðiiþ jÞeiot ð539Þ

are nonpropagating and transverse. On the O(3) level, the following gauge

transformations occur:

Að1Þm ! Að1Þm þ
1

g
qm�ð1Þ

Að2Þm ! Að2Þm þ
1

g
qm�ð2Þ

ð540Þ

86 m. w. evans and s. jeffers



This means that on O(3) gauge transformation

Að1Þ ! Að1Þ þ Að1Þ
0

Að2Þ ! Að2Þ þ Að2Þ
0 ð541Þ

In regions outside the solenoid, the static magnetic field is represented by

SBð3ÞS�1 ¼ �igAð1Þ
0
 Að2Þ

0
ð542Þ

and is not zero. The Aharonov–Bohm effect is therefore described by

�d ¼ e

�h

ð
SBð3ÞS�1 � dS ð543Þ

as observed [46]. On the U(1) level, the static magnetic field is represented by

B ¼ r A ð544Þ

but in regions outside the solenoid

B ¼ r 1

g
r�

� �
¼ 0 ð545Þ

and the magnetic field is zero. So there is no Aharonov–Bohm effect on the U(1)

level because B(3) is zero in the integral (543). This has also been pointed out by

Barrett [50] with an O(3) invariant electrodynamics.

Therefore, in this section, several effects have been demonstrated to be de-

scribable accurately by O(3) electrodynamic and to have no explanation at all in

Maxwell–Heaviside electrodynamics. It is safe to infer, therefore, that O(3)

electrodynamics must replace U(1) electrodynamics if progress is to be made.

IX. THE DEBATE PAPERS

There has been an unusual amount of debate concerning the development of O(3)

electrodynamics, over a period of 7 years. When the B(3) field was first proposed

[48], it was not realized that it was part of an O(3) electrodynamics homomorphic

with Barrett’s SU(2) invariant electrodynamics [50] and therefore had a solid

basis in gauge theory. The first debate published [70,79] was between Barron and

Evans. The former proposed that B(3) violates C and CPT symmetry. This in-

correct assertion was adequately answered by Evans at the time, but it is now

clear that if B(3) violated C and CPT, so would classical gauge theory, a reduction

to absurdity. For example, Barrett’s SU(2) invariant theory [50] would violate C
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and CPT. The CPT theorem applies only on the quantum level, something that

Barron did not seem to realize.

In chronological order, the next critical papers to appear were by Lakhtakia

[71] and Grimes [72]. Both papers are obscure, and were adequately answered

by Evans [73]. Neither critical paper realized that the B(3) field is part of a clas-

sical gauge theory homomorphic with the SU(2) invariant theory by Barrett,

published earlier in a volume edited by Lakhtakia [50] himself. This fact reflects

the depth of Lakhtakia’s confusion. Critical papers were published next by

Buckingham and Parlett [74] and by Buckingham [75], essentially duplicating

Barron’s argument. If these papers were correct, then classical gauge theory

would violate CPT and T, a reduction to absurdity. This has been pointed out

by Evans [42] and by Evans and Crowell [76]. The next critical paper to appear

was by Lakhtakia [77], answered by Evans [78]. Lakhtakia had already pub-

lished Barrett’s SU(2) invariant theory [50] 2 years earlier, so his critical paper

is invalidated by the fact that the SU(2) and O(3) invariant theories discussed,

for example, in the preceding section, are homomorphic. Then appeared a paper

by Rikken [79] answered by Evans [80]. The former claimed erroneously that

B(3) is a nonradiated static magnetic field and set about finding it experimentally

on this basis. His estimate was orders of magnitude too big, as pointed out by

Evans [42] and in the third volume of Ref. 42. The correct use of B(3) gives the

empirically observed inverse Faraday effect [42].

These papers were followed by a letter by van Enk [81], answered by Evans

[82]. Although not denying the possibility of a B(3), van Enk made the error of

arguing on a U(1) level, because, again, he did not realize that B(3) is part of an

O(3) invariant electrodynamics and does not exist on the U(1) level. All critical

papers cited to this point argued on the U(1) level and are automatically incor-

rect for this reason. This error was next repeated by Comay [83], who was

answered by Evans and Jeffers [84]. Comay attempted to apply the ordinary

Abelian Stokes theorem to B(3) and is automatically incorrect because the

non-Abelian Stokes theorem should have been applied. The Lorentz covariance

of the B cyclic theorem was next challenged by Comay [85], and answered

by Evans [86]. The B cyclic theorem is the basic definition of B(3) in an

O(3) invariant gauge theory, which is therefore automatically Lorentz covariant,

as are all gauge theories for all gauge group symmetries. Comay [87] then

challenged the ability of B(3) theory to describe dipole radiation and was an-

swered by Evans [42,88]. It is clear that an O(3) or SU(2) invariant electrody-

namics can produce multipole radiation of many types. These comments by

Comay are therefore trivially incorrect, not least because they argue again on

the U(1) level.

Two papers by Raja et al. [89,90] erroneously claimed once more that B(3) is

a static magnetic field and should have produced Faraday induction vacuo.

These papers were answered by Evans [91,92]. In the O(3) invariant electrody-
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namics defining B(3), the latter is a radiated, phaseless, field, and does not pro-

duce Faraday induction.

Independent confirmation of the invariance of the B cyclic theorem was next

produced by Dvoeglazov [93], but he did not argue on the O(3) level as re-

quired. His argument is therefore only partially valid, but produces the correct

result.

Comay [94] then repeated the earlier arguments [69,74] on C and CPT

violation and was answered by Evans and Crowell [76], who showed that all

gauge theories trivially conserve CPT and C on the quantum level. Comay again

made the error of arguing on the U(1) and classical levels, whereas B(3) exists

only on the O(3) level and the CPT theorem exists only on the quantum level.

The argument by Comay using the Stokes theorem [83] was next duplicated by

Hunter [95], who again argued erroneously on the U(1) level. The reply to Hun-

ter [96] pointed this out. Next in chronological order, Hunter again duplicated

Comay’s argument [97] and was again replied to by Evans [98], on the correct

O(3) level. Additionally, Comay and Dvoeglazov [99,100] have argued erro-

neously on the U(1) level concerning the Lorentz covariance of the B cyclic the-

orem, something that follows trivially from the O(3) gauge invariance of the

gauge theory that defines B(3).

The preceding section, and a review in Part 1 of this compilation, supply

copious empirical evidences of the fact that the B(3) field is part of the topo-

logical phase that describes interferometry through a non-Abelian Stokes theo-

rem. Therefore, the early critical papers are erroneous because they argue on a

U(1) level.

X. THE PHASE FACTOR FOR O(3) ELECTRODYNAMICS

The phase factor in classical electrodynamics is the starting point for

quantization in terms of creation and annihilation operators, and so it is

important to establish its properties on the classical O(3) level. In this context,

Barrett [50] has provided a useful review of the development of the phase factor,

and Simon [101] has shown that the phase factor is in general due to parallel

transport in the presence of a gauge field. On the O(3) level, therefore, the phase

factor must be due to parallel transport around a closed loop in Minkowski

spacetime (a holonomy) with O(3) covariant derivatives and is governed by the

non-Abelian Stokes theorem, Eq. (482). This inference means that all phases in

O(3) electrodynamics have their origin in topology on the classical level. This

inference is another step in the evolution of understanding of topological phase

effects. As pointed out by Barrett [50], the origin of such effects was the

development of the Dirac phase factor by Wu and Yang [102], who argued that

the wave function of a system will be multiplied by a path-dependent phase

factor after its transport around a closed curve in the presence of a potential in
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ordinary space. This process is now understood to be the origin of the non-

Abelian Stokes theorem (482) and to explain the Aharonov–Bohm effect. The

phases proposed by Berry [103], Aharonov and Anandan [104], and Panchar-

atnam [105] are due to a closed loop in parameter or momentum space. These

effects occur both on the classical and quantum levels [50].

Originally, Berry [103] proposed a geometric phase for a nondegenerate

quantum state that varied adiabatically over a closed loop in parameter space.

This occurred in addition to the dynamical phase. It was shown later [50] that

the effect is present without the need for an adiabatic approximation, and is also

present for degenerate states. Aharonov and Anandan [104] showed that the ef-

fect is present for any cyclic evolution of a quantum system, and Bhandari and

Samuel [106] showed that the effect is closely related to the geometrical phase

discovered by Pancharatnam [105]. The topological phase, therefore, has its ori-

gin in topology, either on the classical or quantum level, and is equivalent to a

gauge potential in the parameter space of the system on the classical or quantum

level.

There are at least three variations of topological phases [50]:

1. A phase arising from cycling in the direction of a beam of light

2. The Pancharatnam phase from cycling of polarization states while keeping

the direction of the beam of light constant, a phase change due to polari-

zation change

3. The phase change due to a cycle of changes in squeezed states of light

If the topological phase is denoted �, then it obeys the conservation law

�ðCÞ ¼ �g

þ
A � dr ð546Þ

and occurs on the classical level from polarization changes due to changes in the

topological path of a light beam. The angle of rotation of linearly polarized light

is a direct measure of the topological phase at the classical level. An example of

this is the Sagnac effect, which can be explained using O(3) as discussed already.

The Sagnac effect can be considered as one loop in the Tomita–Chiao effect

[107], which is the rotation of the plane of polarization of a light beam when

propagating through an optical fiber.

The next level in the evolution of understanding of the electromagnetic phase

is to consider that all optical phases are derived from the non-Abelian Stokes

theorem (482), so all optical phases originate in the phase factor

g ¼ exp ig

þ
Dmdxm

� �
¼ exp � 1

2
ig

ð
½Dm;Dn�dsmn

� �
ð547Þ
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which originates directly in the non-Abelian Stokes theorem (482). Therefore, on

the O(3) level, all optical phases are topological in origin. We have briefly

discussed how the phase factor reduces to a line integral over the dynamical

phase and this property of Eq. (547) is also reviewed in Part 1 by Evans [44]. It

has been argued that the most general equation (547) reduces to

g ¼ exp ig

þ
Amdxm

� �
¼ exp �i

g

2

ð
Gmn dsmn

� �
ð548Þ

for a round trip in Minkowski spacetime for all internal gauge group symmetries.

The notation used in Eq. (548) is the condensed notation used by Ryder [46], in

which the field tensor is in general defined by

Gmn ¼ qmAn � qnAm � ig½Am;An� ð549Þ

In free space, as argued already, the factor g is k=Að0Þ.
If we attempt to apply Eq. (548) on the U(1) level, relations such as

g ¼ exp ig

þ
A � dr

� �
¼ exp ig

ð
B � dAr

� �
ð550Þ

are obtained. In free space, on the U(1) level, A is, however, a plane wave, and is

therefore always perpendicular to the path r of the radiation. Therefore, on the

U(1) level in free space þ
A � dr ¼

ð
B � dAr ¼ 0 ð551Þ

On the O(3) level in free space, however, relations such as

g ¼ exp ig

þ
Að3Þ � dr

� �
¼ exp ig

ð
Bð3Þ � dAr

� �
ð552Þ

are obtained, where A(3) is parallel to the path of the radiation. Using g ¼ k=Að0Þ

in free space, Eq. (552) reduces to

g ¼ exp i

þ
kð3Þ � dr

� �
¼ exp ig

ð
Bð3Þ � dAr

� �
ð553Þ

and the left-hand side can be recognized as a line integral over what is usually

termed the dynamical phase. By definition, the line integral changes sign on

traversing a closed loop from O to A to A to O, and this fundamental
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mathematical property is responsible for all optics and interferometry as argued

in this review and in Ref. 44. This inference is an evolution in understanding of

the phase in optics and electrodynamics.

The B(3) field appearing on the right-hand side of the non-Abelian Stokes

theorem (553) changes sign [47–62] between left- and right-handed circularly

polarized states, and a linearly polarized state is a superposition of two circu-

larly polarized states. This inference gives rise to Pancharatnam’s phase, which

is due to polarization changes and also to the phase caused by the cycling of the

tip of the vector in a circularly polarized electromagnetic field. Therefore, we

reach the important conclusion that the B(3) field is an observable of the phase

in all optics and electrodynamics. It has been argued briefly in this review and in

Part 1 of this series [44] that the B(3) field provides an explanation of the Sagnac

effect.

The U(1) phase factor in the received view, on the other hand, is well known

to be

g ¼ expðiðot � j � rþ aÞÞ ð554Þ

where a is an arbitrary number. So the phase factor (g) is defined only up to an

arbitrary a, an unphysical result. If a ¼ 0 for the sake of argument, the phase

factor ðgÞ is invariant under motion reversal symmetry (T) and parity inversion

symmetry (P) [44]. Since one loop of the Sagnac effect is generated from the

other by T, it follows that the received phase factor ðgÞ is invariant in the Sagnac

effect with platform at rest and there is no phase shift, contrary to observation

[44]. The phase factor (553), on the other hand, changes sign under T and

produces the observed Sagnac effect. The phase factor (554) is invariant under P

and cannot explain Michelson interferometry or normal reflection [44]. The

phase factor (553) changes sign under P and explains Michelson interferometry

as observed [44]. We have argued earlier in this review that the phase factor (553)

also explains Young interferometry straightforwardly.

Therefore, the distinction between the topological and dynamical phase has

vanished, and the realization has been reached that the phase in optics and elec-

trodynamics is a line integral, related to an area integral over B(3) by a non-

Abelian Stokes theorem, Eq. (553), applied with O(3) symmetry-covariant de-

rivatives. It is essential to understand that a non-Abelian Stokes theorem must

be applied, as in Eq. (553), and not the ordinary Stokes theorem. We have also

argued, earlier, how the non-Abelian Stokes explains the Aharonov-Bohm effect

without difficulty.

We also infer that, in the vacuum, there exists the topological charge

gm ¼
1

V

þ
Amdxm ð555Þ
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where V is a volume, and for one photon, the quantum of electromagnetic energy,

the phase becomes

f ¼ g

þ
Að3Þ � dr ¼ g

ð
Bð3Þ � dAr ¼ �1 ð556Þ

where g ¼ k=Að0Þ. The flux due to one photon is classically

ð
Bð3Þ � dAr ¼ Að0Þ

k
¼ �h

e
ð557Þ

and so we have the quantum classical equivalence

eAð0Þ ¼ �hk ð558Þ

which is a Planck quantization. In quantum theory, the magnetic flux of one

photon is ��h=e, depending on the sense of circular polarization.

It can be shown that the Sagnac effect with platform at rest is the rotation of

the plane of linearly polarized light as a result of radiation propagating around a

circle in free space. Such an effect cannot exist in the received view where the

phase factor in such a round trip is always the same and given by Eq. (554).

However, it can be shown as follows that there develops a rotation in the plane

of polarization when the phase is defined by Eq. (553). It is now known that the

phase must always be defined by Eq. (553). Therefore, proceeding on this infer-

ence, we construct plane polarized light as the sum of left and right circularly

polarized components:

Reði� i jÞeif ¼ cosf iþ sinf j ð559Þ
Reði� i jÞe�if ¼ cosf i� sinf j ð560Þ

where the phase factor eif is given by Eq. (553). Plane-polarized light at the

beginning of the 180� round trip of the Sagnac effect is therefore

ði� i jÞðeif þ e�ifÞ ¼ 2icosf ð561Þ

The round trip of the Sagnac effect in a given—say, clockwise—direction

produces the effect

ði� i jÞeiðfþfSÞ þ ði� i jÞe�iðf�fSÞ ð562Þ

where

fS ¼ g

þ
Að3Þ � dr ¼ g

ð
Bð3Þ � dAr ð563Þ
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is generated by the round trip over 2p radians. The extra phase factor for the left

circularly polarized component is fs, and the extra phase factor for the right

circularly polarized component is�fS because B(3) changes sign between senses

of circular polarization. The effect of the round trip in the Sagnac effect on the

plane of linearly polarized light is therefore

ðcosðfþ fSÞ þ cosðf� fSÞÞiþ ðsinðfþ fSÞ þ sinðf� fSÞÞ j ð564Þ

Using the angle formulas

cosðA� BÞ ¼ cos A cos B� sin A sin B

sinðA� BÞ ¼ sin A cos B� cos A sin B
ð565Þ

the effect can be expressed as

2cosfðicosfS � jsinfSÞ ð566Þ

The original plane-polarized light at the beginning of the round trip is described

by

2cosfi ð567Þ

so the overall effect is to rotate the plane of polarized light. Therefore, a linearly

polarized laser beam sent around an optical fiber in a circle arrives back at the

origin with its plane rotated as in Eq. (566). This is a description of the Sagnac

effect with the platform at rest. Spinning the platform produces an extra phase

shift that is described [44] by a gauge transformation of A(3) [a rotation in the

physical O(3) internal space]. This extra phase shift produces an extra rotation in

the plane of polarization of linearly polarized light.

Therefore, it becomes clear that the Sagnac effect is one loop of the Tomita–

Chiao effect [107], which is the rotation of the plane of a linearly polarized light

beam sent through a helical optical fiber. In both the Sagnac and Tomita–Chiao

effects, the angle of rotation (or phase shift) is a direct measure of the phase

factor ðgÞ, whose origin is in topology. A circle can always be drawn out into

a helix of given pitch (p), length(s), and radius (r). This can be seen by straigh-

tening out the helix into a line, and bending the line into a circle. So the Tomita–

Chiao effect must reduce to the Sagnac effect for this reason. The former effect

can be expressed in general as

f ¼ 2p 1� p

S

� �
g

ð
Bð3Þ � dAr ð568Þ
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because for one photon

g

ð
Bð3Þ � dAr ¼ �1 ð569Þ

Therefore, the Tomita–Chiao effect reduces to the Sagnac effect under the

condition

2p 1� p

S

� �
¼ 1 ð570Þ

that is

p

S
¼ 1� 1

2p
ð571Þ

or when the pitch : length ratio of the helix is this number, which is self-

consistently less than one (the length s is always greater than the pitch p).

The received view, in which the phase factor of optics and electrodynamics is

given by Eq. (554), can describe neither the Sagnac nor the Tomita–Chiao ef-

fects, which, as we have argued, are the same effects, differing only by geome-

try. Both are non-Abelian, and both depend on a round trip in Minkowski

spacetime using O(3) covariant derivatives.

Having argued thus far, it becomes clear that the phase factor (553) can be

generalized and put on a rigorous footing in topology [50]. It is precisely obtai-

ned from a set of angles associated with a group element, and only one such

angle can correspond to a holonomy transformation of a vector bundle around

a closed curve on a sphere. For example, in a SU(2) invariant electrodynamics,

there is a single angle from the holonomy of the Riemannian connection on a

sphere. Thus, we infer that gauge structure appears at a very fundamental level

in all optical effects that depend on the electrodynamical phase. We can also

infer new effects, for example, if the helix of the Tomita–Chiao experiment is

spun, an effect equivalent to the Sagnac effect should be observable. The gen-

eral conclusion is that all electrodynamical phases are non-Abelian, and quan-

tization proceeds naturally on this basis. For example, Berry’s phase was first

inferred in quantum mechanics. We can conclude that all phases are topological.

The properties of the phase factor (548) on O(3) gauge transformation have

been shown [47] to explain the Sagnac effect with platform in motion. In con-

densed notation, gauge transformation produces the results

A0m ¼ SAmS�1 � i

g
ðqmSÞS�1

G0mn ¼ SGmnS
�1

ð572Þ
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where S is defined by

S ¼ expðiMa�aðxmÞÞ ð573Þ

In the O(3) gauge group, Ma are rotation generators, and �a are angles in three-

dimensional space, which coincides with the internal gauge space. Rotation

about the Z axis leaves the B(3) field unaffected. In matrix notation, this can be

demonstrated by

0 �BZ 0

BZ 0 0

0 0 0

2
4

3
5¼ cosa sina 0

�sina cosa 0

0 0 1

2
4

3
5 0 �BZ 0

BZ 0 0

0 0 0

2
4

3
5 cosa �sina 0

sina cosa 0

0 0 1

2
4

3
5

ð574Þ

The gauge transformation of AZ has been shown [44] to be given by

AZ ! AZ þ
1

g
qZa ð575Þ

Therefore, the phase factor on O(3) gauge transformation becomes

exp ig

þ
ðAð3Þ þ raÞ � dr

� �
¼ exp ig

ð
Bð3Þ � dAr

� �
ð576Þ

and using the propertyþ
ra � dr ¼ 0; i:e:; r ðraÞ ¼ 0 ð577Þ

it is seen that the phase factor is invariant under an O(3) gauge transformation.

The phase factor, however, contains only the space part of the complete expres-

sion (548). Gauge transformation of the time part gives the result [44]

o! o� �; � ¼ qa
qt

ð578Þ

which explains the Sagnac effect with platform in motion.

On the U(1) level, the ordinary Stokes theorem applies, and this can be writ-

ten as þ
A � dr ¼

ð
r A � dAr ð579Þ
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which is gauge-invariant because of the propertyþ
rw � dr ¼ 0 ð580Þ

which is equivalent to the fundamental vector property:

r ðrwÞ ¼ 0 ð581Þ

However, as argued, A is always perpendicular to the path r on the U(1) level, and

so the phase factor (548) cannot be applied on this level.

Barrett [50] has interestingly reviewed and compared the properties of the

Abelian and non-Abelian Stokes theorems, a review and comparison that makes

it clear that the Abelian and non-Abelian Stokes theorems must not be confused

[83,95]. The Abelian, or original, Stokes theorem states that if A(x) is a vector

field, S is an open, orientable surface, C is the closed curve bounding S, dl is a

line element of C, n is the normal to S, and C is traversed in a right-handed

(positive direction) relative to n, then the line integral of A is equal to the surface

integral over S of r A �n:

þ
A � dl ¼

ð
S

ðr  AÞ �nda ð582Þ

and, as pointed out by Barrett [50], the original Stokes theorem just described

takes no account of boundary conditions.

In the non-Abelian Stokes theorem (482), on the other hand, the boundary

conditions are defined because the phase factor is path-dependent, that is, de-

pends on the covariant derivative [50]. On the U(1) level [50], the original

Stokes theorem is a mathematical relation between a vector field and its curl.

In O(3) or SU(2) invariant electromagnetism, the non-Abelian Stokes theorem

gives the phase change due to a rotation in the internal space. This phase change

appears as the integrals

þ
Að3Þ � dr ¼

ð
Bð3Þ � dAr ð583Þ

which do not exist in Maxwell–Heaviside electromagnetism. There is a profound

ontological difference therefore between the original Stokes theorem, in which

B(3) is zero, and the non-Abelian Stokes theorem, in which B(3) is nonzero and of

key importance. Therefore progress from a U(1) to an O(3) or SU(2) invariant

electromagnetism is a striking evolution in understanding, as argued throughout

Ref. 44 and references cited therein and in several reviews of this volume.
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Equation (482) is a simple form of the non-Abelian Stokes theorem, a form

that is derived by a round trip in Minkowski spacetime [46]. It has been adapted

directly for the O(3) invariant phase factor as in Eq. (547), which gives a simple

and accurate description of the Sagnac effect [44]. A U(1) invariant electrody-

namics has failed to describe the Sagnac effect for nearly 90 years, and kine-

matic explanations are also unsatisfactory [50]. In an O(3) or SU(2) invariant

electrodynamics, the Sagnac effect is simply a round trip in Minkowski space-

time and an effect of special relativity and gauge theory, the most successful

theory of the late twentieth century. There are open questions in special relativ-

ity [108], but no theory has yet evolved to replace it.

By using the O(3) invariant phase factor (547), we have also removed the

distinction between the topological phase and the dynamical phase, reaching,

as argued earlier, a new level of understanding in all optical effects that depend

on electromagnetic phase.

For example, the description of the Aharonov–Bohm effect and other types

of interferometry become closely similar. The Young interferometer, for exam-

ple, is described by

k
Að0Þ

þ
2�1

Að3Þ � dr ¼ k
Að0Þ

ð
Bð3Þ � dS ð584Þ

and the Aharonov–Bohm effect can be described by

e

�h

þ
2�1

Að3Þ � dr ¼ e

�h

ð
Bð3Þ � dS ¼ e

�h
�ð3Þ ð585Þ

In both cases, the magnetic flux

�ð3Þ ¼
ð

Bð3Þ � dS ð586Þ

is generated by the round trip in Minkowski space with O(3) covariant

derivatives (holonomy) on the left-hand side of Eqs. (584) and (585). So the

original magnetic field inside the solenoid does not contribute to the Aharonov–

Bohm effect, as pointed out by Barrett [50], and the U(1) invariant description

[46] of the effect is erroneous. The effect is due to the magnetic field B(3) of O(3)

electrodynamics. The Sagnac, Michelson, and Mach–Zehnder effects, and all

interferometric effects are similarly described by Eq. (584), and all interfero-

metry and optics originate in topology. The only difference between these effects

and the Aharonov–Bohm effect is that in the latter, interaction with electrons

takes place, so the factor k=Að0Þ is replaced by e=�h in a minimal prescription.

The interpretation of Eq. (584) is that the potential A(3) is defined along the

integration path of the line integral. The field B(3) is defined as being perpendi-

cular to the plane or surface enclosed by the line integral. Neither A(3) nor B(3)

exists in a U(1) invariant electrodynamics. Effects attributed to the topological
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phase, such as those of Pancharatnam and Tomita and Chiao, reviewed already,

do not exist in a U(1) invariant electrodynamics, but are described by Eq. (584)

in an O(3) invariant theory. Equation (3) is for circularly polarized radiation pro-

pagating in a plane, and so allowance may have to be made for the geometry of

a particular experiment. We have illustrated this with the Tomita–Chiao effect.

The key to this evolution in understanding is that there exists in an O(3) invar-

iant electrodynamics, an internal gauge space with index (3). The existence of

this index gives rise to the non-Abelian Stokes theorem (584). The internal space

on a ((1),(2),(3)) level is considered to be the physical space of three dimensions

and not an isospace. Therefore, a rotation in the internal space ((1),(2),(3)) is

a physical rotation in three-dimensional space. The spinning platform of the

Sagnac effect is an example of one such rotation, about the axis perpendicular

to the platform, and results in Eq. (578), which, as shown elsewhere [44], gives

the observed Sagnac effect, again through Eq. (584). Such concepts are avail-

able in neither a U(1) invariant electrodynamics nor gauge theory, which con-

siders the internal space as an isospace.

Therefore, it has been shown convincingly that electrodynamics is an O(3)

invariant theory, and so the O(3) gauge invariance must also be found in experi-

ments with matter waves, such as matter waves from electrons, in which there is

no electromagnetic potential. One such experiment is the Sagnac effect with

electrons, which was reviewed in Ref. 44, and another is Young interferometry

with electron waves. For both experiments, Eq. (584) becomesþ
jð3Þ � dr ¼ k2Ar ð587Þ

and for matter waves

o2 ¼ c2k2 þ m2
0c4

�h2
ð588Þ

where m0 is the mass of the particle. The Sagnac effect in electrons [44] is

therefore the same as the Sagnac effect in photons, and is given [44] by

�f ¼ Ar

c2
ððoþ �Þ2 � ðo� �Þ2Þ � m2

0c4

�h2
þ m2

0c4

�h2

� �

¼ 4o�Ar

c2
ð589Þ

from the gauge transform (578). This is the observed result [44]. The Young

effect for electrons is similarly

�f ¼
þ

2�1

jð3Þ � dr ð590Þ
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and also more generally for particles such as atoms and molecules, the famous

two-slit experiment.

On this empirical evidence, it is possible to reach a far-reaching conclusion

that all wave functions in quantum mechanics are of the form (590). For exam-

ple, the electron wave function from the Dirac equation is

Positive energy: cðaÞðrÞ ¼ uðaÞðpÞexp �i

þ
p � dr

� �
ð591Þ

Negative energy: cðaÞðrÞ ¼ nðaÞðpÞexp i

þ
p � dr

� �
ð592Þ

instead of the conventional [46]

cðaÞðrÞ ¼ uðaÞðpÞexpð�ip � rÞ ð593Þ

cðaÞðrÞ ¼ nðaÞðpÞexpðip � rÞ ð594Þ

The path and area in Eq. (584) and in wave functions such as those of the photon

and electron are given by the following sketch:

A A0 0

The shaded area in this sketch is not arbitrary, as it is determined by the right-

hand side of Eq. (587). The line integrals OA and AO change sign, and this

accounts for reflection of matter waves and for the Sagnac and Young effects in

matter waves, such as electron waves. Therefore, the electron is an O(3) invariant

entity, as shown by the Sagnac effect for electron waves [44]. It follows that the

Dirac equation should be developed as an O(3) invariant equation.

The Fermat principle can now be reworked into an O(3) invariant form and

the principles of quantum mechanics on a nonrelativistic level developed from

it. In so doing, we modify the discussion by Atkins [68] for an O(3) invariant

treatment. Fermat’s principle of least time is the basic law governing light pro-

pagation in geometric optics. In the received view, light travels in a straight line

in geometric optics, but the physical nature of light is a wave motion. These two

fundamental aspects are unified in the sketch following Eq. (594), constructed in

an O(3) invariant theory, in which the phase now correctly describes both the

wave nature of light and the fact that it travels in a straight line in the vacuum

or a uniform medium. The U(1) invariant phase shows only the latter property of

light, and consequently is a number invariant under motion reversal symmetry
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(T) and parity inversion symmetry (P). Similarly, particles travel in a straight

line by Newton’s first law, but de Broglie demonstrated that particles have a

wave nature–wave particle duality. Therefore, the phase in classical electrody-

namics becomes the wave function in quantum mechanics, and the general and

important conclusion is reached that both the electromagnetic phase and the

wave function of particles are O(3) invariant. We have already argued that

this new general principle is supported by the Sagnac and Young effects in

matter waves. In retrospect, it is not surprising that the wave function should

reflect wave–particle duality, for both the photon and matter waves.

A simple example of the Fermat principle may be used to show the weakness

inherent in a U(1) invariant phase. Fermat’s principle states that the path taken

by a light ray through a medium is such that its time of passage is a minimum.

Following Atkins [68], consider the relation between angles of incidence and

reflection. The least-time path is the one corresponding to the angle of incidence

being equal to the angle of reflection, giving Snell’s law. However, reflection is a

parity inversion, under which the U(1) invariant phase

Pðot � j � rÞ ¼ ot � j � r ð595Þ

does not change [44]. This is seen at its clearest in normal reflection. Therefore,

the U(1) invariant phase cannot describe normal reflection and Snell’s law, and

violates Fermat’s principle. The O(3) invariant phase

f ¼
þ
odt �

þ
j � dr ð596Þ

on the other hand, changes sign on reflection, because of the property of the path

integral

P

þ
j � dr

� �
¼ �

þ
j � dr ð597Þ

and so is in accordance with the Fermat principle. This conclusion is a major

evolution in understanding because Fermat’s principle is at the root of quantum

mechanics, in particular, the time-dependent Schrödinger equation.

Following Atkins [68], the propagation of particles follows a path dictated by

Newton’s laws, equivalent to Hamilton’s principle, that particles select paths be-

tween two points such that the action associated with the path is a minimum.

Therefore, Fermat’s principle for light propagation is Hamilton’s principle for

particles. The formal definition of action is an integral identical in structure

with the phase length in physical optics. Therefore, particles are associated

with wave motion, the wave–particle dualism. Hamilton’s principle of least
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action leads directly to quantum mechanics. The final touch to this development

was made by de Broglie. Therefore, a particle is also described by an amplitude

cðrÞ, and amplitudes at different points are related by an expression of the fol-

lowing form [68]:

cðP2Þ ¼ eiðr2�r1Þ � kcðP1Þ ð598Þ

If this is to be O(3) invariant, the phase in quantum mechanics must take the form

(597). In the classical limit, the particle propagates along a path that makes the

action S a minimum. Therefore, the O(3) invariant phase is proportional to S

through the Planck constant. It is concluded that the O(3) invariant phase in

quantum mechanics is given by

f ¼
þ

j � dr ð599Þ

The amplitude describing a particle in O(3) invariant quantum mechanics is

c ¼ c0 exp�if ¼ c0 exp�iðS=�hÞ ð600Þ

where S is the action associated with the path from P1 (a point at x1, t1) to P2 (a

point at x2, t2). An equation of motion can be developed from this form by

differentiating with respect to time t2:

q
qt
cðx; tÞ ¼ � i

�h
Encðx; tÞ ð601Þ

The rate of change of the action is equal to �En, where En is the total energy

T þ V:

qS

qt
¼ �En ð602Þ

Therefore, the equation of motion is

q
qt
cðx; tÞ ¼ i

�h

qS

qt
cðx; tÞ ð603Þ

and if En is interpreted as the Hamiltonian operator H, the O(3) invariant time-

dependent Schrödinger equation is obtained:

Hc ¼ i�h
qc
qt

ð604Þ
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So, if the O(3) invariant wave function is defined as

c ¼ c0 exp �i

þ
odt �

þ
j � dr

� �
ð605Þ

where

S ¼ ��h
þ
odt �

þ
j � dr

� �
ð606Þ

the energy is given by

En ¼ �ho ¼ � qS

qt
ð607Þ

which is the energy for one photon. Equation (605) is the O(3) invariant de

Broglie wave function.

XI. O(3) INVARIANCE: A LINK BETWEEN
ELECTROMAGNETISM AND GENERAL RELATIVITY

In order to develop a Riemannian theory of classical electromagnetism, it is

necessary [109] to consider a curve corresponding to a plane wave:

f ðZÞ ¼ ði� i jÞeif ð608Þ

In terms of the retarded time [t] ¼ t � Z/c, the U(1) phase f is o½t�, and the

retarded distance is Z � Z0 ¼ c½t�. The electromagnetic wave propagates along

the Z axis, and the trajectory of the real part is

fRðZÞ ¼ Reð f ðZÞÞ ¼ ðcosf; sinf;fÞ ð609Þ

which is a circular helix. The curve (609) is a function of Z with Z0 regarded as a

constant in partial differentiation of f (Z) with respect to Z. More generally, a

Z-dependent phase angle must be incorporated in f, which becomes [42]:

fRðZÞ ¼ ðcosðkðZ � Z0Þ þ �Þ; sinðkðZ � Z0Þ þ �Þ; kðZ � Z0Þ þ �Þ ð610Þ

Frenet’s tangent vector (T) is obtained by differentiation:

qfRðZÞ
qZ

¼ kT ¼ ð�ksinf; kcosf; kÞ ð611Þ
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In elementary differential geometry, therefore, the electromagnetic helix

produces a nonzero T, and tangent vectors are characteristic of curved spacetime

in general relativity. The scalar curvature in elementary differential geometry is

R ¼ q2 fRðZÞ
qZ2

����
���� ¼ k2ðcosf;�sinf; 0Þ

�� �� ¼ k2 ð612Þ

and this is also the scalar curvature of the electromagnetic wave in general

relativity, specifically, the scalar curvature of Riemann’s tensor, obtained by

suitable antisymmetric index contraction. The electromagnetic field therefore

becomes a property of spacetime, or the vacuum.

The metric coefficient in the theory of gravitation [110] is locally diagonal,

but in order to develop a metric for vacuum electromagnetism, the antisymme-

try of the field must be considered. The electromagnetic field tensor on the U(1)

level is an angular momentum tensor in four dimensions, made up of rotation

and boost generators of the Poincaré group. An ordinary axial vector in three-

dimensional space can always be expressed as the sum of cross-products of unit

vectors

I ¼ i jþ j kþ k i ð613Þ

a sum that can be expressed as the metric

g ¼ gðAÞmn im jn ð614Þ

where the g
ðAÞ
mn coefficient in three dimensions is the fully antisymmetric 3  3

matrix. This becomes the right-hand side in four dimensions. In the language of

differential geometry, the field tensor becomes the Faraday 2-form [110]

F ¼ 1

2
Fabdxa ^ dxb ð615Þ

where the wedge product dxa ^ dxb between differential forms is an exterior

product. Equation (615) translates in tensor notation into

F ¼ Fab dxa � dxb ð616Þ

We have argued here and elsewhere [44] that the plane-wave representation

of classical electromagnetism is far from complete. In tensor language, this in-

completeness means that the antisymmetric electromagnetic field tensor on the

O(3) level must be proportional to an antisymmetric frame tensor of spacetime,

R
ðAÞ
mn , derived from the Riemannian tensor by contraction on two indices:

RðAÞmn ¼ Rl
lmn ð617Þ
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Therefore R
ðAÞ
mn is an antisymmetric Ricci tensor obtained from the index

contraction from the Riemann curvature tensor. Further contraction of R
ðAÞ
mn leads

to the scalar curvature R, which, for electromagnetism, is k2. The contraction

must be

R ¼ 1

12
gðAÞmn RmnðAÞ ð618Þ

The principle of equivalence between electromagnetism and the antisymmetric

Ricci tensor is

RðAÞmn ¼ gGmn ¼
k

Að0Þ
Gmn ð619Þ

whose scalar form is

R ¼ gGð0Þ ð620Þ

where G(0) is a scalar field amplitude and where R ¼ k2 is the scalar curvature of

vacuum electromagnetism, whose metric coefficient is antisymmetric. In this

view, vacuum electromagnetism is the antisymmetric Ricci 2-form [110], and

gravitation is the symmetric Ricci 2-form.

Geodesic equations can be developed for the vacuum plane wave from the

starting point [110]

Dkm ¼ dkm

dl
þ 
m

nsk
nks ¼ 0 ð621Þ

where km ¼ dxm=dl is the wave 4-vector and 
m
vs is the affine connection. The

symbol D in Eq. (621) is therefore a covariant derivative. In the received view, on

the U(1) level, Eq. (621) becomes

dkm ¼ 0 ð622Þ

in which the wave-vector does not vary along its path. Equation (621), on the

other hand, has a parameter that varies along the ray, and the world line is a helix.

This is a conclusion reminiscent of the fact that the O(3) electromagnetic phase is

described by a line integral, as developed in the previous section.

A relation is first established between km and the Am 4-vector:

km ¼ k
Að0Þ

Am ð523Þ

Using this equation in Eq. (621) gives

dAm

dl
þ k

Að0Þ

m
ns AnAs ¼ dAm

dl
þ k

Að0Þ
A2
m ¼ 0 ð624Þ
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where A is a scalar. The contracted affine connection 
m is proportional to Am in

general gauge theory, and we adopt this rule to give


m ¼ k
Að0Þ

Am ð625Þ

which is an equivalence principle between field and frame (or vacuum)

properties. Such an equivalence does not appear on the U(1) level if the ordinary

derivative replaces the covariant derivative.

Equation (625) can be written as

dAm

dl
þ k2Am ¼ 0 ð626Þ

where the dimensionality of l is k2, the inverse of the Thomson area of a photon

[42], and if l ¼ Z2=2, Eq. (626) become

d2Am

dZ2
þ RAm ¼ 0 ð627Þ

This has the form of a geodesic equation [111], and is obeyed by a plane wave.

Similarly, we obtain:

1

c2

d2Am

dt2
þ RAm ¼ 0 ð628Þ

an equation that is also obeyed by a plane wave. Now, subtract Eq. (627) from

Eq. (628) to give the d’Alembert wave equation:

&Am ¼ ðR� RÞAm ¼ 0 ð629Þ

which is the Proca equation

&Am ¼ �m2
0c4

�h2
Am ¼ 0 ð630Þ

whose right-hand side happens to be zero because we have used a plane wave to

derive it. The Proca equation (629) is an equation of a spacetime or vacuum

whose curvature is R ¼ k2, and not zero.

Equations (627) and (628) are special cases of the usual definition of the

Riemann tensor in curvilinear geometry

Am;n;k � Am;k;n � Rl
mnk Al ð631Þ
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where Al is a general 4-vector field [111]. Equation (631) can be written as

ðDn Dk � DkDnÞAm þ Rl
mnk Al ¼ 0 ð632Þ

and this is a geodesic equation. Multiply Eq. (632) by the antisymmetric metric

coefficient g
ðAÞ
mn to obtain

gnk
ðAÞðDn Dk � DkDnÞ þ gnk

ðAÞR
l
mnk Al ¼ 0 ð633Þ

and identify

R � gnk
ðAÞR

m
mnk;

d2

dZ2
¼ gnk

ðAÞðDn Dk � DkDnÞ ð634Þ

This procedure reduces Eq. (631) to Eqs. (627) and (628), which are special cases

obtained by tensor contraction.

Electromagnetism can therefore be defined geometrically in curvilinear co-

ordinates, and has vacuum properties such as scalar curvature, metric coefficient,

affine connection, and Ricci tensor that manifest themselves fully on the O(3)

level:

Gmn ¼
Að0Þ

k
RðAÞmn ð635Þ

This equation can be written in precise analogy with the Einstein equation

T ðAÞmn ¼ �ho
R
ðAÞ
mn

R

 !
ð636Þ

where T
ðAÞ
mn is an antisymmetric electromagnetic energy-momentum tensor and

R ¼ k2 is the scalar curvature in O(3) electromagnetism. Equation (636) is

therefore a rotational Einstein equation. The scalar curvature in electromagnet-

ism is defined through the antisymmetric metric coefficient (g
ðAÞ
mn ):

R ¼ k2 ¼ g
mn
ðAÞR

ðAÞ
mn ð637Þ

The analogous definition of scalar curvature in gravitation is given through the

metric gmn:

R gravð Þ ¼ gmnRðSÞmn ð638Þ
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and the symmetric part of the Ricci tensor R
ðsÞ
mn , that is, through the equation

R
ðSÞ
ln ¼ Rk

lkn ð639Þ

If O(3) electromagnetism [denoted e.m. in Eq. (640)] and gravitation are both to

be seen as phenomena of curved spacetime, then both fields are derived

ultimately from the same Riemann curvature tensor as follows:

TðAÞmn ðe:m:Þ ¼ �ho
R
ðAÞ
mn

R
ð640Þ

T ðSÞmn ðgrav:Þ ¼ c4

8pk
RðSÞmn �

1

2
gmnR

� �
ð641Þ

Rmn ¼ RðSÞmn þ RðAÞmn ð642Þ

The unification of O(3) electromagnetism and gravitation using these concepts is

summarized in Table I.

TABLE I

Some Concepts in the Unified Theory of Fields

Concept of Quantity Gravitation Electromagnetism

Riemann tensor Rk
lmn Rk

lmn

Ricci tensor R
ðSÞ
mn ¼ Ra

lav R
ðAÞ
mn ¼ Ra

amn

Metric coefficient gmn diagonalð Þ g
ðAÞ
mn off-diagonalð Þ

Scalar curvature R ¼ gmnR
ðSÞ
mn R ¼ gmnðAÞR

ðAÞ
mn ¼ k2

Einstein tensor R
ðSÞ
mn �

1

2
gmnR � GðEÞmn R

ðAÞ
mn

Field equation G
ðEÞ
mn ¼

8pk

c4
T ðSÞmn R

ðAÞ
mn ¼

k2

�ho
T ðAÞmn

Connection 
l
mn 
l

mn ¼
k

Að0Þ
MmMnAl

Local group Poincaré Poincaré

Group generator Bianchi identity Feynman Jacobi

Identity DrRk
lmn þ DmRk

lnr þ DnRk
lrm ¼ 0 identity k ¼ lð Þ

Energy-momentum T
ðSÞ
mn translationalð Þ T

ðAÞ
mn � oJmn

tensor

¼ �ho
R

RðAÞmn rotationalð Þ

Equivalence principle Gravitation is a Electromagnetism is a

noninertial frame noninertial frame

Universal constant k (Einstein’s constant)
k

Að0Þ

108 m. w. evans and s. jeffers



The electromagnetic field equations on the O(3) level can be obtained from

this purely geometrical theory by using Eq. (631) in the Bianchi identity

DkGmn þ DnGkm þ DmGnk ¼ Rl
mnkAl þ Rl

nkmAl þ Rl
kmnAl

¼ DrRk
lmn þ DmRk

lnr þ DnRk
lrm ¼ 0 ð643Þ

with appropriate index contraction. The end result is the Feynman Jacobi identity

discussed in earlier sections of this review

Dm ~G
mn � 0 ð644Þ

an identity that can be written as

Dm ~G
mn � 0 ð645Þ

The O(3) field equations can be obtained from the fundamental definition of

the Riemann curvature tensor, Eq. (631), by defining the O(3) field tensor using

covariant derivatives of the Poincaré group.

Equation (643) is also a Bianchi identity in the theory of gravitation because

Gmn is derived from the antisymmetric part of the Riemann tensor, whose sym-

metric part can be contracted to the Einstein tensor.

Similarly, Eq. (643) can be developed into an inhomogeneous equation of the

unified field. First, raise indices in the Riemann tensor and field tensor:

Gnk ¼ gnrgksGrs; Rlnk
m ¼ gnrgksRl

mrs ð646Þ

From the equivalence of Gmn and R
ðAÞ
mn in Eq. (635), individual terms in the

identity (643) can be equated:

DkGmn ¼ Rlmv
k Al ð647aÞ

DnG
km ¼ Rlkm

n Al ð647bÞ

DmGnk ¼ Rlvk
m Al ð647cÞ

Consider the antisymmetric part of the Riemann tensor in Eqs. (647) by suitable

contraction. In Eq. (647c), for example, the contraction is l ¼ m. The result

reduces to the O(3) inhomogeneous field equation of electromagnetism in the

form

DmGnm ¼ Rsnm
s Am �

JnðvacÞ
e0

ð648Þ
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where the term

JnðvacÞ ¼ e0Rsnm
s Am ð649Þ

is the O(3) charge current density, which can be seen to exist in the vacuum as

argued earlier.

There are well known similarities between the Riemann curvature tensor

of general relativity and the field tensor in non-Abelian electrodynamics. The

Riemann tensor is

Rk
lmn ¼ qn
k

lm � qm
k
ln þ 
r

lm

k
rn � 
r

ln

k
rm ð650Þ

and is made up of a Ricci tensor and a Weyl conformal tensor. The following

contraction of indices

Rk
kmn ¼ qn
k

km � qm
k
kn þ 
r

km

k
rn � 
r

kn

k
rm ð651Þ

leads to an expression similar to the field tensor as argued. The holonomy [46] in

general relativity is

4Vm ¼ 1

2
R
m
rslVr4Ssl ð652Þ

which can be compared with the holonomy in gauge theory

4cA ¼ �ig4SmnGmcA ð653Þ

In both cases, the 4Smn factor is a hypersurface. This suggests that the Ricci

tensor is in general complex, and given by

Rmn ¼ RðSÞmn þ iRðAÞmn ð654Þ

where the real part is symmetric and the imaginary part is antisymmetric. Barrett

[50] has pointed out that O(3) gauge theory is non-Minkowskian in general, and

requires an extrapolation of twistor algebra to non-Minkowski spacetime,

requiring the presence of a Weyl tensor, complex spacetime, and curved twistor

space. In O(3) electrodynamics, therefore, Minkowski spacetime applies only

locally, and Minkowski vector spaces are tangent spaces of spacetime events.

The Weyl anti-self-dual spacetime is independent of the self-dual spacetime.

There is conformally curved, complex spacetime, as reflected in the complex

Ricci tensor discussed already. The Weyl tensor is not zero. A complex spacetime

[50] is defined by a four-dimensional complex manifold, M, with a holomorphic
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metric gab. A differential function defined on an open set of complex numbers is

holomorphic [50] if it satisfies the Cauchy–Riemann equations. With respect to a

holomorphic coordinate basis xm ¼ ðx0; x1; x2; x3Þ, the metric is a 4 4 matrix of

holomorphic functions of xm, and its determinant is nowhere vanishing. The Ricci

tensor becomes complex-valued as argued already. Self-consistently, it can be

checked that the determinant of the metric

gab ¼

0 �1 �1 �1

1 0 �1 1

1 1 0 �1

1 �1 1 0

2
664

3
775 ð655Þ

is nonzero, (i.e., �1). So the use of an antisymmetric Ricci tensor is justified

from first principles.

XII. BASIC ALGEBRA OF O(3) ELECTRODYNAMICS
AND TESTS OF SELF-CONSISTENCY

In this section, some elementary details of the complex circular basis algebra

generated by ((1),(2),(3)) are given. The basis vectors are

eð1Þ ¼ 1ffiffiffi
2
p ði� ijÞ; i ¼ 1ffiffiffi

2
p ðeð1Þ þ eð2ÞÞ

eð2Þ ¼ 1ffiffiffi
2
p ðiþ ijÞ; j ¼ 1ffiffiffi

2
p ðeð1Þ � eð2ÞÞ

eð3Þ ¼ k

ð656Þ

Within a phase factor and amplitude, e(1) ¼ e(2)	 is the vectorial part of the

complex description of right and left circularly polarized radiation. The basis

unit vectors e(1), e(2), and e(3) form the O(3) cyclic permutation relations:

eð1Þ  eð2Þ ¼ ieð3Þ	

eð2Þ  eð3Þ ¼ ieð1Þ	

eð3Þ  eð1Þ ¼ ieð2Þ	

ð657Þ

A closely similar complex circular basis has been described by Silver [112] for

three-dimensional space. This space forms the internal gauge space in O(3)

electrodynamics, as argued already. In the complex circular basis, the unit vector

dot product is

eð1Þ � eð2Þ ¼ eð2Þ � eð1Þ ¼ eð3Þ � eð3Þ ¼ 1

eð1Þ � eð1Þ ¼ eð2Þ � eð2Þ ¼ 0
ð658Þ
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as compared with the same concept in the Cartesian basis

i � i ¼ j � j ¼ k � k ¼ 1

i � j ¼ i � k ¼ j � k ¼ 0
ð659Þ

Vectors are defined as

A � Að1Þ þ Að2Þ þ Að3Þ

¼ Að2Þeð1Þ þ Að1Þeð2Þ þ Að3Þeð3Þ ð660Þ

where

Að1Þ ¼ 1ffiffiffi
2
p ðAX � iAYÞ ¼ Að2Þ	

Að3Þ ¼ AZ

ð661Þ

The dot product of two vectors is therefore

A �B ¼ Að1ÞBð2Þeð1Þ � eð2Þ þ Að2ÞBð1Þeð2Þ � eð1Þ þ Að3ÞBð3Þeð3Þ � eð3Þ

¼ Að1ÞBð2Þ þ Að2ÞBð1Þ þ Að3ÞBð3Þ ð662Þ

The del operator in the circular basis is defined by

rX ¼
q
qX
¼ 1ffiffiffi

2
p ðrð1Þ þ rð2ÞÞ; rð1Þ ¼ 1ffiffiffi

2
p ðrX � irYÞ

rY ¼
q
qY
¼ iffiffiffi

2
p ðrð1Þ � rð2ÞÞ; rð2Þ ¼ 1ffiffiffi

2
p ðrX þ irYÞ

rZ ¼
q
qZ
¼ rð3Þ; rð3Þ ¼ rZ

ð663Þ

and the divergence of a vector is therefore

r �A ¼ rð1ÞAð2Þ þ rð2ÞAð1Þ þ rð3ÞAð3Þ ð664Þ

and the gradient of a scalar is

rf ¼ rð1Þfeð2Þ þ rð2Þfeð1Þ þ rð3Þfeð3Þ ð665Þ

The curl operator in the complex circular basis is

r A ¼ �i

eð1Þ eð2Þ eð3Þ

rð1Þ rð2Þ rð3Þ
Að1Þ Að2Þ Að3Þ

�������
������� ¼

i j k

rX rY rZ

AX AY AZ

������
������ ð666Þ
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and the vector cross-product is

A B ¼ �i

eð1Þ eð2Þ eð3Þ

Að1Þ Að2Þ Að3Þ

Bð1Þ Bð2Þ Bð3Þ

�������
������� ¼

i j k

AX AY AZ

BX BY BZ

������
������ ð667Þ

It is helpful to exemplify the basis by calculating the vector cross-product in

detail and comparing it with the Cartesian counterpart. This procedure shows that

the ((1),(2),(3)) and Cartesian representations are equivalent when correctly

worked out.

The e(3) component can be developed as

� ieð3ÞðAð1ÞBð2Þ � Að2ÞBð1ÞÞ

¼ �i
1ffiffiffi
2
p ðAX þ iAYÞ

1ffiffiffi
2
p ðBX � iBYÞ �

1ffiffiffi
2
p ðAX � iAYÞ

1ffiffiffi
2
p ðBX þ iBYÞ

� �
¼ AXBY � AY BX ð668Þ

and is equivalent to the Cartesian component obtained from the well-known

expression

i j k

AX AY AZ

BX BY BZ

������
������ ¼ ðAXBY � AY BXÞkþ � � � ð669Þ

The other two components are evaluated by developing the sum

A B ¼ �i½eð1ÞðAð2ÞBð3Þ � Að3ÞBð2ÞÞ � eð2ÞðAð1ÞBð3Þ � Að3ÞBð1ÞÞ� þ � � �

¼ �i
1ffiffiffi
2
p ði� ijÞ 1ffiffiffi

2
p ðAX þ iAYÞBZ �

AZffiffiffi
2
p ðBX þ iBYÞ

� ��

� 1ffiffiffi
2
p ðiþ ijÞ 1ffiffiffi

2
p ðAX � iAYÞBZ �

AZffiffiffi
2
p ðBX � iBYÞ

�� �
þ � � �

¼ iðAY BZ � AZBYÞ � jðAXBZ � AZBXÞ þ � � � ð670Þ

and again we obtain a result equivalent to the Cartesian sum.

A conjugate product such as Að1Þ  Að2Þ is evaluated as

�i

eð1Þ eð2Þ eð3Þ

Að2Þ 0 0

0 Að1Þ 0

�������
������� ¼ �iAð0Þ2k ð671Þ
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and is the same as the Cartesian equivalent:

i j k

A
ð2Þ
X A

ð2Þ
Y 0

A
ð1Þ
X A

ð1Þ
Y 0

�������
������� ¼ �iAð0Þ2k ð672Þ

In the logic of the complex circular basis, unity is expressed as the product of two

complex conjugates, referred to hereinafter as complex unity

12 ¼ 1ð1Þ1ð2Þ ð673Þ

where

1ð1Þ ¼ 1ffiffiffi
2
p ð1� iÞ; 1ð2Þ ¼ 1ffiffiffi

2
p ð1þ iÞ ð674Þ

Therefore, developments such as the following are possible:

eð1Þ � eð2Þ ¼ 1ð2Þeð1Þ � 1ð1Þeð2Þ ¼ 1ð1Þ1ð2Þ ¼ 12 ¼ 1

Að1Þ �Að2Þ ¼ Að2Þeð1Þ �Að1Þ eð2Þ ¼ Að1ÞAð2Þ ¼ Að0Þ2
ð675Þ

Since the product 1(1)1(2) is always unity, it makes no difference to the dot

product of unit vectors or of conjugate vectors such as A(1) and A(2), but the dot

product of a vector A(1) and a unit vector e(2) is

Að1Þ � eð2Þ ¼ Að2Þ1ð1Þeð1Þ � eð2Þ ¼ 1

2
ðAX � iAYÞð1þ iÞ

¼ 1

2
ðAX � iAY þ iAX þ AYÞ ð676Þ

Similarly [42], the dot product of a complex circular Pauli matrix rð1Þ and a unit

vector e(2) is

rð1Þ � eð2Þ ¼ 1

2
ðsX � isY þ isX þ sYÞ ð677Þ

leading to

ðrð1Þ � eð2ÞÞðrð2Þ � eð1ÞÞ ¼ eð1Þ � eð2Þ þ irð3Þ � eð1Þ  eð2Þ ð678Þ

and the prediction of radiatively induced fermion resonance.
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As we have argued, the basis ((1),(2),(3)) defines an internal space in elec-

trodynamics, and was first applied as such by Barrett [50] in an SU(2) invariant

gauge theory. As a consequence of this hypothesis, we can write

Am ¼ Amð2Þeð1Þ þ Amð1Þeð2Þ þ Amð3Þeð3Þ ð679Þ

so Am is developed as a vector in the internal space. The object Amð1Þ;Amð2Þ; and

Amð3Þ are scalar coefficients in the internal space. The boldface character Am is

simultaneously a vector in the basis ((1),(2),(3)) and a 4-vector in spacetime. If

we consider to start with the received view of ordinary plane waves, the boldface

character in this case is a vector of three-dimensional space in the basis

((1),(2),(3)) and so is also a vector in the internal space of O(3) electrodynamics.

As we have argued, the phase factor eif on the O(3) level is made up of a line

integral, related to an area integral by a non-Abelian Stokes theorem. In order to

expand the horizon of the gauge structure of electrodynamics to the O(3) level,

an additional spacetime index must appear in the definition of the plane wave,

and the (1) and (2) indices must become indices of the internal space. This is

achieved by recognizing that

A1ð1Þ ¼ A
ð1Þ
X ¼ i

Að0Þffiffiffi
2
p e�if ¼ A1ð2Þ	

A2ð1Þ ¼ A
ð1Þ
Y ¼

Að0Þffiffiffi
2
p e�if ¼ A2ð2Þ	

A0ð1Þ ¼ A3ð1Þ ¼ A0ð2Þ ¼ A3ð2Þ ¼ 0

ð680Þ

These equations define two of the scalar coefficients of the complete 4-vector Am

Amð1Þ ¼ ð0;Að1ÞÞ
Amð2Þ ¼ ð0;Að2ÞÞ

ð681Þ

a deduction that follows from the fact that A(1) ¼ A(2)* are transverse and so can

have X and Y components only. The scalar coefficients Amð1Þ and Amð2Þ are light-

like invariants

Amð1ÞAð1Þm ¼ Amð2ÞAð2Þm ¼ 0 ð682Þ

of polar 4-vectors in spacetime. The third index (3) of the non-Abelian theory

must therefore be in the direction of propagation of radiation and must also be a

light-like invariant

Amð3ÞAð3Þm ¼ 0 ð683Þ

in the vacuum.
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One possible solution of Eq. (683) is

Amð3Þ ¼ ðcAð0Þ;Að3ÞÞ ð684Þ

where

cAð0Þ ¼ jAð3Þj ð685Þ

Such a solution is proportional directly to the wave 4-vector

kmð3Þ � ðck; jeð3ÞÞ ¼ gAmð3Þ ð686Þ

and to the photon energy momentum:

pmð3Þ ¼ �hgAmð3Þ ¼ �hkmð3Þ ð687Þ

in the vacuum. Therefore, the complete vector in the internal ((1),(2),(3)) space is

the light-like polar vector

Am ¼ ð0;Að2ÞÞeð1Þ þ ð0;Að1ÞÞeð2Þ þ ðcAð0Þ;Að3ÞÞeð3Þ ð688Þ

and has time-like, longitudinal, and transverse components, which are all

physical components in the vacuum. On the U(1) level, the time-like and longi-

tudinal components are combined in an admixture [46].

Similarly, the field tensor on the O(3) level is a vector in the internal space:

Gmn ¼ Gmnð2Þeð1Þ þ Gmnð1Þeð2Þ þ Gmnð3Þeð3Þ ð689Þ

and the coefficients GmnðiÞ are scalars in the internal space. They are also antisym-

metric tensors in spacetime. General gauge field theory for O(3) symmetry then

gives

Gmnð1Þ	 ¼ qmAnð1Þ	 � qnAmð1Þ	 � igAmð2Þ  Anð3Þ

Gmnð2Þ	 ¼ qmAnð2Þ	 � qnAmð2Þ	 � igAmð3Þ  Anð1Þ

Gmnð3Þ	 ¼ qmAnð3Þ	 � qnAmð3Þ	 � igAmð1Þ  Anð2Þ

ð690Þ

which is a relation between vectors in the internal space ((1),(2),(3)). The cross-

product notation is also a vector notation; for example, Amð2Þ  Anð3Þ is a cross-

product of a vector Amð2Þ with the vector Anð3Þ in the internal space. In forming the

cross-product, the Greek indices are not transmuted and the complex basis is

used, so that the terms quadratic in A become natural descriptions of the
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empirically observable conjugate product. As we have argued, the scalar

coefficient g ¼ k=Að0Þ is a scalar in both the internal gauge space and spacetime.

In field–matter interaction, g changes magnitude [44]. The field tensor on the

O(3) level is therefore a vector in the internal space and is nonlinear in the

potential. It contains the longitudinal field B(3) in the vacuum. The field tensor on

the U(1) level does not define B(3), which exists only on the O(3) level.

Equation (690) is a concise description that contains a considerable amount

of information about the O(3) theory of electromagnetism in the vacuum: infor-

mation that is available without assuming any form of field equation. It is im-

portant to give details of the correct algebraic form of reduction of Eq. (690).

Consider, for example, the equation

Gmnð1Þ	 ¼ qmAnð1Þ	 � qnAmð1Þ	 � igAmð2Þ  Anð3Þ ð691Þ

which consists of components such as

G12ð1Þ	 ¼ q1A2ð1Þ	 � q2A1ð1Þ	 � igeð1Þð2Þð3ÞA
1ð2ÞA2ð3Þ ð692Þ

where eð1Þð2Þð3Þ is the Levi–Civita symbol defined by

eð1Þð2Þð3Þ � 1 ¼ �eð1Þð2Þð3Þ ¼ � � � ð693Þ

Now take the vector potential as defined already with

qm ¼ 1

c

q
qt
;�r

� �
ð694Þ

then we obtain

G12ð1Þ	 ¼ q1A2ð1Þ	 � q2A1ð1Þ	 � igðA1ð2ÞA2ð3Þ � A1ð3ÞA2ð2ÞÞ
¼ 0 ð695Þ

This is a self-consistent result because there is no Z component of Gmnð1Þ	, which

is defined as transverse. Both the linear and nonlinear components are zero.

Consider next the element:

G13ð1Þ	 ¼ q1A3ð1Þ	 � q3A1ð1Þ	 � igeð1Þð2Þð3ÞA
1ð2ÞA3ð3Þ

¼ q1A3ð2Þ � q3A1ð2Þ � igðA1ð2ÞA3ð3Þ � A1ð3ÞA3ð2ÞÞ

¼ �ðq3 þ igA3ð3ÞÞA1ð2Þ ¼ �ðq3 þ ikÞA1ð2Þ ð696Þ
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where we have used

g ¼ k
Að0Þ

; A3ð3Þ ¼ A
ð3Þ
Z ¼ Að0Þ ð697Þ

There are two contributions to the field element G13(2), a magnetic component:

�q3A1ð2Þ ð697aÞ

and

�igA3ð3ÞA1ð2Þ ð697bÞ

In vector notation, Eq. (696) is a component of

2Bð1Þ � r  Að1Þ � igAð3Þ  Að1Þ

¼ ðr � igAð3ÞÞ  Að1Þ

¼ r  Að1Þ � i

Bð0Þ
Bð3Þ  Bð1Þ ð698Þ

Furthermore:

q3A1ð2Þ ¼ ikA1ð2Þ ð699Þ

and so it follows that

Bð1Þ ¼ r  Að1Þ ¼ � i

Bð0Þ
Bð3Þ  Bð1Þ ð700Þ

Similarly:

Bð2Þ ¼ r  Að2Þ ¼ � i

Bð0Þ
Bð2Þ  Bð3Þ ð701Þ

Therefore, the definition of the field tensor in O(3) electrodynamics gives the first

two components of the B cyclic theorem [47–62]

Bð3Þ  Bð1Þ ¼ iBð0ÞBð2Þ	

Bð2Þ  Bð3Þ ¼ iBð0ÞBð1Þ	
ð702Þ

together with the definition of B(1) and B(2) in terms of the curl of vector

potentials:

Bð1Þ ¼ r  Að1Þ

Bð2Þ ¼ r  Að2Þ
ð703Þ
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It is convenient to write this result as

HðvacÞ ¼ 1

m0

B�MðvacÞ ð704Þ

where H(vac) is the vacuum magnetic field strength and m0 is the vacuum

permeability. The object M(vac) does not exist on the U(1) level and can be

termed vacuum magnetization:

Mð1ÞðvacÞ ¼ � 1

im0 Bð0Þ
Bð3Þ  Bð1Þ ð705Þ

The objects M(1)(vac) and M(2)(vac) depend on the phaseless vacuum magnetic

field B(3) and so do not exist as concepts in U(1) electrodynamics. The B(3) field

itself is defined through

Gmnð3Þ	 ¼ qmAnð3Þ	 � qnAmð3Þ	 � igAmð1Þ  Anð2Þ ð706Þ

with (3) aligned in the Z axis. So, by definition, the only nonzero components are

G12ð3Þ	 ¼ �G21ð3Þ	 ¼ B
ð3Þ
Z ð707Þ

It follows that

B
ð3Þ
Z ¼ �igðA1ð1ÞA2ð2Þ � A1ð2ÞA2ð1ÞÞ ð708Þ

or

Bð3Þ ¼ Bð3Þ	 ¼ �igAð1Þ  Að2Þ ¼ � i

Bð0Þ
Bð1Þ  Bð2Þ ð709Þ

giving the third component of the B cyclic theorem Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	, and

the vacuum magnetization:

Mð3Þ	 ¼ � 1

im0 Bð0Þ
Bð1Þ  Bð2Þ ð710Þ

On the U(1) level, Að1Þ  Að2Þ is considered to be an operator [44] of nonlinear

optics with no third axis, but on the O(3) level it defines B(3) as argued.

Therefore, on the O(3) level, the magnetic part of the complete free field is

defined as a sum of a curl of a vector potential and a vacuum magnetization

inherent in the structure of the B cyclic theorem. On the U(1) level, there is

no B(3) field by hypothesis.
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The following field coefficients can be calculated:

G01ð2Þ ¼ ðq0 þ igA0ð3ÞÞA1ð2Þ ¼ �G10ð2Þ

G02ð2Þ ¼ ðq0 þ igA0ð3ÞÞA2ð2Þ ¼ �G20ð2Þ

G03ð2Þ ¼ 0

G13ð2Þ ¼ �ðq3 þ igA3ð3ÞÞA1ð2Þ ¼ �G31ð2Þ

G23ð2Þ ¼ �ðq3 þ igA3ð3ÞÞA2ð2Þ ¼ �G32ð2Þ

G12ð2Þ ¼ 0

ð711Þ

so that

G01ð1Þ ¼ G01ð2Þ	 ¼ ðq0 þ igA0ð3ÞÞA1ð1Þ

G12ð3Þ	 ¼ �G21ð3Þ	 ¼ �igðA1ð1ÞA2ð2Þ � A1ð2ÞA2ð1ÞÞ
ð712Þ

The three field tensors are therefore the transverse

Gmnð1Þ ¼ Gmnð2Þ	 ¼
0 �E1ð1Þ �E2ð1Þ 0

E1ð1Þ 0 0 cB2ð1Þ

E2ð1Þ 0 0 �cB1ð1Þ

0 �cB2ð1Þ cB1ð1Þ 0

2
664

3
775 ð713Þ

and the longitudinal:

Gmnð3Þ	 ¼ Gmnð3Þ ¼

0 0 0 0

0 0 �cB3ð3Þ 0

0 cB3ð3Þ 0 0

0 0 0 0

2
664

3
775 ð714Þ

On the O(3) level, there also exists a vacuum polarization, because the com-

plete electric field strength is given in the vacuum by

2Eð2Þ ¼ � qAð2Þ

qt
� igcAð0ÞAð2Þ

¼ � q
qt
þ igcAð0Þ

� �
Að2Þ ¼ 2Eð1Þ	 ð715Þ

Using g ¼ k=Að0Þ, then

Eð2Þ ¼ � qAð2Þ

qt
¼ �ickAð2Þ ¼ �ioAð2Þ ð716Þ
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and it is convenient to express this result as

Dð2ÞðvacÞ ¼ e0 Eð2Þ þ Pð2ÞðvacÞ ð717Þ

where D(2)(vac) is the electric displacement in vacuo, and where the vacuum

polarization is

Pð2ÞðvacÞ ¼ �ie0oAð2Þ ð718Þ

The vacuum polarization is well known to have an analog in quantum

electrodynamics [46], the photon self-energy. The latter has no classical analog

on the U(1) level, but one exists on the O(3) level, thus saving the correspon-

dence principle. The classical vacuum polarization on the O(3) level is trans-

verse and vanishes when o ¼ 0. It is pure transverse because, as follows, the

hypothetical E(3) field is zero on the O(3) level

G03ð3Þ	 ¼ q0A3ð3Þ	 � q3A0ð3Þ	 � igðA0ð1ÞA3ð2Þ � A3ð2ÞA0ð1ÞÞ
¼ 0 ð719Þ

giving

G03ð1Þ ¼ G03ð2Þ ¼ G03ð3Þ ¼ 0 ð720Þ

in the vacuum. In the presence of field–matter interaction, this result is no longer

true because of the Coulomb field, indicating polarization of matter.

In the presence of field–matter interaction [44]

HmnðiÞ	 ¼ e0FmnðiÞ	 �MmnðiÞ	 ð721Þ

where i ¼ 1; 2; 3. Here

FmnðiÞ	 � qmAnðiÞ � qnAmðiÞ

Mmnð1Þ � ie0g0Amð2Þ  Anð3Þ
ð722Þ

in cyclic permutation, with g0 � g empirically [44].

There are therefore obvious points of similarity between the O(3) theory of

electrodynamics and the Yang–Mills theory [44]. Both are based, as we have

argued, on an O(3) or SU(2) invariant Lagrangian. However, in O(3) electrody-

namics, the particle concomitant with the field has the topological charge

k=Að0Þ. In O(3) electrodynamics, the internal space and spacetime are not inde-

pendent spaces but form an extended Lie algebra [42]. In elementary particle
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theory, the internal space is usually an abstract isospin space [46]. The overall

structures of O(3) electrodynamics and of Yang–Mills theory are the same.

XIII. QUANTIZATION FROM THE B CYCLIC THEOREM

The B cyclic theorem is a Lorentz invariant construct in the vacuum and is a

relation between angular momentum generators [42]. As such, it can be used as

the starting point for a new type of quantization of electromagnetic radiation,

based on quantization of angular momentum operators. This method shares none

of the drawbacks of canonical quantization [46], and gives photon creation and

annihilation operators self-consistently. It is seen from the B cyclic theorem:

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	

Bð2Þ  Bð3Þ ¼ iBð0ÞBð1Þ	

Bð3Þ  Bð1Þ ¼ iBð0ÞBð2Þ	

ð723Þ

that if any one of the magnetic fields B(1), B(2), or B(3) is zero, this implies that the

other two will also be zero. The B cyclic theorem can be put in commutator form

by using the result that an axial vector is equivalent to a rank 2 antisymmetric

polar tensor

Bk ¼
1

2
eijk Bij ð724Þ

where eijk is the Levi–Civita symbol. The rank 2 tensor representation of the axial

vector Bk is mathematically equivalent but has the advantage of being accessible

to commutator (matrix) algebra, allowing B(1), B(2), and B(3) to be expressed as

infinitesimal rotation generators and as quantum-mechanical angular momentum

operators. These methods show that the photon has an elementary longitudinal

flux quantum, the photomagneton operator B(3), which is directly proportional to

its intrinsic spin angular momentum [42].

The unit vector components of the classical magnetic fields B(1), B(2), and

B(3) in vacuo are all axial vectors by definition, and it follows that their unit

vector components must also be axial in nature. In matrix form, they are, in

the Cartesian basis

i ¼
0 0 0

0 0 1

0 �1 0

2
4

3
5; j ¼

0 0 �1

0 0 0

1 0 0

2
4

3
5; k ¼

0 1 0

�1 0 0

0 0 0

2
4

3
5 ð725Þ
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and in the circular basis

eð1Þ ¼ 1ffiffiffi
2
p

0 0 i

0 0 1

�i �1 0

2
4

3
5; eð2Þ ¼ 1ffiffiffi

2
p

0 0 �i

0 0 1

i �1 0

2
4

3
5; eð3Þ ¼

0 1 0

�1 0 0

0 0 0

2
4

3
5

ð726Þ

The latter form a commutator Lie algebra, which is mathematically equivalent to

the vectorial Lie algebra:

½eð1Þ; eð2Þ� ¼ �ieð3Þ	 ð727Þ
� � �

Equations (723) and (727) therefore represent a closed, cyclically symmetric,

algebra in which all three space-like components are meaningful. The cyclical

commutator basis can be used to build a matrix representation of the three space-

like magnetic components of the electromagnetic wave in the vacuum

Bð1Þ ¼ iBð0Þeð1Þeif

Bð2Þ ¼ �iBð0Þeð2Þe�if

Bð3Þ ¼ Bð0Þeð3Þ

ð728Þ

from which emerges the commutative Lie algebra equivalent to the vectorial Lie

algebra

½Bð1Þ;Bð2Þ� ¼ �iBð0ÞBð3Þ	 ð729Þ
� � �

This algebra can be expressed in terms of the infinitesimal rotation generators of

the O(3) group [42] in three dimensional space:

Jð1Þ ¼ �ieð1Þ ¼ 1ffiffiffi
2
p

0 0 1

0 0 �i

1 i 0

2
64

3
75; Jð2Þ ¼ ieð2Þ ¼ 1ffiffiffi

2
p

0 0 1

0 0 i

�1 �i 0

2
64

3
75

Jð3Þ ¼ �ieð3Þ
0 �1 0

i 0 0

0 0 0

2
64

3
75 ð730Þ
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The magnetic field matrices and rotation generators are linked by

Bð1Þ ¼ �Bð0ÞJð1Þeif

Bð2Þ ¼ �Bð0ÞJð2Þe�if

Bð3Þ ¼ iBð0ÞJð3Þ

ð731Þ

so the commutative algebra of the magnetic fields (729) is part of the Lie algebra

of spacetime. The real and physical B(3) component is directly proportional to the

rotation generator J(3), which is a fundamental property of spacetime, in which

the matrices (730) become

Jð1Þ ¼ 1ffiffiffi
2
p

0 0 1 0

0 0 �i 0

�1 i 0 0

0 0 0 0

2
6664

3
7775; Jð2Þ ¼ 1ffiffiffi

2
p

0 0 1 0

0 0 i 0

�1 �i 0 0

0 0 0 0

2
6664

3
7775

Jð3Þ ¼

0 �i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775 ð732Þ

It follows that magnetic fields in the vacuum on the O(3) level are directly

proportional to rotation generators of the Poincaré group [42], and electric fields

are directly proportional to boost generators.

The rotation generators form a commutator algebra of the following type in

the circular basis:

½Jð1Þ; Jð2Þ� ¼ �Jð3Þ	 ð733Þ

which becomes

JX; JY½ � ¼ iJZ ð734Þ

in the Cartesian basis, and which is, within a factor �h, identical with the com-

mutator algebra of angular momentum operators in quantum mechanics. This

inference provides a simple route to the quantization of the magnetic fields,

giving the result

Bð1Þ ¼ �Bð0Þ
Jð1Þ

�h
eif; Bð2Þ ¼ �Bð0Þ

Jð2Þ

�h
e�if; Bð3Þ ¼ iBð0Þ

Jð3Þ

�h
ð735Þ
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where B(i) are now operators of quantum mechanics. Such a quantization scheme

can exist only on the O(3) level. In particular, the longitudinal B(3) is the

photomagneton operator, which is a stationary state in quantum mechanics.

These results can be generalized to electric fields using boost operators, KðiÞ,
which in the Poincaré group are also 4  4 matrices:

Eð1Þ ¼ Eð0ÞKð1Þeif

Eð2Þ ¼ Eð0ÞKð2Þe�if

iEð3Þ ¼ iEð0ÞKð3Þ

ð736Þ

Therefore, electric fields are boost generators, whereas magnetic fields are

rotation generators. It follows that the Lie algebra of electric and magnetic fields

in spacetime is isomorphic with that of the infinitesimal generators of the

Poincaré group [42]. The latter type of Lie algebra can be summarized as

follows:

½Jð1Þ; Jð2Þ� ¼ �Jð3Þ	� � �
½Kð1Þ;Kð2Þ� ¼ �ieð3Þ	� � �
½Kð1Þ; eð2Þ� ¼ �iKð3Þ	� � �
½Kð1Þ; Jð1Þ� ¼ 0 � � �

ð737Þ

This isomorphism is conclusive evidence for the existence of the longitudinal

B(3) in the vacuum.

There is also a relation between polar unit vectors, boost generators, and

electric fields. An electric field is a polar vector, and unlike the magnetic field,

cannot be put into matrix form as in Eq. (724). The cross-product of two polar

unit vectors is however an axial vector k, which, in the circular basis, is e(3). In

spacetime, the axial vector k becomes a 4  4 matrix related directly to the in-

finitesimal rotation generator J(3) of the Poincaré group. A rotation generator is

therefore the result of a classical commutation of two matrices that play the role

of polar vectors. These matrices are boost generators. In spacetime, it is there-

fore

KX;KY½ � ¼ �iJZ ð738Þ

and cyclic permutations. In the circular basis, this algebra becomes

½Kð1Þ;Kð2Þ� ¼ �ieð3Þ	 ð739Þ

Therefore, although polar vectors cannot be put into matrix form in three-

dimensional space, they correspond to 4  4 matrices in spacetime. In three-
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dimensional space, the electric component of the electromagnetic field are

oscillatory fields that can be written directly in terms of the unit vectors of the

circular basis:

Eð1Þ ¼ Eð0Þffiffiffi
2
p ði� i jÞeif; Eð2Þ ¼ Eð0Þffiffiffi

2
p ðiþ i jÞe�if ð740Þ

In spacetime, the equivalents are

Eð1Þ ¼ Eð0ÞKð1Þeif; Eð2Þ ¼ Eð0ÞKð2Þe�if ð741Þ

The phase f is a line integral on the O(3) level. The boost generators appearing in

Eq. (741) are written in a circular basis

Kð1Þ ¼ 1ffiffiffi
2
p

0 0 0 1

0 0 0 �i

0 0 0 0

�1 i 0 0

2
66664

3
77775; Kð2Þ ¼ 1ffiffiffi

2
p

0 0 0 1

0 0 0 i

0 0 0 0

�1 �i 0 0

2
66664

3
77775 ð742Þ

and correspond to the complex, polar, unit vectors e(1) and e(2) in Euclidean space.

It is not possible to form a real electric field from the cross-product of E(1)

and E(2), and this is self-consistent with the fact that on the O(3) level there is no

real E(3) [42].

The complete Lie algebra of the infinitesimal boost and rotation generators of

the Poincaré group can be written as we have seen either in a circular basis or in

a Cartesian basis. In matrix form, the generators are

KX ¼

0 0 0 1

0 0 0 0

0 0 0 0

�1 0 0 0

2
66664

3
77775; KY ¼

0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

2
66664

3
77775; KZ ¼

0 0 0 0

0 0 0 0

0 0 0 1

0 0 �1 0

2
66664

3
77775

JX ¼

0 0 0 0

0 0 �i 0

0 i 0 0

0 0 0 0

2
66664

3
77775; JY ¼

0 0 i 0

0 0 0 0

�i 0 0 0

0 0 0 0

2
66664

3
77775; JZ ¼

0 �i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

2
66664

3
77775

ð743Þ
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The relation between fields and generators in spacetime can be summarized as

Bð1Þ ¼ �Bð0ÞJð1Þeif ¼ iBð0Þeð1Þeif

Bð2Þ ¼ �Bð0ÞJð2Þe�if ¼ �iBð0Þeð2Þe�if

Bð3Þ ¼ iBð0ÞJð3Þ ¼ Bð0Þeð3Þ

Eð1Þ ¼ Eð0ÞKð1Þeif

Eð2Þ ¼ Eð0ÞKð2Þe�if

iEð3Þ ¼ iEð0ÞKð3Þ

ð744Þ

leading to the Lie algebra:

½Bð1Þ;Bð2Þ� ¼ iBð0ÞBð3Þ	� � �

½Eð1Þ;Eð2Þ� ¼ iEð0Þ2eð3Þ	� � �

½Eð1Þ;Bð2Þ� ¼ iBð0ÞðiEð3ÞÞ� � �

½Eð1Þ;Bð1Þ� ¼ 0 � � �

ð745Þ

where we have used the notation

ieð1Þ ¼ Jð1Þ; �ieð2Þ ¼ Jð2Þ; ieð3Þ ¼ Jð3Þ

ieð2Þ ¼ Jð2Þ; �ieð1Þ ¼ Jð1Þ; ieð3Þ ¼ �Jð3Þ
ð746Þ

This type of Lie algebra occurs on the O(3) level, but not on the U(1) level. Since

iE(3) is purely imaginary, it has no physical meaning.

Therefore, the Lie algebra of the magnetic and electric components of the

plane waves and spin fields in free space is isomorphic with that of the infini-

tesimal boost and rotation generators of the Poincaré group in spacetime. Ex-

perimental evidence (presented in Ref. 3 and in this review) suggests that B(3)

is real and physical and the theory of electromagnetism in the vacuum is rela-

tivistically rigorous if and only if the longitudinal fields B(3) (physical) and iE(3)

(unphysical) are accounted for through the appropriate algebra. If B(3) and iE(3)

are set to zero, as in the received view [U(1) level], then the isomorphism is lost,

and electromagnetism becomes incompatible with relativity. If B(3) were zero,

the rotation generator J(3) would be zero, which is incorrect. Similarly, if iE(3)

were zero, the boost generator Kð3Þ would be incorrectly zero.

In units of �h, the eigenvalues of the massless photon are �1 and þ1, and

those of the photon with mass are �1, 0, and þ1. In three-dimensional space,
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the latter are obtained from relations such as:

Jð3Þeð1Þ ¼ þ1eð1Þ

Jð3Þeð2Þ ¼ �1eð2Þ

Jð3Þeð3Þ ¼ 0eð3Þ

ð747Þ

where J(3) is the rotation generator:

Jð3Þ ¼ ieð3Þ ¼
0 �i 0

i 0 0

0 0 0

2
4

3
5 ð478Þ

There is no paradox [112] in the use of e(3) as an operator as well as a unit vector.

In the same sense [112], there is no paradox in the use of the scalar spherical

harmonics as operators. The rotation operators in space are first-rank T operators,

which are irreducible tensor operators, and under rotations, transform into linear

combinations of each other. The T operators are directly proportional to the scalar

spherical harmonic operators. The rotation operators, J, of the full rotation group

are related to the T operators as follows

T1
�1 ¼ iJð1Þ; T1

1 ¼ iJð2Þ; T1
0 ¼ iJð3Þ ð749Þ

and to the scalar spherical harmonic operators by

Y1
�1 ¼

i

r

3

4p

� �1=2

Jð1Þ; Y1
1 ¼

i

r

3

4p

� �1=2

Jð2Þ; Y1
0 ¼

i

r

3

4p

� �1=2

Jð3Þ

ð750Þ

This implies that the fields B(1), B(2), and B(3) are also operators of the full

rotation group, and are therefore irreducible representations of the full rotation

group. Specifically

Bð1Þ ¼ Bð0Þr
4p
3

� �1=2

Y1
�1eif

Bð2Þ ¼ Bð0Þr
4p
3

� �1=2

Y1
1 e�if

Bð3Þ ¼ Bð0Þr
2p
3

� �1=2

Y1
0

ð751Þ
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which shows that Bð3Þ ¼ ? 0 violates the fundamentals of group theory. Thus

B(1), B(2), and B(3) are all nonzero components of the same rank 1 scalar spherical

harmonic Y1
M;M ¼ �1; 0; 1. Furthermore, since the operators J(1), J(2), and J(3)

are components in a circular basis of the spin, or intrinsic, angular momentum of

the vector field representing the electromagnetic field, the fields B(1), B(2), and

B(3) are themselves components of spin angular momentum. It is also clear that

J(1) is a lowering (annihilation) operator

Jð1Þeð2Þ ¼ þ1eð3Þ; Jð1Þeð3Þ ¼ �1eð1Þ; Jð1Þeð1Þ ¼ 0eð2Þ ð752Þ

and that J(2) is a raising (creation) operator:

Jð2Þeð2Þ ¼ 0eð1Þ; Jð2Þeð3Þ ¼ �1eð2Þ; Jð2Þeð1Þ ¼ þ1eð3Þ ð753Þ

The total angular momentum J 2 is also an eigenoperator, for example:

J2eð3Þ ¼ lðlþ 1Þeð3Þ; l ¼ 1 ð754Þ

The operator J(3) is therefore also an intrinsic spin, and can be identified in this

novel quantization method based on the B cyclic theorem with the intrinsic spin

of a photon with mass, with eigenvalues �1, 0, and þ1.

For a classical vector field, its intrinsic (spin) angular momentum is identifi-

able with its transformation properties [112] under rotations, and within a factor

�h, the rotation operators are spin angular momentum operators of the spin one

boson. Recognition of a nonzero B(3) is therefore compatible with the eigenva-

lues of both the massive and massless bosons. The vector spherical harmonics

[112] are specific vector fields that are eigenvalues of j2 and of jZ where j is the

operator for vector fields of infinitesimal rotations about axis (3). They have de-

finite total angular momentum and occur in sets of dimension ð2jþ 1Þ that span

in standard form the D representations of the full rotation group, and are there-

fore irreducible tensors of rank j. Defining the total angular momentum as the

sum of the ‘‘orbital’’ angular momentum I and intrinsic (spin) angular momen-

tum J, we have

j ¼ I þ J ð755Þ

and the vector spherical harmonics are compound irreducible tensor operators

[112]:

YL
Ml1 � Y1 � l

� �L
M

ð756Þ

They are formed from the scalar spherical harmonics Yl
M , which form a complete

set for scalar functions, and the e(i) operators, which form a complete set for any
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vector in three-dimensional space. Therefore, the vector spherical harmonics

form a complete set for the expansion of any arbitrary classical vector field:

A ¼ AXiþ AY jþ AZk ð757Þ

in a Cartesian basis. For this vector, the IZ operates on the AX, AY, AZ and JZ

operates on i, j and k. Thus, IZ operates on the spatial part of the field and JZ, on

the vector part.

Therefore the operator for infinitesimal rotations about the Z axis contains

two ‘‘angular momentum’’ operators, I and J, analogous with orbital and spin

angular momentum in the quantum theory of atoms and molecules. The infini-

tesimal rotation is therefore formally a coupling of a set of spatial fields trans-

forming according to D(1) with a set of three vector fields [e(1), e(2), e(3)],

transforming according to D(1). Equation (756) is an expression of this coupling,

or combining, of entities in two different spaces to give a total angular momen-

tum. It follows, from these considerations, that the vector spherical harmonics

are defined by

Y L
Ml1 ¼

X
mn

l1mnjl1LMh iY l
m em ð758Þ

where l1mnjl1LMh i are Clebsch–Gordan, or coupling, coefficients [112]. For

photons regarded as bosons of unit spin, it is possible to multiply Eq. (758) by

110Mj11LMh i and to sum over L [112]. Using the orthogonality condition

X
j

j1m01 j2m� m02j j1 j2 jm
� �

j1 j2 jmj j1m1 j2m� m2h i ¼ dm1m0
1

ð759Þ

it is found that

Y1
0 ðy;fÞeM ¼

Xlþ1

L¼ l�1j j
l10Mjl1LMh iYL

Ml1 ð760Þ

which is an expression for the unit vectors eM in terms of sums over vector

spherical harmonics, that is, of irreducible compound tensors, representations of

the full rotation group.

On the U(1) level, the transverse components of eM are physical but the long-

itudinal component corresponding to M ¼ 0 is unphysical. This asserts two

states of transverse polarization in the vacuum: left and right circular. However,

this assertion amounts to e0 � eð3Þ ¼ ?0, meaning the incorrect disappearance

of some vector spherical harmonics that are nonzero from fundamental group

theory because some irreducible representations are incorrectly set to zero.
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This point can be emphasized by expanding B(3) in terms of Wigner 3-j symbols

[112], which yields results such as

Bð3Þ ¼ Bð0Þeð3Þ ¼ 2Bð0Þ
Y1

001

Y1
0

¼ Bð0Þffiffiffi
3
p

ffiffiffi
2
p

Y2
001 � Y0

011

Y1
0

ð761Þ

showing that B(3) is nonzero and proportional to the nonzero vector spherical

harmonic Y1
001 on a fundamental level. Therefore, the fundamentals of group

theory are obeyed on the O(3) level, but not on the U(1) level.

All three of e(1), e(2), e(3) can be expressed in terms of vector spherical har-

monics. Thus, in addition to the nonlinear B cyclic theorem, the following linear

relations occur

Bð3Þ ¼ Bð0Þeð3Þ ¼
ffiffiffi
2
p

2
aBð0Þðeð1Þ þ eð2ÞÞ þ Bð0Þb

¼ �
ffiffiffi
2
p

2
cBð0Þðeð1Þ � eð2ÞÞ þ Bð0Þd ð762Þ

where the coefficients are defined by the following combination of scalar and

vector spherical harmonics:

a ¼ 2ffiffiffi
2
p Y1

0

Y1
1 � Y1

�1

� �
; c ¼ � 2ffiffiffi

2
p Y1

0

Y1
1 þ Y1

�1

� �

b ¼
ffiffiffi
2
p Y1

111 þ Y1
�111

Y1
1 � Y1

�1

� �
; d ¼

ffiffiffi
2
p Y1

111 � Y1
�111

Y1
1 þ Y1

�1

� � ð763Þ

On the O(3) level, therefore, B(3) is nonzero because B(1) and B(2) are nonzero.

On the U(1) level, the plane wave is subjected to a multipole expansion in

terms of the vector spherical harmonics, in which only two physically signifi-

cant values of M in Eq. (761) are assumed to exist, corresponding to M ¼ þ1

and �1, which translates into our notation as follows:

e1 ¼ �eð2Þ; e�1 ¼ eð1Þ; e0 ¼ eð3Þ ð764Þ

On the O(3) level, the case M ¼ 0 is also considered to be physically meaningful.

In consequence, there is an additional, purely real, 2L- pole component of the

electromagnetic plane wave in vacuo corresponding to B(3). The vector spherical

harmonics YL
mL1 with 1 ¼ L are no longer transverse fields, and the vector e(3),

which is longitudinal, can also be expressed in terms of the L ¼ 1, M ¼ 0 vector

spherical harmonics as in Eq. (761). The longitudinal B(3), according to Eq.

(761), can be expanded for all integer 1 of that equation in terms of vector
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spherical harmonics. Each value of 1 for M ¼ 0 in YL
0l1 defines a different

nonzero component of B(3). Therefore the L ¼ 1 components in the expansion of

B(3) are dipolar fields.

As an example of these methods, consider the B cyclic theorem for multipole

radiation, which can be developed for the multipole expansion of plane-wave

radiation to show that the B(3) field is irrotational, divergentless, and fundamen-

tal for each multipole component. The magnetic components of the plane wave

are defined, using Silver’s notation [112] as

B1 ¼ Bð0Þeife1

B�1 ¼ Bð0Þe�ife�1

B0 ¼ Bð0Þe0

ð765Þ

where the basis vectors in Silver’s spherical representation are related by

e�1  e1 ¼ �ie0 ð766Þ

in cyclic permutation. The phase factor on the O(3) is a line integral, as argued in

this review and elsewhere [44]. The B cyclic theorem in this notation is therefore

B�1  B1 ¼ �iBð0ÞB0 ð767Þ

In order to develop Eq. (767) for multipole radiation, we use the following

expansions [112]:

eikZ ¼
X

l

ilð2lþ 1Þ jlðkZÞPlðcosyÞ

eM ¼
1

Y1
0

Xlþ1

L¼ l�1j j
l10Mjl1LMh iYL

Ml1

ð768Þ

where l is the lth multipole moment, jl the lth modified Bessel function, and Pl is

the lth Legendre polynomial. The basis vector em ðM ¼ �1; 0;þ1Þ is expanded

in terms of the Clebsch–Gordan coefficients hl10Mjl1LMi and the vector spheri-

cal harmonics YL
Ml1, and normalized with the scalar spherical harmonic Y1

0 .

In deriving Eq. (767), we have used on the left-hand side the conjugate pro-

duct of phase factors:

eife�if ¼ 1 ð769Þ

Using Eqs. (768a) and (769), it is seen that the product is unity if we sum over all

multipole components with 1!1 in Eq. (768). In all other cases, the B cyclic

theorem is

B�1  B1 ¼ �ixBð0ÞB0 ð770Þ
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where x is different from unity. It is given as follows for the first few multipoles:

x ¼ 9j2
1P2

1; for l ¼ 1

¼ 25j2
2P2

2 for l ¼ 2

¼ 49j2
3P2

3 for l ¼ 3

ð771Þ

In this notation

PlðcosyÞ ¼ ð2pð2lþ 1ÞÞ1=2
Y1

0 ðyÞ

jlðkrÞ ¼ � r

k

� �l 1

r

d

dr

� �
j0ðkrÞ

ð772Þ

It is important to note that B0 in Eq. (770) is the same as B0 in Eq. (767):

phaseless, irrotational, and divergentless. The factor x arises purely from the

truncation of the infinite series (768a) in individual multipole components. As

discussed by Silver [112], the em vectors are polarization vectors for the

electromagnetic wave, but are also spin angular momentum eigenfunctions.

Tautologically, therefore, Eq. (767), the B cyclic theorem, is a spin angular

momentum equation for the photon, with M ¼ �1; 0; 1. The photon wave

function, therefore, has components eikZe1; e�ikZe�1, and e0. The observables in

this theory are therefore energy and B0. The complete vector fields B1,B�1,B0 are

described in terms of the vector spherical harmonics, and the B cyclic theorem

indicates the existence of an intrinsic magnetic field B0, which is described by the

transformation of the frame under rotation. As is well known in classical angular

momentum theory, only the B0 component remains sharply defined under

rotation. The components B1 and B�1 are defined only within an arbitrary phase

factor. Within �h, this is the quantum theory of angular momentum [112].

Since B(3) is time-independent, it obeys

Bð3Þ ¼ �r�B ð773Þ

where �B is determined by the Laplace equation:

r2�B ¼ 0 ð774Þ

Analogously, a Coulomb field can be expressed as the gradient of a scalar

potential that obeys the Laplace equation in a source-free region such as the

vacuum in conventional electrostatics. To find the general form of B(3) in a

multipole expansion, we therefore solve the Laplace equation for �B, and

evaluate the gradient of this solution

�B ¼
UðrÞ

r
rðyÞQð�Þ ð775Þ
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in spherical polar coordinates. The general solution (775) can be written as

�B ¼ ðArl þ Br�2ÞYlmðy;fÞ ð776Þ

where Ylmðy;fÞ are the spherical harmonics and A and B are constants. Here, m

and l are integers, with l running from �m to m. The solution of Laplace’s

equation is therefore obtained as a product of radial and angular functions. The

latter are orthonormal functions, the spherical or tesseral harmonics, which form

a complete set on the surface of the unit sphere for the two indices l and m. The

integer l defines the order of the multipole component; l ¼ 1 is a dipole, l ¼ 2 is a

quadrupole, l ¼ 3 is an octopole, and l ¼ 4 is a hexadecapole.

The most general form of B(3) from the Laplace equation is therefore

Bð3Þ ¼ �rðArl þ Br�2ÞYlmðy;fÞ ð777Þ

This is the phaseless magnetic field of multipole radiation on the O(3) level. The

solution (777) reduces to the simple

Bð3Þ ¼ Bð0Þeð3Þ ¼ Bð0Þk ð778Þ

when l ¼ 1, m ¼ 0, r ¼ Z, y ¼ 0, A ¼ �Bð0Þ; B ¼ 0, and r ¼ ðq=qZÞk. More

generally, there exist other irrotational forms of B(3):

1: Bð3Þ for dipole radiation: l ¼ 1; m ¼ �1; 0; 1

2: Bð3Þ for quadrupole radiation: l ¼ 2; m ¼ �2; . . . ; 2

3: Bð3Þ for octopole radiation: l ¼ 3; m ¼ �3; . . . ; 3

ð779Þ

The B(3) fields for n-pole fields are irrotational for all n on the O(3) level.

As argued, infinitesimal field generators appear as a by-product of this novel

quantization scheme, so that B(3) is rigorously nonzero from the symmetry of

the Poincaré group and the B cyclic theorem is an invariant of the classical field.

The basics of infinitesimal field generators on the classical level are to be found

in the theory of relativistic spin angular momentum [42,46] and relies on the

Pauli–Lubanski pseudo-4-vector:

Wl ¼ � 1

2
elmnrpm Jnr ð780Þ

where elmnr (with e0123 ¼ 1) is the antisymmetric unit 4-vector. The antisym-

metric matrix of generators Jnr is given by

Jnr ¼

0 K1 K2 K3

�K1 0 �J3 J2

�K2 J3 0 �J1

�K3 �J2 J1 0

2
664

3
775 ð781Þ
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where every element is an element of spin angular momentum in four dimen-

sions. The energy momentum polar 4-vector is defined by

pm ¼ ðp0; pÞ ¼ En

c
; p

� �
ð782Þ

The infinitesimal generators can be represented as matrices or as combinations of

differential operators [46]. The Pauli–Lubanski operator then becomes a product

of the Jnr and pm operators. Barut [113] shows that the Lie algebra of the Wm

operators is

½Wm;Wn� ¼ �iemnsrpsWr ð783Þ

which is a four-dimensional commutator relation. The theory is relativistically

covariant and, of course, compatible with special relativity. Equation (783) gives

the Lie algebra [42] of intrinsic spin angular momentum because rotation

generators are angular momentum operators within a factor �h, and this allows

relativistic quantization to be considered. Similarly, translation generators are

energy momentum operators within a factor �h. This development leads to

Wigner’s famous result that every particle is characterized by two Casimir

invariants of the Poincaré group, the mass and spin invariants [46].

Our basic ansatz is to assume that this theory applies to the vacuum electro-

magnetic field, considered as a physical entity of spacetime in the theory of spe-

cial relativity. The intrinsic spin of the classical electromagnetic field is the

magnetic flux density B(3). Infinitesimal generators of rotation correspond with

those of intrinsic magnetic flux density in the vacuum. Boost generators corre-

spond with intrinsic electric field strength. Translation generators correspond

with the intrinsic, fully covariant, field potential. Thus, the symbols are trans-

muted as follows:

J ! B; K ! E; P! A ð784Þ

In Cartesian notation, the Pauli–Lubanski vector of particle theory becomes a

4-vector of the classical electromagnetic field

Wl ¼ � 1

2
elmnrAmFnr ð785Þ

and the Lie algebra (783), a Lie algebra of the field.

If it is assumed that the electromagnetic field propagates at c in the vacuum,

then we must consider the Lie algebra (783) in a light-like condition. The latter

is satisfied by a choice of

Am ¼ ðA0;AZÞ
A0 ¼ AZ

ð786Þ
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The basic ansatz is that there is a field vector analogous to the Pauli–Lubanski

vector of particle physics, a field vector defined by

Wl ¼ ~FlmAm ð787Þ

where ~Flm is the dual of the antisymmetric field tensor. This vector has the

following components:

W0 ¼ �B1A1 � B2A2 � B3A3

W1 ¼ B1A0 þ E3A2 � E2A3

W2 ¼ B2A0 � E3A1 þ E1A3

W3 ¼ B3A1 þ E2A1 � E1A2

ð788Þ

If it assumed that for the transverse components

B ¼ r A ð789Þ

that A and B are plane waves

A ¼ Að0Þffiffiffi
2
p ðiiþ jÞeif

B ¼ Bð0Þffiffiffi
2
p ðiiþ jÞeif

ð790Þ

and that the longitudinal E(3) is zero, then Eq. (788) reduces to

W0 ¼ AZBZ

WX ¼ A0 BX þ AZEY

WY ¼ A0 BY � AZEX

WZ ¼ A0 BZ

ð791Þ

These assumptions mean that

Am ¼ ðA0; 0; 0;A3Þ; A0 ¼ A3 ð792Þ

can be used as an ansatz. Conversely, the use of this definition means that the

transverse components are plane waves, and for the transverse components,

B ¼ r ¼ A.

In the Coulomb gauge, the vector Wm vanishes, meaning that there is no cor-

respondence between the particle and field theory for the Coulomb gauge, or the
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received view of transversality in the vacuum. The final result is therefore

Wm ¼ A0ðBZ ; 0; 0;BZÞ ð793Þ

which is compatible with the Lie algebra of a light-like particle. This corresponds

in the particle interpretation to the light-like translation generator:

pm ¼ ðp0; pZÞ; p0 ¼ pZ ð794Þ

The Pauli–Lubanski pseudovector of the field in this condition is

Wm ¼ ðAZBZ ; AZEY þ A0BX ; �AZEX þ A0BY ; A0BZÞ
¼ A0ðBZ ; EY þ BX; �EX þ BY ; BZÞ ð795Þ

and the Lie algebra (783) becomes, in c ¼ 1 units:

½BX þ EY ; BY � EX� ¼ iðBZ � BZÞ
½BY � EX ; BZ � ¼ iðBX þ EYÞ
½BZ ; BX þ EY � ¼ iðBY � EXÞ

ð796Þ

which has E(2) symmetry. In the particle interpretation, Eqs. (795) and (796)

correspond to

Wm ¼ ðpZJZ ; pZKY þ p0JX ; �pZKX þ p0JY ; p0JZÞ ð797Þ

and

½JX þ KY ; JY � KX� ¼ iðJZ � JZÞ
½JY � KX; JZ � ¼ iðJX þ KYÞ
½JZ ; JX � KY � ¼ iðJY � KXÞ

ð798Þ

In the rest frame of a photon with mass, the field and particle Pauli–Lubanski

vectors are respectively

Wm ¼ ð0; A0BX ; A0BY ; A0BZÞ ð799Þ

and

Wm ¼ ð0; p0JX ; p0JY ; p0JZÞ ð800Þ

The rest frame Lie algebra for field and particle is respectively (normalized

Bð0Þ ¼ 1 units):

BX ;BY½ � ¼ iBZ � � � ð801Þ
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and

JX; JY½ � ¼ iJZ � � � ð802Þ

The E(2) field algebra is compatible with the vacuum Maxwell equations written

for eigenvalues of our novel infinitesimal field operators. This can be demon-

strated as follows:

BY ¼ EX ; BX ¼ �EY ð803Þ

It is assumed that the eigenfunction ðwÞ operated on by these infinitesimal field

generators is such that the same relation (803) holds between eigenvalues of the

field. In order for this to be true, the eigenfunction must be the de Broglie wave

function, specifically, the phase of the classical electromagnetic field. On the

O(3) level, this is a line integral, as we have seen.

The relation (803) interpreted as one between eigenvalues is compatible with

the plane-wave solutions

Eð1Þ ¼ Eð2Þ	 ¼ Eð0Þffiffiffi
2
p ði� i jÞeif

Bð1Þ ¼ Bð2Þ	 ¼ Bð0Þffiffiffi
2
p ðiiþ jÞeif

ð804Þ

which are special cases of the O(3) invariant electrodynamics defined by

eð1Þ ¼ eð2Þ	 ¼ 1ffiffiffi
2
p ði� ijÞ; eð3Þ ¼ k ð805Þ

It follows that the same analysis can be applied to the particle interpretation,

giving

qmJmn ¼ qm~Jmn ¼ 0 ð806Þ

in the vacuum. This is a possible conservation equation (relation between spins)

that is compatible with the E(2) symmetry of the little group of the Poincaré

group. This is the little group for a massless particle. On the U(1) level, therefore,

it is concluded that the vacuum Maxwell equations for the field correspond with

Eq. (806) for the particle, an equation that asserts that the spin angular

momentum matrix is divergentless. In vector notation, we obtain from Eqs.

(803)–(806) the familiar U(1) equations

r �B ¼ 0; r �E ¼ 0

r Eþ qB

qt
¼ 0; r B� 1

c2

qE

qt
¼ 0

ð807Þ
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and the less familiar relation between eigenvalues of spin angular momentum in

four dimensions:

r � J ¼ 0; r �K ¼ 0

r J þ qK

qt
¼ 0; r K � qJ

qt
¼ 0

ð808Þ

On the O(3) level, particular solutions of the E(2) Lie algebra (796) give a total

of six commutator relations. Three of these form the B cyclic theorem

ðBð0Þ ¼ 1 unitsÞ:

BX; BY½ � ¼ iBZ

BY ; BZ½ � ¼ iBX

BZ ; BX½ � ¼ iBY

ð809Þ

and the other three are

EX; EY½ � ¼ �iBZ

BZ ; EX½ � ¼ iEY

EY ; BZ½ � ¼ iEX

ð810Þ

In the particle interpretation, these are part of the Lie algebra of rotation and

boost generators of the Poincaré group:

JX ; JY½ � ¼ iJZ KX; KY½ � ¼ �iJZ

JY ; JZ½ � ¼ iJX JZ ; KX½ � ¼ iKY

JZ ; JX½ � ¼ iJY KY ; JZ½ � ¼ iKX

ð811Þ

From these relations, we can obtain

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	

Bð2Þ  Bð3Þ ¼ iBð0ÞBð1Þ	

Bð3Þ  Bð1Þ ¼ iBð0ÞBð2Þ	

ð812Þ

Eð1Þ  Eð2Þ ¼ ic2Bð0ÞBð3Þ	

Bð3Þ  Eð1Þ ¼ icBð0ÞEð2Þ	

Bð3Þ  Eð2Þ ¼ �icBð0ÞEð1Þ	

ð813Þ
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where B(3) ¼ B(0)e(3). Similarly, in the particle interpretation, and switching from

rotation generators to spin angular momentum, we obtain:

Jð1Þ  Jð2Þ ¼ i�hJð3Þ	

Jð2Þ  Jð3Þ ¼ i�hJð1Þ	

Jð3Þ  Jð1Þ ¼ i�hJð2Þ	

ð814Þ

where �h is the quantum of spin angular momentum.

In the rest frame of a photon or particle with mass, we obtain, for field and

particle, respectively, Eqs. (812) and (813); that is, there are no boost genera-

tors.

From this analysis, it is concluded that the B(3) component is identically non-

zero, otherwise all the field components vanish in the B cyclic theorem (812)

and Lie algebra (809). If we assume Eq. (803) and at the same time assume

that B(3) is zero, then the Pauli–Lubanski pseudo-4-vector vanishes for all A0.

Similarly, in the particle interpretation, if we assume the equivalent of Eq. (803)

and assume that J(3) is zero, the Pauli–Lubanski vector Wm vanishes. This is

contrary to the definition of the helicity of the photon. Therefore, for finite field

helicity, we need a finite B(3).

The precise correspondence between field and photon interpretation devel-

oped here indicates that E(2) symmetry does not imply that B(3) is zero, any

more than it implies that J(3) ¼ 0. The assertion B(3) ¼ 0 is counterindicated

by a range of data reviewed here and in Ref. 44, and the B cyclic theorem is

Lorentz-covariant, as it is part of a Lorentz-covariant Lie algebra. If we assume

the particular solutions (809) and (810) and use in it the particular solution

(803), we obtain the cyclics (809) from the three cyclics Eq. (810); thus we ob-

tain

BY ; �BX½ � ¼ iBZ

BZ ; BY½ � ¼ �iBX

BZ ; �BX½ � ¼ �iBY

ð815Þ

This is also the relation obtained in the hypothetical rest frame. Therefore, the B

cyclic theorem is Lorentz-invariant in the sense that it is the same in the rest

frame and in the light-like condition. This result can be checked by applying the

Lorentz transformation rules for magnetic fields term by term [44]. The

equivalent of the B cyclic theorem in the particle interpretation is a Lorentz-

invariant construct for spin angular momentum:

Jð1Þ  Jð2Þ ¼ i�hJð3Þ
	

ð816Þ
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It is concluded that the B(3) component in the field interpretation is nonzero in the

light-like condition and in the rest frame. The B cyclic theorem is a Lorentz-

invariant, and the product Bð1Þ  Bð2Þ is an experimental observable [44]. In this

representation, B(3) is a phaseless and fundamental field spin, an intrinsic

property of the field in the same way that J(3) is an intrinsic property of the

photon. It is incorrect to infer from the Lie algebra (796) that B(3) must be zero

for plane waves. For the latter, we have the particular choice (803) and the

algebra (796) reduces to

iðBZ � BZÞ ¼ 0 ð817Þ

which does not indicate that BZ is zero any more than the equivalent particle

interpretation indicates that JZ is zero.

In order to translate a Cartesian commutator relation such as

BX ;BY½ � ¼ iBð0ÞBZ ð818Þ

to a ((1),(2),(3)) basis vector equation such as

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	 ð819Þ

consider firstly the usual vector relation in the Cartesian frame:

i j ¼ k ð820Þ

The unit vector i, for example, is defined by

i ¼ uXi ð821Þ

where ux is a rotation generator, in general a matrix component [46]. Therefore

uX ¼ iðJXÞYZ ð822Þ

The cross-product j therefore becomes a commutator of matrices

JX; JY½ � ¼ iJZ ð823Þ

that is

1

i

0 0 0

0 0 1

0 �1 0

2
64

3
75 1

i

0 0 �1

0 0 0

1 0 0

2
64

3
75� 1

i

0 0 �1

0 0 0

1 0 0

2
64

3
75 1

i

0 0 0

0 0 1

0 �1 0

2
64

3
75

¼
0 1 0

�1 0 0

0 0 0

2
64

3
75 ð824Þ
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This can be extended straightforwardly to angular momentum operators

and infinitesimal magnetic field generators. Therefore, a commutator such as

Eq. (818) is equivalent to a vector cross-product. If we write B(0) as the scalar

magnitude of magnetic flux density, the commutator (818) becomes the vector

cross-product

ðBð0ÞiÞ  ðBð0ÞÞ j ¼ Bð0ÞðBð0ÞkÞ ð825Þ

which can be written conveniently as

ðBXBYÞ1=2i ðBXBYÞ1=2j ¼ iBð0ÞBZk ð826Þ

However, the Cartesian basis can be extended to the circular basis using relations

between unit vectors developed in this review chapter. So Eq. (826) can be

written in the circular basis as

ðBXBYÞ1=2eð1Þ  ðBXBYÞ1=2eð2Þ ¼ �Bð0ÞBZeð3Þ	 ð827Þ

which is equivalent to

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	 ð828Þ
where we define

Bð1Þ ¼ Bð2Þ ¼ ðBXBYÞ1=2eð1Þ; Bð3Þ ¼ BZeð3Þ ð829Þ

To complete the derivation, we multiply both sides of Eq. (828) by the phase

factor eife�if to obtain the B cyclic theorem. The latter is therefore equivalent to

a commutator relation of the Poincaré group between infinitesimal magnetic field

generators. Similarly

EX ; EY½ � ¼ ic2Bð0ÞBZ ð830Þ

is equivalent to

Eð1Þ  Eð2Þ ¼ ic2Bð0ÞBð3Þ ð831Þ

XIV. O(3) AND SU(3) INVARIANCE FROM THE RECEIVED
FARADAY AND AMPÈRE–MAXWELL LAWS

The received Faraday and Ampère–Maxwell laws [111] in the vacuum asserts

that there are fields without sources, so the laws become respectively

r Eþ qB

qt
¼ 0 ð832Þ

r  B� 1

c2

qE

qt
¼ 0 ð833Þ
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These laws are useful but represent cause without effect, that is, fields propagat-

ing without sources, and the Maxwell displacement current is an empirical

construct, one that happens to be very useful. These two laws can be classified as

U(1) invariant because they are derived from a locally invariant U(1) Lagrangian

as discussed already. Majorana [114] put these two laws into the form of a Dirac–

Weyl equation (Dirac equation without mass)

Wc1 � ip2c3 � ip3c2 ¼ 0

Wc2 � ip3c1 � ip1c3 ¼ 0

Wc3 � ip1c2 � ip2c1 ¼ 0

ð834Þ

in which a combination of fields (SI units) acts as a wave function

ci ¼
1

c
Ei � iBi; i ¼ 1; 2; 3 ð835Þ

and in which the quantum ansatz

p ¼ �i�hr; i�h
q
qt
! En � W ð836Þ

has been used. It is shown in this section that the Majorana equations are O(3)

invariant, so the received view is self-contradictory. There is something hidden

inside the structure of the Faraday and Ampère–Maxwell laws that removes their

U(1) invariance [44]. It can be checked straightforwardly that Eqs. (835) and

(834) lead back to Eqs. (833) and (832). In condensed notation, the Majorana

equations (834) have the form of the Dirac–Weyl equation:

ðW þ a � pÞW ¼ 0 ð837Þ

The structure of the Dirac–Weyl equation itself is [46]

ðg0p0 þ gipiÞc ¼ 0 ð838Þ

In Eq. (837), however, the a matrix is an O(3) rotation generator matrix with

components

a1 ¼
0 0 0

0 0 �i

0 i 0

2
4

3
5; a2 ¼

0 0 i

0 0 0

�i 0 0

2
4

3
5; a3 ¼

0 �i 0

i 0 0

0 0 0

2
4

3
5 ð839Þ

obeying the O(3) invariant commutator equation

ai; ak½ � ¼ �ieiklal; ði; k; l ¼ 1; 2; 3Þ ð840Þ
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which is within a factor �h, the O(3) invariant commutator equation for angular

momentum [42,44,46]. Therefore, the Majorana form of Eqs. (832) and (833),

namely, Eq. (837), is O(3) invariant, not U(1) invariant. The determinant

condition

W �ip3 ip2

ip3 W �ip1

�ip2 ip1 W

������
������ ¼ 0 ð841Þ

gives the relation between energy and momentum for a massless photon, but at

the same time, the Majorana equation (837) can be written as a Schrödinger

equation

HW ¼ WW ð842Þ
H � �a � p ð843Þ

which is usually a nonrelativistic equation for a particle with mass. This is

another self-inconsistency of the received Faraday and Ampère–Maxwell laws:

the latter ought to be a law for a particle with mass and ought to account for the

Lehnert current, as argued already. Operators such as

X
¼ �ia a ð844Þ

are intended for the intrinsic spin of the photon, which however, must have

eigenvalues �1,0,þ1 in order to be consistent with the O(3) angular momentum

commutator equation (840). The received view [42,44,46] produces eigenvalues

�1 and þ1 only, which is another self-inconsistency.

Equation (837) can be put into the form of an O(3) covariant derivative act-

ing on the wave function W

ðq0 � igA0ÞW � D0W ¼ 0 ð845Þ

where

gA0 ¼ a �
p

�h
¼ a �j

g ¼ k
Að0Þ

ð846Þ

So the simplest form of the Majorana equation is

D0W ¼ 0 ð847Þ
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and is the time-like part of an O(3) covariant derivative acting on the wave

function W. The form of Eq. (847) is not, however, fully covariant. The fully

covariant form of the vacuum O(3) field equations, as argued already, is

collectively Eqs. (318) and (323), which have a Yang–Mills structure. Therefore,

the Majorana equation is part of an approximation to the O(3) invariant field

equations (318) and (323). As argued already, these latter equations give photon

mass through the Higgs mechanism. It does not seem possible to introduce

photon mass into the Majorana equation (837), revealing that it is an approxi-

mation. This implies that the received Faraday and Ampère–Maxwell laws in the

vacuum are also incomplete [42,44] and that U(1) invariant electrodynamics is

incomplete. The latter is seen dramatically in interferometry, as argued in this

review and elsewhere [44]. For example, a U(1) invariant electrodynamics cannot

describe Sagnac interferometry, with platform either at rest or in motion; and

cannot describe Michelson interferometry. An O(3) invariant electrodynamics

describes both effects self consistently. Oppenheimer [115] derived the same

equation as Majorana independently a few years later.

The Majorana equation (837) can also be put in the form

�WðW þ a � pÞ ¼ 0 ð848Þ

which is analogous with the corresponding equation for Dirac–Weyl adjoint

wave function. The notation of Eq. (848) means that

p � i
q
 

qx
; �W ¼ ðW	ÞT ð849Þ

The symmetric energy-momentum tensor ðTmnÞ of electromagnetism in the

vacuum can be defined from the Majorana equation using the matrices

2a00 ¼ 1; 2a01 ¼ a1; 2a02 ¼ a2; 2a03 ¼ a3

2a11 ¼
�1 0 0

0 1 0

0 0 1

2
64

3
75; 2a12 ¼

0 �1 0

�1 0 0

0 0 0

2
64

3
75

2a13 ¼
0 0 �1

0 0 0

�1 0 0

2
64

3
75; a22 ¼

1 0 0

0 �1 0

0 0 1

2
64

3
75

2a23 ¼
0 0 0

0 0 �1

0 �1 0

2
64

3
75; 2a33 ¼

1 0 0

0 1 0

0 0 �1

2
64

3
75

ð850Þ
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where

amn ¼ anm ðm; n ¼ 0; 1; 2; 3Þ ð851Þ

to give the result:

Tmn ¼ �WamnW ð852Þ

Only eight of the nine matrices (850) are independent, and they form a basis for

the SU(3) group, which is used for strong-field theory [46]. Therefore, the

energy-momentum tensor is SU(3) invariant.

Therefore, if we start from a traditionally U(1) invariant pair of equations

(832) and (833), we find that they can be put into an O(3) invariant form,

and that the concomitant energy-momentum tensor is SU(3) invariant. It is

therefore interesting to speculate that an SU(3) invariant electrodynamics can

be constructed self-consistently, and is more general than the O(3) invariant

form developed here and elsewhere [44]. To view electrodynamics in the va-

cuum as a U(1) invariant theory is highly restrictive, self-inconsistent [44],

and in contradiction with ordinary data such as those from ordinary interfero-

metry and ordinary physical optical effects such as normal reflection [44]. Ana-

lyses by Majorana, and later Oppenheimer, show that invariance symmetries can

be transmuted among each other for the same set of equations, and so it seems

that there is no limit to the internal structural symmetry of electrodynamics on

both classical and quantum levels. It is necessary to check each set of equations

empirically as the theory is developed. The O(3) invariant electrodynamics [44],

for example, has been checked extensively with interferometry and other forms

of data [47–62] by several leading specialists. Broad agreement has been

reached as to the fact that a paradigm shift has occurred, and that the

Maxwell–Heaviside electrodynamics have been replaced by one where there

can be invariance under symmetry groups different from U(1). This paradigm

shift has extensive consequences throughout physics and the ontology of phy-

sics, in chemistry, and in cosmology. The next section, for example, shows that

the dark matter in the universe can be thought of as being made up of photons

with mass slowed to their rest frame by the Higgs mechanism. The Dirac equa-

tion itself is SU(2) invariant [46], and therefore a model of the electron must be

either SU(2) or O(3) invariant. Vigier has recently developed an O(3) invariant

model of the electron [116] based on the development of an O(3) invariant elec-

trodynamics [42,45,47–62]. The Dirac equation is the relativistically correct

form of the Schrödinger equation, and an example of an O(3) invariant Schrö-

dinger equation appears in Eq. (842). We argued earlier that the phase of the

Schrödinger equation must be O(3) invariant in general. Taking this line of

argument to its logical conclusion, then, Newtonian dynamics are also O(3)
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invariant. The latter is clear from the fact that Newtonian dynamics takes place

in the space of three dimensions described by the rotation group O(3). Another

insight is obtained from the fact that the angular momentum commutator rela-

tions of quantum mechanics [68] are O(3) invariant.

The O(3) invariance of the Majorana equation (837) can be demonstrated

clearly by the use of plane waves

A ¼ Að0Þffiffiffi
2
p ðiiþ jÞeif

B ¼ Bð0Þffiffiffi
2
p ðiiþ jÞeif

E ¼ Eð0Þffiffiffi
2
p ði� ijÞeif

ð853Þ

whereon

�iBþ 1

c
E ¼ �2kiA ð854Þ

Therefore, Eqs. (834) reduce to

W
B1

k
¼ �ip2A3 þ ip3A2

W
B2

k
¼ �ip3A1 þ ip1A3

W
B3

k
¼ �ip1A2 þ ip2A1

ð855Þ

Using the four equations

W ¼ p0 ¼ �hgA0

pi ¼ �hgAi; i ¼ 1; 2; 3
ð856Þ

we recover the O(3) invariant definition of the B(3) field and two other similar

equations that are equations of the O(3) invariant field tensor as argued already:

BZ ¼ �i
k

Að0Þ
ðAXA	Y � AY A	XÞ ð857Þ

� � �

These equations reduce in turn [42,44,47–62] to the B cyclic theorem:

Bð1Þ  Bð2Þ ¼ iBð0ÞBð3Þ	 ð858Þ
. . .
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showing that the Majorana equations are the B cyclic theorem. The latter is

therefore O(3) gauge-invariant and Lorentz-covariant because the Majorana

equations are equivalent to equations with these properties.

XV. SELF-CONSISTENCY OF THE O(3) ANSATZ

A three-way cross-check of the self-consistency of the O(3) ansatz can be carried

out starting from Eq. (459), in which A is complex because the electromagnetic

field in O(3) electrodynamics carries a topological charge k=Að0Þ. The vector

field A in the internal space of O(3) symmetry must depend on xm by special

relativity and can be written as

A ¼ Að1Þ þ Að2Þ þ Að3Þ ð859Þ

where

Að1Þ ¼ A	 ¼ Að0Þffiffiffi
2
p ðiiþ jÞe�if ¼ Að2Þ	

Að3Þ ¼ Að0Þk

ð860Þ

It is now possible to check whether Eq. (459), with its extra vacuum current, is

compatible with Eq. (106) of Ref. 44, which is

r Bð3Þ ¼ 1

c2

qEð3Þ

qt
� igðAð1Þ  Bð2Þ � Að2Þ  Bð1ÞÞ � g

m0

DmA	  A ð861Þ

It follows, from the structure adopted for A in Eq. (860), that

D3A	  A ¼ q3Að2Þ  Að1Þ þ q3Að1Þ  Að2Þ

¼ ikAð1Þ  Að2Þ � ikAð2Þ  Að1Þ

¼ igBð1Þ  Að2Þ � igBð2Þ  Að1Þ ð862Þ

and so we obtain

r Bð3Þ ¼ 0 ð863Þ

which is self-consistent with the fact that B(3) is irrotational and that E(3) is zero.

Another consequence of Eq. (459) is that it gives a vacuum polarization

r �Pð3Þ ¼ rðvacÞ ¼ � g

m0

D0A	  A ð864Þ

where r(vac) is the vacuum charge density. The vacuum polarization P(3) does

not appear from the field tensor [42], but appears from the vacuum charge current

density term on the right-hand side of Eq. (459). This vacuum charge current
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density term must always be present from fundamental gauge principles on the

O(3) level. So we have identified the concept of a vacuum charge density as the

divergence of a vacuum polarization.

The concepts of O(3) electrodynamics developed in this review and in Ref.

44 scratch the surface of what is possible. The field equations must be solved

numerically to obtain all the possible solutions, and checked against empirical

data at each stage. Numerical solution of this nature has not yet been attempted.

The concept of radiatively induced fermion resonance [44], which might lead to

nuclear magnetic resonance and electron spin resonance without the need for

permanent magnets, is one obviously useful spinoff of O(3) electrodynamics

that has not been explored. These are two of several major advances that could

be made within the near future. On the high-energy scale, the concept of higher-

symmetry electrodynamics has led to the Crowell boson, which has been de-

tected empirically, and, as reviewed by Crowell in this edition, leads to a novel

grand unified theory. The development of O(3) electrodynamics also gives bet-

ter insight into the energy inherent in the vacuum, and shows beyond reasonable

doubt that all optical phenomena are O(3) invariant, a major advance in the 400-

year subject of physical optics. During the course of this development, it has

been shown that there are several internal inconsistencies [44] in the U(1) invar-

iant electrodynamics, and several instances, in particular interferometry, where

the U(1) theory fails. Two typical examples are the Sagnac and Michelson ef-

fects. The O(3) invariant electrodynamics succeeds in describing both effects

with precision from first principles because of the use of a non-Abelian Stokes

theorem for the electromagnetic phase, a theorem that shows that all interfero-

metry is topological in nature and depends on the Evans–Vigier field B(3). The

O(3) invariant electrodynamics carries a topological charge k=Að0Þ in the va-

cuum, a charge that also acts as the coupling constant of the O(3) covariant de-

rivative. The concept of vacuum charge current density has been established

self-consistently on the O(3) invariant level from the first principles of gauge

field theory. These are some of several major advances.

Therefore, the empirical and theoretical evidence for the superiority of an

O(3) invariant over a U(1) invariant electrodynamics is overwhelming. It is clear

that the process of development can be continued, for example, in quantum elec-

trodynamics, electroweak theory, and grand unified theory, and the ontology of

these developments can also be studied in parallel.

XVI. THE AHARONOV–BOHM EFFECT AS THE BASIS
OF ELECTROMAGNETIC ENERGY INHERENT

IN THE VACUUM

The Aharonov–Bohm effect shows that the vacuum is configured or structured,

and that the configuration can be described by gauge theory [46]. The result of
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this experiment is that, in the structured vacuum, the vector potential A can be

nonzero while the electric field strength E and magnetic flux density B can be

zero. This empirical result is developed in this section by defining an inner space

for the gauge theory, and by summarizing some of the results proposed earlier in

this review in light of the Aharonov–Bohm effect. Therefore the non-simply

connected U(1) vacuum is described by a scalar internal gauge space, and the

non-simply connected O(3) vacuum, by a vector internal gauge space. The core

of the idea being presented in this section is that the Aharonov–Bohm effect is a

local gauge transformation of the true vacuum, where

Am ¼ 0 ð865Þ

This type of gauge transformation produces a vector potential from the true

vacuum. Components of this vector potential are used for the internal gauge

space whose Lagrangian is globally invariant. A local gauge transformation of

this Lagrangian produces the topological charge

g ¼ k
Að0Þ

ð866Þ

the electromagnetic field, which carries energy, and the vacuum charge current

density first proposed empirically by Lehnert [49] and developed by Lehnert and

Roy [45]. These authors have also demonstrated that the existence of a vacuum

charge current density implies the existence of photon mass. Empirical evidence

for the existence of the vacuum charge current density is available from total

internal reflection [45,49]. The source of the energy inherent in vacuo is therefore

spacetime curvature introduced through the use of a covariant derivative:

Dm � qm � igAm ð867Þ

The product gAm in the covariant derivative is, within a factor �h, an energy

momentum. Therefore, photon mass is produced by spacetime curvature

because, in a covariant derivative, the axes vary from point to point and there

is spacetime curvature. Similarly, mass is produced by spacetime curvature in

general relativity. Therefore, spacetime curvature in the configured vacuum

implied by the Aharonov–Bohm effect is the source of electromagnetic energy

momentum in the vacuum. There is no theoretical upper bound to the magnitude

of this electromagnetic energy momentum, which can be picked up by devices,

as reviewed in this series by Bearden and Fox (Part 2, Chapters 11 and 12; this

part, Chapter 11). Therefore, devices can be manufactured, in principle, to take

an unlimited amount of electromagnetic energy from the configured vacuum as

defined by the Aharonov–Bohm effect, without violation of Noether’s theorem.
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The gauge theory developed earlier in this review is summarized for the U(1)

and O(3) non-simply connected vacua using the appropriate internal gauge

spaces. The earlier calculations are summarized in this section. It has been de-

monstrated in this series, that there are several advantages of O(3) gauge theory

applied to electrodynamics over U(1) gauge theory applied to electrodynamics,

but the latter can be used to illustrate the method and to produce the vacuum

Poynting theorem that is an expression of Noether’s theorem for the structured

vacuum. The theory being used is standard gauge theory, so the Noether theo-

rem is conserved; that is, the laws of energy/momentum and charge current con-

servation are obeyed. The magnitude of the energy momentum is not bounded

above by gauge theory, so the Poynting theorem (law of conservation of elec-

tromagnetic energy) in the configured vacuum indicates this fact through the

presence of a constant of integration whose magnitude is not bounded above.

This suggests that the magnitude of the electromagnetic energy in the structured

classical vacuum is, in effect, limitless.

The non-simply connected U(1) vacuum is considered first to illustrate the

method as simply as possible. This is defined as earlier in this review by the

globally invariant Lagrangian density

L ¼ qmAqmA	 ð868Þ

where A and A	 are considered to be independent complex scalar components of

the vector potential obtained by gauge transformation of the true vacuum, where

Am ¼ 0 [46]. The potentials A and A	 are complex because they are associated

with a topological charge g, which appears in the covariant derivative when the

Lagrangian (868) is subjected to a local gauge transformation. The topological

charge g should not be confused with the point charge e on the proton. In the

classical structured vacuum, g exists but e does not exist. The two scalar fields

are therefore defined as complex conjugates:

A ¼ 1ffiffiffi
2
p ðA1 þ iA2Þ ð869Þ

A	 ¼ 1ffiffiffi
2
p ðA1 � iA2Þ ð870Þ

The two independent Euler–Lagrange equations

qL
qA
¼ qn

qL
qðqnAÞ

� �
;

qL
qA	
¼ qn

qL
qðqnA	Þ

� �
ð871Þ

produce the independent d’Alembert equations of the structured vacuum:

&A ¼ 0; &A	 ¼ 0 ð872Þ
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The Lagrangian (868) is invariant under a global gauge transformation:

A! e�i�A; A	 ! ei�A	 ð873Þ

where � is a number. Under a local gauge transformation, however

A! e�i�ðxmÞA; A	 ! ei�ðxmÞA	 ð874Þ

where � becomes a function of the spacetime coordinate xm by special relativity.

Under a local gauge transformation [46] of the structured U(1) vacuum defined

by the Lagrangian (868), the latter is changed to

L ¼ DmADmA	 � 1

4
FmnFmn ð875Þ

as argued earlier in this review. Here, Fmn is the U(1) invariant electromagnetic

field tensor

Fmn ¼ qmAn � qnAm ð876Þ

where the covariant derivatives are defined by

DmA ¼ ðqm þ igAmÞA ð877Þ
DmA	 ¼ ðqm � igAmÞA	 ð878Þ

Here, Am is the vector 4-potential introduced in the vacuum as part of the

covariant derivative, and therefore introduced by spacetime curvature. The elec-

tromagnetic field and the topological charge g are the results of the invariance of

the Lagrangian (868) under local U(1) gauge transformation, in other words, the

results of spacetime curvature.

By using the Euler–Lagrange equation

qn
qL

qðqnAmÞ

� �
¼ qL

qAm
ð879Þ

with the Lagrangian (875), we obtain the field equation of the U(1) structured

vacuum

qnFmn ¼ �igcðA	DmA� ADmA	Þ ð880Þ

a field equation that identifies the vacuum charge current density

JmðvacÞ � �igce0ðA	DmA� ADmA	Þ ð881Þ
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first introduced and developed by Lehnert et al. [45,49]. Equation (880) is an

inhomogeneous field equation of the configured U(1) vacuum, and gives rise to

the inherent energy of the configured vacuum

En ¼
ð

JmðvacÞAmdV ð882Þ

and rate of doing work by the configured vacuum

dW

dt
¼
ð

JðvacÞ �EdV ð883Þ

where E is the electric field strength of the field tensor Fmn. The volume V is

arbitrary, and standard methods of U(1) invariant electrodynamics give the

Poynting theorem of the U(1) configured vacuum:

dUðvacÞ
dt

þr �SðvacÞ ¼ �JðvacÞ �E ð884Þ

Here, S(vac) is the Poynting vector of the U(1) configured vacuum, representing

electromagnetic energy flow, and is defined by

r �SðvacÞ ¼ �JðvacÞ �E ð885Þ

Integrating this equation gives

SðvacÞ ¼ �
ð

JðvacÞ �Edr þ constant ð886Þ

where the constant of integration is not bounded above. The electromagnetic

energy flow inherent in the U(1) configured vacuum is not bounded above,

meaning that there is an unlimited amount of electromagnetic energy flow

available in theory, for use in devices. Some of these devices are reviewed in this

edition by Bearden and Fox [chapters given above, in text following Eq. (867)].

Sometimes, the constant of integration is referred to as the ‘‘Heaviside compo-

nent of the vacuum electromagnetic energy flow,’’ and the detailed nature of this

component is not restricted in any way by gauge theory. The Poynting theorem

(884) is, of course, the result of gauge theory.

In the non-simply connected O(3) vacuum, the internal gauge space is a vec-

tor space rather than the scalar space of the U(1) vacuum. Therefore, we can

summarize and collect earlier results of this review using the concept of an

O(3) symmetry internal gauge space, a space in which there exist complex
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vectors A and A	. The globally invariant Lagrangian density for this internal

space is

L ¼ qmA � qmA	 ð887Þ

and the two independent Euler–Lagrange equations are

qL
qA
¼ qn

qL
qn A

� �
;

qL
qA	
¼ qn

qL
qn A	

� �
ð888Þ

giving the d’Alembert equations

&A ¼ 0; &A	 ¼ 0 ð889Þ

Under the local O(3) invariant gauge transformation

A! eiJi�i A; A	 ! e�iJi�i A	 ð890Þ

the Lagrangian (887) becomes, as we have argued earlier

L ¼ DmA �DmA	 � 1

4
Gmn � Gmn ð891Þ

and using the Euler–Lagrange equation

qL
qAm
¼ qn

qL
qðqn AmÞ

� �
ð892Þ

the inhomogeneous O(3) invariant field equation is obtained

Dn Gmn ¼ �gDmA	  A ð893Þ

as shown in detail earlier. The term on the right-hand side is the O(3) invariant

vacuum charge current density that is the non-Abelian equivalent of the right-

hand side of Eq. (880). In general, Eq. (893) must be solved numerically, but the

presence of a vacuum charge current density gives rise to the energy of the O(3)

configured vacuum

EnðvacÞ ¼
ð

jmðvacÞ �Am dV ð894Þ

whose source is curvature of spacetime introduced by the O(3) covariant

derivative containing the rotation generators Ji of the O(3) group. The curvature
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of spacetime is also the source of photon mass, in analogy with general relativity,

where curvature of spacetime occurs in the presence of mass or a gravitating

object.

Therefore, in summary, the empirical basis of the development in this section

is that the Aharonov–Bohm effect shows that, in regions where E and B are both

zero, A can be nonzero. Therefore, the Aharonov–Bohm effect can be regarded

as a local gauge transformation of the true vacuum, defined by Am ¼ 0, and the

Aharonov–Bohm effect shows that a nonzero Am can be generated by a local

gauge transformation from regions in which Am is zero. Therefore, in a struc-

tured vacuum, it is possible to construct a gauge theory whose internal space

is defined by components of Am in the absence of an electromagnetic field.

The latter is generated by a local gauge transformation of components of an

Am which was generated originally by a local gauge transformation of the

true vacuum where Am ¼ 0. This concept is true for all gauge group symmetries.

It is well known that contemporary gauge theories lead to richly structured va-

cua whose properties are determined by topology [46]. The Yang–Mills vacuum,

for example, is infinitely degenerate [46]. Therefore local gauge transformation

can produce electromagnetic energy, a vacuum charge current density, a vacuum

Poynting theorem, and photon mass, all interrelated concepts. We reach the sen-

sible conclusion, that in the presence of a gravitating object (a photon with

mass), spacetime is curved. The curvature is described through the covariant de-

rivative for all gauge group symmetries. The energy inherent in the vacuum is

contained in the electromagnetic field, and the coefficient g is a topological

charge inherent in the vacuum. For all gauge group symmetries, the product

gAm is energy momentum within a factor �h, indicating clearly that the covariant

derivative applied in the vacuum contains energy momentum produced on the

classical level by spacetime curvature. This energy momentum, as in general

relativity, is not bounded above, so the electromagnetic energy inherent in the

classical structured vacuum is not bounded above. There appear to be several

devices available that extract this vacuum energy, and these are reviewed in

this compilation by Bearden and Fox. In theory, the amount of energy appears

to be unlimited.

The Aharonov–Bohm effect depends on the group space of the internal space

used in the gauge theory. If this internal space is U(1), the group space is a cir-

cle, which is denoted in topology [46] by S1. This group space is not simply

connected because a path that goes twice around a circle cannot be continuously

deformed, while staying on the circle, to one that goes around only once [46]. A

curve going around the solenoid n times cannot be shrunk to one around m

times, where m 6¼ n. The configuration space of the vacuum is therefore not

simply connected, and this allows a gauge transform of the pure vacuum, to cre-

ate what is known as a ‘‘pure gauge vacuum’’ [46]. In U(1) gauge theory, the

mathematical reason for the Aharonov–Bohm effect is that the configuration
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space of the null field (pure gauge vacuum) is a ring, denoted by S1  R in to-

pology [46]. The vector potential in the pure gauge vacuum is derived from a

gauge function that maps the gauge space in to the configuration space. These

mappings are not all deformable to a constant gauge function w, which would

give a zero rw in the pure gauge vacuum and a null Aharonov–Bohm effect.

This, then, is the conventional U(1) invariant explanation of the Aharonov–

Bohm effect.

The O(3) invariant explanation, as we have seen, uses an internal gauge space

that is the physical space O(3). This space is doubly connected [46]. The group

space of O(3) is obtained by identifying opposite points on the 3-space S3,

which is the topological description of the unit sphere in four-dimensional

Euclidean space, denoted E4. Opposite points on the 3-space S3 correspond to

the same O(3) transformation. It is possible to show that this space is doubly

connected by considering closed curves S1 in the group space of O(3). One

can consider paths [46] that may be shrunk to (are homotopic to) a point and

to a straight line. These are the two types of closed path S1 in the group space

of O(3), with the implication that there is one nontrivial vortex in an O(3) gauge

theory.

The simplest example of the O(3) invariant Aharonov–Bohm effect is the

equation of interferometry

þ
Að3Þ � dr ¼

ð
Bð3Þ � dS ð895Þ

used in the region outside the solenoid where the vector potential sketched below

is nonzero:

Að3Þ ð896Þ

The line integral is defined over the circular path, exactly as in the O(3) invariant

explanation of the Sagnac effect discussed earlier in this review and in Vol. 114,

part 2. The key difference between the O(3) and U(1) invariant explanations of

the Aharonov–Bohm effect is that, in the former, there is a magnetic field B(3)

present at the point of contact with the electrons. Agreement with the empirical

data is obtained because

Bð3Þ
�� �� ¼ Bj j ð897Þ

that is the total magnetic flux inside the area S must be generated by the static

magnetic field B of the solenoid. The fact that we are using an O(3) gauge theory

means that the configuration space of the vacuum is doubly connected. As

discussed in the technical appendix, the vector potential A(3) in Eq. (895) can be
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regarded as having been generated by an O(3) gauge transformation that leaves

B(3) invariant. Equation (895) is the consequence of a round trip in spacetime

using parallel transport with O(3) covariant derivatives. Therefore, the simplest

O(3) invariant explanation of the Aharonov–Bohm effect simply means that it is

an interferometric effect, very similar in nature to the O(3) invariant explanation

of the Sagnac effect or Michelson interferometry.

The simplest example of the generation of energy from a pure gauge vacuum

is to consider the case of an electromagnetic potential plane wave defined by

A ¼ A1iþ A2 j ¼ Að0Þffiffiffi
2
p ðiiþ jÞe�iðot�kZÞ ð898Þ

The pure gauge vacuum is then defined by

A 6¼ 0; E ¼ 0; B ¼ 0 ð899Þ

and a Lagrangian density can be constructed which is proportional to

L ¼ qmA � qmA ð900Þ

A global gauge transformation of A in the pure gauge vacuum is equivalent to a

rotation of A through an angle � [46], producing a conserved quantity Q as the

result of the invariance of the action under the global gauge transformation. It can

be shown as follows that Q is proportional to conserved electromagnetic kinetic

energy

En ¼ 1

m0

ð
Bð0Þ2 dV ð901Þ

generated by the global gauge transformation of the pure gauge vacuum, which,

in turn, is generated from the pure vacuum by a local gauge transformation.

For plane waves

A1 ¼ i
Að0Þffiffiffi

2
p e�iðot�kZÞ; A2 ¼

Að0Þffiffiffi
2
p e�iðot�kZÞ ð902Þ

In a U(1) invariant theory, the pure gauge vacuum is defined by a scalar internal

gauge space in which there exist the independent complex scalar fields:

A ¼ 1ffiffiffi
2
p ðA1 þ iA2Þ; A	 ¼ 1ffiffiffi

2
p ðA1 � iA2Þ ð903Þ
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These are complex scalar fields because there is an invariant topological charge

present, defined by

g ¼ k
Að0Þ

ð904Þ

The Lagrangian density produced by these scalar fields is, as we have seen

L ¼ qm AqmA	 ð905Þ

and the global gauge transformation is defined by

A! e�i�A; A	 ! ei�A	 ð906Þ

This type of transformation is not dependent on spacetime and is purely internal

[46] in Noether’s theorem. Under a global gauge transformation, Noether’s

theorem gives the conserved current

Jm ¼ igcðA	qmA� AqmA	Þ ð907Þ

with a vanishing 4-divergence and a conserved topological charge:

Q ¼
ð

J 0 dV ð908Þ

From Eq. (907), the conserved topological charge Q is

Q ¼ 2c

Að0Þ

ð
k2Að0Þ2 dV ¼ 2c

Að0Þ

ð
Bð0Þ2 dV ð909Þ

which can be written as

Q ¼ 2cm0

Að0Þ
En ð910Þ

where

En ¼ 1

m0

ð
Bð0Þ2 dV ð911Þ

is a conserved kinetic electromagnetic energy. For a monochromatic plane wave

in the vacuum, the quantity g is also conserved because k and A(0) do not change.

Therefore it has been demonstrated that, in a pure gauge vacuum defined by the

plane wave A, conserved electromagnetic energy density is generated by a global

gauge transformation, which is a rotation of A through the angle �.
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This is the simplest example of the generation of kinetic electromagnetic en-

ergy by a gauge transformation of a pure gauge vacuum defined initially by a

nonzero A and zero E and B. The more complete description of energy gener-

ated from the pure gauge vacuum is given by a local gauge transformation, as

argued already in this review on the U(1) and O(3) levels. It is to be noted that

the conserved quantity Q has the following properties:

1. It is time independent.

2. It does not depend on the charge on the proton.

3. It is a classical quantity.

4. It is not integer-valued and when A is real it vanishes.

It can be shown as follows that the transition from a pure vacuum to a pure

gauge vacuum is described by the spacetime translation generator of the Poin-

caré group. The pure vacuum on the U(1) invariant level is described by the field

equations:

qm~Fmn � 0 ð912Þ
qmFmn ¼ 0 ð913Þ

with

~Fmn ¼ 0; Fmn � 0 ð914Þ

So the kinetic electromagnetic energy term in the Lagrangian

L ¼ � 1

4
Fmn Fmn ð915Þ

is zero. In the pure gauge vacuum, the ordinary derivative is replaced by the

covariant derivative, so the field equations (912) and (913) become

qm~Fmn ¼ �iAm~F
mn ð916Þ

qmFmn ¼ �iAmFmn ð917Þ

where Am is defined by

Am ¼ �
i

g
ðqmSÞS�1 ð918Þ

but where the fields ~Fmn and Fmnare still zero. Therefore

Fmn ¼ qmAn � qnAm ¼ 0 ð919Þ
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and the contribution of the field to the energy in a pure gauge vacuum is zero.

However, there occurs an energy change from a pure vacuum to a pure gauge

vacuum, an energy change proportional to gAm. The origin of this energy change

is topological; that is, the energy change can be traced to the replacement of the

ordinary derivative qm by the covariant derivative Dm.

Essentially, this replacement means that the spacetime changes from one that

is conformally flat to one that is conformally curved; in other words, the axes

vary from point to point whenever a covariant derivative is used for any gauge

group symmetry. It is this variation of the axes that introduces energy into a pure

gauge vacuum. The covariant derivative in the latter is

Dm ¼ qm � igAm ð920Þ

which can be written using the rule iqm ¼ km as

km ! km þ k0m ð921Þ

This expression is equivalent [42] to

Pm ! Pm þ P0m ð922Þ

where Pm is the spacetime translation generator of the Poincaré group. Within a

factor �h, the spacetime translation generator is the energy-momentum 4-vector. It

becomes clear that the use of a covariant derivative introduces energy momentum

into the vacuum, in this case a pure gauge vacuum. Lagrangians, consisting of

components of Am in the pure gauge vacuum when subjected to a local gauge

transformation, give the electromagnetic field and its source, the vacuum charge/

current density, first introduced empirically by Lehnert [49].

In the final part of this section, the method of local gauge transformation is

outlined in detail to show how the electromagnetic field and conserved vacuum

charge current density emerge from the local gauge transformation of the pure

gauge vacuum. The illustration is given for convenience in a U(1) invariant

theory, and leans heavily on the excellent account given by Ryder [46,

pp. 94ff.]. We therefore consider a local gauge transformation of a pure gauge

vacuum with scalar components A and A*:

A! expð�i�ðxmÞÞA
A	 ! expð�i�ðxmÞÞA	

ð923Þ

For �� 1

dA ¼ �i�A ð924Þ
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and

qmA! qm A� iðqm�ÞA� i�ðqm AÞ ð925Þ

Therefore

dðqmAÞ ¼ �i�ðqmAÞ � iðqm�ÞA ð926Þ

and

dA	 ¼ i�A	

dðqmA	Þ ¼ i�ðqmA	Þ þ iðqm�ÞA	
ð927Þ

The effect of the local gauge transform is to introduce an extra term qm� in the

transformation of the derivatives of fields. Therefore, qmA does not transform

covariantly, that is, does not transform in the same way as A itself. These extra

terms destroy the invariance of the action under the local gauge transformation,

because the change in the Lagrangian is

dL ¼ qL
qA

dAþ qL
qðqmAÞ dðqmAÞ þ ðA! A	Þ ð928Þ

where ðA! A	Þ denotes the two additional terms in A*. Substituting the Euler–

Lagrange equation (888) into the first term, and using Eqs. (924)–(926), gives

qL ¼ qm
qL

qðqmAÞ ð�i�AÞ þ qL
qðqmAÞ ð�i�qmA� iAqm�Þ

¼ �i�qm
qLA

qðqmAÞ � i
qL

qðqmAÞ ðqm�ÞAþ ðA! A	Þ ð929Þ

The first term is a total divergence, so the corresponding change in the action is

zero. Using

L ¼ ðqmAÞðqmA	Þ � m2A	A ð930Þ

for the Lagrangian then gives

dL ¼ iqm�ðA	qmA� AqmA	Þ ¼ Jmqm� ð931Þ

where the (SI) current is given by Eq. (907), in reduced units

Jm ¼ iðA	qmA� AqmA	Þ ð932Þ
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The action is therefore not invariant under local gauge transformation. To restore

invariance the four potential, Am must be introduced into the pure gauge vacuum

to give the Lagrangian

L1 ¼ �gJmAm

¼ �igðA	qmA� AqmA	ÞAm ð933Þ

where g is the topological charge in the vacuum, defined in such a way that gAm

has the same SI units as km. On the U(1) level, local gauge transformation means

that

Am ! Am þ
1

g
qm� ð934Þ

so that

dL1 ¼ �gðdJmÞAm � gJmðdAmÞ
¼ �gðdJmÞAm � Jmqm� ð935Þ

The action is still not invariant under a local gauge transformation, however,

because of the presence of the term �gðdJmÞAm on the right-hand side of Eq.

(935), a term in which

dJm ¼ idðA	qmA� AqmA	Þ
¼ 2A	Aqm� ð936Þ

so that

dLþ dL1 ¼ �2gAmðqm�ÞA	A ð937Þ

Therefore, another term must be added to the Lagrangian L:

L2 ¼ e2AmAmA	A ð938Þ

Using Eq. (934), we find that

dL2 ¼ 2g2AmdAmA	A ¼ 2gAmðqm�ÞA	A ð939Þ

so that

dLþ dL1 þ dL2 ¼ 0 ð940Þ
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The total Lagrangian LþL1 þL2 is now invariant under the local gauge

transformation because of the introduction of the 4-potential Am, which couples

to the current Jm of the complex A of the pure gauge vacuum. The field Am also

contributes to the Lagrangian, and since LþL1 þL2 is invariant, an extra

term L3 appears, which must also be gauge-invariant. This can be so only if the

electromagnetic field is introduced

Fmn ¼ qmAn � qnAm ð941Þ

so that

L3 ¼ �
1

4
FmnFmn ð942Þ

The total invariant Lagrangian is therefore

Ltot ¼LþL1 þL2 þL3

¼ ðqmAþ igAmAÞðqmA	 � igAmA	Þ � m2A	A� 1

4
FmnFmn ð943Þ

The Lehnert field equation is obtained from this Lagrangian using the Euler–

Lagrange equation

qL
qAm
� qn

qL
qðqnAmÞ

� �
¼ 0 ð944Þ

giving in SI units

qnFmn ¼ �igcðA	DmA� ADmA	Þ ð945Þ

It is noted that the Lehnert charge current density

Jm ¼ �ie0gcðA	DmA� ADmA	Þ ð946Þ

is gauge-covariant and also conserved, and thus cannot be gauged to zero by any

method of gauge transformation. It is the direct result of a local gauge

transformation on a pure gauge vacuum and acts as the source of the vacuum

electromagnetic field Fmn, as discussed already. The covariant current (946) is

conserved because

qmJm ¼ 0 ð947Þ
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XVII. INTRODUCTION TO THE WORK
OF PROFESSOR J. P. VIGIER

We append what we believe to be a comprehensive listing of the publications of

Professor Jean-Pierre Vigier. They represent a wide range of topics from the

interpretation of quantum mechanics, particle physics, cosmology, and relati-

vistic physics. What is remarkable about this list is not just the breadth of topics,

but the philosophical consistency that underlies the physics. Firmly rejecting the

orthodox interpretation of quantum mechanics, particles of all types are, at all

times, regarded as objectively existing entities with their own internal structure.

Particles are guided by pilot waves, so the dualism of orthodoxy is firmly rejected

in favor of realist ontology.

What follows is a brief account of Professor Vigier’s life and career as related

to one of us (S. Jeffers) in a series of conversations held in Paris during the sum-

mer of 1999. A more complete version of these conversations will appear in a

book being compiled by Apeiron Press and the Royal Swedish Academy to

mark the 80th birthday of Professor Vigier. A comprehensive biography of

this remarkable man, whose life has witnessed major revolutions both in physics

and in politics (his twin passions), remains to be written.

‘‘Great physicists fight great battles’’—so wrote Professor Vigier in an essay

he wrote in a tribute to his old friend and mentor Louis de Broglie. However,

this phrase could be applied equally well to Vigier himself. He has waged battle

on two fronts—within physics and within politics. Now almost 80, he still con-

tinues to battle.

He was born on January 16, 1920 to Henri and Françoise (née Dupuy) Vigier.

He was one of three brothers, Phillipe (deceased) and François, currently Pro-

fessor of Architecture at Harvard University. His father was Professor of English

at the École Normale Supérieure—hence Vigier’s mastery of that language. He

attended an international school in Geneva at the time of the Spanish civil war.

This event aroused his intense interest in politics, as most of his school friends

were both Spanish and Republicans. Vigier was intensely interested in both phy-

sics and mathematics, and was sent by his parents to Paris in 1938 to study both

subjects. For Vigier, mathematics is more like an abstract game, his primary in-

terest being in physics as it rests on two legs, the empirical and the theoretical.

All the young soldiers were sent to Les Chantiers de la Jeunesse, and it was

there that he joined the Communist Party. The young radicals were involved in

acts of sabotage near the Spanish border, such as oiling the highways to impede

the progress of the fascists. At that time, the French Communist Party was deep-

ly split concerning the level of support to be given to the Résistance. A few lea-

ders went immediately to the Résistance, while others, like Thorez, wavered. In

the period before the Nazi attack on the Soviet Union, the party equivocated

with respect to the Résistance. At that time, Vigier was in a part of France
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controlled by the famous communist leader, Tillion, who had participated in the

revolt of the sailors in the Black Sea in 1918. Tillion immediately organized

groups of resistance fighters called the Organisation Spéciale. Vigier was in-

volved in bombing campaigns against both the Nazis and Vichy collaborators

in the Free Zone.

In Geneva, Vigier was involved in communicating between the French mili-

tary communist staff and Russia, until he was arrested at the French border in

the spring of 1942 and taken to Vichy. There, the French police interrogated him

as he was carrying coded documents. Two police officers brought him by train

from Vichy to Lyon to be delivered into the hands of the notorious Klaus Barbie.

Fortunately, the train was bombed by the English, and Vigier managed to jump

through a window, escaped to the mountains, and resumed his activities with the

Résistance until the end of the war. He became an officer in the FTP movement

(Francs-Tireurs et Partisans, meaning sharpshooters and supporters). When De

Gaulle returned to France, part of the Résistance forces were converted to reg-

ular army units. The cold war started almost immediately after the defeat of the

Germans. Vigier was still a member of the French General Staff while complet-

ing the requirements for a Ph.D. in mathematics in Geneva. Then the commu-

nists were kicked out of the General Staff and Vigier went to work for Joliot-

Curie. He, in turn, lost his job for refusing to build an atomic bomb for the

French government. Vigier became unemployed for a while and then learned,

through an accidental meeting with Joliot-Curie, that Louis de Broglie was

looking for an assistant. When he met De Broglie, the only questions asked

were ‘‘Do you have a Ph.D. in mathematics?’’ and ‘‘Do you want to do phy-

sics?’’ He was hired immediately in 1948, and with no questions asked about

his political views. Although Secretary of the French Academy of Science, de

Broglie was marginalized within physics circles given his well-known opposi-

tion to the Copenhagen interpretation of quantum mechanics. Notwithstanding

his Nobel prize, de Broglie had difficulty in finding an assistant. Vigier entered

the CNRS (Centre national de la recherche scientifique) and worked with De

Broglie until his retirement. Vigier’s political involvement at that time included

responsibility for the French communist student movement.

In 1952, a visiting American physicist named Yevick, gave a seminar at the

CNRS on the recent ideas of David Bohm. Vigier reports that upon hearing of

this work, De Broglie became radiant and commented that these ideas were first

considered by himself a long time ago. Bohm had gone beyond De Broglie’s

original ideas however. De Broglie charged Vigier with reading all of Bohm’s

works in order to prepare a seminar. De Broglie went back to his old ideas, and

both he and Vigier started working on the causal interpretation of quantum me-

chanics. At the 1927 Solvay Congress, de Broglie had been shouted down, but

now, following the work of Bohm, there was renewed interest in his idea that

wave and particle could coexist, eliminating the need for dualism. Vigier recalls
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that at that time, the catholic archbishop of Paris who exclaimed that everyone

knew that Bohr was right, upbraided de Broglie, and how de Broglie could pos-

sibly believe otherwise. Although a devout Christian, he was inclined to materi-

alist philosophy in matters of physics.

Vigier comments on his days with de Broglie that he was a very timid man

who would meticulously prepare his lectures in written form—in fact, his books

are largely compendia of his lectures. He also recalls one particular incident that

illustrates de Broglie’s commitment to physics. Vigier was in the habit of meet-

ing weekly with de Broglie to take direction as to what papers he should be

reading, and what calculations he should be focusing on. On one of these occa-

sions, he was waiting in an anteroom for his appointment with de Broglie. Also

waiting was none other than the French Prime Minister Edgar Faure who had

come on a courtesy visit in order to discuss his possible membership in the

French Academy. When the door finally opened, de Broglie called excitedly

for Mr. Vigier to enter as he had some important calculations for him to do,

and as for the prime minister, well he could come back next week! For De

Broglie, physics took precedence over politicians, no matter how exalted.

De Broglie sent Vigier to Brazil to spend a year working on the renewed cau-

sal interpretation of quantum mechanics with David Bohm. Thereafter, Yukawa

got in touch with de Broglie, with the result that Vigier went to Japan to work

with him for a year. Vigier comments that about the only point of disagreement

between him and de Broglie was over nonlocality. De Broglie never accepted

the reality of nonlocal interactions, whereas Vigier himself accepts the results

of experiments such as Aspect’s that clearly imply that such interactions exist.

His response to the question ‘‘Why do we do science?’’ is that, in part, it is to

satisfy curiosity about the workings of nature, but it is also to contribute to the

liberation from the necessity of industrial labor. With characteristic optimism,

he regards the new revolution of digital technology as enhancing the prospects

for a society based on the principles enunciated by Marx, a society whose mem-

bers are freed from the necessity of arduous labor—this, as a result of the ap-

plication of technological advances made possible by science.

TECHNICAL APPENDIX A: CRITICISMS OF THE U(1)
INVARIANT THEORY OF THE AHARONOV–BOHM

EFFECT AND ADVANTAGES OF AN O(3)
INVARIANT THEORY

In this appendix, the U(1) invariant theory of the Aharonov–Bohm effect [46] is

shown to be self-inconsistent. The theory is usually described in terms of a

holonomy consisting of parallel transport around a closed loop assuming values

in the Abelian Lie group U(1) [50] conventionally ascribed to electromagnetism.

In this appendix, the U(1) invariant theory of the Aharonov–Bohm effect is
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criticized in several ways with reference to the well–known test of the effect

verified empirically by Chambers [46] and a holonomy consisting of parallel

transport with O(3) covariant derivatives is applied to the Aharonov–Bohm

effect, eliminating the self-inconsistencies of the U(1) invariant theory. Close

similarities between the O(3) invariant theories of the Aharonov–Bohm and

Sagnac effects are revealed.

It is well known that the change in phase difference of two electron beams in

the Aharonov–Bohm effect is described in the conventional U(1) invariant the-

ory by

�d ¼ e

�h

ð
r A � dS ¼ e

�h

ð
B � dS ðA:1Þ

where the magnetic flux density B of the solenoid is related to the vector

potential A by

B ¼ r A ðA:2Þ

Outside the solenoid, however

B ¼ r A ¼ 0 ðA:3Þ

which means that the change in phase difference in Eq. (A.1) is zero, and that

there is no Aharonov–Bohm effect, contrary to the observation. In the U(1)

theory, an attempt is made to remedy this self-inconsistency by using the fact that

A is not zero outside the solenoid, and so can be represented by a function of the

type

A ¼ rw ðA:4Þ

The Aharonov–Bohm effect is then described by [46]

�d ¼ e

�h

þ
rw � dr ¼ e

�h
½w�2p0 ¼

e

�h

ð
B � dS ðA:5Þ

using the assertion that w is not single-valued. The analytical form of w is

w ¼ BR2

2
f ðA:6Þ

where B is the magnitude of the flux density B inside the solenoid, R is the radius

of the solenoid, and f is an angle, the f component in cylindrical polar

coordinates.
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However, the interpretation in (A.5) is self-inconsistent in several ways:

1. Outside the solenoid, B ¼ 0, so w ¼ 0 from Eq. (A.5), and there is no

Aharonov–Bohm effect, contradicting Eq. (A.5).

2. For any function w, a basic theorem of vector analysis states that

r ðrwÞ � 0 ðA:7Þ

This theorem is also valid for a periodic function, so outside the solenoid

B ¼ r A ¼ 0 ðA:8Þ

for w, and from Eq. (A.1), the Aharonov–Bohm effect again disappears. For

example, if we take the angle

w ¼ sin�1 x

a
; ð xj j < aÞ ðA:9Þ

then:

rw ¼ ða2 � x2Þ�1=2i ðA:10Þ

and

r ðrwÞ � 0 ðA:11Þ

or if we take the periodic function

w ¼ cosx; rw ¼ �sinx i ðA:12Þ

then

r ðrwÞ ¼ 0 ðA:13Þ

Another criticism of Eq. (A.5) is that the empirical result is obtained only if

w! wþ 2p, whereas in general, w! wþ 2pn for a periodic function. So the

value of n has to be artificially restricted to n ¼ 1 to obtain the correct analytical

and empirical result.

The basic problem in a U(1) invariant description of the Aharonov–Bohm

effect is that the field B is zero outside the solenoid, so outside the solenoid,

r A is zero, whereas A is not zero [46]. At the same time, the U(1) Stokes

theorem states that ð
r A � dS ¼

þ
A � dr ðA:14Þ
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so that the holonomy
H

A � dr is zero and the effect again disappears for A outside

the solenoid because the left-hand side in Eq. (A.14) is zero.

In the O(3) invariant theory of the Aharonov–Bohm effect, the holonomy

consists of parallel transport using O(3) covariant derivatives and the internal

gauge space is a physical space of three dimensions represented in the basis

((1),(2),(3)). Therefore, a rotation in the internal gauge space is a physical rota-

tion, and causes a gauge transformation. The core of the O(3) invariant explana-

tion of the Aharonov–Bohm effect is that the Jacobi identity of covariant

derivatives [46] X
s;m;n

½Ds; ½Dm;Dn�� � 0 ðA:15Þ

is identical for all gauge group symmetries with the non-Abelian Stokes theorem:þ
Dmdxm þ 1

2

ð
½Dm;Dn�dsmn � 0 ðA:16Þ

for any covariant derivative in any gauge group symmetry. In the O(3) invariant

theory, the following three identities therefore exist

þ
AðiÞ � dr ¼

ð
BðiÞ � dS; i ¼ 1; 2; 3 ðA:17Þ

that is, one for each of the three internal indices (1), (2), and (3). The quantities in

Eq. (A.17) are linked by the following vacuum definition:

Bð3Þ	 � �igAð1Þ  Að2Þ ðA:18Þ

The vector potential A(3) and the longitudinal flux density B(3) are both phaseless,

so Eq. (A.17) with i ¼ 3 is the invariant equation needed for a description of the

Aharonov–Bohm effect þ
Að3Þ � dr ¼

ð
Bð3Þ � dS ðA:19Þ

The Aharonov–Bohm effect is therefore caused by a gauge transformation in a

vacuum whose configuration space is O(3). The effect is a gauge transformation

of Eq. (A.19) into the region outside the solenoid because the left- and right-hand

sides of Eq. (A.19) exist only inside the solenoid. In general field theory, gauge

transformations of the potential and of the field are defined through the rotation

operator

S ¼ expðiMa�aðxmÞÞ ðA:20Þ
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where Ma are the group rotation generators and �a are angles that depend on the

4-vector wm. Under a general gauge field transformation

A0m ¼ SAmS�1 � i

g
ðqmSÞS�1 ðA:21Þ

G0mn ¼ SGmnS
�1 ðA:22Þ

In the O(3) invariant expression (A.19), the vector potential transforms according

to

Að3Þ ! Að3Þ þ 1

g

qa
qZ

eð3Þ ðA:23Þ

and the magnetic field transforms as

Bð3Þ ! Bð3Þ ðA:24Þ

At the point of contact with the electrons, therefore, in the region outside the

solenoid, the Aharonov–Bohm effect is caused by

1

g

þ
qa
qZ

eð3Þ � dr ¼
ð

Bð3Þ � dS ðA:25Þ

in other words, there is a magnetic field present at the point of contact with the

electrons and the left-hand side of Eq. (A.25) is physically significant. The

reason for this is that the O(3) symmetry internal space of the theory is the

physical space of three dimensions: the vacuum with configuration space O(3), a

nonsimply connected configuration space. Therefore, none of the self-inconsis-

tencies present in the U(1) invariant theory are present in the O(3) invariant

theory of the Aharonov–Bohm effect. Agreement with the empirical data is

obtained through the O(3) invariant equation:

�d ¼ e

�h

ð
Bð3Þ � dS ðA:26Þ

and this analysis clearly demonstrates the simplicity with which the novel O(3)

electrodynamics removes the self-inconsistencies of the U(1) description.

TECHNICAL APPENDIX B: O(3) ELECTRODYNAMICS
FROM THE IRREDUCIBLE REPRESENTATIONS

OF THE EINSTEIN GROUP

In Part 1 of this three-volume set, Sachs [117] has demonstrated that electro-

magnetic energy is available from curved spacetime by using the irreducible
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representations of the Einstein group. The metric is expressed using a quaternion-

valued 4-vector, qm, with 16 components. If we define the scalar components of

qm as

qm ¼ ðq0; q1; q2; q3Þ ðB:1Þ

the quaternion-valued 4-vector is defined as

smqm ¼ ðq0s0; q1s1; q2s2; q3s3Þ ðB:2Þ

In the flat spacetime limit, the qm is replaced by the 4-vector made up of Pauli

matrices:

sm ¼ ðs0;s1;s2;s3Þ ðB:3Þ

The field tensor given by Sachs in his Eq. (4.19) contains, in general, longitudinal

as well as transverse components under all conditions, including the vacuum

defined as Riemannian spacetime. Sachs’ Eq. (4.16) shows that the electro-

magnetic canonical energy-momentum tensor ðTmÞ is spacetime curvature in

precisely the same way that gravitational canonical energy momentum is

spacetime curvature. Therefore, code must be developed to solve Sachs’ Eqs.

(4.16) and (4.18) in order to understand electromagnetic phenomena in general

relativity for any given situation. Sachs’ Eq. (4.16) shows that electromagnetic

energy is available in the vacuum, defined as Riemannian curved spacetime, and

can be used to power devices.

The electromagnetic field propagating through the curved spacetime vacuum

always has a source, part of whose structure is the quaternion-valued Tm. This

source is the most general form of the Lehnert vacuum 4-current [45,49]. Gen-

eral relativity [117] also shows that there is no electromagnetic field if there is

no curvature, so a field cannot propagate through the flat spacetime vacuum of

Maxwell–Heaviside theory. The latter’s notion of transverse plane waves propa-

gating in the vacuum without a source is therefore inconsistent with both gen-

eral relativity and causality, because there cannot be cause without effect (i.e.,

field without source).

In general, all the off-diagonal elements of the quaternion-valued commuta-

tor term [the fifth term in Sachs’ Eq. (4.19)] exist, and in this appendix, it is

shown, by a choice of metric, that one of these components is the B(3) field dis-

cussed in the text. The B(3) field is the fundamental signature of O(3) electro-

dynamics discussed in Vol. 114, part 2. In this appendix, we also give the most

general form of the vector potential in curved spacetime, a form that also has

longitudinal and transverse components under all conditions, including the

vacuum. In the Maxwell–Heaviside theory, on the other hand, the vector
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potential in the vacuum is generally considered to have transverse components

only in the radiation zone, a result that is inconsistent with general relativity,

O(3) electrodynamics, and Lehnert’s extended electrodynamics.

In Vol. 114, part 1, Sachs has shown that the most general form of the elec-

tromagnetic field tensor is

Frg ¼ Q
1

4
ðkrlqlq	g þ qgq

l	krl þ qlkþrlq	g þ qgkþrlql	Þ
�

þ 1

8
ðqrq	g � qgq

	
rÞR
�

ðB:4Þ

where krl is the curvature tensor defined in terms of the spin–affine connection

[117]

krl � qr�l � ql�r � �l�r þ �r�l ðB:5Þ

where Q � �ð0Þ has the SI units of magnetic flux (Weber), and where R is the

scalar curvature in inverse square meters. The asterisk in Eq. (B.4) denotes

quaternion conjugate, which entails [117] reversing the sign of the time com-

ponent of the quaternion-valued qm. Thus, if

qm ¼ ðq0; q1; q2; q3Þ ðB:6Þ

then

qm	 ¼ ð�q0; q1; q2; q3Þ ðB:7Þ

The metric in the irreducible representation of the Einstein group is proportional

to [117]

qmqn	 þ qnqm	 6¼ 0 ðB:8Þ

and replaces the familiar metric gmn generated by the reducible representations of

the Einstein group and used to describe gravitation. Therefore, the replacement

of reducible by irreducible representations unifies the gravitational and electro-

magnetic fields inside the structure of one Lie group: the Einstein group. This

important result shows that electromagnetic energy is available from curved

spacetime in the same way that gravitational energy is available from curved

spacetime, a well-accepted concept.

The demonstration by Sachs [117] that electromagnetic energy is available

from the vacuum (Riemannian curved spacetime) generates the most precise

classical electromagnetic theory available. Its notable successes [42] include
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the ability to reproduce the Lamb shift in hydrogen without renormalization; the

ability to produce the Planck distribution of blackbody radiation classically: the

correct prediction of the lifetime of the muon state and electron–muon mass

splitting. The Sachs theory also shows the existence of physical longitudinal

and time-like components of the vector potential in the vacuum, predicts a small

but nonzero neutrino and photon mass, and establishes grounds for charge quan-

tization. These precise predictions firmly establish the possibility of obtaining

electromagnetic energy from the vacuum, and firmly establish the existence

of the B(3) field as one of the possible longitudinal components of the tensor

(B.4) in the vacuum (Riemannian curved spacetime). It follows that O(3) elec-

trodynamics is also a theory of curved spacetime, and that the extended electro-

dynamics of Lehnert is a transitional theory in flat spacetime, but one that has

several notable advantages over the Maxwell–Heaviside theory, as reviewed by

Lehnert in Part 2 of Vol. 114. The Lehnert theory also gives the B(3) field in the

vacuum.

Equation (B.4) shows that the electromagnetic field in general relativity is

non-Abelian, and acts as its own source. The gravitational field also acts as

its own source, in that the gravitational field is a source of energy that, in turn,

is gravitation. In gravitational theory, the Einstein curvature tensor is equated

with the canonical energy-momentum tensor. In electromagnetic theory, the

same applies, as in Sachs’ Eq. (4.16). Gravitation is therefore an obvious man-

ifestation of energy from the vacuum; electromagnetic energy from the vacuum

is also available in nature, a result that has been confirmed experimentally to the

precision of the Lamb shift. Therefore, there is an urgent need to develop code

to solve the Sachs field equations for any given experimental setup. This code

will show precisely the amount of electromagnetic energy that is available in the

vacuum (Riemannian curved spacetime).

The quaternion-valued metric qm can be written as

qm ¼ q0 þ qZ qX � iqY

qX þ iqY q0 � qZ

� �
ðB:9Þ

Therefore

qX ¼
0 qX

qX 0

� �
; qY ¼

0 �iqY

iqY 0

� �
ðB:10Þ

and

qXqY � qY qX ¼ iðqXqY þ qY qXÞsZ ðB:11Þ

Similarly

qXqY þ qY qX ¼ iðqXqY � qY qXÞsZ ðB:12Þ
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In order for both qXqY þ qY qX and qXqY � qY qX to have real-valued parts, the

individual scalar components qX and qY must be complex-valued in general.

We recover the structure of O(3) electrodynamics in quaternion-valued form

by a choice of metric

qX ¼
A
ð1Þ
X

Að0Þ
¼ �ieif; qY ¼

A
ð2Þ
Y

Að0Þ
¼ e�if ðB:13Þ

where f is an electromagnetic phase factor and where A(1) ¼ A(2)	 is part of the

vector potential of O(3) electrodynamics as described in the text, and whose

phase factor is a Wu–Yang phase factor as developed in Vol. 114, part 2. The

choice of metric in Eq. (B.13) leads to

qXqY � qY qX ¼ 2sZ ðB:14Þ

giving the phaseless and longitudinally directed B(3) field of O(3) electro-

dynamics

Bð3Þ ¼ � 1

4
�ð0ÞR ðB:15Þ

where �ð0Þ is a magnetic flux in webers. The two signs in Eq. (B.15) represent

left and right circular polarization. Within a factor of 1
4
, the result (B.15) is the

same as that obtained [42] using a unification scheme based on an antisymmetric

Ricci tensor.

It can therefore be inferred that O(3) electrodynamics is a theory of Rieman-

nian curved spacetime, as is the homomorphic SU(2) theory of Barrett [50].

Both O(3) and SU(2) electrodynamics are substructures of general relativity

as represented by the irreducible representations of the Einstein group, a contin-

uous Lie group [117]. The B(3) field in vector notation is defined in curved

spacetime by

Bð3Þ	 ¼ �igAð1Þ  Að2Þ ðB:16Þ

while in the flat spacetime of Maxwell–Heaviside theory it vanishes:

Bð3Þ	 ¼ �igA A ¼ 0 ðB:17Þ

From general relativity, it may therefore be inferred that the B(3) field must exist,

and that it is a physically meaningful magnetic flux density in the vacuum. The

phaseless B(3) component is one of an infinite set of longitudinal, and in general

oscillatory, components of the field tensor (B.4). This result has been tested

experimentally to the precision of the Lamb shift.
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In general, all the off-diagonal elements of the commutator term in Eq. (B.4)

exist and are nonzero. For example

q0q	Z � qZq	0 ¼ 2q0qZsZ ðB:18Þ

which is a real and physical, longitudinally directed, electric field component in

the vacuum. Such a component is in general phase-dependent. If the metric is

chosen so that

q0 ¼ qZ ¼
Að3Þ

Að0Þ
¼ 1 ðB:19Þ

we recover the longitudinal and phaseless electric field component:

Eð3Þ ¼ � 1

4
c�R ðB:20Þ

There is in-built parity violation in the Sachs theory [76], so the distinction

between axial and polar vector is lost. This is the reason why the Sachs theory

allows a phaseless E(3) to exist while O(3) electrodynamics does not. There is no

parity violation in O(3) electrodynamics. The question arises as to what is the

interpretation of the phaseless E(3) in general relativity. The empirical evidence

for a radiated B(3) field is reviewed in Vol. 114, Part 2 and in the text of this

review chapter. An example is the inverse Faraday effect, which is magnetization

produced by circularly polarized radiation. However, there is no electric

equivalent of the inverse Faraday effect; that is, there is no polarization produced

by a circularly polarized electromagnetic field. The phaseless E(3) present in the

vacuum in general relativity may, however, be interpretable as the Coulomb field

between two charges in the radiation zone. The Coulomb field is missing in

Maxwell–Heaviside theory, where the electric field is pure transverse, and as

pointed out by Dirac [42], this result cannot be a proper description of the fact

that there a longitudinal and phase-free Coulomb field between transmitter and

receiver must always be present.

The most general form of the vector potential can be obtained by writing the

first four terms of Eq. (B.4) as

Frg;1 � qrA	g � qgA	r ðB:21Þ

The vector potential is therefore obtained as

A	g ¼
Q

4

ð
ðkrlql þ qlkþrlÞq	g dxr ðB:22Þ
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and can be written as

A	g ¼ q	g
Q

4

ð
ðkrlql þ qlkþrlÞdxr

� �
ðB:23Þ

In order to prove that ð
q	g dxr ¼ q	g

ð
dxr ðB:24Þ

we can take examples, giving results such asð
q	1 dx2 ¼ �

ð
qX dY ¼ �qX

ð
dY ðB:25Þ

because qX has no functional dependence on Y. The overall structure of the field

tensor is therefore the quaternion-valued

Frg ¼ Cðqrq	g � qgq	rÞ þ Dðqrq	g � qgq	rÞ ðB:26Þ

where C and D are coefficients:

C � Q

4

ð
ðkrlql þ qlkþrlÞdxr

D � QR

8

ðB:27Þ

Equation (B.26) has the structure of a quaternion-valued non-Abelian gauge field

theory. If we denote

D

C2
¼ �ig ðB:28Þ

Eq. (B.26) becomes

Frg ¼ qrA	g � qg A	r � igðAr A	g � Ag A	rÞ ðB:29Þ

which is a general gauge field theory where A	g is quaternion-valued. The rules

of gauge field theory developed in the text and in part 2 of Vol. 114 can be applied

to Eq. (B.29); for example, Eq. (B.29) is derived from a holonomy in curved

spacetime.
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4. A. J. Fresnel, Mémoires Acad. Sci. 5, 1821–1822 (1819).

5. M. W. Evans, ‘‘The present status of the quantum theory of light,’’ in S. Jeffers, S. Roy, J. P.

Vigier, and G. Hunter (Eds.), Proc. Symp. (Aug. 25–29, 1997) in Honour of Jean-Pierre Vigier,

Kluwer, Dordrecht, 1998.

6. P. W. Milloni, The Wave Particle Dualism—a tribute to Louis De Broglie on his 90th Birthday,

Reidel, Dordrecht, 1984.

7. A. Einstein, Ann. Phys. 17, 132 (1905).

8. L. Mandel, Prog. Opt. 13, 27 (1976).

9. A. Einstein, Phys. Z. 10, 185 (1909).

10. P. A. M. Dirac, The Principles of Quantum Mechanics Clarendon, Oxford, 1930 (4th ed. by

Oxford Univ. Press, London, 1958), p. 9.

11. H. Paul, Rev. Mod. Phys. 58(1) (1986).

12. R. L. Pfleegor and L. Mandel, Phys. Rev. 159, 1084 (1967).

13. G. I. Taylor, Proc. Cambridge Phil. Soc. 15, 114 (1909).

14. R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 (1956).

15. P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).

16. A. Aspect and P. Grangier, Hyp. Int. 37, 3 (1987).

17. A. Aspect, in A. I. Miller (Ed.), Sixty Two Years of Uncertainty, Plenum, New York, 1990.

18. A. Einstein, Phys. Z. 18, 121 (1917).

19. A. H. Compton, Phys. Rev. 21, 483 (1923).

20. G. Tarozzi, Lett. Nuovo Cimento 42, 438 (1985).

21. J. R. Croca, Found. Phys. 17, 971 (1987).

22. J. R. Croca, A. Garrucio, and F. Selleri, Found. Phys. Lett. 1, 101 (1988).

23. S. Jeffers and J. Sloan, Found. Phys. Lett. 7, 333 (1994).

24. X. Y. Zou, T. Grayson, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 68, 3667 (1992).

25. J. R. Croca, ‘‘Beyond non-causal quantum mechanics,’’ Part 2, Chap. 8, this compilation.

26. G. Garola and A. Arcangelo Rossi, The Foundations of Quantum Mechanics-Historical Analysis

and Open Questions, Kluwer, Dordrecht, 1995.

27. F. Selleri, in A. van der Merwe (Ed.), Quantum Paradoxes and Physical Reality, Kluwer,

Dordrecht, 1990.

28. D. Home, Conceptual Foundations of Quantum Mechanics—an Overview from Modern

Perspectives, Plenum, New York, 1997.

29. Y. Mizobuchi and Y. Ohtake, Phys. Lett. A 168, 1 (1992).

30. L. de Broglie, Ann. Phys. (Paris) 3, 22 (1925).

31. L. de Broglie, Nobel lecture, 1929.

32. G. Lochak, preface to L. de Broglie, Les incertitudes d’Heisenberg et l’interprétation
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116. Ph. Guéret and J. P. Vigier, ‘‘Relativistic wave equations with quantum potential non-linearity,’’

Lett. Nuovo Cimento, 38(4) (1983).

117. M. A. Dubois, E. Giraud, and J. P. Vigier, ‘‘A surprising feature of a set of apparent QSO-galaxy
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(La parapsychologie, oui ou non?) (4ème trimestre), 77 (1980).

145. N. Cufaro-Petroni, Z. Maric, Dj. Zivanovic, and J. P. Vigier, ‘‘Baryon octet magnetic moments in

an integer charged quark oscillator model,’’ Lett. Nuovo Cimento 29(17) (Ser. 2) 565–571 (1980).

146. J. P. Vigier, ‘‘De Broglie waves on Dirac aether: A testable experimental assumption,’’ Lett.

Nuovo Cimento 29(14) (Ser. 2), 467–475 (1980).

147. A. Garuccio, K. Popper, and J. P. Vigier, Phys. Lett. 86A, 397 (1980).

148. A. Garrucio and J. P. Vigier, ‘‘Possible experimental test of the causal stochastic interpretation of

quantum mechanics: Physical reality of de Broglie waves,’’ Found. Phys. 10(9–10), 797–801

(1980).

149. F. Selleri and J. P. Vigier, ‘‘Unacceptability of the Pauli–Jordan propagator in physical

applications of quantum mechanics,’’ Lett. Nuovo Cimento 29(1) (Ser. 2), 7–9 (1980).

150. J. and M. Andrade e Silva, C. R. Acad. Sci. Paris 290, 501 (1980).

151. N. Cufaro-Petroni, A. Garuccio, F. Selleri, and J. P. Vigier, ‘‘On a contradiction between the

classical (idealized) quantum theory of measurement and the conservation of the square of the

total angular momentum in Einstein–Podolsky–Rosen paradox,’’ C. R. Acad. Sci., Sér. B

(Sciences Physiques), 290(6), 111–114 (1980).

152. A. Garuccio, G. D. Maccarrone, E. Recami, and J. P. Vigier, ‘‘On the physical non-existence of

signals going backwards in time, and quantum mechanics,’’ Lett. Nuovo Cimento 27(2) (Ser. 2),

60–64 (1980).

153. A. Garuccio, G. D. Maccarrone, E. Recami, and J. P. Vigier, On the Physical Non-existence of

Signals Going Backwards in Time, and Quantum Mechanics, Report PP/635, Instituto Nazionale

Fisica Nucleare, Catania, Italy, 1979.

154. N. Curfaro-Petroni and J. P. Vigier, ‘‘Markov process at the velocity of light: The Klein–Gordon

statistic,’’ Int. J. Theor. Phys. 18(11), 807–818 (1979).

155. N. Cufaro-Petroni and J. P. Vigier, ‘‘Stochastic derivation of Proca’s equation in terms of a fluid

of Weyssenhoff tops endowed with random fluctuations at the velocity of light,’’ Phys. Lett. A

73A(4), 289–299 (1979).

156. J. P. Vigier, C. Phillipidis et al., ‘‘Quantum interference and the quantum potential,’’ Nuovo

Cimento 52B, 25 (1979).

157. N. Cufaro-Petroni and J. P. Vigier, ‘‘Causal superluminal interpretation of the Einstein–

Podolsky–Rosen paradox,’’ Lett. Nuovo Cimento 26(5) (Ser. 2), 149–154 (1979).

158. N. C. Petroni and J. P. Vigier, ‘‘On two conflicting physical interpretations of the breaking of

restricted relativistic Einsteinian causality by quantum mechanics,’’ Lett. Nuovo Cimento 25(5)

(Ser. 2), 151–156 (1979).

188 m. w. evans and s. jeffers



159. T. Jaakkola, M. Moles, and J. P. Vigier, ‘‘Empirical status in cosmology and the problem of the

nature of redshifts,’’ Astron. Nach. 300(5), 229–238 (1979).

160. J. P. Vigier, ‘‘Model of quantum statistics in terms of a fluid with irregular stochastic fluctuations

propagating at the velocity of light: A derivation of Nelson’s equations,’’ Lett. Nuovo Cimento

24(8) (Ser. 2), 265–272 (1979).

161. J. P. Vigier, ‘‘Superluminal propagation of the quantum potential in the causal interpretation of

quantum mechanics,’’ Lett. Nuovo Cimento 24(8) (Ser. 2), 258–264 (1979).
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C. R. Acad. Roy. Liège (Belgium) 44(11–12), 706–716 (1975).
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235. P. Guéret, and J. P. Vigier, ‘‘Une représentation paramétrique de l’algèbre de Lie du groupe
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287. J. P. Vigier, ‘‘Introduction des paramètres relativistes d’Einstein–Klein dans l’hydrodynamique
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299. J. P. Vigier, ‘‘Remarque sur la théorie de l’onde pilote,’’ C. R. Acad. Sci. 233, 641 (note) (1951).
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I. INTRODUCTION

A. Force Lines, Vortex Atoms, Topology, and Physics

The lines of force, both electric and magnetic, were very real to Faraday when he

proposed the idea of field. In his view, forged after many long hours of laboratory

work, they had to be tangible and concrete, since the experiments indicated

clearly that something very special occurred along them, a sort of perturbation of

space of a nature still to be understood at the time [1].

Faraday’s original view was maintained during most of the nineteenth

century, as it is clear from the many attempts to explain the lines of force in

terms of the streamlines and vorticity lines of the ether. During a long period,

the electromagnetic phenomena were supposed to be a manifestation of the

motion of this subtle substance, which would be understood eventually thanks to

the mechanics of fluids. According to this opinion, the lines of force were

associated with ether particles and had, therefore, the reality of a material subs-

tance, even if it were of a very special kind. Nobody less than Maxwell, who had

argued several times in terms of this interpretation of the electric and magnetic

lines [2–4], admitted as a sound and promising idea Kelvin’s suggestion in 1868

that atoms were knots or links of the vortex lines of the ether, a picture presented

expressively in a paper called ‘‘On vortex atoms’’ [5–8]. He liked the idea, as it

expressed for instance in his presentation of the term ‘‘atomism’’ in the Encyclo-

paedia Britannica in 1875 [9,10].

Kelvin used to say: ‘‘I can never satisfy myself until I can make a mechanical

model of a thing.’’ Because of this urge, deeply engraved in his scientific style,

he was reluctant to fully accept Maxwell’s new electromagnetic theory. Looking

for a different approach, he had applied to his topological idea the then new

Helmholtz’s theorems on fluid dynamics. He did find extremely unsatisfactory

the then widely held view of infinitely hard point atoms or, in his own words,

‘‘the monstrous assumption of infinitely strong and infinitely rigid pieces of

matter’’ [11]. Kelvin was much impressed by the conservation of the strength of

the vorticity tubes in an inviscid fluid according to Helmholtz theorems, thinking

that this was an inalterable quality on which to base an atomic theory of matter
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without infinitely rigid entities. We know now that this is also a trait of topolo-

gical models, in which some invariant numbers characterize configurations that

are rigid and can deform, distort or warp. As he put it, ‘‘Helmholtz has proved

an absolutely unalterable quality in any motion of a perfect liquid . . . any portion

[of it] has one recommendation of Lucretius’ atoms—infinitely perennial

specific quality.’’

Inspired by Helmholtz theorems, Kelvin understood in a striking combina-

tion of geometric insight and physical intuition that such knots and links would

be extremely stable, just as matter is. Furthermore, he thought that the remark-

able variety of the properties of the chemical elements could be a consequence

of the many different ways in which such curves can be linked or knotted.

Should he be alive today, he could have added to stability and variety two other

important properties of matter, not known in his time [12]. One is transmuta-

bility, the ability of atoms to change into another kind in a nuclear reaction,

which could be related to the breaking and reconnection of lines, as happens, for

instance, to the magnetic lines in plasmas after disruptions in a tokamak. The

other is the discrete character of the spectrum, which is also a property of the

nontrivial topological configurations of a vector field, as was shown by

Moffatt [13].

The reception to Kelvin’s idea was good; Maxwell was impressed by its

mechanical simplicity and because its success in explaining phenomena would

not depend on ad hoc hypothesis. However, neither topology nor atomic pheno-

menology was sufficiently developed to follow this deep insight. It was soon

forgotten to remain unknown for a long time.

It is ironic that, in spite of his favorable attitude to Kelvin’s model, Maxwell

himself contributed to the fading of the force lines with his monumental Treatise

on Electromagnetism, after which, because of the successful developments of

algebra and differential geometry, the line of force was relegated behind the

concepts of electromagnetic tensor Fmn and electromagnetic vectors Ei;Bj;Am. It

is usually now a secondary concept, always derived from Fmn as the integral

lines of B and E. As it is used mainly in elementary presentations, it is often

assumed that it is not adequate for a deep analysis of the electromagnetic

interactions.

Topology appeared again in fundamental physics with Dirac’s appealing and

intriguing proposal of the monopole in 1931 [14] and its quantization of the

electric charge because of a mechanism requiring that the fundamental electric

and magnetic charges, e and g, verify the so-called Dirac relation eg ¼ 2p (in

MKS rationalized units with vacuum permittivity equal to 1); although that new

particle was never observed, the idea is certainly fertile and was later developed

in other contexts [15,16]. Since 1959, when Aharonov and Bohm [17] dis-

covered the effect that bears their name, it is known that the description of some

electromagnetic phenomena does require topological considerations. Another
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important milestone is the sine–Gordon equation, which offers the simplest

model with a conservation law of topological origin, based on the degree of a

map S1 7!S1 of the circle on itself. Its extension to three dimensions by Skyrme

[18–20] lead to a model with topological solitons and a conserved constant

proportional to the degree of a map S3 7!S3 between three-dimensional spheres.

Skyrme had studied with attention Kelvin’s ideas on vortex atoms. As he

explained he had three reasons for proposing his own model: unification,

renormalization, and what he called the ‘‘fermion problem.’’ He hoped that

his skyrmion, as his basic solution came to be known, would be a fundamental

boson from which all the particles would be built; because any topological

theory is nonlinear, the possibility of removing the infinities seemed a realistic

aim; he did not like fermions as fundamental entities so that explaining them out

of bosons seemed very attractive to him.

The classification of knots and links had been attempted by Tait in 1911,

when trying to develop Kelvin’s model of the vortex atom. He posed the

problem and formulated some conjectures, treating with success the simplest

cases. However, in spite of its interest, this new branch of mathematics fell into

oblivion for many years—in spite of the discovery in 1928 of the Alexander

polynomials, which are invariants associated with knots and links—until the

1980s, when Jones found another set of polynomials that opened the door to the

proof of some of Tait’s conjectures. Simultaneously, the idea that topology will

play a major role in quantum physics was progressively imposing itself. As

Atiyah [12] puts it, this is not surprising, since ‘‘both topology and quantum

physics go from the continuous to the discrete.’’ Developments from pure

mathematics turned out to be related to Yang–Mills field theory, such as the

proposal by Witten of a topological quantum field theory that may open the way

to a deeper understanding of quantum physics [21,22] or the study of config-

urations of vector fields [23].

B. The Aim of This Work

The aim of this report is to explain and develop a topological model of elec-

tromagnetism that was presented by one of us (AFR) in 1989 [24–26]. The main

characteristics of this model are

1. It is based on the idea of ‘‘electromagnetic knot,’’ introduced in 1990

[27–29] and developed later [30–32]. An electromagnetic knot is defined as a

standard electromagnetic field with the property that any pair of its magnetic

lines, or any pair of its electric lines, is a link with linking number ‘ (which is a

measure of the extent to which the force lines curl themselves around one

another, i.e., of the helicity of the field). These lines coincide with the level

curves of a pair of complex scalar fields f, y. The physical space and the

complex plane are compactified to S3 and S2, so that the scalars can be
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interpreted as maps S3 7!S2, which are known to be classified in homotopy

classes characterized by the integer value of the Hopf index n, which is related

to the linking number ‘. Moreover, the Faraday 2-form and its dual are equal to

the pullbacks of the area 2-form in S2 by the two maps F ¼ �f�s; �F ¼ y�s:
The topology of the force lines thus induces a topological structure in the set of

the fields of the model.

2. The topological model is locally equivalent to Maxwell’s standard theory

in the sense that the set of electromagnetic knots coincides locally with the set

of the standard radiation fields. In other words, standard radiation fields can be

understood as patched-together electromagnetic knots. This can still be express-

ed as the statement that, in any bounded domain of spacetime, any standard

radiation fields can be approximated arbitrarily enough by electromagnetic

knots (except for a zero measues set). However, it is not globally equivalent to

Maxwell’s theory because of the special way in which the electromagnetic knots

behave around the point at infinity.

3. The standard Maxwell equations are the exact linearization by change of

variables (not by truncation) of a set of nonlinear equations referring to the

scalars f; y. The fact that this change is not completely invertible produces a

hidden nonlinearity, thanks to which the linearity of the Maxwell equations is

compatible with the existence of topological constants of motion that are

nonlinear in Am and Fmn.

4. In the case of empty space, one of these topological constants of the

motion is the electromagnetic helicity of a knot, defined as the semisum of the

magnetic and electric helicities, which turns out to be equal to the Hopf index n

of the maps f and y: H ¼ 1
2

Ð
A � B þ C � Eð Þ d3r ¼ n; where B ¼ =� A,

E ¼ =� C. This implies an interesting interpretation of the Hopf index n, since

that helicity is equal to the classical expression of the difference between the

numbers of right-handed and left-handed photons contained in the field NR � NL

(defined by substituting Fourier transform functions for creation and annihila-

tion operators in the quantum expression). In other words, n ¼ NR � NL: This

establishes a relation between the wave and the particle understanding of the

idea of helicity, that is, between the curling of the force lines to one another and

the difference between right- and left-handed photons contained in the field.

5. Another topological constant of motion is the electric charge (and

eventually the magnetic charge as well), which is topologically quantized in

such a way that any charge is always equal to an integer number times q0: (a)

the fundamental charge is q0 ¼ 1, in natural units (in the rationalized MKS

system q0 ¼
ffiffiffiffiffi
�hc

p
; in SI units q0 ¼

ffiffiffiffiffiffiffiffiffi
�hcE0

p
); (b) the number of fundamental

charges inside a volume is the degree of a map between two spheres S2. Note

that q0 ¼ 3:3 e ¼ 5:29 � 10�19 C: We will argue in Section VII that this is a

‘‘good’’ value.
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The model has, moreover, the appealing property of being completely

symmetric between electricity and magnetism, to the point of having room

for magnetic charges, also quantized and having the same fundamental value q0.

This might seem a negative feature at first sight, since the Dirac monopole g has

a value quite different from that of the electric charge: ð2aÞ�1 ¼ 68:5 times

bigger. However, it is known that the sea of virtual electron–positron pairs of the

vacuum is dielectric but must be paramagnetic, so that the observed electric

charge must be smaller than the bare one, while the observed magnetic charge

should be larger. As the model is classical, an intriguing idea arises: q0 could be

interpreted as the common value of the electric and the magnetic bare charges,

assuming that the effect of the virtual pairs is to decrease the observed electric

charge from q0 ¼ 5:29 � 10�19 C to e ¼ 1:6 � 10�19 C and to increase the

magnetic charge with room in the model from q0 to g ¼ 1:1 � 10�17 C ¼ 68:5 e.

The model was proposed in Ref. 24 and developed in Refs. 25,27–32, and 34.

C. Faraday’s Conception of Force Lines Suggests a Topological
Structure for Electromagnetism

As we said above, Faraday thought of the force lines as something real,

concrete, and tangible. Let us now be faithful to his original view, representing

the dynamics of the electromagnetic field by the evolution of its magnetic and

electric lines or, in other words, attempting a line dynamics (For the time being,

we consider only the case of empty space; point charges will be introduced

later.) In order to compare with the standard formulation of electromagnetism,

we need to know how to derive the electromagnetic tensor from these lines. As a

simple tentative idea, let us represent the magnetic lines by the equation

fðt; x; y; zÞ ¼ f0 where f is a complex function of space and time and f0 is a

constant labeling each line. This means that the magnetic lines are the level

curves of fðt; x; y; zÞ. As the magnetic field is tangent to them, it can always be

written as (bars over complex numbers indicate in this work complex conjugation)

B ¼ g=�f� =f

where g is some function that, because = � B ¼ 0, must depend on (t,r) only

through f and �f, that is

B ¼ gðf; �fÞ=�f� =f ð1Þ

which can also be written as

Bk ¼ � 1

2
Eijk Fij ð2Þ
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where

Fij ¼ �gðf; �fÞðqi
�fqjf� qj

�fqifÞ ð3Þ

Covariance implies, then, that the Faraday electromagnetic tensor must have the

form

Fmn ¼ �gðf; �fÞðqm�fqnf� qn�fqmfÞ ð4Þ

and the electric field is

E ¼ �gðf; �fÞðq0
�f=f� q0f=�fÞ ð5Þ

Therefore, when trying a line dynamics, an antisymmetric rank 2 tensor appears.

As is seen, E � B ¼ 0 or, equivalently, detðFmnÞ ¼ 0, as the electric and the vector

fields are orthogonal, which means that, with this method, the Faraday 2-form

is degenerate and the field is of radiation type (also called singular, degenerate,

or null).

We will admit that the total energy is finite, which implies, of course, that B
and E go to zero at infinity. The simplest way for this condition to be achieved is

requiring that the limit of f when r ! 1 does not depend on the direction or,

stated otherwise, that f takes only one value at infinity. There are certainly other

ways; we could, for instance, ask that f is real or that its real part is a function

of its imaginary part at r ¼ 1. In this work the first and simplest possibility is

explored and so, after assuming that the magnetic lines are the level curves of

the scalar f, it will be admitted also that f is one-valued at infinity.

The title of this section alludes to an important consequence of this argument.

It is clear that the fact that f is one-valued at infinity implies that R3 is compac-

tified to S3 and that fðr; tÞ can be interpreted at any time as a map S3 7!S2, after

identifying, via stereographic projection, R3 [ f1g with S3 and the complete

complex plane C with S2. Maps of this kind have nontrivial topological

properties, so that the attempt to describe electromagnetism by the evolution

of the magnetic lines, represented as the level curves of a complex function,

leads in a compelling and almost unavoidable way to the appearance of a

topological structure—and a very rich one, as we will see.

It turns out that a tensor as that of (4) is similar to an important geometric

object related to the map f. Let us consider the area 2-form s in the sphere S2,

normalized to unit total area. Its pullback to S3 � R (identified with the

spacetime) is

f�s ¼ 1

2pi

df ^ d�f

ð1 þ �ffÞ2
ð6Þ
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[This means that we take the complex number fðr; tÞ as a coordinate in S2.]

Note that f� in (6) indicates pullback by the corresponding map f and should not

be mistaken for the complex conjugate of f, which we denote as �f. As we see,

there is a 2-form closely associated with the scalar, the level curves of which

coincide with the magnetic lines. Since both f�s and the Faraday 2-form F ¼
1
2

Fmndxm ^ dxn are closed, it seems natural to identify the two, up to a normali-

zation constant factor that, for later convenience, we write as �
ffiffiffi
a

p
. More

precisely, we assume that

F ¼ �
ffiffiffi
a

p
f�s ð7Þ

and, consequently

Fmn ¼
ffiffiffi
a

p

2pi

qm�fqnf� qn�fqmf

ð1 þ �ffÞ2
ð8Þ

Note that the normalizing constant a, with the dimensions of action times

velocity, must be introduced necessarily in order for Fmn to have the right

dimensions; it can always be written as the product of a pure number times the

Planck constant times the light velocity (in natural units, a is a pure number; the

electric and magnetic fields are then inverse square lengths). As is seen, Fmn is of

the form (4) with g ¼ �
ffiffiffi
a

p
=ð2pið1 þ �ffÞ2Þ. It should be stressed now that the

assumption that f has only one value at infinity leads compellingly from (1) to

(8). Because F is closed in S3, the second cohomology group of which is trivial,

there exists a 1-form A ¼ Amdxm, such that F ¼ dA, where the 4-vector Am is

clearly the electromagnetic field, Fmn ¼ qmAn � qnAm and B ¼ =� A
[24,25,36,37].

As long as no charges are present, we can play the same game with the

electric field E and a scalar field y, the level curves of which coincide with the

electric lines. In that case, if the pullback of the area 2-form in S2 by y is

y�s ¼ 1

2pi

dy ^ d�y

ð1 þ �yyÞ2
ð9Þ

and the dual to the Faraday form is taken to be

�F ¼
ffiffiffi
a

p
y�s ð10Þ

the dual to the Faraday tensor is then

�Fmn ¼
ffiffiffi
a

p

2pi

qmyqn�y� qnyqm�y

ð1 þ �yyÞ2
ð11Þ
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so that the following duality condition must be fulfilled

�Fmn ¼ 1

2
EmnabFab ð12Þ

which expresses the duality of F and �F. The conditions for the existence of the

pair f; y will be discussed later; for the moment let us say that they pose no

difficulty. Equation (12) can be written also somewhat more formally as

�f�s ¼ �y�s ð13Þ

where � is the Hodge or duality operator.

It is convenient now to introduce two definitions:

1. We will say that the map w: S3 � R 7!S2, given by a scalar field wðr; tÞ,
generates an electromagnetic field if the corresponding pullback of the

area form in S2 w�s, or its dual form �w�s, verifies the Maxwell equations

in empty space.

2. A pair of maps f; y: S3 � R 7!S2, given by two scalar fields fðr; tÞ; yðr; tÞ,
will be said to be a pair of dual maps, if the pullback of s, the area form

in S2, by the first map is equal to the dual of the pullback by the second

one. In other words, if

f�s ¼ �y�s; y�s ¼ ��f�s ð14Þ

Note that, as the square of the Hodge operator is �1, these two equations

imply each other.

An equivalent definition is that f and y are dual if they define, by pullback of

the area 2-form in S2, two tensors Fmn, �Fmn, given by Eqs. (8) and (11), which

are dual in the sense of Eq. (12).

A surprising and important property appears now, expressed by the following

proposition.

Proposition 1. If fðr; tÞ; yðr; tÞ are two scalar fields one-valued at infinity, and

they form a pair of dual maps f; y: S3 7!S2, the forms, F ¼ �
ffiffiffi
a

p
f�s and

�F ¼
ffiffiffi
a

p
y�s, verify necessarily the Maxwell equations in empty space.

Proof. The proof is simple. The 2-forms F ¼ �
ffiffiffi
a

p
f�s and �F ¼

ffiffiffi
a

p
y�s are

exact (because the second group of cohomology of S3 is trivial), so that they

verify

dF ¼ 0; d�F ¼ 0 ð15Þ
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which are the Maxwell equations in empty space. Note that the substitution of the

duality condition (13) changes each one of these equations into the other, as it

gives

d � ðf�sÞ ¼ 0; d � ðy�sÞ ¼ 0 ð16Þ

which are in fact d �F ¼ 0, dF ¼ 0. [In terms of the two tensors: it is easy to

see from (8) and (11) that both obey automatically the first pair EabgdqbFgd ¼ 0,

Eabgdqb �Fgd ¼ 0. Substitution of (12) gives qaFab ¼ 0, q�aFab ¼ 0, the second

pair for both.]

To summarize this subsection, the description of the dynamics of the force

lines as the level curves of two maps S3 7!S2, given by two complex functions f
and y, leads in a compelling way to a topological structure, in such a way that

the mere existence of a pair of such functions guarantee that the corresponding

pullbacks of the area 2-form in S2 automatically obey the Maxwell’s equations

in empty space.

In other words, for any pair of complex scalar fields, dual to one another in

the sense explained above, there is an electromagnetic field in empty space. This

association is studied in detail in the following text.

D. The Hopf Index

As we have shown, if a scalar field fðrÞ is one-valued at infinity (i.e. if its limit

when r ! 1 does not depend on the direction), it can be interpreted as a

map f: S3 7!S2. To do that, one must identify, via stereographic projection, the

3-space plus the point at infinity R3 [ f1g with S3, and the complete complex

plane C [ f1g with the sphere S2.

To realize these identifications, we can proceed as follows. A point P in S2

can be represented in two convenient ways: (1) with the Cartesian coordinates

n1; n2; n3, such that n2 ¼
P

n2
k ¼ 1; and (2) with the spherical angles #;j,

related to nk by n1 þ in2 ¼ sin#expðijÞ, n3 ¼ cos#. Its stereographic projec-

tion is the complex number f ¼ cotð#=2ÞexpðijÞ, which will be taken in this

work as the coordinate of P in S2 (unless otherwise stated). On the other hand,

the Cartesian u1; . . . ; u4 with the condition
P

u2
k ¼ 1 can be taken as coordi-

nates of a point Q in S3. Their relation with the Cartesian x1; x2; x3 of its

stereographic projection on the 3-space u4 ¼ 0 are xk ¼ uk=ð1 � u4Þ, and the

inverse equations uk ¼ 2xk=ð1 þ r2Þ, u4 ¼ ðr2 � 1Þ=ðr2 þ 1Þ, with r2 ¼
P

x2
k .

In this way, a complex function fðrÞ can be interpreted as a map S3 7!S2.

This is very important, since maps of this kind can be classified in homotopy

classes labeled by a topological integer number called the Hopf index, so that

the same topological property applies to any scalar field (provided that it is one-

valued at infinity).

Let a map f : S3 7!S2, which we suppose to be smooth, be realized by a

complex function f ðrÞ, and let us consider the pullback of the area 2-form of S2
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normalized to the unity s, which is equal to (for convenience we introduce a

minus sign)

F ¼ �f �s ¼ 1

2pi

d�f ^ df

ð1 þ �f f Þ2
ð17Þ

Since F is closed in S3 whose second group of cohomology is trivial, it must also

be exact or, in other words, there exists a 1-form A, well defined in S3 and such

that F ¼ dA. As was shown in 1947 by Whitehead [43], the integral of the form F

through �a which gives the Hopf index can be written as

n ¼
ð

S3

A ^ F ð18Þ

[Note that this expression is unchanged by the minus sign introduced in Eq. (17).]

It must be stressed that the Hopf index is closely related to the linking

number of any pair of lines ‘ (defined as the number of intersections of one line

with a surface bounded by the other), but is a different concept. If the multipli-

city of the map is m [i.e., if the level curves defined by the equation fðrÞ ¼ f0

have m disjoint connected components], the Hopf index is n ¼ ‘m2. If a line is

defined as a level curve, and there is multiplicity, it is the union of m closed

loops. In that case, we could generalize the idea of linking number of the lines

to design all the linkings of two sets of m loops each one, what is precisely ‘m2.

However, mathematicians seldom use that generalization [36–42].

It is convenient to consider the 2-form F in more detail. From (17) we can

write

F ¼ 1

2
fij dxi ^ dxj ¼

1

4pi

qi
�fqj f � qj

�f qi f

ð1 þ �f f Þ2
dxi ^ dxj ð19Þ

Like any antisymmetric tensor in three dimensions, fij can be expressed in terms

of a vector bðrÞ as

fij ¼ �Eijkbk; bk ¼ � 1

2
Eijk fij ð20Þ

It can be seen from (19) that = � b ¼ 0. Consequently, if A ¼ �aidxi, it turns out

that b ¼ =� a. It is clear that the vector b is always tangent to the level curves of

f , which are its integral lines. It plays an important role in the description of the

maps from S3 (or R3) to S2 (or C). Here, it is called the Whitehead vector of the

map f , and is noted b ¼ Wf . The expression (18) of the Hopf index can then be

written as

n ¼
ð

R3

a � b d3r ð21Þ
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The quantity in the right-hand side of (21) is called the helicity of the vector b and

is used in several contexts, mainly in fluid and in plasma physics. The term was

coined by Moffatt in 1969 in a paper on tangled vorticity lines [44] with the

velocity of a fluid v and its vorticity o¼ =� v as the vectors a and b. The

magnetic helicity h ¼
Ð

A � Bd3r is useful to study the magnetic configurations

in astrophysical plasmas and in tokamaks.

E. Magnetic and Electric Helicities

In Section I.B, two maps f,y were introduced, such that its level curves are

the magnetic and electric lines of an electromagnetic field. Comparing the

expressions (6)–(7) and (9)–(10) with (17), we observe a close formal relation

between the theory of the Hopf index and the Maxwell theory in empty space. It

follows that, for the electromagnetic fields generated by pairs of dual

maps f; y: S3 7!S2, there are two constants of the motion of topological origin.

They are the magnetic helicity

hm ¼
ð

R3

A � B d3r ¼ nma ð22Þ

where nm is the Hopf index of the map f, related (as explained before) to the

linking number of any pair of its level curves that coincide with the magnetic

lines, and the electric helicity

he ¼
ð

R3

C � E d3r ¼ nea ð23Þ

where C is a vector potential for E , that is, =� C ¼ E; and ne is the Hopf index

of the map y, related (as explained before) to the linking number of any pair of

electric lines which are the level curves of y.

It will be shown in Section II.C that the two Hopf indices are equal,

nm ¼ ne ¼ n, in the case of electromagnetic knots in empty space.

F. Definition of an Electromagnetic Knot

The defining physical feature of an electromagnetic knot is that any pair of

magnetic lines (or of electric lines) is a pair of linked loops (except perhaps for

some exceptional lines or exceptional times) (see Fig.1). From the mathematical

point of view, we define an electromagnetic knot to be an electromagnetic field

generated by a pair of dual maps f; y: S3 7!S2 verifying (14) [i.e., an electro-

magnetic field that can be expressed in terms of a pair of dual maps by means of

equations (8) and (11)].
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This definition implies that the corresponding Faraday 2-form F and its dual

�F can be written as F ¼ �f�s and �F ¼ y�s, that is, as minus the pullback

and the pullback of the area form in S2 s by the two maps. This will be relevant

for the quantization of the charge.

A very important property is that the magnetic and electric lines of an

electromagnetic knot are the level curves of the scalar fields fðr; tÞ and yðr; tÞ,
respectively. Another is that the magnetic and the electric helicities are topologi-

cal constants of the motion, equal to the common Hopf index of the correspond-

ing pair of dual maps f; y times a constant with dimensions of action times

velocity.

In an electromagnetic knot, each line is labeled by a complex number. If

there are m lines with the same label, we will say that m is the multiplicity. If all

the pairs of line have the same linking number ‘, it turns out that the Hopf index

is given as n ¼ ‘m2.

An electromagnetic knot is a radiation field (i.e., E � B ¼ 0); the magnetic

and electric lines are orthogonal at any point. This means that E, B, and the

Poynting vector S ¼ E � B are three orthogonal vectors everywhere. The corres-

ponding three families of curves (electric, magnetic, and energy flux lines) form

three orthogonal fibrations of S3, since each family fills all the space, in the

Figure 1. Schematic aspect of several force lines (either magnetic or electric) of an

electromagnetic knot. Any two of the six lines shown are linked once.
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sense that a line of each kind passes through every point (although there may be

some exceptional lines, or one or several of the vectors may vanish at certain

points or times). This property is allowed by the fact that S3 is parallelizable.

Indeed, an electromagnetic knot has a rich structure.

II. MEANINGS OF ELECTRIC AND MAGNETIC HELICITIES

The helicity of a divergenceless vector field was already used by Woltjer in

1958 [45] in an astrophysical context. Moreau [46] showed soon after that it is a

conserved quantity in certain flows of fluid dynamics. Moffatt, in a seminal

paper [44], coined the term helicity and clarified its topological meaning. For a

pedagogical review, see Ref. 47.

Let XðrÞ, r 2 D, be a real vector field defined in a parallelizable three-

dimensional (3D) manifold D. If X is divergenceless, that is, if = � X ¼ 0,

another vector field exists in D, at least locally: the vector potential YðrÞ, such

that X ¼ =� Y. The helicity of the divergenceless vector field XðrÞ in D is the

integral

hðX;DÞ ¼
ð

D

X � Y d3r ð24Þ

We will write hðXÞ or simply h if there is no risk of confusion. The helicity (24) is

especially useful in two physical contexts: (1) in fluid dynamics, where Y is the

flow velocity vðr; tÞ, X is the vorticity w ¼ =� v, and hðw;DÞ is called vortex

helicity; and (2) in plasma physics, or in general in electromagnetism, under the

form of magnetic helicity, defined as

hm ¼
ð

D

A � B d3r ð25Þ

in terms of the magnetic field and its vector potential. Using the field equations

for B and A, we find that the time evolution of the magnetic helicity (25) is given

by

q
qt

ð
D

A � Bd3r ¼ �2

ð
D

E � Bd3r �
ð
qD

ðA0B þ E � AÞ � n dS ð26Þ

where n is an unit vector orthogonal to the surface qD, the border of the manifold

D, and dS is the area element in that surface. For the magnetic helicity to be time

invariant, the integrals at the right hand side of (26) must vanish, this implying

two conditions. The surface integral in (26) depends on the boundary conditions;
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we will take fields that vanish in qD, so that the only requirement for the time

invariance of the magnetic helicity is

ð
D

E � Bd3r ¼ 0 ð27Þ

The equation E � B ¼ 0 is Lorentz-invariant. The fields that satisfy it are called

radiation fields.

The electric and magnetic fields are invariant under gauge transformations

AmðxÞ 7!AmðxÞ þ qm�ðxÞ. The effect of these transformations on the helicity has

been treated by Marsh [49]. The variation of the magnetic helicity under a gauge

transformation dA ¼ �=� is

dhm ¼ �
ð

D

=� � B d3r ¼ �
ð

D

= � ð�BÞ d3r ð28Þ

If D is simply connected, its first cohomology group is trivial and, consequently,

� is globally defined in D (it is a one-valued function). The Stokes theorem

implies then that dhm ¼ 0; in other words, the magnetic helicity is gauge-

invariant in simply connected domains, with the standard boundary conditions.

If, on the other hand, D is not simply connected, a gauge transformation implies a

nontrivial change of the helicity. Here, we will consider only simply connected

spatial domains so that the magnetic helicity will always be gauge-invariant.

A. Helicity and Topology of the Force Lines

We will now apply the ideas of magnetic and filamental tubes. Consider a small

closed circular curve C. We define its magnetic tube to be the set of all magnetic

lines that intersect C. It is obvious that the internal flux of any magnetic

tube does not depend on the section that we use to compute it. The strength

of the magnetic tube is defined as the flux across any section. A filamental tube

is a magnetic tube with infinitesimal section, but with non vanishing finite

strength.

In the first paper on the topological meaning of the helicity, Moffatt [44]

considered closed non-self-knotted filamental tubes. Suppose that D, the region

on which a divergenceless vector field B is defined at a certain time is a simply

connected domain (B is here a magnetic field, but the results can be applied to

any divergenceless vector field). Now consider the special situation in which B
is zero except in two filamental tubes whose axes are two oriented, closed, and

non-self-knotted magnetic lines C y C0, that can, however, be linked to one

another. The filamental tubes have zero section but nonvanishing strengths

d�, d�0, respectively. Moreover, the magnetic lines run parallel to C and

C0, respectively, along each filamental tube. Moffatt showed that, in these
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conditions, the magnetic helicity can be written as

hm ¼ 2d�d�0 1

4p

þ
C

þ
C0
ðdr � dr0Þ � r � r0

kr � r0k3

 !
ð29Þ

where the integral between brackets in (29) is known as the Gauss integral and

coincides with the linking number LðC;C0Þ of the closed curves C and C0.
Consequently, the helicity of two filamental tubes is

hm ¼ 2LðC;C0Þd�d�0 ð30Þ

If there are several closed filamental tubes, the total helicity is

hm ¼
X

i

X
j 6¼i

LðCi;CjÞd�id�j ð31Þ

where LðCi;CjÞ is the linking number of the tubes Ci;Cj. Equation (30) can be

generalized to finite section magnetic tubes under the condition that, into each

one, the magnetic lines are not linked, and the tubes are not self-knotted. We may

then assume that every magnetic tube is composed of a large number of

filamental tubes of infinitesimal sections. Then each pair of filamental tubes (one

for each magnetic tube) contributes to the total helicity with a quantity given by

(30). With addition of the contributions of all pairs, this results in

hm ¼ 2LðC1;C2Þ�1�2 ð32Þ

where �1 and �2 are, respectively, the total strengths of the magnetic tubes and

LðC1;C2Þ is the linking number of two filamental tubes representing each

magnetic tube.

The relationship between the linking number and the helicity of a self-

knotted filamental tube has been studied by Berger and Field [50] and Moffatt

and Ricca [51]. We are looking for an expression for the helicity in a filamental

tube T of strength d�, around a closed magnetic line C that can be self-knotted.

In this case, the magnetic helicity takes the value

hm ¼ ðd�Þ2 WþTþT0ð Þ ð33Þ

where WðCÞ is the spatial writhing number, which is a real number defined by

the limiting form of the Gauss integral (29) when C ! C0, TðCÞ is the total

torsion of the curve, and T0ðC;BÞ is the intrinsic twisting number, defined as the

(integer) number of times that any magnetic line in the surface of the tube T

surrounds the axis C. None of the numbers W, T, and T0 is a topological
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invariant, and only the last one is an integer number, though all of them have a

well defined geometrical meaning. But their sum, that is the important thing in

(33), is, according to the Calugareanu theorem [52], equal to a topological invari-

ant, the linking number of the axis C and any magnetic line Cm that surrrounds

the surface of the tube T :

LðC;CmÞ ¼ WðCÞ þTðCÞ þT0ðC;BÞ ð34Þ

Using this theorem, we conclude that the magnetic helicity of a filamental tube T

whose axe is a closed, self-knotted curve C, is given by

hm ¼ ðd�Þ2
LðC; TÞ ð35Þ

where LðC; TÞ is the linking number of the axe C and any magnetic line that

rounds the surface of the tube T .

The next stage in the study of the topological meaning of the helicity is to

consider a continuous distribution. In Ref. 47, the case was considered of a

simply-connected domain D, and a divergenceless vector field B satisfying the

following conditions: (1) B is regular and nonvanishing in D, and (2) the

magnetic lines are closed curves. Under these conditions it is easy to see that the

linking number of any two magnetic lines does not depend on the lines that we

choose to compute it, because two closed curves cannot tie or untie under

smooth deformation. Consequently, the linking number of any two magnetic

lines is a property of the vector field, and can be denoted LðBÞ. The linking

number is also invariant under smooth deformation of the field and, in

particular, is time-invariant. This means that the set of divergenceless vector

fields defined on a domain D satisfying conditions (1) and (2) can be classified

in homotopy classes, labeled by its linking number. We split D in an infinite

number of filamental tubes with strengths d�i, in such a way that they comple-

tely fill D. Now using (30) and (35), and assuming that the linking number is an

invariant, the magnetic helicity in D results in

hm ¼ LðBÞ
X

i

X
j6¼i

2d�id�j þ
X

i

ðd�iÞ2

 !

¼ LðBÞ
X

i

d�i

 !2

¼ LðBÞ�2 ð36Þ

where � is the total strength of the magnetic field (the sum of strengths of all the

tubes that fill D).
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We have seen that the helicity of simple field configurations, in which the

magnetic lines are linked, depends on the linking number of these lines.

However, some configurations are possible in which the field lines are open,

infinitely long, and possibly space-filling. The classical linking number above

defined has no sense in this case, so it is difficult to study the meaning of the

helicity related to the topology of these lines. Nonclosed lines can be treated,

however, following the approach proposed by Arnold [53], who used the

language of dynamical systems to define the linking invariant of the problem.

Arnold defined a asymptotic linking number from the classical linking number

of the field lines that become closed by using a family of short paths (he showed

that the result is independent of the family of short paths). In this way, Arnold

proved that the contribution to the total helicity of two filamental tubes around

two magnetic lines C and C0 is

hm ¼ 2lðC;C0Þd�d�0 ð37Þ
which is formally equal to the Moffatt equation (30), if the Gauss linking number

L is replaced by the mean value l of the asymptotic linking number. If the lines

were closed, then l would coincide with the classical linking number, and

Eq. (37) would be general.

In conclusion, the helicity of a divergenceless vector field is a measure of the

linking number of the field lines. Even in the case that these lines are not closed,

the notion of linkage has sense, because a mean value of an asymptotic linking

number can be defined, and this value coincides with the helicity.

The electromagnetic helicity has also been studied by Evans [54–57], espe-

cially its consequences for his new non-Abelian SO(3) gauge version of QED

(quantum electrodynamics).

B. The Case of Maxwell’s Theory in Vacuum: Electromagnetic Helicity

In standard classical electrodynamics, the Maxwell equation dF ¼ 0 becomes a

Bianchi identity by using the electromagnetic potential A, defined as F ¼ dA.

The dynamical equation for this field in empty space is d�F ¼ 0.

But the Minkowski spacetime R4 has trivial cohomology. This means that the

Maxwell equation implies that �F is a closed 2-form, so it is also an exact form and

we can write �F ¼ dC, where C is another potential 1-form in the Minkowski

space. Now the dynamical equation becomes another Bianchi identity. This

simple idea is a consequence of the electromagnetic duality, which is an exact

symmetry in vacuum. In tensor components, with A ¼ Am dxm and C ¼ Cmdxm,

we have Fmn ¼ qmAn � qnAm and �Fmn ¼ qmCn � qnCm or, in vector components

B ¼ =� A ¼ qC

qt
þ =C0

E ¼ =� C ¼ � qA

qt
� =A0

ð38Þ
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Note that the equations (38) are clearly invariants under the gauge transforma-

tions Am 7!Am þ qm�, Cm 7!Cm þ qm�.

The electric and magnetic fields are dual to one another and have the same

properties in Maxwell theory in empty space. Given the divergenceless vector

field B, we have defined the magnetic helicity as

hm ¼
ð

R3

A � B d3r ð39Þ

where B ¼ =� A. Now, in vacuum, given the divergenceless vector field E, we

can also define an electric helicity through

he ¼
ð

R3

C � Ed3r ð40Þ

where E ¼ r� C.

Equations (39) and (40) imply that the two helicities are finite if the magnetic

and electric fields decrease faster than r�2 when r ! 1. This implies that the

vector potentials Am and Cm must decrease faster than r�1 when r ! 1. We will

assume that our fields always satisfy these conditions at infinity.

We must consider two currents of helicity. In Ref. 47 the following magnetic

helicity current was considered:

Hm
m ¼ An

�Fnm ð41Þ

The corresponding electric helicity current is

Hm
e ¼ CnFmn ð42Þ

As it is easy to show that

qmHm
m ¼ �qmHm

e ¼ �2E � B ð43Þ

the magnetic and the electric helicities

hm ¼
ð

R3

H0
e d3r; he ¼

ð
R3

H0
m d3r ð44Þ

are time invariants for radiation fields E � B ¼ 0 and, more generally, if the

spatial integral of E � B vanishes.

Given any Maxwell field in vacuum, we define the current density of electro-

magnetic helicity Hm as one-half times the sum of the current densities of

electric and magnetic helicities (41) and (42):

Hm ¼ 1

2
FmnCn þ�FmnAn
	 


ð45Þ
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By construction, and taking into account Eqs. (43), the density of electro-

magnetic helicity is a conserved current for any Maxwell field in vacuum (with

the above indicated behavior at infinity):

qmHm ¼ 0 ð46Þ

This implies that the quantity

H ¼
ð

R3

H0 d3r ¼ 1

2

ð
R3

A � B þ C � Eð Þd3r ð47Þ

is a constant of the motion, called electromagnetic or total helicity. Because of

the previous considerations, the electromagnetic helicity is also gauge-invariant.

From now on, we will call (47) the electromagnetic helicity, or just the helicity,

and (45) will be the density of electromagnetic helicity.

C. The Particle Meaning of Helicity

The helicity is gauge-invariant. In the Coulomb gauge, it is obvious that A and

C satisfy the d’Alembert equation, whose solutions can be written in terms of

Fourier transforms

Aðr; tÞ ¼ 1

ð2pÞ3=2

ð
d3kffiffiffiffiffiffi

2o
p aðkÞe�ik�x þ �aðkÞeik�x	 


ð48Þ

where km ¼ ðo; kÞ is null (kmkm ¼ o2 � k2 ¼ 0) and k � x ¼ kmxm ¼ ot � k � r.

The factor 1=
ffiffiffiffiffiffi
2o

p
is a normalization factor that allows the measure to be

Lorentz-invariant. �z is the complex conjugate of z.

The divergenceless condition of the field A in the Coulomb gauge means that

the complex vector aðkÞ is transverse, so that k � aðkÞ ¼ 0. Then, for every

value of k, we can choose an orthonormal trihedron with by the real vectors

k=o, e1ðkÞ and e2ðkÞ, and we can represent the field a as

aðkÞ ¼ a1ðkÞe1ðkÞ þ a2ðkÞe2ðkÞ ð49Þ

where

e1 � e2 ¼ k

o
;

k

o
� e1 ¼ e2;

k

o
� e2 ¼ �e1 ð50Þ

For convenience, the definition of the trihedron is completed with

e1ð�kÞ ¼ �e1ðkÞ; e2ð�kÞ ¼ e2ðkÞ ð51Þ
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We have written the field A as a superposition of plane waves. However, it will be

more convenient to write it as a superposition of circularly polarized waves, in

the same way as in quantum electrodynamics [58]. With this aim, we define the

components right (R) and left (L) as

eRðkÞ ¼
e1ðkÞ þ ie2ðkÞffiffiffi

2
p ; eLðkÞ ¼

e1ðkÞ � ie2ðkÞffiffiffi
2

p

aRðkÞ ¼
a1ðkÞ � ia2ðkÞffiffiffi

2
p ; aLðkÞ ¼

a1ðkÞ þ ia2ðkÞffiffiffi
2

p
ð52Þ

With these definitions

k � eR ¼ k � eL ¼ 0; eR � eR ¼ eL � eL ¼ 0

eR � eL ¼ 1; eR � eR ¼ eL � eL ¼ 0

k

o
� eR ¼ �ieR;

k

o
� eL ¼ ieL; eR � eL ¼ �i

k

o

ð53Þ

and, moreover

eRð�kÞ ¼ �eLðkÞ
eLð�kÞ ¼ �eRðkÞ

ð54Þ

Leaving out the argument k in the quantities eðkÞ and aðkÞ, we arrive at

Aðr; tÞ ¼ 1

ð2pÞ3=2

ð
d3kffiffiffiffiffiffi

2o
p ðeRaR þ eLaLÞe�ik�x þ ðeL�aR þ eR�aLÞeik�x	 


ð55Þ

The Fourier components aR and aL are, in (55), functions of the vector k. In QED,

aRðkÞ is interpreted as a destruction operator of photonic states with energy o,

linear momentum k and spin k=o, while the function �aR becomes the creation

operator aþ
R of such states. Analogously, aLðkÞ is a destruction operator of

photonic states with energy o, linear momentum k and spin �k=o, and aþ
L is the

correspondent creation operator [58].

We can play the same game with C. In this case, we can represent C in the

form (55), but changing the functions aR and aL by new functions cR and cL.

Now we must satisfy the equations (38). Doing this, we find

�k

o
� ðeRaR þ eLaLÞ ¼ eRcR þ eLcL

eRaR þ eLaL ¼ k

o
� ðeRcR þ eLcLÞ

ð56Þ
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and, using (53), they reduce to

cRðkÞ ¼ iaRðkÞ; cLðkÞ ¼ �iaLðkÞ ð57Þ

The vector potential C results in

Cðr; tÞ ¼ i

ð2pÞ3=2

ð
d3kffiffiffiffiffiffi

2o
p ððeRaR � eLaLÞe�ik�x � ðeL�aR � eR�aLÞeik�xÞ ð58Þ

In the Coulomb gauge, the helicity can be written as

H ¼ 1

2

ð
R3

A � qC

qt
� C � qA

qt

� �
d3r ð59Þ

Introducing the expressions (55) and (58) in (59), we obtain

H ¼
ð
�aRðkÞaRðkÞ � �aLðkÞaLðkÞð Þd3k ð60Þ

This is what we were looking for. In quantum electrodynamics, the right-hand

side of (60) is interpreted as the helicity operator, that is, the difference between

the numbers of right-handed and left-handed photons. We can write the usual

expressions

NR ¼
ð
�aRðkÞaRðkÞd3k

NL ¼
ð
�aLðkÞaLðkÞd3k

ð61Þ

and write Eq. (60) as

H ¼ ðNR � NLÞ ð62Þ

The consequence is that the helicity that we are studying is the classical limit

of the difference between right-handed and left-handed photons [26,30,31].

Note that, in physical units (with �h 6¼ 1 and c 6¼ 1), Eq. (62) would be

H ¼ �hcðNR � NLÞ ð63Þ

This equation shows a close relation between the wave and particle aspects of the

helicity. On the left side, the wave helicity is the semisum of the electric and

magnetic helicities that characterizes the topology of the force lines as a function

of the linking number of the pairs of electric lines and of the magnetic lines. On
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the right side, the particle helicity is the classical limit of the difference between

right- and left-handed photons. For all this, if we have an electromagnetic field

with a trivial configuration of force lines (vanishing linking number), then we

will know that the classical expression for the number of right-handed photons is

equal to the classical expression for the number of left-handed photons. But if we

observe a non-vanishing linking number in the magnetic and the electric lines,

these two numbers will be different. Here it is the wave–particle duality of the

helicity.

We previously defined the radiation fields (called singular by mathema-

ticians) as those electromagnetic fields that satisfy E � B ¼ 0. Now consider the

case of singular fields in vacuum, with the abovementioned contour conditions,

which we can summarize by stating that the helicity must be finite. In this case,

the Fourier components aR and aL should be less singular than o�3=2 when

o ! 0, and they should decrease more rapidly than o�2 when o ! 1. This

behavior allows us to prove the following property [31]: The electric and

magnetic helicities of any radiation field in vacuum are equal.

For the proof, we use the representations of A and C given by (55) and (58).

It is easy to see that

hm � he ¼
ð

d3k½ðaLðkÞaLð�kÞ � aRðkÞaRð�kÞÞe�iot þ c:c:� ð64Þ

where c.c. means that the complex conjugate should be added, and t ¼ 2t. We

compute the integral in the angular variables of the spherical coordinates in the

space of vectors k. The result is called FðoÞ, specifically

FðoÞ ¼ o2

ð
d	 aLðkÞaLð�kÞ � aRðkÞaRð�kÞ½ � ð65Þ

where 	 is the solid angle and FðoÞ ¼ Fð�oÞ. The difference of helicities is

now

hm � he ¼
ð1

0

do FðoÞe�iot þ Fð�oÞeiot �
ð66Þ

Because of the previously stated behavior of aR and aL, and looking at the

definition (65), it is clear that FðoÞ is a square integrable function, and that

hm � he ¼ f ðtÞ þ �f ðtÞ ð67Þ

where f ðtÞ is the Fourier transform of FðoÞ. It is also known that

d

dt
ðhm � heÞ ¼ �4

ð
R3

E � Bd3r ð68Þ
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so, in the case of singular field, E � B ¼ 0 and hm � he is a constant. Equation

(68) implies then that the real part of f ðtÞ does not depend on t. Now, recalling

that it is a square integrable function, it can only be zero. Consequently,

hm � he ¼ 0 for singular fields in vacuum.

The conclusion of this subsection is that Eq. (62) for singular fields takes the

form

H ¼ hm ¼ he ¼ ðNR � NLÞ ð69Þ

This will play an important role in the relationships presented in the following

sections.

III. ELECTROMAGNETIC KNOTS

In a way that is completely independent of their use as a basis for the topological

model presented above, electromagnetic knots are standard solutions of Max-

well equations in vacuum that have special topological properties; their helicity

is topologically quantized, with hm ¼ he ¼ an, where n is an integer, the Hopf

invariant of the two applications from which electric and magnetic fields are

constructed. This allows us to classify the set of electromagnetic knots in

homotopy classes Cn, labeled by the value n of the Hopf index, which as

explained in Section I.D, is related to the linking number ‘ of the lines.

Here we summarize a program to find explicitly the Cauchy data of

electromagnetic knots [25,27,30–32]. Let f0; y0: S3 ! S2 be two applications

satisfying the following two conditions:

1. The level curves of f0 must be orthogonal, in each point, to the level

curves of y0, since we know that electromagnetic knots are singular fields

(E � B ¼ 0). This condition can be written as

ð=�f0 � =f0Þ � ð=�y0 � =y0Þ ¼ 0 ð70Þ

2. Moreover, in order to maintain the orthogonality (70) through every time,

it is necessary that the Hopf index of f0 and of y0 be equal:

Hðf0Þ ¼ Hðy0Þ ð71Þ

Given f0 and y0 with these two conditions, we can build the magnetic and

electric fields in t ¼ 0 as

Bðr; 0Þ ¼
ffiffiffi
a

p

2pi

=f0 � =�f0

ð1 þ �f0f0Þ2

Eðr; 0Þ ¼
ffiffiffi
a

p

2pi

=�y0 � =y0

ð1 þ �y0y0Þ2

ð72Þ
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Next, two complex functions f ðrÞ and gðrÞ should be given, such that

=y0 � =�y0 ¼ f=�f0 � �f=f0

=f0 � =�f0 ¼ �g=y0 � g=�y0

ð73Þ

from which we define

f1 ¼ 1 þ �f0f0

1 þ �y0y0

� �2

f

y1 ¼ 1 þ �y0y0

1 þ �f0f0

� �2

g

ð74Þ

Then, the Cauchy data of the fields fðr; tÞ and yðr; tÞ are given by

f0ðrÞ ¼ fðr; 0Þ; f1ðrÞ ¼
qfðr; tÞ

qt

����
t¼0

y0ðrÞ ¼ yðr; 0Þ; y1ðrÞ ¼
qyðr; tÞ

qt

����
t¼0

ð75Þ

and the Cauchy data of the magnetic and electric fields are

Bðr; 0Þ ¼
ffiffiffi
a

p

2pi

=f0 � =�f0

ð1 þ �f0f0Þ2
¼

ffiffiffi
a

p

2pi

�y1=y0 � y1=�y0

ð1 þ �y0y0Þ2

Eðr; 0Þ ¼
ffiffiffi
a

p

2pi

=�y0 � =y0

ð1 þ �y0y0Þ2
¼

ffiffiffi
a

p

2pi

�f1=f0 � f1=
�f0

ð1 þ �f0f0Þ2

ð76Þ

It is easy to see that Eqs. (76) are precisely the duality condition y�s ¼ ��f�s,

in t ¼ 0, of an electromagnetic knot defined as F ¼ �
ffiffiffi
a

p
f�s, �F ¼

ffiffiffi
a

p
y�s. As

the duality condition is conserved in time, (76) thus defines an electromagnetic

knot of homotopy class n (the Hopf index of both f0 and y0).

A. Hopf Fibration

The group-theoretic method to find nontrivial maps S3 ! S2 is based on the

isomorphism between S3 and the group manifold SUð2Þ. Every point g 2 SUð2Þ
can be written as

g ¼ expðiajsjÞ ð77Þ

where aj are three real parameters, j ¼ 1; 2; 3, and sj are the Pauli matrices.

Every point V in Lie algebra suð2Þ can be written as

V ¼ iajsj ð78Þ
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where the manifold S2 is simply

S2 ¼ fV 2 suð2Þ; det V ¼ 1g ð79Þ

In this way, every map S3 ! S2 can be viewed also as a map from the group

SUð2Þ to the subset of the Lie algebra suð2Þ with determinant equal to 1.

Any point in SUð2Þ can be written, in Skyrme’s parametrization (analogous

to the stereographic projection S3 ¼ SUð2Þ [ f1g), as

g ¼ exp i
a
r

xjsj

� �
; a ¼ 2 arctan r ð80Þ

Consider the set of transformations SUð2Þ ! S2 given by

nisi ¼ gðkjsjÞg�1 ð81Þ

where n, nini ¼ 1 are the coordinates in S2, k, kjkj ¼ 1 are constant parameters

(that we can choose in order to obtain different maps S3 ! S2), and g 2 SUð2Þ is

given by (80).

It is easy to see that, under the applications (81), the inverse image of every

point in S2 is a closed line SUð2Þ, the fiber. The set of these fibers is called the

fibration of SUð2Þ by the map (81), and it is given by

gðtÞ ¼ gexpðitkjsjÞ ð82Þ

where t is the evolution parameter of the fiber. For every point g there is only one

fiber. We can also define the scalar product of the velocity vectors of two of these

fibrations as

ð _g1; _g2Þ ¼
1

2
Trð _gþ

1 _g2Þ ¼ k1 � k2 ð83Þ

Consequentely, if we choose, for example, k1 ¼ ð0; 0;�1Þ, k2 ¼ ð�1; 0; 0Þ, and

k3 ¼ ð0;�1; 0Þ, we obtain, not only two, but three fibrations; its fibers are

mutually orthogonal in each point. These fibrations can be written in R3

coordinates (thanks to the Skyrme’s parametrization) as

� The Hopf fibration, gðtÞ ¼ gexpð�its3Þ, with

xðtÞ ¼ 2xcostþ 2ysint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2zsint

yðtÞ ¼ 2ycost� 2xsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2zsint

zðtÞ ¼ 2zcostþ ðr2 � 1Þsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2zsint

ð84Þ
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It is easy to see that these fibers have linking number equal to one. For

instance, the fibers passing through the points ðx; y; zÞ ¼ ð1;0;0Þ and

ðx; y; zÞ ¼ ð0;0;1Þ are, respectively, the circle x2 þ y2 ¼ 1 and the z axis,

that are obviously linked.

� A fibration orthogonal to (84), gðtÞ ¼ gexpð�its1Þ, with

xðtÞ ¼ 2xcostþ ðr2 � 1Þsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2xsint

yðtÞ ¼ 2ycostþ 2zsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2xsint

zðtÞ ¼ 2zcost� 2ysint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2xsint

ð85Þ

This fibration can be obtained from the Hopf one by the change

ðx;y;zÞ 7!ðy;z;xÞ in the expression of the map, so its fibers are linked too,

and the linking number is also one.

� A fibration orthogonal to both (84) and (85), gðtÞ ¼ gexpð�its2Þ, with

xðtÞ ¼ 2xcost� 2zsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2ysint

yðtÞ ¼ 2ycostþ ðr2 � 1Þsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2ysint

zðtÞ ¼ 2zcostþ 2xsint
ðr2 þ 1Þ � ðr2 � 1Þcostþ 2ysint

ð86Þ

Once more, this corresponds to the change ðx; y; zÞ 7!ðz; x; yÞ in the Hopf

map, so the linking number is one.

Summarizing this subsection, the group-theoretic techniques allow us to

obtain three maps S3 ! S2 whose velocity vectors are mutually orthogonal, and

with the same linking number. Next, we have to build the Cauchy data of the

electromagnetic knots based on these maps.

B. Cauchy Data for Electromagnetic Knots

It is convenient to work with nondimensional coordinates in the mathematical

spacetime S3 � R, and in S2. In order to do that, we define the non dimensional

coordinates ðX; Y ; Z;TÞ, related to the physical ones ðx; y; z; tÞ by

ðX; Y ; Z; TÞ ¼ lðx; y; z; tÞ ð87Þ

and l2r2 ¼ l2ðx2 þ y2 þ z2Þ ¼ X2 þ Y2 þ Z2 ¼ R2, where l is a constant

with inverse length dimensions. Now, we can perform the corresponding
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stereographic projections in the maps (81), with k ¼ ð0; 0;�1Þ, k ¼ ð�1; 0; 0Þ
and k ¼ ð0;�1; 0Þ, to obtain the following maps R3 [ f1g ! C [ f1g:

� The Hopf map

f0 ¼ 2ðX þ iYÞ
2Z þ iðR2 � 1Þ ð88Þ

� The map corresponding to the change ðX; Y ; ZÞ 7!ðY ; Z;XÞ in (88)

y0 ¼ 2ðY þ iZÞ
2X þ iðR2 � 1Þ ð89Þ

� The map corresponding to the change ðX; Y ; ZÞ 7!ðZ;X; YÞ in (88)

j0 ¼ 2ðZ þ iXÞ
2Y þ iðR2 � 1Þ ð90Þ

Because of their construction, it is obvious that the three maps (88)–(90) have the

same Hopf index. Following the methods explained in Sections I.D–I.F, it is

easily shown that the three maps have Hopf index n ¼ 1 and that the three

fibrations are mutually orthogonal at each point. Consequently, any two of these

three maps is a pair of dual maps, from which we can build an electromagnetic

knot. The fibers of the third fibration are everywhere tangent to the Poynting

vector of that knot. There is then a nice mathematical structure, with three

fibrations that can be termed magnetic, electric and of the energy flux. This

happens also in the general case.

If we choose the maps f0 and y0 to generate a knot, the Cauchy data for the

magnetic and electric fields are

Bðr; 0Þ ¼ 4
ffiffiffi
a

p
l2

pð1 þ R2Þ3
ð2ðY � XZÞ;�2ðX þ YZÞ;�1 � Z2 þ X2 þ Y2Þ

Eðr; 0Þ ¼ 4
ffiffiffi
a

p
l2

pð1 þ R2Þ3
ð1 þ X2 � Y2 � Z2; 2ð�Z þ XYÞ; 2ðY þ XZÞÞ

ð91Þ

From (91), two vector potentials, A and C, can be computed, such that

B ¼ =� A, E ¼ =� C, with the results

Aðr; 0Þ ¼ 2
ffiffiffi
a

p
l

pð1 þ R2Þ2
Y;�X;�1ð Þ

Cðr; 0Þ ¼ 2
ffiffiffi
a

p
l

pð1 þ R2Þ2
1;�Z; Yð Þ

ð92Þ
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The magnetic and electric helicities of this knot turn out to be

hm ¼
ð

R3

A � B d3r ¼ he ¼
ð

R3

C � E d3r ¼ a ð93Þ

Consequently, we have obtained the Cauchy data of an electromagnetic knot, a

representative of the homotopy class C1, for which, according to (63)

NR � NL ¼ a

�hc
ð94Þ

C. Time-Dependent Expressions

To find the electromagnetic knot, defined at every time, from the Cauchy data

(91), we use the Fourier analysis. The magnetic and electric fields can be written

as

Bðr; tÞ ¼ 1

ð2pÞ3=2

ð
d3k ðR1ðkÞcosk � x � R2ðkÞsink � xÞ

Eðr; tÞ ¼ 1

ð2pÞ3=2

ð
d3kðR1ðkÞsink � x þ R2ðkÞcosk � xÞ

ð95Þ

where k � x ¼ ot � k � r, o2 ¼ k2, and the real vectors R1, R2 satisfy, in order to

mantain Maxwell’s equations, the relations

k � R1 ¼ k � R2 ¼ R1 � R2 ¼ 0

k � R2 ¼ oR1; k � R1 ¼ �oR2

ð96Þ

The important point in the use of Fourier analysis is that the vectors R1,R2 can be

computed from the Cauchy data of the electromagnetic field:

R1ðkÞ þ iR2ðkÞ ¼
1

ð2pÞ3=2

ð
d3rðBðr; 0Þ þ iEðr; 0ÞÞeik�r ð97Þ

For the electromagnetic knot with Cauchy data given by (91), we find

R1 ¼
ffiffiffi
a

pffiffiffiffiffiffi
2p

p
l2

e�o=l

o
k1k3;ok3 þ k2k3;�ok2 � k2

1 � k2
2

	 


R2 ¼
ffiffiffi
a

pffiffiffiffiffiffi
2p

p
l2

e�o=l

o
ðok2 þ k2

2 þ k2
3;�ok1 � k1k2;�k1k3Þ

ð98Þ

topological electromagnetism with hidden nonlinearity 225



Introducing these vectors in (95), the expressions, for all the times, of one

electromagnetic knot representative of the homotopy class C1 are

Bð1Þðr; tÞ ¼
ffiffiffi
a

p
l2

pðA2 þ T2Þ3
ðQH1 þ PH2Þ

Eð1Þðr; tÞ ¼ n
ffiffiffi
a

p
l2

pðA2 þ T2Þ3
ðQH2 � PH1Þ

ð99Þ

where the superscript ðnÞ indicates the homotopy class Cn of the knot, the

quantities A, P, Q are defined by

A ¼ R2 � T2 þ 1

2
; P ¼ TðT2 � 3A2Þ; Q ¼ AðA2 � 3T2Þ ð100Þ

and the vectors H1 and H2 are

H1 ¼ Y þ T � XZ;�X � ðY þ TÞZ;�1 � Z2 þ X2 þ ðY þ TÞ2

2

 !

H2 ¼ 1 þ X2 þ Z2 � ðY þ TÞ2

2
;�Z þ XðY þ TÞ; Y þ T þ XZ

 ! ð101Þ

This solution verifies Eð1Þ � Bð1Þ ¼ 0 and ðEð1ÞÞ2 � ðBð1ÞÞ2 ¼ 0. To study its time

evolution, an interesting tool is the energy density:

P0ðr; tÞ ¼ ðEð1ÞÞ2 þ ðBð1ÞÞ2

2
¼ al4

4p2

ð1 þ X2 þ ðY þ TÞ2 þ Z2Þ2

ðA2 þ T2Þ3
ð102Þ

It can be seen in this expression how the knot spreads, its energy density going to

zero.

The final step to characterize this knot is to find the time evolution of the

basic complex scalar fields f and y. This is not easy since these fields satisfy

highly non-linear equations, the duality equations,

Fmn ¼
ffiffiffi
a

p

2pi

qm�fqnf� qmfqn�f

ð1 þ �ffÞ2

�Fmn ¼
ffiffiffi
a

p

2pi

qmyqn�y� qm�yqny

ð1 þ �yyÞ2

ð103Þ

with the corresponding Cauchy data f0,y0. However, the basic fields have a very

important property that allows us to solve (103)—their level curves evolve in

time in such way that their linking number is a constant of the motion (because

the magnetic and electric helicities are constants of the motion for the
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electromagnetic field). This stability condition is a kind of hint on the form of the

basic fields. The result is that the scalar fields f and y that give way, through

(103), to the electromagnetic knot (99), are

fðr; tÞ ¼ ðAX � TZÞ þ iðAY þ TðA � 1ÞÞ
ðAZ þ TXÞ þ iðAðA � 1Þ � TYÞ

yðr; tÞ ¼ ðAY þ TðA � 1ÞÞ þ iðAZ þ TXÞ
ðAX � TZÞ þ iðAðA � 1Þ � TYÞ

ð104Þ

where A is given by (100).

D. A Family of Electromagnetic Knots with Hopf Indices �n2

The electromagnetic knot given in the previous subsections, a representative of

the homotopy class C1, can be easily generalized to classes Cn2 . To do that, we

will need a property of the Hopf index.

Consider a smooth map f : S3 ! S2. We have called the fiber of a point p 2 S2

to the inverse image f�1ðpÞ, which is generally a closed curve in S3. Now we

define the multiplicity of the fiber f�1ðpÞ to the number of connected

components of f�1ðpÞ. Consider the map f n: S3 ! S2, where n is an integer,

for f n to be a good smooth map. The linking number of the closed curves that

form the fibers of f n is equal to the linking number of the closed curves that

form the fibers of f (they are the same curves). However, the multiplicity of the

fibers of f n is equal to n times the multiplicity of the fibers of f . Consequently,

the Hopf index has the following property:

Hð f nÞ ¼ n2Hð f Þ ð105Þ

Instead of the nth power, we will use a different function with the same property.

If the map f is written as f ¼ Peiq, we define the map f ðnÞ as

f ðnÞ ¼ Peinq ð106Þ

where n is an integer. The Faraday’s tensor of f ðnÞ is Fmnð f ðnÞÞ ¼ nFmnð f Þ, so that

Hð f ðnÞÞ ¼ n2Hð f Þ ð107Þ

Now, instead of (104), we can use the basic scalar fields fðnÞ and yðnÞ, defined by

(106), and given by

fðnÞðr; tÞ ¼ ðAX � TZÞ þ iðAY þ TðA � 1ÞÞ
ðAZ þ TXÞ þ iðAðA � 1Þ � TYÞ

� �ðnÞ

yðnÞðr; tÞ ¼ ðAY þ TðA � 1ÞÞ þ iðAZ þ TXÞ
ðAX � TZÞ þ iðAðA � 1Þ � TYÞ

� �ðnÞ
ð108Þ
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where A is given by (100). These two maps have Hopf index equal to n2,n integer,

and their corresponding velocity curves are mutually orthogonal (they are the

same as the velocity curves of f and y, respectively). So we conclude that the

complex scalar fields fðnÞ and yðnÞ give place to electromagnetic knots represen-

tatives of the homotopy classes Cn2 . The magnetic and the electric fields are

simply

Bðn2Þðr; tÞ ¼ nBð1Þðr; tÞ
Eðn2Þðr; tÞ ¼ nEð1Þðr; tÞ

ð109Þ

where Bð1Þ and Eð1Þ are, respectively, the magnetic and the electric fields of the

representative of the homotopy class C1, given by (99). The electromagnetic

knots (109) satisfy

hm ¼ he ¼ an2 ð110Þ

so the topological charge has the value

NR � NL ¼ a

�hc
n2 ð111Þ

These particular knots have the following curious values for the energy, linear

momentum, and angular momentum:

p0 ¼
ð ðEðn2ÞÞ2 þ ðBðn2ÞÞ2

2

 !
d3r ¼ 2n2al

p ¼
ð

Eðn2Þ � Bðn2Þ : d3r ¼ n2aley

J ¼
ð

r � ðEðn2Þ � Bðn2ÞÞd3r ¼ n2aey

ð112Þ

These knots thus move in the y direction, and the angular momentum is along the

motion direction.

It is easy to show that we can also construct electromagnetic knots with Hopf

index �n2 by means of the dual fields

fð�;nÞðr; tÞ ¼ fðnÞð�r;�tÞ
yð�;nÞðr; tÞ ¼ yðnÞð�r;�tÞ

ð113Þ

The magnetic and electric fields of the electromagnetic knot are then

Bð�n2Þðr; tÞ ¼ Bðn2Þð�r;�tÞ
Eð�n2Þðr; tÞ ¼ Eðn2Þð�r;�tÞ

ð114Þ
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and the magnetic and electric helicities are given by

hm ¼ he ¼ �an2 ð115Þ

and the topological charge

NR � NL ¼ � a

�hc
n2 ð116Þ

The energy, linear momentum, and angular momentum of the particular knots

(114), representatives of the homotopy classes C�n2 , are as follows:

p0 ¼
ð ðEð�n2ÞÞ2 þ ðBð�n2ÞÞ2

2

 !
d3r ¼ 2n2al

p ¼
ð

Eð�n2Þ � Bð�n2Þ : d3r ¼ n2aley

J ¼
ð

r � ðEð�n2Þ � Bð�n2ÞÞd3r ¼ �n2aey

ð117Þ

IV. A TOPOLOGICAL MODEL OF ELECTROMAGNETISM

The discussion in Section I, especially Section I.C, suggest the possibility of a

theory of the electromagnetic field that uses as coordinates the pair of complex

scalar fields f; y, whose level curves coincide with the magnetic and electric

force lines. For this purpose, let us recall the definition of electromagnetic knot

given in Section I.F as a solution of the Maxwell equations in empty space, such

that any pair of magnetic lines (or any pair of electric lines) is a link. As was

shown in Section II.C, the Hopf indices are necessarily equal, as a consequence

of the Maxwell equations. It must also be stressed that the electromagnetic knots

are radiation fields, in the sense that their magnetic and electric fields are

orthogonal (i.e., verify the condition E � B ¼ 0).

A. A First Model

As a first step in constructing a topological model of the electromagnetic field,

let us consider the set of electromagnetic knots defined by pairs of dual scalars

ðf; yÞ. If we try a theory based on these two scalars, the most natural election

for the action integral is

S ¼ � 1

4

ð
ðFðfÞ ^ �FðfÞ þ �FðyÞ ^FðyÞÞ ð118Þ
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where FðfÞ ¼ �
ffiffiffi
a

p
f�s, �FðfÞ is its dual, �FðyÞ ¼

ffiffiffi
a

p
y�s, and FðyÞ is the

dual of �FðyÞ [as in Eqs. (9) and (12)], since this is equal to the standard action

�
Ð

1
2
F ^ �F ¼ �

Ð
1
4

FmnFmn d4x. As the scalars f, y must be a dual pair, they

must be submitted to the duality condition or constraint � � ðf�sÞ ¼ y�s, which

is written in terms of the electromagnetic tensors

Gmn ¼ �FmnðyÞ � 1

2
EmnabFabðfÞ ¼ 0 ð119Þ

[As discussed in Section I.C we will say that two scalars are dual or that they

form a dual pair if they verify the duality constraint (15) or, equivalently, (119)

for any given time.] According to the method of the Lagrange multipliers, let us

vary, as independent fields, the two scalars f and y in the modified Lagrangian

density

L0 ¼ Lþ mabGab ð120Þ

with L ¼ �ðFmnðfÞFmnðfÞ � �FmnðyÞ�FmnðyÞÞ=8, where the components of the

tensor mab are the multipliers. A simple calculation shows that the duality cons-

traint (119) does not contribute to the field equations, which means that, if it is

satisfied by the Cauchy data, it is kept naturally in the time evolution, an interes-

ting and consequential property. The Euler–Lagrange equations turn out to be

qaFabðfÞqbf ¼ 0; qaFabðfÞqbf� ¼ 0

qa �FabðyÞqby ¼ 0; qa �FabðyÞqby� ¼ 0
ð121Þ

It follows immediately that both FabðfÞ and �FabðyÞ obey the Maxwell equations

in empty space. In fact, the first pair for both tensors

EabgdqbFgdðfÞ ¼ 0; Eabgdqb �FgdðyÞ ¼ 0 ð122Þ

holds automatically for any arbitrary pair of dual scalars because of the

definitions in Eqs. (10) and (13). On the other hand, it follows from (122) and the

duality condition (119) that

qbFabðfÞ ¼ 0; qb �FabðyÞ ¼ 0 ð123Þ

which is the second pair for both tensors. As FmnðfÞ and �FmnðyÞ are the electro-

magnetic tensor and its dual, respectively, the Eqs. (122) and (123) are indeed the

Maxwell equations in empty space; we thus have a model of topological

electromagnetic fields.
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It must be stressed that we have in fact proved two different properties,

which can be stated as follows.

Property 1. In a theory based on the pair of fields (f; y) with action integral

equal to (118), submitted to the duality constraint (119), both tensors Fab and
�Fab obey the Maxwell equations in empty space. As the duality constraint is

naturally conserved in time, the same result is obtained if it is imposed just at

t ¼ 0.

Property 2. If two scalar fields f, y form an arbitrary pair of dual fields, in

the sense of Eq. (15) [or, equivalently, if they verify (119)], the tensors Fab and
�Fab satisfy the Maxwell equations in empty space at any time.

Note that the property 2 is surprising and beautiful; for the Maxwell equations to

hold, it is not necessary to consider any variational principle whatsoever. Given a

scalar field that can be interpreted as a map f: S3 7!S2, the mere existence of a

dual map y guarantees that the two pull–backs of the area 2-form in S2 obey

Maxwell’s equations in empty space. This fact must be stressed—the duality

condition on the two scalars implies the Maxwell equations by itself.

A better understanding of this curious property can be obtained by using,

instead of (118), the following action integral

S ¼ � 1

2

ð
FðfÞ ^ �FðyÞ ð124Þ

which is also equal to the standard action for the electromagnetic field. The

integrand in (124) has an interesting interpretation. If we now define the product

map w ¼ f� y : S3 7!S2 � S2, it turns out that it is equal to the pullback of the

volume form in S2 � S2 by the map w, that is, to V ¼ w�ðs ^ sÞ ¼ f�s ^ y�s,

so that

S ¼ a

2c

ð
V ð125Þ

It turns out that V is an exact form. As explained in Section I, there exist two 1-

forms in S3 A and C, such that F ¼ dA and �F ¼ dC (because the second

group of cohomology of S3 is trivial). It is then clear that V ¼ �ð4aÞ�1
dðA^

�FþF ^ CÞ. As a consequence, the Euler–Lagrange equations of (124) are

trivial (just 0 ¼ 0) and the action (125) takes a stationary value for a pair of maps

(or of scalar fields), even if they are not dual.

This means that, if the two scalars are dual (i.e., if they define the same

electromagnetic field), the corresponding pullbacks obey the Maxwell equations

and are solutions of a variational problem with the standard action expressed in

terms of these scalars.
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Let us now identify the Cauchy data. As the Maxwell equations are of second

order in the scalars, the initial data should be the two functions (fðr; 0Þ; yðr; 0Þ,
plus their time derivatives q0fðr; 0Þ; q0yðr; 0Þ). However, it is easy to show that

the latter can be expressed in terms of the former, as a consequence of the

duality constraint (119).

As the knots are radiation fields, the level curves of the two scalars of a dual

pair f; y must be mutually orthogonal (i.e., form two fibrations of the 3-space,

orthogonal to one another). This means the they must obey the differential

condition

ð=�f� =fÞ � ð=�y� =yÞ ¼ 0 ð126Þ

which is a real partial differential equation for two complex functions and has

therefore an infinity of solutions. This condition (126) is conserved naturally

under the time evolution. Let us write the electromagnetic tensor corresponding

to the scalar w as fmnðwÞ [this means that Fmn ¼ fmnðfÞ, while �Fmn ¼ fmnðyÞ]; we

will use the following notation:

BiðwÞ ¼ � 1

2
Eijk fjkðwÞ; Ei ¼ f0iðwÞ ð127Þ

The duality condition then takes the form

E ¼ EðfÞ ¼ �BðyÞ; B ¼ BðfÞ ¼ EðyÞ ð128Þ

According to (128), the electric field �BðyÞ is a linear combination of =�f and

=f, which can be written as BðyÞ ¼ b=�fþ �b=f, so that the function bðr; tÞ can

be expressed in terms of f,y and their space derivatives.

Substitution in (128) shows that q0f ¼ 2pibð1 þ f�fÞ2
, an analogous

expression holding for q0y. Consequently, the time derivatives of the scalars

can be expressed in terms of the scalars and their space derivatives. In other

words, the Cauchy data are just the pair of complex functions fðr; 0Þ; yðr; 0Þ
that verify the condition (126). The system therefore has two degrees of freedom

with a differential constraint that is conserved naturally under the time evolution.

B. A Topological Quantization Condition

As was shown in Section I.E, the Hopf indices nm and ne of the maps S3 7!S2

defined by the two scalars are related to the magnetic and electric helicities as

hm ¼
ð

R3

C � E d3r ¼ nma; he ¼
ð

R3

A � B d3r ¼ nea ð129Þ
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where it must be recallded that the constant a has dimensions of action times

velocity. This certainly has the aspect of a quantization condition. In fact, it looks

similar to the conditions used in the old quantum theory

Ik ¼
þ

pk dqk ¼ nkh ð130Þ

As was shown in Section II, the two Hopf indices (which are the magnetic and

electric linking numbers) are equal in empty space (i.e., without charges),

ne ¼ nm ¼ n. Let us emphasize this fact; the electromagnetic knots are classified

in homotopy classes labeled by the linking number of any pair or magnetic (or

electric) lines. They verify thus a quantum condition of topological origin. We

will see later that this has a very intuitive and suggestive physical interpretation.

C. The Topological Model

Electromagnetic radiation fields—also called degenerate or singular by

mathematicians—are defined by the condition detðFmnÞ ¼ 0 or, equivalently,

by E � B ¼ 0, that is, by the orthogonality of the electric and magnetic vectors.

As was stated above, the electromagnetic knots are of this type. This means that

the model just described contains only radiation fields.

Radiation fields are especially interesting since they are usually represent

photon states. Moreover, it is known that, because of the Darboux theorem [59–

61], the Faraday form of any electromagnetic field F and its dual �F can be

written, locally, as

F ¼
ffiffiffi
a

p
ðdq1 ^ dp1 þ dq2 ^ dp2Þ; �F ¼

ffiffiffi
a

p
ðdv1 ^ du1 þ dv2 ^ du2Þ

ð131Þ

where qk; pk; vk; uk are functions of spacetime that can also be chosen as

coordinates of the field [62] and a is a constant with dimensions of action times

velocity, introduced here in order for these functions to be dimensionless. Each

of the two terms in these sums is a radiation field (i. e. verifies E � B ¼ 0). This

means that any standard electromagnetic field in empty space can be expressed as

the sum of two fields of radiation type, although we must note that this

representation is not unique, since we can make canonical transformations to

new variables ðqk; pkÞ ! ðQk;PkÞ [or ðvk; ukÞ ! ðVk;UkÞ] without changing the

form of (131) (by ‘‘standard electromagnetic field’’ we mean any solution of

Maxwell equations).

In physical terms, this can be understood in the following way. Take an

electromagnetic field with Poynting vector S ¼ E � B. By a suitable Lorentz

transformation [with direction unit vector n and velocity parameter Z given by

n tanh 2Z ¼ 2S=ðE2 þ B2Þ], we can change to a frame in which S ¼ 0 at any
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prescribed point P, which means that E and B are parallel there [65]. Taking

their common direction as the Oz axis, the Faraday form can be written in the

form (131)

F ¼ dt ^ dðEzÞ þ dðBxÞ ^ dy ð132Þ

(because F is closed). In general, the Faraday form (or its dual) cannot be

expressed in a form simpler than (131), because it is of rank 4 and also of class 4

(this means that four 1-forms and four functions, respectively, are needed to

express it). However, in the important case of the radiation fields a simpler

representation is possible, since the Faraday form, which is only of rank 2 and

class 2, is degenerate and can be written in terms of only two functions

qðr; tÞ; pðr; tÞ and two 1-forms dq, dp (a similar property holds for its dual) as

follows:

F ¼
ffiffiffi
a

p
dq ^ dp; �F ¼

ffiffiffi
a

p
dv ^ du ð133Þ

The electric and magnetic fields then have the form

B ¼
ffiffiffi
a

p
=p � =q ¼

ffiffiffi
a

p
ðq0u=v � q0v=uÞ

E ¼
ffiffiffi
a

p
=u � =v ¼

ffiffiffi
a

p
ðq0q=p � q0p=qÞ

ð134Þ

Note that, in this case, the magnetic lines are contained in magnetic surfaces.

There are in fact two families of them, given by the equations p ¼ p0 and q ¼ q0,

where each line forms the intersection of two surfaces, one of each family (there

are also two families of electric surfaces u ¼ u0 and v ¼ v0). The functions (p; q)

and (u; v) are the Clebsch variables of B and E, respectively [63,64]. They can be

used as canonical variables [62]. As explained above, they are not uniquely

defined, but may be changed by canonical transformations.

We must emphasize that, given a constant a, any electromagnetic field may

be written in the form (131) and that, with this definition, the Clebsch variables

are dimensionless quantities.

It is easy to express the Clebsch variables of a knot in terms of the scalars.

If it derives from the scalars f ¼ Sexpð2ipgÞ and y ¼ Rexpð2iprÞ through

Eqs. (10)–(13), it turns out that

p ¼ 1

1 þ S2
; q ¼ g; v ¼ 1

1 þ R2
; u ¼ r ð135Þ

as can be seen by simple substitution in (134), and on comparison with (134)

later. It must be emphasized that, as is seen, this election of Clebsch variables

verifies the following two properties: (1) 0 � p; v � 1 and (2) q; u are phase

functions.
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We can now construct a topological model of electromagnetism in empty

space, which can be formalized by means of a variational principle as follows.

Let us take two pairs of dual scalars fk; yk, where k ¼ 1; 2 as fundamental fields

and define an electromagnetic field by the equations

F ¼ �
ffiffiffi
a

p
ðf�

1sþ f�
2sÞ; �F ¼

ffiffiffi
a

p
ðy�1sþ y�2sÞ ð136Þ

where the asterisk superscripts indicate pullback of the area 2-form s in S2 to the

Minkowski spacetime M ¼ R3 � R (identified here with S3 � R) by the

corresponding map. Note that (136) has the same form as (131), since the two

terms on the right-hand sides of each of these equations can be written as exterior

products of differentials of function, because they are electromagnetic knots.

It seems logical to take as action integral

S ¼ � 1

4

X
k

ð
FðfkÞ ^ �FðfkÞ þ �FðykÞ ^FðykÞð Þ ð137Þ

which coincides with the usual form � 1
2
ðF ^ �FÞ. The duality conditions

��ðf�
ksÞ ¼ y�ks; k ¼ 1; 2 ð138Þ

must be imposed by means of the Lagrange multipliers method. It is very easy to

show that the corresponding Euler–Lagrange equations are

dF ¼ 0; d�F ¼ 0 ð139Þ

since again the duality conditions do not contribute to these equations. This

means that they are naturally conserved under time evolution. In this way, we can

extend the topological model to a theory of electromagnetism in empty space,

which includes nonradiation fields, and uses electromagnetic knots instead of

radiation fields. We will see below-that it is locally equivalent to Maxwell’s

standard theory, as will be shown in next section.

In the same way as before, we could use as action integral

S ¼ � 1

2

ð
Fðf1Þ ^ �Fðy1Þ þFðf2Þ ^ �Fðy2Þð Þ ð140Þ

as in the previous case of only one pair of scalars.

Note that (139) are highly nonlinear in the scalars but become exactly the

linear Maxwell equations in the fields Fmn and �Fmn. In this sense, the Maxwell

equations are the exact linearization (by change of variables, not by truncation!)

of a nonlinear theory with topological properties, in which the force lines
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coincide with the level curves of two scalar fields. The model thus gives a line

dynamics.

We end this section with a comment referring to the Cauchy data for the

scalars. In standard Maxwell theory, the Cauchy data are the eight functions

Am,q0Am, and there is gauge invariance. In this topological model, they are the

four complex functions fkðr; 0Þ, ykðr; 0Þ, that is, eight real functions, con-

strained by the two conditions ð=�fk � =fkÞ � ð=�yk � =ykÞ ¼ 0, k ¼ 1;2, to

ensure that the level curves of fk will be orthogonal to those of yk. It is not

necessary to prescribe the time derivatives q0fk, q0yk since they are determined

by the duality conditions (138), as explained above.

V. LOCAL EQUIVALENCE AND GLOBAL DIFFERENCE
WITH THE STANDARD MAXWELL THEORY

As we have seen, any pair of dual maps generates a standard electromagnetic

field. However, given a standard solution of Maxwell’s equations in empty

space, it is not true in general that there exist one pair of dual maps that generate

this field. In this section we examine this question. First, we will prove that any

radiation electromagnetic field is locally equal to an electromagnetic knot, and

hence that the topological model is locally equivalent to the Maxwell standard

theory, although they are nonequivalent from globally. Their difference relates

to the behovior of the fields around the point at infinity. After that, we will

examine more the difference more closely, showing the existence of what can be

called a ‘‘hidden nonlinearity.’’

A. Local Equivalence

The electromagnetic knots satisfy a very important property. In a precise way,

the following proposition holds true.

Proposition 2. Any standard radiation electromagnetic field in empty space

with Faraday 2-form Fst, regular in a bounded spacetime domain D, coincides

locally with a knot around any point P 2 D in the following sense. There is a knot

with 2-form Fkn, such that Fst ¼ Fkn around P, except perhaps if P is in a zero

measure set. The same property holds for �Fst.

This means that the difference between the set of the radiation solutions of

the Maxwell equations and the set of the electromagnetic knots is not local but

global. In other words: Radiation fields and knots are locally equal. A proof is

the following.

Proof. Let the Faraday 2-form of the standard radiation field Fst be expressed

as (133), where p,q are two dimensionless functions of spacetime. We then define
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the functions Z; d as

Z ¼ pðp2 þ q2Þ; d ¼ 1

2p
arctan

q

p
ð141Þ

It is then clear that

Fst ¼
ffiffiffi
a

p
dd ^ dZ ð142Þ

so that Z and d give another election of the Clebsch variables of the standard field

(they are obtained from p; q by a canonical transformation). If an electro-

magnetic knot is generated by the scalar f ¼ Sexpði2pgÞ through Eqs. (9)–(10),

it is easy to show that

Fkn ¼
ffiffiffi
a

p
dg ^ d

1

ð1 þ S2Þ ð143Þ

This means that Fst will be a knot if there exist regular functions SðrÞ, gðrÞ, one-

valued at infinity, such that

Z ¼ 1

1 þ S2
; d ¼ g ð144Þ

The second equation poses no problem because d was defined as a phase

function. If Z < 1, the solution for S is trivial, as the standard field with form Fst

then becomes a knot. The same happens if Z is bounded, say, if Z < A, because

we can then take as the Clebsch variables Z0 ¼ Z=n0, d0 ¼ n0d, where n0 is an

integer greater than A. Dropping the primes and entering the new Clebsch

variables in (144), it is clear that there then exists a solution for S; g.

Let us consider the case in which Z is not bounded in D [but Fst
mn is

continuous and Eq. (142) is still valid]. Let � be the 3D set in which Z diverges

(a zero measure set). In general, D � � consists of k connected open compo-

nents Dj. Let D�
j � Dj be k open subsets in which Z is bounded. In each one of

them, we can define Clebsch variables Z0; d0, by the same method as before. It

follows that the field is equal to a knot in each D�
j . Now, the volume of D � [D�

j

may be made as small as desired. This means that the magnetic field can be

obtained by patching together those of the knots Fkn
j , each one defined in the

corresponding D�
j , except for a set as small as required containing �. (Note that

there is no problem if any Dj is not simply connected.) The same can be said of

the dual to the Faraday 2-form �Fst, which coincides with the corresponding

2-form of a knot, except perhaps in a zero measure set �0. This means that any

radiation electromagnetic field coincides locally with an electromagnetic knot,

except perhaps on a zero-measure set. In other words, standard radiation fields
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can be obtained by patching together electromagnetic knots generated by fj; yj,

each one defined in a different domain, except at most on the zero-measure set

� [ �0. This ends the proof.

Traditionally, physics emphasizes the local properties. Indeed, many of its

branches are based on partial differential equations, as happens, for instance,

with continuum mechanics, field theory, or electromagnetism. In these cases, the

corresponding basic equations are constructed by viewing the world locally,

since these equations consist in relations between space (and time) derivatives of

the coordinates. In consonance, most experiments make measurements in small,

simply connected space regions and refer therefore also to local properties. (There

are some exceptions; the Aharonov–Bohm effect is an interesting example.)

The local equivalence that we have just proved implies that the predictive

contents of the Maxwell’s theory and of this topological model are exactly the

same when referred to local experiments, as most of them are. Accordingly, it is

not possible to discern between the two by viewing locally. This is the operative

meaning of local equivalence.

However, the fact that there is a difference of global character is very impor-

tant and has interesting consequences. As we will see, it provides a topological

structure. This is surprising and intriguing since it means that the linear Maxwell

equations are compatible with the existence of topological constants of the

motion, one of which is the electric charge. The topological model thus gives

something more than Maxwell’s theory: the quantization of the charge, as we

will see in Section VIII.

It is convenient now to give examples of the expression of electromagnetic

fields in the form (142) or equivalently (9)–(12). We now present three

examples: the Coulomb potential, a plane wave, and a standing wave.

If f ¼ Pei2pq, y ¼ Vei2pu, it is easy to see that

p ¼ 1

1 þ P2
; v ¼ 1

1 þ V2

where q and u are the other two Clebsch variables.

1. Coulomb potential, E ¼ Qr=ð4pr3Þ, B ¼ 0. This field can be obtained

from the scalars

f ¼ ct

r
exp iQ

ðc2t2 þ r2Þ2

4c
ffiffiffi
a

p
r3t

log
r

r0

 !
; y ¼ tan

b
2

exp iQ
affiffiffi
a

p
� �

ð145Þ

where a; b are the azimuth and the polar angle and r0 is any length. The Clebsch

variables are

p ¼ r2

ðr2 þ c2t2Þ ; q ¼ Q
ðr2 þ c2t2Þ2

8pc
ffiffiffi
a

p
r3t

logðr=r0Þ; v ¼ cos2 b
2
; u ¼ Qa

2p
ffiffiffi
a

p
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As can be seen, both scalars are regular everywhere except at r ¼ 0 and

r ¼ 1.

2. Plane wave, E ¼ E0ð0; sinoðx=c � tÞ; 0Þ, B ¼ E0ð0; 0; sinoðx=c � tÞÞ.
The two scalars and the corresponding Clebsch variables are

f ¼ 1 þ cosoðx=c � tÞ
sinoðx=c � tÞ exp i

4pcE0yffiffiffi
a

p
o

� �

y ¼ 1 þ cosoðx=c � tÞ
sinoðx=c � tÞ exp i

4pcE0zffiffiffi
a

p
o

� � ð146Þ

and p ¼ 1
2
ð1 � cosoðx=c � tÞÞ; q ¼ ð2cE0y=

ffiffiffi
a

p
oÞ; v ¼ 1

2
ð1 � cosoðx=c � tÞÞ;

u ¼ ð2cE0z=
ffiffiffi
a

p
oÞ: It is seen that f and y do not represent smooth maps S3 7!S2

because they are not well defined at infinity. However, there are smooth maps that

coincide with them in any bounded domain and that are well defined at infinity.

The fact that plane waves in all the space R3 are not expressable as global knots is

not a matter of concern, since a plane wave extending to all 3-space is not in fact

a physical solution since it requires an infinite amount of energy.

3. A standing wave given by

A0 ¼ 0; A1 ¼ A01 cosk1x sink2y sink3z coso t

A2 ¼ A02 sink1x cosk2y sink3z cosot

A3 ¼ A03 sink1x sink2y cosk3z cosot

ð147Þ

which expresses one mode of a cubic cavity. The scalars that give this field can be

taken as

f ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 � p

p

s
ei2pq; y ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 � v

v

r
ei2pu ð148Þ

where the Clebsch variables are equal to

p ¼ 1

2
ð1 þ sink1x sink2y sink3zcosotÞ; q ¼

X3

i¼1

2A0iffiffiffi
a

p
ki

log jsinkixij

v ¼ 1

2
ð1 þ cosk1x cosk2y cosk3zsinotÞ; u ¼

X3

i¼1

2ðk � A0Þiffiffiffi
a

p
oki

log jcoskixij

Note that the scalar field f (resp. y) is not well defined in the planes kixi ¼ nip
[resp. kixi ¼ ðni þ 1

2
Þp], where the ni are integers, where q (resp. u) diverges. But

there are scalars fn1n2n3
, well defined and smooth in the finite domains
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n1p < k1x < ðn1 þ 1Þp, n2p < k2y < ðn2 þ 1Þp, n3p < k3z < ðn3 þ 1Þp, which

generate the fields in each one of them (and similarly with y). However, the

electric and magnetic fields cannot be produced by a pair of smooth maps

S3 7!S2. As we stated before, the fields can be obtained by patching together

knots defined in bounded domains. Locally, this electromagnetic wave coincides

with a knot around any point (except for a zero measure set), but there is no knot

coinciding with it throughout all the space R3.

B. Global Difference

Example (2) given above is interesting. The standard plane wave is used very

often even though it is in fact physically impossible—unless we can provide an

infinite amount of energy to produce such a state. That it cannot be an

electromagnetic knot is also clear. This is so because, in the case of the

electromagnetic knots, only one magnetic line and one electric line passes

through the point at infinity (because f and y are one-valued there). Quite to the

contrary, for plane waves, an infinite number of lines go to infinity without

coming back (the scalar field is not even defined at infinity). This illustrates the

global difference between standard fields and electromagnetic knots. They

cannot be differentiated locally, but they behave in quite different ways around

infinity.

Example 1 above is considered in Section VIII to illustrate the topological

quantization of the electric charge, which is one feature of the topological

model.

VI. A HIDDEN NONLINEARITY

We have found a structure with two levels. At the deeper one, it is nonlinear

since the scalars f and y obey highly nonlinear equations. However, the

transformation T:s ! F; �F given by (9) and (12)

T :s ! F ¼ �af�s; �F ¼ ay�sð Þ ð149Þ

where s is the area 2-form in S2, changes these nonlinear equation for f and y
into the linear Maxwell’s ones for F,thus linearizing the theory. This is

important; the Maxwell equations are the exact linearization of a nonlinear and

topological theory (by change of variables, not by truncation!). The theory seems

to be linear if the equation is assumed to be satisfied by the field Fmn, but it cannot

be really linear since the topological quantization of the helicity imposes the

nonlinear conditions

hm ¼
ð

A � B d3r ¼ na; he ¼
ð

C � E d3r ¼ na ð150Þ
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It is clear therefore that one cannot obtain another solution simply by multiplying

B and E by a real number (or by adding two different solutions). A similar

situation arises in the work by Evans [57].

We call this unexpected and curious property ‘‘hidden nonlinearity’’. It is due

to the fact that the transformation T is not invertible, since there are solutions of

Maxwell’s equations for which T�1F is not defined. In other words, in some

cases there are no scalar fields f,y generating F, which could be interpreted as

maps S3 7!S2 (as the three examples given above clearly show). As a conse-

quence, although all the electromagnetic fields of the topological model obey

the linear Maxwell equations, they do not span the vector space of all the

solutions, but form a nonlinear subset instead. More precisely, we have seen

that any standard electromagnetic field in empty space is locally equal to the

addition of two electromagnetic knots, except for a zero measure set. However,

the addition of all pairs of electromagnetic knots gives only a nonlinear subset

of the set of all the standard electromagnetic fields. Some standard fields are

lacking. This might appear disastrous, but the local equivalence shown earlier

indicates that it is not a matter of concern.

Which standard electromagnetic fields must be excluded from the topologi-

cal theory because they cannot be generated by a pair of dual maps? The fields

to be excluded are those with helicities not verifying the equations (150) and

also those for which the scalars do exist locally but do not behave well at infinity

or are not of class C1 and for which the Hopf index cannot be defined. Contrary

to what it might seem, this is not necessarily a drawback of the model. In fact, it

can be said that Maxwell’s equations have too many solutions, since not all of

them can be realized in nature and because some of them have energy, or

momentum, that is infinite. Others are Coulomb or Liener–Wiechert potentials

coupled to charges that are not integer multiples of the electron fundamental

value e, or that would have been radiated by monopoles (if these particles do not

exist), or have discontinuities in surfaces, meant to represent in a simple way

changes of the field that are abrupt but continuous. Consequently, the fact that

not all the standard solutions are included in the topological model is not

necessarily a disadvantage.

In order to better understand the role of the hidden nonlinearity, let us

examine two properties of the knots.

1. If Fmn is a knot, all its integer multiples nFmn are also knots. It is easy to

understand why. Let f ¼ Sexpði2psÞ and y ¼ Qexpði2pqÞ. It is then a

simple matter to see that nFmn and n �Fmn are generated by the scalars fðnÞ ¼
Sexpðni2psÞ and yðnÞ ¼ Qexpðni2pqÞ, which are clearly defined if n is an

integer. Note that the helicity of nFmn is equal to n2 times that of Fmn.

2. If Fmn is a knot and the scalars f and y never take the values 0 or 1, then

all cFmn, where c is a real number, are also knots.
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This is so because cFmn and c �Fmn are generated by fðcÞ ¼ Sexpðci2psÞ and

yðcÞ ¼ Qexpðci2pqÞ, respectively, which are clearly defined for any real c. Note

that in this case, f and y are maps S3 7!R1 � S1, which form only one homotopy

class. Note also that the helicities vanish in this case.

This shows that there is still some linearity. In particular, there is a subset of

knots that form a vector space and is therefore a linear sector of the model. It is

the set of the knots with zero helicity or with unlinked lines. Note also that the

theory is fully linear from the local point of view, as a consequence of the local

equivalence with Maxwell’s theory shown in Section V.A. By this we mean that

the set of the electromagentic knots contains all the linear combinations of

standard solutions around any point.

VII. TOPOLOGICAL QUANTIZATION
OF ELECTROMAGNETIC HELICITY

As was shown in Section II, the magnetic and the electric helicities of any

radiation electromagnetic field are equal. Moreover, in the case of the topolo-

gical model, the helicities of the knots verify

hm ¼
ð

A � B d3r ¼ he ¼
ð

C � E d3r ¼ na ð151Þ

where B ¼ r�A, E ¼ r�C, a is the normalizing constant of the model, and n

is the common value of the Hopf indices of the two maps f; y : S3 7!S2, which is

related to the linking number of any pair of magnetic or electric lines, as

explained in Section I.D.

Furthermore, it was shown in Section II.C that the semisum of the two

helicities H ¼ 1
2
ðhm þ heÞ ¼ na, which we call the electromagnetic helicity, is

a constant of the motion for any standard electromagnetic field in empty space:

H ¼ �hc

ð
d3k �aRðkÞaRðkÞ � �aLðkÞaLðkÞð Þ ð152Þ

In the case of a knot, it follows that

n ¼ �hc

a

ð
d3k �aRðkÞaRðkÞ � �aLðkÞaLðkÞð Þ ð153Þ

In QED, aR; aL are taken to be annihilation operators (and �aR; �aL creation

operators) for photons, where the integral on the right-hand side of (152) and

(153) is the operator for the difference between the numbers of right-handed and

left-handed photons NR � NL. If the knots are classical, those Fourier transforms
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are functions, so that the integral in the right-hand side is the classical limit of

this difference. Consequently, the value of NR � NL for a knot is topologically

quantized and takes the value na=�hc. (Note that this is true even if the knots are

classical fields.) This suggests a criterion for the value of the normalizing

constant. Taking a ¼ �hc (in natural units, this is a ¼ 1 and in SU a ¼ �hcE0,

where E0 being the permittivity of empty space), one has

n ¼ NR � NL ð154Þ

Equation (154) relates, in a very simple and appealing way, two meanings of the

term helicity, related to the wave and particle aspects of the field. At the left, the

wave helicity is the Hopf index n, characterizing the way in which the force

lines—either magnetic or electric—curl around one another (as explained before

n ¼ ‘m2, where ‘ is the linking number and m the multiplicity of the map). At the

right, the particle helicity is the difference between the numbers of right-handed

and left-handed photons. This is certainly a nice property. It suggests that the

electromagnetic knots are worthy of consideration. Note that this property gives

a new interpretation of the number n. We know that it is a Hopf index. We see that

it is furthermore the difference of the classical limit of the numbers of right-

handed and left-handed photons.

All the electromagnetic knots verify the quantum conditions

hm ¼ he ¼ n�hc; NR � NL ¼ n ð155Þ

Note that the set of the electromagnetic knots contains some with very low

energy, for which n is necessarily very small. Even if they can be defined as

classical fields, the real system would have quantum behavior, since the action

involved would be of the order of �h. On the other hand, there are states with n

small and even zero, which have, however, macroscopic energy. They are those

for which NR;NL are large. When n is large, the photon contents are high and the

energy is macroscopic. These are the states for which the classical approximation

is valid.

This suggest that the set of the electromagnetic knots give a classic limit with

the right normalization.

VIII. TOPOLOGICAL QUANTIZATION OF ELECTRIC
AND MAGNETIC CHARGES

Quantization of the electric charge is one of the most important and intriguing

laws of physics. However, the value of the fundamental charge is obtained

through experiments, as all the efforts to predict it—or the fine-structure

constant a—within a theoretical scheme have failed so far.
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This important law is usually stated by saying that the electric charge of any

particle is an integer multiple of a fundamental value e, the electron charge,

whose value in the International System of Units is (SI units) e ¼ 1:6�
10�19 C. The Gauss theorem allows a different, although fully equivalent,

statement of this property, namely, that the electric flux across any closed

surface � that does not intersect any charge is always an integer multiple of e

(we use the rationalized MKS system here). This can be written as

ð
�

o ¼ ne ð156Þ

where o is the 2-form E � n dS, and n is a unit vector orthogonal to the surface, E
is the electric field, and dS is the surface element. We could as well write (156) as

ð
�

�F ¼ ne ð157Þ

where �F is the dual to the Faraday 2-form F ¼ 1
2

Fmndxm ^ dxn. Stated in this

way, the discretization of the charge is interesting because it shows a close

similarity to the expression of the topological degree of a map. Assume that

we have a regular map y of � on a 2-sphere S2 and let s be the normalized area

2-form in S2. It then happens thatð
�

y�s ¼ n ð158Þ

where y�s is the pullback of s and n an integer called the ‘‘degree of the map,’’

which gives the number of times that S2 is covered when one runs once through �
(equal to the number of points in � in which y takes any prescribed value). Note

that y� in (158) indicates pullback by the map y and must not be mistaken for the

complex conjugate of y, which will be written �y.

Comparison of (157) and (158) shows that there is a close formal similarity

between the dual to the Faraday 2-form and the pullback of the area 2-form of a

sphere S2. It can be expressed in this way. Let an electromagnetic field be given,

such that its form �F is regular except at the positions of some point charges.

Let a map y:R3 7!S2 also be given, which is regular except at some point

singularities where its level curves converge or diverge. Then, Eqs. (157) and

(158) are simultaneously satisfied for all the closed surfaces � that do not

intersect any charge or singularity.

This means that the electric charge will be automatically and topologically

discretized in a model in which these two forms—�F and y�s—are propor-

tional; the fundamental charge is equal to the proportionality coefficient and the
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number of fundamental charges in a volume then have the meaning of a

topological index.

This is exactly what happens in the topological model. Indeed, the dual to the

Faraday 2-form is expressed in it as

�F ¼
ffiffiffi
a

p
y�s ð159Þ

where a is a normalizing constant with dimensions of action times velocity.

Remember that the electric field is E ¼
ffiffiffi
a

p
ð2piÞ�1ð1 þ �yyÞ�2=�y� =y; the

electric lines are therefore the level curves of y. The degree of the map �7!S2

induced by y is given by (158); thereforeð
�

�F ¼ n
ffiffiffi
a

p
ð160Þ

As this is equal to the charge Q inside �, it follows that Q ¼ n
ffiffiffi
a

p
, which implies

that there is a fundamental charge q0 ¼
ffiffiffi
a

p
, where the degree n represents the

number of fundamental charges inside �. This gives a topological interpretation

of n, the number of fundamental charges inside any volume .

It is easy to understand that n ¼ 0 if y is regular in the interior of �. This is

because each level curve of y (i. e., each electric line) is labeled by its value

along it—a complex number—and, in the regular case, any one of these lines

enters into this interior as many times as it goes out of it. But assume that y has a

singularity at point P, from which the electric lines diverge or to which they

converge. If � is a sphere around P, we can identify R3 except P with �� R, so

that the induced map y : � 7!S2 is regular. In this case, n need not vanish and is

equal to the number of times that y takes any prescribed complex value in �,

with due account to the orientation. Otherwise stated, among the electric lines

diverging from or converging to P, there are jnj whose label is equal to any

prescribed complex number.

This shows why the topological model embodies a topological quantization

of the charge, because it entails the automatic verification of the equation (159).

This mechanism for the quantization of the charge was first shown in Ref. 33

and developed later in Refs. 26,34, and 35. As the magnetic field is B ¼ �
ffiffiffi
a

p

ð2piÞ�1ð1 þ �ffÞ�2=�f� =f, the magnetic and electric lines are the level

curves of f and y, respectively.

To better understand this discretization mechanism, let us take the case of a

Coulomb potential [31,33], E ¼ Qr=ð4pr3Þ, B ¼ 0. The corresponding scalar is

then

y ¼ tan
#

2

� �
exp i

Qffiffiffi
a

p j
� �

ð161Þ
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where j and # are respectively the azimuth and the polar angle. The scalar (161)

is clearly defined only if Q ¼ n
ffiffiffi
a

p
, where n is an integer. The lines diverging

from the charge are labeled by the corresponding value of y, so that there are jnj
lines going into or out of the singularity and having any prescribed complex

number as their label. If n ¼ 1, it turns out that y ¼ ðx þ iyÞ=ðz þ rÞ.
This mechanism has a very curious aspect—it does not apply to the source

but to the electromagnetic field itself. This is surprising; one would expect that

the topology should operate by restricting the fields of the charged particles.

However, in this model, the field that mediates the force is the one that is sub-

mitted to a topological condition. It must be emphasized furthermore that the

maps S3 7!S2, given by the two scalars f; y, are regular except for singularities

at the position of point charges, either electric or magnetic (if the latter do exist).

At these points, the level curves (i.e., the electric lines) either converge or diverge.

In the previous section, it was shown that the constant a must be equal toffiffiffiffiffi
�hc

p
in order to obtain the right quantization of the electromagnetic helicity.

This implies that the topological model predicts that the fundamental charge,

either electric or magnetic, has the value

q0 ¼
ffiffiffiffiffi
�hc

p
ð162Þ

(in the MKS system), which is about 3:3 times the electron charge. In SI units,

this is q0 ¼
ffiffiffiffiffiffiffiffiffi
�hcE0

p
¼ 5:29 � 10�19 C, and in natural units q0 ¼ 1. Note that this

applies to both the electron charge and the hypothetical monopole charge. This

property can be stated by saying that, in the topological model, the electromag-

netic fields can be coupled only to point charges that are integer multiples of the

fundamental charge q0 ¼
ffiffiffiffiffi
�hc

p
. Note that the same discretization mechanism

would apply to the hypothetical magnetic charges (located at singularities of f),

and their fundamental values would also be q0 ¼
ffiffiffiffiffi
�hc

p
.

A. The Fine-Structure Constant at Infinite Energy Equal to 1=4p?

As the topological model as presented here is classical, this value of q0 must be

interpreted as the fundamental bare charge, both electric and magnetic. The

corresponding fine-structure constant is clearly a0 ¼ 1=4p, which is certainly a

nice number. We now argue that 1=4p is an appealing and interesting value for

the unrenormalized fine-structure constant (i.e., neglecting the effect of the

quantum vacuum). In that case, the topological model would describe the

electromagnetic field at infinite energy.

The argument goes as follows. Let us combine this topological quantization

of the charge with the appealing and plausible idea that, in the limit of very high

energies, the interactions of charged particles could be determined by their bare

charges (i.e., the value that their charges would have if they were not

renormalized by the quantum vacuum; see, e.g., Section 11.8 of Ref. 66).
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However, a warning is necessary. As the concept of bare charge is complex, it is

convenient to speak instead of charge at a certain scale. To be precise and avoid

confusion, when the expression ‘‘bare charge’’ is used here, it will be taken as

equivalent and synonymous to ‘‘infinite energy limit of the charge’’ or, more

correctly, ‘‘charge at infinite momentum transfer,’’ defined as e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p�hca1

p
,

where a1 ¼ lim aðQ2Þ when Q2 ! 1.

The possibility of a finite value for a1 is an intriguing idea worth studying.

Indeed, it was discussed very early by Gell-Mann and Low in their classic and

seminal paper ‘‘QED at small distances’’ [67], in which they showed that it is

something to be seriously considered. However, they could not decide from

their analysis whether e1 is finite or infinite. The standard QED statement that it

is infinite was established later on the basis of perturbative calculations. Never-

theless, and contrary to an extended belief, the alternative presented by Gell-

Mann and Low has not been really settled. It is still open, in spite of the many

attempts to clarify this question.

The infinite energy charge e1 of an electron is partially screened by the sea

of virtual pairs that are continuously being created and destroyed in empty

space. It is hence said that it is renormalized. As the pairs are polarized, they

generate a cloud of polarization charge near any charged particle, with the result

that the observed value of the charge is smaller than e1. Moreover, the apparent

electron charge increases as any probe goes deeper into the polarization cloud

and is therefore less screened. This effect is difficult to measure, as it can be

appreciated only at extremely short distances, but it has been observed indeed in

experiments of electron–positron scattering at high energies [68]. In other

words, the vacuum is dielectric. On the other hand, it is paramagnetic, since

its effect on the magnetic field is due to the spin of the pairs. As a consequence,

the hypothetical magnetic charge would be observed with a greater value at low

energy than at very high energy, contrary to the electron charge.

The coinage ‘‘bare charge’’ is appropriate for e1, as it is easy to understand

intuitively. When two electrons interact with very high momentum transfer,

each one is located so deeply inside the polarization cloud around the other that

no space is left between them to screen their charges, so that the bare values,

namely, e1, interact directly. As unification is assumed to occur at very high

energy, it is an appealing idea that a1 ¼ aGUT. Indeed, although this possibility

is almost always neglected, it is certainly worth of careful consideration. [It is

true that one could imagine that aðQ2Þ has a plateau at the unification scale

corresponding to a critical value smaller than a1, but we consider here the

simpler situation in which that plateau does not exist.] This suggests that a

unified theory could be a theory of bare particles (in the sense of neglecting the

effect of the vacuum). If this were the case, nature would have provided us with

a natural cutoff, in such a way that aGUT ¼ a1 (where the subscript GUT

denotes grand unified theory).
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As a consequence of these considerations, it can be argued that the

topological model implies the equalities aGUT ¼ a1 ¼ 1=4p. The argument

goes as follows.

1. The value of the fundamental charge implied by this topological

quantization e0 ¼
ffiffiffiffiffi
�hc

p
is in the right interval to verify e0 ¼ e1 ¼ g1, that is, to

be equal to the common value of both the fundamental electric and magnetic

infinite energy charges. This is so because, as the quantum vacuum is dielectric

but paramagnetic, the following inequalities must be satisfied: e < e0 < g, as

they are indeed, since e ¼ 0:3028, e0 ¼ 1, g ¼ e=2a ¼ 20:75, in natural units.

Note that it is impossible to have a complete symmetry between electricity and

magnetism simultaneously at low and high energies. The lack of symmetry

between the electron and the Dirac monopole charges would be due, in this view,

to the vacuum polarization: according to the topological model, the electric and

magnetic infinite energy charges are equal and verify e1g1 ¼ e2
0 ¼ 1, but they

would be decreased and increased, respectively, by the sea of virtual pairs, until

the electron and the monopole charge values verifying the Dirac relation

eg ¼ 2p [14]. The qualitative picture seems nice and appealing.

2. Let us admit as a working hypothesis that two charged particles interact

with their bare charges in the limit of very high energies (as explained above).

There could be then a conflict between (a) a unified theory of electroweak and

strong forces, in which a ¼ as at very high energies and (b) an infinite value of

a1. This is so because unification implies that the curves of the running

constants aðQ2Þ and asðQ2Þ must converge asymptotically to the same value

aGUT. It could be argued that, to have unification at a certain scale, it would

suffice that these two curves be close in an energy interval, even if they cross

and separate afterward. However, in that case, the unified theory would be just

an approximate accident at certain energy interval. On the other hand, the

assumption that both running constants go asymptotically to the same finite

value aGUT gives a much deeper meaning to the idea of unified theory, and is

therefore much more appealing. In that case, e1 must be expected to be finite,

and the equality aGUT ¼ a1 must be satisfied.

3. The value a0 ¼ e2
0=4p�hc ¼ 1=4p ¼ 0:0796 for the infinite energy fine-

structure constant a1 is thought-provoking and fitting, since aGUT is believed to

be in the interval ð0:05; 0:1Þ. This reaffirms the assertion that the fundamental

value of the charge given by the topological mechanism e0 could be equal to e1,

the infinite energy electron charge (and the infinite energy monopole charge

also). It also supports the statement that aGUT must be equal to a0 and to 1=4p.

All this is certainly curious and intriguing since the topological mechanism for

the quantization of the charge described here [26,33–35] is obtained simply

by putting some topology in elementary classical low-energy electrodynamics

[24–25,26,30,31].
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We believe, therefore, that the following three ideas must be studied care-

fully: (1) the complete symmetry between electricity and magnetism at the level

of the infinite energy charges, where both are equal to
ffiffiffiffiffi
�hc

p
and the symmetry is

broken by the dielectric and paramagnetic quantum vacuum; (2) that the

topological model on which the topological mechanism of quantization is based

could give a theory of high-energy electromagnetism at the unification scale;

and (3) that the value that it predicts for the fine-structure constant a0 ¼ 1=4p
could be equal to the infinite energy limit a1 and also to aGUT, the constant of

the unified theory of strong and electroweak interactions.

In this way the three quantities (both the electric and the magnetic fine-

structure constants at infinite momentum transfer and aGUT) would be equal.

Furhermore, there would be a complete symmetry between electricity, magnet-

ism, and strong force at the level of bare particles (i.e., at Q2 ¼ 1); this

symmetry would be broken by the effect of the quantum vacuum.

IX. SUMMARY AND CONCLUSIONS

In this chapter we have presented a topological model of electromagnetism that

was proposed by one of us (AFR) in 1989 [24,25]. It is based on the existence of

a topological structure that underlies Maxwell’s standard theory, in such a way

that the Maxwell equations in empty space are the exact linearization (by change

of variables, not by truncation) of some nonlinear equations with topological

properties and constants of the motion. Although the model is classical, it

embodies the topological quantizations of the helicity and the electric charge,

which suggest that it clarifies the relationship between the classical and quantum

aspects of the electromagnetism. Indeed, the model was developed in the spirit

described by the Atiyah aphorism ‘‘Both topology and quantum physics go from

the continuous to the discrete.’’

The main characteristics of the topological model are summarized as follows:

1. Its topological structure is induced by the topology of the force lines

(both electric and magnetic). Indeed, it is based on the idea of electromagnetic

knot, defined (in empty space) as a standard electromagnetic field in which any

pair of magnetic lines and any pair of electric lines is a link. An electromagnetic

knot is constructed by means of a pair of complex scalar fields f; y with only

one value at infinity. The magnetic (resp. electric) lines are the level curves of f
(resp. y). These scalars can be interpreted as giving two maps (termed dual)

from the sphere S3 to the sphere S2, which are characterized by the common

value of their Hopf indices n. The magnetic and electric helicities areÐ
A � B d3r ¼

Ð
C � E d3r ¼ n (in natural units). An important feature is that the

Faraday 2-form and its dual are the pullbacks of s, the area 2-form in S2, by the

two scalars, so that F ¼ �f�s, �F ¼ y�s.
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2. It is locally equivalent to Maxwell’s standard theory in empty space (but

globally disequivalent). This means that it cannot enter in conflict with Maxwell’s

theory in experiments of local nature.

3. The linear Maxwell equations appear in the model as the linearization by

change of variables of nonlinear equations that refer to the scalars f,y. This

introduces a subtle form of nonlinearity that we call ‘‘hidden nonlinearity.’’ For

this reason, the linearity of Maxwell’s equations is compatible with the existence

of topological constants of the motion.

4. One of these topological constants of the motion is the electromagnetic

helicity, defined as the semisum of the magnetic and electric helicities, which is

equal to the linking number of the force lines

H ¼ 1

2

ð
A � B þ C � Eð Þ d3r ¼ n

Moreover, it turns out that NR � NL ¼ n; where NR;NL are the classical

expression of the number of right-handed and left-handed photons (i.e., obtained

by substituting the Fourier transform functions aRðkÞ; aLðkÞ for the quantum

operators aR;k; aL;k). This establishes a nice relation between the wave and

particle meaning of helicity (i.e. between the linking number of the force lines

and the difference NR � NL referring to the photonic content of the field). This

suggests that the topological model could give the classical limit of the quantum

theory with the right normalization.

5. Another topological constant is the electric charge, which is, moreover,

topologically quantized; its fundamental value is q0 ¼
ffiffiffiffiffi
�hc

p
in the rationalized

MKS system (q0 ¼
ffiffiffiffiffiffiffiffiffi
�hcE0

p
in the SU system; q0 ¼ 1 in natural units). Further-

more, the number of fundamental charges inside a volume is equal to the degree

of a map between two spheres S2. It turns out that there are exactly jmj electric

lines going out from or coming into a point charge q ¼ mq0, for which f is

equal to any prescribed complex number (taking into account the orientation of

the map).

The topological model is completely symmetric between electricity and

magnetism, in the sense that it predicts that the fundamental hypothetical

magnetic charge would also be q0. Note that q0 ¼ 3:3e and that the correspond-

ing fine-structure constant is a0 ¼ 1=4p. It is argued in Section VIII.A that q0

could be interpreted as the bare electron and monopole charge. As the quantum

vacuum is dielectric but paramagnetic, the observed electric charge must be

smaller than q0 (it is equal to 0:303q0), but the Dirac charge must be greater (it

is equal to 20:75q0). This suggests that a0 could be the fine-structure constant at

infinite energy and, consequently, that the coupling constant of the grand unified

theory could also be as ¼ a0 ¼ 1=4p.
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This is an indication that the topological model could give a theory of bare

electromagnetism or, equivalently, of electromagnetism at infinite energy at the

unification scale.

Our conclusion is that the topological model of electromagnetism is worth

careful consideration.
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A diagram, the holodiagram, which is based on a set of ellipses, was designed to

simplify the making and evaluation of holograms. It was, however, soon found

that this diagram could be used in many other fields of optics and, surprisingly,

also in Einstein’s theory of special relativity. Holography with ultrashort pulses

‘‘light-in-flight recording by holography’’ can produce slow-motion pictures of
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light pulses. However, in such recordings a spherical light wave appears

deformed into one of the ellipsoids of the holodiagram (the two focal points are

the emitter respective the observer). The reason for this distortion is the limited

velocity of the light used for observation in much the same way as the cause of

the apparent deformations of fast-moving bodies described in special relativity.

The main difference is that in holography the distance separating the two focal

points of the ellipsoids is static while in relativity it is dynamic and caused by a

high velocity of the observer. Using this new graphical approach to relativity, we

find no reason for the Lorentz contraction; instead, we accept an elongation of

the observation sphere.

I. INTRODUCTION TO EINSTEIN’S SPECIAL
RELATIVITY THEORY

Special relativity is based on Einstein’s two postulates of 1905:

1. The same laws of electrodynamics and optics will be valid for all frames

of reference for which the equations of mechanics hold good.

2. Light is always propagated in empty space with a definite velocity c

which is independent of the state of motion of the emitting body.

In this chapter I would prefer to express these two postulates using the following

statements:

1. If we are in a room that is totally isolated from the outside world, there is

no experiment that can reveal a constant velocity of that room.

2. When we measure the speed of light (c) in vacuum, we always get the

same result independent of any velocity of the observer and or of the

source.

To make such strange effects possible, it is assumed that the velocity results in

that time moves more slowly (so that seconds are longer), which is termed

relativistic time dilation, and it was assumed (by Lorentz) that lengths (rulers)

are shortened in the direction of travel (Lorentz contraction). The contraction

effect was presented by Lorentz [1] to explain the Michelson–Morley experi-

ments in 1881 and was later adapted by Einstein [2] in his famous special theory

of relativity [2]. Time dilation is more ‘‘real’’ than the Lorentz contraction

because it produces a permanent result, a lasting difference in the reading of a

stationary and a traveling clock, while the Lorentz contraction is much more

‘‘apparent’’ as it produces no permanent result; there is a difference in length

only as long as there is a difference in velocity of two rulers.

The Michelson–Morley interferometer compares the time of travel for light

rays along just two perpendicular one-dimensional paths, while holography can
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be used to make that comparison for light rays in all three dimensions. Thus,

there are reasons to believe that experiences from holography with ultrashort

pulses could shine new light on the theory of relativity.

II. INTERSECTING MINKOWSKI LIGHTCONES

Let us start by studying the Minkowski diagram [3], which is based on one cone

of illumination and one of observation. It was invented in 1908 to visualize

relativistic relations between time and space. In Fig. 1. we see our modification

of this diagram. The x and y axes represent two dimensions of our ordinary

world, while the z axis represents time (t), multiplied by the speed of light (c),

simply to make the scales of time and space of the same magnitude. Thus, in the

x–ct coordinate system, the velocity of light is represented by a straight line at

45� to the ct axis. As all other possible velocities are lower than that of light, they

are represented by straight lines inclined at an angle of less than 45� to the ct axis.

An ultrashort light pulse is emitted at A and slightly later an ultrafast

detection is made at B. The separation in time and space between A and B

could be either (1) static because A and B are fixed in space as in most

holography (in which case we would refer to the one who makes the experiment

the ‘‘rester’’ (2) dynamic, caused by an ultrahigh velocity (v) of the person

Figure 1. An ultrashort light pulse is emitted at A, which is the apex of a Minkowski lightcone.

In our coordinate system x–y represent two axes of our ordinary world, while the third axis ct

represents time. The widening of the cone upward represents the radius of the sphere of light as it

increases with time. An ultrashort observation is later made at B, the apex of an inverted cone. The

only way for light to be transmitted from A to B is by scattering objects placed where the two cones

intersect. If the observer’s velocity (v) is high, this intersection will be an ellipse that is inclined in

relation to our stationary world.
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(called the ‘‘traveler’’) who performs the experiment. In the original Minkowski

diagram the distance A–B was zero, but to adapt the diagram to holography, we

had to introduce a separation in both time and space. If there is a separation in

time only, the world will be seen intersected by spheres, but when the separation

in space is introduced, these spheres are transformed into ellipsoids.

We will first concentrate on the illumination cone. A spherical wavefront is

emitted in all directions from a point source (A) and expands with the speed of

light. In our chosen coordinate system, which is limited to only two space

coordinates and one time coordinate, this phenomenon is represented by a cone

with its apex at A, expanding in the direction of the positive time axis. The

passing of time is represented by cross sections of the cone by planes parallel to

the x–y plane at increasing ct values (Fig. 2). These intersections will, when

projected down to the x–y plane, produce circles of increasing radius that in our

3D world represent the expanding spherical wavefront from the point source at

A. As time increases, the circles around A expand, while those around B

contract. The ellipses caused by the intersection of those circles stay fixed and

unchanged as explained later, in Section IV.

Let us now more closely study the observation cone that intersects the

illumination cone. If a point of illumination represents a point source of light, a

point of observation represents a point sink of light, a point toward which

spherical waves are shrinking. In the Minkowski diagram, it is represented by a

cone that is inverted in relation to the lightcone, referred to as the observation

cone (B), which like the light cone has a cone angle of 90� and the observer at

the apex (B). Thus, an observer at B can see nothing outside this cone because of

the limited speed of light (c). The only general way for light to pass from the

illumination cone to the observation cone is by deflection, such as by scattering

from matter that exists at the intersection of the two cones. The only exception

is when the two cones just touch each other, which is the only case when light

might pass directly from A to B.

The intersection of the two cones produce an ellipse that in three dimensions

represents an ellipsoid of observation. In other words, it represents the traveler’s

surface of simultaneity that, to this traveler, who is situated at the apex (B) of

the cone of course appears spherical. The traveler’s time axis (ct1) is at a dif-

ferent direction than the time axis of the rester’s x–y plane (ct). Thus ob-

servations that appear to be simultaneous to the rester are not simultaneous to

the traveler and vice versa, because time varies in a linear fashion along the line

of travel.

To simplify the diagram of Figs. 1 and 2, we have drawn only two space

dimensions and time. If all three space dimensions had been included the

intersection of the two cones would represent the ellipsoid of observation,

where the apices (A and B) of the two cones are the focal points. The situation

will be the same regardless of whether the separation between A and B is static
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or caused by an ultrahigh velocity. Thus, our concept of ellipsoids of observa-

tion applies just as well to the evaluation of apparent distortions at relativistic

velocities as to radar, gated viewing, holographic interferometry, and hologra-

phy with picosecond pulses [4]. As soon as there exists a separation between A

and B, the spheres of observation are transformed into ellipsoids of observation.

In ordinary optics there usually exists perfect symmetry in relation to time.

The light rays are the same regardless of whether times goes forward or

Figure 2. The relation between the Minkowski diagram and the holodiagram designed for the

creation and evaluation of holograms. The horizontal intersections of the two cones represent

different points of time, and the two sets of circles formed by those intersections are identical to the

two sets of circles originally used to produce the ellipses of the holodiagram as later described in

Fig. 5.
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backward. In our diagrams of Figs. 1 and 2, however, the situation is different. A

change of A is observed after a delay, while a change of B is observed instantly,

as understood by the following example. If a star (A) that is one lightyear away

suddenly starts moving toward us, it will take one year before we see a Doppler

blueshift, but if we (B) suddenly start moving toward the star, the blueshift is

seen without delay. Thus, if A is moved, there is a delay until the cone of

illumination and the ellipsoids of observation are changed, but a motion of B

causes instantaneous change. On this the basis of this result, we will take a look

at the ‘‘twin paradox’’ and explain it as a result of this asymmetry (Appendix A)

.

III. HOLOGRAPHIC USES OF THE HOLODIAGRAM

Both holography and the special theory of relativity are based on interferometry,

which in turn depends on path lengths of light. Let such a pathlength be

represented by a string. Fix the ends of the string with two nails on a blackboard

and while keeping the string stretched draw a curve with a chalk. The result will

be an ellipse with its two focal points at the nails (Fig. 3). Thus, we understand

that if a light source is at one focal point (A) the pathlength for light to the other

focal point (B) via any point on the ellipse will be constant. If we could draw a

curve with chalk in three dimensions, the result would be a rotational symmetric

ellipsoid still with the focal points A and B. Now shorten the string by the

coherence length of a HeNe laser and produce another ellipse and finally, instead

lengthen the string by another coherence length. If we place a HeNe laser at A, a

hologram plate at B, and a reference mirror at the middle ellipse, we can record

any object within the two outermost ellipses because the difference in pathlength

for the light from the object and from the mirror will be within the coherence

length. If the coherence length, or the pulse length, of the laser is very short, we

will, on reconstruction of the hologram, see the object intersected by a thin

ellipsoidal shell. This method, termed ‘‘light-in-flight recording by holography,’’

can be used to observe the three-dimensional shape of either a wavefront (or

pulsefront) or a real object [4].

If we instead produce a set of ellipses by frequently lengthening the string by

the wavelength of light (l), one interference fringe would form for every

ellipsoid intersected by each point on an object as it moves between two

exposures in holographic interferometry. On the basis of this idea, we produce

the holodiagram [5]. The separation of the ellipses at a point C compared to

their separation at the x axis is termed the k value, which depends on the angle

ACB. As the peripherical angle on a circle is constant, the k value will be

constant along arcs of circles passing through A and B as seen in Fig. 3. The

moiré effect of two sets of ellipsoids visualize interference patterns in holo-

graphic interferometry [6].
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To make the diagram easier to study, we have painted every second area

between the ellipses black as seen in Fig. 4. From this we can see how the

thickness of these areas, which represent the k value, varies over the diagram.

The k value is constant along arcs of circles that pass through A and B.

Figure 3. Let us assume that a string is fixed with one end at A and the other at B. Keeping the

string stretched, a set of ellipses are drawn, and for each adjacent ellipse the string length is

increased by a certain constant value (�L). The separation of the ellipses varies with a factor k that is

constant along arcs of circles. In this holodiagram let A be the spatial filter in a holographic setup and

B be the center of the hologram plate. If �L is the coherence length of light, the diagram can be used

to optimize the use of a limited coherence in recording large objects. If �L instead represents the

wavelength of light, the ellipses can be used to evaluate interference fringes in holographic

interferometry or conventional interferometry with oblique illumination and observation. Finally, if

�L represents a very short coherence length, or pulselength, the ellipses visualize the spherical

wavefront from A as seen from B, deformed by the limited speed of the light used for the

observation.
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Therefore, in Fig. 3 we have printed the k value where these circles cross the Y

axis. When the position in the holodiagram is known for a selected object point,

then the sensitivity is known in both amplitude and direction. Thus, the

holodiagram can be used to simplify the planning of the holographic setup

and the evaluation of the displacement from the number of fringes.

IV. APPLICATION TO INTERFEROMETRY

If an object point is moved from one ellipsoid half way to an adjacent one, then

the phase at B on the hologram plate will change by 180�. This means that the

interference pattern at B moves half a fringe separation. If we make a double

exposure with such an object motion in between the two exposures, then the

fringes on the hologram plate will be displaced so that where there was darkness

during the first exposure there will be brightness during the second and vice

Figure 4. To make the diagram of Fig. 3 easier to study, we have painted every second area

between the ellipses black. We see that the thickness of the areas varies with the k value throughout

the diagram.
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versa. For this reason the fringes on the hologram plate will be wiped out at B,

and because there is no diffraction, the corresponding object point will appear

dark during reconstruction. Consequently, if, for example, a long object is fixed

to one end and the other end is moved so that it crosses five ellipsoids, the object

will be covered by five fringes in the reconstructed holographic image.

A movement parallel to one ellipsoid will not change the string length and

therefore causes no pathlength difference and consequently no fringes are

formed on the reconstructed object image, while a movement perpendicular

to the ellipsoids causes the most fringes. Later on we will show that the direction

perpendicular to the ellipsoids will be on the surface of a set of hyperboloids.

Thus, the hyperbolas represent the sensitivity direction, while the ellipses

represent the direction of zero sensitivity, and the closiness of the ellipses is a

measure of the sensitivity in that direction.

The separation between the ellipses varies over the diagram as seen in Fig. 3.

Thus, along the x axis to the left of A and to the right of B the sensitivity is half

the wavelength, and everywhere else it is lower. In between A and B it is almost

zero, but as we move outward along the y axis, it increases until, at an infinite

distance, it again becomes half the wavelength. We designate the separation as k

times the wavelength. Thus, this k value is a desensitizing factor that represents a

measure of how large a movement is necessary to produce one interference fringe.

Referring to Fig. 3 again, the displacement in the sensitivity direction can be

calculated from the number of fringes on the reconstructed object in the

following way: Displacement is k times the number of fringes multiplied by

half the wavelength. A greater k value caused by more grazing incidence of the

light rays works just as if there was a longer wavelength or a redshift of the light.

Let us study some more examples of this statement. When we look at a flat

object that scatters light, such as a page in a book, it appears more and more

mirror-like the more we tilt it, so that we look almost parallel to the surface. The

reason is that, to see a surface, that surface must have a microscopic structure

whose hills and valleys must be of a size comparable at least to the wavelength

of light. If the structure is finer, we do not see the surface itself; instead, we see a

mirror reflection, or, as it is also termed, a specular reflection. As we tilt the

surface, the k value increases which produces the same result as if there had

been an increase in the wavelength of the light, which is the same as a redshift.

Using the holodiagram, we have managed to lower the sensitivity of

holographic interferometry so much that an object movement of 2 mm caused

only two fringes. We also made an interferometer the ‘‘interferoscope’’ in which

the sensitivity could be changed from 1 to 5 mm (micrometers) per fringe just by

changing the k value [7]. In this case the k value was about 16; had it been unity,

the sensitivity would have been half the wavelength or about 0.3 mm.

Another approach to this holodiagram is to draw one set of equidistant

concentric circles centered at A and another set at B as seen in Fig. 5. A number
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of rhombs, or diamonds, are formed where the circles intersect. By painting

every second rhomb black one set of ellipses and one set of hyperbolas are

produced. The two diagonals of a rhomb are perpendicular, and thus the ellipses

and the hyperbolas intersect at right angles. One diagonal of the rhombs

represents the separation of the ellipses and the other, the separation of the

hyperbolas. The radius from A and B are termed RA (resp. RB). The set of ellipses

is represented by RA þ RB ¼ constant and the set of hyperbolas, by RA�
RB ¼ constant. If the separation of the concentric circles is 0.5l, the separation

of the ellipses (one diagonal of the rhomb) at a point C is

Dell ¼
0:5l
cos a

¼ k � 0:5l ð1Þ

Figure 5. An alternative way to constract the holodiagram is to draw two sets of concentric

circles where for each adjacent circle the radius is increased by a certain constant value. One set of

ellipsoids and one set of hyperboloids are formed. If A and B are two sources of coherent light, or

two points of observation, the ellipsoids move outward with a velocity greater than the speed of

light, while the hyperboloids will be stationary. These hyperboloids represent the diffraction-limited

resolution of a lens and are used for in-plane measurements in holography, moiré and speckle

techniques. If A is a source of coherent light and B is a coherent point of observation, the

hyperboloids move with a speed greater than light to the right while the ellipsoids will be stationary.

These ellipsoids represent the interferometric limited resolution and are used for out-of-plane and

3D measurements.
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while the separation of the hyperbolas (the other diagonal) is

Dhyp ¼ 0:5l
sin a

ð2Þ

where a is half the angle ACB of Fig. 3. The factor k of Eq. (1) is identical to the k

of Fig. 3, and its value is

k ¼ 1

cos a
ð3Þ

Interferometric measured displacement (d) is calculated d ¼ nk 0:5l, where n is

the number of interference fringes between the displaced point and a fixed point

on the object. In holographic, or speckle, interferometry, A is a light source from

which spherical waves radiate outward while B is a point of observation, or a

light sink, toward which spherical waves move inward (see Fig. 6). In that case

the hyperbolas will move with a velocity greater than light while the ellipses are

Figure 6. A light-in-flight recording of light focused by a lens. One single picosecond

spherical pulse from a modelocked laser at A illuminated a white screen at an oblique angle. The

screen was placed so that its normal passed trough the hologram plate at B. Part of the pulse was,

after an appropriate delay, used as a reference beam at B. A cylindrical lens was fixed to the screen,

and by multiple ephotographic exposures of the reconstructed image, the focusing effect of the lens

was recorded.
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stationary and Eq. (1) is used to find the displacement normal to the ellipsoids

(out-of-plane displacement). If both A and B are light sources, the ellipsoids will

move with a velocity greater than light while the hyperbolas (Young’s fringes)

are stationary, and the hyperbolas are used to evaluate the displacement normal

to the hyperboloids (in-plane displacement). The situation will be similar if A

and B both are points of observation while the light source could be anywhere.

Finally, if A–B represents the diameter of a lens, the minimum separation of the

hypebolas will represent the diffraction limited resolution of that lens [8] (except

for a constant of 1.22).

V. LIGHT-IN-FLIGHT RECORDING BY HOLOGRAPHY

A hologram is recorded only if object light and reference light simultaneously

illuminate the hologram plate. Thus, if the reference pulse is one picosecond

(10�12 s ¼ 0:3 mm) long, the reconstructed image of the object will be seen only

where it is intersected by this light slice, the thickness of which depends on the

length of the pulse. If the reference pulse illuminates the hologram plate at an

angle from the left, for instance, it will work like a light shutter that with a

velocity greater than light sweeps across the plate. Thus, what happens first to the

object will be recorded farthest to the left on the plate, while what happens later

will be farther to the right. If the hologram plate is studied from left to right, the

reconstructed image functions like a movie that with picosecond resolution in

slow motion shows the motion of the light pulse during, for example, 1 ns

(nanosecond) (300 mm). This method, referred to as ‘‘light-in-flight (LIF)

recording by holography,’’ results in a frameless motion picture of the light as it

is scattered by particles or any rough surface. It can be used to study the

coherence function of pulses [9,10], and the 3D shape of wavefronts (Fig. 6) or of

physical objects [11] (Fig. 7).

Figure 8 shows the holographic setup used to produce a LIF hologram of

light reflected by a mirror. As the observer moves her eye, or a TV camera, from

left to right behind the hologram plates he will see, as in a frameless motion

picture, how the light pulse bounces off the mirror. Thus the method could be

said to represent four-dimensional holography that can record the three dimen-

sions of ordinary holography plus time.

If A and B are close together and if there are scattering particles, such as

smoke in the air, while observing the reconstructed hologram the experimenter

would find herself in the center of a spherical shell of light with a radius

R ¼ 0:5 ct, where (t) is time interval between emission of light (at A) and

recording (at B). If, however, A and B are separated she would find herself in the

focal point B of an ellipsoid where A is the other focal point. The string length

(referring to Fig. 3) is RA þ RB ¼ ct. The thickness of the ellipsoidal shell
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would be k � 0:5c�t, where �t is pulselength (or coherence length) and k is

the usual k value. If the distance A � B were infinite, the observer at B would be

in the focal point of a paraboloid. Thus, we have shown that a sphere of

observation appears distorted into an ellipsoid and a flat surface of observation

into a paraboloid and the sole reason for these distortions is the separation

A � B.

In Fig. 9 we see at the top the ordinary holodiagram where the eccentricity of

the ellipse is caused by the static separation of A and B. However, it is

unimportant what the observer is doing during the time between emission and

detection of light pulses. Thus, the observer could just as well be running from

A to B so that the eccentricity of his observation ellipsoid is caused solely by the

distance he has covered until he makes the observation. If his running speed is

close to the velocity of light, this new dynamic holodiagram is identical to the

ordinary, static holodiagram. This fact has inspired to the new graphical

approach to special relativity, which will be explained in Section IX, but let

us first study the development of Einstein’s special relativity theory.

Figure 7. Light-in-flight recording of a set of spheres illuminated by a 3-ps laser pulse. The

light source (A) and the point of observation at the hologram plate (B) were close together and far

from the object. Thus, the intersecting ellipsoidal light slice can be approximated into a spheroidal

light slice with a large radius and a thickness of 0.5 mm.
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VI. THE MICHELSON–MORLEY EXPERIMENT

One way to understand special relativity is to see how time dilation and Lorentz’

contraction of objects parallel to motion can be used to explain the null results

of the Michelson–Morley [1] experiment, which was performed to measure

the velocity of earth in relation to an assumed ether. The result was that the

expected influence of such an ether on the velocity of light was not found. Let us

now study this double-pass example, where one arm of a Michelson inter-

ferometer was perpendicular to the velocity of the earth’s surface, while the other

Figure 8. During exposure of a light-in-flight hologram only those parts are recorded for which

the pathlengths of the reference beam and the object beam are equal. If during exposure you look

through the left part of the hologram plate, you will see only a bright line on the left part of the

screen. If you look through the right part of the hologram plate, you will see a bright line on the right

part of the screen. You will also see the light reflected by the mirror on the screen because the

pathlength of the reference beam R is equal to not only O1 but also O2. One could say that each part

on the hologram plate records light of a certain age.
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was parallel. When the interferometer is at rest, the lengths of both arms are

identical.

Now, let me, the author, and you, the reader, be stationary in the stationary

space and study the moving interferometer from there. The velocity of the

interferometer from left to right is (v) while the speed of light is (c). The time

Figure 9. Two holodiagrams: (a) holography—the ordinary static holodiagram in which A is

the light source, B is the point of observation (e.g., the center of the hologram plate), while C is an

object for which the k value is 1/cos a; (b) the dynamic holodiagram in which an experimenter emits

a picosecond pulse at (A) and thereafter runs with a velocity close to the speed of light and makes a

picosecond observation at B. The k value is as before:

k ¼ 1

cosa
¼ ctffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � v2t2
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � v2

c2

r
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for light to travel along the perpendicular arm when the interferometer is

stationary is t0. When it is moving at velocity v, the pathlength becomes longer

and therefore the travel time tv becomes longer. However, this increase in

traveling time of the light must not be observable by the traveling observer

because that would be against the postulate (1) of special relativity. But why is

this increase in traveling time not observed by the observer who is traveling

with the interferometer? The accepted solution is that this increase in traveling

time is rendered invisible because all clocks moving with the interferometer are

delayed by a certain value so that each second becomes longer. A great number

of experiments have supported this statement, and the slowing of time is termed

time dilation. If the time dilation is 4
3
, a traveling clock will show 3 s when a

stationary clock shows 4 s.

The delay along the parallel arm of the interferometer has to be exactly the

same as that of the perpendicular arm; otherwise the difference in arriving time

could be observed interferometrically and interpreted as a change in the speed

of light, which would be against Einstein’s postulates (1) and (2) . When the

light is moving in the same direction as the interferometer, the travel time will

be longer than when it is moving in the opposite direction. The total time will be

longer than that of the perpendicular arm. Thus, judging from the time of flight,

the parallel arm appears elongated in comparison to the perpendicular arm. In

order to fulfill postulates (1) and (2), it was decided by Lorentz that this,

elongation of the parallel arm that was apparent to the traveling observer was

compensated for by introducing a corresponding assumed contraction, namely,

the Lorentz contraction.

Thus we have found that time dilation has been proved by many experi-

ments and, as it produces a permanent delay, there is no reason to doubt its

existence. It is independent of the sign of the velocity of the interferometer and

it produces the correct result for a single-pass measurement as well as for the

demonstrated double pass. The slowing of time results in a longer wavelength of

the light from the source traveling with the interferometer, consequently the

number of waves in the perpendicular arm and thus the phase after a single or a

double pass through that arm is independent of the velocity (v) of the

interferometer. First we will just accept the time dilation as derived from the

effect of the arm perpendicular to velocity and then solely the arm parallel to

velocity.

The Lorentz contraction of the parallel arm is more complicated and cannot

be measured directly as it is not permanent but disappears when the velocity (v)

disappears. Thus, I find the discussion of assumed contractions or elongations of

a moving object meaningless as they are, by definition, invisible. I look at them

as only theoretical tools, and in the following section we will solely study how

the stationary world appears deformed when studied and measured by an

observer traveling with a velocity close to that of light.

270 nils abramson



VII. INTRODUCING SPHERES OF OBSERVATION
TRANSFORMED INTO ELLIPSOIDS OF OBSERVATION

Let us compare static and dynamic separation of illumination and observation. A

person is performing experiments based on gated viewing, which means that a

short pulse of light (picosecond pulse) is emitted and, after a short time (e.g.,

20 ns), she makes a high-speed recording with a picosecond exposure time. If the

illumination point source (A) and the observation point (B) are close together, the

experimenter will find herself surrounded by a luminous spherical shell with a

radius of 3 m. This spherical shell can be seen only if something scatters the light,

for instance, if the experiment is performed in a smoke-filled or dusty space. If

there are large objects in the space, she will see these objects illuminated only in

those places where they are intersected by the sphere. The experiment described

can be used to map the space around the experimenter. This is identical to well-

known radar methods. By changing the delay between emission and recording,

intersections of differently sized spheres can be studied. In this way, the outside

world is mapped in polar coordinates.

If the illumination point (A) and the observation point (B) are separated, the

situation will be different. As the luminous sphere around A grows, the observer

will see nothing until the true sphere reaches B. Then, she will find herself

inside an ellipsoidal luminous shell. One focal point of the ellipsoid will be A;

the other, B. By changing the delay between emission and recording, intersec-

tions of ellipsoids with different sizes, but identical focal points, can be studied.

In this way the space around the experimenter can be mapped in bipolar

coordinates. The experimenter should know the separation of A and B so that

her mapping will be correct. If she erroneously believes the separation to be

zero, she will misjudge the ellipsoids as spheres and make errors, especially in

the measurement of lengths parallel to the line AB. She will also make angular

errors because of the angular differences between points on the spherical and the

ellipsoidal shells.

We shall take a closer look at the possibilities of applying the concept of the

ellipsoids to visualize special relativity more generally. Our goal is to find a

simple graphical way to predict the apparent distortions of objects that move at

velocities close to that of light and to restore the true shape of an object from its

relativistically distorted ultra-high-speed recording.

We have already described that, if the illumination point (A) is separated

from the observation point (B), the gated viewing system produces recordings of

intersections of ellipsoids having A and B as focal points. Now, let me, the

author, and you, the reader, be stationary in a stationary space and study what a

traveling experimenter (the traveler) will see of our stationary world when

he travels past at relativistic velocity using picosecond illumination and

observation.
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Instead of an assumed contraction of fast moving objects, I have introduced

the idea that the travelers’ spheres of observation by the velocity are trans-

formed into ellipsoids of observation. One advantage is that this new concept is

easier to visualize and that it makes possible a simple graphic derivation of

distortions of time and space caused by relativistic velocities. Another advan-

tage is that it is mentally easier to accept a deformation of spheres of observation

than a real deformation of rigid bodies depending on the velocity of the observer.

Our calculations refer to how a stationary observer (the rester) judges how a

traveling observer (the traveler) judges the stationary world. We have restricted

ourselves to this situation exclusively because it is convenient to visualize

ourselves, you the reader and I the author, as stationary. When we are stationary,

we find it to be a simple task to measure the true shape of a stationary object.

We use optical instruments, measuring rods, or any other conventional measur-

ing principle. We believe that we make no fundamental mistakes and thus

accept our measurements as representing the true shape. No doubt the traveler

has a much more difficult task. Thus we do not trust the traveler’s results but

refer to them as apparent shapes.

VIII. THE PARADOX OF LIGHT SPHERES

In Fig. 10a we see a stationary car in the form of a cube. An experimenter emits

an ultrashort light pulse from the center of the cube (A) and some nanoseconds

later makes an ultrashort observation (B) from that same place. The true sphere

of light emitted from (A) will reach all sides of the cube at the same time. Thus,

while performing the observation from (B), the experimenter will simultaneously

on all sides see bright points growing into circular rings of light. However, if the

car is moving at velocity v close to c, the true sphere, as seen by a stationary

observer, will not move with the car but remain stationary. The result will be that

the sphere reaches point E on the side of the car earlier than, for instance, point D

as seen in Fig. 10b. However, referring to Einstein’s postulates 1 and 2, this fact

must in some way be hidden to the traveling observer.

Figure 11 illustrates our explanation, which is that the traveler’s sphere of

observation is transformed into an ellipsoid of observation, as its focal points are

the point of illumination (A) respective of the point of observation (B) separated

by the velocity (v) as already described in Figs. 1, 2, and 9. The minor diameter

of the ellipsoid is, however, unchanged and identical to the diameter of the

sphere. The ellipsoid reaches E earlier than, for example, D, and therefore the

different sides of the cube are observed at different points of time. However, to

the traveler all the sides appear to be illuminated simultaneously, as by a sphere

of light that touches all the sides at the same time. The reason why the ellipsoid

to the traveler appears spherical is that A and B are focal points and thus

ACB ¼ ADB ¼ AEB ¼ AFB.
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Figure 10. (a) Point A is the point source

of light and B, the point of observation. To the

traveling observer the sphere of light appears

centered to the cubic car, independent of its

velocity. Thus, she observes that all the sides

are touched by this sphere simultaneously. (b)

To the stationary observer the sphere of light

appears fixed to his stationary world. Thus, the

sphere will reach E earlier than D. This fact

must be hidden from the traveling observer;

otherwise he could measure the constant

velocity of the car, which would be against

Einsteins’ special relativity theory.

Figure 11. Our new explanation is that to the traveling observer, her sphere of observation is

by the velocity transformed into an ellipsoid of observation. However, to the traveler this ellipsoid

appears spherical because A and B are focal points of the ellipsoid and thus ACB ¼ ADB ¼ AEB.

Thus, to her the car appears cubic because she observes that all sides of the car are touched by this

sphere simultaneously, just as when the car was stationary. To the stationary observer this

simultaneity is, however, not true.
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The cubic car is shown elongated because time varies linearly along the car.

Point E appears farther to the left because it was illuminated and thus recorded

early when the whole moving car was farther to the left, while point D was

illuminated and recorded later when the car had reached farther to the right.

Thus the observations of the walls of the car appears simultaneous to the

traveler but not to the stationary observer (compare to the inclined intersection

of Figs. 1 and 2). As both the car and the ellipsoid of observation are elongated

in the direction of travel, there is no need for an assumed contraction to make

the velocity invisible to the traveler.

As time passes, the ellipsoid will grew and produce an ellipse on the ceiling

of the car. Even this phenomenon will be invisible to the traveler because it has

been mathematically proven that the intersection of an ellipsoid by a plane

appears circular when observed from any focal point of the ellipsoid [12].

Further on, if the car had not been cubic but instead had consisted of a reflecting

sphere with the light source in its center, the distortion into an ellipsoid would

still be invisible. The traveler would find no difference in the reflected rays.

IX. TIME DILATION AND APPARENT
LORENTZ CONTRACTION

Let us now see if this new idea about the observation ellipsoid produces the same

results as derived from the Michelson interferometry experiment. We, who are

stationary, the resters, understand that the traveler’s observation ellipsoid has its

focal points at A and B and that light with the speed of c travels ACB of Fig. 11.

On the other hand, the traveler’s observation sphere is perceived, by the traveler,

as being centered at B, with the light simply having traveled with the speed of c in

path ACB of Fig. 10a. Thus, the time dilation is the time tv it takes for light to pass

ACB divided by the time it takes to pass OCO (Fig. 11) where OC ¼ ct0;
CB ¼ ctv; and OB ¼ vtv. Applying the Pythagorean theorem on the triangle

OCB results in the accepted value of the time dilation [13]:

Time dilation ¼ tv

t0

¼ CB

CO
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � v2

c2

r ¼ 1

cos a
¼ k ð4Þ

where k is the usual k value of the holodiagram. Stationary objects as measured

by the observation ellipsoid, or by any measuring rod carried in the car, will

appear to the traveler contracted by the inverted value of the major diameter ED

to the minor diameter CF of his observation ellipsoid:

Lorentz contraction ¼ CO

CB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

c2

r
¼ cos a ¼ 1

k
ð5Þ
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This result is identical to the accepted value of the Lorentz contraction [14], but

our graphic derivation shows that this is true only for objects that just pass by

(Fig. 17). Objects in front appear elongated by OC/BD, while objects behind

appear contracted by OC/BE.

When the traveler emits a laser beam in his direction OC, it will, in relation

to the stationary world, have the direction AC, and its wavelength will be

changed by the factor AC/OC. When looking in the direction OC, his line of

sight will be changed to BC and the wavelength of light from the stationary

world will be changed by the factor BC/OC (the same change will happen to his

laser beam). This factor is well known as the ‘‘relativistic transversal Doppler

shift.’’ Finally, using our approach, we find that v can never exceed c because

v ¼ csina (Fig. 9).

X. GRAPHICAL CALCULATIONS

Let us now examine the emitted light rays in more detail and assume, in another

example, that the traveler who is moving from left to right directs a laser in the

direction BH of Fig. 12. The direction of the beam in relation to the stationary

world will then be AG. Point G is found by drawing a line parallel to the line of

travel (the x axis) from the point (H) on the sphere of observation to the

corresponding point (G) on the ellipsoid of observation. As the point of

observation is identical in space and time in the two systems, the center of the

sphere should coincide with the focal point of the ellipsoid of observation [15].

Figure 12. To the traveler an arbitrary point (G) of the stationary world appears to exist at H,

which is found by drawing a line of constant Y value from G to the sphere. As the traveler directs the

telescope in her direction BH, her line of sight in the rester’s universe will be GB. As the traveler

directs the laser in his direction BH, the direction of the laser beam will appear to be AG to the rester.

The Lorentz contraction is MN/ED.
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The angle of outgoing (emitted) light (a) and incoming (lines of sight) light (b)

are calculated from Fig. 12:

tan a ¼
sin g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

c2

r
v

c
þ cos l

ð6Þ

tan b ¼
sin g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

c2

r

� v

c
þ cos l

ð7Þ

These two equations, derived solely from Fig. 12, are identical to accepted

relativistic equations (see, e.g., Ref. 16). From Fig. 13a it is easy to see that the

Figure 13. (a) The graphical method

for finding the direction of light rays in Fig.

12 is independent of where along the x axis

in which the circle is situated. Thus, for

simplification it can just as well be placed in

the center of the ellipse. Thus, we see how

the outgoing laser beams are concentrated

forward as by a positive lens. (b) Again

using the method of Fig. 12, we find that the

lines of sight are diverged backward so that

the view forward appears demagnified as by

a negative lens.
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emitted rays are concentrated forward as if there was a focusing effect by a

positive lens. This phenomenon, which was pointed out by Einstein, results in the

light energy from a moving source appearing to be concentrated forward for two

reasons. The light frequency is increased by the Doppler effect and the light rays

are aberrated forward. This explains why the electron synchrotron radiation

appears sharply peaked in intensity in the forward tangential direction of motion

of the electrons. In the backward direction, we have the opposite effect. The light

is defocused as if by a negative lens.

In Fig. 13b the line of sight is seen aberrated backward along a line through

G from focal point B of Fig. 12 . The traveler is still moving to the right, and her

direction of observation, the telescope axis, is in the direction BH. Thus, the

stationary world around the traveler appears concentrated in the forward direc-

tion as if demagnified by a negative lens. In the backward direction we have the

opposite effect. The stationary world appears magnified by a positive lens.

Let us again study Fig. 12 and calculate the Doppler ratio, which is the

Doppler shifted wavelength divided by the original wavelength. The traveler

observes the wavelength (lv) while measuring the true wavelength (l0) from the

stationary world. Using some trigonometry, we get the following expression for

the Doppler ratio

lv

l0

¼ BG

BH
¼

1 � v

c
cos gffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � v2

c2

r ¼ k 1 � v

c
cos g

� �
ð8Þ

where (lv) is the wavelength as seen by the observer who travels in relation to the

light source and (l0) represents the wavelength as seen by the observer who is at

rest in relation to the light source. This equation, derived solely from Fig. 12, is

identical to accepted relativistic equations (see, e.g., Ref. 17).

Now let us study Fig. 12 again and seek the direction in which the traveler

should experience zero Doppler shift. She should not look backward because in

that direction there is a redshift. Nor should she look directly sideways because

even then there is a redshift, the relativistic transverse redshift. As forward is the

blueshift, she should look slightly forward. The way to find the zero Doppler

shift for incoming light follows from Fig. 12 where K is the point of intersection

for the traveler’s sphere of observation as seen by the traveler, and the ellipsoid

of observation as seen by the rester. Draw a line parallel to the x axis from K to

the corresponding point on the sphere (M). Thus BM is the direction the traveler

should look to see zero Doppler shift. The line BM is directed slightly forwards,

and from that fact we understand that redshift has to be predominant in universe

even if there were no expansion from a big bang but only a random velocity

increasing with distance.
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Now let us study Fig. 12 again and seek the direction (l) in which the traveler

should experience zero Doppler shift. She should not look backward because in

that direction there is a redshift. Nor should she look directly sideways because

even then there is a redshift, the relativistic transverse redshift. As forward is the

blueshift, she should look slightly forward. The way to find the zero Doppler

shift for incoming light (a) is as follows:

Draw a line parallel to the x axis from G to the corresponding point on the sphere

(K), where G is the point of intersection for the traveler’s sphere of observation as

seen by the traveler, and the ellipsoid of observation as seen by the rester. Thus

BK at the angle g is the direction the traveler should look to see zero Doppler

shift. BG at the angle b represents that direction after the line of sight has been

relativistically aberrated. The line AL, at the angle g, represents the light rays that

are emitted by the traveler and that the rester experiences as having zero Doppler

shift.

All equations solely derived from Figs. 9 and 12 are identical to accepted

relativistic equations (see, e.g., the references cited in Ref. 12).

XI. PREDOMINANT REDSHIFT EVEN
WITHOUT THE BIG BANG

In Fig. 14, we see the distribution in space of redshift and blueshift as an object

is traveling at different velocities. An object that emits light and moves to the

right at a velocity (v) that is low compared to that of light (c) produces

blueshifted light forward and redshifted light backward. The situation is the

same for an observer traveling at the velocity (v); objects in front of him

appear blueshifted while those behind him appear redshifted. These state-

ments are based on the well-known Doppler effect. However, the closer the

velocity is to the speed of light, the more of the light is redshifted and the less is

blueshifted. This result can be derived either by our graphical method using the

ellipses of the holodiagram (Fig. 12), or based on Einstein’s statement that the

time of clocks (or atoms) that travel fast in relation to the observer is slowed

down [18,19].

Therefore, the fact that more distant stars are more redshifted (the Hubble

effect) does not prove that they are moving away from us, only that they are

moving at higher velocities than those stars that are closer by. Such a situation

appear quite natural. Stars might move in a random way, but move faster the

farther away they are. Perhaps because they are just like water molecules in a

turbulent river, or perhaps even simpler, because they rotate in relation to a

larger universe. In either case there would be a redshift that increases with

distance. Thus, the expansion of the universe and the big bang are not directly

proved by a redshift of distant stars.
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These statements are still clearer with the help of the diagram in Fig. 15. The

velocity away from the observer is named radial (vR.), while the one perpendi-

cular to that direction is vT . Both velocities are expressed in fractions of the

speed of light (c). Because c is the maximal velocity the diagram is limited by

the circle:
ðvRÞ2 þ ðvTÞ2 ¼ c2 ð9Þ

Figure 14. An object that emits light and moves to the right at a velocity v that is low

compared to that of light c produces blueshifted light forward and redshifted light backward. The

situation is the same for an observer traveling at the velocity v; objects in front of him appear

blueshifted; those behind, redshifted. These conclusions are based on the Doppler effect. However,

the closer the velocity is to the speed of light, the more of the light is redshifted and the less is

blueshifted. This result can be derived either by our graphical method using the ellipses of the

holodiagram as seen here or by equations based on Einstein’s statement that the time of clocks (or

atoms) that travel fast in relation to an observer are slowed down. Therefore the fact that more

distant stars are more redshifted (the Hubble effect) does not prove that they are moving away from

us, only that they are moving at higher velocities than those nearer. Thus the expansion of the

universe and the big bang are not proved solely by a redshift of distant stars.

ellipsoids in holography and relativity 279



The Doppler shift (d) is calculated from the following equation:

d ¼ ðgv � l0Þ
l0

¼
1 þ vR

c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

R þ v2
T

c2

� �s ð10Þ

Thus the Doppler shift is the difference between the Doppler-shifted wavelength

(l) and the original wavelength (l0) divided by l0. The numerator is the classical

Doppler redshift from a moving light source, while the denominator represents

the red-shift caused by the relativistic time dilation resulting from the total

velocity, which is independent of the direction of motion.

Figure 15. Visualization of the Doppler shift d caused by a combination of radial velocity VR

and transverse velocity VT. From this diagram, we see that large redshifts (d is positive) can be

caused even when there is a large velocity toward the observer (VR is negative) if combined with a

sufficiently large transverse velocity.
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When the transverse velocity is zero, Fig. 15 shows that the Doppler shift (d)

increases (redshift) with increasing radial velocity to the right, away from the

observer. The Doppler shift is negative (blueshift) when the radial velocity is

negative, to the left, toward the observer. When the radial velocity is zero, even

the Doppler shift is zero.

However, when the transverse velocity differs from zero, everything becomes

more complicated. Let us, for instance, study a Doppler shift of 0.5, which could

be caused by a radial velocity of 0.38c. This could just as well have been caused

by zero radial velocity combined with a transverse velocity of some 0.75c. It

could even be caused by a radial velocity of �0.62c combined with the same

transverse velocity of 0.75c. In the latter case, a motion toward the observer,

which should result in a blueshift, results in a redshift when combined with a

sufficiently large transverse velocity.

From the preceding statements, we understand that the true velocity of an

object cannot be deduced from the redshift alone. For a given redshift there

exists an upper limit to the radial velocity. It would be a great mistake to take for

granted that this upper limit represents the actual velocity of the object. This

cannot be determined without knowledge of the transverse velocity, and even

then there might exist two possible radial velocities for one redshift, as demon-

strated in previous example.

Thus, we have demonstrated, in the form of a diagram, the crosstalk between

transverse velocity and a radial velocity measured by red shift. As we shall se in

Section XII, the crosstalk between the radial velocity and the apparent transverse

velocity is demonstrated by the use of another but similar diagram. By adding

those two diagrams together we will finally find a method of evaluating the true

velocity of the light source.

XII. TRANSFORMATION OF AN ORTHOGONAL
COORDINATE SYSTEM

We shall now demonstrate how the diagram can be used for practical evaluation

of the true shape of rigid bodies, whose images are relativistically distorted. The

‘‘true’’ shape is defined as the shape seen by an observer at rest in relation to the

studied object. Again, let a traveling experimenter at high velocity pass through

the stationary space (Fig. 16). She emits six picosecond light pulses with a

constant time separation of t. After another time delay of t, she makes one single

picosecond observation at B. Figure 16 shows how her spheres are transformed

into ellipsoids. Let us look at one stationary straight line that is perpendicular to

the direction of travel and see how it appears to the traveler. From every point at

which the stationary line (S–S) of Fig. 16a is intersected by an ellipsoid a

horizontal line is drawn to Fig. 16b until it intersects the corresponding sphere.

ellipsoids in holography and relativity 281



The curve connecting these intersections in Fig. 16b then represents the straight

line of Fig. 16a as it appears distorted to the traveler.

In Fig. 17a a total stationary orthogonal coordinate system is shown, and in

Fig. 17b we see the corresponding distorted image as observed by the traveler,

who is represented by the small circle (i; o) passing from left to right. The

Figure 16. The traveler of Fig. 12 emits ultrashort light pulses at A1, A2, A3, A4, A5, and A6.

Finally he makes one ultrashort observation at B. The vertical straight line S–S in the stationary

world appears to the traveler to be distorted into the hyperbolic line S1–S1.

Figure 17. Orthogonal coordinate system of the stationary world (a) appears distorted into that

of (b) to the traveler who exists at the small circle (i; o) and is moving to the right at a speed of 0.6c.

From the diagram we find that flat surfaces parallel to motion are not changed but those perpendi-

cular to motion are transformed into hyperboloids, while the plane (i–i) through the observer is

transformed into a cone. The back side can be seen on all objects that have passed this cone. The

separation of advancing hyperboloids is increased, while that of those moving away is decreased.
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identical transformation would occur if the observer at B were stationary and

instead the orthogonal coordinate system passed her with the constant speed of

0.6c from right to left.

All apparent displacements occur because different points on the object are

studied at different points of time. During this time difference, the object has

moved in relation to the observer, but only along its line of motion. Thus, flat

surfaces parallel to the direction of velocity are not changed in respect to

flatness, angle, or separation. From Fig. 17b, we find the following:

1. Flat surfaces moving toward the observer are transformed into

hyperboloids that appear convex to the observer.

2. Flat surfaces moving away from the observer are transformed into similar

hyperboloids that appear concave to the observer.

3. The flat surface passing through the observer (i–i) is transformed into a

cone.

4. The observer can see the back side of all objects that have passed through

the surface of the cone.

5. The spacing of the surfaces moving toward the observer is increased.

6. The spacing of the surfaces moving away from the observer is decreased.

7. Let the original spacing (d) rotate so that it is kept normal to the

hyperboloid surface. It will then always occupy the same angle of view as

the spacing of the hyperboloids. This confirms Terrell’s statement, that,

however, is true only for very small angles of view [20].

We have compared results from Fig. 17 with those of several other workers

and found good agreement. Bhandari states that a vertical line moving at high

speed assumes the shape of a hyperbola [21]. Mathews and Lakshmanan criticize

the concept of relativistic rotation and introduce ‘‘the train paradox’’ [22]. When

a fast-moving train is studied, should one imagine each boxcar to be rotated or

the train as a whole rotated? What happens to the stationary rails? Finally, they

conclude that the rotated appearance is not self consistent. We agree with this

statement. The train is easily visualized in our Fig. 17b as one of the horizontal

rows of deformed squares. From this, it is obvious that the distortion of the total

train cannot be explained solely by rotation.

However, the statements by Terrell that objects appear rotated but nondis-

torted are verified in Fig. 17 when the studied objects subtend sufficiently small

visual angles and changes in distances are neglected. Our diagram shows that

the solid angle of sight of the separation of the hyperboloids varies as if the

original separation (d) had rotated to keep it perpendicular to the hyperboloids.

Thus, each infinitesimal original square that has been distorted into a diamond-

like shape might, to the observer, appear to be rotated. Further, small spheres
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are transformed into ellipsoid like shapes that, however, cover approximately

the same solid angle of view as do the original spheres. It is interesting to note

that these two statements are equally true whether the object appears Lorentz

contracted or expanded as seen in the diagram in Fig. 17.

Even if Terrell’s statements in a limited way are verified by our diagram, it is

so only when the observation is made by a camera. As soon as holography is

included, it is easy to study variations in distances and then we understand that

his statements are only approximations of the true story. Using holography shear

and rotation can be distinguished so that the large-scale distortions as presented

in Fig. 17 are observed.

Finally, Scott and van Driel show that stars appear moved toward the point of

travel at increased speed [23]. It is also pointed out ‘‘although a sphere remains

circular in outline, the apparent cross section may be grossly distorted and in

some conditions the outside surface of the sphere appears concave.’’ The last

statement is verified by our Fig. 17 where a flat surface that has passed the

observer appears concave.

We have up to now tested our graphical method of calculating relativistic

apparent distortions by comparing it with accepted relativistic equations, and we

have always found that it produces identical results. Let us do the same with

Fig. 17, which was published in 1985 and compare it to Fig. 4.13b of Mook and

Vargish’s book [24] published in 1987, Inside Relativity. In their figure the

orthogonal coordinate system is moving from left to right past a stationary

observer, while in our Fig. 17 a stationary orthogonal coordinate system is

studied by an observer moving from left to right. Therefore the two figures are

turned in different directions.

There are two more differences; (1) the speed of our observer is 0.6c, while

the speed of their orthogonal system is 0.8c; and (2) we have studied the

apparent shape of flat surfaces as the observer is moving past, and through,

those surfaces, while they have studied a grid painted on a flat screen that travels

parallel to its surface at a distance of a tenth of the height of the grid. Therefore,

in our figure, the flat surface passing through the observer is seen as a cone

intersected along its axis producing a triangle with a sharp point at O. In their

figure, however, the intersection does not pass through the axis, and we see

another cone intersection that produces a hyperbola instead of a triangle. Apart

from these difference in conditions, the diagrams are identical, which is quite

impressive as their figure is produced by a computer using the accepted

relativistic equations, while our figure is produced in a graphical way by using

two pins, a string and a ruler.

Let us compare the apparent distortion of flat surfaces moving past an

observer at increasing relativistic velocities. Figure 17b represents an orthogo-

nal coordinate system moving from right to left at the speed of 0.6c past the

stationary observer at B. As the velocity is increased and approaches that of
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light, the cone angle (i; o; i) approaches zero. Thus all approaching objects

appear rotated through 90� so that their back side can be seen. The separation of

advancing hyperboloids approaches infinity, while those moving away are

transformed into paraboloids, and their separation along the line through the

observer (O) approaches zero.

It is interesting to compare these results with the apparent shape of the only

known flat surfaces that move with the speed of light, namely, flat wavefronts or

flat sheets of light that are studied by its scattered light by using the light-in-

flight technique. The cone angle is zero, and the back side of all visible wave-

fronts is seen. The separation of all approaching surfaces appears to be infinite.

As the wavefronts pass by they are tilted through 45� instead of approaching

90�. The wavefronts that move away from the observer are transformed into

paraboloids instead of hyperboloids. Their spacing appears to be half of their

true value instead of zero.

The main difference between a set of flat solid surfaces moving perpendi-

cular to their surfaces and flat wavefronts or flat sheets of light is that the former

experience Lorentz contraction, which the light surfaces do not. We could

expand this observation by stating that the Doppler shift is a sign and a measure

of relativistic transformations. The light reflected from a moving solid surface is

Doppler-shifted, but scattered light from a moving sheet of light is not. If wee

look at an advancing object, it will appear most blueshifted when it approaches

directly toward us. However, the color of a moving light sheet is independent of

from what angle it is observed.

The apparent length of the cars of a passing train is equal to the true

length only at the angle of sight of zero Doppler shift (close to G–H in Fig. 17b).

The apparent length of light pulses, on the other hand, is equal to the true length

only at an angle of sight that is perpendicular to light propagation (d of

Fig. 17b).

The rules for the apparent distortion of wavefronts or pulsefronts are much

simpler than those of solid objects moving at relativistic velocities. In the follo-

wing, we will repeat the three simple rules concerning the practical use of light-

in-flight recordings for the study of the shape of wavefronts or stationary objects.

The curvature of a wavefront appears transformed into the curvature of a

mirror surface shaped so that it would focus the total wavefront into the point of

observation.The reason is that a focusing mirror reflects light in such a way that

the total wavefront arrives to the focal point at one point of time. Thus, a small

flat wavefront that passes by will appear tilted at 45�. A larger flat wavefront

will not only appear tilted but will also be transformed into a paraboloid whose

focal point is the point of observation. A spherical wavefront appears trans-

formed into an ellipsoid, where one focal point is the point source of light (A)

and the other is the point of observation (B). This configuration represents one

of the ellipsoids of the holodiagram.
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Light-in-flight recording by holography can be used to reveal the intersection

of a light slice and a scattering surface. By positioning this surface in a special

way, it is possible to produce a cross section of the apparent wavefront that is

identical to a cross section of the true wavefront. Such an undistorted view of

the true wavefront is formed if the scattering surface is a part of a sphere the

center of which is the point of observation. A good approximation of this

configuration is a flat surface at a large distance, parallel to the observer as seen

in Fig. 8.1 of Ref. 4. There is another way to reach the same result, namely, to

illuminate the object by light shining toward A, rather than by the light from a

point source at A. In that case, the ellipsoids are changed into hyperboloids and

the hyperboloid in the middle between A and B will be a flat surface.

XIII. CONCLUSION

In a new graphical way, we have solved optical problems found in the literature

regarding special relativity. To arrive at these results, we used the accepted

concept of the constancy of the speed of light and the following tools: a string

and two nails for making ellipses and a ruler, pen, and paper to draw the diagrams.

No extensive mathematical knowledge or profound knowledge about rela-

tivity is needed to make and use the diagram. The technique is based on a

slightly refined diagram, the holodiagram, which was initially designed for

holography and conventional interferometry. Simplicity and visualization are

the main advantages compared with application of the conventional equations

presented by Einstein. The result is that for each velocity one diagram shows, in

a concentrated form, the distribution in space of the following phenomena:

1. The Doppler shift, of which the transverse redshift is a special case

2. The aberration of light rays and lines of sight

3. The apparent rotation, which is found to be a part of the more general

object distortion

4. The Lorentz contraction, which is found to be a special case of apparent

expansions and contractions

5. The time dilation, which is found to be a special case of more general

apparent speeding up and slowing down of time

Furthermore, we have found that the diagram can be used instantly after that the

observer’s velocity has changed but not when the changes its velocity object’s

has changed. From this fact, we conclude that the ellipses (ellipsoids) of Fig. 16

and the cone of the diagram of Fig. 17b move at infinite velocity with the

observer but only with the speed of light with the observed object. There is good

reason to believe that this phenomenon produces the asymmetry needed to

explain the twin paradox of Appendix A.
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Finally, we have shown that our method can be used to predict the

relativistically distorted image or to restore the true image from it. The apparent

distortion of a flat surface that approaches the speed of light is compared with

the apparent distortion of a flat wavefront observed by holographic light-in-

flight recording. It is found that these distortions are not identical but their main

features are similar.

Inspired by the holographic uses of the holodiagram, we have introduced the

new concept of spheres of observation that by velocity are transformed into

ellipsoids of observation. In this way time dilations and apparent length con-

tractions are explained as results of the eccentricity of ellipsoids. Our approach

explains how a sphere of light can appear stationary in two frames of reference

that move in relation to each other. It visualizes and simplifies in a graphical

way the apparent distortions of time and space that are already generally

accepted using the Lorentz transformations. When the ellipsoids are used to

explain the null result of the Michelson–Morley experiment, there is no need to

assume a real Lorentz contraction of rigid bodies, caused by a velocity of the

observer. We have used our graphical concept to calculate, the time dilation, the

apparent Lorentz, contraction, the transversal relativistic redshift, the relativistic

aberration of light rays, and the apparent general distortion of objects. In all

cases our results agree with those found in other publications [25]. However,

using our approach we look at all those relativistic phenomena, except for time

dilation, as caused solely by the influence of velocity on the measurement

performed.

APPENDIX A: A MODIFICATION OF THE WELL-KNOWN
TWIN PARADOX

Two spaceships, named the Rester and the Traveler and comanded by captains of

those same names, both produce flashes of light at a frequency of exactly one

flash per second. The ships are first close together, but then the traveler starts his

ship’s rockets and travels to a star one lightyear away at a constant speed that

is one-tenth of the speed of light (c). After 10 years, the traveler turns and travels

back to the rester again, where both captains compare experiences (Fig. 18).

The traveler says: I saw that the frequency of your flashes became lower as I

traveled away from you, but after 10 years when I turned and traveled

back to you their frequency became higher, so that when we met after 10

more years, I found that the number of your flashes and my flashes during

the 20 years were exactly equal.

The rester says: I experienced exactly the same thing. The frequency of your

flashes became lower as you traveled away from me, but when you turned

and traveled back to me, their frequency became higher. But, there was
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one very important difference: I counted the flashes of lower frequency

during 11 years and the higher frequency during only 9 years. Thus, it is

impossible that the number of your flashes and my flashes during the 20

years were exactly equal. It appears as if I ought to have counted a lower

number of your flashes.

The traveler: The reason why you experienced my turning no sooner than

after 11 years is obvious; my turning point was one lightyear away from

you.

The rester: The changes in frequency are well known as the Doppler effect.

The reason is obvious—the longer the distance separating us, the more

flashes that are flying in the space between us and that have not yet

reached the observer. This phenomenon is, of course, symmetric and

independent of who the sender is and who the observer is.

Thus, again, it is impossible that both the traveler and the rester counted the same

number of flashes during the 20 years. But on the other hand it is also impossible

Figure 18. Two rocket ships are at rest. Then one ship, the Traveler, starts its rockets and

travels at the speed of 0.1c to a star one lightyear away, turns, and comes back. During the travel

both ships produce flashes at exactly one flash per second. The traveler (the Traveler’s captain)

counts the flashes from the other ship, the Rester, and finds the frequency to be lower during the first

10 years and higher during the other 10. However, the captain of the other ship, the Rester, finds the

Traveler’s flash frequency to be lower during 11 years and higher during only 9 years. They have

counted different numbers of flashes, as if the Traveler’s time went slower.
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that any flash simply disappeared. There is something fishy about this. Where did

they go wrong in their assumptions?

If we believe in Einstein, the answer to this problem is simple. The statement

that rester and traveler both counted the same number of flashes is incorrect; the

number of flashes from the traveler not only appears lower to the rester but it is

lower, because the time (the clock) of the traveler is slower. But does that really

give the solution to the paradox? Well, that is certainly worth thinking about.

The ordinary version of the twin paradox is based on knowing Einstein’s

statement that the time of fast moving objects is slowed down. The question is:

How do we know which one is moving if we have no references in empty space?

I, however, want to point out that if the observer changes velocity, this

immediately results in a change of the Doppler shift, but if the light source

changes velocity there is a delay before the observer notices any Doppler shift. I

think that this delay between cause and effect is of great importance in many

fields of physics and has not received the recognition it deserves. It is the same

as saying that if the position of point A of the holodiagram is changed, there will

be a delay before the holodiagram has adjusted itself to the new situation, but if

point B is moved, the holodiagram adjusts itself immediately.

APPENDIX B: FUNDAMENTAL CALCULATIONS
BASED ON THE HOLODIAGRAM

If we define resolution as the shortest distance corresponding to the formation of

one interference fringe, Fig. 5 represents the resolution limit of any possible

optical system using the corresponding geometric configuration. The diffraction

limited resolution and the ‘‘interference limited resolution’’ are represented by

the separation of the hyperboloids and the ellipsoids, respectively.

In the following examples are presented where the resolution of Fig. 5 is

compared to corresponding values quoted from different references in which

other methods of calculation have been used. If there is a discrepancy, the value

of the reference is noted.

1. A and B are two mutually coherent points of illumination. The hyperbo-

loids represent interference surfaces in space. An object point passing through

these surfaces will produce a beat signal. Any measuring system based on this

configuration will have zero sensitivity parallel to the hyperboloids and

maximal sensitivity normal to the hyperboloids (parallel to the ellipses). The

resolution in this direction, is represented by the separation of the hyperboloids:

Resolution ¼ 0:5l
sin a

The diagrams of Fig. 5 can be utilised for the understanding and the use of the

following optical phenomena:
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1.1. Conventional interferometry [26]

1.2. Young fringes [27]

1.3. Bragg angle [28]

1.4. Fresnel zone plate producing a virtual image (any cross section of the

hyperboloids) [29]

1.5. Two-beam Doppler velocimeter [30]

1.6. Two-beam radar [31]

1.7. Ordinary and Lippman holography (A is object point, B is reference

point) [32]

1.8. Hologram interferometry (fringes seen on the hologram plate when

studied from the real image of an displaced object point) [33];

identical to the results of 2.6 and 3.4

1.9. Two-beam hologram interferometry (measurement of in-plane dis-

placement) [34]

1.10. Objective speckles; speckle size 0.61l=sina [35]

1.11. Speckle photography for in-plane measurement: resolution: 0.61l=
sina. (A–B is the lens diameter) [36]

1.12. Two-beam speckle photography (measurement of in-plane displace-

ment) [37]

1.13. Projected interference fringes (sensitivity direction is normal to object

surface and the resolution corresponds to the movement of a surface

point from one paraboloid to the adjacent) [38,39]

1.14. Focused spot size (A and B are two diametrical points on the lens);

resolution 0.61l=sina [40]

1.15. Resolution of any optical system (necessary condition for resolution of

an object with the size AB is that the lens of observation at least crosses

one bright and one dark hyperboloid); identical to the results of 1.14

and 3.6

The moiré of two cross sections of the hyperboloids represents the difference

of two interference patterns. If the two cross sections are identical but one is

displaced, the moiré fringes also represent the loci of constant resolution in the

displacement direction. If one focal point is fixed, and the other one is displaced,

the resulting moiré pattern forms a new set of hyperboloids whose foci are the

two positions of the displaced focal point. This new pattern is independent of

the position of the fixed focal point (a rotation of one of the original spherical

wavefronts of Fig. 5 produces no moiré effect). Therefore hologram interference

fringes are independent of the position of the point source of the fixed reference

beam.
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2. A is a point of illumination, B is a coherent point of observation. B is the

center of ‘‘spherical wavefronts of observation’’ and has been brought to

coherence with A by receiving a direct reference beam. The ellipses represent

imaginary interference surfaces in space. An object point passing through these

surfaces will produce a beat signal. Any measuring system based on this

configuration will have zero sensitivity parallel to the ellipsoids and maximal

sensitivity normal to the ellipsoids (parallel to the hyperbolas). The resolution in

this direction is represented by the separation of the ellipsoids:

Resolution ¼ 0:5l
cos a

¼ 0:5kl

The diagrams of Fig. 3–5 can be utilized to understand and use the following

phenomena:

2.1. Conventional interferometry and interferometry using oblique illumi-

nation and observation [41,42]

2.2. Bragg angle

2.3. Fresnel zone plate producing real image (any cross section of the

ellipsoids) [53]

2.4. Holography (utilizing the coherence length, controlling the sensitivity

to unwanted movements) [26,52]

2.5. Hologram interferometry (evaluating displacement, planning the

resolution; one interference fringe is formed each time an ellipsoid

is crossed by an object point) [26,43]

2.6. Hologram interferometry using two points of observation [44]

(identical to the results of 1.9 and 3.4)

2.7. Hologram contouring using two frequency illuminations [45]

Resolution ¼ l
l1 � l2

� 0:5g
cos a

¼ l
l1 � l2

� 0:5kl

2.8. Gated viewing (the ellipsoids represent surfaces of constant time delay):

resolution ¼ ct cosa ¼ kct; where c is speed of light and t is pulsewidth

2.9. Doppler velocimeter [46]: v ¼ kf 0:5l, where v is velocity and f is

frequency

2.10. Doppler radar [47]: v ¼ kf 0:5l
2.11. Relativistic Lorentz contraction ¼ 1=cos a ¼ 1=k (see Fig. 9)

2.12. Relativistic time dilation ¼ 1=k

2.13. Relativistic transversal Doppler effect ¼ k
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The moiré effect of two cross sections of the ellipsoids (Fig. 4) represents the

difference of two imaginary interference patterns. It also represents the

interference fringes of hologram interferometry [48]. If the two cross sections

are identical but one is displaced, the moiré fringes also represent the loci of

constant resolution in the displacement direction. If one focal point of the

ellipsoids is fixed and the other one is displaced, the resulting moiré pattern

forms a set of hyperboloids whose foci are the two positions of the displaced

focal point. This new pattern is independent of the position of the fixed focal

point (a rotation of one of the original spherical wavefronts of Fig. 5 produces no

moiré effect). Therefore, the movement of hologram interference fringes, when

studied from different points of observation, is independent of the position of the

fixed point source of illumination.

3. A and B are two mutually coherent points of observation. The informa-

tion from A and B are brought together in a coherent way, such as by a semi-

transparent mirror or by the use of a reference beam. Points A and B could even

be just two points on a lens. The hyperboloids represent imaginary interference

surfaces in space. An object point passing through these surfaces will produce a

beat signal. Any measuring system based on this configuration will have zero

sensitivity parallel to the hyperboloids and maximal sensitivity, normal to the

hyperboloids (parallel to the ellipses). The resolution in this direction is

represented by the separation of the hyperboloids:

Resolution ¼ 0:5l
sin a

The hyperbolas of Fig. 5 can be utilized to understand and use the following

optical phenomena:

3.1. Doppler velocimeter using two points of observation [46].

3.2. Subjective speckles (A and B are two diametrical points on the

observations lens). The number of subjective speckles seen on the object

is equal to the number of objective speckles projected on to the lens;

therefore 3.2 and 1.10 give identical results.

3.3. Speckle photography where the camera lens is blocked but for two

diametrical holes (measurement of in-plane displacement) [49].

3.4. Hologram interferometry using two observations. The number of fringes

passing an object point when the point of observation is moved from A

to B is equal to the number of hyperboloids passed by that object point

between the two exposures. This number is also equal to the number of

hyperboloids of 1.8 seen between A and B. The results of 1.8 and 2.6

and 3.4 are identical.

3.5. Stellar interferometry (A and B are the two mirror systems in front of

a telescope objective or the two antennas of a radiotelescope). The
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resolution for double star systems is 0.5l=sina, for large star

0.61l=sin a [50].

3.6. Diffraction-limited resolution of, for instance, a microscope (A and B

are the two diametrical points on the objective lens). Maximal

resolution is 0.61l= a [51].

Thus, we have studied a great number of different optical systems. The

agreement between the accepted values of resolution and those found by the use

of the ‘‘holodiagram’’ of Figs. 3 and 5 is very good. The discrepancies found,

when a circular illuminating or observing area such as a lens is involved are

caused by the fact that the total area of the lens is used, not only two diametrical

points. To produce an image, some of the resolution has to be given up. The

graphical approach of the holodiagram also agrees well with accepted relati-

vistic equations.

The holodiagram appears to represent the fundamental resolution of any

optical system and to verify the relativistic distortions of time and space. Thus, I

Figure 19. It is assumed here that the concept of the ellipsoids of observation apply to all fields

moving with the velocity of light, such as electric or gravitational fields. Thus, precession of the

perihelion of Mercury (the rotation of its elliptic orbit) can be explained by the asymmetry of the

gravitational forces as the planet advances toward (resp. retreats from) the sun.
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hope that it might become a useful educational tool that concentrates a large

amount of information into one unifying method.

APPENDIX C: OTHER POSSIBLE APPLICATIONS

Up to now we have used the concept of ellipsoids of observation to explain

apparent distortions of fast-moving objects as measured by light. However, these

ellipsoids of observation apply just as well for observations using other fields that

propagate with the speed of light, including electric or probably gravitational

fields. Thus, the precession of the perihelion of Mercury [25] can be explained

only by an asymmetry in the forces acting on the planet during its orbit. Such an

asymmetry is visualized in Fig. 19, where, because of the assumed limited

velocity of gravitation, the gravitational force varies as the planet advances

toward (resp. retreats from) the sun. Using similar approaches, it is possible to

develop our methods to visualize other relativistic effects such as kinetic energy

and magnetic forces as functions of the eccentricity of ellipsoids.

References

1. H. A. Lorentz, ‘‘Michelsons’ interference experiment’’ (1885), in The Principle of Relativity,

Dover, New York, 1952, p. 7.

2. A. Einstein, ‘‘On the electrodynamics of moving bodies’’ (1905), in The Principle of Relativity,

Dover, New York, 1952, pp. 37–65.

3. H. Minkowski, ‘‘Space and time’’ (1908), in The Principle of Relativity, Dover, New York,

(1952), p. 75.

4. N. H. Abramson, Light in Flight or the Holodiagram—the Columbi Egg of Optics, SPIE Press,

1996, Vol. PM27.

5. N. H. Abramson, ‘‘The holo–diagram: A practical device for the making and evaluation of

holograms’’ Proc. Applications of Holography, Strathclyde, Glasgow, 1968, pp. 45–55.

6. N. H. Abramson, Nature 231, 65–67 (1971).

7. N. H. Abramson, Optik 1, 56–71 (1969).

8. N. H. Abramson, Appl. Opt. 11, 2562–2571 (1972).

9. D. I. Staselko, Y. N. Denisyuk, and A. G. Smirnow, Opt. Spectrosc. 26, 413 (1969).

10. Y. N. Denisyuk, D. I. Staselko, and R. R. Herke, ‘‘On the effect of the time and spatial coherence

of radiation source on the image produced by a hologram,’’ Proc. Applications of Holography,

Section 2, Besancon, 1970, pp. 1–8.

11. N. H. Abramson, Appl. Opt. 22, 215–232 (1983).

12. Private communication with Donald Coxeter, Prof. Emeritus, Math. Dept. Univ. Toronto,

Toronto, Ontario, Canada M5S 3G3.

13. P. A. Tipler, College Physics, Worth Publishers, 1987, p. 719.

14. P. A. Tipler, College Physics, Worth Publishers, 1987, p. 720.

15. N. H. Abramson, Appl. Opt. 24, 3323–3329 (1985).

16. W. Rindler, Special Relativity, Wiley, New York, 1960, p. 49.

17. W. Rindler, Special Relativity, Wiley, New York, 1960, p. 47.

294 nils abramson



18. N. H. Abramson, Spec. Sci. Technol. 8, 101–107 (1984).

19. Yu Hovsepyan, Physics-Uspekhi 41(9), 941–944 (1998).

20. J. Terrell, Phys. Rev. 116, 1041 (1959).

21. R. Bhandari, Am. J. Phys. 38, 1200–1201 (1970).

22. P. M. Mathews and M. Laksmanan, Nuovo Cimento 12, 168–180 (1972).

23. G. D. Scott and H. J. van Driel, Am. J. Phys. 38, 971–977 (1970).

24. D. E. Mork and T. Vargish, Inside Relativity, Princeton Univ. Press, 1987.

25. A. Einstein, ‘‘The foundations of the general theory of relativity’’ (1916), in The Principle of

Relativity, Dover, New York, 1952, pp. 111–164.

26. N. H. Abramson, Appl. Opt. 11, 2562 (1972).

27. O. Bryngdahl, J. Opt. Soc. Am. 62, 839 (1972).

28. N. H. Abramson, Appl. Opt. 8, 1235 (1969).

29. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1965, p. 261.

30. G. Freier, University Physics, Meredith, New York, 1965, p. 537.

31. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1965, p. 371.

32. L. Lading, Appl. Opt. 10, 1943 (1971).

33. W. M. Farmer, Appl. Opt. 11, 770 (1972).

34. J. Collier, C. Burckhardt, and L. Lin, Optical Holography, Academic, New York, 1971.

35. Gates, Opt. Technol. 1, 247 (1969).

36. J. Butters, in The Engineering Uses of Holography, Cambridge Univ. Press, Cambridge,

UK, 1968, p. 163.

37. D. Gabor, IBM J. Research 14, 509 (1970).

38. E. Archbold and A. Ennos, Opt. Acta 19, 253 (1972).

39. J. Leendertz, J. Phys. E 3, 214 (1972).

40. N. H. Abramson, Laser Focus 23, 26 (1968).

41. R. Brooks and L. Heflinger, Appl. Opt. 8, 935 (1969).

42. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1965, p. 397.

43. N. Abramson, Optik 1, 56 (1969).

44. J. D. Briers, Appl. Opt. 10, 519 (1971).

45. K. Stetson and R. Powell, J. Opt. Soc. Am. 55, 1694 (1965).

46. E. B. Aleksandrov and A. M. Bonch-Bruevich, Sov. Phys.-Tech. Phys. 12, 258 (1967).

47. B. Hildebrand, The Engineering Uses of Holography, Cambridge Univ. Press, Cambridge,

UK, 1968, p. 410.

48. R. M. Huflaker, Appl. Opt. 9, 1026 (1970).

49. E. N. Leith, Proc. IEEE 59, 1305 (1971).

50. N. Abramson, Appl. Opt. 10, 2155 (1971).

51. D. E. Dufly, Appl. Opt. 11, 1778 (1972).

52. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1965, p. 275.

53. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1965, p. 418.

54. R. Kurtz and H. Loh, Appl. Opt. 11, 1998 (1972).

55. J. W. Y. Lit, J. Opt. Soc. Am. 62, 491 (1972).

ellipsoids in holography and relativity 295



ASTROPHYSICS IN THE DARK: MACH’S

PRINCIPLE LIGHTS THE WAY

D. F. ROSCOE

Department of Applied Mathematics, Sheffield University,

Sheffield, United Kingdom

CONTENTS

I. Introduction

II. Some Background

A. General Comments

B. The Astrophysical Distance Scale

C. Measuring Galactic Redshifts

D. Measuring Galactic Rotation Curves

III. Cosmological Redshifts: Are They Quantized?

A. The Tifft Story

B. The Napier Story

IV. Is Galactic Evolution Confined to Discrete States?

A. A Numerical Coincidence

B. Essential Data Reduction

C. Chasing the Coincidence

D. The Results

E. The Mathewson–Ford–Buchhorn (MFB) Sample Folded by the Persic–Salucci Eyeball

Method

F. The MFB Sample Folded by the Roscoe Automatic Method

G. The Mathewson–Ford Sample Folded by the Roscoe Automatic Method

H. The Courteau Sample Folded by the Roscoe Automatic Method

I. Conclusions

V. A Possible Theoretical Response: Mach’s Principle Revisited

A. Introduction

B. Historical Overview

C. Outline Analysis

1. Overview of the Nonrelativistic Formalism

2. Overview of the Relativistic Formalism

Modern Nonlinear Optics, Part 3, Second Edition: Advances in Chemical Physics, Volume 119.
Edited by Myron W. Evans. Series Editors: I. Prigogine and Stuart A. Rice.

Copyright # 2001 John Wiley & Sons, Inc.
ISBNs: 0-471-38932-3 (Hardback); 0-471-23149-5 (Electronic)

297



D. Mach’s Principle

1. Conventional Approach

2. Alternative Approach

E. A Qualitative Description of the New Approach

F. A Discrete Model Universe

1. The Invariant Calibration of a Radial Coordinate in Terms of Counting Primitive

Objects

2. The Mass Model

G. The Absolute Magnitudes of Arbitrary Displacements in the Model Universe

1. Change in Perspective as a General Indicator of Displacement in a Material Universe

2. Perspective in the Model Universe

3. Change in Perspective in the Model Universe

4. The Connection Coefficients

H. The Metric Tensor Given in Terms of the Mass Model

I. Geodesic Distance Determined in Terms of Matter Distribution

J. A Qualitative Discussion of the Temporal Dimension

K. Dynamical Constraints in the Model Universe

L. Gravitational Trajectories

M. The Equations of Motion

N. The Quantitative Definition of Physical Time

1. Completion of Equations of Motion

2. Physical Time Defined Quantitatively as Process

3. The Necessity of v2
0 6¼ 0

O. The Cosmological Potential

1. The Equations of Motion: Potential Form

2. The Potential Function, V , as a Function of r

P. A Discussion of the Potential Function

Q. The Fractal D ¼ 2 Intertial Universe

1. The Quasiphoton Fractal Gas

R. A Quasifractal Mass Distribution Law, M � r 2: The Evidence

S. Conclusions

VI. Overall Conclusions

References

I. INTRODUCTION

This chapter was originally planned as a review of the state of modern cos-

mology; however, on reflection, I decided that a more creative use of the

opportunity to contribute to this volume would be to lay before the reader

certain well-founded observational results that, at the very least, indicate that

our cosmos is not quite as well understood as we are commonly inclined to

believe.

Both pieces of evidence are in the mainstream literature, each is the subject

of continuing work, and neither has had any impact to date on mainstream

thinking.

After reviewing these observational results, I will argue that either alone

presents modern cosmology with a potentially fatal crisis—beyond the ability of
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any patch-and-mend device to ‘‘save appearances.’’ Accepting this, we go on to

suggest that the root of the problem lies in the failure of modern gravitational

theory to incorporate Mach’s principle in a sufficiently fundamental way, and

we briefly illustrate a way forward, to compensate for this deficit.

II. SOME BACKGROUND

A. General Comments

Both pieces of evidence concern spiral galaxies; the first concerns the nature of

the cosmological redshift measured for such objects, while the second concerns

the nature of spiral galaxy dynamics. To have a clear appreciation of the issues,

some background knowledge is useful.

First, it is useful to know that a model spiral galaxy can be considered to

consist of a central spherical bulge component, embedded in a rotating disk of

stellar and gaseous material with the whole embedded in a spherical halo of

very diffuse gas and ‘‘halo stars.’’ It is conventionally believed that this latter

component is much more massive than it appears, with the deficit made up of

‘‘dark matter.’’

Spiral galaxies rotate, with maximal rotation rates of, typically, 200 km/s

reached at distances of typically 10 kpc from the galactic centers (kpc �
kiloparsec, 1 parsec � 3.25 lightyears). Consequently, for a galaxy seen edge-

on, light from the receding arm will be Doppler-shifted to the red, while light

from the approaching arm will be Doppler-shifted to the blue. The profile of any

galaxy’s rotation across its disk is called its rotation curve.

Additionally, galaxies appear to have individual motions relative to their

local environment: the so-called peculiar motions. These motions are thought to

be generated by local gravitational interactions, and are not thought to exceed a

hundred or so km/s and give rise to additional true Doppler effects. Finally, the

light from all galaxies has a global distance-dependent redshift component—the

so-called cosmological redshift, which is usually quantified in units of velocity

as if it were a true Doppler shift.

B. The Astrophysical Distance Scale

Briefly, astronomers have two basic methods for estimating distance scales for

spiral galaxies that are independent of the observation of special standard

candles such as supernovae.

The first of these is the widely known Hubble law, which relates the distance

to an object to its measured redshift via the relationship cz ¼ Hd, where c is the

speed of light in the vacuum, z is the measured redshift of the object, and H is

Hubble’s constant—typically estimated to be about 75 km s�1 Mpc�1 where

1 Mpc � 3:25 million lightyears.
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The second is using the Tully–Fisher relationship, which provides a direct

relationship between the absolute luminosity of a spiral galaxy and its maximum

rotation speed. Since the maximum rotation speed can be directly estimated by

observation, one can estimate the absolute luminosity; since we measure directly

the apparent luminosity, the inverse-square law allows us to estimate the

distance to the object concerned. For the present discussion, it is important to

understand that, at optical wavelengths, estimates of maximum rotation speeds

are generally extrapolations from rotation curve measurements.

C. Measuring Galactic Redshifts

In view of the foregoing, when astronomers are said to measure a galaxy’s

redshift, they begin by measuring a (very noisy) Doppler profile across the disk

of the galaxy that contains the three redshift components. That component

arising from the galaxy’s own rotation is subtracted by some form of averaging

process taken over the whole profile, leaving a measurement that consists of the

required cosmological redshift together with an irreducible component arising

from the galaxy’s own peculiar motion.

It is crucial to understand that, even assuming a zero peculiar velocity, it is

only rarely possible, even in principle, for this process to yield a cosmological

redshift to better than 10 km/s accuracy—and, because astronomers have no

particular need for highly accurate redshift determinations, the effort to obtain

them is rarely made.

D. Measuring Galactic Rotation Curves

The rotation curve is calculated in two steps: (1) by subtracting the global

redshift component (i.e., cosmological redshift þ Doppler effect arising from

peculiar motion) from the Doppler profile measured directly across the galaxy’s

disk and (2) by determining the actual dynamical centre of the galaxy.

The process of estimating the global redshift component and estimating the

dynamical center is termed the process of ‘‘folding the rotation curve.’’ Because

of the very noisy nature of the data, this process is very far from trivial,

especially if one is interested in accurate dynamical studies of spiral galaxies.

III. COSMOLOGICAL REDSHIFTS: ARE THEY QUANTIZED?

A. The Tifft Story

Around about 1980, William Tifft, a radio astronomer at the University of

Arizona in Tucson, had the wild idea that, perhaps, the cosmological redshifts of

galaxies had preferences for multiples of some basic unit. Subsequently, he

looked and made two claims [1,2]:
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� That the differential redshifts between galaxies in groups (obtained by

subtracting redshifts in pairs) were quantized in steps of 72 km/s

� That the redshifts of galaxies measured with respect to our own galactic

center were quantized in steps of 36 km/s

Initially, these claims raised quite a lot of interest—but it soon became apparent

that the claimed effects were deeply problematical from the point of view of

prevailing cosmology and, very conveniently, that Tifft’s own statistical methods

were very far from being robust. This latter fact made it very easy for the

community to ignore a potentially very difficult problem for the status quo.

Subsequently, Tifft has formed increasingly complex hypotheses, claiming

to see evidence for increasingly refined hierarchical systems of redshift

quantization. Irrespective of whether there is anything substantive in his claims,

Tifft failed to do the one absolutely necessary thing: perform a totally rigorous

analysis of a single well-defined hypothesis that could withstand any criticism

directed at it.

B. The Napier Story

The whole business would have probably faded away, forgotten for years, had the

astronomer Bill Napier (then at the Royal Observatory, Edinburgh) not taken

an interest in Tifft’s claims around 1987. Napier was by then well known as

the originator of ‘‘cometry catastrophy theory,’’ according to which the long

sequence of catastrophic species extinction, which is part of the geologic record,

has arisen because of the cyclical motion of the solar system in and out of the

galactic plane—with each passage through the plane bringing with it vastly

increased risk of cometry collision (see Clube and Napier [3] for first report).

This work had given Napier considerable expertise in the analysis of

phenomena that appear as potentially periodic, and it was this aspect of the Tifft

claim that aroused his interest. Napier’s personal view, then, was that the whole

thing was probably nonsense and that the claimed periodicities would evaporate

under rigorous investigation (private communications). Unlike Tifft, who

simply set out to look for redshift quantization at any periodicity, Napier, and

co-worker Guthrie, started with Tifft’s specific claim that such a quantization

existed with a period of 36 km/s—thus, he was in the quite different business of

testing a specific well–defined hypothesis. For the sake of simplicity, I will not

consider the equally important 72-km/s claim, since the story is essentially

similar.

Napier began by using Monte Carlo methods to establish that an essential

precondition for a rigorous analysis of the type proposed was the availability of

a sufficiently large sample of redshifts, each with formal accuracy better than

5 km/s; anything less would result in even a real signal at �36 km/s being

washed out by measurement errors.
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Napier’s co-worker, Guthrie, performed a very detailed literature search to

assemble a sample of 97 redshift measurements of the required accuracy—

taking care to reject any that had ever been used by Tifft in any of his claims.

This sample formed the backbone of the subsequent Napier–Guthrie analysis.

Remember that the original claim was that the effect existed in redshift

determinations that had been reduced to the frame of reference of our own

galaxy’s center. Since redshift determinations are routinely given in the solar

frame of reference, this amounted to the need to correct the redshifts in the

sample for the sun’s motion with respect to the galactic center. At the time,

1989, the solar vector determinations resided inside a very large error box, and

so Napier’s analysis had a lot of slack associated with this part of it. Even so, it

quickly became apparent that a very strong quantization effect emerged for

estimated solar vectors anywhere inside the error box, at a periodicity of

37:6 km/s (against the claim for 36 km/s) [4–6]. Figure 1 shows the power

spectrum arising from their analysis after redshift determinations have been

corrected for the solar motion, using an estimated solar vector V ¼ 220 km/s;
l ¼ 95�; b ¼ �12�, where l is the galactic longitude and b is the galactic

latitude. Extensive Monte Carlo simulations give a probability of �10�8 for a

signal like that of Fig. 1 to have arisen by chance alone.
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Figure 1. The power spectrum analysis of Guthrie and Napier’s first sample of 97 redshifts.

This peak power occurs when redshifts are corrected for the solar motion with respect to our galactic

center.
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Subsequent to this initial publication, the satellite Hipparchus has been

launched, which has resulted in very refined conventional determinations of the

solar vector error box; concurrently, Napier has reversed the Napier–Guthrie

analysis, assuming the prior existence of the 37.6-km/s effect using it to obtain

independent determinations of the solar vector error box. These lie wholly

inside the Hipparchus error box determinations.

This analysis has been repeated on independent (although less accurate)

samples (one of which was donated by one of the anonymous referees of the

original publication) with similar results. Napier and Guthrie’s parallel analysis

of the claims for 72km/s for differential redshifts between galaxies in groups

has been similarly successful, and has equally bizarre implications.

To summarize, Tifft’s original claims have been strongly and independently

substantiated by the Napier–Guthrie analysis; this latter analysis has appeared in

the mainstream literature and stands increasingly secure as Hipparchus

observations continue to tighten the solar error box. Any serious thought about

these two effects soon convinces one that the implications for cosmology are

profound—and very difficult to comprehend.

IV. IS GALACTIC EVOLUTION CONFINED
TO DISCRETE STATES?

This question arose in the course of a routine analysis of galaxy rotation curve

data by myself (see Section II), which was originally driven by a prediction

arising from an extension of the theory, to be briefly described in the latter

sections of this chapter. This theoretical prediction was to the effect that, in an

‘‘idealized spiral galaxy’’ (i.e., one without any central bulge and with perfect

rotational symmetry), then the circular velocity should have the general form

V ¼ ARa, where R is the radial distance from the center and ðA; aÞ are

parameters that vary from galaxy to galaxy. It is necessary to understand that,

generally speaking, it is clear from real data that a simple power law cannot

apply over the whole radial range of the typical spiral galaxy; at best, it can have

any applicability at all only in the so-called optical disk (i.e., in that portion of

the disk component of the galaxy that emits visible light). Astronomers

generally treat rotation curves in their entirety, and describe them with very

complicated phenomenologically derived functions, and ignoring the obvious

fact that spiral galaxies are manifestly composed of at least three distinct

dynamical regions: a spherically symmetric central part, a rotationally sym-

metric intermediate disky part, and an optically diffuse spherically symmetric

outer part. The power law hypothesis arose from theoretical considerations of a

purely disk mass distribution, and can therefore have a possible applicability

only in the disk regions of spirals.
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The original analysis (of the rotation curves of 900 individual galaxies) was

based on the rationale that, if the data were viewed through the ‘‘filter’’ of the

power law hypothesis, then, if the hypothesis was ‘‘good enough,’’ unsuspected

new relationships between the dynamical and the luminosity properties of spiral

galaxies might be revealed. This turned out to be very much the case, and much

that was new and interesting was uncovered and is now available in the

literature [7].

However, this work led to the almost incidental discovery of an effect that, at

the very least, reminds us that the cosmos is not quite as well understood as we

like to believe, and that almost certainly indicates the need for a revolution in

cosmology.

A. A Numerical Coincidence

Given my complete initial ignorance of rotation curve data, and its typical

forms, the story began with the decision to perform a practise minianalysis of

the first rotation curve sample ever published—the 21 rotation curves published

by Rubin et al. [8]—from the point of view of the power law hypothesis,

V ¼ ARa. Of the 21 rotation curves, 9 exhibited very strongly nonmonotonic

behavior in their inner regions and were obviously poor candidates for any

power law fit, and so were rejected on these purely subjective grounds. For each

of the remaining 12 rotation curves, I computed the parameter pair ðln A; aÞ by

a simple regression procedure; the results for ln A (rounded to one decimal

place) are tabulated in Table I. It was immediately clear that, after allowing for

the rounding process, every singly value was within �0:15 of being an integer

or half-integer value—a result that (ignoring its aposteriori nature) can be

computed as being a 1 : 500 chance. Before continuing, it is necessary to clarify

the fact that the ln A scale is ultimately determined by the galactic distance

scale, which Rubin et al. fixed by using Hubble’s law with H ¼ 50 km s�1

Mpc�1, the preferred value in the early 1980’s. Consequently, had Rubin used a

contemporary value (nearer to 80 km s�1 Mpc�1), the integer/half-integer

TABLE I

Twelve RFTa 1980 Spirals

Galaxy ln A Galaxy ln A

N3672 3.6 U3691 3.6

N3495 4.0 N4605 4.0

I0467 4.1 N0701 4.1

N1035 4.1 N4062 4.5

N2742 4.5 N4682 4.5

N7541 4.6 N4321 4.9

aRubin–Ford–Thonnard.
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structure would have given way to something else. The real point of interest is

therefore the apparent regularity the ln A distribution manifested in Table I.

At the time, I considered this to be almost certainly a numerical coincidence,

but one worth investigating once the primary task that I had in mind had been

completed.

B. Essential Data Reduction

It is necessary to introduce a little detail into the story. An essential step in the

minianalysis referred to above was the decision to reject certain rotation curves,

made on the basis of the subjective judgment that they were not ‘‘monotonic

enough’’ in their innermost regions. In effect, I was rejecting those galaxies for

which there appeared to be a particularly strong influence of the bulge on the

disk dynamics.

While this subjective approach was perfectly justifiable for a small

experimental analysis, it could play no part in the large analysis contemplated

for which all decisions had to be made in an automatic ‘‘blackbox’’ fashion. We

dealt with this problem by writing a piece of software that automatically cut out

the innermost parts of rotation curves that were judged, according to objectively

defined statistical criteria, to be unusually affected by the presence of the bulge.

The effectiveness of this process was tested by means completely independent

of the present considerations.

C. Chasing the Coincidence

The primary task was to test the power law hypothesis, and to this end I had

obtained a sample of 900 optical rotation curves, originally measured by

Mathewson et al. [9], and folded (see Section II.D) by Persic and Salucci [10],

two Italian astronomers.

For this sample, the galactic distance scale has been set by Mathewson, Ford,

and Buchhorn (MFB) using the Tully–Fisher relationship, which sets distance

scales by using an observed correlation between the maximum rotation velocity

of a spiral and its absolute luminosity, and so is quite distinct from Hubble-

based distance determinations. Even so, the Tully–Fisher method gives an

absolute scale only after calibration, and the MFB calibration gave a scale that

was statistically similar to a Hubble scale using H ¼ 85 km s�1 Mpc�1.

With this information, the results of the primary analysis of the 900 rotation

curves made it possible to recalibrate the Table I to give specific predictions for

the existence of preferred ln A values in the folded MFB sample, and these

predictions are given in Table II.

Table II represents a set of specific predictions about the ln A distribution for

the 900 folded MFB rotation curves, and it is these that were to be tested against

the MFB sample.
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D. The Results

We present the totality of our results. The computation of ln A for each galaxy

requires the following:

� A measured rotation curve for the galaxy.

� The folding of each rotation curve (see Section II.D). This data reduction

process is nontrivial, and different people have their own favored methods.

� An estimate of the maximal rotation velocity for the galaxy. Such

estimates are problematical for optical data, such as those analyzed here,

and different people have their own favored methods of estimation.

� A Tully–Fisher calibration for the sample to get the distance scale. These

can vary between samples owing to the details of photometric methods

used by astronomers.

� An automatic and predefined ‘‘blackbox’’ technique for removing the

effects of the bulge on disk dynamics.

In the present case, we have three distinct samples obtained by two independent

groups of astronomers, two distinct folding techniques, three distinct methods of

estimating maximal rotation velocities, and one method for removing bulge

effects that has been tested by means independent of any of the present con-

siderations. As we shall see, the results are not affected by any of these variations.

E. The Mathewson–Ford–Buchhorn (MFB) Sample Folded
by the Persic–Salucci Eyeball Method

Figure 2 gives the ln A frequency diagram for the rotation curves of 900

southern sky spirals, observed by the Australian astronomers Mathewson et al.,

(MFB) [9] using Australian telescopes at Siding Spring. MFB estimated

maximum rotation speeds for each galaxy (for use in the Tully–Fisher distance

relationship) using a subjective eyeball technique.

These rotation curves were folded by the Italian astronomers Persic and

Salucci [10] using a case-by-case eyeball technique. The short vertical bars give

the positions of the predicted peak centers given in Table II, and it is

TABLE II

ln A Data

RFT Scale Predicted Value

with MFB Scale

3.5 3.81

4.0 4.22

4.5 4.63

5.0 5.04
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immediately clear that the predictions are strongly fulfilled on this sample.

These initial results are now in the literature [11].

F. The MFB Sample Folded by the Roscoe Automatic Method

I considered the potential implications raised by the strongly positive result of

the first test of the hypothesis of Table II to be so profound that tests on further

samples became absolutely essential. Since the Italian folding method was

(extremely) time-consuming, it was necessary to develop automatic methods for

this part of the data reduction process; this turned out to be a nontrivial exercise,

and the details of the method have been published [12].

For completeness, we show, in Fig. 3, the ln A frequency diagram for the

rotation curves of the MFB sample (originally folded by Persic and Salucci

[10]) folded by this automatic method; the vertical dotted lines indicate the peak

centers of the Persic–Salucci solution. The clarity with which the peaks in this

latter solution are reproduced in Fig. 3 indicates (1) that the peaks of Fig. 2 are

not an artifact of the Persic–Salucci method; and (2) that the automatic

algorithm works.

G. The Mathewson–Ford Sample Folded by the
Roscoe Automatic Method

The next sample of 1200þ rotation curves was observed by the Australians,

Mathewson and Ford (MF) [13] (Buchhorn had discovered that astronomy pays
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Figure 2. The MFB sample folded by the Persic–Salucci [10] eyeball method.
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less than the bond markets), and was the first independent sample folded by the

new software; the maximum rotation velocities of each galaxy were again

estimated using a subjective eye-ball technique.

This sample is, on average, about 70% more distant that the MFB [9] sample

so that, on average, only about 30% of the light is received at the telescope. For

this reason, we expect a considerable attenuation of the signal.

The resulting ln A diagram is shown in Fig. 4, where the vertical dotted lines

indicated the peak centers of the A;B;C;D peaks of Fig. 3. Notwithstanding the

obvious signal attenuation (in comparison with Fig. 3), the coincidence of the

peak structures is exact.

H. The Courteau Sample Folded by the Roscoe Automatic Method

The results obtained from the first two samples analyzed (one of which was

folded using two quite distinct methods) indicate that something profound has

been uncovered—unless, perhaps, the observing astronomers [9] were somehow

inadvertently introducing the signal into the sample. However, given the

necessity of further reducing the data to remove bulge effects using our ‘hole-

cutting’ technique, and the a priori ignorance on the part of MFB and MF of this

future process, this seems to be an extremely remote possibility. Even so, given

the profound nature of the claimed result, it is a possibility that must be

accounted for. For this reason, we obtained the only other available substantial
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Figure 3. The MFB sample folded by the automatic method of Roscoe; the vertical dotted lines

indicate peak centers of Persic–Salucci [10] solution.
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sample in existence, consisting of 305 northern sky spirals, and observed by the

Canadian astronomer Courteau using U.S. telescopes at Lick Observatory and

Las Palmas.

This sample was used by Courteau [14] in a study of systematic ways of

defining maximum rotation speeds for spirals (remember that MFB and MF

used subjective methods), and we present the ln A diagrams resulting from his

stated best and worst methods of estimating these maximum speeds in Figs. 5

and 6, respectively. Except for the A peak (which is at the dim end of all the

samples, and therefore suffers from small numbers), the peak positions are

exactly reproduced.

I. Conclusions

We began with an explicit hypothesis made on the basis on the analysis of a very

small sample (12 objects!), and a subsequent analysis of three other large

samples has confirmed this hypothesis, in detail, and with a power that is

virtually impossible to refute. But what can all this possibly mean?

In dimensionless form the power law V ¼ ARa, which gave rise to the

analysis in the first place, can be expressed as

V
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¼ R
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Figure 4. The Mathewson–Ford sample folded by the Roscoe automatic method; the vertical

dotted lines indicate the peak centers of Fig. 3.
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so that A � ðV0=R0Þa. A detailed analysis of the correlation between a and ln A

[11] shows that V0 and R0 are each very strongly correlated with luminosity

properties. Consequently, for absolute magnitude M (the astronomer’s way of

talking about absolute lumnosity) and surface brightness S, we can write

A � FðM; S; aÞ

which, since A appears to assume discrete values k1; k2; . . . , implies

FðM; S; aÞ ¼ k1; k2; . . .

Thus it appears that spiral galaxies are constrained to exist one of a set of discrete

state planes in the three-dimensional ðM; S; aÞ space. This then gives rise to one

of two possibilities: either a spiral galaxy is ‘‘born’’ on one of these planes, and

remains on this plane over its whole evolution; or a spiral galaxy remains on one

of these planes for very long periods, with the possibility of transiting to other

planes in very short periods of time.

There is currently no way of distinguishing between these possibilities, and

neither is at all comprehendable from the point of view of any extant theory of

galaxy formation—all of which are deeply embedded in the ‘‘standard model’’

of modern cosmology.

V. A POSSIBLE THEORETICAL RESPONSE:
MACH’S PRINCIPLE REVISITED

A. Introduction

The findings of the previous sections indicate that astrophysics is a far less

understood science than is generally believed—it may even turn out to be

exciting again! But what could possibly constitute a rational theoretical

response in the face of such phenomenology? We could try the mechanical

approach, and explicitly try to formulate theories that addressed these pheno-

mena directly; or we could step back, and ask if there is any way in which it

could be argued that current theoretical perspectives fail to address identifiable

fundamental issues. The approach that one chooses to take is, to a large extent, a

matter of taste and (probably) prejudice. What is certainly true in the present

case is that the ‘‘discrete state’’ phenomenon for spiral galaxies was discovered

as a direct result of the theoretical prediction that circular velocities in

‘‘idealized’’ disk galaxies (i.e., spirals without bulges and with perfect rotational

symmetry) should conform to the general power law Vrot ¼ ARa, where ðA; aÞ
are two parameters that vary between objects; in turn, this prediction came from

a theory that was constructed in the first instance to address what I saw as a
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fundamental failing of modern gravitation theory: its failure to encompass

Mach’s principle in a fundamental way.

This can be briefly explained as follows. Ordinary physical space is a metric

3-space, which means that it is a three-dimensional space within which we can

perform measurements of distance and displacement. Very little thought con-

vinces us that our concepts of a physical metric space are irreducibly connected

to its matter content—that is, all our notions of distance and displacement are

meaningless except insofar as they are defined as relations between objects.

Similarly, all our concepts of physical time are irreducibly connected to the

notion of material process. Consequently, it is impossible for us to conceive of

physical models of ‘‘metric spacetime’’ without simultaneously imagining a

universe of material and material process. From this, it seems clear to me that

any theory that allows an internally self-consistent discussion of an empty

metric spacetime is a deeply nonphysical theory. Since general relativity is

exactly such a theory, it is fundamentally flawed, according to this view.

Since theories of gravitation are conventionally derived as point perturba-

tions of some assumed inertial space (or flat spacetime, or equivalent), it follows

that a prior condition to an understanding of gravitation is an understanding of

the inertial space that is to be perturbed. The following section is devoted to the

single problem of gaining such an understanding. As a means of clarifying the

basic concepts involved, the development is restricted to its quasiclassical (i.e.,

nonrelativistic) form.

B. Historical Overview

The ideas underlying what is now known as Mach’s principle can be traced to

Berkeley [15,16], for which a good contemporary discussion can be found in

Popper [17]. Berkeley’s essential insight, formulated as a rejection of Newton’s

ideas of absolute space, was that the motion of any object had no meaning

except insofar as that motion was referred to some other object, or set of objects.

Mach ([18] reprint of 1883 German edition ) went much further than Berkeley

when he said ‘‘I have remained to the present day the only one who insists upon

referring the law of inertia to the earth and, in the case of motions of great

spatial and temporal extent, to the fixed stars.’’ In this way, Mach formulated the

idea that, ultimately, inertial frames should be defined with respect to the

average rest frame of the visible universe.

It is a matter of history that Einstein was greatly influenced by Mach’s ideas

as expressed in the latter’s The Science of Mechanics (see, e.g., Ref. 19) and

believed that they were incorporated in his field equations as long as space was

closed [20]. The modern general relativistic analysis gives detailed quantitative

support to this latter view, showing how Mach’s principle can be considered to

arise as a consequence of the field equations when appropriate conditions are

specified on an initial hypersurface in a closed evolving universe. In fact, in
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answer to Mach’s question asking what would happen to inertia if mass were

progressively removed from the universe, Lynden-Bell et al. [21] point out that,

in a closed Friedmann universe, the maximum radius of this closed universe and

the duration of its existence both shrink to zero as mass is progressively

removed.

Thus, it is a matter of record that a satisfactory incorporation of Mach’s

principle within general relativity can be attained when the constraint of closure

is imposed. However, there is still the point of view that, because general

relativity allows solutions that give an internally consistent discussion of an

empty inertial spacetime—whereas it is operationally impossible to define an

inertial frame in the absence of matter—then the theory (general relativity) must

have a non-fundamental basis at the classical level.

The present chapter attempts to lay the foundations of a theory of space,

time, and material that addresses this perceived problem, and the main result is

to show how a flat inertial space is irreducibly associated with a fractal D ¼ 2

distribution of material. Furthermore, in the course of the development,

fundamental insight is gained into the possible nature of ‘‘time.’’

C. Outline Analysis

We begin with a short review of Mach’s principle, and draw from this the general

conclusion that conceptions of an empty inertial spatiotemporal continuum are

essentially nonphysical. The fact that we have apparently successful theories

based exactly on such conceptions does not conflict with this statement—as

long as we accept that, in such cases, the empty inertial spatiotemporal conti-

nuum is understood to be a metaphor for a deeper reality in which the metric (or

inertial) properties of this spatiotemporal continuum are somehow projected out

of an unaccounted-for universal distribution of material. For example, according

to this view, the fact that general relativity admits an empty inertial spatio-

temporal continuum as a special case (and was actually originally derived as a

generalization of such a construct) implies that it is based on such a metaphor—

and is therefore, according to this view, not sufficiently primitive to act as a

basis from which fundamental theories of cosmology can be constructed.

By starting with a model universe consisting of objects that have no other

properties except identity (and hence enumerability) existing in a formless

continuum, we show how it is possible to project spatiotemporal metric

properties from the objects onto the continuum. By considering idealized

dynamical equilibrium conditions (which arise as a limiting case of a particular

free parameter going to zero), we are then able to show how a globally inertial

spatiotemporal continuum is necessarily identified with a material distribution

that has a fractal dimension D ¼ 2 in this projected space. This is a striking

result since it bears a very close resemblance to the cosmic reality for the low-

to-medium redshift regime.
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However, this idealized limiting case material distribution is distinguished

from an ordinary material distribution in the sense that the individual particles

of which it is composed are each in a state of arbitrarily directed motion, but

with equal-magnitude velocities for all particles—and in this sense is more like

a quasiphoton gas distribution. For this reason, we interpret the distribution as a

rudimentary representation of an inertial material vacuum, and present it as the

appropriate physical background within which gravitational processes (as

conventionally understood) can be described as point-source perturbations of an

inertial spatiotemporal–material background. We briefly discuss how such

processes can arise.

1. Overview of the Nonrelativistic Formalism

In order to clarify the central arguments and to minimize conceptual problems

in this initial development, we assume that the model universe is stationary in

the sense that the overall statistical properties of the material distribution do not

evolve in any way. Whilst this was intended merely as a simplifying assump-

tion, it has the fundamental effect of making the development inherently

nonrelativistic (in the sense that the system evolves within a curved metric

3-space, rather than being a geodesic structure within a spacetime continuum).

The latter consequence arises in the following way. Since the model universe

is assumed to be stationary, there is no requirement to import a predetermined

concept of ‘‘time’’ into the discussion at the beginning—although the qualitative

notion of a generalized ‘‘temporal ordering’’ is assumed. The arguments used

then lead to a formal model that allows the natural introduction of a generalized

temporal ordering parameter, and this formal model is invariant with respect to

any transformation of this latter parameter, which leaves the absolute ordering

of events unchanged. This arbitrariness implies that the formal model is

incomplete, and can be completed only by the imposition of an additional

condition that constrains the temporal ordering parameter to be identifiable with

some model of physical time. It is then found that such a model of physical

time, defined in terms of ‘‘system process,’’ arises automatically from the

assumed isotropies within the system. In summary, the assumption of station-

arity leads to the emergent concept of a physical ‘‘spatiotemporal continuum’’

that partitions into a metric 3-space together with a distinct model of physical

time defined in terms of ordered material process in the metric 3-space. The

fractal D ¼ 2 inertial universe then arises as an idealized limiting case.

2. Overview of the Relativistic Formalism

The relativistic formalism arises as a natural consequence of relaxing the

constraint of a stationary universe. The formalism is not considered in any

detail here but, briefly, its development can be described as follows. If the

universe is not stationary, then it is evolving—and this implies the need for a
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predetermined concept of ‘‘time’’ to be included in the discussion at the outset.

If this is defined in any of the ways that are, in practice, familiar to us then we

can reasonably refer to it as ‘‘local process time.’’ Arguments that exactly

parallel those used in the stationary universe case considered in detail here then

lead to a situation that is identical to that encountered in the Lagrangian

formulation of general relativity—in that historical case, the equations of

motion include a local coordinate time (which corresponds to our local process

time) together with a global temporal ordering parameter, and the equations of

motion are invariant with respect to any transformation of this latter parameter,

which leaves the ordering of ‘‘spacetime’’ events unchanged. This implies that

the equations of motion are incomplete—and the situation is resolved there by

defining the global temporal ordering parameter to be ‘‘particle proper time.’’

The solution we adopt for our evolving universe case is formally identical, so

that everything is described in terms of a metric spacetime. By considering

idealized dynamical equilibrium conditions, we are led to the concept of an

inertial spacetime that is identical to the spacetime of special relativity—except

that it is now irreducibly associated with a fractally distributed relativistic

photon gas.

D. Mach’s Principle

Although most reading this chapter will have a general understanding of Mach’s

principle, its centrality to our argument makes a short review a worthwhile

investment.

1. Conventional Approach

Briefly, there are two kinds of mass: gravitational mass and inertial mass.

Gravitational mass is what is measured on any kind of weighing machine

(classically a pan balance, in which the mass to be measured is weighed against

a collection of standard masses); inertial mass is what is measured in a collision

experiment between the mass to be measured and a standard mass. In each case,

the measured quantity is measured relative to some chosen standard, and

therefore has no absolute significance.

The relevant facts about inertial mass are best explained first in the context of

collisions between two smooth balls on a horizontal smooth surface viewed

from a nonaccelerating frame of reference (the precise meaning of the term

‘‘nonaccelerating’’ is given shortly): Suppose we arrange for two balls, A and B,

say, to be rolled along the same line at different speeds so that they collide, and

then rebound (necessarily on the same line also), and that the change in the

speeds of each ball is measured to be �VA and �VB, respectively. Then it is

found that the ratio �VA=�VB always has the same value independently of the

initial speeds of the two balls. In other words, the calculated ratio appears to be

a relative property of the balls, rather than being dependent on the initial
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conditions of the experiment. Now suppose that the experiment is repeated, but

is now viewed from an accelerating frame of reference. It is now found that the

ratio �VA=�VB varies according to the initial speeds of the two balls.

The preceding paragraphs are clear, except in one respect: the notions of

accelerating and nonaccelerating are undefined. This lack of rigor is usually

rectified by defining the state of nonacceleration to be relative to the distant

galaxies: specifically, by identifying that frame of reference that appears to be at

rest with respect to the statistically averaged motion of distant galaxies, and then

using this very special frame as a standard against which nonaccelerating

motion is defined. It is then found that the ratio �VA=�VB calculated in the

collision experiments is constant in this class of frames; this ratio is termed the

‘‘relative inertial mass of the two balls,’’ and the frames within which it can be

measured (the nonaccelerating frames) are termed inertial frames.

The analysis described above makes it clear that there is some kind

of relationship between the distant galaxies, and the idea of relative inertial

mass - and the statement of the existence of such a relationship—is termed

Mach’s principle.

2. Alternative Approach

Although the conventional approach outlined above contains all the essential

components of Mach’s principle, it does not focus on what, in our view, is the

essential point about the principle: that it is impossible to define inertial frames

in the absence of material. This fact is brought out most clearly in the following

alternative approach.

Specifically, rather than define inertial frames with respect to the universal

rest frame, we can define an inertial frame as any frame of reference within

which the series of collision experiments discussed above yields the ratio

�VA=�VB to be a constant independently of the experiment’s initial conditions.

If this constant ratio is then termed the ‘‘relative inertial mass of the two balls,’’

then the whole idea of the inertial frame and inertial mass is arrived at without

any reference whatsoever to ‘‘distant galaxies’’—and, in fact, is given a local

context.

More significantly, this approach brings into the foreground the crucial point

about Mach’s principle: that it is impossible to define inertial frames in the

absence of material. It is this argument that, in our view, renders general

relativity—which allows an internally consistent discussion of empty inertial

spacetime—into a nonfundamental theory.

E. A Qualitative Description of the New Approach

We have argued that the fundamental significance of Mach’s principle arises

from its implication of the impossibility of defining inertial frames in the

absence of material; or, as a generalization, we can say that it is impossible to
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conceive of a physical spatiotemporal continuum in the absence of material. It

follows from this that, if we are to arrive at a consistent and fundamental

implementation of Mach’s principle, then we need a theory of the world

according to which (roughly speaking) notions of the spatiotemporal continuum

are somehow projected out of primary relationships between objects. In other

words, we require a theory in which notions of metrical space and time are to be

considered as metaphors for these primary relationships. Our starting point is to

consider the calibration of a radial measure which conforms to these ideas.

Consider the following perfectly conventional procedure that assumes that

we ‘‘know’’ what is meant by a given radial displacement, say, R. On a

sufficeintly large scale (e.g., >108 lightyears), we can reasonably assume that it

is possible to write down a relationship describing the amount of mass contained

within a given spherical volume, for instance

M ¼ UðRÞ ð1Þ

where U is, in principle, determinable. Of course, a classical description of this

type ignores the discrete nature of real material; however, overlooking this point,

such a description is completely conventional and unremarkable. Because M

obviously increases as R increases, then U is said to be monotonic, with the

consequence that the above relationship can be inverted to give

R ¼ GðMÞ ð2Þ

which, because (1) is unremarkable, is also unremarkable.

In the conventional view, (1) is logically prior to (2); however, it is perfectly

possible to reverse the logical priority of (1) and (2) so that, in effect, we can

choose to define the radial measure in terms of (2) rather than assume that it is

known by some independent means. If this is done, then, we have immediately,

made it impossible to conceive of radial measure in the absence of material.

With this as a starting point, we are able to construct a completely Machian

cosmology in a way outlined in the following sections.

F. A Discrete Model Universe

The model universe is intended as an idealization of our actual universe, and is

defined as follows:

� It consists of an infinity of identical, but labeled, discrete material particles

that are primitive, possessing no other properties beyond being countable.

� ‘‘Time’’ is to be understood, in a qualitative way, as a measure of process

or ordered change in the model universe.

� There is at least one origin about which the distribution of material

particles is statistically isotropic—meaning that the results of sampling
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along arbitrary lines of sight over sufficiently long characteristic ‘‘times’’

are independent of the directions of lines of sight.

� The distribution of material is statistically stationary—meaning that the

results of sampling along arbitrary lines of sight over sufficiently long

characteristic times are independent of sampling epoch.

Although concepts of invariant spatiotemporal measurement are implicitly

assumed to exist in this model universe, we make no apriori assumptions about

their quantitative definition, but require that such definitions arise naturally from

the structure of the model universe and from the following analysis.

1. The Invariant Calibration of a Radial Coordinate

in Terms of Counting Primitive Objects

In Eq. (2), we have already introduced, in a qualitative way, the idea that the

radial magnitude of a given sphere can be defined in terms of the amount of

material contained within that sphere and, in this section, we seek to make this

idea more rigorous. To this end, we note that the most primitive invariant that

can be conceived is that based on the counting of objects in a countable set, and

we show how this fundamental idea can be used to define the concept of

invariant distance in the model universe.

The isotropy properties assumed for the model universe imply that it is

statistically spherically symmetric about the chosen origin. If, for the sake of

simplicity, it is assumed that the characteristic sampling times over which the

assumed statistical isotropies become exact are infinitesimal, then the idea of

statistical spherical symmetry, gives way to the idea of exact spherical

symmetry thereby allowing the idea of some kind of rotationally invariant radial

coordinate to exist. As a first step toward defining such an idea, suppose only

that the means exists to define a succession of nested spheres, S1 �
S2 �    � Sp, about the chosen origin; since the model universe with

infinitesimal characteristic sampling times is stationary, then the flux of particles

across the spheres is such that these spheres will always contain fixed numbers

of particles, say N1;N2; . . . ;Np, respectively.

Since the only invariant quantity associated with any given sphere, say S, is

the number of material particles contained within it, such as N, then the only

way to associate an invariant radial coordinate, say, r with S is to define it

according to r ¼ r0f ðNÞ, where r0 is a fixed scale constant having units of

‘‘length’’ and the function f is restricted by the requirements f ðNaÞ > f ðNbÞ
whenever Na > Nb, f ðNÞ > 0 for all N > 0, and f ð0Þ ¼ 0. To summarize, an

invariant calibration of a radial coordinate in the model universe is given by

r ¼ r0f ðNÞ where

� f ðNaÞ > f ðNbÞ whenever Na > Nb.

� f ðNÞ > 0 for all N > 0 and f ð0Þ ¼ 0.
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Once a radial coordinate has been invariantly calibrated, it is a matter of routine

to define a rectangular coordinate system based on this radial calibration; this is

taken as done for the remainder of this chapter.

2. The Mass Model

At this stage, since no notion of inertial frame has been introduced, the idea of

inertial mass cannot be defined. However, we have assumed the model universe

to be composed of a countable infinity of labeled—but otherwise indistinguish-

able—material particles so that we can associate with each individual particle a

property called mass that quantifies the amount of material in the particle, and is

represented by a scale constant, say, m0, having units of mass.

The radial parameter about any point is defined by r ¼ r0f ðNÞ; since this

function is constrained to be monotonic, its inverse exists so that, by definition,

N ¼ f�1ðr=r0Þ. Suppose that we now introduce the scale constant m0; then

Nm0 ¼ m0f�1ðr=r0Þ � MðrÞ can be interpreted as quantifying the total amount

of material inside a sphere of radius r centered on the assumed origin. Although

r ¼ r0f ðNÞ and MðrÞ ¼ Nm0 are equivalent, the development that follows is

based on using MðrÞ as a description of the mass distribution given as a function

of an invariant radial distance parameter, r, of undefined calibration.

It is clear from the foregoing discussion that r is defined as a necessarily

discrete parameter. However, to enable the use of familiar techniques, it will

hereafter be supposed that r represents a continuum—with the understanding

that a fully consistent treatment will require the use of discrete mathematics

throughout.

G. The Absolute Magnitudes of Arbitrary Displacements
in the Model Universe

We have so far defined, in general terms, an invariant radial coordinate

calibration procedure in terms of the radial distribution of material valid from

the assumed origin, and have noted that such a procedure allows a routine

definition of orthogonal coordinate axes. Whilst this process has provided a

means of describing arbitrary displacements relative to the global material

distribution, it does not provide the means by which an invariant magnitude can

be assigned to such displacements—that is, there is no metric defined for the

model universe. In the following, we show how the notion of ‘‘metric’’ can be

considered to be projected from the mass distribution.

1. Change in Perspective as a General Indicator of Displacement

in a Material Universe

In order to understand how the notion of metric can be defined, we begin by

noting the following empirical circumstances from our familiar world:
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� In reality, one (an observer) recognizes the fact of a spatial displacement

by reference to one’s changed perspective of one’s material universe.

� The same observer can judge the magnitude of a displacement in terms of

the magnitude of the changes in the perspective of the material dis-

tribution arising from the displacement.

These circumstances suggest the possibility of using the concept of ‘‘perspective

change’’ in the model universe as a means of associating absolute magnitudes to

coordinate displacements. However, before this can be done, we must first give a

quantitative meaning to the notion of perspective in the model universe.

2. Perspective in the Model Universe

In general terms, a ‘‘perspective’’ implies the existence of an observed object

plus a particular angle of view onto the object. If, in the context of the mass-

model, MðrÞ, the observed object is considered defined by the specification of a

constant-mass surface (r ¼ constant), then, subject to the magnitude of the

normal gradient vector, rM, as a monotonic function of r, total perspective

information is precisely carried by the normal gradient vector itself. To see this,

we note that the assumed monotonicity of the magnitude of rM means that it is

in a 1 : 1 relation with r; consequently, this magnitude defines which constant-

mass surface is observed. Simultaneously, the direction of rM, which is always

radial, defines an angle of view onto this constant-mass surface.

So, to summarize, an observer’s perspective of the mass model, MðrÞ, can be

considered defined by the normal gradient vector, n � rM, at the observer’s

position.
3. Change in Perspective in the Model Universe

We now consider the change in perspective arising from an infinitesimal change

in coordinate position. Defining the components of the normal gradient vector

(the perspective) as na � raM; a ¼ 1; 2; 3, then the change in perspective for a

coordinate displacement dr � ðdx1; dx2; dx3Þ is given by

dna ¼ rjðraMÞdxj � gjadxj; gab � rarbM ð3Þ
for which it is assumed that the geometrical connections required to give this

latter expression an unambiguous meaning will be defined in due course. Given

that gab is non-singular, we now note that (3) provides a 1 : 1 relationship between

the contravariant vector dxa (defining change in the observer’s coordinate

position) and the covariant vector dna (defining the corresponding change in the

observer’s perspective). It follows that we can define dna as the covariant form of

dxa, so that gab automatically becomes the mass model metric tensor. The scalar

product dS2 � dnidxi is then the absolute magnitude of the coordinate

displacement, dxa, defined relative to the change in perspective arising from

the coordinate displacement.
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The units of dS2 are easily seen to be those of mass only and so, in order to

make them those of length2—as dimensional consistency requires—we define

the working invariant as ds2 � ð2r2
0=m0ÞdS2, where r0 and m0 are scaling

constants for the distance and mass scales, respectively, and the numerical factor

has been introduced for later convenience.

Finally, if we want

ds2 � r2
0

2m0

� �
dnidxi � r2

0

2m0

� �
gijdxidxj ð4Þ

to behave sensibly in the sense that ds2 ¼ 0 only when dr ¼ 0, we must replace

the condition of nonsingularity of gab by the condition that it is strictly positive

(or negative) definite; in the physical context of the present problem, this will be

considered to be a self-evident requirement.

4. The Connection Coefficients

We have assumed that the geometric connection coefficients can be defined in

some sensible way. To do this, we simply note that, in order to define con-

servation laws (i.e., to do physics) in a Riemannian space, it is necessary to be

have a generalized form of Gauss’ divergence theorem in the space. This is

certainly possible when the connections are defined to be the metrical

connections, but it is by no means clear that it is ever possible otherwise.

Consequently, the connections are assumed to be metrical and so gab, given in

(3), can be written explicitly as

gab � rarbM � q2M

qxaqxb
� �k

ab

qM

qxk
ð5Þ

where �k
ab are the Christoffel symbols, and given by

�k
ab ¼ 1

2
gkj qgbj

qxa
þ qgja

qxb
� qgab

qxj

� �

H. The Metric Tensor Given in Terms of the Mass Model

It can be shown how, for an arbitrarily defined mass model, MðrÞ, (5) can be

exactly resolved to give an explicit form for gab in terms of such a general MðrÞ.
Defining

r � ðx1; x2; x3Þ; � � 1

2
hrjri and M0 � dM

d�

where hji denotes a scalar product, it is found that

gab ¼ Adab þ Bxaxb ð6Þ
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where

A � d0M þ m1

�
; B � � A

2�
þ d0M0M0

2A�

for arbitrary constants d0 and m1, where, as inspection of the structure of these

expressions for A and B shows, d0 is dimensionless and m1 has dimensions of

mass. Noting that M always occurs in the form d0M þ m1, it is convenient to

write M � d0M þ m1, and to write A and B as

A � M

�
; B � � M

2�2
�M0M0

2d0M

� �
ð7Þ

I. Geodesic Distance Determined in Terms of Matter Distribution

We calibrate the radial displacement parameter so that it coincides with the

geodesic radius, and find the remarkable result that, on sufficiently large scales,

the calibrated radius of a sphere centered on the chosen origin in the model

universe then varies as the square root of the mass contained within the sphere.

Using (6) and (7) in (4), and after using xi dxi � r dr and � � r2=2, we find,

the following for an arbitrary displacement:

ds2 ¼ r2
0

2m0

� �
M

�
dxidxi � �

M

�2
�M0M0

d0M

� �
dr2

� �

Now suppose that the displacement is purely radial; in this case, we find

ds2 ¼ r2
0

2m0

� �
�

M0M0

d0M

� �
dr2

� �

Use of M0 � dM=d� reduces this latter relationship to

ds2 ¼ r2
0

d0m0

d
ffiffiffiffiffiffi
M

p� �2

! ds ¼ r0ffiffiffiffiffiffiffiffiffiffi
d0m0

p d
ffiffiffiffiffiffi
M

p

which defines the invariant magnitude of an infinitesimal radial displacement

purely in terms of M � d0M þ m1, which represents the mass model. From this,

we easily see that if we make the association r � s (which we can, since r is so

far uncalibrated) so that the radial coordinate r effectively coincides with the

geodesic distance, then geodesic radial displacement from the chosen coordinate

origin is defined by

r ¼ r0ffiffiffiffiffiffiffiffiffiffi
d0m0

p
ffiffiffiffiffiffi
M

p
�

ffiffiffiffiffiffiffiffi
M0

p� �
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where M0 is the value of M at r ¼ 0; the significance of this result lies in the fact

that it says the perception of physical displacement is created by the matter

distribution.

For convenience, this result is restated as follows. Using M � d0M þ m1 and

noting that Mðr ¼ 0Þ ¼ 0 necessarily, then M0 ¼ m1 from which the preceding

result can be equivalently arranged as

M ¼
ffiffiffiffiffiffiffiffiffiffi
d0m0

p

r0
r þ ffiffiffiffiffiffi

m1

p	 
2

ð8Þ

Using M � d0M þ m1 again, the mass distribution function can be expressed in

terms of the invariant radial displacement as

M ¼ m0
r

r0

� �2

þ 2

ffiffiffiffiffiffiffiffiffiffiffi
m0m1

d0

r
r

r0

� �
ð9Þ

which, for large r, can be approximated as M � m0ðr=r0Þ2
. In other words, on a

sufficently large scale, radial distance varies as the square root of mass from the

chosen origin—or, equivalently, the mass varies as r2. As a consequence of this,

M=r2 is a global constant on a large enough scale and has the limiting value

m0=r2
0; for the remainder of this paper the notation g0 � m0=r2

0 is employed.

J. A Qualitative Discussion of the Temporal Dimension

So far, the concept of time has entered the discussion only in the form of the

qualitative definition given in Section V.F; it has not entered in any quantitative

way, and, until it does, there can be no discussion of dynamical processes.

Since, in its most general definition, time is a parameter that orders change

within a system, a necessary prerequisite for its quantitative definition in the

model universe is a notion of change within that universe, and the only kind of

change that can be defined in such a simple place as the model universe is that

of internal change arising from the spatial displacement of particles. Further-

more, since the system is populated solely by primitive particles that possess

only the property of enumerability (and hence quantification in terms of the

amount of material present), then, in effect, all change is gravitational change.

This fact is incorporated into the cosmology to be derived by constraining all

particle displacements to satisfy the ‘‘weak equivalence principle.’’ We are then

led to a Lagrangian description of particle motions in which the Lagrange

density is degree zero in its temporal ordering parameter. From this, it follows

that the corresponding Euler–Lagrange equations form an incomplete set.

The origin of this problem traces back to the fact that, because the Lagrangian

density is degree zero in the temporal ordering parameter, it is then invariant

with respect to any transformation of this parameter that preserves the ordering.
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This implies that, in general, temporal ordering parameters cannot be identified

directly with physical time—they merely share one essential characteristic. This

situation is identical to that encountered in the Lagrangian formulation of

general relativity; there, the situation is resolved by defining the concept of

‘‘particle proper time.’’ In the present case, this is not an option because the

notion of particle proper time involves the prior definition of a system of

observer’s clocks—so that some notion of clock time is factored into the prior

assumptions on which general relativity is built.

In the present case, it turns out that the isotropies already imposed on the

system conspire to provide an automatic resolution of the problem that is con-

sistent with the already assumed interpretation of time as a measure of ordered

change in the model universe. To be specific, it turns out that the elapsed time

associated with any given particle displacement is proportional, via a scalar

field, to the invariant spatial measure attached to that displacement. Thus,

physical time is defined directly in terms of the invariant measures of process

with the model universe.

K. Dynamical Constraints in the Model Universe

First, and as already noted, the model universe is populated exclusively by

primitive particles that possess solely the property of enumeration, and hence

quantification. Consequently, all motions in the model universe are effectively

gravitational, and we model this circumstance by constraining all such motions

to satisfy the weak equivalence principle, by which we mean that the trajectory

of a body is independent of its internal constitution. This constraint can be

expressed as follows:

Constraint 1. Particle trajectories are independent of the specific mass values

of the particles concerned.

Second, given the isotropy conditions imposed on the model universe from

the chosen origin, symmetry arguments lead to the conclusion that the net action

of the whole universe of particles acting on any given single particle is such that

any net acceleration of the particle must always appear to be directed through

the coordinate origin. Note that this conclusion is independent of any notions of

retarded or instantaneous action. This constraint can then be stated as follows:

Constraint 2. Any acceleration of any given material particle must necessarily

be along the line connecting the particular particle to the coordinate origin.

L. Gravitational Trajectories

Suppose that p and q are two arbitrarily chosen point coordinates on the trajec-

tory of the chosen particle, and suppose that (4) is integrated between these
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points to give the scalar invariant

Iðp; qÞ ¼
ðq

p

1ffiffiffiffiffiffiffi
2g0

p
� � ffiffiffiffiffiffiffiffiffiffiffiffi

dnidxi
p

�
ðq

p

1ffiffiffiffiffiffiffi
2g0

p
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gijdxidxj

q
ð10Þ

Then, in accordance with the foregoing interpretation, Iðp; qÞ gives a scalar

record of how the particle has moved between p and q defined with respect to the

particle’s continually changing relationship with the mass model, MðrÞ.
Now suppose that Iðp; qÞ is minimized with respect to choice of the trajectory

connecting p and q; this minimizing trajectory can then be interpreted as a

geodesic in the Riemannian space that has gab as its metric tensor. Given that gab

is defined in terms of the mass model MðrÞ—the existence of which is

independent of any notion of inertial mass, then the existence of the metric

space, and of geodesic curves within it, is likewise explicitly independent of any

concept of inertial mass. It follows that the identification of the particle trajec-

tory r with these geodesics means that particle trajectories are similarly inde-

pendent of any concept of inertial mass, and can be considered as the modeling

step defining that general subclass of trajectories that conform to that charac-

teristic phenomenology of gravitation defined by Constraint 1 (in Section V.K).

M. The Equations of Motion

While the mass distribution, represented by M, has been explicitly determined

in terms of the geodesic distance at (8), it is convenient to develop the theory in

terms of unspecified M.

The geodesic equations in the space with the metric tensor (6) can be

obtained, in the usual way, by defining the Lagrangian density

L � 1ffiffiffiffiffiffiffi
2g0

p
� � ffiffiffiffiffiffiffiffiffiffiffiffi

gij _x
i _xj

q
¼ 1ffiffiffiffiffiffiffi

2g0

p
� �

ðAh _rj _ri þ B _�
2Þ1=2 ð11Þ

where _xi � dxi=dt, and so on, and writing down the Euler–Lagrange equations

2A�r þ 2A0 _�� 2
_L

L
A

� �
_r þ B0 _�

2 þ 2B��� A0h _rj _ri � 2
_L

L
B _�

� �
r ¼ 0 ð12Þ

where _r � dr=dt and A0 � dA=d�, and so forth. By identifying particle trajec-

tories with geodesic curves, this equation is now interpreted as the equation of

motion, referred to the chosen origin, of a single particle satisfying Constraint 1.

However, noting that the variational principle, Eq. (10), is of order zero in its

temporal ordering parameter, we can conclude that the principle is invariant

with respect to arbitrary transformations of this parameter; in turn, this means

that the temporal ordering parameter cannot be identified with physical time.
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This problem manifests itself formally in the statement that the equations of

motion (12) do not form a complete set, so that it becomes necessary to specify

some extra condition to close the system.

A similar circumstance arises in general relativity theory when the equations

of motion are derived from an action integral that is formally identical to (10).

In that case, the system is closed by specifying the arbitrary time parameter to

be the ‘‘proper time,’’ so that

dt ¼ Lðxj; dxjÞ ! L xj;
dxj

dt

� �
¼ 1 ð13Þ

which is then considered as the necessary extra condition required to close the

system. In the present circumstance, we are rescued by the, as yet, unused

Constraint 2.

N. The Quantitative Definition of Physical Time

1. Completion of Equations of Motion

Consider Constraint 2, which states that any particle accelerations must neces-

sarily be directed through the coordinate origin. This latter condition simply

means that the equations of motion must have the general structure �r ¼
Gðt; r; _rÞr for scalar function Gðt; r; _rÞ. In other words, (12) satisfies Constraint

2 if the coefficient of _r is zero, so that

2A0 _�� 2
_L

L
A

� �
¼ 0 ! A0

A
_� ¼

_L

L
! L ¼ k0A ð14Þ

for arbitrary constant k0, which is necessarily positive since A > 0 and L > 0.

The condition (14), which guarantees Constraint 2, can be considered as the

condition required to close the incomplete set (12), and is directly analogous to

(13), the condition that defines ‘‘proper time’’ in general relativity.

2. Physical Time Defined Quantitatively as Process

Equation (14) can be considered as the equation that removes the preexisting

arbitrariness in the time parameter by defining physical time; from (14) and (11)

we have

L2 ¼ k2
0A2 ! Ah _rj _ri þ B _�

2 ¼ 2g0 k2
0 A2 ! gij _x

i _x j ¼ 2g0k2
0A2 ð15Þ

so that, in explicit terms, physical time is defined by the relation

dt2 ¼ 1

2g0k2
0A2

� �
gijdxidxj ð16Þ

326 d. f. roscoe



In short, the elapsing of time is given a direct physical interpretation in terms of

the process of displacement in the model universe.

Finally, noting that, by (16), the dimensions of k2
0 are those of L6=½T2 � M2�,

then the fact that g0 � m0=r2
0 (see Section V.I) suggests the change of notation

k2
0 / v2

0=g2
0, where v0 is a constant having the dimensions (but not the

interpretation) of velocity. So, as a means of making the dimensions that appear

in the development more transparent, it is found convenient to use the particular

replacement k2
0 � v2

0=ð4d2
0g2

0Þ, where d0 is the dimensionless global constant

introduced in Section V.H. With this replacement, the definition of physical

time, given at (16), becomes

dt2 ¼ 4d2
0g0

v2
0A2

� �
gijdxidxj ð17Þ

since, as is easily seen from the definition of gab given in Section V.H, gijdxidx j

is necessarily finite and nonzero for a nontrivial displacement dr.

3. The Necessity of v2
0 6¼ 0

Equation (17) provides a definition of physical time in terms of basic process

(displacement) in the model universe. Since the parameter v2
0 occurs nowhere

other than in its explicit position in (17), it is clear that setting v2
0 ¼ 0 is

equivalent to physical time becoming undefined. Therefore, of necessity, v2
0 6¼ 0.

O. The Cosmological Potential

The model is most conveniently interpreted when expressed in potential terms,

and so, in the following, paragraphs, we show how this is done.

1. The Equations of Motion: Potential Form

From Section V.N, when (14) is used in (12), there results

2A�r þ B0 _�
2 þ 2B��� A0h _rj _ri � 2

A0

A
B _�

2
� �

r ¼ 0 ð18Þ

Suppose we define a function V according to V � C0 � h _rj _ri=2, for some

arbitrary constant C0; then, by (15)

V � C0 �
1

2
h _rj _ri ¼ C0 �

v2
0

4d2
0 g0

A þ B

2A
_�

2 ð19Þ

where A and B are defined in (7). With the unit vector r̂, this function can be used

to express (18) in the potential form

�r ¼ � dV

dr
r̂ ð20Þ
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so that V is a potential function and C0 is the arbitrary constant usually associated

with a potential function.

2. The Potential Function, V, as a Function of r

From (19), we have

2C0 � 2V ¼ _r2 þ r2 _y
2 ¼ v2

0

2d2
0 g0

A � B

A
r2 _r2

so that V is effectively given in terms of r and _r. In order to clarify things further,

we now eliminate the explicit appearance of _r. Since all forces are central,

angular momentum is conserved; consequently, after using conserved angular

momentum, h, and the definitions of A, B, and M given in Section V.H, the

foregoing equations can be written as

2C0 � 2V ¼ _r2 þ r2 _y
2 ¼ v2

0 þ
4v2

0

r

ffiffiffiffiffiffiffiffiffi
m1

d0g0

r
þ d0 � 1

r2

6m1v2
0

d2
0 g0

� h2

� �

þ 2

r3

ffiffiffiffiffiffiffiffiffiffi
d0m1

g0

s
2m1v2

0

d2
0 g0

� h2

� �
þ 1

r4

m1

g0

m1v2
0

d2
0 g0

� h2

� �

ð21Þ

so that VðrÞ is effectively given by the right-hand side of (21).

P. A Discussion of the Potential Function

It is clear from (24) that m1 plays the role of the mass of the central source that

generates the potential, V . A detailed analysis of the behavior of V shows that

there are two distinct classes of solution depending on the free parameters of the

system:

� A constant potential universe within which all points are dynamically

indistinguishable; this corresponds to an inertial material universe, and

arises in the case m1 ¼ 0; d0 ¼ 1.

� All other possibilities give rise to a ‘‘distinguished origin’’ universe in

which either.

There is a singularity at the center, r ¼ 0.

There is no singularity at r ¼ 0 and, instead, the origin is the center of a

nontrivial sphere of radius Rmin > 0, which acts as an impervious

boundary between the exterior universe and the potential source. In

effect, this sphere provides the source with a nontrivial spatial extension

so that the classical notion of the massive point source is avoided.
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Of these possibilities, the constant potential universe is the one that suits the

needs of a realistic cosmology, and this possibility is discussed in detail in the

following sections.

However, of the two cases in the distinguished origin universe, the no-

singularity case offers the interesting possibility of being able to model the

gravitational effects created by a central massive source, but without the non-

physical singularity at the origin. This case is mentioned here for future

reference.

Q. The Fractal D¼2 Inertial Universe

Reference to Eq. (21) shows that the parameter choice m1 ¼ 0 and d0 ¼ 1

makes the potential function constant everywhere, while Eq. (9) shows how, for

this case, universal matter in an equilibrium universe is necessarily distributed

as an exact fractal with D ¼ 2. Thus, the fractal D ¼ 2 material universe is

necessarily a globally inertial equilibrium universe.

Given that gravitational phenomena are usually considered to arise as mass-

driven perturbations of flat inertial backgrounds, the foregoing result—to the

effect that the inertial background is necessarily associated with a nontrivial

fractal matter distribution—must necessarily give rise to completely new

perspectives about the nature and properties of gravitational phenomena.

However, as we show in Section V.Q.1, the kinematics in this inertial universe is

unusual, and suggests that the inertial material distribution is more properly

interpreted as a material vacuum out of which (presumably) we can consider

ordinary material to condense in some fashion.

1. The Quasiphoton Fractal Gas

For the case m1 ¼ 0, d0 ¼ 1, the definition M in (9) together with the definitions

of A and B in Section V.H. give

A ¼ 2m0

r2
0

; B ¼ 0

so that, by (19) (remembering that g0 � m0=r2
0), we have

h _rj _ri ¼ v2
0 ð22Þ

for all displacements in the model universe. It is (almost) natural to assume that

the constant v2
0 in (22) simply refers to the constant velocity of any given particle,

and likewise to assume that this can differ between particles. However, each of

these assumptions would be wrong since—as we now show—v2
0 is (1) more

properly interpreted as a conversion factor from spatial to temporal units and, (2)

a global constant that applies equally to all particles.
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To understand these points, we begin by noting that (22) is a special case of

(15) and so, by (16), can be equivalently written as

dt2 ¼ 1

v2
0

hdrjdri ð23Þ

which, by the considerations of Section V.N.2, we recognize as the definition of

the elapsed time experienced by any particle undergoing a spatial displacement

dr in the model inertial universe. Since this universe is isotropic about all points,

there is nothing that can distinguish between two separated particles (other than

their separateness) undergoing displacements of equal magnitudes; conse-

quently, each must be considered to have experienced equal elapsed times. It

follows from this that v2
0 is not to be considered as a locally defined particle

velocity, but is a globally defined constant that has the effect of converting

between spatial and temporal units of measurement.

We now see that the model inertial universe, with (23) as a global relation-

ship, bears a close formal resemblance to a universe filled purely with

Einsteinien photons—the difference is, of course, that the particles in the model

inertial universe are assumed to be countable and to have mass properties. This

formal resemblance means that the model inertial universe can be likened to a

quasiphoton fractal gas universe.

R. A Quasifractal Mass Distribution Law, M � r2: The Evidence

A basic assumption of the standard model of modern cosmology is that, on some

scale, the universe is homogeneous; however, in early responses to suspicions

that the accruing data were more consistent with Charlier’s conceptions of an

hierarchical universe [22–24] than with the requirements of the standard model,

De Vaucouleurs [25] showed that, within wide limits, the available data satisfied

a mass distribution law M � r1:3, while Peebles [26] found M � r1:23. The

situation, from the point of view of the standard model, has continued to

deteriorate with the growth of the database to the point that ‘‘the scale of the

largest inhomogeneities discovered to date) is comparable with the extent of the

surveys, so that the largest known structures are limited by the boundaries of the

survey in which they are detected’’ [27].

For example, several redshift surveys, such as those performed by Huchra

et al. [28], Giovanelli et al. [29], De Lapparent et al. [30], Broadhurst et al.

[317], Da Costa et al. [32] and Vettolani et al. [33], have discovered massive

structures such as sheets, filaments, superclusters, and voids, and show that large

structures are common features of the observable universe; the most significant

conclusion to be drawn from all of these surveys is that the scale of the largest

inhomogeneities observed is comparable with the spatial extent of the surveys

themselves.
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More recently several quantitative analyses of both pencil-beam and wide-

angle surveys of galaxy distributions have been performed; three examples are

given by Joyce et al. [34], who analyzed the CfA2-South catalog to find fractal

behavior with D ¼ 1:9 � 0:1; Labini and Montuori [35] analyzed the APM-

Stromlo survey to find fractal behavior with D ¼ 2:1 � 0:1, while Labini et al.

[36] analyzed the Perseus–Pisces survey to find fractal behavior with

D ¼ 2:0 � 0:1. There are many other papers of this nature in the literature,

all supporting the view that, out to medium depth, at least, galaxy distributions

appear to be fractal with D � 2.

This latter view is now widely accepted (see e.g., Wu et al. [37]), and the

open question has become whether there is a transition to homogeneity on some

sufficiently large scale. For example, Scaramella et al. [38] analyze the ESO

Slice Project redshift survey, while Martinez et al. [39] analyze the Perseus–

Pisces, the APM-Stromlo, and the 1.2-Jy IRAS redshift surveys, with both

groups finding evidence for a crossover to homogeneity at large scales. In

response, the Scaramella et al. analysis has been criticized on various grounds

by Joyce et al. [40].

So, to date, evidence that galaxy distributions are fractal with D � 2 on small

to medium scales is widely accepted, but there is a lively open debate over the

existence, or otherwise, of a crossover to homogeneity on large scales.

To summarize, there is considerable debate centered around the question of

whether the material in the universe is distributed fractally, with supporters of

the bigbang picture arguing that, basically, it is not, while the supporters of the

fractal picture argue that it is with the weight of evidence supporting D � 2.

This latter position corresponds exactly to the picture predicted by the present

approach.

S. Conclusions

The main result arising from the present stationary universe analysis is that a

perfectly inertial universe, which arises as an idealized limiting case, necessarily

consists of a fractal, D ¼ 2, distribution of material. This result is to be

compared with the real universe, which approximates very closely perfectly

inertial conditions on even quite small scales, and that appears to be fractal with

D � 2 on the medium scale.

Since gravitational phenomena are conventionally considered to arise as

mass-driven perturbations of a flat inertial background, the main result of the

analysis—that the flat inertial background is irreducibly associated with a

nontrivial fractal distribution of material—must necessarily lead to novel

insights into the nature and causes of gravitational phenomena.

The material background has the structure of a quasi–photon gas in the sense

that its individual particles move in arbitrary directions but with identical velo-

city magnitudes. For this reason, we interpret the material inertial background
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as a form of material vacuum so that, ultimately, on the proposed view,

gravitational phenomena are to be seen as disturbances of a material vacuum

and the present analysis is to be interpreted in terms of a rudimentary vacuum

physics.

VI. OVERALL CONCLUSIONS

In the first sections of this chapter, we described two distinct forms of pheno-

menology that are both extremely difficult to comprehend from the perspective

of conventional astrophysics and cosmology; any serious consideration of either

soon leads one to the conclusion that some form of new physics is probably

indicated. But, having arrived at such a tentative conclusion, it is extremely

difficult to imagine what form of new physics might lead to such phenomena.

However, in the present case, the second of these two phenomena was

discovered directly as a consequence of believing that Mach’s principle is not

incorporated into modern gravitation theory in any fundamental way, and

replacing this with a theory that addresses this problem directly. This resulting

theory gives completely new quantitative insight into the nature of ‘‘time as

material process’’ and leads to what can be described only as a rudimentary

form of vacuum physics. This theory associates inertial spacetime directly with

a material vacuum that possesses a fractal dimension of 2—a result that chimes

perfectly with modern galaxy surveys out to medium distances, especially if one

imagines that, somehow, galaxies condense out of the material vacuum.

In conclusion, there is good reasons to believe that the rudimentary vacuum

physics described in this chapter represents a potentially sound foundation for

the study of (at least) the ‘‘discrete dynamical states’’ phenomenology. Given

that it stretches incredulity to believe that two sets of new physics are indicated

by the two phenomenologies described, it also seems quite possible that this

vacuum phsyics has the potential to address the ‘‘quantized redshift’’ pheno-

menology as well.

References

1. W. G., Tifft, ApJ 257, 442 (1982).

2. W. G. Tifft and W. J. Cocke, ApJ 287, 492 (1984).

3. S. V. M. Clube and W. M. Napier, Nature 303, 10 (1983).

4. B. N. G. Guthrie and W. M. Napier, MNRAS 243, 431 (1990).

5. B. N. G. Guthrie and W. M. Napier, MNRAS 253, 533 (1991).

6. B. N. G. Guthrie and W. M. Napier, A&A 310, 353 (1996).

7. D. F. Roscoe, A&A 343, 788–800 (1999).

8. V. C. Rubin, W. K. Ford, and N. Thonard, ApJ 238, 471 (1980).

9. D. S. Mathewson, V. L. Ford, and M. Buchhorn, ApJS 81, 413 (1992).

10. M. Persic and P. Salucci, ApJS 99, 501 (1995).

332 d. f. roscoe



11. D. F. Roscoe, A&A 343, 697–704 (1999).

12. D. F. Roscoe, A&AS 140, 247–260 (1999).

13. D. S. Mathewson and V. L. Ford, ApJS 107, 97 (1996).

14. S. Courteau, AJ, 114(6), 2402–2427 (1997).

15. G. Berkeley, Principles of Human Knowledge, 1710.

16. G. Berkeley, De Motu, 1721.

17. K. R. Popper, J. Phil. Sci. 4, 26 (1953).

18. E. Mach, The Science of Mechanics—a critical and Historical Account of Its Development, Open

Court, La Salle, 1960.

19. A. Pais, in The Science and Life of Albert Einstein, Oxford Univ. Press, 1982.

20. A. Einstein, The Meaning of Relativity, 3rd ed, Princeton Univ. Press, 1950.

21. D. Lynden-Bell, J. Katz, and J. Bicak, MNRAS 272, 150 (1995).

22. C. V. L. Charlier, Astron. Fysik 4, 1 (1908).

23. C. V. L. Charlier, Ark. Mat. Astron. Physik 16, 1 (1922).

24. C. V. L. Charlier, PASP 37, 177 (1924).

25. G. De Vaucouleurs, Science 167, 1203 (1970).

26. P. J. E. Peebles, The Large Scale Structure of the Universe, Princeton Univ. Press, Princeton,

NJ, 1980.

27. Yu. V. Barysev, F. Sylos Labini, M. Montuori, and L. Pietronero, Vistas Astron. 38, 419 (1995).

28. J. Huchra, M. Davis, D. Latham, and J. Tonry, ApJS 52, 89 (1983).

29. R. Giovanelli, M. P. Haynes, and G. L. Chincarini, ApJ 300, 77 (1986).

30. V. De Lapparent, M. J. Geller, and J. P. Huchra, ApJ 332, 44 (1988).

31. T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay, Nature 343, 726 (1990).

32. L. N. Da Costa, M. J. Geller, P. S. Pellegrini, D. W. Latham, A. P. Fairall, R. O. Marzke,

C. N. A. Willmer, J. P. Huchra, J. H. Calderon, M. Ramella, and M. J. Kurtz, ApJ 424, L1 (1994).

33. G. Vettolani et al., Proc. Schloss Rindberg Workshop: Studying the Universe with Clusters of

Galaxies, 1994.

34. M. Joyce, M. Montuori, and F. S. Labini, ApJ 514, L5 (1999).

35. F. S. Labini and M. Montuori, A&A 331, 809 (1998).

36. F. S. Labini M. Montuori, and L. Pietronero, Phys. Lett. 293, 62 (1998).

37. K. K. S. Wu, O. Lahav, and M. J. Rees, Nature 397, 225 (1999).

38. R. Scaramella, L. Guzzo, G. Zamorani, E. Zucca, C. Balkowski, A. Blanchard, A. Cappi,

V. Cayatte, G. Chincarini, C. Collins, A. Fiorani, D. Maccagni, H. MacGillivray, S.

Maurogordato, R. Merighi, M. Mignoli, D. Proust, M. Ramella, G. M. Stirpe, and G. Vettolani,

A&A 334, 404 (1998).

39. V. J. Martinez, M. J. PonsBorderia, R. A. Moyeed, and M. J. Graham, MNRAS 298, 1212 (1998).

40. M. Joyce, M. Montuori, F. S. Labini, and L. Pietronero, A&A 344, 387 (1999).

astrophysics in the dark: mach’s principle lights the way 333



A SEMICLASSICAL MODEL OF THE PHOTON

BASED ON OBJECTIVE REALITY AND

CONTAINING LONGITUDINAL FIELD

COMPONENTS
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This chapter starts with a revision, from the viewpoint of objective reality, of

some physical, logical, and conceptual inconsistencies in the description of the

photon in free space. Then, in the context of a four-dimensional ether, we

introduce the novel concept of dynamic rest mass as a signed flow of ether fluid.

Here, particles (antiparticles) are extended objects formed by a momentum flow

along the positive (negative) direction of the normal to the 3D surface of Dirac’s

sea of energy. Therefrom, the photon is modeled as a semiclassical particle–

antiparticle doublet, which can explain the meaning of frequency and rest mass

of photon. For the photon’s ground state, it predicts two values of spin (�1) and

de Broglie’s energy equation. In the excited state, the photon has three possible

values of spin: 0, �2. It also leads to solutions of Maxwell’s equations containing

both advanced and retarded components. In the near field there are longitudinal

field components that disappear in the far field. In this sense, Maxwell’s

equations are identified as a limiting case at macroscopic distances.

I. INTRODUCTION

The possibility that the propagation of light could have a dual nature arose in the

seventeenth century as a controversy between Newton and Huygens: corpuscular

versus undulatory descriptions, respectively. When Maxwell’s electromagnetic

theory was developed in the nineteenth century, the matter seemed settled in

favor of the proponents of wave-like electromagnetic phenomena.

However, right at the beginning of the twentieth century, Planck and Einstein

again introduced the corpuscular view with the notion of the photon. The energy

E of such a particle is given by de Broglie’s relation

E ¼ �ho ¼ hn ð1Þ

where, as usual, �h ¼ h=2p are the reduced and nonreduced constants of Planck,

and o ¼ 2pn are frequencies associated with the photon in radians per second

and cycles per second respectively.

A hundred years after birth, the inner structure of the photon remains a

mistery. This is particularly true when one searches for an objective reality

representation. In this chapter, the focus is on the nature of the photon and the

propagation of electromagnetic radiation in free space. Questions arise in at

least three different areas: the rest mass, the velocity, and the solutions of
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Maxwell’s and wave equations in free space. As discussed elsewhere in the

book, one can also question the validity of the conventional representation itself;

in this chapter, however, we will keep as close as possible to Maxwell’s

equations. Without any pretension for completeness, some of the issues are as

follows.

A. Questions Related to the Rest Mass of the Photon

There is an apparent incompatibility between E0 ¼ 0, and other properties of the

photon. For instance

1. The Frequency. What is the thing that oscillates with frequency n ?

Clearly, it cannot be an entity that preexists at rest. Hence, E in Eq.(1)

must relate to an entity in a state of oscillatory motion that disappears

when motion ends. Then, it seems that, from this viewpoint, the photon

behaves as a wave.

2. The Duality. Hence, if the photon is a wave, what is the origin of the

particle-like behavior?

3. The Spin. How can we reconcile spin s ¼ 1 and E0 ¼ 0? Spin is a

constant, identical for all photons of arbitrary energy E. Hence, it is

independent of energy and, therefore, it does not depend of the state of

motion characterized by o. Also, evidently, spin cannot be a property of a

nonexistent rest mass. Therefore, spin is associated with what?

One possible solution is to relax the condition that rest mass is zero exactly, and

allow for a tiny rest mass. Many distinguished physicists have explored this

alternative, including Einstein, de Broglie, Schrödinger, and Vigier [1–8]. For

additional bibliography, see Ref. 8, where Vigier explores the idea anew in the

context of his interpretation of the nonnull results of Michelson and Morley;

Vigier suggests a value m0 � 10�65 g. (See pp. 275–291 of Jeffers et al. [9] for a

compilation of Vigier’s quantum-mechanical papers.)

A weaker alternative would be to admit E0 ¼ 0 in a preferred frame of

reference �, but to allow for a local nonzero rest mass m0 � 10�34 g as an

artifact of the total motion of the earth relative to � [10]. However, this value is

too high compared to the limits set to the photon mass, typically in the range

m0 � 10�52–10�43 g [11]. At any rate, there are two implications of a nonzero

photonic mass:

1. Locally, the speed of light is not a constant over all frequencies.

2. An absolute inertial frame of reference � must be reintroduced. In plain

words, introduce a modern version of the ether.

In the present writing, we propose a novel alternative: rest mass is not absence of

mass but neutrality of momentum flux within a well-defined spatial region (see
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Section IV). In this way, the properties of photon and electromagnetic radiation

naturally arise from flow of momentum in Euclidean space.

B. Questions Related to the Velocity of the Photon

There are at least four different velocities associated with photons:

� Particle velocity c

� Phase velocity in the wave representation vph

� Group velocity in the wave representation vgr

� Velocity of momentum and energy transport ven

To describe the transport of sound, Lord Rayleigh [12] introduced the concepts

of phase and group velocities. Since there is a fluid for the propagation of sound,

there is no particular difficulty in understanding the various physical processes

arising therein [13]. The same concepts vph and vgr were applied to light by the

same Lord Rayleigh [14] and Gouy [15] and later on by Lamb [16] and [17]. For

propagation of electromagnetic waves in dispersive media, there is no particular

difficulty in building a physical picture for the underlying processes. For

completeness, it is noted that negative group velocities were theoretically

predicted at the beginning of the twentieth century. Lamb [16, p. 479] noted that

‘‘It is hardly to be expected that the notion of a negative group-velocity will have

any very important physical application.’’

A paper by Mitchell and Chiao [18] reports some experimental evidence

indicating the physical existence of negative group delays, but there are some

challenges to the theoretical interpretation [19].

The situation with photon propagation in free space is quite diferent. If

vacuum is equated to absence of a fluid, what is the support for the waves? Of

course, particle-like propagation solves the problem, but it (strictly) invalidates

Maxwell’s equations in vacuum. There is a positive aspect. Since vacuum is

nondispersive, all velocities have the same magnitude.

Let us concentrate on the particle aspect only. The main issue is to identify

an space (three- or four-dimensional?) where photons propagate with constant

speed c. Einstein’s second postulate of the special theory of relativity (STR)

requires the speed of light in free space to be the same for all inertial observers.

This postulate is conventionally interpreted as implying the non-existence of a

preferred frame �. As discussed in section II, the exactly opposite view will be

adopted here.

There is another curiosity related to the speed of photons in STR. Long ago,

it was noted [20–22] that the second postulate of STR (speed of light invariance)

may be derived from a pair of more fundamental assumptions: the principle of

relativity for inertial observers plus the principle of isotropy of spacetime. More

recent work along the same lines [23–25] implies that the parallel addition
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theorem of STR becomes

V ¼ v1 þ v2

1 þ K�2v1v2
ð2Þ

where K is an arbitrary constant with dimensions of speed [25]. Equation (2)

suggests that there is no need for the speed of light to appear in STR, and that

another more fundamental constant speed could play the role.

Photon speed also appears in the most popular equation of physics:

E ¼ mc2 ð3Þ

Of course, Eq. (3) is valid for any particle. The question is: Why is the speed of

the photon there? One may conjecture with DiMarzio [26] that there is a more

fundamental meaning for c. In this context, Múnera [27] explored the possibility

of deriving the main predictions of STR from Newton’s theory plus a postulate of

mass–energy equivalence: E ¼ mK2. The value of the unknown constant K was

obtained from the acceleration of electrons [28]. The numerical value is c within

the limits of accuracy of the (large) experimental error.

C. Questions Related to Solutions of Electromagnetic Equations in vacuo

According to the conventional view, charge density r and electric current density

J do not exist in free space. Hence, there are no sources for the electric and

magnetic fields. However, both Maxwell’s equations and the homogeneous wave

equations have nontrivial solutions for the fields E and B. Then, what is the

origin of the electromagnetic field? There is a possible solution. After being

produced, fields E and B have existence independently of the source. This

interpretation implicitly requires an underlying substance, or at least a 3D space,

where the fields E and B linger.

A second question concerns the existence of longitudinal components of the

magnetic field. Maxwell’s equations in free space are (completely??) equivalent

to two homogeneous uncoupled wave equations for the vector fields E and B.

The uncoupled wave equations admit longitudinal components for both fields E
and B. However, longitudinal components are prohibited in the conventional

interpretation of Maxwell’s equations.

A third similar question arises in the potential representation of fields E and

B. Conventionally, a magnetic scalar potential is not included as part of the

solution of Maxwell’s equations. However, there is no a priori prohibition for

the existence of such solution within a general formulation. Sections III.A–III.E

consider previous issues in some detail.

Another question is related to the symmetrization of Maxwell’s equations.

Dirac asked himself whether there existed magnetic monopoles, and proposed

inclusion of a magnetic source to make Maxwell equations symmetric.
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Section III. F exhibits a different route to symmetrize the equations, without the

introduction of magnetic monopoles.

Finally, both the Maxwell equations and the wave equations admit solutions

in terms of retarded and advanced potentials. Long ago, Conway [29] recognized

the existence of such solutions in his study of the electron. Referring to ‘‘the con-

vergence, of the disturbances’’ Conway said that ‘‘the medium now contains the

future history of the motion of the electron’’ (Ref. 29, p. 160, emphasis in original).

Obviously, such interpetation led to disregard advanced solutions as non-

physical. For instance, Ritz [30] and Tetrode [31] considered that the mathema-

tical existence of advanced solutions was a major weakness of Maxwell’s

equations. An attempt to provide a physical basis for advanced potentials is due

to Lewis, who proposed focusing on the process of propagation from an emitter

to an absorber far away from the emitter [32]. This concept also appears in the

work of Wheeler and Feynman [33]. However, such model constitutes another

form of causality violation. Lewis [32, p. 25] himself stated: ‘‘I shall not attempt

to conceal the conflict between these views and common sense.’’

D. A Model for the Photon

From a pragmatic viewpoint, there is no need for a model of the photon. One may

be content with a description of the particle based entirely on the equations that it

obeys. This is a very respectable scientific stance. There is another equally

respectable scientific position—try to understand the mathematical equations in

relation to a physical model. In previous paragraph we mentioned the attempts of

several investigators [30–33]. More recent trials are those of Warburton [34], Fox

[35], Scully and Sargent [36], Hunter and Wadlinger [37,38], Evans and Vigier

[39], Barbosa and González [40], and Lehnert [41]. For additional contemporary

models see Hunter et al. [42].

This chapter describes the programme of the present author to develop yet

another representation for the photon in a semiclassical setup. Section II

discusses the concept of a preferred frame, and briefly evaluates the empirical

evidence against it. Section III discusses some properties of Maxwell’s

equations that shaped our model. Section IV presents a four-dimensional ether,

which leads to a photon model in Section V. The model is based on a rotating

doublet, and contains retarded and advanced potentials in a setup that hopefully

avoids the pitfalls of previous attempts. A closing section, Section VI,

summarizes the main findings.

II. THE EXISTENCE OF A PREFERRED FRAME

A. The Meaning of a Constant Speed of Light

Let us concentrate here on the photon as a particle only. The main task is

to identify the family of frames where the photon propagates with a constant
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speed c.1 In his early papers, Einstein accepted the notion of a preferred frame

both for the special and the general theories of relativity. In his words [43, p. 17]:

Newton might no less well have called his absolute space ‘Aether’; what is

essential is merely that besides observable objects, another thing, which is not

perceptible, must be looked upon as real, to enable acceleration or rotation to be

looked upon as something real.

Einstein’s second postulate requires the speed of electromagnetic radiation in

free space to be the same for all inertial observers. The special theory of

relativity (STR) is conventionally interpreted as a prohibition for the existence

of a preferred frame �.

However, the operational identification of inertial observers without a

preferred frame is plagued with difficulties, as a cursory examination of

textbooks in classical and relativistic mechanics will immediately show. A

possible solution is to identify inertial observers with the class of observers in

free fall in arbitrary gravitational fields [44]. But this is a direct link to the frame

where gravitation exists, which is the very same ‘Aether’ acknowledged by

Einstein himself.

In the spirit of Lorentz [45], de Broglie, and Vigier, let us postulate the

existence of a preferred frame �. Operationally, � may be identified with the

frame of cosmic background radiation (CBR), whose isotropic thermal nature

was established by measurements during the COBE-FIRAS project [46]. Then,

the principle of relativity simply states that all frames that are not accelerated

relative to �, are equivalent to it.

More formally, consider any frame S with an observer at the origin, and let

the acceleration of the origin relative to � be a�
0 ¼ 0. Let S� be the class of

inertial frames equivalent to �:

S� ¼ fSja�
0 ¼ 0g ð4Þ

Then, the principle of relativity simply states that all frames belonging to S� are

equivalent. Hence, in this limited context, Einstein’s second postulate reduces to

the statement that speed of electromagnetic radiation is a constant c in S�.

More generally, consider the class of all frames Si whose origin has the same

acceleration ai relative to �:

Si ¼ SðaiÞ ¼ fSja�
0 ¼ aig ð5Þ

Clearly, any two frames belonging to some Si are in inertial relation (i.e., either at

relative rest, or in relative uniform motion). An example is provided by two

frames in free fall in a region of constant gravitational field [assuming, of course,

1Often, following the optical tradition, we will refer to the speed of electromagnetic radiation in

general as the speed of light.
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that gravitation is defined with respect to the preferred frame (see quotation [43]

at the beginning of this section.).

According to the principle of relativity, the speed of light is a constant ci in

any set Si. Up to this point our interpretation and the conventional interpretation

of STR coincide. The difference arises when the STR requires that

ci ¼ c; 8i ð6Þ

We will not pursue this issue any further here, it is simply noted that condition (6)

is much stronger than our assumption of a constant c in S� [Eq. (4)].

B. The Empirical Evidence

Let us turn to the often forgotten, but all important question of emipirical

verification. According to current information, our solar system moves relative to

CBR with speed vS � 10�3c [46–48]. Diurnal and annual rotation of the earth

lead to local anisotropies that were documented long ago in different contexts.

For instance, Esclangon [49] measured an anisotropic effect for the propagation

of light along two perpendicular axes: northwest and northeast. The time

difference for propagation along the two perpendicular directions depended of

sidereal time, thus suggesting an absolute motion of the earth.

Now then, is there any direct evidence for the nonexistence of �? According

to the present author’s knowledge, the only available evidence is the claimed

nullresult of the Michelson–Morley type of experiments.

Michelson and Morley [50] used an interferometer to measure the speed of

light along two orthogonal directions: parallel and perpendicular to the earth’s

orbital speed. They found that the speeds differed by a value somewhere in the

range between 5 and 7.5 km/s. Michelson and Morley were extremely surprised

because they expected to observe a difference of 30 km/s. At that time they had

no plausible explanation for their empirical observation and decided to interpret

the outcome of the experiment as a null result: no difference in speed along both

direction (apparently, the reason for this choice was that Fresnel’s theory

predicted no difference).

Of course, such interpretation nicely fitted with Einstein’s second postulate,

proposed 18 years later. Tolman [51, p. 27] explicitly said:

In support of this principle is the general fact that no ‘‘ether drift’’ has ever been

detected, but, especially, the conclusive experiments of Michelson and Morley,

and Trouton and Noble, in which, a motion through the ether, of the earth in its

path around the sun would certainly have been detected.

Eventually, along with the success of relativity theory, the incorrect interpreta-

tion (i.e., that the outcome of the experiment was a nullresult) became

entrenched in mainstream physics.
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At the beginning of the twentieth century, there were several isolated voices

claiming for a revision of the Michelson–Morley interpretation. Hicks [52]

performed a theoretical analysis of the Michelson–Morley experiment and

concluded that data were consistent with a somewhat larger magnitude of the

difference of speeds. More importantly, he noted that the data followed a

periodic curve proportional to cos2y, where angle y refers to a rotation of the

interferometer relative to the presumed direction of orbital velocity. The

functional dependence present in the results is of the form to be expected if

there existed �.

The most important critic of Michelson and Morley’s interpetation was, no

doubt, Dayton C. Miller. He was a collaborator of Morley in the work that

followed the initial experiments. Miller applied some of the corrections

suggested by Hicks [52] to the results of Michelson-Morley experiment. Miller

reports that, after the corrections, the difference of speeds measured in the

original experiment were 8.8 km/s for the noon observations and 8.0 km/s for

the evening observations [53, p. 207]; clearly, nonnull results.

After Morley’s retirement, Miller continued a lonely quest for more than 20

years. He repeated the experiment many times at Cleveland and at Mount

Wilson, and typically found a nonnull difference of speed around 10 km/s

[53–55]. More importantly, he carried out measurements during a whole

calendar day, spaced at intervals of three months. He identified seasonal

variations both in the magnitude of the difference of speeds, and in the shape of

the daily curve [53]. He ascribed the seasonal variations to a motion of the solar

system of 208 km/s relative to the fixed stars. This velocity is of the same order

of magnitude as the currently accepted vS � 10�3c !! However, his argumenta-

tion was not clear enough at that time.

Shankland and collaborators [56] thoroughly reviewed Miller’s results, and

applied formal statistical tests to Miller’s data to conclude that [56, p. 171]

‘‘there can be little doubt that statistical fluctuations alone cannot account for

the periodic fringe-shifts observed by Miller.’’ To any outsider, this remark

highly commends the experimental quality of Miller’s work. However,

regarding the curves depicting seasonal variations, Shankland et al. also noted

that, according to their (Shankland’s) theory [56, p. 172] ‘‘the four curves

should have a common maximum (or minimum) . . . only the amplitude may be

different at different epochs.’’

Hence, they concluded that Miller’s experimentally observed seasonal

variations were simple experimental artifacts!! Evidently, Shankland et al. [56]

did not grasp the full meaning of Miller’s suggestion that the sun was in motion

relative to the fixed stars.

The conclusions of the paper by Shankland and collaborators [56] exemplify

an obnoxious practice. Empirical evidence is used in an unconventional manner

(to say the least). Indeed, experiments are typically carried out to check a
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theory. If evidence opposes theory, then the latter is suspect. On the contrary,

Shankland et al. did the exact opposite: since evidence opposed their theory,

they disregarded the evidence, not the theory.

Several authors have independently revisited Miller’s work. Vigier’s [7]

interpretation was mentioned in Section I. In 1988 the present author began a

revision of all experiments of the Michelson–Morley type (M-M experiments)

reported in the literature. The review is published as Múnera [57].

M-M experiments typically yielded finite (nonzero) differences of speed

along two perpendicular positions of the interferometer’s reference arm. Such

difference is consistently lower than the value to be expected from orbital

motion alone (30 km/s), within the naive conventional approximation of not

taking into account diurnal variations due to earth rotation. With the exception

of Miller, all authors consistently interpreted their observations as nullresults.

A most surprising finding in our review was that no significant effort was

made by the experimenters to try and find a theory closer to the empirical

observations. For instance, solar motion vS � 10�3c is not included in the

analysis. The only exception is Miller [53], who used his observations to derive

such a value for solar motion. This criticism is particularly valid for the more

recent experiments.

Múnera [57] took into account both earth rotation and orbital motion, as a

function of the local latitude and longitude. Prediction of the variation of speed

difference as function of time of day are given in Múnera [57] for the locations

of Miller’s experiment. The qualitative shape of the variations is of the same sort

observed by Miller in the 1930s. However, the magnitudes are not correct

because solar motion was not included.2 Selleri [58] allowed for small

violations of Lorentz invariance; a correction factor around 10�3 reproduces

Miller’s observations. Also independently, Allais [59] revisited Miller’s work.

He argues that Miller’s seasonal variations are strong proof for a local

anisotropy of space.

In summary, the only direct evidence against the existence of a preferred

frame � is the interpretation of Michelson–Morley experiments as being a

nullresult. To put it mildly, this evidence is fairly weak. On the contrary, there is

mounting evidence for the existence of local anisotropies [49,59,60], which can

be interpreted as motion of the earth relative to �. Additionally, a replication of

Faraday induction experiments with a rotating permanent magnet yielded a

positive outcome [61]. Such results may be interpreted as an indication of the

existence of absolute motion, and hence of �. As usual, the final referee will be

empirical evidence. Hence, there is a pressing need to carry out new

2Solar motion was not included because our intent was to make predictions within the same

assumptions used in the original papers: orbital and rotational motion only.
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experiments of the Michelson–Morley type using high-resolution modern

equipment to check several competing new interpretations.

III. SOLUTIONS OF MAXWELL’S EQUATIONS IN FREE SPACE

A. Maxwell’s Equations for Ether

Let us picture the ‘‘vacuum’’ as a fluid filling the preferred frame �. As usual in

electromagnetic theory, any material substance is described by three parameters

[62, Chap. 1]:3

� The dielectric constant, or permittivity, e
� The magnetic permeability, m
� The specific conductivity, s [units: s�1 (reciprocal seconds)]

For the ether it is postulated here that

e ¼ 1; m ¼ 1; s ¼ 0 ð7Þ

Then, Maxwell’s equations for any arbitrary material medium reduce to the

system of Maxwell equations (MEs) for the vacuum (see any standard source,

such as Ref. 62,63,64, or 65). In CGS units, MEs are [66]:

r� E ¼ � qB

qu
ð8Þ

r � B ¼ þ qE

qu
þ 4p

c
J ð9Þ

r � E ¼ 4pre ð10Þ
r � B ¼ 0 ð11Þ

where time is expressed as a length u4

u ¼ ct ð12Þ

and E;B are the electric and magnetic fields in vacuum, respectively (units: dyne

esu�1 ¼ esu cm�2), re is charge density (units: esu cm�3), and J is current

density (units: esu s�1 cm�2).

The set of four equations may be divided into:

3In the rest of this chapter, references to the authoritative book of Born and Wolf will be [62]

(reference number 62 in brackets) followed by page or section number(s) in that book.
4In my earlier papers time was represented by w. A different symbol is used here to avoid confusion

with photon’s omega o:
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� Two induction expressions: Fraday [Eq. (8)] and Ampère [Eq. (9)]

� Two source conditions: electric [Eq. (10)] and (absence of) magnetic

source [Eq. (11)]

Consider a region of � in our neighbourhood (this is our three-dimensional

space), where there exists an electromagnetic field E;B and an associated current

J. Let these three vector quantities obey Ampère’s Eq. (9). Operate with r� on

(10) and substitute Eq. (10) to get the charge continuity condition [62, p. 2]:

c
qre

qu
þr � J ¼ 0 ð13Þ

The derivation of Eq. (13) means that the equation of continuity is a mere

mathematical consequence of only two of Maxwell’s equations; that is, the

condition of continuity does not add additional physical information to

Maxwell’s equations.

If the distribution of charge in a certain region of space is time-independent,

re ¼ rðrÞ, then Eq. (13) reduces to

r � J ¼ 0 ð14Þ

As noted elsewhere [67], Eq. (14) means that the continuity condition does not

prohibit the existence of an electromagnetic current density J in free space. It is

stressed that Eq. (14) is a mathematical prediction of Maxwell’s equations,

completely independent of any interpretation.

On the interpretational side, at least three different mechanisms may lead to a

current density J:

� Motion of electric charges in the medium (superscript m ) leading to a

convection current density Je ¼ rm
e vm

� Resistive dissipation in the medium producing a conduction current

density Jc ¼ sE

� Nonresistive redistribution of energy within the electromagnetic field

E;B, described by Ampère’s Eq. (9) and leading to an electromagnetic

displacement current Jd

Then

J ¼ Je þ Jc þ Jd ð15Þ

The first two terms on the right-hand side of Eq. (15) are conventionally ascribed

to dispersive media [62, p. 9], while the third term is the displacement current

density Jd [66, Chap. 9]. The latter may be easily observed in material media

(air); see, for instance, Carver and Rajhel [68] and Bartlett and Corle [69]. It is
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assumed here that Jd also exists in a vacuum with s ¼ 0. Therefore, in free space

without charges, Je ¼ Jc ¼ 0, Ampère’s law leads to

Jd ¼ c

4p
r� B � qE

qu

� �
ð16Þ

However, the interpetation of Jd is open to considerable controversy,as a quick

reference to conventional journals indicates; see, for instance, Warburton [34],

French and Tessman [70], Rosser [71], and references cited therein.

Some extensions of MEs indentify free space with a medium having s 6¼ 0

[72]; in such cases there is a dispersive loss of energy. If one wishes to maintain

a relativistic theory, previous fact introduces additional complications. To

correct such new difficulties, Lehnert [41,73] postulated additional sources in

vacuo (r � E 6¼ 0 when s 6¼ 0).

Let us turn now to different aspects of the solutions of Maxwell’s equations

with s ¼ 0.

B. Source of Electromagnetic Field in Free Space

Consider propagation of photons in vacuum. The first issue is to determine the

meaning of such propagation. It seems fairly clear that Maxwell’s equations

describe the propagation of electromagnetic field E;B in general. However, as

mentioned in the introduction, what is the mechanism for undulatory propagation

in vacuum?

To understand propagation of photon, it is necessary to define the photon.

There are many possibilities, including the following:

1. The photon and the electromagnetic wave are different manifestations of

the same reality (particle–wave duality).

2. The photon is a different entity that is guided by the electromagnetic wave

(de Broglie and Vigier; see references at the end of this chapter).

3. The photon is not a particle, but a process. A prime example is the

absorber model of Lewis [32] and Wheeler and Feynman [33]; for a

revival of the same idea, see Whitney [74]. For a related concept with

emphasis on path, see Ryff [75].

4. The photon and the electromagnetic field are different entities. For

instance, Ritz [30] proposed an emission theory. In Section V we will try a

similar dichotomy, but maintining a constant speed of signal relative to �:

For the time being, let us consider the conventional view: wave–particle duality.

Then, propogation of photon is the same as propagation of electromagnetic field

E;B. In free space the charge density is null everywhere, except possibly at the

source. The photon is chargeless; hence, if Maxwell’s equations are applicable to

a photon in vacuum, re ¼ 0 everywhere. This leads to some contradiction.
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There is a cause–effect relationship between electric charge density and

electric field, represented by Eq. (10). Since re ¼ 0, it should follow that E ¼ 0.

Such trivial solution, however, cannot possibly represent a photon. There is

another alternative. Induction Eqs. (8) and (9) relate to E and B so that, if B
were an independent variable, variations of magnetic field could, in principle,

induce an electric field. However, magnetic field B is conventionally ascribed to

moving charges [66]. Again, re ¼ 0 forbids B, and a fortiori E. It seems that

there is some violation of causality: an electromagnetic field represented by E
and B (effect) without a source re (cause).

Considerations of this sort led us to suggest that, in order to avoid violations

of causality within the wave–particle duality, there are two possible

interpretations of Maxwell’s equations [76]:

� Alternative 1. Assume that electromagnetic free field is a primitive

concept.

� Alternative 2. Admit that there are hidden charge doublets at the photon

source.

The first route leads to a model of the physical world where the concept of

particle is derived, while the second assumption implies the opposite view. Long

ago, Bateman [77, pp. 9–10] reached a conclusion similar to our second

alternative: ‘‘Since the electric force is ultimately at right angles to the radius

there is no total charge associated with the singularity, for the charge is equal to

the surface-integral of the normal electric force over a large sphere concentric

with the origin and this integral is evidently zero. We are consequently justified

in regarding the singularity as a doublet and in fact as a simple electric doublet of

varying moment as indicated by the way in which the electric and magnetic

forces become infinite’’ (emphasis added).

More recently, McLennan [78] also analysed the meaning of MEs, in

particular the implications of Gauss’ theorem in the context of re ¼ 0. He

concluded, however, that there should exist two different sets of MEs: one for

the field, another for the source. This view is reminiscent of some remarks made

earlier by Warburton [34].

From a completely different viewpoint, Mannheim [79, p. 913] proposed a

theory to quantize relativistic fermions using classical coordinates. In the

conclusions he suggests that ‘‘gauge fields may not be fundamental at all but

may be fermion composites.’’

Section IV describes the aether as a four-dimensional fluid; this is equivalent

to assigning objective reality to the field. Thence, in section 5 the photon is

modelled as a charge doublet, that acts as the source. In the context of this

section, our model contains elements of both Bateman (the doublet) and

McLennan (the differentiation between field and source).
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Summarizing, in the conventional wave-particle view, the condition re ¼ 0

in free space may be described as being charge-neutral, rather than charge-free.

C. The Meaning of Current Density in Free Space

The conventional view that J ¼ 0 when re ¼ 0 is not a result of MEs. As noted in

Section III.A, MEs only lead to Eq. (14), which does not mean a fortiori that

J ¼ 0.

To see this, let us introduce some definitions first. The Poynting vector G
represents energy flux density (units: esu2 cm�3 s�1 ¼ erg cm2 s�1). It is a

capability of the electromagnetic field to perform work defined as

G ¼ c

4p
E � B ð17Þ

The internal energy transfer along the electric field is QI (units: erg s�1) given by

QI ¼
ð

V

E � J dV ð18Þ

The electric and magnetic energy densities we;wm in free space (units: erg cm�3)

are defined as

we ¼
1

4p

ð
V

E � dE ¼ E2

8p
; wm ¼

ð
V

B � dB ¼ B2

8p
ð19Þ

The electromagnetic energy associated with a volume V is W (units: erg):

W ¼
ð

V

ðwe þ wmÞdV ¼ 1

8p

ð
ðE2 þ B2ÞdV ð20Þ

A conventional interpretation is ‘‘that W represents the total energy contained

within the volume’’ [62, p.8]. McLennan [78b] challenges this interpretation

proposing that, instead, W is a potential energy. Along the same line of thought,

long ago Ritz [30] identified we with potential energy and wm with kinetic energy

[30, pp. 157–158].

Independently of interpretation, MEs directly lead to [62, Sec. 1.1.4]

dW

dt
þ QI þ

þ
S

G � nd S ¼ dW

dt
þ QI þ QP ¼ 0 ð21Þ

where n is a unit vector5 orthogonal to the surface S that bounds the integration

volume V , and the energy QP propagated by the Poynting vector is implicitly

defined.

5Unit vectors are represented by lowercase boldface characters. If there is a risk of confusion, an

additional caret is used.
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Equation (21) implies that time variations of energy, inside any V, manifest

in two different forms. It is pointed out that, conventionally, only the first one is

allowed:

� Transport QP along the direction of propagation g (this unit vector is

parallel to the Poynting vector)

� Internal rearrangement of energy QI

If one adopts McLennan’s [78b] interpretation, then Eq. (21) is a realization of a

standard theorem of Newtonian mechanics: conservation of total energy ¼
conservation of kinetic plus potential energy (see, e.g., Chap. 4 of Kleppner and

Kolenkow, [80]). The reason is simple: Coulomb electric force is central, then

work is path independent, and total energy is function of position only. The time

derivative of total energy is of course zero, as in Eq. (21). In this interpretation

QP and QI are manifestations of kinetic energy.

The differential form of Eq. (21) is

qðwe þ wmÞ
qt

¼ �E � J �r � G ð22Þ

This equation simply states that variations of energy density at a given spacetime

point are due to transport along the Poynting vector plus transport along electric

field. Clearly, when J ¼ 0 all transport is along g [62, Eq. 43, p. 10].

D. Equivalence of Maxwell’s and Wave Equations

It is easy to decouple E and B in Maxwell’s equations, thus obtaining two vector

wave equations. Operate with r� on Eq. (8), and substitute Eqs. (9) and (10) to

get

&E ¼ r2E � q2E

qu2
¼ � 4p

c
crre �

qJ

qu

� �
ð23Þ

where the D’Alembertian operator is defined as (units: cm�2)

& ¼ r2 � q2

qu2
ð24Þ

Likewise, to obtain a wave equation for magnetic field, operate with r� on

Eq. (9), and substitute Eqs. (8) and (11) to get

&B ¼ r2B � q2B

qu2
¼ � 4p

c
crre þr� Jð Þ ð25Þ
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Again, as in Section III. B, Eqs. (23) and (25) clearly depict the cause–effect

relationship between the fields E; B and the source re 6¼ 0. If field is a primitive

concept, then the left-hand side is the cause, whereas the right-hand side is the

cause if charge is primitive.

In free space with re ¼ 0, then Je ¼ 0. Expressions (23) and (25) reduce to

&E ¼ r2E � q2E

qu2
¼ � 4p

c

qJd

qu

� �
ð26Þ

&B ¼ r2B � q2B

qu2
¼ � 4p

c
r� Jdð Þ ð27Þ

If Eq. (16) is substituted into (27), then an identity follows, which suggests that

Eq. (27) is not an independent condition. Of course, when Jd ¼ 0 the

conventional homogeneous wave equations obtain

&E ¼ 0 ð28Þ
&B ¼ 0 ð29Þ

As in Section III.B, the question of causality immediately arises. If there is no

source, why are there nontrivial solutions for the fields E,B? Again, the

alternatives discussed in Section III.B may provide an answer. Another

standpoint is to assume that Eqs. (28) and (29) describe an independent reality.

Then, after being produced, fields E,B exist on their own, quite independently of

the continued existence of the source. Of course, the properties of the fields

depend of the source at the moment of emission.

There is a curiosity here. The process to decouple the Maxwellian fields E,B
that was explained above is completely algebraic. There are no additional

physical concepts introduced in the process. Therefore, Eqs. (28) and (29)

should be completely equivalent to Maxwell equations. That is, the set of

solutions to the wave equations represented by (26) and (27), or by (28) and

(29), should be the same as the set of solutions to Maxwell’s equations.

However, as noted elsewhere by Múnera and Guzmán [81], this is not the case.

A possible explanation may be the nature of Eq. (27): it is an identity.

Let us illustrate previous claim with an elementary example for r ¼ 0. In

Cartesian coordinates, let

E ¼ Exi þ Eyj þ Ezk; Ey ¼ Ez ¼ 0; Ex ¼ AE sin ½kðz � uÞ� ð30Þ
B ¼ Bxi þ Byj þ Bzk; By ¼ Bz ¼ 0; Bx ¼ AB sin ½kðz � uÞ� ð31Þ

Evidently, fields E,B are a solution of wave equations (28) and (29), respectively.

However, fields E,B are only partially consistent with Maxwell equations, as

follows:
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� Equation (30) is directly consistent with the electric source Eq. (10).

� Equation (31) is directly consistent with the magnetic source condition

(11).

� Equations (30) and (31) are consistent with Ampère’s Eq. (9), interpreted

as a definition for Jd (Eq. 16). In this sense, any arbitrary pair of vectors is

a solution of Ampère’s equation.

� However, Eqs. (30) and (31) are not consistent with Faraday’s Eq. (8).

Indeed, a direct substitution shows that

r� E ¼ þkAE cos ½kðz � uÞ�j 6¼ � qB

qu
¼ þkAB cos ½kðz � uÞ�i ð32Þ

Previous example demonstrates in a straightforward manner that the uncoupled

wave equations (28) and (29) are not completely equivalent to Maxwell’s

equations. We have no explanation for this fact, other than the (possible??) lack

of independence of Eq. (27) noted above.

This finding may be related to similar remarks of Ritz [30] regarding Lorentz

electron theory [45]. Ritz concluded that the solutions to the wave equations

were more fundamental than Maxwell’s equations. In his words [30, p. 172]:

‘‘on voit qu’en dernière analyse c’est la formule des actions élémentaires, et non

le système de equations aux dérivées partielles, qui est l’expression exacte et

complète de la théorie de Lorentz’’ (emphasis in original).

Conventional electromagnetic theory is fully aware of this difficulty, but no

attention is paid to the inconsistency. Pragmatically, Jackson simply notes that

solutions to the wave equations must also satisfy Maxwell’s equations [63,

Chap. 7, p. 198], and go on to use Faraday’s Eq. (8) as a coupling condition for

the two wave equations. We will return to this point in Section V.

In the present simple example, Eq. (32) immediately suggests a valid

solution; namely, that the magnetic field must lie along the y axis, thus leading

to the well-known orthogonality between the electric and magnetic fields. A

bona fide solution for Maxwell’s equations is then provided by the electric field

of Eq. (30), and

B ¼ Bxi þ Byj þ Bzk; Bx ¼ Bz ¼ 0; By ¼ AB sin ½kðz � uÞ� ð33Þ

Equations (30) and (31) are a solution of Faraday’s equation provided that

AE ¼ AB ¼ A. Then, in a single stroke, Faraday’s condition achieves two

different things: orthogonality and equal amplitude of fields E and B.

Summarizing the discussion in this section. It seems as if the entire physical

information about the behavior of the electromagnetic field were contained in

Faraday’s equation. The other three equations play a minor role: definitions of

current density, electric source, and absence of magnetic source.
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E. Longitudinal Components of Magnetic Field

In a long series of publications, Evans and Vigier [39] and Evans et al. [82] have

suggested the existence of a non-Maxwellian longitudinal component of

magnetic field. Here we want to explore a related problem: the sense in which

longitudinal components of magnetic field may exist within the realm of the

conventional Maxwellian theory, in the extended sense of Eq. (16).

Let us consider the propagation of electromagnetic waves with both fields

nonzero: E 6¼ 0 and B 6¼ 0. As usual, propagation is parallel to the Poynting

vector G, defined in Eq. (17). Evidently, by definition, vector G is perpendicular

to both fields E and B. Hence, there cannot exist components of the magnetic

field B parallel to the instantaneous direction of propagation G.

In order to determine the direction of propagation of some arbitrary wave,

the observer must make a measurement or observation during a finite period of

time TM , at some three-dimensional location, say, a small volume at some

position �VðrÞ. The result of the measurement will be some deposition of

energy �WðrÞ within �VðrÞ given by [recall Eq. 21)]

�W ¼ �
ðTM

0

dW

dt
dt ¼

ðTM

0

ðQI þ QPÞdt ¼
ðTM

0

QI dt þ
ðTM

0

þ
S

G � n dS dt ð34Þ

The average energy deposited per unit volume during the observation time is

obtained from Eq. (22) as

�W

�T
¼ � qðwe þ wmÞ

qt

� �
¼ 1

TM

ðTM

0

E � Jdt þ
ðTMs

0

r � Gdt

� �
ð35Þ

Equations (34) and (35) show that the result of any actual measurement will

strongly depend of the direction of propagation G, that is, of the surface through

which the electromagnetic radiation enters the detector. As a first approximation,

let us concentrate on the average direction of propagation Gh i:

Gh i ¼ 1

TM

ðTM

0

Gdt ¼ 1

TM

ðTM

0

GðtÞdt

� �
g ¼ Gh ig ð36Þ

In the conventional solution of MEs as plane electromagnetic waves, the

direction of propagation G is always perpendicular to the plane; hence, it is time-

independent. Let an external observer of the electromagnetic wave define the

z-axis as parallel to G. Then, G ¼ GðtÞk, and Gh i ¼ Gh ik.

Consider a non-plane-wave solution of Maxwell’s equations, whose direction

of propagation varies with respect to the z axis. In general it holds that

Gh i ¼ Gxh ii þ Gy

� �
j þ Gzh ik ð37Þ
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The instantaneous direction of propagation is, of course, perpendicular to the

plane defined by the instantaneous electromagnetic fields E and B. But this time-

dependent direction need not be parallel to the z axis, physically defined as the

direction for the average propagation of energy. Let us illustrate the point with

variations of the same simple example of previous section, for additional details

see Múnera and Guzmán [67].

Example 1. Consider the following fields E and B, which are solutions of

Maxwell’s equations for re ¼ 0:

E ¼ Exi þ Eyj þ Ezk; Ey ¼ Ez ¼ 0; Ex ¼ Asin ½kðz � uÞ� ð38Þ
B ¼ Bxi þ Byj þ Bzk; Bx ¼ Bz ¼ 0; By ¼ Asin½kðz � uÞ� ð39Þ

This is a monochromatic linearly polarized wave with electric field vibrating in

the x–z plane, and the magnetic field vibrating in the y–z plane. We have adopted

the practice of explicitly identifying the plane of vibration [62, p. 29]. Current

density associated with E and B is given by Eq. (16) as J ¼ 0. It is stressed that

J ¼ 0 is obtained here from the fields, whereas the conventional approach is to

assume the current to be zero on the grounds that re ¼ 0.

The Poynting vector and its time-average are [Eqs. (17) and (26),

respectively]:

G ¼ cA2

4p
sin2 kðz � uÞð Þk ð40Þ

Gh i ¼ cA2

8p
k ð41Þ

where the average is taken over an integer number of cycles m

TM ¼ 2pm

kc
¼ 2pm

o
ð42Þ

Clearly, there are no longitudinal components in a plane wave.

Example 2. Let us consider a variation of Example 1. The plane wave of

previous example is perturbed with the addition of a small longitudinal

component of magnetic field to get

E ¼ Exi þ Eyj þ Ezk; Ey ¼ Ez ¼ 0; Ex ¼ Asin ½kðz � uÞ� �Bsin ½kLðy � uÞ�
ð43Þ

B ¼Bxi þ Byj þ Bzk Bx ¼ 0; By ¼ Asin ½kðz � uÞ�; Bz ¼ Bsin ½kLðy � uÞ�
ð44Þ
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Again, Eq. (16) yields J ¼ 0. The Poynting vector G has components

Gx ¼ 0; Gy ¼
c

4p
ðABsin ½kðz � uÞ�sin ½kLðy � uÞ� � B2 sin2 ½kLðy � uÞ�

Gz ¼
c

4p
ðA2 sin2 ½kðz � uÞ� � ABsin ½kðz � uÞ�sin ½kLðy � uÞ�Þ ð45Þ

This example is a nonplanar linearly polarized wave. The direction of vibration

of the electric field is still along the x axis, while the magnetic field and the

Poynting vector are both contained on the y–z plane. The instantaneous direction

of magnetic field is along angle y given by

tany ¼ By

Bz

ð46Þ

where the angle is measured from the z axis (direction of the unperturbed wave).

Let us take the average of Eqs. (45) during TM . The integration leads to

particularly simple results when the ratio R ¼ ðkL=kÞ ¼ ðoL=oÞ is rational; on

the contrary, when R is not rational, it is not possible to find a time of integration

such that the longitudinal magnetic components disappear. In the rational case,

the observation period is chosen such that

TM ¼ 2pm

kc
¼ 2pm

o
¼ 2pn

kLc
¼ 2pn

oL

ð47Þ

where n;m are arbitrary integers.6 The results are

hGxi ¼ 0; hGyi ¼ � cB2

8p
; hGzi ¼

cA2

8p
ð48Þ

When R is rational, there is a surprising find for a linearly polarized wave;

specifically, the average energy along the direction of propagation (the z axis) is

the same for the unperturbed [Eq. (41)] and the perturbed cases [Eq. (48)]. This is

important because a direct measurement of intensity cannot distinguish between

the two physically different situations.

On the other hand, the average propagation of energy along the y axis is quite

different: zero in the plane case (Example 1), and negative in the nonplanar

Example 2. This means that the wave absorbs energy from the surroundings. As

6This is a sort of quantization of frequencies [an unexpected connection between classical MEs and

quantum mechanics (QM)]. Vigier [8, p. 14] mentions another instance of a Maxwellian connection

to QM.
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expected, the energy intensity ratio depends of the amplitudes of the waves:

hGyi
hGzi

¼ �B2

A2
ð49Þ

Assuming that physical polarized light is closer to Example 2 than to Example 1,

then one would expect to see transfer of energy in a direction perpendicular to the

propagation of a finite light beam. In a recent experiment a transversal light

current was induced by a magnetic field [83]. As a wild conjecture, the classical

mechanism contained in Example 2 might be at work there.

Example 3. Consider now a variation of Example 2: addition of scalar

magnetic potential. Consider a generic magnetic potential of the form

�mðr; uÞ ¼ �0MðrÞe�H0u ð50Þ

where �0 is a reference potential (units: erg esu�1) and H0 is a constant (units:

cm�1), and MðrÞ is a solution of the dimensionless wave equation r2MðrÞ ¼ 0.

Let us apply a gauge transformation to the solution of MEs in Example 2 as

B ! B þr�mðr; uÞ. A new solution of Maxwell’s equations is then

Ex ¼ A sin ½kðz � uÞ� � B sin ½kLðy � uÞ� þ H0�0e�H0u

ð
qM

qy
dz � axF1ðuÞ

Ey ¼ �H0�0e�H0u

ð
qM

qx
dz þ ayF1ðuÞ ð51Þ

Ez ¼ F2ðuÞ

Bx ¼ �0e�H0u qM

qx

By ¼ Asin ½kðz � uÞ� þ �0e�H0u qM

qx
ð52Þ

Bz ¼ Bsin ½kLðy � uÞ� þ �0e�H0u qM

qz

where a;F1ðuÞ;F2ðuÞ are a real constant and two arbitrary functions of time, to

be determined from boundary conditions. Equation (16) yields J 6¼ 0, with

components

Jx ¼
c

4p
H2

0�0e�H0u

ð
qM

qy
dz þ ax

dF1ðuÞ
du

� �

Jy ¼
c

4p
H2

0�0e�H0u

ð
qM

qx
dz þ ay

dF1ðuÞ
du

� �

Jz ¼ � c

4p
dF2ðuÞ

du

ð53Þ
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The energy transported by the field is given by Eq. (17), and differs from the

standard equation in the presence of the term E � J 6¼ 0. According to sign,

energy may be extracted from (lost to) Dirac’s sea of energy. The explicit average

components of the Poynting vector are given in Múnera and Guzmán [67]. It may

be expected that, if the magnetic potential exists, both H0 ! 0 and �0 ! 0.

Hence, very precise measurements will be required to detect its contribution to

total energy flux.

F. Symmetrization of Maxwell’s Equations

Many people in the past have wondered why each pair (8)–(9) and (10)–(11) in

Maxwell’s equations do not have exactly the same structure. For instance, to

make Eq. (11) exactly alike (10), then, according to Dirac’s [84] suggestion, the

existence of magnetic sources. Despite the fact that monopoles have never been

convincingly observed, the subject is still alive. Zeleny [85] derives magnetic

monopoles by assuming that ‘‘the field mediating the electromagnetic interaction

shall be the antisymmetric tensor field,’’ while Adawi [86] connects them to

special relativity.

Múnera and Guzmán [87] tackled the question from a different angle and

without the introduction of new sources. The starting point is fairly simple:

1. Acknowledge that the pair of electromagnetic fields E;B represent some

physical reality.

2. Assume that the pair E;B can be handled as any pair of vectors, regardless

of the axial symmetry of B.

3. Obtain new vectors P;N as a linear combination of the electromagnetic

pair E;B. Consequently, the new vectors (defined below) must have

physical nature:

P ¼ E þ B ð54Þ

N ¼ B � E ð55Þ

From Eqs. (54) and (55) it follows that

E ¼ P � N

2
ð56Þ

B ¼ P þ N

2
ð57Þ

Direct substitution of (56) and (57) into MEs (8)–(11) easily leads to two
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symmetric induction equations plus two symmetric source equations:

r� P ¼ � qN

qu
þ 4pJ

c
ð58Þ

r � N ¼ þ qP

qu
þ 4pJ

c
ð59Þ

r � P ¼ þ4pre ð60Þ
r � N ¼ �4pre ð61Þ

There is a clear symmetry. In particular there are electrical sources for both fields

P;N. There is a simple change of sign in the source, but monopoles do not arise

However, there is no such sign difference for the current density J. There are two

equations of continuity, one for each field P;N, while there is only one in the

unsymmetrized version of Maxwell’s equations.

Since the derivation is completely algebraic, the symmetrized set of equations

(58)–(61) should be identical in every respect to the conventional MEs (8)–(11).

Surprisingly, there are some slight differences as discussed in Múnera and

Guzmán [87]. One of them is related to the Coulomb gauge, as follows.

Let us express Eqs. (58)–(61) in terms of potentials, rather than fields.

Toward that end, let us invoke a general result from field theory (see, e.g.,

Kellogg [88], p. 76): Any vector field F(r,w), sufficiently differentiable, is the

sum of a gradient and a curl. Then, fields P;N are given by

P ¼ r� AP �rUP ð62Þ
N ¼ r� AN �rUN ð63Þ

Here AP;AN are the individual vector potentials, and UP;UN are arbitrary scalar

potentials. Since source equations for P;N are nonsolenoidal, there is no doubt

regarding the presence of the gradients of the arbitrary functions UP;UN . Note

that the magnetic scalar potential UB associated with B is not ignored.7

Substitute now definitions (62) and (63) into the symmetrized Maxwell’s

equations to get

r� r� AP þ qAN

qu

� �
¼ þ qðrUNÞ

qu
þ 4pJ

c
ð64Þ

r � r� AN � qAP

qu

� �
¼ � qðrUPÞ

qu
þ 4pJ

c
ð65Þ

r2UP ¼ �4pre ð66Þ
r2UN ¼ þ4pre ð67Þ

7The conventional practice is to ignore it on the grounds that the source is solenoidal.
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Source expressions (66) and (67) are Poisson equations that were obtained

directly from Maxwell’s equations without invoking the Coulomb gauge

condition r � AB ¼ 0. However, according to standard textbooks, for instance,

Chap. 6 of Jackson [63], the Coulomb gauge condition is required in order to

impose transversality on AB. Therefore, we are led to a dichotomy: fields P;N
are either (1) free from the transversality constraint or (2) have the transversality

trait built in. Either case is a surprise, because there was no additional physics

involved in the derivation of the symmetrized set. In our original paper [87], no

special meaning was attached to vector fields P;N. There is now a suggestion,

presented in Section V of this writing.

IV. A FOUR-DIMENSIONAL ETHER

The idea that the modern ‘‘vacuum’’ (¼ether in this writing) is of hydrodynamic

nature is a recurrent one. Dirac [89] acknowledged its plausibility, for an

elaboration, see Cufaro-Petroni and Vigier [90], and for a more recent summary,

Chebotarev [91].

Other examples of ether are a superfluid of particle–antiparticle pairs [92], a

fluid of ‘‘stuff’’ particles [26], and a variety of fluids [93–97]. From such fluids,

electrodynamic and particle models easily follow; see Thomson [98], Hofer

[99], Marmanis [100], and Dmitriyev [101].

The present author has proposed a four-dimensional (4D) hydrodynamic

model that allows for a variable component of the 4-velocity along the time axis

[102, 103]. The model leads to a 4D force as the gradient of the 4-pressure; the

3D-electromagnetic force is a particular case [104].

A. A Four-Dimensional Equation of Motion

Let us assume the existence of a four-dimensional (4D) flat Euclidean space

� ¼ ðu; x; y; zÞ, where the time dimension u ¼ vut behaves exactly the same as

the three spatial dimensions [102, 104]. Further, let � be filled with a fluid of

preons (¼ tiny particles of mass m and Planck length dimensions). These

particles are in continual motion with speed V ¼ ðvu; vx; vy; vzÞ ¼ ðvu;VÞ. No a

priori limits are set on the speed vu of preons along the u -axis.8

Note that the limitations of the special theory of relativity (STR), when

applicable, refer to V ¼ jVj ¼ ðv2
x þ v2

y þ v2
z Þ

1=2
, which is the speed of particles

in our 3D world. However, vu is the projection of the 4D velocity V onto the

u axis, which is not a spatial speed. Here, we extend the notion of absolute space

to 4D (¼ R4), whereas the spacetime of STR is ðct; x; y; zÞ, specifically, R1;3.

84D concepts and vectors are represented by either calligraphic or Greek uppercase letters, while 3D

vectors are in the usual boldface.
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Motion of individual preons in � is governed by a 4D equation of motion,

given by the following matrix expression [102]:

qmðrVVÞ ¼ �qmt4x4 � qmP ð68Þ

where r ¼ nm is the preonic fluid mass density, n is the number of preons per

unit 3D volume, the vector operator qm ¼ ðqu;rÞ; qu ¼ q=qu is a 4D gradient,

the 4D stress tensor t4x4 is a 4 � 4 matrix, P ¼ Pðu; x; y; zÞ is the pressure

generated by the preonic fluid, and the Greek index m ¼ ðu; x; y; zÞ. The energy-

momentum tensor rVV results from the dyadic product VV.

Now consider an arbitrary 3D hypersurface formed by a projection of the 4D

universe onto the u axis, say, u ¼ u0 ¼ v0
ut0 (see Fig. 1). The plane u � r may be

interpreted in two complementary ways:

Interpretation 1 (Fig. 1a). At an arbitrary time t0 (say, the present), the line

u ¼ u0 divides the plane into three classes of particles:

� Preons moving with vu > v0
u (upper region)

� Preons moving with vu < v0
u (lower region)

� Preons moving with vu ¼ v0
u (on the horizontal line)

Interpretation 2 (Fig. 1b). For the class of preons moving with vu ¼ v0
u, the

line u ¼ u0 divides the plane into three periods of time:

� The future for t > t0 (upper half-plane)

� The past for t < t0 (lower half-plane)

� The present t ¼ t0 (on the line)

u = vt
u

u = vt
usuperluminal

subluminal

(a) constant time t = t0

vu > vu

vu < vu

u0 = vu t0
future  t > t0

past  t < t0

(b) constant speed Vu = Vu

r = (x,y,z)r = (x,y,z)

0u0 = vu t0
0

0

0

u

Figure 1. Four-dimensional representation of universe as a u � r diagram; (a) constant time

t ¼ t0; (b) constant speed vu ¼ v0
u. The projection on the u axis is a 3D hypersurface. This horizontal

line partitions the universe into two half-spaces. (a) For a given time t0 (say, the present) the upper

(resp. lower) space corresponds to universes with higher (resp. lower) speeds on the u axis. (b) For a

given u ¼ u0, the upper (resp. lower) space corresponds to the future (resp. past). See discussion in

the text.
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The conventional worldlines of STR and the space underlying Feynman

diagrams belong to interpretation 2 with v0
u unspecified.

Let us postulate that we live in a 3D hypersurface that slides along the u axis

with speed v0
u ¼ ca, where the u axis coincides with the arrow of time. The

4-velocity is then a (row or column) vector Va ¼ ð�ca; vx; vy; vzÞ. The plus

(resp. minus) sign corresponds to the speed of preons that enter (resp. leave) our

3D world, parallel (resp. antiparallel) to the time arrow. It will be seen below

that this constant ca is the one that enters Einstein’s mass–energy equation, and

corresponds to the speed of our 3D world along the time axis (interpretation 2 in

Fig. 1). The speed of electromagnetic radiation in free space is a different

constant c .The value of the latter may be either identical or numerically close to

ca, depending of whether one adopts a relativistic or an emission theory for

photons, respectively (see Section V).

The meaning of the u � r plane under interpretation 1 can now be rephrased

as follows. At any arbitrary time t0 (say, the present), our 3D world separates

superluminal from subluminal preons. Furthermore, as seen in Fig. 1, there is a

continuous exchange of preons between our hypersurface and the two half-

spaces above and below.

For events inside our hypersurface, Eq. (68) reduces to

qmðrVaVaÞ ¼ �qmt4x4 � qmP ð69Þ

The stress tensor t4x4 is formed by the conventional 3 � 3 viscosity matrix t3x3

associated with the 3D spatial dimensions, and by the elements associated with

the u-dimension given by

tuj ¼ tju ¼ Sj

ca

; j ¼ ðx; y; zÞ ð70Þ

qutuu ¼ 1

ca

qtuu

qt
¼ � 1

ca

X
all�

S�
u dðr � r�Þ ¼ �ca

X
all�

q�dðr � r�Þ ð71Þ

where S ¼ ðSx; Sy; SzÞ is a (displacement) energy flux density along axes x,y,z

with dimensions of energy per unit time per unit area, the source/sink S�
u ¼ q�c2

a

is a concentrated energy flow along the u axis with dimensions of energy per unit

time, the preonic flow q� has dimensions of mass per unit time, and dðr � r�Þ is

Dirac’s tridimensional delta function (dimensions: L�3, L ¼ length) representing

the position of the source/sink.

Equation (70) may be interpreted as a transfer of energy (by displacement)

from the u axis into the spatial axes (or the other way around), whereas Eq. (71)

is a flow of momentum along the u axis. It follows that the 4D source S ¼
ðS�

u ; SÞ represents a convective transfer of momentum and energy, that is
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mediated by preons flowing from one region of the 4D fluid into another.

Therefore, there is conservation of preons in the whole 4D universe; hence,

conservation of energy and momentum also follow.

It is mentioned in passing that other fluid theories contain expressions similar

to our Eq. (69) (e.g., Eq. 3 in Ref. 97). However, our approach is fundamentally

different because we allow for interaction between our world and other regions

of � where preons move with vu 6¼ ca, as described by the more general Eq. (68).

This interaction gives rise to the 4D source S ¼ ðS�
u ; SÞ described by Eqs. (70)

and (71).9

By analogy with the standard 3D case, the 4D preonic fluid exerts force, and

performs work along the four dimensions u; x; y; z, via its hydrodynamic

pressure P. Thence, P is interpreted as potential energy per unit volume. The

force density associated with the preons contained in a unit 3D volume is

F ¼ �qmP ð72Þ

Summarizing, the preonic fluid was described by the general equation of motion

(68), that we interpret as a unified field equation (UFE) representing all forces.

Our expression is completely based on conventional hydrodynamics. No sources

were included here; pressure is a result of the motion of preons. Consequently

our model differs of Einstein’s general field equation in regard to the sources.

The possibility that gravitational tensor sources could be substituted for

something simpler has been noted previously [106, p. 97]. For additional details,

see Múnera [102,104].

B. Electromagnetic Force

In the spirit of effective field theories, it is expected that Maxwell equations

should be a special case of UFE, valid in restricted regions of �. It has been

shown elsewhere [104] that the UFE reduces to Maxwell’s equations when the

following three conditions hold:

1. Preons have vu ¼ ca (our 3D-world).

2. r is a constant, then qmr ¼ 0.

3. The preonic flow is inviscid: t3�3 ¼ 0.

The first row in Eq. (69) corresponds to the u axis. Substituting conditions 2 and 3

above, this leads to the scalar equation

qure þ
1

ca

r � Jd ¼ �keðrcar � v þ quPÞ ð73Þ

9Readers who are uncomfortable with the notion of a fourth dimension may refer to an alternative

interpretation. The source term may be viewed as a transfer of energy and momentum from one

region of 3D space to another, under the assumption that our 3D space may be topologically

disconnected, as in Gribov [105].

362 héctor a. múnera



where

Jd ¼ keS ð74Þ
I ¼ �ke

X
all�

S�
u ð75Þ

qure ¼ � ke

ca

X
all�

S�
u dðr � r�Þ ð76Þ

The dimensional constant ke has units of charge per unit energy. Hence, I; Jd are

proportional to energy flow along the u axis, and flow of energy into (from) our

3D world from (resp. into) the u axis. In this sense, electric current and charge

density are simple auxiliary 3D concepts associated with the 4D energy-

momentum source S ¼ ðS�
u ; SÞ. This result is reminiscent of some opinion of

Warburton [34], who claims that the displacement current is not a fundamental

concept.

The definition of electric charge density in Eq. (76) agrees with our opinion

that re ¼ 0 in Maxwell’s equations represents charge neutrality (see Section

III); the simplest case is Sþ
u þ S�

u ¼ 0. Also note that Jd defined by Eq. (74) is

independent of re thus allowing for the existence of a displacement current in

the absence of electric charge, as also discussed in Section III.

Equation (73) is a generalization of the continuity equation for electric

charge. Indeed, the left-hand side is the standard Eq. (13), which obtains when

rcar � v þ quP ¼ 0 ) Fu ¼ �quP ¼ rcar � v ð77Þ

which means that there exists a force density Fu along the u axis when

r � v 6¼ 0. Therefore, compressibility of the preonic fluid leads to the creation of

sources and sinks. It is noted that most conventional fluid models in the literature

stay within the boundaries of incompressible fluids.

The magnetic vector potential AB is identified with the convective transport

of momentum by individual preons:

AB ¼ � nmcav

Ke

¼ � rcav

Ke

ð78Þ

where Ke is a dimensional constant with dimensions of charge density. From this

definition it follows that

B ¼ � rcar� v

Ke

ð79Þ

E ¼ rcaquv

Ke

þrUE ð80Þ
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Definitions for electromagnetic field in Eqs. (79) and (80) are similar to Hofer’s

[99]. There is a difference: we start from an equation of motion for a 4D ether,

while Hofer starts from a wave equation for 3D momentum density (his eq. 16).

Our B is also similar to Marmanis [100], but his E is quite different.

After substitution of Eqs. (74)–(77) into the spatial part of Eq. (69) we get

rcaquv þ r
2
rv2 � rv � ðr � vÞ þ v

ca

Fu þ
1

cake

quJd ¼ �rP ð81Þ

Further substitution of Eqs. (77)–(80) leads to the 3D force density

F ¼ �rP ¼ KeE þ Ke

v

ca

� B þ v

ca

Fu þ
1

cake

quJd ð82Þ

Note that the spatial components of the equation of motion (69) directly

represent force density in our 3D world. Also note that the right-hand side of

Eq. (82) is independent of the explicit values of constants Ke and ke (as expected

because charge is not a fundamental concept here).

The first two terms on the right-hand side are the Coulomb and the Lorentz

forces. There are two additional terms in Eq. (82):

1. A displacement induction force density

Fd ¼ 1

cake

quJd ¼ 1

ca

quS ð83Þ

produced by temporal variations of the displacement energy flux S. As

noted before, this flux is independent of the existence of electric charge

density.

2. A force associated with regions of compressible preonic fluid:

FC ¼ v

ca

Fu ¼ �KeFu

rc2
a

AB ¼ rvr � v ð84Þ

As announced, both force terms are independent of the auxiliary constants Ke

and ke. Since FC appears in regions of compressible fluid, it probably is

associated with variable preonic density r. Then, it could be concluded at first

sight that, strictly speaking, Maxwell’s equations are not applicable in the

presence of FC. However, if the photon is associated with a source-sink pair, as in

Section V, it can still hold that density is a constant on the average.

C. Particles as Solitons in 4D Ether

In Eq. (72) there is a component of force along the u dimension, leading to the

appeareance of sources and sinks in our hypersurface, as follows:

364 héctor a. múnera



Sources Sþ
u are produced by the fourth component of force, which acts on preons

outside our hypersurface, via two mechanisms (Fig. 2, left side):

� Preons moving with vu > ca are decelerated to enter our world at t ¼ t0
with vu ¼ ca.

� Preons moving with vu < ca are accelerated to enter our world at t ¼ t0
with vu ¼ ca.

Sinks S�
u are produced by the fourth component of force, which acts on preons in

our hypersurface, where they move with vu ¼ ca at t < t0. There are two

mechanisms (Fig. 2, right side):

� Preons are accelerated and leave our world at t ¼ t0 with vu > ca.

� Preons are decelerated and leave our world at t ¼ t0 with vu < ca.

In the representation advanced above, our 3D world is bounded by a hypersur-

face, whose normal points into our world. This is interpreted as the surface of

Dirac’s sea of energy momentum. Sources and sinks correspond to punctures on

the hypersurface driven by Fu, identified with particles and antiparticles,

respectively. In this way, particles and antiparticles become solitons in the 4D

ether.

The mass of a particle (resp. antiparticle) is then proportional to the preonic

mass flow into (resp. out of) our 3D-world, which carry a momentum flux q�ca.

Particles (resp. antiparticles) are solitons of steady flow, whose rest mass M�
0 is

the result of a transfer of energy from (resp. into) the u axis during the duration

Tm of a measurement inside a 3D volume whose size corresponds to the volume

of the particle. Then

M�
0 c2

a ¼ q�c2
aTm ð85Þ

Notice that this generic model for particles immediately solves one of the

greatest difficulties in quantum mechanics: the infinities associated with electric

u

u0 = c t0
t < t0 t > t0

t < t0 t > t0

t < t0 t > t0

t < t0 t > t0

Fu < 0 Fu < 0Fu > 0 Fu > 0

r = (x,y,z)

Figure 2. The four mechanisms for producing sources and sinks (see the text).
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and gravitational energy. Indeed, momentum flows at a finite rate, but the total

amount of energy transferred by the field depends of the interaction (or

observation) time.

As briefly recollected by Ohanian [107], the mechanical origin of spin was

mentioned as a possibility at the beginning of the twentieth century. Quantum

theory adopted a point model for particles, which completely closed the door to

a mechanical interpretation of spin. Corben [108–111] tried to develop a

relativistic composite model for particles, where the basic components were

punctual, but allowing for a separation between the center of mass and the

center of charge. Corben argued that one of the components could have negative

mass.

Other, more recent, attempts to develop nonconventional particle models are

those of Vigier [8], who proposed an extended model for the electron, and

Costella et al. [112] with a classical representation for antiparticles.

It appears that a mechanical model for spin must start from extensive

particles. It is expected that the 4D solitons will exhibit vorticity in many

instances. Let the moment of inertia I associated with a particle be

I ¼ M�
0 r2

g ð86Þ

where the radius of gyration rg is a property of the extended vortices that form the

soliton. Detailed models are currently under development and will be published

at a later date.

An electron model is needed for the model of the photon in Section V. As a

first approximation, let the electron (resp. positron) be a thin disk of mass me

and radius re rotating at an average angular velocity oe. The angular momentum

of the disk is then

s ¼ Ioe ¼
mer2

e

2
oe ¼ � �h

2
ð87Þ

Let the magnetic moment m be associated with the vortex radius re then

m ¼ pr2
e en
c

¼ er2
eoe

2c
) m

s
¼ e

mec
ð88Þ

Note that this extended semiclassical model leads to the correct ratio of magnetic

moment to spin [Eq. (88)]. Failure of classical theory to account for the correct

ratio is one of the main arguments in favor of a quantum model. However, it is

noted that Eq. (88) results from a first approximation to a definitive model of a

vortex.
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V. A CHARGE-NEUTRAL/MASS-NEUTRAL PHOTON

A. Historical Introduction

The idea that the photon may be a composite particle is not new. Long ago

de Broglie [113] (see also de Broglie’s treatise on light and matter [114])

suggested that the photon was a composite state of a neutrino–antineutrino

pair; such a pair, however, did not obey Bose statistics. To avoid this difficulty

Jordan [115] introduced neutrinos with different momenta. Over the years,

additional adjustments were made by other investigators [116–121]. Since the

photon restmass is zero, or very small [7], neutrinos are chosen as its

components. However, one would naively expect that if the photon is a

composite particle it may under some conditions decay or be separated into its

components. Indeed, photon pair production leads to an electron–positron pair,

but not to a neutrino–antineutrino one. However, from the viewpoint of total rest

mass, an electron plus a positron cannot be the components of a low energy

photon. There is a clear difficulty for composite models along this line of

thought.

In a later paper the same de Broglie [3] conjectured that photons may contain

two Dirac corpuscles. The idea that dipoles are related to the photon has been

around for a while, for example, see Bateman [77], Warburton [34], Hunter and

Wadlinger [37,38], McLennan [78], and Barbosa and González [40].

Spin is typically treated as a quantum phenomenon; an easily accesible and

readable account is given by Ohanian [107]. However, the possibility that spin

may be a phenomenon with classical overtones has been a recurrent one

[79,107–111,122–124]. The connection between the classical polarization of

light and quantum mechanics was noted long ago by Fano [125], while the

connection between polarization and Clifford algebra for spinors was noted

more recently [126]. Finally, some philosophers have suggested that spin is a

mere property of space [127].

The development of our photon model started from the interpretative

difficulties discussed in Section III. In particular, the possibility that zero charge

in vacuum may be interpreted as neutrality of charge almost everywhere, rather

than as complete absence of charge [76]. The symmetrization of Maxwell’s

equations in Section III.E hinted at the presence of two charges of different sign.

Pair production and pair annhilation processes further hint that the constituents

of the photon are a positron–electron pair, but there was always the nagging

question of rest mass. Finally, the notion of a 4D ether led to the concept of a

dynamic mass: a flow of ether fluid across the projection of our world onto the u

axis. In this way the photon may be modeled as a source–sink pair (into and out

of our 3D world), having a zero net mass flow, thus accounting for a photon zero

rest mass. Such a model is strongly reminiscent of Newtonian mechanics. The

concept, however, is not completely new if one recalls that Feynman was able to
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derive Maxwell’s equations from Newton’s equations of motion plus the

commutation relations [128].

Ritz’ [30] remarkable paper10 derives the retarded electromagnetic potential

from the electrostatic field of the electron, as in Section V.C below. McLennan’s

[78] suggestion that the photon is a rotating dipole is analogous to the model to

be developed in Section V.B. The ellipsoidal shape of Hunter and Wadlinger

[37] also appears in our model. However, to the present author’s knowledge,

models in the literature do not explicitly derive the electric and magnetic fields

as a combination of the elementary electrostatic fields of the particle–

antiparticle pair; put in a different way, models do not have a source of

advanced potential in the same spatial region as the source of retarded potential.

Overall, the most significant differences between our approach and other

photon models known to the present author are

1. The source of electromagnetic field is explicitly identified as a positron–

electron pair.

2. The source of advanced potentials is at the photon itself.

3. Spin of photon is connected to both orbital and rotational motion.

4. Momentum of the photon is generated in the plane of rotation.

5. Mass is a dynamic concept.

6. Rest mass is identified with mass neutrality.

7. Potential energy in the electromagnetic field is a result of linear

momentum transport.

B. The Photon as a Soliton Doublet

Let the photon be a 4D soliton doublet, which manifests in our world as an

electron–positron pair, orbiting the common center of mass at distance rg with

angular velocity og. There is an incoming momentum flux qþca and a canceling

outgoing flow of equal magnitude q�ca, so that net momentum flux across the

soliton doublet11 is zero. The word dipole was not used to stress the fact that the

pair is formed by a particle and an antiparticle, having zero net mass.

The model is similar to a positronium atom, so that nonrelativistic quantum

behavior of the photon may be obtained from conventional quantum mechanics.

Relativistic predictions require application of Dirac’s theory; see, for instance,

Chaps. XI-XII of the standard textbook by Dirac [129] himself. As a first

10Ritz paper is remarkable in every sense; it is 130 pages long. We saw Ritz’ paper while in the last

stage of preparation of this chapter, and learned that we had rediscovered two concepts that he used

in exactly the same way: the ballistic fluid and the electrostatic field of the electron.
11The sense of word ‘‘doublet’’ here is related to a quantum mechanical doublets: two states of a

particle.
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approximation, this chapter uses a semiclassical model, reminiscent of Bohr’s

atom.

Rotation of the positron–electron pair is produced by the mutual Coulomb

central force. Hence, the torque is zero.12 It follows that motion is in a plane

perpendicular to orbital angular momentum L. Furthermore, the magnitude of L
is a constant.

Previous results considerably simplify the analysis of motion of the doublet

in the preferred frame �, which is an inertial system by definition. Let the z axis

be perpendicular to the plane of motion at the center of mass of the electron–

positron pair and. Vector L lies along the z axis, and the magnitude is

Lz ¼ Igog ¼ 2mer2
gog ð89Þ

where Ig is the moment of inertia of the source–sink pair in the nonrelativistic

region. Note that both electron and positron contribute to Ig because the whole

preonic mass of the pair still is on the 3D surface of our world (i.e., the preonic

mass of the antiparticle has not yet gone into the u axis).

Since motion takes place on the x–y plane, total photon spin is given by

J ¼ S þ L ¼ ðIþe oþ
e þ I�e o

�
e Þk þ Igogk ¼ n�hk ð90Þ

where the first term on the right-hand side represents rotational motion of

electron and positron around their internal axes, given by Eqs. (86) and (87). All

angular velocities are positive when rotation is counterclockwise, and negative in

the opposite sense.

Now, Lz is a constant because of central forces, and electron/positron spin is

also a constant given by Eq. (87). Hence the magnitude of photon spin is also a

constant, which has been equated to n�h in Eq. (90). Parameter n allows for

different levels of energy of the system. Quantization is introduced as in Bohr’s

atom assuming that orbits are stable for values of energy corresponding to

integer values of n.

In photon ground state, spins of the electron–positron pair form a singlet such

that

S ¼ sþ þ s� ¼ �h

2
� �h

2
¼ 0 ð91Þ

Then, photon spin in ground state is

J ¼ S þ L ¼ Lzk ¼ 2mer2
gog ¼ �hk ð92Þ

12This is a well-known result from Newtonian mechanics; see, for instance, Chap. 6 of Kleppner and

Kolenkow [80].
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for counterclockwise orbital rotation. For clockwise rotation the opposite sign

holds. Then, this model naturally predicts different photon helicity.

In some excited state, either the electron or the positron may flip-spin,

producing S ¼ ��h. This would lead to J ¼ �2�h; 0. Of course, quantum

mechanically all values �2,�1,0,þ1,þ2 are allowed.

Although Lz is a constant, there is no limitation on the values of og and rg.

This means that even for a fixed value of n the orbit need not be circular. In

ground state Lz ¼ 2mer2
gog ¼ �h, so that both og and rg may vary, producing an

elliptical motion. Of course, as seen below, the value of energy will vary

between two extremes associated with the major and minor axes of the ellipse.

The kinetic energy of orbital motion is

Korb ¼
Igo2

g

2
¼

Lzog

2
¼ n�hog

2
ð93Þ

The kinetic energy of rotation of the electron around its proper axis equals the

kinetic energy of the positron. The total rotational energy is then

Krot ¼ 2
Ieo2

e

2
¼ soe ¼

�hoe

2
ð94Þ

The total kinetic energy of the photon is

Kg ¼ Korb þ Krot ¼
n�hog

2
þ �hoe

2
¼ �h

2
ðnog þ oeÞ ð95Þ

For low-energy photons, the rotational and orbital motions occupy the same

region in 3D space, where the same preonic fluid participates in both motions.

Then, as a first approximation, it is assumed that og ¼ oe ¼ o.13 Substituting in

(95), the total kinetic energy of a photon in state n is

Kn ¼ ðn þ 1Þ�ho
2

ð96Þ

The ground-state for the photon occurs for n ¼ 1 with energy

K1 ¼ �ho ¼ hn ð97Þ

which is de Broglie’s famous expression. It is noted that in the relativistic energy

equation, total energy is the sum of rest mass energy, plus energy carried by

13An alternative rationalization: a resonant orbital and rotational motion.
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linear momentum (i.e., kinetic energy). In the photon, all energy is kinetic. This

explains why potential energy was not considered.

For photon ground state, it is easily checked that rotational motion and

orbital motion occur in the same 3D region. From from Eqs. (92), (86), and (87)

we obtain

rg ¼ rg ð98Þ

A 2D pictorial representation of the photon model is shown in Fig. 3a. For

macroscopic fluids, there are three-dimensional representations of sink–source

pairs in Brandt and Schneider [130].

As a numerical example, consider an X ray with n ¼ 1018 Hz. The tangential

speed of rotation of the preonic fluid is about v � 0:1c and the radii in Eq. (98)

are rg ¼ rg � 10�12 m. For a microwave radiation of n ¼ 1010 Hz the tangential

speed of rotation of the preonic fluid is about v � 10�5c and the radii in Eq. (98)

are rg ¼ rg � 10�8 m. The low values of tangential speed justify the use of the

nonrelativistic mass in the moment of inertia [recall Eqs. (86) and (87) in

Section IV, and all previous equations in this section).

Finally, let us consider elliptical motion for n ¼ 1. Angular velocity in

Eq. (97) is given by

o ¼ om þ oM

2
; �o ¼ om � oM

2
ð99Þ

(a) Composite photon model (b) Electrostatic field of doublet

x
e+

e+

e−

e−

e−

F−

F 

+

rγ

φrγ

re

re

de

da

R

P

y

z

Figure 3. The photon as a rotating doublet: (a) composite photon model—extended electron–

positron pair rotating in x–y plane; (b) electrostatic field of doublet—electrostatic force on a test

particle at rest.
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where om;oM correspond to angular velocities at the minor and major axes

respectively, calculated with the help of Eq. (92). There are small variations in

energy Kn that manifest as a spread in frequency �o, neatly leading to

wavepackets. Similar variations of og are expected within each state

n ¼ j; j ¼ 1; 2; . . .: This subject will be treated in detail elsewhere.

In summary, the photon has been modeled as a doublet in rotation in the

preferred frame �. Spin and energy have been obtained from a semiclassical

analysis. Polarization corresponds to a fixed direction of vector L in �. In a

nonpolarized photon vector L has a time-dependent direction. A particular case

of nonpolarization is the ellipsoid, as in Hunter and Wadlinger [37]. Our Eq. (96)

allows for the existence of multiphotons that vary in steps of half the ground-

state photon energy; such prediction differs of the prediction of Hunter and

Wadlinger [37]. Photons in motion with respect to � will be considered

elsewhere. The photon is the source of the electromagnetic field, as explained

next.

C. Electrostatic Force of a Rotating Doublet

Consider an electron at rest in the preferred frame �. The force on a stationary

(negative) test particle is given by Coulomb’s law

Fþ ¼ Fþr̂ ¼ Fþ
x i þ Fþ

Y j þ Fþ
Z k; Fþ

x ¼ x

de

Fþ; Fþ
y ¼ y

de

Fþ

Fþ
z ¼ z

de

Fþ ð100Þ

Fþ ¼ e2

d2
e

¼ qþcAtest

4pd2
e

ð101Þ

where the plus sign refers to the source and Atest is the area associated with the

test particle. The first part of Eq. (101) is the standard expression, which may be

used by readers who prefer to avoid interpretational aspects.

The second part of Eq. (101) is based on the 4D model of Section IV. The

electron is an isotropic 3D source that emits a momentum flow qþc at time te.

The preonic fluid14 propagates in straight line with constant speed c from the

point of emission to a spatially separated point P located at distance de at the

moment of emission. The preonic fluid carries momentum, which materializes

as force during interaction with an obstacle, say, a test charge. To be specific, let

the test particle be an electron of effective radius re, then Atest ¼ pr2
e . From

14This is equivalent to the flow of ‘‘fictive’’ particles in Ritz [30]. A summary of the latter is

presented by [35].
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Eq. (101), the preonic mass flow q� associated with the electron (resp. positron)

mass, in CGS units (g s-1) is

qþ ¼ þq ¼ 4e2

cr2
e

; q� ¼ �q ð102Þ

Equation (101) allows for different theories, according to the value of the speed

of propagation:

1. Einsteinian relativity when c is independent of motion of emitter and

energy of photon. Observers accelerated relative to �15 will perceive the

same constant c provided that source and observer be in inertial relation,

that is, either at relative rest or in relative constant motion. Presumably,

c ¼ ca.

2. Lorentzian relativity where c is a constant in �, independently of motion

of emitter, and energy of photon. Then, c ¼ ca. Observers in motion

relative to � will perceive speeds of propagation different from ca.

3. Modified Lorentzian relativity when c is independent of motion of emitter,

but depends of energy of photon. For instance, c ¼ ðc2
a � r2

go
2
gÞ

1=2
.

Observers in motion relative to � will measure speeds of propagation

different from c.

4. Emission theory (see the paper by Cyrenika [131] for the principles of

emission theory) when c depends of photon energy and speed of the

emitter. This is the case of Ritz [30] and other emission theories reviewed

by Fox [35].

The photon model here refers to a photon at rest in �. The four theories just

mentioned are compatible with Eq. (101). Detailed predictions of each theory are

different, so that crucial tests may be designed and carried out. For instance, the

Michelson–Morley experiment is conventionally interpreted as a demonstration

of Einsteinian relativity, but the evidence is not convincing, as discussed in

Section II. Another example, to discriminate between relativistic theories (1) and

(2) and emission theories (3) and (4), it is necessary to measure with high

precision the velocity of photons with energy higher than 100 keV.

The ballistic preonic fluid reaches the stationary observation point P with

some delay at time tP:

tP ¼ te þ
de

c
ð103Þ

Clearly, electrostatic force is a retarded concept. Of course, if source is at rest,

force does not change over time, so that the force field appears as static, as if it

were time-independent.

15Actually, the preferred frame is undefined in special theory of relativity.
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Now consider a change in the origin of coordinates. The source is still on the

x–y plane but located at distance rg from the origin at azimuthal angle j. The

electrostatic force at any arbitrary P ¼ ðx; y; zÞ is immediately obtained from

Eq. (100) with appropriate cosine angles (see Fig. 3b):

Fþ
x ¼ x � rg cosj

de

Fþ; Fþ
y ¼ y � rg sinj

de

Fþ; Fþ
z ¼ z

de

Fþ ð104Þ

Now consider a sink (i.e., positron) on the x–y plane, located at distance rg from

the origin at azimuthal angle jþ p. There is an attractive electrostatic force at

any arbitrary P ¼ ðx; y; zÞ given by

F�
x ¼ x þ rg cosj

da

F�; F�
y ¼ y þ rg sinj

da

F�; F�
z ¼ z

da

F� ð105Þ

F� ¼ � e2

d2
a

¼ q�cAtest

4pd2
a

ð106Þ

where the minus sign refers to the sink and da is the distance from sink to the

stationary P at the moment of absorption. In this ballistic model, preons flow past

P at time tP in the direction of the sink. Preons arrive to the sink at some later

time ta where they are absorbed:

ta ¼ tP þ da

c
ð107Þ

Summarizing the previous discussion, individual forces are active along the

respective rays. If test charge is negative, electron force is repulsive, whereas

positron force is attractive. Also, distance de is evaluated at the time of emission

te, while da is evaluated at the moment of absorption. Net force is the vector

addition.

Up to this point the electron and positron forces were treated as independent.

Now consider a doublet in a photon. Let t be the proper time of the photon.

Preons absorbed at t were at P at an earlier time tP ¼ t� ðda=cÞ, while preons

emitted at t arrive to P at a later time tP ¼ tþ ðde=cÞ. However, from the

viewpoint of observer P the interest is in determining force at an arbitrary time

tP. This is the combined effect of two flows of fluid:

� Preons en route to the sink, where they will arrive at a later time: t ¼ ta ¼
tP þ ðda=cÞ

� Preons coming from the source, emitted earlier at t ¼ te ¼ tP � ðde=cÞ

These two processes constitute a straightforward, causal explanation of advanced

and retarded forces and potentials. Net effect at P is obtained by vector addition.
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If the doublet rotates, there is still emission and absorption. The same

expressions are still valid, provided that there is independence among time

intervals. In other words, that emission and absorption processes at time tþ dt
be independent of previous processes in the doublet at time t. Such assumption

is fairly weak.

Consider the simplest case: a doublet rotating with constant angular velocity

o on the x–y plane. Let t ¼ 0 at j ¼ 0. Then, j ¼ ot. If proper time is not

measured from the x axis, there is an additional phase angle (with an appropriate

sign): j ¼ otþ j0. Substitute in Eqs. (104) and (105), and introduce the

observer’s time to get

Fþ
x ¼ x � rgcosðotP � kdeÞ

de

Fþ; Fþ
y ¼ y � rgsinðotP � kdeÞ

de

Fþ

Fþ
z ¼ z

de

Fþ ð108Þ

F�
x ¼ x þ rgcosðotP þ kdaÞ

da

F�; F�
y ¼ y þ rgsinðotP þ kdaÞ

da

F�

F�
z ¼ z

da

F� ð109Þ

where, as usual, the wavenumber in vacuo is

k ¼ o
c

ð110Þ

Explicit expressions for the distances contain trascendental expressions:

d2
e ¼ x � rg cosðotP � kdeÞ


 �2þ y � rg sinðotP � kdeÞ

 �2þz2

d2
e ¼ R2 þ r2

g � 2rgðx cosðotP � kdeÞ þ ysinðotP � kdeÞÞ ð111Þ

d2
a ¼ ðx þ rg cosðotP þ kdaÞÞ2 þ ðy þ rg sinðotP þ kdaÞÞ2 þ z2

d2
a ¼ R2 þ r2

g þ 2rgðxcosðotP þ kdaÞ þ ysinðotP þ kdaÞÞ ð112Þ

R2 ¼ x2 þ y2 þ z2

Evidently, both forces change direction with time as the individual rays associa-

ted with the source and the sink rotate. Also, the wavenumber, Eq. (110),

formally is the conventional expression; of course, k describes propagation of the

electromagnetic wave. However, the origin of angular velocity o is the rotation

of the source.

It is noteworthy that the forcefield of the doublet was calculated as a mere

electrostatic force of the components. Of course, there is acceleration associated

with the rotation of the doublet, but no explicit allowance was made for such
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fact. Only time delays and geometrical positions are involved in our calculation.

In this sense, Eq. (108) is a straightforward way of obtaining the forcefield of an

accelerated electron, calculated in a different approach by Conway [29].

There are three regions associated with Eqs. (108) and (109):

� Inner region, inside the photon, defined by R < rg.

� Near-field region, when distance is of order of magnitude of photon

dimensions, R � rg.

� Far-field region or radiation zone, defined by R � rg. At macroscopic

distances, the longitudinal component of force is negligible, so that the

radiation field is almost plane (i.e., perpendicular to the z-axis in Fig. 3).

The boundaries between the regions are frequency-dependent, as shown by the

numerical values of Section V.B. Also note that, in all three regions, there is no

longitudinal component of the net force along the z-axis. Strictly speaking, there

are longitudinal net forces elsewhere.

Finally, Eqs. (108) and (109) may be easily adapted to emission by atomic

transitions. For the hydrogen atom, one only needs to substitute reduced masses

as appropriate. The same is true, as a first approximation, for more complex

atoms, where an electron undergoing a transition sees the rest of the atom as a

positive charge. Computer animations of such transitions have been indepen-

dently produced by Barbosa and González [40].

D. Symmetric Electromagnetic Fields of the Doublet

At macroscopic distances, within some beam area around the z axis, the field of

forces Fþ;F� is plane FAPP.16 However, forces Fþ;F� are not orthogonal in

general; so, they cannot represent the conventional electric and magnetic fields.

Here we develop an alternative based on the symmetrized fields P;N
discussed in Section III.F. Let the Maxwell-like symmetric fields P;N be

defined as

P ¼ �Fþ

e
; N ¼ �F�

e
ð113Þ

where the forces are given by Eqs. (108) and (109). Sources and currents

associated with fields P;N are implicitly defined by

r� P ¼ � qN

qu
� 4pJN

c
ð114Þ

r � N ¼ þ qP

qu
þ 4pJP

c
ð115Þ

r � P ¼ 4prP ð116Þ
r � N ¼ 4prN ð117Þ

16Plane FAPP¼plane for all practical purposes.
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Two identical continuity equations immediately obtain:

r � JX þ c
qrX

qu
¼ 0; X ¼ P;N ð118Þ

Explicit values for currents and charge densities may be calculated from the

corresponding defining expressions, plus Eqs. (113), and (108)–(110). For

instance, charge density rX follows from

r � P ¼ �2Crgk
xsinðotP � kdeÞ � ycosðotP � kdeÞ

d3
e De

ð119Þ

r � N ¼ þ2Crgk
xsinðotP � kdaÞ � ycosðotP � kdaÞ

d3
aDa

ð120Þ

De ¼ de þ rgkðxsinðotP � kdeÞ � ycosðotP � kdeÞÞ

Da ¼ da þ rgkðxsinðotP þ kdaÞ � ycosðotP þ kdaÞÞ ð121Þ

C ¼ qþcAtest

4pe
¼ qcr2

e

4e
¼ e ð122Þ

Constant C was evaluated noticing that qþ ¼ þq; q� ¼ �q and using Eq. (102).

Fields P;N are not orthogonal in general. Their magnitudes are

jPj ¼ C

d2
e

¼ e

d2
e

; jNj ¼ C

d2
a

¼ e

d2
a

ð123Þ

From Eqs. (111) and (112), in the far field the magnitudes of P;N are equal

FAPP:

jPj ffi jNj ffi C

R2
ffi e

R2
ð124Þ

This last result leads to the conventional orthogonality of the electromagnetic

field, as seen in next section.

E. Extended Maxwell Equations

Let us now define the conventional electromagnetic field as

E ¼ P � N

2
; JE ¼ JP � JN

2
; rE ¼ rP � rN

2
ð125Þ

B ¼ P þ N

2
; JB ¼ JP þ JN

2
; rB ¼ rP þ rN

2
ð126Þ
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Simple manipulation of Eqs. (114)–(117) leads to

r� E ¼ � qB

qu
� 4pJB

c
ð127Þ

r � B ¼ þ qE

qu
þ 4pJE

c
ð128Þ

r � E ¼ 4prE ð129Þ
r � B ¼ 4prB ð130Þ

There are also two identical continuity equations:

r � JX þ c
qrX

qu
¼ 0; X ¼ E;B ð131Þ

Explicit values for currents and charge densities may be calculated from the

corresponding defining expressions. Charge densities are as follows:

rE ¼ �Crgk

4p
xsinðotP � kdeÞ � ycosðotP � kdeÞ

d3
e De

�

þ xsinðotP þ kdaÞ � y cosðotP þ kdaÞ
d3

aDa

�
ð132Þ

rB ¼ �Crgk

4p
xsinðotP � kdeÞ � ycosðotP � kdeÞ

d3
e De

�

� xsinðotP þ kdaÞ � ycosðotP þ kdaÞ
d3

aDa

�
ð133Þ

In the far field it holds that de ffi da ffi De ffi Da ffi R; then

rE ¼ � ergk

2pR4
cosðkRÞðxsinðotPÞ � ycosðotPÞÞ ð134Þ

rB ¼ þ ergk

2pR4
sinðkRÞðxcosðotPÞ þ ysinðotPÞÞ ð135Þ

On the z axis both charge densities are zero, but E;B fields are non solenoidal

elsewhere. The last two equations contain both advanced and retarded potentials.

These expressions may be constrasted with conventional results for electric

dipoles containing retarded potentials only; see, for instance, Panofsky and

Phillips [65, Chap. 14], and Born and Wolf [62, pp. 84–87].

Fields E;B are orthogonal if

E � B ¼ 0 ) P2 � N2 ¼ 0 ð136Þ
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As noted in Eq. (124), the condition is valid FAPP in the far field. However, in

the inner and the near-field regions, fields E;B are not orthogonal, except along

the z-axis.

In summary, the photon model proposed leads to an extended symmetric set

of Maxwell’s equations, that contains a magnetic source and a magnetic current,

both of electric origin. Conventional Maxwell’s equations appear as a limiting

case in far-field with both JB ¼ 0; rB ¼ 0.

VI. CONCLUDING REMARKS

The evidence against the existence of a preferred frame �was briefly reviewed in

Section II. It appears that there is no strong evidence against �. On the contrary,

there is mounting evidence on the existence of local anisotropies [59] that may be

interpreted as supporting the existence of �. Our own analysis of all experiments

of the Michelson–Morley type supports �, rather than Einstein’s second

postulate [57].

In Section III we reviewed our own work on the solutions of Maxwell’s

equations, which hint to the existence of non-conventional magnetic scalar

potentials in free space. The symmetrized set of Maxwell’s equations [87]

suggests the existence of two novel electromagnetic fields P;N, that lead to the

conventional fields E;B.

Section IV reviews our more recently developed 4D ether model [102–104],

which is based on the premise of the existence of �. Rest mass is associated to a

flow of primordial fluid (preons). This novel dynamic concept of mass solves at

once several longstanding difficulties; two of them are (1) the infinities

associated with electric and gravitational fields and (2) the stability of orbits

under Coulomb attraction. Indeed, there is a permanent flow of momentum

across a particle (source); the momentum flux is occasionally tapped by

interaction with a (test) particle. Such process does not change the total

momentum flux available at the source; hence, there is no loss of potential

energy as in the conventional interpretation. The total momentum that crosses a

source is, of course, infinite in an infinite time, but the source is always finite.

In Section V, the photon was described as an electron–positron pair in

rotation in �. In the 4D ether, antiparticles are dynamic sinks, so that an

electron–positron pair has a zero net momentum flux, thus explaining the

photon rest mass. The photon is then a composite charge-neutral and mass-

neutral entity.

The primordial fluid propagates with a constant speed c in �, originating the

Coulombian forcefield of the individual particles that constitute the photon. An

observer at rest in � sees a rotating field as the electron–positron pair rotates.

Photon spin and de Broglie’s energy relation correspond to the ground state of

the composite particle.
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The electromagnetic field of the composite photon contains advanced and

retarded components, without any causality breach. The forcefield of doublet is

described by the symmetric Maxwell’s equations [87b]. Three different regions

appear in the forcefield: inner, near-field, and far-field. Longitudinal compo-

nents of force are always present. However, in the far field, they dissapear for

practical purposes. In this sense, the equations developed contain the standard

set as a limiting case.

From the symmetric set, an extended set of Maxwell equations was exhibited

in Section V.E. This set contains currents and sources for both fields E;B. The

old conjecture of Dirac’s is vindicated, but the origin of charge density is always

electric (i.e., no magnetic monopole). Standard Maxwell’s equations are a

limiting case in far field.

Falaco solitons were reported [132] as pairs of solitons that exist on the

surface of a fluid (water), and are interconnected through the third spatial

dimension. Our model for the photon is a pair of 3D solitons interconnected

through the fourth dimension.

Theoretical issues to be pursued at some future time are

� Calculation of forcefield when the observer is in motion relative to �.

� Calculation of forcefield in the (Lorentzian) relativistic case. The

equations given here are applicable up to about 100 keV photons.

� Connection between the equation of motion describing our 4D ether and

the Bohm–Vigier [133] relativistic hydrodynamics.

As always in science, empirical test is required to validate any theory. Some

testable matters are

� Experiments of the Michelson–Morley type may help confirm the

existence of �, thus disproving Einsteinian relativity. Or, the other way

around.

� Measurement of speed of propagation of energetic photons (1 MeV and

above) may confirm whether c (in � or elsewhere) is frequency-depen-

dent. A revision of astrophysical data may be useful here, such as

comparison of speed of propagation of neutrinos and energetic gamma

rays in free space.

� Emission of light in external magnetic fields may be reinterpreted under

the photon model proposed here.

� Spin and velocity of photons from pair production and bremsstrahlung17

may help decide between emission theories and (Lorentzian or

Einsteinian) relativistic theories.

17Radiation emitted by accelerated charged particles.
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102. H. A. Múnera, in A. E. Chubykalo, V. V. Dvoeglazov, D. J. Ernst, V. G. Kadyshevsky, and Y. S.

Kim (Eds.), Proceedings of the International Workshop Lorentz Group, CPT and Neutrinos,

World Scientific, Singapore, 2000, pp. 425–433.

103. H. A. Múnera, ‘‘The photon as a charge-neutral and mass-neutral composite particle. Part I. The

qualitative model,’’ paper presented at Gravitation and Cosmology: From the Hubble Radius to

the Planck Scale, Vigier 2000 Symposium, University of California, Berkeley, USA (August

21–25, 2000) (to be published in the Proceedings edited by R. L. Amoroso, G. Hunter, M.

Kafatos, and J.-P. Vigier).
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I. THE PARADIGM

A. Analytical Viewpoint

During the historical development, the notions of electrodynamics and the theory

of light have become complicated complexes of concepts [1]. And what is more,

nowadays they are incomplete, or in the worst case wholly confusing. The laws
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of electrodynamics in their present form are not valid in rotating and deforming

systems in general [2]. These turbulent notion complexes—which are inadequate

for the inner connections, as verified by experiments, measurement results, and

certain electrodynamical states and processes—have to be broken open, dis-

integrated, and then disjoined. Henceforth, we must search for those genuine,

pure, and simple electrodynamical ideas that can be joined in an imminent

natural and adequate manner. Consequently, progress can be achieved only by

careful analysis.

Some of the unsolved problems in contemporary electrodynamics draw

attention to deeper (more profound) evidence, new ideas and new theories or

equations. The aim of this historical introduction is to find the deeper evidence

and new basic concepts and connections. The guiding principle is the investi-

gation of light propagation.

B. Profound Evidence and Connections

The childhood of optics was in ancient religious Egypt. The first survived written

relics of the optics originates from antique Greek science. Euclid was regarded as

one of the founders of geometric optics because of his books on optics and

catoptrics (catoptric light, reflected from a mirror).

The geometric description of the light propagation and the kinetics descrip-

tion of motion were closely correlated in the history of science. Among the

main evidence of classical Newtonian mechanics is Euclidean geometry based

on optical effects. In Newtonian physics, space has an affine structure but time is

absolute. The basic idea is the inertial system, and the relations are the linear

force laws. The affine structure allows linear transformations in space between the

inertial coordinate systems, but not in time. This is the Galilean transformation:

x0 ¼ x þ x0 þ vt; t0 ¼ t þ t0 ð1Þ

This is a law of choice for any motion equation.

The revolution in physics at the end of nineteenth century was determined by

the new properties of light propagation and heat radiation. However, there

remain many unsolved problems in these fields [2].

The laws of sound propagation in different media include the concept of ether,

which is the hypothetical bearing substance of light and electromagnetic waves.

II. HISTORICAL OVERVIEW

A. The Main Experiments

The first measurement for the determination of velocity of sound was made by

Mersenne in 1636. In 1687 Newton gave a rough formula for the velocity of

sound. It was further developed by Laplace in 1816, based on the adiabatic
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changes of states for gases. In 1866 Kundt constructed the so-called Kundt tube,

which can determine the velocity of sound in liquids and solid materials. He

found that the velocity of sound grows because of the solidity of bearer materials.

In the framework of classical mechanics, this observation inspired the notion that

ether is an extremely solid substance.

The first attempt to determine the speed of light was made by Galileo in

1641. Descartes assumed an infinite speed of light based on the unsuccessful

Galilean measurement.

In 1676, after 20 years of observation of the motion of Jupiter’s Io moon,

Römer published his result about the speed of light, which was calculated as

c ¼ 220,000 km/s [3].

In 1727 Bradley performed a much more precise experiment to determine the

speed of light. His measurements were based on the aberration of stars, and the

results of these measurements closely approximated today’s values.

Arago was the first to measure the speed of light under laboratory conditions

[4]. This measurement gave the Bradley’s value for the speed of light. In 1850

Arago’s followers Foucault [5], and Fizeau [6] proved that the speed of light is

higher in air than in liquid. These measurements closed down the old debate in

the spirit of the wave nature of light. In that time this seemed to verify the

concept of ether as the bearing substance of light.

The first experimental investigation for the magnitude of change in light

speed in moving media was made by Fizeau in 1851 [7]. His experiment proved

that the velocity of the propagation is greater in the direction of motion of the

medium than in the opposite direction; that is, the light is carried along with the

moving medium. This theory was developed and confirmed by Michelson and

Morley in 1886. In 1926 Michelson developed the Foucault’s rotating-mirror

experiment. The result of Michelson’s experiment [8] is c ¼ 2.99769� 108 �
4� 105 m/s [where c is (longitudinal) speed of light].

B. The Turning Point: Michelson–Morley Experiment

In 1867 Maxwell published his book on electromagnetism [9]. Maxwell’s work

has a basic importance, not only in the electromagnetism but also in optics. It

also provided a common frame of reference for the propagation of electromag-

netic and light waves.

The Maxwell equations are valid only in the unique inertial coordinate sys-

tem, but they are not invariant for the Galilean transformation (1). This means

that the Maxwell equations do not satisfy the requirements of classical equation

of motion. This problem was apparently solved by the introduction of the

concept of ether, the bearing substance of light. The challenge was to determine

ether as the unique inertial system, or earth’s motion in this ether.

Maxwell in another work [10] raised the question as to whether the trans-

lation motion of the earth relative to the ether can be observed experimentally.
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An electromagnetic inertial system could be found by measurement, which

could be used in astronomical calculations as well. Furthermore, space must be

provided for formulating an equation of motion that is less rigorous than that

used in Galilean relativity theory.

Numerous unsuccessful measurements were made to determine the motion

of earth in the ether. These measurements were not able to give results com-

patible within the framework of classical Newtonian mechanics, even though

that the earth has an orbital velocity vo � 30;000 m/s (where vo is velocity of the

earth to the ether). In 1887 Michelson and Morley also determined the earth’s

orbital velocity by their precision interferometer [11]. The updated arrangement

of Michelson-Morley experiment (M-M experiment) can be seen in Fig. 1.

According to classical mechanics, the traveling times of light T for the arms

d1 and d2 can be given as Follows:

TOAO0 ¼ 2d1

c

1

1 � ðv2=c2Þ ; TOBO0 ¼ 2d2

c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðv2=c2Þ

p ð2Þ

Fitting the length of interferometer’s arms—according to the zero difference

of traveling times (zero interference)—it is given that �T ¼ TOBO0 � TOAO0 ¼ 0.

Then the lengths of two arms can be determined exactly:

d1 ¼ d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

c2

� �s
ð3Þ

Figure 1. An up-to-date arrangement the of Michelson–Morley experiment. Here LASER

means the source of light, BS means beamsplitter, M1 and M2 are mirrors on the end of arms, PD is

the phase detector (interferometer), and v is the earth’s orbital velocity, which is regarded as the

inertial motion for short time periods.
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According to classical physics, the difference of traveling times �T 
 and the

interference picture must be changed, turned around the instrument with 90�:

�T 
 ¼ T 

OBD0 	 T 


OAO0 ¼
2

cð1 	 ðv2=c2Þ d2 	 d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 	 v2

c2

� �s( )
ð4Þ

Substituting Eq. (3) into Eq. (4) and arranging, the traveling time difference for

v2 � c2 is

�T 
 ¼ 2d2c

c2 	 v2

v2

c2
ð5Þ

Their experiments proved that the travelling-times differences did not change

along the two arms �T 
 ¼ 0 for any turning round of instrument. In other

words, there was no change in phase relations or interference fringes. Thus, one

might suppose that the solar system moved relative to the ether possessing a

velocity that coincided with that of the orbital velocity of the earth, and, by

coincidence, the experiment was carried out during a period when the earth was

moving relative to the sun in the same direction as the ether. This experiments

essentially contradict classical Newtonian mechanics. The Michelson–Morley

measurements, which resulted in a negative outcome, have had one of the

most remarkable influences on the development of twentieth-century physics. A

modern setup can be seen in Fig. 2.

C. The Sagnac-Type Experiments

The earth’s rotation around its axis can be seen from the apparent motion of the

stars. The rotation can also be observed by mechanical experiments carried out

on the surface of the earth, that is, with the help of Foucault’s pendulum, or by

observing of the motion of a rapidly rotating gyroscope. It is important that the

rotation of the earth can also be observed by closed optical experiments.

This effect was first demonstrated in 1911 by Harress and in 1913 by Sagnac,

so it is now often called the Sagnac effect. Sagnac determined a rotation by a

closed optical instrument [12]. Sagnac also fixed an interferometer onto a

rotating disc. A flowchart of the basic arrangement of the essential features in

the Sagnac experiment is shown in Fig. 3.

It is clear that the rotation occurs relative to the carrier of electromagnetic

waves; this is the observed rotation relative to the ether.

This measurement was improved by Michelson and Gale in 1925 using the

earth instead of rotating disk [13].

In 1926 the Michelson–Gale experiment was confirmed by Pogány [14], who

determined the surface velocity of the rotating earth by a closed optical
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Figure 2. An up-to-date setting of a M-M-type experiment.

Figure 3. Arrangement of Sagnac the experiment. Here, LASER represents the source of light,

the first mirror is a beamsplitter, M1–M3 are mirrors on the end of arms, and I represents the

interferometer.
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instrument, VR � 300 m/s, in Budapest’s latitude. Because of its precision, this

experiment it is used in some military applications, such as in laser gyroscope

techniques. It is also commonly used today in guidance and navigation systems

for airlines, nautical ships, spacecraft, and in many other applications. A laser

gyroscope is shown in Fig. 4.

Because of the incredible precision of interferometric techniques, this

measured velocity is altogether one percent of the earth’s circumference velocity

derived from the orbital motion. Very-long-baseline interferometry (VLBI)—

which is an exhaustively improved Pogány experiment—can detect �o  10	9

in the earth’s rotation.

Sagnac-type experiments are versatile and more accurate than the M-M-type

experiments, which cannot detect rotation. Sagnac-type experiments demon-

strated that the caused phase shift is proportional to the angular velocity o and

the measure of the enclosed surface S in a rotating system.

III. ANALYSIS OF MICHELSON–MORLEY EXPERIMENT

A. The Least-Arbitrariness Principle: The Necessary Hidden Variables

In order to explain the negative result of the M-M-type experiments, a whole

series of hypotheses were proposed, all of which were eventually found to be

untenable. This first explanation consists in the assumption that the ether at the

earth’s surface is carried along by the earth, adhering to the earth like the earth’s

atmosphere. This explanation became very improbable in the light of Fizeau’s

experiment on light propagation in media with motion. This experiment

Figure 4. The CI laser-gyroscope arranged by Bilger et al. [15].
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suggested that the ether is not carried along or at most is only partially carried

along by moving medium [7,8].

Numerous researchers tried to determine the velocity of the earth motion to

the ether by electromagnetic and optical methods. These experiments predicted

that the earth with the experimental instruments always are standing in (or

moving along with) the ether, which really is a tenacious contradiction of

contemporary physics.

The physicists tried to solve this profound problem by the principle of least

arbitrariness or a fortiori [2c]. This principle means the optimum relation

among the introduced hidden variables, which are necessary to description of

the phenomena. (This maxim is well known and accepted in the scientific

community as (Occam’s razor.)

B. The Lorentz Interpretation of M-M Experiments

Lorentz [16] and his colleagues introduced a hidden variable: the contraction

form factor b ¼ ð1 	 v2=c2Þ1=2
in Eq. (3). In the case of d1 ¼ d2, Eq. (3) provides

a simple solution of this contradiction. In Eq. (5) the difference in traveling times

can be eliminated if, for example, d depends on the velocity only:

d 
 ¼ db ð6Þ

(where b is the contraction from factor).

Of course, in Eq. (6) the contraction form factor b is valid only in the arm

that is parallel to the velocity vector. Equation (6) was interpreted by Lorentz

and Fitz-Gerald as a real contraction [17]. It is important to see that in Eq. (6)

the hidden parameter b is only one possible solution for the contradiction, but

the result of the M-M experiment allows numerous other solutions based on the

inner properties and features of the light. The M-M experiment destroyed the

world picture of classical physics, and it required a new physical system of

paradigms. Thus, for example, the applicability of Galilean relativity principle

was rendered invalid.

One of the most important requirements for an axiomatic theory is to

determine the validity-round of the laws, and to verify of the self-consistency in

the theory. The M-M experiment proved that the prediction of the classical

physics was not valid for light propagation, or rather, for Maxwell’s theory of

electromagnetism. This is an applicability limit of Newtonian physics. Beyond

this limit, Newtonian physics becomes incomplete.

Lorentz, Fitz-Gerald, and others were able to formally explain the lack of

changing in interference fringes [1] using a hidden variable that is essentially

the quotient of the theoretical and the measured results. This method, combined

with the least-arbitrariness principle, obtained the optimal hidden parameter,

which was satisfied by the experiment. The operator of the optimal hidden
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parameters used in the description of the M-M experiment is the generalized

form factor, the so-called Lorentz transformation. Lorentz believed a fortiori

that this operator functions in connection with the ether’s wind, and that this

wind is the actual cause of the assumed bodies’ contractions. The merit of the

Lorentz transformation is the verification for the invariance in the Maxwell

equation. However, one disadvantage of the Lorentz interpretation is that the

contraction is independent of the material properties of bodies.

C. The Einstein Interpretation of M-M Experiments

Einstein created a tabula rasa in his 1905 paper titled ‘‘On the electrodynamics of

moving bodies’’ [18]. He rejected the paradigm of ether as well as the classical

concepts of space and time, and founded a new physics by the exclusion of inner

forces called the special relativity theory. He stated two axioms: (1) the principle

of relativity and (2) the homogeneous and isotropic propagation of light in any

inertial coordinate system of the vacuum. The homogeneous isotropic light

propagation can be satisfied by the Lorentz-contracted spacetime. Of course,

without the concept of physical ether, the ether wind theory is meaningless.

Einstein refused the material explanation of Lorentz and Fitz-Gerald, but kept

the contraction form factor b without another material interpretation. It is clear

that the nonmaterial interpretation given by Einstein is high-handed, but it is still

questionable that it is the least arbitrary.

It is well known that Einstein’s interpretation for the Michelson–Morley-type

experiments was self-consistent in mathematical sense, although he lost the

genuine concepts and the traditional a priori and anthropic relations of space

and time forever. With this step the science left its childhood or rather, lost its

innocence. In this way Einstein created the opportunity for any extravagant

interpretations of strange experiments, and so any other physical concepts, for

example, the propagation theory, became illusory.

D. Interferometers: Standing-Wave Systems

As it was confirmed that the notions of electrodynamics and the theory of light

propagation have become complicated complexes of concepts and they are

wholly confusing. These inadequate notion complexes have to be broken open,

disintegrated, then disjoined.

Let us study the M-M- and the Sagnac-type experiments without any

preconceptions. We can then see that the interferometers are unable to measure

the traveling times; they can measure only the interference fringes of standing

waves. This means that description of the M-M experiment allows the use of the

wavelengths and phases, but not the traveling times and the speed of propa-

gation. In a strict sense, the Michelson–type the interferometers are unable to

measure the velocity of propagation and traveling times in the arms. Specifically

to measure traveling times, it an exact optical distance measurement theory and

significance of the sagnac effect 395



method would be necessary. (In connection with the restrictions of the least-

arbitrariness principle in the geometric optics, the principle of least action can

give the path of light as the distance.)

The fine distinction between traveling times and the shift in interference

fringes may not be clear from the point of view of Newtonian mechanics, which

predicts both to be changing. Finally, classical physics and the geometric optics

are refuted or restricted by experience, notwithstanding the fact that these are

self-consistent theories in their own right.

IV. ANALYSIS OF SAGNAC-TYPE EXPERIMENTS

A. The Classical Arrangements

Consider a disk of radius R rotating with an angular velocity o around its axis

[1,12–14]. Suppose a large number of mirrors n are arranged on its periphery in

such a way that a light signal starting, say, from a point A of the periphery is

guided along a path very nearly coinciding with the edge of the disk. If the disk is

at rest, a signal starting at time t¼0 from a point A on the periphery arrives back

into A at a time

T ¼ 2pR

c
ð7Þ

However, if the disk is rotating with a circumference velocity vR ¼ oR and the

light signal is moving in the direction of rotation, then, at time T ¼ 2pR=c, it will

reach a point A0 located at the location that A had left at t ¼ 0. The signal has to

catch up to point A, which is moving away; the signal will reach this location at a

later time Tþ, so that cTþ ¼ 2pR þ vRTþ; therefore

Tþ ¼ 2pR

c 	 vR

> T ð8Þ

(where vR is circumference velocity).

Now suppose that the light moves relative to the edge of the disk cþ
-according to classical physics and according to Eq. (8), in the direction of

velocity

cþ :¼ c 	 vR ð9Þ

(where cþ is speed of light in the direction of velocity).

Suppose that the velocity of the beam is relative to the disk but that we have

calculated the traveling time only and that the signal starting from A must again

catch up with point A, which is moving away.

396 pal r. molnar and milan meszaros



If the light signal moves in the opposite direction, it reaches A sooner that at

t ¼ T as point A moves then toward the signal. In this case we find for the time

at which the signal reaches A

T	 ¼ 2pR

c þ vR

< T ð10Þ

or we may assume that the speed of light traveling in the opposite direction is

velocity c	:

c	 :¼ c þ vR ð11Þ

(c	 is speed of light opposite the velocity).

In the boundary transition ðn ! 1Þ, the polygon—constructed by the

mirrors—becomes a circle with radius R, and the difference of the times needed

to circle around the disk in the opposite direction is thus

�T ¼ Tþ 	 T	 ¼ 2pR
1

c 	 vR

	 1

c þ vR

� �
¼ 4pRvR

c2 	 v2
R

ffi 4So
c2

ð12Þ

where S ¼ pR2 is the area of the disc circled round by the beams and o is angular

velocity.

Of course, according to the Section III.D, this calculation should really be

carried out at wavelengths l	s instead of traveling times T	s. The Sagnac-

type experiments are also standing-wave systems. Then the magnitude of shift

of the interference fringes with the above o

�l ¼ lþ 	 l	 ¼ 2pR
c

cþ
	 c

c	

� �
ffi 4So

c
ð13Þ

which has been confirmed by experiments [12–14] without any doubt.

Naturally this coincidence does not mean that the geometric optics added to

the classical physics could be used for the exact description of the light

propagation since the Michelson–Morley experiment refuted its validity forever.

It is evident that there are possible new mathematical definitions for cþ and

c	 instead of the ordinary speed addition rule of the classical physics seen in

Eqs. (9) and (11). These can be compatible with the experimental results as well.

B. The Relativistic Calculation

The major absurdity of the result of the Sagnac-type experiments is that the

calculation was carried out by the geometric optics exclusively. Of course, the

calculation should carried out using the special relativity theory exhaustively.
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The validity of a physical theory depends on, among other things, the certainty

and completeness by which the theory is ordered to the totality of experiences

[2c]. Consequently, the special relativity theory must also be confronted with

observation and experiment carried out on the physical system examined. In any

given case one has to clarify the mutuality of the special relativity and the Sagnac

effect. In this case, the second postulate of the special relativity theory must be

satisfied; that is, the speed of light must be the same in every direction

cþ ¼ c	 ¼ c ð14Þ

by definition. Substituting Eq. (14) into Eq. (13) a zero shift of interference

fringes, we obtain. �l ¼ lþ 	 l	 ¼ 0, which is contrary to the experiments.

This means that the special relativity theory does not predict any shift of

interference fringes that is contrary to the experiments. The standing-wave

approach of Sagnac-type experiments allows a freedom in the definition of cþ
and c	 instead of Eqs. (9) and (11), but the second postulate of the special

relativity theory is out of this range.

Of course, the Sagnac-type experiments were not made in a perfect inertial

systems. The earth’s orbital motion around the sun is also a noninertial system.

But the circumference velocities in both cases are extremely low, v=c � 1,

and—in the first approximation—these frames of reference are almost inertial

systems.

The Sagnac-type experiments proved that the circumference velocity can be

detected by purely and closed optical instruments as well. The circumference

velocity of the rotating earth, vR � 300 m/s, is extremely low to the earth’s

orbital velocity, which is also a circumference velocity, with vo / 100 � vR. In

both cases, Michelson–Morley and Sagnac wanted to determine the circum-

ference velocities. The M-M experiments were unable to determine the earth’s

orbital circumference velocity, but the Sagnac experiment determined the rota-

ting earth’s circumference velocity. On the basis of the Michelson–Morley-type

experiments, Einstein postulated the constancy of the speed of light, so the

results of the Sagnac-type experiments—with different speeds of light—

contradict the special relativity theory.

In a strict sense, the classical Newtonian mechanics and the Maxwell’s

theory of electromagnetism are not compatible. The M-M-type experiments

refuted the geometric optics completed by classical mechanics. In classical

mechanics the inertial system was a basic concept, and the equation of motion

must be invariant to the Galilean transformation Eq. (1). After the M-M

experiments, Eq. (1) and so any equations of motion became invalid. Einstein

realized that only the Maxwell equations are invariant for the Lorentz trans-

formation. Therefore he believed that they are the authentic equations of motion,

and so he created new concepts for the space, time, inertia, and so on. Within
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this framework the Lorentz transformation is the law of choice for the equation

of motion. Sagnac’s result proved that Einstein’s method contradicts experience.

Besides, on a deeper level it is proved that Maxwell’s equations are not

applicable for the slowly rotating systems. So, in an authentic theory of light,

Maxwell’s equations must be changed to allow for a description of rotating and

deforming systems [19,20].

C. The Incompleteness of the Theory of Light

The classical theory of light—consisting in the complexes of concepts such as

light propagation and interference—employs geometric optics added to classical

physics and the Maxwell theory of electromagnetism. These turbulent notion

complexes suffered from logical inconsistencies. [For example, the Maxwell

equations are not invariant to the Galilean transformations (1) since those are not

equation of motion in the mechanical sense.] This conceptual conglomeration

was broken open by the Michelson–Morley-type experiments. In the present

case, the incompleteness of classical light theory means that it cannot describe

and explain the M-M-type experiments within the frame of the theory. For a

complete, accurate description and explanation, a new theory was needed.

Einstein believed the new theory to be nonclassical, and so he created the special

relativity theory. The relativistic theory of light is similar in composition to the

classical one, except that classical mechanics is changed to the relativistic

mechanics. The relativistic theory of light—beside the explanation of the M-M-

type experiments—was free from the logical problem of the classical light theory

described above.

Eight years later Sagnac made a crucial experiment. The Sagnac-type exp-

eriments are broken open the complexes of concepts of relativistic light theory.

Thus it became an incomplete theory since its prediction of the shift of

interference is �l ¼ lþ 	 l	 ¼ 0, contrary to the Sagnac-type experiments.

We need to find a complete theory of light based on more profound evidence,

new basic concepts, and authentic connections.

V. SUMMARY

The complete theory of light should describe and explain the totality of

experiences, that is, the M-M- and Sagnac-type experiments simultaneously.

In the spirit of the standing-wave picture of Sagnac-type experiments, this

theory needs to recalculate the result of the Michelson-Morley experiment as

well. In the M-M experiment there is a new unknown hidden parameter cp,

which denotes the speed of light in the direction perpendicular to the earth’s

velocity. The traveled path of light in the perpendicular arm lp :¼ 2Tcp

[dim{l}¼meter]. [where cp is speed of light perpendicular to the velocity
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(transversal light speed)]. The difference of the paths traveled in the interfe-

rometer is

dl
 ¼ l
þ þ l
	 	 2l
p ¼ d2
c

cþ
þ c

c	

� �
	 2d1

c

cp

ð15Þ

It can be seen that the second postulate of special relativity theory [Eq. (14)]

leads to the form

cþ ¼ c	 ¼ cp ¼ c ð16Þ

Substituting Eq. (16) into Eq. (15), we obtain a zero interference change,

corresponding to with the M-M experiment. The M-M experiments are only a

limited part of the totality of experiences.

The Michelson–Morley- and Sagnac-type experiments give only two indepen-

dent equations—Eqs. (13) and (15)—for three unknown hidden parameters

cþ; c	, and cp. In the present case the incompleteness means that there are three

unknown parameters for two equations. A third equation is needed in the form

of a crucial experiment for the unique solutions. (Of course, this crucial experi-

ment must be independent of the M-M- and Sagnac-type experiments.) In this

manner we will be able to develop an authentic nonquantized (complete) theory

of light.

After the frequent metaphysical optimism of a century ago, we again return

to the fundamental questions.
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I. INTRODUCTION

Non-Abelian electrodynamics is an interesting proposal that electrodynamics has

a more general gauge structure. The basis advanced by Barrett, Harmuth, and

Evans proposes that electrodynamics has a more complex structure than one
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described by the Uð1Þ gauge group. Initially it was advanced as an extension of

electrodynamics for the derivation of solutions to Maxwell’s equations. Later

Evans suggested that this extension may have physical implications. The

principal implication is the existence of the Bð3Þ magnetic field. This field

emerges from the commutator of gauge potentials in the Yang–Mills equations.

This field is written most often as

Bð3Þ ¼ ie

�h
Að1Þ � Að2Þ ð1Þ

The particular gauge potentials are orthogonal to each other by complex

conjugation Að2Þ ¼ Að1Þ�, with

Að1Þ ¼ iAx þ ijAy ð2Þ

The definition of the Bð3Þ field in this manner illustrates that the internal index

associated with the extended gauge group is identified with coordinates that are

orthogonal to the direction of propagation of the electromagnetic field. This has

various implications, which, if interpreted classically, mean that the Stokes

parameters of an electromagnetic field determine this field.

Few of the claims for classical effects in non-Abelian electrodynamics have

been conclusively demonstrated, but it may account for the Sagnac effect in

interferometry. This is a pure phase effect associated with rotating inter-

ferometers, which can be predicted according to non-Abelian electrodynamics.

However, as a purely phase effect this does not mean that the magnetic field,

called the Bð3Þ field, has been directly measured as yet. If one regards the

electrodynamic field as quantum-mechanically composed of harmonic oscillator

states, this Bð3Þ field has not been demonstrated to have eigenstates according to

hBð3Þ � Bð3Þi. This does not mean that non-Abelian electrodynamics is false, but

rather suggests that the eigenstates of this 3-magnetic field do not present

themselves readily. Even if this magnetic field were absent, there would still

exist subtle phase effects, which would manifest themselves in the interaction of

electromagnetic fields and media. Classically, it appears as if this field should

appear with a field strength that depends on 1=o2, which means that for long

wavelength electromagnetic fields it should be quite large. If this field did occur

readily, it would be abundantly present in a microwave beam with a coherent

polarization, which would have certainly been discovered sometime during or

shortly after World War II with the rapid development of radar. One of the

purposes of this chapter is to address this matter.

There have been reports of the inverse Faraday effect that are predicted by

non-Abelian electrodynamics. However, these reports are comparatively dated,

and no updated results appear to have been reported. In 1998 the Varian
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Corporation attempted to measure the Bð3Þ field. However, the results were null,

and an inconclusive direct measurements of the Bð3Þ field still remains elusive.

On the theoretical front non-Abelian electrodynamics remains controversial and

not widely upheld. Some objections are not entirely reasonable. On the other

hand, Waldyr Rodriques objected to certain assumptions, proposed by M. W.

Evans, that relates coefficients in Whittaker’s 1904 paper on electrodynamics to

the putative existence of longitudinal modes in non-Abelian electromagnetic

waves in vacuum. Rodrigues’ objections appear reasonable. However, this

response was quite forceful and direct, and resulted in his refusal to consider

anything involving non-Abelian electrodynamics.

In order to address this question, it is requisite that the quantum field

theoretic aspects of non-Abelian electrodynamics must be considered. In fact,

theoretical reasons for the apparent paucity of the Bð3Þ field were discovered

through examination of non-Abelian electrodynamics at high energy and its

unification with the weak interactions. Non-Abelian electrodynamics at high

energy should emerge from an SUð2Þ gauge field theory, and this appears to

have an elegant duality with the weak interactions with which it is unified within

the TeV (teraelectronvolt) range in high-energy physics. This lead to the

prospect that if this putative theory were true, then there should exist an

additional Z-like boson, referred to as Zg which should appear with a mass in the

TeV range. The additional degrees of freedom in the field define the Uð1Þ gauge

theory plus various non-Lagrangian symmetries. These curious non-Lagrangian

symmetries emerge from a Lagrangian that vanishes, and thus have no action or

dynamics. It is here that the Bð3Þ field exists, or rather nonexists. This also

implies that the field is a vacuum effect that induces squeezed states and other

nonlinear effects. The definition of the Bð3Þ according to Eqs. (1) and (2)

suggests that this is the case, as it is determined by the orthogonal polarization

directions of an electromagnetic field. The apparent immeasurablity of the Bð3Þ

field suggests that this field is a pseudofield that has subtle effects.

These results are somewhat at odds with the classical ideas of Evans;

however, the quantum field theoretic calculations performed in this section lead

to the conclusion that hBð3Þ � Bð3Þi ¼ 0. This means that this 3-field simply is not

a classical effect, and that the classical calculations may be valid only as

formalistic tools. If hBð3Þ � Bð3Þi is demonstrated to exist, then this implies that

additional physics is involved that either generalizes the quantum-mechanical

results, or new physics that is involved with the quantum–classical transition.

Equally of interest in the prospects this may have for high-energy physics.

An extended SUð2Þ � SUð2Þ standard model has features of gauge field duality

proposed by Montenen and Olive. This theory further embeds into an SOð10Þ
grand unification scheme that includes the SUð3Þ gauge field for the strong

interactions. Also, since this field predicts the existence of additional Z bosons,

this also has an influence on the gauge hierarchy problem. Within the
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SUð2Þ � SUð2Þ extended standard model the two gauge groups are chiral with

opposite handedness. At low energy the weak angle mixes the two chrial fields

so that one field theory is chiral while the other is vector. The weak interactions

are the chiral fields, while electromagnetism on the physical vacuum is vectorial.

The result of this transition to low energy is the production of a massive Að3Þ

field. This massive field is identified as the Zg boson. This massive neutral boson

has been recently suggested through deviations in neutrino production at LEP1.

Yet, this type of theory can be tested or falsified only in the multi-TeV range in

energy. Only until the Zg is directly produced and its existence is deduced

through its decay products can it be determined whether this dual theory of

electroweak interactions is acceptable.

This section will be broken into a number of discussions. The first will be on

a naive SUð2Þ � SUð2Þ extended standard model, followed by a more general

chiral theory and a discussion on the lack of Lagrangian dynamics associated

with the Bð3Þ field. This will be followed by an examination of non-Abelian

QED at nonrelativistic energies and then at relativistic energies. It will conclude

with a discussion of a putative SOð10Þ gauge unification that includes the strong

interactions.

II. THE SU(2)� SU(2) EXTENDED STANDARD MODEL

If we are to consider the prospects for non-Abelian electrodynamics, it is best for

aesthetic reasons to consider what this implies for an SUð2Þ � SUð2Þ extended

standard model of electroweak interactions. This model has the pleasing quality

of gauge duality, and it can be examined to determine whether there are

inconsistencies with high-energy physics data at the TeV range in energy. It also

may indicate something of the appearance of electrodynamics at low energy. If

this is consistent with the abundant data, then the model is at least tentative. It

will be demonstrated that this leads to certain conclusions about the ontological

status of the Bð3Þ field.

Consider an extended standard model to determine what form the

electromagnetic and weak interactions assume on the physical vacuum defined

by the Higgs mechanism. Such a theory would then be SUð2Þ � SUð2Þ. We will

at first consider such a theory with one Higgs field. The covariant derivative will

then be

Dm ¼ qm þ ig0s � Am þ igt � bm ð3Þ

where s and t are the generators for the two SUð2Þ gauge fields represented as

Pauli matrices and A; b are the gauge connections defined on the two SU(2)

principal bundles. There is an additional Lagrangian for the f4 scalar field [8]:

Lf ¼
1

2
jDmðfÞj2 �

1

2
m2jfj2 þ 1

4
jljðjfj2Þ2 ð4Þ
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The expectation value for the scalar field is then

hf0i ¼ 0;
vffiffiffi
2

p
� �

ð5Þ

for v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2=l

p
. At this point the generators for the theory on the broken

vacuum are

hf0is1 ¼
vffiffiffi
2

p ; 0

� �

hf0is2 ¼ i
vffiffiffi
2

p ; 0

� �

hf0is3 ¼ 0;� vffiffiffi
2

p
� � ð6Þ

These hold similarly for the generators of the other SUð2Þ sector of the theory.

There is a formula for the hypercharge, due to Nishijima, that when applied

directly, would lead to an electric charge:

Qhf0i ¼
1

2
hf0iðs3 þ t1Þ ¼ 0;� vffiffiffi

2
p ; 0;

vffiffiffi
2

p
� �

ð7Þ

This would mean that there are two photons that carry a � charge, respectively.

We are obviously treating the hypercharge incorrectly. It is then proposed that the

equation for hypercharge be modified as

Qhf0i ¼
1

2
hf0iðn2 � t3 þ n1 � s1Þ ¼ 0 ð8Þ

where the vectors n1 and n2 are unit vectors on the doublet defined by the two

eigenstates of the vacuum. This projection onto s1 and t3 is an ad hoc change to

the theory that is required since we are using a single Higgs field on both bundles

on both SUð2Þ connections. This condition, an artifact of using one Higgs field,

will be relaxed later. Now the generators of the theory have a broken symmetry

on the physical vacuum. Therefore the photon is defined according to the s1

generator in one SUð2Þ sector of the theory, while the charged neutral current of

the weak interaction is defined on the t3 generator.

We now consider the role of the f4 scalar field with the basic Lagrangian

containing the follwoing electroweak Lagrangians:

L ¼ � 1

4
Fa
mnF

amn � 1

4
Ga

mnGamn þ jDmfj2 �
1

2
m2jfj2 þ 1

4
lðjfj2Þ2 ð9Þ
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Here Ga
mn and Fa

mn are elements of the field strength tensors for the two SUð2Þ
principal bundles. So far the theory is entirely parallel to the basic standard

model of electroweak intereactions. In further work the Dirac and Yukawa

Lagrangians that couple the Higgs field to the leptons and quarks will be

included. It will then be pointed out how this will modify the Bð3Þ field. The f4

field may be written according to a small displacement in the vacuum energy:

f0 ¼ fþ hf0i ’
ðvþ xþ iwÞffiffiffi

2
p ð10Þ

The fields x and w are orthogonal components in the complex phase plane for the

oscillations due to the small displacement of the scalar field. The small

displacement of the scalar field is then completely characterized. The scalar field

Lagrangian then becomes

Lf ¼
1

2
ðqmxqmx� 2m2x2Þ þ 1

2
v2 g0Am þ gbm
�

þ 1

gv
þ 1

g0v

� �
qmw
�
� g0Am þ gbm þ 1

gv
þ 1

g0v

� �
qmw

� �
ð11Þ

The Lie algebraic indices are implied. The Higgs field is described by the

harmonic oscillator equation where the field has the mass MH ’ 1:0 TeV=c2. On

the physical vacuum the gauge fields are

g0Am þ gbm ! g0Am þ gbm þ
1

gv
qmw ¼ g0A0m þ gb0m ð12Þ

which corresponds to a phase rotation induced by the transition of the vacuum to

the physical vacuum. Let us now break the Lagrangian, now expanded about the

minimum of the scalar potential, out into components:

Lf ¼
1

2
ðqmxqmx� 2m2x2Þ þ 1

8
v2 � ðg02jB3j3 þ g02ðjWþj2 þ jW�j2Þ

þ g2jA1j2 þ g2jA3 þ ijA2j2Þ ð13Þ

where we have identified the charged weak gauge fields as

W�
m ¼

1ffiffiffi
2

p ðb1
m � ib2

mÞ ð14Þ
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The masses of these two fields are then gv=2. From what is left, we are forced to

define the fields

Am ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p ðgA3

m þ g0b3m � gA1
mÞ ð15aÞ

Z0
m ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ðg0A3
m þ gb3m þ g0A1

mÞ ð15bÞ

In order to make this consistent with the SUð2Þ � Uð1Þ electroweak inter-

action [4], theory we initially require that A3
m ¼ 0 everywhere on scales larger

than at unification. If this were nonzero, then Z0 would have a larger mass or

there would be an additional massive boson along with the Z0 neutral boson.

The first case is not been observed, and the second case is to be determined.

This assumption, while ad hoc at this point, is made to restrict this gauge

freedom and will be relaxed later in a more complete discussion of the 3-photon.

This condition is relaxed in the following discussion or chiral and vector fields.

This leads to the standard result that the mass of the photon is zero and that the

mass of the Z0 particle is

MZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p v

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g0

g

� �2
s

MW ð16Þ

The weak angles are defined trigonometrically by the terms g=ðg2 þ g02Þ and

g0=ðg2 þ g02Þ. This means that the field strength tensor F3
mn satisfies

F3
mn ¼ qnA3

m � qmA3
n � i

e

�h
½A1

n;A2
m�

¼ �i
e

�h
½A1

n;A2
m� ð17Þ

and further implies that the third component of the magnetic field in the SUð2Þ
sector is

B3
j ¼ Ej

mnF3
mn

¼ �i
e

�h
ðA1 � A2Þj ð18Þ

This is the form of the Bð3Þ magnetic field. This also implies that the Eð3Þ electric

field is then

E3
j ¼ Ej

0mF3
0m ¼ �i

e

�h
ðA1 � A2Þj ð19Þ
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This demonstrates that Eð3Þ ¼ Bð3Þ in naturalized units. This is leads to the

suspicion that the Bð3Þ field is zero.

The duality between these electric and magnetic field means that the

Lagrangian vanishes. The vanishing of this Lagrangian on symmetry principles

means that no dynamics can be determined. This would indicate that this

particular model simply reproduces Uð1Þ electrodynamics, plus additional non-

Lagrangian symmetries. Within this picture it appears as if the Bð3Þ ¼ 0, and

that it simply represents the occurrence of various non-Lagrangian symmetries,

but where there are no dynamics for the Bð3Þ field.

This result is a curious and troubling one for the prospect that there can be a

classical Bð3Þ field that has real dynamics. This would imply that non-Abelian

symmetry is determined by a Lagrangian of the form 1
2
ðE32 � B32Þ, where this

is automatically zero by duality. However, if this were the case, we would still

have non-Abelian symmetry as a nonLagrangian symmetry. This strongly

supports the possibility that the electrodynamic vacuum will continue to exhibit

non-Abelian symmetries, such as squeezed states, even if we impose

E3 ¼ B3 ¼ 0.

However, it can be suggested that the B3 ¼ Eð3Þ field duality is broken when

we consider the Lagrangian for the 3-field with the massive Að3Þ field introduced

as

L ¼ 1

2
F3
mnF3mn þ 1

2
mA3

mA3m � 1

c

� �
j3
mA3m

L ¼ 1

2
ðE32 � B32Þ þ 1

2
mA3

mA3m � 1

c

� �
j3
mA3m

ð20Þ

The middle term is a Proca Lagrangian for a massive photon. Here the mass of

this photon is assumed to be larger than the masses of the W� and W0 bosons.

The current j3m is determined by the charged fermions with masses given by the

Yukawa interactions with the Higgs field. These are yet to be explored. Now

consider the term in the Euler–Lagrange equation

qL

qDmA3n ¼ ½Am;An� ð21aÞ

with covariant derivatives that enter into the Euler–Lagrange equation as

DmA3n ¼ qmA3n þ i
e

�h

� �
E3ab½Aa

m;Ab
n� ð21bÞ

and the subsequent setting of A3 ! 0. Then the full Euler–Lagrange equation

Dm qL

qðDmA3nÞ �
qL

qA3n ¼ 0 ð22Þ
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is

r� B3 þ m2A3 � j3 ¼ qE3

qt
ð23Þ

which is just a form of the Faraday–Maxwell equation. However, the Hodge–star

dual of this equation, the Maxwell equation, does not contain the current term,

r� E3 þ m2A3 ¼ � qB3

qt
ð24Þ

The nonvanishing Að3Þ field at high energy will then break the duality between

the Eð3Þ and Bð3Þ fields.

There is rub to this construction. This Proca equation is really only

applicable on a scale that approaches high-energy physics where the Að3Þ boson

has appreciable influence. This will be only at a range of 10�17 cm. On the scale

of atomic physics 10�8 cm, where quantum optics is applicable, this influence

will be insignificant. In effect on a scale where the Að3Þ does not exist, as it has

decayed into pion pairs, the duality is established and there is no Lagrangian for

the Bð3Þ field. This puts us back to square one, where we must consider non-

Abelian electrodynamics as effectively Uð1Þ electrodynamics plus additional

nonLagrangian and nonHamiltonian symmetries.

It has been demonstrated that there is an SUð2Þ � SUð2Þ electroweak theory

that gives rise to the Z0;W� gauge vector bosons plus electromagnetism with

the photon theory with the cyclic condition for the Bð3Þ field. What has not been

worked out are the implications for quark and lepton masses by inclusion of

Yukawa coupling Lagrangians. However, that sector of the theory has little

bearing on this examination of the electromagnetic theory, with A3 ¼ 0, that

emerges from the SUð2Þ � SUð2Þ gauge theory. We now have a theory for

electromagnetism on the physical vacuum that is

L ¼ �ð1=4ÞFmnFmn � ð1=4ÞGamnGa
mn þ

1

2
ððE3Þ2 � ðB3Þ2Þ

þM0jZ0j2 þMwjW�j2 þ 1

2
ðjqxj2 � 2m2jxj2Þ

þ Dirac Lagrangians þ Yukawa ½Fermi--Higgs� ð25Þ

where Fmn and Ga
mn are the field tensor components for standard electromagnetic

and weak interaction fields, and the cyclic electric and magnetic fields define the

Lagrangian in the third term. The occurrence of the massive Z0 and W� particles

obviously breaks the gauge symmetry of the SUð2Þ weak interaction.
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III. THE THEORYAND ITS PROBLEMS AND THEIR REMEDIES

So here we have constructed, in some ways rather artificially, an SUð2Þ � SUð2Þ
gauge theory that is able to reproduce the standard model Uð1Þ � SUð2Þ with the

additional cyclic magnetic field given by Eq. (19). However, we are left with two

uncomfortable conditions imposed on the theory to make this work. The first is

that the electric charge of gauge bosons is treated in an ad hoc fashion so that we

do not have photons A1 and A2 that carry a unit of electric charges �1. The

second problem is that we have, by hand, eliminated the Að3Þ vector potential. If

this were nonzero, we would have the following gauge potential:

o03m ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p A3

m ð26Þ

This field would have a mass equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
v=2 and would then contribute a

large decay signal at the same scattering transverse momenta where the Z0 is

seen.

The problem is that we have a theory with two SUð2Þ algebras that both act

on the same Fermi spinor fields. We further are using one Higgs field to compute

the vacuum expectation values for both fields. The obvious thing to do is to first

consider that each SUð2Þ acts on a separate spinor field’s doublets. Next the

theory demands that we consider that there be two Higgs fields that compute

separate physical vacuums for each SUð2Þ sector independently. This means

that the two Higgs fields will give 2� 2 vacuum expectations, which may be

considered to be diagonal. If two entries in each of these matrices are equal then

we conclude that the resulting massive fermion in each of the two spinor

doublets are the same field. Further, if the spinor in one doublet assumes a very

large mass then at low energies this doublet will appear as a singlet and the

gauge theory that acts on it will be Oð3Þb with the algebra of singlets

ei ¼ Eijk½ej; ek� ð27Þ

This will leave a theory on the physical vacuum that involves transformations on

a singlet according to a broken Oð3Þb gauge theory, and transformations on a

doublet according to a broken SUð2Þ gauge theory. The broken Oð3Þb gauge

theory reflects the occurrence of a very massive Að3Þ photon, but massless A1 and

A2 fields. This broken Oð3Þb gauge theory then reduces to electromagnetism with

the cyclicity condition. The broken SUð2Þ theory reflects the occurrence of

massive charged and neutral weakly interacting bosons. Further, since the

Lagrangian for the 3-fields is zero, this would further imply that the

electromagnetic gauge theory is Uð1Þ. This would mean that the electromagnetic

field singlets will not obey the algebra given, in equation 27.
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To take this theory further would be to embed it into an SUð4Þ gauge theory.

The gauge potentials are described by 4� 4 traceless Hermitian matrices and

the Dirac spinor has 16 components. The neutrality of the photon is then given

by the sum over charges, which vanishes by the tracelessness of the theory. The

Higgs field is described by a 4� 4 matrix of entries.

It is concluded within the ‘‘toy model’’ above that the Bð3Þ field, or more

likely a pseudofield, is consistent with an extended SUð2Þ � SUð2Þ model of

electroweak interactions. A more complete formalism of the SUð2Þ � SUð2Þ
theory with fermion masses will yield more general results. A direct

measurement of Bð3Þ should have a major impact on the future of unified field

theory and superstring theories. The first such measurement was reported in

Ref. 14, (see also Refs. 6 and 7).

IV. CHIRAL AND VECTOR FIELDS IN SUð2Þ � SUð2Þ
ELECTROWEAK FIELD

The cyclic theory of electromagnetism has been demonstrated to be consistent

with a SUð2Þ � SUð2Þ theory of electroweak unification [15]. It has been

demonstrated that if we set A3 ¼ 0 on the physical vacuum that a cyclic theory of

electromagnetism is derived. This theory contains longitudinal Eð3Þ and Bð3Þ

fields that are dual E3 ¼ Bð3Þ, but where this duality is broken by current

interactions. By setting A3 ¼ 0 the transverse 3-modes of the theory have been

completely eliminated by this arbitrary restriction of this gauge freedom. The

elimination of these transverse 3-modes guarantees that photons are entirely

defined by the s1;2 generators of the SUð2Þ theory of electrodynamics. Since the

field defined by the sð3Þ generators are longitudinal this means they are

irrotational r� E3 ¼ r� B3 ¼ 0 and thus time independent. According to

Maxwell’s equations, this means that there are no electromagnetic waves or

photons associated with this field.

V. AXIAL VECTOR SU(2) � SU(2) FIELDS: A FIRST LOOK

To start we examine a putative model of a chiral vector model at low energies to

determine what sorts of processes may be involved with the broken symmetry of

such a model. We start by naively considering a chiral vector model to see what

sorts of structure may emerge at low energy without explicit consideration of the

Higgs mechanism. The field theory starts out as a twisted bundle of two chiral

groups SUð2Þ � SUð2Þ and emerges as a theory that is an axial-vector theory at

low energy. We consider initially the situation where the theory is an axial vector

theory at low energy. We then consider the situation where there is a breakdown

of chiral symmetry. This is then used to set up the more complete situation that
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involves the breakdown of the chiral theory at high energy into an axial vector

theory at low energy.

Now we relax the condition that A3 ¼ 0. This statement would physically

mean that the current for this gauge boson is highly nonconserved with a very

large mass so that the interaction scale is far smaller than the scale for the cyclic

electromagnetic field. In relaxing this condition we will find that we still have a

violation of current conservation.

With A3 6¼ 0 we have the following fields [15]:

A01m ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p ðgA3

m þ g0b3
m � gA1

mÞ

Z0
m ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ðgb3
m þ g0A1

mÞ

o3
m ¼

g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p A3
m

ð28Þ

One purpose here is to examine the o3
m connection; which will have a chiral

component. This at first implies that the Bð3Þ field is partly chiral, or that it is

mixed with the chiral component of the other SUð2Þ chiral field in some manner

to remove its chirality.

The theory of SUð2Þ electromagnetism, at high energy, is very similar to the

theory of weak interactions in its formal structure. Further, it has implications

for the theory of leptons. The electromagnetic interaction acts upon a doublet,

where this doublet is most often treated as an element of a Fermi doublet of

charged leptons and their neutrinos in the SUð2Þ theory of weak interactions.

Following in analogy with the theory of weak interactions we let c be a

doublet that describes an electron according to the 1 field and the 3 field. Here

we illustrate the sort of physics that would occur with a chiral theory. We start

with the free particle Dirac Lagrangian and let the differential become gauge

covariant,

L ¼ �cðigmDm � mÞc

¼ �cðigmqm � mÞc� gAb
m
�cgmsbc

¼Lfree þ Ab
mJ

m
b ð29Þ

where �c ¼ cyg4. From here we decompose the current Jb
m into vector and chiral

components:

Jb
m ¼ cyg4gmð1þ g5Þs3c ¼ Vb

m þ wb
m ð30Þ
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This is analogous to the current algebra for the weak and electromagnetic

interactions between fermions. We have the two vector current operators [16]

Va
m ¼

i

2
�cgms

a;c ð31Þ

and the two axial vector current operators:

wb
m ¼

i

2
�cgmg5t

bc ð32Þ

Here g5 ¼ ig1g2g3g4, and tb are Pauli matrices. These define an algebra of equal

time commutators:

½Va
4 ;Vb

m � ¼ itabcVc
m

½Va
4 ; w

b
m� ¼ �itabcwb

m

ð33Þ

If we set m ¼ 4, we then have the algebra

½Va
4 ;Vb

4 � ¼ itabcVc
4

and

½Va
4 ; w

b
4� ¼ �itabcwc

4 ð34Þ

If we set

Qa
� ¼

1

2
ðVa

4 � wa
4Þ ð35Þ

we then have the algebra

½Qa
þ;Qb

þ� ¼ itabcQc
þ

½Qa
�;Qb

�� ¼ itabcQc
�

½Qa
þ;Qb

�� ¼ 0

ð36Þ

This can be seen to define the SUð2Þ � SUð2Þ algebra.

The action of the parity operator on Vb
4 and wb

4 due to the presence of g5 in the

axial vector current.

PVb
4 Py ¼ Vb

4

Pwb
4Py ¼ �wb

4

ð37Þ
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As such, one SUð2Þ differs from the other by the action of the parity operator and

the total group is the chiral group SUð2Þ � SUð2ÞP. This illustrates the sort of

current that exists with chrial gauge theory, and what will exist with a right and

left handed chrial SUð2Þ � SUð2Þ theory.

We have, at low energy, half vector and half chiral vector theory

SUð2Þ � SUð2ÞP. On the physical vacuum, we have the vector gauge theory

described by A1 ¼ A2� and B3 ¼ r� A3 þ ðie=�hÞA1 � A2 and the theory of

weak interactions with matrix elements of the form �ngmð1� g5Þe and are thus

half vector and chiral on the level of elements of the left- and right-handed

components of doublets. We then demand that on the physical vacuum we must

have a mixture of vector and chiral gauge connections, within both the

electromagnetic and weak interactions, due to the breakdown of symmetry. This

will mean that the gauge potential Að3Þ will be massive and short-ranged.

One occurrence is a violation of the conservation of the axial vector current.

We have that the 1 and 2 currents are conserved and invariant. On the high-

energy vacuum we expect that currents should obey

qmJb
m ¼ 0 ð38Þ

where b 2 f1; 2g, which are absolutely conserved currents. However, for the A3
m

fields we have the nonconserved current equation [17]

qmJ3
m ¼ imcc

yg4g5s
3c ð39Þ

where inhomogeneous terms correspond to the quark–antiquark and lepton–

antilepton pairs that are formed from the decay of these particles. This breaks the

chiral symmetry of the theory. Then this current’s action on the physical vacuum

is such that when projected on a massive eigenstates for the 3-photon with

transverse modes

h0jqmJ3
mjXki ¼

m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðkÞoðk0Þ

p
 !

hXk0 jXkieikx ð40Þ

The mass of the chiral f1; 2g -bosons will then vanish, while the mass of the

chiral 3-boson will be m. So rather than strictly setting A3 ¼ 0, it is a separate

chiral gauge field that obeys axial vector nonconservation and only occurs at

short ranges.

Now that we have an idea of what nature may look like on the physical

vacuum, we need to examine how we in fact can have symmetry breaking and

an SUð2Þ � SUð2ÞP gauge theory that gives rise to some of the requirements of

Oð3Þb electromagnetism mentioned above. A mixing of the two chiral SUð2Þ
bundles at low energy will effect the production of vector gauge bosons for the

electromagnetic interaction. It is apparent that we need to invoke the mixing of
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two chiral gauge bosons in such a manner as to produce a vector theory of

electromagnetism at low energy with a broken chiral theory of weak interactions.

VI. CHIRAL AND VECTOR GAUGE THEORY ON THE
PHYSICAL VACUUM FROM A GAUGE THEORY

WITH A CHIRAL TWISTED BUNDLE

The SUð2Þ � SUð2Þ theory should mimic the standard model with the addition of

the B3 ¼ ðe=�hÞA1 � A2 field at low energies. This means that we demand that a

field theory that is completely chiral at high energy becomes a field theory that is

vector and chiral in separate sectors on the physical vacuum of low energies. This

means that a field theory that is chiral at high energy will combine with the other

chiral field in the twisted bundle to produce a vector field plus a broken chiral

field at low energy. Generally this means that a field theory that has two chiral

bundles at high energies can become vector and chiral within various

independent fields that are decoupled on physical vacuum at low energies.

We consider a toy model where there are two fermion fields c and w, where

each of these fields consists of the two component right- and left-handed fields

Rc; Lc and Rw; Lw. These Fermi doublets have the masses m1 and m2. We then

have the two gauge potentials Am and Bm that interact respectively with the c
and w fields. In general, with more Fermi fields, this situation becomes more

complex, where these two Fermi fields are degeneracies that split into the

multiplet of fermions known. In this situation there are four possible masses for

these fields on the physical vacuum. These masses occur from Yukawa couplings

with the Higgs field on the physical vacuum. These will give Lagrangians terms

of the form YfR
y
cfLw þ H:C: and YZL

y
cZRw þ H:C:, where we now have a two-

component f4 field for the Higgs mechanism. These two components assume

the minimal expectation values hf0i and hZ0i on the physical vacuum. We then

have the Lagrangian [18]

L ¼ �cðigmðqm þ igAmÞ � m1Þcþ �wðigmðqm þ igBmÞ � m2Þw
� YfR

y
cfLw þ H:C:� YZL

y
cZRw þ H:C: ð41Þ

(where H.C. ¼ higher contributions), which can be further broken into the left

and right two-component spinors:

L ¼ R
y
cismðqm þ igAmÞRc þ L

y
cismðqm þ igAmÞLc

þ Rywismðqm þ igBmÞRw þ Lywismðqm þ igBmÞLw

� m1R
y
cLc � m1L

y
cRc � m2RywLw � m2LywRw

� YfR
y
cfLw þ Y�fLywf

�Rc � YZL
y
cZRw þ Y�ZRywZ

�Lc ð42Þ
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The gauge potentials Am and Bm are 2� 2 Hermitian traceless matrices and

the Higgs fields f and w are also 2� 2 matrices. These expectations are real

valued, and so we then expect that the non-zero contributions of the Higgs field

on the physical vacuum are given by the diagonal matrix entries [18]

hfi ¼ hf1i 0

0 hf2i

� �
hwi ¼ hw1i 0

0 hw2i

� �
ð43Þ

In a 1999 paper, these issues were not discussed [15]. There this matrix was

proportional to the identity matrix and the matrix nature of the Higgs field was

conveniently ignored. This means that the SUð2Þ � SUð2Þ electroweak theory

shares certain generic features with the SUð2Þ � Uð1Þ theory. The values of the

vacuum expectations are such that at high energy the left-handed fields Rw and

the right-handed doublet field Lc couple to the SUð2Þ vector boson field Bm,

while at low energy the theory is one with a left-handed SUð2Þ doublet Rc that

interacts with the right-handed doublet Lw through the massive gauge fields Am.

Then the mass terms from the Yukawa coupling Lagrangians will then give

m0 ¼ YZhw1i � m00 ¼ YZhw2i � ð44Þ
m000 ¼ Yfhf1i � m0000 ¼ Yfhf2i ð45Þ

Further, if the SUð2Þ theory for Bm potentials are right-handed chiral and the

SUð2Þ theory for Am potentials are left-handed chiral, then we see that a chiral

theory at high energies can become a vector theory at low energies. The converse

may also be true in another model.

In the switch between chirality and vectorality at different energies, there is

an element of broken gauge symmetry. So far we would have a theory of a

broken gauge theory at low energy. However, there is a way to express this idea

so that at low energy we have a gauge theory accompanied by a broken gauge

symmetry. To illustrate this let us assume we have a simple Lagrangian that

couples the left-handed fields cl to the right-handed boson Am and the right-

handed fields cr to the left handed boson Bm

L ¼ �clðigmðqm þ igAmÞ � m1Þcl þ �crðigmðqm þ igBmÞ � m2Þcr

� Yfc
y
lfcr � Y�fc

y
rZcl ð46Þ

If the coupling constant Yf is comparable to the coupling constant g, then the

Fermi expectation energies of the Fermions occur at the mean value for the Higgs

field hf0i. In this case the vacuum expectation of the vacuum is proportional to

the identity matrix. This means that the masses acquired by the right chiral plus

left chiral gauge bosons Am þ Bm are zero, while the left chiral minus right chiral
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gauge bosons Am � Bm acquires masses approximately Yfhf0i. The theory at low

energies is a theory with an unbroken vector gauge theory plus a broken chiral

gauge theory [18]. It is also the case that we demand that the charges of the two

chiral fields A1;2;B1;2 that add are opposite so that the resulting vector gauge

bosons are chargeless.

Just as we have gauge theories that can change their vector and chiral

character, so also do the doublets of the theory. In so doing this will give rise to

the doublets of leptons and quarks plus doublets of very massive fermions.

These massive fermions should be observable in the multi-TeV range of energy.

VII. THE OCCURRENCE OF Oð3Þb ELECTRODYNAMICS ON
THE PHYSICAL VACUUM

The two parts of the twisted bundle are copies of SUð2Þ with doublet fermion

structures. However, one of the fermions has the extremely large mass,

m0 ¼ YZhw1i, which is presumed to be unstable and is not observed at low

energies. So one sector of the twisted bundle is left with the same abelian

structure, but with a singlet fermion. This means that the SU(2) gauge theory will

be defined by the algebra over the basis elements êi; i 2 f1; 2; 3g:

½êi; êj� ¼ iEijkêk ð47Þ

We also need to examine the photon masses. We define the Higgs field by a small

expansion around the vacuum expectations Z1 ¼ x1 þ hZ1
0i and Z2 ¼ x2 þ hZ2

0i.
The contraction of the generators s1 and s2 with the Higgs field matrix and right

and left fields gives

s1 � ZRþ s2 � ZL ¼ 0 ð48Þ

which confirms that the charges of the A1 and A2 fields are zero. These fields on

the low-energy vacuum can be thought of as massless fields composed of two

gauge bosons, with masses
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 þ m00

p
� MZ and with opposite charges. These

electrically charged fields can be thought of as A� ¼ A1 � A2. These particles

cancel each other and gives rise to massless vector photon gauge fields. The field

Að3Þ also has this mass. This massive field is also unstable and decays into

particle pairs.

With the action of the more massive Higgs field we are left with the gauge

theory SUð2Þ � Oð3Þ, where the first gauge group acts on doublets and the last

gauge group acts on singlets. Further on a lower-energy scale, or equivalently

sufficiently long timescales, the field Að3Þ has decayed and vanished. At this

scale the second gauge group is then represented by Oð3Þp meaning a partial

group. This group describes Maxwell’s equations along with the definition of

the field A1 � A2.
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From this point we can then treat the action of the second Higgs field on this

group in a manner described in Ref. 15. If we set the second Higgs field to have

zero-vacuum expectation hf2i ¼ 0, then the symmetry breaking mechanism

effectively collapses to this formalism, which is similar to the standard

SUð2Þ � Uð1Þ model Higgs mechanism. We can the arrive at a vector electro-

magnetic gauge theory Oð3Þp, where p stands for partial, and a broken chiral

SUð2Þ weak interaction theory. The mass of the vector boson sector is in the

Að3Þ boson plus the W� and Z0 particles.

VIII. THE SUð4Þ MODEL

It is possible to consider the two SUð2Þ group theories as being represented as the

block diagonals of the larger SUð4Þ gauge theory. The Lagrangian density for the

system is then

L ¼ �cðigmðqm þ igAmÞ � m1Þc� Y �cfc ð49Þ

The gauge potentials Am now have 4� 4 traceless representations. The scalar

field theory that describes the vacuum will now satisfy field equations that

involve all 16 components of the gauge potential. By selectively coupling these

fields to the fermions, it should be possible to formulate a theory that recovers a

low-energy theory that is the standard model with the Oð3Þp gauge theory of

electromagnetism.

What has been presented is an outline of an SUð2Þ � SUð2Þ electroweak

theory that can give rise to the non-Abelian Oð3Þb theory of quantum electro-

dynamics on the physical vacuum. The details of the fermions and their masses

has yet to be worked through, as well as the mass of the Að3Þ boson. This vector

boson as well as the additional fermions should be observable within the 10-Tev

range of energy. This may be accessible by the CERN Large Hadron Collider in

the near future.

The principal purpose here has been to demonstrate what sort of electroweak

interaction physics may be required for the existence of an Oð3Þb theory of

quantum electrodynamics on the low-energy physical vacuum. This demon-

strates that an extended standard model of electroweak interactions can support

such a theory with the addition of new physics at high energy.

IX. DUALITY IN GRAND UNIFIED FIELD
THEORY, AND LEP1 DATA

The preceding construction indicates that the electromagnetic and weak inter-

actions may be dual-field theories. If the preceding construction is experimen-

tally verified, then this would be the first empirical indication that the universe is
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indeed dual according to a theory along the lines of Olive–Montenen [ 11–13].

Within this theory there are coupling constants that have inverse relationships, or

convergences at high energy, so that one field is weak and the other is strong at

low energy. In this case the electromagnetic field is comparatively strong, but not

when compared to the nuclear force, and the other is very weak. It may be that

both field theories have coupling constants that are both lowered and diverge at

low energy within a grand unified theory (GUT). The examination of this

electroweak theory within such a construction has not been been done. Nonethe-

less, the experimental finding of the Að3Þ would bring a tremendous change in our

views on the foundations of physics.

It was recently suggested by Erler and Langacker [19] that an anomaly in Z

decay widths points to the existence of Z 0 bosons. These are predicted to exist

with a mass estimate of 812 GeVþ339
�152 within an SOð10Þ GUT model and a

Higgs mass posited at 145 GeVþ103
�61 . This suggests that a massive neutral boson

predicted by grand unified theories has been detected. Further, variants of string

theories predict the existence of a large number of these neutral massive bosons.

Analyses of the hadronic peak cross section data obtained at LEP1 [20]

implies a small amount of missing invisible width in Z decays. These data imply

an effective number of massless neutrinos, N ¼ 2:985� 0:008, which is below

the prediction of 3 standard neutrinos by the standard model of electroweak

interactions. The weak charge QW in atomic parity violation can be interpreted

as a measurement of the S parameter. This indicates a new QW ¼ �72:06� 0:44

is found to be above the standard model prediction. This effect is interpreted as

due to the occurrence of the Z 0 particle, which will be refered to as the Zg

particle.

SOð10Þ has the six roots ai; i ¼ 1; . . . ; 6. The angle between the connected

roots are all 120�, where the roots a3; a4 are connected to each other and two

other roots. The Dynkin diagram is illustrated below:

α1

α2

α3

α6

α4

α5

Figure 1. Extended Dynkin diagram for SO(10).
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The decomposition of SOð10Þ ! SUð5Þ � Uð1Þ is performed by removing

the circles representing the roots a1;2;5;6 connected by a single branch. The

remaining connected graph describes the SUð5Þ group. However, by removing

the circle a4 connected by three branches forces SOð10Þ to decompose into

SUð2Þ � SUð2Þ � SUð4Þ. Here we have an SUð2Þ and a mirror SUð2Þ that

describe opposite-handed chiral gauge fields, plus an SUð4Þ gauge field. The

chiral fields are precisely the sort of electroweak structure above and proposed

in Ref. 15. Presumably since SUð4Þ can be represented by a 4 that is 3� 1 and �4
as �3� 1, we can decompose this into SUð3Þ � Uð1Þ. Further, the neutrino short

fall is a signature of the opposite chiralities of the two ‘‘mirrored’’ SU(2) gauge

fields [15].

The SUð2Þ � SUð2Þ ! SUð2Þ � Oð3Þb predicts the occurrence of a massive

photon. So it is possible that these data could corroborate the extended standard

model that expands the electromagnetic sector of the theory. What we really

understand empirically is QCD and electroweak standard model, and we may

have some idea about quantum gravity for at least we do have general relativity

and quantum mechanics. This leads to the strange situation where we have

reasonable data on low-TeV range physics and potential ideas about quantum

gravity at 1019 GeV, with a void of greater ignorance in between. However,

these data and analyses suggest theoretical information about GUTs and cast

some light on this energy region.

These experimental data do suggest that non-Abelian electrodynamics is

tentatively a valid theory, at least as an extended theory that predicts

nonHamiltonian vacuum symmetries. It also suggests that at high energy,

electrodynamics and the weak interactions are dual-field theories. This duality

would then exist at energies that may be probed in the TeV range of energy. In

order to completely verify that this is the case experiments at the TeV range

need to be performed where the Zg and Higgs boson can be directly produced.

This leaves open the question about the nuclear interaction. It is tempting to

conjecture that there is a dual field theory to the SUð3Þ nuclear interaction or

quantum chromodynamics (QCD). It is easy to presume that such a construction

would proceed in a manner outlined above with the chiral SUð2Þ � SUð2Þ
electroweak field theory. This would then imply that there exists an additional

weak field in nature. If the field theory is similar in construction, then there may

exist some massive particle with weak coupling. It would then be tempting to

pursue calculations to predict the existence of such particles. However, it must

be stressed that this is rather speculative and has speculative implications for the

foundations of physics.

It is tempting to think that there may be a generalized SUð3Þ � SUð3Þ type of

theory for the strong interactions. As in the abovementiond SOð10Þ theory, we

see that the nuclear interactions are embedded in an SU(4) theory. This would

mean that there exist chiral colored gluons associated with QCD. This can most
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easily be seen if the Uð1Þ group associated with QCD according to SUð4Þ ¼
SUð3Þ � Uð1Þ. The Uð1Þ group describes local phase changes according to

c! eifc ð50Þ

We may assign this Uð1Þ group to a chiral transformation, similar to a G parity

operator, according to

c! eifg5c ð51Þ

The Dirac Lagrangian would then assume the form

L ¼ 1

2
ð�cð1þ g5ÞgmqmcÞ ð52Þ

where at high energies, before the Higgs field has assigned masses to the quarks

through Yukawa couplings, the QCD sector would be chiral invariant. Once the

quarks acquire mass, there is chiral breaking. One may then have a field where

the dominant amplitudes favor vector gluons, but where there is a small

chromochiral amplitude. This would also mean that quarks would exhibit a small

chiral breaking. Further, if the coupling constants for the chiral component of the

chromofield are very weak then we have in effect a duality within QCD.

It is then apparent that the extension of electromagnetism to a higher symmetry

group, such as SUð2Þ at higher energy will have implications for the spectra of

elementary particles at high energy. In this way, even if electromagnetism at low

energy fails to demonstrate a Bð3Þ field, the predictions of an extended electro-

magnetism may either be demonstrated or the theory falsified.

X. QUANTUM ELECTRODYNAMICS

In this section we discuss the nonrelativistic Oð3Þb quantum electrodynamics.

This discussion covers the basic physics of Uð1Þ electrodynamics and leads into

a discussion of nonrelativistic Oð3Þb quantum electrodynamics. This discussion

will introduce the quantum picture of the interaction between a fermion and the

electromagnetic field with the Bð3Þ magnetic field. Here it is demonstrated that

the existence of the Bð3Þ field implies photon–photon interactions. In nonrela-

tivistic quantum electrodynamics this leads to nonlinear wave equations. Some

presentation is given on relativistic quantum electrodynamics and the occurrence

of Feynman diagrams that emerge from the Bð3Þ are demonstrated to lead to new

subtle corrections. Numerical results with the interaction of a fermion, identical

in form to a 2-state atom, with photons in a cavity are discussed. This concludes

with a demonstration of the Lamb shift and renormalizability.

One of the oldest subjects of physical science is electrodynamics. The study

has its early origins in the study of optics by Willebrord Snellius and the studies
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of magnetism by William Gilbert in the sixteenth century [1]. It took nearly

three centuries for the theory of classical electromagnetism to reach fruition

with Maxwell [2]. This grand synthesis at first appeared to solve the most

fundamental questions of the day, but an historical retrospective shows that it

posed as many questions as it solved. The resolutions to these problems were

found in the theory of special relativity and in quantum theory. The first of these

was an answer to the problem of what is the speed of an electromagnetic wave

on any given reference frame, and the second was a resolution to the blackbody

radiation problem. The latter solution advanced by Planck assumed that light

existed in discrete packets of energy that were emitted and absorbed [3]. This

initiated the study of the interaction between quantized electromagnetic waves

and matter with discrete quantized energy levels. This theory is called quantum

electrodynamics.

The formalism of quantum electrodynamics may appear arcane to the

uninitiated, but in reality it is based on rather simple concepts. The first of these

is that the radiation field is described by a set of harmonic oscillators. The

harmonic oscillator is essentially a spring loaded with a mass or a pendulum that

swings through a small angle. The pendulum has an old history with physics

that began with Galileo. Early in the formalism of quantum mechanics this was

a system examined and quantized. An analysis with the Schrödinger wave

equation leads to some complexities with recurrence relations and Hermite

polynomials. However, with the Heisenberg formalism the quantum theory of

the harmonics oscillator reduces to a simple model with evenly spaced states

that have an associated energy nþ 1
2

� �
�ho. Here the number n corresponds to the

number of photons with angular frequency o ¼ ck in the system. For n ¼ 0, we

see that the absence of photons predicts that there is still an energy associated

with the vacuum. This nonzero value for the ground state of the harmonic

oscillator has been a source of controversy as well as profound physical insight.

A second assumption that is often made is that these photons exist within a

cavity. This allows for a simplification of the meaning to counting modes. The

third concept is that atoms that interact with these photons also have energy

levels. The simplest example would be atoms with two states. Here an atom that

absorbs a photon can only do so by changing its internal state from the lower

state to the excited state, and an atom can emit a photon only by changing its

internal state from the excited state to the lower state. These atomic interactions

with the electromagnetic field will change the photon number by �1.

How does one proceed to take the classical theory of electromagnetism, or

Maxwell’s equations, and cast them in a quantum mechanical context? It is best

to start with the definitions of the electric and magnetic fields

E ¼ �rf� 1

c

qA

qt
ð53Þ

424 lawrence b. crowell



and

B ¼ r� A ð54Þ

The quantity A appears in these equations and is the vector potential of

electromagnetic theory. In a very elementary discussion of the static electric field

we are introduced to the theory of Coulomb. It is demonstrated that the electric

field can be written as the gradient of a scalar potential E ¼ �rf;f ¼ kq=r. It

is also demonstrated that the addition of a constant term to this potential leaves

the electric field invariant. Where you choose to set the potential to zero is purely

arbitrary. In order to describe a time-varying electric field a time dependent

vector potential must be introduced A. If one takes any scalar function w and

uses it in the substitutions

A0 ¼ A� krw; k ¼ constant ð55Þ

f0 ¼ fþ g
qw
qt

; g ¼ constant ð56Þ

it is easy to demonstrate that the electric and magnetic fields are left invariant.

This means that the analyst can choose the form of the vector potential in an

arbitrary fashion. This is defined as a choice of gauge that is described by either

writing an explicit form for the vector potential or by writing an auxiliary

differential equation. As an example we may then choose

Aðr; tÞ ¼ A0eexpðiðk � r� otÞÞ
f ¼ 0

ð57Þ

which is equivalent to stating that r � A ¼ 0. It is then fitting that the Maxwell’s

equations are presented, as they are invariant under all possible gauge

transformations

r�H ¼ jþ qD

qt
; r� E ¼ � qB

qt

r � D ¼ r; r � B ¼ 0

D ¼ E0Eþ P ¼ EE; B ¼ m0ðHþMÞ ¼ mH

ð58Þ

The connection to quantum theory is made with the recognition that this

transformation changes the phase of a wave function of a particle that interacts

with the electromagnetic field:

c! e�iwc ð59Þ
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The equation that describes the interaction of a nonrelativistic electron with the

electromagnetic field is the Pauli equation

i�h
qc
qt
¼ 1

2m
s � p� e

c
A

� �� �
s � p� e

c
A

� �� �
cþ efc ð60Þ

where the jAj2 potential term is dropped in Uð1Þ electrodynamics. Now consider

this equation under the phase shift c! e�iwc:

rc ¼ rðe�iwcÞ ¼ e�iwrc� irweiwc

¼ e�iwðr � irwÞc
ð61Þ

This means that the generalized momentum operator is

s � p� e

c
A

� �� �
c0 ! eiw s � p� �hrw� e

c
A

� �� �
c ð62Þ

which recovers the preceding gauge transformations for A as A ! A� ðe=cÞrw,

rendering the quantity in Eq. (62) is gauge-invariant.

We have our first connection between quantum mechanics and electro-

magnetism—a local phase shift in a wavefunction is coexistent with a local

gauge transformation in the vector and scalar potential for the electromagnetic

field. So far nothing has been changed with the formal description of the electric

and magnetic field. This is good news, for this means that the electromagnetic

field can be described by the classical equations of Maxwell. This can be stated

that the probability amplitude for the absorption or emission of a photon by an

atom is equal to the amplitude given by the absorption and emission of an

electromagnetic wave described by the classical electrodynamics of Maxwell’s

equations. This statement must be accompanied by the stipulation that the

classical wave is normalized. Then energy density of the wave is �ho times the

probability per unit volume for the occurrence of the photon, and the classical

wave is broken into two complex components e�iot and eiot that represent the

phase of an absorbed and emitted photon. These phases will, by the first

stipulation, be multiplied by the appropriate probability amplitudes for

absorption and emission. This sets us up for an examination of the semiclassical

theory of radiation and its interaction with quantized atoms.

We know that the electromagnetic field is described within a box. This means

that the number of states per unit volume is dependent on the number of discrete

modes per volume jkj2ð2pÞ3�jkj. This can easily be carried over to the

continuous version if we let the wall of the cavity separate to arbitrary distances.

The density of states is then k2ð2pcÞ3ðdk d�Þ=�hdo. This describes the density

of states that are available for an atom to interact with. We then have that if we
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have an atom in the state ci that it may then enter into the state cf , with

respective energies Ei and Ef . The probability per increment in time is

proportional to the transition probability for this event times the density of

states. Assume that the time over which this transition occurs is far larger than

the periodicity of the electromagnetic field. The transition probability is then

proportional to the modulus square of the vector potential when averaged over

many periods of the field. This then gives the Fermi Golden Rule [4]:

�

�t
Probci!cf

¼ 2p

�h2
jAj2 o2

ð2pcÞ3

 !
d� ð63Þ

This process is illustrated as

Atom

Ef
Ef − Ei−Ei

h
k 1

2πc

k

Figure 2. The interaction between an electromagnetic field and a twostate atom.

All we need to do is to estimate the average of the potential. To do this, the

form of the electric and magnetic fields are used in the normalized energy

density of the electromagnetic field

E ¼ �ho ¼ 1

8p
ðjEj2 þ jBj2Þ ¼ 1

8p
A2o2

c2
ð64Þ

which gives the averaged potential as A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p�hc2=o

p
this gives us the transition

probability per unit time

�

�t
Probci!cf

¼ 2

p
e2o
�hc

ð65Þ

This gives us an order-of-magnitude estimate for this transition. It assumes that

the potential is absorbed or emitted with no regard to its components eiot and

e�iot. As such, this can be regarded as only a rather crude estimate. However, we

are beginning to make progress in our understanding of how electromagnetic

fields interact quantum-mechanically with atoms.
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Returning to Eq. (2), we express this according to the matrix element Uij that

will be determined explicitly:

�

�t
Probci!cf

¼ 2p

�h2

jUif j2o2

ð2pcÞ3d�
ð66Þ

This matrix element is the expectation of a time-dependent perturbative or

interaction Hamiltonian, V ¼ eiotUðrÞ;

Ufi ¼
ð

d3rc�f Vci ð67Þ

Since the Pauli–Schrödinger equation is of the form i�h qc
qt
¼ Hc, we may write

the wave functions as cif ¼ eiEif t=�hcð0Þif . We then have the transition matrix

element written as,

Ufi ¼
ð

d3rcð0Þ�f UðrÞcð0Þi exp i
ðEf � EiÞt

�h
þ iot

� �
ð68Þ

The initial and final states of the system are Ei � �ho and Ef . We expect that the

interaction occurs where Ei � �ho ¼ Ef . This means that we may set the phase

equal to zero and interactions that are slightly off resonant are ignored, and

Ufi ¼
ð

d3rcð0Þ�f UðrÞcð0Þi ð69Þ

The interaction Hamiltonian can be extracted from the Pauli Hamiltonian

plus a dipole interaction Hamiltonian

H ¼ 1

2m
p� e

c
A

� �2

� e�h

2mc
s � rA

¼ 1

2m
p2 � e

2mc
ðp � Aþ A � pÞ � e�h

2mc
s � rA

þ e2

2mc2
A � Aþ e�h

2mc
s � rA ð70Þ

The second and third terms are the interaction terms that couple the atom, here

modeled as a two-state system with Pauli matrices, to the electromagnetic field.

We consider the momentum to be the operator p ¼ �h
i
r and consider this operator

as not only operating on the vector potential but on the wavefunction. Hence we

find that

r� A ¼ ik� eAeik�r�iot

p � A ¼ A � ðpþ �hkÞ
ð71Þ
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This leads to a more complete form of the interaction Hamiltonian

Ufi ¼ �
e

2mc
A

ð
d3rf�f ð0Þ

�
p � eþ e � p� i�hs � ðk� eÞeik�r�cið0Þ ð72Þ

This result is an exact expression for the transition matrix element. Physically we

have a dipole interaction with the vector potential and a dipole interaction with

the magnetic field modulated by a phase factor. The problem is that this integral

is difficult to compute. An approximation can be invoked. The wavevector has a

magnitude equal to 1=l. The position r is set to the position of an atom and is on

the order of the radius of that atom. Thus K � r ’ a=l. So if the wavelength of the

radiation is much larger than the radius of the atom, which is the case with optical

radiation, we may then invoke the approximation eik�r ’ 1þ ik � r. This is

commonly known as the Born approximation. This first-order term under this

approximation is also seen to vanish in the first two terms as it multiplies the term

p � e. A further simplification occurs, since the term s � ðk� eÞ has only diagonal

entries, and our transition matrix evaluates these over orthogonal states. Hence,

the last term vanishes. We are then left with the simplified variant of the transition

matrix:

Ufi ¼ �
e

mc
A

ð
d3rf�f ð0Þp � efið0Þ

¼ � e

mc
Ahf jpjii � e ð73Þ

The element pfi � e ¼ jpfijcosðyÞ, where y is the angle between these two vectors.

However this angle is p=2 different from the coordinate angle evaluated in

d3r ¼ r2drd sinðyÞdf, so we set y! yþ p=2. This means that the transition

probability per unit time assumes the form

Uif ¼ �
1

�h

e

mc

� �2

A

ðp
0

ð2p

0

jpfi � ej
2
sin3ðyÞr2 dy df ð74Þ

Recognizing that pfi ¼ imorfi and performing, the integration, we find that

�

�t
Pi!j ¼

4

3

e2

�hc

o3

c2
jrfij2 ð75Þ

As a final side note, the term a ¼ e2

�hc
’ 1

137
is the fine-structure constant for the

electromagnetic interaction. This is a dimensionless quantity that gives the

interaction strength between photons and charged particles.

So far we have the transition probability per unit time. What is measured is

the transition probability over a given time as measured from a statistical
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ensemble of identical systems. A quantum operator, Oop evolves in time

according to the Schrödinger equation

i�h
qOop

qt
¼ ½H;Oop� ð76Þ

For the matrix Uij defined at a time t, we have the solution to the Schrödinger

equation with this initial condition;

aijðtÞ ¼ �
i

�h

ðT

0

eiEjt=�hUijðtÞe�iEit=�h dt ð77Þ

The use of the symbol aij is to indicate that this represents the absorption of a

photon by an atom. Further, the matrix UijðtÞ ¼ e�iotUijð0Þ, and when placed

substituted into Eq. (77), we arrive at an expression for aijðtÞ. Now, when aijðtÞ is

multiplied by its complex conjugate, we have

jaijj2 ¼
4 sin2ð�T=2�hÞ

�2
jUijð0Þj2; � ¼ Ei � Ej � �ho ð78Þ

This gives the probability for the absorption of a photon with a frequency o
traveling along a particular angle pair in spherical coordinates. This must then be

integrated over by the solid angle d� and evaluated.

So far considerable progress has been made. We have a fairly reasonable

understanding of how the electromagnetic field interacts with an atom, and have

in hand an expression that gives the transition probability for the absorption and

emission of a photon by an atom. This expression has been demonstrated to be

remarkably accurate in its description of the interaction of light with atomic

structure. Additional features may be included to account for the permutation

symmetry of various photons that interact with an atom. Explicit consideration

may also be given for the probability that the atoms may also emit a photon

once in the excited state. These considerations can be found in many textbooks

on quantum electrodynamics.

What has been presented here is a semiclassical theory of Uð1Þ quantum

electrodynamics. Here the electromagnetic field is treated in a purely classical

manner, but where the electromagnetic potential has been normalized to include

one photon per some unit volume. Here the absorption and emission of a photon

is treated in a purely perturbative manner. Further, the field normalization is

done so that each unit volume contains the equivalent of n photons and that the

energy is computed accordingly. However, this is not a complete theory, for it is

known that the transition probability is proportional to nþ 1. So the semi-

classical theory is only appropriate when the number of photons is compa-

ratively large.
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A. The Physical Basis for Non-Abelian Electrodynamics

An initial study of electrodynamics was the practical art of optics and glass-

making. Through the middle ages, optics was a substudy of glassmaking, and

was done by artisans who learned through practical experience. The subject

reached it first measure of academic importance with Willebrord Snellius (1591–

1626). He spent years working on the principles of optics involved with the

process of vision; apparently the need for corrective eyewear was a growing

market, and somebody had to find a complete understanding of how optics could

assist the physician. In his treatise Di Optrice he laid down the first law of optical

refraction. He recognized that the angle of incidence, with respect to the normal

of a material surface, that a light ray hit a medium was related to the angle at

which that light ray went through the transparent medium. So the paths of light

outside and outside the glass with respect to the normal were related to each other

by a constant later called the index of refraction. This ushered in the law of sines.

He further went on to derive equations for curved thin lenses, based on this

principle that were able to determine the position at which an image would form.

This is the elementary lens maker’s formula learned in first-year physics. This

physics was extended by Newton when he demonstrated that the index of

refraction may have a dependency on the color of light. In this manner light could

be split by a prism.

The theory of light reached its second step forward with Huygens, who

demonstrated that light was a wave that obeyed various diffractive properties

[5]. Of course, there later came Faraday and then Maxwell, who brought in the

complete theory of classical electromagnetism. The wave aspect of light tended

to eclipse the older geometric optical view of light intellectually. However, the

art of geometric optics grew into a very refined art. Before the advent of

computers, it required dozens or hundreds of human ‘‘computers’’ to complete

the calculations required to characterize a particular optical system of lenses.

The issue of refractive optics appeared to be in a sort of state of completion and

was a matter of ‘‘simple calculation’’ that could be done by a machine.

Reality is not so simple. Suppose that the index of refraction depends on the

intensity of the light, or in a modern setting the electromagnetic fields, that pass

through it. Suddenly we are confronted with having to revise our notion of the

index of refraction; it is not necessarily a constant. Snellius had to compute the

paths of rays that passed through a thin lens by considering the geometry in

the curvature of a lens. Today nonlinear optics is a study that has to consider the

variable index of refraction that was dependent on the field strengths of the

optical radiation being transmitted. This has become an important issue in

the modern world. Optical fibers that transmit information as pulses of light are

developed to transmit shorter pulses so that the date transmission rate can be

increased. An optical fiber with a constant index of refraction has serious
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limitations. The radiation transmitted will reflect off the sides of the fiber, but at

various angles. There will then be a spread in the optical pulse as it travels down

the optical fiber since various photons will be reflected at slightly different

angles. However, an optical fiber that has an index of refraction that is dependent

on the field strength will tend to ‘‘bunch’’ these photons into a single stream and

thus eliminate this unfortunate problem.

The laws of electromagnetism are based on the theory of gauge fields. The

electromagnetic vector potential defines components of a gauge connection 1-

form. This gauge connection defines a field strength 2-form:

dA ¼ F ð79Þ

In general this emerges because the differential operator d is gauge-covariant

when it acts on a section of the bundle, or physically when it acts on a wave

function d ! dþ qA. The application of this covariant differential operator

twice on a function gives

ðdþ qAÞ ^ ðdþ qAÞc ¼ D ^Dc

¼ qðdAþ qA ^ AÞc ð80Þ

If the gauge connection is Abelian, then the term eA ^ A vanishes by the

antisymmetry of the wedge product. This means that D2c ¼ qdAc. This is an

example of an Abelian gauge theory, defined according to that vanishing of

commutators between gauge potentials.

In general gauge theories are such that there is more that one particular gauge

potential or connection coefficient Aa, where a is an index that spans a Lie

algebra, such as SUð2Þ and SUð3Þ, so that qAa ^ Ab is in general nonvanishing.

The gauge theories for the weak and nuclear interactions are such non-Abelian

gauge theories. Physically the occurrence of these antisymmetric terms means

that the gauge vector boson, the analog of the photon, carries a charge associated

with the field sources. This causes the field lines, analogous to the electric and

magnetic field lines, to attract each other. Thus the field lines between two

particles, that are themselves sources of the field, tend to clump into a tube-like

structure. If the coupling constant, the term analogous to the electric charge, is

very large, this tube becomes a very tightly bound structure. In the case of

quantum chromodynamics (QCD), mesons consist of two quarks as sources of

the field lines in such a flux tube of field lines, and baryons consist of three

quarks that sit in a bubble or bag of such self confined field lines.

It is, in general, difficult to obtain real solutions from such field theories.

These difficulties have two sources. The first is that in QCD you have three

quarks in the bubble, and such 3-body problems are not exactly solvable. This is
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further compounded by the fact that the virtual quanta are themselves carriers of

the various charges and so one essentially has a many-body problem as one

computes higher-order perturbative Feynman diagrams. The second is that if

the coupling constant is strong then the perturbation terms in the expansion

contribute equally to all orders. This means that in general one has to compute

an infinite number of such perturbation terms to determine anything about the

theory. Fortunately, in the case of QCD a process called quark antiscreening

implies that at sufficiently high energies the quarks behave more freely as the

coupling constant is renormalized to a smaller value and this problem is

ameliorated. This does mean that nobody knows precisely how to compute the

problem of a proton in free space with no interactions with other particles.

Lattice gauge methods have been written as algorithms and run on computers

and approximate answers have been garnered.

Electromagnetism is considered to be an Abelian gauge theory. This is most

often expressed according to Maxwell’s equations. This theory is remarkably

successful, but is called into question when one has nonlinear optical and

electromagnetic systems. This occurs when electric permitivities are themselves

a function of the electric field. So this term, most often treated as a constant,

contributes some term that is a function of the electric field to some power

greater than one. It is standard to consider these effects as phenomenology

associated with atoms within the medium. However, one can view the

occurrence of these atoms as effectively changing the electromagnetic vacuum,

and so this physics is ultimately electromagnetic. These nonlinear terms then

have the appearance as the magnitude of the elements of the 2-form qA ^ A.

This suggests that electromagnetism may in fact have a deeper non-Abelian

structure. In what follows it is assumed that the Bð3Þ field exists. It is likely that

the Bð3Þ field exists only as a manifestation of nonlinear optics. This is an aspect

of non-Abelian electrodynamics that has been quite under studied. Later, a

discussion of squeezed state operators in connection to non-Abelian electro-

dynamics is mentioned. However, its role in nonlinear optics is an open topic

for work.

An illustration of this fact comes from the nonlinear Schrödinger

equation. This equation describes an electromagnetic wave in a nonlinear

medium, where the dispersive effects of the wave in that medium are

compensated for by a refocusing property of that nonlinear medium. The

result is that this electromagnetic wave is a soliton. Suppose that we have a

Fabry–Perot cavity of infinite extend in the x direction that is pumped with a

laser [6,7]. The modes allowed in that cavity can be expanded in a Fourier series

as follows:

Eðx; y; z; tÞ ¼
X
m;n

Eðx; tÞfmnðy; zÞe�io0t þ H:C: ð81Þ
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The fundamental wave equation to emerge from Maxwell’s equation is

q2
x �

1

c2
q2

t

� �
Eðx; tÞ ¼ 1

c2
qtPðx; tÞ ð82Þ

If we input the mode expansion into this wave equation we arrive at the wave

equation

iqtE ¼ �
c

2k0

q2
xE� o0Pðx; tÞ

þ inhomogenous driving and dissipation terms ð83Þ

We will ignore these inhomogenous terms. The polarization vector is going to

have contributions from the linear electric susceptibility and the nonlinear

electric susceptibility due to the nonlinear response of the atoms:

P ¼ wlEðx; tÞ þ wnljEj2E ð84Þ

With an appropriate redefinition of constants we arrive at the following wave

equation for the propagation of field E:

iqtE ¼ �
c

2k0

q2
xE� o0njEj2E ð85Þ

The solution to this cubic Schrödinger equation is E ¼ E0 sech ðkxÞeiot, where

2k ¼ k0

ffiffiffiffiffiffiffiffiffiffiffi
njEj2

p
, which is a soliton wave.

It is noted that the derivation of this equation involves the phenomenological

concept of the nonlinear response of the atoms. This equation is derived on the

basis of the standard Abelian theory of electromagnetism, which is linear, and

where the nonlinearity obtains by imposing nonlinear material responses. The

physical underpinnings of these nonlinearities are not completely described.

This soliton wave corresponds to diphotons, or photon bunches.

It is then advanced that electromagnetism is expanded into a theory with

three vector potentials and the conjugate product that determines an additional

magnetic field,

Bð3Þ ¼ ie

�h
Að1Þ � Að2Þ ð86Þ

where Að1Þ is the complex vector potential field and Að2Þ ¼ Að1Þ� of the

electromagnetic field. This additional magnetic field Bð3Þ has been described

through the physics of fermion resonance, and with empirical evidence for this

magnetic field as given by the optical conjugate product Að1Þ � Að2Þ [8]. This
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magnetic field may enter into Dirac’s theory of the electron so that the interaction

of a fermion with this field is

Eint ¼ �
e�h

2m
sð3Þ � Bð3Þ ð87Þ

A complete derivation involves a complete expansion of the Pauli Hamiltonian

and the recognition that for the two complexified vector potentials Að1Þ and Að2Þ

that one has the term

ðs � AÞ2 ¼ A � A� þ is � A� A� ð88Þ

This ansatz tends to conform to various data, and, as will be later pointed out,

gives predictions of various nonlinear optical effects as well as vortex effects and

photon bunching.

This 3-magnetic field has some striking effects. It is easy to see that there are

the complex valued electric fields Eð1;2Þ ¼ qA
qt

ð1;2Þ ¼ oAð1;2Þ So we then see that

the magnitude of the optical conjugate product is then I=o2 for I ¼ jA� A�j
defined as the intensity of electromagnetic radiation or optical beam. An exact

expression for this magnetic field is then seen to be

Bð3Þ ¼ em0c

�h

I

o2
eð3Þ ¼ 5:723� 1017 I

o2
eð3Þ ð89Þ

where the constants are evaluated with SI unites. This has some rather aggregious

consequences. For visible light this effect is quite small. For a beam of 10 W/cm2

at the visible wavelength l ¼ 500 nm the magnetic field is on the order of a

nanotesla. However, for a 10-MHz radiofrequency wave this magnetic field is

14.5 MT (megatesla). This apparently is a way of generating rather large

magnetic fields without the need of massive electromagnets.

The occurrence of the nonlinear Schrödinger equation is then a fairly generic

result. For the Að1Þ potential we have the magnetic field that is easily seen to be

Bð1Þ ¼ r � Að1Þ þ ie

�h
ðAð2Þ þ Að3ÞÞ � Að1Þ ð90Þ

The last term vanishes since the Að3Þ photon is found to be very massive in an

examination of this approach to electromagnetism embedded in an extended

standard model. These issues will be discussed later. This photon decays away

and so the Að3Þ potential is very short ranged ’ 10�17 cm and is of no

consequence to quantum optics. Let r� Að1Þ ¼ B
ð1Þ
0 . Now compute Maxwell’s

equation, where D ¼ rþ ðie=�hÞðAð1Þ þ Að2ÞÞ is a covariant form of r

D� B1 ¼ r� B
ð1Þ
0 þ ie

�h
ðAð1Þ þ Að2ÞÞ � B

ð1Þ
0 ð91Þ
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where r� Bð3Þ ¼ 0: Now compute D�D� Bð1Þ to find the covariant wave

equation:

D�D� Bð1Þ ¼ r2B
ð1Þ
0 þ e

�h

� �2

ðjAð1Þj2 þ jAð2Þj2ÞBð1Þ0 ð92Þ

Now use jAð1;2Þj ¼ ð1=kÞjBð1;2Þj to find

D�D� Bð1Þ ¼ r2B
ð1Þ
0 þ 2

e

k�h

� �2

jBð1Þ0 j
2
B
ð1Þ
0 ð93Þ

Now D�D� Bð1Þ ¼ ð1=c2ÞD2E
ð1Þ
0 =qt2, which means that we arrive at the

nonlinear equation

r2Bð1Þ þ 2
e

k�h

� �2

jBð1Þj2Bð1Þ ¼ Em
D2Eð1Þ

qt2
ð94Þ

Now we write the same Fourier of expansion for the electric field and write

everything according to the magnetic field intensity H ¼ 1
m B, and we find with

the case that ðe=�hÞA0 ’ o the amplitude fixed to the wavelength as is the case for

some solitons, for Gaussian packets, we arrive at the same cubic Schrödinger

equation:

c

k
q2

xH
ð1Þ þ 2

em
k�h

� �2

ojHð1Þj2Hð1Þ ¼ � i

c

qHð1Þ

qt
ð95Þ

The solution to this equation is A sech ðkxÞeiot, which is a soliton solution. In the

case where we have nonlinear optics and the occurrence of the cyclic electro-

magnetic fields, the Maxwell equations for the propagation of an electromagnetic

wave are covariant and then give rise to soliton wave equations.

The difference this derivation has in comparison to the previous derivation of

the nonlinear Schrödinger equation is that the nonlinearity is more funda-

mentally due to the non-Abelian wavefunction rather than from material

coefficients. In effect these material coefficients and phenomenology behave as

they do because the variable index of refraction is associated with non-Abelian

electrodynamics. Ultimately these two views will merge, for the mechanisms on

how photons interact with atoms and molecules will give a more complete

picture on how non-Abelian electrodynamics participates in these processes.

However, at this stage we can see that we obtain nonlinear terms from a non-

Abelian electrodynamics that is fundamentally nonlinear. This is in contrast to

the phenomenological approach that imposes these nonlinearities onto a

fundamentally linear theory of electrodynamics.
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B. The Quantized U(1)–O(3)b Electromagnetic Field

The electromagnetic field is quantized as a set of harmonic oscillators.

Maxwell’s equations, and the resulting wave equations, are described by partial

differential equations that formally have an infinite number of degrees of

freedom. Physically this means that the electromagnetic field is described by an

infinite number of harmonic oscillators, where one sits at every point in space.

The modes of the electromagnetic field are then completely described by this

ensemble of harmonic oscillators.

The harmonic oscillator has a long history in physics. Galileo noticed,

starting as a youth who watched a chandelier swing in the cathedral at Pisa, that

a mass attached to a lightweight string executed swings through a small angle

with a period that was independent of the mass. This oscillation was completely

understood with Newton’s laws by Robert Hooke. The Hamiltonian for this one

dimensional system is

H ¼ 1

2
ðp2 þ o2q2Þ ð96Þ

where p and q are the momentum and position variables of the system. Quantum-

mechanically, these variables are replaced by quantum operators p ! p̂ and

q ! q̂. These variables are combined to form ladder operators known as the

‘‘lowering’’ and ‘‘raising operators,’’ more often called absorption or annihila-

tion and emission or creation operators:

a ¼ 1ffiffiffiffiffiffiffiffiffi
2�ho

p ðoq̂þ ip̂Þ; ay ¼ 1ffiffiffiffiffiffiffiffiffi
2�ho

p ðoq̂� ip̂Þ ð97Þ

These operators allow for the description of the quantum harmonic oscillator that

is very parsimonious. The quantum harmonic oscillator has evenly spaced

eigenstates, and the state of the system may be changed according to

ajni ¼
ffiffiffi
n

p
jn� 1i; ayjni ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
jnþ 1i ð98Þ

It is easy to see that the number operator is written as N ¼ aya that are diagonal

with respect to the eigenvalues Njni ¼ njni and also define the energy levels for

the system since the Hamiltonian is

H ¼ �ho N þ 1

2

� �
¼ �ho ayaþ 1

2

� �
¼ �ho nþ 1

2

� �
ð99Þ

A curious aspect of this is that the n ¼ 0 state is one that has a nonzero

energy 1
2
�ho.
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Now consider an ensemble of harmonic oscillators in three dimensions. Each

of these harmonic oscillators has a different frequency o ¼ jkjc, their own

Hamiltonian and raising and lowering operators

ak ¼
1ffiffiffiffiffiffiffiffiffi
2�ho

p ðoq̂k þ ip̂kÞ; a
y
k ¼

1ffiffiffiffiffiffiffiffiffi
2�ho

p ðoq̂k � ip̂kÞ ð100Þ

We then have a description of an infinite number of harmonic oscillators with

every possible mode at every point in space. The electromagnetic field is

quantized in a cavity with a volume V by defining annihilation and creation

operators by redefining these raising and lower operators as

ak !
ffiffiffiffiffiffiffiffiffiffi
�h

4E0V

r
ak; a

y
k !

ffiffiffiffiffiffiffiffiffiffi
�h

4E0V

r
a
y
k ð101Þ

This allows for the expansion of the vector potential into spacial eigenmodes

A ¼ i
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2oEV

r
eðayke�ik�r � akeik�rÞ ð102Þ

Here E is the electric permittivity and o is the frequency of the eigenmodes. The

Abelian magnetic field is then defined by

B ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2oEV

r
k� eðayke�ik�r þ akeik�rÞ ð103Þ

and the electric field is defined by

E ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2oEV

r
eoðayke�ik�r þ akeik�rÞ ð104Þ

This is the Abelian theory of quantum electrodynamics as a free field uncoupled

to charged particles and fermions.

Since there is a non-Abelian nature to this theory, we return to the

nonrelativistic equation that describes the interaction of a fermion with the

electromagnetic field. The Pauli Hamiltonian is modified with the addition of a

Bð3Þ interaction term [9]

HBð3Þ ¼ H þ e2

2m
ðs � AÞðs � A�Þ ð105Þ
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which may be rewritten according to the algebra of Pauli matrics

HBð3Þ ¼
e2

2m
ðA � Aþ is � A� A�Þ ð106Þ

If we write this interaction Hamiltonian according to creation and annihilation

operators, we find that this term can be written as

HB3
int
¼ e2

4m�hE0V

X
k

ok
�1Ia

y
kak þ

X
q

oq
�1sð3Þðayqak�q þ aqa

y
k�qÞ

 !
ð107Þ

This interaction Hamiltonian describes the exchange of a photon that results in

the change of the spin of the fermion. This process is equivalent to the absorption

of a photon in the atomic state transition i ! j and the absorption of a photon in

the atomic transition j ! i.

Normally one does not worry about the free Hamiltonian term 1
2

B2, but in the

case of the Bð3Þ field, we cannot afford this luxury. This term is written according

to the field operators as

HBð3Þ ¼
e

2oqE0V

X
k;k0;q

ðaykþqaka
y
k0�qak0 Þ ð108Þ

This term is crucial to the concept of non-Abelian electrodynamics. Essentially,

it describes the interaction between four photons. It describes the absorption of

photons with the modes k þ q and k0 � q and the emission of photons with the

modes k and k0. Physically this is a process where two photons mutually interact

and exchange momenta. A classical analog of this process is to think of two

photons as possessing Bð3Þ fields that are mutually coupled. This is one aspect of

non-Abelian electrodynamics that is different from standard electrodynamics.

An analogous situation occurs with gluons in quantum chromodynamics. Here

gluballs can exist that are self-bound states of gluons that are mutually inter-

acting. The non-Abelian electrodynamic effect is far simpler since there is no

issue of confinement, but the situation is one where photons can interact. This

effect is what is a part of the jHj2H term that counters the dispersive effects of

an electromagnetic wave as governed by the nonlinear or cubic Schrödinger

equation. This is a form of self-focusing or photon bunching that results from this

form of mutual interaction between photons.

This is the nature of non-Abelian electrodynamics in a nonrelativistic regime.

It leads to various predictions that appear to obtain for electromagnetic fields in

media. As yet there have not been the appearance of these types of effects for

fields in a vacuum. Just why it is that nonlinear optics appears to be associated
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with the B(3) field is unclear. A medium acts as a renormalized vacuum, and it is

possible that the appearance of atoms with charge separations acts to cause the

appearance of the B(3) field. It appears that the B(3) field vanishes in vacua, but it

may manifest itself in various media. On the other hand this could just be an

accident of nature. In this case the B(3) field is simply a mathematical manifesta-

tion that permits the calculation of various nonlinear effects.

C. Relativistic O(3)b QED

Non-Abelian electrodynamics has been presented in considerable detail in a

nonrelativistic setting. However, all gauge fields exist in spacetime and thus

exhibits Poincaré transformation. In flat spacetime these transformations are

global symmetries that act to transform the electric and magnetic components of

a gauge field into each other. The same is the case for non-Abelian electro-

dynamics. Further, the electromagnetic vector potential is written according to

absorption and emission operators that act on element of a Fock space of states. It

is then reasonable to require that the theory be treated in a manifestly Lorentz

covariant manner.

The theory is defined by the Lagrangian density

L ¼ � 1

4
Fa

mnFamn ð109Þ

with the stress–energy tensor components defined according to the gauge-

covariant derivative

Fa
mn ¼ qnAa

m � qmAa
n þ igEabc½Ab

n;Ac
m� ð110Þ

where the spacial components of the 4-vector potential are Hermition Aay
i ¼ Aa

i,

i 2 f1; 2; 3g, and the temporal parts are anti-Hermitian Aay
0 ¼ �Aa

0. Here g is

the coupling constant for the gauge theory. The upper Latin index refers to the

internal degrees associated with the gauge theory. The variational calculus with

this Lagrangian density leads to the field equation

qmFamn þ igEabcAb
mFcmn ¼ 0 ð111Þ

From the field stress tensor components, we may write the electric and

magnetic field components as

Ea
i ¼ Fa

i0 ¼ � _A
a

i �ri A
a

0 þ igEabcAb
0 Ac

i ð112aÞ

Ek
ij B

a
k ¼ ri A

a
j �rj A

a
i þ igEabcAb

i A
c

j ð112bÞ
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The components of the vector potential are then expanded in a Fourier series of

modes with creation and annihilation operators that act on the Fock space of

states. If this is done according to a box normalization, in a volume V , with

periodic boundary conditions, we have

Aa
iðr; tÞ ¼

X
k

1ffiffiffiffiffiffiffiffiffi
2oV

p
�
eia

aðkÞeik�r þ eia
ayðkÞe�ik�r� ð113Þ

Here we are considering only the transverse components of the vector potential.

With these vector potential components written according to these operators, the

electric and magnetic fields within Oð3Þb electrodynamics are then

Ea
i ¼

X
k

1ffiffiffiffiffiffiffiffiffi
2oV

p jkj
c

eia
aðkÞeik�r þ jkj

c
eia

ayðkÞe�ik�r
� �

Ek
ijB

a
k ¼

X
k

1ffiffiffiffiffiffiffiffiffi
2oV

p ðk½ jei�a
aðkÞeik�r þ k½ jei�eia

ayðkÞe�ik�rÞ ð114Þ

þ igEabc
X
kk0

e½ jei�ðabðkÞeik�r þ abyðkÞe�ik�rÞðacðk0Þeik0 �r þ acyðkÞ0e�ik0 �rÞ

It is then apparent that the Hamiltonian for this non-Abelian field theory is going

to contain quartic terms in addition to the quadratic terms seen in abelian field

theory, such as Uð1Þ electromagnetism.

If we consider non-Abelian electromagnetism, we have a situation where the

vector potential component A3
i vanish and where Að1Þi ¼ Að2Þ�i. The annulment

of the components A3
i has been studied in the context of the unification of non-

Abelian electromagnetism and weak interactions, where on the physical vacuum

of the broken symmetry SUð2Þ � SUð2Þ the vector boson corresponding to A3
i is

very massive and vanishes on low-energy scales. This means that the 3-compo-

nent of the magnetic field is then

B3 ¼ i
e

�h
A1 � A2 ð115Þ

It is apparent that for A3
i ¼ 0, the electric field component does not contain a

product of potential terms. In general the vanishing of this term occurs if there

are no longitudinal electric field components. Within the framework of most

quantum electrodynamic, or quantum optical, calculations this is often the case.

The Bð3Þ field then is a Fourier sum over modes with operators ayk�qaq. The Bð3Þ

field is then directed orthogonal to the plane defined by A1 and A2. The four-

dimensional dual to this term is defined on a time-like surface that has the

interpretation, under dyad–vector duality in three dimensions as, as an electric
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field or Eð3Þ. The vanishing of the Eð3Þ can then be seen by the nonexistence of the

raising and lowering operators a3; a3y, where the Bð3Þ exists solely due to the

occurrence of raising and lowering operators that Að1Þ and Að2Þ are expanded

according to. This represents a breakdown of duality in four dimensions and the

requirement that B be a longitudinal field.

This non-Abelian gauge theory satisfies the usual transformation properties.

If M is the base manifold in four dimensions, then the gauge theory is

determined by an internal set of symmetries described by a principal bundle. Let

Ua, where a ¼ 1; 2; . . . ; n, be an atlas of charts on the M. The transitions from

one chart to another is given by gab : Ub ! Ua, where these determine the

transition functions between sections on the principal bundle. The transform

between one section to another is given by

sa ¼ gabsb ¼ eiXabsb ð116Þ

Rn

gαβ = ∅β°∅α
 

∅αUα
 

Uα
 Uβ

 
∅βUβ

∅β

∅α

−1

Figure 3. Transition functions between two charts on a manifold.

From this point we will suppress the chart indices to indicate sections and use

the notation s; s0 for the two charts with gs ¼ s0. Now let the differential operator

d act on s0

ds0 ¼ ðgdsþ sdgÞ ð117Þ

Now define g�1dg as a connection coefficient A on the section s:

ds0 ¼ gðdsþ ig�1dgÞs ð118Þ

Now consider the action of g on ðd þ AÞs which equals ðd þ A0Þs0:

ðd þ A0Þs0 ¼ gðd þ AÞs
¼ gðd þ AÞg�1gs ¼ ðd þ gAg�1 þ gdg�1Þs0 ð119aÞ

This is a fundamental definition for how a gauge connection transforms:

A0 ¼ gAg�1 þ gdg�1 ð119bÞ
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Now we consider the group element g to be defined by algebraic generators

so that g ¼ eiX . Further consider the transformation to be sufficiently small so

that eiX ’ 1þ iX:

A0s0 ¼ ðð1þ iXÞAð1� iXÞ � idXÞs0 ¼ ðAþ i½X;A� � idXÞs0 ð120Þ

If we are working with local gauge transformations where A is flat, we can work

with the pure gauge term ðdgÞd�1 ¼ idX as the gauge connection.

Now to get the fields from this definition, we are given the fact that the fields

are defined to be under a gauge transformation

dA0 ¼ dðgAg�1 þ ðdgÞg�1Þ ð121Þ

From this we find that

dA0 ¼ gðdAþ A ^ AÞg�1 ð122Þ

which means that the fields transform homogenously under local gauge

transformations. Just as the chart indices have been suppressed, so have the

indices for the internal symmetry space.

Now for non-Abelian electromagnetic field theory, we have the 3-Lie index

component of the field, and for the magnetic field Bð3Þ, it equals

B½3� ¼ iA� A� ð123Þ

where this is a component that emerges from the A ^ A term. We are working

here with �h ¼ c ¼ 1. Then under local gauge transformations we will have

Bð3Þ0 ¼ igðA� A�Þg�1 ð124Þ

where g is the group element for the Oð3Þb theory. Then one can go on and write

g ’ 1þ iX and find that

Bð3Þ0 ¼ ið1þ iXÞðA� A�Þð1� iXÞ ¼ iA� A� � ½X; ½A;A��� þ OðX2Þ ð125Þ

This can be written according to Lie derivative, and if X is a generator for a global

gauge transformation, then this double commutator vanishes. We are then left

with

Bð3Þ0 ¼ Bð3Þ � iLXBð3Þ ð126Þ

where the last term is the Lie derivative of Bð3Þ with respect to the variable X,

here parameterized along a path.
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In the case of quantum field theory the section determines the Hilbert space

of states under a certain gauge. This choice of gauge then determines the unitary

representation of the Hilbert space. We may then replace the section with the

fermion field c, which acts on the Fock space of states. It is then apparent that a

gauge transformation Aa
m ! Aa

m þ dAa
m is associated with a unitary transform

of the fermion field c! cþ dc. The unitary transformation of the fermion

may be written according to c0 ¼ Uc where the unitary matrix is represented as

the line integral along a path

U ¼Te
�ig
Ð �

Amdxm ð127Þ

where T is the time-ordering operator that arranges fields in a product in a time-

ordered sequence. The application of the differential operator d on the unitary

matrix gives

dU ¼ �igðAm � A0mÞdxmU ð128Þ

which leads to the result

i

g
UydU � UyðAm � A0mÞdxmU ¼ 0 ð129Þ

This demonstrates the association between the unitary transformation of the

fermion field and the gauge theory.

More work is required to couple the gauge theory to the fermion. We have

the gauge field determined by its Lagrangian density, and the fermion field

determined by the Dirac Lagrangian density

LD ¼ ��cðgmqm þ mÞc ð130Þ

However, these two Lagrangian densities do not couple the two fields together.

This requires that the free-field equation for the gauge field becomes

qmFamn þ igEabcAb
mFcmn ¼ jn ð131Þ

Since this field equation is obtained by the Euler–Lagrange equation the

inhomogenous term is the result of

jn ¼ qL
qAn

ð132Þ

this implies the addition of an interaction Lagrangian density Li ¼ jnAn. The

current term is then determined by the Dirac field and is jn ¼ �cgnc. The subject
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of mass remormalization also requires that an additional interaction term be

included: �cgncdm, where dm is the difference between the physical mass and the

bare mass [3].

The total Lagrangian L ¼LG þLD þLi then involves the interaction

between fermions and the gauge field. The Dirac field will be generically

considered to be the electron and the gauge theory will be considered to be the

non-Abelian electromagnetic field. The theory then describes the interaction

between electrons and photons. A gauge theory involves the conveyance of

momentum form one particle (electron) to another by the virtual creation and

destruction of a vector boson (photon) that couples to the two electrons. The

process can be diagrammatically represented as

Elementary Scattering Process

V1

V2

V4

V3

P3

P4

P2
P1

k

P1 + k = P3

P2 − k = P4

Figure 4. Feynman tree diagram for electron-electron scattering.

The process p1 þ p2 ! p3 þ p4 then involves the conservation of momen-

tum, for there is no creation of any averaged momentum from the virtual

quantum fluctuation. This process can be examined within the Coulomb gauge

r � A ¼ 0. The field equation is then

r � E ¼ �r2A0 ¼ ie�cg0c ¼ er ð133Þ

which has the solution

A0ðr; tÞ ¼ e

ð
d3r

rðr0; tÞ
4pjr� r0j ð134Þ

The amplitude for this simple scattering process consists of the electro-

magnetic Hamiltonian and the interaction process. These two terms produce
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the amplitude

ð�iÞ2e2

2

ð
d4x d4x0TjmAmjnA

n ¼ ð�iÞ2e2

2

ð
d4x d4x0jmGmnðx� x0Þjn ð135Þ

where Gmnðx� x0Þ is the propagator of the field that satisfies

TAmAnGmnðx� x0Þ ¼ �idðr� r0Þ
4pjr� r0j ð136Þ

For the purely transverse field, the spacial components of the propagator are

Gijðr� r0Þ ¼ �i

4p2

ð
d4k

k2 � iE
dij � kikj

k2

� �
eikðr�r0Þ ð137Þ

where k2 ¼ k2 � k2
0. This is seen to be the Fourier transform of the propagator in

momentum space. The temporal components are then seen to be

1

8p3

ð
eik�r

k2
¼ 1

r
ð138Þ

The amplitudes for the process are then evaluated on the initial and final

states of the electrons. This then results in the matrix elements

ð�iÞ2e2

2

ð
d4x d4x0hp2j jmjp1iGmnðx� x0Þhp4j jnjp3i ð139Þ

for the amplitudes. The amplitudes hp2j jmjp1i and hp4j jnjp3i are then represented

as plane waves

hp2jjmjp1i ¼ eiðp1�p2ÞrXm ð140aÞ
hp4jjmjp3i ¼ eiðp3�p4ÞrYm ð140bÞ

where Xm and Ym are independent of the position coordinates. By momentum

conservation we demand that km ¼ p1m � p2m ¼ p4m � p3m. The propagator acts

on these matrix elements to give the amplitude:

ð�iÞ2e2

2

ð
d4x d4x0

�i

k2
XmYm ð141Þ

Finally, this expression can be evaluated for many possible gauges according to

ð�iÞ2e2

2

ð
d4x d4x0

�i

k2

�
XiYi � bX0Y0

�
eik�r ð142Þ
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where for b ¼ 0 this is evaluated in the Feynman gauge, and for b ¼ �1 this is

evaluated in the Landau gauge.

This example, within Uð1Þ electrodynamics can then be seen in the light of

non-Abelian electrodynamics. This may simply be seen by the replacement

Am ! taAa
m, where ta is a structure constant that obeys ½ta; tb� ¼ 2Eabctc. The

time ordered product is written as

TjmAmjnAn ¼ 1

2
Tðfta; tbg þ ½ta; tb�Þ jmAamjnA

bn ð143Þ

where the product of the structure constants is written according to its symmetric

and antisymmetric parts. The physical requirement that A3
m ¼ 0 is then imposed.

From this the symmetric part of the time-ordered product yields the same result

as found in the Uð1Þ case. The antisymmetric part is then easily seen to be

TjmAmjnAn ¼ 1

2
T½ta; tb� jmAamjnAbn ¼ 0 ð144Þ

This means that on the tree level there are no contributions from the Bð3Þ

field.

In order to compute an amplitude contribution from the Bð3Þ field, a process

that is second-order must be considered. This involves a loop diagram of the

form

A1 virtual photon

A2 virtual photon

A1 + A2 photon

Figure 5. Virtual photon loop correlated with B(3) field fluctuation.

The propagator then assumes the form

Gmnðr� r0Þ ¼ a2Ttatbtctdtet f Aa
mðrÞ

�
ð

d4k0

ð2pÞ2
�
Abrðk0ÞAc

sðk0Þ
� ð d4k00

ð2pÞ2
�
Aerðk00ÞAf sðk00Þ

�
Af

n ð145Þ
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where the integrations exists since the vertices tied to the loop do not constrain

momentum conservation. The four fields in the momentum integrals under the

action of the antisymmetric portion of the structure constants contribute to

ð
d4k0

ð2pÞ2
B3

rðk0Þ
ð

d4k00

ð2pÞ2
B3rðk00Þ ð146Þ

This term is then a sum over all possible fluctuations of the Bð3Þ that couple to the

virtual photon coupled to the electrons. This means that the propagator is of the

form

Gmnðr� r0Þ ¼ a2TAa
mðrÞ

ð
d4k0

ð2pÞ2
B3

rðk0Þ
ð

d4k00

ð2pÞ2
B3rðk00ÞÞAf

n

 
ð147Þ

This then contributes the following amplitude:

hjiB3 ¼
i

k2
XmYm

ð
d4k0

ð2pÞ2
ð

d4k00

ð2pÞ2
�

eiðk0�k00Þ�r

� 1

k2

�
X � Y� ðk

0 � XÞðk00 � YÞ
jkj2

�
� X0Y0

jkj2
�

ð148Þ

Here jkj is the magnitude of the four vector, and jkj is the magnitude of the

spacial part of the 4-vector km. The integrals in this amplitude suffer from the

usual ultraviolet divergence that can be removed through regularization

techniques.

This is an introduction to the sort of process that may occur in Oð3Þb electro-

dynamics. In effect, the Bð3Þ field produces quantum vortices that interact with

electrons, as well as other charged particles, where these vortices are quantized

states and exist as fluctuations in the QED vacuum. As mentioned earlier the

dual of the Bð3Þ field does not exist as an electric field. These quantum

fluctuations are easily seen to be associated with the Eð1Þ and Eð2Þ fields:

dB3 ¼ ie

�h
ðdA1 � A2 þ A1 � dA2Þ

¼ ie

�h

1

o2
ðdE1 � E2 þ E1 � dE2Þ ð149Þ

This indicates a number of things. The first is that the quantum fluctuations of the

Bð3Þ field are accompanied by fluctuations in the standard electric field. Further,

the ultraviolet divergence of the above integral is probably unimportant due to

the 1
o2 relationship with the fluctuation. This tends to imply an infrared
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divergence; however, the analysis with cavity QED indicates that the statistical

occurrence of states is such that the divergence is damped. Infrared divergences

are known to be of little trouble because of their statistical occurrence.

This approach to QED also suggests that methods for renormalization are

applicable. If the quantum fluctuation of the electric field is associated in part

with fluctuations in the Bð3Þ field, then the divergences that occur at the

ultraviolet regime can possibly be absorbed into fluctuations with the Bð3Þ field.

Physically these are damped out by the 1
o2 term in the Feynman path integral.

This potentially leads to an additional physical understanding of the disappe-

arance of divergences that occur at the high-frequency domain of QED. This

would be possible if the divergences in Uð1Þ electrodynamic processes, which

exist as a subset of Oð3Þb electrodynamic processes, can be absorbed into

integrals that involve photon loop processes associated with fluctuations in the

Bð3Þ field. These fluctuations appear to quench ultraviolet divergences by its 1
o2

behavior, and it may quench divergences for all processes if these divergences

can be absorbed into Bð3Þ fluctuations.

At high energies it is reasonable to think that the electroweak theory is

SUð2Þ � SUð2Þ. The current SUð2Þ � Uð1Þ theory is renormalizable since the

vector boson propagator is ‘‘mixed’’ with the Uð1Þ field that is renormalizable.

With an electroweak theory extended to include non-Abelain electrodynamics

essentially the same will occur where the unphysical term msaAamqm�, for � an

unphysical field that oscillates around the Higgs minimum, is canceled by the

following gauge fixing Lagrangian density:

Lg f ¼
1

2�
ðTaqmAam þ xm�Þ2 ð150Þ

Here for x ¼ 1 we have the Feynman gauge, and x ¼ 0 is the Landau gauge. This

gauge fixing term will enter into the massive boson propagators for the Að3Þ field.

The propagator will be of the form

� i

p2 � m2 þ iE
dmn �

xpmpn

p2

� �
ð151Þ

The existence of this propagator will be the largest addition to the physics of

electroweak interactions when electromagnetism is nonAbelian. Further discus-

sion on the subject of SUð2Þ � SUð2Þ electroweak theory is given by the authors

in [4]. Estimates on the mass of this boson are around four times the mass of the

Z0 boson and should be observable with the CERN Large Hadron Collider.

D. Renormalization of O(3)b QED

Quantum electrodynamics involves the interaction of electrons, or other charged

particles, and photons, where the interaction between two electrons involves the
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exchange of a virtual photon. Based upon the equation for a propagator that the

interaction between electrons and photons means that the potential function may

be written as [5]

A ¼
�v3gmv1�v4gmv2

q2
ð152Þ

Here vi are the Dirac spinors for the electrons. This leads to the expectation that

the potential in the Coulomb case is 	 ’ e2=r. The issue of renormalization is

apparent in that the potential and propagator is divergent in the limit that the

distance between the electrons approaches zero. Further, as this distance

decreases, then, by the Heisenberg uncertainty principle, �p �x � �h means

that the momentum exchanged by the electrons due to fluctuations on that small

scale becomes divergent. Carried further, this means that the vacuum is filled

with virtual quanta that have enormously high momentum fluctuations. When

these virtual quanta couple to systems they contribute divergences in the limit

their wavelengths approach zero: the ultraviolet divergence.

Three types of processes are divergent as a result of this coupling to virtual

quanta: the self-energy of the electron, vacuum polarizations, and vertex

functions.

With Oð3Þb QED the major difference emerges from the effective photon

bunching or interactions that can result in a photon loop, composed of an Að1Þ

photon and an Að2Þ photon. This loop will be associated with a quanta of Bð3Þ

field. Equation (149) illustrates how this fluctuation in the Að1Þ and Að2Þ
potentials are associated with this magnetic fluctuation. The other renormaliza-

tion techniques in Uð1Þ QED still apply, and are demonstrated below, and the

renormalization of divergences associated with the Bð3Þ magnetic fluctuation is

also illustrated.

We will discuss at some length the interaction of a free electron with the

vacuum, for this is similar to the renormalization problem presented by Oð3Þb
electrodynamics. An electron interacts with the vacuum according to the Dirac

equation

ðgmðqm � ieAmÞ � mÞc ¼ 0 ð153Þ

Even if there is no electromagnetic field present, the vector potential exhibits

fluctuations Am ¼ hAmi þ dAm, so that even if there is only the vacuum, physics

still involves this fluctuation. This is also seen in the zero-point energy of the

harmonic oscillator expansion of the fields. So an electron will interact with

virtual photons. If we represent all of these interactions as a blob coupled to the

path of an electron, this blob may be expanded into a sum of diagrams where the

electron interacts with photons. Each term is an order expansion and contributes
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a term on the order of a ¼ e2=�hc. A single loop contributes the integral

’
ð1
�1

g � p� m

pþ k
ð154Þ

which has an ultraviolet divergence as k !1 for
Ð1

0
dk k. The standard

approach amounts to imposing a cut off in the integral 
 so the integration is

ð1
0

dk k !
ð


0

dk k ð155Þ

so that for an electron of mass m this defines a mass counter term

dm ¼ 3am

2p
log




m

� �
ð156Þ

Then, given the bare mass of the electron as m0, we have the mass of the electron

as m ¼ m0 � dm. By the Dirac equation this also contributes a counter term into

the Lagrangian dm�cc.

The counterterm is computed by performing a perturbation expansion of

Green’s function, or propagator for the free electron. The entire process is

represented by �ðnÞ, which in general is determined by a time ordered product of

fields

�ðnÞðp1; p2; . . . ; pn�1Þ ¼
ðY

i

dxie
ipix

ih0jTf1f2 � � �fn�1j0i ð157Þ

and generally describes processes of the type illustrated in Fig. 6.

1

2

3

n −1

pn

Figure 6. ‘‘Blob’’ diagram for a time ordered product of fields.
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This process may also be computed from the path integral

Z½JðxÞ� ¼
ð
DffgeiSþJf ð158Þ

by the functional derivative the path integral according to the test source function

JðxÞ:

�ðnÞ ¼ Z�1½JðxÞ� dn

dJðxÞn Z½JðxÞ�jJ¼0 ð159Þ

The propagator �ð2Þ for the free electron is approximated by loops that are given

by the function �i�ðk2Þ connected by electron propagators of the form

i=ðk2 � m2Þ. So the propagator that computes the free electron with the mass

counter term is then given by

i

k2 � m2 � iE
¼ i

k2 � m2
þ i

k2 � m2
ð�i�ðk2ÞÞ i

k2 � m2

þ i

k2 � m2
ð�i�ðk2ÞÞ i

k2 � m2
ð�i�ðk2ÞÞ i

k2 � m2
þ � � � ð160Þ

+

+=
−

− iΣ (k2)− iΣ (k2)
(2)

m

m0 m0

Figure 7. Self energy of the free electron.

This is illustrated in Fig. 7. This series may then be written in a more compact

form with

�ð2Þðk2Þ ¼ i

k2 � m2
0 � �ðk2Þ ð161Þ

where �ðk2Þ is Taylor-expanded around the mass m0 with the result that

�ð2Þðk2Þ ¼ i

k2 � m2
0 � dm2

ð162Þ

This is a matter of replacing all of the correction terms with a finite number, in

this case one, counter terms that may be evaluated.
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We now add a term to the harmonic oscillator Lagrangian of the form lf4,

where f is a field that represents the field coupled to the electron. To evaluate

the amplitude, we then have the integral of the form

I2 ¼ l2

ð
d4k

ð2pÞ4
1

k2 � m2
ð163Þ

To perform a dimensional regularization of this integral we replace the integral

with

I2ðoÞ ¼ l
2

ð
d2oke

ð2pÞ4
1

k2
e � m2

ð164Þ

where the dimension of the system has been replaced by 2o. We then use

d2oke ¼
2po

�ðoÞ k2o�1
e dke ð165Þ

and l ¼ ðM2Þ2�olo to obtain the solution to the integral as

I2ðoÞ ¼ � lo
2

p
2p

� �o
ðM2Þ2�oloðm2Þo�1 �ð1� oÞ

�ð1Þ ð166Þ

Now the ‘‘trick’’ used is to identify o ¼ 2� E to obtain

I2ðoÞ ¼ lm2

32p2
1� g� log

m2

4pM2

� �� �
ð167Þ

from which the mass counterterm is defined. Here g is the Euler-Mascheroni

constant g ¼ :5772 . . . .
A similar divergent process exists with Oð3Þb electrodynamics with fluctua-

tions associated with the Bð3Þ field. It is associated with computing the

propagator for a photon loop, as illustrated in Fig. 5. The integral involved is of

the form

I4 ¼ l2

ð
d4k

ð2pÞ4
1

ðk2 þ ieÞððk þ qÞ2 þ iEÞ
ð168Þ

By letting 4 ! 2o we arrive at an integral of the form

I4 ¼ l2

ð
d2ok

ð2pÞ4
1

ðk2 þ iEÞððk þ qÞ2 þ iEÞ
ð169Þ
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then if the self-interaction term is written as

l ¼ 4� 2o ¼ ðQ2Þ2�olo ð170Þ

and the integration measure is redefined as

d2ok ¼ k2o�1dko ð171Þ

then

I4 ¼ loðQ2Þ2�o �
ð

dko

ð2pÞ4
k2o�1

ðk2 þ iEÞððk þ qÞ2 þ iEÞ
ð172Þ

This integral may then be evaluated as

I4 ¼ const � qo�2 �ðoÞ�ð2� oÞ
�ð2Þ ð173Þ

where const is the constant

k ¼ loðQ2Þ2�o

ð2pÞ2o
ð174Þ

So in a more compact form, this leads to the result

I4 ¼ lo
ð2pÞ2o

Q

q

� �4�o
��ðoÞ�ð2� oÞ

�ð2Þ ð175Þ

or

I4 ¼ lo
ð2pÞ2o

Q

q

� �4�o
� 1

3þ o
þ 1� g

� �
1

1� o
þ 1� g

� �
ð176Þ

Then, since o ¼ 2� E, the trick of dimensional regularization, we see that

�ð2� oÞ ¼ �ðEÞ
�ðoÞ ¼ �ð2� EÞ

ð177Þ

Now this integral can be expressed in the form

I4 ¼ 1

5

q

32p

4

� 1� 6 gþ 4 log
q

Q

� �� �� ��
ð178Þ

which is a finite quantity. Here g is the Euler–Mascheroni constant.
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This calculation demonstrates that the loop fluctuation of a photons, which

correlated to a virtual quanta of Bð3Þ field, can be calculated to be finite with out

divergence. So the virtual fluctuation of a Bð3Þ field does not lead to an

ultraviolet divergence, and thus Oð3Þb QED is renormalizable by dimensional

regularization.

The issues of vacuum polarization and vertices may be computed in the same

manner as seen with Uð1Þ electrodynamics. Effectively Oð3Þb quantum

electrodynamics appears to be, based on these initial regularization exercises,

to be free of intractable ultraviolet divergences. The calculation of the Lamb

shift also indicates that Oð3Þb QED is also free of such divergences in the

infrared region. This is a good sign that the theory at least is not frought with

computational intractabilities that cast sever doubts on a theoretical level.

E. B(3) Field as a Vacuum Symmetry

It is standard practice to adopt the rule in Uð1Þ electrodynamics that with the

Hamiltonian of the form

H ¼ 1

2m
jp� eAj2 ð179Þ

that the gauge potential acts only once. The quadratic term is basically eliminated

and ignored. This rule is essentially what Oð3Þb electrodynamics challenges. We

then consider the role of A � A� ¼ Að1Þ � Að2Þ within this Hamiltonian. This

Hamiltonian leads to the evolution operator U ¼ e�iHt, which has the form

U ¼ e�iH0teAð1Þ�Að2Þ ð180Þ

where H0 is the Hamiltonian without the term quadratic in the potentials. The

vector potentials may then be written as

Að1Þ ¼ Að0Þffiffiffi
2

p ðex þ ieyÞðakeik�r�iot � a
y
ke�ik�rþiotÞ ð181Þ

so that the modulus square of this operator is

Að1Þ � Að2Þ ¼ Að0Þ
2

ayaþ 1

2
� 1

2
ðay2

e�2iðk�r�otÞ þ a2e2iðk�r�otÞÞ
� �

ð182Þ

This result is very interesting, for the first two terms on the right-hand side are

just the standard harmonic oscillator Hamiltonian for the electromagnetic field

Hem, and the latter are terms easily seen to be incommensurate with that

Hamiltonian under commutation. As a result the evolution operator is then

U ¼ e�iðH0þHemÞteðzay
2þz�a2Þ ð183Þ

non-abelian electrodynamics: progress and problems 455



for z ¼ te�2iðk�r�otÞt. The operator SðzÞ ¼ eðzay
2þz�a2Þ is a squeezed-state operator,

which involves symmetries that lie outside those defined strictly by the

Hamiltonian.

There are some reasons for supposing that the Bð3Þ may correspond to such

symmetries. In the next two sections we discuss how non-Abelian electro-

dynamics is unified with the weak interactions. Below it will be concluded that

there is a duality between the Bð3Þ and Eð3Þ fields. From this it can be easily seen

that the Lagrangian for these two fields vanishes. This is evidently a curious

situation where there should exist a field, but where it has no Lagrangian. This

would imply that there is no dynamics associated with this field. The argument

is made that the existence of a massive Að3Þ field breaks this duality. This is then

invoked to justify that Eð3Þ ¼ 0. However, this then creates a further difficulty.

Electric and magnetic fields transform by the Lorentz group as Ez
0 ¼

gðEz � bByÞ and Bx
0 ¼ gðBx � bEyÞ. This leads to the unsettling prospect that

if Bð2Þ > 0 and Eð2Þ ¼ 0, there is then a breaking of the Lorentz symmetry to

spacetime. This means that unless there is an associated 3-electric field, we may

have to conclude that hBð3Þ2i ¼ hEð3Þ2i ¼ 0. This then gives weight to the

prospect that non-Abelian electrodynamics corresponds to non-Lagrangian

symmetries or operators in electrodynamics.

It is still possible to have the Sagnac effect. If we consider the counter-

rotating portion of the non-Abelian contribution to

y ¼ i

þ
Dm dxm ¼ i

ð ð
½Dm;Dn� dsmn ð184Þ

we obtain

y ¼ i

ð
ðay2

e�2iðk�r�otÞ þ a2e2iðk�r�otÞÞJ3 ð185Þ

On evaluation of the integral and using the fact that J3 / �, the rotation of the

platform, it is then apparent that

�y ¼ hlnSðzÞi ð186Þ

where z ’ e4o�A=c2

, where the doubling of the frequency argument occurs from

the existence of two paths, A and C. This apparently gives the Sagnac effect

according to the squeezing of light.

Would this mean that almost everything presented in this chapter is wrong?

No, but it does mean that the classical results are purely pedagogical tools. The

quantum results may still hold. For instance, with the cavity QED work the term

HB3int, Eq. (107) corresponds to the absorption of one photon and the emission
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of another as the atom changes its internal state. Similarly, the term HBð3Þ in

Eq. (108) corresponds to the absorption of two k; k0 mode photons and the

emission of k þ q and k0 � q by the atom during a quantum fluctuation between

its two atomic states.

k k + q

k ′ − q

k ′

hq

c

atomic
fluctuation

Figure 8. B(3) Hamiltonian described according to photon-atom interaction.

This indicates that the quantum mechanical aspects of this theory is valid,

and the Hamiltonian, HBð3Þ , then involves quantum fluctuations in the atomic

states. It must also be noticed that this interaction Hamiltonian is real only since

it involves the introduction of a quantum system. In the absence of this atom, we

would no longer obtain this photon–photon coupling. In the case of photon

loops, this process must then be considered as attached to a fermion line, where

the fermion has a fluctuation in its momentum to give rise to this photon graph.

This means that states are not completely described as eigenstates of the

Hamiltonian. While they posses kinematical properties of states, but the

squeezing of these states are not determined by diagonal operators and are thus

not Hamiltonian or Lagrangian symmetries. This is an interesting result, for this

implies that squeezed states in QED are connected to an underlying non-

Abelian symmetry. This would continue to be the case even if there were no

classical Bð3Þ field, or if HBð3Þ ¼ 1=2jBð3Þj2 ¼ 0. Under this condition the non-

Abelian symmetry of QED would be manisfested as vacuum squeezed states. In

this case electrodynamics is then a Uð1Þ gauge theory, as described by a

Lagrangian, plus additional non-Lagrangian symmetries.

In face of the relative paucity of measurement data for the occurrence of

the Bð3Þ field this appears to be the most reasonable conclusion that can be

drawn, and yet still uphold the basic premise that electrodynamics has an

extended gauge group structure. This would mean that research along these

lines should be directed towards a more complete understanding of the

interaction of electromagnetic fields and nonlinear media. This may imply

that while Bð3Þ vanishes, while its underlying symmetries still exist, this

field may become present as the QED vacuum is charge polarized by the

presence of atoms in certain media. As searches for a classical Bð3Þ field in
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the vacuum have so far yielded null results, it makes little sense to pursue

the subject of non-Abelian electrodynamics towards a search for classical

field effects.

F. A Possible SO(10) Grand Unification that Includes
Non-Abelian Electrodynamics

The universe we live in is a low energy world. Much of the fundamental structure

or symmetries of the early universe have been frozen out, and our world is one of

highly broken symmetry. We have electromagnetism, which is in itself a gauge

field of unbroken symmetry. We also observe the weak and strong nuclear inter-

actions. However, in the very early universe these gauge fields were embedded

into some form of a unified gauge field. We have a partial unification of

electromagnetism and the weak interaction in the standard model. However, this

theory is a twisting of the two principal bundles and suffers from some problems

with the adjustment of coupling constants required in its Lagrangians to account

for physics on the physical vacuum. This is the case with both the Uð1Þ � SUð2Þ
model and the SUð2Þ � SUð2Þ model presented here. For these reasons the

standard model, along with any extended variant, can only be regarded as an

approximation. Presumably this approximation is recovered from a grand unified

theory (GUT) that fully unifies gauge fields at 1015 GeV.

How it is that this GUT theory can be tested is a matter of some difficulty. It

is still possible that low energy effects of a GUT may be detected. This was the

hope for proton decay with the minimal SUð5Þ model. As there may be issues

with chirality, or residual chirality in QCD it may be possible that GUTs can be

experimentally tested.

As this concerns the nature of non-Abelian electrodynamics, we will pursue

the matter of a GUT that incorporates non-Abelian electrodynamics. This GUT

will be an SO(10) theory as outlined above. We have that an extended electro-

weak theory that encompasses non-Abelian electrodynamics is spinð4Þ ¼ SUð2Þ�
SUð2Þ. This in turn can be embedded into a larger SOð10Þ algebra with

spinð6Þ ¼ SUð4Þ. SOð10Þ may be decomposed into SUð2Þ � SUð2Þ � SUð4Þ.
This permits the embedding of the extended electroweak theory with SUð4Þ,
which may contain the nuclear interactions as SUð4Þ ’ SUð3Þ � Uð1Þ. In the

following paragraphs we will discuss the nature of this gauge theory and

illustrate some basic results and predictions on how nature should appear. We

will also discuss the nature of fermion fields in an SUð2Þ � SUð2Þ � SUð4Þ
theory.

We start with a discussion of what an SUð4Þ gauge theory that embeds

the nuclear interaction will look like. A Lie algebra consists of operators that are

analogous to raising and lowering operators and operators that are analogous to

Hamiltonians. We write these operators as Xa and Hi, where the index i ranges
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within i ¼ 1; . . . ;m. The operators Hi act on the basis fEag as

HijEai ¼ aijEii ð187Þ

where ai are the roots of the algebra. It is not difficult to show that these operators

obey the rules

½Hi;Ea� ¼ aiEa

½Ea;E�a� ¼ aiHa

½Hi;Hj� ¼ dijHi

ð188Þ

With these operators it may be demonstrated that these roots have reflection

symmetries. These reflections are thought of as a reflection within a Weyl

chamber. These reflections are determined by the integer that measures the

projection of one root a onto another

cij ¼ 2
ai � aj

aj
2

ð189Þ

or equivalently that the root a is reflected off the Weyl chamber wall be

ai
0 ¼ ai � cijaj ð190Þ

The angle of reflection is defined as

cosy ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffi
cijc0ij

p
; c0ij ¼ 2

ai � aj

ai
2

ð191Þ

We first look at the SUð4Þ part of the gauge field. The weights of the algebra

ni, i ¼ 1; . . . ; 4 define the roots by ai ¼ ni � niþ1

a1 ¼ ð1; 0; 0Þ

a2 ¼
1

2
;

ffiffiffi
3

p

2
; 0

� �

a3 ¼ 0;� 1ffiffiffi
3

p ;

ffiffiffi
2

3

r ! ð192Þ

These roots define a regular figure in 3D space that is a tetrahedron. The vertices

of this tetrahedron correspond to
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Z

X

Y
ν3 = (0,−1/  3, 1/2  6)

ν4 = (0, 0, −3/2  6)

ν1 = (1/2,1/2  3, 1/2  6)

ν2 = (−1/2,1/2  3, 1/2  6)

Figure 9. Roots for SU(4).

Within this theory we might expect that there should be four quark doublets.

In this case the weights n1; n2, and n3 correspond to the ðu; dÞ, ðs; cÞ, and ðb; tÞ
quarks. The additional weight does not correspond to an additional quark

doublet that occurs at energies higher than currently probed. An alternative

explaination is that SUð4Þ is gauge theory where there are additional degrees of

freedom that rotate QCD colors amongst each other at high energy with the

introduction of an new massive Z-type particle plus three additional charged

massive bosons. These massive bosons are manifested by the breaking of

SUð4Þ ! SUð3Þ by Higgs symmetry breaking, as the 4 is an 3� 1, and �4 is a
�3� 1. This also means that quarks at high energy are complete and do not exist

as a new form of particle field. This is in agreement with most conclusions that

the number of possible quarks is 6, since any more would mean that the entropy

of the early cosmology would be greater than currently thought.

We now consider tensor methods for the representation of SUð4Þ. We start by

labeling the basis of states for SUð4Þ according to its weights

j1i ¼ 1

2
;

1

2
ffiffiffi
3

p ;
1

2
ffiffiffi
6

p
����

�

j2i ¼ � 1

2
;

1

2
ffiffiffi
3

p ;
1

2
ffiffiffi
6

p
����

�

j3i ¼ 0;� 1ffiffiffi
3

p ;
1

2
ffiffiffi
6

p
����

�

j4i ¼ 0; 0;� 3

2
ffiffiffi
6

p
����

�
ð193Þ
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This basis illustrates that these vectors are eigenstates of the H1, H2, and H3

matrices with diagonal entries laij=2. We assign the off diagonal matrices to be

1ffiffiffi
2

p ðT1 � iT2Þ ¼ E�1;0;0

1ffiffiffi
2

p ðT4 � iT5Þ ¼ E1=2;�1=2
ffiffi
3

p
;0

1ffiffiffi
2

p ðT6 � iT7Þ ¼ E 1=2;�1=2
ffiffi
3

p
;0

1ffiffiffi
2

p ðT9 � iT10Þ ¼ E1=2;1=
ffiffi
3

p
;�2=

ffiffi
6

p

1ffiffiffi
2

p ðT11 � iT12Þ ¼ E 1=2;
ffiffi
3

p
=2;�2=

ffiffi
6

p

1ffiffiffi
2

p ðT13 � iT14Þ ¼ E0; 1=
ffiffi
3

p
;�2=

ffiffi
6

p

ð194Þ

These are then 12 ladder operators that along with the 3 Cartan center operators

Hi, we have all of the 15 parameters of the SUð4Þ algebra. It is up to the reader to

put these operators in matrix form. The Cartan center operators are then

calculated by the commutator in Eq. (188). We then have a set of weights that

form the cuboctahedron in the 3-space spanned by the Cartan center operators.

H1

H3

H2

Figure 10. Cartan center of SU(4) and its weights.

This is the 4 of the SU(4). The SU(3) algebra is seen as the hexagon that lies

on the H3 ¼ 0 plane of the space spanned by the Cartan centers. This indicates

that there are additional transformation of gluon colors and quark flavors. This
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is an aspect of the general embedding of color QCD into SOð10Þ. The

decomposition of SOð10Þ into

SOð10Þ ! SUð4Þ � SUð2Þ � SUð2Þ ! SUð3Þ � Uð1Þ � SUð2ÞR � SUð2ÞL
ð195Þ

There are then, in this decomposition, 16 fermions that transform as

16 ¼ ð3; 2; 1Þ þ ð1; 2; 1Þ þ ð�3; 1; 2Þ þ ð1; 1; 2Þ ð196Þ

which correspond to the quark doublets, the lepton doublets, and their

complements. There are 45 gauge bosons that transform as

45 ¼ ð8; 1; 1Þ þ ð1; 3; 1Þ þ ð1; 1; 2Þ þ ð1; 1; 1Þ þ ð3; 2; 2Þ

þ ð�3; 2; 1Þ þ ð3; 2; 2Þ þ ð3; 1; 1Þ þ ð�3; 1; 1Þ ð197Þ

which correspond to the SUð3Þ gauge transformations, the SUð2ÞL;R transforma-

tions by W0;� gauge bosons, the auxilliary B gauge bosons, and the last four terms

are pairs of the flavor–flavor and the lepto-quark transformation bosons at the

GUT energy. The neutral gauge bosons W�
R combine to form photons and there

are two neutral gauge bosons that form the Z0 and Zg. These gauge bosons enter

into a Lagrangian seen in equation 46. The quark flavor ard quark to lepton

transforming gauge bosons, represented as Xa, Ya, �X
a
, �Y

a
and Va and �V

a
. The

Lagrangian for the flavor transformations are

L ¼ gEabgðXm
a �d

�b
L gmdL

g � Ym
a �d�bL gmdL

gÞ ð198Þ

and the Lagrangian that executes gauge rotations between quarks into leptons is

L ¼ gEabgðXm
að�u�bL gmnR

g þ �u�bL gmnL
gÞ � Ym

að�u�bR gmnR
g þ �d

�b
L gmnL

gÞÞ

þ gEabgðVm
að�u�bR gmeR

g þ �d
�b
L gmeL

gÞ � Ym
að�u�bR gmeR

g þ �d
�b
L gmeL

gÞ

þ H:C:Þ ð199Þ

This theory has the advantage over the SUð5Þ minimal model that the various

right- and left-handed quarks and leptons are treated equivalently in the 16

representation. This leaves the B� L boson is a Uð1Þ transformation that acts on

the quarks, but not the leptons. This term is then a sð3Þ that acts on each of the

ðu; dÞ doublets. This boson is referred to in the B� L boson in the Pati–Salam

model.
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The issue of proton decay rests upon the mass of the X;Y;V bosons, and the

flavor mixing Cabibbo angles. The Cabibbo angle is defined as

day ¼ da cosyc þ uaþ1 cosyc; cosyc ’ :974 ð200Þ

This angle defines the flavor mixing in processes. For small mixing angles the

terms in the Lagrangian [Eq. (198)] assume the form

’ Vm
aðð�u�bR cosyc þ �d

b
sinycgmeR

g ð201Þ

where the first term is illustrated for brevity. This leads to an estimte of the

lifetime of a proton that is on the order of

T ’ 5:� 1030 MX þMY þMV

5� 1014

� �
ð202aÞ

or that the lifetime is within

1028 < T < 1032 ð202bÞ

However, if the mass of these bosons is given according to Higgs fields that

determine mass spectra–spectra for gauge bosons, similar to what occurs with

the Fermi masses given in Eq. (45), this estimate may be adjusted upward.

For these reasons there are reasons to consider this model, or a similar

variant, as a reasonable model for the unification of gauge fields outside of

gravitation. The extension of the gauge symmetries for electromagnetism at

high energy, even if the field is Uð1Þ on the physical vacuum, leads to a standard

model with a nice symmetry between chiral fields, and this symmetry is further

contained in GUT.

XI. COSMOLOGICAL CONSIDERATIONS

The nature of a grandly unified gauge theory has implications for cosmology.

The initial event that brought forth the spacetime manifold of the universe, a

Robertson–Walker solution, there existed some form of a gauge field that was a

unification of the gauge fields we are now familiar with. This observable universe

was smaller than the nucleus of an atom, and its contents were exceedingly hot.

This heat is liberated from the phase transition in the generation of the universe.

This heat is then energy that is distributed amongst various degrees of freedom. If

there are many degrees of freedom this energy is associated with a lower

temperature. This means that the number and mass of elementary particles in the

early universe is a determinant of the pressure of the early material in the
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universe. This means that the sort of universe that we live in and understand does

place certain boundaries on the nature of grand unification theories.

The Roberston–Walker cosmology considers a spacial 3-sphere that evolves

through space. It is the simplest of possible models that assumes the universe is

isotropic and homogeneous. The metric for this universe is written as

ds2 ¼ dt2 � R2ðtÞ dr2

1� kr2
þ r2d�2

� �
ð203Þ

The term k in this metric is a constant that determines the spacial curvature of

the cosmology. For k ¼ 1 the cosmology is a closed spherical universe, for

k ¼ 0 the cosmology is flat, and for k ¼ �1 the cosmology is open. The Einstein

field equations give a constraint equation and a dynamical equation for the rate

the radius changes with time. If we define a velocity as v ¼ ð _R=RÞHðtÞr, where

HðtÞ is the Hubble parameter, a constant locally, the constraint equations is

_R

R

� �
¼ 8p

3
Gr� k

R2
ð204aÞ

and the dynamical equation is

�R

R
¼ �4pG pþ r

3

� �
ð204bÞ

It is apparent that the evolution of this cosmology is then reduced to a problem

common in classical mechanics. An integration of the constraint equation, a

statement of energy conservation within a sphere of radius R, results in the

dynamical equation. It may then be seen that k is a constant of integration.

For simplicity, we consider the universe to be radiation dominated. This is

because the particles, even the highly massive X, Y , and V particles have such

large kinetic energies that they behave similar to photons or massless bosons.

This state of affairs in the early universe was know to exist up until the universe

dropped to a temperature below 103 K 100,000 years into its evolution. For the

radiation dominated period in the evolution of the universe the pressure and

density were related by

p ¼ 1

3
r ð205Þ

The density is related to the total number of bosonic and fermionic helicities

r ¼ 1

2
gðTÞrbb ¼ 3TNðTÞ; gðTÞ ¼ HBoson þ

7

8
HFermi ð206Þ
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where H are the numbers of helicity states, T is the temperature, and NðTÞ is the

number density of particles. If we have a partition function for the system of

particles in the early universe, we have the pressure determined by

p ¼ � qA

qV

� �
N;T

¼ kT
q
qV

lnZ

� �
N;T

ð207Þ

If we write the partition function in the standard Boltzmann form Z ¼P
n exp ð�bEnÞ, the pressure is then

p ¼ �Z�1
X

n

qEn

qV
exp ð�bEnÞ ð208Þ

If we then consider the constraint equation 203a as the conservation of energy

density in a sphere

d

dt

4p
3
rR3

� �
¼ �p

d

dt

4p
3

R3

� �
ð209Þ

the result in Eq. (207) is then constrained by the dynamics of the cosmology.

If we now include the issue of inflation, the situation becomes somewhat

more complex. During the inflationary period of expansion the radius of the

cosmology expands exponentially

RðtÞ ¼ R0 exp ðgtÞ ð210Þ

where

g ¼
ffiffiffiffiffiffiffiffiffiffi
8pr0

3M

r
’ T2

c

M
ð211Þ

Here M is the mass of the particles in the universe. We then see that the universe

exhibits a scale change s ¼ Rðt þ�tÞ=RðtÞ, where �t is the duration of the

inflationary period. The parameter for the geometry of the spacial universe is

� ¼ r=rc, for rc ¼ ð _R=RÞ3=8pG. For the condition for flatness � ¼ 1 in the

early universe, we require that s > 1027. The expansion parameter will reduce

o� 1 by a factor of s, and thus guarantee that there is cosmic flatness, or close to

flatness.

At this stage in astronomy the value of � is not completely known. There is

the problem of dark matter, which is a putative form of matter that increases

� ¼ :1, based on the observation of luminous matter to unity to account for

flatness. However, there is some debate as to whether the universe is one with
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acceleration. This will change the nature of the flatness issue if these data turn

out to be well established. However, the value of the mass of the elementary

particles in the early universe is dominated by massive particles such as the

flavor and quark–lepton transforming bosons. This means that cosmology, if we

garner a complete observational understanding of the universe, will impose

bounds on the value of s if the value of o is known. This will provide a

constraint on the types of theories that can be proposed for the grand unification

of gauge theories.

It is apparent that the numbers and masses of the flavor and quark–lepton

transforming gauge bosons are larger than those of the SUð5Þ minimal model.

This means that the value of s is lower, and assuming that the duration of the

inflationary period is fixed, the scale for the expansion of the universe is

reduced. This means that there is the enhanced prospect for deviations from

flatness. So one may presume that the universe started as a small 3-sphere with a

large curvature, where the inflationary period flattened out the universe, but

maybe not completely. This leaves open the prospect that if before inflation that

if the universe were open or closed, k ¼ �1, that the universe today still

contains this structure on a sufficiently large scale. The closer to flatness the

universe is, the tighter are the constraints on the masses of particles in the early

universe.

DISCUSSION

This section within a book devoted to non-Abelian electrodynamics may appear

to be comparatively pessimistic for those who are looking for a classical effect.

However, out of the conclusion that there are no photon states that correspond to

the Bð3Þ field comes good news. If nature is such that at high energy the symmetry

of nature is extended there will be implications for high energy physics and that

at low energy these additional symmetries manifest themselves as non-

Hamiltonian effects in quantum optics. These types of physics are of far greater

impact than attempts to uphold the hypothesis that the Bð3Þ field is a real field that

can be measured classically. Further, as the data sighted to uphold the existence

of a classical Bð3Þ field are quite dated, have not been duplicated, and that more

recent attempts at a classical measurement of Bð3Þ field have given null result, it is

most likely that there is no such classical field effect.

The major thrust is that vacuum symmetries, those that do not affect the

eigenstates of a system involving atoms and photons, are residual aspects of

high energy physics that is more symmetric than the canonical standard model

of electroweak interactions and the minimal SUð5Þ grand unification scheme.

This approach to the fundamental nature of gauge theories suggests that gauge

duality is a reasonable conjecture for the foundations of physics. This also has

implications for the structure of gauge theory associated with strings and
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membranes. An understanding of the nature of gauge fields in the TeV range,

along with potential hints of physics at the GUT level, will give better directions

on where to pursue theories that involve Planck-scale physics.
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I. INTRODUCTION

A characteristic feature of nonlinear science generally, and of nonlinear optics

in particular, is the common necessity of having to make simplifications, and

then approximations in order to solve the equations of even the simplified

models. These considerations apply a fortiori to the study of fluctuation pheno-

mena in nonlinear systems, and thus account for the increasing role being

played by analog and digital simulations, which enable the behaviour of the

model systems to be investigated in considerable detail.

Several years have now passed since a contribution [1] to an earlier volume

in this series illustrated some of these ideas. It was shown in particular that

detailed analyses of fluctuations in model systems not only provide a deeper

understanding of complex phenomena but often also pave the way to the

development of new experimental techniques and new ideas of technological

significance.

In this chapter, we discuss the application of simulation techniques to the

study of fluctuational escape and related phenomena in nonlinear optical

systems: that is, situations where a large deviation of the system from an

equilibrium state occurs under the influence of relatively weak noise present in

the system. We will be interested primarily in the analysis of situations where

large deviations lead to new nontrivial behaviour or to a transition to a different

state. The topics to be discussed have been selected mainly for their own

intrinsic scientific interest, but also in order to provide an indication of the

power and utility of the simulation approach as a means of focusing on, and
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reaching an understanding of, the essential physics underlying the phenomena

under investigation; they also provide examples of different theoretical ap-

proaches and situations where numerical and analogue simulations have led to

the development of new experimental techniques and new ideas with potential

technological significance. Although the different sections all share the same

general theme—of fluctuational escape phenomena in model nonlinear optical

systems—they deal with quite different aspects of the subject; each of them is

therefore to a considerable extent self-contained (Section IV is an exception,

because it should be read after Section III) and thus can be read almost

independently of the others. Before considering particular systems, we review

briefly the scientific context of the work and discuss in a general way the

significance of escape phenomena in nonlinear optics.

The investigation of fluctuations by means of analog or digital simulation is

usually found most useful for those systems where the fluctuations of the

quantities of immediate physical interest can be assumed to be due to noise. The

latter perception of fluctuations goes back to Einstein, Smoluchowski, and

Langevin [2–4] and has often been used in optics [5–8]. In nonlinear optics, the

noise can be regarded as arising from two main sources. First there are internal

fluctuations in the macroscopic system itself. These arise because spontaneous

emission of light by individual atoms occurs at random, and because of

fluctuations in the populations of atomic energy levels. The physical character-

istics of such noise are usually closely related to the physical characteristics of

the model that describes the ‘‘regular’’ dynamics of the system, namely, in the

absence of noise. In particular, the power spectrum of thermal noise and its

intensity can be expressed in terms of the dissipation characteristics via the

fluctuation–dissipation relations [9] and, if the dissipation is nonretarded so that

the corresponding dissipative forces (e.g. the friction force) depend only on the

instantaneous values of dynamical variables, the noise power spectrum is

independent of frequency, thus the noise is white. The model in which noise

is white and Gaussian is one of the most commonly used in optics because the

quantities of physical interest often vary slowly compared with the fast random

processes that give rise to the noise, such as emission or absorption of a photon

[5–8]. The second very important source of noise is external: for example,

fluctuations of the pump power in a laser. The physical characteristics of such

noise naturally vary from one particular system to another; its correlation time is

often much longer than that of the internal noise, and its effects can be large and

sometimes quite unexpected [10].

In general, the fluctuations observed in nonlinear optics are both spatial and

temporal; the variations of the quantities of interest occur to a large extent

independently in time and in space. However, in many cases the spatial modes

in a system are well separated; the dynamics of interest is then just that of a few

dominant modes. The appearance of such modes is typical for high-Q active and
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passive optical cavities. In view of progress in microelectronics (quantum-dot

technology, semiconductor–laser arrays, etc.), the investigation of systems with

a discrete set of spatial structures (modes) is particularly interesting and

important [11]. The amplitudes and phases of the actual modes (or other

appropriate characteristics of a system that do not depend on coordinates)

make a set of purely dynamical variables, and the analysis of fluctuations in a

system reduces to the investigation of the kinetics of a dynamical system.

One of the most remarkable phenomena where fluctuational transitions play

a key role is stochastic resonance (SR), a phenomenon in which a weak periodic

signal in a nonlinear system is enhanced by an increase of the ambient noise

intensity; a stronger definition requires that the signal/noise ratio (SNR) should

also increase. The SR phenomenon appears to be widespread. After being

introduced as a possible explanation of the earth’s ice-age cycle [12,13], SR has

subsequently been observed or invoked in a large variety of contexts (see, e.g.,

Refs. 14–18 for reviews). SR has also been extensively investigated in nonlinear

optical systems including lasers [19–22], passive optical systems [23–26], and a

Brownian particle in an optical trap [27]. In this chapter, following a brief

introduction to the SR phenomenon in an optical bistable system, a new form of

optical heterodyning related to stochastic resonance is described, in which two

high-frequency signals (input and reference signals) are applied to a bistable

system. We note that the effect of noise-enhanced heterodyning was first

predicted theoretically and investigated in analog models in a broad range of

parameters [28]. These investigations in turn made it possible to observe a

noise-induced enhancement of heterodyning in an optical bistable device [29].

At the same time, noise-induced increase of the SNR (rather than of the signal

only) can occur only in certain classes of nonlinear systems [31].

When it was first discovered, and for some time afterward, SR seemed a

rather mysterious phenomenon and a number of highly sophisticated theoretical

approaches were proposed (see citations in, e.g., the reviews Refs. 16,30,32, and

33). All these theories assumed that bistability is an essential prerequisite for the

SR phenomenon to occur. Only some years later was it appreciated [34,35] that

a much simpler formalism—linear response theory (LRT)—would suffice to

describe what was often the most interesting limit in practice, where the signal

was relatively small and the noise was relatively strong. An analytic theory of

the more complicated effects that occur for stronger signal strengths [34,36–38]

has also been developed, and has been confirmed in considerable detail through

analogue electronic experiments.

The perception of SR as a linear response phenomenon led naturally,

however, to the realisation that SR can also occur without bistability [31,39,40]

and to observation of the phenomenon in an underdamped, monostable, non-

linear oscillator [39]. In fact, it is well known that the response of a monostable

system to signals in certain frequency ranges can be strongly increased by noise,
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such as just by raising the temperature. Examples range from currents in electron

tubes to optical absorption near absorption edges in semiconductors. For

underdamped oscillators, a temperature-induced shift and broadening of the

absorption peaks, or ‘‘tuning’’ by external driving due to the oscillator nonlinea-

rity, was first discussed in [41]; complete classical and quantum theories of

these effects have been given [42]. Underdamped systems have also been

considered [43].

Describing SR in terms of a susceptibility is particularly advantageous for

systems that are in thermal equilibrium, or in quasiequilibrium. In such cases

the fluctuation-dissipation relations [9] can be used to express the susceptibility

in terms of the spectral density of fluctuations in the absence of the periodic

driving. This was used explicitly in the case of noise-protected heterodyning. It

is true in general that the analysis of fluctuations is greatly facilitated by the

presence of thermal equilibrium when the conditions of detailed balance and of

the time reversal symmetry are satisfied [44].

However, in many cases the fluctuating systems of interest are far from

thermal equilibrium. Examples include optical bistable devices [45], lasers

[23,46], pattern forming systems [47], trapped electrons that display bistability

and switching in a strong periodic field [48–50], and spatially periodic systems

(ratchets) that display a unidirectional current when driven away from thermal

equilibrium [51–56].

A powerful tool for analyzing fluctuations in a nonequilibrium systems is

based on the Hamiltonian [57] theory of fluctuations or alternatively on a path-

integral approach to the problem [44,58–62]. The analysis requires the solution

of two closely interrelated problems. The first is the evaluation of the probability

density for a system to occupy a state far from the stable state in the phase

space. In the stationary regime, the tails of this probability are determined by the

probabilities of large fluctuations.

The other problem is that of the fluctuational paths along which the system

moves when a large fluctuation occurs. The distribution of fluctuational paths is

a fundamental characteristic of the fluctuation dynamics, and its understanding

paves the way to developing techniques for controlling fluctuations. Its

importance for gaining insight into the physics of fluctuations from a dynamical

perspective was recognized back in 1953 by Onsager and Machlup [44]. A

theoretical understanding, and basic techniques for treating the problem, have

been developed since that time; but it was not until the early 1990s [60] that the

distribution of fluctuational paths for large fluctuations was observed in an

actual experiment, through an analog simulation.

A simple qualitative idea behind the theory of large fluctuations in noise-

driven systems is that such fluctuations result from large outbursts of noise that

push the system far from the attractor. The probabilities of large outbursts are

small, and will actually be determined by the probability of the most probable
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outburst of noise capable of bringing the system to a given state. This particular

realisation of noise is just the optimal fluctuational force. Because a realisation

(a path) of noise results in a corresponding realisation of the dynamical

variable [63], there also exists an optimal path along which the system arrives

to a give state with overwhelming probability. From a different perspective,

optimal paths were first described for nonlinear non-equilibrium Markov

systems in [57]. Using another approach, the analysis of the tails of the dis-

tribution was also done in [64], whereas the approach described above was

discussed in [65] in the context of escape from a metastable state. This approach

is not limited to Markov systems [42]. For systems driven by Ornstein–

Uhlenbeck noise, the problem of optimal paths was discussed in [58,66–73];

an equivalent eikonal formulation has been developed [74–77]. The general case

of Gaussian noise has been discussed [78–80]; see also Section III. For reviews

of related work on fluctuations in colored noise driven systems, see Refs. 81

and 82.

A brief introduction to the theory of large fluctuations is given in Section III

together with the results of some direct observations of the optimal paths in

model systems. It is very important to note that, following the first observations

of optimal paths in analog electronic models, fluctuational paths have been

investigated in optical systems, including measurements of the prehistory

probability distribution (PPD) of the radiation intensity I for dropout events

in a semiconductor laser [83], and the time-resolved measurement of polariza-

tion fluctuations in a semiconductor vertical-cavity surface-emitting laser [84].

The preliminary analogue and numerical simulations made it possible to test

fundamental tenets of the theory of large fluctuations, and thus to provide an

experimental basis on which the theory could advance. At the end of Section III

we present two examples of advances in the theory of large fluctuations. In the

first example, the time evolution of the escape flux over a barrier on a short

timescale is considered. It is a problem of fundamental importance [85] and,

furthermore, of immediate practical interest given that new methods of spectro-

scopy with femtosecond resolution have now become available [86]. The

technique of nonstationary optimal paths can be employed to solve the problem

and numerical simulations verify the theoretical predictions. The striking

feature predicted theoretically and demonstrated in simulations is that, for a

system initially at the bottom of the well, the escape flux over the barrier on

times of the order of a period of an eigenoscillation grows in a stepwise manner,

provided that friction is small or moderate. If the initial state is not at the bottom

of the well, the steps at large enough times transform into oscillations. The

stepwise/oscillatory evolution at short times appears to be a generic feature of a

noise-induced flux.

The second example is related to an analytical solution [56,87] of the

longstanding problem of escape from a potential well in the presence of
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nonadiabatic periodic driving. It was shown [56,87] that, over a broad range of

driving field magnitudes, the logarithm of the fluctuation probability is linear in

the field, and the response can therefore be characterized by a logarithmic

susceptibility (LS). We evaluate the activation energies for escape, with account

taken of the field-induced lifting of the time and spatial degeneracy of ins-

tantonlike nucleation trajectories. The immediate advantage of the theory is that

it provides the solution of a complicated theoretical problem in a simple

analytical form that describes the dependence of the ‘‘activation energy’’ on

both the amplitude and frequency of the driving field and can be extended

immediately to a periodic driving field of arbitrary form.

Analogue experiments and digital simulations confirmed that the variation of

the activation energy for escape with driving force parameters is accurately

described by the LS. Experimental data on the dispersion are in quantitative

agreement with the theory. And, again, it is interesting to note that, after the LS

was investigated in analogue and numerical simulations, it was then also

measured in optical experiments on a submicrometer Brownian particle in a

bistable three-dimensional optical trap [88,89]. This research emphasizes the

fundamental importance of the logarithmic susceptibility, a new physical

quantity that relates the response of the system in the absence of detailed

balance to its characteristics in thermal equilibrium. It yields quantitative

agreement with experiment and expresses the corrections to the ‘‘activation

energy’’ in a simple integral form analogous to that wellknown from linear

response theory.

In the preceding example, analog and numerical simulations were used to

verify existing theoretical predictions. However, in reality the significance of

analog and digital simulations goes far beyond this modest role. The analog

circuit combines features of a real physical system and of the computer model

and an attentive researcher can very often make important discoveries by

analyzing its behavior. Perhaps the most striking example is given in the review

by Kautz [90]: ‘‘In discussing analogue simulations of a RF-biased Josephson

junction, performed by Levinsen and others at Berkley, Levinsen and Sullivan

conceived a new type of voltage standard....’’ From our own experience,

examples of theory being led by the analog simulation include the discoveries

of noise-induced spectral narrowing [91] and of SR in monostable systems

[31,39], leading to extensive research by many groups and correspondingly to

substantial theoretical progress.

We then report and discuss the results of recent investigations of fluctuational

escape from the basins of attraction of chaotic attractors (CAs). The question of

noise-induced escape from a basin of attraction of a CA has remained a major

scientific challenge ever since the first attempts to generalize the classical

escape problem to cover this case [92–94]. The difficulty in solving these

problems stems from the complexity of the system’s dynamics near a CA and is
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related, in particular, to the delicate problem of the uniqueness of the solution

and the boundary conditions at a CA. The approach proposed here is based on

the analysis of the prehistory probability distribution. It is shown in particular

that both the existence and uniqueness of a solution can be verified experi-

mentally using measurements of a PPD. Moreover, using this technique and its

extension [95] to measure both the optimal paths and the corresponding optimal

fluctuational force, one can identify the initial conditions on a chaotic attractor

and find an approximation to the energy-optimal control function of escape from

a CA, thus paving the way to exciting new applications in the field of nonlinear

control. One such application to the energy-optimal control of escape from the

basin of attraction of the CA of a periodically driven nonlinear oscillator will be

described. Finally, fluctuational escape from the Lorenz attractor, a well-known

system that is of importance in modelling the dynamics of real optical systems,

will be discussed.

The chapter is organized as follows: Section II describes an investigation of

the SR phenomenon and of noise-protected heterodyning in an electronic circuit

and in an optical bistable device. Section III discusses the results of investiga-

tion of optimal paths for large fluctuations and their relationships to the analysis

of fluctuations in real optical systems. It then presents two examples of advances

in the theory of large fluctuations related to the time evolution of the escape flux

over a barrier in a potential system on a short timescale, and to the nonadiabatic

escape problem. The results of numerical and analogue simulations are

compared with theory. Section VI describes investigations of the escape from

a CA and the applications of these results to the solution of the nonlinear

optimal control problem. Finally, in Section V, we summarise the results and

consider future perspectives.

II. STOCHASTIC RESONANCE AND NOISE-PROTECTED
HETERODYNING

A. Introduction

The idea of stochastic resonance (SR) was introduced by Benzi et al. [12], and

Nicolis [13], who showed that a weak periodic signal in a nonlinear system can

be enhanced by the addition of external noise of appropriate intensity; it was

demonstrated subsequently that the same is often true of the signal-to-noise ratio

(SNR) as well [19,96]. The quest for practical applications of SR has become a

subject of intensive investigation [97]. An important restriction in this respect is

[28,97] that the frequency of the input signal should be low compared to the

characteristic frequencies of the system under study. Indeed, most investigations

of SR to date [20,23,34,35,98–101] (see also Ref. 102 and references cited

therein) have related to low-frequency signals driven bistable systems. The

origin of the SR in such cases lies in the fact that the low-frequency driving
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force modulates the probabilities of fluctuational transitions Wnm between the

coexisting stable states, and hence the populations of the states, which gives rise

to a comparatively strong modulation of a coordinate of the system with an

amplitude proportional to the distance between the stable positions. This mecha-

nism of strong response of a symmetric bistable system to an external forcing

was first suggested by Debye [103] in the context of molecules that have several

different equivalent orientations in solids and may reorient between them. Since

the transition probabilities increase sharply (exponentially, for Gaussian noise)

with noise intensity D, the efficiency of modulation and the SNR are also

sharply increased. The mechanism is operative provided: (1) the stationary

populations of the states are nearly equal to each other; and (2) the frequency of

the force is much smaller than the reciprocal relaxation time t�1
r of the system

[15]. It was suggested [28], however, and demonstrated in analog simulations,

that a related phenomenon can occur when a nonlinear system is driven by two

high-frequency signals: if the resultant heterodyne signal is of sufficiently low

frequency, both it and its SNR can be enhanced by the addition of noise.

Here, we use the ideas of SR and heterodyning to demonstrate the new

phenomenon of noise-enhanced optical heterodyning in an optically bistable

(OB) device driven by two modulated laser beams at different wavelengths. An

optical system was chosen for the investigations for two main reasons. First,

because of progress in optical data processing and communication [104,105]

and of possible applications of optical bistability in this context [106], the trend

to miniaturize OB devices and to reduce their threshold power [107] has

highlighted the problem of controlling the signal and the SNR in optical

systems. Second, OB systems provide an opportunity to investigate a wide

range of quite general fluctuation phenomena associated with coexisting stable

states far from thermal equilibrium. Thus the investigation of fluctuations in

these systems is of fundamental interest and significance.

In Section II.B the fluctuations and fluctuational transitions in an OB system

subject to white noise are analyzed. In Section II.C the phenomenon of

stochastic resonance in the OB system is discussed in terms of linear response

theory and the corresponding experimental results are presented. In Section II.D

we discuss theory and experimental results for the new form of optical hetero-

dyning noise-protected with stochastic resonance. Finally, Section II.E contains

concluding remarks.

B. Fluctuations and Fluctuational Transitions
in an OB (Optically Bistable) System

1. Theory

A simple model that makes it possible to describe optical bistability in a variety

of systems is a plane nonlinear Fabry–Perot interferometer, filled with a medium

whose refractive index is intensity dependent [106]. The ‘‘slow’’ kinetics of a
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nonlinear interferometer may be often described by a Debye relaxation equation

for the phase gain f, of form

_fþ 1

t
ðf� f0Þ ¼ IinðtÞMðfÞ þ IrefðtÞ

ITðtÞ ¼ NðfÞIinðtÞ; NðfÞ ¼ Nðfþ 2pÞ; MðfÞ ¼ Mðfþ 2pÞ
ð1Þ

Here IinðtÞ is the intensity of the incident radiation and f0 is the phase of the

interferometer in the dark. The functions NðfÞ and MðfÞ relate the intensities of

the transmitted and intracavity fields to that of the incident light. The function

IrefðtÞ corresponds to the intensity of radiation from an additional source, which

is very likely to be present in a real device to control the operating point. This

description is valid in a plane-wave approximation, provided that we neglect

transverse effects and the intracavity buildup time in comparison with the

characteristic relaxation time of nonlinear response in the system. It has been

shown that the Debye approximation holds for many OB systems with different

mechanisms of nonlinearity.

Let us now consider stochastic motion in an OB system. In general, noise in

an OB system may result from fluctuations of the incident field, or from thermal

and quantum fluctuations in the system itself. We shall consider the former. The

fluctuations of the intensities of the input or reference signals give rise

respectively to either multiplicative or additive noise driving the phase. Both

types of fluctuations can be considered within the same approach [108]. Here we

discuss only the effects of zero-mean white Gaussian noise in the reference

signal:

IrefðtÞ ¼ �Iref þ�IðtÞ; h�IðtÞi ¼ 0; h�IðtÞ�Ið0Þi ¼ 2DdðtÞ

In this case, for a constant intensity of the input signal, IinðtÞ ¼ �Iin ¼ constant,

Eq. (1) describes the Brownian motion of the phase f in a bistable potential

UðfÞ ¼ 1

t
1

2
f2 � ff0

� �
� �Ireff� �Iin

ðf
0

df0Mðf0Þ ð2Þ

Stable states can be found, for example, by graphical solution of the equation

1=tðf� f0Þ ¼ MðfÞ�Iin þ �Iref for the potential minima [42,65], and it can be

shown immediately that OB arises only if the system is biased by a sufficiently

strong external field, that is, when it is far away from thermal equilibrium. If the

noise intensity is weak, the system, when placed initially in an arbitrary state,

will, with an overwhelming probability, approach the nearest potential mini-

mum and will fluctuate near this minimum. Both the fluctuations and relaxation

478 i. a. khovanov et al.



will be characterized by the relaxation time of the system tr. So within a time

	tr the system forgets about its initial state and a quasistationary distribution is

formed near the stable position. It is of Gaussian shape near its maximum and of

width /ðDtrÞ1=2
. If the noise intensity is small compared to the potential barrier

height, fluctuational transitions between the stable states occur rarely and

the probabilities Wnm of transitions are given by Kramers’ [109] relation

Wnm / exp ��Un

D

� �
ð3Þ

The stationary distribution over the wells is formed over a time 	max fW�1
nmg.

For the case of white Gaussian noise this distribution has the well-known form of

the Gibbs distribution:

pðfÞ ¼ Z�1 exp �UðfÞ
D

� �
; Z ¼

ð
df exp �UðfÞ

D

� �
ð4Þ

For small noise intensities the distribution has sharp maxima near the stable

states and their populations w1;2 are described by the balance equations

_w1 ¼ �W12w1 þ W21w2; w2 ¼ 1 � w1 ð5Þ

For arbitrary parameters of the system, w1 and w2 differ dramatically from each

other; one of them is 	1, and the other is close to zero. Within a narrow range of

parameters, however, they have the same order of magnitude and one can refer to

a kinetic phase transition between the two stable states; it is analogous to the

first-order phase transition in an equilibrium system with a potential (in the

absence of quantum fluctuations) playing the role of the generalized free energy

of the system [42,65,110]. This is the range of parameters that is of particular

interest in the present chapter.

The model (1)–(5) describes stochastic motion in a general OB system for

white Gaussian noise in the low noise intensity limit. We now apply this model

to the description of some experimental results on fluctuations and fluctuational

transitions in some particular OB devices.

2. Experiment

In the experiments we have used two approaches. First, we have simulated the

kinetics of a bistable optical system in the Debye relaxation appoximation for

different forms of potential by means of electronic analog simulation. Secondly,

we have investigated the kinetics of a double-cavity membrane system (DCMS)

driven by two modulated laser beams at different wavelengths. This system is

known to display optical bistability [111].
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An example of an electronic circuit is shown in Fig. 1. It is similar to the

circuit used to model an OB system with a dispersive mechanism of nonlinearity

[112]. The circuits were driven by noise from a feedback-shift-register noise

generator and in addition, if necessary, by sinusoidal periodic forces from a pair

of Hewlett-Packard Model 3325B frequency synthesizers. In the DCMS used

for the optical experiments (see Fig. 2), the first resonator is formed by a

membrane consisting of a thin film (1 mm thick) of semiconducting GaSe

single crystal, separated from a plane dielectric mirror by a metal diaphragm

500 mm in diameter. The air-filled gap between the mirror and the membrane

is 10 mm wide and forms a second resonator. The incident beam from an argon
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Figure 1. Analog circuit used in the heterodyning simulations of Ref. 28.
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Figure 2. Diagram showing the laser setup used in Ref. 29.
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laser, of wavelength 514.5 nm, propagating along the normal to the mirror,

provides an input signal. An additional beam of wavelength 488 nm from an

argon laser is inclined with respect to the DCMS axis and provides a reference

signal. The intensities of the laser beams are modulated by two electro-optic

shutters, to which periodic signals and noise are applied. The optical bistability

arises because of thermoelastic bending of the membrane caused by the 514.5

nm laser beam; this particular mechanism has been found to be very effective

for the investigation of a variety of OB effects [111,113,114]. The form of the

periodic function MðfÞ in (1) depends on the mechanism of thermal relaxation

and the boundary conditions at the edge of the film; an approximate expression

was found in [111] on the basis of variational analytical approaches developed

for describing the thermoelasticity of shells. The phase gain f is linear in

bending and follows adiabatically the thermal relaxation of the film, thus

ensuring the validity of the Debye relaxation approximation. Heating of the

DCMS by the 488-nm reference signal is directly proportional to its intensity.

It follows from the above discussion that an indicator of applicability of the

description of stochastic motion in an OB system is an activation dependence of

the transition probabilities Wnm on the noise intensity. Using level-crossing

measurements (shown to be independent on the level positions), we found in our

previous experiments [108] that the activation law applies over the whole range

of noise intensities that we are using.

For weak noise the spectral density of fluctuations (SDF) at the output of the

OB system is defined as

QðoÞ ¼ 1

4pT

ðþT

�T

dt eiotITðtÞ
����

����
2

T ! 1 ð6Þ

For small noise intensities the system spends most of the time fluctuating near the

stable positions, and interwell transitions occur only occasionally. QðoÞ can then

be represented as the sum of partial contributions from vibrations about the

equilibrium positions xn weighted with the populations of the corresponding

stable states wn, and from interwell transitions. The intrawell contribution takes

the form

Qð0Þ
n ðoÞ ¼ N 02ðfnÞ�I2

in

D

p
1

U00
n þ o2

ð7Þ

where fn is the value of the phase f in the ith stable state, U0ðfnÞ ¼ 0;
U00ðfnÞ > 0.

One of the most important general features of fluctuations in a bistable

system is the onset of a narrow zero-frequency spectral peak for parameter

values lying in the range of the kinetic phase transition. This peak arises from
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the fluctuation-induced transitions between the stable states of the system and is

of Lorentzian shape

Q
ð0Þ
tr ðoÞ ¼ w1w2

p
ð�IT1 � �IT2Þ2 W12 þ W21

ðW12 þ W21Þ2 þ o2
; �ITn � NðfnÞ�Iin ð8Þ

The onset of this peak is closely related to stochastic resonance, which can occur

if a weak periodic signal is added to the input.

C. Stochastic Resonance in an OB System

For an OB system driven by a combination of the stochastic reference beam and

the periodically modulated input beam (IinðtÞ ¼ �Iin þ Acos�t), the equation for

the phase takes on the form

_fþ U0ðfÞ ¼ MðfÞAcosð�tÞ þ�IðtÞ ð9Þ

To first order in A the intensity of the transmitted radiation is given by

hITðtÞi ¼ �IT þ A Re wð�Þexpð�i�tÞ½ �

where wð�Þ is the susceptibility. As a result of the periodic term in the intensity

of the outgoing radiation there arises a d-spike in the SDF (6), of area equal to

ð1=4ÞA2jwð�Þj2. For low noise intensity D, when the system spends most of its

time fluctuating about the stable states n ¼ 1; 2, the susceptibility (like the SDF)

is given by the sum of contributions from the vibrations about these states wnð�Þ
and the term wtrð�Þ that results from the periodic modulation of the populations

by the force Aexpð�i�tÞ.
For � � t�1 the intrawell susceptibilities correspond to quasistatic forcing,

and can easily be obtained by linearising the equation of motion near the stable

states. To calculate the interwell contribution to lowest order in A=D, one has to

find corrections to the escape probabilities Wnm, which can be easily done using

a path-integral formulation, solving the corresponding variational problem [82],

and calculating the periodic redistribution over the wells, using balance

equations. The resulting expression in the case of additive noise in the OB

system takes the form

wð�Þ ¼
X
n¼1;2

MðfnÞ
q�ITn

q�Iref

wn

þ w1w2

D
ð�IT1 � �IT2Þ

W12 þ W21

ðW12 þ W21Þ � i�

ðf2

f1

df0Mðf0Þ ð10Þ
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In general, the SDF at low frequency is a superposition of a d-function peak at the

frequency �, the zero-frequency peak, and a broad, smoothly varying back-

ground (at ot � 1), which is proportional to D and is small if D is small.

According to several studies [12,13,19,96], the two principal features of

stochastic resonance phenomena are that the signal and/or the signal-to-noise

ratio R

R ¼ 1

4

A2jwð�Þj2

Qð0Þð�Þ ðA ! 0Þ ð11Þ

can be enhanced by adding noise to the system, and display resonance-like

behavior in a certain range of noise intensities. It follows from Eqs. (7), (8), (10),

and (11) that the signal and R in OB system indeed increase sharply with D if the

heights of the ‘‘potential barriers’’ satisfy �U1;2 � D, because the probabilities

of fluctuational transitions (3) sharply increase with noise intensity.

These particular effects have been observed experimentally [115]. A sinu-

soidal signal at a frequency of 3.9 Hz was applied to an electrooptic modulator

to modulate the input signal at wavelength 514.5 nm, while the intensity of the

488 nm radiation was modulated with noise. It is clearly seen from Fig. 3 that

the signal and R (for the transmitted light intensity at wavelength 514.5 nm)

increase sharply in certain range of the noise amplitude D. Outside this range R

decreases with increase of D.
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Figure 3. Signal-to-noise-ratio (SNR) in the optical experiment for a signal at frequency

�¼3.9 Hz as a function of the internal noise intensity [115]. Inset: the corresponding signal

amplification.
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But, as mentioned above in Sec. I, the mechanism of bistable stochastic

resonance requires that the frequency of the input signal is much less than

reciprocal relaxation time of the system.

D. Noise-Enhanced Optical Heterodyning

We now consider the case where two high-frequency fields are mixing non-

linearly in the OB system to generate a heterodyne signal. The equation of

motion for the OB system takes the form

_fþ U0ðfÞ ¼ MðfÞAinðtÞ cos ðo0t þ cðtÞÞ þ Aref cos ðo0tÞ þ�IðtÞ ð12Þ

where o0 is a high frequency (�t�1) and AinðtÞ;cðtÞ are the slowly-varying

amplitude and phase of the modulated input signal, respectively.

In the most interesting and practically important case, when the frequency o0

is much higher than the reciprocal relaxation time of the system, simple

analytical results can be obtained in the spirit of Ref. 116. If the characteristic

frequency of the modulation � � _c, and _Ain=Ain � t�1 � o0, the response

consists of a comparatively slow motion fðslÞ with fast oscillations at frequency

o0 superimposed on it. We therefore seek a solution in the form

fðtÞ ¼ fðslÞðtÞ þ fð1ÞðtÞ
fð1ÞðtÞ ¼ o�1

0 ½Aref sin o0t þ MðfðslÞÞAin sin ðo0t þ �tÞÞ� ð _c � �Þ
ð13Þ

Because of the nonlinearity of MðfÞ, the oscillations induced by the two

beams produce a slowly varying heterodyne force driving the slow motion

_fðslÞ þ U0ðfðslÞÞ ¼ �AeffM
0ðfðslÞÞsin�t þ�IðtÞ

Aeff ¼
ArefAinðtÞ

2o0

ð14Þ

Thus we have reduced this problem to the form of conventional SR (see

Section II.C) with only a renormalized effective amplitude for the input signal

Aeff [cf Eq. 9)] and the function MðfÞ replaced by its derivative M0ðfÞ in the first

term on the right hand side. By analogy with standard SR, the SNR for

heterodyning can be characterized by the ratio R of the low-frequency signal in

the intensity of the transmitted radiation, given by 1
4

A2
eff jwð�Þj

2
, to the value of

the power spectrum Qð0Þð�Þ [with Qð0Þð�Þ given by (7)–(8)]. The susceptibility

of the system can be easily calculated and takes the form

wð�Þ ¼
X
n¼1;2

wn N 0ðfnÞ þ M0ðfnÞ
q�ITn

q�Iref

� �
þ w1w2

D
ð�IT1 � �IT2ÞðMðf1Þ

� Mðf2ÞÞ
W12 þ W21

ðW12 þ W21Þ � i�
ð15Þ
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Similar to what happens in conventional SR, the heterodyne signal and its

SNR can be amplified by adding noise to the system, thus manifesting the new

phenomenon of noise-enhanced optical heterodyning.

These theoretical predictions were first tested in analog simulations for

Brownian motion in the symmetric Duffing potential with MðfÞ � f [28]. It

was found that the heterodyne signal amplitude and corresponding R could be

enhanced by adding noise to the system for the cases both of white noise and of

broadband high-frequency noise (i.e., noise with a power spectrum centered

near the high-frequency o0 with half width �o: t�1 � �o � o0). The specific

dependences of the renormalized amplitude of the heterodyne signal Aeff on the

amplitudes and frequency of the input and reference signals were found to be in

good agreement with the theory as shown in Fig. 4. To investigate noise-

enhanced optical heterodyning in the DCMS, the 488 nm reference signal was

modulated periodically at frequency o0 = 2.1 kHz and in addition by noise with

a cutoff frequency of 5 kHz. The 514.5 nm input signal was modulated at

frequencies o0 � � ¼ 2:1 � 0:0039 kHz. A heterodyne signal at frequency � =

3.9 Hz was detected in the transmitted light intensity IT at wavelength 514.5 nm.

The characteristic relaxation time tr of the DCMS measured in experiment was

order of 2 ms, thus meeting the assumption that � � t�1
r � o0.

We have observed strong noise-induced enhancements of both the hetero-

dyne signal (by a factor of 1000) and the signal-to-noise ratio, in Fig. 5. The
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dependence of R on the noise intensity is of the characteristic reversed-N shape

familiar from SR in bistable systems and consistent with the theory given above.

The enhancement of the SNR occurs within a restricted range of noise intensity,

as expected, and the ratio between the value of R at the minimum to that at the

local maximum (i.e., the maximum noise-induced ‘‘amplification’’ of the SNR)

is 	10.

E. Conclusions

It will be apparent from the above discussion that the double-cavity membrane

system is ideally suited to investigations of fluctuations and fluctuational

transition phenomena. Stochastic resonance and huge noise-induced amplifica-

tion of a heterodyne signal have been observed. We would emphasize that noise-

protected heterodyning is a general phenomenon that may occur in bistable

systems of various sorts, and that it may therefore be of interest for applications

in engineering.

III. OPTIMAL PATHS, LARGE FLUCTUATIONS,
AND IRREVERSIBILITY

A. Introduction

A fluctuating system typically spends most of its time in the close vicinity of a

stable state. Just occasionally, however, it will undergo a much larger departure
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Figure 5. Signal amplification in the optical heterodyning experiment, with o0¼2.1 kHz and

�¼3.9 Hz, as a function of the internal noise intensity [29]. Inset: the corresponding signal-to-
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before coming back or perhaps, in some cases, making a transition to the vicinity

of a different stable state. Despite their rarity, these large fluctuations are of

great importance in diverse contexts including, for example, nucleation at phase

transitions, chemical reactions, mutations in DNA sequences, protein transport

in biological cells, and failures of electronic devices. As already mentioned

above, there are many cases of practical interest where the fluctuating system is

far from thermal equilibrium. Examples include lasers [46], pattern-forming

systems [47], trapped electrons that display bistability and switching in a strong

periodic field [48,50], and Brownian ratchets [117] which can support a

unidirectional current under nonequilibrium conditions. In general, the analysis

of the behavior of nonequilibrium systems is difficult, as there is no general

relations from which the stationary distribution or the probability of fluctuations

can be obtained.

The most promising approach to the analysis of large fluctuations is through

the concept of the optimal path [42,57,61,65,118–122]. This is the path that the

system is predicted to follow with overwhelming probability during the course

of the fluctuation. For many years it remained unclear how the optimal path—

calculated as a trajectory of an auxiliary Hamiltonian system (see below)—is

related to the behaviour of real fluctuating systems. However, through the

introduction and use of the prehistory probability distribution [60] (see also

Ref. 123), it has been demonstrated that optimal paths are physical observables

that can be measured experimentally for both equilibrium [60] and nonequili-

brium [124] systems. In what follows we review briefly what has been achieved

and point out the opportunities that have now appeared for making rapid

scientific progress in this burgeoning research field.

B. Theory

Consider an overdamped system driven by a periodic force Kðq;fÞ and white

noise xðtÞ, with equation of motion

_q ¼ Kðq;fÞ þ xðtÞ; Kðq;fÞ ¼ Kðq;fþ 2pÞ
f � fðtÞ ¼ ot þ f0; hxðtÞxðt0Þi ¼ Ddðt � t0Þ

ð16Þ

The familiar overdamped bistable oscillator driven by a periodic force provides a

simple example of the kind of system we have in mind:

_q ¼ �U0ðqÞ þ Acosot þ xðtÞ

UðqÞ ¼ � 1

2
q2 þ 1

4
q4

ð17Þ

We consider a situation that is both nonadiabatic and nonlinear in which neither

o nor A need be small; only the intensity D of the Gaussian noise will be assumed
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small. We investigate rare fluctuations to a remote point ðqf ;ff Þ, coming from

the metastable state within whose domain of attraction ðqf ;ff Þ is located. The

position of the stable state qð0ÞðtÞ is itself a periodic function of time;

_qð0Þ ¼ Kðqð0Þ;fÞ; qð0Þðt þ 2po�1Þ ¼ qð0ÞðtÞ ð18Þ

The equations for optimal paths can be found using the eikonal approximation to

solve the corresponding Fokker–Planck equation, or by using a path-integral

formulation and evaluating the path integral over the fluctuational paths in the

steepest-descent approximation (for details and discussion, see Refs. 42,57,64,

65,71–73, and 118). The optimal path corresponds to the locus traced out by the

maximum in the prehistory probability density, phðq;fj qf ;ff Þ [60,124]. This is

the probability density that a system arriving at the point ðqf ;ff Þ at the instant tf

(fðtf Þ ¼ ff ) had passed through the point q;f at the instant t (t < tf ). A

particular advantage of this formulation is that ph is a physical quantity that can

be measured experimentally. The approach can be extended to include the

analysis of singular points in the pattern of optimal paths.

Using the path-integral expression for the transition probability density [64],

one can write ph in the form [60]

phðq;fj qf ;ff Þ ¼ C

ðqðtf Þ¼qf

qðtiÞqð0ÞðtiÞ
Dqðt0Þ dðqðtÞ � qÞ

� exp � S½qðtÞ�
D

� 1

2

ðtf

ti

dt0
qK

qq

� �
ti ! �1

f � fðtÞ; ff � fðtf Þ

ð19Þ

Here, C is a normalization constant determined by the condition

ð
dq phðq;fj qf ;ff Þ ¼ 1

S½qðtÞ� has the form of an action functional for an auxiliary dynamical system

with time-dependent Lagrangian Lð _q; q;fÞ:

S½qðtÞ� ¼
ðtf

ti

dt Lð _q; q;fÞ; Lð _q; q;fÞ ¼ 1

2
½ _q � Kðq;fÞ�2 ð20Þ

In the range of small noise intensities D, the optimal path qoptðtj qf ;ff Þ to the

point ðqf ;ff Þ is given by the condition that the action S be minimal. The

variational problem for S to be extremal gives Hamiltonian equations of motion
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for the coordinate q and momentum p of the auxiliary system

dq

dt
¼ qH

qp
;

dp

dt
¼ � qH

qq
;

dS

dt
¼ 1

2
p2

H � Hðq; p;fÞ ¼ 1

2
p2 þ pKðq;fÞ

Hðq; p;fÞ ¼ Hðq; p;fþ 2pÞ

ð21Þ

The boundary conditions for the extreme paths (21) follow from (19) and (20)

qðtf Þ ¼ qf

qðtiÞ ! qð0ÞðtiÞ; pðtiÞ ! 0; SðtiÞ ! 0 for ti ! �1
ð22Þ

Since the Hamiltonian Hðq; p;fÞ is periodic in f, the set of paths fqðtÞ; pðtÞg is

also periodic: the paths that arrive at a point ðqf ;ff þ 2pÞ are the same as the

paths that arrive at the point ðqf ;ff ), but shifted in time by the period 2p=o. The

action Sðqf ;ff Þ evaluated along the extreme paths is also periodic as a function

of the phase ff of the final point ðqf ;ff Þ. The function Sðq;fÞ satisfies the

Hamilton–Jacobi equation

o
qS

qf
¼ �H q;

qS

qq
;f

� �
; p � qS

qq

Sðq;fÞ ¼ Sðq;fþ 2pÞ
ð23Þ

It is straightforward to see that the extreme paths obtained by solving (21) form a

one-parameter set. It is known from the theory of dynamical systems [125] that

trajectories emanating from a stationary state lie on a Lagrangian manifold (LM)

in phase space ðq;f; p ¼ qS=qqÞ (the unstable manifold of the corresponding

state) and form a one-parameter set. The action Sðq; tÞ is a smooth single-valued

function of position on the LM. It is a Lyapunov function: it is nondecreasing

along the optimal trajectories. Therefore Sðq; tÞ may be viewed as a generalised

nonequilibrium thermodynamic potential for a fluctuating dynamical system

[64]. The projections of trajectories in phase space onto configuration space form

the extreme paths. Optimal paths are the extreme paths that give the minimal

action to a given point in the configuration space. These are the optimal paths that

can be visualised in an experiment via measurements of the prehistory

probability distribution.

The pattern of extreme paths, LM, and action surfaces for an overdamped

periodically driven oscillator (17) are shown in Fig. 6. The figure illustrates

generic topological features of the pattern in question. It can be seen from Fig. 6

that, although there is only one path to a point ðq;f; pÞ in phase space, several
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different extreme paths may come from the stationary periodic state to the

corresponding point ðq;fÞ in configuration space. These paths cross each other.

This is a consequence of the folding of the Lagrangian manifold.

A generic feature related to folding of LMs is the occurrence of caustics in

the pattern of extreme paths. Caustics are projections of the folds of an LM.

They start at cusp points. It is clear from Fig. 6 that an LM structure with two

folds merging at the cusp must give rise to a local swallowtail singularity in the

action surface. The spinode edges of the action surface correspond to the

caustics. A switching line emanates from the cusp point at which two caustics

meet. This is the projection of the line in phase space along which the two

lowest sheets of the action surface intersect. The switching line separates

regions that are reached along different optimal paths, and the optimal paths

intersect on the switching line. The intersection occurs before a caustic is

encountered by the optimal path. The formation of the singularities, avoidance

of caustics, and formation of switching lines have been analyzed numerically

[119], and a complete theory has been given [120]. Until 1996, the generic

topological features of the pattern of optimal paths had not been observed in any

experiment. We now describe briefly the experimental technique [124] that

LM, Action

LM, Action

Coordinate
−1.0

1.0

−0.5

0.5

0.0

0.0

1.0

0.5

0.0

Coordinate
−1.0 −0.5 0.0

Figure 6. From top to bottom: action surface; Lagrangian manifold (LM); and extreme paths

calculated [80] for the system (17) using equations (21). The parameters for the system were

A¼0.264 and o¼1.2. To clarify interrelations between singularities in the pattern of optimal paths,

action surface, and LM surface, they are shown in a single figure, as follows, the action surface has

been shifted up by one unit; and the LM has been scaled by a factor 1
2

and shifted up by 0.4.
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enables the pattern of optimal paths and its singularities to be observed, and we

present and discuss some of our initial results.

C. Experiments

The experiments are based on analog electronic circuits designed in the usual

way [112,126] to model the system of interest, and then driven by appropriate

external forces. Their response is measured and analysed digitally to create the

statistical quantity of interest which, in the present case, was usually a prehistory

probability distribution [60,124]. We again emphasize that such experiments

provide a valid test of the theory, and that the theory should in this case be

universally applicable to any system described by (16), including natural

systems, technological ones, or the electronic models studied here. Some experi-

ments on a model of (17) are now described and discussed as an illustrative

example of what can already be achieved.

The model was driven continuously by external quasi–white noise from a

noise generator and by a periodic force from a frequency synthesiser. The

fluctuating voltage representing qðtÞ was digitized and analysed in discrete

blocks of 32,768 samples using a Nicolet NIC-1180 data processor. The input

sweeps were triggered by the frequency synthesizer so that information about

the phase of the periodic force could be retained. Whenever qðtÞ entered a

designated square centered on a particular ðqf ;ff Þ value, the immediately pre-

ceding part of the trajectory was collected and stored; in cases where relaxation

trajectories were also of interest, the immediately following part of the

trajectory was preserved, too. The trajectories that had arrived in any chosen

square could subsequently be ensemble-averaged together to create the pre-

history probability distribution phðq;fjqf ;ff Þ corresponding to the chosen

ðqf ;ff Þ, with or without the relaxational tail back toward the stable state.

Because the fluctuations of interest were—by definition—rare, it was usually

necessary to continue the data acquisition process for several weeks in order to

build up acceptably smooth distributions. For this reason, the analysis algorithm

was designed to enable trajectories to several termination squares (not just one)

to be sought in parallel: an 8 � 8 matrix of 64 adjacent termination squares,

each centered on a different ðqf ;ff Þ was scanned.

Experimentally measured ph for the system (17) for two qualitatively

different situations are shown in Figs. 7 and 8. It is immediately evident: (1)

that the prehistory distributions are sharp and have well-defined ridges; (2) that

the ridges follow very closely the theoretical trajectories obtained by solving

numerically the equations of motion for the optimal paths, shown by the full

curves on the top planes. It is important to compare the fluctuational path

bringing the system to ðqf ;ff Þ with the relaxational path back towards the stable

state in thermal equilibrium, Fig. 7, and away from it, Fig. 8. Figure 7 plots the

distribution for the system (17) in thermal equilibrium, namely A ¼ 0. The
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ridges of a distribution are compared with the calculated fluctuational and

relaxational paths at the top of the figure. The time reversal symmetry [44]

between these paths can be clearly seen. Figure 8 plots the ph and the ridges of a

distribution recorded for the special nonequilibrium situation that arises when

the termination point lies on the switching line [124]. In Fig. 8, the time-dependent

Figure 7. The prehistory probability density phðx; t; xf ; 0Þ [60] for (17), measured [62] for

A ¼ 0 in the analog electronic experiment for a final position xf ¼ �0:30 with D ¼ 0:0701.

Figure 8. Fluctuational behavior measured and calculated for an electronic model of the non-

equilibrium system (17) with A ¼ 0:264, D ¼ 0:012. The man figure plots the prehistory probability

density (phðx; t; xf ; 0) and posthistory distribution to/from the remote state xf ¼ �0:63; t ¼ 0:83,

which lies on the switching line. In the top plane, the fluctuational (squares) and relaxational (circles)

optimal paths to/from this remote state were determined by tracing the ridges of the distribution [62].
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stable and unstable states bear x ¼ �1 and x ¼ 0 are shown by dashed lines on

the top. The data are compared to the (theoretical) fluctuational paths, calculated

from (21), shown as full lines. It can be seen: that there are two distinct paths via

which the system can arrive at ðqf ;ff Þ but only one relaxational path taking it

back to the stable state. Unlike the behaviour expected and seen [62] in

equilibrium systems, neither of the fluctuational paths is a time-reversed image

of the relaxational one. Note that there are two equally probable fluctuational

paths to arrive on a switching line, they form a so called corral [124].

Although the system (17) is relatively simple, it describes very well the

fluctuational dynamics of many real physical systems. In particular, a behavior

qualitatively similar to the one shown in Fig. 7 was observed recently in the

experiments with semiconductor lasers [83,84].

In the work by Hales and co-authors [83] the prehistory distribution was

observed experimentally using a semiconductor laser with optical feedback.

Near the solitary threshold, the system was unstable: after a period of nearly

steady operation, the radiation intensity decreased; then it recovered compara-

tively quickly, growing to regain its original value; decreased again; and the

cycle repeated. In the experiment, the output intensity was digitized with 1 ns

resolution. The ph obtained in [83] from 1512 events is shown in Fig. 9. The results

were compared with the results of numerical simulation for the system (17).

Figure 9. Bottom: The prehistory probability distribution of the radiation intensity I (in

arbitrary units) for dropout events in a semiconductor laser. Top: The PPD for a Brownian particle,

obtained from simulations [83].
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In the work by Willemsen and co-authors [84] the three Stokes polarization

parameters were studied during polarization switches in a vertical-cavity

semiconductor laser. It was demonstrated that when the linear part of the

absorptive anisotropy is close to zero [127], the laser is bistable and switches

stochastically between two polarisations [128]. The analysis of large fluctua-

tions of polarizations in this system [84] reveals what authors have called a

‘‘stochastic inversion symmetry’’ (see Fig. 10), which is analogous to the time-

reversal symmetry observed for the model (17) and shown in Fig. 7.

D. Optimal Paths on a Finite Time Range, and Conclusions

The previous discussion, and the results of Refs. [62,124, and 129–132] among

others, show that our analog electronic technique makes it possible to test

fundamental tenets of fluctuation theory, and thus provide an experimental basis

on which the theory can advance. We can investigate the pattern of optimal

paths for thermally nonequilibrium systems and reveal its singularities including,

in particular, switching lines and strong (nonanalytic in the noise intensity)

smearing of the prehistory probability distribution near cusp points. The

particular system we have investigated has the least number of degrees of

Figure 10. Time-resolved measurements of a very large polarization fluctuation, where the size

of the fluctuation is about half (in fact, 45%) of that of a complete polarization switch [84]. s1; s2 and

s3 are the normalized Stokes parameters representing the polarization state on the Poincaré sphere

[84].
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freedom necessary to observe these singularities, and therefore it is most

appropriate for analysis in these initial investigations. The approach that we

have described is in principle applicable to any nonequilibrium system, and we

believe it will be found useful in a wide range of applications.

It should also be clear that the structures predicted by the theory are indeed

observed in real systems. Reasoning along these lines, researchers have started

predicting peculiar features that should be observable in real systems, on the

basis of the topology of corresponding Lagrangian manifold. These include

features predicted on the assumption that the optimal path (and the correspond-

ing fluctuation in the real system) takes place over a finite time range [133–137].

One of the most striking effects predicted on this basis is perhaps what

occurs in noise induced escape from a metastable well on a timescale preceding

the formation of a quasiequilibrium distribution within the metastable part of

the potential (see Refs. 136 and 137 for more details), which we now review

briefly.

In his seminal work [109], Kramers considered the noise-induced flux from a

single metastable potential well i.e. he considered a Brownian particle

�q þ �_q þ dU

dq
¼ f ðtÞ

h f ðtÞi ¼ 0

h f ðtÞ f ðt0Þi ¼ 2�Tdðt � t0Þ

ð24Þ

which was put initially at the bottom of a metastable potential well UðqÞ and then

he calculated the quasistationary probability flux beyond an absorbing barrier.

There have been many developments and generalizations of the Kramers

problem (see Refs. 138 and 139 for reviews), but both he and most of those who

followed him considered just the quasistationary flux, i.e. the flux established

after the formation of a quasistationary distribution within the well (up to the

barrier). The quasistationary flux is characterized by a slow exponential decay,

an Arrhenius dependence on temperature T , and a relatively weak dependence on

friction �:

JqsðtÞ ¼ aescapee�aescapet; aescape ¼ Pe�ð�U=TÞ ð25Þ

where P depends on � and T in a nonactivation manner.

But how does the flux evolve from its zero value at the initial moment to its

quasistationary value at timescales exceeding the time tf for the formation of

quasiequilibrium? It is obvious that the answer may depend on initial condi-

tions. The most natural are those corresponding to the stable stationary state of

the noise-free system i.e. ðq ¼ qbottom; _q ¼ 0Þ where qbottom is the coordinate of

the bottom of the potential well. We assume such an initial state here. If the
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noise is switched on suddenly (e.g., if the thermal isolation of a frozen system is

broken), then the time evolution of the escape flux from the noise-free

metastable initial state is highly relevant. It might seem natural that the

evolution from zero to the quasistationary value should be smooth. Such an

assumption might also seem to have been confirmed recently by Schneidman

[140] who found that, for both the strongly underdamped and overdamped

cases, the escape flux from a single metastable well grows with time t smoothly,

at t 	 tf . But does this exhaust the problem? We can prove theoretically, and

demonstrate experimentally, that there are some generic situations when the

escape flux behaves in a quite different manner.

Our prediction are based, as mentioned, on an extensive use of the method of

optimal fluctuation within which an escape rate is sought in the form

aescape ¼ Pe�ðS=TÞ ð26Þ

where the action S does not depend on T; the prefactor P does depend on T , but

relatively weakly. The action S is related to a certain optimal fluctuation that, in

turn, corresponds to the most probable escape path (MPEP).

Figure 11. (a) Examples of MPEPs (plotted in the energy-coordinate plane E � q where

E ¼ _q2=2 þ UðqÞÞ to escape from the bottom of the metastable well UðqÞ ¼ q2=2 with q <
ffiffiffi
2

p

(thick solid line) to beyond the barrier at q ¼
ffiffiffi
2

p
ðUðqÞ ¼ �1 at q >

ffiffiffi
2

p
, which is equivalent to the

absorbing wall indicated by triangles), for � ¼ 0:05; (b) the corresponding theoretical (thick solid

line) and experimental (thin jagged line) dependences of the action S on the escape time t. Circles,

squares, and triangles indicate bits corresponding to respectively 0, 1, and 2 turning points in the

MPEP. The dashed and dotted lines indicate: in (b) the first and second inflection points with

dS=dt ¼ 0; and in (a) the corresponding MPEPs. The thin solid line shows: in (b) the large-time

asymptotic levels S ¼ �U; and in (a) the corresponding MPEP (which is the time reversal of the

noise-free trajectory from the top of the barrier into the bottom of the well). The dash–dotted line

shows in (a) hte MPEP corresponding to some arbitrarily chosen time t ¼ 4:51 [see (b)] and

demonstrates, in particular, that the escape velocity is generally nonzero. The inset shows the

experimental dependence of the flux on time, for T ¼ �U [136,137].
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The quasistationary flux is formed by optimal fluctuations which bring the

system from the bottom of the well to the saddle during an optimal time

topt 	
1

minð�;o0Þ
ln

�U

T

� �
ð27Þ

where o0 is the frequency of eigenoscillation in the bottom of the well.

At much shorter timescales, t � topt, the flux is necessarily formed by

optimal fluctuations strongly differing from those of duration topt, and the

smaller t the more marked this difference becomes. Thus, in the range (27), S

depends on t. Moreover, it can be shown rigorously that if � < �c where �c is

typically equal to 2o0, then SðtÞ is a stepwise function: see the example in

Fig. 11. The vertical and horizontal positions of the center of the step SðtÞ
number n (counted from the left) equal respectively �Uo0=ðnp�Þ and np=o0,

provided np� � o0. Generally, when the shape of the potential well departs

from parabolicity, the equalities turn into approximations. Thus, in the range

(27), J depends exponentially strongly on both � and t (cf. the inset of Fig. 11).

E. Logarithmic Susceptibility

A very good example of the usefulness of the concept of the optimal path is the

idea of the logarithm susceptibility (LS) [56,87,141].

Underlying the theory of the LS [56,87] is the realization that, although the

motion of the fluctuating system is random, large rare fluctuations from a

metastable state to a remote state, or during escape, take place in an almost

deterministic manner: the system is overwhelmingly most likely to move along

a particular trajectory known as the optimal path (see Refs. 42,57,64,69, and

121 and references cited therein). The effect of a comparatively weak field on

the escape probability can therefore be understood in terms of the work that the

field does on the system as it moves along the optimal path. One may expect this

work to be related to the field-induced change in the activation energy R for the

corresponding large fluctuation. This change is linear in the field, provided that

the field-induced change of the optimal path itself is negligible. It follows from

these arguments that in the case of periodic driving FðtÞ ¼
P

k Fk expðik�tÞ, the

leading-order correction dR to the activation energy of escape is

dR ¼ min
tc

dRðtcÞ; dRðtcÞ ¼
X

k

Fk~wðk�Þeik�tc

~wð�Þ ¼ �
ð1
�1

dt _qð0ÞðtÞei�t; _qð0Þ ¼ U0ðqð0ÞÞ
ð28Þ

Here, ~wð�Þ is the LS for escape. It is given [56,87] by the Fourier transform of the

velocity along the most probable escape path qð0ÞðtÞ in the absence of driving
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(FðtÞ ¼ 0). The path qð0ÞðtÞ is an instanton [123]: it starts from t ! �1 at the

metastable minimum qs of the potential UðqÞ and for t ! 1 arrives at the top qu

of the potential barrier over which the particle escapes. The minimization over tc
corresponds to choosing the position of the center of the instanton so as to

maximize the work the field FðtÞ does on the system along the escape path

qð0Þðt � tcÞ. We have already noted that, for Markov systems in thermal

equilibrium, optimal fluctuational paths are the time-reversed relaxational paths

in the absence of noise [44,131,142]. Unlike the standard linear susceptibility

[9], which, on causality arguments, is given by a Fourier integral over time from

0 to 1, the LS ~wð�Þ is given by an integral from �1 to 1. The analytical

properties of ~wð�Þ therefore differ from those of the standard susceptibility, and

in particular their high-frequency asymptotics are qualitatively different. The

standard susceptibility for damped dynamical systems decays as a power law for

large � (e.g., as 1=½U00ðqsÞ � i��, for the model of damped Duffing oscillator). In

contrast, from (28) the LS decreases exponentially rapidly:

~wð�Þ ¼ Me�j�jtp ; tp ¼ min Im

ð
dq=U0ðqÞ

����
���� ð29Þ

Here, the integral is taken from any point in the interval ðqs; quÞ to the (complex)

position qp of the appropriate singularity of U0ðqÞ. Note that _qð0Þðt � tcÞ for given

real tc has a pole or a branching point at Im t ¼ tp. The prefactor M depends on

the form of UðqÞ near qp and can be obtained in a standard way. In particular, for

a polynomial potential (jqpj ! 1) with UðqÞ ¼ Cqn=n for jqj ! 1, we have

jMj ¼ 2p
�

C

����
����
njnjnþ1

n!
; n ¼ 1

n � 2
ð30Þ

This expression applies also for finite jqpj, with UðqÞ  C=mðq � qpÞm for

q ! qp, if n in (30) is replaced by �m: note that jMj then decreases with

increasing �.

To test these predictions, we used an analog electronic model [112] of the

overdamped motion of a Brownian particle in the double-well Duffing potential.

We drove it with zero-mean quasi–white Gaussian noise from a shift-register

noise generator, digitized the response qðtÞ, and analyzed it with a digital data

processor. We also carried out a complementary digital simulation [143].

Numerical simulations in the case of small damping are currently in progress;

preliminary results indicate a resonant behavior of the LS. The analog and

digital measurements of R involved noise intensities in the ranges D ¼ 0:028�
0:036 and D ¼ 0:020 � 0:028, respectively; the lowest (real time [112]) driving

frequency used was 460 Hz. The results are plotted in Fig. 12. The major

observation is that, as expected, R is indeed linear in the force amplitude (R ¼ 1
4
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for A ¼ 0). The slope yields the absolute value of the LS. Its frequency

dependence, a fundamental characteristic of the original equilibrium system,

is compared with the theoretical predictions (29) in the inset of Fig. 12.

The LS theory was applied to the localization of a Brownian particle in a

three-dimensional optical trap [89]: a transparent dielectric spherical silica

particle of diameter 0.6 mm suspended in a liquid [88]. The particle moves at

random within the potential well created with a gradient three-dimensional

optical trap—a technique widely used in biophysical studies. The potential was

modulated by a biharmonic force. By changing the phase shift between the two

harmonics it was possible to localize the particle in one of the wells in very good

quantitative agreement with the predictions based on the LS.

F. Conclusions

It is evident from the preceding discussion that the theory of the optimal paths

provides a deep physical insight into the dynamics of fluctuations and is in good

agreement both with the results of analog and numerical simulations and with

the results of the experiments in optical systems. It has now become possible to

use the prehistory formulation [60] as a basis for experiments on fluctuational
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Figure 12. The dependence of the activation energy R on the amplitude A of the harmonic

driving force FðtÞ ¼ A cos ð1:2tÞ as determined [141] by electronic experiment (filled circles),

numerical sumulations (open circles) and analytical calculation (solid line), based on (28) for an

overdamped duffing oscillator UðqÞ ¼ �q2=2 þ q4=4; the dashed–dotted line, drawn parallel to the

full curve, is a guide to the eye. The inset shows the absolute value of the LS of the system j~wðoÞj
(28) measured (filled and open squares for experiment and numerical simulation, respectively) and

calculated (full curve) as a function of frequency � using (29) with ~wð0Þ ¼ �1 and tp ¼ p=2;M ¼
�ð1 þ iÞðpoÞ1=2

in (29).
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dynamics. The work on Markov systems presented in this section has already

verified several longstanding theoretical predictions, including symmetry

between the growth and decay of classical fluctuations [44], the breaking of

this symmetry under nonequilibrium conditions [57,59,65,119], the relationship

between lack of detailed balance and onset of singularities in the pattern of

optimal paths, as well as the character of these singularities [120–122,124,144],

including occurrence of switching between optimal paths and critical broad-

ening of the paths distribution. It has now become possible to apply this theory

and the corresponding experimental methods to the analysis of the fluctuational

dynamics in optical systems and to develop new methods of controlling them.

V. CHAOTIC ESCAPE AND THE PROBLEM
OF OPTIMAL CONTROL

One of the main problem in the dynamics of optical systems is that of con-

trolling the system dynamics [145]. The difficulties in solving such a problem

depend on many factors. A typical optical system is characterized by the

phenomenon of multistability [146–149], specifically, the coexistence of a

relatively small number of distinct dynamical regimes that are defined by the

initial conditions. Because real optical systems are always subject to random

fluctuations [46,147], spontaneous transitions of the system take place from one

regime to another. It is obviously desirable to be able to control these transitions.

Moreover, in optical systems nonregular oscillations are often observed that

can be described by the theory of deterministic chaos [145,147, 149]; such

nonregular oscillations in the phase space of the system can be characterized

by a chaotic attractor. The transformation of the system dynamics from a

chaotic regime to a regular regime is also an interesting problem in dynamical

control. In solving it for real systems, it is essential to take account of

fluctuations.

The need to be able to control chaos has attracted considerable attention.

Methods already available include a variety of minimal forms of interaction

[150–155] and methods of strong control [156,157] that necessarily require a

large modification of the system’s dynamics, for at least a limited period of

time. For example, in Refs. 158 and 159, the procedure of controlling chaos by

means of minimal forms of interaction (saddle cycle stabilization) is realized for

different laser systems.

At the same time the energy-optimal directing of the motion away from a

chaotic attractor (CA) to another coexisting attractor has remained an important

unsolved problem of long standing. Its solution would be an important extension

of the range of model-exploration objectives [156,154] achievable through

minimal control techniques and has a variety of applications for controlling

the dynamics of multistable optical systems [147].
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In this section the application of the optimal path approach to the problem of

escape from a nonhyperbolic and from a quasihyperbolic attractor is examined.

We discuss these two different types of chaotic attractor because it is known

[160] that noise does not change very much the structure and properties of

quasi-hyperbolic attractors, but that the structure of non-hyperbolic attractors is

abruptly changed in the presence of noise, with a strong dependence on noise

intensity. Note that for optical systems both types of chaotic attractor [161–163]

(nonhyperbolic and quasihyperbolic) are observed, but a nonhyperbolic attractor

is much more typical.

A. Escape from a Nonhyperbolic Attractor

1. Introduction to the Optimal Control Problem

Consider a system of the form

_x ¼ f ðx; u; tÞ ð31Þ

with the state variable x 2 Rn, and an admissible control function u 2 Rm in the

control set U. Assume that it is desired to transfer the system from the state

X0 ¼ xðt0Þ to the terminal state X1 ¼ xðt1Þ in such a way that the (‘‘cost’’)

functional

J ¼ min

ðt1

t0

f0ðx; u; tÞdt ð32Þ

is minimized, with t1 unspecified. Let ðuðtÞ; xðtÞÞ be a solution of this problem.

Then there exist continuous piecewise differentiable functions y0ðtÞ; . . . ; ynðtÞ
that are not simultaneously zero and that satisfy together with the functions xiðtÞ
the differential equations [164]

_xi ¼
qH

qyi

_yi ¼ � qH

qxi

ð33Þ

with the Hamiltonian

Hðx1; . . . ; xn; y0; . . . ; yn; uðtÞ; tÞ ¼
Xn

i¼0

yifiðx1; . . . ; xn; uðtÞ; tÞ ð34Þ

An optimal control function uðtÞ maximizes H at each instant. H is a continuous

function of the time and one has Hðt1Þ ¼ 0. If the functions fi; i ¼ 0; . . . ; n do not

depend on time explicitly, then H is a constant and equal to zero.

fluctuational escape and related phenomena 501



It can be seen that the solution of the problem of the energy-optimal guiding

of the system from a chaotic attractor to another coexisting attractor requires the

solution of the boundary-value problem (33)–(34) for the Hamiltonian dynamics.

The difficulty in solving these problems stems from the complexity of the system

dynamics near a CA and is related, in particular, to the delicate problems of the

uniqueness of the solution, its behaviour near a CA, and the boundary conditions

at a CA.

Below we show how the energy-optimal control of chaos can be solved via a

statistical analysis of fluctuational trajectories of a chaotic system in the

presence of small random perturbations. This approach is based on an analogy

between the variational formulations of both problems [165]: the problem of the

energy-optimal control of chaos and the problem of stability of a weakly

randomly perturbed chaotic attractor. One of the key points of the approach is

the identification of the optimal control function as an optimal fluctuational

force [165].

We emphasize that the question of stability of a CA under small random

perturbations is in itself an important unsolved problem in the theory of fluctua-

tions [92–94] and the difficulties in solving it are similar to those mentioned

above. Thus it is unclear at first glance how an analogy between these two

unsolved problems could be of any help. However, as already noted above, the

new method for statistical analysis of fluctuational trajectories [60,62,95,112]

based on the prehistory probability distribution allows direct experimental insight

into the almost deterministic dynamics of fluctuations in the limit of small noise

intensity. Using this techique, it turns out to be possible to verify experimentally

the existence of a unique solution, to identify the boundary condition on a CA,

and to find an accurate approximation of the optimal control function.

Let us now formulate the problem of the energy-optimal steering of the

motion from a chaotic attractor to the coexisting stable limit cycle for a simple

model, a noncentrosymmetric Duffing oscillator. This is the model that, in the

absence of fluctuations, has traditionally been considered in connection with a

variety of problems in nonlinear optics [166]. Consider the motion of a perio-

dically driven nonlinear oscillator under control

_q1 ¼ K1ðqðtÞÞ ¼ q2

_q2 ¼ K2ðqðtÞÞ þ uðtÞ

¼ �2�q2 � o2
0q1 � bq2

1 � gq3
1 þ hsinðotÞ þ uðtÞ

ð35Þ

Here uðtÞ is the control function. It is a system where chaos can be observed at

relatively small values h  0:1 of the driving force amplitude and the chaotic

attractor is a nonhyperbolic attractor or a quasiattractor [167].

We have considered the following energy-optimal control problem. The

system (35) with unconstrained control function uðtÞ is to be steered from a CA
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to a coexisting stable limit cycle (SC) in such a way that the ‘‘cost’’ functional J

is minimized, with t1 unspecified

R ¼ inf
u2U

1

2

ðt1

t0

u2ðtÞdt ð36Þ

Here the control set U consists of functions (control signals) able to move the

system from the CA to the SC. The Pontryagin Hamiltonian (34) and the

corresponding equations of motion take the form

_qi ¼
qHc

qpi

; _pi ¼ � qHc

qqi

; i ¼ f1; 2g

Hc ¼
1

2
p2

2 þ p1K1 þ p2K2

ð37Þ

Here it is assumed that the optimal control function uðtÞ at each instant takes

those values uðtÞ ¼ p2 that maximize Hc over U.

We note that for p1 ¼ 0 and p2 ¼ 0 the dynamics of (37) reduces to the

deterministic dynamics of the original system (35) in the absence of control

(uðtÞ ¼ 0). So we begin our analysis by considering some relevant properties of

the deterministic dynamics of a periodically driven nonlinear oscillator.

The parameters of the system (35) were chosen such that the potential is

monostable (b2 < 4go2
0), the dependence of the energy of oscillations on their

frequency is nonmonotonic ð b2

go2
0

> 9
10
Þ, and the motion is underdamped

� � o  2o0.

A simplified parameter space diagram obtained numerically [168] is shown

in Fig. 13. The dashed lines bound the region in which both the linear and

nonlinear responses of period 1 coexist. The upper line marks the boundary of

the linear response, and the lower line marks that for the nonlinear responses.

The boundaries of hysteresis for the period 1 resonance are shown by solid

lines. The region in which linear response coexists with one or two nonlinear

responses of period 2 is bounded by dotted lines. This region is similar to the

one bounded by dashed lines. The region of coexistence of the two resonances

of period 2 is bounded by the dashed–dotted line. Chaotic states are indicated by

small dots. The chaotic state appears as the result of period-doubling bifurca-

tions, and thus corresponds to a nonhyperbolic attractor [167]. Its boundary of

attraction q� is nonfractal and is formed by the unstable manifold of the saddle

cycle of period 1 (S1).

For a given damping (� ¼ 0:025) the amplitude and the frequency of the

driving force were chosen so that the chaotic attractor coexists with the stable

limit cycle (SC): h ¼ 0:13;of ¼ 0:95 (see Fig. 13).
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The basins of attraction of the coexisting CA (strange attractor) and SC are

shown in the Fig. 14 for the Poincaré crosssection of t ¼ 0:6pðmod2pÞ in

the absence of noise [169]. The value of the maximal Lyapunov exponent for the

CA is 0.0449. The presence of the control function effectively doubles the

dimension of the phase space (compare (35) and (37)) and changes its geometry.

In the extended phase space the attractor is connected to the basin of attraction

of the stable limit cycle via an unstable invariant manifold. It is precisely the

complexity of the structure of the phase space of the auxiliary Hamiltonian

system (37) near the nonhyperbolic attractor that makes it difficult to solve the

energy-optimal control problem.

However, using a method proposed [60,62,95,112] for experimental analysis

of the Hamiltonian flow in an extended phase space of the fluctuating system,

we can exploit the analogy between the Wentzel–Freidlin and Pontryagin

Hamiltonians arising in the analysis of fluctuations, and the energy-optimal

control problem in a nonlinear oscillator. To see how this can be done, let us

consider the fluctuational dynamics of the nonlinear oscillator (35).

Let us analyze the motion of an oscillator interacting with a thermal bath:

_q1 ¼ q2

_q2 ¼ �2�q2 � o2
0q1 � bq2

1 � gq3
1 þ hsinðotÞ þ xðtÞ

hxðtÞi ¼ 0; hxðtÞxð0Þi ¼ DdðtÞ ¼ 4�kTdðtÞ
ð38Þ

P

h

10−1

10−2

ω
0.4 0.6 0.8 1 1.2 1.4

Figure 13. Phase diagram of the system (35) on the (o; h) plane obtained numerically for the

parameter values � ¼ 0:025;o0 ¼ 0:597; b ¼ 1; g ¼ 1. See text for a description of the symbols; the

various lines are guide to the eye. The working point P, with of ¼ 0:95; h ¼ 0:13, shown by a thick

plus, was chosen to lie in the region of coexistence of the period 1 stable limit cycle and of the

strange attractor [168].
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In the zero-noise-intensity limit, a consistent theoretical development [42,170]

from the microscopic to the macroscopic equations of motion leads to descrip-

tions of both its deterministic (dissipative) and fluctuational dynamics within the

framework of Hamiltonian formalism [57]. The comparison of the Hamiltonian

approach to large fluctuations, described in Section III, and the approach to the

optimal control problem show that, both on physical grounds and rigorously, the

Wentzel–Freidlin Hamiltonian [57] (37) is equivalent to the Pontryagin

Hamiltonian (34) [164] and the corresponding optimal control function is equi-

valent to the optimal fluctuational force. The analogy between the two problems

opens up the possibility of direct experimental insight into the geometry of the

phase space of system (34) using a statistical analysis of the fluctuational trajec-

tories in this system when a control function uðtÞ is substituted for the random

function xðtÞ. In particular, the optimal control signal �uðtÞ can be identified with

the optimal fluctuational force that drives the system from the chaotic attractor to

the stable limit cycle [165]. We note that both �uðtÞ and the optimal force are

related to p2 in (37) [144].

We therefore suggested that the optimal control function �uðtÞ can be found

experimentally by measurement of the optimal fluctuational force [95,112].

This interrelationship is intuitively clear because, in thermal equilibrium

(D ¼ 4�kBT), the probability of fluctuations is determined by the minimum

work of the external source needed to produce the given change in the thermo-

Figure 14. The basins of attraction of the SC (shaded) and CA (white) for a Poincaré cross

section with of t ¼ 0:6pðmod2pÞ;of ¼ 0:95 in terms of q1 at q2. The boundary of the CA’s basin of

attraction, the saddle cycle of period 1, S1, is shown by the filled square. The saddle cycle of period

3, S3, is shown by pluses. The intersections of the actual escape trajectory with the Poincaré cross

section are indicated by the filled circles [169].
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dynamic quantities r / expð�Rmin=kBTÞ [9]. We emphasize that the analysis

presented above draws an analogy between two quite distinct and separate

problems: the deterministic energy-optimal control problem and the problem of

the stability of the system in the presence of small random perturbations. Very

similar conclusions can be drawn using a more general formulation of the

stochastic optimal control problem [165].

2. Statistical Analysis of Fluctuational Trajectories

A statistical analysis of the fluctuational trajectories is based on the mea-

surements of the prehistory probability distribution [60] phðq; t; qf ; tf Þ (see

Section IIIC). By investigating the prehistory probability distribution experi-

mentally, one can establish the area of phase space within which optimal paths

are well defined, specifically, where the tube of fluctuational paths around an

optimal path is narrow. The prehistory distribution thus provides information

about both the optimal path and the probability that it will be followed. In

practice the method essentially reduces to continuously following the dynamics

of the system and constructing the distribution of all realizations of the fluctua-

tional trajectories that transfer it from a state of equilibrium to a prescribed

remote state.

To find the optimal control function �uðtÞ, we performed digital simulations of

(38) using the Heun algorithm, with particular care given to the random-number

generator [143,171], because simulation times necessarily grow exponentially

as D ! 0. We have also carried out a complementary analog electronic model-

ing [112] of (38). We drive the model with zero-mean quasi–white Gaussian

noise from a noise generator, digitize the response q1ðtÞ; q2ðtÞ; xðtÞ; and

analyze it with a digital data processor. In both analog and digital simulations,

trajectories moving the system from the chaotic attractor to the stable limit cycle

were collected, and the corresponding distributions of the escape trajectories

were built and analyzed. Qualitatively similar results were obtained but, because

precision is of particular importance here, most of the data reported below are

those from the digital simulations.

For the technique to be applicable, a solution of (37) moving the system from

the CA to q� must exist, and one has to be able to identify the boundary

conditions for this solution on the CA.

In the presence of weak noise there is a finite probability of noise-induced

transitions between the chaotic attractor and the stable limit cycle. In Fig. 14 the

filled circles show the intersections of one of the real escape trajectories with the

given Poincaré section. The following intuitive escape scenario can be expected

in the Hamiltonian formalism. Let us consider first the escape of the system

from the basin of attraction of a stable limit cycle that is bounded by an saddle

cycle. In general, escape occurs along a single optimal trajectory qoptðtÞ
connecting the two limit cycles.
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The trajectory qoptðtÞ is determined by minimizing S in (20) on the set of all

classical deterministic trajectories determined by the Hamiltonian H (37), that

start on a stable limit cycle as t ! �1 and terminate on a saddle cycle as

t ! 1. That is, qoptðtÞ is a heteroclinic trajectory of the system (37) with

minimum action, where the minimum is understood in the sense indicated, and

the escape probability assumes the form P  expð�S=DÞ. We note that the

existence of optimal escape trajectories and the validity of the Hamiltonian

formalism have been confirmed experimentally for a number of nonchaotic

systems (see Refs. 62, 95, 112, 132, and 172 and references cited therein).

If the noise is weak, then the probability P  expð�S=DÞ to escape along

the optimal trajectory is exponentially small, but it is exponentially greater than

the escape probability along any other trajectory, including along other hetero-

clinic trajectories of the system (37).

Since the basin of attraction of the CA is bounded by the saddle cycle S1, the

situation near S1 remains qualitatively the same and the escape trajectory

remains unique in this region. However, the situation is different near the chaotic

attractor. In this region it is virtually impossible to analyze the Hamiltonian flux

of the auxiliary system (37), and no predictions have been made about the

character of the distribution of the optimal trajectories near the CA. The

simplest scenario is that an optimal trajectory approaching (in reversed time)

the boundary of a chaotic attractor is smeared into a ‘‘cometary tail’’ and is lost,

merging with the boundary of the attractor.

However, statistical analysis of real fluctuation-induced escape trajectories

gives a more detailed picture of the noise-induced escape from a chaotic

attractor. Several thousand real escape trajectories of the system (38) from

the basin of attraction of a CA in various operating regimes were investigated

[173]. The typical situation as measured in analog simulations is displayed in

Fig. 15 for system parameters close to the point P in Fig. 13 and a noise

intensity D  0:0005. The figure shows 65 measured fluctuational escape

trajectories. All the trajectories have been shifted in time so that the character-

istic regions of the trajectories corresponding to the transition from chaotic to

regular motion coincide with each other.

It is evident that all real trajectories pass through the close neighborhood of

some optimal trajectory in a tube with a radius /
ffiffiffiffi
D

p
. Therefore it is possible to

determine the optimal escape paths by simple averaging performed separately

for each group of trajectories. The number of different optimal escape paths

obtained for the transition CA ! S3 depends on the choice of the working

point. From one to three distinct optimal escape paths for operation in various

regimes were observed experimentally. The escape probabilities along different

paths are different, and, as the noise intensity is reduced, one of the escape paths

becomes exponentially more probable then the others. In what follows we

concentrate on the properties of this most probable escape path.
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To find the boundary conditions on the CA, we analyze the prehistory

probability distribution phðq; t; qf ; tf Þ of the escape trajectories. The correspond-

ing distribution is shown in the Fig. 16. It can be inferred by the inspection of

how the ridge of the most probable escape path merges the CA that most of the

escape trajectories pass close to the saddle cycle of the period 5 embedded into

the CA.

2

2
2

46

0

0 0

−2
−2

q1

q2

N

Figure 15. Escape trajectories found [173] in the analog simulations for the parameters

h ¼ 0:19;of  1:045;o0  0:597;D  0:0005 are shown in comparison with the Poincaré cross

section of a quasiattractor and its basins of attraction for of t ¼ 0.

Figure 16. The prehistory probability distribution of the escape trajectories for the parameters

as in Fig. 13. The circles, squares, and triangles show single periods of the saddle cycies of periods 5

(S5), 3 (S3), and 1 (S1), respectively [173].
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This hypothesis can be elaborated further using a statistical analysis of the

trajectories arriving a small tube around S3 with the noise intensity reduced by a

few orders of magnitude up to D ¼ 1:5 � 10�6, see Fig. 17 [173]. The analysis

reveals that the energetically favorable way to move the system from the CA to

the stable limit cycle starts at the saddle cycle of period 5 (S5) embedded in the

CA, passes through saddle cycle S3 and finishes at the saddle cycle S1 at the

boundary of the basin of attraction of the CA. Subsequent motion of the system

towards the stable limit cycle does not require external action.

To find an approximation to the optimal control function we collect all

successful realizations (qesc
1 ðtÞ; qesc

2 ðtÞ; xescðtÞ) that move it from the CA to q�.

An approximate solution ~uðtÞ is then found as an ensemble average over the

corresponding realizations of the random force hxescðtÞi (the exact solution is

�uðtÞ ¼ limD!0 ~uðtÞ). The results of this procedure are shown in the upper trace

of Fig. 18. To remove the irrelevant high-frequency component left after

averaging, we filtered through a zero-phase low-pass filter with frequency

cutoff oc ¼ 1:9.

It can be seen from the figure that the optimal force switches on at the

moment when the system leaves S5 along its unstable manifold. The optimal

force returns to zero when the system reaches the saddle cycle S1.

Thus we conclude that the solution ~uðtÞ and the corresponding boundary

conditions can be found using our new experimental method. Moreover the

problem of escape from the CA of a periodically driven nonlinear oscillator can

essentially be reduced to the analysis of a transition between three saddle cycles

Figure 17. Escape trajectories for the parameters as in Fig. 16. The squares and circles show

one period of the saddle cycle S3 and one period of S5, respectively.
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S5 ! S3 ! S1. We note that the latter result is in qualitative agreement with the

well known statement that unstable cycles provide detailed invariant character-

izations for dynamical systems of low intrinsic dimension [174–176].

This result opens up the possibility of the numerical solution of the corres-

ponding boundary value problem for energy-optimal control formulated above.

It can be shown [173] that the average time for the system to approach S5 is

much smaller then the average escape time and thus the optimal escape paths

found from the statistical analysis of the escape trajectories is independent of

the initial conditions on the attractor and provides an approximation to the

global minimum of the corresponding deterministic control problem.

3. Numerical Solution of the Boundary Value Problem

In principle, it is possible to find the optimal path by direct solution of the

Pontryagin Hamiltonian (37), with appropriate boundary conditions. We must

stress that even for this relatively simple system, the solution is a formidable,

and almost impossible, task. First of all, in general one has no insight into the

appropriate boundary conditions, in particular into those at the starting time

(which belong to the strange attractor). But even if the boundaries were known,

in practice the determination of the optimal path is impossible: the functional R

of Eq. (36) has so many local minima, that it proved impractical to attempt a

(general) search for the optimal path.

−1

−0.05

0

0

0 5 10 15

1

2

3

〈 qesc〉 〈 ξesc〉1

ω ft/2π

Figure 18. The most probable escape path (bottom solid curve) from S5 to the S1, found in the

numerical simulations. The stable limit cycle is shown by rombs; see Fig. 16 for other symbols.

Parameters were h ¼ 0:13;of ¼ 0:95;o0  0:597;D ¼ 0:0005. Top: optimal force (solid line)

corresponding to the optimal path after filtration [169]. The optimal path and optimal force from

numerical solution of the boundary-value problem are shown by dots.
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However, once the fluctuational trajectories were available, we did indeed

manage to find the optimal path by direct solution of the Pontryagin Hamilto-

nian. The idea is to study the escape scenario that emerges from the fluctua-

tional trajectories: as we mentioned, the escape takes place through S3, S5, and

S1. We then built an initial trial function, taking a linear combination of the

structures involved in the escape. The combination was such that at short times

the trial function coincided with S5, while at large times it coincided with S1. At

intermediate times, we had a mixture of S5 and S1 in the initial trial function,

but no S3. Using a well-known algorithm for two-point boundary conditions

(TWPBVP, obtained via netlib [177]; see Ref. 178 for details), we then relaxed

this trial function to find the optimal path, defined as the path that minimizes the

functional (36). It is striking that the relaxational optimal path that we found

does go through S3, in good agreement with what was observed for the optimal

path obtained via the fluctuational trajectories [173].

4. The Energy-Optimal Migration Control of a Chaotic Oscillator

Here we examine the control of migration in a periodically driven nonlinear

oscillator. Our aim is to demonstrate that application of the approximate

solution found from the statistical analysis of fluctuational trajectories optimizes

(minimizes) the energy of the control function. We compare the performance of

some known adaptive control algorithms to that of the control function found

through our analysis.

To verify that the optimal force ~uðtÞ found in the experiment does minimize

the energy of the control function steering the system (35) from the CA to the

S1, we set it to arbitrary initial conditions in the basin of attraction of CA and let

it evolve deterministically until it passed through the initial part of the unstable

manifold of S5. At this moment the deterministic control function was switched

on. For small variations in the shape of the control function and/or initial

conditions, the amplitude of the control function was set to the threshold of the

switching for the system from chaotic motion to regular motion on the stable

limit cycle. It was found that the system is very sensitive to variation of both the

shape of the control function and the initial conditions. It was also demonstrated

that any deviation from the shape of ~uðtÞ or from the initial conditions found in

the experiment leads to a substantial increase in the energy of the control

function required to steer system from a CA to S1. Some experimental results

are shown in Fig. 19. Thus it can be seen that the energy of the control function

is approximately twice larger if the optimal force is approximated by the sin

function modulated by the Gaussian uðtÞ ¼ a1 sinða2tÞexpð�ðt � a3Þ2
a4Þ and it

is 	4 and 20 times larger if the optimal force is approximated by rectangular

pulses or perturbed with arbitrary low-frequency perturbations, respectively.

We have also performed experiments using an open-plus-closed-loop control

technique [156] and adaptive control algorithm [157] to steer the system from
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the CA to the S1. The equations of motion are taken in the form

_q1 ¼ q2 þ F1ðq; g; tÞ
_q2 ¼ �2�q2 � o2

0q1 � bq2
1 � gq3

1 � f cosðotÞ
þ F2ðq; g; tÞ; q ¼ q1; q2; g ¼ g1; g2

ð39Þ

Here Fðq; g; tÞ is the control function in the form

Fðq; g; tÞ ¼ ð _g � KðgÞÞ þ SðtÞðK 0ðgÞ � AÞðgðtÞ � qðtÞÞ ð40Þ

We will be interested in the situation when the ‘‘goal dynamics’’ gðtÞ is a solution

of (35) with uðtÞ ¼ 0, namely, _g ¼ KðgÞ. Specifically, gðtÞ describes the stable

limit cycle SC of period 1 coexisting with the CA. Thus the first term in (40)

vanishes. And Fðq; g; tÞ takes the following explicit form

Fiðq; g; tÞ ¼ SðtÞ
X
j¼1;2

ðKij � aijÞðgj � qjÞ ð41Þ

Here i ¼ 1; 2 and Kij ¼ qKi=qqj. We have considered only the case aij ¼ �jaijjdij

and SðtÞ ¼ 1 � expð�ltÞ as has been suggested [157]. Parameters jaj and l
were varied to optimize the energy of the control function.

(b)(a)

Figure 19. (a) The shapes of the control functions (not drawn to scale) used in the numerical

experiment: 1—optimal force found from the statistical analysis of the fluctuational escape trajec-

tories; 2—approximation of the optimal force by the uðtÞ ¼ a1 sin ða2tÞ exp ð�ðt � a3Þ2
a4Þ where ai

are constants; 3—approximation of the optimal force by the rectangular pulses; 4—arbitrary

perturbation of the optimal force with a low-frequency perturbation; 5—control functions produced

by the OPCL alogrithm; 6—control function for the adaptive control. (b) Energies of the control

functions shown in (a) [169].
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The energy of the control functions obtained by these methods varies from

0.14 to 0.6 and thus it is more then one order of magnitude larger then the

energy of the optimal control function ~uðtÞ found by our new technique, (see

Fig. 19). Similar results were obtained using the algorithm for adaptive chaos

control [151] for the migration of the nonlinear oscillator from the CA to SC

(see Fig. 19).

We note that neither the OPCL nor the adaptive control algorithms were

devised to optimize the energy of the control, but rather the recovery time. It is

clear that these methods are insensitive to the initial conditions at the CA. The

shapes of the control functions are, to a large extent, also prescribed by the

algorithms and are not optimized. In this sense the high energy of the control

functions is not a surprise: the results presented serve the purpose of illustrating

the main point: the sensitivity of the optimal control to the shape of the control

function and to the initial conditions, discussed above.

B. Fluctuational Escape from a Quasihyperbolic Attractor

We now consider, for comparison, fluctuational escape from the Lorenz

attractor, which, for a certain range of parameters, is a quasihyperbolic attractor

consisting of unstable sets only [161]:

_q1 ¼ sðq2 � q1Þ
_q2 ¼ rq1 � q2 � q1q3 ð42Þ
_q3 ¼ q1q2 � bq3 þ xðtÞ

hxðtÞi ¼ 0; hxðtÞxð0Þi ¼ DdðtÞ ð43Þ

In the absence of noise, the system [179] describes the generation of a single-

mode laser field interacting with a homogeneously broadened two-level medium

[180]. The variables and parameters of the Lorenz system can be interpreted in

terms of a laser system as: q1 is the normalized electric field amplitude, q2 the

normalized polarization, q3 the normalized inversion, s ¼ k=g1, r ¼ �þ 1,

b ¼ g2=g1, with k the decay rate of the field in the cavity, g1 and g2 the relaxation

constants of the inversion and polarization, and � the pump parameter. Far-

infrared lasers have been proposed as an example of a realization of the Lorenz

system [162]. A detailed comparison of the dynamics of the system (42) and a

far-infrared laser, plus a discussing the validity of the Lorenz system as laser

model, can be found in Ref. 163.

The Lorenz equations have a simple structure and contain two nonlinear

terms only. Let us briefly consider the main bifurcations in the system (42)

(a more detailed analysis can be found in Ref. 181). We fix the parameters

s ¼ 10, b ¼ 8
3

and vary the parameter r: in this case two global bifurcations take

place (see the bifurcation diagram in Fig. 20). For r ¼ 1, a supercritical
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pitchfork bifurcation happens: the stationary state at the origin O � ð0; 0; 0Þ
becomes a saddle state and two new stationary states appear: P1 � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðr � 1Þ
p

; r � 1Þ and P2 � ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðr � 1Þ

p
; r � 1Þ. In the system

phase space there are two stable points P1 and P2, a saddle point O at the origin,

and their one-dimensional (separatrixes) and two-dimensional manifolds.

The second bifurcation occurs at

r ¼ sðsþ b þ 3Þ
ðs� b � 1Þ  24:74; . . . ð44Þ

and it is a subcritical Hopf bifurcation, when states P1 and P2 loss their stability

and in the phase space there is the unique chaotic quasihyperbolic attractor.

There are also two local bifurcations. The first one takes place for

r  13:926 . . ., when a homoclinic tangency of separatrixes of the origin O

occurs (it is not shown in Fig. 20) and a hyperbolic set appears, which consists

of a infinite number of saddle cycles. Beside the hyperbolic set, there are two

saddle cycles, L1 and L2, around the stable states, P1 and P2. The separatrices of

the origin O reach the saddle cycles L1 and L2, and the attractors of the system

are the states P1 and P2. The second local bifurcation is observed for r  24:06.

The separatrices do not any longer reach to the saddle cycles L1 and L2. As a

result, in the phase space of the system a stable quasihyperbolic state appears—

the Lorenz attractor. The chaotic Lorenz attractor includes separatrices, the

saddle point O and a hyperbolic set, which appears as a result of homoclinic

tangency of the separatrices. The presence of the saddle point in the chaotic

L1 P1

L2 P2

O

one stable
state

two stable
state

chaotic
attractor

r

1.0 13.926 24.06 24.74

Figure 20. The bifurcation diagram of the Lorenz system for fixed s ¼ 10; b ¼ 8
3
. The unstable

and stable sets are shown by dashed and solid lines, respectively.
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attractor defines the prefix ‘‘quasi’’ in the definition of the chaotic attractor as

quasihyperbolic [161]. The states P1, P2 remain stable. Thus, in the range

r 2 ½24:06 : 24:74� the coexistence of the chaotic attractor and two stable point

attractors is observed in the phase space of the Lorenz system. Let us fix the

parameter r ¼ 24:08 in this range and consider the noise-induced escape for the

chaotic attractor to the basins of attraction of the stable points. Note that in Ref.

64 the invariant measure of the noisy Lorenz attractor was found within a

Hamiltonian formalism, but large deviations from a chaotic attractor were not

considered.

First, we examine [182] the structure of the system phase space for chosen

parameters s ¼ 10, b ¼ 8
3
, r ¼ 24:08 (Fig. 21).

The saddle cycles L1 and L2 surround the stable states P1 and P2 and are

located at the intersection of the unstable Wu and stable Ws manifolds. The

unstable manifold goes to the stable state P1 from one side and to the chaotic

attractor from the other side. The stable manifold Ws forms a tube in the vicinity

of the stable state [183]. The saddle cycles L1 and L2 have the multipliers

ð1:0000; 1:0280; 0:0001Þ, and therefore trajectories will go slowly away along

the unstable manifold, and they will approach quickly along the stable manifold.

For simplicity, we add noise in the form of a white noise xðtÞ to the third

equation of system (42), preserving the original system symmetry.

Figure 21. Structure of the phase space of the Lorenz system. An escape trajectory measured

by numerical simulation is indicated by the filled circles. The trajectory of the Lorenz attractor is

shown by a thin line; the separatrixes �1 and �2 by dashed lines [182].
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As in the case of escape from a nonhyperbolic attractor, there is no

theoretical prediction about the process of fluctuational escape from the Lorenz

attractor. But the process is readily studied via numerical simulation and via

analysis of the prehistory probability distribution built using the fluctuational

escape trajectories. For definiteness, we examine escape to the stable point P1.

The averaged escape trajectory and the corresponding averaged fluctuational

force obtained in this way are shown in Fig. 22. We have found that the escape

occurs via the following scenario. The escape trajectory starts from the stable

manifold of the saddle point O. Under the action of a fluctuation, an escape

trajectory tends to point O along the two-dimensional stable manifold. Then,

without reaching the saddle point O, the trajectory departs from it again,

following a path close to the separatrix �2, and falling into the neighborhood

of the saddle cycle L1. In the absence of an external force, the trajectory goes

away from the cycle L1, slowly untwisting. The fluctuational force induces a

crossing through the saddle cycle, and the trajectory then relaxes to the stable

point P1. We can thus split the escape process into two parts: fluctuational and

relaxational. In practice all the fluctuational part belongs to the Lorenz attractor,

and itself consists of two stages: at first, the fluctuational force throws the

trajectory as close as possible to the cycle L1; then, the trajectory crosses this

cycle under the action of fluctuations. The first stage is defined by the stable and

unstable manifolds of the saddle point O, and the time dependence of the

fluctuational force is similar to that of the coordinate q3 (Fig. 22). During the

second stage, the fluctuations have a component that oscillates in antiphase to

0
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40
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q 3
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50
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p 3
 −

 2
0

t

Figure 22. The averaged escape trajectory (solid line) and the averaged fluctuational force

(dashed line) during escape from the Lorenz attractor [182].
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the coordinate q3. Because the trajectory of the noise-free system departs from

the cycle L1 very slowly, the fluctuational force inducing the crossing through

the cycle may start to act at any time during a long interval. For this reason the

averaged fluctuational force itself consists of a long oscillating function.

It is clear that all of the escape trajectory from the Lorenz attractor lies on the

attractor itself. The role of the fluctuations is, first, to bring the trajectory to a

seldom-visited area in the neighborhood of the saddle cycle L1, and then to

induce a crossing of the cycle L1. So we may conclude that the role of the fluc-

tuations is different in this case, and the possibility of applying the Hamiltonian

formalism will require a more detailed analysis of the crossing process.

Thus, we have found that the mechanisms of escape from a nonhyperbolic

attractor and a quasihyperbolic (Lorenz) attractor are quite different, and that

the prehistory of the escape trajectories reflects the different structure of their

chaotic attractors. The escape process for the nonhyperbolic attractor is realized

via several steps, which include transitions between low-period saddle-cycles

coexisting in the system phase space. The escape from the Lorenz attractor

consist of two qualitatively different stages: the first is defined by the stable and

unstable manifolds of the saddle center point, and lies on the attractor; the

second is the escape itself, crossing the saddle boundary cycle surrounding the

stable point attractor. Finally, we should like to point out that our main results

were obtained via an experimental definition of optimal paths, confirming our

experimental approach as a powerful instrument for investigating noise-induced

escape from complex attractors.

VI. CONCLUSIONS

The rapid advances in the understanding of fluctuating nonlinear systems,

including optical systems, have come about in large part through the mutually

supportive relationship between analytic calculation and analog and digital

simulations. This has been especially true of problems involving large fluctua-

tions, where use of simulations, coupled with the introduction of the prehistory

probability distribution, have set the area on an experimental basis for the first

time, and helped to stimulate new advances in the theory. These have included

the logarithmic susceptibility, described above, which promises to do for

optimal paths what the conventional linear susceptibility has done for linear

response theory. The theory of the logarithmic susceptibility, in turn, has been

tested, and its limits of applicability explored, through simulations. And the

same is true of developments in understanding Kramers’ problem on short

timescales. Studies of the fluctuational escape from chaotic attractors, of which

two examples are described above, are entirely simulation-led at present. But

the results of the analog and digital experiments have already provided strong

guidance for future developments in the theory. It seems certain that the close
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symbiotic relationship between simulation and theory in fluctuational dynamics

will continue, and that the emergence of many new results and phenomena may

be anticipated in the near future.
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I. INTRODUCTION

When we come to examine the annals of classical hydrodynamics and electrody-

namics, we find that the foundations of vector field theory have provided some

key field structures whose role has repeatedly been acknowledged as instrume-

ntal in not only underpinning the structural edifice of classical continuum field

physics, but in accounting for its empirical exhibits as well.

However, there is one equally important vector field configuration that,

despite its ubiquitous exhibit throughout a panoply of applications in classical

field physics, has strangely enough remained less understood, underappreciated

and currently consigned to linger in relative obscurity, known only to specialists

in certain fields.

The following exposition seeks to remedy this situation by calling attention

to the extensive but little recognized applications of this field structure in

various areas of hydrodynamics and electrodynamics. Also, many of these

empirical exhibits, particularly in classical electrodynamics, have continued to

be accompanied by recorded energy anomalies or other related phenomena

currently unexplainable by accepted scientific paradigms. This is one indication

which strongly implies a disturbing lack of completeness in the foundations of

electromagnetic theory.

An aim of this chapter is to show that these deficiencies could possibly be

better understood once it is acknowledged that certain exhibits of classical

EM—much like those associated with the Aharonov–Bohm effect—may in fact

be a function of topological field symmetries higher than those of the standard

U(1) variety. Consequently, our inability to quantify some of the EM phenom-

ena associated with the field structure in question, could be due to a heretofore

lack of understanding of its possible significance as a fundamental topological

field archetype, universal throughout physics in general. Accordingly, in support

of this contention, a smaller focus of this chapter explores the speculation that

our failures up to present in constructing a viable deterministic model or theory

of turbulence in hydrodynamics, might also rest on the heretofore unsuspected

role this field structure might play at a more archetypal level of nature.

II. PROPERTIES OF BELTRAMI FLOW FIELDS
IN HYDRODYNAMICS

This vector field condition is sometimes referred to as Beltrami fluid flow, and

was previously treated in a similar exposition by the author in 1995 [1]. There it

was indicated that Beltrami vector field flow is representative of a certain class of

vector fields that are termed force-free. This type of field topology was first

brought to prominence by Eugenio Beltrami in his 1889 paper ‘‘Considerations

on Hydrodynamics.’’ [2]. This type of morphology describes a regime of fluid
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flow in which both the velocity field v (flux of streamlines) and the vorticity

(w ¼ curl v) are either parallel or antiparallel.

This also describes a Magnus force-free flow, which is expressed by the

following relationship:

v � ðcurl vÞ ¼ 0 ð1Þ

As pointed out by Bjorgum and Godal [3], this relationship represents one of the

eight types of possible vector fields. These are further derived from three basic

field types:

1. Solenoidal vector fields for which

div v ¼ 0 ð2Þ

2. Complex lamellar vector fields for which

v � ðcurl vÞ ¼ 0 ð3Þ

3. Beltrami vector field condition in (1) above

An alternative formulation of the Beltrami condition is given as follows. For any

vector field there exists the identity

ðv � gradÞv ¼ grad
ðv2Þ

2
� v � ðcurl vÞ

where v denotes the magnitude of v. Now, the Beltrami condition is satisfied if

ðv � gradÞv ¼ grad
ðv2Þ

2
ð4Þ

Consequently, (4) represents a necessary and sufficient Beltrami condition. Since

the Beltrami flow (1) describes parallel or antiparallel vorticity and velocity

vectors, another useful formulation of the Beltrami condition is represented by

the relation

curl v ¼ cv ð5Þ

where c denotes a scalar point function of position. This factor c assumes a

certain degree of importance in association with Beltrami fields. Certain formulas

can be derived from (5). First, jcj ¼ w=v, where w denotes the magnitude of the

vorticity w. By taking the scalar (dot) product of v with (5), we obtain

c ¼ v � ðcurl vÞ
v2

ð6Þ
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Beltrami derived a formula similar to (6) in which c is expressed by the vorticity

w only. By introducing v ¼ w/c, we obtain

c ¼ ðw=cÞ � ðcurl w=cÞ
ðw=cÞ2

¼ w � ðcurl wÞ
w2

ð7Þ

III. SPECIALIZED BELTRAMI FIELDS

Now, if a Beltrami field is simultaneously complex lamellar, (1) combined with

(3), then curl v is both perpendicular and parallel to v. This can happen only if

curl v is zero (that is, the field v is curl-less, or lamellar). Hence a vector field that

is simultaneously a complex lameIlar and a Beltrami field is necessarily lamellar.

If the divergence of (5) is taken, we obtain

cðdiv vÞ þ v � ðgrad cÞ ¼ 0 ð8Þ

If a Beltrami field (1) is simultaneously solenoidal (2), then (8) reduces to

v � ðgrad cÞ ¼ 0 ð9Þ

In other words, in a solenoidal Beltrami field the vector lines are situated in the

surfaces c¼constant. This theorem was originally derived by Ballabh [4] for a

Beltrami flow proper of an incompressible medium. For the sake of complete-

ness, we mention that the combination of the three conditions (1), (2), and (3)

only leads to a Laplacian field, that is better defined by a vector field that is both

solenoidal (divergence-less) and lamellar (curlless).

Now, we consider a Beltrami field whose curl is also a Beltrami field. For this

case, in addition to (1), the field must satisfy the following condition:

ðcur vÞ � ðcurl curl vÞ ¼ 0 or v � ðcurl curl vÞ ¼ 0 ð10Þ

By taking the curl of (5), we obtain

curl curl v ¼ ðgrad cÞ � v þ cðcurl vÞ ð11Þ

Now, if c is uniform ½i:e:; cðx; y; zÞ ¼ k(a constant)], then (11) becomes

curl curl v ¼ cðcurl vÞ ð12Þ

In the case of uniform cðgrad c ¼ 0Þ; curl v ¼ w (vorticity) is also a Beltrami

field, possessing the same coefficient c. This type of vector field is called a

Trkalian field, after Trkal, a Russian researcher who studied Beltrami flows
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proper where c ¼ constant. As pointed out by Nemenyi and Prim [5], all

successive curls of Trkalian fields will also represent Trkalian fields, with the

same coefficient c as the original field. Also, under these conditions, taking the

divergence of (5), we get divðcurl v ¼ 0 ¼ divðcvÞ ¼ ðgrad cÞ � v þ cðdiv vÞ;
or 0 ¼ cðdiv vÞ, showing div v ¼0 (v is solenoidal). Thus, we conclude that the

Trkalian field is also a special solenoidal Beltrami field.

IV. PROPERTIES OF THE COEFFICIENT c

Because of (5), the equation for c (6) becomes

c ¼
v � curl

ðcurl vÞÞ
c

v2
¼

cv � curl
ðcurl vÞÞ

c

cv2
¼ c v � ðcurlðcurl vÞÞ

ðc vÞ2
ð13Þ

Finally, (13) becomes

1 ¼ v � curlðcurl vÞ
ðcurl vÞ2

or ðcurl vÞ2 ¼ v � ðcurlðcurl vÞÞ ð14Þ

Since the left side of (14) is necessarily positive, we conclude that a Beltrami

field v and the curl of its curl [right side of (14)] always meet at an acute angle. If

the angle is zero, then curl v is also a Beltrami field. In this last case, because of

considerations above, v is a Trkalian field.

For any Beltrami field, c can also be given a geometric interpretation. Calling

t the unit vector along v, we apply Stokes’ theorem to a curve (ds) determined

by an orthogonal cross section (da) of an infinitesimal circular vector tube. If r

denotes the radius, we find (see Fig. 1)

ð
ðcÞ

t � ds ¼
ð
ðsÞ

curl t � da ¼ pr2t � curl t ð15Þ

Since v ¼ vt, we have for (6)

v � curl v

v2
¼ t � curl t ¼ c ð16Þ

Applying (16) to (15), we obtain

c ¼ 1

pr2

ðt�ds

ðsÞ
¼ 1

pr2

ð
ðcÞ

t0 þ
dtr

dr

� �
� ds

¼ 1

pr2

ð
ðcÞ

dt r

dr
� dsds

ds
¼ 1

pr2

ð
y ds ¼ 2�y

r
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Here �y denotes the average angle y between t0 and the projection of t0 þ dt=drr

on the plane determined by ds and t (see Fig. 1); y ¼ dt=drr � ds=ds. From this

analysis, we see that the factor c can be considered geometrically as the torsion

of neighboring vector lines v in any Beltrami field. Truesdell [6] calls c the

‘‘abnormality’’ of the vector line system of a Beltrami field.

V. FIELD MORPHOLOGY IN A BELTRAMI CONFIGURATION

In a general hydrodynamic system, the vorticity w is perpendicular to the

velocity field v, creating a so-called Magnus pressure force. This force is directed

along the axis of a right-hand screw as it would advance if the velocity vector

rotated around the axis toward the vorticity vector. The conditions surrounding a

wing that produce aerodynamic lift describe this effect precisely (see Fig. 2).

t = t0 + 

t0

t0

θ

∂t
∂r

r

r

ds

Figure 1. Diagram showing that y ¼ ðq t=q rÞr � ðds=dsÞ.

v = velocity

v

w = circulation

w 
Magnus force

Figure 2. Indicating the Magnus force and vortices surrounding a wing.

530 donald reed



However, in a Beltrami field, the vorticity and velocity vectors are parallel or

antiparallel, resulting in a zero Magnus force. The Beltrami condition (1) is

therefore an equivalent way of characterizing a force-free flow situation, and

vice versa.

In order to model this type of flow field geometrically, Beltrami found that it

was necessary to consider a three-dimensional circular axisymmetric flow in

which the velocity and vorticity field lines described a helical pattern. This

helicoidal flow field was unique in that the pitch of the circular helices

decreased as the radius from the central axis increased. This produces a

specialized shear effect between the field lines of successively larger cylindrical

tubes constituting the respective helices. In the limit of such a field, the central

axis of the flow also serves as a field line (see Fig. 3).

VI. A NEW LOOK AT VECTOR FIELD THEORY

Although Beltrami fields have featured prominently in hydrodynamics for over a

century, only until relatively recently have they received much attention in

experimental and theoretical classical electrodynamics. The reason for the

omission of this link in the standard development of electric/magnetic field

theory can possibly be traced to a key related deficiency in the structure of vector

z

J

ω II v

Figure 3. Classical sheared vortex configuration in a Beltrami

field (axisymmetric mode).
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field theory—which, in turn, constitutes the very foundation on which all edifices

of classical continuum field physics are constructed. Here we refer to the self-

imposed limitations of standard Gibbsian vector analysis for modeling the

evolution of vector fields with higher-topology structural features. This

deficiency can partially be attributed to the decision by the architects of vector

analysis at the beginning of the twentieth century (notably Gibbs and Heaviside)

to remove its quaternion-based foundation for the purpose of modeling vector

fields in simply-connected three-dimensional (3D) Euclidean space. However,

with vector fields limited to simple topologies, key topological features such as

helicity, which feature prominently in the dynamics of the Beltrami flow (in both

fluid turbulence and plasma dynamic contexts), remain untreated by these

methods, and are better understood topologically through treatment by Cartan’s

calculus of differential forms. Specifically, the inherent spiral geometry

exhibited by Beltrami flow cannot be clearly ascertained from use of the

standard traditional methods for the construction of the general vector field.

There are two known standard methods for decomposition of any smooth

(differentiable) vector field. One is that attributed to Helmholtz, which splits any

vector field into a lamellar (curl-free) component, and a solenoidal (divergence-

less) component. The second, which divides a general vector field into lamellar

and complex lamellar parts, is that popularized by Monge. However, the

relatively recent discovery by Moses [7] shows that any smooth vector field—

general or with restraints to be determined—may also be separable into circu-

larly polarized vectors. Furthermore, this third method simplifies the otherwise

difficult analysis of three-dimensional classical flow fields. The Beltrami flow

field, which has a natural chiral structure, is particularly amenable to this type

analysis.

Beltrami flow is a particular case whose field generalization is popularly

referred to as eigenfunctions of the curl operator. In his investigations using

curleigenfunctions, Moses shows that the expansion of vector fields in terms of

these operators, leads to a decomposition into three modes, as opposed to the

customary two. One is the lameIlar vector field (implying the existence of a

scalar potential) with eigenvalue zero. However, the solenoidal vector field

divides into two chiral circularly polarized vector potential fields of opposite

signs of polarization and eigenvalues þk and �k, respectively. Not only does

this new decomposition considerably simplify problems dealing with vector

fields that are defined over the whole coordinate space, but Moses describes how

this decomposition is rotationally invariant. Thus, under a rotation of the coor-

dinates, the vector modes that are introduced in this manner, remain individually

invariant under this transformation. This allows for substantial improvement on

the traditional Helmholtz or Monge decompositions. In several instructive ex-

amples, Moses [7] displays the versatile utility of this method. For instance, in

the arena of incompressible and viscuous fluid dynamics, the curl-eigenfunction
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method shows how fluid motion with vorticity can be described as a super-

position of circularly polarized modes only. A consequence of this approach is

that the normally nonlinear convection term in the Navier-Stokes equation drops

out, allowing for exact solutions of this relation. These are impossible under the

conditions of turbulence, which allows for only approximate solutions to be

derived.

VII. FLUID TURBULENCE AND BELTRAMI FIELD MODES

In the specialized area of turbulent fluid flow research, it is therefore not

surprising that the Beltrami vortex flow itself, may eventually come to play a

significant role. Accordingly, on the forefront of frontiers leading to a heretofore

elusive deterministic theory of turbulence, it has been suggested [8], as a result of

empirical evidence, that in regions of space, turbulent flows spontaneously

organize into a coherent hierarchy of weakly interacting superimposed

approximate Beltrami flows. Detailed numerical experiments for channel flows

and decaying homogeneous turbulence using spectral methods, have provided

evidence for such behavior [9]. The implications of this for fluid dynamics is that

every incompressible fluid flow (divergenceless velocity field), as well as every

solution to the Navier–Stokes equation, is a superposition of interacting Beltrami

flows. It has been further postulated that full 3D dimensional turbulent flows may

exhibit regimes of both weak local interaction and strong local interaction (due,

e.g., to vortex stretching) between their Beltrami components [8]. These facts are

suggestive of a nonlinear uncertainty principle for macroscopic turbulent fluid

flows that mediates between regions of effective description of the flow field in

physical (coordinate) space and that in wavenumber (momentum) space [8]. The

discovery and certification of such an uncertainty principle in a macroscopic

context, analogous to that canonized in quantum physics, could have astounding

cross-disciplinary implications. Not only might it provide for the long sought-for

key to establishing a deterministic model for turbulent fluidflow, but might

indirectly provide a major breakthrough toward a deeper understanding of both

the classical and quantum descriptions of nature. At any rate, the novel circularly

polarized decomposition of vector fields in this context might possibly pave the

way to this goal.

VIII. COMPLEX HELICAL WAVE DECOMPOSITION
AND VORTEX STRUCTURES

In this regard, Melander and Hussain [10] have made significant advances in

casting fresh light on the perplexing problems of vortex core dynamics and the

coupling between large scales and fine scales in the vicinity of a coherent

structure. Essentially, they postulated that the dynamics of coherent structures is
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better understood within the framework of vortex–vorticity dynamics rather than

in terms of primitive variables such as pressure and velocities. On this basis this

detailed analysis of helical fluid structures was acccomplished by decomposing

the flow field into complex curl eigenfunction modes, originally inaugurated by

Lesieur [11] and called complex helical wave decomposition. Lesieur initially

utilized this method for easier access to a spectral (Fourier) analysis of turbulent

flow modes. The following brief interlude on the particulars of the helical wave

decomposition for description of aspects of fluid turbulence will be time well

spent as this model will resurface later when considering novel electrodynamic

applications of the Beltrami vector field.

We start by constructing an orthonormal basis a, b, c (where c is a unit vector

along the wavevector k, with a and b in the two-dimensional vector space

orthogonal to k). The significance of this ansatz is that any vector function

F(x,y,z) is divergence free if and only if its Fourier coefficients F(k) are

orthogonal to k, that is if k �F(k) ¼0. Thus, F(k) is a linear combination of

a(k) and b(k). Lesieur defines the complex helical waves as

Vþðk; xÞ ¼ ½bðkÞ�iaðkÞ
 exp ðik; xÞ ð17Þ
V�ðk; xÞ ¼ ½bðkÞ þ iaðkÞ
 exp ðik; xÞ ð18Þ

which are eigenfunctions of the curl operator corresponding to the eigenvalues

jkj <> 0, namely, curl Vþ ¼ jkjVþ; and curl v� ¼ �jkjV�. These eigenfunc-

tions are orthogonal with respect to the inner product:

hf; gi ¼
ð

f � g dx ð19Þ

where  denotes complex conjugation and the integration extends over all space

(or a periodic box). In fact, all eigenfunctions of the curl operator, including

those corresponding to the eigenvalue zero, are orthogonal, with respect to the

inner product (19). Moreover, the set of all linearly independent eigenfunctions

of the curl operator form a complete set of vector functions in R3 and all

eigenvalues are real. The complex helical waves span the subspace of solenoidal

vector functions, for the only vector field that cannot be expanded in terms of

complex helical waves is the gradient of a potential. Thus, the divergence-free

velocity field u(x,t) can be expressed in terms of complex helical waves and the

gradient of a harmonic potential:

uðx;tÞ ¼
ð

k 6¼0

uþðk; tÞvþðk; xÞdk þ
ð

k 6¼0

u�ðk;tÞ v�ðk; xÞ dk þ grad ;

¼ uR þ uL þ grad ; ð20Þ
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Here, the first integral (uR) is the projection of u onto the vector space spanned by

all eigenfunctions corresponding to positive eigenvalues (þjkj) of the curl

operator (right-handed component of u). Likewise, the second integral (uL) is a

linear combination of eigenfunctions corresponding to negative eigenvalues

(left-handed component of u). Also, grad ; is the projection of u onto the null

space of the curl operator (zero eigenvalue of the curl operator). Since u is

divergence free we have div(grad ;)¼0. Assuming that the potential part of the

flow is constant at infinity, we have grad ; as a constant vector field that can be

removed by choosing an appropriate inertial frame. For the vorticity field

w(x, t)¼ curl u(x,t), we have a similar decomposition.

In their milestone work, Melander and Hussain found that the method of

complex helical wave decomposition was instrumental in modeling both

laminar as well as turbulent shear flows associated with coherent vortical

structures, and revealed much new important data about this phenomenon

than had ever been known before through standard statistical procedures. In

particular, this approach plays a crucial role in the description of the resulting

intermittent fine-scale structures that accompany the core vortex. Specifically,

the large-scale coherent central structure is responsible for organizing nearby

fine-scale turbulence into a family of highly polarized vortex threads spun

azimuthally around the coherent structure.

In addition, this method shows that the polarization alternates between

adjacent threads along the column. It is found that for a localized central

axisymmetric vortex, the polarized structures constituting the central column

are also localized and deform slowly (compared to unpolarized structures) and

behave almost like solitary waves when isolated. This is because the non-

linearity in the Navier–Stokes equation is largely suppressed between eigen-

modes of the same polarity. Thus, it is found that the rapid changes in the

total vorticity field result from the superposition of two slowly deforming

wavetrains moving in opposite directions with different propagation velocities.

The ability of the helical wave decomposition to extract the wavepackets

propagating in opposite directions on a vortex allows us to view the vortex

evolution in terms of the motion of polarized wavepackets and their non-linear

interaction.

IX. BELTRAMI FLOW AS ARCHETYPAL FIELD STRUCTURE:
A SCHAUBERGER–BELTRAMI CONNECTION?

One of the underlying themes of this exposition is the suggestion that the

Beltrami flow field could play an important but yet dimly suspected archetypal

role in organizing matter and energy at a deeper level of nature. One indication of

this might be the possible non-linear uncertainty principle cited earlier, which
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may be a feature exhibited by Beltrami topology in turbulent fluid media.

Another could be the ability of a central fluid vortex core to organize (polarize)

surrounding fine-scale thread-like turbulence, as revealed by the use of curl

eigenfunction methods. However, as we will shortly see, this possible unexplored

fundamental aspect of Beltrami flow geometry turns out to be indicated in other

field contexts in which it manifests, such as electrodynamics. In particular, in

many empirical exhibits where Beltrami flow plays a role it will be found that

phenomena have been recorded that are unexplainable by orthodox field

methods. Just such a result comes from an unexpected source: V. Schauberger’s

work, which uncovered the energetic properties of water flow. In the early part of

the twentieth century, Schauberger demonstrated that particular vortical patterns

formed by the streamlines of natural water flow, resulted in a water quality that

was pure and health promoting [12]. In water pipes which were constructed with

a vortical cross section, not only was excess energy delivered to the system

(process of ‘‘implosion’’ [12]), but the water flowed in the pipe with negative

resistance [12]. Figures 4 and 5 depict one of these spiral configurations:

Schauberger’s so-called longitudinal vortex. A key observation here is that this

streamline geometry is virtually identical to the sheared-helical cylindrical

vector field flow pattern exhibited by the Beltrami vortex. In both of these figures,

the water is colder and more dense the closer the spiral approaches the central

axis. This fact cannot be accounted for by standard classical fluid dynamics,

which postulates that fluid temperature is independent of density of the medium.

Certainly, most laws of mechanics forbid the occurrence of negative resistance

anyway. It becomes apparent that Schauberger’s work shows possible support for

considering the sheared-helical (Beltrami) vortex morphology in an archetypal

context.

Water Surface

Stream Bed

+5.05
°C

+5.04 °C
+5.03 °C

+5.02 °C
+5.01 °C

Figure 4. The longitudinal vortex. A longitudinal vortex showing laminar flow about the

central axis. The coldest water filaments are always closest to the central axis of flow. Thermal

stratification occurs even with minimal differences in water temperature. The central core water is

subjected to the least turbulence and acclerates ahead, drawing the rest of the water body in its wake.
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X. HYPOTHESIS OF FORCE-FREE MAGNETIC
FIELDS (FFMFs)

Up until the twentieth century, helicoidal fields of the Beltrami variety had only

been recognized to exist in hydrodynamic phenomena. For instance, wingtip

vortices as well as the flow engendered by atmospheric vortices such as

tornadoes, are two examples in which fluid flow approximates a force-free

configuration [13]. Then in 1901, the Norweigian physicist Birkeland observed

filaments in the earth’s aurora and modeled them with his terella experiments. He

postulated that the filaments were formed by the helicoidal flow of electrons

around bundles of the earth’s magnetic field lines in a force-free arrangement.

Early interest in force-free magnetic fields also arose in the study of

astronomy. Stars that exhibited large magnetic fields have been known to exist.

In the gaseous envelopes surrounding these magnetic Stars, strong magnetic

fields and currents are known to exist simultaneously. Early investigations

indicated that pressure gradients or gravitational fields appear to be of insuffi-

cient magnitude to counteract the reaction forces between the magnetic fields

and the currents present.

In 1954 Lust and Schluter [14] introduced force-free magnetic fields

(FFMFs) into a theoretical model for stellar media in order to allow intense

magnetic fields to coexist with large currents in stellar matter with vanishing

Lorentz force. Notice should be taken that the Lorentz force is the electro-

dynamic analogue of the Magnus force alluded to above (see Fig. 6 and

compare with Fig. 2).

+5.05 °C

+5.04 °C

+5.03 °C
+5.02 °C

+5.01 °C

"Breathing" Wooden Pipe

Figure 5. The double-spiral longitudinal vortex. A longitudinal vortex showing the

development of toroidal countervortices. These occur on interaction with the pipe walls and have

an effect similar to ball bearings, enhancing the forward movement. Their interior rotation follows

the direction of rotation and forward motion of the central vortex, whereas the direction of their

exterior rotation and translatory motion are reversed. These toroidal vortices act to transfer oxygen,

bacteria, and other impurities to the periphery of the pipe, where, because of the accumulation of

excessive oxygen, the inferior, pathogenic bacteria are destroyed and the water rendered bacteria-

free.
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Taking this model for astrophysics further by postulating a Beltrami field

morphology to electromagnetics, Chandrasekhar and Woltjer [15] posited that

similar Lorentz force-free fields might exist which are quantified by the relation

curl B ¼ kB ð21Þ

(where k is a constant or function of position; B ¼ real) in a magnetostatic field

where the current density j ¼ curl B, and the magnetic field induction vector B
are everywhere parallel to each other. Similar to the hydrodynamic case (5),

currents do not have do any work against a force-free magnetic field. For these

fields to occur and to continue to exist in the envelopes of magnetic stars, it is

necessary that FFMF solutions be stable. Chandrasekhar and Woltjer also

showed that for a given mean-square current density, exclusive of surface

currents, the maximum magnetic energy per unit volume can exist in a stationary

state only if the magnetic field is force-free with constant value of k. Second, it

was shown that for a given amount of magnetic energy, the minimum dissipation

occurs for force-free fields with constant k. Woltjer [16] further showed that for

infinite conductivity, the force-free fields with constant k represent the lowest

state of magnetic energy that a closed system may attain. Woltjer also

demonstrated that for spherically symmetric perturbations, which are zero on

the boundary, the axisymmetric fields with constant k are stable.

Additional models of FFMF for interstellar physics also postulated that the

spiral arms of galaxies, as well as solar flares and prominences, could be

constructed of such force-free fields [17]. Similar Beltrami field structures have

I = electrical current

BI = magnetic field due to current I
B = magnetic field due to N-S poles

BI

S N

B

Lorentz force
I

Figure 6. Illustrating electromagnetic action of the Lorentz force in a current-carrying

conductor.
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been formulated and developed as models for many other astrophysical

phenomena in recent years. For instance, the magnetic clouds ejected from

the Sun which have produced major perturbations in the Earth’s radiation belts

during the satellite era seem to possess FFMFs that have budded from the solar

magnetic field [18,19]. The topology of filaments and chromospheric fibrils near

sunspots have also been interpreted in terms of configuration lines of force of an

axisymmetric force-free chromospheric magnetic field [20]. Magnetic flux ropes

in the ionosphere of Venus also appear to possess force-free topology [21].

These theoretical findings have been corroborated by satellite data on magnetic

field strength in various parts of these magnetic field structures. Figure 7 depicts

the topology postulated for the FFMF believed common to magnetic clouds,

chromospheric fibrils, and Venusian magnetic flux ropes. Immediately apparent

is the signature sheared helical Beltrami morphology for the lines of force.

Notice that the magnetic field strength (thickness of field lines) increases as the

central axis is approached while the outer, more nearly azimuthal field is

weaker. Compare this with the Schauberger water flow geometry which is quite

similar. Again, here is possibly another hint relating to an archetypal role for

Beltrami morphology in nature.

XI. EMPIRICAL CONFIRMATION OF BELTRAMI FFMF
IN PLASMA RESEARCH

Prior to 1966, the properties of FFMF had only been theoretically predicted [22].

However, in the late 1960s, the morphology of electromagnetic Beltrami vortices

Flux Rope Magnetic Structure

Elphic and Rusell: Flux Rope Observations and Models

Figure 7. Flux rope observations and models by Elphic and Russell [21]. Schematic repre-

sentation of flux rope magnetic structure. The breadth of each arrow denotes the field strength; the

central axial field is strong, while the outer, more nearly azimuthal field is weaker.
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was observed during the plasma focus experiments originally designed to

investigate the possibilities for plasma confinement in fusion technology. A

plasma focus group headed by W. Bostick demonstrated that the current sheath

of the plasma focus is carried by contra-rotating pairs of plasma vortex filaments

that exhibit a force-free morphology [23]. Under the intense discharge created in

the plasma focus, it was found that these non-linear field structures cause

interesting energy anomalies to occur, unaccountable by standard theory. For

instance, due to the helical path followed by the current around the cylinder axis,

as opposed to a linear path, these plasma vortices routinely permit the standard

Alfven current limit to be surpassed, as well as transform a significant fraction of

the input electrical energy into intense magnetic fields [24], In her thought-

provoking book, White [25] discusses these plasma filaments as examples which

violate the second law of thermodynamics by increasing the energy gradient

within the field, while orthodox continuum classical physics predicts the entropic

dissipation of energy. Moreover, these structures violate Heaviside–Lorentz

relationships by creating ion currents that capture and concentrate their own and

surrounding magnetic fields. While the electron and ion currents are in the

process of forming into vortical filaments, a nested series of spiral paths is set up

such that the generated magnetic fields cancel out in terms of their effects on the

motion of the current flow. In fact, as shown in Fig. 8, all the force fields of the

plasma—the local magnetic field, the current density, the fluid flow velocity, and

the fluid vorticity—are locally collinear in each filament. In Fig. 9 it should be

noted that the Poynting vector (�E � BÞ, which is taken to represent the power

flow in an electromagnetic field, is directed parallel to the filament axis in a

Center conductor
of plasma focus

Velocity of ionized gas,
flowing into current sheath

Vectors are v,
−B, j, −ω

Vectors are v, B, j, ω

Background B0

Figure 8. Dissected diagram of the vector configuration of a pair of Beltrami vortex filaments

formed in the current sheath of the plasma focus (v ¼ flow velocity, B ¼ local magnetic field,

j ¼ current density, o ¼ vorticity, B0 ¼ background magnetic field).

540 donald reed



single vortex. Now, since this figure represents one-half of such a vortex pair, the

total Poynting vector sums to zero due to the anti-parallel magnetic fields

existing in the complete structure. Figures 8 or 9 should be consulted to see this

relationship.

XII. BELTRAMI FFMF TOPOLOGY AS A MODEL FOR
EMPIRICAL ELECTROMAGNETIC PHENOMENA

Superconductivity is one of the best- known empirically quantified macroscopic

electromagnetic phenomena whose basis is currently recognized to be quantum-

mechanical. The behavior of the electric and magnetic fields under super-

conductivity is governed by the London equations. However, there have been a

series of papers questioning whether the originally phenomenologically

theorized but now quantum-mechanically canonized London equations can be

given a purely classical derivation [26]. Bostick [27,28], for instance, has

claimed to show that the London equations do indeed have a classical origin that

applies to superconductors and to some collisionless plasmas as well. In

particular, it has been asserted that the Beltrami vortices in the plasma focus

display the same paired flux-tube morphology as type II superconductors

[29,30]. Others have also pointed out this little explored connection. Frohlich

[31] has shown that the hydrodynamic equations of compressible fluids, together

with the London equations, lead to the macroscopic Ginzburg–Landau equation,

and in the presence of many fuxoids (quantum units of flux), all relevant

equations can be expressed with the aid of the velocity potential (v) and the

macroscopic parameter (m ¼ electric charge/mass density), without involving

either quantum phase factors or Planck’s constant.

In essence, it has been asserted that Beltrami plasma vortex filaments are able

to at least simulate the morphology of types I and II superconductors. This

occurs because the organized energy of the vortex configurations comprising the

ions and electrons far exceeds the disorganized or thermal energy, and that the

transition from disorganized turbulence to organized helical structures is a phase

V0 (βC → 1)
B
E
E x B

E0 induced

Ez induced Ez induced

Tail
E0 induced Tip

Figure 9. Morphologies of V;B;E; and E � B as hypothesized by Bostick [23] for a

propagating vortex-shaped electron vortex structure.
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transition involving condensation without the rise of temperature. As we have

pointed out, due to the feature of zero Lorentz force, the Beltrami vortex

structures have less resistance than any other morphology. For ideal conditions

in superconductivity, the elimination or reduction of the Lorentz force without

reducing the field or the current is definitely desirable. These facts would tend to

lend credence to the hypothesis of the concept that superconductivity in

macroscopic classical physics can essentially exist, even though quantum

effects have not been invoked to canonize the process.

XIII. HELICITY OF BELTRAMI TOPOLOGY IN FFMF

In all applications of the Beltrami vector field, whether in fluid or electro-

magnetic contexts, it is found that the existence of helicity is the common key. In

fluid dynamics, helicity is present because of the nonzero value of the

‘‘abnormality,’’ c. In a general context, helicity measures the topological

knotted-ness of a given vector field: vorticity (w) in fluid dynamics, magnetic

field induction (B) in plasma dynamics, and has been shown to be related to the

mathematical Hopf invariant [32,33]. The significance of topological parameters

such as helicity in engendering a key role for FFMF in nature, comes to the fore

when considering an ideal plasma possessing small viscosity and infinite

conductivity on the boundary. Here, the minimization of magnetic energy subject

to the constraint of magnetic helicity conservation (invariance in the linkage of

field lines), produces through plasma self-organization a magnetic relaxation of

the system into an equilibrium satisfying a Beltrami equation [34]. The following

derivation showing this relationship, bears further witness to an archetypal role

for the Beltrami field condition. Indeed, given the opportunity in certain

environments, nature seems to have the pronounced inclination to organize itself

according to force-free least action systems.

The helicity, defined by the following relation, is an invariant for every

infinitesimal flux tube surrounding a closed line of force:

H ¼
ð

A � B dv ð22Þ

where A represents the vector potential and B ¼ curl A, and dv is an infinitesimal

volume element If we minimize the magnetic energy:

W ¼ 1

2m0

Ð
B2 dv

ð23Þ

subject to the constraint of magnetic helicity conservation described above, then

for a plasma confined by a perfectly conducting toroidal shell the equilibrium
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satisfies curl B ¼ kB. From the first variation of W � kH=2:

d W � kH

2

� �
¼

ð
B � dB

m0

dv � k

2

ð
ðdA � B þ A � dBÞ dv ð24Þ

where k is a Lagrange multiplier. The first term is written as

1

m0

ð
B � dB dv ¼ 1

m0

ð
B� curl dA dv

¼ �1

m0

ð
B � dA � B dS �

ð
dA� curl B dv

� �
ð25Þ

and the second term is

ð
ðdA � B þ A � dBÞ dv ¼

ð
ðdA � B þ A� curl dAÞ dv

¼ 2

ð
ðdA � BÞ dv �

ð
A � dAÞ � n dS ð26Þ

Here we assume the wall is perfectly conducting. Then n �dA ¼ 0 is imposed on

the wall, which corresponds to n � E ¼ 0, and the surface integrals of (25) and

(26) vanish. Therefore (24) becomes

d W � kH

2

� �
¼

ð
dA�½ðcurl BÞ � kB
dv ð27Þ

For an arbitrary choice of dA, (27) becomes zero when (21) is satisfied. When

(27) is zero, the magnetic energy is minimized and the helicity is held constant.

Thus the state of minimum magnetic energy is a force-free equilibrium.

However, the discussion above cannot be the appropriate description of the

quiescent state. In order to determine k, the invariant H for each closed field line

would have to be calculated and related to its initial state. Hence, far from being

universal and independent of initial conditions, the state defined by (22) depends

on every detail of the initial state. To resolve this difficulty, it must be

recognized that real turbulent plasmas are never perfectly conducting as in

the ideal example above, but possess a certain amount of resistivity. Conse-

quently, all topological invariants H cease to be relevant. Nevertheless, as long

as the resistivity is small, the sum of all the invariants, that is, the integral of

A �B over the total plasma volume is independent of any topological considera-

tions and the need to identify particular field lines. The resulting configuration

of a slightly resistive plasma after minimizing the energy subject to the
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constraint that total magnetic helicity be invariant is also the force-free

state (21).

XIV. TRANSFORMATION PROPERTIES OF FFMF

As mentioned previously, misplaced focus throughout the years on the

limitations inherent in the Gibbs–Heaviside vector analysis for modeling the

real world, has in many ways done a disservice to formulating a proper

understanding of classical vector field theory, especially when vector fields are to

be associated with non-trivial topologies. In particular, many false conclusions

have been repeatedly drawn, pertaining to the Beltrami FFMF condition by

employing standard vector analysis. Such incorrect findings have, in turn, been

partially instrumental in helping to promulgate confusion and in prejudicing

physicists from considering the Beltrami vector field in any but the most

superficial field contexts. One prime example clearly illustrating the confusion

that has ensued, is the matter of the transformation properties of the FFMF. We

shall consider specifically gauge invariance, parity, Lorentz invariance and time

reversal.

Originally it was erroneously concluded that the FFMF condition was not

invariant under parity [35]. This mistake was due to a misinterpretation caused

by the ambiguity in standard vector analysis which does not clearly distinguish

between a polar vector and a so-called pseudo- (or axial) vector, which is

obtained as the vector product of two polar vectors (or curl of a polar vector).

Later, correction of this error demonstrated the parity invariance of the FFMF

equation through the use of the calculus of differential forms [36]. This

formalism is free from the inconsistencies noted above and is also inherently

topological, independent of coordinate system or metric. In particular, it was

shown [37,38] that the force-free condition (curl B ¼ kB) is parity-invariant,

where k must be a pseudoscalar since it represents the ratio between a polar

vector (curl B), and an axial vector (B). The force-free relation is also gauge-

invariant [39], and invariant under time-reversal, where k is a proper pseudos-

calar [40]. However, it is not necessarily Lorentz-invariant, as was shown in

Ref. 41. All correct invariance properties of the FFMF relation are summarized

in [41,42].

XV. MAGNETIC FIELD SOLUTIONS TO THE FFMF EQUATION

A divergenceless magnetic field (div B ¼ 0) is assumed in most classical

electromagnetic field applications. Thus, this constraint is usually applied in the

Beltrami FFMF condition (21) when determining solutions to this equation.

From previous considerations, the solenoidal FFMF describes a Trkalian field
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with k ¼ constant. Taking the curl of (21) under the constraint of solenoidal

magnetic field, results in the vector Helmholtz equation:

r2B þ k2B ¼ 0 ð28Þ

To solve this we consider a scalar function and its related scalar Helmholtz

equation:

r2cþ k2c ¼ 0 ð29Þ

Now, from any function that satisfies (29), can be formed three independent

vectors that satisfy the vector wave equation (28) [42]. They are traditionally

signified by L ¼ grad (c), P ¼ curl (ca), and T ¼ curl curl (ca), where a is an

arbitrary constant vector. Thus, to find solutions to (21), we express the vector B
as a linear superposition of the three vectors

B ¼ x gradðcÞ þ y curlðcaÞþz curl curlðcaÞ ð30Þ

where x, y and z are some constants to be determined. To find the relationship

between the constants, we first apply div B ¼ 0 to (30). This implies x ¼0. Then

applying curl B = kB to (30) gives

curlB ¼ y curl curlðcaÞ þ z curl curl curl ðcaÞ

¼ y curl curl ðcaÞ � zr2 curl ðcaÞ ½since ðcurl ðgradcÞÞ ¼ 0Þ


¼ y curl curl ðcaÞ þ z k2 curlðcaÞ ½since r2 ¼ �k2
 ð31Þ

Now, applying (30) again

kB ¼ ky curlðcaÞ þ kz curl curl ðcaÞ ð32Þ

Equating coefficients in (31)–(32) gives y ¼ kz. Consequently, we seek solutions

of the form:

B ¼ kz curlðcaÞ þ z curl curl ðcaÞ
B ¼ B½k curlðcaÞ þ curl curl ðcaÞ


ð33Þ

With this expression for B, we find that the field lines for the solution assume a

key geometric relationship in addition to the previously considered axisymmetric

helicoidal solutions exemplified in the vortex filaments of the plasma focus.

Several researchers [43,44] have termed P the poloidal solution and T the

toroidal solution. Accordingly, if the equation for B is expressed in terms of
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cylindrical polar coordinates, we find that the FFMF field solutions to (21) with k

constant, are spiral field lines that lie on axisymmetric tours surfaces, with the

pitch of the spirals changing gradually from totally poloidal (surface C) to

completely toroidal (surface A). Consult Fig. 10 for a clearer depiction of this

field morphology.

The toroidal solution to the Beltrami equation is more than a theoretical

possibility. Indeed, in addition to the contrarotating Beltrami vortex filaments

discovered by Bostick, plasma vortex rings called plasmoids were also

recognized experimentally. Wells [45,46] in particular, studied the plasma

topology generated by a conical theta-pinch device and verified that the field

geometry of these plasma vortex rings approximated the quasi-force-free

topology described above and illustrated in Fig. 10. Moreover, Chandrasekhar

[10] showed that within a spherical boundary there is equipartition of energy

between the toroidal and poloidal components of any force-free magnetic field.

The general solution of equation (33) in cylindrical coordinates can be

written as a series of modes of the form [47]

B ¼ �m;n Bmn bmn ðr; y; zÞ ð34Þ

where m is a nonnegative integer, and where individual modes bmn depend upon

y and z through the phase function ; ¼ ðmyþ nzÞ. The explicit expressions for

the modes generally involve a linear combination of the Bessel functions J and

Neumann functions N. However, when the domain of the solution involves the

axis r ¼ 0, and we restrict ourselves to an axisymmetric wave equation:

1

r

d

dr
r

dc
dr

� �
þ k2c ¼ 0 ð35Þ

the solution to the scalar function is c ¼ C J0 ðkrÞ, where C is any constant.

Using this and substituting in (34) with mode m ¼ 0; n ¼ 0, and a ¼ (0,0,1), we

CB

A
REGION I

R1

2R2

Figure 10. Illustrating the toroidal mode solution to soleniodal FFMF equation.
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get for the field components of the magnetic induction:

B ¼ B0ð0; J1 ðkrÞ; J0ðkrÞÞ ð36Þ

This is the solution originally demonstrated by Chandrasekhar and Kendall [48].

A pictorial representation of of this axisymmetric FFMF is shown in Fig. 3.

The solution to (34) has also been found in rectangular and spherical

coordinates, but due to these complicated expressions, will not be further

considered here. For details, readers are referred to the excellent review work

by Zaghloul and Barajas [49], as well as the comprehensive recent book by

Marsh [50]. These references also include information on FFMFs when k is not

constant, depending upon space and time.

Nevertheless, the solution to the FFMF equation in cylindrical coordinates

with certain constraints on the wave equation, most clearly illustrates the

geometrical relation between the field lines. Also, the solution to the FFMF

equation given in Beltrami’s 1889 paper and in Bjorgum and Godal, which has

been experimentally verified by Wells [51], Taylor [52] and others, illustrates

that this is an eigenvalue equation. It possesses a whole spectrum of solutions

corresponding to varying energy states with correspondingly different values of

k. However, the geometry of the lowest state is that of a sheared helical structure

across the whole cross section of the plasma column. This is illustrated in Fig. 3

for an axisymmetric field in cylindrical coordinates, or as in Fig. 10, for the

general solution in toroidal coordinates or cylindrical polar coordinates. There

are two separate field configurations in the next highest energy state. At the

center of the cross section is a modified form of the first eigenvalue field,

whereas the second is a helical field of opposite handed-ness, that is, a

‘‘reversed field.’’

Neverthesess, in the case of the solenoidal FFMF with k constant (Trkalian

field), the lowest state of magnetic energy that a closed system may attain

always assumes the topological feature of the sheared vortical structure, either

in cylindrical or vortex ring geometry. This fact implies the stability of the

Trkalian field flow. Moreover, for a plasma system in which magnetic forces are

dominant, and in which there is some mechanism to dissipate the fluid motions,

the FFMF with Trkalian field flow is the only form of stable magnetic field that

can decay without giving rise to material fluid motions. The solenoidal FFMF

solution with k constant appears to be the natural end configuration.

XVI. TRKALIAN FIELD SOLUTIONS
TO MAXWELL’S EQUATIONS

A complete set of standard time-harmonic solutions to Maxwell’s equations

usually involve the plane wave decomposition of the field into transverse electric
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(TE) and transverse magnetic (TM) parts. However, Rumsey [53] detailed a

secondary method of solving the same equations that effected a decomposition of

the field into left-handed and right-handed circularly polarized parts. For such

unique field solutions to the time-harmonic Maxwell equations (E ¼ electric

permittivity, m ¼ magnetic permeability);

curl H ¼ iwEE ð37aÞ

curl E ¼ �iwmH ð37bÞ

instead of expressing the electric and magnetic field intensities (E and H) of

Eqs. (37a,b) customarily as a superposition of plane waves, Rumsey showed

how the field solutions could be expressed as circularly-polarized waves in terms

of only one scalar potential function U where, for instance

E ¼ curl curl ðzUÞ þ k curl ðzUÞ ð38Þ

where � indicates chiral circularly-polarized vectors. This is highly similar to

the previously given solution to the FFMF Eq. (33), and at the same time also

reminiscent of the chiral complex vector solutions found by Moses [7]. Since the

wavevector is along the z-axis (k is some constant to be determined) (38) reduces

to

E ¼ grad
ðdUÞ

dz
� k curl ðzUÞ þ k2ðzUÞ ð39Þ

In the quite different physical context of fields in ideal fluid media (incom-

pressible, inviscid, homogeneous, with external force (b) conservative), Bjorgum

and Godal [2] derived a solution for the velocity field (v) for a general Trkalian

flow which bears a striking resemblance to (39):

v ¼ grad ðdHÞ
dl

� b curl ðIHÞ þ b2ðIHÞ ð40Þ

where I is the vector of propagation and H is a scalar potential. We can see that

(39) and (40) are structurally equivalent if we set 1 ¼ z;H ¼ U, and k ¼ b. In

addition to the conclusions drawn by Rumsey in regard to the circularly polarized

solutions to (37a,b), we observe that these solutions also possess the standard

sheared vortex field topology we have alluded to in connection with any general

Trkalian field solution. Whether Rumsey was aware of this connection between

fluid and electrodynamics is unknown.

These facts clearly demonstrate a possible significant, albeit little explored

correlation between foundational classical electrodynamics and fluid dynamics
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via the general Trkalian (sheared vortex) topology. At any rate, a potential

fruitful avenue has been opened for future exploration of this link.

XVII. BELTRAMI FIELD RELATIONS FROM
TIME-HARMONIC EM IN CHIRAL MEDIA

When we consider time-harmonic electrodynamics in more general media

(chiral-biisotropic), A. Lakhtakia also underscored the importance of the

Beltrami field condition [54]. In particular, he found that time-harmonic EM

fields in a homogeneous reciprocal biisotropic medium are circularly polarized,

and must be described by Beltrami vector fields.

The motivation for this work is the potential use of chiral (and maybe

biisotropic) cylinders as rod antennas and scatterers. Accordingly, Lakhtakia

investigated the boundary value problem relevant to the scattering of an incident

oblique plane EM wave by an infinitely long homogeneous biisotropic cylinder.

This medium is described by the so-called Fedorov representation through the

monochromatic frequency-domain constitutive relations:

D ¼ E½E þ a curl E
; B ¼ m½H þ b curl H
 ð41Þ

where m is the magnetic permeability scalar, E is the electric permittivity scalar,

and a and b are the biisotropy pseudoscalars. By applying the specialized Bohren

diagonalization transformation [55] to this synthetic field composition, when E
and H are substituted into the time-harmonic source free Maxwell equations,

with a time dependence assumed to be exp (i wt):

curl H ¼ dD

dt;
curl E ¼ �dB

dt
ð42Þ

we get

E ¼ ðQ1 þ Q2Þ; H ¼ i
Q1

Z1

þ Q2

Z2

� �
ð43Þ

where Z1 and Z2 are impedances, and Q1 and Q2 are Beltrami vector fields

satisfying the relations

curl Q1 ¼ g1Q1; curl Q2 ¼ �g2Q2 ð44Þ

where g1 and g2 are wavenumbers that are functions of the frequency and

constitutive scalar and pseudoscalar parameters.

It was found that in order to derive an accurate description of both incident

and scattered EM radiation in a chiral medium, the use of Beltrami field

relations is essential. Further details may be found in Refs. 56–58.
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XVIII. BELTRAMI VECTOR POTENTIAL ASSOCIATED
WITH TEM (TRANSVERSE ELECTROMAGNETIC)

STANDING WAVES WITH E//B

Besides its appearance in the FFMF equation in plasma physics, as well as

associated with time-harmonic fields in chiral media, the chiral Beltrami vector

field reveals itself in theoretical models for classical transverse electromagnetic

(TEM) waves. Specifically, the existence of a general class of TEM waves has

been advanced in which the electric and magnetic field vectors are parallel [59].

Interestingly, it was found that for one representation of this wave type, the

magnetic vector potential (A) satisfies a Beltrami equation:

cur A ¼ kA ð45Þ
A solution of (45) is

A ¼ a½isinðkzÞ þ j cos ðkzÞ 
cosðwtÞ ð46Þ

where a is a constant. The associated electric and magnetic fields are

E ¼ �1

c

qA

qt
¼ wa=c½½isinðkzÞ þ jcosðkzÞsinðwtÞ ð47Þ

B ¼ curl A ¼ ka½isinðkzÞ þ jcosðkzÞ
cosðwtÞ ð48Þ

One immediately sees that E and B (and also A) are everywhere parallel, and all

are perpendicular to the propagation vector (k z). Consequently every plane wave

solution to (45) corresponds to two circularly polarized waves propagating

oppositely to each other and combining to form a standing wave. This standing

wave does not possess the standard power flow feature of linear- or circularly

polarized electromagnetic waves with E?B, since the combining Poynting

vectors of the circularly polarized waves cancel each other similar to the situation

we earlier met in connection with Beltrami vortex filaments. Essentially, the

combination of these two waves produces a standing wave propagating non-zero

magnetic helicity. In the book by Marsh [50], the relationship is shown between

the helicity and energy densities for this wave as well as the very interesting fact

that any magnetostatic solution to the FFMF equations can be used to construct a

solution to Maxwell’s equations with E//B. The current author also shows the

geometric relationship of these waves with respect to space and time [60]. It is

noted from this analysis that, in contrast to standard linearly-polarized waves,

these unique standing waves have no nodes, constant amplitude, and describe a

surface of minimum area called the helicoid (see Fig. 11. Moreover, such waves

with these counter-intuitive properties have not only been theoretically predicted
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Figure 11. (a) Helical distribution of linearly oscillating parallel electric and magnetic fields

shown by solid and broken arrows, respectively; (b) electric field distribution of a helicoidally

polarized standing wave [the magnetic field B (not shown) is parallel to E and oscillates in time in

quadrature with E]; (c) electric (solid line) and magnetic (dashed line) field distributions of a linearly

polarized standing wave.
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but have been experimentally realized in the so-called ‘‘twisted-mode technique’’

for obtaining uniform energy density in a laser cavity [61,62]. Experimental

protocols to produce E//B waves are also illustrated in the paper [60].

XIX. CONNECTION BETWEEN SPINORS, HERTZ
POTENTIAL, AND BELTRAMI FIELDS

A. Hillion–Quinnez Model

In utilizing a complex three-vector (self-dual tensor) rather than a real antisymm-

etric tensor to describe the electromagnetic field, Hillion and Quinnez discussed

the equivalence between the 2-spinor field and the complex electromagnetic field

[63]. Using a Hertz potential [64] instead of the standard 4-vector potential in

this model, they derived an energy momentum tensor out of which Beltrami-type

field relations emerged. This development proceeded from the Maxwell

equations in free homogeneous isotropic space

curl E ¼ �m
cqtH

ð49aÞ

curl H ¼ E
cqtE

ð49bÞ

where E (x; t) and H (x, t) are the components of the electric and magnetic fields;

E and m are the permittivity and permeability, respectively; c is the velocity of

light, qt and qj are the derivatives with respect to time and xj, and x is an arbitrary

point in R3. If we introduce the complex vector

� ¼ �ð
ffiffiffi
E

p
E � i

ffiffiffi
m

p
HÞ ð50Þ

then Eqs. (49a,b) become

icurl� ¼ n

cqt�
ð51Þ

[where n ¼ ðEmÞ1=2
, the refractive index]. From taking the x component of (49b)

and adding i times the y component of (49b), we get

iE
cqtðEx � iEyÞ

þ qzðHx � iHyÞ ¼ ðqx � iqyÞHz ð52aÞ

Doing the same with (49a), we get

qzðEx � iEyÞ �
im
cqt

ðHx � iHyÞ ¼ ðqx � iqyÞEz ð52bÞ
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which becomes, in terms of (50)

ðqx þ iqyÞ�z ¼ qz þ n

cqt

� �
ð�x þ i�yÞ ð53aÞ

ðqx � iqyÞ� ¼ qz � n

cqt

� �
ð�x � i�yÞ ð53bÞ

If we now consider a set of 2-spinors caðx; tÞ; a ¼ 1; 2, with complex

components ca
aðx; tÞ; a ¼ 1; 2; satisfying the Pauli equation

sjqj � n

cqt

� �
ca
aðx; tÞ ¼ 0 a ¼ ð1; 2Þ ð54Þ

where sj are the Pauli matrices and we use the summation convention,

s jqj ¼ s1qx þ q2qy þ s2qz.

Equation (54) takes the form

ðqx þ iqyÞca1 � qz þ n

cqt

� �
ca2 ¼ 0 ð55aÞ

ðqx � iqyÞca
2 þ qz � n

cqt

� �
ca1 ¼ 0 ð55bÞ

Now, by comparing (53a,b) with (55a,b), we get the following identifications:

c1
2 ¼ �z; c1

2 ¼ �x þ i�y; c2
2 ¼ ��z c2

1 ¼ �x � i�y

or

�x ¼
1

2
ðc1

2 þ c2
1Þ; �y ¼

1

2
iðc1

2 � c2
1Þ; �z ¼

1

2
ðc1

1 � c2
2Þ ð56Þ

with the constraint on the spinor field:

c1
1 þ c2

2 ¼ 0 ð57Þ

We now introduce a complex scalar j such that

�z ¼ c1
1 ¼ q2z � n2

c2q2t

� �
j ð58Þ

Then using (55) and (56), we get

�x ¼
1

2
ðqx þ iqyÞ qz � n

cqt

� �
jþ ðqx � iqyÞ qz þ n

cqt

� �
j

� 	
ð59aÞ

�y ¼
1

2
i ðqx þ iqyÞ qz � n

cqt

� �
j� ðqx � iqyÞ qz þ n

cqt

� �
j

� 	
ð59bÞ
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Expanding these, we get

�x ¼
qxqz � in

cqyqt

� �
j ð60aÞ

�y ¼
iqyqz � n

cqxqt

� �
j ð60bÞ

which are recognized as the x and y components of a Hertz potential II (complex

3-vector) with the following relationship to the complex field vector:

� ¼ curlcurlII þ in

cq
t curl II ð61Þ

Thus, defining II by jk, where k is a unit vector along the z axis, from (58) and

(59) we get

II ¼ M þ iN ð62Þ

where M and N are, respectively, the electric and magnetic Hertz vectors [65].

Thus, it follows that any electromagnetic field in a homogeneous isotropic

medium in free space, away from charges and currents, can be expressed either in

terms of the spinors, ca, or in terms of the complex Hertz vector II.

Now, in order to derive a scalar Lagrangian density, we introduce the matrix

� and the spinors f0 and f̂0:

� ¼ c1
1 c2

1

c1
2 c2

2












; f0 ¼ 1

0

� �
f̂0 ¼ 0

1

� �
ð63Þ

and we define the Proca–Pauli field ca; a ¼ 1; 2 by the relations c1 ¼ �f0 and

c2 ¼ �f̂0, and we get the Proca–Pauli equation suquca ¼ 0; a ¼ 1; 2; which is

Eq. (54) written in a manifestly covariant form.

Then the Lagrangian density:

L ¼ ic

2

X2

a¼1

ðcaþsuquca � qucaþsmcaÞ ð64Þ

where caþ represents the Hermitian conjugate of ca, is a real scalar invariant

under the proper orthochronous Lorentz group L
"
þ. Let ju be the energy flow

vector. Then, from (64) we get

X2

ju¼a¼1

caþsuca; u ¼ 0�3 ð65Þ
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The energy-momentum tensor derived from (65) is

Tu;v ¼
ic

2

X2

a¼1

ðcaþsu qvca � qvcaþsucaÞ ð66Þ

In particular,

Tov ¼
ic

2

X
a¼1

½caþqvca � ðqvcaþÞca


¼ �2nc ðHkqvEk � EkqvHkÞ ð67Þ

Now, Too, the energy density is:

Too ¼ �2nc ðHkq0Ek � Ekq0HkÞ ð68Þ

The surprising connection with the Beltrami relation emerges when we use

(49a,b) to transform (68) to

Too ¼ �cðmH � curl H þ eE � curl EÞ ð69Þ

Examining this equation and returning to previous considerations, both of these

terms have the form for the ‘‘abnormality’’ of a twice differentiable vector field.

See Eq. (6), where we saw that if the abnormality factor for a specific vector field

is nonzero, it represents the departure of that vector field from the property of

having a normal congruence of surfaces. So, according to (69), the energy-

momentum tensor has to do with the vorticity or a type of helicity displayed by

the electromagnetic field itself. Assuming a constant value for the abnormality

(k), then both fields E and H must then conform to the Beltrami equations:

H � curl H ¼ 0; E � curl E ¼ 0 ð70Þ

This then implies:

curl H ¼ kH; curl E ¼ kE ð71Þ

In this application we consider EM fields in free space; consequently both E and

H are solenoidal and satisfy Trkalian field relations. Thus, taking the curl of (71),

both vector fields satisfy Helmholtz vector wave equations:

r2H þ k2 H ¼ 0; r2 E þ k2 E ¼ 0 ð72Þ
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Now, from (49a,b) and (70), we get

H � dE

dt
¼ 0 ¼ E � dH

dt
ð73aÞ

kE ¼ � m
c

dH

dt
kH ¼ E

c

dE

dt
ð73bÞ

and these relations imply

d2H

dt2
þ k2c2

n2H
¼ 0;

d2E

dt2
þ k2c2

n2E
¼ 0 ð74Þ

Now, a solution of (73) and (74) takes the form

E ¼ A1ffiffiffi
E

p cos
ðkntÞ

c
þ A2ffiffiffi

E
p sin

ðkntÞ
c

ð75aÞ

H ¼ A1ffiffiffi
m

p cos
ðkntÞ

c
þ A2ffiffiffi

m
p sin

ðkntÞ
c

ð75bÞ

As is well known, this transformation has the form of a duality transformation

[66–68], where, in the above special case, the vectors A1 and A2, similar to E and

H, are compelled to satisfy Trkalian field relations:

curl A1 ¼ kA1; curl A2 ¼ kA2; div A1 ¼ 0 ¼ div A2 ð76Þ

Let us carefully note that the emergence of Beltrami field relations from the

Hillion–Quinnez model, is not due to an ad hoc rendering of the EM field

relations, but is a logically consistent result that follows from recognizing that

any electromagnetic field in a homogeneous, isotropic medium in free space,

away from charges and currents, can be expressed either in terms of the spinors

ca, or in terms of the complex Hertz-vector II.

The possible ultimate significance these facts might have for reshaping the

edifice of classical electrodynamics through the compatible incorporation of

non-Abelian SU(2) symmetries such as those represented by the above spinor–

Hertz potential rendering of free space EM, can at this point only be speculated

on. Moreover, even more amazing, as we shall see next, the seemingly surprising

connection revealed between Beltrami vector fields and SU(2) transformation

groups is not an isolated phenomenon, relevant to this one special model

developed by Hillion and Quinnez. In fact, there appears to be a recurring theme

of Beltrami (specifically Trkalian) field relations that emerge when EM fields

are derived from a Hertz potential in the context of the general Clifford algebra

formalism, which subsumes the complex unimodular group transformations that
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spinors encompass. Also, unlike many of the previous EM models we have con-

sidered that are associated with the Beltrami relation, Clifford algebra rendering

of electromagnetics, such as is next examined in the Rodrigues–Vaz model, can

produce fields possessing many counterintuitive properties, similar to those of

the E//B wave, and others that even appear to violate established physical laws.

B. Rodrigues–Vaz Model

Up to now, we have examined how the Beltrami vector field relation surfaces in

many electromagnetic contexts, featuring predominantly plane-wave solutions

(PWSs) to the free-space Maxwell equations: in conjunction with biisotropic

media (Lakhtakia–Bohren), in homogeneous isotropic vacua (Hillion/Quinnez),

or in the magnetostatic context exemplified by FFMFs associated with plasmas

(Bostick, etc.).

A feature common to all the above PWS to the Maxwell equations is that

they all share the attribute of exhibiting null-field behavior [69]. That is, for this

type of field, E and H vectors are orthogonal and transverse to the propagation

vector at all times and locations, as well as proportional in magnitude. The

factor of proportionality c, the speed of light, which is also the group velocity of

the wave, is the rate at which energy is propagated through space. These

relations are described mathematically by zero value manifested by the

Lorentz–Poincaré field invariant scalars. Using the Hillion–Quinnez model,

The two scalars are defined in the following manner, in tejrms of the field

vectors E and H:

I1 ¼ EjEj2 � mjHj2; I2 ¼ E � H ð77Þ

where each of these values is invariant under any proper (orthochronous) Lorentz

transformation [70]. Now, the product of the complex field vector (50) with itself

is a combination of I1 and I2:

ð
ffiffiffi
E

p
E � i

ffiffiffi
m

p
HÞ2 ¼ I1 � iðEmÞ1=2

I2 ð78Þ

As we can see, it is the constraint on the spinor field in this case (57) that leads to

zero value of I1 and I2 if it is also postulated that c1
1 ¼ f1g1;c

2
1 ¼ f1g2;

c1
2 ¼ f1g1;c

2
2 ¼ f2g2, where ( f1; f2) and ( g1; g2) are the components of spinors

satisfying the Pauli equation. Then (57) becomes

f1g1 þ f2g2 ¼ 0 ð79Þ

By substituting the previous definition for these spinors into (56) and using (79),

it follows that � j is a null vector, (e.g., � j�
j ¼ 0), which, according to (78),

implies I1 ¼ I2 ¼ 0.
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Similar to the Hillion–Quinnez model, Rodrigues and Vaz defined an EM

field that is a function of a specific Hertz potential:

II ¼ ;ðxÞ exp ðg5�tÞg1g2 ð80Þ

where, g1; g2 are two of the four basis vectors g0; g1; g2; g3, in the so-called

spacetime algebra Cl1;3, which satisfy the commutation relations gugv þ gvgu ¼
2nnv; and nnv ¼ diagð1;�1;�1;�1Þ; u; v ¼ 3–0 and g5g0g1g2g3. In this model

the electromagnetic field tensor Fuv is represented by a 2-form F, where

F ¼ 1

2
Fuvgugv ð81Þ

In this model c, the velocity of light is equal to 1, and the invariants of the EM

field are obtained from

F2 ¼ F � F þ F ^ F

where

I1 ¼ F � F ¼ � 1

2
Fuv Fuv; I2 ¼ F ^ F ¼ �g5FuvFabemnab ð82Þ

where emnab is the antisymmetric Levi–Cevita symbol. These assume the form of

the familiar invariant expressions once we recognize the even subalgebra of the

Clifford algebra Clþ1; 3;¼ Cl 3,0, the Pauli algebra, in which the pseudoscalar

i ¼ s1s2s3 ¼ g0g1g2g3. In the Pauli algebra we have F ¼ E þ iB, so that:

F2 ¼ ðjEj2 � jBj2Þ þ 2iE � B ¼ F � F þ F ^ F ð83Þ

For their Hertz potential, Rodrigues and Vaz chose the factor fðt; xÞ ¼ fðxÞ
exp (g5� t). Now, since II satisfies the wave equation, we conclude that the factor

(fx) in turn satisfies the Helmholtz equation:

r2fðxÞ þ �2fðxÞ ¼ 0 ð84Þ

In this case we consider the simplest solutions of (84) in spherical coordinates:

fðxÞ ¼ C sin ð�rÞ
r

; r2 ¼ x2 þ y2 þ z2 ð85Þ

Once again, using the Pauli algebra, we express the Hertz potential as a sum of its

electric and magnetic parts:

II ¼ M þ iN ð86Þ
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In terms of these vectors the electric and magnetic field vectors are expressed as

E ¼ �q0 ðcurl NÞ þ curl curl M; B ¼ �q0ðcurl MÞ � curl curl N ð87Þ

Using (85), (80), and (86), and substituting into (87), we get for the resulting EM

2-form F0:

F0 ¼ C

r3
½sinð�tÞða�r sin ysinj� bsinycosycosjÞg0g1

� sinð�tÞða�r sinycosjþ bsinycosysinjÞg0g2

þ sinð�tÞðbsin2y� 2aÞg0g3 þ cosð�tÞðbsin2y� 2aÞg1g2

þ cosð�tÞðbsinycosysinjþ a�r sinycosjÞg1g3

þ cosð�tÞð�bsinycosycosjþ a�r sinysinjÞg2g3
 ð88Þ

where a ¼ �r cosð�rÞ � sinð�rÞ and b ¼ 3aþ �2r2 sinð�rÞ. Observe that F0

is regular at the origin and vanishes at infinity. Rewriting the solution using the

Pauli algebra

F0 ¼ E0 þ iB0 ð89Þ

we get the result

E0 ¼ W sinð�tÞ; B0 ¼ W cosð�tÞ ð90Þ

with

W ¼ �C
a�y

r3
� b

xz

r5
; �a

�x

r3
� b

yz

r5
; b

ðx2 þ y2Þ
r5

� 2a
r3

� �

We verify that div W ¼ 0; div E0 ¼ 0; div B0 ¼ 0; curl E0 þ qB0=qt ¼ 0;
curl B0 � qE0=q t ¼ 0, and the key relation

curl W ¼ �W ð91Þ

This is clearly a Beltrami equation, but what is more amazing is that the field

result (88) describes a solution to the free-space Maxwell equations that, in

contrast to standard PWS, the electric (E0) and magnetic (B0) vectors are parallel

[e.g., E0 � B0 ¼ 0, where E0 � B0 ¼ �iðE0 ^ B0)], the signal (group) velocity

of the wave is subluminal (v < c), the field invariants are non-null, and as (91)

clearly shows, this wave is not transverse but possesses longitudinal components.

Moreover, Rodrigues and Vaz found similar solutions to the free-space Maxwell

equations that describe a superluminal (v > c) situation [71].
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Consequently, much like the Beltrami vortex filaments discussed earlier

in conjunction with the magnetostatic FFMF, the Beltrami vector relations

associated with nonluminal solutions to the free space Maxwell equations,

are directly related to physical classical field phenomena currently un-

explainable by accepted scientific paradigms. For instance, such non-PWS of

the free-space Maxwell equations are direct violations of the sacrosanct

principle of special relativity [72], as well as exhibit other counterintui-

tive properties. Yet, even more extraordinary, these non-PWS are not only

theoretical possibilities, but have been demonstrated to exist empirically in

the form of the so-called evanescent mode propagation of electromagnetic

energy [72–76].

Although SU(2) groups associated with spinors are not directly incorporated

into the Rodrigues–Vaz model to describe the EM field, they surprisingly turn

out to be implied as an integral part of this edifice, in order to describe super-

and subluminal waves with nonnull behavior. In this regard, the EM field two-

form is shown to be a function of the so-called Dirac–Hestenes spinors [77]

through the relation:

F ¼ cg1g2
~c ð92Þ

where ~c represents the spinor obtained by reversion of the original spinor c [78].

To see how (92) comes about, we need to understand the meaning of an extremal

EM field. The latter is a field for which the electric [magnetic] field vanishes and

the magnetic [electric] field is parallel to a given spatial direction. Now, there is a

well-known proven theorem discovered by Rainich [79] and reconsidered by

Misner and Wheeler [80,81], that at any point of spacetime, any nonnull

(F2 <> 0) electromagnetic field can be transformed into an extremal field by

performing a Lorentz transformation combined with a duality transformation. A

duality-transformed electromagnetic field can be most simply described as the

product of the original field F and the quasiscalar factor (sum of scalar plus

pseudoscalar): F0 ¼ exp ðg5lÞF, where l is the ‘‘angle of rotation’’ in ‘‘duality-

space.’’ It is known that the two scalar Lorentz–Poincaré field invariants, I1 and

I2, do not remain individually constant under a duality rotation [82], although the

combination ½ðI1Þ2 þ ðI2Þ2
] will stay fixed.

The relative significance of the role played by the Beltrami relation (91) in

formulating this SU(2) structure of nonluminal electrodynamics is at present

uncertain. Nevertheless, there is enough evidence to suggest that the Beltrami

(specifically, Trkalian) vector fields might possibly be intimately associated

with higher symmetry field physics, and related to multiply connected field

topologies because of their intrinsic nonzero helicity. One final additional study,

in which longitudinal field components also play a key role, indicates that this

might be the case is described below.
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XX. EVANS–VIGIER LONGITUDINAL B(3) FIELD
AND TRKALIAN VECTOR FIELDS

Developed since the early 1990s, concurrently with both Hillion–Quinnez and

Rodrigues–Vaz SU(2) EM field models, but based on a different non-Abelian

gauge group, is the so-called Evans–Vigier longitudinal Bð3Þ field representation

[83–93]. In this model, a Yang–Mills gauge field theory [94] with an internal

O(3) gauge field symmetry [95] is invoked to account for various magnetooptical

effects that are claimed to be a function of a third magnetic field vector

component that has been termed B(3). One of the central theorems of O(3)

electrodynamics is the B cyclic theorem:

Bð1Þ � Bð2Þ ¼ iBð0Þ Bð3Þ ð93Þ

a conjugate product which relates three basic magnetic field components in

vacuo defined as

Bð1Þ ¼ Bð0Þffiffiffi
2

p ðii þ jÞ exp ðifÞ ð93aÞ

Bð2Þ ¼ Bð0Þffiffiffi
2

p ð�ii þ jÞ exp ð�ifÞ ð93bÞ

Bð3Þ ¼ Bð0Þ k ð93cÞ

where f ¼ wt � kz, a phase factor, and i, j,k, are the three unit vectors in the

directions of the axes x; y, and z, respectively. Although the existence of the B(3)

field has been a subject of controversy, both pro and con, Evans has claimed [96]

that these three magnetic field components encompassed by the relations

(93a–c), along with the electric field components as well as the components of

the magnetic vector potential (A), are themselves components of a Beltrami–

Trkalian vector field relation. This is readily verified in the case of (93a,b), since

they present the form of the circularly polarized solution to the Moses

eigenfunctions of the curl operator we have discussed formerly in connection

with turbulence in fluid dynamics.

Implied by these developments is the increasing importance given to

hypercomplex formalisms for modeling the symmetries in elementary particle

physics and quantum vacuum morphology. As discussed in former earlier

papers [97,98], the author believes that the most appropriate algebra for

describing a hypothesized vortical structure for quantum-level singularities, as

well as their macroscopic counterparts (Beltrami-type fields), is the biquater-

nion algebra (hypercomplex numbers of order 8)—the Clifford algebra of order

3, represented by the Pauli algebra Cl3,0 such as previously examined in the
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Rodrigues–Vaz model. For instance, it is known that in a macroscopic Euclidean

context, biquaternions are required to describe the kinematics and dynamics for

the most general twisting movement of a rigid body in space [99,100]. It is

therefore suggested that the most suitable mathematical formalism for screw-

type EM fields of the Beltrami variety should transcend a traditional vectorial

treatment, encompassing a paravectorial hypercomplex formalism akin to the

Clifford (Dirac) algebra used effectively to describe the electron spin in a

relativistic context [ 101 ].

It is a conclusion in this regard that the founders of vector field analysis were

remiss in failing to take full account of the significance of Beltrami field

topology in addition to the traditional solenoidal, lamellar, and complex

lamellar fields. An inclusion of the examination of the Beltrami condition in

the development of the vector calculus would possibly have brought attention to

the important intimate association of this field configuration with non-Abelian

mathematical structure. If the history of vector analysis had taken this path, it is

possible that the architects of vector field theory and classical electrodynamics,

would not have been so quick to indiscriminately sever its connection from the

natural quaternion-based foundation. Perhaps the work by Hillion–Quinnez,

Rodrigues–Vaz, Evans, and others [102,103] showing the need to consider non-

Abelian models in electromagnetism, will be instrumental in helping to set the

future of classical EM theory and vector field theory in general, on a firmer

foundation.

XXI. CONCLUSIONS AND PROSPECTS

Both theoretical and empirical investigations are necessary in any study of the

Beltrami field relation, since at present much more is unknown than is known

about the phenomenon of Beltrami electromagnetic fields. Consequently, it is

hoped that this present exploration will spur on specialists in the technical arena

to focus their attention on the mysteries surrounding FFMFs and vortices in

general—especially the properties attributed to plasma vortex filaments that

demonstrate a violation of the various established laws of thermodynamics. To

this end, we have reviewed much past literature on the FFMF, and Beltrami flow

fields in general, underscoring key established characteristics of these special

vector fields. Beltrami field anomalies associated with plasma configurations are,

in this author’s opinion, not to be viewed as merely a fluke or trivial footnote in

the annals of empirical science, but represent a profound enigma whose

resolution may be intimately related to the very structural foundations of

classical electrodynamics itself. Our second focus, therefore, has been of a more

conjectural nature, examining Beltrami vortex fields and their specialized

Trkalian modes, as a possible foundation for a more expansive view of

electromagnetism that incorporates a non-Abelian structural edifice.

562 donald reed



In accordance with these notions, the current chapter has focused on a visual

approach with a primarily pictorial representation of Beltrami fields and their

relatives. It is hoped that this emphasis on intuitive pictures will perhaps inspire

researchers of fundamental field physics to consider the benefits of a return to

more concrete theoretical models in the future. Certainly, in the macroscopic

context, the anomalies found associated with classical vortex study applied to

empirical exhibits in plasma focus entities, tornadoes and astrophysical pheno-

mena, need reexamination.

The limited scope and space allotted to this current study precludes a detailed

investigation into all aspects of the Beltrami vector field and its applications in

science. Much more needs to be done as we have barely scratched the surface of

this subject. For readers who would like to continue the search for the possible

unplumbed secrets underlying Beltrami vector fields and their value to science,

the following extra reference studies are recommended.

Z. Yoshida has been instrumental in further uncovering the mathematical

properties of the curl eigenfunctions, the solution to the magnetic force-free

equations, and the importance of topology in dealing with vector fields

possessing nonzero helicity [104–106]. M. MacLeod used Moses curl eigen-

functions to describe FFMFs, showing such fields can be defined entirely by the

value of their curl transform on the unit hemisphere in transform space

[107,108]. This change of viewpoint suggests an orderly approach to the classi-

fication of the properties of such fields. P. Baldwin has done some significant

interesting work exploring the properties of the solution to the Trkalian field

equation for complex–dual vector fields, in terms of Monge-Clebsch potentials

[109,110]. R. Kiehn has underscored the importance of topology in modeling

the evolution of vector field 1-form potentials of rank �3. Using Cartan’s

calculus of differential forms and the fact that vector fields of positive helicity

(such as Beltrami fields) correspond to one-form potentials of rank at least 3

(Pfaff dimension of 3 or 4), Kiehn has explored both turbulence in fluid

dynamics and thermodynamic irreversibility for 1-form potential fields of

rank 4 [111], as well as helicity–torsion properties of unique EM waves with

non-zero value for Lorentz-Poincare field invariants [112]. D. R. Wells [113]

and T. Waite have used the Beltrami–Trkalian field relations to describe

extended elementary particles (Waite), and astrophysical plasmas (Wells),

whose quantum dynamics are a function of continuous vector fields. Waite, in

particular [114], and in association with Barut and Zeni [115], has shown how

solitonic behavior of pure electromagnetic particles, such as electrons, can arise

from the assumption of a continuous fluid-like primordial aether whose

dynamics conform to a Beltrami–Trkalian field relation. The toroidal topology

depicted in Fig. 10 describes this ether-like fluid precisely. Considering the

possible further connection of EM Hertz–Debye potentials to Beltrami fields,

Benn and Kress [116] have applied the generalized Hertz–Debye potential
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scheme to the force-free field problem, by showing that a nonconstant

eigenvalue of the curl operator produces an equivalent curved space source-

free Maxwell equation set. Martinez [117] used differential forms to show a

previously unnoticed important connection between force-free fields and mini-

mal surfaces.

Beltrami field fluid dynamics research into turbulence has been underscored

in the so-called chaotic ABC flows [118,119], and Viktor Trkal’s original

seminal paper on incompressible fluid dynamics and curl eigenfunctions with

constant ‘‘abnormality,’’ has been translated and reprinted in [120]. Additional

references concerning research into FFMF are those by Freire [121] and

Vainshtein [122]. Key properties of Beltrami fields in hydrodynamics and

magneto-hydrodynamics are indicated by Dritschel [123], McLaughlin &

Pironneau [124], Montgomery et al. [125], and Marris [126–128]. Finally,

Bjorgum has written a seminal paper on 3-dimensional Trkalian flows as

solutions to the non-linear hydrodyanmical equations [129].

With all these exhibits of the Beltrami vector field in nature previously

expounded, some of which appear to emerge as a total surprise out of disparate

empirical applications, we now return to examine in more depth, the original

thesis of this chapter. This is the suggestion that the Beltrami–Trkalian vector

field might possibly be an archetypal structure or field morphology that is

universal and therefore ubiquitous throughout nature. One feature that would

tend to support this tenet is the fact that this field structure, inwhatever

topological contesxt, exemplifies the characteristic of perfect balance, not only

between kinematical parameters exhibited through the association of geometric

relationships, but also in regard to the dynamic relationship between the two

modes (poloidal) and (toroidal) in the toroidal representation. First, a balance is

noted between the distance from the axis of the velocity vector tangent to the

helical field lines, and the inclination angle of this vector’s normal plane from

the vortex asis. Referring to Fig. 12, we observe that as the radius from the

central asix increases from a to b, the corresponding angle of the normal plane

with respect to the vertical axis decreases from a to b. Thus, with respect to the

equally pitched helices, p ¼ a tan a ¼ b tan b. Given the pitch of the helices as

p, and inclination angle l, we have p ¼ r tan l. Thus, every axisymmetric (or

topologically equivalent toroidal) Beltrami vector field system, determines a

helicoidal velocity field describing motion on an infinite set of coaxial helices,

with the limiting motions of translation [toroidal rotation] where r ¼ 0; p ¼ 0

along, and pure rotation [poloidal motion] where r ¼ 1; p ¼ 1 around, the

central [toroidal] axis. In fact, as the author has shown in [1], that the helical

axisymmetric solution attributed to the lowest energy mode of the Beltrami

vortex filaments, is similar to the helicoidal velocity/forece field associated with

the structure known from antiquarian geometric mechanics as the screwfield,

generated from projective line geometry—also known as the linear line
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complex. In the book previously noted [25], White also noted this possible

correspondence.

In this regard the unique property of Trkalian fields in which the curl of such

a field is also Trkalian, suggests a unique permanece or resiliency of field

structure that is possessed by no other vector field, making it rich with promise

for application to fundamental vacuum EM field structures. The related property

that poloidal and toroidal modes feedback on each other with equipartition of

energy [10] in an infinite loop through the curl operation, also suggests this

possibility. The Trkalian feature of chiral modes of inherent non-zero helicity,

might have a direct application to explicating the associated invariances already

established in fundamental field and particle physics, in which helicity/spin play

a predominant role. However, such an investigation, as well as further insight

into possible connection between Beltrami fields and multiply connected

topologies other than toroidal, as well as non-Abelian field symmetries, is

beyond the scope of the present chapter and await future research.
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Einstein. It rests on firm experimental basis. The success of quantum field

theory and general theory of relativity clearly demonstrate the assertion of

constancy of velocity of light. It seems to be futile excersize to reopen the

discussion regarding the viability of this assertion and its possible experimental

verifiability. Several authors tried to reopen the issue by analyzing some

experimental data from gamma-ray bursters (GRBs), active galactic nuclei

(AGNs) and pulsars [1]. This quest is motivated mainly by the developments of

quantum gravity, quantum foam [2] and several models of spacetime fluctua-

tions [3]. Here the energy-dependent variation in photon velocity is related to

the variation in arrival time observed for a photon traveling a distance L from

astronomical sources: dt � �ðL
c
Þðdc

c
Þ. Analyzing the different astronomical

sources we can envisage the following situation on short timescales dt � �t.

This is shown in Table I, where the relevant photon property that might be

correlated with the variation of the velocity of light dc and its frequency n or

equivalently its energy E are also listed. It is also claimed that any such effect

could be expected to increase with energy E, and the simplest possibility , for

which there is some theoretical support, is that dc � E
M

, where M is some high-

energy scale. L
c

E
dt

can be taken as the measure of the experimental sensitivity to

such a high-energy scale M. Table I indicates that these astrophysical sources

are sensitive to M approaching Mp � 1019 GeV: the mass scale at which gravity

becomes strong. As a consequence, these astrophysical sources may challenge

any theory of quantum gravity that predicts such a linear dependence of dc on E.

In otherwords it could be that dc
c
� ðE

~M
Þ [2]. Then the astrophysical observations

may be sensitive to ~M � 1011 TeV.

It is clear from the above mentined astrophysical data that it raises new

opportunity to test the validity of assertion of constancy of velocity of light.

TABLE I

Observational Sensitivities and Limits on M; ~Ma

Source Distance E �t Sensitivity of M Sensitivity to ~M

GRB 920229b 3000 Mpc (?) 200 keV 10�2 s 0.6�1016 GeV(?) 106 GeV (?)

GRB 980425b 40 Mpc 1.8 MeV 10�3 s (?) 0.7�1016 GeV(?) 3:6 � 106 GeV (?)

GRB 920925cb 40 Mpc (?) 200 TeV (?) 200 s 0.4�1019 GeV (?) 8:9 � 1011 GeV (?)

Mrk 421c 100 Mpc 2 TeV 280 s >7 �1016 GeV >1:2 �1010 GeV

Crab pulsar d 2.2 kpc 2 GeV 0.35 ms >1:3 �1015 GeV >5 �107 GeV

CRB 990123 5000 Mpc 4 MeV 1 s (?) 2 �1015 GeV (?) 2:8 �106 GeV (?)

aThe linear (quadratic) mass-scale parameters M; ~M are defined by dc=c ¼ E=M; ðE= ~MÞ2
,

respectively. The question marks in the table indicate uncertain observational inputs. Hard limits

are indicated by inequality signs.
bAmelino-Camelia et al. [1]; see also Schaefer [16].
cBiller et al. [16].
dKaaret [16].
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Now we shall indicate the theoretical motivation of questioning the constancy of

velocity of light in various contexts. In the context of quantum gravity, any

attempt to quantize gravity canonically, must involve a Lorentz noninvariant

separation of degrees of freedom and the choice of a preferred reference frame.

A local rest frame exists in our approximately Friedman–Robertson–Walker

universe, which can be identified with the cosmic microwave background

radiation (CMBR). This provides a natural frame where one can consider topo-

logical fluctuations in spacetime background that may arise from microscopic

black holes or other nonperturbative phenomena in quantum gravity: the so-

called spacetime foam [4]. Amelino-Camelia et al. [5] argued that foamy effects

might lead the quantum gravitational vacuum to behave as a nontrivial medium,

much like a plasma or other environment with nontrivial optical properties. It

was also proposed that quantum fluctuations in the lightcone [6] may be

expected because of these considerations.

The main idea behind the abovementioned proposals is that quantum-

gravitational fluctuations in the vacuum must in general be modified by the

passage of an energetic particle and that this recoil will be reflected in the

backreaction effects on the propagating particle itself. Three possible optical

effects of quantum gravity have been identified:

1. Simple energy-dependent reduction in photon velocity, namely, a

frequency-dependent refractive index.

2. The difference between the velocities of photons of different helicities,

namely, birefrigence [7]. The possible experimental test of this pheno-

menon has been discussed by observing the polarized radiation from GRB

990510 [8].

3. The third is a possible energy-dependent diffusive spread in the velocities

of different photons of the same energy [9].

Several authors [10] studied the propagation of light in a Maxwell vacuum with

small nonzero conductivity and complex refractive index. By solving modified

Maxwell equations, one can get the frequency-dependent speed of light, which

can be associated with nonzero mass of photon. The nonzero rest mass of photon

has a long history, and the astrophysical evidence is discussed in this chapter.

Ng and van Dam [11] explored the quantum foam from a different perspec-

tive. They proposed to explore the quantum structure of spacetime using

Wigner’s clock. It is claimed that classical spacetime breaks down into quantum

foam in a manner different from the canonical picture. The main idea is that the

uncertainty in spacetime measurement using Wigner’s clock can be interpreted

as inducing an intrinsic uncertainty in the spacetime metric. Although this

fluctuation of spacetime metric is very small, the modern gravitational inter-

ferometers [12] may be sensitive enough to detect it. However, fluctuation of the
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spacetime metric has a long history apart from the more recent interest in

quantum gravity. In the mid-twentieth century Karl Menger [13] introduced and

developed the idea of statistical geometry by reanalyzing the fundamental

concepts of measurement in quantum mechanics. Immediately after that variuos

physicists and mathemeticians developed this concept, which can be found in a

monograph by the author [3]. The fluctuation of gravitational potential or the

existence of random zero-point field might be the cause of the fluctuation of

spacetime metric [14,15]. It is to be noted from these observations that even the

fluctuation of the velocity of light may cause the fluctuation of the metric, which

will be elaborated on in this chapter. The main motivation of the present review

is to first analyze the experimental data from the astronomical sources to test the

constancy of velocity of light in Section II. Then in Section III we shall discuss

the various theoretical models and the possible implications in Section IV.

II. OBSERVATIONAL EVIDENCE

A. Gamma-Ray Bursters

Ellis et al. [4] discussed a model analysis of astrophysical data on GRB pulses

that allows us to place a bound motivated by the possible nontrivial medium

effects of quantum gravity on the propagation of photon probes. These data

were also considered by several groups [1,16] for individual GRB and pulsars.

In the analysis of Ellis et al., the data have been analyzed from those GRBs

whose redshifts are known after identification of their optical counterparts. This

enables them to perform a regression analysis to search for a possible correlation

with redshift (distance), to reveal source and medium effects. In the framework

of quantum gravity one normally considers short-duration structures in the time

profiles of those GRBs whose redshifts and hence distances are known with

precision. Then appropriate fits of astrophysical data are done in various energy

channels seeking to constrain differences in the timings and widths of peaks for

different energy ranges. Simultaneity of peak arrival times at different energies

would impose bounds on the induced refractive index of photons. Independence

of the widths of peaks from the channel energies would constrain stochastic

fluctuations in the velocities of the same energy.

The sample of GRB data considered have been taken from the BATSE

catalog [17] and OSSE data [18]. They discussed only on the following GRBs

whose redshifts are known:

1. GRB 970508 with BATSE trigger number 6225 and redshift z ¼ 0.835

2. GRB 971214 with BATSE trigger number 6533 and redshift z ¼ 3.14

3. GRB 980329 with BATSE trigger number 6665 and redshift z ¼ 5.0

4. GRB 980703 with BATSE trigger number 6891 and redshift z ¼ 0.966

5. GRB 990123 with BATSE trigger number 7343 and redshift z ¼ 0.966
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The energy ranges in which BATSE generally observes photons are as

follows: channel 1, in the energy range 20–50 keV; channel 2, 50–100 keV;

channel 3, 100–300 keV; channel 4, 300 keV. In fact, the energies recorded by

BATSE are not the exact photon energies, and there is, in particular, some

feedthrough from high-energy photons into lower-energy channels. However,

this effect can be neglected here. The data for each GRB exhibit nontrivial and

nonuniversal structures in time. For each trigger one or two prominent peaks

have been fitted in each energy channel with the aim of looking for their

difference in time or width between different energy channels. Four different

functions have been considered to fit the different peaks:

1. A Gaussian function characterized by the peak location tp and width

parameter s
2. A Lorentzian function characterized by A

½ðt�tpÞ2þð�=2Þ2�
3. A tail fit with fitting function

NðtÞ ¼ c�1ðt � t0Þm
exp �ðt � t0Þ2

ð2r2Þ

" #
ð1Þ

function at t > t0 peaks at tp ¼ t
ffiffiffiffi
m

p
þ t0 , to take into account the tail that

tends to appear in the data after the peak.

4. The phenomenological pulse model [18], which has the following func-

tional form:

NðtÞ ¼ c1 exp �ðt � tpÞ
sr;d

� �

where tp is the time at which the photon pulse takes its maximum, sr and

sd are the rise and decay times of the distribution, respectively, and n
gives the sharpness or smoothness of the pulse at its peak.

In Fig. 1, the four fits are compared to the data for GRB 970508 in channels 1

and 3. It is evident from the figure that the Gaussian and Lorentzian fits are of

lower quality than the tail and pulse fits. It is better to take the latter fits for the

remaining GRBs. Figures 2–5 indicate the tail and pulse fits for the remaining

GRBs: 971214, 960329, 980703, and 990123, respectively. The values of the

tail and pulse fit parameters are compared in Table II. Specifically, we list for

both the tail and pulse fitting functions the peak time, tp and the pulsewidth, s,

defined as half of the width of the pulse at exp ½� 1
2
� ’ 60 of its maximum value.

If we take this definition, using the tail distribution (1), we get

s ¼ at
ffiffiffiffi
m

p
ð2Þ
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GRB 970508: BATSE data Ch. 1 and Ch. 3

(a) (b)

(c) (d)

Figure 1. Time distribution of the number of photons observed by BATSE in channels 1 and 3

for GRB 970508, compared with the following fitting functions; (a) Gaussion, (b) Lorentzian, (c) tail

function, and (d) pulse function. We list below each panel the positions tp and widths sp (with

statistical errors) found for each peak in each fit. We recall that the BATSE data are binned in periods

of 1.024 s.
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Figure 2. Time distribution of the number of photons observed by BATSE in channels 1 and 3

for GRB 971214, compared with the following fitting functions: (a) tail function, and (b) pluse

function. We list below each panel the positions tp and widths sp (with statistical errors) found for

each peak in each fit.
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Figure 3. As in Fig. 2, but for GRB 980329.
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Figure 4. As in Fig. 2, but for GRB 980703.
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Figure 5. As in Fig. 2, but for GRB 990123.
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where a > 0 is the solution of the equation and t and m are defined in (2)

lnð1 þ aÞ � 1

2
ð1 þ aÞ2 þ 1

2
ð1 þ m�1Þ ¼ 0 ð3Þ

For the pulse distribution this definition yields s ¼ ðst þ sdÞ=2.

The main interest here is to compare the values of these parameters in the

different channels, and use their differences to constrain energy-dependent

differences and stochastic fluctuations in photon velocities. It is evident from the

Table II that the fitting functions yield constraints on the propagation parameters

that are comparable within the statistical errors. Here we use the differences

between them as gauges of systematic errors.

The only candidate that one can see for a systematic trend in the data is a

tendency for pulses in the higher-energy channels to be narrower than in the

lower-energy channels. This effect is seen in Fig. 1 for the case of GRB 970508.

However, this narrowing is the opposite of what we would suggest theoretically,

which would be a slowing and broadening of the peak at higher energies. The

data from channel 3 of the BATSE detector is compared with the data from

the OSSE detector, which detects photons in a single channel with energy range

1 < E < 5–10 MeV. Since the OSSE data are at higher energies, they are more

sensitive to the type of energy-dependent effect, in which we are interested.

The reason we compare OSSE data with channel 3 of the BATSE data because

the latter are free of contamination by the data in lower-energy channels,

removing one particular possible source of systematic error. OSSE data are

available for the GRBs 980329 and 990123, which we display in Figs. 6 and 7,

respectively. The results of numerical analysis of the arrival times and the

widths of identified OSSE pulses are given in Table III.

In order to investigate the possible fundamental physical significance of this

or any other possible energy-dependent effect, Ellis et al. [4] compiled the data

from all GRBs as a function of ~z where

~z � 2 1 � 1

ð1 þ zÞ1=2

 !
’ z � 3

4
z2 þ � � �

which expresses the cosmic-expansion-corrected redshift. Ellis et al. determined

limits on the respective quantum gravity scales MQG and Mstoch by constraining

then possibele magnitudes of the slopes in linear regression analysis of the

differences between the arrival times and widths of pulses in different energy

ranges from five GRBs with measurable redshifts as functions of ~z. Using the

current-value Hubble expansion parameters H0 ¼ 100 � h0 km s�1 Mpc�1,

where 0:6 < h0 < 0:8, one can get the following limits

MQG � 1015 GeV; Mstoch � 2:1015 GeV ð4Þ
on the possible quantum gravity effects.
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It appears that this kind of analysis yields useful limits on spacetime foam

models. However, one should be careful regarding this kind of analysis. First,

the regression index should yield reliable information only in case one has a

statistically significant population of data with known redshifts, something that

at present is not feasible. Again detailed knowledge on the emission mechanisms

at the source is essential in order to disentangle effects that may be due to

conventional physics, that is, effects not related to foam. For example, nontrivial

vacua in nonlinear theories of quantum electrodynamics associated with

thermalized fermions or photons (CMBR) lead to nontrivial refractive indices.

However, the energy dependence on the probe energy in such cases is different

from the foam effect in the sense that it leads to either (1) an energy-

independent light velocity, which simply changes value as the universe expands;

or (2) energy- and temperature-dependent refractive index, which however,

decreases with increasing probe energy and hence leads to the opposite effect. It

should be mentioned that there is a another conventional approach where

Maxwell’s vacua have been associated with small refractive index and the
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GRB 980329: BATSE data Ch. 3 and OSSE data

(a) (b)

Figure 6. Time distribution of the number of photons observed by OSSE and by BATSE in

channel 3 for GRB 980329, compared with the following fitting functions: (a) tail function and (b)

pulse function. We list below each panel the positions tp and widths sp (with statistical errors) found

for each peak in each fit.
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propagation of photon is investigated [10]. This gives rise to small but finite

nonzero rest mass of photon. This also plays a significant role at the cosmo-

logical scale. So, such conventional effects have to be distinguished from the

pure spacetime foam effectes in the relevant analysis. A systematic study of the

observed GRB indicates that the pulses of light become narrower and the arrival

time shorter as one goes from the low- to the high-energy channels. This is

opposite the quantum gravity effect.

B. Ultra-High-Energy Cosmic Rays

Ultra-high energy cosmic rays (UHECRs) with energy [19] higher than 1020 eV

have drawn much attention as sensitive probes of Lorentz invariance violations

and in particular modified dispersion relations [20]. The various models [21]

consider the modified dispersion relations so as to explain the violation of GZK

cutoff [22]. The possible breakdown of their cutoff due to the quantum gravity

effect has also been considered in a series of papers [21]. Within the realm of

the quantum gravity framework, it is considered that the quantum gravity effects

could provide an explanation for significant increase in the transparency of the

universe in such a way so that the sources of UHECRs could be extragalactic,
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GRB 990123: BATSE data Ch. 3 and OSSE data
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Figure 7. As in Fig. 6, but GRB 990123.
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lying much farther away, in contrast with a common belief based on Lorentz-

invariant models. This kind of modification of dispersion relation has also been

invoked to explain the discrepancies between the observed g spectrum of

Markarian 501 and expectations based on a new estimate of the infrared

background [23].

It may be possible that the conventional explanation could account for the

spectrum of such ultra-high-enrgy cosmic rays, but the possibility of getting a

signature of quantum gravity effects from such data cannot be excluded [24].

For instance, it has been argued that certain models of deformed Lorentz

symmetry cannot lead to threshold effects that account for violation of GZK

cutoff [25], in contrast to the quantum gravity model, and hence UHECR data

can be used to disentangle various models of spacetime foam. In addition, since

UHECRs involve charged particles, the possibility of foam-induced transition

radiation should be taken into account as a means of excluding models.

It is clear from the preceding analysis of astrophysical sources that it is

necessary to analyze the data from other sources such as AGN and/or pulsars to

confirm the signature of quantum gravity effects. An alternate possibilty would

TABLE III

As in Table II but Comparing Fits to Data from OSSE, in the Range 1 < E < 5–10 MeV, and

Channel 3 of BATSE

GRB GRB GRB GRB

980329 980329 990123 990123

(I) (II) (I) (II)

OSSE Tail tp (s) 3.3(4) 7.70(2) 25.16(1) 38.(1)

s (s) 1.7(4) 2.62(2) 2.90(1) 3.(1)

tp (s) 4.33(5) 6.95(4) 25.33(1) 37.08(1)

Pulse sr (s) 2.39(5) 0.74(5) 3.57(2) 2.26(2)

sd (s) 3.6(4) 4.78(7) 3.47(2) 6.07(4)

s (s) 3.0(3) 2.76(6) 3.52(2) 4.17(3)

BATSE Tail tp (s) 3.81(3) 8.11(1) 24.63(7) 37.0(4)

(Ch. 3) s (s) 1.88(4) 2.35(1) 2.92(7) 4.4(4)

tp (s) 5.18(6) 10.06(3) 24.84(3) 36.08(3)

Pulse sr (s) 3.37(6) 2.3(1) 4.59(4) 2.85(4)

sd (s) 5.28(6) 1.071(7) 4.39(5) 7.48(5)

s (s) 4.33(6) 1.69(7) 4.49(5) 5.16(5)

� Tail �tp (s) �0.5(4) �0.41(2) 0.53(7) 1.(1)

�s (s) �0.2(4) 0.27(2) �0.02(7) �1.(1)

Pulse �tp (s) �0.85(8) �3.11(5) 0.49(3) 1.00(3)

�s (s) �1.3(3) 1.07(9) �0.97(5) �0.99(6)

ð�tpÞf
(s) �0.85(8)(35) �3.11(5)(270) 0.49(3)(4) 1.00(3)(0)

ð�sÞf
(s) �1.3(3)(11) 1.07(9)(80) �0.97(5)(95) �0.99(6)(1)
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be to consider more carefully laboratory experiments that might be able to

reveal possible variations in the velocity of light.

III. THEORETICAL DEVELOPMENTS

The propagation of electromagnetic waves through vacuum with fluctuations

give rise to new effects published in a series of recent papers [26]. This can be

broadly classified in the following manner.

A. Quantum Gravity Effects

It is generally believed that quantum gravitational fluctuations are of the typical

sizes � lp � 10�33 cm and timescales � tp � 10�43 s. It is proposed [26] that

particles propagating through the vacuum interact with these fluctuations,

inducing nontrivial recoil and associated vacuum polarization effects. As an

example they have taken the theoretical model of a recoiling D particle in the

quantum gravitational foam. Its recoil due to scattering by a photon has been

considered. This leads to a nonzero gravitational field with a metric of the form

Gij ¼ dij; G00 ¼ �1; G0i ¼ E2ðYi þ �UitÞ�EðtÞ ð5Þ

where 0(i) denote time (space) components. Here, �Ui is the recoil velocity of the

D particle, which is located at Yi and E is a small parameter. The metric given

above implies that D-brane recoil induces the following perturbation hmn about

flat spacetime:

h0i ¼ E2 �Uit�iðtÞ ð6Þ

where only the nonzero components of hmn are indicated. Let E�2 � t at large

times, so that the asymptotic form of the gravitational perturbation takes the form

h0i ¼ �Ui ð7Þ

This form corresponds to a breakdown of Lorentz invariance induced by the

propagation of the photon. Suppose that the light travels a distance L in time

t � E�2 in the presence of a metric fluctuation h0i. The effects of such a field in

Maxwell’s equations may be considered as follows:

G00 � �h; Gi ¼ � G0i

G00

; i ¼ 1; 2; 3 ð8Þ

Maxwell’s equations in this background metric in vacua can be written as [27]

divB ¼ 0; curlH ¼ 1

c

q
qt

D ¼ 0 ð9Þ

divD ¼ 0; E ¼ � 1

c

q
qt

B ¼ 0 ð10Þ
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where

D ¼ Effiffiffi
h

p þ H � G; B ¼ Hffiffiffi
h

p þ G � E ð11Þ

Thus there is a direct analogy with Maxwell’s equations in a medium with 1ffiffi
h

p

playing the role of the electric and magnetic permeability. Considering h ¼ 1,

one has the same permeability as the classical vacuum. Now for the metric

perturbation as considered above, the modified Maxwell equations can be written

as

r � E þ �U � 1

c
qqtE ¼ 0 ð12Þ

r � B � 1 � �U
2

	 
 1

c

q
qt

E þ �U � 1

c

q
qt

B þ U � rð ÞE ¼ 0 ð13Þ

r � B ¼ 0; r� E þ 1

c

q
qt

B ¼ 0 ð14Þ

After simple calculations, one gets the following equations dropping nonleading

terms of order �U
2

as

1

c2

q2

q2t
B �r2B � 2 �U � rð Þ 1

c

q
qt

B ¼ 0 ð15Þ

1

c2

q2

q2t
E �r2E � 2 �U � rð Þ 1

c

q
qt

E ¼ 0 ð16Þ

If we consider one-dimensional motion along the x direction, we observe that

these equations admit wave solutions of the form

Ex ¼ Ez ¼ 0; Eyðx; tÞ ¼ E0eikx�ot; Bx ¼ By ¼ 0; Bzðx; tÞ ¼ B0eikx�ot

with a modified dispersion relation

k2 � o2 � 2�U � ko ¼ 0 ð17Þ

As the sign of �U is that of the momentum vector k along the x direction, the dis-

persion relation corresponds to subluminal propagation with a refractive index:

cðEÞ ¼ cð1 � �UÞ þ Oð�U2Þ ð18Þ

where we have an estimate of �U as

�U ¼ O
E

MDc2

� �
ð19Þ
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with MD as the D-particle mass scale. In string model MD ¼ g�1
s Ms, where gs is

the string coupling constant and Ms is the string scale. Here the refractive index is

a mean-field effect that implies a delay in the arrival time of photons to that of an

idealized low-energy photon for which quantum gravity effects can be neglected

and as of the order of

�t � L

c
j�Uj ¼ O

EL

MDc2

� �
ð20Þ

Ellis et al. [30] discussed the quantum fluctuations about the mean-field solution

that would correspond in field theory to quantum fluctuations in the lightcone

and could be induced by higher-genus effects in the string approach. Such effects

would result in stochastic fluctuations in the velocity of light as of the order of

ðd�tÞ ¼ LE

cl

where l � MDc2

8gs
. It should be noted that in contrast to the variation of the refractive

index, which refers to photons of different energy, the fluctuation characterizes

the statistical spread in the velocities of photons of the same energy.

B. Propagation of a Pulse of Photons Through Space-Time Foam

GRBs emit photons in pulses containing photons with a combination of different

wavelengths, whose sources are believed to be ultrarelativistic shocks with Lorentz

factor g ¼ Oð100Þ [28]. Let us consider a wavepacket of photons emitted with a

Gaussian distribution in x at the time t ¼ 0. One has to find out how such a pulse

would be modified at the observation point at a subsequent time t , because of the

propagation through the spacetime foam, as a result of the refractive index. This

is similar to the motion of a wavepacket in a conventional dispersive medium.

The Gaussian wavepacket may be expressed at t ¼ 0 as the real part of

f ðxÞ ¼ Ae�½x2=ðrx0Þ2�eðik0xÞ

with a modulation envelope, symmetric about the origin and where A is the

amplitude. The quantity �x0 denotes the root mean square of the spatial spread

of the energy distribution in the wavepacket, which is proportional to j f ðxÞj2. If

we assume a dispersion relation o ¼ oðkÞ, it can be shown that at time t the

Gaussian wavepacket will have the form

j f ðx; tÞj2 ¼ A2

1 þ a2t2

ð�x0Þ4

	 
1=2
exp � ðx � cgÞ2

2ð�x0Þ2
1 þ a2t2

ð�x0Þ4

h i
0
@

1
A ð21Þ
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where a � 1
2
ðd2o

d2k
Þ and cg � do

dk
is the group velocity. This is the velocity with

which the peak of the distribution moves in time.

It is obvious from the dispersion relation above that the quadratic term in a
does not affect the motion of the peak, but only the spread of the Gaussian

wavepacket.

j�xj ¼ �x0 1 þ a2t2

ð�x0Þ4

 !1=2

ð22Þ

which increases with time. The quadratic term in a also affects the amplitude of

the wave-packet. The amplitude decreases together with an increase in the spread

in such a way that the integral of j f ðx; tÞj2 is cosntant.

In the case of propagation of pulse in quantum gravitational foam [29], the

dispersion relation assumes the following form for positive momentum k in

units where c ¼ �h ¼ 1:

k ¼ o 1 þ o
MD

� �

cg ¼ ð1 � �UÞ

a ¼ � 1

MD

þ � � �

ð23Þ

Here, the ellipses (� � �) denote the higher-order terms in 1
MD

. Thus the spread of the

wavepacket due to the nontrivial refractive index is

j�xj ¼ �x0 1 þ t2

M2
Dð�x0Þ4

 !1=2

ð24Þ

It should be noted that the spread due to the refractive index dc
c
/ o is

independent of the energy of the photon to leading order in 1
MD

. Hence, this effect

is distinct from the stochastic propagation effect, which depends on the photon

energy o. For astrophysical sources at cosmological distances with redshifts

z ’ 1, and with an initial �x0 of a few kilometers only if the latter is of order

1019 GeV, namely, of order 10�30j�x0j, the correction would become of order

j�x0j only if the latter is of the order of 10�3 m. Even if one allows MD to be as

low as the sensitivities shown in the Table I , this broadening effect is still

negligible for all sources there, at most of order 10�22j�x0j. Therefore, in this

model, the only broadening effect that needs to be considered is the stochastic

quantum gravitational effect on the refractive index.
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In the case of a quantum gravitational foam scenario with quadratic

refractive index dc
c
� E2, the dispersion relation assumes the following form:

k ¼ o 1 þ o
~M

� �
cg ¼ ð1 � �UÞ

a ¼ �3
o
~M
þ � � �

ð25Þ

where ~M � 1011 TeV. The spread of the wavepacket is

j�xj ¼ �x0 1 þ 9o2t2

~M4ð�x0Þ4

 !1=2

ð26Þ

Again, if we take the same sensititvities as in Table I, the maximum spreading of

the pulse is negligible for �x0 � 10�3 m, namely, 10�33�x0. One needs only to

consider the possible stochastic quantum gravitational effect on the refractive

index. However, as the quadratic dependence is not favored theoretically, we will

not pursue it further.

C. Cosmological Expansion and Propagation of Photons

Here, we shall discuss the implications of cosmological expansion for the

searches of a quantum-gravity-induced refractive index and a stochastic effect.

We will consider Friedman–Robertson–Walker (FRW) metrics as an appropriate

candidate for standard homogeneous and isotropic cosmology. Let R be the

FRW scale factor, and a subscript 0 will denote the value at the present era. H0

is the present Hubble expansion parameter, and the deceleration parameter q0 is

defined in terms of the curvature k of the FRW metric by k ¼ ð2q0 � 1ÞðH2
0
R2

0

c2 Þ,
specifically, �0 ¼ 2q0.

Considering the inflation, we assume a universe with a critical density:

�0 ¼ 1; k ¼ 0 and q0 ¼ 1
2
. The universe is assumed to be matter dominated

during all the epoch of interest. Then the scale factor RðtÞ of the universe

expands as:

RðtÞ
R0

¼ 3H0

2

� �2=3

t2=3 ð27Þ

and the present age of the universe is

t0 ¼ 2

3H0

ð28Þ
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Then no time delay can be larger than this. This relation between redshift and

scale factor is

RðtÞ
R0

¼ 1

1 þ z
ð29Þ

From these relations we get the age of the universe at any given redshift as

t ¼ 2

3H0

1

ð1 þ zÞ3=2
¼ t0

ð1 þ zÞ3=2
ð30Þ

Hence, a photon emitted by an object at redshift z has traveled for a time

t0 � t ¼ 2

3H0

1 � 1

ð1 þ zÞ3=2

 !
ð31Þ

The corresponding differential relation between time and redshift is

dt ¼ � 1

H0

1

ð1 þ zÞ5=2
dz ð32Þ

The total distance L traveled by such a particle after the emission with

redshift z is

L ¼
ðt0

t

udt ¼ 1

H0

ðz

0

uðzÞ
ð1 þ zÞ5=2

dz ð33Þ

Hence, the differences in distances covered by the two particles with velocities

differing by �u is

�L ¼ 1

H0

ðz

0

dz

ð1 þ zÞ5=2
ð�uÞ ð34Þ

In the context of quantum-gravity-induced refractive-index phenomena, we face

the same situation. Let the two photons travel with velocities very close to c,

whose present energies are E1 and E2, respectively. At earlier epochs, their

energies would have been blueshifted by a common factor 1 þ z. Let �E0 �
E1 � E2, then

�u ¼ ð�E0ð1 þ zÞ
M
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After simple calculations we can get the difference in the arrival time of the two

photons as

�t ¼ �L

c
� 2

H0

1 � 1

ð1 þ zÞ1=2

" #
�E0

M
ð35Þ

This expression describes the corrections to the refractive index effect due to the

cosmological expansion. For small z � 1, expression (35) yields

�t � ðz ��E0Þ
H0M

which agrees with the simple expectation

�t � r ��E0

ðc � MÞ

for a nearby source at distance

r ¼ cðt0 � tÞ � z

H0

þ � � �

There would be similar cosmological corrections to the stochastic effect.

D. Lightcone Fluctuations

In modern physics, the unification of the gravity and other interactions poses

one of the most challenging problems. Many theories have been proposed since

the work of Kaluza and Klein [31]. In case of supergravity and superstring

theories, the existence of higher spatial dimensions is postulated. It is assumed

that these extra dimensions are not mathematical artifices but represent the

physical reality. The question arises as to whether they represent the physical

reality and if so, why they are not observed. The usual answer is that they curl

into an extremely small compactified manifold, possibly as small as the Planck

length scale: lp � 10�33 cm. The next question is whether there are any lower

bounds on the size of these extra dimensions. It is usually thought that the

existence of extra dimensions has no effect on low-energy physics as long as

they are extremely small. It has been claimed [32] that this is not the case

because of the fluctuations of lightcone arising out of the quantum gravitational

vacuum fluctuations due to compactification of spatial dimensions. An explicit

calculation was made in a five-dimensional prototypical Kaluza–Klein model

that showed that the periodic compactification of the extra spatial dimensions

give rise to stochastic fluctuations in the speed of light. This fluctuation grows as
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the compactification scale decreases and is principle, observable. Indeed, the

samller the size of the compactified dimensions, the larger are the fluctuations.

This is related to Casimir effect, the vacuum energy arising whenever the boundary

conditions are imposed on the quantum field. The gravitational Casimir energy

in the five-dimensional case was studied [33] where a nonzero energy density

was found that tends to make the extra dimension contract. The lightcone

fluctuations due to compactification of spatial dimensions come solely from

gravitons (closed-string states).

Yu and Ford [32] studied the effects of compactified extra dimensions on the

propagation of speed of light in the uncompactified dimensions. There are non-

trivial effects that arise from quantum fluctuations of the gravitational field, in-

duced by the compactification. These effects take the form of lightcone fluctuations,

variations in the flight times of pulses between a source and a detector.

1. Observability of Lightcone Fluctuations

Let us consider a (d ¼ 4 þ n)-dimensional spacetime with n extra dimensions.

The spacetime metric may be written as

ds2 ¼ ðZmn þ hmnÞdxmdxn ¼ dt2 � dx2 þ hmndxmdxn

where the indices run through 0; 1; 2; 3; . . . ; 3 þ n. Let sðx; x0, be one half of the

squared geodesic distance between a pair of spacetime points x and x0 and

s0ðx; x0Þ be the corresponding quantity in the flat background. In the presence of

a linearized metric perturbation, hmn, we may expand s ¼ s0 þ s1 þ Oðh2
mnÞ.

Here, s1 is first-order in hmn. If one quantize hmn, then quantum gravitational

vacuum fluctuations will lead to fluctuations in the geodesic separation and

therefore induce lightcone fluctuations. In particular, we have hs2
1i 6¼ 0 since s1

becomes a quantum operator when the metric perturbations are quantized. The

quantum lightcone fluctuations give rise to stochastic fluctuations in the speed of

light, which may produce an observable time delay or advance �t in the arrival

time of pulses.

Now let us consider the propagation of light pulses between a source and a

detector separated by a distance r on a flat background with quantized linear

perturbations. One can find easily �t from the following relation:

s ¼ s0 þ s1 þ � � � ¼ 1

2
½ðr þ�tÞ2 � r2� � r�t ð36Þ

Considering the quantum state of gravitons jfi, that is, the vacuum states

associated with the compactification of spatial dimensions, after some calcula-

tions we get

�tobs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhs2

1iRj
p

r
ð37Þ
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Here, �t is the ensemble averaged deviation, not necessarily the expected

variation in flight time, dt, of two pulses emitted close together in time. The latter

is given by �t only when the correlation time between successive pulses is less

than the time separation of the pulses. Physically it means that the gravitational

field may not fluctuate significantly in the interval between the two pulses. These

stochastic fluctuations in the apparent velocity of light arising from quantum

gravitational fluctuations are in principle observable since they may lead to a

spread in the arrival times of pulses from distant astrophysical sources or the

broadening of the spectral lines.

Yu and Ford [32] found that the dominant contributions to the lightcone

fluctuations come from the graviton modes with wavelengths of the order of

�L. In other words, the lightcone fluctuates on a typical time scale of � 1
L
. If the

travel distance, r, is less than L, successive pulses are uncorrelated only when

their time separation is greater than the typical fluctuation timescale. Otherwise

they are correlated because the quantum gravitational vacuum fluctuations are

not significant enough in the interval between the pulses. If r > L2

T
, then succes-

sive pulses are in general uncorrelated. Thus the correlation time for large

r � L2

r
, which is much smaller than the compactification scale L. This can be

understood as a loss of the correlation as the pulses propagate over an increasing

distance. However, it can be shown that in case of one extra dimension, the large

quantum lightcone fluctuations due to compactification of the extra dimension

require either the size of the extra dimension to be macroscopically large or the

rate of change of the extra dimension to be extremely small. In this way the five-

dimensional Kaluza–Klein theory may be discarded, or very strong limits on the

rate of change of the extra dimension can be placed. One finds that the rate of

growth of �t with r depends crucially on the number of spatial dimensions. In

four dimensions, �t �
ffiffi
r

p
, while in five dimensions �t � r. One can expect

that in case of large number of dimensions, there will be an effect of

compactification. It has been demonstrated that the lightcone fluctuation grows

logarithmically with distance for one flat compactified extra dimension. But it is

not yet proved that this behavior holds for any number of flat extra dimensions.

2. Lightcone Fluctuations and Parallel Branes

Several authors [34] have studied the effect of lightcone fluctuations in the

context of large extra dimensions stretching between two parallel brane worlds.

The main motivation behind this approach is to resolve the unnatural hierarchy

between the weak and Planck scales. The four-dimensional particle theory (e.g.,

the standard model) is confined to live in one of the branes, but gravity is free to

propagate in the higher-dimensional bulk. So the bulk spacetime is dynamical

and the 3-branes cannot be rigid but undergo quantum fluctuations in their

positions as one assumes distance of separation of the order of Planck length lp.

Suppose that one brane is located at the origin and the other at ð0; 0; 0; z1;
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z2; z3; . . . ; znÞ. Now one can study the effect of lightcone fluctuations due to

gravitons in the bulk by looking at a light ray traveling parallel to one of the

boundaries, say, in x axis, but separated from it by a distance z � lp. This

indicates the effect of quantum fluctuations in the position of the brane.

Cambell-Smith et al. [35] considered one of the branes as the observable

world. They have studied this phenomena from both field and string theoretical

viewpoints, by analyzing the role of coherent graviton fluctuations on the

propagation of photons on one brane.

In the field-theoretic case, they have estimated �t as �t �
ffiffiffi
L

p
ln L, where L

is the distance between the source and the detector. For astrophysical sources

such as gamma-ray bursters (GRBs), the order of the effect is about 10�12 s,

which falls below the sensitivity of observations. Here, �t is considered as the

scale of lightcone broadening. It should be noted that the sensitivity of gravity

wave interferometer experiments is much better, and for these experiments one

can get lightcone broadening of the order of 10�25 s, which may lie within their

sensitivity.

In case of string model, they have found the dominant contributions to the

phenomenon from the recoil of the D brane due to scattering of closed-string

states (gravitons) propagating in the bulk. The recoil distorts the spacetime

around the D brane, resulting in a mean-field effect which implies stochastic

fluctuations in the arrival time of photons of energy E on the brane of order

�tgsL ðE=MsÞ. Such phenomena place strong restrictions on string-theoretic

models of extra dimensions.

E. j-Deformed Quantum Relativistic Phase Space

The covariant Heisenberg commutation relations in phase space can be written

as

½xm; pn� ¼ i�hgmn; gmn ¼ diagð�1; 1; 1; 1Þ ð38Þ

The spacetime coordinates xmðm ¼ 0;1;2;3Þ can be identified with the translation

sector of the Poincar	e group, and the four momenta pnðn ¼ 0; 1; 2; 3Þ are given

by the translation generators of the Poincar	e algebra. In considering quantum

deformations of relativistic symmetries as describing the modification of space-

time structure, one is lead to the study of the possible quantum Poincar	e groups.

Here, we have considered the genuine 10-generator quantum deformations of

D ¼ 4 Poincar	e symmetries as a particular case. The more general ‘‘standard’’ q

deformations have not been considered. These q deformations require adding an

11th (dilatation) generator where one has to deal with the dilatation extended

Poincar	e algebra [36]. In such cases, the corresponding quantum phase space is

much more complicated [37]; also in this case, the deformation parameter is

dimensionless, rendering difficult the physical seperation between the ordinary
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regime of commutative spacetime coordinates and the short-distance regime in

which noncommutativity sets in. The classifications of quantum deformations of

D ¼ 4 Poincaré groups in the framework of Hopf algebras was given by Podlés

and Woronowicz [38] and also Ref. 39, which provides the most general class of

noncommutative spacetime coordinates X̂n allowed by the quantum group

formalism. If we assume that the quantum deformation does not affect the

nonrelativistic kinematics, that is, if we preserve the nonrelativistic Oð3Þ
rotations classical and Oð3Þ covariance, the only consistent class of noncom-

mutating spacetime coordinates is described by the relations of the k-deformed

Minkowski space with commuting classical space coordinates. In order to

describe the relativistic phase space we start with the deformed Hopf algebra of

4-momenta p̂m written as follows

½ p̂0; p̂k� ¼ 0

�ðp̂0Þ ¼ p̂0 � 1 þ 1 � p̂0

�ðp̂kÞ ¼ p̂k � eap̂0 þ ebp̂0 � p̂k

ð39Þ

with antipode and counit given by

Sðp̂kÞ ¼ �eðaþbÞp̂0 p̂k

Sðp̂0Þ ¼ �p̂0 Eðp̂mÞ ¼ 0

Using the duality relations involving the fundamental constant �h (Planck’s

constant)

hx̂m; p̂ki ¼ �i�hgmn gmn ¼ ð�1; 1; 1; 1Þ

we obtain the noncommutative deformed configuration space X as a Hopf

algebra with the following algebra and coalgebra structure:

½x̂0; x̂k� ¼ i�hðb� aÞx̂k; ½x̂k; x̂l� ¼ 0

�ðx̂mÞ ¼ x̂m � 1 þ 1 � x̂m

Sðx̂mÞ ¼ �x̂m; Eðx̂mÞ ¼ 0

The deformed phase space can be considered as the vector space X�P with

the product

ðx � pÞð~x � ~pÞ ¼ xðpð1Þx~xÞ � pð2Þ~p ð40Þ

where left action is given by

p x x ¼ hp; xð2Þixð1Þ
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The product of this equation can be written as the commutators between

coordinates and momenta by using the obvious isomorphism x � x � 1;
p � 1 � p. This provides the following commutation relations:

½x̂p; p̂l� ¼ i�hdkle
ap̂0 ; ½x̂k; p̂0� ¼ 0

½x̂0; p̂k� ¼ i�hbp̂k; ½x̂0; p̂0� ¼ �i�h

The set of these relations describe the deformed relativistic quantum phase

space.

Taking a as the dispersion of the observable in quantum mechanics as

�ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha2i � hai2

q
ð41Þ

we can write

�ðaÞ�ðbÞ � 1

2
jhcij ð42Þ

where c ¼ ½a; b�. The deformed uncertainty relations can be written as

�x̂0�x̂k �
�h

2
jðb� aÞjjhx̂kij

�p̂k�x̂l �
�h

2
dklheap̂0i

�p̂0�x̂0 � �h

2

�p̂k�x̂0 � �h

2
jhbp̂kij

One can get the following cases considering the different choices of the

parameters a and b:

1. a ¼ b ¼ 0; standard form of nondeformed covariant phase space

2. a ¼ b; trivially deformed phase space with commuting configuration

space

3. a ¼ �b ¼ 1
2kc

; k-deformed phase space in the standard basis

4. a ¼ 0; b ¼ � 1
kc

; k-deformed phase space in the bi-cross-product basis

5. a ¼ 1
kc
; b ¼ 0; k-deformed phase space in the bi-cross-product basis

6. a ¼ 0; b ¼ 1
kc

; k-deformed phase space in the bi-cross-product basis

(case 5) with transposed coproduct
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Now the modified covariant Heisenberg uncertainty relations can be written as

�t̂�x̂k �
�h

2kc2
jhx̂kij

�p̂k�x̂l �
�h

2
dkl

�Ê�t̂ � �h

2

�p̂k�t̂ � �h

2kc2
jhp̂kij

After algebraic manipulations we get the velocity formula for massless k�
deformed quanta as

vi ¼
qE

qp̂i

ð43Þ

or

v ¼ j~vj ¼ c � jp̂j
k

þ O
1

k2
ð44Þ

It should be noted from these formulas that the 3-momentum-dependent (i.e.,

energy-dependent) speed of light is a novel phenomenon. It has the same

functional form as the energy-dependent speed of light discussed in the context

of string theory. However, although this kind of deviation from the ordinary

physics arises in both k Poincaré and string theory contexts, it is rather marginal

from the phenomenological viewpoint. Consider the photons of energy of the

order of 1 GeV, where it gives rise to a correction of the order of 10�19c with

respect to the usual speed of light. However, when k is identified with the

Planck scale, Eqs. (43) and (44) are completely consistent with the presently

available data.

F. Nonzero Conductivity of Maxwell Vacuum
and Energy-Dependent Speed of Light

From a completely different perspective, several authors [10] considered the

frequency-dependent speed of light. Here, the main idea is that if one assigns a

small but nonzero conductivity to Maxwell vacuum, and considers the

propagation of photon in such a vacuum, it gives rise to frequency-dependent

speed of light and hence a nonzero but finite photon mass. Here, this small

conductivity of the vacuum can be realized to the refractive index of the
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modified Maxwell vacuum. The modified Maxwell equations can be written as

divE ¼ 0 curlH ¼ sE þ E0we

qE

qt
ð45Þ

divH ¼ 0 curlE ¼ �m0wm

qH

qt
ð46Þ

where m0 ¼ vacuum permeability constant

we ¼ relative dielectric constant

wm ¼ relative permeability constant

s ¼ conductivity of the vacuum

Here, the 4-current is given by

j ¼ ðj; j0Þ with c j ¼ sE; j0 ¼ 0 ð47Þ

Again

r�r� E ¼ �r2E ð48Þ

which, together with Maxwell’s equations, gives

r2E ¼ � E0wewm

c2
m0

q2E

q2t
þ sm0wm

qE

qt
ð49Þ

This equation is not time-reversal-invariant. The second term on the right-

hand side indicates that there will be a dissipation of energy during the

propagation of a photon.

In Maxwell’s theory, this dispersion of energy is considered to be negligible,

and no damping occurs during the propagation of an electromagnetic wave. Let

us consider the plane waves propagating in the z direction:

Ex ¼ bexp io t � z

v

	 

Hy ¼ b

E0we

m0wm

� �1=2

exp io t � z

v

	 

ð50Þ

Putting q ¼ 1=v, we get

q2 ¼ E0wmwe

c2
1 � is

oE0we

� �
ð51Þ

The velocity v defined above gives rise to a complex refractive index in vacuum.

The real part of q2 gives rise to phase velocity of propagation of the disturbance
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through the underlying vacuum. Taking the real and imaginary parts as a and b,

respectively, Ex and Hy can be shown to be propotional to

expð�obzÞexpðt � azÞ ð52Þ

Then the following cases arise:

� Plane waves are progressively damped with the factor expð�kzÞ, where

k ¼ ob.

� The phase velocity of propagation of the wave is 1
b and varies with the

frequency.

Now, using the de Broglie relation E ¼ hn ¼ mc2, one can estimate the mass

of the photon as related to the conductivity coefficient s. If one considers only

plane waves in the Z direction, then

Ex ¼ beioðt�z=vÞ

Then the complex quantity q can be written in the form

q ¼ a� ib

with

a2 ¼ wewm

2c2
1 þ s

E0weo

� �2
( )1=2

þ1

2
4

3
5

and

b2 ¼ wewm

2c2
1 þ s

E0weo

� �2
( )1=2

�1

2
4

3
5

In the limit s
o

� �
! 0, and so

a ’ 1 þ 1

8

s2

E2
0w2

e

� �
� 1

o2
þ O

s4

o4

� �
; b2 ’ 1

2
� s2

ðE0weÞ2
� 1

o2
ð53Þ

The velocity v ¼ a is the phase velocity of propagation of disturbance through

the underlying vacuum. Henceforth, it will be denoted as vp. After some

calculations the vp can be written as

vp ¼ c

ðwewmÞ1=2
1 � 1

8
� s2

ðE0weÞ2
� 1

o2

( )
ð54Þ
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and the group velocity vg is given by

vg ¼ c

ðwewmÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1

4

s2

ðE0weÞ2

1

o2

s
ð55Þ

where the dispersion law gives

k2 ¼ o2 þ s2

4
ð56Þ

In the limiting case when s ¼ 0

vp ¼ vg ¼ c ð57Þ

Now, taking vg as the velocity of the photon

E ¼ �hn ¼ mgc
2ffiffiffiffiffiffiffiffiffiffiffiffi

1 � v2
g

c2

q ð58Þ

where mg is the nonzero rest mass of the photon. From (58) we have

m2
gc

4 ¼ �h2n2 1 �
v2

g

c2

 !
ð59Þ

or

m2
g ¼

h2n2

n2c4
ðn2 � 1Þ � s2

ðE0weÞ2 1
o2

" #
; n ¼ ffiffiffiffiffiffiffiffiffiffi

wewm

p ð60Þ

This is unphysical. But if we take the phase velocity in de Broglie relation, we

get a physical solution, namely, the real nonzero rest mass of photon. Since the

mid 1990s, there has been much interest in the vg 6¼ c solutions of Maxwell

equations [40]. However, in our framework, taking the phase velocity in de

Broglie relation (59), we get

m2
gc

4 ¼ h2n2

n2
ðn2 � 1Þ þ 1

8

s2

ðE0weÞ2

1

o2

" #
ð61Þ

For n � 1

mg ’
shffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðE0weÞ
p � p

c2
ð62Þ
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Again, Fuli [41] established a relation between nonzero photon mass and the

Hubble constant H. Using that relation, one obtains

mg ’ 10�65 g ð63Þ

Combination of Eq. (62) and the relation given by Fuli [41] gives

s ¼ HðE0weÞp
2p

ð64Þ

Now measuring the conductivity in vacuo, one can obtain an estimate of

Hubble constant. This gives rise to a new possibility to test cosmological models

in laboratory experiments.

It is worth mentioning that the conductivity s has been measured from

various perspectives of the redshifts and galactic distances [42] as

s ¼ ð2:85 � 0:15Þ10�29 ð�=mÞ

and

Rs
2

� �2

¼ 3 � 10�53

In fact the redshift can be calculated from the following elementary considera-

tions. If W0 ¼ Kn0 be the initial energy of an electromagnetic wave (say, of a

single photon) and W1 ¼ Kn1 be residual energy after a path r, we have

W1

W0

¼ n1

n0

¼ eð�RsrÞ; n1 ¼ n0eðRsrÞ

So

l ¼ l0eðRsrÞ

The redshift

z ¼ �l
l0

¼ ½eðRsrÞ � 1�

or

z þ 1 ¼ eðRsrÞ
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or

r ¼ 1

Rs
lnðz þ 1Þ

The galactic redshift could obviously be attributed to the damping of the

electromagnetic waves emitted from various galaxies in random motion within a

stationary universe. Now, comparison between Hubble relativistic linear law

and the logarithmic law that comes out from Maxwell electromagnetic wave

equation shows that, in any case, the logarithmic law fits experimental data very

well and thus better than linear law.

G. r 6¼ 0 and Space Charges in vacuo

Using plane-wave solutions we get the following dispersion relation in a

covariant form

ðjkj2 � n2k2
0ÞAmðkÞ ¼ wmm0 gmn þ n2 � 1

n2

� �
umun

� �
JnðkÞ ð65Þ

where um is the unit time-like vector and u ¼ ð0; 1Þ for the medium at rest. It is

evident from (65) that A 6¼ 0 but f ¼ 0 for s 6¼ 0 in Maxwell vacuum. This is

nothing more than the usual Coulomb gauge. On the other hand, if we consider

Proca equation

&Am ¼ �x2Am; x ¼ mgc

�h
ð66Þ

this equation can be expressed as

&Am ¼ Jeff
m ¼ ðJeff ; jeffÞ ¼ ð�x2c2E0A � x2E0fÞ ð67Þ

It should be mentioned that in the approach with nonzero electric divergence,

the photon mass is also related to the space charges in vacuo. Now, in the

approach with s 6¼ 0, we have j ¼ sE but jeff ¼ 0. Let us now assume j ¼ sE
and j 6¼ 0, which means jeff 6¼ 0. In such a case, j0 is assumed to be associated

with �r, where �r is the charge density in vacuo. So, in such an approach one can

think of the existence of a kind of space charge in vacuo that is to be considered

to be associated to nonzero electric field divergence. This will result in a

displacement current in vacuum similar to that measured by Bartlett and Corle

[43]. The assumption of the existence of space charge in vacuo makes our

theory not only fully relativistic but also helps us to understand gauge condition.

In the conventional framework of Maxwell’s equations

j ¼ sðE þ E0Þ ð68Þ
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where E0 consists of all nonelectrostatic fields and E is the field derivable from a

potential. In our framework, E ¼ 0 and j ¼ sE0. This indicates that the current

distribution and field distribution are entirely defined with respect to the

nonconservative field and to the conductivity of the medium. The presence of

this nonconservative field is responsible for the loss of energy of the photon

when it propagates through this type of vacuum.

In the framework of de Broglie’s theory of light, one can get the set of

equations in vacuum as

&F þ k2
0F ¼ 0 with Fik ¼

qAk

qxi

� qAi

qxk

; k0 ¼ mgc

�h
ð69Þ

Taking P ¼ exp iðkct � k � rÞ; we obtain the correspondence between the

mechanical quantities (energy W and impulsion P) of the photons. These

satisfy the well-known relativistic equation

W2

c2
¼ P2 þ mgc

2

which is valid for the energy W and impulsion P of the individual photons.

De Broglie calculated the solutions explicitly. For a plane wave moving in the Z

direction, one gets

Ax ¼
C1 þ C2

2
P; Ay ¼

C1 � C2

2
iP

Az ¼ C3P; V ¼ C3j~kj
~k

P

Ex ¼ �ik
C1 þ C2

2
P; Ey ¼ k

C1 � C2

2
P

Ez ¼ �i
k2

0

k
C3P

Hx ¼ �j~kjC1 � C2

2
P; Hy ¼ �ij~kjC1 þ C2

2
P

Hz ¼ 0

For plane transverse waves, that is, for J3 ¼ �1, ET ¼ �i P
mg

AT and

jHT j
jET j ¼

k0

n

where ET and AT are othogonal between them with

AT jjET and VT ¼ 0
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The density of the wave energy is

WT ¼ jET j2 þ jHT j2 � ðjAT j2 þ jVT j2Þ

These solutions can be divided into four independent monochromatic waves:

1. A Maxwellian transverse right-rotated wave D

2. A Maxwellian transverse left-rotated wave D

3. A Maxwellian longitudinal wave G

4. A non-Maxwellian wave (NM)

One can also normalize such waves in a finite volume V , which gives k > 0

jC1j ¼
hc

2pkV

� �1=2

; jC3j ¼
hck

4pk2
0V

� �1=2

jC2j ¼
hc

2pkV

� �1=2

; jC4j ¼
2k0

kV

� �1=2

and define linearly polarized waves (with only Ex and Hy different from zero) by

the following relations:

Ax ¼
hc1=2

4pkV
P; Ex ¼ �ik

hc1=2

4pkV
P; Hy ¼ �ijkjhc1=2

4pkV
P

Ay ¼ Az ¼ V ¼ Ey ¼ Ez ¼ Hx ¼ Hz ¼ 0

Now, instead of &E ¼ k2
0E, we may write

&E ¼ k2
0E þ sm0wm

qE

qt
ð70Þ

We can safely neglect the k2
0 term in the usual experiment so that relation (70) is

approximated by Eq. (49). This is justified by the fact that mg and s are

negligible at the laboratory scale. But the term sm0wm
qE
qt

plays a significant role

in Maxwell theory of electromagnetic fields. The term qE
qt
’ qD

qt
corresponds to

the displacement current in vacuum. The existence of displacement current in

vacuum can also be observed in the case of nonzero divergence of the electric

field. This is related to the existence of space charge in vacuo. It is worth

mentioning that we can get nonzero mass of photon in both approaches. But the

group velocity in two cases are different. In vacuum with s 6¼ 0, the group

velocity may be greater than the speed of light, whereas in the former

approach—with nonzero divergence of electric field—the group velocity is less

than the speed of light. In the second approach, the phase velocity is less than
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the speed of light. We have used phase velocity in calculating nonzero mass of

photon. It is to be noted that in many experiments on photon tunneling

conducted with different techniques and in different ranges of frequency [44],

electromagnetic waves travel a barrier with group velocity vg > c. These results

obviously do not violate Einstein causality because according to Sommerfeld

and Brillouin [45] it is the front velocity (not group velocity) to be relevant for

this and Maxwell theory predicts that electromagnetic waves in vacuum always

have a constant front velocity equal to c. The difficulty in the interpretational

results lies mainly in the fact that in the barrier traversal no group velocity can

be defined, as the wavenumber is imaginary (evanescent waves), so that the time

required for the traversal (directly measured) is not univocally definable.

H. Experimental Evidence of Nonzero Photon Mass

In 1992, Vigier [46] surveyed the experimental status of nonzero photon mass.

In 1940, de Broglie [46] arrived at an upper limit for the photon mass by

estimating the experimental mesaurements of the dispersion of photons and

comparing this dispersion with that predicted for a photon with finite mass.

Photons with finite rest mass do not all travel at the same velocity, but one,

dependent on the ratio of kinetic to rest mass energy.

Starting from the equation with nonzero photon mass mg, one gets dispersion

relation k2 ¼ o2c2 � m2: The group and phase velocities can be found to be

jvgj ¼
do
dk

’ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

m2
gc2

o2

s
’ c 1 � m2

0c2

2o2

� �

jvpj ¼
o
k
¼ c 1 � mgc

2

o2

� ��1
2

¼ c 1 þ
m2

gc
2

2o2

 !

This dispersion can also be derived from the relation

E ¼
m2

gc
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � v
c

� �2
q

or

v

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � mgc4

�ho2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2c2

o2

r

De Broglie was the first to suggest that dispersion of light from stars could be

used to set an upper limit. Photons can also be dispersed by other phenomena

such as the finite electron intergalactic density. Feinberg [48] sets an upper limit
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by noting that the dispersion from pulsars is attributed to the finite electron

density. His upper limit mg � 10�44 g is not compatible with the present

measurement or with geomagnetic measurements. Schrödinger set an upper

limit by examining the modified Ampere law:

�� H ¼ 4p
c
r� m2A þ 1

c

qE

qt

Here, the additional term acts like ‘‘vector current’’ and by making a fit of

geologic data, Schrödinger arrived at a finite rest mass. However, he pointed out

that this effect might be produced by ‘‘positive or negative particles revolving

around the earth at same distances in the equatorial plane.’’

The discovery of the Van Allen radiation belt required a recalculation of this

effect. Goldhaber and Nieto [49] used a recent survey and set the most accurate

upper limit. A similar technique is to look at the magnetic field as a function of

the distance from the earth using satellite data. An experimental term enters for

a finite mass that would be distinguishable from the normal 1
r3 dependence of a

magnetic dipole. Gintsburg set an upper limit using this method.

Dayhoff [50] suggested that one might measure a rest mass of photon by

designing a low-frequency oscillator from an inductor–capacitor (LC) network.

The expected frequency can be calculated from Maxwell’s equations, and this

may be used to give an effective wavelength for photons of that frequency. He

claimed that one would have a measure of the dispersion relationship at low

frequencies. Williams [51] calculated the effective capacitance of a spherical

capacitor using Proca equations. This calculation can then be generalized to any

capacitor with the result that a capacitor has an additional term that is quadratic

in the area of the plates of the capacitor. However, this term is not exactly the

one that Dayhoff referred to. But it seems to be a very close description of it.

One can add two identical capacitors C in parallel and obtain the result

C2 ¼ 2C 1 � m2A

4p

� �

where A is the area of one of the capacitors C and m ¼ mgc

�h . It should be noted

that the capacities of the two capacitors have identical dimensions but do not

add linearly. The results of Williams’ [51] measurement expressed in the form

of the photon rest mass squared is

m2 ’ ð1:7 þ 2:0Þð1 þ 0:33Þ � 10�19 cm�2 or

’ ð2:1 � 2:5Þ � 10�94 g2 with m ¼ mgc

�h
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This result is statistically consistent with the assumption that the photon mass is

identically zero. But this can also be expressed as a deviation from the 1
r2 law of

either of the form

1

r2þq
or

1

r2
1 � b

r

� ���

with q ¼ ð4:7 � 5:5Þ � 10�16; b ¼ ð1:4 � 1:7Þ � 10�14 cm:
In 1988, Riis et al. [52] observed a direction-dependent anisotropy of light in

the direction of the apex of the 2:7 K microwave background radiation in the

universe. These data are consistent with nonzero photon mass. The upper bound

on photon mass was estimated as mg � 10�65 g. A compilation of laboratory

data [53] established that the photon mass should not exceed 10�24 eV or even

10�26 eV.

But now, if there is a ample evidence of nonzero photon mass, the question of

absorption or emission amplitudes for longitudinal photon has to be answered in

a consistent manner. Goldhaber and Nieto [49] showed that these are suppressed

in comparison with their transverse counterparts by a factor
mgc2

�hn . The corres-

ponding rates and cross sections are suppressed by the square of this factor. The

quantum mechanical matrix element for ordinary transverse photon is given by

Tf ðx; yÞ ¼ h f jĴx;yjii for a photon-induced transition to an arbitrary state f ,

where i is the initial target state. The corresponding matrix for a longitudinal

photon is

T
ðzÞ
f ¼ mgc

2

�hn

� �
h f j Ĵzjii

where n is its frequency.

For mg � 10�52 kg (as considered by Goldhaber and Nieto)

c ’ 3 � 108 m=s

h � 10�34J=s

n � 1014s�1

and for comparable transverse and longitudinal matrix elements it is seen that

T
ðzÞ
f

T
ðx;yÞ
f

� 10�15

This result shows why spectral absorption and emission of longitudinal photons

of spin zero and frequency n are never observed in the usual infrared, visible,

and ultraviolet regions of the electromagnetic spectrum.
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However, in the limit n ! 0 (i.e., as the frequency of the longitudinal photon

goes to zero)

mgc2

�h2
! mgc

2

hn0
¼ 1

where hn0 ¼ mgc2 for nonzero photon rest mass mg. This means that at

frequencies comparable with

n0 ¼ mgc
2

h
� 10�7 Hz

and for mg � 10�52 kg, T
ðzÞ
f ¼ T

ðxyÞ
f which thus implies that the absorption and

emission of longitudinal photon could become observable.

I. Longitudinal Solutions and Nonzero Photon Mass

Several authors have found additional solutions to the relativistic wave

equations. These solutions can be summarized as follows:

1. Lehnert and Roy [10] found axial magnetic field component in the

direction of propagation of photon considering the axisymmetric wave

modes in Maxwell’s equations with space charge in vacuo.

2. The Bð3Þ (Evans–Vigier field) [54], which was obtained as a cross-product

of the transverse modes of electromagnetism: Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ� and

cyclics

3. The E ¼ 0 solution of the Maxwell’s j ¼ 1 equations [55]

4. The generalized solution of Maxwell equations in terms of potentials

[56,57]

5. Non-plane-wave solutions of the Klein–Gordon equation using unconven-

tional basic functions and ‘‘coupling ansatz’’

Here, we shall mainly discuss those solutions that are related to nonzero photon

mass only. In this framework, we got three kinds of solutions:

1. EM wave: conventional transverse electromagnetic wave

2. S wave: a longitudinal purely electric space-charge wave

3. EMS wave: a hybrid nontransverse electromagnetic space-charge wave

By choosing the axisymmetric wave modes, we can derive a mass formula for

photon [10]. The main implication of the Evans–Vigier field is that the indivi-

dual photon has three degrees of polarization, the longitudinal one accompanied

by the ‘‘ghost field’’ Bð3Þ, which has no energy or linear momentum, and is

generated from the angular momentum of the photon.
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Within Maxwellian theory, the ‘‘ghost field’’ Bð3Þ is related to the usual wave

fields Bð1Þ;Bð2Þ by a cyclical Lie algebra:

Bð1Þ � Bð2Þ ¼ iBð0ÞBð3Þ� ¼ iBð0ÞBð3Þ

Bð2Þ � Bð3Þ ¼ iBð0ÞBð1Þ� ¼ iBð0ÞBð2Þ

Bð3Þ � Bð1Þ ¼ iBð0ÞBð2Þ� ¼ iBð0ÞBð1Þ

Here, Bð1Þ and Bð2Þ are complex conjugate wave fields (the usual magnetic

components in circular polarization of the electromagnetic plane wave). In the

standard Maxwellian theory of electrodynamics these are the only two polariza-

tions considered: left and right circularly polarized plane waves. But these

cyclical relations indicate that if the field Bð3Þ were zero, Bð1Þ and Bð2Þ would

vanish. The Evans–Vigier field demands that even in classical electrodynamics,

there are three polarizations and Bð3Þ is a real physical field that should be

observed in magneto-optical phenomena. The Bð3Þ is related to the longitudinal

degrees of freedom.

Evans showed that the existence of Bð3Þ is consistent with finite photon mass,

mg in Proca equation. In nonrelativistic approximation Proca equation can be

written as r2A ¼ x2A, where x is related to photon mass mg. Taking B ¼
r� A, we see that r2B ¼ x2B is the same as the Proca equation, because

r2ðr � AÞ ¼ x2r� A; that is, r� d2A ¼ r� x2A; the solution is found to

be

Bð3Þ ¼ Bð0Þe�x2

k

Evans and Vigier claimed that since x � 10�26 m�1 for a photon mass of

10�68 kg, this is identical for all practical purposes with the result

Bð3Þ ¼ B0k ¼ Eð1Þ � Eð2Þ

ðiE0cÞ

from the classical Maxwell’s equations. Many interesting results are found in

this framework which are described in detail in two books [54,59]. The Bð3Þ

field theory also predicts the existence of space charge in vacuo as considered

by Lehnert and Roy independently. It requires a systematic effort to find a close

connection between Evans–Vigier theory and the extended electromagnetic

theory as proposed and developed by Lehnert.

Roscoe [57] studied Poincaré-invariant magnetic vector potential formalism

and showed that there are two distinct kinds of magnetic vector transverse wave

that give rise to the general free solutions. The first kind is a propagating

transverse wave; the second kind is a stationary longitudinal wave. In this
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framework, the longitudinal waves does not give rise to macroscopic

electromagnetic effects at all (i.e., E ¼ B ¼ 0).

This analysis leads to the deduction of the existence of a massive vector

boson field that is formally expressed as the dual of the Maxwell field and has

been shown to be connected to the Maxwell field. Here, the massive vector

boson is to be interpreted as nonzero mass of photon.

Following Roscoe, one can get a system of equations as

ðn � nÞA0 ¼ ðn � A0Þn

with

n ¼ ðn1; n2; n3; n4Þ
A � ðA1;A2;A3Þ

where A0 is a constant 3-vector. Two possible cases may be found as follows:

1. The transverse wave: n � A0 ¼ 0. In this case, one has a nontrivial

solution if n � n ¼ 0. Consequently, the solution is given by

A1 ¼ A0 expði n � XÞ; n � n ¼ 0; n � A0 ¼ 0

where X ¼ ðx1; x2; x3; x4Þ. This corresponds to a transverse wave

propagating with the speed c. It coincides with solutions that arise from

the conventional formalism when the Coulomb gauge is chosen.

2. The longitudinal wave: n � A0 6¼ 0. In this case, n � n ¼ n � n, which can

happen if n4 ¼ 0. We now get the equation as

ðn � nÞA0 ¼ ðn � AÞn

This has a solution of the form A0 ¼ an for arbitrary a. The solution is

AL ¼ ane ði n � XÞ with X � ðx1; x2; x3Þ

This corresponds to a longitudinal stationary wave. It gives rise to E ¼ B ¼ 0. It

is clear from Roscoe’s analysis that the magnetic vector potential supports two

kinds of waves in free space: a propagating transverse wave that corresponds

exactly to the Coulomb gauge solutions of the conventional formalism and a

stationary longitudinal wave that has no counterpart in the conventional

formalism. A general solution can be constructed as

Awave ¼ ATðX; ctÞ þ ALðXÞ

where AT and AL are the transverse wave propagating with speed c and statio-

nary longitudinal wave, respectively. It should be noted that in this framework,
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the component AL gives rise to a zero electromagnetic field ðE ¼ B ¼ 0Þ and so

no electromagnetic effect is propagated. Since the stationary wave cannot pass

through an arbitrarily placed charged particle, we can get an effect only if the

charged particle passes through it. A new magnetic effect has been found due to

this longitudinal wave. There exists a magnetic field component in the direction

of current flow when a line current flows. Taking the Fourier component of the

line current Jr ¼ J0 expðin � XÞ; we have the Fourier component of the magnetic

vector potential Am ¼ ðaJ0 þ bnÞ expðin � XÞ; where

a ¼ 1

n � n
; b ¼ n � J0

n � nðn � n � n � nÞ

This b term does not occur in the conventional formalism, so that Am is

conventionally aligned with the direction of current, J0. Similarly, in the case of

a steady current, conservation of charge requires n � J0 ¼ 0, so that b ¼ 0

automatically, which again leads to the alignment of Am with the current

direction. Again as B ¼ r� A, so Bn ? ðaJ � 0 þ bnÞ.
In the conventional formalism, as the b term does not appear, Bn ? J0. Now,

in Roscoe’s framework, as b 6¼ 0, Bn is not perpendicular to the current flow,

and therefore has a component in the direction of the current flow. It has been

shown that the magnetization effects similar to the inverse Faraday effect (IFE)

can be expected for appropriate polarization states of the transmitted radiation.

Moreover, a massive vector boson can be constructed from the electromagnetic

field so that it can be interpreted only as a nonzero mass photon. Here, the

model suggested for photon can be interpreted as a bound system with discrete

mass and frequency states. This may have important role in explaining redshift

phenomena.

Múnera and Guzman [56] obtained new explicit noncyclic solutions for the

three-dimensional time-dependent wave equation in spherical coordinates.

Their solutions constitute a new solution for the classical Maxwell equations. It

is shown that the class of Lorenz-invariant inductive phenomena may have

longitudinal fields as solution. But here, these solutions correspond to massless

particles. Hence, in this framework a photon with zero rest mass may be

compatible with a longitudinal field in contrast to that Lehnert, Evans, and

Roscoe frameworks. But the extra degrees of freedom associated with this kind

of longitudinal solution without nonzero photon mass is not clear, at least at the

present state of development of the theory. More efforts are needed to clarify

this situation.

IV. STOCHASTIC BACKGROUND

Amelino-Camelia [60] suggested an interesting possibility of considering

spacetime foam as a fundamental stochastic gravity wave background. Lots of
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new literature appear day by day emphasizing the foamy structure of spacetime

on very small scale, such as around Planck scale. It is proposed that the quantum

fluctuations affecting distances in the conventional picture of spacetime foam

manifest themselves in the operation of modern gravity wave detectors in a way

that mimics a stochastic gravity wave background. Amelino-Camelia observed

that the power spectrum of the star in noise [61] that would be induced in

gravity wave detectors is the most convenient way to characterize models of

foam-induced distance fluctuations.

Besides such developments in the context of foamy spacetime and quantum

gravity, there is another development regarding the structure of spacetime near

Planck scale from a different perspective. Menger [62] introduced the concept

of statistical geometry studying the new developmnets of quantum theory of

measurements. His main idea was that as we approach more and more to smaller

lengths, the error in measurement will be greater with that respect to the

measurements in larger scales. So it would be more realistic if one introduced a

distribution function of the intervals instead of a fixed interval. Genarally, if we

take the average with respect to this distribution function, we get the usual

distance defined in geometry as Euclidean or non-Euclidean geometrics.

In this geometry the points are considered not as primary entities but rather

as lumps of primordial elements that are not further resolvable. Here, the

concept of probability is introduced so that the same two objects are sometimes

treated as identical and sometimes as distinguishable. In this way Menger

solved the Poincaré dilemma of distinguishing between transitive mathematical

and intransitive physical relations of equality. These lumps may be the seat of

elementary particles or the size of the strings. In this geometry we have two

basic notions: (1) the concept of hazy or fuzzy lumps and (2) the statistical

notion.

Frechet [63] made an abstract formulation of the notion of distance in 1906.

Hausdorff [64] proposed the term ‘‘metric space,’’ where he introduced the

function d that assigns a nonnegative real number dðp; qÞ (the distance between

p and q) to every pair ðp; qÞ of elements (points) of a nonempty set S. A metric

space is a pair ðS; dÞ if the function d satisfies several conditions, such as

triangle inequality. In 1942, Menger [65] proposed that if we replace dðp; qÞ by

a real function Fpq whose value is FpqðxÞ for any real number x, this can be

interpreted as the probability that the distance between p and q is less than x.

Since probabilities can be neither negative nor greater than 1, we have

0 � Fpq � 1 ð71Þ

for any real x. Menger defined statistical metric space as a set S with an associated

set of probability distribution functions Fpq that satisfy the following conditions:

Fpqð0Þ ¼ 0
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If p ¼ q, then

FpqðxÞ ¼ 1 for all x > 0

If p 6¼ q, then

FpqðxÞ < 1; for some x > 0

and

Fpqðx þ yÞ � TðFprðxÞ;FqrðyÞÞ

for all p,q,r in S and all real numbers x; y. Here T is a function from the closed

unit square ½0; 1� � ½0; 1� into the closed unit interval ½0; 1�.
One can think of this statistical or probabilistic metric space in terms of

measure-theoretic model of probability theory. Here one begins with random

variables on a given probability space. Then, of course, we get a different

formulation of the probabilistic metric spaces. Spacek [66] was the first to look

at the subject from this point of view. He proposed the term random metric

space rather than probabilistic metric space and discussed the relationship

between both terms. Stevens [67] in his doctoral dissertation, tried to modify

Spacek’s approach. The main idea behind Stevens’ approach lies in the fact that

one has a set S and a collection P of measuring rods and chooses a measuring

rod d from P at random and uses it to measure the distance between two given

points p and q of S. Using this idea, Stevens defined the distribution function Fpq

and showed that the metrically generated space so obtained is a Menger space.

Menger started with a probability distribution function rather than with

random variables. This is related to the fact that the outcome of any series of

measurements of the values of a nondeterministic quantity is a distribution

function and the probability space is in principle unobservable. This point of

view indicates a nonclassical behvior.

Sherwood [68] approached the problem from a different point of view.

Following the distribution-generated space as introduced by Schweizer and

Sklar [69], Sherwood proposed the concept of E-space. In E-space, the points

are functions from a probability space ð�;A;PÞ into a metric space ðM; dÞ.
For each pair ðp; qÞ of functions in the space, the function dðp; qÞ is defined as

ðdðp; qÞÞðoÞ ¼ dðpðoÞ; qðoÞÞ for all o in ohms. This is assumed to be a random

variable on ðo;A;PÞ. The function Fpq is considered to be distribution function

of this random variable, so that for any real x, FpqðxÞ ¼ Pðo; � jðdðp; qÞÞ
ðoÞ < xÞ: In this way, Fpq can be regarded as the probability that the distance

between p and q is less than x. Sherwood showed that every E-space is a Menger

space.
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Distribution-generated spaces play significant role in the small scale

structure. The main idea is as follows. Let S be a set. With each point p of S,

associate an n-dimensional distribution function GF whose margins are in P.

Then associate a 2n-distribution function Hpq with each pair ðp; qÞ of distinct

points such that

Hpqð~u; ð1; . . . ;1ÞÞ ¼ Gpð~uÞ ð72Þ

Hpqðð1; . . . ;1Þ;~vÞ ¼ Gqð~vÞ ð73Þ

for any ~u ¼ ðu1; . . . ; unÞ and ~v ¼ ðv1; . . . ; vnÞ in Rn.

Let ZðxÞ be a cylinder in Rn, where

ZðxÞ ¼ fu; v in R2n j ju � vj < xg

for any x > 0. Now define Fpq in Pþ via

FpqðxÞ ¼
ð

Z

ðxÞdHpq ¼ PHpq
ðZðxÞÞ ð74Þ

Here, if the elements of S are thought of as ‘‘particles,’’ then for any Borel set A

in Rn, the integral
R

A
dGp is naturally interpreted that the particle p is in the set

A and FpqðxÞ as the probability that the distance between the particles q is less

than x. Then we can construct probabilistic metric space. In this approach, the

interesting concept is the concept of ‘‘clouds’’ or ‘‘cloud spaces (C-spaces)’’.

A function g from Rn into Rþ is an n-dimensional density if the function G

defined on Rn by

Gð~uÞ ¼
ð
ðð�1;::::::;�1Þ;~uÞÞ

gð~vÞd~v ð75Þ

is an n-dimensional distribution function. If G is an n-dimensional distribution

function and if there is an n-dimensional density g that satisfies relation (75),

then G is absolutely continuous and g is a density of G. If p is a point in a

distributed-generated space over Rn such that Gp is absolutely continuous, then

any density gp of G � p may be visualized as a ‘‘cloud’’ in Rn—a cloud whose

density at any point of Rn measures the relative likelihood of finding the particle

p in the vicinity of that point.

A C-space over Rn is homogeneous if either of the followings holds: (1) all

points are singular or (2) all points are nonsingular and there is a spherically

symmetric unimodal density g such that gpq ¼ g for all pairs ðp; qÞ of distinct

points of S.
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A C-space over Rn is semihomogeneous if there exists an n-dimensional

density g such that it is spherically symmetric and unimodal with center and

mode ~0. If spq > 0, then, for all ~u in Rn, we can write

gpqðuÞ ¼
1

sn
pq

g
u

spq

� �
ð76Þ

In a semihomogeneous C-space

� If spq is the same for every pair ðp; qÞ of distinct points, then it is

homogeneous space.

� If a semihomogeneous C-space contains at most one singular point, then

s is a metric.

There are some interesting properties of C-space that are very useful for

Planckian regime. Before elaborating these properties, let us discuss the

moments and metrics in C-space.

A. Moments and Metrics

Let ðS;FÞ be a C-space. The function dðbÞ can be defined on S � S for b in

ð0;1Þ as

dbðp; qÞ ¼
mðbÞFpq b inð0; 1�
mðbÞFpq

� �1=b
b in½1;1Þ

(
ð77Þ

Here, we define the moment mðbÞðFÞ of order b of F as

mðbÞF ¼
ðþ

R

xbdFðxÞ ð78Þ

Now let us state the following important theorem.

Theorem 1. Let b > 1, and suppose that
R1

0
hðuÞdu < 1.

Proof:

1. For a fixed in ½0;1Þ, Mb
n is a nondecreasing function of s and

in fs Mb
n ðs; sÞ ¼ Mb

n ð0; sÞ � sb ð79Þ

2. For a fixed s in ½0;1Þ, Mb
n is a nondecreasing convex function of s and

in fs Mb
n ðs; sÞ ¼ Mb

n ðs; 0Þ ¼ sb
ð1

0

ubhðuÞdu ð80Þ
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3. For any s, s in ½0;1Þ

s � Mb
n ðs; sÞ

� �1=b � s þ s 11
0 ubhðuÞdu

� �1=b ð81Þ

4. Hence for fixed s

lims!1
1

s
ðMb

n ðs; sÞÞ1=b ¼ 1 ð82Þ

5. if
Ð1

0
u2hðuÞdu < 1, then

ðM1
nðs; sÞÞ2 � M2

nðs; sÞ ¼ s2 þ s2

ð1
0

u2hðuÞdu ð83Þ

6. whence for s > 0

M1
nðs; sÞ � s þ s2

2s

ð1
0

u2hðuÞdu ð84Þ

B. Discussion

It is evident from the equations presented above that the Frechet–Minkowski

metrics dðbÞ associated with semihomogeneous C-spaces over Rn have a

remarkable structure. At small distances this metric is non-Euclidean in nature

and the distance between any two distinct points p; q is not smaller than a fixed

positive multiple of spq. However, it becomes Euclidean in the asymptotic

region. It appears from the preceding picture that if we consider C-space as a

space of clouds ( that may move around), we observe on one hand that as the

Euclidean distance dðcp; cqÞ between two centers of the clouds of p and q

approaches 0, any Frechet–Minkowski distance between p and q remains greater

than a positive number, and on the other hand, that when it is large, dðcp; cqÞ is a

good estimate of the distance between the clouds themselves. Again, the ratio of

the standard deviation of Fpq to the mean of Fpq, a quantity that measures the

relative uncertainty in a probabilistic determination of the distance between

the clouds (or particles) p and q decreases to 0. This implies that the ‘‘haziness’’

of the distance between p and q, is predominant when their clouds are close

together and becomes virtually insignificant when their clouds are sufficiently far

apart. In this sense, the probabilistic metric of a semihomogeneous C-space, just

each of the associated Frechet–Minkowski metrics, is asymptotically Euclidean.

It should be noted that spacetime as a set of hazy lumps or clouds is

considered as a network of relations of factual items or things. In this sense we

emphasize the relational view of geometry.

It is clear from the preceding picture of statistical geometry that the geometry

around the Planck scale is closely related to the geometry of hazy lumps. The
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‘‘foamy’’ spacetime of Wheeler et al. should also be related to this kind of

geometry.

In fact, there exists a certain suspicion among the scientific community that

nature may be discrete or rather that it ‘‘behaves discretely’’ on the Planck scale.

But even if one is willing to agree with this ‘‘working philosophy,’’ it is far from

evident what this vague metaphor actually means or how it should be

implemented into a concrete and systematic inquiry concerning physics and

mathematics in the Planck regime.

There are basically two overall attitudes as to ‘‘discreteness on the Planck

scale;’’ one starts (to a greater or lesser degree) from continuum concepts (or

more specifically, concepts that are more or less openly inspired by them) and

then tries to detect or create modes of ‘‘discrete behavior’’ on very fine scales,

typically by imposing quantum theory in full or in part on the model system or

framework under discussion. We call this the ‘‘top–down approach.’’

There are prominent and very promising candidates in this class, including

string theory and loop quantum gravity. The spin network is a more recent

version (or rather, aspect) of the latter approach. As these approaches are now

widely known, we refrain from citing from the vast corresponding literature. We

recommend instead more recent reviews as on the latter approach, containing

some cursory remarks about the former together with a host of references,

including those cited by Smolin [70] and Rovelli [71] and, a beautiful

introduction to the conceptual problems of quantum gravity in general by

Isham [72].

In the following we undertake to describe how macroscopic spacetime (or

rather, its underlying mesoscopic or microscopic substratum) is supposed to

emerge as a superstructure of a web of lumps in a dynamical cellular network.

We call this the ‘‘bottom–up approach.’’ In doing this, two strands of research

are joined, which, originally, started from different directions. The one is the

cellular network and random graph approach, developed by Requardt [73], the

other, the statistical geometry of lumps, a notion originally coined by Menger

and co-workers and further developed by various groups. (see e.g. Menger, Roy,

Schweizer). It is worth mentioning that Einstein himself was not against such a

grainy substratum underlying our space-time continuum (see the essay by

Stachel [74]).

The point where these different strands meet is as follows. In one dynamical

network approach, of Manfred [73] macroscopic spacetime is considered to be a

coarse-grained emergent phenomenon (called an order parameter manifold). It

is assumed to be the result of some kind of geometric phase transition (very

much in the spirit of the physics of self-organization). This framework was

developed in quite some detail [75]. We argued in Ref. 76 that what we consider to

be the elementary building blocks of continuous spacetime—the so-called

physical points—are, on a finer scale, actually densely entangled subclusters of
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nodes and bonds of the underlying network or graph. We also called them

cliques (which denote in graph theory the maximal complete subgraphs or

maximal subsimplices of a given graph).

We further argued there that the substructure of our spacetime manifold

consists in fact of two stories: (1) the primordial network, dubbed by us QX; and

(2) overlying it, the web of lumps or cliques, denoted by ST, which can also be

viewed as a coarser mesoscopic network with the cliques or lumps as

supernodes and with superbonds that connect lumps having a nonvoid overlap.

This correrspondence suggests the possibility of relating the lumps or cliques

with the lumps occurring in the approach of Menger et al.

One should, however, note that the two philosophies are not entirely the

same. In Ref. 76, and in related works we argued that the lumps emerge from a

more primordial discrete dynamical substratum, where the lumps have a specific

internal structure. In the approach of Menger et al. (at least as far as we can see)

they figure as the not-further-resolvable building blocks of spacetime if one

approaches the so-called Planck regime discussed above, namely, from the

continuum side. In other words, the former approach is more bottom–up-

oriented while the latter one is more top–down. Such not-further-resovable

scales of spacetime (where the ordinary continuum picture ends) was, of course,

also speculated by quite a few other people, most notably Wheeler.

Our personal working philosophy is that spacetime at the very bottom (i.e.,

near or below the notorious Planck scale) resembles or can be modeled as an

evolving information processing cellular network, consisting of elementary

modules (with, typically, simple internal discrete state spaces) interacting with

each other via dynamical bonds that transfer the elementary pieces of infor-

mation among the nodes. Thus, the approach shares the combinatorial point of

view in fundamental spacetime physics that has been initiated by Penrose [77].

It is a crucial and perhaps characteristic extra ingredient of our framework that

the bonds (i.e., the elementary interactions) are not simply dynamical degrees of

freedom (as with the nodes, their internal state spaces are assumed to be simple)

but can a fortiori, depending on the state of the local network environment, be

switched on or off, that can be rendered temporarily active or inactive! This

special ingredient of dynamics hopefully allows the network to perform

geometric phase transitions into a new ordered phase displaying a certain

two-story structure, to be explained below. This conjectured emergent geometric

order can be viewed as kind of a discrete protospacetime or pregeometry

carrying metrical, causal, and dimensional structures.

It should be noted that we have to envisage two types of distances at two

levels (of the two-story structure): one on the level of the primordial network

and the other on the level of the web of hazy lumps. Normally, if we consider

the Euclidean distance measure, this distance tends to zero as the centers of the

lumps approach each other. On the other hand, if we take, for instance, the
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Frechet–Minkowski distance measure at the small scale, this distance appro-

aches a constant value as the two lumps approach each other. This infinitesimal

regime signals the devitation from the Euclidean geometry on small scales. In

the asymptotic distance regime the Frechet–Minkowski distance becomes

Euclidean distance. This phenomenon may play a significant role in the Planck

regime.

This may perhaps shed some light on the better understanding of quantum

mechanics as well as on the concurrent top–down approaches mentioned above.

We have expounded the relational view of geometry; that is, we regard geometry

not as an a priori given structure or receptacle but rather consider it as an

emergent network of certain elementary constituents. We note in passing that

this point of view has a venerable history of its own, beginning with Leibniz.

V. CONCLUSIONS

The astrophysical evidences posses new challenges to test one of the basic

tenets of modern physics: constancy of speed of light. To estimate energy-

dependent speed of light unambigously, we need to reanalyze the data with more

rigirous statistical techniques, and more refined experiments are also needed to

make any conclusive progress.

The energy-dependent speed of light is associated with the effect of the

medium on the propagation of photon. The fluctuating refractive index of the

medium induces this kind of the energy dependence. This kind of the medium

has been considered, such as quantum gravity and the Maxwell vacuum with

nonzero conductivity. So, it to make distinction between the contributions from

standard model predictions as well as from other theories is needed.

The fluctuation of the spacetime metric plays a significant role on the

microscopic scale, especially in Planck-scale physics. Here also, various models

have been proposed regarding the origin and effect of this kind of fluctuation.

More recent attempts to use gravity-wave interferometers deserve serious

attention, as this will not only verify the theoretical models of spacetime fluctua-

tions but also help us bulid up the geometric structure at Planck regime. This

kind of geometric structure and the pregeometric notion as introduced in the

context of fuzzy lumps and underlying random graphs may play a significant

role in twenty-first-century physics.
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I. BACKGROUND

A. Valve Metals

During the early days of the development of digital computers, the need for

display devices was evident. Prior to the invention and commercialization of the

light-emitting diodes, there was considerable research and development

activities using valve metals. The term valve metal is believed to have been

used to designate metals capable of being used for filaments or to heat cathodes

in early radio tubes (known in England as valves). A valve metal is defined,

herein, as a metal whose oxide is luminescent and in which the luminescence

increases with increased applied voltage. Aluminum, zirconium, and several

other metals were investigated [1]. A literature search revealed about 60 papers

on this area of research. One of the most interesting aspects of this R&D effort

was the discovery that when the voltage was high enough (in the range of two

hundred volts) the metal–metal oxide layer began to emit sparks. As the goal of

this activity was increased illumination, no researchers expressed interest in the

sparking phenomenon. As sometimes happens in scientific investigation, some of

the most fruitful discoveries are shunned because the observed phenomenon is

not expected by the researcher or research team. One experimenter, however, did

make some chemical analysis of the solution after the observed sparking and

found an unexpected element. The element found was not expected because this

element was not a part of the initial experimental solution or contained in the

electrodes. ‘‘Obviously contamination,’’ was the explanation. Thus it was that

one of the most important discoveries (charge cluster transmutation) in the

history of energy science was left to others to discover many years later.

B. Shoulders’ Discovery

Kenneth R. Shoulders, one of the most astute experimental scientists known to

this author, was the person who has discovered and reported extensively on high-

density charge clusters [2]. His book was written in 1987, prior to the time that

the first patent applications were being filed with the U.S. Office of Patents and

Trademarks. An intelligent patent attorney suggested that this technology might
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be classified by the government examiners in the patent office even though there

was no government funding of this type of research. Therefore, as soon as the

patent was filed, copies of the book [2] were mailed to a reasonable number of

fellow scientists in many foreign countries. The information sent, if it had been

published prior to the filing of the patent application, could have prevented the

inventions from being patented.

The government agents who examine new patent applications did choose to

classify this important new discovery and so notified the patent attorney. When

informed that this was privately funded, unclassified research with an extensive

report that had been sent to many countries, the attorney was asked for a

complete list of all addressees. Unfortunately, the mailing list was unobtainable

due to a problem in the computer. Three days and an estimated $10,000 later (in

legal fees), the secrecy classification was canceled. There is a message here for

all researchers who are developing important new technology with private

funds. The United States is one of the few countries that has the legal right to

essentially confiscate new inventions that are produced with private (as

contrasted with government) funds.

The first patent on high-density charge cluster applications was dated May

21, 1991 [3]. This was the first high-density charge cluster (also called EVs)

patent to issue and states: ‘‘An EV passing along a traveling wave device, for

example, may be both absorbing and emitting electrons. In this way, the EV

may be considered as being continually formed as it propagates. In any event,

energy is provided to the traveling wave output conductor, and the ultimate

source of this energy appears to be the zero-point radiation of the vacuum

continuum.’’ It is the judgment of this author that this is the first patented device

that claims to tap space energy (zero-point energy, vacuum energy, etc.) to

obtain more energy output than energy input into the device. The patent [3]

provides data showing about 30 times as much output electrical energy as

compared to input electrical energy. Shoulders has stated that as much as 100

times the input energy has been obtained in laboratory experiments. The same

type of technology can also produce excess thermal energy. In fact, one cannot

get the excess electrical energy without producing addition thermal energy.

C. Gleeson’s Discovery

Stan Gleeson was a high school graduate and, until his death, worked in

Cincinnati, Ohio. Working on a crude wooden workbench in a corner of a

welding shop, Stan Gleeson discovered and developed a different method of

creating and applying high-density charge clusters. (It has not been scientifically

proved that these charge clusters produced in a water-based electrolyte are the

same as charge cluster produced in low-pressure gases under near vacuum

conditions. It is the author’s judgment that the sparking of the valve metals

produces short-lived charge clusters.) Gleeson found that by proper use of this

energy for the future: high-density charge clusters 625



underwater sparking of the electrode that some excess thermal energy could be

created. However, that effect did not appear to be as promising as using this

technology to transmute radioactive elements.

Supported by funds from the Holloman Brothers (a private company that

specializes in piping installations in new and rebuilt factories), Gleeson and

friends demonstrated that naturally radioactive thorium could be stabilized in a

special type of electrochemical cell (see Fig. 1). Using moderate pressure and

voltages in the range of 200–300 V, it was demonstrated that more than half of

the radioactive thorium could be transmuted into other (usually more stable)

elements. The transmutation measurements were made by hiring university or

commercial equipment capable of measuring and reporting on small amounts of

elements in the before/after processing of the water-based thorium electrolyte.

Over 100 such experiments were conducted and proper samples submitted for

elemental analysis. Gleeson and associates reported on their experimental

results at the second conference on Low-Energy Nuclear Reactions held

in Austin, Texas in 1996 [4]. This discovery has also been independently

replicated by Liversage [5].

Power supply
voltage AC or pulsed

Low-resistance
conductive
chemical
solution

Metal
electrodes

Thin metal
oxide layer
highly
resistive;
produces 
high-voltage 
gradient

Figure 1. High-voltage gradient across metal oxide layer.
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Several months of independent laboratory studies were made at the

laboratory of the Fusion Information Center, Inc. at the University of Utah

Research Park under the direction of chief scientist, Dr. Shang-Xian Jin. (Fusion

Information Center has recently merged with Trenergy, Inc. and moved to a

laboratory building in Salt Lake County, Utah) During these investigations, as

much as 90% of the radioactive thorium was removed from the water-based

thorium electrolyte. This work was done with permission and encouragement of

Stan Gleeson and the Holloman brothers. A report on this work was presented at

a meeting of the American Nuclear Society [6].

For those who wonder if some science stems from some type of unmeasured

source of inspiration, this important discovery by a scientifically uneducated

high school graduate is remarkable. This author prefers to report about scientific

facts. One of the best definitions of a scientific facts is the close agreement of a

series of observations of the same phenomena. Some scientists properly insist

that there must also be independent observations of the same phenomena. With

these definitions, Gleeson’s work is a scientific fact of unusual importance.

Independent results were obtained at Trenergy’s laboratory and also at one of

the universities in Cincinnati, Ohio. There are other kinds of facts that are not

scientific. One of these facts may be the claim by Gleeson that he received

spiritual instructions for his series of remarkable discoveries. Regardless of the

source of inspiration, Gleeson’s discoveries are expected to be of considerable

commercial importance.

D. Ilyanok’s and Mesyats’ Discoveries

While visiting in the Republic of Belarus, Dr. Alexander M. Ilyanok was

introduced to this author. Ilyanok displayed a mockup of a new type of display

screen. With the help of a translator it became apparent that Ilyanok was

proposing one of the embodiments of the charge cluster applications that was

specifically included in Shoulders’ first patent [3]. Ilyanok was asked if he had

ever heard of the work of Kenneth Shoulders and replied in the negative. In

subsequent discussions, it was determined that Ilyanok had independently

discovered that charge clusters are quantized in size [7]. This quantization is also

reported by Shoulders [2]. The individual clusters are normally 1 mm diameter

but range in size from 0.5 to 3 /mm in diameter. However, many (about 20–80) of

these charge clusters arrange into a necklace shape that is about 20 mm in

diameter (see Fig. 2). At higher energy levels, the clusters arrange into sizes that

are about 50 mm in diameter. Some of Shoulders’ work did produce 50-mm

clusters [2]. However, the abrupt demise of such a large charge cluster can

produce an electromagnetic pulse (EMP) that can damage sensitive equipment

not even connected to the experiment. Shoulders has chosen to work more with

20-mm charge clusters. Ilyanok wanted to determine the next quantized size

larger and, therefore, has done considerable experimental work with 50-mm

energy for the future: high-density charge clusters 627



charge clusters. The next quantized level has not, as yet, been found. However,

some preliminary analytical work suggests that the charge clusters have stability

criteria that should allow for electron clusters up to the size of ball lightning [8].

More recently, Dr. G. A. Mesyats, a Russian scientist working with high-

energy vacuum discharges, discovered high-density charge clusters and named

them ectons [9]. Mesyats presented his paper, ‘‘Ecton processes at the cathode

in a vacuum discharge,’’ at the 1996 XVIIth International Symposium on

Discharges and Electrical Insulation in Vacuum. Kenneth Shoulders was also in

attendance at that meeting and informed Mesyats privately that the discovery

and a variety of embodiments of high-density charge clusters was patented in

the United States in 1991. However, the remarkable historic fact is that four

independent inventors and scientists, working in different laboratories in four

locations in three countries had, over a period of several years, discovered

important aspects of the same new-energy technology.

II. CHARGE CLUSTER THEORY

A. General

It is the normal course of academic science to protect (usually by the filing of

patent applications) and then publish information about new discoveries. In

research activities funded by private funds and where there is no ‘‘publish or

perish’’ doctrine, the academic urge to publish is often missing. Neither Kenneth

Shoulders nor his former (nor current) private funder has had any strong desire to

publish, except to discourage some unknown government agent from classifying

the discoveries (and essentially destroying commercial value of the inventions).

The result is that there have been few publications about this phenomena until

this author began writing about this new technology.

1−3 µm
Single cluster

50 µm

Structure
not known

Ring of clusters
20 µm

Figure 2. Charge cluster quantization.
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B. Publications

The late Dr. Petr Beckman made an attempt in 1991 to describe a theory about

the formation of electron clusters [10]. In the same year, Richard W. Ziolowski

and Michael K. Tippett wrote an article in which some attempt was made to

analytically describe charge clusters in a suspected spherical shape in the article,

‘‘Collective effect in an electron plasma system catalyzed by a localized

electromagnetic wave’’ [11]. However, to date, the best analytical work on

charge clusters has been accomplished primarily by Dr. Shang-Xian Jin [8].

Dr. Jin’s first attempt was to describe the charge cluster in terms of a spherical

collection of electrons. However, the observed stability was not predicted by a

spherical model. With a suggestion from this author that a toroid model might

demonstrate stability, Dr. Jin was able to show that a toroid structure with

electrons circulating around the periphery could create a magnetic field that

would support the circulation of the electrons. In addition, Jin worked out

stability criteria for a range of sizes of charge clusters. As was suspected, it is

analytically suggested that sizes up to ball lightning can be stable. However,

there remains the problem of showing analytically the quantization of charge

clusters. This observed phenomena is not predicted by the current analytical

work. Therefore, this analytical work must be considered as preliminary and

incomplete.

C. Charge Cluster Quantization

It is suggested that the work developed by Dr. Peter Graneau (and later in

conjunction with his son, Dr. Neal Graneau, especially the work on exploding

bridge wires) may have some importance in improving the current theoretical

model for high-density charge clusters. In exploding bridge wires, Graneau has

shown that a strong high-voltage, high-amperage pulse applied to a conducting

wire could explode the wire into reasonably uniform fragments. Although

Graneau’s work has been published in scientific journals, this experimental

challenge to our current electromagnetic equations has not been seriously

pursued. Some of the various publications about this topic are listed in several

references [12–15]. In this latest Graneau presentation, one of the accompanying

photographs showed a bright spot, which this author believes to be strong

evidence of a change cluster formation. It is suggested that the same (or similar)

electromagnetic forces that can chop a wire into relatively uniform pieces is

possibly the phenomena that creates high-density charge clusters that are

relatively uniform in their smallest sizes (0.5–3 mm).

D. A Simple Model

The following is a relatively unsophisticated verbal description of the formation

of charge clusters as an approach to a model. For a practical visual picture, think
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of an ocean wave moving toward shore on a sloping ocean floor rising to the

beach. The unencumbered top of the wave can move faster than the bottom of the

wave that is influenced by the rising ocean floor. The wave, if strong enough, can

curl over as it moves toward the shore and provide a hollow center within which a

skilled surfboarder can surf. Similarly, think of a pulse of electromagnetic energy

on the surface of a dielectric that can provide a similar roll wave of electrons. The

curling of the electrons, having suspected velocities of fractional light speeds,

creates a strong magnetic field within the curl. Some, as yet unexplained phe-

nomena, chops this roll of electrons into short segments and the resulting inner

magnetic fields pull these short curls into toroids as the produced north and south

magnetic fields quickly find each other. This admittedly inadequate model at

least serves as a possible visual picture of how the charge cluster toroids might be

formed. Reality may be considerably different. In the judgment of the author, the

person who completes an adequate model of the high-density charge cluster and

explains the various quantized sizes deserves to be nominated for a Nobel prize.

E. The Charge Cluster Combined with Positive Ions

The high-density electron charge cluster (HDCC) is characterized by very high

local electric and magnetic fields. The local strength of these electric and

magnetic fields is believed to be stronger than the fields made by larger apparatus

in the laboratory. As a result, if HDCC are produced in a low-pressure gas

atmosphere (such as hydrogen) the gas in the vicinity of the HDCC is ionized to

produce positive ions (such as protons).

In the case of hydrogen, the protons produced near a charge cluster are, of

course, attracted to the highly negative charge cluster. Because of the huge size

of the protons as compared to an electron, the end result is that only about one

proton is attracted to the charge cluster for each hundred thousand to a million

electrons. Therefore, the combined charge cluster is still highly negative and is

attracted toward a positive anode in essentially the same way as a single electron

would be attracted. Therefore, the combined charge cluster will be accelerated

by the voltage on the anode. An important application of the combined charge

clusters will be discussed in following Section III.

F. Important Discoveries Expected

As with any new discovery, it is expected that there will be many doctoral theses

and many new and important discoveries concerning high-density charge

clusters. A thorough understanding of the nature and behavior of these HDCCs

is far from complete. As more is learned of the nature of such clusters of

electrons, there will be additional understanding of the nature of space energy

and probably even of elements. It is an interesting historic fact that four different

scientific groups from three different countries would independently discover

this new electron phenomena in the same decade.
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Kenneth Shoulders, the first to discover high-density charge clusters, later

wrote a lengthy paper discussing some of his findings and some of his

interpretations [16]. Shoulders is most likely the world’s leading authority on

HDCC. In his article he refers to ‘‘soliton behavior.’’ [A strict definition of a

soliton is a localized nonlinear wave that regains asymptotically (as t !
þinfinity) its original (t ! negative infinity) shape and velocity after interacting

with any other localized disturbance; the only long-term effect on the soliton

from the interaction is a phase shift from Encyclopedia of Physics, 2nd ed.]

In Shoulders’ discussion of permittivity, it is appropriate to review the definition

of permittivity as the ability of a dielectric to store electrical potential energy

under the influence of an electric field. Permittivity is measured by the ratio of

the capacitance of a capacitor with the material as dielectric to its capacitance

with vacuum as dielectric. The following is the summary of Shoulders’ [16]

paper.

Highly organized, micrometer-sized clusters of electrons or EVs (Shoulders’

designation for high-density charge clusters), having soliton behavior, with

electron populations on the order of Avogadro’s number1 are represented as the

necessary function for modifying the permittivity of space in a downward

direction. The state of existence for this entity reduces its expressed charge by

many orders of magnitude below that calculated for the same number and volume

of uncontained electrons. The EV is shown to exist in at least two distinct modes

of charge masking, with one of them, the black EV, being virtually undetectable

using sensitive methods. A form of inertial propulsion will be discussed that arises

from the inertial rectification affects available by modulating the state of the EV,

thereby the permittivity of space and concomitant inertia or effective mass of

material moving through space. It will be shown that the same type of permittivity

change, through EV modulation, can achieve a unidirectional current flow and that

this gives rise to methods for generating monopole effects and vector potentials

useful for communication outside the usual current loop generating them. A form

of pseudoparticle entanglement arising from the tight and pseudoquantized

coupling between the EV structures will be considered. Complex organisms are

discussed that are composed entirely of EV structures that are self-formed at

electronic rates without using either mechanical or chemical methods. Some

speculations will be made on the benefits of operating such complex entities in

regions of greatly reduced permittivity. A condensed-matter dissolution technique

will be shown that is capable of cold dissociation of refractory materials into a

low-viscosity fluid. The root process for energy conversion methods resembling

‘‘cold fusion’’ are reviewed and shown to likely spring from the same EV

technology capable of producing a modified space permittivity. Experimental

methods for testing effects on time at greatly reduced levels of permittivity will be

considered.

1The number of molecules in a gram-molecule or about 6:1 � 1023 (similar to the density of

electrons in a charge cluster).
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The reader will appreciate the perceived complexity of the high-density

charge clusters as suggested in the above summary. There is certainly a

considerable amount of new phenomena to be explored in the further

development and control of high-density charge clusters. Just as certain is the

claim that no present theory or current concepts from classical physics fully

explains this new discovery and it manifold experimental observations. More

important discoveries are expected.

G. Difficulties in Producing Excess Electrical Energy

The first patent to issue on high-density charge clusters [3] includes data to show

that about 30 times as much energy output was achieved, as compared with the

energy input to create a charge cluster. More than ten years have passed since that

important discovery. It is appropriate to ask why such an important invention has

not reached the market and been the source of electrical power for many of our

electrical appliances. The reasons for this technology being slow in reaching the

market can be described.

The creation of a high-density charge cluster (HDCC) requires either a

suitably large electric pulse that is of the order of a nanosecond in pulsewidth or,

at least, a nanosecond rise time on a longer pulse. Nanosecond pulses for micro-

electronics are achievable with voltages of a few volts. Creating nanosecond

pulses with the much higher voltages required to create HDCC is much more

difficult. Therefore, one of the problems in commercializing this technology is

to resolve the problem of creating nanosecond rise times or nanosecond pulses.

To obtain an electric output from HDCC, it is appropriate to have a coil or

printed-circuit equivalent in which an electric pulse can be induced by a

traveling charge cluster. The time of transit available for the charge clusters to

induce electrical output is strongly related to the cathode-to-anode voltage and

the distance over which the charge cluster must travel. The velocity of an

electron (or a charge cluster) is proportional to the voltage and not to the

distance traveled. However, the voltage induced in a coil is proportional to the

length of coil and the time it takes for an electron cluster to traverse that space.

The longer the travel time, the wider the induced pulse that will be produced.

The amount of excess electrical energy produced is the ratio of the output

pulse to the input pulse. For a given configuration of a charge cluster emitter,

coil, and anode (Fig. 3), the excess electrical energy has to be computed essenti-

ally as the area under the induced output pulse compared to the corresponding

area under the delivered input pulse. Therefore, for a given configuration of an

HDCC device, the only way to increase the output/input ratio is to shorten the

input pulse (see Fig. 4).

Of course, a commercial device is not reasonable unless the rate at which the

HDCC can be formed and controlled and the induced electrical charges (onto

the parts of the HDCC device) are drained off to prepare for the next HDCC.
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Previously, the available repetition rate was relatively low. Currently, the rep-

etition rate achieved is about 10,000 Hz [17]. Considering the size of the 20-mm

charge cluster, its ability to induce current in an output circuit, and the repetition

rate of the clusters, it is relatively easy to determine the expected excess power

that can be produced (see Fig. 3). For example, a well-designed charge cluster

device is expected to produce about one watt of excess output electrical power.

As depicted in the patent [3], it is expected to require an array of HDCC devices

to achieve meaningful levels of electrical power (see Fig. 5).

Another type of development problem is that in the design of an HDCC

device, a small change in dimensions of any of the three major parts of the

device (emitter, launcher, anode assembly) requires adjustments to other parts of

the device (see Fig. 3). With the current very small amount of money being

spent on these several problems, progress is relatively slow. At some stage it is

expected that this technology will attract considerable attention from some of

the world’s large corporations. Then, there is also expected to be a much more

rapid development of the HDCC technology with the higher levels of funding.
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Figure 3. Energy conservation using high charge density.
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Figure 4. Energy increase using charge clusters.
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III. THE PARTICLE ACCELERATOR

One of the remarkable uses for high-density charge clusters (HDCCs) is to ionize

selected gases, combine the positive ions with the highly negative HDCC, and

accelerate the combined cluster to fractional light velocities. The following

description is adapted from a paper by Jin and Fox [18].

A. Summary

Conventional ion accelerators use high voltages to accelerate ions (especially

protons) to high velocities (impact energies) and use these ions to strike target

materials. Some scientists and government officials have proposed increasing the

funding for such particle accelerators to provide means by which high-level

radioactive materials can be stabilized. The following paragraphs discuss the role

of high-density charge clusters (HDCC) and their ability to carry positive ions as

the basis for a greatly-improved particle accelerator for the on-site stabilization

of high-level radioactive wastes, such as spent-fuel pellets from nuclear power

plants.

B. Introduction

Since the early 1930s, the development of conventional particle accelerators has

ranged from Van de Graaff generators to the Synchrotron and other models. The

Figure 5. Arrary of charge cluster devices (from Shoulders’ patent).
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problem with these accelerators, in terms of size and cost, is that the electric

potential used is limited to about one million volts per meter. Beyond this limit

the electric field would produce an electrical breakdown within the supporting

structure of the accelerator (especially at the accelerating gap). In addition, such

accelerators require large, multiple magnetic systems for ion-beam focusing.

In collective-ion accelerators, the above restrictions on accelerating potentials

are removed. This change is accomplished by the use of the collective field effects

of a large number of negative electrons that are used to accelerate a small number

of positive ions to high energies. This approach makes it possible to produce

compact, high-gradient, strong-field, high-energy, ion accelerators. As shown in

the following chart, the Wakefield accelerator, the electron ring accelerator, and

the intense relativistic electron beam (IREB) accelerators (such as the IFA,

ARA, and CGA accelerators) are based on the use of a large number of -

electrons to accelerate a small number of protons. Conceptually, the limitations

of 1 � 106 V/m of conventional accelerators are not limiting. Potentials of

1 � 109 V/m can be used.

Conventional accelerator
(E ~ 1 MV/m)

Novel particle accelerator
(collective accelerator)

(E ~ 0.1−1 GV/m)

Plasma beat wave
(or Wakefield) accelerator

Collective-ion accelerator

Particle Accelerators

Van De Graff
Linacs
Cyclotron
Betatron
Synchrotron

High-density
charge clusters

(HDCC)
(ne ~ 1029/m3)

Electron ring
linear electron beam

(IFA, ARA, CGA, etc.)
(ne ~ 1017−1019/m3)

E = electric field
ne = electron density

The class of collective-ion accelerators can be divided into two types: (1) the

linear electron beam accelerators or electron ring, and the newest type, high-

density charge cluster accelerators. It has been shown analytically that the

HDCC accelerators can provide an electron density about 1010 times higher than

the conventional collective-ion accelerator. The result is that very high

collective acceleration effects are predicted to be achieved. These accelerators

have broad potential applications, such as the following:

Nuclear physics research

Material science studies
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Medical radiography

Ion-beam inertial fusion

Most important; stabilization of radioactive nuclear wastes (by transmutation)

C. The High-Density Charge Clusters

The high-density charge clusters (HDCC) consist of micrometer-sized clusters of

electrons having soliton-like behavior together with an electron number density

approximately equal to Avogadro’s number (the number of atoms in a solid).

These intense clusters of electrons are typically created by the application of a

short pulse of a few hundred to tens of thousands volts to a cathode positioned

adjacent to a dielectric (see Fig. 3). The charge cluster is produced at the pointed

cathode and travels to the anode at velocities dependent on the anode voltage.

The charge clusters were first discovered and developed into new inventions by

Kenneth Shoulders, and several patents have been issued [3,19,20]. Later,

Alexander M. Ilyanok [7] (a Belorussian scientist) independently discovered the

same type of clusters. More recently, a similar discovery was made and reported

by G. A. Mesyats [9] who called his discovery ‘‘Ectons.’’

A typical individual charge cluster ranges in size from 0.5 to �3.0 mm, and

most of the HDCC is about 1 mm in diameter. Additional energy creates a larger

number of these small clusters, which then arrange themselves into a ring of

clusters with a ring diameter close to 20 mm. With even higher input energy

another quantized level of 50 mm is formed [2]. The individual charge clusters

are believed to be toroidal in form [8]. An analytical investigation to determine

the self-equilibrium of the moving charge clusters and the conditions under

which a dynamic equilibrium state could exist has been accomplished by Jin

and Fox [8]. This analysis of a plasma fluid description provided, for the first

time, some analytical criteria in which a charge cluster could exist. This analysis

showed that the HDCC is a toroidal electron vortex and that such an electron

cluster could exist at various combinations of electron densities, electron velo-

cities, and cluster sizes. Not as yet shown by the analysis is the experimental

evidence that the charge cluster rings are quantized.

As shown in Fig. 6, the charge cluster exhibits certain characteristics that are

unusual in the study of electromagnetics. The typical size of a formed cluster

ring is 20 mm. The electron density is computed to be about 1029 electrons per

cubic meter. The estimated local electric field at the surface of a typical charge

cluster is calculated to be 1013–1015 V/m and the associated magnetic field

strength, �106 T.

The charge cluster, when produced in a low-pressure gas environment, will

immediately ionize the local gas molecules. These newly produced positive ions

are then trapped in the highly negative potential well of the charge cluster where

they cling to and travel with the charge cluster. This combined cluster is then
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accelerated by the voltage gradient to the anode. The local ion density can be as

high as 1023–1024 ions per cubic meter. It is important to note that this combined

charge cluster can then be accelerated to high energies similar to the

acceleration of an individual electron because the combined charge cluster

has about one million electrons for each clinging positive ion.

The electron density in terms of the number of electrons per cubic centimeter

in the linear electron-beam accelerators ranges from 1011 to 1013 electrons cm�3

(1017 to 1019 electrons per cubic meter). Under proper design conditions, high-

density charge cluster accelerators can collectively accelerate positive ions. It is

important to note that the HDCC accelerator can provide an electron density of

about 1023 electrons cm�3 (about 1029 electrons per cubic meter). The important

discovery is that the HDCC technology provides the means by which particle

accelerators can achieve an electron density that is about at least one million

times (6 orders of magnitude) larger than any previous technology.

Another important feature of the charge clusters are their inherent ability to

ionize dielectric materials (gases, liquids, and solids) and the ability to attract

and transport positive ions. A properly designed system (patent pending) can

provide for acceleration of such transported positive ions to any reasonable

energy levels. It is important to understand that the highly negative electron

cluster provides for a high density of the attracted positive ions. The combined

charge cluster, therefore, contributes to a resulting high density of transported

Typical size:  1− 20 µm
Electron density:  ~1029/m
Ion density:  ~1023 to 1024/m
Estimated electric field (surface)  ~2 × 1013 to 1015 V/m
Estimated magnetic field (surface)  ~106 Tesla
Electrostatic potential energy (for 1mm size) ~33 J  

1 µm

ν

β

Cathode

Figure 6. Characteristics of high-density charge clusters.
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positive ions. For example, in a low-pressure hydrogen gas atmosphere protons

are created and attach themselves to the charge clusters. The proton density can

achieve very high local densities because of the enormously high local electron

density. Because of the unusual nature of the HDCC accelerator, the usual

magnetic field to focus the positive-ion beam is not required.

When an early decision was made by the Department of Energy to package,

transport, and store high-level radioactive wastes in Yucca Mountain, the DOE

officials had no knowledge of this development. The proper consideration of

transmutation by standard particle accelerators was deemed to be prohibitively

expensive. Geologic storage was considered to be the most cost-effective means

of handling the spent-fuel pellets from nuclear power plants. See the report from

the DOE-funded study with the National Research Council [21]. When one

considers the cost of and/or the development time for a new type of particle

accelerator to be used for the stabilization of high-level radioactive wastes, the

HDCC technology has huge advantages. The accelerator potentials used to add

sufficient kinetic energy to positive ions (carried by HDCC) is relatively low.

For example, the combined charge cluster (HDCC plus carried positive ions)

can be accelerated to about one-tenth the speed of light using potentials near

5000 V. At potentials of 50,000 V protons can be accelerated to velocities that

would require over 90 million V in standard accelerators. The cost advantages

of the HDCC positive-ion accelerator is obvious.

D. Collective-Ion Acceleration

The HDCC can be used to accelerate positive ions. For an ion-loaded HDCC of

sufficiently high holding power, the rate of energy gain of the ion in an axial (z)

electric field E is

dWiðHDCCÞ
dz

¼ eEMi=Ycme
1 � ZNi=Ne

1 þ NiMi=YcNeme

� �
ð1Þ

where Mi and me are the ion and electron rest mass, Ni and Ne are the ion and

electron number in the HDCC, Z is the charge state of the ion, Yc ¼
ð1 � ðve=cÞ2Þ�1=2

is the relativistic factor, ve is speed of the HDCC, and c is

speed of light. In the case of very small ion loading with ZNi=Ne 	 Ycme=Mi,

Eq. (1) reduces to

dWiðHDCCÞ
dz

¼ eEMi=YcMe ð2Þ

or after integration we have

WiðHDCCÞ ¼
eVMi

Ycme

¼ Mi

Ycme

� �
We ð3Þ
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where V is the applied potential difference and We is electron kinetic energy. In

the same potential difference the energy gain of an ion is

Wi ¼ ZeV ð4Þ

Comparing the Eqs. (3) and (4) we have

WiðHDCCÞ
Wi

¼ Mi

ZYcme

¼ 1836A

ZYc

ð5Þ

where A is the atomic weight of the ion. This result means that the ion accele-

ration by HDCC is about 1836A=Z times more effective than a conventional

accelerator. As an example, Table I shows the applied voltage and the kinetic

energy of proton (deuteron) collectively accelerated by HDCC.

Figure 7 is a graphic description of the kinetic energy required by a deuteron

to produce D-D, D-T, and D-helium-3 nuclear reactions. The bottom of the chart

depicts the required deuteron kinetic energy level in thousands of electron volts.

The x-axis coordinate is labeled from 100 to 103 kilo-electronvolts. The y axis is

labeled in terms of the nuclear reaction cross section. Three types of nuclear

reaction curves are depicted. Note that each curve rises to a maximum and then

decreases in value. The D-D curve is shown with its maximum value at about

1000 keV. Considering the use of a typical ion accelerator, electric potentials

ranging from about 10 to 106 keV are used.

When using an HDCC accelerator, the required electric potential for having

the same nuclear events is dramatically reduced. Note that for the maximum

reaction rates for the D-D nuclear events, the maximum occurs at about

272 Volts (lower x-axis label). Some of the desired nuclear reactions to stabilize

(transmute) specific highly radioactive species into stable elements will, of

course, require that the combined HDCC be accelerated using potentials up to

70 keV.

TABLE I

The Proton (Deuteron) Energy Accelerated by HDCC

Applied The Kinetic Energy of

Voltage (kV) Proton (Deuteron (MeV)

1.000 1.836 (3.672)

2.500 4.590 (9.180)

3.000 5.508 (11.016)

5.000 9.180 (18.630)

10.000 18.360 (36.720)
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To demonstrate the enormous difference between particle accelerators,

Table II has been prepared. Several different parameters have been compared

for the intense relativistic electron-beam (IREB) Accelerator and the HDCC

Accelerator. The comparative parameters of electron energy, current density,

current rise time, pulselength, beam radius, and electron density are provided.

Note that in all cases, the HDCC accelerator would provide an improved per-

formance. However, because of the small size of the combined charge clusters,

the overall current (as contrasted to current density) may be smaller for a single-

charge-cluster emitter. One method to improve the overall current is to use an

array of charge cluster emitters as shown in Fig. 5. Also, with the use of special

materials, specially designed cathodes, and a pulsed power supply, the average

current could be greatly increased. It is certain that further development of this

D + D         T (1.01 MeV)  +  p (3.02 MeV)  
                  He3  (0.82 MeV)  +  n (2.45 MeV)

D + T         He4  (3.5 MeV)  +  n (14.1 MeV)

D + He3         He4  (3.6 MeV)  +  p (14.7 MeV)
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Figure 7. Cross section of D-D, D-T, and He3 reactions as functions of deuterom energy.

TABLE II

Comparison of Some Characteristic Parameters between IREB and HDCC

Electron Current Current Rise Pluse Beam Electron

Energy, We Density, J Time, tr Lenght, tb Radius, rb Density, ne

(keV) (A/cm2) (ns) (ns) (cm) (cm�3)

IREB (1–8)� 103 103–104 10–50 50–200 1–6 1011–1013

HDCC 1–10 108–109 
 1 10–50 (1–10)� 10�4 6 � 1023
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type of HDCC accelerator will provide equivalent positive-ion currents at a

much lower cost than the current particle accelerator technology.

Table III provides some of the experimentally determined measurements

obtained by using IREB collective ion accelerators. All of the listed experi-

ments, except the last, used accelerated protons. The last entry is for helium

ions. A similar series of experiments is needed using HDCC accelerators. In

addition, it may be of considerable interest to use hydrogen, deuterium, helium,

and nitrogen gases for the positive-ion sources. The ability of the HDCC to

ionize and transport positive ions at high local densities and at relatively low

costs promises to make this new technology an effective research tool.

E. Experimental Evidence of HDCC-Produced
Nuclear Transmutation

Kenneth and Steve Shoulders report an experiment in which a previously

deuteron-loaded palladium cathode was subjected to the impact of a charge

cluster [22]. Where the charge cluster impacted the deuteron-loaded palladium a

visually-evident, explosive-like reaction occurs (Fig. 8). The palladium cathode

was then subjected to an X-ray analysis of the impact crater (see chart in Fig. 8).

Typically, the X-ray analysis shows a considerable number of elements not seen

when scanning the nearby palladium surface. Such elements as oxygen, calcium,

silicon, and magnesium are detected in the exploded region where a charge

cluster impacted the palladium.

As explained more fully by Shoulders [22], there is a level of energy required

in the impacting charge cluster before such nuclear reactions occur. It is

expected that this energy level will be different for a variety of nuclear target

materials. One of the required studies is the effect of the combined charge

cluster (electrons plus carried positive ions) effect on specific targets as depicted

in Fig. 9. It is expected that considerable differences will be found in the ability

to cause nuclear reactions in various high-level nuclear wastes using different

positive ions. Proton, deuteron, and alpha particle accelerator studies will need

to be performed at various impact energy levels.

One unknown in particle bombardment is the effect of the accompanying

very high density of electrons. It is expected that the highly negative charge

cluster (as it approaches a target material) will cause a local repelling away of

all electrons, leaving only the local nuclei plasma to be impacted by the carried

positive ions. To what extent this action will facilitate (or impede) nuclear reac-

tions has yet to be experimentally determined.

It is of considerable interest to note that charge clusters can be formed in

aqueous solutions and used to target dissolved radioactive materials. In experi-

ments using low-level, naturally radioactive thorium, a considerable reduction

of thorium from the solution has been achieved [6]. Charge clusters can be

produced in air under various pressures [23]. However, not all arcs and sparks
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are carriers of charge clusters. It is well understood that the best production,

control, and use of HDCC will be at relatively low pressures.

One of the best ways to transmute radionuclides is with intense high-energy

protons collectively accelerated by HDCC being focused on a target such as
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Figure 8. Experimental evidence of nuclear reactions produced by high-density charge clusters

(HDCCs): (a) HDCC strike on a deuterium-loaded palladium foil; (b) X-ray analysis of the crack

illustrated above, showing new materials produced.
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Figure 9. Combined charge cluster and ions impacting target.
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lithium or tungsten that would generate high-energy neutrons. These neutrons

would be thermalized and focused on a target to transmute radionuclides.

F. Conclusions

HDCC accelerators have the potential to provide positive-ion acceleration for

creating nuclear reactions at electric potentials heretofore deemed to be much too

low to produce nuclear reactions. Therefore, the conclusions of the report

published in Nuclear Wastes: Technologies for Separations and Transmutation,

are no longer valid [21]. There now is a technology that is more cost-effective

than geologic storage for the handling of high-level radioactive wastes. It

appears that on-site stabilization of high-level, radioactive wastes is feasible

within the same time-frame required for the preparation of geologic storage

facilities. The estimated potential cost savings are enormous.

IV. OTHER PATENTED NEW ENERGY DEVICES

A. Introduction

The author has spent over 12 years searching the world for energy devices that

have commercial value. Over a hundred various devices have been investigated

including a variety of rotating machines. Almost none of these devices have been

funded with government funds. The reason for the general lack of government

funding is the firm scientific knowledge that it is not possible to produce more

energy output than energy input unless there is a source of that energy. However,

there are a variety of private individuals whose education has not been sufficient

to convince them that energy over-unity devices, which lack a new-energy

source, were not possible. Many of these privately funded inventors would not

agree with this author’s limitation on new-energy sources as being one of the

following:

1. A new type of chemical energy

2. Energy from low-energy nuclear reactions

3. Energy from the abundant energy in space

This third potential source of new-energy devices is, in general, not accepted by

the academic scientific community. Where there is a knowledge of the various

papers discussing space energy (vacuum energy, zero-point energy, etc.), it is

generally assumed that there is no practical way of tapping this enormous energy

source. As a result, there is no known government funding and very little known

corporate funding of research and development to tap the energy of space.

However, during the fall of 2000, a draft proposal for a proposed Breakthrough

Energy Physics Research Program Plan was distributed as ‘‘Draft for agency

comment only.’’ This plan is intended to provide the groundwork within the U.S.
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Department of Energy for the funding of a variety of new-energy and new-

transportation physical concepts.

Heretofore, few members of the academic community have accepted any of

the new-energy discoveries. That academic acceptance is believed to be subject

to rapid change. There is a tongue-in-cheek saying that ‘‘scientists will believe

what they are paid to believe.’’ It is to be expected that where there are

government funds allocated for the study of breakthrough energy physics, there

will be an increased academic interest in new-energy discoveries.

A major development in the search for tapping the energy of space has been

the various articles authored by Puthoff and friends [24–26]. For these articles

about zero-point energy, it was assumed that there is an enormous energy in

space everywhere. In fact, this huge source of energy is predicted by the

development of quantum mechanics. This dense-energy concept is discussed by

many authors, for example by William Tiller [27]. By beginning with the assump-

tion of enormous space energy, Puthoff and co-authors have been able to develop

mathematical descriptions for gravity [24], inertia [26] and also to show that the

apparent perpetual motion of the electron orbiting the hydrogen atom is explai-

ned by the interchange of energy between the electron in its ground state and the

energy of space [25]. The clear explanation for these previously little under-

stood phenomena has been a major contribution to science. It should be reported

that Dr. Harold Aspden also provided a mathematical description of gravity some

years earlier but the paper received less attention than it deserved [28]. In addi-

tion, Aspden also discovered and reported on an unexpected inertia effect [29].

In a later paper, Puthoff et al. have shown that the energy of space can be

tapped [30]. However, this paper does not specify how a practical tapping of

space energy can be achieved. Prior to this paper by Puthoff, Shoulders had

already discovered a method of using HDCC to tap the energy of space. Puthoff,

himself, also added to the HDCC technology [31].

The search for new-energy devices recognizes that in addition to new

chemical discoveries and low-energy nuclear reactions, the tapping the energy of

space is an acceptable energy source for one or more new energy devices.

B. Energy from Rotating Machines

A large number of rotating machines have been examined. With very few

exceptions, none of the rotating machines were found to be over unity despite

strong claims by the inventors. In nearly all cases, the rotating machines used

either an input or provided an output that was not sinusoidal. There were often

pulse-like or distorted wave forms used or produced by these machines.

However, the main error made by nearly all such inventors was to use standard

AC meters to measure the input and output energy. Such instruments, designed

for accurate measurements of sinusoidal alternating current, are not accurate

when used with nonsinusoidal wave forms.
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However, there have been a couple of rotating machines that have produced

more energy out than energy input. One is the large motor generator designed

by Tewari in which the 50-cycle 200 VAC input provides a larger power of high

amperage but low voltage DC output [32]. A second machine that produces a

relatively small amount of over-unity performance is described by Harold

Aspden [33]. If this author is correct, then such rotating machines must use

either (or both) high rotational speeds or very strong magnetic fields. In any

case, it is not expected that any type of large rotating machine will prove to have

the 3 : 1 output/input ratio that this author deems required for commercial

success. However, other inventions have shown the ability to meet this 3 : 1

output/input energy requirement.

C. Energy from Low-Energy Nuclear Reactions

The saga of cold fusion, more properly called ‘‘low-energy nuclear reactions,’’

has a fascinating history in the United States. A few years after the initial

announcement of the discovery of cold fusion, this author had collected over

3000 papers from over 200 laboratories in exactly 30 countries. Over 600 of

these papers reported successful replications or improvements on the original

Fleischmann–Pons discovery [34]. However, due to a well-conceived, well-

funded, and well-conducted effort by adherents to the hot-fusion technology,

cold fusion in the U.S. has been discredited [35].

The important concept about cold fusion is described in the following highly

probable explanation for most of the excess thermal energy produced.

D. Explaining Cold Fusion

At least some of the effects observed in cold fusion electrochemical cells can be

explained by the production of high-density charge clusters (HDCC) as shown by

Kenneth Shoulders. The deuterium loaded into the palladium cathode causes the

cathode to become stressed and brittle (hydrogen embrittlement). The result is

that the palladium cracks at random times and places. The cracking of a crystal

lattice with its severing of trillions of ionic bonds creates a high voltage across

the crack, which quickly shorts out (short-circuits) through the conducting

palladium. This type of short pulse of high voltage is precisely the condition

required for the production of an HDCC. The cluster emits from the cathode,

picks up and carries deuterons, is accelerated to the anode side of the crack, and

crashes into the anode side with sufficient force to produce nuclear reactions. A

detailed analysis of the impact craters produced by the 20-mm HDCC impact

onto a palladium-loaded electrode has been demonstrated by Shoulders to

explain the observed impact craters and the new elements produced [22].

Obviously, if one knows how to make HDCC directly, it is of little value to

go through the electrochemical process to produce charge clusters at random

times and random places. In the judgement of this author, this cold-fusion type
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of low-energy nuclear reaction is not sufficiently robust to be a major com-

mercial success.

E. The Koldamasov Low-Energy Nuclear Reactor

Koldamasov works in a Russian facility that develops and produces equipment

for use by the nuclear power industry. An observation of excess thermal energy

being emitted led to the invention and patenting of a new type of nuclear reactor

[36]. This nuclear reactor uses input electrical energy to power a frequency-

tunable ultrasonic crystal which is placed at one end of a cylinder of a mixture of

light and heavy water. In the cylinder is a short, solid cylinder made of a special

dielectric material. There is at least one small-diameter hole (about one milli-

meter) in this dielectric material. When the proper frequency of input ultrasonic

energy is applied, the surging of the water through the small hole produces a very

high (reported as 200,000–300,000 V) electric potential developed locally in the

dielectric material. The end result is the production of a considerable amount of

thermal energy plus a relatively small amount of emitted neutrons.

The inventor has patented this novel nuclear reactor and cites the production

of as much as 40 kW of thermal power from the use of about 2 kW of input

electrical energy. If the reported results are independently replicated, this

discovery and invention is deemed to be of considerable commercial importance.

F. The Burns Device

David Burns, an Irish-born inventor living in Scotland, has invented another type

of new-energy device. At the time of writing this report, only early (1994)

experimental data were available. However, the device uses a property of smooth

versus rough material housed in a vacuum tube and subjected to electron

bombardment. Under proper experimental conditions, as explained in the patent

application, there can be a considerable temperature difference between the

smooth and rough plates. With the use of sufficiently efficient thermoelectric

devices, it is reported possible to provide more electrical energy output as than

electrical energy input. The latest report for this type of device is promising.

However, considerable development is expected to be necessary before a

commercial device is achieved.

G. The Mills Device

Dr. Randell Mills has invented, tested, improved, and submitted several patent

applications on a new type of new-energy device. At least one of the patent

applications has proceeded to the point where the Patent Gazette indicates that a

patent is being issued. Dr. Randell Mills claims that the excess thermal energy

produced is obtained from the collapse of the hydrogen atom. There is, as yet, no
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widespread acceptance of his explanation of the source of the excess thermal

energy. However, there have been a variety of independent replications of the

effect on which his discovery is based [37].

Beginning with a liquid electrochemical system, Dr. Mills has progressed to

the use of gaseous media with a reported considerable improvement in overall

performance. Apparently, this invention is capable of providing a considerable

increase in thermal energy output as compared to electrical energy input. An

energy output/input ratio of well over 100 has been reported.

The reduction of the orbit of the hydrogen atom below its normal ground

state produces a new type of hydrogen that Mills has termed a hydrino. These

hydrinos can be chemically combined with other elements to produce new

molecules that reportedly have material properties different from those of their

hydrogen counterparts. For example, a lubricant with improved lubricity has

been reported. In the judgment of this author, the most important discovery

made by Dr. Mills is believed to be methods of creating new hydrogen-based

compounds. It is expected that the current BlackLight Power (registered trade-

mark) company that has been established and funded will become a commercial

success.

H. The patented AquaFuel Device by Richardson

An inventor, William H. Richardson, Jr., has invented a new type of energy-

producing device (U.S. Patent 5,435,274) [38], which is used to produce a

product called AquaFuel (registered trademark). The AquaFuel is reported to use

water and a mixture of organic substances to produce a burnable gas. The

reported performance provides more energy output from the burning of the

AquaFuel than supplied by the electrical energy used to produce this combustible

gas by electrolysis. Commercial applications of this invention have been

announced. The source of the excess energy apparently stems from the energy

provided in some of the organic materials that are used in the water-solution that

is electrolyzed to produce the combustible gas.

There is a somewhat similar but different method developed by Dr. Ruggero

Santilli that also produces a combustible gas. Details of Santilli’s method are

provided in a special issue of the Journal of New Energy [39].

I. The Motionless Electromagnetic Generator (MEG)

A Web-posted letter has announced:

Magnetic Energy Ltd. announces its successful development of an electromagnetic

generator with no moving parts, normal EM input and normal EM output, and

having a COP (coefficient of performance) ¼ 5.0 for the first unit and COP ¼
10.0 for the second unit. The MEG is in patent-pending status, and is presently

available for licensing [40].
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The five co-inventors of the MEG are T. E. Bearden, Ph.D.; James C. Hayes,

Ph.D.; James L. Kenny, Ph.D.; Kenneth D. Moore, B.S.; and Stephen L. Patrick,

B.S. The intellectual property rights to this new-energy device (MEG) are

assigned to Magnetic Energy Ltd. (925 Tascosa Dr., Huntsville, AL 35802;

email: <jlkenny@lbtrltd.com>). Dr. James Lee Kenny is the managing partner

of Magnetic Energy Ltd.

Reportedly, the MEG can be fabricated using only conventional tools and

techniques already used by many major manufacturers. All the parts and

materials to construct an MEG are available commercially. On October 18,

2000, its development was also announced to selected staff personnel of two

Senate Committees. A 69-page MEG technical report, presently on a private

DOE Website for DOE evaluation, explains the principles and concepts used by

this new-energy generator. Arrangements are also in process for formal

independent certification tests by a major university under U.S. government

auspices, followed by full formal independent replication under proprietary re-

lease agreement.

J. Other New-Energy Devices

There are other new-energy devices that are being developed. There are many

claims made for new-energy devices. In some cases, the details are being kept

highly confidential for various reasons. For example, one of the new-energy

inventors claims to have made a disclosure to a major automobile company and

believes that a new development by that company was based on his disclosure.

Other independent inventors have deemed their discoveries so important that

they are fearful that they might be the subject of persecution by the big oil

companies. This author, during a period of over 12 years, of working in this new-

energy field has found no evidence of any threats to persons by any energy-

related group. The only active negative efforts have been the ill-chosen attack on

cold fusion and Dr. Mills new-energy discoveries by a self-proclaimed

spokesperson for the American Physical Society [35]. It is strongly believed,

by this author that such attacks on any new-energy devices will rapidly fade. The

reason for the change of attitude is the final acceptance by the Department of

Energy that a part of their role is to be involved in ‘‘breakthrough energy physics

research’’ [43].

V. SUMMARY

Seldom is a new discovery made in isolation. The history of invention is replete

with dramatic new discoveries that suddenly appear to have been anticipated by

more than one inventor. It appears that the developments in a variety of new

technologies are culminating in several new-energy devices that can provide

multiple sources for abundant, clean, and inexpensive means to provide both
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thermal and electrical energy. Most of the several new inventions presented here

meet the desired qualifications by providing more than three times the energy

output as compared with energy input. In addition, each of these devices has (or

will have) a reasonable scientific explanation as to the source of the output

energy. Some of these new-energy sources are new or unexpected and include

new chemical energy (Mills’ device); low-energy nuclear reactions (e.g.,

Koldamasov’s device); and devices that tap the energy of space (Shoulders’

discovery).

Not all scientists are ready to accept the explanation that the enormous

energy of space (the so-called zero-point energy) can be transferred into useful

energy. This dramatic new discovery will take time to be explained in the

college textbooks or taught in high school classrooms. However, as the expected

commercialization of some of these devices occurs in 2001, there will be a rapid

development of serious academic explanations for and the acceptance of such

new technology. Perhaps of more importance to the acceptance of new-energy

phenomena is the establishment of the Department of Energy’s Breakthrough

Energy Physics Research Program [43].

Many of these inventions will be licensed, replicated, improved, developed,

manufactured and placed into commercial applications by a variety of

commercial entities. The potential of tapping into a $4.5 trillion annual

fossil-fuel energy market [41] is expected to create a rapidly expanding number

of new-energy companies. The realization that humankind need no longer be

tied to the production, distribution, and marketing of coal, oil, and natural gas

products (the fossil fuels) will have the greatest economic impact of any

previous technological innovation. While oil-rich countries may suffer, the

countries lacking in fossil-fuel energy sources are expected to greatly benefit.

As the burning of fossil fuels decreases, the world’s atmosphere is expected to

benefit. Fossil fuels will then be perceived as the valuable assets they are as

sources of chemical feedstocks.

The ultimate result will be the rapid development and proliferation of devices

that tap the energy of space. The knowledge that space everywhere can be

tapped for its energy will hasten the development of human endeavors to reach

out to the nearby planets. When coupled with new methods of overcoming

gravity, new methods of pushing against space without throwing away mass (the

old rocket engines), then mankind will be able to move around in space and

establish interplanetary commerce. However, for the near future, we here on

earth can soon get off the grid.

The near-term impact of the commercialization of new-energy devices

will be relatively rapid. However, it is still expected to take a decade to

penetrate the current $4.5 trillion annual fossil-fuel market to 10% [41].

Hundreds of billions of dollars will be spent in the manufacturing and marketing
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of new-energy devices and systems. It is estimated that for the first decade, the

energy provided from these new-energy sources will be sufficient only to meet

the world’s increased demands for energy. Thereafter, the world can expect

improvements in the atmosphere, reduction in energy costs, some rearrange-

ments in international money flow, and, in general, an improved new-energy

world.

For a book-length discussion of new-energy devices and their predicted

impact on a variety of the world’s markets, this author has written a book that is

soon to be published [42].
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Superluminal dynamics is the dynamics of particles in motion with v > c

where c is the speed of light in vacuum. To establish the basic concepts of

SLRT, it is necessary to introduce superluminal transformation. Superluminal

transformation gives the relation between the magnitudes of the frame of

reference where v < c only is possible, with the same magnitudes in the frame

of reference where v > c is possible. Superluminal transformation correlates

with Galilean and Lorentz transformations.

In this work, Einstein’s theory of special relativity (SRT) is fully accepted,

with the supposition that it is valid in the region of the spacetime where v < c is

possible only. There are many experimental proofs that support the concepts of

SRT, which justify the main postulate c ¼ constant. However, none of the

experimental proofs for the validity of the special relativity concepts have led to

the fundamental postulate c ¼ constant being accepted as a physical law. It still

remains a postulate, that is, an assumption. It is a justified assumption for the

theory of special relativity, but still an assumption only [1–3].

It is worth mentioning here, that the factor

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðv2=c2

p
Þ

ð1Þ

which is essential in the theory of special relativity, is taken from the Lorentz

transformation, and has emerged as a result of the quest for vacuum properties or

more specifically, from the search for a connection between electromagnetism

and vacuum properties. Also, it has to be pointed out, that the main postulate for

the ultimate velocity of the traveling particles is connected with speed of light in

the vacuum. These two facts show clearly, that the whole SRT is based on a

supposition for existing of certain properties of the vacuum. All the performed

and observed experiments, which verify SRT, also verify the existence of the

supposed vacuum properties.

Vacuum properties that are directly connected with the propagation of light

in the vacuum are vacuum permeability, m0 ¼ 1:2566 � 10�6 m kg C�2, and

vacuum permittivity, e0 ¼ 8:8544 � 10�12 N�1 m�2 C2.

These magnitudes are defined by the observation of a charge traveling in the

vacuum. The photon has no charge; however, light has electromagnetic proper-

ties, and therefore these magnitudes determine the conditions for light propa-

gation in the vacuum.

According to the Maxwell equations, the velocity of light in the vacuum is

c ¼ 1ffiffiffiffiffiffiffiffiffiffi
m0 e0

p ð2Þ

This explicitly shows the connection between electromagnetic vacuum

properties and principles of special relativity.
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It is interesting that vacuum properties are determined and connected only by

the properties of charged particles, and consequently only the properties of

charged particles determine the electromagnetic properties of the vacuum.

Particles that travel through the vacuum have another important property: mass.

However, this property and its magnitude are completely neglected. Our position

is that the vacuum should have properties, that are connected with the mass of

the particles, as well. A treatise on quantum mass theory (QMT) [4] elaborates

on such properties of the vacuum.

The main supposition of the superluminal relativity theory (SLRT) presented

here (see also Ref. 5) is that besides the vacuum properties covered by the

special relativity theory (SRT) and corresponding observed phenomena, there

exist some other vacuum properties as well, which are additional to the first

ones, but that allow the possibility for v > c.

For the region of the space, where vacuum properties allow v > c, SRT

concepts will be extended by modifying the main factor g in to g0 [5]. According

to this, the assumption for v < c, and all the consequences of that in SRT are valid

only in the range of the spacetime where certain vacuum properties prevail,

while, in the region of the spacetime where some other vacuum properties are

dominant, v > c should be possible. This will have important consequences for

the main physical laws, that is, conservation laws. The starting assumption in

this work is that conservation laws are preserved in this new frame of reference.

One of the main tasks in Ref. 5 is to formulate one of the most important

laws in physics, the energy conservation law, in a spacetime where v > c is

possible, and to find the connection between two regions of the space, where

different vacuum properties prevail. The other main task is to find the magni-

tudes, which will determine the vacuum properties of this new region of the

spacetime.

The results of the analysis justify the validity of these newly offered

hypotheses and suggest performing experiments, which will support the theory

and analysis presented. In the last section of this work, the analysis based on the

SLRT is presented, which explains experimentally observed superluminal

effects [6,7]. Among the other proofs for the validity of SLRT, this could be

considered as a direct proof for the main concepts of this theory.

The new proposed deuteron model is founded on the principles of SLRT and

QMT. In Ref. 4, where QMT is presented, it is shown that, if the electron in the

hydrogen atom is excited to the state of the potential quantum number, n ¼ 794

then, the electron turns into a positron. The consequence is very unusual; the

hydrogen atom turns into a system of one proton and one positron, which is

undoubtedly a very odd example of CP violation. This has been obtained as a

result of theoretical analysis based on the QMT principles. If this is experimen-

tally proved, then atoms with very unusual physical characteristics will certainly

be obtained, and a rather exotic regime of matter could be expected.
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It is worthwhile mentioning here the reports for existence of hydrogen-like

atoms, besides hydrogen itself [8,9]: positronium (Ps)—composition of eþ e�

muonium (Mu)—composition of mþe�; m-mesohydrogen—composition of pm�,

and p-mesohydrogen—composition of pp�. It is obvious that all these rather

new atoms are made up of one positively charged particle and one negatively

charged particle, while the hypothetical proton–positron system is supposed to be

made up of two positively charged particles. That is the reason why this system

would be the example of very odd CP violation, according to the current theories.

In the SLRT presented here, a new proposed concept for charge conjugation–

parity (CP) conservation, offers an alternative approach to the cases of CP violation.

According to the hereby used theory of superluminal relativity [5], nuclear

forces are explained by Newton’s gravitational law and Einstein’s general

theory of relativity [10], with the gravitational constant defined and determined

by the quantum mass theory [4], for masses and distances characteristic for

nuclear structures.

The results of the analysis based on SLRT give a new insight into nuclear

forces and structures and offer explanation of superluminal effects.

II. THE THEORY OF SUPERLUMINAL RELATIVITY

A. Principles of Superluminal Relativity

The theory of superluminal relativity is based on the following principles [5]:

Principle 1. The laws of physics must be of such a nature that they apply to

reference systems in any kind of motion relative to the mass distribution

of the Universe; that is, the laws of nature are the same for all free-moving

observers independent of their velocity.

Principle 2. The presence of bodies in general has influence in spacetime

continuity.

Principle 3. There is equivalency between particles’ masses and energies.

Principle 4. The speed of light in a vacuum relative to an observer is not

constant; thus c 6¼ constant. The speed of light in a certain region of

spacetime depends on the vacuum properties, which prevail in that region.

If the electromagnetic properties are dominant, the speed of light is c ¼
constant. If the mass properties of the particles and bodies in general, are

dominant in the vacuum of a certain region of spacetime, then the speed of

the light is c0 6¼ c:

Principle 5. The speed of the particles can be larger than the speed of light in

the vacuum described by the principle 4, that is, v > c.

Principle 6. The real magnitudes in the frame of reference S0 with relative

velocity, v > c to the frame of reference S, are virtual magnitudes for the
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observer O in the frame of reference S. There is a constant Mc that

connects the magnitudes of these two frames of reference, S0 and S, and

that determines the region of the spacetime where the mass properties of

the vacuum prevail. The virtual magnitudes in the system S, which the

constant Mc turns into the real ones, satisfies principle 1; that is, the

energy conservation law is preserved.

B. Superluminal Transformation

In Einstein’s special theory of relativity [1,2], the Galilean transformation had to

be replaced by the Lorentz transformation, so that the speed of light would be

invariant or independent of the relative motion of the observers—in particular,

because the assumption t0 ¼ t is no longer correct. In the Lorentz transformation

the time is t0 6¼ t.

Since we have made another, also fundamental assumption v > c, it is

necessary to determine the corresponding transformation [5].

Figure 1 shows two coordinates systems, S and S0, where the axes YZ and

Y 0Z 0 are parallel and axes X and X0 coincide and point in the direction of their

relative motion. We shall assume that both observers, that is, in O and O0, set

their clocks so that it is t ¼ t0 ¼ 0 when they start to observe the mutual motion

of their systems [5].

S ′

0 ′

A ′  

X ′

X

0

Z   ′ Z

Vt x

x  ′

Y  ′
V > C

V

V < C
Y

S

A (x,y,z )

(x ′,y ′,z ′)

Figure 1. The frames of reference S and S0 in relative translational motion. In the frame of

reference S, Lorentz transformation and special relativity principles are valid. In the frame of

reference S0, superluminal transformation and SLRT principles are valid.
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As is shown in Fig. 1, the system S0 is approaching the system S with relative

speed, v > c. Let us assume that, at time t ¼ t0 ¼ 0, a flash of light with speed c

is emitted from the origin O in the system S, toward the point A0, and

simultaneously a flash of light with speed c0 is emitted from the origin O0 in the

same direction of propagation with the light from the origin O [5]. The observer

at point A0 will detect simultaneously both light signals only if c0 > c.

Superluminal transformation equations, which connect these two frames of

references S0 and S, are [5]

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

v2

r
ðx þ vtÞ ð3Þ

y0 ¼ y ð4Þ
z0 ¼ z ð5Þ

t0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2=v2

q t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðv2 � c2Þ

v4

r
x

" #
ð6Þ

The factor of superluminal transformation is

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

v2

r
ð7Þ

The superluminal transformation in its essence is Lorentz transformation

modified for assumption of possibility v > c.

C. The Basic Superluminal Effects

Two curves are shown in Fig. 2, one for the function g0 ¼ f ðc=vÞ from SLRT, and

the other one, for the function g ¼ f ðv=cÞ from SRT [5]. In fact, these two curves

1.0 0.8 0.6 0.4 0.2
c
v

v
c

1.00.80.60.40.20

0 0

v 2
c 21 −γ  ′ =

v > c v < c

1

2

3

4

5 ∞
1

v 2

c 2
1 −

γ =

Figure 2. Functions g0 ¼ f ðc=vÞ and g ¼ f ðv=cÞ with common ordinate and common O points

of the axes.
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form one curve that starts from g0 ¼ 0 and reaches g ¼ 1. The resultant curve

formed by g and g0 shows that SRT covers the phenomena, which are taking

place in the frame of reference where v < c is possible only, and SLRT covers the

phenomena taking place in the frame of reference where v > c is possible.

Hence, these two theories—SRT and SLRT—do not exclude each other (i.e., are

not mutually exclusive); on the contrary, they together form a consistent system.

This is accomplished by including the concepts of the general relativity theory

(GRT) in the SLRT.

In Table I, for comparison, we present consequences of Lorentz transforma-

tion in SRT, and superluminal transformation, used in SLRT. According to the

data in this table, when a particle travels with v > c, the superluminal effects

are opposite the effects expressed by SRT.

In SRT there is length contraction, while in SLRT there is length dilation of

the particle in motion with corresponding velocities. In SRT there is time dilation,

while in SLRT there is time contraction of the processes, which are taking place

in corresponding frame of reference. In SRT mass of the particle increases with

its acceleration, while in SLRT mass of the particle decreases with its accele-

ration, when it is in motion with v > c, and it is given by the expression [5]

m ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

v2

r
ð8Þ

where m0 is the rest mass of the particle.

Total energy of the particle in SRT is the sum of the rest energy and the

kinetic energy of the particle, while in SLRT, the total energy of the particle in

motion with v > c, is [5]

Et ¼ E0 � Ek ð9Þ

where E0 is the rest energy of the particle, and [5]

Ek ¼ m0c2 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

v2

r !
ð10Þ

TABLE I

The Consequences of Lorentz and Superluminal Transformation

Lorentz Transformation (v < c) Superluminal Transformation (v > c)

Length contraction: Lmotion < Lrest Length dilation: Lmotion > Lrest

Time dilation: Tmotion > Trest Time contraction: Tmotion < Trest

mmotion > mrest mmotion < mrest

Etotal ¼ Erest þ Ekin Etotal ¼ Erest � Ekin
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The magnitude Ek, which is labeled as kinetic energy is in fact the released

energy from the particle in motion with v > c, and is equivalent to the loss of

the particle’s mass.

Here we have shown the basic superluminal effects, but in the following

sections we shall elaborate on more complex superluminal effects.

III. THE SUPERLUMINAL EFFECTS
IN NUCLEAR STRUCTURES

In Ref. 5 the author proposed a new deuteron structure model (Fig. 3), where the

deuteron is comprehended as the p � n system with two mesons in the nuclear

structure, which take part in the binding energy and in the formation of nuclear

forces. The results of the analysis show that all the participating objects in the

deuteron, that is, two nucleons and two mesons, are rotating in a circle with the

same radius.

The proton and neutron are rotating with same peripheral velocity v2 ¼
4:53 � 108 m/s, and the peripheral velocity of muons is v1 ¼ vm ¼ 3:96 � 108 m/s.

Muons are rotating in the same circle with protons and neutrons, but with

opposite direction. Each muon is emitted from one of the nucleons and is

absorbed by the other one.

These are superluminal effects in nuclear structure, which are verified by

very good accordance between computed and observed values of two important

magnitudes of this nucleus: the binding energy and the magnetic moment.

The deuteron binding energy is [11,12]

Ed ¼ 2:22 MeV ð11Þ

np
mn′mp′

v2

vµ

vµ

mµn

mµp

µ+

µ−

v2

rd = 4   10−15 m

cm 

.

Figure 3. The new model of deuteron structure with proton, neutron, m� and mþ.
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and the computed value obtained by SLRT analysis is

Ed ¼ 2:23 MeV ð12Þ

with accordance of 0.5%.

The observed value of deuteron magnetic moment is

md ¼ 0:8734 nm ð13Þ

and the computed value obtained by SLRT analysis is1

md ¼ 0:87339 nm ð14Þ

with accordance of 0.001%.

Because both versions, which have been elaborated on in Ref. 5—one with

muons and the other with pions—give almost identically good results of the

analysis, the question arises as to which version prevails, and what arguments

may help us reach such a conclusion. The important thing is that the new

deuteron model proposed here implies the participation of mesons in the

deuteron structure. Whether they are m mesons, that is muons, or p mesons, that

is, pions, does not have any influence at all on any of the main computed magni-

tudes, which characterize the new deuteron model. What is really important is

the fact that the newly proposed deuteron model offers a completely new insight

into nuclear forces and nuclear structures in general.

We do not find it productive to involve our analysis into further speculations

that will include the decay processes of muons and pions, and their mean lives

in order to find out which version is more acceptable, that with muons or with

pions. It is well known that the muon’s mean life changes as a function of its

velocity; however, there are no data regarding what happens with decay

processes with particles that reach velocities v > c [11].

However, the results obtained for de Broglie waves of the particles in the

deuteron nucleus are in favor of presence of muons rather than pions, in the

deuteron. The reason for this conclusion is that there is resonance between a

nucleon’s and a muon’s de Broglie waves [5], which would not be the case if

pions were taken as participating objects in the deuteron.2

We hope that this question, among the others that arise from all the analysis

presented, will be an inspiration for further investigation based on the newly

presented ideas for nuclear forces and structures and that it will lead to new

types of experiments.

1Computation of deuteron magnitudes by hadronic mechanics is presented in Ref. 13.
2The possibility for resonance between photons with de Broglie waves of the particles is elaborated

on in Refs. 4 and 14.
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IV. SPACETIME CURVATURE AROUND NUCLEONS

A. The General Theory of Relativity

In 1916, Einstein published his work ‘‘The fundamentals of general relativity’’

[10], 11 years after he published his theory of special relativity [1,2]. Later, in

1954, he published a work to explain the differences and connections between

special and general relativity [15]. In this work he gives the exact formulation of

general relativity, with the following two postulates:

1. The laws of physics must be of such a nature that they apply to reference

systems, in any kind of motion, relative to the mass distribution of the

universe.

2. The principle of equivalence, where all bodies at the same place in a

gravitational field experience the same acceleration.3

Both postulates are adopted in the theory of superluminal relativity [5].

According to Einstein, instead of a referent body, the Gaussian coordinate

system should be used. Einstein states that ‘‘To the fundamental idea of the

principle of general relativity corresponds the next statement: All Gaussian

coordinate systems are equally valid for formulations of the general laws of

nature’’ [15].

Furthermore, Einstein states:

SRT is valid for Galilean ranges, which means for ones, where a gravitational field

is absent. The Galilean reference body is used as a reference body, that is the same

rigid body with such a chosen state of motion relative to it, so that the Galilean

postulate for uniform, straight-line motion of an individual material, is valid.

However, in gravitational fields there are no rigid bodies with Euclidean properties;

the notion of rigid referent bodies has no application in the GRT. The gravitational

fields influence the work of the clocks in such a way that physical definition of

time strictly by the clock is no longer so evident as in the SRT [15].

This is the main reason why the Gaussian four-dimensional system is more

convenient for the GRT, and consequently, the laws of nature should not be

dependent on the chosen frame of reference. This is exactly what is proven by

the theory of superluminal relativity [5].

The first postulate of general relativity, and Einstein’s explanation of it, is

very important for the superluminal relativity.

In contrast to the SRT concept that the presence of any kind of bodies does

not influence the properties of space and time, GRT demands that bodies influence

spacetime and one another. Reference 5 elaborates on spacetime curvature

3More recent evidence indicates that there is a nonlinear relationship; however, we are too close and

the relative mass that we can test is too small for us to observe.
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(STC) in GRT and predicts the possibility for existence of STC around nucleons

and atoms by using SLRT. Reference 16 elaborates on the STC around nucleons.

The consequences of STC in electrodynamics are elaborated on in Refs. 17–23.

In particular, the prediction by a validation of GRT that a beam of light will

bend in the presence of a gravitation field is of interest here. The speed of light

in the gravitational field is [10]

c0 � c 1 � 2Gm

rc2

	 

ð15Þ

where

G ¼ 6:67 � 10�11 N m2 kg�2 ð16Þ

is the gravitational constant, m is mass of the sun, r is the shortest distance

between the light’s path and the center of the sun, and c is the speed of light in

vacuum. The deflection of the light from its direction propagation is given by

Ref. 10 as

as ¼
4Gm

rc2
ð17Þ

In this case, Einstein computed that light from a certain star passing close to the

sun’s surface would be deflected by the sun’s local spacetime curvature by a

factor of 1.7 seconds of arc, that is, as ¼ 1:700. The effect of STC near massive

bodies was verified during the eclipse of the sun in 1919 when the following

values were measured: as ¼ 0:800 and as ¼ 1:800 [10,24,25].

According to Einstein’s explanation, half of this deflection is caused by the

mass interaction between the sun and the passing photons of the light, and half

of it is by the spacetime curvature [10,24,25].

B. Quantum Gravity

Quantization of the gravitation field is applied in the following analysis requiring

a brief description of quantum gravity. There is incompatibility between GRT

and SRT. Misner et al. [26] note that the question of SRT constantly assumes the

absence of gravitational fields, which makes SRT contrary to our reality. Gravity

is ignored in the SRT because of the difficulties that the gravitational fields

presented on the foundations of SRT at the time of its development. After meeting

these difficulties, one can appreciate the STC methods that Einstein introduced to

overcome them [10].

According to Hawking and Rocek [27], GRT has its own shortcomings. They

state that the Newtonian theory of gravity is very successful in predicting
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planetary and stellar orbits, but because it implied that gravitational effects

propagate with instant velocity, it was incompatible with the local validity of

SRT. This difficulty was overcome in 1916 with the formulation of GRT in

which the gravitational field was represented using STC. Since that time, the

predictions of GRT have been found in excellent agreement with observations.

However, GRT is incomplete in at least two ways: (1) it doesn’t relate gravity to

interactions and matter fields that occur in physical theories, and (2) it is a

purely classical theory, whereas all other fields seem to be quantized [27–29].4

The necessity to quantize the gravitational field has become more urgent, as

the inevitable result of GRT’s classical treatment is spacetime singularities [27].

Many theories have been developed to show how to quantize the gravitational

field, but to briefly show ‘‘the necessity to quantize the gravitational field,’’ we

will consider how Unrich [28] tackles the problem. The fundamental equation

of GRT is

Gmn ¼ 8phTmni ð18Þ

Choosing units so that G equals h equals c equals 1. The left-hand side of this

equation represents the geometry of spacetime, while the right-hand side is depe-

ndent on the rest of the matter of the universe. The left-hand side is ‘‘classical,’’

and an ordinary function of the spacetime points, while the right-hand side is a

quantity, which depends on quantum operators. Thus the two sides are different

and cannot be set equal to one another [28]. Isham [29] prefers to write Eq. (18)

in the following form:

Gmn ¼ Tmnðmatter; gÞ ð19Þ

However, Isham found this treatment also to be inadequate and presented the

following modification:

Gmn ¼ hTmnðmatter; gÞi ð20Þ

Here the h i, denotes the expectation value of the quantized system in some

suitable state [28,29].

So far both Unrich and Isham have the same approach to the quantization of

the gravitational field, which leads to the conclusion that the ‘‘gravitational field

should be introduced as a dynamical variable rather than as a fixed background’’

[4,28,29].

4Note that in Part 1 (11th chapter) of this compilation (Vol. 119) Dr. Sachs has submitted a

reformulation of GRT that does relate field theories of gravity and is not prone to singularities.

However, although this work takes a quantization approach, we do not see this work as a violation of

GRT, but an agreement.
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Instead of the symbol h i, which denotes only ‘‘the expectation value of the

quantized system in some suitable state’’ can be obtained [29], we introduce,

using Ref. 5, that quantization of the gravity of proton-neutron system is

achieved, by obtaining numerical values for gravitational magnitude G0
n. By

this modification of G0
n, ‘‘gravitational field is now introduced as a dynamic

variable rather than as a fixed background,’’ in agreement with Unrich [28].

The concept that quantization of gravity can be achieved if the gravitational

field is introduced as a dynamic variable [28,29], is applied in the QMT [4] and

in the SLRT [5]. Using the references to QMT and SLRT, spacetime can be

divided into three generalized ranges with different vacuum structures:

1. The range determined by r < lce, where the close proximity of the

nucleons and their spacetime curvature affects the local gravitation

attractive force, making G0
n ¼ f ðnÞ valid.

2. The range determined by Qr0 > r > lce, where antigravitational, or

repulsive, force develops as a result of the influence of the nucleus with

electrons, making G0 valid.

3. The range determined by r > Qr0, returns us to the familiar form of the

gravitational attractive force that exists between atoms and molecules.

This range is beyond the effect of local spacetime curvature on G caused

by the nucleons.

Here, r is distance from the center of the observed mass, lce is the Compton

wavelength of the electron, r0 is the Bohr radius for the hydrogen atom, and Q is

an integer larger than n, where n ¼ 5 is the quantum number of the last electron

shell.

The primary assumption in QMT [4] is that an antigravitational force exists

that is equal to Coulomb’s attractive force

jFmj ¼ jFej ð21Þ

where Fm is antigravitational force and Fe is Coulomb’s attractive force, between

electron and proton, when they are on the ground energy level, for n ¼ 1 in

hydrogen atom.

Equation (21) yields [4]5

G0 ¼ 1:49 � 1029 N m2 kg�2 ð22Þ

In the analyses presented, the STC method is used to support the concept for new

comprehension of nuclear forces and structures offered in Ref. 5.

5An erroneous value of G0 is given in Ref. 4 [in Eq. (55), on p. 23], which may confuse the readers.
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C. Energy Levels in the Superluminal Frame
of Reference, Where v > c

According to the second assumption of the SLRT [5], the vacuum properties of

the spacetime determined by the boundaries lce and lcp, influence the properties

of the nucleus, and consequently influence on the nuclear reactions as well,

where lce is electron Compton wavelength and lcp is proton Compton

wavelength [5].

The results of the analysis presented in Table II show that this spacetime can

be divided into six energy levels, which correspond to the six values of the

gravitational constant G0
n, determined by quantum number n, and to six distances

r. These energy levels are determined for a proton–neutron system [5].

In Table II, energy levels for two distances r5 ¼ 6:36 � 10�16 m and

r6 ¼ 1:417 � 10�16 m which are under the limit lcp are also presented. This

table covers six energy levels altogether. In Table II and positions of lce and lcp;
the proton radius rp, and the proton–neutron distance rd in the deuteron, are also

presented.

The values for G0
5 and G0

6 are computed for distances less than the radius of

the proton. The reason is that each nucleus and consequently each particle have

TABLE II

Six Spacetime Energy Levels Where v > c

Principal

Quantum Subquantum

Number n G0
nðNm2 kg�2Þ Number, l rðmÞ ak

lce ¼ 2:4262 � 10�12 a

0 G0 ¼ 1:49 � 1029 0 r0 ¼ 1:1688 � 10�12 34:1100

0.5 r0:5 ¼ 5:513 � 10�13 16:0800

1 G0
1 ¼ 3:314 � 1028 0 r1 ¼ 2:6 � 10�13 34:1100

0.7 r1:7 ¼ 9:08 � 10�14 21:7300

2 G0
2 ¼ 7:373 � 1027 0 r2 ¼ 5:78 � 10�14 34:1100

3 G0
3 ¼ 1:64 � 1027 0 r3 ¼ 1:28 � 10�14 34:1100

G0
d ¼ 4:6 � 1026 0.7 r3:7 ¼ 4:494 � 10�15 21:7300

rd ¼ 4:0 � 10�15 b

4 G0
4 ¼ 3:64 � 1026 0 r4 ¼ 2:86 � 10�15 34:1100

0.5 r4:5 ¼ 1:35 � 10�15 16:0800

lcp ¼ 1:32 � 10�15 c

r ¼ 8:13 � 10�16 d

5 G0
5 ¼ 8:12 � 1025 0 r5 ¼ 6:37 � 10�16 34:1100

6 G0
6 ¼ 1:80 � 1025 0 r6 ¼ 1:41 � 10�16 34:1100

aElectron Compton wavelength.
bDistance between nucleons in deuteron.
cProton Compton wavelength.
dProton radius.
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surface thickness. We shall cite deShalit and Feshbach here—because the

nuclear density nor the particle density change abruptly from their nominal

values to zero outside the nucleus and particle, there is a finite region called the

nuclear surface or particle surface. The width of that region labeled s is defined

to be the distance over which the density drops from 0.9 of its value at r ¼
0–0.1 of that value. Empirically s is a constant, that is, s ¼ 2:4 fm [11,12].

Hence, we have computed G0
5 and G0

6 for distances, which go slightly

beneath the surface thickness of the proton.

The values of the gravitational constants are determined by the expression [5]

G0
n ¼ G0

ð4:495Þn ð23Þ

where n is an integer from 1 to 6, and could be considered as the principal

quantum number for this system. The latter equation can be expressed by the fine

structure constant a

G0
n � G0

1=30að Þn ð24Þ

where G0 ¼ 1:49 � 1029 N m2 kg�2. The value of G0 is determined in Ref. 4. The

fine structure constant is

a ¼ 2pe

hc
ð25Þ

which describes the coupling of any elementary particle carrying the elementary

charge e to the electromagnetic field and h is Planck’s constant.

Hence, we may introduce the fine structure constant for nuclear systems, in

this case for the proton–neutron system. This constant could be considered as a

magnitude that expresses properties of the proton–neutron system and the

surrounding space. This magnitude

a0 ¼ 1

30a
ð26Þ

is the nuclear fine-structure constant, which determines the structure of the

vacuum as a function of the principal quantum number n. It determines the energy

levels in the space determined by lce and lcp between the proton and the neutron.

Thus, Eq. (23) becomes

G0
n � G0

a0ð Þn ð27Þ
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The gravitational constant G0
n and its values given in Table II suggest the

possibility of the existence of a structure of the vacuum related to the

gravitational properties of the particles.

The distances rn, which correspond to certain gravitational constants G0
n, are

determined by either of the following equations:

rn ¼ r0

ð4:495Þn ð28Þ

rn ¼ r0

ða0Þn ð29Þ

D. Modified Einstein Equation for Deflection of Light
Near the Sun as Applied for Protons

Einstein’s equation for deflection of light near the sun is modified for nucleon, in

our case for proton, when the gravitational constant G in Eq. (17) is substituted,

according to Eq. (27), by the gravitational constant

G0
n � G

ða0Þn

The values of this constant for quantum numbers from n ¼ 0 to n ¼ 6 are

presented in Table II. Then Eq. (17) becomes [5]

ak ¼
4G0

nmp

rkc2
ð30Þ

where ak is the angle of deflection for light near the proton, for the closest

distance of light’s path from the center of the proton, which corresponds to the

total quantum number k; mp is proton mass; c is speed of light in vacuum; and

rk is the shortest distance between the light’s path and the center of the proton,

determined by the expression

rk ¼
r0

ð4:495Þk
ð31Þ

where k ¼ n þ l is the total quantum number, n is principal quantum number, and

l is subquantum number with the values 0, 0.1, 0.2, 0.3, . . . , 0.8, 0.9.

Before we use Eq. (30) to determine the deflection angles of the light near the

proton in the range lce–lcp; it is necessary to find out how this equation can be

applied for distances r > lce, where gravitational constant G0 is valid.
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For the metric space determined by the distances Qr0 > rp > lce, the

gravitational constant is G0 ¼ 1:49 � 1029 N m2 kg�2; thus, Eq. (30) becomes

ap ¼ 4G0mp

rpc2
ð32Þ

where rp is the shortest distance of the light’s path from the center of the proton in

the range determined above.

Figure 4 shows the curve of the light’s deflection angles for characteristic

distances from the center of the proton: r0; lce; 0:1r0 and r0, where r0 is the Bohr

radius in the hydrogen atom. The curve shows that for distance r0 the angle of

light deflection is approaching zero. It is worth mentioning that r0 here has a

new meaning. The Bohr radius in hydrogen atom is actually the distance from

the center of the proton where the curved spacetime ends.

Now, we will continue the analyses by applying Eq. (30) in the range lce–

lcp, where vacuum properties are quantized and gravitational constant is turning

into a gravitational magnitude with values determined by the principal quantum

number n.

For l ¼ 0; k ¼ n ¼ 0 the Eq. (30) becomes

a0 ¼ 4G0mp

r0c2
ð33Þ

r  ′
1.1 ′ ′

8.0 ′ ′

16.4 ′ ′

34.11 ′ ′

λce 0.1 r0 r0 rp

αp

Figure 4. Presentation of the function ap ¼ f ðrpÞ for rp > r0 ¼ 1:1688 � 10�13 m.
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Table II shows that ak, for the values of k, from n ¼ 0 to n ¼ 6, with l ¼ 0, has

the same value:

ak ¼ a0 ¼ 34:1100ðarcsecondsÞ ð34Þ

The ratio between this angle of light deflection ak near the surface of the proton

and the angle of light deflection near the surface of the sun, as is

Ka ¼
ak

as

¼ 20:064 ð35Þ

This equation (35) shows that light, passing near the proton’s surface, has angle

of deflection 20 times the angle of deflection of the light passing near the sun.

Determining the angle of light deflection near the proton could be considered

as a new method for determining the vacuum properties and presence of mass,

which could be experimentally verified and will be discussed later on. By using

this method we shall determine the angles of the light’s deflection near the

proton, in the metric space determined by the total quantum number k. Figure 5a

shows the curve ak ¼ f ðkÞ. Figure 5b is a 3D presentation of Fig. 5a. The sphere

at the center of the 3D diagram represents the proton out of the scale of

proportion.

The curve in the Fig. 5a shows the periodic nature of the STC around a

proton. It is important to emphasize that the gravitational magnitude G0
n is valid

for distances corresponding to the quantum numbers from k ¼ n to k ¼
ðn � 1Þ þ l, where l 6¼ 0.

By using this method it will be shown that the STC expresses distribution of

the intrinsic vacuum energy [5], and in Section V it will be used to explain the

phenomena of superluminal effects in an experiment with cesium atomic gas

[6,7].

It is possible to choose any particular distance between the light’s path and

the center of the proton, in the range of lce–lcp, in order to explore the energy

distribution in the STC. The light, that is, individual photons, can be used as a

kind of probe for detecting the energy distribution in the STC. Besides the

photons in the visible range, X and gamma rays can be used.

In Table II values for ak are presented for distances that correspond to k ¼ n

and for distances corresponding to k ¼ n þ l when G0
n is valid for distances

corresponding to k ¼ n and k ¼ ðn � 1Þ þ l, when l 6¼ 0.

Figure 6a presents the values of ak for chosen distances and presents a curve,

that is formed by extreme values of ak. Fig. 6b is a 3D presentation of periodical

function of ak ¼ f ðkÞ from Figure 6a. The sphere at the center of the 3D

diagram represents the proton with exaggerated scale and proportion.

The curve presented in the Fig. 6a should be considered periodic because it

represents the vacuum properties of non-Euclidean spacetime. Here the axes of
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αk

(a)

(b)

Figure 5. (a) Presentation of the curve ak ¼ f ðkÞ; (b) 3D presentation of part (a). The sphere at

the center of the 3D diagram represents the proton in out-of-scale proportion.
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(b)

Figure 6. (a) Presentation of ak ¼ f ðkÞ for chosen distances determined by l. (b) 3D

presentation of the periodic function ak ¼ f ðkÞ from part (a). The sphere at the center of the 3D

diagram represents the proton in out-of-scale proportion.
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the coordinate system are straight lines, while in non-Euclidean spacetime there

are no straight lines. This figure actually shows that STC around a proton has a

complex nature. This is so because it is not possible for non-Euclidean figures to

be presented by Euclidean geometry, which is evident in Figs. 5a and 6a. Such

graphic presentations have to be taken conditionally. The wavelength of the

function presented in Fig. 6a is

lst ¼ 5:499 � 10�4 nm ð36Þ

The quantum of the energy associated with this wavelength is

Est ¼ 2:254 MeV ð37Þ

The binding energy of deuteron nucleus is

Ed ¼ 2:22 MeV ð38Þ

The accordance between these two values is 1.5%. This computation shows that

spacetime curvature around a proton is characterized by the wavelength lst and

energy Est.

The region of spacetime curvature around proton, which is covered by this

computation, is determined by the total quantum numbers from k ¼ 0 to k ¼ 6.

The result shows that this region has potential energy of the order of MeV. The

proton-neutron system, which creates deuteron, is in the energy level

determined by the total quantum number k ¼ 3 while the binding energy of

this nucleus is 2.23 MeV.

The analysis presented above shows that the value of the deuteron’s binding

energy computed by the magnitudes, which characterize the spacetime

curvature around proton, has excellent accordance with experimentally obse-

rved values. Therefore, it is justified to consider these results as experimentally

verified, what proves that the spacetime curvature around proton exists.

The structure of the vacuum, determined by the gravitational field around

the sun, depends on the constellation of the planets and the sun itself, which

form the solar system. The main magnitude, which expresses this gravitatio-

nal field, is the gravitational constant G: In the same manner, the vacuum

structure determined by the gravitational fields around the proton depends

on the proton itself and on the particles around it. In our case the vacuum

structure was determined for two-particle system, that is, proton-neutron

system. When the distance between these two nucleons is rd ¼ 4:0 � 10�15 m,

they form the deuteron. The space between these two particles in the region lce–

lcp has vacuum structure determined by the gravitational magnitude G0
n.
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The ratio between gravitational constants G0
n and G yields very interesting

equation,

G0
n

G
¼ Ka

m � rpn

mp � r
ð39Þ

In this equation gravitational magnitudes G0
n and G, which represent correspond-

ing vacuum structures, are connected with masses of the sun (m) and the proton

(mp), and distances, where phenomena of light deflections are taking place. The

constant, which establishes this connection, is Ka, the ratio of angles of

deflections of the lights passing near the surfaces of the proton and the sun,

respectively.

The results of the analysis of the STC around a proton show that there is an

energy distribution around a proton as a result of vacuum structure and presence

of the mass in that vacuum.

Let us consider the possibility of an electron crossing the threshold deter-

mined by r0 and entering the STC region determined by lce–lcp. In such a case

there will be a possibility for the electron to fall into one of the energy holes of

the STC. The hydrogen atom with an electron in such a position will exhibit

some exotic properties and certainly will be an unstable system. Because it is an

unstable system, such an atom will eject the electron. The ejected electron will

have an energy that is an order of MeV, corresponding to the energy hole of the

STC, from which the electron was ejected. An electron can have such an

amount of energy only if it moves with superluminal velocity [5]. This is

superluminal effect caused by STC around atoms. This electron will produce an

electromagnetic field, which corresponds to the energy of the electron.

The process of proton–electron interaction in the STC, described here is in

fact interaction between their masses, but the outcome of that interaction is the

production of the electromagnetic field. This hypothetical process shows a

direct connection between the phenomena covered by the theory of general

relativity and electrodynamics phenomena [5,16,20,21].

V. WKD (WANG–KUZMICH–DOGARIU)
SUPERLUMINAL EFFECTS

The main assumption in SRT is that speed of any moving object cannot exceed

that of the light in vacuum (c) [1–3]. The authors of the experiment with

superluminal light propagation, L. J. Wang, A. Kuzmich, and A. Dogariu

(WKD), have declared: ‘‘The group velocity of a laser pulse in this region

exceeds c . . .’’ [6,7]. The authors explain superluminal light propagation in

cesium atomic cell by anomalous dispersion of light, which is defined by group

velocity index ng ¼ n þ nðdn=dnÞ < 1 and by group velocity Vg ¼ c=ng > c.
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For frequency n ¼ 3:5 � 1014 Hz and for narrow frequency region of

�n ¼ 1:9 MHz, the group-velocity index has the value ng ¼ �330ð�30Þ in

the example presented in Refs. 6 and 7. In the cited references the group velocity

Vg, is not computed. This is crucial magnitude in anomalous dispersion because

if Vg > c, then the consequence is superluminal light propagation. However, for

this example Vg ¼ �9:09 � 105 m/s or Vg < c. The conclusion is that there is no

superluminal light propagation, which is opposite to the observed phenomenon.

Therefore there is no consistency between experimentally observed results and

the theory presented in the same references [6,7], used to explain this

phenomenon.

The presented analysis is based on the SLRT concepts [5], and the results

show that Vg > c for discussed example and for many others in the visible

spectrum of light. This provides theoretical verification of the observed

superluminal light propagation in WKD experiment [30].

In Refs. 6 and 7 the authors declare:

It has been mistakenly reported that we have observed a light pulse’s group

velocity exceeding by a factor of 300. This is erroneous. In the experiment, the

light pulse emerges on the far side of the atomic cell sooner than it had traveled

through the same thickness in vacuum by a time difference that is 310 folds of the

vacuum transit time.

In our approach we shall assume that, cs ¼ 310c ¼ 9:3 � 1010 m/s. If we take

that an electron in cesium atomic cell is in motion with velocity cs, Eq. (10), for

this electron yields Eek ¼ Ereleased ¼ 2:7 eV. Using the expression Eek ¼ hn, the

frequency that corresponds to this quantum of energy is n ¼ 6:56 � 1114 Hz.

There are two wavelengths, which correspond to this frequency. One is in the

SRT frame of reference, lb ¼ c=n ¼ 457:13 nm, which is in the blue region of

the visible spectrum of light. The other one, in the SLRT frame of reference

ls ¼ cs=n ¼ 1:417 � 105 nm, is in the range of electromagnetic waves, known as

medium radiofrequencies [30].

The results obtained, which show that the same electron can emit photons

with wavelength lb in SRT, and electromagnetic waves with ls in SLRT, suggest

the existence of anomalous dispersion of light in cesium cell. These results,

together with the results of further analysis, show that anomalous dispersion is

consequence of superluminal phenomena in cesium cell, not vice versa, as the

authors of the Refs. 6 and 7 claim.

By using Eq. (10) from the SLRT, for the released energy of the particle, in

this case, electron, in motion with cs > c, are obtained superluminal functions

presented in Fig. 7. In the graphic presentation of this figure, cs is superluminal

speed of the electron, and superluminal speed of propagation of electromagnetic

waves, ls is superluminal wavelength of electromagnetic waves, ns is

superluminal refractive index, and n is the frequency of the photons from the

visible spectrum of the light, incident to cesium cell.
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We shall use the superluminal functions from the Fig. 7 to compute Vg for the

example given in the Refs. 6 and 7. If the frequency range is determined by the

frequency from the example n ¼ 3:5 � 1014 Hz and frequency n ¼ 3:75�
1014 Hz, the group velocity index is ngs ¼ 3:1 � 10�3. Then, for group velocity

is obtained Vgs ¼ 9:677 � 1010 m/s or Vgs ¼ 322:5c, which is Vgs > c The

consequence is superluminal propagation of light. Hence, by using the concepts

of SLRT we have shown that even for the same example from Refs. 6 and 7,

group velocity verifies that superluminal propagation of light in the cesium cell

is observed.

Using several other examples, which cover the whole visible spectrum of

light, for the mean value of group velocity we obtain �Vgs ¼ 9:65 � 1010 m/s, or
�Vgs ¼ 321:6c, which is 3.7% different from ‘‘a time difference that is 310 folds

of vacuum transit time’’ [30].

0 2

2

3

4

1

8 7 6 5 4 λ(102 nm)

λs

λs(105 nm)

cs

ns(10−3)cs(1010 m/s)

ns

ν(1014 Hz)

4.66

3.75 4.28 5 6 7.56.38

2.5

3

3.5

1

2

3

4

5

6

7

8

9

10

11

12

Figure 7. Presentation of superluminal functions cs ¼ f ðnÞ;ls ¼ f ðnÞ, and ns ¼ f ðnÞ, where n
are the frequencies from the visible spectrum of light.
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All this shows that the SLRT applied here is consistent with observed results

of the WKD superluminal experiment; therefore, this experiment should be

considered as a direct proof for the validity of SLRT.

The results of this analysis show that anomalous dispersion of light in a

cesium cell is a consequence of superluminal motion of electrons and

superluminal propagation of electromagnetic waves. The Feynman diagram,

presented in Fig. 8, is used in the analysis, to explain the phenomena that are

taking place in cesium atomic cell and that cause superluminal effects [30].

Besides the photon-electron interactions, it will be assumed that the main

phenomenon, that is taking place in the cesium cell, is an electron–cesium atom

interaction. This interaction is assumed to be the result of the existence of STC

around nucleons and atoms [5,16]. The momentum ~pSTC will express the

presence of STC around cesium atoms.

Vertex A. Electron with momentum ~pe1 interacts with a photon with

momentum ~pl1, from the visible spectrum of light. This interaction

produces an electron with momentum ~pel1.

Vertex B. Electron with momentum ~pel1 interacts with momentum ~pSTC. An

important assumption is made here. It has already been mentioned that in

Ref. 5 the possibility for existence of STC around nucleons and atoms is

predicted, and elaborated on in Ref. 16. It is assumed that in the electron–

cesium atom interactions, distortion of the STC around the atom is taking

place. As a result of this STC distortion, the momentum ~pSTC is created,

which is added to the electron momentum ~pel1. The resultant momentum

of the electron then will be ~pes ¼~pel1 þ~pSTC. As a result of STC

distortion, the electron will be in motion with faster than light speed in the

STC between cesium atoms. Hence, at the vertex B, the superluminal

process is taking place.

Vertex C. It was stated already before, that an electron with speed cs will

emit photon with wavelength ls � l1. That will happen at vertex C.
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Figure 8. The Feynman diagram presentation of superluminal processes in a cesium cell.
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Here, an energy transition of the electron will take place, and residual part

of this process will be an electron with momentum ~pe2 ¼~pe0. Hence, the

superluminal effects are taking place at vertices B and C. The possibility

of an electron at this vertex emitting a photon with ls � l1 shows that

anomalous dispersion in cesium cell is a result of superluminal processes,

not vice versa.

Vertex D. A photon with momentum ~pls interacts with an electron with

momentum ~pe3 ¼~pe1, and the result is an electron with momentum ~pel2,

which is capable of emitting a photon with wavelength l2 from the visible

spectrum of light.

Vertex E. At this vertex two possible processes may take place:

E1. The electron with momentum ~pel2 will emit photon with wavelength

l2 ¼ l1 ¼ lb ¼ 457:13 nm, which is from the visible spectrum of

light. According to Fig. 7, this is in the case when cs ¼ 310c ¼ 9:3�
1010 m/s. The residual part of this process will be an electron with

momentum ~pe4 ¼~pe3 ¼~pe1.

E2. If at point E the momentum ~pSTC is present again, then the whole

process described above will be repeated until the photon with

wavelength lb enters the material of the cesium cell’s wall. Hence, in

the cesium cell the chain of the abovementioned interactions will take

place. The photon with wavelength lb will leave the cell as a photon,

which propagates with speed c.

The results of the analysis presented here, based on the concepts of the theory of

superluminal relativity [5], show that in the superluminal experiment performed

by Wang et al. [6,7] the main phenomenon is distortion of curved spacetime [16]

around cesium atoms, which produces superluminal processes, and the final

effect is anomalous dispersion of light [30].

The final results of the analysis show that an electron can travel and electro-

magnetic waves can propagate in curved spacetime between cesium atoms,

which is faster than the speed of light in vacuum, which has been observed in

the WKD superluminal experiment [6,7,30].
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I. INTRODUCTION: EXTENDED RELATIVITY

The possible existence of faster-than-light objects has a long history, which,

since the early 1900s, can be traced back in pre-relativistic times) to J. J.

Thomson and A. Sommerfeld (see the excellent review in Ref. 1 by Recami for

a full historical account). After the advent of special relativity in 1905, light

speed (the speed of light) in vacuum was considered as the maximal causal

speed, as an upper limit for any velocity. Such a common belief lasted for about

half a century, when the problem of faster-than-light particles was reconsidered
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in a famous paper by Bilaniuk et al. [2]. G. Feinberg called such objects

tachyons (from the Greek word taw��&, meaning fast), whereas E. Recami

introduced the word bradyons (from brad��&, slow) to denote usual (slower-

than-light) particles [1]. After then, studies on phenomena occurring at

Superluminal [1,3] (v > c) velocities started again. In particular, basic con-

tributions were given by the Italian school on this subject, headed by E. Recami.

Its main fundamental result was the generalization of special relativity (SR) to

superluminal inertial frames [1,3], whence the term extended relativity (ER)

given to such a theoretical framework. Let us briefly review its main features

(we refer the reader to Refs. 1 and 3 for a detailed discussion).

Extended relativity (ER) simply follows from the two basic postulates of SR:

1. The principle of relativity

2. The homogeneity of spacetime and the isotropy of space

The existence of a (unique) invariant speed follows on a theoretical basis

from (2). Such a speed is identified experimentally with the light speed in

vacuum, c, which is a two-side limit speed, in the sense that one can approach it

either from below or from above. Particles can be thus bradyons, tachyons, or

photons, and it’s possible to define rest frames for the two first classes of objects.

The two principles imply (if one does not restrict oneself, a prior, to subluminal

velocities) that the fundamental square interval (i.e. the metric tensor)

ds2 ¼ gmndxmdxn ¼ c2dt2 � dx2 � dy2 � dz2 is invariant except for the sign. The

transformations that preserve also the metric sign are the usual, subluminal

Lorentz transformations (LT); those changing the metric sign are Superluminal

LTs. In two dimensions, the generalized Lorentz transformations (boosts) (valid

for �1 < u < þ1) were first introduced by Recami and one of the present

authors (RM), and read (b ¼ u=c) [1,3]

x00 ¼ � x0 � bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2
�� ��q

x0 ¼ � x � bx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2
�� ��q

8>>>><
>>>>:

ð1Þ

Superluminal LTs are somewhat more complicated in four dimensions–they

involve imaginary quantities in the components of four-vectors transverse to the

direction of relative motion, and suitable reinterpretation procedures [1]. Let us

stress that ER, besides being able of consistently describe tachyons and their

properties, has interesting implications even for standard (bradyon) physics [1,3].

The interest in superluminal processes has been revived, due to some new

experimental results (mainly based on electromagnetic wave propagation) that

provided incontrovertible evidence for motions occurring at faster-than-light
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speed [4,5]. It is just the aim of this review to present the results of these and of

other experiments, apparently pointing in the same direction.

Our review does not pretend to be either exhaustive or self-contained. It

is only aimed to briefly discussing the main experimental facts (most of

which have been found since 1991) whereby the physics of superluminal

phenomena—which was regarded until the mid-1990s or so by most physicists

as ’’a waste of time,’’ or worse—is becoming an exciting and promising reality.

Its main purpose is to acquaint the reader with such facts, by framing them in

the context of the ER, and to provide him with an essential bibliography.

The order of exposition is not casual, but reflects our own opinion on the

increasing relevance of the effects discussed. The organization is as follows. In

Section II, we discuss the observation of superluminal motions in astrophysical

objects. Section III is concerned with the upper bounds on neutrino mass, whose

square is systematically found to be negative, thus suggesting the possibility that

neutrinos are tachyons. In Section IV we review the evidence for superluminal

propagation of evanescent waves in both the microwave range and the optical

domain. Section V is devoted to the same evidence of superluminality found for

electromagnetic wave propagation in media with anomalous dispersion. In

Section VI we discuss the very important subject of superluminal X-shaped

waves, which have been experimentally detected both in acoustics and in optics.

The widely debated topics of causality violation possibly implied by the

observed superluminal motions is briefly considered in Section VII.

II. ASTROPHYSICAL SUPERLUMINAL EXPANSIONS

The astrophysical results concerning Superluminal phenomena are both the

oldest and the most uncertain ones. They date back to 1971, when apparent

faster-than-light expansions were first reported for the quasars 3C279 and 3C273

[6]. Since then, superluminal motions have been observed in many quasars (and

even a few galaxies) [6]. What is observed is that radio-emitting components in

the quasars or in the galactic nuclei (ejected from their central sources, probably

supermassive black holes) move away from each other with angular separation

rates that seem to correspond to Superluminal speeds. The main problem in the

interpretation of these data is related to the fact that they critically depend on the

distance of the observed source from earth. So such experimental reports have

given rise to a number of theoretical debates, concerning the real distance of

quasars and a possible noncosmological nature of their redshift [7]. However,

quite recently Superluminal motions have been observed for objects (‘‘micro-

quasars’’) in our own galaxy [8], and of course the estimated distances are less

uncertain for them.

A number of ‘‘orthodox’’ models (some of which quite complex!) have been

proposed in order to explain such apparent superluminal expansions (a brief
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account of the main ones can be found in Ref. 1). A description of the astro-

physical superluminal motions can of course, be given in terms of the tachyon

theory based on extended relativity [1,9]. One of the intriguing results of such

superluminal model is that only one faster-than light source is needed the

observed facts, since it can be shown that such a radiating source is actually

seen (after an initial phase of optical ‘‘boom,’’ analogous to the acoustic boom

produced by a supersonic aircraft) as splitted in two objects, receding from each

other with superluminal speed v > 2c [9]. We refer the reader to Refs. 1 and 9

for a detailed discussion.

At present, the majority of astrophysicists are in favor of the standard

interpretations. In fact, one is unable to give a definite answer to the question if

astrophysical ‘‘superluminal expansions’’ are superluminal, indeed [1].

III. ARE NEUTRINOS TACHYONS?

It is well known that the possibility of a nonzero neutrino mass (according to the

old hypothesis by Pontecorvo) has found some ground (although not yet

definite) support from solar neutrino experiments. The solar neutrino deficit

(with respect to theoretical estimates) is in fact explained on the basis of

neutrino oscillations, which can occur only if neutrinos are massive. What is

instead less known is that all the experiments that place bounds on the mass of

the electron neutrino ne and the muon neutrino nm find a negative value for the

squared neutrino mass, m2
n < 0 [10]. The orthodox explanation of this fact is

ascribing it to some systematic effect, such as the underestimation of energy

loss. Such results, find, of course, a straightforward explanation if one assumes

that neutrinos are tachyons. In ‘‘naive’’ tachyon theory, this corresponds to the

fact that a tachyon is assumed to carry an imaginary mass; in the tachyon theory

based on extended relativity, this is simply a consequence of the space-like

dispersion relation for tachyons [1,3]

E2 � p2c2 ¼ �m2c4 ð2Þ

For a detailed discussion of the theoretical and experimental implications of

tachyon neutrinos, we refer the reader to Refs. 11 and 1.

IV. PHOTON TUNNELING AND EVANESCENT WAVES

Tunneling of a particle through a potential barrier is a well-known quantum

effect, which finds many applications ranging from the tunnel diode to the

scanning tunneling microscope. Nevertheless, many controversies still exist on

the seemingly simple-sounding question of the time taken by a particle to tunnel.

We don’t want to enter into such a debate here (for which we refer the interested
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reader to Refs. 12–14), and only confine ourselves to quote that most of the

theoretical definitions of tunneling time do imply that the tunneling process is

superluminal. This is essentially related to the Hartman–Fletcher (HF) effect [15],

where the tunneling time is independent of the barrier width d for sufficiently

large d. The validity of the HF effect for all the mean (nonrelativistic) tunneling

times has been proved in Ref. 16.

A well-known optical analog of the quantum tunneling is provided by total

internal reflection. Consider two right-angle glass prisms, with their faces

corresponding to hypothenuse separated by a thin airgap of width d, and a light

wave incident on the first prism at an angle y > yc [where yc ¼ sin�1ð1=nÞ is

the critical angle of total reflection, if n > 1 is the refraction index of the glass].

Then, the wave is transmitted in the second prism, beyond the interface gap, only

in the form of an exponentially attenuated (evanescent) wave. This phenomenon

is formally analogous to the (one-dimensional) tunneling through a potential

barrier of height V0 and width d by a particle with energy E < V0 (see Fig. 1).

The analogy is rooted in the formal identity between the classical Helmholtz

equation describing electromagnetic wave propagation and the quantum

Schr�odinger equation for a particle. The general form of such an equation

can be written as

r2f þ k2ðrÞ f ¼ 0 ð3Þ

where f is any component of the electromagnetic field for the electromagnetic

case, or the wavefunction c in the quantum case, and the ‘‘wavevector’’ kðrÞ
depends on the (classical or quantum) case and on the specific problem

considered.

For a particle of mass m and energy E in a potential VðrÞ, the (time-

independent) Schrödinger equation reads

r2cþ 2m

�h2
E� VðrÞ½ �c ¼ 0 ð4Þ

so

k ¼ 1

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E� VðrÞ½ �

p
ð5Þ

In particular, for a uniform potential barrier of height V0 , inside the barrier k
becomes imaginary for E < V0.

For a monochromatic wave of frequency o in an inhomogeneous and

isotropic medium of refraction index nðrÞ, the electromagnetic field satisfies

Eq. (1) with k given by

kðrÞ ¼ nðrÞo
c

ð6Þ
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whereas in the case of the two-prism system, we have, inside the airgap

k ¼ o
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2sin2y

p
ð7Þ

Finally, for electromagnetic (EM) wave propagation in waveguides, it is

k ¼ n

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � o2

c

q
ð8Þ

where oc is the cutoff frequency of the waveguide.

The equations above are at the very basis of the particle–photon tunneling

analogy [17]. The condition E < V0 in the tunneling of a particle through a

potential barrier corresponds to an incident angle y > yc, for the total internal
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Figure 1. Analogy between total internal reflection and quantum tunneling: (a) two glass

prisms separated by an airgap; (b) its quantum barrier analog. (From Nimtz and Heitmann [5].)
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reflection, and to o < oc, for an evanescent mode in a waveguide. Therefore,

one expects on theoretical grounds that in such cases photon tunneling takes

place at superluminal speed. This is exactly what has been observed since 1992

by some experimental groups [18–24]. The observed speed is the group velocity

vg of the wavepacket, defined as usual by

vg ¼ do
dk

ð9Þ

(the phase velocity being given by vp ¼ c=n).

Superluminal photon tunneling has been observed in both the microwave

range [18–20] and in the optical domain [21–24] in experiments performed at

Cologne [18,19], Florence [20], Berkeley [21], Vienna [22], Orsay [23], and

Rennes [24]. Apart from the optical experiment with total internal reflection

[23] (in which, as seen before, the barrier is represented by the airgap between

the two prisms), two kinds of electromagnetic barriers have been used.

In the case of microwave propagation inside a (rectangular) waveguide, the

analogous of an uniform potential barrier for the photon can be implemented by

either reducing the cross section of its central part (Fig. 2a) or filling the guide

(of uniform cross section) with two dielectric media with refraction indexes n1,

n2, n1 > n2 (where the index 2 refers to the central part of the guide) (Fig. 2b).

Both kinds of undersized (i.e., under cutoff frequency) waveguides have been

used [18]. Another configuration utilized in such a class of experiments was a

double-barrier one, i.e a waveguide with two segments of undersized waveguide

of different lengths [19]. It was found in this case that the tunneling time does

not depend on the length of the two barriers (according to the HF effect), nor on

the length of the normal waveguide between them (i.e., in this intermediate

region the wave speed becomes infinite).

The second type of barrier is provided by a periodic dielectric multilayer (or

‘‘dielectric mirror’’) structure—a periodic stack of dielectric layers of alternating

media with two different refractive indices (Fig. 3a). By virtue of the analogy

between Eqs. (3) and (4), such a structure corresponds to the motion of an electron

in a periodic potential, described by a Kronig–Penney model. This yields forbidden

bandgaps, in which tunneling modes exist (Fig. 3b). This ‘‘photonic bandgap’’

type of barrier has been used, for instance, to study single-photon tunneling [21].

Still another type of evanescent wave has been considered by the Florence

group [20]. They worked with microwaves traveling in free space between two

horn antennas. The waves were observed to travel at subluminal speed if the

antennas faced each other.1 On the contrary, a superluminal propagation occurs

1The original aim of the Florence group was just to repeat the experiment by T. K. Ishii and G. C.

Giakos, who claimed in 1991 to have observed, by a similar device, superluminal propagation in free

space. Such an experiment was basically flawed by the confusion made by the authors between

phase and group velocity.
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if the receiver is placed perpendicular to the propagation direction. This is

because, due to the microwave diffraction out of the square aperture of the

launcher, ‘‘leaky’’ evanescent waves propagate in the shadow region (Fig. 4).

In other words, experiments tell us that evanescent (i.e., exponentially

decaying amplitude) waves of whatever type do propagate faster than light.

Needless to say, the prevision of superluminal speeds for evanescent waves

was made in the context of ER. It’s indeed a straightforward consequence of the

fact that an imaginary wavevector.2 corresponds to a space-like dispersion

relation [see Eq. (2)], and therefore to a tachyonic behavior [1,3].

n 1

n 1

n 2

Potential
Vc 2

Vc 1

b

(b)

(c)

(a)

Figure 2. Undersized waveguide used in

microwave tunneling experiments: (a) waveguide

with central reduced cross section; (b) waveguide

filled with two dielectrics with different refractive

indexes n1 > n2; (c) the same quantum potential

barrier corresponds to both configurations. (From

Nimtz and Heitmann [5].)

2This holds (at least formally) also for diffraction leaky waves (like those considered by the Florence

group), since diffracted waves can be thought of as evanescent waves with imaginary wavevectors,

which represent small departures from the propagation vector of the undiffracted principal wave.
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V. SUPERLUMINAL OPTICAL PROPAGATION IN MEDIA
WITH ANOMALOUS DISPERSION

The propagation of EM waves in a dispersive medium has been investigated

for a long time [25]. The group velocity of a wavepacket in such a medium is

given by

vg ¼ c

ng

ð10Þ

ω

ω 0

k

ω =

Midgap

Bandgap

1st Brillouin zone edge

kc
2

1
n 1

1
n 2

+

4n 1

λ 0 λ 0 λ 0 λ 0 λ 0 λ 0 λ 0

Input

y

x

Unit cell

a

• • • Output

4n 2 4n 1 4n 2 4n 1 4n 2 4n 1

(b)

(a)

Figure 3. Photonic bandgap: (a) periodic stack of dielectric layers of alternating media with

two different refractive indices; (b) the bandgap at the edge of the first Brillouin zone, which

provides the analog of the potential barrier in this case. (From Chiao and Steinberg [4].)
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where the group velocity index ng is defined as

ng ¼ nðoÞ þ o
dnðoÞ

do
ð11Þ

For normal dispersion, it is (dn=doÞ > 0, and n > 1, so that vg < vp < c.

However, in regions of anomalous dispersion, dn=do can become large and

negative, so that the group velocity can take superluminal, infinite, and even

negative values. In order to solve this problem, the accepted and widespread

belief (following Sommerfeld and Brillouin [25] is that the very concept of group

velocity breaks down in this case. However in 1970 it was shown that [26]

(contrary to the common belief on the basis of Ref. 25) the pulse remains

essentially undistorted even in regions of anomalous dispersion, and its velocity

is just the group velocity, which can indeed become faster than c and negative. In

other words, anomalous dispersion allows light in a medium to travel faster than

light in vacuum. This was actually observed in two experiments in 1982 [27] and

1985 [28], and in a more recent one [29] (based on gain-assisted linear anomalous

dispersion in atomic caesium gas) that received a great deal of attention by the

mass media. In the latter two experiments, negative group velocities have been

seen.

Let’s clarify the meaning of negative group velocity [4,29]. If ‘ is the length

of the medium (e.g., of the cell containing the gas), the time taken by the light

pulse to propagate is t ¼ ð‘=vgÞ ¼ ð‘ng=cÞ. The propagation time of light in

90°

90°
β

α

Main axis
Appearanceline

Receiver

Leaky waves

Launcher

Figure 4. Evanescent ‘‘leaky waves’’ due to diffraction out of the square aperture of the

launcher antenna observed as superluminal by the Florence group. (From Nimtz and Heitmann [5].)
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vacuum for the same distance is t0 ¼ ð‘=cÞ . Therefore, the light pulse leaves the

medium at a time delayed by

�t ¼ t � t0 ¼ ‘

c
ðng � 1Þ ð12Þ

For positive group velocities vg > 0, but ng < 1, it is �t < 0, and we have not a

delay but an advancement; namely, the light pulse leaves the exit face of the cell

sooner than if it traversed the same distance in vacuum. For vg < 0 , the pulse

advancement ��t ¼ ng � 1
	 


‘=cð Þ is greater than the vacuum transit time t0. As

a consequence, the pulse appears to leave the gas cell before it enters it. This is

exactly what has been observed in the Princeton experiment [29].

Let us stress that the occurrence of negative times is by no means strange in

the context of ER. This is easily seen by the fact that the time sign is not an

invariant for space-like intervals under the usual (subluminal) Lorentz trans-

formations, nor for a time-like one under superluminal Lorentz transformations

[1,3]. Moreover, whenever an object (either a particle or a wavepacket) over-

comes the infinite speed, it appears afterward as its antiobject, traveling in the

opposite space direction [1,30], and therefore yielding negative contribution to

the tunneling or the traversal time [31].

We want also to stress that (as shown by Chiao and co-workers [32]) there is

still another situation in which one expects e.m. wavepacket propagation in a

medium at speed higher than c. This occurs for off-resonance pulses through a

medium with inverted atomic populations. Experiments aimed at detecting

superluminal propagation in such a kind of medium are presently being

performed at Berkeley [4].

VI. X WAVES

The last sector of superluminal phenomena has its theoretical grounds in much

of mathematical research concerning the solutions of field equations. Starting

from the 1915 pioneering work by Bateman [33], who built up explicitly

wavelet-type solutions of Maxwell’s equations propagating in vacuum with

subluminal group velocity vg < c, it was shown that all the relativistic,

homogeneous wave equations (describing scalar, vector or spinor fields in a

medium) do admit solutions endowed with group velocities either less [35–40]

or higher [34,41,42] than the ordinary wave speed in the medium considered.

Some of the solutions derived in Refs. 33–42 share the relevant property of

representing localized (or limited diffraction) beams [34–39], in the sense that

they propagate over very large (theoretically infinite) distances without

changing their shape, that is, without appreciable dispersion (whence the term

‘‘undistorted progressive waves’’ [36]. Such beams are also referred to as
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‘‘Bessel beams’’ [39], because their transverse profile is a Bessel function.

Because of their peculiar features, Bessel beams have a number of applications

in the most disparate sectors, ranging from nondestructive evaluation of

materials to medical imaging.

Since 1992, an entirely new class of localized beams has been discovered,

first in acoustics [43], and then generalized to the electromagnetic case [44,45].

They differ from the standard Bessel beams because are not monochromatic, but

contain multiple frequencies, and are nondispersive in isotropic and homo-

geneous media (and therefore in free space). They are usually called ‘‘X

waves,’’ because they are X-shaped in a plane passing through the propagation

axis. Moreover (what’s of interest to our present aims) X waves do travel at a

group velocity higher than the maximal velocity corresponding to the pheno-

menon considered, i.e faster than sound speed (the speed of sound) in the

acoustic case and faster than light speed in the electromagnetic case [43–45].

Both acoustic and electromagnetic X waves have been produced and

observed , and checked to be indeed supersonic and superluminal, respectively.

The former experiment is due to the very inventors of X waves, Lu and

Greenleaf [46]. The evidence for X waves was found at Tartu in 1997 in the

optical domain [47] (Fig. 5) and at Florence just in 2000 in the microwave range

[48]. Let us stress that (acoustic) X waves have already found application in

medical imaging [49].

X waves constitute the most striking example of superluminal effects,

because they propagate in free space over large distances. We want to stress that

the existence of superluminal X-shaped waves was predicted by ER. This is, in

our opinion, one of the most impressive among the (verified) ER predictions,

and was just put forward as early as 1982 in a fundamental paper by Barut et al.

[50]. The point is that, on the basis of ER, an (extended) tachyon is just expected

PH
L1 L2

L3
M

V

Figure 5. The electromagnetic X waves observed in the Tartu experiment. (From Saari and

Reivelt [47].)
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to be seen as a X-shaped object (or better wave). In fact, following Refs. 50 and

1, let us consider a particle, which in general can be thought of as a sphere when

at rest (Fig. 6a). If the particle moves at subluminal (but relativistic) speed, it

will appear as a rotation ellipsoid (with the minor semiaxis along the direction

of motion) due to the Lorentz contraction (Fig. 6b). The world lines of its points

form, in Minkowski spacetime, a cylindrical world tube, whose axis is the

(straight) world line of the particle center of mass (parallel to the boost

direction). For a superluminal motion of the particle, the effect due to the

superluminal boost from the rest frame of the particle to the laboratory frame is

to change the sign of square intervals, thus transforming the spherical surface

into a two-sheeted rotation hyperboloid. Therefore, the (now tachyonic) particle

appears as spread on a region bounded by an indefinite double cone and a two-

sheeted hyperboloid asymptotic to the cone, both having their common axes

along the superluminal boost direction (Fig. 6d). Of course, any section of such

a region with a plane passing for this axis (which is the propagation direction of

the particle) is X-shaped. Namely, tachyonic particles were predicted by ER to

appear exactly as X waves.

VII. DO SUPERLUMINAL PHENOMENA
VIOLATE CAUSALITY?

There is presently no serious doubt about the actual evidence for superluminal

group velocities, provided by the experiments on photon tunneling and

X-shaped waves. On the contrary, it is still a subject of debates and contro-

versies the question whether such a superluminal behavior does imply violation

y′y
y′′

x′′
x′x

(b) (d)(c)(a)

Figure 6. The shape of a spherical particle as its appears in (a) its rest frame, (b) in a frame

moving with subluminal (but relativistic) velocity, (c) a frame moving at the light velocity (an

unphysical case!), and (d) a superluminal frame. This last figure clearly shows that, according to ER,

tachyons are X-shaped objects (waves). A spatial dimension has been dropped for simplicity of

representation. (From Barut et al. [50].)
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of Einstein causality (and of SR). A thorough discussion of this problem would

require a paper by itself, and so we will confine ourselves to its main aspects.

Einstein’s causality in its standard formulation implies that no information

can be transmitted faster than light. Therefore, the first question to be answered

is another there is actual transport of information in the observed superluminal

processes. A number of different opinions have been expressed about this point

[4,5,48,51,52]. For instance, as to the evanescent waves, the most common

opinion is that their superluminal propagation does not imply transmission of a

signal. This is essentially because, when transmitting an EM wave, there is an

initial transient state that is associated with the propagation of precursors, which

arrive before the principal signal. As shown by Sommerfeld and Brillouin [25],

the speed of such precursors cannot be larger than c. However, such a result is

strictly valid only for an infinite frequency spectrum, so the occurrence of

precursors could be avoided by making recourse to a finite frequency band

[48,51]. But a computer simulation dealing with the transients associated with

superluminal evanescent waves seems to contradict such a statement [53].

However, as to the X waves (although a lot of experimental work needs to be

done), it’s difficult to think they don’t carry information, as they are localized

beams, which already find numerous practical applications.

An answer to the causality problems seemingly involved in superluminal

motions can be found in extended relativity. Indeed, one has to take in due

consideration, within the framework of ER, the Stückelberg–Feynman–

Sudarshan reinterpretation (or switching) principle (SWP) [1,3] (which can

be even regarded as a third postulate, on the same footing of SR postulates 1 and

2 listed in Section I). It states that any object moving backward in time, and

carrying negative energy, must be reinterpreted as its antiobject with positive

energy moving forward in time. A careful and suitable application of SWP

allows one to solve all the causal paradoxes involving superluminal motions

(provided one takes into account tachyon mechanics, and the fact that, a priori,

the description of a given process is not required to be Lorentz-invariant) [54].

In conclusion, irrespective of whether the observed superluminal propagations

do carry information or not, they do not jeopardize relativistic causality.
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I. INTRODUCTION

Topology addresses those properties, often associated with invariant qualities,

which are not altered by continuous deformations. Objects are topologically

equivalent, or homeomorphic, if one object can be changed into another by

bending, stretching, twisting, or any other continuous deformation or mapping.

Continuous deformations are allowed, but prohibited are foldings which bring

formerly distant points into direct contact or overlap, and cutting—unless

followed by a regluing, reestablishing the preexisting relationships of continuity.

The continuous deformations of topology are commonly described in differen-

tial equation form and the quantities conserved under the transformations com-

monly described by differential equations exemplifying an algebra describing

operations that preserve that algebra. Evariste Galois (1811–1832) first gave the

criteria that an algebraic equation must satisfy in order to be solvable by radicals.

This branch of mathematics came to be known as Galois or group theory.

Beginning with G. W. Leibniz in the seventeenth; L. Euler in the eighteenth;

B. Reimann, J. B. Listing, and A. F. Möbius in the nineteenth; and H. Poincaré
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in the twentieth centuries, analysis situs (Riemann) or topology (Listing) has

been used to provide answers to questions concerning what is most fundamental

in physical explanation. That question itself implies the question concerning

what mathematical structures one uses with confidence to adequately ‘‘paint’’ or

describe physical models built from empirical facts. For example, differential

equations of motion cannot be fundamental, because they are dependent on

boundary conditions that must be justified—usually by group theoretical

considerations. Perhaps, then, group theory1 is fundamental.

Group theory certainly offers an austere shorthand for fundamental

transformation rules. But it appears to the present writer that the final judge

of whether a mathematical group structure can, or cannot, be applied to a

physical situation is the topology of that physical situation. Topology dictates

and justifies the group transformations.

So for the present writer, the answer to the question of what is the most

fundamental physical description is that it is a description of the topology of the

situation. With the topology known, the group theory description is justified and

equations of motion can then also be justified and defined in specific differential

equation form. If there is a requirement for an understanding more basic than

the topology of the situation, then all that is left is verbal description of visual

images. So we commence an examination of electromagnetism under the assump-

tion that topology defines group transformations and the group transformation

rules justify the algebra underlying the differential equations of motion.

Differential equations or a set of differential equations describe a system and

its evolution. Group symmetry principles summarize both invariances and the

laws of nature independent of a system’s specific dynamics. It is necessary that

the symmetry transformations be continuous or specified by a set of parameters

which can be varied continuously. The symmetry of continuous transformations

leads to conservation laws.

There are a variety of special methods used to solve ordinary differential

equations. It was Sophus Lie (1842–1899) in the nineteenth century who

showed that all the methods are special cases of integration procedures which

are based on the invariance of a differential equation under a continuous group

of symmetries. These groups became known as Lie groups.2 A symmetry group

1Here we mean the kind of groups addressed in Yang–Mills theory, which are continuous groups (as

opposed to discrete groups). Unlike discrete groups, continuous groups contain an infinite number of

elements and can be differentiable or analytical [1].
2If a topological group is a group and also a topological space in which group operations are

continuous, then Lie groups are topological groups that are also analytical manifolds on which the

group operations are analytic. In the case of Lie algebras, the parameters of a product are analytic

functions of the parameters of each factor in the product. For example, LðgÞ ¼ LðaÞLðbÞ where

g ¼ f ða;bÞ. This guarantees that the group is differentiable. The Lie groups used in Yang–Mills

theory are compact groups, i.e., the parameters range over a closed interval.
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of a system of differential equations is a group that transforms solutions of the

system to other solutions [2]. In other words, there is an invariance of a dif-

ferential equation under a transformation of independent and dependent vari-

ables. This invariance results in a diffeomorphism on the space of independent

and dependent variables, permitting the mapping of solutions to solutions [3].

The relationship was made more explicit by Emmy (Amalie) Noether (1882–

1935) in theorems now known as Noether’s theorems [4], which related

symmetry groups of a variational integral to properties of its associated Euler–

Lagrange equations. The most important consequences of this relationship are

that (1) conservation of energy arises from invariance under a group of time

translations, (2) conservation of linear momentum arises from invariance under

(spatial) translational groups; (3) conservation of angular momentum arises

from invariance under (spatial) rotational groups, and (4) conservation of charge

arises from invariance under change of phase of the wave function of charged

particles. Conservation and group symmetry laws have been vastly extended to

other systems of equations, such as the standard model of modern high-energy

physics, and also, of importance to the present interest: soliton equations. For

example, the Korteweg de Vries ‘‘soliton’’ equation [5] yields a symmetry

algebra spanned by the four vector fields of (1) space translation, (2) time

translation, (3) Galilean translation, and (4) scaling.

For some time, the present writer has been engaged in showing that the

spacetime topology defines electromagnetic field equations [6–11]—whether

the fields be of force or of phase. That is to say, the premise of this enterprise is

that a set of field equations are valid only with respect to a set defined

topological description of the physical situation. In particular, the writer has

addressed demonstrating that the Am potentials, m ¼ 0; 1; 2; 3, are not just a

mathematical convenience, but—in certain well-defined situations—are mea-

surable, that is, physical. Those situations in which the Am potentials are

measurable possess a topology, the transformation rules of which are

describable by the SU(2) group (see paragraphs 1–5 in the following list or

higher order groups). The algebras are described as follows:

1. SU(n) Group Algebra. Unitary transformations, U(n), leave the modulus

squared of a complex wavefunction invariant. The elements of a U(n) group are

represented by n � n unitary matrices with a determinant equal to �1. Special

unitary matrices are elements of unitary matrices that leave the determinant

equal to þ1. There are n2 � 1 independent parameters. SU(n) is a subgroup of

U(n) for which the determinant equals þ1.

2. SL(2,C) Group Algebra. The special linear group of 2 � 2 matrices of

determinant 1 with complex entries is SL(2,C).

3. SU(2) Group Algebra. SU(2) is a subgroup of SL(2,C). There are

22 � 1 ¼ 3 independent parameters for the special unitary group SU(2) of 2 � 2

topological approaches to electromagnetism 701



matrices. SU(2) is a Lie algebra such that for the angular momentum generators,

Ji, the commutation relations are ½Ji; Jj	 ¼ ieijkJk; i; j; k ¼ 1; 2; 3. The SU(2)

group describes rotation in three-dimensional space with 2 parameters (see

below). There is a well-known SU(2) matrix relating the Euler angles of O(3)

and the complex parameters of SU(2) is:

cos
b
2

� �
exp

iðaþ gÞ
2

� �
sin

b
2

� �
exp

�ða� gÞ
2

� �

�sin
b
2

� �
exp

iða� gÞ
2

� �
cos

b
2

� �
exp

�iðaþ gÞ
2

� �

where a; b; g are the Euler angles. It is also well known that a homomorphism

exists between O(3) and SU(2); the elements of SU(2) can be associated with

rotations in O(3); and SU(2) is the covering group of O(3). Therefore, it is easy to

show that SU(2) can be obtained from O(3). These SU(2) transformations define

the relations between the Euler angles of group O(3) with the parameters of

SU(2). For comparison with the above, if the rotation matrix Rða; b; gÞ in O(3) is

represented as:

cos ½a	cos ½b	cos ½g	� sin ½a	 sin ½g	 sin ½a	cos ½b	cos ½g	þ cos ½a	 sin ½g	 �sin ½b	cos ½g	

�cos ½a	cos ½b	 sin ½g	� sin ½a	cos ½g	 �sin ½a	cos ½b	 sin ½g	þ cos ½a	cos ½g	 sin ½b	 sin ½g	

cos ½a	 sin ½b	 sin ½a	 sin ½b	 cos ½b	

0
BBB@

1
CCCA

then the orthogonal rotations about the coordinate axes are

R1ðaÞ ¼
cos ½a	 sin ½a	 0

�sin ½a	 cos ½a	 0

0 0 1

0
B@

1
CA R2ðbÞ ¼

cos ½b	 0 �sin ½b	
0 1 0

sin ½b	 0 cos ½b	

0
B@

1
CA

R3ðgÞ ¼
cos ½g	 sin ½g	 0

�sin ½g	 cos ½g	 0

0 0 1

0
B@

1
CA

An isotropic parameter, $, can be defined:

$ ¼ x � iy

z
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where x; y; z are the spatial coordinates. If $ is written as the quotient of m1 and

m2, or the homogeneous coordinates of the bilinear transformation, then

jm01m02i ¼
cos b

2

h i
exp

iðaþgÞ
2

h i
sin b

2

h i
exp

�ða�gÞ
2

h i
�sin b

2

h i
exp

iða�gÞ
2

h i
cos b

2

h i
exp

�iðaþgÞ
2

h i
2
64

3
75jm1m2i

which is the relation between the Euler angles of O(3) and the complex

parameters of SU(2). However, there is no unique one-to-one relation, for two

rotations in O(3) correspond to one direction in SU(2). There is thus a many-

to-one or homomorphism between O(3) and SU(2). In the case of a complex

2-dimensional vector (u,v):

u0

v0

0
@

1
A ¼

cos b
2

h i
exp

iðaþgÞ
2

h i
sin b

2

h i
exp

�ða�gÞ
2

h i
�sin b

2

h i
exp

iða�gÞ
2

h i
cos b

2

h i
exp

�iðaþgÞ
2

h i
0
B@

1
CA u

v

0
@

1
A

and if we define

a ¼ cos
b
2

� �
exp

iðaþ gÞ
2

� �

b ¼ sin
b
2

� �
exp

�ða� gÞ
2

� �

then

jm01m02i ¼
a b

�b a

� �
jm1m2i

where

a b

�b a

� �

are the well-known SU(2) transformation rules. Defining c ¼ �b and d ¼ a,

we have the determinant:

ad � bc ¼ 1 or aa � bð�bÞ ¼ 1

Defining the (x,y,z) coordinates with respect to a complex 2D vector (u,v) as

x ¼ 1

2
ðu2 � v2Þ; y ¼ 1

2i
ðu2 þ v2Þ; z ¼ uv
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then SU(2) transformations leave the squared distance x2 þ y2 þ z2 invariant.

Every element of SU(2) can be written as

a b

�b a

� �
; jaj2 þ jbj2 ¼ 1

Defining

a ¼ y1 � iy2; b ¼ y3 � iy4

the parameters y1; y2; y3; y4 indicate positions in SU(2) with the constraint

y2
1 þ y2

2 þ y2
3 þ y2

4 ¼ 1

which indicates that the group SU(2) is a 3D unit sphere in the 4D y-space. This

means that any closed curve on that sphere can be shrunk to a point. In other

words, SU(2) is simply connected. It is important to note that SU(2) is the

quantum mechanical ‘‘rotation group.’’

4. Homomorphism of O(3) and SU(2). There is an important relationship

between O(3) and SU(2). The elements of SU(2) are associated with rotations in

3D space. To make this relationship explicit, new coordinates are defined:

x ¼ 1

2
ðu2 � v2Þ; y ¼ 1

2i
ðu2 þ v2Þ; z ¼ uv

Explicitly, the SU(2) transformations leave the squared 3-dimensional distance

x2 þ y2 þ z2 invariant, an invariance which relates 3D rotations to elements of

SU(2). If a,b of the elements of SU(2) are defined

a ¼ cos
b
2

exp
iðaþ gÞ

2
; b ¼ sin

b
2

exp
�iða� gÞ

2

then the general rotation matrix Rða; b; gÞ, can be associated with the SU(2)

matrix

cos b
2

exp
iðaþgÞ

2
sin b

2
exp

�iða�gÞ
2

�sin b
2

exp
iða�gÞ

2
cos b

2
exp

�iðaþgÞ
2

0
@

1
A

by means of the Euler angles. It is important to note that this matrix does not give

a unique one-to-one relationship between the general rotation matrix Rða; b; gÞ
and the SU(2) group. This can be seen if (a) we let a ¼ 0; b¼ 0; g ¼ 0, which

704 terence w. barrett



gives the matrix

1 0

0 1

� �

and (b) a ¼ 0; b ¼ 2p; g ¼ 0, which gives the matrix:

�1 0

0 �1

� �

Both matrices define zero rotation in 3-dimensional space, so we see that this

zero rotation in 3D dimensional space corresponds to two different SU(2)

elements depending on the value of b. There is thus a homomorphism, or many-

to-one mapping relationship between O(3) and SU(2)—where ‘‘many’’ is 2 in

this case—but not a one-to-one mapping.

5. SO(2) Group Algebra. The collection of matrices in Euclidean 2D space

(the plane) which are orthogonal and moreover for which the determinant is þ1

is a subgroup of O(2). SO(2) is the special orthogonal group in two variables.

The rotations in the plane is represented by the SO(2) group

RðyÞ ¼
cos ½y	 �sin ½y	
sin ½y	 cos ½y	

� �
y 2 R

where RðyÞRðgÞ ¼ Rðyþ gÞ. S1, or the unit circle in the complex plane with

multiplication as the group operation is an SO(2) group.

6. U(n) Group Algebra. Unitary matrices, U, have a determinant equal to

�1. The elements of U(n) are represented by n � n unitary matrices.

7. U(1) Group Algebra. The one-dimensional unitary group, or U(1), is

characterized by one continuous parameter. U(1) is also differentiable and the

derivative is also an element of U(1). A well-known example of a U(1) group is

that of all the possible phases of a wavefunction, which are angular coordinates

in a 2D space. When interpreted in this way—as the internal phase of the U(1)

group of electromagnetism—the U(1) group is merely a circle ð0 � 2pÞ.

Those situations in which the Am potentials are not measurable possess a

topology, the transformation rules of which are describable by the U(1) group

(see paragraphs 6 and 7 in the above list):

Historically, electromagnetic theory was developed for situations described

by the U(1) group. The dynamic equations describing the transformations

and inter-relationships of the force-field are the well-known Maxwell equations,

and the group algebra underlying these equations is U(1). There was a need to
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extend these equations to describe SU(2) situations and to derive equations

whose underlying algebra is SU(2). These two formulations are shown in

Table I. Table II shows the electric charge density, re, the magnetic charge

density, rm, the electric current density, ge, the magnetic current density, gm, the

electric conductivity, s, and the magnetic conductivity, s.

In the following sections, four topics are addressed: (1) the mathematical

entities, or waves, called solitons; (2) the mathematical entities, called

instantons; (3) a beam—an electromagnetic wave—that is polarization-

modulated over a set sampling interval; and (4) the Aharonov–Bohm effect.

Our intention is to show that these entities, waves or effects, can be adequately

characterized and differentiated, and thus understood, only by using topological

TABLE I

Maxwell Equations in U(1) and SU(2) Symmetry Forms

U(1) Symmetry Form

(Traditional Maxwell SU(2)

Equations) Symmetry Form

Gauss’ law r � E ¼ J0 r � E ¼ J0 � iqðA � E � E � AÞ

Ampère’s law
qE

qt
�r� B � J ¼ 0

qE

qt
�r� B � J þ iq½A0;E	�

iqðA � B � B � AÞ ¼ 0

r � B ¼ 0 r � B þ iqðA � B � B � AÞ ¼ 0

Faraday’s law r� E þ qB

qt
¼ 0 r� E þ qB

qt
þ iq½A0;B	 ¼

iqðA � E � E � AÞ ¼ 0

TABLE II

The U(1) and SU(2) Symmetry Forms of the Major Variables

U(1) Symmetry

Form (Traditional

Maxwell Theory) SU(2) Symmetry Form

re ¼ J0 re ¼ J0 � iqðA � E � E � AÞ ¼ J0 þ qJz

rm ¼ 0 rm ¼ �iqðA � B � B � AÞ ¼ �iqJy

ge ¼ J ge ¼ iq½A0;E	 � iqðA � B � B � AÞ þ J ¼ iq½A0;E	 � iqJx þ J

gm ¼ 0 gm ¼ iq½A0;B	 � iqðA � E � E � AÞ ¼ iq½A0;B	 � iqJz

s ¼ J=E s¼ fiq½A0;E	 � iqðA � B � B � AÞ þ Jg
E

¼ fiq½A0;E	 � iqJx þ Jg
E

s ¼ 0 s ¼ fiq½A0;B	 � iqðA � E � E � AÞg
H

¼ fiq½A0;B	 � iqJzg
H
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characterizations. Once characterized, the way becomes open for control or

engineering of these entities, waves and effects.

II. SOLITONS

A soliton is a solitary wave that preserves its shape and speed in a collision with

another solitary wave [12,13]. Soliton solutions to differential equations require

complete integrability and integrable systems conserve geometric features

related to symmetry. Unlike the equations of motion for conventional Maxwell

theory, which are solutions of U(1) symmetry systems, solitons are solutions of

SU(2) symmetry systems. These notions of group symmetry are more funda-

mental than differential equation descriptions. Therefore, although a complete

exposition is beyond the scope of the present review, we develop some basic

concepts in order to place differential equation descriptions within the context of

group theory.

Within this context, ordinary differential equations are viewed as vector fields

on manifolds or configuration spaces [2]. For example, Newton’s equations are

second-order differential equations describing smooth curves on Riemannian

manifolds. Noether’s theorem [4] states that a diffeomorphism,3 f, of a

Riemannian manifold, C, indices a diffeomorphism, Df, of its tangent4 bundle,5

TC. If f is a symmetry of Newton’s equations, then Df preserves the

Lagrangian: L � Df ¼ L. As opposed to equations of motion in conventional

Maxwell theory, soliton flows are Hamiltonian flows. Such Hamiltonian

functions define symplectic structures6 for which there is an absence of local

invariants but an infinite-dimensional group of diffeomorphisms which preserve

global properties. In the case of solitons, the global properties are those per-

mitting the matching of the nonlinear and dispersive characteristics of the

medium through which the wave moves.

3A diffeomorphism is an elementary concept of topology and important to the understanding of

differential equations. It can be defined in the following way:

If the sets U and V are open sets both defined over the space Rm; that is, U � Rm is open and U � Rm

is open, where ‘‘open’’ means nonoverlapping, then the mapping c:U ! V is an infinitely

differentiable map with an infinitely differential inverse, and objects defined in U will have

equivalent counterparts in V. The mapping c is a diffeomorphism and it is a smooth and infinitely

differentiable function. The important point is: conservation rules apply to diffeomorphisms, because

of their infinite differentiability. Therefore diffeomorphisms constitute fundamental characteriza-

tions of differential equations.
4A vector field on a manifold, M, gives a tangent vector at each point of M.
5A bundle is a structure consisting of a manifold E, and manifold M, and an onto map: p : E ! M.
6Symplectic topology is the study of the global phenomena of symplectic symmetry. Symplectic

symmetry structures have no local invariants. This is a subfield of topology; for an example, see

McDuff and Salamon [14].
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In order to achieve this match, two linear operators, L and A, are postulated

associated with a partial differential equation (PDE). The two linear operators

are known as the Lax pair. The operator L is defined by

L ¼ q2

qx2
þ uðx; tÞ

with a related eigenproblem:

Lcþ lc ¼ 0 ð1Þ

The temporal evolution of c is defined as

ct ¼ �Ac ð2Þ

with the operator of the form

A ¼ a0
qn

qxn
þ a1

qn�1

qxn�1
þ � � � þ an

where a0 is a constant and the n coefficients ai are functions of x and t.

Differentiating (1) gives

Ltcþ Lct ¼ �ltc� lct

Inserting (2):

Lct ¼ �LAc

or

lct ¼ A Lc

Using (1) again

½L;A 	 ¼ LA�A L ¼ Lt þ lt ð3Þ

and for a time-independent l

½L;A 	 ¼ Lt

This equation provides a method for finding A.

Translating the preceding equations into a group theory formulation, in order

to relate the three major soliton equations to group theory, it is necessary to
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examine the Lax equation [15] (3) above as a zero-curvature condition (ZCC).

The ZCC expresses the flatness of a connection by the commutation relations of

the covariant derivative operators [16] and in terms of the Lax equation is

Lt �Ax � ½L;A 	 ¼ 0

or [17]

q
qx

� L
q
qt

�A

� �
¼ 0

or

q
qx

� L

� �
t

¼ A
q
qx

� L

� �

More recently, Palais [17] showed that the generic cases of soliton—the

Korteweg de Vries equation (KdV), the nonlinear Schrödinger equation (NLS),

the sine–Gordon equation (SGE)—can be given an SU(2) formulation. In each of

the three cases considered below, V is a one-dimensional space that is embedded

in the space of off-diagonal complex matrices, ð0
c

b
0
Þ and in each case

LðuÞ ¼ alþ u, where u is a potential, l is a complex parameter, and a is the

constant, diagonal, trace zero matrix

a ¼ �i 0

0 i

� �

The matrix definition of a links these equations to an SU(2) formulation. (Other

matrix definitions of a could, of course, link a to higher group symmetries.)

To carry out this objective, an inverse scattering theory function is defined

[15,16] as

BðxÞ ¼
XN

n¼1

c2
n exp ½�knx	 þ

1

2p

ðþ1

�1
bðkÞexp½ikx	 dk

where �k2
1; . . . ;�k2

N are discrete eigenvalues of u, c1; . . . ; cN are normalizing

constants, and bðkÞ are reflection coefficients.

Therefore, in a first case (the KdV), if uðxÞ ¼ ð 0
�1

qðxÞ
0
Þ and

BðuÞ ¼ al3 þ ul2 þ
i
2

q i
2

qx

0 � i
2

q

 !
lþ

qx

4
�q2

2
q
2

�qx

4

 !
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then the ZCC (Lax equation) is satisfied if and only if q satisfies the KdV in the

form qt ¼ � 1
4
ð6qqx þ qxxxÞ.

In a second case (the NLS), if uðxÞ ¼ ð 0
�qx

aðxÞ
0
Þ and

BðuÞ ¼ al3 þ ul2 þ
i
2
jqj2 i

2
qx

� i
2

qx � i
2
jqj2

 !

then the ZCC (Lax equation) is satisfied if and only if q(x,t) satisfies the NLS in

the form qt ¼ ði=2Þðqxx þ 2jqj2qÞ.
In a third case (the SGE), if

uðxÞ ¼
0 � qxðxÞ

2

qxðxÞ
2

0

 !
and

BðuÞ ¼ i

4l

cos ½qðxÞ	 sin ½qðxÞ	
sin ½qðxÞ	 �cos ½qðxÞ	

� �

then the ZCC (Lax equation) is satisfied if and only if q satisfies the SGE in the

form qt ¼ sin ½q	.
With the connection of PDEs, and especially soliton forms, to group

symmetries established, one can conclude that if the Maxwell equation of

motion that includes electric and magnetic conductivity is in soliton (SGE)

form, the group symmetry of the Maxwell field is SU(2). Furthermore, because

solitons define Hamiltonian flows, their energy conservation is due to their

symplectic structure.

In order to clarify the difference between conventional Maxwell theory

which is of U(1) symmetry, and Maxwell theory extended to SU(2) symmetry,

we can describe both in terms of mappings of a field cðxÞ. In the case of U(1)

Maxwell theory, a mapping c ! c0 is

cðxÞ ! c0ðxÞ ¼ exp ½iaðxÞ	cðxÞ

where a(x) is the conventional vector potential. However, in the case of SU(2)

extended Maxwell theory, a mapping c ! c0 is

cðxÞ ! c0ðxÞ ¼ exp ½iSðxÞ	cðxÞ

where S(x) is the action and an element of an SU(2) field defined

SðxÞ ¼
ð

A dx

and A is the matrix form of the vector potential. Therefore we see the necessity
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to adopt a matrix formulation of the vector potential when addressing SU(2)

forms of Maxwell theory.

III. INSTANTONS

Instantons [18] correspond to the minima of the Euclidean action and are

pseudoparticle solutions [19] of SU(2) Yang–Mills equations in Euclidean 4-

space [20]. A complete construction for any Yang–Mills group is also available

[21]. In other words [22, p. 80]

It is reasonable. . . to ask for the determination of the classical field configurations

in Euclidean space which minimize the action, subject to appropriate asymptotic

conditions in 4-space. These classical solutions are the instantons of the Yang-

Mills theory.

In light of the intention of the present writer to introduce topology into electro-

magnetic theory, I quote further [22, p. 81]

If one were to search ab initio for a non-linear generalization of Maxwell’s

equation to explain elementary particles, there are various symmetry group

properties one would require. These are (i) external symmetries under the Lorentz

and Poincaré groups and under the conformal group if one is taking the rest-mass

to be zero, (ii) internal symmetries under groups like SU(2) or SU(3) to account for

the known features of elementary particles, (iii) covariance or the ability to be

coupled to gravitation by working on curved space-time.

The present writer applied the instanton concept in electromagnetism for the

following two reasons: (1) in some sense, the instanton, or pseudo particle, is a

compactification of degrees of freedom due to the particle’s boundary conditions;

and (2) the instanton, or pseudoparticle, then exhibits the behavior (the trans-

formation or symmetry rules) of a high-energy particle, but without the presence

of high energy; thus the pseudoparticle shares certain behavioral characteristics

in common (shares transformation rules, hence symmetry rules in common)

with a particle of much higher energy.

Therefore, the present writer suggested [8] that the Mikhailov effect [23], and

the Ehrenhaft effect (Felix Ehrenhaft, 1879–1952), which address demonstra-

tions exhibiting magnetic charge-like behavior, are examples of instanton or

pseudoparticle behavior. Stated differently: (1) the instanton shows that there

are ways, other than possession of high energy, to achieve high symmetry states;

and (2) symmetry dictates behavior.
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IV. POLARIZATION MODULATION OVER
A SET SAMPLING INTERVAL

This section is based on [Ref. [24]].

It is wellknown that all static polarizations of a beam of radiation, as well as

all static rotations of the axis of that beam, can be represented on a Poincaré

sphere [25] (Fig. 1a). A vector can be centered in the middle of the sphere and

pointed to the underside of the surface of the sphere at a location on the surface

that represents the instantaneous polarization and rotation angle of a beam.

Causing that vector to trace a trajectory over time on the surface of the sphere

represents a polarization modulated (and rotation modulated) beam (Fig. 1b). If,

then, the beam is sampled by a device at a rate that is less than the rate of

modulation, the sampled output from the device will be a condensation of two

components of the wave, which are continuously changing with respect to each

other, into one snapshot of the wave, at one location on the surface of the sphere

and one instantaneous polarization and axis rotation. Thus, from the viewpoint

of a device sampling at a rate less than the modulation rate, a two-to-one

mapping (over time) has occurred, which is the signature of an SU(2) field.

The modulations which result in trajectories on the sphere are infinite in

number. Moreover, those modulations, at a rate of multiples of 2p greater than

K

K

0
H

⊥ 
2ψ

2χ

(a) (b)

V

Figure 1. (a) Poincaré sphere representation of wave polarization and rotation; (b) a Poincaré

sphere representation of signal polarization (longitudinal axis) and polarization rotation (latitudinal

axis). A representational trajectory of polarization/rotation modulation is shown by changes in the

vector centered at the center of the sphere and pointing at the surface. Waves of various polarization

modulations qfn=qtn, can be represented as trajectories on the sphere. The case shown is an arbitrary

trajectory repeating 2p. (After Ref. 27.)
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1, which result in the return to a single location on the sphere at a frequency of

exactly 2p, will all be detected by the device sampling at a rate of 2p as the

same. In other words, the device cannot detect what kind of simple or

complicated trajectory was performed between departure from, and arrival at,

the same location on the sphere. To the relatively slowly sampling device, the

fast modulated beam can have ‘‘internal energies’’ quite unsuspected.

We can say that such a static device is a U(1) unipolar, set rotational axis,

sampling device and the fast polarization (and rotation) modulated beam is a

multipolar, multirotation axis, SU(2) beam. The reader may ask: how many

situations are there in which a sampling device, at set unvarying polarization,

samples at a slower rate than the modulation rate of a radiated beam? The

answer is that there is an infinite number, because from the point of the view of

the writer, nature is set up to be that way [26]. For example, the period of

modulation can be faster than the electronic or vibrational or dipole relaxation

times of any atom or molecule. In other words, pulses or wavepackets (which, in

temporal length, constitute the sampling of a continuous wave, continuously

polarization and rotation modulated, but sampled only over a temporal length

between arrival and departure time at the instantaneous polarization of the

sampler of set polarization and rotation—in this case an electronic or

vibrational state or dipole) have an internal modulation at a rate greater than

that of the relaxation or absorption time of the electronic or vibrational state.

The representation of the sampling by a unipolar, single-rotation-axis, U(1)

sampler of a SU(2) continuous wave that is polarization/rotation-modulated is

shown in Fig. 2, which shows the correspondence between the output space

sphere and an Argand plane [28]. The Argand plane, �, is drawn in two

dimensions, x and y, with z ¼ 0, and for a set snapshot in time. A point on the

Poincaré sphere is represented as P(t;x;y;z), and as in this representation t ¼ 1

(or one step in the future), specifically as P(1;x;y;z). The Poincaré sphere is also

identified as a 3-sphere, Sþ , which is defined in Euclidean space as follows:

x2 þ y2 þ z2 ¼ 1

S+

B

C A

N
P(1, x, y, z)

P(1, x′, y′, 0)

ζ =  X′ + iY′

∑

z = 0

Figure 2. Correspondence between the output space sphere and an Argand plane. (After

Penrose and Rindler [28].)
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The sampling described above is represented as a mapping of a point P(1, x, y, z)

in Sþ, and of SU(2) symmetry, to a point P0ð1; x0; y0; z0Þ on �, and of U(1)

symmetry.

The point P0 can then be labeled by a single complex parameter: � ¼
X0 þ iY 0. Using the definition

z ¼ 1 � CA

CP0 ¼ 1 � NP

NP0 ¼ 1 � NB

NC

then

� ¼ x þ iy

1 � z
:

A pair ðx;ZÞ of complex numbers can be defined

� ¼ x
Z

and Penrose and Rindler [28] have shown, in another context, that what we have

identified as the pre-sampled SU(2) polarization and rotation modulated wave

can be represented in units of

W ¼ 1ffiffiffi
2

p ðxx þ ZZÞ

X ¼ 1ffiffiffi
2

p ðxZ þ ZxÞ

Y ¼ 1

i
ffiffiffi
2

p ðxZ � ZxÞ

Z ¼ 1ffiffiffi
2

p ðxx � Z�Þ

These definitions make explicit that a complex linear transformation of the U(1)

x and Z results in a real linear transformation of the SU(2) (W;X;Y;Z).

Therefore, a complex linear transformation of x and Z can be defined:

x 7! x0 ¼ axþ bZ

Z 7! Z0 ¼ gxþ dZ
ð4aÞ

or

� 7! �0 ¼ a� þ b
g� þ d

ð4bÞ

where a; b; g and d are arbitrary nonsingular complex numbers.
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Now the transformations, (4a) and (4b), are spin transformations, implying

that

� ¼ X þ iY

T � Z
¼ W þ Z

X � iY
;

and if a spin matrix, A, is defined

A ¼ a b
g d

� �
; det A ¼ 1;

then the two transformations, (4a), are

A ¼ x0 x
Z0 Z

� �
; ð5Þ

which means that the spin matrix of a composition is given by the product of the

spin matrix of the factors. Any transformation of the (5) form is linear and real

and leaves the form W2 � X2 � Y2 � Z2 invariant.

Furthermore, there is a unimodular condition

ad� bg ¼ 1

and the matrix A has the inverse

A�1 ¼ d �b
�g a

� �
;

which means that the spin matrix A and its inverse A�1 gives rise to the same

transformation of � even though they define different spin transformations.

Because of the unimodular condition, the A spin matrix is unitary or A�1 ¼ A,
where A is the conjugate transpose of A.

The consequence of these relations is that every proper 2p rotation on Sþ—

in the present instance the Poincaré sphere—corresponds to precisely two

unitary spin rotations. As every rotation on the Poincaré sphere corresponds to a

polarization/rotation modulation, then every proper 2p polarization/rotation

modulation corresponds to precisely two unitary spin rotations. The vector K in

Fig. 1b corresponds to two vectorial components; one is the negative of the

other. As every unitary spin transformation corresponds to a unique proper

rotation of Sþ , then any static (unipolarized, e.g., linearly, circularly or ellipti-

cally polarized, as opposed to polarization-modulated) representation on Sþ

(Poincaré sphere) corresponds to a trisphere representation (Fig. 3a). Therefore
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A�1A ¼ � I, where I is the identity matrix. Thus, a spin transformation is

defined uniquely up to sign by its effect on a static instantaneous snapshot

representation on the Sþ (Poincaré) sphere:

x1;Z1; x2;Z2 7! ei2yx; ei2yZ; 0 < y < p

Turning now to the case of polarization/rotation modulation, or continuous

rotation of x1Z1; x2Z2: corresponding to a continuous rotation of x1Z1; x2Z2

through 2y, there is a rotation of the resultant through y. This correspondence is

a consequence of the A�1A ¼ � I relation, namely, that if the unitary

transformation of A or A�1 is applied separately the identity matrix will not

be obtained. However, if the unitary transformation is applied twice, then the

identity matrix is obtained; and from this follows the remarkable properties of

spinors that corresponding to two unitary transformations of, for example, 2p,

namely, 4p, one null vector rotation of 2p is obtained. This is a bisphere

correspondence and is shown in Fig 3b. This figure also represents the case of

polarization/rotation modulation—as opposed to static polarization/rotation.

We now identify the vector, K, in Fig. 1b as a null vector defined

K ¼ Ww þ Xx þ Yy þ Zz

the coordinates of which satisfy

W2 � X2 � Y2 � Z2 ¼ 0

exp[i2θ] ξ, exp[i2θ] η

0 < θ < π

ξ1, η1 ξ2, η2

exp[i θ] ξ, exp[i θ]η

0 < θ < π

ξ1, η1

Operator

Operand

Resultant

(a) (b)

Figure 3. (a) Trisphere representation of static polarization mapping: x1;Z1; x2Z2 7! ei2yx;
ei2yZ; 0 < y < p. Note that a 360� excursion of x1Z1 and x2Z2 corresponds to a 360� excursion of

ei2yx; ei2yZ; thus, this is a mapping for static polarization. (b) Bisphere representation of

polarization/modulation mapping (or x1Z1 7! eiy x; eiyZ; 0 < y < p) exhibiting the property of

spinors that, corresponding to two unitary transformations of for instance, 2p, namely, 4p, a null

rotation of 2p is obtained. Notice that for a 360� rotation of the resultant (i.e., the final output wave),

and with a stationary operand, the operator must be rotated through 720�. Left is after Penrose and

Rindler [28].
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where W ;X; Y , and Z are functions of time: WðtÞ;XðtÞ; YðtÞ, and Z(t). The

distinguishing feature of this null vector is that phase transformations

x 7! eiyx;Z 7! eiyZ leave K unchanged, that is, K represents x and Z only up

to phase—which is the hallmark of a U(1) representation.

K thus defines a static polarization/rotation—whether linear, circular or

elliptical—on the Poincaré sphere. The x;Z representation of the vector K gives

no indication of the future position of K; that is, the representation does not

address the indicated hatched trajectory of the vector K around the Poincaré

sphere. But it is precisely this trajectory which defines the particular

polarization modulation for a specific wave. Stated differently: a particular posi-

tion of the vector K on the Poincaré sphere gives no indication of its next

position at a later time, because the vector can depart (be joined) in any

direction from that position when only the static x;Z coordinates are given.

In order to address polarization/rotation modulation—not just static

polarization/rotation—an algebra is required which can reduce the ambiguity

of a static representation. Such an algebra which is associated with x;Z, and that

reduces the ambiguity up to a sign ambiguity, is available in the twistor

formalism [28]. In this formalism, polarization/rotation modulation can be

accomodated, and a spinor, k, can be represented not only by a null direction

indicated by x, Z, or �, but also a real tangent vector L indicated in Fig. 4.

Using this algebraic formalism, the Poincaré vector—and its direction of

change (up to sign ambiguity)—can be represented. A real tangent vector L of

Sþ at P is defined:

L ¼ lq
q�

þ lq
q�

S+

R

0

S+

P′P

P′P

εL

Figure 4. Relation of a trajectory in a specific direction on an output sphere Sþ and a null flag

representation on the hyperplane, W, intersection with Sþ . (After Penrose and Rindler [28].)
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where l is some expression in x;Z. With the choice g ¼ � 1ffiffi
2

p
� �

Z�2

L ¼ 1ffiffiffi
2

p
� �

Z�2 q
q�

� �
þ Z�2 q

qx

� �� �

and thus knowing L at P (as an operator) means that the pair x;Z is known

completely up to sign, or, for any f ð�; �Þ:

1

e lim e!0
ð fp0 � fpÞ ¼ L f

Succinctly, the tangent vector L in the abstract space Sþ (Poincaré sphere)

corresponds to a tangent vector L in the coordinate-dependent representation Sþ

of Sþ . L is a unit vector if and only if, K, the null vector corresponding to x;Z,

defines a point actually on Sþ . Therefore a plane of K and L can be defined by

aK þ bL, and if b> 0, then a half-plane, �, is defined bounded by K. K and L are

both spacelike and orthogonal to each other. In the twistor formalism, � and K

are referred to as a null flag or a flag. The vector K is called the flagpole, its

direction is the flagpole direction and the half-plane, �, is the flag plane.

Our conclusions are that a polarization/rotation-modulated wave can be

represented as a periodic trajectory of polarization/rotation modulation on a

Poincaré sphere, or a spinorial object. A defining characteristic of a spinorial

object is that it is not returned to its original state when rotated through an angle

2p about some axis, but only when rotated through 4p. Referring to Fig. 5, we

see that for the resultant to be rotated through 2p and returned to its original

polarization state, the operator must be rotated through 4p. Thus a spinorial

object (polarization/rotation modulated beams) exists in a different topological

space from static polarized/rotated beams due to the additional degree of

freedom provided by the polarization bandwidth, which does not exist prior to

modulation.

For example, let us consider constituent polarization vectors, Qiðo; dÞ, and

let C be the space orientations of Qiðo; dÞ. A spinorized version of Qiðo; dÞ can

be constructed provided the space is such that it possesses a twofold universal

covering space C, and provided the two different images, Q1ðc; wÞ and

Q2ðc; wÞ existing in C of an element existing in C are interchanged after a

continuous rotation through 2p is applied to a Qiðo; dÞ. In the case we are

considering, C has the topology of the SO(3) group. but C of the SU(2) group

(which is the same as the space of unit quaternions). Thus there is a 2 ! 1

relation between the SO(3) object and the SU(2) object (Fig. 5).

We may take the Qiðo; dÞ to be polarization vectors (null flags) and C to be

the space of null flags. The spinorized null flags, Q1ðc; wÞ and Q2ðc; wÞ, are

elements of C, i.e., they are spin-vectors. Referring to Figs. 3b and 5, we see
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that each null flag, Qiðo; dÞ, defines two associated spin vectors, k and �k. A

continuous rotation through 2p will carry k into �k by acting on ðx;ZÞ. On

repeating the process, �k is carried back into k:

�ð�kÞ ¼ k

Furthermore, any spin vector, k1, can be represented as a linear combination of

two spin vectors k2 and k3

fk2; k3gk1 þ fk3; k1gk2 þ fk1; k2gk3 ¼ 0

where { } indicates the antisymmetrical inner product. Thus any arbitrary

polarization can be represented as a linear combination of spin vectors.

A generalized representation of spin vectors (and thus of polarization/

rotation modulation) is in terms of components is obtained using a normalized

pair, a;b, as a spin frame:

fa; bg ¼ �fb; ag ¼ 1

Therefore

k ¼ k0a þ k1b

with

k0 ¼ fk; bg; k1 ¼ �fk; ag

SO(3)

Rotation through 2π

SU(3)

Rotation through π

Twofold unwrapping

L

A −A

Figure 5. The left side [SO(3)] describes the symmetry of the trajectory K on the Poincaré

sphere; the right side describes the symmetry of the associated Q1ðc;wÞ and Q2ðc;wÞ which are

functions of the c;w angles on the Poincaré sphere. (Adapted from Penrose and Rindler [28].)
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The flagpole of a is ðt þ zÞ=
ffiffiffi
2

p
and of b is ðt � zÞ=

ffiffiffi
2

p
and can be represented

over time in Minkowski tetrad (t,x,y,z) form (t1 representation) and for multiple

timeframes or sampling intervals providing overall ðt1; . . . ; tnÞ a Cartan–Weyl

form representation (Fig. 6) by using sampling intervals that ‘‘reset the clock’’

after every sampling of instantaneous polarization. Thus polarization modulation

is represented by the continuous changes in a; b over time or the collection of

samplings of a; b over time as depicted in Fig. 6.

The relation to the electromagnetic field is as follows. The (antisymmetrical)

inner product of two spin vectors can represented as

fk1; k2g ¼ eABkAkB ¼ �fk2; k1g

where the e (or the fundamental numerical metric spinors of second rank) are

antisymmetric:

eABeCB ¼ �eABeBC ¼ eABeBC ¼ �eBAeCB ¼ eC
A ¼ �eC

A

a (t 1)

a (t 2)

a (t 3)

b (t  3)

t

b (t  2)

b (t 1)

t2

t2

t  2

t 1

t1

t1

t 3

t3

t3

x

y

z

Figure 6. Spin frame representa-

tion of a spin-vector by flagpole normal-

ized pair representation {a; b} over the

Poincaré sphere in Minkowski tetrad

(t,x,y,z) form (t1 representation) and for

three timeframes or sampling intervals

providing overall ðt1; . . . ; tnÞ a Cartan–

Weyl form representation. The sampling

intervals ‘‘reset the clock’’ after every

sampling of instantaneous polarization.

Thus polarization modulation is repre-

sented by the collection of samplings

over time. Minkowski form after Pen-

rose and Rindler [28]. This is an SU(2)

Qiðc;wÞ in C over p representation, not

an SO(3) Qiðo; dÞ in C representation

over 2p. This can be seen by noting that

a 7! b or b 7! a over p, not 2p, while

the polarization modulation in SO(3)

repeats at a period of 2p.
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with a canonical mapping (or isomorphism) between, for instance, kB and kB:

kB 7! kB ¼ kAeAB

A potential can be defined

�A ¼ iðeaÞ�1rAa

where a is a gauge

aa ¼ 1

and rA is a covariant derivative, q=qxA, but without the commutation property.

The covariant electromagnetic field is then

FAB ¼ rA�B �rB�A þ ig½�B;�A	

where g is generalized charge.

A physical representation of the polarization modulated [SU(2)] beam can be

obtained using a Lissajous pattern7 representation (Figs. 7–9).

The controlling variables for polarization and rotation modulation are given

in Table III (see page 724). We can note that the Stokes parameters (s0;s1;s2;s3)

defined over the SU(2) dimensional variables, c; w, of Qiðc; wÞ are sufficient to

describe polarization/rotation modulation, and relate those variables to the

SO(3) dimensional variables, oðt; zÞ; d, of Qiðo; dÞ, which are sufficient to

describe the static polarization/rotation conditions of linear, circular, left/right-

handed polarization/ rotation.

We can also note the fundamental role that concepts of topology played

in distinguishing static polarization/rotation from polarization–rotation modu-

lation.

7Lissajous patterns are the locus of the resultant displacement of a point that is a function of two (or

more) simple periodic motions. In the usual situation, the two periodic motions are orthogonal (i.e.,

at right angles) and are of the same frequency. The Lissajous figures then represent the polarization

of the resultant wave as a diagonal line, top left to bottom right, in the case of linear perpendicular

polarization; bottom left to top right, in the case of linear horizontal polarization; a series of ellipses,

or a circle, in the case of circular corotating or contrarotating polarization, all of these corresponding

to the possible differences in constant phase between the two simple periodic motions. If the phase is

not constant, but is changing or modulated, as in the case of polarization modulation, then the pattern

representing the phase is constantly changing over the time the Lissajous figure is generated. Named

after Jules Lissajous (1822–1880).
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V. AHARONOV–BOHM EFFECT

We consider now the Aharonov–Bohm effect as an example of a phenomenon

understandable only from topological considerations. Beginning in 1959

Aharonov and Bohm [30] challenged the view that the classical vector potential

produces no observable physical effects by proposing two experiments. The one

that is most discussed is shown in Fig. 10. A beam of monoenergetic electrons

exists from a source at X and is diffracted into two beams by the slits in a wall at

Y1 and Y2. The two beams produce an interference pattern at III that is

measured. Behind the wall is a solenoid, the B field of which points out of the

paper. The absence of a free local magnetic monopole postulate in conventional

Figure 8. Lissajous patterns representing the polarized electric field over time, viewed in the

plane of incidence resulting from the two orthogonal s and p fields. The p field is phase modulated at

a rate df=dt ¼ 0:2t. In these Lissajous patterns the plane polarizations are represented at 45� to the

axes. This is an SO(3) Qiðo; dÞ in C representation over 2p, not an SU(2) Qiðc; wÞ in C over p.

Figure 7. Lissajous patterns representing a polarization modulated electric field over time,

viewed in the plane of incidence, resulting from the two orthogonal s and p fields, which are out of

phase by the following degrees: 0, 21, 42, 64, 85, 106, 127, 148, 169 (top row); 191, 212, 233, 254,

275, 296, 318, 339, 360 (bottom row). In these Lissajous patterns the plane polarizations are

represented at 45� to the axes. In this example, there is a simple constant rate polarization with no

rotation modulation. This is an SO(3) Qiðo; dÞ in C representation over 2p, not an SU(2) Qiðc;wÞ in

{C} over p.
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U(1) electromagnetism (r � B ¼ 0) predicts that the magnetic field outside the

solenoid is zero. Before the current is turned on in the solenoid, there should be

the usual interference patterns observed at III, of course, due to the differences in

the two pathlengths.

Aharonov and Bohm made the interesting prediction that if the current is

turned on, then, because of the differently directed A fields along paths 1 and 2

(a)

(b)

Figure 9. A Lissajous patterns representing the polarized electric field over time, viewed in the

plane of incidence, resulting from the two orthogonal s and p fields, which are out of phase by the

following degrees: 0, 21,42, 64, 85, 106, 127, 148, 169 (top row); 191, 212, 233, 254, 275, 296, 319,

339, 360 (bottom row). In these Lissajous patterns, the plane polarizations are represented at 45� to

the axes. B: representation of a polarization modulated beam over 2p in the z direction. These are

SO(3) Qiðo; dÞ in C representations over 2p, not an SU(2) Qiðc; wÞ in C over p.
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TABLE III

Polarization: Controlling Variables

Field input variables Ex ¼ a1 cos ðtþ d1Þ
(coordinate axes) Ey ¼ a2 cos ðtþ d2Þ

t ¼ ot � kz

Field input variables Ex ¼ a cos ðtþ dÞ ¼ Ex coscþ Ey sinc
(ellipse axes) EZ ¼ � b cos ðtþ dÞ ¼ �Ex sincþ Ey cosc

t ¼ ot � kz

Phase variables d ¼ d2 � d1;
Ex

a1

� �2

þ Ey

a2

� �2

�2
cosd
a1a2

¼ sin 2d

Auxiliary angle, a
a2

a1

¼ tanðaÞ

Control variables a1; a2; d1; d2

Resultant transmitted variables a2 þ b2 ¼ a2
1 þ a2

2

and relation of coordinate axes,

a1; a2, to ellipse axes, a; b

Rotation tanð2cÞ ¼ ðtanð2aÞÞcos ðdÞ ¼ 2a1a2

a2
1 � a2

2

cosd

Ellipticity sin ð2wÞ ¼ ð sin ð2aÞÞ sin ðdÞ; tanðwÞ ¼ � b

a

Rotation c - resultant determined by a1 and a2 with d constant

Ellipticity w - resultant determined by d with a1 and a2 constant

Determinant of rotation c a1; a2 with d constant

Determinant of ellipticity w d with a1; a2 constant

Stokes parameters s0 ¼ a2
1 þ a2

2

s1 ¼ a2
1 � a2

2 ¼ s0 cos ð2wÞcos ð2cÞ
s2 ¼ 2a1a2 cos ðdÞ ¼ s0 cos ð2wÞ sin ð2cÞ ¼ s1tanð2cÞ
s3 ¼ 2a1a2 sin ðdÞ ¼ s0 sin ð2wÞ

Linear polarization condition d ¼ d2 � d1 ¼ mp; m ¼ 0;�1;�2; . . . ;

Ey

Ex

¼ ð�1Þm a2

a1

Circular polarization condition a1 ¼ a2 ¼ a; d ¼ d2 � d1 ¼ mp
2

;

m ¼ �1;�3;�5; . . . ;E2
x þ E2

y ¼ a2

Right-hand polarization condition sind > 0

d ¼ p
2
¼ 2mp; m ¼ 0;�1;�2; . . . ;

Ex ¼ a cos ðtþ d1Þ
Ey ¼ a cos tþ d1 þ p

2

� �
¼ �a sin ðtþ d1Þ

Left-hand polarization condition sind < 0

d ¼ � p
2
þ 2mp; m ¼ 0;�1;�2; . . .

Ex ¼ a cos ðtþ d1Þ

Ey ¼ a cos tþ d1 �
p
2

� �
¼ a sin ðtþ d1Þ

Source: After Born and Wolf [29].
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indicated by the arrows in Fig. 10, additional phase shifts should be discernible

at III. This prediction was confirmed experimentally [31–38] and the evidence

for the effect has been extensively reviewed [39–43].

It is the present writer’s opinion that the topology of this situation is

fundamental and dictates its explanation. Therefore we must clearly note the

topology of the physical layout of the design of the situation that exhibits the

effect. The physical situation is that of an interferometer. That is, there are two

paths around a central location—occupied by the solenoid—and a measurement

is taken at a location, III, in the Fig. 10, where there is overlap of the

wavefunctions of the test waves that have traversed, separately, the two different

paths. (The test waves or test particles are complex wavefunctions with phase.)

It is important to note that the overlap area, at III, is the only place where a

path 1

path 2

X

Y1

Y2

I

II

III

solenoid-magnet
length 1

length 2

 A field lines

Figure 10. Two-slit diffraction experiment of the Aharonov–Bohm effect. Electrons are

produced by a source at X, pass through the slits of a mask at Y1 and Y2, interact with the A field at

locations I and II over lengths l1 and l2, respectively, and their diffraction pattern is detected at III.

The solenoid magnet is between the slits and is directed out of the page. The different orientations of

the external A field at the places of interaction I and II of the two paths 1 and 2 are indicated by

arrows following the right-hand rule.
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measurement can take place of the effects of the A field (which occurred earlier

and at other locations, I and II). The effects of the A field occur along the two

different paths and at locations I and II, but they are inferred, and not

measurable there. Of crucial importance in this special interferometer, is the fact

that the solenoid presents a topological obstruction. That is, if one were to

consider the two joined paths of the interferometer as a raceway or a loop and

one squeezed the loop tighter and tighter, then nevertheless one cannot in this

situation—unlike as in most situations—reduce the interferometer’s raceway of

paths to a single point. (Another way of saying this is that: not all closed curves

in a region need have a vanishing line integral, because one exception is a loop

with an obstruction.) One cannot reduce the interferometer to a single point

because of the existence in its midpoint of the solenoid, which is a positive

quantity, and acts as an obstruction.

It is the present writer’s opinion that the existence of the obstruction changes

the situation entirely. Without the existence of the solenoid in the interferometer,

the loop of the two paths can be reduced to a single point and the region

occupied by the interferometer is then simply connected. But with the existence

of the solenoid, the loop of the two paths cannot be reduced to a single point and

the region occupied by this special interferometer is multiply connected. The

Aharonov–Bohm effect only exists in the multiply connected scenario. But we

should note that the Aharonov–Bohm effect is a physical effect and simple and

multiple connectedness are mathematical descriptions of physical situations.

The topology of the physical interferometric situation addressed by

Aharonov and Bohm defines the physics of that situation and also the

mathematical description of that physics. If that situation were not multiply

connected, but simply connected, then there would be no interesting physical

effects to describe. The situation would be described by U(1) electromagnetics

and the mapping from one region to another is conventionally one-to-one.

However, as the Aharonov–Bohm situation is multiply-connected, there is a

two-to-one mapping (SU(2)/Z2) of the two different regions of the two paths to

the single region at III where a measurement is made. Essentially, at III a

measurement is made of the differential histories of the two test waves that

traversed the two different paths and experienced two different forces resulting

in two different phase effects.

In conventional, that is normal U(1) or simply connected situations, the fact

that a vector field, viewed axially, is pointing in one direction, if penetrated from

one direction on one side, and is pointing in the opposite direction, if penetrated

from the same direction, but on the other side, is of no consequence at all—

because that field is of U(1) symmetry and can be reduced to a single point.

Therefore in most cases which are of U(1) symmetry, we do not need to

distinguish between the direction of the vectors of a field from one region to

another of that field. However, the Aharonov–Bohm situation is not conve-
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ntional or simply connected, but special. (In other words, the physical situation

associated with the Aharonov–Bohm effect has a nontrivial topology). It is a

multiply connected situation and of SU(2)/Z2 symmetry. Therefore the direction

of the A field on the separate paths is of crucial importance, because a test wave

traveling along one path will experience an A vectorial component directed

against its trajectory and thus be retarded, and another test wave traveling along

another path will experience an A vectorial component directed with its

trajectory and thus its speed is boosted. These ‘‘retardations’’ and ‘‘boostings’’

can be measured as phase changes, but not at the time nor at the locations of I

and II, where their occurrence is separated along the two different paths, but

later, and at the overlap location of III. It is important to note that if

measurements are attempted at locations I and II in Fig. 10, these effects will

not be seen because there is no two-to-one mapping at either I and II and

therefore no referents. The locations I and II are both simply connected with the

source and therefore only the conventional U(1) electromagnetics applies at

these locations (with respect to the source). It is only region III, which is

multiply connected with the source and at which the histories of what happened

to the test particles at I and II can be measured. In order to distinguish the

‘‘boosted’’ A field (because the test wave is traveling ‘‘with’’ its direction) from

the ‘‘retarded’’ A field (because the test wave is traveling ‘‘against’’ its

direction), we introduce the notation Aþ and A� .

Because of the distinction between the A-oriented potential fields at positions

I and II—which are not measurable and are vectors or numbers of U(1) sym-

metry—and the A potential fields at III—which are measurable and are tensors

or matrix-valued functions of (in the present instance) SU(2)/Z2 ¼ SO(3)

symmetry (or higher symmetry)—for reasons of clarity we might introduce

a distinguishing notation. In the case of the potentials of U(1) symmetry at I and

II we might use the lowercase, am; m ¼ 0; 1; 2; 3 and for the potentials of SU(2)/

Z2¼SO(3) at III we might use the uppercase Am; m ¼ 0; 1; 2; 3. Similarly, for the

electromagnetic field tensor at I and II, we might use the lower case, fmn, and for

the electromagnetic field tensor at III, we might use the uppercase, Fmn . Then

the following definitions for the electromagnetic field tensor are as follows. At

locations I and II the Abelian relationship is

f mnðxÞ ¼ qnamðxÞ � qmanðxÞ ð6Þ

where, as is well known, f mn is Abelian and gauge-invariant; but at location III

the non-Abelian relationship is

Fmn ¼ qnAmðxÞ � qmAnðxÞ � igm½AmðxÞ;AnðxÞ	 ð7Þ

where Fmn is gauge covariant, gm is the magnetic charge density and the brackets

are commutation brackets. We remark that in the case of non-Abelian groups,
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such as SU(2), the potential field can carry charge. It is important to note that if

the physical situation changes from SU(2) symmetry back to U(1), then

Fmn ! fmn.

Despite the clarification offered by this notation, the notation can also cause

confusion, because in the present literature, the electromagnetic field tensor is

always referred to as F, whether F is defined with respect to U(1) or SU(2) or

other symmetry situations. Therefore, although we prefer this notation, we shall

not proceed with it. However, it is important to note that the A field in the U(1)

situation is a vector or a number, but in the SU(2) or non-Abelian situation, it is

a tensor or a matrix-valued function.

We referred to the physical situation of the Aharonov–Bohm effect as an

interferometer around an obstruction and it is two-dimensional. It is important

to note that the situation is not provided by a toroid, although a toroid is also a

physical situation with an obstruction and the fields existing on a toroid are also

of SU(2) symmetry. However, the toroid provides a two-to-one mapping of

fields in not only the x and y dimensions but also in the z dimension, and without

the need of an electromagnetic field pointing in two directions þ and � . The

physical situation of the Aharonov–Bohm effect is defined only in the x and y

dimensions (there is no z dimension) and in order to be of SU(2)/Z2 symmetry

requires a field to be oriented differentially on the separate paths. If the

differential field is removed from the Aharonov–Bohm situation, then that

situation reverts to a simple interferometric raceway which can be reduced to a

single point and with no interesting physics.

How does the topology of the situation affect the explanation of an effect? A

typical previous explanation [44] of the Aharonov–Bohm effect commences

with the Lorentz force law:

F ¼ eE þ ev � B: ð8Þ

The electric field, E, and the magnetic flux density, B, are essentially confined to

the inside of the solenoid and therefore cannot interact with the test electrons. An

argument is developed by defining the E and B fields in terms of the A and f
potentials:

E ¼ � qA

qt
�rf; B ¼ r� A: ð9Þ

Now we can note that these conventional U(1) definitions of E and B can be

expanded to SU(2) forms:

E ¼ �ðr � AÞ � qA

qt
�rf; B ¼ ðr � AÞ � qA

qt
�rf: ð10Þ
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Furthermore, the U(1) Lorentz force law, Eq. (8), can hardly apply in this

situation because the solenoid is electrically neutral to the test electrons and

therefore E ¼0 along the two paths. Using the definition of B in Eq. (5), the force

law in this SU(2) situation is

F¼eE þ ev � B ¼ e �ðr � AÞ � qA

qt
�rf

� �
þ ev� ðr �AÞ � qA

qt
�rf

� �
ð11Þ

but we should note that Eqs. (8) and (9) are still valid for the conventional theory

of electromagnetism based on the U(1) symmetry Maxwell’s equations provided

in Table I and associated with the group U(1) algebra. They are invalid for the

theory based on the modified SU(2) symmetry equations also provided in Table I

and associated with the group SU(2) algebra.

The typical explanation of the Aharonov–Bohm effect continues with the

observation that a phase difference, d, between the two test electrons is caused

by the presence of the solenoid

�d ¼ �a1 ��a2 ¼ e

�h

ð
l2

A � dl2 �
ð

l2

A � dl1

� �

¼ e

�h

ð
l2�l1

r� A � dS ¼ e

�h

ð
B � dS ¼ e

�h
jM ð12Þ

where �a1 and �a2 are the changes in the wavefunction for the electrons over

paths 1 and 2, S is the surface area, and jM is the magnetic flux defined as

follows:

jM ¼
ð ð

AmðxÞ dxm ¼
ð ð

Fmn dsmn ð13Þ

Now, we can extend this explanation further, by observing that the local phase

change at III of the wavefunction of a test wave or particle is given by

� ¼ exp igm

ð ð
AmðxÞ dxm

� �
¼ exp½igmjM 	 ð14Þ

�, which is proportional to the magnetic flux, jM , is known as the phase factor

and is gauge-covariant. Furthermore, �, this phase factor measured at position

III, is the holonomy of the connection, Am; and gm is the SU(2) magnetic charge

density.
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We next observe that jM is in units of volt-seconds (V�s) or kg �m�2/

(A s�2) ¼ J/A. From Eq. (12) it can be seen that �d and the phase factor, �, are

dimensionless. Therefore we can make the prediction that if the magnetic flux,

jM , is known and the phase factor, �, is measured (as in the Aharonov–Bohm

situation), the magnetic charge density, gm, can be found by the following

relation:

gm ¼ ln ð�Þ
ðijMÞ

ð15Þ

Continuing the explanation: as was noted above, r� A ¼ 0 outside the solenoid

and the situation must be redefined in the following way. An electron on path 1

will interact with the A field oriented in the positive direction. Conversely, an

electron on path 2 will interact with the A field oriented in the negative direction.

Furthermore, the B field can be defined with respect to a local stationary

component B1 that is confined to the solenoid and a component B2 which is either

a standing wave or propagates:

B ¼ B1 þ B2

B1 ¼ r� A

B2 ¼ � qA

qt
�rf

ð16Þ

The magnetic flux density, B1, is the confined component associated with U(1) �
SU(2) symmetry and B2 is the propagating or standing-wave component

associated only with SU(2) symmetry. In a U(1) symmetry situation, B1 ¼
components of the field associated with U(1) symmetry, and B2¼0.

The electrons traveling on paths 1 and 2 require different times to reach III

from X, due to the different distances and the opposing directions of the potential

A along the paths l1 and l2. Here we only address the effect of the opposing

directions of the potential A, namely, the distances traveled are identical over

the two paths. The change in the phase difference due to the presence of the A
potential is then

�d ¼ �a1 ��a2 ¼ e

�h

ð
l2

� qAþ
qt

�rfþ

� �
� dl2 �

ð
l1

� qA�
qt

�rf�

� �
dl1

� �
�

dS ¼ e

�h

ð
B2 � dS ¼ e

�h
jM ð17Þ
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There is no flux density B1 in this equation since this equation describes events

outside the solenoid, but only the flux density B2 associated with group SU(2)

symmetry; and the ‘‘þ ’’ and ‘‘� ’’ indicate the direction of the A field

encountered by the test electrons—as discussed above.

We note that the phase effect is dependent on B2 and B1, but not on B1 alone.

Previous treatments found no convincing argument around the fact that whereas

the Aharonov–Bohm effect depends on an interaction with the A field outside

the solenoid, B, defined in U(1) electromagnetism as B ¼ r� A, is zero at that

point of interaction. However, when A is defined in terms associated with an

SU(2) situation, that is not the case as we have seen.

We depart from former treatments in other ways. Commencing with a

correct observation that the Aharonov–Bohm effect depends on the topology

of the experimental situation and that the situation is not simply connected,

a former treatment then erroneously seeks an explanation of the effect in

the connectedness of the U(1) gauge symmetry of conventional electro-

magnetism, but for which (1) the potentials are ambiguously defined, (the U(1)

A field is gauge invariant) and (2) in U(1) symmetry r� A ¼ 0 outside the

solenoid.

Furthermore, whereas a former treatment again makes a correct observa-

tion that the non-Abelian group, SU(2), is simply connected and that the

situation is governed by a multiply connected topology, the author fails to

observe that the non-Abelian group SU(2) defined over the integers modulo 2,

SU(2)/Z2, is, in fact, multiply connected. Because of the two paths around the

solenoid it is this group that describes the topology underlying the Aharonov–

Bohm effect [9–11]. SU(2)/Z2 ffi SO(3) is obtained from the group SU(2) by

identifying pairs of elements with opposite signs. For definitions of SO(3) see

the following listed paragraphs.

1. O(n) Group Algebra. The orthogonal group, O(n), is the group of

transformation (including inversion) in an n-dimensional Euclidean space. The

elements of O(n) are represented by n � n real orthogonal matrices with

nðn � 1Þ=2 real parameters satisfying AAt ¼ 1.

2. O(3) Group Algebra. The orthogonal group, O(3), is the well-known and

familiar group of transformations (including inversions) in 3D space with three

parameters; those parameters are the rotation or Euler angles ða; b; gÞ. O(3)

leaves the distance squared, z2 þ y2 þ z2, invariant.

3. SO(3) Group Algebra. The collection of matrices in Euclidean 3D space

which are orthogonal and moreover for which the determinant is þ1 is a

subgroup of O(3). SO(3) is the special orthogonal group in three variables and

defines rotations in 3D space. Rotation of the Riemann sphere is a rotation in R3
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or x� Z� � space, for which

x2 þ Z2 þ �2 ¼ 1; x ¼ 2x

jzj2 þ 1
; Z ¼ 2y

jzj2 þ 1
; � ¼ jzj2 � 1

jzj2 þ 1

z ¼ x þ iy ¼ xþ iZ
1 � �

UxðaÞ ¼
1ffiffiffi
2

p
1 �1

1 1

 !
eia=2 0

0 e�ia=2

 !
1ffiffiffi
2

p
1 1

�1 1

 !

¼
cosa

2
i sina

2

i sina
2

cosa
2

 !
or � UxðaÞ ! R1ðaÞ

UZðbÞ ¼
1ffiffiffi
2

p
1 �i

�i 1

 !
eib=2 0

0 e�ib=2

 !
1ffiffiffi
2

p
1 i

i 1

 !

¼
cosb

2
�sinb

2

sinb
2

cosb
2

 !
or � UZðbÞ ! R2ðbÞ

U�ðgÞ ¼
1ffiffiffi
2

p
1 0

0 1

 !
eig=2 0

0 e�ig=2

 !
1ffiffiffi
2

p
1 0

0 1

 !

¼
cosg

2
�sing

2

sin g
2

cosg
2

 !
or � UxðgÞ ! R3ðgÞ

which are mappings from SL(2,C) to SO(3). However, as the SL(2,C) are all

unitary with determinant equal to þ1, they are of the SU(2) group. Therefore

SU(2) is the covering group of SO(3). Furthermore, SU(2) is simply connected

and SO(3) is multiply connected. A simplification of the above is

UxðaÞ ¼ eiða=2Þs1 ; UZðbÞ ¼ e�iðb=2Þs2 ; U�ðgÞ ¼ eiðg=2Þs3

where

s1 ¼ 0 1

1 0

� �
; s2 ¼ 0 �i

i 0

� �
; s3 ¼ 1 0

0 �1

� �

s1;s2;s3 are the Pauli matrices.

The �d measured at location III in Fig. 10 is derived from a single path in SO(3),

because the two paths through locations I and II in SU(2) are regarded as a single

path in SO(3). This path in SU(2)/Z2 ffi SO(3) cannot be shrunk to a single point
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by any continuous deformation and therefore adequately describes the multiple-

connectedness of the Aharonov–Bohm situation. Because the former treatment

failed to note the multiple connectedness of the SU(2)/Z2 description of the

Aharonov–Bohm situation, it incorrectly fell back on a U(1) symmetry

description.

Now back to the main point of this excursion to the Aharonov–Bohm

effect—the reader will note that the author appealed to topological arguments to

support the main points of his argument. Underpinning the U(1) Maxwell theory

is an Abelian algebra; underpinning the SU(2) theory is a non-Abelian algebra.

The algebras specify the form of the equations of motion. However, whether one

or the other algebra can be (validly) used can be determined only by topological

considerations.

VI. SUMMARY

We have attempted to show the fundamental explanatory nature of the topological

description of solitons, instantons and the Aharonov–Bohm effect—and hence

electromagnetism. In the case of electromagnetism we shown elsewhere that,

given a Yang–Mills description, electromagnetism can, and should be, extended

in accordance with the topology with which the electromagnetic fields are

associated.

This approach has further implications. If the conventional theory of electro-

magnetism, namely, ‘‘Maxwell’s theory,’’ which is of U(1) symmetry form, is

but the simplest local theory of electromagnetism, then those pursuing a unified

field theory may wish to consider as a candidate for that unification, not only the

simple local theory but also other electromagnetic fields of group symmetry

higher than U(1). Other such forms include symplectic gauge fields of higher

group symmetry, such as SU(2) and above.
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Pogány, B., 391(14), 396-397(14), 401
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