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JAROMÍR FIURÁŠEK, Department of Optics, Palacký University, Olomouc,
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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. PRIGOGINE

STUART A. RICE
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PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the

series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume

119 is largely a dialogue between two schools of thought, one school concerned

with quantum optics and Abelian electrodynamics, the other with the emerging

subject of non-Abelian electrodynamics and unified field theory. In one of the

review articles in the third part of this volume, the Royal Swedish Academy

endorses the complete works of Jean-Pierre Vigier, works that represent a view

of quantum mechanics opposite that proposed by the Copenhagen School. The

formal structure of quantum mechanics is derived as a linear approximation for

a generally covariant field theory of inertia by Sachs, as reviewed in his article.

This also opposes the Copenhagen interpretation. Another review provides

reproducible and repeatable empirical evidence to show that the Heisenberg

uncertainty principle can be violated. Several of the reviews in Part 1 contain

developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories

distinct from the Maxwell–Heaviside theory, the predominant paradigm at this

stage in the development of science. Other review articles develop electro-

dynamics from a topological basis, and other articles develop conventional or

U(1) electrodynamics in the fields of antenna theory and holography. There are

also articles on the possibility of extracting electromagnetic energy from

Riemannian spacetime, on superluminal effects in electrodynamics, and on

unified field theory based on an SU(2) sector for electrodynamics rather than a

U(1) sector, which is based on the Maxwell–Heaviside theory. Several effects

that cannot be explained by the Maxwell–Heaviside theory are developed using

various proposals for a higher-symmetry electrodynamical theory. The volume

is therefore typical of the second stage of a paradigm shift, where the prevailing

paradigm has been challenged and various new theories are being proposed. In

this case the prevailing paradigm is the great Maxwell–Heaviside theory and its

quantization. Both schools of thought are represented approximately to the same

extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of

opinion is represented so that a consensus will eventually emerge. The

prevailing paradigm (Maxwell–Heaviside theory) is ably developed by several

groups in the field of quantum optics, antenna theory, holography, and so on, but

the paradigm is also challenged in several ways: for example, using general

relativity, using O(3) electrodynamics, using superluminal effects, using an

ix



extended electrodynamics based on a vacuum current, using the fact that

longitudinal waves may appear in vacuo on the U(1) level, using a reproducible

and repeatable device, known as the motionless electromagnetic generator,

which extracts electromagnetic energy from Riemannian spacetime, and in

several other ways. There is also a review on new energy sources. Unlike

Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and

many thousands of papers are reviewed by both schools of thought. Much of the

evidence for challenging the prevailing paradigm is based on empirical data,

data that are reproducible and repeatable and cannot be explained by the Max-

well–Heaviside theory. Perhaps the simplest, and therefore the most powerful,

challenge to the prevailing paradigm is that it cannot explain interferometric and

simple optical effects. A non-Abelian theory with a Yang–Mills structure is

proposed in Part 2 to explain these effects. This theory is known as O(3)

electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous

logistical support and to the Fellows and Emeriti of the Alpha Foundation’s

Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at

the U.S. Department of Energy is thanked for a Website reserved for some of

this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MYRON W. EVANS

Ithaca, New York
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I. INTRODUCTION

More than a century has passed since Planck discovered that it is possible to

explain properties of the blackbody radiation by introducing discrete packets of

energy, which we now call photons. The idea of discrete or quantized nature of

energy had deep consequences and resulted in development of quantum mecha-

nics. The quantum theory of optical fields is called quantum optics. The cons-

truction of lasers in the 1960s gave impulse to rapid development of nonlinear

optics with a broad variety of nonlinear optical phenomena that have been
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experimentally observed and described theoretically and now are the subject of

textbooks [1,2]. In early theoretical descriptions of nonlinear optical phenom-

ena, the quantum nature of optical fields has been ignored on the grounds that

laser fields are so strong, that is, the number of photons associated with them are

so huge, that the quantum properties assigned to individual photons have no

chances to manifest themselves. However, it turned out pretty soon that

quantum noise associated with the vacuum fluctuations can have important

consequences for the course of nonlinear phenomena. Moreover, it appeared

that the quantum noise itself can change essentially when the quantum field is

subject to the nonlinear transformation that is the essence of any nonlinear

process. The quantum states with reduced quantum noise for a particular

physical quantity can be prepared in various nonlinear processes. Such states

have no classical counterparts; that is, the results of some physical measure-

ments cannot be explained without explicit recall to the quantum character of

the field. The methods of theoretical description of quantum noise are the

subject of Gardiner’s book [3]. This chapter is not intended as a presentation of

general methods that can be found in the book; rather, we want to compare the

results obtained with a few chosen methods for the two, probably most

important, nonlinear processes: second-harmonic generation and downconver-

sion with quantum pump.

Why have we chosen the second-harmonic generation and the downconver-

sion to illustrate consequences of field quantization, or a role of quantum noise,

in nonlinear optical processes? The two processes are at the same time similar

and different. Both of them are described by the same interaction Hamiltonian,

so in a sense they are similar and one can say that they show different faces of

the same process. However, they are also different, and the difference between

them consists in the different initial conditions. This difference appears to be

very important, at least at early stages of the evolution, and the properties of the

fields produced in the two processes are quite different. With these two best-

known and practically very important examples of nonlinear optical processes,

we would like to discuss several nonclassical effects and present the most

common theoretical approaches used to describe quantum effects. The chapter

is not intended to be a complete review of the results concerning the two

processes that have been collected for years. We rather want to introduce the

reader who is not an expert in quantum optics into this fascinating field by

presenting not only the results but also how they can be obtained with presently

available computer software. The results are largely illustrated graphically for

easier comparisons. In Section II we introduce basic definitions and the most

important formulas required for later discussion. Section III is devoted to

presentation of results for second-harmonic generation, and Section IV results

for downconversion. In the Appendixes A and B we have added examples of

computer programs that illustrate usage of really existing software and were

2 ryszard tanaś



actually used in our calculations. We draw special attention to symbolic

calculations and numerical methods, which can now be implemented even on

small computers.

II. BASIC DEFINITIONS

In classical optics, a one mode electromagnetic field of frequency o, with the

propagation vector k and linear polarization, can be represented as a plane wave

Eðr; tÞ ¼ 2E0 cosðk � r � ot þ jÞ ð1Þ

where E0 is the amplitude and j is the phase of the field. Assuming the linear

polarization of the field, we have omitted the unit polarization vector to simplify

the notation. Classically, both the amplitude E0 and the phase j can be well-

defined quantities, with zero noise. Of course, the two quantities can be

considered as classical random variables with nonzero variances; thus, they

can be noisy in a classical sense, but there is no relation between the two

variances and, in principle, either of them can be rendered zero giving the

noiseless classical field. Apart from a constant factor, the squared real ampli-

tude, E2
0, is the intensity of the field. In classical electrodynamics there is no real

need to use complex numbers to describe the field. However, it is convenient to

work with exponentials rather than cosine and sine functions and the field (1) is

usually written in the form

Eðr; tÞ ¼ EðþÞeiðk � r�otÞ þ Eð�Þe�iðk � r�otÞ ð2Þ

with the complex amplitudes E� ¼ E0e�ij. The modulus squared of such an

amplitude is the intensity of the field, and the argument is the phase. Both

intensity and the phase can be measured simultaneously with arbitrary accuracy.

In quantum optics the situation is dramatically different. The electromagnetic

field E becomes a quantum quantity; that is, it becomes an operator acting in a

Hilbert space of field states, the complex amplitudes E� become the annihilation

and creation operators of the electromagnetic field mode, and we have

Ê ¼
ffiffiffiffiffiffiffiffiffiffi
�ho

2e0V

r
½âeiðk � r�otÞ þ âþe�iðk � r�otÞ	 ð3Þ

with the bosonic commutation rules

½â; âþ	 ¼ 1 ð4Þ

for the annihilation (â) and creation (âþ) operators of the field mode, where e0 is

the electric permittivity of free space and V is the quantization volume. Because

quantum noise in nonlinear optical phenomena 3



of laws of quantum mechanics, optical fields exhibit an inherent quantum

indeterminacy that cannot be removed for principal reasons no matter how

smart we are. The quantity

E0 ¼
ffiffiffiffiffiffiffiffiffiffi
�ho

2e0V

r
ð5Þ

appearing in (3) is a measure of the quantum optical noise for a single mode of

the field. This noise is present even if the field is in the vacuum state, and for this

reason it is usually referred to as the vacuum fluctuations of the field [4].

Quantum noise associated with the vacuum fluctuations, which appears because

of noncommuting character of the annihilation and creation operators expressed

by (4), is ubiquitous and cannot be eliminated, but we can to some extent

control this noise by ‘squeezing’ it in one quantum variable at the expense of

‘‘expanding’’ it in another variable. This noise, no matter how small it is in

comparison to macroscopic fields, can have very important macroscopic

consequences changing the character of the evolution of the macroscopic fields.

We are going to address such questions in this chapter.

The electric field operator (3) can be rewritten in the form

Ê ¼ E0 Q̂cosðk � r � otÞ þ P̂sinðk � r � otÞ
� �

ð6Þ

where we have introduced two Hermitian quadrature operators, Q̂ and P̂, defined

as

Q̂ ¼ â þ âþ ; P̂ ¼ �iðâ � âþÞ ð7Þ

which satisfy the commutation relation

½Q̂; P̂	 ¼ 2i ð8Þ

The two quadrature operators thus obey the Heisenberg uncertainty relation

hð�Q̂Þ2ihð�P̂Þ2i � 1 ð9Þ

where we have introduced the quadrature noise operators

�Q̂ ¼ Q̂ � hQ̂i ; �P̂ ¼ P̂ � hP̂i ð10Þ

For the vacuum state or a coherent state, which are the minimum uncertainty

states, the inequality (9) becomes equality and, moreover, the two variances are

equal

hð�Q̂Þ2i ¼ hð�P̂Þ2 ¼ 1 ð11Þ

4 ryszard tanaś



The Heisenberg uncertainty relation (9) imposes basic restrictions on the

accuracy of the simultaneous measurement of the two quadrature components

of the optical field. In the vacuum state the noise is isotropic and the two

components have the same level of quantum noise. However, quantum states

can be produced in which the isotropy of quantum fluctuations is broken—the

uncertainty of one quadrature component, say, Q̂, can be reduced at the expense

of expanding the uncertainty of the conjugate component, P̂. Such states are

called squeezed states [5,6]. They may or may not be the minimum uncertainty

states. Thus, for squeezed states

hð�Q̂Þ2i < 1 or hð�P̂Þ2i < 1 ð12Þ

Squeezing is a unique quantum property that cannot be explained when the field

is treated as a classical quantity—field quantization is crucial for explaining this

effect.

Another nonclassical effect is referred to as sub-Poissonian photon statistics

(see, e.g., Refs. 7 and 8 and papers cited therein). It is well known that in a

coherent state defined as an infinite superposition of the number states

jai ¼ exp � jaj2

2

 !X1
n¼0

anffiffiffiffi
n!

p jni ð13Þ

the photon number distribution is Poissonian

pðnÞ ¼ jhnjaij2 ¼ expð�jaj2Þ jaj
2n

n!
¼ expð�hn̂iÞ hn̂i

n

n!
ð14Þ

which means

hð�n̂Þ2i ¼ hn̂2i � hn̂i2 ¼ hn̂i ð15Þ

If the variance of the number of photons is smaller than its mean value, the field

is said to exhibit the sub-Poissonian photon statistics. This effect is related to the

second-order intensity correlation function

Gð2ÞðtÞ ¼ h: n̂ðtÞn̂ðt þ tÞ :i ¼ hâþðtÞâþðt þ tÞâðt þ tÞâðtÞi ð16Þ

where : : indicate the normal order of the operators. This function describes the

probability of counting a photon at t and another one at t þ t. For stationary

fields, this function does not depend on t but solely on t. The normalized

quantum noise in nonlinear optical phenomena 5



second-order correlation function, or second-order degree of coherence, is

defined as

gð2ÞðtÞ ¼ Gð2ÞðtÞ
hn̂i2

ð17Þ

If gð2ÞðtÞ < gð2Þð0Þ, the probability of detecting the second photon decreases

with the time delay t, indicating bunching of photons. On the other hand, if

gð2ÞðtÞ > gð2Þð0Þ, we have the effect of antibunching of photons. Photon anti-

bunching is another signature of quantum character of the field. For t ¼ 0, we

have

gð2Þð0Þ ¼ hâþâþâ âi
hâþâi2

¼ hn̂ðn̂ � 1Þi
hn̂i2

¼ 1 þ hð�n̂Þ2i � hn̂i
hn̂i2

ð18Þ

which gives the relation between the photon statistics and the second-order

correlation function. Another convenient parameter describing the deviation of

the photon statistics from the Poissonian photon number distribution is the

Mandel q parameter defined as [9]

q ¼ hð�n̂Þ2i
hn̂i � 1 ¼ hn̂iðgð2Þð0Þ � 1Þ ð19Þ

Negative values of this parameter indicate sub-Poissonian photon statistics,

namely, nonclassical character of the field. One obvious example of the

nonclassical field is a field in a number state jni for which the photon number

variance is zero, and we have gð2Þð0Þ ¼ 1 � 1=n and q ¼ �1. For coherent

states, gð2Þð0Þ ¼ 1 and q ¼ 0. In this context, coherent states draw a somewhat

arbitrary line between the quantum states that have ‘‘classical analogs’’ and the

states that do not have them. The coherent states belong to the former category,

while the states for which gð2Þð0Þ < 1 or q < 0 belong to the latter category.

This distinction is better understood when the Glauber–Sudarshan quasidistri-

bution function PðaÞ is used to describe the field.

The coherent states (13) can be used as a basis to describe states of the field.

In such a basis for a state of the field described by the density matrix r, we can

introduce the quasidistribution function PðaÞ in the following way:

r ¼
ð

d2aPðaÞjaihaj ð20Þ

where d2a ¼ d ReðaÞ d ImðaÞ. In terms of PðaÞ, the expectation value of the

normally ordered products (creation operators to the left and annihilation

6 ryszard tanaś



operators to the right) has the form

hðâþÞmâni ¼ Tr ½rðâþÞmân	 ¼
ð

d2aPðaÞða�Þman ð21Þ

For a coherent state ja0i, r ¼ ja0iha0j, and the quasiprobability distribution

PðaÞ ¼ dð2Þða� a0Þ giving hðaþÞmani ¼ ða�Þmani. When PðaÞ is a well-be-

haved, positive definite function, it can be considered as a probability distribu-

tion function of a classical stochastic process, and the field with such a P

function is said to have ‘‘classical analog.’’ However, the P function can be

highly singular or can take negative values, in which case it does not satisfy

requirements for the probability distribution, and the field states with such a P

function are referred to as nonclassical states.

From the definition (13) of coherent state it is easy to derive the complete-

ness relation

1

p

ð
d2a jaihaj ¼ 1 ð22Þ

and find that the coherent states do not form an orthonormal set

jhajbij2 ¼ expð�ja� bj2Þ ð23Þ

and only for ja� bj2 � 1 they are approximately orthogonal. In fact, coherent

states form an overcomplete set of states.

To see the nonclassical character of squeezed states better, let us express the

variance hð�Q̂Þ2i in terms of the P function

hð�Q̂Þ2i ¼ hðâ þ âþÞ2i � hðâ þ âþÞi2

¼ hâ2 þ âþ2 þ 2âþâ þ 1i � hâ þ âþi2

¼ 1 þ
ð

d2aPðaÞ½ðaþ a�Þ2 � haþ a�i2	 ð24Þ

which shows that hð�Q̂Þ2i < 1 is possible only if PðaÞ is not a positive definite

function. The unity on the right-hand side of (24) comes from applying the

commutation relation (4) to put the formula into its normal form, and it is thus a

manifestation of the quantum character of the field (‘‘shot noise’’).

Similarly, for the photon number variance, we get

hð�n̂Þ2i ¼ hn̂i þ hâþ2â2i � hâþâi2

¼ hn̂i þ
ð

d2aPðaÞ½jaj2 � hjaj2i	2 ð25Þ
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Again, hð�n̂Þ2i<hn̂i only if PðaÞ is not positive definite, and thus sub-

Poissonian photon statistics is a nonclassical feature.

In view of (24), one can write

hð�Q̂Þ2i ¼ 1 þ h: ð�Q̂Þ2 :i ; hð�P̂Þ2i ¼ 1 þ h: ð�P̂Þ2 :i ð26Þ

where : : indicate the normal form of the operator. Using the normal form of the

quadrature component variances squeezing can be conveniently defined by the

condition

h: ð�Q̂Þ2 :i < 0 or h: ð�P̂Þ2 :i < 0 ð27Þ

Therefore, whenever the normal form of the quadrature variance is negative, this

component of the field is squeezed or, in other words, the quantum noise in this

component is reduced below the vacuum level. For classical fields, there is no

unity coming from the boson commutation relation, and the normal form of the

quadrature component represents true variance of the classical stochastic

variable, which must be positive.

The Glauber–Sudarshan P representation of the field state is associated with

the normal order of the field operators and is not the only c-number represen-

tation of the quantum state. Another quasidistribution that is associated with

antinormal order of the operators is the Q representation, or the Husimi function,

defined as

QðaÞ ¼ 1

p
hajrjai ð28Þ

and in terms of this function the expectation value of the antinormally ordered

product of the field operators is calculated according to the formula

hâmðâþÞni ¼ 1

p

ð
d2a hajrjaiamða�Þn ð29Þ

It is clear from (28) that QðaÞ is always positive, since r is a positive definite

operator. For a coherent state ja0i, QðaÞ ¼ ð1=pÞexpð�ja� a0j2Þ is a Gaussian

in the phase space fRe a, Im ag which is centered at a0. The section of this

function, which is a circle, represents isotropic noise in the coherent state (the

same as for the vacuum). The anisotropy introduced by squeezed states means a

deformation of the circle into an ellipse or another shape.

Generally, according to Cahill and Glauber [10], one can introduce the s-

parametrized quasidistribution function WðsÞðaÞ defined as

WðsÞðaÞ ¼ 1

p
Trfr T̂ ðsÞðaÞg ð30Þ
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where the operator T̂ðsÞðaÞ is given by

T̂ ðsÞðaÞ ¼ 1

p

ð
d2x expðax� � a�xÞD̂ðsÞðxÞ ð31Þ

and

D̂ðsÞðxÞ ¼ exp
sx2

2

	 

D̂ðxÞ ð32Þ

where D̂ðxÞ is the displacement operator and r is the density matrix of the field.

The operator T̂ ðsÞðaÞ can be rewritten in the form

T̂ ðsÞðaÞ ¼ 2

1 � s

X1
n¼0

D̂ðaÞjni s þ 1

s � 1

	 
n

hnjD̂þðaÞ ð33Þ

which gives explicitly its s dependence. So, the s-parametrized quasidistribution

function WðsÞðaÞ has the following form in the number-state basis

WðsÞðaÞ ¼ 1

p

X
m;n

rmnhnjT̂ðsÞðaÞjmi ð34Þ

where the matrix elements of the operator (31) are given by

hnjT̂ðsÞðaÞjmi ¼
ffiffiffiffiffi
n!

m!

r
2

1 � s

	 
m�nþ1
s þ 1

s � 1

	 
n

e�iðm�nÞyjajm�n

� exp � 2jaj2

1 � s

 !
Lm�n

n

4jaj2

1 � s2

 !
ð35Þ

in terms of the associate Laguerre polynomials Lm�n
n ðxÞ. In this equation we

have also separated explicitly the phase of the complex number a by writing

a ¼ jajeiy ð36Þ

The phase y is the quantity representing the field phase.

With the quasiprobability distributions WðsÞðaÞ, the expectation values of the

s-ordered products of the creation and annihilation operators can be obtained by

proper integrations in the complex a plane. In particular, for s ¼ 1; 0;�1, the s-

ordered products are normal, symmetric, and antinormal ordered products of the

creation and annihilation operators, and the corresponding distributions are the

Glauber–Sudarshan P function, Wigner function, and Husimi Q function. By
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virtue of the relation inverse to (34), the field density matrix can be retrieved

from the quasiprobability function

r ¼
ð

d2a T̂ ð�sÞðaÞWðsÞðaÞ ð37Þ

Polar decomposition of the field amplitude, as in (36), which is trivial for

classical fields becomes far from being trivial for quantum fields because of the

problems with proper definition of the Hermitian phase operator. It was quite

natural to associate the photon number operator with the intensity of the field

and somehow construct the phase operator conjugate to the number operator.

The latter task, however, turned out not to be easy. Pegg and Barnett [11–13]

introduced the Hermitian phase formalism, which is based on the observation

that in a finite-dimensional state space, the states with well-defined phase

exist [14]. Thus, they restrict the state space to a finite (sþ 1)-dimensional

Hilbert space HðsÞ spanned by the number states j0i, j1i, . . . ; jsi. In this space

they define a complete orthonormal set of phase states by

jymi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

sþ 1
p

Xs
n

expðinymÞjni ; m ¼ 0; 1; . . . ;s ð38Þ

where the values of ym are given by

ym ¼ y0 þ
2pm

sþ 1
ð39Þ

The value of y0 is arbitrary and defines a particular basis set of (sþ 1) mutually

orthogonal phase states. The number state jni can be expanded in terms of the

jymi phase-state basis as

jni ¼
Xs
m¼0

jymihymjni ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

sþ 1
p

Xs
m¼0

expð�inymÞjymi ð40Þ

From Eqs. (38) and (40) we see that a system in a number state is equally likely

to be found in any state jymi, and a system in a phase state is equally likely to be

found in any number state jni.
The Pegg–Barnett Hermitian phase operator is defined as

�̂y ¼
Xs
m¼0

ymjymihymj ð41Þ
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Of course, the phase states (38) are eigenstates of the phase operator (40) with

the eigenvalues ym restricted to lie within a phase window between y0 and

y0 þ 2ps=ðsþ 1Þ. The Pegg–Barnett prescription is to evaluate any observable

of interest in the finite basis (38), and only after that to take the limit s ! 1.

Since the phase states (38) are orthonormal, hymjym0 i ¼ dmm0 , the kth power

of the Pegg–Barnett phase operator (41) can be written as

�̂k
y ¼

Xs
m¼0

yk
mjymihymj ð42Þ

Substituting Eqs. (38) and (39) into Eq. (41) and performing summation over m

yields explicitly the phase operator in the Fock basis:

�̂y ¼ y0 þ
sp

sþ 1
þ 2p
sþ 1

X
n 6¼n0

exp ½iðn � n0Þy0	jnihn0j
exp ½iðn � n0Þ2p=ðsþ 1Þ	 � 1

ð43Þ

It is readily apparent that the Hermitian phase operator �̂y has well-defined

matrix elements in the number-state basis and does not suffer from the problems

as those the original Dirac phase operator suffered. Indeed, using the Pegg–

Barnett phase operator (43) one can readily calculate the phase-number commu-

tator [13]

�̂y; n̂
� �

¼ � 2p
sþ 1

X
n 6¼n0

ðn � n0Þexp ½iðn � n0Þy0	
exp ½iðn � n0Þ2p=ðsþ 1Þ	 � 1

jnihn0j ð44Þ

This equation looks very different from the famous Dirac postulate for the

phase-number commutator.

The Pegg–Barnett Hermitian phase formalism allows for direct calculations

of quantum phase properties of optical fields. As the Hermitian phase operator is

defined, one can calculate the expectation value and variance of this operator for

a given state j f i. Moreover, the Pegg–Barnett phase formalism allows for the

introduction of the continuous phase probability distribution, which is a re-

presentation of the quantum state of the field and describes the phase properties

of the field in a very spectacular fashion. For so-called physical states, that is,

states of finite energy, the Pegg–Barnett formalism simplifies considerably. In

the limit as s ! 1 one can introduce the continuous phase distribution

PðyÞ ¼ lim
s!1

sþ 1

2p
jhymj f ij2 ð45Þ

where ðsþ 1Þ=2p is the density of states and the discrete variable ym is

replaced by a continuous phase variable y. In the number-state basis the
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Pegg–Barnett phase distribution takes the form [15]

PðyÞ ¼ 1

2p
1 þ 2Re

X
m>n

rmn exp ½�iðm � nÞy	
( )

ð46Þ

where rmn ¼ hmjrjni are the density matrix elements in the number-state basis.

The phase distribution (46) is 2p-periodic, and for all states with the density

matrix diagonal in the number-state basis, the phase distribution is uniform over

the 2p-wide phase window. Knowing the phase distribution makes the calcula-

tion of the phase operator expectation values quite simple; it is simply the

calculation of all integrals over the continuous phase variable y. For example,

h f j�̂k
yj f i ¼

ðy0þ2p

y0

dy ykPðyÞ ð47Þ

When the phase window is chosen in such a way that the phase distribution is

symmetrized with respect to the initial phase of the partial phase state, the phase

variance is given by the formula

hð��̂yÞ2i ¼
ðp
�p

dy y2PðyÞ ð48Þ

For a partial phase state with the decomposition

j f i ¼
X

n

bneinjjni ð49Þ

the phase variance has the form

hð��̂yÞ2i ¼ p2

3
þ 4

X
n>k

bnbk

ð�1Þn�k

ðn � kÞ2
ð50Þ

The value p2=3 is the variance for the uniformly distributed phase, as in the case

of a single-number state.

On integrating the quasiprobability distribution WðsÞðaÞ, given by (34), over

the ‘‘radial’’ variable jaj, we get a ‘‘phase distribution’’ associated with this

quasiprobability distribution. The s-parametrized phase distribution is thus

given by

PðsÞðyÞ ¼
ð1

0

djajWðsÞðaÞjaj ð51Þ
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which, after performing of the integrations, gives the formula similar to the

Pegg–Barnett phase distribution

PðsÞðyÞ ¼ 1

2p
1 þ 2Re

X
m>n

rmn e�iðm�nÞyGðsÞðm; nÞ
( )

ð52Þ

The difference between the Pegg–Barnett phase distribution (46) and the

distribution (52) lies in the coefficients GðsÞðm; nÞ, which are given by [16]

GðsÞðm; nÞ ¼ 2

1 � s

	 
ðmþnÞ=2 Xminðm;nÞ

l¼0

ð�1Þl 1 þ s

2

	 
l

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

l

 � m

l

 �r �

	
m þ n

2
� l þ 1



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm � lÞ!ðn � lÞ!

p ð53Þ

The phase distributions obtained by integration of the quasidistribution func-

tions are different for different s, and all of them are different from the Pegg–

Barnett phase distribution. The Pegg–Barnett phase distribution is always

positive while the distribution associated with the Wigner distribution (s ¼ 0)

may take negative values. The distribution associated with the Husimi Q

function is much broader than the Pegg–Barnett distribution, indicating that

some phase information on the particular quantum state has been lost. Quantum

phase fluctuations as fluctuations associated with the operator conjugate to the

photon-number operator are important for complete picture of the quantum

noise of the optical fields (for more details, see, e.g., Refs. 16 and 17).

III. SECOND-HARMONIC GENERATION

Second-harmonic generation, which was observed in the early days of lasers [18]

is probably the best known nonlinear optical process. Because of its simplicity

and variety of practical applications, it is a starting point for presentation of

nonlinear optical processes in the textbooks on nonlinear optics [1,2]. Classi-

cally, the second-harmonic generation means the appearance of the field at

frequency 2o (second harmonic) when the optical field of frequency o
(fundamental mode) propagates through a nonlinear crystal. In the quantum

picture of the process, we deal with a nonlinear process in which two photons of

the fundamental mode are annihilated and one photon of the second harmonic is

created. The classical treatment of the problem allows for closed-form solutions

with the possibility of energy being transferred completely into the second-

harmonic mode. For quantum fields, the closed-form analytical solution of the
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problem has not been found unless some approximations are made. The early

numerical solutions [19,20] showed that quantum fluctuations of the field

prevent the complete transfer of energy into the second harmonic and the

solutions become oscillatory. Later studies showed that the quantum states of

the field generated in the process have a number of unique quantum features

such as photon antibunching [21] and squeezing [9,22] for both fundamental

and second harmonic modes (for a review and literature, see Ref. 23). Nikitin

and Masalov [24] discussed the properties of the quantum state of the

fundamental mode by calculating numerically the quasiprobability distribution

function QðaÞ. They suggested that the quantum state of the fundamental mode

evolves, in the course of the second-harmonic generation, into a superposition

of two macroscopically distinguishable states, similar to the superpositions

obtained for the anharmonic oscillator model [25–28] or a Kerr medium [29,30].

Bajer and Lisoněk [31] and Bajer and Peřina [32] have applied a symbolic

computation approach to calculate Taylor series expansion terms to find

evolution of nonlinear quantum systems. A quasiclassical analysis of the second

harmonic generation has been done by Alvarez-Estrada et al. [33]. Phase

properties of fields in harmonics generation have been studied by Gantsog et

al. [34] and Drobný and Jex [35]. Bajer et al. [36] and Bajer et al. [37] have

discussed the sub-Poissonian behavior in the second- and third-harmonic

generation. More recently, Olsen et al. [38,38] have investigated quantum-

noise-induced macroscopic revivals in second-harmonic generation and criteria

for the quantum nondemolition measurement in this process.

Quantum description of the second harmonic generation, in the absence of

dissipation, can start with the following model Hamiltonian

Ĥ ¼ Ĥ0 þ ĤI ð54Þ

where

Ĥ0 ¼ �hoâþâ þ 2�hob̂þb̂ ; ĤI ¼ �hkðâ2b̂þ þ âþ2b̂Þ ð55Þ

and â (âþ), b̂ (b̂þ) are the annihilation (creation) operators of the fundamental

mode of frequency o and the second harmonic mode at frequency 2o,

respectively. The coupling constant k, which is real, describes the coupling

between the two modes. Since Ĥ0 and ĤI commute, there are two constants of

motion: Ĥ0 and ĤI , Ĥ0 determines the total energy stored in both modes, which

is conserved by the interaction ĤI . The free evolution associated with the

Hamiltonian Ĥ0 leads to âðtÞ ¼ âð0Þexpð�iotÞ and b̂ðtÞ ¼ b̂ð0Þexpð�i2otÞ.
This trivial exponential evolution can always be factored out and the important

part of the evolution described by the interaction Hamiltonian ĤI , for the slowly
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varying operators in the Heisenberg picture, is given by a set of equations

d

dt
âðtÞ ¼ 1

i�h
½â; ĤI 	 ¼ �2ik âþðtÞb̂ðtÞ

d

dt
b̂ðtÞ ¼ 1

i�h
½b̂; ĤI 	 ¼ �ik â2ðtÞ ð56Þ

where for notational convenience we use the same notation for the slowly

varying operators as for the original operators — it is always clear from the

context which operators are considered. In deriving the equations of motion (56),

it is assumed that the operators associated with different modes commute, while

for the same mode they obey the bosonic commutation rules (4).

Usually, the second-harmonic generation is considered as a propagation

problem, not a cavity field problem, and the evolution variable is rather the path

z the two beams traveled in the nonlinear medium. In the simplest, discrete two

mode description of the process the transition from the cavity to the propagation

problem is done by the replacement t ¼ �z=v, where v denotes the velocity of

the beams in the medium (we assume perfect matching conditions). We will use

here time as the evolution variable, but it is understood that it can be equally

well the propagation time in the propagation problem. So, we basically consider

an idealized, one-pass problem. In fact, in the cavity situation the classical field

pumping the cavity as well as the cavity damping must be added into the simple

model to make it more realistic. Quantum theory of such a model has been

developed by Drummond et al. [39,40]. Another interesting possibility is to

study the second harmonic generation from the point of view of the chaotic

behavior [41]. Such effects,however, will not be the subject of our concern here.

A. Classical Fields

Before we start with quantum description, let us recollect the classical solutions

which will be used later in the method of classical trajectories to study some

quantum properties of the fields. Equations (56) are valid also for classical fields

after replacing the field operators â and b̂ by the c-number field amplitudes a
and b, which are generally complex numbers. They can be derived from the

Maxwell equations in the slowly varying amplitude approximation [1] and have

the form.

d

dt
aðtÞ ¼ �2ika�ðtÞbðtÞ

d

dt
bðtÞ ¼ �ika2ðtÞ ð57Þ

For classical fields the closed-form analytical solutions to equations (57) are

known. Assuming that initially there is no second-harmonic field (bð0Þ ¼ 0),
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and the fundamental field amplitude is real and equal to að0Þ ¼ a0 the solutions

for the classical amplitudes of the second harmonic and fundamental modes are

given by [1]

aðtÞ ¼ a0 sechð
ffiffiffi
2

p
a0ktÞ

bðtÞ ¼ a0ffiffiffi
2

p tanhð
ffiffiffi
2

p
a0ktÞ ð58Þ

The solutions (58) are monotonic and eventually all the energy present initially

in the fundamental mode is transferred to the second-harmonic mode.

In a general case, when both modes initially have nonzero amplitudes, a0 6¼ 0

and b0 6¼ 0, introducing a ¼ jajeifa and b ¼ jbjeifb , we obtain the following set

of equations:

d

dt
jaj ¼ �2kjajjbjsin#

d

dt
jbj ¼ kjaj2 sin#

d

dt
# ¼ k

jaj2

jbj � 4jbj
 !

cos#

d

dt
fa ¼ �2kjbjcos#

d

dt
fb ¼ �k

jaj2

jbj cos# ð59Þ

where # ¼ 2fa � fb. The system (59) has two integrals of motion

C0 ¼ jaj2 þ 2jbj2 ; CI ¼ jaj2jbjcos# ð60Þ

which are classical equivalents of the quantum constants of motion Ĥ0 and ĤI

(C0 ¼ hĤ0i, CI ¼ hĤIi). Depending on the values of the constants of motion C0

and CI , the dynamics of the system (59) can be classified into several cate-

gories [42,43]:

1. Phase-stable motion, CI ¼ 0, in which the phases of each mode are

preserved and the modes move radially in the phase space. The phase

difference # is also preserved, which appears for cos# ¼ 0 and

# ¼ �p=2. The solutions (58) belong to this category.

2. Phase-changing motion, CI 6¼ 0, in which the dynamics of each mode

involves both radial and phase motion. In this case both modes must be

initially excited and their phase difference cannot be equal to �p=2.
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3. Phase-difference-stable motion, which is a special case of the phase-

changing motion that preserves the phase difference # between the modes

even though the phases of individual modes change. This corresponds to

the no-energy-exchange regime when sin# ¼ 0 and the initial amplitudes

of the modes are preserved.

Introducing new (scaled) variables

ua ¼ jaj=
ffiffiffiffiffiffi
C0

p
; ub ¼

ffiffiffi
2

p
jbj=

ffiffiffiffiffiffi
C0

p
; u2

a þ u2
b ¼ 1 ð61Þ

t ¼
ffiffiffiffiffiffiffiffi
2C0

p
kt ð62Þ

the set of equations (59) can be rewritten in the form

d

dt
ua ¼ �uaub sin#

d

dt
ub ¼ u2

a sin#

d

dt
# ¼ u2

a

ub

� 2ub

	 

cos#

d

dt
fa ¼ �ub cos#

d

dt
fb ¼ � u2

a

ub

cos# ð63Þ

Solutions to the set of equations (63) describe the evolution of the fields with the

fundamental as well as second-harmonic frequencies.

From (60) we have

cos# ¼ E
u2

aub

ð64Þ

where the constant of motion E is defined by

E ¼
ffiffiffi
2

p
CI

C
3=2
0

¼ u2
að0Þubð0Þcos#ð0Þ ð65Þ

From (63) and (64) one easily obtains the closed-form equations for the

intensities na ¼ u2
a and nb ¼ u2

b of the two modes

� dna

dt
¼ dnb

dt
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbð1 � nbÞ2 � E2

q
ð66Þ
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where nb ¼ 1 � na. Since the normalized variable na must be less, than or equal

to unity, the maximum value that can be obtained by E2 is equal to 4
27

(for

cos# ¼ 1). From (66) we immediately obtain

2 dt ¼ dnbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbð1 � nbÞ2 � E2

q ð67Þ

which can be integrated, giving

2t ¼
ð

dnbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbð1 � nbÞ2 � E2

q ð68Þ

For E ¼ 0, the integral on the right-hand side (r.h.s.) of (68) is elementary and

has the form

ð
dnbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nbð1 � nbÞ2
q ¼ ln

1 þ ffiffiffiffiffi
nb

p

1 � ffiffiffiffiffi
nb

p ð69Þ

In this case we get the well-known classical solution for the intensity of the

second harmonic[1]

nbðtÞ ¼ tanh2 t ð70Þ

which is a monotonic function of the scaled time t ¼
ffiffiffiffiffiffiffiffi
2C0

p
kt. For E 6¼ 0

(CI 6¼ 0), the r.h.s. of (68) is not elementary and the character of solution

depends on the roots of the third order polynomial under the square root.

Depending on the value of

� ¼ E2 E2 � 4

27

	 

ð71Þ

the polynomial has three different real roots (� < 0) and two real roots, one of

which is double (� ¼ 0). The third case with � > 0, in which the polynomial

has one real root and two complex conjugate roots, is excluded on physical

grounds since E2 � 4
27

.

In case of three different real roots nb1 < nb2 < nb3 � < 0ð or E2 < 4
27
Þ, we

can effect a substitution

nb ¼ nb1 þ ðnb2 � nb1Þsin2f ð72Þ
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which leads to the elliptical integral

ð
dnbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nbð1 � nbÞ2 � E2

q ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb3 � nb1

p
ð

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 sin2f

p ð73Þ

where

k2 ¼ nb2 � nb1

nb3 � nb1

ð74Þ

and we get from (68) and (73)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb3 � nb1

p
t ¼

ð
dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � k2 sin2f
p ð75Þ

Using the definitions of the Jacobi elliptic functions we have

sinf ¼ sn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb3 � nb1

p
t j k2

� �
ð76Þ

and inserting (76) into (72) we obtain the solution

nbðtÞ ¼ nb1 þ ðnb2 � nb1Þ sn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nb3 � nb1

p
t j k2

� �
ð77Þ

where sn is the Jacobi elliptic function sinusamplitude. The solution (77) is a

periodic function of the scaled time t with the period depending on the value of

k2. This means that even very small E makes the solution periodic. The values of

nbðtÞ are restricted to the region between the two smallest roots of the third

order polynomial nb1 � nbðtÞ � nb2. To illustrate the behavior of the classical

solutions, we plot in Fig. 1 the time evolution of the intensities of the two

modes, naðtÞ and nbðtÞ, for the case when the second-harmonic mode is initially

weak with respect to the fundamental mode (nbð0Þ ¼ 0:001) and the initial

phases are both zeros (fað0Þ ¼ fbð0Þ ¼ 0). In this case the constant of motion

E ¼ 0:0316. We see the regular periodic oscillations of the two intensities.

In the limiting case, for which k ¼ 1, we have nb1 ¼ 0, nb2 ¼ nb3 ¼ 1, and

snðx j 1Þ ¼ tanhðxÞ which is the phase-stable motion case and reproduces the

classical result (70). The other limiting case appears when k ¼ 0, which

corresponds to the situation with E2 ¼ 4
27

or jaj2 ¼ 4jbj2 nb1 ¼ nb2 ¼ 1
3

�
,

nb3 ¼ 4
3
Þ. This is the phase-difference stable motion, or no-energy-exchange,

case in which the solution is constant nbðtÞ ¼ 1
3
. This case has been discussed by

Bajer et al. [36]. Thus the two extreme cases, k ¼ 1 and k ¼ 0, of the general

solution (77) correspond to the phase-stable and phase-difference-stable
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motions in the phase space and they are special cases of the general case of the

phase changing motion of the system.

The solution (77) for radial variables uaðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
naðtÞ

p
and ubðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
nbðtÞ

p
must be supplemented with the corresponding solution for the phase variables

faðtÞ and fbðtÞ in order to find the trajectory in the phase space. The equations

governing the evolution of the individual phases of the two modes can be

rewritten in the form

d

dt
fa ¼ � E

na

;
d

dt
fb ¼ � E

nb

ð78Þ

where E is given by (65). Of course, in the phase-stable regime (E ¼ 0) both

phases individually, and obviously the phase difference #, are preserved. In

Fig. 2 we have shown the evolution of the phases for the case of weak initial

excitation of the second-harmonic mode. The initial values are same as in Fig. 1.

Comparing Fig. 1 with Fig. 2, it is seen that there is a jump of the phase faðtÞ
by p=2 whenever the intensity naðtÞ reaches its minimum and a jump by p of

the phase fbðtÞ when nbðtÞ reaches its minimum. The phase difference

#ðtÞ ¼ 2faðtÞ � fbðtÞ jumps between the values �p=2. To plot these figures,

we have solved numerically the set of equations (63).

Solutions of equations (66) and (78), or equivalently the set (63), for given

initial values describe the deterministic trajectories in the phase space for both
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Figure 1. Intensities naðtÞ (dashed line) and nbðtÞ (solid line) of the fundamental and second-

harmonic modes for nbð0Þ ¼ 0:001, fað0Þ ¼ fbð0Þ ¼ 0 (E ¼ 0:0316).
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modes, the mode at frequency o and the mode at frequency 2o, in a general case

of the system that describes coupling of the two modes via the wð2Þ nonlinearity.

It is a matter of initial conditions whether we have a purely second-harmonic

generation case [nbð0Þ ¼ 0, nað0Þ ¼ 1] or a purely downconversion case

[nað0Þ ¼ 0, nbð0Þ ¼ 1]. It is clear from (63) that for the purely downconversion

regime [uað0Þ ¼ 0] the classical description does not allow for generating signal

at the fundamental frequency from zero initial value. The quantum fluctuations

are necessary to obtain such a signal. In a general case both processes take place

simultaneously and compete with each other. If the initial amplitudes are well

defined, that is, there is no classical noise, the amplitudes at time t are also well

defined. For quantum fields, however, the situation is different because of the

inherent quantum noise associated with the vacuum fluctuations. Some quantum

features, however, can be simulated with classical trajectories when the initial

fields are chosen as random Gaussian variables with appropriately adjusted

variances, and examples of such simulations will be shown later.

B. Linearized Quantum Equations

Assuming that the quantum noise is small in comparison to the mean values of

the field amplitudes, one can introduce the operators

�â ¼ â � hâi ; �b̂ ¼ b̂ � hb̂i ð79Þ
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Figure 2. Evolution of the individual phases faðtÞ (dashed line), fbðtÞ (solid line), and the

phase difference #ðtÞ (dashed–dotted line). Initial values are same as in Fig. 1.
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which describe the quantum fluctuations. On inserting the fluctuation

operators (79) into the original evolution equations (56) and keeping only the

linear terms in the quantum fluctuations, we get the equations

d

dt
�â ¼ �2ikð�âþhb̂i þ hâþi�b̂Þ

d

dt
�b̂ ¼ �2ikhâi�â ð80Þ

where hâi and hb̂i are the solutions for the mean fields and can be identified with

the classical solutions. With the scaled variables (61) and (62) we can rewrite

equations (80) in the form

d

dt
�â ¼ �ið�âþub eifb þ

ffiffiffi
2

p
ua e�ifa�b̂Þ

d

dt
�b̂ ¼ �i

ffiffiffi
2

p
ua eifa�â ð81Þ

where ua ¼ uaðtÞ, ub ¼ ubðtÞ, fa ¼ faðtÞ, and fb ¼ fbðtÞ are the solutions of

classical equations (66) and (78).

The analysis becomes easier if we introduce the following quadrature noise

operators [44,45] (for further comparisons, we adjust the phase in quadrature

definitions for the second harmonic mode in such a way as to take into account

that # ¼ 2fa � fb ¼ p=2)

�Q̂aðtÞ ¼ �âðtÞe�ifaðtÞ þ�âþðtÞeifaðtÞ

�P̂aðtÞ ¼ �i½�âðtÞe�ifaðtÞ ��âþðtÞeifaðtÞ	

�P̂bðtÞ ¼ �b̂ðtÞe�ifbðtÞ þ�b̂þðtÞeifbðtÞ

�Q̂bðtÞ ¼ i½�b̂ðtÞe�ifbðtÞ ��b̂þðtÞeifbðtÞ	 ð82Þ

for which we get from (81) the following set of equations:

d

dt
�Q̂a ¼ ��Q̂aub sin#� 2�P̂aub cos#

��P̂b

ffiffiffi
2

p
ua sin#��Q̂b

ffiffiffi
2

p
ua cos#

d

dt
�P̂a ¼ �P̂aub sin#��P̂b

ffiffiffi
2

p
ua cos#

þ�Q̂b

ffiffiffi
2

p
ua sin# ð83Þ
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d

dt
�P̂b ¼ �Q̂a

ffiffiffi
2

p
ua sin#þ�P̂a

ffiffiffi
2

p
ua cos#

þ�Q̂b
u2

a

ub

cos#

d

dt
�Q̂b ¼ �Q̂a

ffiffiffi
2

p
ua cos#��P̂a

ffiffiffi
2

p
ua sin#

��P̂b

u2
a

ub

cos#

In the case of pure second-harmonic generation, that is, for ubð0Þ ¼ 0 and

uað0Þ ¼ 1, we have from (59) that cos# ¼ 0 or # ¼ �p=2, which implies that,

according to (77) for k ¼ 1, the scaled intensities obey the equations

uaðtÞ ¼ sech t ; ubðtÞ ¼ tanh t ð84Þ

Inserting # ¼ p=2 and the solutions (84) into (83), we arrive at the following

system of equations:

d

dt
�Q̂a ¼ ��Q̂a tanh t��P̂b

ffiffiffi
2

p
sech t

d

dt
�P̂b ¼ �Q̂a

ffiffiffi
2

p
sech t

d

dt
�P̂a ¼ �P̂a tanh tþ�Q̂b

ffiffiffi
2

p
sech t

d

dt
�Q̂b ¼ ��P̂a

ffiffiffi
2

p
sech t ð85Þ

which shows that the quadratures �Q̂a and �P̂b of the two modes are coupled

together independently from the quadratures �P̂a and �Q̂b. This splits the

system (85) into two independent subsystems. It was shown by Ou [44] that the

two systems can be solved analytically, giving

�Q̂aðtÞ ¼ �Q̂að0Þð1 � t tanh tÞ sech t��P̂bð0Þ
ffiffiffi
2

p
tanh t secht

�P̂bðtÞ ¼ �Q̂að0Þ
1ffiffiffi
2

p ðtanh tþ t sech2 tÞ þ�P̂bð0Þ sech2 t

�P̂aðtÞ ¼ �P̂að0Þ sechtþ�Q̂bð0Þ
1ffiffiffi
2

p ðsinh tþ t sech tÞ

�Q̂bðtÞ ¼ ��P̂að0Þ
ffiffiffi
2

p
tanh tþ�Q̂bð0Þð1 � t tanh tÞ ð86Þ
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Now, assuming that the two modes are not correlated at time t ¼ 0, it is

straightforward to calculate the variances of the quadrature field operators and

check, according to the definition (12), whether the field is in a squeezed state. If

the initial state of the field is a coherent state of the fundamental mode and a

vacuum for the second-harmonic mode, jc0i ¼ juað0Þij0i, for which we have

h½�Q̂að0Þ	2i ¼ h½�Q̂bð0Þ	2i ¼ h½�P̂að0Þ	2i ¼ h½�P̂bð0Þ	2i ¼ 1 ð87Þ

the variances of the two quadrature noise operators are described by the

following analytical formulas [44,45]:

h½�Q̂aðtÞ	2i ¼ ð1 � t tanh tÞ2
sech2 tþ 2 tanh2 t sech2 t

h½�P̂aðtÞ	2i ¼ sech2 tþ 1

2
ðsinh tþ t sech tÞ2

h½�Q̂bðtÞ	2i ¼ 2 tanh2 tþ ð1 � t tanh tÞ2

h½�P̂bðtÞ	2i ¼
1

2
tanh tþ t sech2 t
� �2þsech4 t ð88Þ

The solutions (88) clearly indicate that the quantum noise present in the initial

state of the field, which represents the vacuum fluctuations, undergoes essential

changes due to the nonlinear transformation of the field as both modes

propagate in the nonlinear medium. As t ! 1, we have tanh t ! 1,

sech t ! 2e�t, and sinh t ! et=2, which gives h½�Q̂aðtÞ	2i ! 4t2e�2t,

h½�Q̂bðtÞ	2i ! t2, h½�P̂aðtÞ	2i ! e2t=8, and h½�P̂bðtÞ	2i ! 1
2
. According to

the definition of squeezing (12), we find that the quadratures Q̂a and P̂b become

squeezed as t increases while the other two quadratures, P̂a and Q̂b, are

stretched. For very long times (lengths of the nonlinear medium) the noise in

the amplitude quadrature of the fundamental mode is reduced to zero (perfect

squeezing), while for the second-harmonic mode it approaches the value 1
2

(50%

squeezing). Quantum fluctuations in the other quadratures of both modes

explode to infinity as t goes to infinity. Of course, we have to keep in mind

that the results have been obtained from the linearized equations that require

quantum fluctuations to be small. In Fig. 3a we have shown the evolution of the

quadrature variances h½�Q̂aðtÞ	2i and h½�P̂bðtÞ	2i exhibiting squeezing of

quantum fluctuations in both fundamental and second harmonic-modes. With

dotted lines the classical amplitudes of the two modes are marked for reference.

The value of unity for the quadrature variances sets the level of vacuum

fluctuations (coherent states experience the same fluctuations), and we find

that indeed the quantum noise can be suppressed below the vacuum level in the

amplitude quadrature h½�Q̂aðtÞ	2i of the fundamental mode and the phase

quadrature h½�P̂ðtÞ	2i of the harmonic mode. It becomes possible at the

expense of increased fluctuations in the other quadratures as to preserve the
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validity of the Heisenberg uncertainty relation (9). We have

h½�Q̂aðtÞ	2ih½�P̂aðtÞ	2i ¼ h½�Q̂bðtÞ	2ih½�P̂bðtÞ	2i

¼ sech2ðtÞ½2 tanh2 tþ ð1 � t tanh tÞ2	

� sech2 tþ 1

2
ðsinh tþ t sech tÞ2

� �
ð89Þ
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Figure 3. (a) Variances h½�Q̂aðtÞ	2i (dashed line) and h½�P̂aðtÞ	2i (solid line) [for reference,

the amplitudes uaðtÞ and ubðtÞ are marked with dotted lines]; (b) uncertainty products.
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and as t ! 1 both uncertainty products are divergent as t2=2. The evolution of

the uncertainty products is illustrated in Fig. 3b. Since, except for the initial

value, the value of the uncertainty product is larger than unity, the quantum

states produced in the second-harmonic generation process are not the minimum

uncertainty states.

The linear approximation to the quantum noise equations presented in this

section shows that even in linear approximation the inherent property of

quantum fields — the vacuum fluctuations which are ubiquitous and always

present — undergo essential changes when transformed nonlinearly. The lineari-

zed solutions suggest that perfect squeezing (zero fluctuations) is possible in the

fundamental mode for long evolution times (long interaction lengths). This

means that one can produce highly nonclassical states of light in such a process.

Later we will see to what extent we can trust in the linear approximation.

C. Symbolic Calculations

The linear approximation with respect to quantum noise operators, which

assumes that the mean values of the fields evolve according to the classical

equations and the quantum noise represents only small fluctuations around the

classical solutions is a way to solve the operator equations (56). Another

alternative is to use Taylor series expansion of the operator solution and make

the short time (or short length of the medium) approximation to find the

evolution of the quantum (operator) fields. This approach has been proposed by

Tanaś [46] for approximate calculations of the higher-order field correlation

functions in the process of nonlinear optical activity and later used by

Kozierowski and Tanaś [21] for calculations of second order correlation

function for the second-harmonic generation. Mandel [9] has used this approach

to discuss squeezing and photon antibunching in harmonic generation. When

doing calculations with operators it is crucial to keep track of the operator

ordering and use the commutation relations to rearrange the ordering. This

makes the calculations cumbersome and error-prone. The first calculations were

performed by hand, but now we have computers that can do the job for us. The

computer symbolic calculations of the subsequent terms in a series expansion

have been performed by Bajer and Lisoněk [31] and Bajer and Peřina [32].

Bajer and Lisoněk [31] have written their own computer program for this

purpose (about 3000 lines of code in Turbo Pascal). We want to show here how

to do the same calculations with the freely available version of the computer

program FORM [47] with only few lines of coding (see Appendix A).

The main idea of the approximate symbolic computations is based on the

series expansion of any operator ÔðtÞ into a power series

ÔðtÞ ¼ Ôð0Þ þ
X1
k¼1

tk

k!

dk

dtk
ÔðtÞ

��
t¼0

ð90Þ
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where the subsequent derivatives are obtained from the Heisenberg equations of

motion

d

dt
Ô ¼ 1

i�h
½Ô; Ĥ	 ð91Þ

where Ĥ is the Hamiltonian. The higher derivatives are obtained recursively

from (91), and the resulting expansion takes the form [31]

ÔðtÞ ¼ Ôð0Þ þ
X1
k¼1

t

i�h

 �k Dk

k!
ð92Þ

where

Dk ¼ ½Dk�1; Ĥ	 ¼ ½� � � ½½Ôð0Þ; Ĥ	; Ĥ	; . . . ; Ĥ	 ð93Þ

is the kth-order commutator with D0 ¼ Ôð0Þ.
Implementing the algorithm sketched above in the computer symbolic

manipulation program FORM, as exemplified in Appendix A, and applying

the method to the second-harmonic-generation (SHG) process, which is de-

scribed by the interaction Hamiltonian ĤI given by (55), one can easily

calculate subsequent terms of the series (92). Restricting the calculations to

the fourth-order terms, we get

âðtÞ ¼ â � 2 iðktÞ âþb̂ � ðktÞ2
âþâ2 � 2âb̂þb̂
� �

� 2

3
iðktÞ3

2â3b̂þ � 3âþ2âb̂ þ 2âþb̂þb̂2 � âþb̂
� �

þ 1

6
ðktÞ4

5âþ2â3 þ 8âþ3b̂2 � 28âþâ2b̂þb̂ þ 4âb̂þ2b̂2
�

þ âþâ2 � 20âb̂þb̂
�
þ � � � ð94Þ

b̂ðtÞ ¼ b̂ � iðktÞâ2 � ðktÞ2
2âþâb̂ þ b̂
� �

þ 1

3
iðktÞ3

2âþâ3 � 4â2b̂þb̂ þ 4âþ2b̂2 þ â2
� �

þ 1

6
ðktÞ4

2âþ2â2b̂ � 4â4b̂þ � 16âþâb̂þb̂2
�

þ 8âþâb̂ � 8b̂þb̂2 þ b̂
�
þ � � � ð95Þ

where the operators on the r.h.s. of equations (94) and (95) are at time t ¼ 0. We

can see that the terms that are of kth power in t contain the operator products

that are of the k þ 1 order as well as the products that are of the order k � 1;
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k � 3; . . . . The latter products appeared as a result of application the bosonic

commutation relations (4) for the operators of the two modes, and these terms

represent purely quantum contributions that would not appear if the fields were

classical. For classical fields, only the highest-order products survive. The

quantum noise contributions appear in terms � t3 and higher in the expansion

(94) for the fundamental mode operators and in terms � t2 and higher in the

expansion (95) for the second harmonic mode operators. However, for the initial

conditions representing the purely second-harmonic generation process, speci-

fically, under the assumption that the harmonic mode is initially in the vacuum

state such that b̂j0i ¼ 0, we can drop all the terms containing operators b̂ or b̂þ

because they give zero due to the normal ordering of the operators. Assuming,

moreover, that the pump beam is in a coherent state ja0i we find the following

expansions for the mean values of the operators âðtÞ and b̂ðtÞ [7]

hâðtÞi ¼ a0 1 � ðktÞ2ja0j2 þ
1

6
ðktÞ4ð5ja0j4 þ ja0j2Þ þ � � �

� �

hb̂ðtÞi ¼ �ia2
0 ðktÞ � 1

3
ðktÞ3ð2ja0j2 þ 1Þ þ � � �

� �
ð96Þ

or in the normalized variables (61) and scaled time (62), we have

uaðtÞ ¼ uað0Þeifað0Þ 1 � t2

2
þ 5

24
t4 1 þ 1

5ja0j2

 !
þ � � �

" #

ubðtÞ ¼ uað0Þ2
eið2fað0Þ�p=2Þ t� t3

3
1 þ 1

2ja0j2

 !
þ � � �

" #
ð97Þ

On neglecting the quantum noise terms, � 1=ja0j2, one can easily recognize

in (97) the first terms of the power series expansions of sech t and tanh t, which

are the classical solutions. When ja0j2 � 1, the quantum noise introduces only

small corrections to the classical evolution of the field amplitudes. It is also seen

that the phase of the second harmonic field is phase-locked so as to satisfy

# ¼ 2fa � fb ¼ p=2.

We can thus expect from the short-time approximation that quantum noise

does not significantly affect the classical solutions when the initial pump field is

strong. We will return to this point later on, but now let us try to find the short-

time solutions for the evolution of the quantum noise itself— let us take a look

at the quadrature noise variances and the photon statistics. Using the operator

solutions (94) and (95), one can find the solutions for the quadrature operators Q̂

and P̂ as well as for Q̂2 and P̂2. It is, however, more convenient to use the

computer program to calculate the evolution of these quantities directly. Let us

consider the purely SHG process, we drop the terms containing b̂ and b̂þ after

performing the normal ordering and take the expectation value in the coherent
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state ja0i of the fundamental frequency mode, and in effect we arrive at

hQ̂2
aðtÞi ¼ 1 þ 2ja0j2 þ a2

0 þ a�2
0

� ðktÞ2
4ja0j4 þ ð2ja0j2 þ 1Þða2

0 þ a�2
0 Þ

h i

þ ðktÞ4

6
32ja0j6 þ 16ja0j4 þ 16ja0j4

h
þ 8ja0j2 þ 1

�
a�2

0 þ a2
0

� �i
þ � � �

hP̂2
aðtÞi ¼ 1 þ 2ja0j2 � ða2

0 þ a�2
0 Þ

� ðktÞ2
4ja0j4 � ð2ja0j2 þ 1Þða2

0 þ a�2
0 Þ

h i

þ ðktÞ4

6
32ja0j6 þ 16ja0j4 � 16ja0j4

h
þ 8ja0j2 þ 1

�
a�2

0 þ a2
0

� �i
þ � � �

hQ̂2
bðtÞi ¼ 1 þ ðktÞ2

2ja0j4 � ða4
0 þ a�4

0 Þ
 �

� 4

3
ðktÞ4

2ja0j6
h

þja0j4 � ðja0j2 þ 1Þða�4
0 þ a4

0Þ
i
þ � � �

hP̂2
bðtÞi ¼ 1 þ ðktÞ2

2ja0j4 þ a4
0 þ a�4

0

 �
� 4

3
ðktÞ4

2ja0j6
h

þ ja0j4 þ ðja0j2 þ 1Þða�4
0 þ a4

0Þ
i
þ � � � ð98Þ

From equations (98) and (96) we obtain formulas for the field variances

h½�Q̂aðtÞ	2i ¼ 1 � ðktÞ2ða2
0 þ a�2

0 Þ

þ ðktÞ4
2ja0j4 þ ja0j2 þ

1

6

	 

ða2

0 þ a�2
0 Þ

� �
þ � � �

¼ 1 � t2 cos2fa þ
1

2
t4 1 þ 1 þ 1

6Na

	 

cos2fa

� �
þ � � �

h½�P̂aðtÞ	2i ¼ 1 þ ðktÞ2ða2
0 þ a�2

0 Þ

þ ðktÞ4
2ja0j4 � ja0j2 þ

1

6

	 

ða2

0 þ a�2
0 Þ

� �

¼ 1 þ t2 cos2fa þ
1

2
t4 1 � 1 þ 1

6Na

	 

cos2fa

� �
þ � � �

h½�Q̂bðtÞ	2i ¼ 1 þ 2

3
ðktÞ4ða4

0 þ a�4
0 Þ þ � � � ¼ 1 þ t4

3
cos4fa þ � � �

h½�P̂bðtÞ	2i ¼ 1 � 2

3
ðktÞ4ða4

0 þ a�4
0 Þ þ � � � ¼ 1 � t4

3
cos4fa þ � � � ð99Þ
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It is easy to check, assuming fa ¼ 0, that the series expansion of the linearized

solutions (88) agrees with (99) up to the leading terms, but in the higher-order

terms there are already differences between the two solutions. Since the latter

solutions are exact up to the fourth order, they show restricted applicability of

the linearized solutions. We see that the quadratures h½�Q̂aðtÞ	2i and h½�P̂bðtÞ	2i
become smaller than unity, showing squeezing, while the other two quadratures

grow above unity.

The symbolic calculations using a computer allows for easy derivation of the

approximate formulas for any operators for the two modes. Beside squeezing it

is interesting to study the variance of the photon number operator for both

modes in order to look for a possibility of obtaining the sub-Poissonian photon

statistics in the process of second-harmonic generation. Let us calculate

approximate formulas for the mean number of photons and the second order

correlation function. Again, assuming initial conditions for pure second har-

monic generation, jc0i ¼ ja0; 0i with ja0j2 ¼ Na, we have for the mean number

of photons

hâþâiðtÞ ¼ ja0j2 1 � 2ðktÞ2ja0j2 þ
4

3
ðktÞ4ja0j2ð2ja0j2 þ 1Þ þ � � �

� �

hb̂þb̂iðtÞ ¼ ja0j4 ðktÞ2 � 2

3
ðktÞ4ð2ja0j2 þ 1Þ þ � � �

� �
ð100Þ

or in the scaled variables (61) and (62) Eqs. (100) take a very simple form

naðtÞ ¼ u2
aðtÞ ¼ 1 � t2 þ 2

3
t4 1 þ 1

2Na

	 

þ � � �

nbðtÞ ¼ u2
bðtÞ ¼ t2 � 2

3
t4 1 þ 1

2Na

	 

þ � � � ð101Þ

which explicitly shows the quantum noise contributions coming from the

vacuum fluctuations.

The second order correlation functions can be obtained in the same manner

giving

hâþ2â2iðtÞ ¼ ja0j4 1 � 2ðktÞ2ð2ja0j2 þ 1Þ
h

þ 4

3
ðktÞ4ð7ja0j4 þ 8ja0j2 þ 1Þ � � �

�

hb̂þ2b̂2iðtÞ ¼ ja0j8 ðktÞ4 � 8

3
ðktÞ6ðja0j2 þ 1Þ þ � � �

� �
ð102Þ
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and combining equations (100) and (102) we obtain

hâþ2â2iðtÞ � hâþâi2ðtÞ ¼ �2ðktÞ2ja0j4 þ
4

3
ðktÞ4ja0j4ð6ja0j2 þ 1Þ þ � � �

hb̂þ2b̂2iðtÞ � hb̂þb̂i2ðtÞ ¼ � 4

3
ðktÞ6ja0j8 þ � � � ð103Þ

The results (103), obtained first by Kozierowski and Tanaś [21], explain a very

important property of the second harmonic generation, that is, the appearance of

the sub-Poissonian photon statistics, which is an effect of quantum properties of

the fields. The leading terms in (103) are negative, indicating, according to (18)

and (19), that the photon statistics in both modes becomes sub-Poissonian at the

initial stages of the evolution. The computer software now makes the calcula-

tions of this kind almost trivial and less error-prone. However, the results that

we obtain in this way are just few terms of the power series expansion that

properly describe the evolution of the system only at the initial stages of the

evolution. The results can be improved by taking into account more and more

terms of the expansion [31,32], but the long-time behavior cannot be predicted

with such methods.

Some conclusions about the role of quantum noise in the long-time behavior

of the solutions for the SHG process can be drawn by closer inspection of the

operator equations of motion for the number of photon operators and their

approximate solutions for the expectation values [38,48]. From the equations of

motion (56) it is easy to derive the equations for the number of photons

operators N̂a ¼ âþâ and N̂b ¼ b̂þb̂ in the form

�2
d

dt
N̂b ¼ d

dt
N̂a ¼ �2ikðâþ2b̂ � â2b̂þÞ ð104Þ

and taking the derivative of the operator on the r.h.s. of Eq. (104) (again the

symbolic manipulation program makes it easy), we get the second-order

differential equation

d2

dt2
N̂a ¼ �2

d

dt
N̂b ¼ �4k2 N̂aðN̂a � 1Þ � 4N̂aN̂b � 2N̂b

� �
ð105Þ

and taking into account that N̂a þ 2N̂b ¼ Ĉ0 is a constant of motion, we find

d2

dt2
ð2N̂bÞ ¼ 4k2½3ð2N̂bÞ2 � Ĉ0ð1 þ 4ð2N̂bÞ þ Ĉ2

0 	 ð106Þ

This second-order equation cannot be solved exactly because it contains

operators N̂2
b and N̂bĈ0, which, in turn, obey their own equations of motion

quantum noise in nonlinear optical phenomena 31



and we come into an infinite hierarchy of equations. However, if we neglect the

correlations and take

hN̂2
b i ¼ hN̂bi2 ; hN̂bĈ0i ¼ hN̂bihĈ0i ð107Þ

and introduce the normalized intensity nb ¼ 2hN̂bi=C0 and the scaled time

t ¼
ffiffiffiffiffiffiffiffi
2C0

p
kt with C0 ¼ hĈ0i, we obtain the equation for the mean value of the

normalized intensity nb in the form

d2

dt2
nb ¼ 2 3n2

b � 4nb þ 1 � 1

C0

� �
ð108Þ

This is the second-order differential equation, which reminds us of the equation

for a particle moving under the action of a force, and the force can be derived

from a potential. There is a quantity that is conserved during this motion, and

we can write

d

dt
1

2

dnb

dt

	 
2

�2nb½ð1 � nbÞ2 � E0	
" #

¼ 0 ð109Þ

where E0 ¼ 1=C0 is the term representing the quantum noise contribution (it

comes from application of the commutation rules to the field operators). The

quantity in the square brackets can be considered as the total energy of a

‘‘particle’’ at position nb, with the kinetic energy 1
2
ðdnb=dtÞ2

and the potential

energy V ¼ �2nb½ð1 � nbÞ2 � E0	. The potential energy is shown in Fig. 4. The

potential represents a well in which the particle will oscillate exhibiting fully

periodic behavior. From Eq. (109) we get

dnb

dt
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbð1 � nbÞ2 � nbE0

q
ð110Þ

Comparing Eq. (110) with Eq. (66), we find that both equations have extra terms

(the E or E0 terms) which make the solutions oscillatory, but the physical reason

for oscillations is different in both cases. In Eq. (66) different from zero E comes

from the nonzero initial value of the second-harmonic mode intensity, while in

Eq. (110) the nonzero value of E0 comes from the quantum noise. We can

interpret this fact in the following way. It is the spontaneous emission of

photons, or vacuum fluctuations of the second harmonic mode, that contribute to

the nonzero value of the initial intensity of the second harmonic mode and lead

to the periodic evolution. This means that the very small quantum fluctuations

can cause macroscopic effects, such as quantum-noise-induced macroscopic

revivals [38], in the nonlinear process of second-harmonic generation.
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A procedure similar to that used to solve equation (66) can be applied to

solve equation (110). Again, the solution is given by the Jacobi elliptic

functions. The third-order polynomial under the square root on the r.h.s.

of (110) has the roots

nb1 ¼ 0 ; nb2 ¼ 1 �
ffiffiffiffi
E0

p
; nb3 ¼ 1 þ

ffiffiffiffi
E0

p
ð111Þ

and the solution has the form

nbðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffiffi
E0

pq
sn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffi
E0

pq
t j k2

	 

ð112Þ

where

k2 ¼ 1 �
ffiffiffiffi
E0

p

1 þ
ffiffiffiffi
E0

p ð113Þ

The results have been recently obtained by Olsen et al. [38], and they show that

even for almost vanishingly small E0, which is inversely proportional to the

initial mean value of the number of the pump mode photons, usually very large,

the quantum fluctuations have huge macroscopic effect on the system dynamics.

It is evident that the quantum noise, which is always present, is responsible for

the oscillations between the two regimes of second-harmonic generation and

downconversion. The period of oscillation is becoming infinite as E0 vanishes.
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Figure 4. Plot of the pseudopotential curve for E0 ¼ 0:01.
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The solution (112) is fully periodic, but it does not allow for the complete

transfer of energy from the fundamental to the second harmonic mode. The

maximum that can be achieved by ub is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffiffi
E0

pp
. We have to

remember, moreover, that the solution (112) has been obtained with the

decorrelation (107), and it is only an approximate solution.

D. Numerical Methods

When analytical solutions are not known and the approximate analytical

methods give results of limited applicability, the numerical methods may be a

solution. Let us first discuss a method based on the diagonalization of the

second-harmonic Hamiltonian [48,49]. As we have already said, the two parts of

the Hamiltonian Ĥ0 and ĤI given by (55), commute with each other, so they are

both constants of motion. The Ĥ0 determines the total energy stored in both

modes, which is conserved by the interaction ĤI . This means that we can factor

the quantum evolution operator

exp
�iĤt

�h

	 

¼ exp

�iĤ0t

�h

	 

exp

�iĤI t

�h

	 

ð114Þ

If the Fock state basis is used to describe the field state, we find, for the initial

state jn; 0i ¼ jnij0i with n photons in the fundamental mode and zero photons

in the second harmonic mode, that the Hamiltonian Ĥ0 splits the Hilbert space

into orthogonal sectors. Since Ĥ0 is a constant of motion, we have for a given

number of photons n the relation

hâþâi þ 2hb̂þb̂i ¼ n ð115Þ

which implies that the creation of k photons of the second-harmonic mode

requires annihilation of 2k photons of the fundamental mode. Thus, for given n,

we can introduce the states

jcðnÞ
k i ¼ jn � 2k; ki ; k ¼ 0; 1; � � � ; n

2

h i
ð116Þ

where ½n=2	 means the integer part of n=2, which form a complete basis of states

of the field in the sector with given n. We have

hcðn0Þ
k0 jcðnÞ

k i ¼ dnn0dkk0 ð117Þ

which means that the subspace with given n has ½n=2	 þ 1 orthogonal states. In

such a basis the interaction Hamiltonian ĤI has the following nonzero matrix

elements

hcðnÞ
kþ1jĤI jcðnÞ

k i ¼ hcðnÞ
k jĤI jcðnÞ

kþ1i ¼ ðĤIÞðnÞkþ1;k ¼ ðĤIÞðnÞk;kþ1

¼ �hk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 1Þðn � 2kÞðn � 2k � 1Þ

p
ð118Þ
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which form a symmetric matrix of dimension ð½n=2	 þ 1Þ � ð½n=2	 þ 1Þ with

real nonzero elements (we assume that k is real) that are located on the two

diagonals immediately above and below the principal diagonal. Such a matrix

can easily be diagonalized numerically [49]. To find the quantum state

evolution, we need the matrix elements of the evolution operator. Since the

evolution due to the Hamiltonian Ĥ0 at each sector of the Hilbert space with

given n introduces only a constant phase factor expð�inotÞ, we will drop this

factor in our calculations and calculate the state at time t according to the

formula

jcðtÞi ¼ exp
�iĤI t

�h

	 

jcð0Þi ð119Þ

where jcð0Þi is the initial state of the field. In each subspace of the Hilbert space

we can calculate the matrix elements of the evolution operator

cn;kðtÞ ¼ hcðnÞ
k jexp

�iĤI t

�h

	 

jcðnÞ

0 i ð120Þ

by diagonalizing the Hamiltonian matrix (118). If the matrix U is the unitary

matrix that diagonalizes the interaction Hamiltonian matrix (118)

U�1Ĥ
ðnÞ
I U ¼ �hk diag l0; l1; . . . ; l½n=2	

� �
ð121Þ

then the coefficients cn;kðtÞ can be written as

cn;kðtÞ ¼
X½n=2	

j¼0

e�iktlj UkjU
�
0j ð122Þ

where lj are the eigenvalues of the interaction Hamiltonian in units of �hk. Of

course, the matrix U as well as the eigenvalues lj are defined for given n and

should have an additional index n, which we have omitted to shorten the

notation. Moreover, for real k the interaction Hamiltonian matrix is real, and the

transformation matrix U is a real orthogonal matrix, so the star can also be

dropped.

The numerical diagonalization procedure gives the eigenvalues lj as well as

the elements of the matrix U, and the coefficients cn;kðtÞ can thus be calculated

according to (122). It is worthwhile to note, however, that because of the

symmetry of the Hamiltonian, the eigenvalues lj are distributed symmetrically

with respect to zero, with one eigenvalue equal to zero if there is an odd number

of them. When the eigenvalues are numbered from the lowest to the highest
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value, there is an additional relation

UkjU0j ¼ ð�1Þk
Uk;½n=2	�jU0;½n=2	�j ð123Þ

which makes the coefficients cn;kðtÞ either real (k even) or imaginary (k odd).

This property of the coefficients cn;kðtÞ is very important and allows in some

cases to get exact analytical results.

Knowing the coefficients cn;kðtÞ the resulting state of the field (119) in the

particular sector can be written, for the initial state jn; 0i, as

jcðnÞðtÞi ¼
X½n=2	

k¼0

cn;kðtÞjcðnÞ
k i ð124Þ

The typical initial conditions for the second-harmonic generation are a coherent

state of the fundamental mode and the vacuum of the second-harmonic mode.

The initial state of the field can thus be written as

jcð0Þi ¼
X1
n¼0

einfa bnjn; 0i ð125Þ

where

bn ¼ exp
�Na

2

	 

Nn=2

affiffiffiffi
n!

p ð126Þ

is a Poissonian weighting factor of the coherent state ja0i represented as a

superposition of the number states, Na ¼ ja0j2 is the mean number of photons,

and fa is the phase of the coherent state — a0 ¼
ffiffiffiffiffiffi
Na

p
expðifaÞ. With these

initial conditions the resulting state of the field (119) takes the form

jcðtÞi ¼
X1
n¼0

einfa bnjcðnÞðtÞi

¼
X1
n¼0

einfa bn

X½n=2	

k¼0

cn;kðtÞjn � 2k; ki ð127Þ

Equation (127) describing the evolution of the system is our starting point for

further discussion of the second-harmonic generation. If the initial state of the

fundamental mode is not a coherent state but has a decomposition into a number

states of the form (125) with different bn, equation (127) is still valid when

corresponding bn are taken. It is true, for example, for the initially squeezed

state of the fundamental mode.
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It is interesting to consider one particular initial state of the field in which

there are only two photons at the fundamental mode and no photons in the

second-harmonic mode: j2; 0i. With this initial state the only state that can be

created in the process is the state j0; 1i with one photon in the second-harmonic

mode and zero photons in the fundamental mode. Next, the second-harmonic

photon can be downconverted into two photons of the fundamental mode, and

we observe fully periodic evolution. The evolution is thus restricted to the two-

dimensional subspace fj2; 0i; j0; 1ig. The Hamiltonian matrix in this subspace

has the form

HI ¼ �hk
0

ffiffiffi
2

p
ffiffiffi
2

p
0

 !
ð128Þ

the diagonalizing matrix U has the form

U ¼ 1ffiffiffi
2

p
1 1

�1 1

	 

; U�1 ¼ 1ffiffiffi

2
p

1 �1

1 1

	 

ð129Þ

and the two eigenvalues are l0 ¼ �
ffiffiffi
2

p
and l1 ¼

ffiffiffi
2

p
. We have two coefficients

cn;kðtÞ

c2;0ðtÞ ¼ cosð
ffiffiffi
2

p
ktÞ ; c2;1ðtÞ ¼ �isinð

ffiffiffi
2

p
ktÞ ð130Þ

and the resulting state has the form

jcð2ÞðtÞi ¼ cosð
ffiffiffi
2

p
ktÞj2; 0i � isinð

ffiffiffi
2

p
ktÞj0; 1i ð131Þ

The mean numbers of photons in the state (131) are given by

hâþâiðtÞ ¼ 2cos 2ð
ffiffiffi
2

p
ktÞ ; hb̂þb̂iðtÞ ¼ sin2ð

ffiffiffi
2

p
ktÞ ð132Þ

which are exact analytical formulas for these particular initial conditions. We

also have

hâþ2â2i � hâþâi2 ¼ �2cos2
ffiffiffi
2

p
ktð2cos 2

ffiffiffi
2

p
kt � 1Þ

hb̂þ2b̂2i � hb̂þb̂i2 ¼ �sin4
ffiffiffi
2

p
kt ð133Þ

From the definition (19) of the Mandel q parameter and Eq. (133) we

immediately find that

qa ¼ 1 � 2cos2
ffiffiffi
2

p
kt ; qb ¼ �sin2

ffiffiffi
2

p
kt ð134Þ
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which shows that initially the fundamental mode has qa ¼ �1 denoting the sub-

Poissonian statistics of the initial Fock state with two photons and the second

harmonic mode initially has qb ¼ 0, as it should be for the vacuum state. At

later times, however, the fundamental mode becomes super-Poissonian while

the second-harmonic mode becomes sub-Poissonian. This simple example

shows that even in the case of the evolution that is restricted to the two-

dimensional subspace, there are essential changes in photon statistics.

Generally, the second-harmonic generation is described by the quantum

state (127) and we use this state in our further calculations. Classical solutions

discussed earlier, uaðtÞ ¼ sech t and ubðtÞ ¼ tanh t, indicated that the ampli-

tudes of the two modes are monotonic functions of time and that eventually all

the energy from the fundamental mode will be transferred into the second-

harmonic mode, assuming that there was no second-harmonic signal initially. It

is well known [20,48], however, that the quantum solution has oscillatory

character and does not allow for the complete power transfer. Using the

state (127) we find that the mean photon numbers evolve in time according to

the formulas

hN̂aðtÞi ¼ hcðtÞjâþâjcðtÞi ¼
X1
n¼0

b2
n

X½n=2	

k¼0

ðn � 2kÞjcn;kðtÞj2

hN̂bðtÞi ¼ hcðtÞjb̂þb̂jcðtÞi ¼
X1
n¼0

b2
n

X½n=2	

k¼0

kjcn;kðtÞj2 ð135Þ

Because of the Poissonian factors, which are peaked at Na, the summation over

n can be performed numerically if Na is not too great. On the other hand, some

features of the classical solutions can be expected for Na � 1. To evaluate

numerically formulas (135) we use the computer program quoted in the

Appendix B, which can be run using the freely available software OCTAVE

[50] or the commercial software MATLAB [51]. The results are illustrated in

Fig. 5. In Fig. 5a we have plotted the normalized second-harmonic intensity

nb ¼ 2hN̂bi=Na, where Na is the initial mean number of photons of the coherent

state of the fundamental mode, against the scaled time t for the initially

coherent state with the mean number of photons equal to 2 (solid line) and

compared it with the corresponding intensity obtained for the initial state of the

fundamental mode being the Fock state with two photons [Eq. (132)]. In the

latter case we see the perfectly periodic behavior with complete transfer of

energy between the fundamental and second-harmonic modes. In the case of

coherent state with the mean number of photons being the same as for the Fock

state we already see the distorted oscillations, and the transfer of power is not

complete. In Fig. 5b we have presented the results for initially coherent state of

the fundamental mode with the mean number of photons satisfying the inequal-
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ity Na � 1. The curves are plotted for Na ¼ 10 (solid line), Na ¼ 40 (dashed

line), and Na ¼ 100 (dashed-dotted line). For reference, with the dotted line the

classical solution is marked on both figures. The solutions are oscillatory but the

oscillations are damped rather quickly when the pump mode is strong. The

higher is the intensity of the pump mode, the longer the solution sticks to the

classical solution before the process is reversed from the second-harmonic
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Figure 5. Intensity of the second-harmonic: (a) initial coherent state with Na ¼ 2 (solid line)

and initial number state with two photons (dashed line); (b) initial coherent state with Na ¼ 10 (solid

line), Na ¼ 40 (dashed line), and Na ¼ 100 (dashed–dotted line). Dotted line marks the classical

solution.
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generation into the downconversion. The maximum reached by the second

harmonic intensity increases, as the intensity of the pump mode increases,

giving better efficiency of conversion of the fundamental mode field into the

second harmonic. This tendency is clearly seen from Fig. 5b.

At this point it is interesting and worthwhile to compare the solution (112)

that predicted fully periodic behavior resulting from the quantum noise with the

fully quantum calculations performed in this section. In Fig. 6 we present both

solutions for the initial mean number of photons Na ¼ 100, which gives

E0 ¼ 0:01. Both solutions are almost identical up to the first maximum, but

subsequent maxima are substantially damped with respect to the approximate

solution. The approximate solution correctly predicts the transition from the

second harmonic regime to the downconversion regime, which is the physical

reason for starting oscillations. The quantum noise really induces macroscopic

revivals, but subsequent maxima are smaller and smaller and the second

harmonic intensity asymptotically approaches a certain value. Without quantum

fluctuations the solution is a monotonic function as shown in the figure by the

dotted curve. The quantum noise is necessary to trigger the macroscopic

changes in the intensity of the second-harmonic mode.

Now, we can proceed further and ask the question about the evolution of the

quantum fluctuations. We have already seen that there are essential changes in
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Figure 6. Comparison of the fully quantum numerical solution (solid line) and the approximate

solution (112) (dashed line) for the initial mean number of photons Na ¼ 100ðE0 ¼ 0:01Þ. Classical

solution is marked by dotted curve.

40 ryszard tanaś



the photon statistics when the evolution is restricted to the two-state subspace.

Even in this simple case the fundamental mode evolved from the sub- to super-

Poissonian photon statistics. The numerical method presented above is suitable

for answering questions about photon statistics and squeezing equally well as

the question about the mean intensity. To calculate the mean value of the square

of the photon number operator for the fundamental mode, it is as simple as

replacing n � 2k by ðn � 2kÞ2
in (135), or replacing k by k2 in order to calculate

the mean value of the square of the photon number operator for the second-

harmonic mode. All the rest is up to the computer. Let us calculate the Mandel q

parameter as defined by (19). In Fig. 7 we have presented the results of the

numerical calculations for the Mandel q parameters for both fundamental (Fig.

7a) and second harmonic (Fig. 7b) modes. Both modes exhibit sub-Poissonian

photon statistics (negative values of the q parameter) at the initial stages of the

evolution, but for long times the statistics becomes super-Poissonian. The sub-

Poissonian statistics at initial stages of the evolution is in agreement with the

short time approximation presented in Eq. (103).

In Fig. 8 we have plotted the quadrature variances for the two modes and

compared them to their counterparts obtained from the linearized noise

equations. In Fig. 8a we see the two squeezed quadratures, h½�Qa	2i and

h½�Pb	2i, calculated numerically for the mean number of photons of the pump

mode Na ¼ 10, and their counterparts obtained from the linearized theory, that

is, plotted from the formulas (88). In Fig. 8b the nonsqueezed quadratures

h½�Pa	2i and h½�Qb	2i are compared. It is evident from the figures that, as one

could expect, the linearized theory has only limited range of applicability. The

linearized results are in good agreement with the exact numerical results

roughly up to the scaled time t ’ 1. The long-time evolution (t > 1) of the

quadrature variances is principally different from their linearized approximation

counterparts because the linearization fails to predict the quantum noise induced

revival in the evolution. It is also clear from Fig. 8a that the degree of squeezing

that can really be obtained is much smaller than that predicted from the linea-

rized theory. The long time behavior of the quadrature variances is presented in

Fig. 9 where the same quadratures are plotted as in Fig. 8 but for longer time t
showing irregular oscillations of the quantum noise with a general tendency for

that noise to increase and we should not expect squeezing in the long time-limit.

The reduction of the quantum noise below the vacuum level is thus a property

that in second-harmonic generation appears at the beginning of the evolution

and never reappears again.

Since Ĥ0 is a constant of motion, Ĥ2
0 is also a constant of motion, which

gives, for the fluctuations of Ĥ0, the relation

h½�Ĥ0	2i ¼ hĤ2
0i ¼ hĤ0i2 ¼ Nað�hoÞ2 ð136Þ
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which can be rewritten as

h½�N̂a	2i þ 4h½�N̂b	2i þ 4h�N̂a�N̂bi ¼ Na ð137Þ

Formula (137) establishes the relation between the fluctuations of the indivi-

dual-mode photon numbers and the intermode photon-number correlation. All

the quantities on the left hand side (l.h.s.) of Eq. (137) can be calculated
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Figure 7. The Mandel q parameter for the (a) fundamental mode and; (b) second-harmonic

mode. The mean number of photons is Na ¼ 10 (solid lines) and Na ¼ 40 (dashed lines).
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numerically starting with the state (127), and formula (137) can serve as a test

of numerical precision. The value of Na sets the level of fluctuations for an

initially coherent state with the mean number of photons Na. In Fig. 10 we have

visualized the evolution of the correlations between the photon-number fluctua-

tions (normalized) 4h�N̂a�N̂bi=Na of the two modes. The two photon noises

are negatively correlated. This negative correlation of photon fluctuations

compensates for the large increase of the photon number variances in each
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Figure 8. The quadrature variances: (a) squeezed variances h½�Qa	2i (solid line) and h½�Pb	2i
(dashed line) (b) nonsqueezed variances h½�Pa	2i (solid line) and h½�Qb	2i (dashed line) for

Na ¼ 10. The dotted lines are the linearized solutions.
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mode, which is clearly visible from Fig. 7. Thus the super-Poissonian photon

statistics is related with the appearance of strong negative correlations between

the photon-number fluctuations. The peak in the Mandel q parameter, indicating

highly super-Poissonian photon statistics, is, on the other hand, related to the

minimum of the quadrature variance, that is, it is related to the maximum of

squeezing. This shows that quantum fluctuations of various physical quantities

are related to each other, but this relation is not necessarily simple.

The statistical properties of the quantum fields are well characterized by the

quasiprobability distribution functions defined in the Section II. Let us consider
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Figure 9. Same quadratures as in Fig. 8 but for longer time t.
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the Husimi Q function as defined by (28) for the fundamental mode. To find this

function, we start with the more general function for the two-mode field

Qða; bÞ ¼ 1

p2
jha; bjcðtÞij2 ð138Þ

where jcðtÞi is as given by (127). By integrating the function Qða; bÞ over d2 b,

we obtain the function QðaÞ for the fundamental mode. We find

Qða; bÞ ¼ 1

p2
e�ðjaj2þjbj2Þ

X1
n¼0

einfa bn

X½n=2	

k¼0

ða�Þn�2kðb�Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � 2kÞ!k!

p cn;kðtÞ
�����

�����
2

ð139Þ

and after integrating over d2b we get

QðaÞ ¼ 1

p
e�jaj2

�X1
n¼0

jbnj2jaj2n
X½n=2	

k¼0

jaj�4kjcnkðtÞj2

ðn � 2kÞ!

þ 2Re
X1
n¼1

Xn�1

n0¼0

eiðn�n0Þfa bnbn0 ða�Þnan0

�
X½n0=2	

k¼0

jaj�4k
cn;kðtÞc�n0;kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn � 2kÞ!ðn0 � 2kÞ!
p �

ð140Þ

0 2 4 6 8 10 12 14 16
−12

−10

−8

−6

−4

−2

0

τ

C
or

re
la

tio
ns

Figure 10. Correlations 4h�N̂a�N̂bi=Na between the photon-number fluctuations in the two

modes for Na ¼ 10 (solid line) and Na ¼ 40 (dashed line). Compare to Fig. 7.
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In a similar way, integrating (139) over d2a we obtain the Q function for the

second-harmonic mode, which has the form

QðbÞ ¼ 1

p
e�jbj2

�X1
n¼0

X1
n0¼0

eiðn�n0Þfa bnbn0

�
X½n=2	

k¼0

X½n0=2	

k0¼0

ðb�Þkbk0ffiffiffiffiffiffiffiffiffi
k!k0!

p cn;kðtÞc�n0;k0 ðtÞdn�2k;n0�2k0

�
ð141Þ

The two functions can be evaluated numerically for a not-too-large mean

number of photons Na. In Fig. 11 we have shown the contour plots of the Q

function for the fundamental mode (Fig. 11a) and the second-harmonic mode

(Fig. 11b) for the initial mean number of photons of the fundamental mode

Na ¼ 10. It is seen that the centroid of the distribution, in case of the

fundamental mode, moves to the left along the Re a axis showing squeezing

along this axis at initial stages of the evolution, and next it becomes a two-peak

structure first noticed by Nikitin and Masalov [24]. Nikitin and Masalov [24]

suggested that the two peaks appearing in the Q function indicated a macro-

scopic superposition of quantum states. In case of the second harmonic mode

the Q function starts with the peak localized at the origin (initial vacuum state)

and moves along the Im b axis undergoing deformation during the evolution.

Motion of the centroid of the distribution along the Im b axis confirms again our

earlier prediction that the phases of the two fields exhibit a shift by p=2. The Q

function is one of the quasiprobalility distributions that describe quantum

statistical properties of the field. It has advantage that it is always positive, so

it can be treated in the way as the classical probability distributions are treated,

but it also has disadvantages; for example, it does not lead to correct marginal

distributions. In this context the Wigner function is more appropriate, but the

Wigner function can take negative values, which precludes its treatment as

classical probability distribution. In many cases, however, the Wigner function

is very useful. All the quasidistribution functions take into account the fact that

quantum fields are operator fields and are represented by noncommuting

operators, which unavoidably introduce quantum noise. The different quasidis-

tributions are related to different orderings of the field operators. The Q function

is associated with the antinormal ordering of the operators.

As we have already seen, quantum noise changes the character of the

evolution of the field in the second-harmonic generation by making it periodic.

But periodic behavior is also seen for classical solution if we assume that there

is a small classical signal of the second harmonic mode when the evolution

starts. One can thus say that the quantum noise, or spontaneously emitted

photons, play a role of the classical signal that makes the evolution periodic.
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Figure 11. Contour plots for the Q function: (a) fundamental mode and (b) second-harmonic

mode, for the mean number of photons Na ¼ 10. Contours are taken at 0.1 of the maximum.
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This also prompts us a way to simulate the quantum noise by introducing

randomly chosen initial values. We can use deterministic classical equation of

motion to describe the evolution of the fields, but the initial conditions are

chosen at random. Let us assume that a ¼ a0 þ�a, b ¼ b0 þ�b, where a0

and b0 are the mean values of the initial amplitudes and �a ¼ �xa þ i�ya,

�b ¼ �xb þ i�yb are the fluctuations of the two fields, where �xa, �ya, �xb,

�yb being the independent real Gaussian processes with identical variances

�x2
a ¼ �y2

a ¼ �x2
b ¼ �y2

b ¼ 1
4
, where we have denoted the classical averaging

by the overline (vinculum). With these assumptions we find that the variances of

the quadrature components Q̂ and P̂ of the fields, which for the vacuum state are

equal to unity, can be expressed by the variances of these classical random

variables h½�Q̂a	2i ¼ 2ð�x2
a þ�y2

aÞ ¼ 1, and so on. Now, starting with the

Gaussian distribution of the initial values of the field amplitudes, we can

simulate some quantum properties of the fields using classical trajectories. It is

interesting to compare the results obtained using the method of classical

trajectories to the quantum results for the Q function. This kind of comparison

has been done for second-harmonic process by Nikitin and Masalov [24]. Since

it is really impressive to see how good the quantum Q function contours are

reproduced by a cloud of points that undergone classical evolution starting from

the initial conditions described by the Gaussian distribution, we show in Fig. 12

clouds of 1000 points for the same values of the evolution time as in Fig. 11 for

Na ¼ 10. Why is the Q function reproduced so well with the classical

trajectories? The Q function is a representative of a whole class of the

quasidistribution functions. Generally, the s-parametrized quasiprobability dis-

tribution for a coherent state, defined by (30), is given by

WðsÞðaÞ ¼ 1

p
2

1 � s
exp � 2

1 � s
ja� a0j2

	 

ð142Þ

which, for s < 1, is a Gaussian distribution. For s ¼ 1, the distribution becomes

the Dirac delta function, for s ¼ 0 it is the Wigner function, and for s ¼ �1, we

have the Q function. The distribution (142) becomes narrower as s increases

approaching unity. The Q function is the broadest distribution, but all of them

for s < 1 are just Gaussians with various variances. In terms of classical

description of the field noise, the most suitable function is the Wigner

function [52], for which the variance of the Gaussian distribution is equal to
1
4
. The Q function is broader, with the variance equal to 1

2
, but because the state

of the field has a large coherent component, the two functions are very similar in

shape and the Q function is usually easier to calculate. For the nontrivial

quantum states, the Wigner function can take negative values, and then it is

difficult to simulate properties of such states by classical stochastic variables
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while the Q function does not suffer from such problems. When the initial state

of the fundamental mode is a coherent state, the initial distribution is a

Gaussian, and the result of simulation is pretty good. The method of classical

trajectories has been used by Bajer et al. to explain the sub-Poissonian photon

statistics in the second harmonic generation [36] as well as the third harmonic

generation [37] in the no-energy-exchange regime. They have found that in this

regime it is possible to obtain the steady-state solutions exhibiting sub-

Poissonian photon statistics, and, surprisingly, they have shown that this

quantum effect can be explained within the classical trajectories approach.
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Figure 12. Classical trajectories for 1000 points for Gaussian distribution of initial values with

unit variance and Na ¼ 10. Compare to Fig. 11a.
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As we have already discussed in Section II, another characteristic of the

quantum field is its phase distribution. The phase distribution of the quantum

field can be calculated from the quasidistribution functions by integrating over

the radial variable. In this way we get a kind of phase distribution that can be

considered as an approximate description of the phase properties of the field.

One can calculate the s-parametrized phase distributions, corresponding to the

s-parametrized quasidistributions, for particular quantum states of the field [16].

However, a better way to study quantum phase properties is to use the Hermitian

phase formalism introduced by Pegg and Barnett [11–13]. We have already

introduced this formalism in Section II. Now, we apply this formalism to study

the evolution of the phase properties of the two modes in the SHG process. In

this case we have a two-mode field which requires a modification of the

formulas presented in Section II into a two-mode case. The modification is

rather trivial, and for the joint probability distribution for the continuous

phase variables ya and yb describing phases of the two modes, we get the

formula [53]

Pðya; ybÞ ¼
1

ð2pÞ2

����X1
n¼0

bn

X½n=2	

k¼0

cn;kðtÞ

� expf�i½ðn � 2kÞya þ kyb � kð2fa � fb	g
����
2

ð143Þ

where fa and fb are the initial phases of the two modes, and the coefficients

cn;kðtÞ are given by (122). The distribution (143) is normalized such that

ðp
�p

ðp
�p

Pðya; ybÞ dya dyb ¼ 1 ð144Þ

To choose the phase windows for ya and yb, we have to assign to fa and fb

particular values. It is interesting to notice that formula (143) depends, in fact,

on the difference 2fa � fb, which reproduces the classical phase relation for

the second harmonic generation, as seen in in classical equations (59). Classi-

cally, if there is no second-harmonic initially, this quantity must be

2fa � fb ¼ �p=2. This means that the phase of the second-harmonic mode

is locked to the phase of the fundamental mode by this relation. It turns out that

this is also a good choice to fix the phase windows in the quantum description. If

the initial phase fa of the fundamental mode is zero, then fb ¼ �p=2

(depending on the sign of k); that is, the second harmonic is shifted in phase

by p=2 or �p=2 with respect to the fundamental mode.
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The joint probability distribution given by Eq. (143) can be evaluated

numerically and an example of such distribution is shown in Fig. 13, where

the function Pðya; ybÞ is plotted for several values of the scaled time t and the

initial mean number of photons of the fundamental mode Na ¼ 10. Initially the
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Figure 13. Joint phase probability distribution Pðya; ybÞ of the fundamental and second-

harmonic modes for various evolution time t. In the last two figures the phase windows for ya and yb

are shifted by p.
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distribution is peaked at ya ¼ 0 in the ya direction reflecting the phase

distribution of the coherent state of the fundamental mode, and it is completely

flat in the yb direction reflecting the uniform phase distribution of the vacuum of

the second-harmonic mode. At a later time, t ¼ 1, a single, well-resolved peak

of the distribution is visible, signifying a relatively well defined phase of the

second-harmonic mode in conjunction with the phase of the fundamental mode.

The fact that the peak appears for ya ¼ yb ¼ 0 corroborates the classical phase

−3.14

0

3.14

−3.14

0

3.14
0

1

τ = 2

θb

θa

P
(θ

a,
 θ

b)

−3.14

0

3.14

−3.14

0

3.14
0

1

τ = 4

θb

θa

P
(θ

a,
 θ

b)

Figure 13. (Continued)
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relation 2fa � fb ¼ p=2, which has been assumed here to choose the phase

windows. As the evolution proceeds, for t ¼ 2, the phase distribution Pðya; ybÞ
splits into two peaks. This is very interesting interval of time in which the

second-harmonic mode achieves its maximum and the reverse process of

downconversion start to predominate (can be seen from Fig. 5). The case of

downconversion will be discussed later on, but now we can say that appearance

of the two-peak phase distribution is a qualitative change in the phase properties
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of the field, and it can be ascribed to the transition in the evolution from the

harmonic generation regime into the downconversion regime. The two-peak

structure of the ideal squeezed states has been indicated by Vaccaro and

Pegg [54], and for the downconversion process with quantum pump by

Gantsog et al. [55]. The splitting of the phase distribution into two peaks

resembles the splitting of the Q function for the fundamental mode indicated by

Nikitin and Masalov [24] which we have discussed earlier. The multipeak

structure of the Q function or/and the phase distribution can be an indication

that the field becomes a superposition of macroscopically distinguishable

quantum states, the so-called Schr	odinger cats [25,27,30,56]. For still longer

times, t ¼ 4, the intensity of the second-harmonic approaches its minimum and

we observe a transition from the regime of downconversion back to the regime

of second-harmonic generation, but this time with a quite different ‘‘initial’’

state. Such ‘‘bifurcations’’ of the phase distribution lead to a multipeak structure

of the phase distribution, which means more and more uniform phase dis-

tribution. We would also draw attention to the jump in phase by p, which is

clearly visible in the last two figures (compare to the classical phase evolution

shown in Fig. 2). The fact that one peak splits into just two peaks is related to

the fact that the process we discuss is the two-photon process. For example,

for the three-photon downconversion the threefold symmetry of the distributions

is observed [57]. Generally, the joint phase probability distribution carries

quite a bit of useful information about the quantum state of the field. It is

also important that for two-mode fields the joint phase probability distribution

is a function of two variables ya and yb only, in contrast to the function

Qða; bÞ, which is a function of four real variables Re a, Im a, Re b, Im b, so it is

easy to visualize the two-mode field using the phase distribution while it is

difficult to visualize the Q function in the phase space. Of course, the phase

distribution obtained by integration of the quasidistributions is in this respect

equally easy to handle as the Pegg–Barnett phase distribution even though

the two functions are different. Generally, different distribution functions

carry different information, but some properties of the field can be read out

from all of them.

The phase distribution function (143) allows for calculations of the phase

variances for the individual modes as well as the phase correlations between the

two modes by performing simple integrations over the phase variables ya and

yb. Detailed discussion of the phase properties of the fields can be found in Ref.

16, and we will not repeat it here. The material presented in this section has

been chosen as to illustrate how quantum noise, which is an indispensable

ingredient of quantum description of optical fields, can be incorporated into the

theory of nonlinear optical phenomena, in particular the phenomenon of second-

harmonic generation.
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IV. DEGENERATE DOWNCONVERSION

A process on the one hand similar to the second-harmonic generation because it

is described by the same Hamiltonian (54) but on the other hand opposite the

second-harmonic generation because the initial conditions are interchanged, is

the process of degenerate downconversion. For the second-harmonic generation

initially there is no signal field at the second-harmonic frequency 2o and there

is a strong (coherent) field at the fundamental frequency o. On the contrary, for

the downconversion process initially there is no signal at frequency o and there

is a strong (coherent) field at the frequency 2o, which is the pump mode in this

process. As we have already discussed, we can talk about ‘‘pure’’ second-

harmonic generation or downconversion only at the initial stage of the evolution

with these particular initial conditions. At later times both processes compete

with each other with domination of one of them between the subsequent

maxima and minima of the signal intensity in a given mode. There is, however,

one important difference between the two processes— the second-harmonic

process can start even when the fields are classical, while the downconversion

process must be triggered by quantum fluctuations.

The simplest and most often used approximation allowing for analytical

solutions of the downconversion problem is the parametric approximation, in

which it is assumed that the pump mode is a strong coherent field that remains

undepleted during the evolution. The amplitude of this classical field is an

external parameter on which the solutions for the signal field depend. Equations

of motion for the downconversion process are the same as in (56)

d

dt
âðtÞ ¼ �2ik âþðtÞb̂ðtÞ

d

dt
b̂ðtÞ ¼ �ik â2ðtÞ ð145Þ

It is easy to note that for classical fields âðtÞ ! aðtÞ and b̂ðtÞ ! bðtÞ, there is no

nonzero solution for the signal field aðtÞ if að0Þ ¼ 0. In the parametric

approximation, the pump field at frequency 2o is assumed to be constant

classical field b0 ¼ jb0jexpðifbÞ. Within this approximation the first equation,

Eq. 145, together with its Hermitian conjugate, can be solved analytically giving

âðtÞ ¼ âð0Þ cosh tþ âþð0Þ sinh t exp i fb �
p
2

 �h i

âþðtÞ ¼ âþð0Þ cosh tþ âð0Þ sinh t exp �i fb �
p
2

 �h i
ð146Þ
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where we have introduced the scaled time t ¼ 2jb0jkt. The solutions (146) can

be generated using the following squeezing operator

Ŝð�Þ ¼ exp
1

2
��â2 � 1

2
�âþ2

	 

ð147Þ

where the parameter � ¼ it, in the following way [4]

âðtÞ ¼ Ŝ�1ð�Þâð0ÞŜð�Þ ; âþðtÞ ¼ Ŝ�1ð�Þâþð0ÞŜð�Þ ð148Þ

Thus, the degenerate parametric oscillator, specifically, the downconversion

process in the parametric approximation, performs the squeezing transforma-

tion, generating the ideal squeezed states, which have been widely discussed in

the literature (see, e.g., Refs. 5 and 6 and papers cited therein). This material is

well known, and we will not repeat it here. We rather concentrate on the cases

when the parametric approximation is not applicable and the pump mode must

be treated as a dynamical variable, the evolution of which must be taken into

account. The quantum dynamics of the parametric oscillator has been studied by

Kinsler and Drummond [58]. Reid and Krippner [59] have found that a

macroscopic superposition states can be created in the nondegenerate para-

metric oscillator. Mode entanglement in such a system has been studied by

Drobný et al. [60]. Here, we focus on comparison of the quantum properties of

fields produced in the downconversion to those produced in the second-

harmonic generation using the same theoretical methods.

A. Symbolic Calculations

Let us start with the short-time approximation in which we can use the symbolic

manipulation computer program described in Appendix A to find the corrections

coming from the quantum fluctuations of the fields. The operator formulas (94)

and (95) are valid also for the degenerate downconversion because the two

processes are governed by the same Hamiltonian, but now initially the second-

harmonic mode is populated while the fundamental mode is initially in the

vacuum state. Assuming that the pump mode at the frequency 2o is in a

coherent state jb0i (b0 ¼
ffiffiffiffiffiffi
Nb

p
expðifbÞ), we have

hâðtÞi ¼ 0

hb̂ðtÞi ¼ b0

�
1 � ðktÞ2 � 1

6
ðktÞ4ð8jb0j2 � 1Þ þ � � �

�
ð149Þ
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It is interesting to note that the mean value of the signal mode at frequency o is

zero, and it is true for all powers in the expansion, reflecting the fact that

photons are created in pairs. In case of pump mode, we see that the amplitude of

the field will evolve in time and the lowest nonzero term is the quadratic term.

The fact that the mean field of the signal mode is zero explains why the signal

mode is said to be in the squeezed vacuum. Another interesting and character-

istic feature of such field is the fact that the mean value of the square of the

annihilation operator is nonzero

hâ2ðtÞi ¼ �2ib0

�
ðktÞ þ 1

3
ðktÞ3ð8jb0j2 � 1Þ þ � � �

�

¼ exp ½iðfb � p=2Þ	
�
tþ 2

3
t3 1 � 1

8Nb

	 

þ � � �

�
ð150Þ

and this fact justifies the name the two-photon coherent state introduced by

Yuen [61].

Let us take a look at the mean number of photons in the signal mode, which

up to the fourth order is given by

hâþðtÞâðtÞi ¼ 4jb0j2
�
ðktÞ2 þ 2

3
ðktÞ4ð2jb0j2 � 1Þ þ � � �

�
;

¼ t2 þ t4

3
1 � 1

2Nb

	 

þ � � � ð151Þ

where we have introduced the scaled time t ¼ 2
ffiffiffiffiffiffi
Nb

p
kt, as suggested by the

solutions (146) in the parametric approximation. The last term, � N�1
b , comes

from the field commutator and represents the quantum noise. The other terms

are the terms of the expansion of sinh2t, which is the mean number of photons

in the parametric approximation given by the solutions (146). For the pump

mode we have

hb̂þðtÞb̂ðtÞi ¼ jb0j2
�

1 � 2ðktÞ2 � 4

3
ðktÞ4ð2jb0j2 � 1Þ þ � � �

�

¼ Nb �
1

2
t2 � 1

6
t4 1 � 1

2Nb

	 

þ � � � ð152Þ

Again, we can easily identify the noise term, and moreover, it is clear from

Eqs. (151) and (152) that the quantity hâþðtÞâðtÞi þ 2hb̂þðtÞb̂ðtÞi ¼ 2jb0j2 ¼
2Nb is conserved including the quantum noise terms.
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Similarly, we obtain corresponding expressions for the quadrature variances

h½�Q̂a	2i ¼ 1 þ 4ðktÞImb0 þ 8ðktÞ2jb0j2 þ
4

3
ðktÞ3

Imb0ð8jb0j2 � 1Þ

þ 16

3
ðktÞ4jb0j2ð2jb0j2 � 1Þ þ � � �

¼ 1 þ 2tsinfb þ 2t2 þ 4

3
t3 sinfb 1 � 1

8Nb

	 


þ 2

3
t4 1 � 1

2Nb

	 

þ � � � ð153Þ

h½�P̂a	2i ¼ 1 � 4ðktÞImb0 þ 8ðktÞ2jb0j2 �
4

3
ðktÞ3

Imb0ð8jb0j2 � 1Þ

þ 16

3
ðktÞ4jb0j2ð2jb0j2 � 1Þ þ � � �

¼ 1 � 2tsinfb þ 2t2 � 4

3
t3 sinfb 1 � 1

8Nb

	 


þ 2

3
t4 1 � 1

2Nb

	 

þ � � � ð154Þ

The sign of the linear terms in (153) and (154) depends on the sign of Imb0, and

this sign decides whether the quadrature is squeezed. These examples illustrate

the effectiveness of the symbolic manipulation programs in obtaining such

expansions. Previously such calculations have been performed by hand. This

approach belongs to the standard methods of quantum optics, and many results

based on the power series expansion have been discussed in the book [62], so

we restrict ourselves to these few examples only.

B. Numerical Methods

The exact operator expansions presented in the previous section indicated that

the parametric approximation fails for sufficiently long evolution times, and,

moreover, the quantum character of the pump mode introduces corrections to

the field evolution coming from the quantum noise. Since the two parts of the

Hamiltonian Ĥ0 and ĤI given by Eq. (55) are constants of motion, again we can

split the Hilbert space into orthogonal sectors, as before, and introduce for a

given number n of the pump mode at frequency 2o the states

jcðnÞ
k i ¼ j2k; n � ki ; k ¼ 0; 1; . . . ; n ð155Þ

which again form a complete orthogonal basis of states in a sector with given n.

Now, however, n is the number of photons of the second-harmonic mode, which
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would correspond energetically to the 2n photons of the fundamental mode, so

the dimension of the sector with given n is (n þ 1)�(n þ 1). Assuming that the

initial state of the pump mode is a coherent state jb0i and the signal mode at

frequency o is in the vacuum, we can define the initial state of the field as

jcð0Þi ¼
X1
n¼0

bn einfb j0; ni ð156Þ

where

bn ¼ exp
�Nb

2

	 

N

n=2
bffiffiffiffi
n!

p ð157Þ

where Nb ¼ jb0j2, and fb is the initial phase of the pump field

½b0 ¼ jb0jexpðifbÞ	. With these initial conditions the resulting state of the field

is given by

jcðtÞi ¼
X1
n¼0

bneinfb

Xn

k¼0

c2n;kðtÞj2k; n � ki ð158Þ

where the coefficients c2n;kðtÞ are the matrix elements of the evolution operator

c2n;kðtÞ ¼ 2k; n � k exp
�iĤI t

�h

	 
����
����0; n

� �

¼
Xn

j¼0

e�iljktUn�k;jU
�
n;j ð159Þ

Comparing Eqs. (122) and (159), it is clear that the coefficients cn;kðtÞ and

c2n;kðtÞ are derived from the same matrix U diagonalizing the Hamiltonian ĤI ,

but they include different elements of the matrix. As before, the

coefficients (159) can be calculated numerically by diagonalizing the interaction

Hamiltonian ĤI [55]. The mean number of photons in both modes can be

expressed, using the state (158), in the form

hN̂aðtÞi ¼ hcðtÞjâþâjcðtÞi ¼
X1
n¼0

b2
n

Xn

k¼0

2kjc2n;kðtÞj2

hN̂bðtÞi ¼ hcðtÞjb̂þb̂jcðtÞi ¼
X1
n¼0

b2
n

Xn

k¼0

ðn � kÞjc2n;kðtÞj2 ð160Þ
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where bn is given by (157). In Fig. 14 we have plotted the signal intensity

na ¼ hN̂aðtÞi=ð2NbÞ at frequency o as a function of the scaled time t ¼ 2jb0jkt.

The intensity na is scaled in such a way that unity at the figure would mean the

100% conversion ratio. For reference we have plotted the normalized signal

intensity in the parametric approximation, which is given by sinh2 t=ð2NbÞ. It is

seen that the parametric approximation is valid for t � 1, and it fails for longer

evolution times. As in the case of second-harmonic generation, the signal

intensity exhibits damped oscillations; however, there is one important differ-

ence between the second-harmonic generation and the downconversion process,

namely, the conversion ratio that can be achieved in both processes. As it is

evident from Fig. 5b as the mean number of photons of the fundamental mode

increases, the maximum conversion ratio also increases, becoming closer and

closer to 100% efficiency. From Fig. 14 we see that the maximum conversion is

below 70% for Nb ¼ 10, and contrary to the second-harmonic generation, as the

mean number of photons Nb of the pump mode increases the maximum

conversion decreases. This effect is illustrated in Fig. 15, where we have plotted

the maximum values of the scaled signal intensity na as a function of the mean

number of photons of the pump mode Nb. This rather counterintuitive result has

been discussed by Drobný and Bužek [63] who have found that there is a

fundamental limit on the energy transfer in the k-photon downconversion. There

is always a fraction of energy that is trapped in the pump mode and cannot be

transferred to the downconversion signal and this fraction increases as the

intensity of the pump mode becomes higher. If the dynamics of the pump mode
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Figure 14. Signal intensity of the degenerate downconverter for the mean number of pump

photons Nb ¼ 10. Dotted line illustrates the parametric approximation.
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is taken into account the downconversion signal behaves quite differently from

the the idealized case when the parametric approximation is done.

The degenerate parametric downconversion is a source of squeezed light,

which, as far as the parametric approximation is valid, produces the ideal

squeezed states with the quadrature variances h½�Q̂a	2i ¼ expð�2tÞ and

h½�P̂a	2i ¼ expð2tÞ, which means that for t ! 1, one of the variances goes

to zero while the other goes to infinity. Thus, the idealized model allows for

perfect squeezing. Of course, in a more realistic model in which the quantum

noise of the pump mode is taken into account the amount of squeezing that can

be obtained is limited. The two quadrature variances calculated numerically for

Nb ¼ 10 and fb ¼ �p=2 are illustrated in Fig. 16. For short evolution times t
the variance h½�Q̂aðtÞ	2i is squeezed, that is, it takes values below unity, that is

below the vacuum fluctuations level. The Q̂ quadrature is squeezed for the

particular choice of the phase of the pump field, fb ¼ �p=2, in agreement with

the analytical results presented in Eq. (99). For fb ¼ 0 both quadratures are

unsqueezed. The dependence of squeezing on the field phase is a characteristic

feature of this effect. The Q̂ quadrature variance reaches a minimum below

t ¼ 1 and next shows maxima and minima that, however, do not fall below

unity. It is a well-known fact that when the depletion of the pump mode and its

quantum character is taken into account, the quadrature noise has finite

minimum, and it has been shown [64–66] that the value of squeezing is
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Figure 15. Maximum efficiency of energy transfer in the degenerate downconversion versus

the initial mean photon number Nb of the pump mode.
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bounded by ð2
ffiffiffiffiffiffi
Nb

p
Þ�1

. Kinsler et al. [66] compared various numerical

methods, including the number-state calculations and stochastic simulations

based on the stochastic differential equations derived from the positive P

representation. Here, we use the method of diagonalization of the Hamiltonian

in the number-state basis, which is simple but it is applicable only for the pump

fields with a not-too-large mean number of photons. Nevertheless, the results

obtained in this simple way illustrate pretty well the features of the field

produced in the degenerate down converter with quantum pump. In Fig. 17 we

have plotted the quadrature variances for several values of the mean number of

photons of the pump mode. It is seen that, as the number of photons increases,

the solutions remain close to the parametric approximation for longer times, or

in other words, the parametric approximation is valid longer as the pump fields

are becoming stronger.

Similarly to the second-harmonic generation, we can calculate the Q

function for the fields. With the state (158) we find for the two-mode field

the formula

Qða; bÞ ¼ 1

p2
e�ðjaj2þjbj2Þ

X1
n¼0

einfb bn

Xn

k¼0

ða�Þ2kðb�Þn�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kÞ!ðn � kÞ!

p c2n;kðtÞ
�����

�����
2

ð161Þ

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

50

τ

<
[∆

 Q
a]

2 >
, <

[∆
 P

a ]2 >

Figure 16. Quadrature variances of the signal mode for Nb ¼ 10 and fb ¼ �p=2: h½�Q̂aðtÞ	2i
(solid line) and h½�P̂aðtÞ	2i (dashed line).
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which after corresponding integrations gives the Q functions for individual

modes. For the signal mode, we have

QðaÞ ¼ 1

p
e�jaj2

X1
n¼0

X1
n0¼0

eiðn�n0Þfb bnbn0

�
Xn

k¼0

Xn0

k0¼0

ða�Þ2ka2k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kÞ!ð2k0Þ!

p c2n;kðtÞc�2n0;k0 ðtÞdn�k;n0�k0 ð162Þ
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Figure 17. Quadrature variances (a) h½�Q̂aðtÞ	2i and (b) h½�P̂aðtÞ	2i for the signal mode with

fb ¼ �p=2 and Nb ¼ 10 (solid line), Nb ¼ 40 (dashed line), and Nb ¼ 100 (dashed–dotted line).

Dotted lines represent parametric approximation.
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and for the pump mode

QðbÞ ¼ 1

p
e�jbj2

X1
n¼0

X1
n0¼0

eiðn�n0Þfb bnbn0

�
Xminðn;n0Þ

k¼0

ðb�Þn�kbn0�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � kÞ!ðn0 � kÞ!

p c2n;kðtÞc�2n0;kðtÞ ð163Þ

where the coefficients c2n;kðtÞ are given by (159) and the Poissonian factors bn,

by (157). The contours of the Q functions for the signal (Fig. 18a) and pump

(Fig. 18b) modes, for a particular choice of the evolution times, are illustrated in

Fig. 18. The squeezing property of the signal is clearly seen for t ¼ 1, and for a

longer time t ¼ 3 the Q function of the signal mode develops a two-peak

structure. All the time the mean amplitude of the signal mode is zero — the

quasidistribution exhibits a twofold symmetry around the origin. The pump

mode starts from a coherent state with the amplitude �i
ffiffiffiffiffi
10

p
, and next the

distribution is smeared along the imaginary axis (t ¼ 3) and concentrates again

to an approximately coherent state with the amplitude i
ffiffiffiffiffi
10

p
(t ¼ 6). It is

interesting to compare the shape of the Q functions with the maxima and

minima of the intensity of the signal mode shown in Fig. 14.

The classical trajectories approach, described in Section III.D, applied to the

downconversion regime confirms pretty well the fully quantum calculations for

the quasidistribution functions presented in Fig. 18. Examples of the classical

trajectories approach are shown in Fig. 19. Similarly to the second-harmonic

generation (see Section III.D), the initial values are taken from the Gaussian

distribution with the appropriately adjusted variance and the set of classical

equations (59) is solved numerically for 1000 trajectories. As it is evident from

Fig. 19, the cloud of points reproduces very well the quasidistribution functions

for both modes. The classical trajectories approach has an advantage over the

direct quantum calculations with the diagonalization of the Hamiltonian in this

that it can be applied to the fields with large number of photons where the

diagonalization method cannot be used because of the computer limitations. It

has been shown [52] that the Wigner function is the most adequate quasidis-

tribution function to use with classical trajectories approach, and the symmetric

ordering associated with the Wigner function should be used to calculate mean

values of the physical quantities by averaging over ensembles of classical

trajectories. Here we have illustrated both approaches, choosing the mean

number of photons Nb ¼ 10 for which the calculations can be performed

even on small computers.

The Hermitian operator phase formalism of Pegg and Barnett [11–13] allows

for quantum calculations of phase distribution for the fields produced in the
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Figure 18. Contour plots of the Q function for (a) the signal mode and (b) pump mode for

Nb ¼ 10;fb ¼ �p=2, and several values of the evolution time t. Contours are taken at half the

maximum.
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downconversion process [55]. The joint phase probability distribution has the

following form in this case [16,55]:

Pðya; ybÞ ¼
1

ð2pÞ2

����X1
n¼0

bn

Xn

k¼0

c2n;kðtÞ

� expf�i½2kya þ ðn � kÞyb þ kð2fa � fbÞ	g ð164Þ

It is very instructive to compare the joint phase probability distributions for the

signal and pump modes produced in the downconversion process shown in

Re α
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Figure 19. Classical trajectories for 1000 points for Gaussian distribution of initial values and

Nb ¼ 10;fb ¼ �p=2 for the signal mode (upper figures) and the pump mode (lower figures). The

evolution times are chosen as to compare with Fig. 18.
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Fig. 20 to the same distribution for the fields produced in the second-harmonic

generation process shown in Fig. 13. The differences are clearly visible. The

distribution for the downconverted field from the beginning develops a two-peak

phase structure, which is a consequence of the two-fold rotational symmetry of

the Q function for the signal mode. It is known [57,67] that for k-photon

downconversion the Q function has k-fold rotational symmetry and the phase

distribution has k peaks, at least at the initial stages of the evolution. From

Fig. 20 it is also clear that when the intensity of the signal mode reaches its
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Figure 20. Joint phase probability distribution Pðya; ybÞ for the signal and pump modes at

several evolution times t and Nb ¼ 10. In the last two figures the window for yb is shifted

yb ! yb þ p=2 and yb ! yb þ p, correspondingly.
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maximum (t ¼ 3), the process is reversed from the downconversion regime to

the harmonics generation regime and the phase distribution for yb splits into two

peaks and a jump in phase by p=2 appears. For t ¼ 6, the phase distribution

confirms the fact seen from the contours of the Q function, that the pump mode

reaches the state close to the initial coherent state but shifted in phase by p. To

avoid splitting of the peaks in the phase distribution, we have made correspond-

ing shifts of the phase window for yb variable for the last two pictures of Fig. 20,

so yb ! yb þ p=2 and yb ! yb þ p, correspondingly. The two-peak structure of

the phase distribution is a characteristic feature of the ideal squeezed states. To
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Figure 20. (Continued)
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compare the ideal squeezed state phase distribution with the distribution for

downconversion with quantum pump, we can calculate the marginal phase

distribution functions, which are obtained by integrating (164) over one of the

phase variables. The result is

PðyaÞ ¼
1

2p

�
1 þ 2Re

X
n>n0

bnbn0
Xn

k¼0

Xn0

k0¼0

c2n;kðtÞc�2n0;k0 ðtÞ

� exp ½�iðk � k0Þð2ya þ 2fa � fbÞ	dn�n0;k�k0

�

PðybÞ ¼
1

2p

�
1 þ 2Re

X
n>n0

bnbn0

Xn0

k¼0

c2n;kðtÞc�2n0;kðtÞ

� exp ½�iðn � n0Þyb	
�

ð165Þ

The marginal phase distributions are illustrated in Fig. 21a, where we have

plotted the phase distribution PðyaÞ for the signal mode at the evolution time

t ¼ 1 and the phase distribution for the ideal squeezed state for the same

squeezing parameter. The mean number of photons for the pump mode is equal

to 10. It is clear that quantum fluctuations of the pump mode cause broadening

of the phase distribution, but the two-peak structure of the distribution with the

peaks at �p=2 is obvious. For large squeezing, the phase distribution of the

ideal squeezed state becomes the sum of two symmetrically placed delta

functions

PðyaÞ ¼
1

2
d ya �

p
2

 �
þ d ya þ

p
2

 �h i
ð166Þ

but the quantum noise present in the pump mode broadens the phase distribution

which can never become the delta function distribution. In Fig. 21b we have

shown the distribution for the pump mode at the evolution time t ¼ 6, which is

compared to the initial coherent state phase distribution (dotted line). The

window for yb is shifted by p to be consistent with Fig. 20. The phase

distribution of the pump mode for this particular evolution time corroborates

what has already been found from previous figures, that at time t ¼ 6 the state

of the pump mode becomes close to the coherent state but shifted in phase by p
with respect to the initial state. This illustrates that the phase distribution is a

very convenient function to study in order to get information about the quantum

state of the field.

Because of the oscillatory behavior of the intensity of the signal mode, which

switches the process from the downconversion regime to the second-harmonic
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generation regime and back, the structure of the joint phase distribution

Pðya; ybÞ for longer evolution times becomes more complicated. This is true

for both the phase distribution that started in the pure SHG regime and the

distribution that started in the pure downconversion regime. As the evolution

proceeds the subsequent bifurcations of the distribution take place and the effect
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Figure 21. Marginal phase distributions: (a) PðyaÞ for t ¼ 1 (solid line) and ideal squeezed

vacuum (dotted line); (b) PðybÞ for t ¼ 6 (solid line) and coherent state with Nb þ 10 (dotted line).

The window for yb is shifted by p.
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of quantum noise accumulates, making the phase distributions more and more

flat indicating randomization of the phase. More details on the quantum phase

properties of the fields produced in nonlinear optical phenomena can be found

in Ref. 16.

V. SUMMARY

In this chapter we have discussed two best-known nonlinear optical phenomena

— second-harmonic generation and parametric downconversion — drawing

particular attention to the signatures of quantum fluctuations of the optical fields

that can be found in the phenomena. The ubiquitous vacuum fluctuations can

manifest themselves in various ways when an optical field undergoes nonlinear

transformation. The two processes considered here are only examples of a rich

variety of nonlinear phenomena, but they are of great practical importance and

thus they have been studied for years and a lot of knowledge has been

accumulated. It was not our intention to collect all the facts known about the

two processes, but rather to select some specific effects illustrating the role of

quantum character of the field in the process. We have also presented several

theoretical methods that are used to describe quantum properties of the field and

are now available to everybody owing to common access to computers and

software. Quantum fields are operator quantities that cannot be treated on

computers in the same way as ordinary numbers describing classical quantities.

However, presently existing computer software allows for symbolic manipula-

tion, which makes it trivial to obtain formulas that would be very difficult or

even impossible to obtain by hand. The early results indicating possibility of

nonclassical effects such as sub-Poissonian photon statistics or squeezing were

based on the power expansions of operator products. We have shown here how it

can be done with freely available software using a computer. Also traditional

numerical calculations became easy with the use of now existing numerical

packages. We have presented examples of such calculations. We have compared

quantum statistical properties of the fields produced in the idealized models of

second-harmonic generation and downconversion with quantum pump using the

same methods of symbolic calculations, approximate analytical methods, the

method of classical trajectories with stochastic initial conditions and direct,

fully quantum-mechanical calculations using the method of diagonalization of

the interaction Hamiltonian. Since both processes discussed in this chapter are

described by the same Hamiltonian, the differences between the quantum

properties of the field generated in them have their origin in the initial

conditions, in particular, in the presence of quantum fluctuations. As we have

shown, the differences are quite important and their comparison is very

instructive.
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APPENDIX A

An example of the FORM [47] program calculating symbolically evolution of

the operator âþðtÞâðtÞ in the SHG process and the results produced by the

program. The program calculates the Taylor series expansion terms up to given

order (16 in the example). T’n’ is the nth order term which must be multiplied

by ðktÞn
, and the notation ad(n) means ðâþÞn

, and correspondingly a(n) means

ân, where â and âþ are the annihilation and creation operators for the

fundamental beam. In the calculations we assume that initially there are no

photons of the second-harmonic beam, that is, after operator calculations we

take the expectation value over the vacuum state for the second-harmonic beam.

In the program this is performed by identifying b̂ and b̂þ as zero after the

normal ordering of the operators. The program is very simple (just few lines of

code) and very effective (just few seconds on a Dual PIII 450 MHz machine

under Linux).

FORM by J.Vermaseren. Version 1.1 Dec 14 1998

* calculates Taylor series terms for harmonics generation

nwrite statistics;

Symbols n,k;

Function T,a,ad,b,bd,x,y;

Set aa:a,ad;

Set bb:b,bd;

* definitions

#define MAX "16"

* Hamiltonian

Local H=ad*ad*b+a*a*bd;

* operator the evolution we are looking for

Local T0=ad*a;

.sort

* main loop

#do i=1,’MAX’

Local T{’i’} = (T{’i’-1}*H-H*T{’i’-1})/i_/’i’;

repeat;

id x?bb*y?aa=y*x;

endrepeat;

.sort
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repeat;

id a*ad=ad*a+1;

id b*bd=bd*b+1;

endrepeat;

.sort

#enddo;

id b=0;

id bd=0;

id x?=x(1);

repeat;

id x?(n?)*x?(k?)=x(n+k);

endrepeat;

print;

.end

* results

T0 = ad(1)*a(1);

T1 = 0;

T2 = - 2*ad(2)*a(2);

T3 = 0;

T4 = 8/3*ad(3)*a(3) + 4/3*ad(2)*a(2);

T5 = 0;

T6 = - 136/45*ad(4)*a(4) - 128/45*ad(3)*a(3) - 16/45*ad(2)*a(2);

T7 = 0;

T8 = 992/315*ad(5)*a(5) + 184/35*ad(4)*a(4) + 416/315*ad(3)*a(3)

+ 16/315*ad(2)*a(2);

T9 = 0;

T10 = - 44224/14175*ad(6)*a(6) - 4544/567*ad(5)*a(5) - 12128/

2835*ad(4)*a(4)

- 1024/2835*ad(3)*a(3) - 64/14175*ad(2)*a(2);

T11 = 0;
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T12 = 1398016/467775*ad(7)*a(7) + 730976/66825*ad(6)*a(6)

+ 914944/93555*ad(5)*a(5) + 67904/31185*ad(4)*a(4)

+ 2816/42525*ad(3)*a(3) + 128/467775*ad(2)*a(2);

T13 = 0;

T14 = - 118984832/42567525*ad(8)*a(8) - 65317888/4729725*

ad(7)*a(7)

- 12242816/654885*ad(6)*a(6) - 1856000/243243*ad(5)*a(5)

- 4741376/6081075*ad(4)*a(4) - 4096/467775*ad(3)*a(3)

- 512/42567525*ad(2)*a(2);

T15 = 0;

T16 = 1639572992/638512875*ad(9)*a(9) + 2102147456/

127702575*ad(8)*a(8)

+ 20049444736/638512875*ad(7)*a(7) + 378236224/

18243225*ad(6)*a(6)

+ 43331584/10135125*ad(5)*a(5) + 6365056/30405375*ad(4)*a(4)

+ 559616/638512875*ad(3)*a(3) + 256/638512875*ad(2)*a(2);

APPENDIX B

An example of the program that can be run using the free available software

OCTAVE [50] (under Linux) or the commercial software MATLAB [51] (under

Linux or MS Windows). The program calculates numerically the intensity of the

second-harmonic using the procedure of diagonalizing the interaction Hamilto-

nian described in the text (Section III.D).

% program intensity.m

% calculates the intensity of the second-harmonic

% using diagonalization of the interaction Hamiltonian

% int2 - second-harmonic intensity

% int1 - fundamental mode intensity

clear

nav=input(’ mean number of photons: ’);

nmax=input(’ nmax: ’);

tmax=input(’ taumax: ’);

t=0:tmax/511:tmax;

tic;

int2=zeros(1,512);
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% Poisson distribution

b(1)=exp(-nav);

b(2)=b(1)*nav;

for n=2:nmax

b(n+1)=b(n)*nav/n;

% calculates the Hamiltonian H

nd=floor(n/2)+1;

nd1=floor((nd-1)/2);

hk=zeros(nd-1,1);

for k=0:nd-2

hk(k+1,1)=sqrt((k+1)*(n-2*k)*(n-2*k-1));

end

H=diag(hk,1)+diag(hk,-1);

% diagonalization with scaling

[u e]=eig(H./sqrt(2*nav));

% [u e]=eig(H);

[e l]=sort(diag(e));

u=u(:,l);

% calculation of the intensity

cz=0;

for k=0:nd-1;

c=0;

if rem(k,2)==0;

for l=0:nd1;

c=c+u(k+1,l+1)*u(1,l+1)*cos(e(l+1,1)*t);

end

else

for l=0:nd1;

c=c+u(k+1,l+1)*u(1,l+1)*sin(e(l+1,1)*t);

end

end

c=2*c;

if rem(nd+1,2)==0;

c=c-u(k+1,nd1+1)*u(1,nd1+1);

end

cz=cz+k*c.^2;

end

int2=int2+b(n+1)*cz; % second-harmonic intensity

end
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int1=nav-2*int2; % fundamental intensity

r=int1/nav;

toc

plot(t,r);

xlabel(’time’),ylabel(’intensity ’);
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16. R. Tanaś, A. Miranowicz, and T. Gantsog, in E. Wolf (Ed.), Progress in Optics, Elsevier Scientific,

Amsterdam, 1996, Vol. XXXV, pp. 355–446.
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I. INTRODUCTION

The concept of optical interference began with the Michelson and Young’s

experiments [1], in which a beam of light is divided into two beams and, after

traveling a distance long compared to the optical wavelength, these two beams

are recombined at an observation point. If there is a small path difference

between the beams, interference fringes are found in the observation (recom-

bination) point. The observation of the fringes is a manifestation of temporal

coherence (Michelson interferometer) or spatial coherence (Young interferom-

eter) between the two light beams. The interference experiments played a

central role in early discussions of the dual nature of light, and the appearance

of an interference pattern was recognized as a demonstration that light is a

wave. The interpretation of the interference experiments changed with the birth

of quantum mechanics, when corpuscular properties of light showed up in many

experiments. According to the quantum-mechanical interpretation, given by

Dirac [2], the interference pattern observed in the Young double-slit experiment

results from a superposition of the probability amplitudes of a single photon to

take either of two possible pathways.

The phenomenon of optical interference can be observed not only between

two light beams but also between radiation fields emitted from a small number

of atoms or molecules, or even in the radiation field emitted from a single

multilevel system [3]. The atoms or atomic transitions can be regarded as point

sources of radiation, similar to the slits in Young’s original experiment. In this

case interference results from a superposition of the transition amplitudes

between quantum states of the atom, and this phenomenon has been designated

as quantum interference. The essential feature of quantum interference is the

existence of linear superpositions of the atomic states that can be induced by

external or internal fields, or even by the coupling of the atomic states through

the environment (vacuum field). The existence of interference among multi-

channel transitions in atoms or molecules is one of the fundamental aspects of
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quantum mechanics that demonstrates the difference between a superposition of

states and a mixture of states.

The interest in quantum interference stems from the early 1970s when

Agarwal [4] showed that the ordinary spontaneous decay of an excited de-

generate V-type three-level atom can be modified due to interference between

the two atomic transitions. The analysis of quantum interference has since been

extended to other configurations of three- and multilevel atoms and many

interesting effects have been predicted, which can be used to control optical

properties of quantum systems, such as high-contrast resonances [5,6], electro-

magnetically induced transparency [7], amplification without population

inversion [8], and enhancement of the index of refraction without absorption [9].

Spontaneous emission arises from the coupling of a system to the environ-

ment and is a source of undesirable noise (decoherence), which imposes limits

on spectroscopic measurements, population inversion, and quantum information

processing. The control and suppression of spontaneous emission is very

significant in the context of quantum computation, teleportation, and quantum

information theory. Thus, ways of reducing decoherence are of particular

importance. Among the different methods proposed to suppress spontaneous

emission, quantum interference has been recognized as the most significant

mechanism for modifying and suppression of spontaneous emission.

The effect of quantum interference on spontaneous emission in atomic and

molecular systems is the generation of superposition states that can be

manipulated, to reduce the interaction with the environment, by adjusting the

polarizations of the transition dipole moments, or the amplitudes and phases of

the external driving fields. With a suitable choice of parameters, the super-

position states can decay with controlled and significantly reduced rates. This

modification can lead to subnatural linewidths in the fluorescence and absorp-

tion spectra [5,10]. Furthermore, as will be shown in this review, the super-

position states can even be decoupled from the environment and the population

can be trapped in these states without decaying to the lower levels. These states,

known as dark or trapped states, were predicted in many configurations of

multilevel systems [11], as well as in multiatom systems [12].

Although the trapping states have the common property that the population

will stay in such a state for an extremely long time, they can be implemented in

different ways. In a multilevel system the population can be trapped in a linear

superposition of the bare atomic states, or in a dressed state corresponding to an

eigenstate of the atoms plus external fields, or in some cases, in one of the

excited states of the system.

In this review we discuss the major effects resulting from the modification of

spontaneous emission by quantum interference. We begin in Section II by

presenting elementary concepts and definitions of the first- and second-order

correlation functions, which are frequently used in the analysis of the inter-
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ference phenomena. Section III describes the master equation approach used for

analyzing quantum interference effects in atomic and molecular systems. In

Sections IV and V we review the fundamental quantum interference effects in

spontaneous emission and in coherently driven systems. We discuss different

schemes for suppression of spontaneous emission and population trapping and

give an alternative explanation of these effects in the dressed-atom picture.

Sections VI deals with the problem of amplification on dark transitions, which

are important for information processing without spontaneous emission. The

effect of quantum interference on photon correlations is discussed in

Section VII. Multilevel systems composed of two transitions with parallel

dipole moments and methods for generating two transitions with nonorthogonal

dipole moments are briefly discussed in Section VIII. The final section

(Section IX) deals with the experimental demonstration of constructive and

destructive interference effects in a driven molecular system.

II. INTERFERENCE AND OPTICAL COHERENCE

The phenomenon of optical interference is commonly describable in completely

classical terms, in which optical fields are represented by classical waves.

Classical and quantum theories of optical interference readily explain the

presence of an interference pattern, but there are interference effects that

distinguish the quantum (photon) nature of light from the wave nature. In this

section, we present elementary concepts and definitions of both the classical and

quantum theories of optical interference and illustrate the role of optical

coherence.

A. Classical Interference

1. First-Order Coherence

The Young’s double-slit experiment is the prototype for a demonstration of an

optical interference and for all quantitative measurements of so-called first-

order coherence. The presence of the interference fringes in the experiment may

be regarded as a manifestation of the first-order coherence.

A schematic diagram of an interference experiment of the Young type is

shown in Fig. 1. Two light beams of amplitudes E1 r1; t1ð Þ and E2 r2; t2ð Þ
produced at two slits S1 and S2 located at r1 and r2, respectively, incident on

the screen at a point P. The resulting field detected at the point P is a linear

superposition of the two fields

EðR; tÞ ¼ E1ðR; tÞ þ E2ðR; tÞ ð1Þ

where Ei R; tð Þ is the electric field produced by the ith slit and evaluated at the

position R of the observation point P. We can relate the field Ei R; tð Þ to the field
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Ei ri; t � tið Þ at the position of the ith slit. This is given by the relation [1]

EiðR; tÞ ¼ ai

Ri

EiðRi; t � tiÞ ð2Þ

where Ri ¼ jR � rij denotes the distance between the point R on the screen and

the position of the ith slit, ti ¼ Ri=c, and ai is a constant that depends on the

geometry and the size of the ith slit.

The instantaneous intensity IðR; tÞ of the combined field detected at the

point P at time t is defined by a scalar product of the field amplitude and its

complex conjugate as

IðR; tÞ ¼ E�ðR; tÞ � EðR; tÞ ð3Þ

and substituting Eqs. (1) and (2), we obtain

IðR; tÞ ¼ ju1j2I1ðR1; t � t1Þ þ ju2j2I2ðR2; t � t2Þ
þ 2Reðu�

1u2E�
1ðR1; t � t1Þ � E2ðR2; t � t2ÞÞ ð4Þ

E2

E1

P

S1

S2

r12

Figure 1. Schematic diagram of the Young’s double-slit experiment.
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where IiðRi; t � tiÞ is the intensity from the ith slit in the absence of the other, and

ui ¼ ai=Ri.

Hence, the average value of IðR; tÞ over an ensemble of different realizations

of the field may be written as

hIðR; tÞi ¼ ju1j2hI1ðR1; t � t1Þi þ ju2j2hI2ðR2; t � t2Þi
þ 2Refu�

1u2Gð1ÞðR1; t � t1;R2; t � t2Þg ð5Þ

where

Gð1ÞðR1; t � t1;R2; t � t2Þ ¼ hE�
1ðR1; t � t1Þ � E2ðR2; t � t2Þi ð6Þ

is the first-order correlation function between the field at R2 and the complex

conjugate field at R1, at times t2 and t1, respectively.

It is convenient to introduce the normalized first-order correlation function as

gð1ÞðR1; t1;R2; t2Þ ¼
Gð1ÞðR1; t1;R2; t2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gð1ÞðR1; t1;R1; t1ÞGð1ÞðR2; t2;R2; t2Þ
p

¼ Gð1ÞðR1; t1;R2; t2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1ðR1; t1ÞI2ðR2; t2Þ

p ; ð7Þ

satisfying the condition 1  jgð1Þj  1. The normalized correlation function (7)

is often called the degree of coherence and gð1Þ ¼ 0 for two independent fields,

whereas gð1Þ ¼ 1 for the perfectly correlated fields. The intermediate values of

gð1Þ ð0 < jgð1Þj < 1Þ characterize a partial correlation (coherence) between the

fields.

The average intensity hIðR; tÞi at the point P depends on gð1Þ and in the case

of identical slits ðu1 ¼ u2Þ and the perfectly correlated fields ðjgð1Þj ¼ 1Þ, the

intensity can vary from ð
ffiffiffiffi
I1

p
�

ffiffiffiffi
I2

p
Þ2

to ð
ffiffiffiffi
I1

p
þ

ffiffiffiffi
I2

p
Þ2

, giving so-called inter-

ference pattern. Thus, for equal intensities of the two fields ðI1 ¼ I2 ¼ I0Þ, the

total average intensity can vary at the point P from hIimin ¼ 0 to hIimax ¼ 4hI0i,
giving maximal interference pattern. For two independent fields, gð1Þ ¼ 0, and

than the resulting intensity at P is just a sum of the intensities of the two fields

that does not vary with the position of P.

The usual measure of the depth of modulation (sharpness) of interference

fringes is a visibility in an interference pattern defined as

VðRÞ ¼ hIðR; tÞimax � hIðR; tÞimin

hIðR; tÞimax þ hIðR; tÞimin

; ð8Þ

where hIðR; tÞimax and hIðR; tÞimin represent the intensity maxima and minima at

the point P.
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Since

hIimax ¼ hI1i þ hI2i þ 2
ffiffiffiffiffiffiffiffi
I1I2

p
jgð1Þj ð9Þ

and

hIimin ¼ hI1i þ hI2i � 2
ffiffiffiffiffiffiffiffi
I1I2

p
jgð1Þj ð10Þ

we obtain

VðRÞ ¼ 2
ffiffiffiffiffiffiffiffi
I1I2

p

ðI1 þ I2Þ
jgð1Þj ð11Þ

Thus, jgð1Þj determines the visibility of the interference fringes. In the special

case of equal intensities of the two fields ðI1 ¼ I2Þ, Eq. (11) reduces to

VðRÞ ¼ jgð1Þj; jgð1Þj is then simply equal to the visibility. For perfectly

correlated fields jgð1Þj ¼ 1, and then VðRÞ ¼ 1, while VðRÞ ¼ 0 for uncorre-

lated fields. When I1 6¼ I2, the visibility is always smaller than one even for

perfectly correlated fields. This fact is related to the problem of extracting which-

way information has been transferred through the slits into the point P. The

observation of an interference pattern and the acquisition of which-way

information has been transmitted are mutually exclusive. We can introduce an

inequality according to which the fringe visibility V displayed at the point P and

an absolute upper bound on the amount of which-way information D that can be

detected at the point P are related by [13]

D2 þV2  1 ð12Þ

Hence, the extreme situations characterized by perfect fringe visibility ðV ¼ 1Þ
or full knowledge of which way information has been transmitted ðD ¼ 1Þ are

mutually exclusive. In order to distinguish which-way information has been

transmitted, one can locate an intensity detector at the point P and adjust it to

measure a field of a particular intensity Id. When the fields coming from the slits

have the same intensities, the detector cannot distinguish which-way the detected

field came to the point P, so there is no which-way information available

ðD ¼ 0Þ resulting in perfect fringe visibility ðV ¼ 1Þ. On the other hand, when

the intensities of the fields are different ðI1 6¼ I2Þ, the detector adjusted to

measure a particular intensity can distinguish which way the field came to the

point P resulting in the disappearance of the interference fringes. This is

clearly seen from Eq. (11); if I1 � I2 or I1 � I2, the visibility V � 0 even for

jgð1Þj ¼ 1. The same arguments apply to frequencies and phases of the detected

fields.
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The information about the frequencies and phases of the detected fields is

provided by the argument (phase) of gð1Þ. Moreover, the phase of gð1Þ

determines positions of the fringes in the interference pattern. If the observation

point P lies in the far-field zone of the radiation emitted by the slits, the fields at

the observation point can be approximated by plane waves for which we can

write

EðRi; t � tiÞ � EðRi; tÞe�iðoi tiþfiÞ

¼ EðRi; tÞe�iðoiRi=cþfiÞ; i ¼ 1; 2 ð13Þ

where oi is the angular frequency of the ith field and fi is its initial phase, which,

in general, can depend on time. We can center the frequencies around the average

frequency of the two fields as

o1 ¼ o0 þ
1

2
�

o2 ¼ o0 �
1

2
� ð14Þ

where o0 ¼ ðo1 þ o2Þ=2 is the average frequency of the fields, and

� ¼ o1 � o2.

Since the observation point lies in far-field zone of the radiation emitted by

the slits, that is, the separation between the slits is very small compared to the

distance to the point P, we can write approximately

Ri ¼ jR � rij � R � �R � ri ð15Þ

where �R ¼ R=R is the unit vector in the direction R. Hence, substituting Eq. (13)

with (14) and (15) into Eq. (7), we obtain

gð1ÞðR1; t1;R2; t2Þ ¼ jgð1ÞðR1; t;R2; tÞjeik0
�R � r12 e

iðk0
~R �
o0
þdfÞ ð16Þ

where r12 ¼ r2 � r1 is the distance between the slits, ~R ¼ R þ 1
2
�R � ðr1þ r2Þ,

df ¼ f1 � f2, k0 ¼ o0=c ¼ 2p=l0, and l0 represents the mean wavelength of

the fields. Let us analyze the physical meaning of the exponences appearing on

the right-hand side (r.h.s) of Eq. (16). The first exponence depends on the

separation between the slits and the position R of the point P. For small

separations the exponence slowly changes with the position R and leads to

minima and maxima in the interference pattern. The minima appear whenever

k0
�R � r12 ¼ ð2n þ 1Þp; n ¼ 0;�1;�2; . . . ð17Þ
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The second exponence, appearing in Eq. (16), depends on the sum of the position

of the slits, the ratio �=o0, and the difference df between the initial phases of

the fields. This term introduces limits on the visibility of the interference pattern

and can affect the pattern only if the frequencies and the initial phases of the

fields are different. Even for equal and well-stabilized phases, but significantly

different frequencies of the fields such that �=o0 � 1, the exponence oscillates

rapidly, with R leading to the disappearance of the interference pattern. Thus, in

order to observe an interference pattern, it is important to have two fields of well

stabilized phases and equal or nearly equal frequencies. Otherwise, no

interference pattern can be observed even if the fields are perfectly correlated.

The dependence of the interference pattern on the frequencies and phases of

the fields is related to the problem of extracting which way information has been

transferred to the observation point P. For perfectly correlated fields with equal

frequencies ð� ¼ 0Þ and equal initial phases ðf1 ¼ f2Þ, the total intensity at

the point P is

hIðRÞi ¼ 2hI0ið1 þ cosk0
�R � r12Þ ð18Þ

giving maximum possible interference pattern with the maximum visibility

of 100%. When � 6¼ 0 and/or ðf1 6¼ f2Þ, the total intensity at the point P is

given by

hIðRÞi ¼ 2hI0i 1 þ ðcosk0
�R � r12Þcos k0

~R
�

o0

þ df
� ��

� ðsink0
�R � r12Þsin k0

~R
�

o0

þ df
� ��

ð19Þ

In this case the intensity exhibits additional cosine and sine modulations, and at

the minima the intensity is different from zero, indicating that the maximum

depth of modulation of 100% is not possible for two fields of different

frequencies and/or initial phases. Moreover, for large differences between the

frequencies of the fields ð�=o0 � 1Þ the cosðk0
~R �

o0
þ dfÞ and

sinðk0
~R �

o0
þ dfÞ terms rapidly oscillate with R and average to zero that washes

out the interference pattern. In terms of which-way information has been

transferred, a detector located in the point P and adjusted to measure a particular

frequency or phase could distinguish the frequency or the phase of the two fields.

Clearly, one could tell which way the detected field came to the point P. Thus,

whether which-way information is available depends on the intensities as well as

frequencies and phases of the interfering fields. Maximum possible which-way

information results in the lack of the interference pattern, and vice versa, the lack

of which-way information results in maximum interference pattern.
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2. Second-Order Coherence

The analysis of the interference phenomenon can be extended into higher-order

correlation functions. The first experimental demonstration that such correla-

tions exist in optical fields was given by Hanbury-Brown and Twiss [14], who

measured the second-order correlation function of a thermal field.

The second-order (intensity) correlation function of a field of a complex

amplitude EðR; tÞ is defined as

Gð2ÞðR1; t1;R2; t2Þ ¼ hE�ðR1; t1ÞE�ðR2; t2ÞEðR2; t2ÞEðR1; t1Þi
¼ hIðR1; t1ÞIðR2; t2Þi ð20Þ

where IðR1; t1Þ and IðR2; t2Þ are the instantaneous intensities of the field detected

at a point R1 at time t1 and at a point R2 at time t2, respectively.

We can define the normalized second-order correlation function as

gð2ÞðR1; t1;R2; t2Þ ¼
Gð2ÞðR1; t1;R2; t2Þ

Gð1ÞðR1; t1ÞGð1ÞðR2; t2Þ
ð21Þ

where Gð1ÞðRi; tiÞ � Gð1ÞðRi; ti;Ri; tiÞ.
In the plane-wave approximation, the second-order correlation function (20)

can be written as

Gð2ÞðR1; t1;R2; t2Þ ¼
X2

i; j;k;l¼1

hE�
i ðt1ÞE�

kðt2ÞElðt2ÞEjðt1Þi

� eikð�R1�rijþ�R2�rklÞeiðfiþfk�fl�fjÞ ð22Þ

where k ¼ 2p=l and l is the wavelength of the field. There are 16 correlation

functions contributing to the r.h.s. of Eq. (22), each accompanied by a phase

factor that depends on the relative phase of the fields.

The second-order correlation function has coherence properties completely

different from those of the first-order correlation function. An interference

pattern can be observed in the second-order correlation function, but in contrast

to the first-order correlation function, the interference appears between two

points located at R1 and R2. Moreover, an interference pattern can be observed

even if the fields are produced by two independent sources for which the phase

difference f1 � f2 is completely random [15]. In this case the second-order

correlation function (22) is given by

Gð2ÞðR1; t1;R2; t2Þ ¼ hI2
1ðt1Þi þ hI2

2ðt2Þi þ 2hI1ðt1ÞI2ðt2Þi
þ 2hI1ðt1ÞI2ðt2Þicoskr12 � ð�R1 � �R2Þ: ð23Þ
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Clearly, the second-order correlation function exhibits a cosine modulation with

the separation R1 � R2 of the two detectors. This is an interference, although it

involves a correlation function that is of the second order in the intensity. Hence

an interference pattern can be observed even for two completely independent

fields. Similar to the first-order correlation function, the sharpness of the fringes

depends on the relative intensities of the fields. For equal intensities,

I1 ¼ I2 ¼ I0, the correlation function (23) reduces to

Gð2ÞðR1; t;R2; tÞ ¼ 4hI2
0i 1 þ 1

2
coskr12 � ð�R1 � �R2Þ

� 	
ð24Þ

where h�I2
0i ¼ hI2

0i � hI0i2
is the variance of the field intensity.

In analogy to the visibility in the first-order correlation function, we can

define the visibility of the interference pattern of the intensity correlations as

V ¼ G
ð2Þ
max � G

ð2Þ
min

G
ð2Þ
max þ G

ð2Þ
min

ð25Þ

and find from Eq. (24) that in the case of a classical field, an interference pattern

can be observed with the maximum possible visibility of V ¼ 1
2
. Thus, two

independent fields of random and uncorrelated phases can exhibit an interference

pattern in the intensity correlation with a maximum visibility of 50%.

B. Quantum Interference

In the classical theory of light and optical coherence the field is represented by

complex vectorial amplitudes Eðr; tÞ and E�ðr; tÞ, which absolute values are

complex numbers (c- numbers). In quantum theory of light the most important

physical quantity is the electric field, which is represented by the field operator

Êðr; tÞ. This Hermitian operator is usually expressed by the sum of two non-

Hermitian operators as

Êðr; tÞ ¼ ÊðþÞðr; tÞ þ Êð�Þðr; tÞ ð26Þ

where ÊðþÞ ðÊð�ÞÞ is the positive (resp. negative) frequency component of the

field.

In free space the frequency components can be expressed in terms of plane

waves as

ÊðþÞðr; tÞ ¼ ðÊð�Þðr; tÞÞy ¼ i
X

ks

�hok

2E0V

� �1=2

eks âks eiðk � r�oktÞ ð27Þ
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where V is the volume occupied by the field, âks is the annihilation operator for

the kth mode of the field of the polarization s, and eks and ok are, respectively, the

unit polarization vector and the angular frequency of the mode.

In the case of the quantum description of the field, the first- and second-order

correlation functions are defined in terms of the normally ordered field operators

ÊðþÞ and Êð�Þ as

Gð1ÞðR1; t1;R2; t2Þ ¼ hÊð�ÞðR1; t1Þ � ÊðþÞðR2; t2Þi
Gð2ÞðR1; t1;R2; t2Þ ¼ hÊð�ÞðR1; t1ÞÊð�ÞðR2; t2Þ

� ÊðþÞðR2; t2ÞÊðþÞðR1; t1Þi ð28Þ

where the average is taken over a state jii of the field. Usually the state jii is an

initial state of the field.

If we introduce the density operator r for the field, we can rewrite the

correlation functions as

Gð1ÞðR1; t1;R2; t2Þ ¼ Tr ½rÊð�ÞðR1; t1Þ � ÊðþÞðR2; t2Þ�
Gð2ÞðR1; t1;R2; t2Þ ¼ TrfrÊð�ÞðR1; t1ÞÊð�ÞðR2; t2Þ

� ÊðþÞðR2; t2ÞÊðþÞðR1; t1Þg ð29Þ

where the trace is taken over the initial state jii.
The correlation functions (28) described by the field operators are similar to

the correlation functions (6) and (20) of the classical field. A closer look into

Eqs. (6), (20), and (28) could suggest that the only difference between the

classical and quantum correlation functions is that the classical amplitudes

E�ðR; tÞ and EðR; tÞ are replaced by the field operators Êð�ÞðR; tÞ and

ÊðþÞðR; tÞ. This is true as long as the first-order correlation functions are

considered, where the interference effects do not distinguish between the

quantum and classical theories of the electromagnetic field. However, there

are significant differences between the classical and quantum descriptions of the

field in the properties of the second-order correlation function [16].

As an example, consider the simple case of two single-mode fields of equal

frequencies and polarizations. Assume that there are initially n photons in field 1

and m photons in the field 2, and that the state vectors of the fields are the Fock

states jc1i ¼ jni and jc2i ¼ jmi. The initial state of the two fields is the direct

product of the single-field states, jci ¼ jnijmi. Inserting Eq. (27) into Eq. (28)

and taking the expectation value with respect to the initial state of the fields, we

find

Gð2ÞðR1; t1;R2; t2Þ ¼
�ho

2E0V

� �2

fnðn � 1Þ þ mðm � 1Þ

þ 2nm½1 þ coskr12 � ð�R1 � �R2Þ�g ð30Þ
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We note that the first two terms on the r.h.s. of Eq. (30) vanish when the number

of photons in each field is smaller than 2, that is, n < 2 and m < 2. In this limit

the correlation function (30) reduces to

Gð2ÞðR1; t1;R2; t2Þ ¼ 2
�ho

2E0V

� �2

½1 þ coskr12 � ð�R1 � �R2Þ� ð31Þ

Thus, perfect interference pattern with visibility V ¼ 1 can be observed in the

second-order correlation function of two quantum fields each containing only

one photon. As we have noted in Section II.A, the classical theory predicts only a

visibility of V ¼ 0:5. For n;m � 1, the first two terms on the r.h.s. of Eq. (30)

are different from zero ðmðm � 1Þ � nðn � 1Þ � n2Þ, and then the quantum

correlation function (30) reduces to that of the classical field.

It follows from Eq. (31) that the second-order correlation function vanishes

when

kr12 � ð�R1 � �R2Þ ¼ ð2n þ 1Þp; n ¼ 0;�1;�2; . . . ð32Þ

In other words, two photons can never be detected at two points separated by an

odd number of l=2r12, despite the fact that one photon can be detected anywhere.

The vanishing of Gð2ÞðR1; t1;R2; t2Þ for two photons at widely separated points

R1 and R2 is an example of quantum-mechanical nonlocality, that the outcome of

a detection measurement at R1 appears to be influenced by where we have

chosen to locate the R2 detector. At certain positions R2 we can never detect a

photon at R1 when there is a photon detected at R2, whereas at other position R2

it is possible. The photon correlation argument shows clearly that quantum

theory does not in general describe an objective physical reality independent of

observation [17].

The visibility of the interference pattern of the intensity correlations provides

a means of testing for quantum correlations between two light fields. Mandel et

al. [18] have measured the visibility in the interference of signal and idler modes

simultaneously generated in the process of degenerate parametric downconver-

sion, and observed a visibility of about 75%, that is a clear violation of the upper

bound of 50% allowed by classical correlations. Richter [19] has extended the

analysis of the visibility into the third-order correlation function and also found

significant differences in the visibility of the interference pattern of the classical

and quantum fields.

III. MASTER EQUATION OF TWO COUPLED
DIPOLE MOMENTS

In this section, we present a derivation of the master equation for the density

operator of two arbitrary dipole moments driven by an external field and
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coupled to the quantized three-dimensional vacuum field. The dipole moments,

which we will call ‘‘bare’’ systems, are represented by dipole operators

l̂1 ¼ l1Sþ
1 þ l�

1S�
1

l̂2 ¼ l2Sþ
2 þ l�

2S�
2 ð33Þ

where Sþ
i ðS�

i Þ is the dipole raising (resp. lowering) operator and mi is the dipole

matrix element of the ith system. The dipole moments are assumed to oscillate

with different frequencies o1 and o2, and are coupled to the quantized three-

dimensional multimode electromagnetic field whose modes are in a vacuum

state. The knowledge of the density operator of the two systems, coupled through

the vacuum field, will allow us to calculate correlation functions of the dipole

operators that contain the information about correlations and coherences

between the two systems.

A. Correlation Functions for Atomic Operators

In the preceding section we have shown that the correlation functions of the

quantized field can be calculated if we know an initial state or the density

operator of the field. As we see in this section, the phenomenon of interference

can be described not only for light beams but also for electromagnetic (EM)

fields spontaneously emitted from atoms, molecules, or even for the EM field

emitted from single multilevel systems. In this case the correlation functions of

the EM field can be related to the correlation functions of the variables of the

systems, such as the dipole operators S�
i .

The relation between the positive frequency part of the electric field operator

at a point R ¼ R �R in the far-field zone of the radiating systems and the dipole

moments is given by the well-known expression [4,20]

ÊðþÞðR; tÞ ¼ Ê
ðþÞ
0 ðR; tÞ � 1

c2

X2

i¼1

�R � ð�R � liÞ
R

oi S�
i t � R

c

� �
ð34Þ

where S�
i is the dipole lowering operator of the ith system li and oi are the

transition dipole matrix element and the angular frequency, respectively, and

Ê
ðþÞ
0 ðR; tÞ denotes the positive frequency part of the field in the absence of the

radiating systems.

If we assume that initially the field is in the vacuum state, then the free-field

part Ê
ðþÞ
0 ðR; tÞ does not contribute to the expectation values of the normally

ordered field operators, and we obtain the following expressions for the first-

and second-order correlation functions

Gð1ÞðR; tÞ ¼
X2

i; j¼1

	ijhSþ
i ðtÞS�

j ðtÞi ð35Þ
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and

Gð2ÞðR; t1;R; t2Þ ¼
X2

i; j;k;l¼1

	il	jkhSþ
i ðt1ÞSþ

j ðt2ÞS�
k ðt2ÞS�

l ðtÞi ð36Þ

where 	ii ¼ 	i is the spontaneous decay rate of the ith system, while

	ij ¼
2
ffiffiffiffiffiffiffiffiffiffiffi
o3

i o
3
j

q
3�hc3

li � lj ¼
ffiffiffiffiffiffiffiffiffi
	i	j

p
cosy ði 6¼ jÞ ð37Þ

is the so-called cross-damping rate arising from the vacumm induced coupling

between the dipole moments. The cross-damping rate is sensitive to the mutual

polarization of the dipole moments of the two systems, which we represent by

the angle y. If the dipole moments are parallel, y ¼ 0o, and the cross-damping

rate is maximal with 	12 ¼
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
, while 	12 ¼ 0 if the dipole moments are

perpendicular ðy ¼ 90oÞ.
It is seen from Eq. (36) that the second-order correlation function of the EM

field emitted from the two systems depends on various two-time dipole

correlation functions of the form hSþ
i ðt1ÞSþ

j ðt2ÞS�
j ðt2ÞS�

i ðt1Þi. The functions

are proportional to the probabilities of detecting two photons emitted from the

same ði ¼ jÞ or different ði 6¼ jÞ bare systems. For example, the correlation

function hSþ
1 ðt1ÞSþ

2 ðt2ÞS�
2 ðt2ÞS�

1 ðt1Þi is proportional to the probability of detect-

ing a photon at time t2 emitted from system 2 if a photon emitted from the

system 1 was detected at time t1.

The second-order correlation function (36) also depends on the dipole

correlation functions of the form hSþ
1 ðt1ÞSþ

2 ðt2ÞS�
1 ðt2ÞS�

2 ðt1Þi, which result

from correlations of photons emitted from a superposition of the bare systems.

B. Hamiltonian of the System

The total Hamiltonian describing the energies of the systems, electromagnetic

field and interactions, in the electric dipole and RWA (rotating-wave approx-

imation) approximations [21], is composed of four terms

H ¼ Hs þ Hv þ HsL þ Hsv; ð38Þ

where

Hs ¼ �ho1Sþ
1 S�

1 þ �ho2Sþ
2 S�

2 ð39Þ

is the Hamiltonian of the two bare systems

Hv ¼
X

ks

�hoks â
y
ksâks þ

1

2

� �
ð40Þ
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is the Hamiltonian of the three-dimensional multimode electromagnetic field

HsL ¼ � 1

2
�h½ð
1Sþ

1 þ 
2Sþ
2 Þe�iðoLtþfLÞ þ H:c:� ð41Þ

is the interaction of the systems with the coherent laser field, and

Hsv ¼
X

ks

f½l1 � gksðrÞSþ
1 þ l2 � gksðrÞSþ

2 �âks þ H:c:g ð42Þ

is the interaction of the bare systems with the multimode vacuum field (H.c.

denotes Hermitian conjugation). Here, oL and fL are the frequency and the phase

of the driving laser field, respectively, â
y
ks and âks are the creation and

annihilation operators of a photon in the mode ðk; sÞ with wavevector k and

polarization s

gksðrÞ ¼
ck

2pE0�hð2pÞ3

 !1=2

ekse
ik � r ð43Þ

is the mode function of the three-dimensional multimode vacuum field, evaluated

at the position r of the radiating dipole moment, and


i ¼
li � ELeikL � r

�h
ð44Þ

is the Rabi frequency of the ith system with EL and kL denoting the amplitude

and the wave vector of the driving field, respectively. For a single laser coupled to

both systems the Rabi frequencies 
1 and 
2 are related by


2 ¼ 
1
m2 cosy1

m1 cosy2

ð45Þ

where yi is the angle between li and the polarization vector of the laser field and

mi ¼ jlij is the magnitude of the ith dipole moment.

C. Master Equation

Having available the total Hamiltonian of the system, Eq. (38), we can write the

Schr�odinger equation for the density operator rT of the total system, the bare

dipole systems plus the EM field, as

i�h
q
qt
rT ¼ ½H; rT � ð46Þ
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Since we are interested in the interaction of the bare dipole systems with the

vacuum field, which is the source of spontaneous emission, we make the unitary

transformation

~rTðtÞ ¼ eiUt=�hrT e�iUt=�h ð47Þ

and find that the transformed density operator satisfies the equation

i�h
q
qt
~rTðtÞ ¼ ½~HsvðtÞ; ~rTðtÞ� ð48Þ

where

~HsvðtÞ ¼ eiUt=�hHsve
�iUt=�h ð49Þ

and

U ¼ Hs þ Hv þ HsL ð50Þ

Formally integrating the equation of motion (48) gives

~rTðtÞ ¼ ~rTð0Þ þ
1

i�h

ðt

0

dt0½~Hsvðt0Þ; ~rTðt0Þ� ð51Þ

Substituting Eq. (51) into the r.h.s. of Eq. (48), and after tracing over the field

variables, we find that the reduced density operator ~rðtÞ ¼ TrF~rTðtÞ of the bare

systems satisfies the integrodifferential equation

q
qt
~rðtÞ ¼ 1

i�h
TrF ½~HsvðtÞ; ~rTð0Þ�

� 1

�h2

ðt

0

dtTrFf½~HsvðtÞ; ½~Hsvðt � tÞ; ~rTðt � tÞ��g ð52Þ

We now make two approximations [22] regarding to the density operator of the

total system appearing on the r.h.s. of Eq. (52):

1. The Born approximation, in which the interaction between the systems

and the field is supposed to be weak, so there is no the backreaction effect

of the systems on the field

~rTðt � tÞ ¼ ~rðt � tÞ~rFð0Þ; ð53Þ

where ~rFð0Þ is the density operator of the field.
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2. The Markov approximation, in which we assume that the correlation time

of the EM field is much shorter than the timescale of radiation processes

of the bare systems. This approximation is equivalent to the white-noise

(broadband) description of the EM field modes, and allows us to replace
~rðt � tÞ by ~rðtÞ.

Applying the Born and Markov approximations to Eq. (52) and assuming

that all modes of the EM field are in a vacuum state, defined by

TrF½rFð0Þâks� ¼ TrF½rFð0Þâ
y
ks� ¼ 0

TrF ½rFð0Þâksâ
y
k0s0 � ¼ d3ðk � k0Þdss0 ; TrF ½rFð0Þâ

y
ksâk0s0 � ¼ 0

TrF ½rFð0Þâ
y
ksâ

y
k0s0 � ¼ TrF½rFð0Þâksâk0s0 � ¼ 0 ð54Þ

we obtain

q
qt
~rðtÞ ¼ � i

�h
½Hc; ~rðtÞ�

� 1

2

X2

i;j¼1

	ijðSþ
i S�

j ~rðtÞ þ ~rðtÞSþ
i S�

j � 2S�
j ~rðtÞSþ

i Þ ð55Þ

where

Hc ¼ �hdð�Þ
1 Sþ

1 S�
1 þ �hdð�Þ

2 Sþ
2 S�

2 þ �hdðþÞ
1 S�

1 Sþ
1 þ �hdðþÞ

2 S�
2 Sþ

2

þ �hdð�Þ
12 ðSþ

1 S�
2 þ Sþ

2 S�
1 Þ þ �hdðþÞ

12 ðS�
1 Sþ

2 þ S�
2 Sþ

1 Þ ð56Þ

is the vacuum induced coherent term. The parameter

	i � 	ii ¼ p
X

ks

jli � gksðrÞj2d3ðk � k0Þ ði ¼ 1; 2Þ ð57Þ

is the spontaneous damping rate of the ith system resulting from the coupling of

the system to the vacuum field, and

	ij ¼ 	ji ¼ p
X

ks

½l1 � gksðrÞ�½l�
2 � g�

ksðrÞ�d
3ðk � k0Þ ði 6¼ jÞ ð58Þ

are cross-damping rates arising from the coupling of the bare systems through the

vacuum field, and k0 ¼ ðk1 þ k2Þ=2.

The remaining parameters appearing in Eq. (55) are

dð�Þ
i ¼ P

c

X
ks

jli � gksðriÞj2
1

k � k0

ð59Þ
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and

dð�Þ
12 ¼ P

c

X
ks

½l1 � gksðrÞ�½l�
2 � g�

ksðrÞ�
1

k � k0

ð60Þ

which represent a part of the Lamb shift of the frequencies of the bare systems

and the vacuum induced coherent coupling between the systems, respectively,

and P refers to the Cauchy principal value.

The 	1 and 	2 terms appearing in Eq. (55) are the standard damping terms

of the bare systems. The 	12 and 	21 terms in this equation arise from the

coupling of the bare systems through the vacuum field. These two terms

distinguish the dissipative part from master equations of independent systems.

The parameters dð�Þ
i can be considered as a part of the frequencies o1 and o2,

and thus they can be included into the dynamics by redefining the frequencies to
~oi ¼ oi þ dð�Þ

i . However, the parameter dð�Þ
12 does not appear as a shift of the

energies, but contributes to the coherent coupling between the bare

systems [23,24]. Thus, the interaction of the systems with the vacuum field

not only produces spontaneous emission but also leads to a coherent coupling

between the systems.

To carry out the sums appearing in Eqs. (57–60), we use the plane-wave

representation (43) of the vacuum modes and work in the spherical representa-

tion of the unit orthogonal polarization vectors ek1 and ek2. Substituting Eq. (43)

into Eqs. (57–60), and evaluating the sums over k and s, we obtain

	i ¼
k3

i m
2
i

6pE0�h
ði ¼ 1; 2Þ ð61Þ

	12 ¼
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
ð�l1 � �l2Þ ¼

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
cosy ¼ p

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
ð62Þ

and

dð�Þ
12 ¼ 	12

p
P

ð1
�1

dk
1

k � k0
ð63Þ

where �li is the unit vector along the ith dipole moment, k ¼ jkj and ki ¼ oi=c.

The magnitude of the parameters (62) and (63) depends on the mutual orientation

of the dipole moments, which can be represented by the angle y or equivalently

by the parameter p ¼ cosy. The vacuum induced terms vanish when the dipole

moments of the two systems are perpendicular ðp ¼ 0Þ. For parallel dipole

moments ðp ¼ 1Þ the parameters attain their maximal values.
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On transforming Eq. (55) into the Schr�odinger picture, the master equation of

the system takes the form

q
qt
r ¼ � i

�h
½H0; r�

� 1

2

X2

i;j¼1

	ijðSþ
i S�

j rþ rSþ
i S�

j � 2S�
j rSþ

i Þ ð64Þ

where

H0 ¼ Hs þ HsL þ �hdð�Þ
12 ðSþ

1 S�
2 þ Sþ

2 S�
1 Þ þ �hdðþÞ

12 ðS�
1 Sþ

2 þ S�
2 Sþ

1 Þ ð65Þ

Equation (64) is the final form of the master equation that gives us an elegant

description of the physics involved in the dynamics of two interacting systems.

An important point is that the master equation is quite general and can be applied

to an arbitrary system composed of two dipole moments.

The presence of the additional damping terms 	12 may suggest that quantum

interference enhances spontaneous emission from two coupled systems. How-

ever, as we shall illustrate in the following sections, the presence of these terms

in the master equation can, in fact, lead to a reduction or even suppression of

spontaneous emission. According to Eq. (62), the reduction and suppression of

spontaneous emission can be controlled by changing the mutual orientation of

the dipole moments of the bare systems.

IV. QUANTUM INTERFERENCE AS A CONTROL
OF SPONTANEOUS EMISSION

The control and suppression of spontaneous emission is a topic of much current

interest because of the many possible applications in quantum computation,

teleportation, and quantum information theory. As spontaneous emission arises

from the interaction of an atomic system with the environmental modes, the

most obvious mechanism for modifying spontaneous emission is to place the

system in a frequency-dependent reservoir such as an electromagnetic cavity, an

optical waveguide, or a photonic bandgap material, which changes the density

of modes of the vacuum field into which the system can emit. For atoms in free

space, quantum interference has been recognized as the basic phenomenon for

controlling spontaneous emission. It was first shown by Agarwal [4] that the

decay of an excited degenerate V-type three-level atom can be modified by

interference between the two coupled atomic transitions, and a population

trapping can occur.
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A. Modification of Spontaneous Emission Rates

The traditional method to analyze conditions for modification of spontaneous

emission is to derive equations of motion for the probability amplitudes or

density matrix elements and solve them by direct integration, or by a transfor-

mation to easily solvable algebraic equations. Here, we discuss an alternative

approach proposed by Akram et al. [24] that allows us to identify conditions for

a modification of spontaneous emission directly in the master equation of two

arbitrary systems. In this approach, we introduce linear superpositions of the

dipole operators

Sþ
s ¼ uSþ

1 þ vSþ
2

Sþ
a ¼ vSþ

1 � uSþ
2 ð66Þ

where

u ¼
ffiffiffiffiffi
	1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	1 þ 	2

p ; v ¼
ffiffiffiffiffi
	2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	1 þ 	2

p ð67Þ

and

juj2 þ jvj2 ¼ 1 ð68Þ

which ensure that the transition to the superposition operators is an unitary

transformation. The operators Sþ
s and Sþ

a represent, respectively, symmetric and

antisymmetric superpositions of the dipole moments of the two bare systems. In

terms of the operators (66), we can rewrite the dissipative part of the master

equation (64) in a form

Ldr ¼ �	ssðSþ
s S�

s rþ rSþ
s S�

s � 2S�
s rSþ

s Þ
� 	aaðSþ

a S�
a rþ rSþ

a S�
a � 2S�

a rSþ
a Þ

� 	saðSþ
s S�

a rþ rSþ
s S�

a � 2S�
a rSþ

s Þ
� 	asðSþ

a S�
s rþ rSþ

a S�
s � 2S�

s rSþ
a Þ ð69Þ

where

	ss ¼
1

2

ð	2
1 þ 	2

2 þ 2	12

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
Þ

	1 þ 	2

	aa ¼ ð
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
� 	12Þ

ffiffiffiffiffiffiffiffiffiffi
	1	2

p

	1 þ 	2

	sa ¼ 	as ¼
1

2

ð	1 � 	2Þð
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
� 	12Þ

	1 þ 	2
ð70Þ
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Although in general the two forms (64) and (69) look similar, the advantage

of the transformed form (69) over (64) is obtained when the damping rates of

the original systems are equal ð	1 ¼ 	2Þ. In this case 	sa ¼ 	as ¼ 0, and then

the symmetric and antisymmetric superpositions decay independently with the

decay rates 1
2
ð	þ 	12Þ and 1

2
ð	� 	12Þ, respectively. In other words, for

	1 ¼ 	2 the transformation (66) diagonalizes the dispersive part of the master

equation. Furthermore, if 	12 ¼
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
, then 	aa ¼ 	sa ¼ 	as ¼ 0 regardless of

the ratio between 	1 and 	2. In this case the antisymmetric superposition does

not decay. This implies that spontaneous emission can be controlled and even

suppressed by appropriately engineering the cross-damping rate 	12 arising

from the dissipative interaction between the systems.

B. Phase Control of Spontaneous Emission

Spontaneous emission in a multilevel atom can be controlled by changing not

only the mutual orientation of the dipole moments of two interfering transitions

but also the phase difference of driving lasers used for the excitation of the

atom.

Phase dependent effects in spontaneous emission have been predicted in

atomic systems with nonorthogonal as well as with orthogonal dipole moments.

In the first case the phase-dependent effects, which arise from quantum inter-

ference between two nonorthogonal dipole moments, can be observed with two

driving fields [25–28]. In the latter case the observation of phase-dependent

effects requires at least three driving fields [29,30]. It is of particular interest to

observe the phase-dependent effects, as they represent interference effects that

can be induced by driving fields even in the absence of the vacumm-induced

quantum interference.

Our review of the phase control of spontaneous emission will concentrate on

the example of a V-type atom with nondegenerate transitions and nonorthogonal

dipole moments driven by two laser fields. The lasers can have equal or different

frequencies and each laser can couple to only one or both atomic transitions.

The interaction Hamiltonian of the atom with two laser fields can be written

as

Hint ¼ � 1

2
�hf
1ðSþ

1 þ ZSþ
2 Þe�iðoL1

tþf1Þ

þ 
2ðZSþ
1 þ Sþ

2 Þe�iðoL2
tþf2Þ þ H:c:g ð71Þ

where 
1, 
2 are the Rabi frequencies and oL1
, oL2

are the angular frequencies of

the laser fields. The paramenters Z stands for two possible configurations of the

coupling of the lasers to the atomic transitions. The case of Z ¼ 0 corresponds to

each laser only coupled to one of the atomic transitions, whereas Z ¼ 1

corresponds to the case of each laser coupled to both transitions.
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The dynamics of the system are determined by the master equation with the

interaction Hamiltonian (71). We make the following unitary transformation of

the density operator of the system

~r ¼ eiH0Ltre�iH0Lt ð72Þ

with H0L ¼ oL1
j1ih1j þ oL2

j3ih3j, and find that the master equation of the

system takes the form

d~r
dt

¼ � i

�h
½~H0 þ ~Hint; ~r�

� 1

2
	1ðSþ

1 S�
1 ~rþ ~rSþ

1 S�
1 � 2S�

1 ~rSþ
1 Þ

� 1

2
	2ðSþ

2 S�
2 ~rþ ~rSþ

2 S�
2 � 2S�

2 ~rSþ
2 Þ

� 1

2
	12ðSþ

2 S�
1 ~rþ ~rSþ

2 S�
1 � 2S�

1 ~rSþ
2 Þe�i½ðoL1

�oL2
Þtþdf�

� 1

2
	12ðSþ

1 S�
2 ~rþ ~rSþ

1 S�
2 � 2S�

2 ~rSþ
1 Þei½ðoL1

�oL2
Þtþdf� ð73Þ

where

~H0 ¼ �1j1ih1j þ�2j3ih3j ð74Þ

~Hint ¼ � 1

2
�hf
1ðSþ

1 þ ZSþ
2 e�i½ðoL1

�oL2
Þtþdf�Þ

þ 
2ðZSþ
1 ei½ðoL1

�oL2
Þtþdf� þ Sþ

2 Þ þ H:c:g ð75Þ

and �1 ¼ o1 � oL1
, �2 ¼ o2 � oL2

are the detunings of the laser fields from the

atomic transitions.

In the transformed form the Z- and 	12-dependent terms are accompanied by

a phase-dependent term, expð�dfÞ. These terms are also accompanied by the

time-dependent terms exp ½iðoL1
� oL2

Þt�, which oscillate with the difference of

the laser frequencies. This shows that in any attempt to calculate phase-

dependent effects, it is important to assume that the lasers have equal fre-

quencies. Otherwise, for unequal frequencies the time-dependent terms rapidly

oscillate in time and average out over a long period of the detection time.

Furthermore, we note from Eq. (75) that in the case of Z ¼ 1 a phase depen-

dence can be observed even in the absence of the vacuum induced quantum

interference terms ð	12 ¼ 0Þ. Only for Z ¼ 0, that is, when each laser couples to

only one of the transitions, the phase terms solely depend on the vacuum

induced quantum interference. However, this condition can be achieved only for

an imperfect interference ðp 6¼ 1Þ between the atomic transitions that the dipole
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moments of the transitions are not parallel. From an experimental point of view

the condition that each laser should only couple to one of two almost parallel

dipole moments may be difficult to achieve. Menon and Agarwal [26] have

proposed a scheme to overcome this difficulty using linearly polarized laser

fields. In this scheme one can select the polarizations of the laser fields E1 and

E2 such that l1 � E2 ¼ l2 � E1 ¼ 0. Since l1 is not parallel to l2, we obtain that

l1 � E1 6¼ 0 and l2 � E2 6¼ 0.

In Fig. 2, we present the steady-state population inversion between the upper

state j1i and the ground state j2i, computed from the master equation (73), for

Z ¼ 0 and different values of the phase difference df and the interference

parameter p. It is seen that in the presence of quantum interference the

population can be inverted on the j1i ! j2i transition and the inversion can

be controlled by the phase difference between the driving laser fields [27].

Paspalakis and Knight [28] have considered a V-type three-level system

driven from an auxiliary level by two laser fields of the same frequencies. They

have predicted linewidth narrowing and cancellation of the fluorescenc, which

can be controlled via the phase difference between the two laser fields used for

the excitation. Ghafoor et al. [29] have considered a four-level system in which

quantum interference can be generated by three driving fields and have shown

that the linewidths and intensities of the spectral lines can be controlled by the

phases and amplitudes of the driving fields.

−30 −20 −10 0 10 20 30
−1

−0.8
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Figure 2. The steady-state population inversion W ¼ r11 � r22 as a function of � ¼ �1 þ�2

for two fields of the same angular frequencies, 	1 ¼ 6	;	2 ¼ 	;
1 ¼ 20	;
2 ¼ 	 and different p

and df: p ¼ 0:95; df ¼ 0 (solid line), p ¼ 0:95; df ¼ p (dashed–line), p ¼ 0; df ¼ 0 (dashed-

dotted line).
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C. Population Trapping and Dark States

In the literature, the population trapping is often referred to as a consequence of

a cancellation of spontaneous emission. However, the cancellation of spontane-

ous emission from an atomic state not always leads to the trapping of the

population in this nondecaying state. We shall illustrate this by considering the

process of spontaneous emission from a V-type atom composed of two excited

states j1i, j3i and the ground state j2i. For simplicity, we assume that spon-

taneous emission occurs from the excited states to the ground state with the

same decay rates 	1 ¼ 	2 ¼ 	, and the transition between the excited states is

forbidden in the electric dipole approximation. The allowed transitions are

represented by the dipole operators Sþ
1 ¼ ðS�

1 Þ
y ¼ j1ih2j and Sþ

2 ¼ ðS�
2 Þ

y ¼
j3ih2j. In the absence of the driving field ð
1 ¼ 
2 ¼ 0Þ, the master

equation (64) leads to the following equations of motion for the density matrix

elements

_r11 ¼ �	r11 �
1

2
	12ðr13 þ r31Þ

_r33 ¼ �	r33 �
1

2
	12ðr13 þ r31Þ

_r22 ¼ 	ðr11 þ r33Þ þ 	12ðr13 þ r31Þ

_r13 ¼ �ð	þ i�Þr13 �
1

2
	12ðr11 þ r33Þ

_r31 ¼ �ð	� i�Þr31 �
1

2
	12ðr11 þ r33Þ ð76Þ

where � ¼ o1 � o2 is the frequency difference between the excited states and,

for simplicity, we have ignored the small coherent coupling terms dð�Þ
12 .

There are two different steady-state solutions of Eq. (76) depending on

whether the transitions are degenerate ð� ¼ 0Þ or nondegenerate ð� 6¼ 0Þ. This

fact is connected with the existence of a linear combination of the density

matrix elements

aðtÞ ¼ r11ðtÞ þ r33ðtÞ � r13ðtÞ � r31ðtÞ ð77Þ

which, for � ¼ 0 and 	12 ¼ 	 is a constant of motion [4,31].

In this case the steady-state solutions for the density matrix elements are

r11ð1Þ ¼ r33ð1Þ ¼ 1

4
að0Þ

r13ð1Þ ¼ r31ð1Þ ¼ � 1

4
að0Þ

r22ð1Þ ¼ 1

2
að0Þ ð78Þ
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Therefore, if að0Þ 6¼ 0, then a part of the population remains in the excited states

for all times t > 0.

On the other hand, for � 6¼ 0 and/or 	12 6¼ 	 the linear combination (77) is

no longer a constant of motion, and then the steady-state solutions for the

density matrix elements are

r11ð1Þ ¼ r33ð1Þ ¼ r13ð1Þ ¼ r31ð1Þ ¼ 0

r22ð1Þ ¼ 1 ð79Þ

In this case the steady-state solutions for the density matrix elements do not

depend on the initial state of the atom.

The steady-state behavior of the system can be explained in terms of

superposition states induced by the cross-damping 	12. Introducing superposi-

tion states

jsi ¼ 1ffiffiffi
2

p ðj1i þ j3iÞ

jai ¼ 1ffiffiffi
2

p ðj1i � j3iÞ ð80Þ

we find from Eq. (76) the following equations of motion for the populations of

the superposition states:

_rss ¼ � 1

2
ð	þ 	12Þrss �

1

2
i�ðrsa � rasÞ

_raa ¼ � 1

2
ð	� 	12Þraa þ

1

2
i�ðrsa � rasÞ ð81Þ

A number of interesting conclusions follow from Eq. (81). In the first place, we

note that the superposition states decay at different rates, the symmetric state

decays with an enhanced rate ð	þ 	12Þ, while the antisymmetric state decays at

a reduced rate ð	� 	12Þ. For 	12 ¼ 	, the antisymmetric state does not decay at

all. In this case the antisymmetric state can be regarded as a dark state in the

sense that the state is decoupled from the environment. Second, we note from

Eq. (81) that the state jai is coupled to the state jsi through the splitting �, which

plays a role here similar to the Rabi frequency of the coherent interaction

between the symmetric and antisymmetric states. Consequently, an initial

population in the state jai can be coherently transferred to the state jsi, which

rapidly decays to the ground state. When � ¼ 0, that is, the excited states are

degenerate, the coherent interaction does not take place and then any initial

population in jai will stay in this state for all times. In this case we can say that

the population is trapped in the state jai.
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We can conclude that the cancellation of spontaneous emission not necessary

leads to the population trapping. The population can be trapped in a nondecaying

state only if the state is completely decoupled from any interactions.

V. QUANTUM INTERFERENCE EFFECTS IN
COHERENTLY DRIVEN SYSTEMS

The discussion, presented in Section IV, has been concentrated on analysis of

the effect of quantum interference on spontaneous emission in a V-type three-

level atom. With the specific examples we have demonstrated that spontaneous

emission can be controlled and even suppressed by quantum interference. In this

section, we extend the analysis to the case of coherently driven systems. We will

present simple models for quantum interference in which atomic systems are

composed of two coupled dipole subsystems. In particular, we consider

interference effects in coherently driven V and �-type three-level atoms. Each

of the three systems is represented by two dipole moments, l1 and l2,

interacting through the vacuum field.

A. Three-Level V System

Our first example for quantum interference in driven atomic systems is a three-

level atom in the V configuration composed of two nondegenerate excited levels

j1i and j3i and a single ground level j2i. The upper levels j1i and j3i can decay

to the ground level by spontaneous emission with decay rates 	1 and 	2,

respectively, whereas transitions between the excited levels are forbidden in the

electric dipole approximation. The two decaying transitions have dipole

moments l12 and l32 sharing the same ground level j2i and are represented

by the operators Sþ
1 ¼ ðS�

1 Þ
y ¼ j1ih2j and Sþ

2 ¼ ðS�
2 Þ

y ¼ j3ih2j. The system can

be driven by a coherent laser field from an auxiliary level or the laser field can

directly couple to the decaying transitions.

1. Driving from an Auxiliary Level

Zhu and Scully [32] have shown that quantum interference in a V-type system,

driven by a laser field from an auxiliary level, can lead to the elimination of the

spectral line at the driving laser frequency.

The four-level system considered by Zhu and Scully is shown in Fig. 3. The

laser field is coupled to nondecaying j1i � jbi and j3i � jbi transitions, whereas

spontaneous emission occurs from the levels j1i; j3i to the ground level j2i.
The most direct approach to the analysis of the dynamics of the system is the

master equation (64) with the Hamiltonian H0 given by

H0 ¼ �ho1Sþ
1 S�

1 þ �ho2Sþ
2 S�

2 þ �hobjbihbj

� 1

2
�h½ð
1Sþ

1b þ 
2Sþ
3bÞe�ioLt þ H:c:� ð82Þ
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where Sþ
1b ¼ j1ihbj and Sþ

3b ¼ j3ihbj are the dipole raising operators for the

transitions between the upper levels j1i; j3i and the auxiliary level jbi.
The spectrum of the fluorescence field emitted on the j1i ! j2i and

j3i ! j2i transitions is given by the Fourier transform of the average two-

time correlation function of the dipole moments of the transitions that,

according to the quantum regression theorem [33], satisfy the same equations

of motion as the density matrix elements r12ðtÞ and r32ðtÞ. Using the master

equation (64) with the Hamiltonian (82), we obtain the following set of coupled

equations of motion for the density matrix elements

q
qt

XðtÞ ¼ MXðtÞ ð83Þ

where XðtÞ ¼ ½r12ðtÞ; r32ðtÞ; rb2ðtÞ� is a column vector composed of the density

matrix elements, and M is the 3 � 3 matrix

M ¼
�ð1

2
	1 þ i�1Þ � 1

2
	12

1
2

i
1

� 1
2
	12 �ð1

2
	2 þ i�2Þ 1

2
i
2

1
2

i
1
1
2

i
2 0

0
B@

1
CA ð84Þ

where �1 ¼ o1b � oL and �2 ¼ o3b � oL are the detunings of the laser field

from the j1i � jbi and j3i � jbi transitions, respectively.

Since we are interested in the time evolution of the density matrix elements,

we will need explicit expressions for the components Xi of the vector XðtÞ in

terms of their initial values. This can be done by a direct integration of (83).

Thus, if t0 denotes an arbitrary initial time, the integration of (83) leads to the

following formal solution for XðtÞ

XðtÞ ¼ Xðt0ÞeMt ð85Þ

|2 >

|b >

ω L

|3 >

|1 >

Γ2 Γ1

Figure 3. Three-level V-type system driven from an auxiliary level.
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Because the determinant of the matrix M is different from zero, there exists a

complex invertible matrix T that diagonalize M, and l ¼ T�1MT is the diagonal

matrix of complex eigenvalues, which can be found from the eigenvalue equation

l lþ 1

2
	1 þ i�1

� �
lþ 1

2
	2 þ i�2

� �
� 1

4
	12ð	12lþ 
1
2Þ

þ 1

4

1 lþ 1

2
	2 þ i�2

� �
þ 1

4

2 lþ 1

2
	1 þ i�1

� �
¼ 0 ð86Þ

Following Zhu and Scully, we assume that 	1 ¼ 	2 ¼ 	, 
1 ¼ 
2 ¼ 
 and that

the laser field is tuned to the middle of the upper-level splitting; �2 ¼ ��1 ¼
1
2
�. In this case, the cubic equation, Eq. (86), simplifies to

l l2 þ 	lþ 1

4
�2 þ 1

4
	2 � 	2

12

� �� 	
þ 1

2

2 lþ 1

2
	� 	12ð Þ

� 	
¼ 0 ð87Þ

There are two different solutions of Eq. (87) depending on whether 	12 ¼ 	 or

	12 6¼ 	. For 	12 ¼ 	, which corresponds to parallel dipole moments of the

transitions, and 
 � 	 the roots of the cubic equation (87) are

l1 ¼ 0

l2 ¼ � 1

2
	þ 1

2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
l3 ¼ � 1

2
	� 1

2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
ð88Þ

while for 	12 ¼ 0, which corresponds to perpendicular dipole moments, and


 � 	 the roots are

l1 ¼ � 1

2
	

l2 ¼ � 1

4
	þ 1

2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
l3 ¼ � 1

4
	� 1

2
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
ð89Þ

Thus, in the case of parallel dipole moments the spectrum is composed of two

lines of equal bandwidths ð1
2
	Þ located at frequencies � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
and there

is no the central component in the fluorescence spectrum at the laser frequency

oL. The eigenvalue l ¼ 0 contributes to the coherent scattering of the laser field.

When 	12 ¼ 0, the spectrum is composed of three lines: the central line of the

bandwidth 1
2
	 located at the laser frequency and two sidebands of bandwidths 1

4
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located at � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
. The absence of the central line for 	12 ¼ 	 is clear

evidence of the quantum interference cancellation of spontaneous emission into

the vacuum modes around the laser frequency.

Lee et al. [34] have shown that the physical origin of the cancellation of the

central line in the spectrum can be explained clearly by the dressed-atom model

of the system [35]. In this model we use a fully quantum-mechanical description

of the Hamiltonian (65), which in a frame rotating with the laser frequency oL

can be written as

H0 ¼ H0b þ Vb ð90Þ

where

H0b ¼ �h�1Sþ
1 S�

1 þ �h�2Sþ
2 S�

2 þ �hoLa
y
LaL ð91Þ

is the Hamiltonian of the uncoupled system and the laser field, and

Vb ¼ � �h

2
g½ðSþ

1b þ Sþ
2bÞaL þ a

y
LðS�

1b þ S�
2bÞ� ð92Þ

is the interaction of the laser with the atom. In Eq. (92), g is the system field

coupling constant and aL ðay
LÞ is the annihilation (creation) operator for the

driving field mode.

For �2 ¼ ��1 ¼ 1
2
�, the Hamiltonian H0b has four nondegenerate eigen-

states j2;Ni; jb;Ni, j1;N � 1i, and j3;N � 1i, where ji;Ni is the state with the

atom in state jii and N photons present in the driving laser mode. When we

include the interaction Vb, the diagonalization of the Hamiltonian H0b þ Vb

leads to the following dressed states of the system

jþ;Ni ¼ 1

2
½ð1 � aÞj1;N � 1i þ ð1 þ aÞj3;N � 1i � 2bjb;Ni�

j0;Ni ¼ �bðj1;N � 1i � j3;N � 1iÞ þ ajb;Ni

j�;Ni ¼ �1

2
½ð1 þ aÞj1;N � 1i þ ð1 � aÞj3;N � 1i þ 2bjb;Ni�

j2;Ni ¼ j2;Ni ð93Þ

with energies

EN;þ ¼ �hðNoL þ 
0Þ
EN;0 ¼ �hNoL

EN;� ¼ �hðNoL � 
0Þ
EN;2 ¼ �hNoL ð94Þ

where 
0 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2
2

p
; a ¼ �=2
0, and b ¼ 
=2
0.
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Dressed states of two neighboring manifolds are shown in Fig. 4. The

manifolds are separated by oL, while the states inside each manifold are

separated by 
0. The dressed states are connected by transition dipole moments.

It is easily verified that nonzero dipole moments occur only between states

within neighboring manifolds. Using Eq. (93), we find that the transition dipole

moments between ji;N þ 1i ði ¼ 0;�;þÞ and j2;Ni are

hN þ 1;þjlj2;Ni ¼ ð1 � aÞl12 þ ð1 þ aÞl32

hN þ 1; 0jlj2;Ni ¼ �bðl12 � l32Þ

hN þ 1;�jlj2;Ni ¼ �½ð1 þ aÞl12 þ ð1 � aÞl32� ð95Þ

whereas the transition dipole moments hN; 2jlji;N � 1i between j2;Ni and the

dressed states ji;N � 1i of the manifold below are equal to zero. It is evident

from Eq. (95) that transitions to the state j2;Ni depend on the mutual

|2,N+1>

|2,N>

|+,N+1>

|0,N+1>

|−,N+1>

|−,N>

|0,N>

|+,N>

ω L

Ω ′

Ω ′

Figure 4. Dressed states of two neighboring manifolds, N þ 1 and N. Solid arrows indicate

transitions at oL � 
0 that are only slightly affected by quantum interference, while the dashed arrow

indicates the transition at the laser frequency oL, which is strongly affected by quantum interference

and vanishes for parallel dipole moments and j l12j ¼ j l32j.
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polarization of the dipole moments l12 and l32. For l12 k l32 and jl12j ¼ jl32j,
the transition dipole moment hN þ 1; 0jlj2;Ni vanishes, resulting in the

disappearance of the central component of the fluorescence spectrum. When

l12 and l32 are not parallel, all the transitions are allowed and three lines can be

seen in the spectrum.

The dressed-atom predictions clearly explain the origin of the cancellation of

the spectral line arising from the cancellation of the transition dipole moment

due to quantum interference between the two atomic transitions.

2. Direct Driving of the Atomic Transitions

Another area of interest in quantum interference effects, which has been studied

extensively, is the response of a V-type three-level atom to a coherent laser field

directly coupled to the decaying transitions. This was studied by Cardimona et

al. [36], who found that the system can be driven into a trapping state in which

quantum interference prevents any fluorescence from the excited levels,

regardless of the intensity of the driving laser. Similar predictions have been

reported by Zhou and Swain [5], who have shown that ultrasharp spectral lines

can be predicted in the fluorescence spectrum when the dipole moments of the

atomic transitions are nearly parallel and the fluorescence can be completely

quenched when the dipole moments are exactly parallel.

When the atomic transitions j1i ! j2i and j3i ! j2i are directly driven by a

laser field, the master equation (64) leads to the following set of equations of

motions for the density matrix elements

_~r12 ¼ ð _~r21Þ� ¼
1

2
i
1 �

1

2
	1 � i �L �

1

2
�

� �� 	
~r12 �

1

2
	12~r32

� 1

2
i
2r13 �

1

2
i
1ð2r11 þ r33Þ

_~r32 ¼ ð _~r23Þ� ¼
1

2
i
2 �

1

2
	2 � i �L þ

1

2
�

� �� 	
~r32 �

1

2
	12~r12

� 1

2
i
1r31 �

1

2
i
2ð2r33 þ r11Þ

_r31 ¼ ð _r13Þ� ¼ � 1

2
ð	1 þ 	2Þ � i�

� 	
r31 �

1

2
	12ðr33 þ r11Þ

� 1

2
i
1~r32 þ

1

2
i
2~r21;

_r11 ¼ �	1r11 �
1

2
	12ðr13 þ r31Þ þ

1

2
i
1ð~r21 � ~r12Þ

_r33 ¼ �	2r33 �
1

2
	12ðr13 þ r31Þ þ

1

2
i
2ð~r23 � ~r32Þ ð96Þ
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where

~rj2 ¼ rj2eiðoLtþfLÞ; ð j ¼ 1; 3Þ ð97Þ

and �L ¼ oL � 1
2
ðo1 þ o2Þ is the detuning of the laser frequency from the

middle of the upper-level splitting.

The equations of motion (96) can be used to calculate the steady-state

fluorescence spectrum of the driven atom. The spectrum is defined as the

Fourier transform of the stationary value of the two-time correlation function of

the electric field operators

�ðoÞ ¼ Re

ð1
0

dt lim
t!1

hÊð�ÞðR; tÞ � ÊðþÞðR; t þ tÞieiot ð98Þ

According to Eq. (34), the spectrum can be expressed in terms of the atomic

correlation functions as

�ðoÞ ¼ Re

ð1
0

dt lim
t!1

f	1hSþ
1 ðtÞS�

1 ðt þ tÞi þ 	2hSþ
2 ðtÞS�

2 ðt þ tÞi

þ 	12ðhSþ
1 ðtÞS�

2 ðt þ tÞi þ hSþ
2 ðtÞS�

1 ðt þ tÞiÞgeiot ð199Þ

From the quantum regression theorem [33], it is well known that the two-time

averages hSþ
mðtÞS�

n ðt þ tÞi satisfy the same equations of motion as do the one-

time averages hS�
n ðtÞi which, on the other hand, satisfy the same equations of

motion as do the density matrix elements rijðtÞ.
In Fig. 5 we plot the fluorescence spectrum for a strong driving field tuned to

the middle of the upper-level splitting �. For small � the spectrum exhibits a

three-peak structure, similar to the Mollow spectrum of a two-level atom [37],

while for large � the spectrum consists of five peaks whose the intensities and

widths vary with the cross-damping term 	12. When the dipole moments are

nearly parallel, 	12 ¼ 0:999	, a significant sharp peak appears at the central

frequency superimposed on a broad peak. However, in the case of exactly

parallel dipole moments, 	12 ¼ 	, and the fluorescence emission quenches

completely at all frequencies.

The dependence of the number of peaks on the splitting �, and the variation

of their intensities and widths with 	12 can be readily explained in terms of

transition rates between dressed states of the system. For the three-level system

discussed here, the Hamiltonian (65) takes the form

H0 ¼ H0 þ VL ð100Þ
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where

H0 ¼ ��h �L �
1

2
�

� �
Sþ

1 S�
1 � �h �L þ

1

2
�

� �
Sþ

2 S�
2 þ �hoLa

y
LaL ð101Þ

is the Hamiltonian of the uncoupled system and the laser field, and

VL ¼ � �h

2
g½ay

LðS�
1 þ S�

2 Þ þ ðSþ
1 þ Sþ

2 ÞaL� ð102Þ

is the interaction between the laser field and the atomic transitions.

For �L ¼ 0, the Hamiltonian H0 has three nondegenerate eigenstates j2;Ni;
j1;N � 1i, and j3;N � 1i, where ji;Ni is the state with the atom in state jii and
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Figure 5. The fluorescence spectrum for the V-type three-level atom with nondegenerate

transitions driven by a strong laser field of the Rabi frequency 
 ¼ 5	1, �L ¼ 0;	1 ¼ 	2 ¼ 	, and

different � and 	12: (a) � ¼ 	;	12 ¼ 0; (b) � ¼ 	;	12 ¼ 0:999	; (c) � ¼ 	;	12 ¼ 	; (d)

� ¼ 5	;	12 ¼ 0; (e) � ¼ 5	;	12 ¼ 0:999	; (f) � ¼ 5	;	12 ¼ 	.
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N photons present in the driving laser mode. When we include the interaction

VL the triplets recombine into new triplets with eigenvectors (dressed states)

jþ;Ni ¼ 1

2
½ð1 � aÞj1;N � 1i þ ð1 þ aÞj3;N � 1i � 2bj2;Ni�

j0;Ni ¼ �bðj1;N � 1i � j3;N � 1iÞ þ aj2;Ni ð103Þ

j�;Ni ¼ �1

2
½ð1 þ aÞj1;N � 1i þ ð1 � aÞj3;N � 1i þ 2bj2;Ni�

corresponding to energies

EN;þ ¼ �hðNoL þ ~
Þ
EN;0 ¼ �hNoL

EN;� ¼ �hðNoL � ~
Þ ð104Þ

where ~
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

2

2

q
; a ¼ �=2~
, and b ¼ 
=2~
.

The dressed states (103) group into manifolds, each containing three states.

Neighboring manifolds are separated by oL, while the states inside each

manifold are separated by ~
. Interaction between the atom and the vacuum

field leads to a spontaneous emission cascade down its energy manifold ladder.

The probability of a transition between any two dressed states is proportional to

the absolute square of the the dipole transition moment between these states. It

is easily verified that nonzero dipole moments occur only between states within

neighboring manifolds. Using (103) and assuming that l13 ¼ l23 ¼ l, we find

that the transition dipole moments between j0;Ni and the dressed states of the

manifold above are

hN þ 1;þjlj0;Ni ¼ 1

2
al½ð1 � aÞ þ ð1 þ aÞcosy�

hN þ 1; 0jlj0;Ni ¼ �ablð1 � cosyÞ

hN þ 1;�jlj0;Ni ¼ � 1

2
al½ð1 þ aÞ þ ð1 � aÞcosy� ð105Þ

whereas the transition dipole moments between j0;Ni and the dressed states of

the manifold below are

hN; 0jljþ;N � 1i ¼ b2lð1 � cosyÞ
hN; 0jlj0;N � 1i ¼ �ablð1 � cosyÞ
hN; 0jlj�;N � 1i ¼ b2lð1 � cosyÞ ð106Þ

where y is the angle between the dipole moments.
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It is apparent from Eq. (106) that transitions from the state j0;Ni to the

dressed states of the manifold below are allowed only if the dipole moments are

not parallel. The transitions occur with significantly reduced rates, proportional

to ð1 � cosyÞ, giving very narrow lines when y � 0o. For parallel dipole

moments the transitions to the state j0;Ni are allowed from the dressed states

of the manifold above, but are forbidden to the states of the manifold below.

Therefore, the state j0;Ni is a trapping state such that the population can flow

into this state, but cannot leave it resulting in the disappearance of the

fluorescence from the driven atom. The nonzero transition rates to the state

j0;Ni are proportional to a and are allowed only when � 6¼ 0. Otherwise, for

� ¼ 0, the state j0;Ni is completely decoupled from the remaining dressed

states. In this case the three-level system reduces to that equivalent to a two-

level atom.

The preceding dressed-atom analysis shows that quantum interference and

the driving laser field create a ‘‘dressed’’ trapping state that is a linear super-

position of the jai and j2i states. This trapping state is different from the

trapping state created by quantum interference in the absence of the driving field

[see Eq. (80)], which is the antisymmetric state jai alone. As is seen from

Eq. (103), the dressed trapping state reduces to the state jai for a very strong

driving field ð
 � �Þ.
An alternative way of viewing the process of the reduction of the dressed

trapping state to the state jai in a very strong field is to analyze the equations of

motion for the density matrix elements in terms of the symmetric and

antisymmetric superpositions of the atomic excited states

jsi ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 þ r

p ðj1i þ
ffiffi
r

p
j3iÞ ð107Þ

jai ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 þ r

p ð
ffiffi
r

p
j1i � j3iÞ ð108Þ

where r ¼ 	2=	1.

For 	1 ¼ 	2 ¼ 	 and 
1 ¼ 
2 ¼ 
 the equations of motion for the popula-

tions rss and raa of the symmetric and antisymmetric states are

_rss ¼ � 1

2
ð1 þ pÞ	rss �

1

2
i�ðrsa � rasÞ � i

ffiffiffi
2

p

ðr2s � rs2Þ

_raa ¼ � 1

2
ð1 � pÞ	raa þ

1

2
i�ðrsa � rasÞ ð109Þ

The first terms on the right-hand side of Eq. (109) determine the spontaneous

emission rates from the symmetric and antisymmetric states, while the second

terms determine the coherent interaction between these two states. Note that the
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antisymmetric state is not driven by the laser field and the equation of motion for

raa has the same form as that in the absence of the driving field [see Eq. (81)].

We have shown in Section III, that in the absence of a driving field the

coherent interaction � between the symmetric and antisymmetric states can

destroy the population trapping. However, as it has been shown by Akram et

al. [24], the role of the coherent interaction can reverse in the presence of the

driving field. In this case the coherent interaction � can transfer the population

from the driven jsi state to the undriven and nondecaying jai state. This is

shown in Fig. 6, where we plot the steady-state population raa as a function of

�L for different 
. It is seen that the antisymmetric state is populated by the

presence of the coherent interaction �. The amount of population in jai
increases with increasing 
 and attains the maximum value raa � 1 at

�L ¼ 0 and a very strong driving field. This effect can be interpreted as a

population trapping induced by the laser field and the coherent interaction

between the symmetric and antisymmetric states.

3. Quantum Interference in Probe Absorption

The narrow resonances produced by quantum interference may also be observed

in the absorption spectrum of a three-level atom probed by a weak field of the

frequency op. Zhou and Swain [10] have calculated the absorption spectrum of

a probe field monitoring V-type three-level atoms with degenerate ð� ¼ 0Þ as

well as nondegenerate ð� 6¼ 0Þ transitions and have demonstrated that quantum

−20 −10 0 10 20
∆L

0

0.2

0.4

0.6

0.8

1

ρ a
a

Figure 6. The steady-state population of the antisymmetric state jai as a function of �L for

	1 ¼ 	2 ¼ 	;� ¼ 5	; p ¼ 1, and different 
: 
 ¼ 	 (solid line), 
 ¼ 5	 (dashed–line), 
 ¼ 10	

(dashed-dotted line), 
 ¼ 25	 (dotted line).
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interference between the two atomic transitions can result in very narrow

spectral lines, transparency, and even gain without population inversion.

The absorption spectrum can be given in terms of the Fourier transform of

the average value of the two-time commutator of the atomic dipole operators

as [38]

AðoÞ ¼ Re

ð1
0

d teiopt

� lim
t!1

f	1h½S�
1 ðt þ tÞ; Sþ

1 ðtÞ�i þ 	2h½S�
2 ðt þ tÞ; Sþ

2 ðtÞ�i:

þ :	12ðh½S�
1 ðt þ tÞ; Sþ

2 ðtÞ�i þ h½S�
2 ðt þ tÞ; Sþ

1 ðtÞ�iÞg ð110Þ

where the terms hS�
i ðt þ tÞSþ

j ðtÞi are associated with absorption and the terms

hSþ
i ðt þ tÞS�

j ðtÞi with stimulated emission of the probe field. The absorption

spectrum can be calculated from the equations of motion (96) in conjugation

with the quantum regression theorem. In the absence of the driving laser field

ð
 ¼ 0Þ and 	12 � 	, the absorption spectrum of a three-level atom with

degenerate transitions ð� ¼ 0Þ consists of a subnatural linewidth peak super-

imposed on a broad peak, both centered on the resonant frequency op ¼ o0,

where o0 ¼ 1
2
ðo1 þ o2Þ.

This is shown in Fig. 7 and can be easily interpreted in terms of the

symmetric and antisymmetric superpositions of the excited atomic states. For

� ¼ 0 and 	12 6¼ 	, the superposition states decay independently with the rates

ð	þ 	12Þ and ð	� 	12Þ, respectively. The broad peak, seen in Fig. 7, corre-

sponds to the absorption on the j2i � jsi transition of the linewidth ð	þ 	12Þ,
whereas the narrow peak of the linewidth ð	� 	12Þ arises from the absorption

of the probe field on the j2i � jai transition. When the dipole moments of the

atomic transitions are parallel, 	12 ¼ 	, and then the dipole moment of the

j2i � jai transition vanishes. In this case the probe only couples to the j2i � jsi
transition resulting in a single broad peak in the absorption spectrum, as seen in

Fig. 7d.

Figure 8 shows the absorption spectrum of a three-level atom with non-

degenerate transitions ð� 6¼ 0Þ. One notable feature of the absorption spectrum

is a single broad peak with a narrow hole burned at the average atomic transition

frequency o0. The hole changes into a dispersive structure for unequal damping

rates of the atomic transitions. The origin of the hole burning is in the coherent

oscillations of the population between the symmetric and antisymmetric states.

The oscillations are induced by the coherent interaction �, and can be readily

understand from Eq. (109), which shows that the population coherently

oscillates between the jsi and jai states with frequency �=2.

The shape of the dip in the absorption spectrum can be obtained by finding

the analytical form of the absorption spectrum. Using Eqs. (96) and (110), we
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find that in the limit of a small splitting of the upper states ð� � 	1;	2Þ, the

spectrum is given by

AðoÞ ’ 2
	2

	2 þ o2
� ð�=4	Þ2

ð�=4	Þ2 þ o2

" #
ð111Þ

where, for simplicity, we have assumed 	1 ¼ 	2 ¼ 	. We see from Eq. (111) that

the width of the hole depends on � and can be very narrow for � � 	.

Moreover, for � ’ 2	, the absorption at the centre of the hole approaches zero,

resulting in transparency of the probe field at this frequency. The simple formula

in Eq. (111) predicts accurately the depth and width of the dip seen in Fig. 8.

Zhou and Swain [10] have shown that in the presence of initial correlations

between the upper states, the hole in the center of the spectrum can reach

negative values, indicating that the probe can be amplified as a result of quantum

interference. Paspalakis and Knight [39] have calculated the absorption
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Figure 7. The absorption spectrum as a function of o ¼ op � o0 for degenerate transitions

with � ¼ 0 and various 	12: (a) 	12 ¼ 0; (b) 	12 ¼ 0:9
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
; (c) 	12 ¼ 0:99

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
; (d)

	12 ¼
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
. The solid line represents 	1 ¼ 	2, while the dashed line corresponds to 	2 ¼ 0:1	1.
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spectrum and refractive index of a V-type three-level atom driven by coherent

and incoherent fields and have found that quantum interference enhances the

index of refraction and can produce a very strong gain without population

inversion.

B. Three-Level K System

It has been known for a long time that in a �-type three-level atom with two

transitions of perpendicular dipole moments ð	12 ¼ 0Þ driven by two laser

fields, the population can be trapped in the ground states of the atom. This

phenomenon, known as coherent population trapping (CPT) has been theore-

tically investigated by Arimondo and Orriols [40], Gray et al. [41], Orriols [42],

and experimentally observed by Alzeta et al. [43]. Coherent population trapping

has been examined in review articles by Dalton and Knight [44] and

Arimondo [45]. Javanainen [46], Ferguson et al. [47], and Menon and

Agarwal [26] have examined the effect of quantum interference between the
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Figure 8. The absorption spectrum as a function of o ¼ op � o0 for nondegenerate transitions

with � ¼ 1
2
	1 and various 	12: (a) 	12 ¼ 0; (b) 	12 ¼ 0:9
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	1	2

p
; (c) 	12 ¼ 0:99
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. The solid line represents 	1 ¼ 	2, while the dashed line corresponds to 	2 ¼ 0:1	1.
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atomic transitions on the CPT and have demonstrated that the CPT effect

strongly depends on the cross-damping term 	12 and disappears when 	12 ¼ 	.

The CPT effect and its dependence on quantum interference can be easily

explained by examining the population dynamics in terms of the superposition

states jsi and jai. Assume that a three-level �-type atom is composed of a single

upper state j3i and two ground states j1i and j2i. The upper state is connected to

the lower states by transition dipole moments l31 and l32. After introducing

superposition operators Sþ
s ¼ ðS�

s Þ
y ¼ j3ihsj and Sþ

a ¼ ðS�
a Þ

y ¼ j3ihaj, where jsi
and jai are the superposition states of the same form as Eqs. (107) and (108), the

Hamiltonian (65) can be written as

H0 ¼ ��h �L �
1

2
�0

� �
S�

s Sþ
s þ �L þ

1

2
�0

� �
S�

a Sþ
a

�

þ�cðS�
s Sþ

a þ S�
a Sþ

s Þ þ
1

2

ffiffiffiffiffi
	1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	1 þ 	2

p ðSþ
s þ S�

s Þ
�

ð112Þ

where

�0 ¼ 1

	1 þ 	2

½ð	1 � 	2Þ�þ 4d12

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
� ð113Þ

and

�c ¼
1

	1 þ 	2

½d12ð	1 � 	2Þ ��
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
� ð114Þ

As before, � ¼ o1 � o2, �L ¼ oL � 1
2
ðo1 þ o2Þ, and we have assumed that


1 ¼ 
2 ¼ 
.

From the master equation (64) with the Hamiltonian (112), we derive the

following equation of motion for the population raa of the antisymmetric state:

_raa ¼ 2	1	2

	1 þ 	2

ð1 � pÞr33 � i�cðras � rsaÞ ð115Þ

The equation of motion (115) allows us to analyze conditions for population

trapping in the driven � system. In the steady state ð _raa ¼ 0Þ with p 6¼ 1 and

�c ¼ 0 the population in the upper state r33 ¼ 0. Thus the state j3i is not

populated even though it is continuously driven by the laser. In this case the

population is entirely trapped in the antisymmetric superposition of the ground

states. This is the CPT effect. However, for p ¼ 1 and �c ¼ 0, the antisymmetric

state decouples from the interactions, and then the steady-state population r33 is

different from zero [46]. This shows that coherent population trapping is possible
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only in the presence of spontaneous emission from the upper state to the anti-

symmetric superposition state. Thus, we can conclude that quantum interference

has a destructive effect on the CPT. Menon and Agarwal [26] have shown that the

CPT effect can be preserved in the presence of quantum interference provided

that the atom is driven by two coherent field each coupled to only one of the

atomic transitions.

According to Eq. (115), the CPT can also be destroyed by the presence of the

coherent interaction �c between the symmetric and antisymmetric states. This

is shown in Fig. 9, where we plot the steady-state population r33 as a function of

� for different values of 	2=	1. It is evident that the cancellation of the popu-

lation r33 appears only at �c ¼ 0, that is, in the absence of the coherent

interaction between the antisymmetric and symmetric states. For 	1 ¼ 	2 the

cancellation appears at � ¼ 0, while for 	1 6¼ 	2 the effect shifts toward

nonzero � given by

� ¼ 	1 � 	2ffiffiffiffiffiffiffiffiffiffi
	1	2

p d12 ð116Þ

The shift depends on the ratio r, and for either r � 1 or r � 1 can be large even

though d12 is very small. Therefore, the vacuum-induced coherent coupling can

be experimentally observed in the � system as a shift of the zero of the

population r33 of the upper state [24].

−20 −10 0 10 20
∆

0
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ρ 
33

Figure 9. The stationary population of the upper state j3i of a �-type atom as a function of the

splitting � for �L ¼ 0;
 ¼ 5	1; d12 ¼ 0:1	1; p ¼ 0:5, and different 	2: 	2 ¼ 	1 (solid line),

	1 ¼ 50	2 (dashed line).
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We have shown in Section V.A.2 that a laser field can drive the V-type

system into the antisymmetric (trapping) state through the coherent interaction

between the symmetric and antisymmetric states. Akram et al. [24] have shown

that in the � system there are no trapping states to which the population can be

transferred by the laser field. This can be illustrated by calculating the transition

dipole moments between the dressed states of the driven � system. The

procedure of calculating the dressed states of the � system is the same as for

the V system. The only difference is that now the eigenstates of the unperturbed

Hamiltonian H0 are j3;N � 1i; j1;Ni; j2;Ni, and the dressed states are given by

jþ;Ni ¼ 1ffiffiffi
2

p ½�aja;Ni þ js;Ni �
ffiffiffi
2

p
bj3;N � 1i�

j0;Ni ¼ �
ffiffiffi
2

p
bja;Ni þ aj3;N � 1i

j�;Ni ¼ 1ffiffiffi
2

p ½�aja;Ni � js;Ni �
ffiffiffi
2

p
bj3;N � 1i� ð117Þ

Although the dressed states (117) are similar to that of the V system [see

Eq. (103)], there is a crucial difference between the transition dipole moments.

For the � system the transition dipole moments between the dressed states

ji;N þ 1i and the state j0;Ni of the manifold below are all zero, but there are

nonzero transition dipole moments between j0;Ni and the dressed states

ji;N � 1i of the manifold below

hN; 0jlj�;N � 1i ¼ �al

hN; 0jlj0;N � 1i ¼ 0 ð118Þ

Therefore, the population is unable to flow into the state j0;Ni, but can flow away

from it. If � ¼ 0, then a ¼ 0, and the state j0;Ni completely decouples from the

remaining states. For � 6¼ 0 the state j0;Ni is coupled to the remaining states,

but does not participate in the dynamics of the system because it cannot be

populated by transitions from the other states. Thus, there is no trapping state

among the dressed states of the driven � system.

VI. AMPLIFICATION ON DARK TRANSITIONS

Menon and Agarwal [48] have predicted that in the presence of quantum

interference the Autler–Townes spectrum of a weak probe beam monitoring a

driven three-level V-type atom can exhibit gain features instead of the usual

absorption doublet. This unexpected feature requires the condition that the Rabi

frequency 
 of the driving field be such that 
 ¼ 2�, where � is the splitting

between the excited states. The gain features have been explained as arising
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from a large difference in population between the dressed states produced by the

driving field and the undriven atomic level.

A. Amplification on Inverted Transitions

In the process of amplification with population inversion, spontaneous emission

imposes a serious restriction in creating an inversion between atomic levels. For

example, in a two-level system with ground state jgi and excited state jei, the

stationary absorptive and emissive processes are governed by the balance

condition

Pg	ge ¼ Pe	eg; ð119Þ

where PgðPeÞ is the steady-state population of the ground (excited) level, 	ge is

the absorptive, and 	eg is the emissive rate between the atomic levels. It follows

from Eq. (119) that inversion ðPe > PgÞ can be produced only if 	ge > 	eg. This

condition may not be achieved in two-level systems since the stimulated

absorptive and emissive rates are the same and spontaneous emission contributes

only to the emissive rate, giving 	eg > 	ge [49]. Population inversions involving

the ground level can, however, be produced in multilevel systems where

population can be transferred into level jei through other channels (levels) [50].

If we introduce a third level j3i, which has its absorptive rate 	g3 from the ground

level and the spontaneous rate 	3e to the excited level much larger than the

emissive rate 	eg, a pumping field applied to the jgi ! j3i transition will create a

steady-state inversion on the jei ! jgi transition. Using rate equations for the

atomic populations, the ratio Pe=Pg of the steady-state populations of the excited

and ground states can be expressed as

Pe

Pg

¼ 	3e	g3

	egð	3e þ 	3gÞ
ð120Þ

It is seen that the ratio (120) depends crucially on the spontaneous emission rate

	eg, which depopulates the state jei. Maximum inversion, with Pe ¼ 1 and

Pg ¼ 0; is obtained for 	eg ¼ 0; when the population is said to be ‘‘shelved’’

(trapped) in the state jei from which it cannot decay to the ground state. Thus, in

the case of maximum inversion one could expect maximum amplification of a

probe beam on the jei ! jgi transition. However, the absorption rate WðopÞ of a

probe beam of amplitude Ep and frequency op monitoring the jei ! jgi
transition, as defined by Mollow [38], is

WðopÞ ¼
1

i�h

ðt

�1
dt0

dHpðtÞ
dt

;Hpðt0Þ
� 	� �

ð121Þ
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where

HpðtÞ ¼
1

2
leg � EpðSþe�iopt þ S�eioptÞ ð122Þ

is the interaction Hamiltonian of the probe field with dipole moment leg, and

Sþ ¼ jeihgj ðS� ¼ jgihejÞ is the dipole raising (lowering) operator. For a long

interaction time ðt ! 1Þ the absorption rate satisfies the integral relation [38]

�W ¼
ð1
�1

dopWðopÞ ¼
2p
�h
jleg � Epj2ðPg � PeÞ ð123Þ

Thus, two factors determine the magnitude of amplification ð �W < 0Þ of the

probe field: (1) the population must be inverted ðPe > PgÞ and (2) the dipole

moment of the transition, which determines the coupling strength of the probe

field to the atom, must be nonzero. According to the balance condition (119), an

increase of the population inversion can be achieved by decreasing the emissive

rate and the population can be completely inverted only if 	eg ¼ 0, that is,

only if the state jei is a trapping state. Since 	eg � jlegj
2
, the trapping results in

cancellation of the dipole moment to the ground state, and then the inverted

transition becomes transparent for the probe beam. Therefore, in order to obtain a

significant amplification, one should produce a large population inversion and

simultaneously maintain a strong coupling of the probe field to the inverted

transition. The preceding analysis suggests that this is impossible to achieve in

atomic systems.

B. Autler–Townes Absorption Spectra

Consider the Menon–Agarwal approach to the Autler–Townes spectrum of a V-

type three-level atom. The atom is composed of two excited states, j1i and j3i,
and the ground state j2i coupled by transition dipole moments with matrix

elements l12 and l32, but with no dipole coupling between the excited states.

The excited states are separated in frequency by �. The spontaneous emission

rates from j1i and j3i to the ground state j2i are 	1 and 	2, respectively. The

atom is driven by a strong laser field of the Rabi frequency 
, coupled solely to

the j1i ! j2i transition. This is a crucial assumption, which would be difficult

to realize in practice since quantum interference requires almost parallel dipole

moments. However, the difficulty can be overcome in atomic systems with

specific selection rules for the transition dipole moments, or by applying fields

with specific polarization properties [26].

We consider two different coupling configurations of the probe beam to the

driven atom. In the first case, we assume that the probe beam is coupled to the

driven j1i ! j2i transition [51]. In the second case, that has been considered by
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Menon and Agarwal [48], we will assume that the probe beam is coupled to the

undriven j3i ! j2i transition.

The absorption rate of a probe beam of a tunable frequency op monitoring

the j1i ! j2i transition is defined as [38,48]

W12ðopÞ ¼ Re½
pr
ðþ1Þ
12 � ð124Þ

where 
p is the Rabi frequency of the probe beam and rðþ1Þ
12 is the stationary

component (harmonic) of the coherence r12 oscillating with the probe detuning

d ¼ op � o2.

In Fig. 10, we plot the absorption rate W12 as a function of d for p ¼ 0:95 and

different 
. When 
 6¼ 2� the absorption rate exhibits the familar Mollow

absorption spectrum [38] with small dispersive structures at d ¼ �
. The

absorption rate changes dramatically when 
 ¼ 2�. Here, the dominant

features of the rate are emissive and absorptive components at d ¼ �
,

indicating that at d ¼ �
 the weaker field is absorbed, whereas at d ¼ 
 is

amplified at the expense of the strong field. The weaker field is always absorbed

(amplified) at d ¼ �
 ðd ¼ 
Þ independent of the ratio r ¼ 	1=	2 between the

spontaneous emission rates 	1 and 	2. We illustrate this in Fig. 11, where we

plot the absorptive rate for different values of r. The absorptive (emissive) peak

remains absorptive (emissive) independent of the ratio r.
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Figure 10. The absorption rate W12 as a function of d=	1 for p ¼ 0:95;	1 ¼ 	2;
p ¼
	1;� ¼ 20	1, and different 
: 
 ¼ 10	1 (solid line), 
 ¼ 20	1 (dashed line) and 
 ¼ 40	1

(dashed–dotted line).
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Note that the absorption rate shown in Figs. 10 and 11 is similar to the

Mollow absorption spectrum for an off-resonance driving field [38]. However,

there is a significant difference in that the ratio between the magnitudes of the

emissive and absorptive peaks in the Mollow spectrum is always less than one

and the ratio varies with the detuning and Rabi frequency of the driving field.

The ratio of the absorption rates, shown in Figs. 10 and 11, is equal to one and

constant independent of the values of the parameters involved.

In Fig. 12, we present the absorption rate for the case considered by Menon

and Agarwal [48], in which the probe beam is coupled to the undriven j3i � j2i
transition

W23ðopÞ ¼ 2Re½
pr
ðþ1Þ
23 � ð125Þ

The absorption rate is plotted as a function of d for 
 ¼ 2�. We see that the

absorption rate exhibits an emissive feature at d ¼ 
. Moreover, there is a central

component at d ¼ 0, whose absorptive/emissive properties depend on the ratio r.

For r < 2 the rate is positive indicating that the weaker field is absorbed by the

system. As r increases the absorptive feature decreases and vanishes for r � 2.

When we further increase r ðr > 2Þ the absorptive features at d ¼ 0 switch into

emissive features and the magnitude of the emissive peak increases with

increasing r. The threshold value for r, at which absorption switches to emission,
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Figure 11. The absorptive rate W12 as a function of d=	1 for p ¼ 0:95;
 ¼ 40	1;
p ¼
	1;� ¼ 20	1, and different values of r ¼ 	1=	2: r ¼ 2 (dashed line) and r ¼ 5 (solid line).
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depends on p. For p ¼ 1 the threshold is exactly at r ¼ 2, and shifts toward larger

r as p decreases.

C. Dressed-Atom Model of the Amplification on Dark Transitions

The physics associated with the unusual properties of the absorption rate of the

probe beam, shown in Figs. 10–12, can be easily explored by working in the

basis of quantum dressed states of the system [35]. In this approach, we work

with the quantum version of the Hamiltonian (65) which, in the case of the

driving laser coupled exclusively to the j1i ! j2i transition, can be written as

HS ¼ H0 þ Hint ð126Þ

where

H0 ¼ �ho1Sþ
1 S�

1 þ �ho2Sþ
2 S�

2 þ �ho1a
y
L1

aL1
ð127Þ

is the Hamiltonian of the system atom plus driving field

Hint ¼ � 1

2
�hgðay

L1
S�

1 þ aL1
Sþ

1 Þ ð128Þ

is the interaction between the atom and the laser field.
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Figure 12. The absorption rate W23 as a function of d for 
 ¼ 40	1, 
p ¼ 	1, � ¼ 20	1,

p ¼ 0:95, and different values of r: r ¼ 1 (solid line), r ¼ 2 (dashed line) and r ¼ 5 (dotted line).
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The Hamiltonian H0 has the ‘‘undressed’’ eigenstates j1;N � 1i; j3;N � 1i,
and j2;Ni. The states j1;N � 1i and j2;Ni are degenerate with energies

E1;N ¼ E2;N ¼ �hNo1, while the state j3;N � 1i has energy E3;N ¼
�hðNo1 þ�Þ, where N is the number of photons in the laser mode. When we

include the interaction (128) between the atom and the laser field, the

degeneracy is lifted, resulting in triplets of dressed states

jþ;Ni ¼ 1ffiffiffi
2

p ðj2;Ni þ j1;N � 1iÞ

j�;Ni ¼ 1ffiffiffi
2

p ðj2;Ni � j1;N � 1iÞ

j~3;Ni ¼ j3;N � 1i; ð129Þ

with energies

Eþ;N ¼ �h No1 þ
1

2



� �

E�;N ¼ �h No1 �
1

2



� �
E~3;N ¼ �hðNo1 þ�Þ ð130Þ

The dressed states (129) group into manifolds of nondegenerate triplets unless

� ¼ 1
2

 and then the states jþ;Ni, j~3;Ni in each manifold are degenerate.

Since the driven and undriven transitions are coupled through the 	12 terms,

it is convenient to introduce symmetric and antisymmetric superposition states

of the dressed states jþ;Ni and j~3;Ni. According to Eq. (68), the superposition

states diagonalise the dissipative (damping) part of the master equation of the

system. The superposition states can be written as [51]

js;Ni ¼ ajþ;Ni þ bj~3;Ni ð131Þ
ja;Ni ¼ bjþ;Ni � aj~3;Ni ð132Þ

where

a ¼

ffiffiffiffiffiffiffiffi
1
2
	1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
	1 þ 	2

q ð133Þ

b ¼
ffiffiffiffiffi
	2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
	1 þ 	2

q ð134Þ
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such that

a2 þ b2 ¼ 1 ð135Þ

With the dressed states of the driven system available, we can easily predict

transition frequencies and calculate transition dipole moments and spontaneous

emission rates between the dressed states of the system. It is easily verified that

nonzero dipole moments occur only between dressed states within neighboring

manifolds. Using Eqs. (131) and (132), we find that the transition dipole

moments between jN; ii and jN � 1; ji are

ls;N;s;N�1 ¼ 1

2
a2l12 þ

abffiffiffi
2

p l32; ls;N;�;N�1 ¼ 1

2
al12 þ

1ffiffiffi
2

p bl32

l�;N;s;N�1 ¼ � 1

2
al12; l�;N;�;N�1 ¼ � 1

2
l12

l�;N;a;N�1 ¼ � 1

2
bl12; ls;N;a;N�1 ¼ 1

2
abl12 þ

1ffiffiffi
2

p b2l32

la;N;s;N�1 ¼ 1

2
abl12 �

1ffiffiffi
2

p a2l32; la;N;�;N�1 ¼ 1

2
bl12 �

1ffiffiffi
2

p al32

la;N;a;N�1 ¼ 1

2
b2l12 �

1ffiffiffi
2

p abl32 ð136Þ

where li;N; j;N�1 ¼ hi;Nj~lj j;N � 1i, and ~l ¼ ~l1 þ ~l2 is the total dipole moment

of the atom.

The spontaneous transitions occur with probabilities

	i;N; j;N�1 ¼ 	n

jl2n�1;2j
2
jhi;Nj~ljj;N � 1ij2; n ¼ 1; 2 ð137Þ

given by the expressions

	s;N;s;N�1 ¼ 1

4
	1½1 � 	1	2

ð	2 þ 1
2
	1Þ2

ð1 � cosyÞ�

	s;N;�;N�1 ¼ 1

2
	2 þ

1

2
	1

� �
1 � 	1	2

ð	2 þ 1
2
	1Þ2

ð1 � cosyÞ
" #

	s;N;a;N�1 ¼ 1

2
	2 1 � 	1	2

ð	2 þ 1
2
	1Þ2

ð1 � cosyÞ
" #

	�;N;�;N�1 ¼ 1

4
	1
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	�;N;s;N�1 ¼ 1

8

	2
1

ð	2 þ 1
2
	1Þ

	�;N;a;N�1 ¼ 1

4

	1	2

ð	2 þ 1
2
	1Þ

	a;N;s;N�1 ¼ 1

4

	2
1	2

ð	2 þ 1
2
	1Þ2

ð1 � cosyÞ

	a;N;�;N�1 ¼ 1

2

	1	2

ð	2 þ 1
2
	1Þ

ð1 � cosyÞ

	a;N;a;N�1 ¼ 1

2

	1	
2
2

ð	2 þ 1
2
	1Þ2

ð1 � cosyÞ ð138Þ

where y is the angle between l1 and l2.

In Fig. 13, we present the dressed states of two neighboring manifolds, N and

N � 1, and the possible transitions among them. Solid lines indicate transitions

∆

Ω

ω1

|s,N> |a,N>

|−,N>

|s,N−1>

|−,N−1>

|a,N−1>

Figure 13. Energy-level diagram of the superposition dressed states for � ¼ 1
2

. The solid

lines indicate spontaneous transitions that occur independently of quantum interference, whereas the

dashed lines indicate transitions that are significantly reduced by quantum interference.
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that are not significantly affected by quantum interference, whereas dashed lines

indicate transitions that are strongly modified by quantum interference, in that

their transition dipole moments decrease with increasing p and vanish for p ¼ 1.

We see from Fig. 13 that quantum interference strongly affects transition rates

from the antisymmetric state to the states of the manifold below. Thus, the

antisymmetric state becomes a dark state in the limit of a strong interference,

p � 1. Moreover, it can be found from the master equation (64) and the dressed

state (132) that the steady-state population Pa ¼
P

Nha;Njrja;Ni of the

antisymmetric state is given by

Pa ¼ 1

1 þ u
w
ð1 � cosyÞ ð139Þ

where

u ¼ 2	2 	sa þ 	s� þ 	�s þ
	1ð	s� þ 1

4
	1Þ

2ð	2 þ 1
2
	1Þ

" #

w ¼ 	2ð	sa þ 	s�Þ þ
1

2
	1	sa ð140Þ

and 	ij ¼ 	i;N; j;N�1. Hence, for small y the antisymmetric state is strongly

populated, and the population can be trapped in the antisymmetric state ðPa ¼ 1Þ
when y ¼ 0.

Figure 13, together with the transition dipole moments and transition rates,

provides a simple interpretation of the absorption rate shown in Fig. 11.

According to Eq. (139), the emissive peak in the absorption rate appears on

an almost completely inverted transition ðja;Ni � j�;N � 1iÞ, whose dipole

moment is significantly reduced by quantum interference. One could expect that

the weaker field should not couple to an almost canceled dipole moment.

However, we have assumed that the probe field couples only to the dipole

moment l12. From Eq. (136), we find that the coupling strength of the probe

field to the transition ja;Ni � j�;N � 1i is proportional to 1
2
bl12 despite the

fact that the total dipole moment of the transition is much smaller,

la;N;�;N�1 ¼ 1
2
bl12 � 1ffiffi

2
p al32. The absorptive peak, seen in Fig. 11 at the

frequency o1 � 
, appears on the noninverted transition j�;Ni� ja;N � 1i
with the transition dipole moment 1

2
bl12. Since the absolute values of the

population difference on the ja;Ni � j�;N � 1i and j�;Ni � ja;N � 1i transi-

tions are the same and the coupling strengths of the weaker field to the

transitions are equal, la;N;�;N�1 ¼ l�;N;a;N�1 ¼ 1
2
bl12, the absolute values of

the absorptive and emissive peaks in the absorption rate are the same indepen-
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dent of the ratio r ¼ 	1=	2. One can see from Fig. 13 that there are two

transitions, one emissive ðja;Ni � js;N � 1iÞ and one absorptive

ðjs;Ni � ja;N � 1iÞ, which contribute to the central structure at d ¼ 0. Since

the absolute values of the population difference on these transitions are the same

and the coupling strengths of the weaker field to these transitions are equal,

ls;N;a;N�1 ¼ la;N;s;N�1 ¼ 1
2
abl12, these two contributions cancel each other

leading to a transparency of the weaker field at d ¼ 0.

The physical origin of the gain features predicted by Menon and

Agarwal [48], shown in Fig. 12, can also be explained with the help of the

energy-level diagram of Fig. 13 and the transition dipole moments (136). As we

have already shown in Eq. (139), for p � 1 almost all the population is trapped

in the state ja;Ni. Therefore, the weaker field can be amplified on the

ja;Ni � js;N � 1i and ja;Ni � j�;N � 1i transitions, and can be absorbed

on the ja;N � 1i � js;Ni and ja;N � 1i � j�;Ni transitions. Since the weaker

field couples exclusively to l32, the transition ja;N � 1i � j�; Ni, whose dipole

moment is proportional to l12, is transparent for the weaker field. The coupling

strength of the weaker field to the ja;Ni � j�;N � 1i transition is proportional

to affiffi
2

p l32, indicating that the field can be amplified on this transition and the

amplification is not much affected by the ratio r. It is seen from Fig. 13 that at

d ¼ 0 the probe couples to three transitions. The transition ja;Ni ! ja;N � 1i
is transparent for the probe because it occurs between two states of the same

population. Therefore, the absorptive/emissive properties result from the cou-

pling of the probe to the js;Ni � ja;N � 1i and ja;Ni � js;N � 1i transitions.

For y � 0 almost all the population is trapped in the antisymmetric state, and

then the probe is strongly absorbed on the js;Ni ! ja;N � 1i transition, but is

amplified on the ja;Ni ! js;N � 1i transition. According to Eq. (138), the later

is a dark transition. Since the absolute values of the population difference

between the states are the same for both transitions, the absorptive/emissive

properties at d ¼ 0 depend solely on the relation between the transition rates.

From Eq. (136), we find that the coupling strength of the probe beam to the

transition ja;Ni � js;N � 1i is proportional to 1ffiffi
2

p a2l32, whereas the coupling

strength to the transition js;Ni � ja;N � 1i is proportional to 1ffiffi
2

p b2l32. Thus,

the absorptive/emissive properties at d ¼ 0 depend on the difference

ðb2 � a2Þ ¼ 1
2
b2ð2 � rÞ. For r < 2 the difference is positive, indicating that

the weaker field is absorbed at d ¼ 0, and is amplified for r > 2. These simple

dressed-atom predictions are in excellent agreement with the numerical calcula-

tions shown in Fig. 12.

Thus, in terms of the quantum dressed states, the gain features predicted by

Menon and Agarwal [48] actually appear on completely inverted transitions

whose dipole moments are canceled by quantum interference. Therefore, the

gain features can be regarded as the amplification on dark transitions [51].
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VII. EFFECT OF QUANTUM INTERFERENCE ON
PHOTON CORRELATIONS

In view of the interesting quantum interference effects in the fluorescence and

absorption spectra, it is natural to study the influence of quantum interference on

the second-order correlation function of the fluorescence field emitted from a

three-level atom. We will illustrate this for a V-type three-level atom consisting

of two excited states coupled to a ground state by electric dipole interactions

and driven by a coherent laser field. These correlations have been investigated

by Hegerfeldt and Plenio [52] for an incoherently driven atom. The results show

that the intensity correlation may exhibit quantum beats despite the incoherent

pumping. The case of excitation by two coherent fields has been considered by

Manka et al. [53], who showed how the resonance fluorescence and intensity–

intensity correlation spectra on one transition can be influenced by the intensity

of the driving field on the other transition [54,55]. In particular, they demon-

strated that the decay rate of the intensity–intensity correlation spectrum could

be reduced in this way. Jagatap et al. [56] and Huang et al. [57] have also

calculated the intensity correlations in a three-level ladder system driven by two

coherent fields and have shown that the correlations can have secondary

oscillations, in addition to the Rabi oscillations.

We concentrate on the role of quantum interference in the correlation of

photons emitted from a coherently driven V-type atom, recently analyzed

by Swain et al. [58]. We calculate the normalized second-order two-time

correlation function gð2ÞðR; t;R; t þ tÞ for the fluorescent field emitted from a

three-level V-type atom driven by a coherent laser field coupled to both atomic

transitions. The fluorescence field is observed by a single detector located at a

point R ¼ R�R, where �R is the unit vector in the direction of the observation.

As we have shown in Sec. III.A, the second-order correlation function of the

fluorescence field depends on correlation functions of the atomic dipole

moments hSþ
i ðtÞSþ

j ðt þ tÞS�
l ðtÞS�

j ðtÞi, which correspond to different processes

including photon emissions from a superposition of the excited levels. There-

fore, we write the correlation functions Gð1ÞðR; tÞ and Gð2ÞðR; t;R; t þ tÞ in

terms of the symmetric and antisymmetric superposition states as

Gð1ÞðR; tÞ ¼ 1

ð	1 þ 	2Þ
fð	2

1 þ 	2
2 þ 2p	1	2ÞhSþ

s ðtÞS�
s ðtÞi

þ 2ð1 � pÞ	1	2hSþ
a ðtÞS�

a ðtÞi

þ ð1 � pÞ
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
ð	1 � 	2Þ

� hSþ
s ðtÞS�

a ðtÞ þ Sþ
a ðtÞS�

s ðtÞig ð141Þ
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and

Gð2ÞðR; t;R; t þ tÞ ¼ 1

ð	1 þ 	2Þ2
fð	2

1 þ 	2
2 þ 2p	1	2Þ

� hSþ
s ðtÞUðt þ tÞS�

s ðtÞi

þ ð1 � pÞ
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
½2

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
hSþ

a ðtÞUðt þ tÞS�
a ðtÞi

þ ð	1 � 	2ÞhSþ
s ðtÞUðt þ tÞS�

a ðtÞi

þ ::hSþ
a ðtÞUðt þ tÞS�

s ðtÞi�g ð142Þ

where

Uðt þ tÞ ¼ ð	2
1 þ 	2

2 þ 2p	1	2ÞSþ
s ðt þ tÞS�

s ðt þ tÞ

þ ð1 � pÞ
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
f2

ffiffiffiffiffiffiffiffiffiffi
	1	2

p
Sþ

a ðt þ tÞS�
a ðt þ tÞ

þ ð	1 � 	2ÞfSþ
s ðt þ tÞS�

a ðt þ tÞ

þ Sþ
a ðt þ tÞS�

s ðt þ tÞgg ð143Þ

It is seen that in the bases of the symmetric and antisymmetric states, there

are three terms contributing to the first- and the second-order correlation

functions. The first term is from the transition jsi ! j2i, the second is from

the transition jai ! j2i, and the third term arises from the coupling between

them. When the decay rates are equal, 	1 ¼ 	2, then the transitions are

independent regardless of the mutual orientation of the atomic transition dipole

moments. Moreover, for parallel dipole moments ðp ¼ 1Þ, only the transition

jsi ! j2i contributes to the first- and second-order correlation functions,

indicating that in this case the system reduces to a two-level system. However,

correlations between the emitted photons can be significantly different from

those one would expect for a two-level system. We will illustrate this in two

examples of distinguishable and indistinguishable photons.

A. Distinguishable Photons

If the photons emitted from the excited states to the ground state are distingui-

shable, such as by having significantly different polarizations or frequencies,

then the following normalized second-order correlation functions of the steady-

state fluorescence intensity can be written as [57]

g
ð2Þ
ij ðtÞ ¼ lim

t!1
gð2ÞðR; t;R; t þ tÞ ¼ P2!jðtÞ

Pj

; i; j ¼ 1; 3 ð144Þ
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where

P2!jðtÞ ¼
hSþ

i Sþ
j ðtÞS�

j ðtÞS�
i i

hSþ
i S�

i i
ð145Þ

is the probability that at time t þ t the atom is in the upper state jji of the

transition jji ! j2i if it was in the lower state j2i of the jii ! j2i transition

at time t, and Pi ¼ hSþ
i S�

i i is the steady-state population of the state jii. In

particular, we consider the following correlation functions

g
ð2Þ
11 ðtÞ ¼ g

ð2Þ
31 ðtÞ ¼

P2!1ðtÞ
P1

ð146Þ

g
ð2Þ
33 ðtÞ ¼ g

ð2Þ
13 ðtÞ ¼

P2!3ðtÞ
P3

ð147Þ

In Fig. 14, we plot the correlation functions (146) and (147) computed from the

equations of motion (96) for the case of degenerate transitions ð� ¼ 0Þ and two

different values of p: p ¼ 0 corresponding to the case of perpendicular dipole

moments, and p ¼ 0:99 corresponds to almost parallel dipole moments. We have

chosen p < 1 to avoid population trapping, which can appear for p ¼ 1. The

correlations show the characteristic photon antibunching effect [59] that gð2ÞðtÞ
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Figure 14. Second-order correlation functions g
ð2Þ
11 ðtÞ and g

ð2Þ
33 ðtÞ for 	1 ¼ 	2 ¼ 	;�L ¼

� ¼ 0;
1 ¼ 
2 ¼ 5	, and different values of p: p ¼ 0:99 (solid line), p ¼ 0 (dashed line).
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vanishes identically for t ¼ 0 and increases with increasing t. This reflects the

fact that the detection of a photon at time t þ t, after the detection of a photon at

time t, is impossible if t ¼ 0; and is unlikely until t increases to a value of the

order of ð2
Þ�1p. For both values of p the correlation function oscillates with the

Rabi frequency of the driving field and there is little difference between the plots

for p ¼ 0 and p ¼ 0:99. The shape of the oscillations resembles that known for a

two-level atom [59], which indicates that the atomic dipole moments oscillate

independently, regardless of the value of p.

In Fig. 15, we plot the correlation functions for the same parameters as in

Fig. 14, but now � 6¼ 0. We first observe that the behavior of the correlation

functions is qualitatively different to the case where � ¼ 0. For correlated

dipole moments with p ¼ 0:99, the values of g
ð2Þ
11 ðtÞ and g

ð2Þ
33 ðtÞ remain below

unity for all times. This shows that for any t the probability of emission of two

photons from levels j1i or j3i is very small. We can interpret this as extended

simultaneous periods of darkness in the fluorescence from the two atomic

transitions; after detection of a photon at time t ¼ 0; detection of another

photon at time t > 0; emitted from levels j1i or j3i; is very unlikely. We point

out that the simultaneous periods of darkness appear only for correlated

transitions with p 6¼ 0. Dark periods of fluorescence have been predicted by

Cook and Kimble [60] and Pegg et al. [61] for a V-type atom with orthogonal

dipole moments of the transitions and significantly different decay rates 	1 and
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Figure 15. Second-order correlation functions g
ð2Þ
11 ðtÞ and g

ð2Þ
33 ðtÞ as a function of gt=p

ðg ¼ ð	1 þ 	2Þ=2Þ for 	1 ¼ 	2 ¼ 	;�L ¼ 0;� ¼ 5	;
1 ¼ 
2 ¼ 5	, and different values of p:

p ¼ 0:99 (solid line), p ¼ 0 (dashed line).
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	2. In their case the atom ‘‘prefers’’ to stay in the transition with the larger

decay rate (strong transition) and there is a small probability of finding the

system in the other (weak) transition. The extended dark periods, predicted for

the V-type atom with almost parallel dipole moments, appear simultaneously on

both transitions independent of the decay rates. This indicates that in the

presence of quantum interference the atomic states j1i and j3i are not the

preferred radiative states of the atom.

B. Indistinguishable Photons

We now turn to the situation in which the photons emitted from the two atomic

transitions are not distinguishable. This can happen when the atomic transition

dipole moments are exactly parallel. Then the detector responds to the total

field (30) for which the correlation functions are given by Eqs. (141) and (142).

However, even for p � 1, we can still distinguish between photons emitted from

the jsi ! j2i and jai ! j2i transitions as they can have different polarizations.

This is easy to see from Eqs. (107) and (108), where the dipole moments ls and

la of the jsi ! j2i and jai ! j2i transitions, respectively, are oriented in

different directions, unless l1 ¼ l2 and then la ¼ 0.

Therefore, we consider separately the following correlation functions

gð2Þ
ss ðtÞ ¼ P2!sðtÞ

Ps

ð148Þ

gð2Þ
aa ðtÞ ¼

P2!aðtÞ
Pa

ð149Þ

In Fig. 16, we plot the correlation functions (148) and (149) for non-

degenerate transitions with � ¼ 5	. Again, the solid line represents p ¼ 0:99

and the dashed line, p ¼ 0. It is apparent from the graphs that with quantum

interference ðp ¼ 0:99Þ, there are very strong correlations of photons on the

jsi ! j2i transition, whereas the photons are strongly anticorrelated on the

jai ! j2i transition. The correlation function g
ð2Þ
ss ðtÞ oscillates with 2

ffiffiffi
2

p

 and

attains the maximum value at time t ¼ ð2
ffiffiffi
2

p

Þ�1p. Moreover, the correlations

decay at a very low rate and it takes a time in excess of 300p before it gets close

to unity. The correlation function g
ð2Þ
aa ðtÞ oscillates with

ffiffiffi
2

p

 and in the

presence of quantum interference is smaller than unity for all times, whereas

the values can be larger than unity, with the maximum value of around 2.8, for

p ¼ 0.

We wish to emphasize that under appropriate conditions of p � 1 the

maximum value of g
ð2Þ
ss ðtÞ can be made huge, with values of the order of

hundreds, whereas the maximum value of g
ð2Þ
ss ðtÞ remains of the order of unity

for p ¼ 0: Indeed, it is seen from Fig. 16 that the maximum value of g
ð2Þ
ss ðtÞ is

about 22.5 for p ’ 1. Swain et al. [58] have shown that even larger values are
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possible. For example, if we reduce the value 
 to 0:5	; leaving other

parameters unchanged, then the maximum value can increase to almost 1500.

As we have seen from Figs. 14–16, the effect of quantum interference on the

second-order correlation function, is very sensitive to the splitting � of the

excited levels. For degenerate excited levels ð� ¼ 0Þ, the photon emissions are

similar to those of a two-level atom, independent of quantum interference. For

large splittings, the correlation functions g
ð2Þ
aa ðtÞ and g

ð2Þ
ij ðtÞ; i; j ¼ 1; 3 are

smaller than unity for all times t, while g
ð2Þ
ss ðtÞ exhibits strong correlations

ðgð2Þ
ss ðtÞ � 2Þ for t � ð2

ffiffiffi
2

p

Þ�1p, which decay at a very low rate.

We can explain these features by considering the equations of motion (96)

for the density matrix elements. When � ¼ 0, and the laser is tuned to the

middle of the upper levels splitting the states j1i and j3i are equally driven by

the laser and the coherences r12 and r32 oscillate in phase with frequency �L.

The coherences are directly coupled by the cross-damping term 	12. However,

for a strong driving field ð
 � 	Þ the Rabi oscillations dominate over the

spontaneous exchange of photons, resulting in independent oscillations of the

atomic dipole moments.
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Figure 16. Second-order correlation functions gð2Þss ðtÞ and gð2Þaa ðtÞ for 	1 ¼ 	2 ¼ 	;

� ¼ 5	;
1 ¼ 
2 ¼ 5	, and different values of p: p ¼ 0:99 (solid line), p ¼ 0 (dashed line).
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The situation is different when � 6¼ 0. In this case the coherences oscillate

with opposite phases indicating that there is an exchange of photons between

the states j1i and j3i, which prevents photons being emitted from the atomic

levels. The coherences oscillate with ��=2, which introduces the modulation of

the Rabi oscillations, seen in Fig. 15. The exchange of photons between the

atomic levels is better seen in the basis of the symmetric and antisymmetric

states (107) and (108). In terms of these states, setting 	1 ¼ 	2 ¼ 	 for

simplicity, the equations of motion for the populations

_rss ¼ � 1

2
	ð1 þ pÞrss �

1

2
i�ðrsa � rasÞ

� i
ffiffiffi
2

p

ðrs2 � r2sÞ ð150Þ

_raa ¼ � 1

2
	ð1 � pÞraa þ

1

2
i�ðrsa � rasÞ ð151Þ

It is evident that the antisymmetric state is populated by the coherent

coupling to the symmetric state. Since the decay rate of the antisymmetric

state, 	ð1 � pÞ, is very small for p � 1, the population stays in this state for a

long time. If � ¼ 0 the state is decoupled from the symmetric state and raaðtÞ is

zero if its initial value is zero. In the latter case the system reduces to a two-level

atom. In the former case the transfer of the population to a slowly decaying state

leaves the symmetric state almost unpopulated even if the driving field is strong.

This is shown in Fig. 17, where we plot the steady-state populations rss as a
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Figure 17. The stationary population of the symmetric state jsi as a function of �L for

	2 ¼ 	1 ¼ 	; d12 ¼ 0:1	;� ¼ 5	; p ¼ 1, and different 
: 
 ¼ 	 (solid line), 
 ¼ 5	 (dashed

line), 
 ¼ 10	 (dashed–dotted line).
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function of �L. It is seen that the symmetric state is unpopulated for �L ¼ 0.

This indicates that in the presence of quantum interference, the driving field

does not saturate the transition j2i ! jsi; even for very large Rabi frequencies.

The lack of population in the state jsi increases the probability of returning the

atom to this state from the ground state by the driving field. Consequently,

g
ð2Þ
ss ðtÞ attains a very large value at time t ¼ ð2

ffiffiffi
2

p

Þ�1p, corresponding to half

of the Rabi cycle between j2i and jsi.

VIII. PREPARATION OF TWO NON-ORTHOGONAL
DIPOLE MOMENTS

The unusual effects induced by the quantum interference between two transi-

tions in the multilevel systems, discussed in the previous sections, may occur

only if the dipole matrix elements of the transitions involved are nonorthogonal:

l1 � l2 6¼ 0 ð152Þ

This represents a formidable practical problem, as one is very unlikely to find

isolated atoms with two nonorthogonal dipole moments and quantum states close

in energy. Consider, for example, a V-type atom with the upper states j1i, j3i and

the ground state j2i. The evaluation of the dipole matrix elements produces the

following selection rules in terms of the angular momentum quantum numbers:

J1 � J2 ¼ �1; 0, J3 � J2 ¼ �1; 0, and M1 � M2 ¼ M3 � M2 ¼ �1; 0. Since

M1 6¼ M3, in many atomic systems, l12 is perpendicular to l32 and the atomic

transitions are independent. Xia et al. [62] have found transitions with parallel

and antiparallel dipole moments in sodium molecules (dimers) and have

demonstrated experimentally the effect of quantum interference on the

fluorescence intensity. We discuss the experiment in more details in the next

section. Here, we point out that the transitions with parallel and antiparallel

dipole moments in the sodium dimers result from a mixing of the molecular

states due to the spin–orbit coupling.

A. External Driving Field Method

A mixing of atomic or molecular states can be implemented by applying

external fields. To illustrate this method, we consider a V-type atom with the

upper states connected to the ground state by perpendicular dipole moments

ðl12 ? l32Þ. When the two upper states are coupled by a resonant microwave

field, the states become a linear superposition of the bare states

jai ¼ 1ffiffiffi
2

p ðj1i þ j3iÞ

jbi ¼ 1ffiffiffi
2

p ðj1i � j3iÞ ð153Þ
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It is easily to find from Eq (153) that the dipole matrix elements between the

superposition states and the ground state j2i are

la2 ¼ 1ffiffiffi
2

p ðl12 þ l32Þ

lb2 ¼ 1ffiffiffi
2

p ðl12 � l32Þ ð154Þ

When jl12j 6¼ jl32j, the dipole moments la2 and lb2 are not perpendicular.

However, the dipole moments cannot be made parallel or antiparallel.

An alternative method in which one could create a V-type system with

parallel or antiparallel dipole moments is to apply a strong laser field to one of

the two transitions in a �-type atom. The scheme is shown in Fig. 18. When

the dipole moments of the j1i ! j3i and j2i ! j3i transitions are perpendicular,

the laser exclusively couples to the j2i ! j3i transition and produces dressed

states

jai ¼ sinfj2i þ cosfj3i
jbi ¼ cosfj2i � sinfj3i ð155Þ

where

cos 2f ¼ 1

2
þ �L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

0 þ�2
L

p ð156Þ

µ13 µb1

|3>

|1> |1>

|2>

|a>

|a>

|b>

|b>

(b)(a)

µ23 ωL

∆L

Ω
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Figure 18. Laser induced V-type system with nondegenerate transitions. A laser field applied

to the j2i ! j3i transition of a � system creates nondegenerate dressed states separated by


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

0 þ�2
L

p
. The subsystem with the upper dressed atates jai, jbi and the ground state j1i

behaviors as a V-type system with parallel dipole moments.
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where �L is the detuning of the laser frequency from the atomic transition and


0 is the on-resonance Rabi frequency of the laser field.

From Eq (155), we find that the dipole matrix elements between the dressed

states and the ground state j1i are

la1 ¼ l13 sinf

lb1 ¼ l13 cosf ð157Þ

Thus, the subsystem with the upper dressed states jai; jbi and the ground state j1i
behaviors as a V-type system with parallel dipole moments. This system has an

advantage that the magnitudes of the transition dipole moments, and the upper-

level splitting can be controlled by the Rabi frequency and detuning of the

driving laser field.

B. Dressed-Atom Approach

Transitions with parallel or antiparallel dipole moments can be created not only

in multilevel systems but also in a two-level system driven by a polychromatic

field [63]. In order to show this, we consider a two-level atom driven by a

bichromatic field composed of a strong resonant laser field and a weaker laser

field detuned from the atomic resonance by the Rabi frequency of the strong

field. The effect of the strong field alone is to produce dressed states [35]

j1;Ni ¼ 1ffiffiffi
2

p ðjg;Ni � je;N � 1iÞ

j2;Ni ¼ 1ffiffiffi
2

p ðjg;Ni þ je;N � 1iÞ ð158Þ

with energies E1;2 ¼ �hðNo0 � 1
2

Þ, where N is the number of photons in the field

mode, 
 is the Rabi frequency, and o0 is the atomic transition frequency.

The dressed states are shown in Fig. 19a. We see that in the dressed atom

basis the system is no longer a two-level system. It is a multilevel system with

three different transition frequencies, o0 and o0 � 
, and four nonvanishing

dipole matrix elements lij;N ¼ hN; ijljj;N � 1i:

l11;N ¼ l12;N ¼ �l21;N ¼ �l22;N ¼ 1

2
l ð159Þ

connecting dressed states between neighboring manifolds. There are transitions

with parallel and antiparallel dipole moments that oscillate with frequencies o0

and o0 � 
. This makes the system an ideal candidate for quantum interference.

Moreover, there are two transitions with antiparallel dipole moments, l11;N and

l22;N , which oscillate with the same frequency o0. However, they are not coupled
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(correlated), preventing these dipole moments from being a source of quantum

interference. This can be shown by calculating the correlation functions of the

dipole moment operators of the dressed-atom transitions sþ
ijN ¼ ji;NihN � 1; jj;

ði; j ¼ 1; 2Þ. The correlation functions hsþ
iiNs

�
jjNi, ði 6¼ jÞ, are equal to zero,

showing that the dipole moments oscillate independently.

In order to correlate them, we can introduce a second (weaker) laser field of

frequency o0 � 
 and the Rabi frequency 
2 < 
, which couples the degen-

erate transitions with dipole moments l11;N and l22;N�1, as indicated in Fig. 19b.

Treating the second field perturbatively, at zeroth order the coupling results in

new ‘‘doubly dressed’’ states [63]

j�N; n�i ¼ 1ffiffiffi
2

p ðj2;N � n � 1;M þ n þ 1i � j1;N � n;M þ niÞ ð160Þ

where M is the number of photons in the weaker-field mode, and �N ¼ N þ M is

the total number of photons. The doubly dressed states are entangled states of the

‘‘singly’’ dressed states (158), and the states of the second driving field.

We now can calculate the transition dipole moments ln�;n� between the

doubly dressed states, corresponding to the transitions at o0, and find that the

dipole moments are equal to zero. Thus, in the doubly driven atom the effective

dipole moments at o0 are zero due to quantum interference between the two
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Figure 19. (a) Dressed states of a strongly driven two-level atom. The arrows indicate the

allowed spontaneous transitions with dipole moments � 1
2
m. (b) A second coherent field (dashed

arrow) of frequency o0 � 
 couples the dipole moments of the two degenerate transitions at o0.

142 zbigniew ficek



degenerate dipole moments of opposite phases. A dramatic consequence of this

cancellation of the dipole moments is the disappearance of the central compo-

nent in the fluorescence spectrum of the doubly driven two-level atom [63].

C. Preselected Polarization Method

Patnaik and Agarwal [64] and Zhou and Swain [65] have proposed a method

involving a three-level atom with perpendicular dipole moments interacting

with a single-mode cavity of a preselected polarization. In this system the

polarization index s of the cavity mode is fixed to only one of the two possible

directions. This arrangement of the polarization can lead to a nonzero coherence

term 	12 in the master equation of the system, even if the dipole moments of the

atomic transitions are perpendicular. If the polarization of the cavity field is

fixed, say, eks ¼ ekx, the polarization direction along the x-quantization axis,

then the cross-damping rate (58) is given by

	12 ¼
ffiffiffiffiffiffiffiffiffiffi
	1	2

p
cosacosb ð161Þ

where aðbÞ is the angle between l1ðl2Þ and the preselected polarization vector,

and aþ b ¼ 90o.

Zhou and Swain [65] have also shown that the idea of the preselected

polarization can be applied to engineer a system with antiparallel dipole

moments. Zhou [66] has extended the method to a cascade three-level atom

coupled to a frequency-tunable cavity mode in a thermal state.

D. Anisotropic Vacuum Approach

Agarwal [67] has proposed a totally different mechanism to produce atomic

transitions with parallel dipole moments. In this method the interference

between two perpendicular dipole moments can be induced by an anisotropic

vacuum field. Using the second-order perturbation theory, it can be shown that

transition probability from the ground state jgi of a four-level system to the final

state j f i through two intermediate states jii and j ji is given by

Tgf ¼
1

�h2

X
i;j


i
j

l�
fjCðoL � ofgÞlfi

ðoig � oLÞðojg � oLÞ
ð162Þ

where 
ið
jÞ is the Rabi frequency of the jgi ! jiiðjgi ! j jiÞ transition, oL is

the frequency of the driving laser, and CðoL � ofgÞ is the Fourier transform of

the tensor the antinormally ordered correlation function of the vacuum field

operators. The anisotropy of the vacuum enters through the tensor C. With the

perpendicular dipole moments lfj and lfi, the transition probability responsible

for the quantum interference between the jii ! j f i and j ji ! j f i transitions can

be different from zero only if the tensor C is anisotropic. For isotropic vacuum
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the tensor C is proportional to the unit tensor and then the transition probability

vanishes for lfi ? lfj.

IX. EXPERIMENTAL EVIDENCE OF
QUANTUM INTERFERENCE

In 1996, Xia et al. [62] published the first experimental demonstration of

constructive and destructive interference effects in spontaneous emission. In the

experiment they used sodium dimers, which can be modeled as five-level

molecular systems with a single ground level, two intermediate and two upper

levels, driven by a two-photon process from the ground level to the upper

doublet. By monitoring the fluorescence from the upper levels, they observed

that the total fluorescence intensity, as a function of two-photon detuning, is

composed of two peaks on transitions with parallel and three peaks on

transitions with antiparallel dipole moments. The observed variation of the

number of peaks with the mutual polarization of the dipole moments gives

compelling evidence for quantum interference in spontaneous emission.

Agarwal [68] has provided an intuitive picture for the observed spontaneous

emission cancellation in terms of interference pathways involving a two-photon

absorption process. Berman [69] has shown that the experimentally observed

cancellation of spontaneous emission involving a two-photon absorption pro-

cess can be interpreted in terms of population trapping. Although a cancellation

of spontaneous emission is present with a two-photon excitation process, no

variation of the number of peaks with the polarization of the dipole moments

exist in the fluorescent intensity. Wang et al. [70] have presented a theoretical

model of the observed fluorescence intensity that explains the variation of the

number of the observed peaks with the mutual polarization of the molecular

dipole moments.

The purpose of this section is to discuss the experimental scheme demon-

strating the quantum interference effects in the fluorescence intensity and to

explore the theoretical approach of Wang et al. [70] that explains the observed

intensity profile.

A. Energy Levels of the Molecular System

The energy-level scheme of the molecular system considered in the experiment

is shown in Fig. 20. The five-level molecule consists of two upper levels ja1i
and ja2i, two intermediate levels jbi and jdi, and a single ground level jci. The

upper levels are separated by the frequency o12, which is much smaller than the

frequencies o1b and o2b of the ja1i ! jbi and ja2i ! jbi transitions and the fre-

quencies o1d and o2d of the ja1i ! jdi and ja2i ! jdi transitions. As in the

sodium dimers used in the experiment, we assume that the frequencies o1b and

o2b correspond to the visible region, while the frequencies o1d and o2d
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correspond to ultravioled region and are significantly different from the

remaining frequencies.

In the molecule, the one-photon transitions ja1i; ja2i ! jbi; jdi ! jci are

connected by electric dipole moments, whereas the transition ja1i ! ja2i and

the two-photon transitions ja1i; ja2i ! jci are forbidden in the electric dipole

approximation. The transition dipole moments lba1
and lba2

are parallel,

whereas the transition dipole moments lda1
and lda2

are antiparallel.

The system is driven by a single-mode tunable laser of an amplitude EL and

frequency oL coupled to the two-photon transitions jci ! ja1i; ja2i. The

coupling strength of the laser field to the transitions is determined by the

two-photon Rabi frequency

Q ¼ 1

2

X
m

mmcmma1
E2

L

oL � omc

¼ 1

2

X
m

mmcmma2
E2

L

oL � omc

ð163Þ

where EL ¼ jELj, and the sums are taken over intermediate virtual levels m.

B. Master Equation of the System

In the experiment Xia et al. [62] observed the steady-state intensity of the

fluorescence field emitted on the visible and ultraviolet molecular transitions.

| b>

| d>

| c>

ω1b

ωdc

ω12

ω2b

ωbc

ωL

ω0

ωL

ωL

δ

∆

ω2d ω1d

| a1>

| a2>

Figure 20. Energy-level structure of the molecular system considered by Xia et al. [62].
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The intensity is proportional to the first-order correlation function Gð1ÞðR; tÞ
which, according to Eq. (35), can be expressed in terms of the molecular dipole

operators, or equivalently, in terms of matrix elements of the density operator of

the molecular system. Using Eq. (35), we can write the intensities of the

observed fluorescence fields on the visible ðIvÞ and ultraviolet ðIuÞ transitions as

Iv ¼ 	a1br11 þ 	a2br22 þ 2pv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	a1b	a2b

p
Reðr12Þ

Iu ¼ 	a1dr11 þ 	a2dr22 þ 2pu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	a1d	a2d

p
Reðr12Þ ð164Þ

where 	ij is the spontaneous decay rate of the jii ! j ji transition, r11 and r22 are

the steady-state populations of the levels ja1i and ja2i, r12 is the steady-state

coherence between them, and u and v stand for the ultraviolet and visible

transitions, respectively.

We find the density matrix elements from the master equation of the system.

In the frame rotating with the laser frequency oL and within a secular

approximation, in which we ignore all terms oscillating with ðo1d � oLÞ and

ðo2d � oLÞ, the master equation for the density operator of the system is given

by

q
qt
rðtÞ ¼ � i

�h
½HðtÞ; rðtÞ� þLdrðtÞ ð165Þ

where

HðtÞ ¼ ��hð�� 1

2
o12ÞSa1a1

� �hð�þ 1

2
o12ÞSa2a2

� �h

2
ð�þ 2dÞSbb þ �h½QðSa1c þ Sa2cÞ þ H:c:� ð166Þ

Ld ¼ 1

2
	vð1 þ pvÞD½Sba1

þ Sba2
� þ 1

2
	vð1 � pvÞD½Sba1

� Sba2
�

þ 1

2
	uð1 þ puÞD½Sda1

þ Sda2
� þ 1

2
	uð1 � puÞD½Sda1

� Sda2
�

þ 	bD½Scb� þ 	dD½Scd�; ð167Þ

and Sij � jiih jj are projection operators that represent the energies of the

molecular levels ði ¼ jÞ and transition dipole moments ði 6¼ jÞ. In Eqs. (166)

and (167), � ¼ 2ðoL � o0Þ is the two-photon detuning between the laser

frequency oL and the mean frequency o0 of the upper levels relative to the

ground level, d ¼ o0 � ob is the frequency difference between o0 and the

frequency ob of the jbi ! jci transition. The parameters 	v ¼ 	a1b ¼ 	a2b and

	u ¼ 	a1d ¼ 	a2d denote the spontaneous decay rates of the visible and

146 zbigniew ficek



ultraviolet transitions, respectively; 	b ð	dÞ stands for the spontaneous decay

rate from the intermediate level jbi ðjdiÞ to the ground level jci; and D is a

superoperator defined for arbitrary operators A and B as

D½A�B � ABAy � 1

2
fAyA;Bg ð168Þ

The master equation (165) provides the basis for our analytical and numerical

discussions of quantum interference effects in the molecular system.

C. Two-Photon Excitation

The master equation (165) leads to a closed system of 25 equations of motion

for the density matrix elements. Since the laser field does not couple to the level

jdi, the system of equations splits into two subsystems: a set of 17 equations of

motion directly coupled to the driving field and the other of 8 equations of

motion not coupled to the driving field. It is not difficult to show that the steady-

state solutions for the 8 density matrix elements are zero. Using the trace

property, one of the remaining equations can be eliminated, and the system of

equations reduces to the 16 coupled linear inhomogeneous equations.

Consider the weak-field limit where Q is much smaller than the spontaneous

decay rates and assume, for simplicity, that the decay rates of the upper levels

on the visible and ultraviolet transitions are equal, 	v ¼ 	u ¼ 	. In this case, we

can solve the system analytically, and find that the steady-state populations and

coherences appearing in Eq. (164) are

r11 ¼ Q2

ð�þ 1
2
o12Þ2 þ 	2

ð169Þ

r22 ¼ Q2

ð�� 1
2
o12Þ2 þ 	2

ð170Þ

Reðr12Þ ¼
Q2ð�2 � 1

4
o2

12 þ 	2Þ
½ð�þ 1

2
o12Þ2 þ 	2�½ð�� 1

2
o12Þ2 þ 	2�

ð171Þ

It is seen that the populations and coherence exhibit resonances at � ¼ � 1
2
o12,

corresponding to the two-photon resonances of the laser field with the jci ! ja1i
and jci ! ja2i transitions. Hence, the fluorescence intensity will exhibit two

peaks located at � ¼ � 1
2
o12.

In Fig. 21, we plot the fluorescence intensity as a function of � for the visible

and unvisible transitions. It is evident that the intensity profile is composed of

two peaks located at � ¼ � 1
2
o12, and the amplitudes of the peaks are not

sensitive to p. The intensity is sensitive to p only about � ¼ 0 and can be
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completely suppressed for pv ¼ 1 transitions. This is in agreement with the

prediction by Agarwal [68] that the two-photon excitation process involving the

ja1i and ja2i levels can lead to cancellation of spontaneous emission at the two-

photon resonance � ¼ 0.

In the experiment [62], however, a pronounced central peak at � ¼ 0 was

observed, in addition to the sideband peaks located at � ¼ � 1
2
o12, on the

ultraviolet transitions with antiparallel dipole moments. According to Eq. (164),

the theory does not predict the central peak for the pu ¼ �1 transitions. Thus,

with the two-photon excitation the fluorescence intensity exhibits two peaks

regardless of the mutual orientation of the transition dipole moments. Wang et

al. [70] have concluded that apart from the two-photon excitation process there

must be some other processes involved in the dynamics of the system, and have

suggested a two-step one-photon excitation in addition to the two-photon

process.

D. One- and Two-Photon Excitations

Following the approach of Wang et al. [70], we suppose that the molecule is

excited not only by the two-photon process but also by a two-step one-photon

process involving the intermediate level jbi. This channel of the excitation was
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Figure 21. The fluorescence intensity as a function of � for Q ¼ 10�4	, d ¼ 0, o12 ¼ 6	 and

	b ¼ 	d ¼ 	. The solid line shows the intensity on the ultraviolet transition ðpu ¼ �1Þ, the dashed

line shows the intensity on the visible transition ðpv ¼ 1Þ, and the dashed–dotted line indicates the

intensity for a transition with perpendicular dipole moments ðp ¼ 0Þ.
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possible in the experiment as the one-photon transitions in the molecule are in

the visible region and their dipole moments are parallel [62]. Moreover, it is

stated in the experimental paper [62] that the two-photon transition in sodium

dimers was enhanced by a near-resonant intermediate level, indicating that the

laser could also couple the ground state jci to the upper states ja1i; ja2i via

cascaded one-photon transitions. Thus, the laser could also couple to the one-

photon transitions jci ! jbi and jbi ! ja1i; ja2i.
To illustrate the effect of the two-step one-photon coupling on the fluores-

cence intensity, we include into the Hamiltonian (166) the interaction of the

laser field with the one-photon transitions, and obtain

HðtÞ ¼ ��h �� 1

2
o12

� �
Sa1a1

� �h �þ 1

2
o12

� �
Sa2a2

� �h

2
ð�þ 2dÞSbb þ �h½QðSa1c þ Sa2cÞ þ H:c:�

þ �h

2
½
aðSa1b þ Sa2bÞ þ 
bSbc þ H:c:� ð172Þ

where 
a ¼ lba1
� EL=�h ¼ lba2

� EL=�h, and 
b ¼ lbc � EL=�h are the one-photon

Rabi frequencies of the jbi ! ja1i; ja2i and jci ! jbi transitions, respectively.

Following the same procedure as in Section III.C, we find that in the

presence of the two-step one-photon excitation and in the weak-field limit

ð
a;
b;Q � 	;	b;	dÞ the steady-state solutions for the relevant populations

and the coherence are

r11 ¼ 4
2
a


2
b

½ð�þ 2dÞ2 þ 	2
b�½ð�� 1

2
o12Þ2 þ 	2�

r22 ¼ 4
2
a


2
b

½ð�þ 2dÞ2 þ 	2
b�½ð�þ 1

2
o12Þ2 þ 	2�

Reðr12Þ ’
�16
2

a

2
b

ðo12Þ2½ð�þ 2dÞ2 þ 	2
b�

ð173Þ

The steady-state solution (173) shows that the populations of the upper levels

as well as the coherences exhibit resonant behaviors not only on the two-photon

resonances � ¼ � 1
2
o12 but also on the one-photon resonance � ¼ �2d. The

existence of the resonance at � ¼ 2d illustrates the occurrence of the two-step

one-photon excitation process. Hence, the fluorescence intensity will exhibit a

peak at � ¼ �2d of the linewidth 	b, and two sideband peaks located

at� ¼ � 1
2
o12 of the linewidth 	.
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Substituting Eq. (173) into Eqs. (164), we find that the fluorescence intensity

for the ultraviolet and visible transitions can be written as

Iu=v ¼
16	
2

a

2
b

o2
12

2ð1 � pu=vÞ
ð�þ 2dÞ2 þ 	2

b

(

þ 1

ð�� 1
2
o12Þ2 þ 	2

þ 1

ð�þ 1
2
o12Þ2 þ 	2

)
ð174Þ

Thus, the fluorescence intensity is composed of three Lorentzians: the central

peak located at � ¼ �2d and two sidebands located at � ¼ � 1
2
o12. In Fig. 22,

we plot the fluorescence intensity for a strong driving field obtained by numerical

integration of the master equation (165) for three different values of the

parameter p.

It is seen that the amplitude of the central peak depends strongly on the

mutual polarization of the dipole moments. The peak is absent in the intensity Iv

observed in the visible region with pv ¼ 1. For the fluorescence intensity Iu

observed in the ultravioled region with pu ¼ �1, the amplitude of the peak is

enhanced. The strong dependence of the amplitude of the central peak on the

mutual orientation of the molecular dipole moments is precisely the effect

observed in the experiment. We emphasize again that the presence of the central

peak in the fluorescent intensity results from the coupling of the driving laser to

the one-photon transitions. This peak would be present even if there were no

interference between the transitions (i.e., even if the dipole moments were

orthogonal with p ¼ 0). The interference leads to an enhancement (pu ¼ �1) or

cancellation (pv ¼ 1) of this central peak arising from cascaded one-photon

excitations.

The intensity profile shown in Fig. 22 is symmetric about � ¼ 0. However,

the experimentally observed fluorescent intensity was asymmetric about � ¼ 0.

Few factors could contribute toward the observed asymmetry. For example, the

decay rates from the two upper levels to the intermediate levels could be

unequal. Another reason could be that the central peak is not exactly at � ¼ 0.

The analytical solution (174) predicts the central peak to be at � ¼ �2d, and

the condition of d ¼ 0 implies that the energy of the level jbi is exactly half of

the mean energy of the upper levels. There is no reason to expect this condition

to be satisfied in the real molecule, and in fact it appears from the experimental

results that d is positive. In Fig. 23 we plot the fluorescence intensity for a

nonzero d. In this case the intensity profile is asymmetric and the asymmetry

increases with increasing d.

The experiment of Xia et al. [62] provides a nice demonstration of the

quantum interference effects in a multilevel system. Li et al. [71] have repeated

the two-photon experiment and claim that they have no observed the fluore-
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Figure 22. The fluorescence intensity as a function of � for 
a ¼ 
b ¼ 	;Q ¼ 10�4	;

d ¼ 0;o12 ¼ 6	 and 	b ¼ 	d ¼ 0:15	. The solid line shows the intensity on the ultraviolet

transition ðpu ¼ �1Þ, the dashed line shows the intensity on the visible transition ðpv ¼ 1Þ, and the

dashed–dotted line represents the intensity for a transition with perpendicular dipole moments

ðp ¼ 0Þ.
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Figure 23. Same as in Fig. 22, but d ¼ 0:3	.
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scence signal reported by Xia et al. [62]. The major disagreement between these

two experiments is found in the linewidths of the observed signals. However, a

detailed comparison of these two experiments and theoretical calculations of the

linewidths are rather difficult. In particular, the experimental conditions were

not sufficiently well defined, which considerably complicates the interpretation

of the observed signals and makes it difficult to resolve the disagreement

between the experiments. Despite these disagreements, the theoretical model

proposed by Wang et al. [70] correctly predicts the shape of the observed

intensity profile and the variation of the number of peaks with the polarization

of the dipole moments.
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I. INTRODUCTION

In the late twentieth century much attention has been paid to the investigation

of various quantum-optical states defined in a finite-dimensional Hilbert space of

operators, which are bounded and have a discrete spectrum. Yet, the idea of

creating finite-dimensional quantum-optical states was conceived much earlier.

In fact, back in 1931, Weyl’s formulation of quantum mechanics [1] opened the

possibility of studying the dynamics of quantum systems both in infinite-

dimensional (ID) and finite-dimensional (FD) Hilbert spaces. Weyl’s approach,

generalized by Schwinger [2], is based on the fact that the kinematical structure

of a physical system can be expressed by an irreducible Abelian group of unitary

representations of system space. For a given finite Abelian group there is a

unique class of unitarily equivalent, irreducible representations in FD space.

Hence, this formulation has provided the basis for studies of the behavior of the

harmonic oscillator in FD Hilbert spaces. In the 1970s, Santhanam and co-

workers contributed to the above-mentioned formulation in a series of papers [3].

To describe the interaction of an assembly of two-level atoms with a transverse

electromagnetic field, Radcliffe [4] and Arecchi et al. [5] introduced the atomic

(or spin) coherent states (also referred to as the directed angular-momentum

states [6]) as FD analogs of the conventional optical coherent states (CS) [7–9].

General formulation of coherent states in FD and ID Hilbert spaces was then

developed by Perelomov [10] and Gilmore et al. [11,12] (see also Refs. 13–15).

In the 1990s, various quantum-optical states were constructed in FD Hilbert

spaces in analogy to those in the ID spaces. In particular, (1) various kinds of FD

coherent states [16–24], (2) FD displaced number states [21], (3) FD even and

odd coherent states [21,24,25], (4) FD phase states [26], (5) FD phase coherent

states (also referred to as coherent phase states) [27–30], (6) FD squeezed states
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[31–34], (7) FD displaced phase states [28], or (8) FD even and odd phase

coherent states [35].

The interest in the FD quantum-optical states has been stimulated by the

progress in quantum-optical state preparation and measurement techniques [36],

in particular, by the development of the discrete quantum-state tomography

[37–42]. There are several other reasons for studying states in FD spaces:

1. We can treat FD quantum-optical states as those of a real single-mode

electromagnetic field, which fulfill the condition of truncated Fock

expansion. These states can directly be generated by the truncation

schemes (the quantum scissors) proposed by Pegg et al. [44] and then

generalized by other authors [45–47]. Alternatively, one can analyze

states obtained by a direct truncation of operators rather then of their Fock

expansion. Such an operator truncation scheme, proposed by Leoński et al.

[48–50], will be discussed in detail in the next chapter [51].

2. The formalism of FD quantum-optical states is applicable to other

systems described by the FD models as well, such as spin systems or

ensembles of two-level atoms or quantum dots. In such cases we should

talk about, for instance the z component of the spin and its azimuthal

orientation rather than about the photon number and phase. However, the

states studied here were first discussed in the quantum-optical papers and

we also will keep the terminology of quantum optics.

3. This analysis gives us a deeper insight into the Pegg–Barnett phase for-

malism [26] (for a review, see Ref. 43) of the Hermitian optical phase

operator constructed in (sþ1)-dimensional state Hilbert space. The key

idea of the Pegg–Barnett procedure is to calculate all the physical

quantities such as expectation values or variances in the FD space and

only then to take the limit of s ! 1. Bu�zek et al. [16] pointed out that all

quantities (in particular states) analyzed within the Pegg–Barnett forma-

lism should properly be defined in the same (s þ 1)-dimensional state space

before finally going over into the infinite limit. So, for better understanding

of the Pegg–Barnett formalism, it is useful to construct finite-dimensional

states and to know what exactly happens before taking the limit.

In this chapter, we apply a discrete Wigner function to describe FD quantum-

optical states. Wigner function is widely used in nonrelativistic quantum

mechanics as an alternative to the density matrix of quantum systems [52].

Although the original Wigner function applies only to systems with continuous

degrees of freedom, it can be generalized for finite-state systems as well [53].

Discrete Wigner function for spin-1
2

systems was introduced by O’Connell and

Wigner [54] and generalized for arbitrary spins by Wootters [55]. His definition

takes the simplest form for prime-number-dimensional systems. A similar
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construction of a discrete Wigner function for odd-dimensional systems was

suggested by a Cohendet et al. [56]. A number-phase discrete Wigner function,

a special case of the Wootters definition, was analyzed in detail by Vaccaro and

Pegg [57]. Another definition of Wigner function (for odd dimensions

equivalent to that of Wootters) was proposed by Leonhardt [37]. This approach

can readily be generalized to define a discrete Husimi Q function or, moreover,

discrete parameterized phase-space functions as was studied by Opatrný et al.

[58,59]. Another generalization of discrete Wigner function for Schwinger’s

FD periodic Hilbert space was analyzed by, for instance, Hakioǧlu [60]. The

Wigner function approach to FD systems can be developed from basic

principles as was shown, for example, by Wootters [55], Leonhardt [37], Lukš

and Peřinová [61], or Luis and Peřina [62]. Discrete Wigner function has

successfully been applied to quantum-state tomography of FD systems [37] (for

a review, see Ref. 42).

This work is intended as an attempt to present two essentially different

constructions of harmonic oscillator states in a FD Hilbert space. We propose

some new definitions of the states and find their explicit forms in the Fock

representation. For the convenience of the reader, we also bring together several

known FD quantum-optical states, thus making our exposition more self-

contained. We shall discuss FD coherent states, FD phase coherent states, FD

displaced number states, FD Schrödinger cats, and FD squeezed vacuum. We

shall show some intriguing properties of the states with the help of the discrete

Wigner function.

II. FD HILBERT SPACE

We shall discuss various states constructed in FD Hilbert space of harmonic

oscillator. Let us denote by HðsÞ the (s þ 1)-dimensional Hilbert space spanned

by number states fj0i; j1i; . . . ; jsig fulfilling the completeness and orthogonality

relations

1̂s ¼
Xs

n¼0

jnihnj ; hnjmi ¼ dn;m ð1Þ

where n;m ¼ 0; . . . ; s and 1̂s is the unit operator in HðsÞ. Thus, arbitrary

quantum-optical pure state in the FD Hilbert space can be defined by its Fock

expansion

jciðsÞ ¼
Xs

n¼0

CðsÞ
n jni �

Xs

n¼0

bðsÞ
n eijn jni ð2Þ
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where C
ðsÞ
n ¼ b

ðsÞ
n eijn and b

ðsÞ
n are real superposition coefficients fulfilling the

normalization condition

ðsÞhcjciðsÞ ¼
Xs

n¼0

½bðsÞ
n �2 ¼ 1 ð3Þ

for arbitrary dimension ðs þ 1Þ of Hilbert space. It is sometimes useful to

represent the optical state, given by (2), via the phase states defined to be [26]

jymi � jymiðsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

s þ 1
p

Xs

n¼0

expðinymÞjni ð4Þ

with the phases ym given by

ym ¼ y0 þ
2p

s þ 1
m ð5Þ

where y0 is the initial reference phase and m ¼ 0; . . . ; s. States (4) also form a

complete and orthonormal basis:

1̂s ¼
Xs

m¼0

jymihymj ; hymjyni ¼ dm;n ð6Þ

The phase states were applied by Pegg and Barnett in their definition of the

Hermitian quantum-optical phase operator [26]:

�̂s � �̂sðy0Þ ¼
Xs

m¼1

ymjymihymj ð7Þ

The phase states can also be used in construction of a discrete Wigner function as

will be described in Section III. The FD annihilation and creation operators in

HðsÞ are defined by

âs ¼
Xs

n¼1

ffiffiffi
n

p
jn � 1ihnj

ây
s ¼

Xs

n¼1

ffiffiffi
n

p
jnihn � 1j ð8Þ

The FD and ID annihilation operators act on a number state in the same manner.

However, the actions of the creation operators on jni are different in HðsÞ and
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Hð1Þ. Equation (8) implies that

ðây
sÞ

kjni ¼ 0 ð9Þ

if n þ k > s. By contrast, the action of the ID creation operator (in any power) on

jni gives always nonzero result. The commutation relation for the annihilation

and creation operators in HðsÞ reads as

½âs; ây
s � ¼ 1 � ðs þ 1Þjsihsj ð10Þ

which differs from the conventional boson canonical relation in Hð1Þ. Thus, âs

and ây
s are not related to the Weyl–Heisenberg algebra. Even the double

commutators ½âs; ½âs; ây
s �� and ½ây

s ; ½âs; ây
s �� do not vanish, precluding the

application of the Baker–Hausdorff theorem. These properties of the FD

annihilation and creation operators considerably complicate analytical ap-

proaches to the quantum mechanics in HðsÞ, including the explicit construction

of the FD harmonic oscillator states.

Creation and annihilation of phase quanta in FD Hilbert space can be defined

in a close analogy to the creation and annihilation of photons, as given by

Eq. (8). Phase annihilation, f̂s, and phase creation, f̂y
s , operators can be

introduced with the help of the relation �̂s ¼ f̂y
sf̂s for the Pegg–Barnett phase

operator, given by (7). The FD phase annihilation and creation operators in the

phase-state basis, have the following form [16]

f̂s � f̂sðy0Þ ¼
Xs

m¼1

ffiffiffiffiffiffi
ym

p
jym�1ihymj þ

ffiffiffiffiffi
y0

p
jysihy0j

f̂y
s � f̂y

sðy0Þ ¼
Xs

m¼1

ffiffiffiffiffiffi
ym

p
jymihym�1j þ

ffiffiffiffiffi
y0

p
jy0ihysj

ð11Þ

respectively. Their commutator is

½f̂s; f̂
y
s � ¼

2p
s þ 1

� 2pjysihysj ð12Þ

The phase annihilation and creation operators act on the phase states in a similar

way (particularly for y0 ¼ 0) as the conventional (photon number) annihilation

and creation operators act on number states.

III. DISCRETE WIGNER FUNCTION FOR FD STATES

The expression of quantum-optical states by quasidistributions enables a very

intuitive description of their properties. Here, we give a general definition of the
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discrete Wigner function. We also present its graphical representations for

several FD quantum-optical states, often discussed in more recent works. The

Wigner function will be studied in greater detail in the following sections.

The number–phase characteristic function in HðsÞ can be defined as [37]

Csðn; ymÞ ¼
Xs

m¼0

exp � 4pi

s þ 1
nðm þ mÞ

� �
hymjr̂jymþ2mi ð13Þ

in terms of the phase states (4). A discrete Fourier transform applied to Csðn; ymÞ
leads to the following discrete Wigner function (for brevity referred to as the W

function) for phase and number

Wsðn; ymÞ ¼
1

s þ 1ð Þ2

Xs

n¼0

Xs

m¼0

exp
4pi

s þ 1
ðnmþ nmÞ

� �
Csðn; ymÞ ð14Þ

or, explicitly, as [37,55]

Wsðn; ymÞ ¼
1

s þ 1

Xs

m¼0

exp
4pi

s þ 1
nm

� �
hym�mjr̂jymþmi ð15Þ

The Wigner function Wsðn; ymÞ is periodic both in n and ym:

Wsðn; ymÞ ¼ Wsðn � fs þ 1g; ymÞ
¼ Wsðn; ym�ðsþ1ÞÞ

¼ Wsðn; ym � 2pÞ ð16Þ

Thus, it is represented graphically on torus [20]. The Wigner function for any FD

pure state of the form (2) can be expressed as follows [57]

Wsðn; ymÞ ¼
1

s þ 1

XM
k¼0

b
ðsÞ
k b

ðsÞ
M�kexp½ið2k � MÞym þ jM�k � jk�

(

þ
Xs

k¼Mþ1

b
ðsÞ
k b

ðsÞ
M�kþsþ1exp½ið2k � M � s � 1Þym þ jM�kþsþ1 � jk�

)

ð17Þ

in terms of the decomposition coefficients b
ðsÞ
k and M � 2n modðs þ 1Þ. Several

graphs of these functions of various states are presented here (Fig. 1) and in the

next sections. The physical interpretation of the Wigner functions is based on the
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fact that the marginal sum of their values over a generalized line gives the

probability that the system will be in some state [37,55]. In the ID Hilbert space,

where the W-function arguments are continuous (quadratures X and Y), a

marginal integral along any straight line aX þ bY þ c ¼ 0 is nonnegative and

can be considered to be the probability. A similar situation arises in the FD case;

we can define lines as sets of discrete points ðn; ymÞ, or equivalently ðn;mÞ, for

which the relation ðan þ bm þ cÞmod N ¼ 0 holds (here, a; b; c are integers).

Again, sums of the discrete W-function values on such sets are non-negative. The

mod ðs þ 1Þ relations are essential and are connected to some periodic properties

of the discrete W function—the maximum value of each argument (m or n) is

topologically followed by its minimum (zero in our case). This means that the

discrete W function is defined on a torus (or more precisely on a discrete set of

points of a torus). The ‘‘lines’’ are then points of closed toroidal spirals or, in a

special case, points of a circle. The periodic property is quite natural for the

phase index m, but may seem strange for the photon number n. In the next

sections, we shall draw attention to some consequences of the periodicity in n for

generalized coherent states, for instance.

One aim of this chapter is to show graphs of the discrete W functions for FD

quantum-optical states. Because of the discreteness of the arguments, the W-

function graph should be a histogram. However, two-dimensional projections of

such three-dimensional histograms could be very confusing. Therefore, for

(a) (b) (c)

(d) (e) (f)

Figure 1. Examples of discrete Wigner function on a torus in 19-dimensional Hilbert

space (s ¼ 18): (a) vacuum j0i; (b) single-photon number state j1i; (c) FD preferred phase state

(‘‘phase vacuum’’) jy0iðsÞ; (d) FD coherent state, jaiðsÞ � j�aiðsÞ; (e) FD displaced number state,

ja; 1iðsÞ � j�a; 1iðsÞ; (f) FD phase coherent state, jb; y0iðsÞ � j�b; y0iðsÞ, with equal displacement

parameters, a ¼ �a ¼ b ¼ �b ¼ 0:5 and y0 ¼ 0. The darker is a region, the higher is the value of the

Wigner function.
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better legibility of the graphs, we have decided to depict them topographically.

The darker is a region, the higher is the value of the W function it represents.

Moreover, negative values of the W function are marked by crosses. As

mentioned above, the most natural way of presenting the discrete W-function

graphs is to construct them on toruses. A few simple examples of the toroidal

discrete Wigner functions are given in Fig. 1. Unfortunately, this graphical

representation is seldom transparent enough for its interpretation. In what

follows we shall work with two-dimensional graphs. Here, one should keep in

mind that some consequences of the periodicity in n and m can appear; for

instance, some peaks can be located partially at the outer boundary at n � s (or

m � s) and can ‘‘continue’’ near the center n � 0 (or m � 0). In the next

section, the W functions of various FD states will be presented.

For a better understanding of the discrete Wigner function, let us recall its

close correspondence to the discrete Pegg–Barnett phase distribution [26]

PsðymÞ ¼
Xs

n¼0

Wsðn; ymÞ ¼ ðsÞhymjciðsÞ
�� ��2 ð18Þ

and to the photon-number distribution

PsðnÞ ¼
Xs

m¼0

Wsðn; ymÞ ¼ hnjciðsÞ
�� ��2¼ jbðsÞ

n j2 ð19Þ

Thus, the sum of the W function values, at constant ym, over all n values gives the

probability of the phase ym and, analogously, the sum with constant n over all

arguments ym gives the probability of n photons—at least in systems, which are

fully described by finite-number state models. If we want to interpret our results

as describing states of a usual one-mode field under the condition that all Fock

components of jni with n > s are absent, then the real phase probability

distribution is obviously continuous. Let us briefly discuss its connection to the

obtained discrete distribution. If s is greater than or equal to the largest Fock state

component of a given state, which by definition is our case, then the discrete

probabilities (from the discrete Wigner phase marginal) are proportional to the

values of the continuous phase probability distribution in the discrete set of

points (5). One can easily obtain other values also, although not directly. We

could use a FD version of the sampling theorem—if the n distribution is limited,

then for description a state in the phase representation only a discrete set of phase

amplitudes is necessary. It is clear that the ðs þ 1Þ2
real values of the discrete W

function yield the same information as the ðs þ 1Þ2
real nonzero parameters of

the related density matrix.
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IV. FD COHERENT STATES

The most common states in quantum optics are the coherent states (CS)

introduced by Schrödinger [7] in connection with classical states of the quantum

harmonic oscillator. First modern description and specific application of CS is

due to Glauber [8] and Sudarshan [9]. The literature on CS and their

generalizations is truly prodigious and has been summarized in a number of

excellent monographs [10,13,14,63] and reviews [12]. There are several ways of

generalizing the conventional ID coherent states to comprise the FD case. It is

possible to define CS using the concept of Lie group representations [63], or to

postulate the validity of some properties of the ID CS for their FD analogs. In

this chapter, we are interested in two definitions of the latter kind. First, CS in a

FD space are usually treated as the displaced vacuum, where the displacement

operator is defined analogously to the conventional displacement operator in the

ID space (the Glauber treatment of CS [8]). This idea was applied in the work of

Bu�zek and co-workers [16] and further studied by Miranowicz et al. [18] and

Opatrný et al. [20]. Here, we refer to such states as the generalized CS. Another

definition is based on the postulate that the Fock expansion of the FD CS is

equal to the truncated expansion of the conventional ID CS. This approach was

extensively developed by Kuang et al. [17] and Opatrný et al. [20]. Here, we

shall refer to CS of this kind as the truncated CS. An experimental scheme,

known as the quantum scissors, for generation of the truncated CS was proposed

by Pegg et al. [44]. Quantum scissors were generalized by Koniorczyk et al.

[45], Paris [46], and Miranowicz et al. [47]. A physical system for preparation

of the generalized CS was proposed by Leoński [49] (see also Ref. 50) as a

modification of the Fock state engineering technique of Leoński and Tanaś [48].

These schemes are presented in the next chapter [51].

A. Generalized Coherent States

Glauber [8] constructed coherent states in the ID Hilbert space by applying

the displacement operator D̂ða; a�Þ � expðaây � a�âÞ on vacuum state j0i.
Analogously, one can define the generalized coherent state [16]

jaiðsÞ ¼ D̂sða; a�Þj0i ð20Þ

constructed in the FD Hilbert space by the action of the generalized FD given by

displacement operator

D̂sða; a�Þ ¼ exp
	
aây

s � a�âs



ð21Þ

where the FD annihilation and creation operators are given by (8). Definitions of

CS based on displacement operators are usually applied in various general-
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izations of CS [4,5,10,12,16,18]. The generalized coherent state, jaiðsÞ with

a ¼ jajexpðijÞ, has the following Fock expansion [18]

jaiðsÞ ¼
Xs

n¼0

einj bðsÞ
n jni ð22Þ

where

bðsÞ
n ¼ s!

s þ 1

ð�iÞnffiffiffiffi
n!

p
Xs

k¼0

eixk jaj HenðxkÞ
He2

s ðxkÞ
ð23Þ

Here, xk � x
ðsþ1Þ
k are the roots, Hesþ1ðxkÞ ¼ 0, of the Hermite polynomial

HenðxÞ � 2�n=2Hnðx=
ffiffiffi
2

p
Þ. A method for deriving the coefficients (23) is

presented in the Appendix. In the special cases for s ¼ 1; 2; 3, the generalized

CS are as follows

jaið1Þ ¼ cosjajj0i þ eijsinjajj1i ð24Þ

jaið2Þ ¼
1

3
½cosð

ffiffiffi
3

p
jaj
�
þ 2�j0i þ 1ffiffiffi

3
p eijsin

� ffiffiffi
3

p
jaj
�
j1i

þ
ffiffiffi
2

p

3
e2ij½1 � cos

� ffiffiffi
3

p
jaj
�
�j2i ð25Þ

jaið3Þ ¼
x2

2c1 þ x2
1c2

2x2
1x2

2

j0i þ x2s1 þ x1s2

2x1x2

eijj1i

� c1 � c2

2
ffiffiffi
3

p e2ijj2i � x2s1 � x1s2

2x1x2

e3ijj3i ð26Þ

where sk ¼ sinðxð4Þk jajÞ and ck ¼ cosðxð4Þk jajÞ are functions of the roots

x
ð4Þ
1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffi
6

pp
. The state (24) in the two-dimensional Hilbert space is studied

in greater detail in Section IV.C. The simplicity of (24) comes from the fact that

the only nonvanishing coefficients d
ð1Þ
nk , given by Eq. (A.7), are equal to unity. In

Fig. 2, the coefficients b
ðsÞ
n are presented in their dependence on the parameter jaj

for s ¼ 1; 2; 3 and s ¼ 1. It is seen that the coefficients (23) are periodic (for

s=1, 2) or quasiperiodic (for higher s) in j�a j. The generalized CS go over into the

conventional CS in the limit of s ! 1. This conclusion can be drawn by

analyzing Fig. 3, where the photon-number distribution PsðnÞ ¼ jbðsÞ
n j2 for the

generalized CS is presented for different values of s and fixed a ¼ 4. The

differences between jaiðsÞ and jaið1Þ vanish even for s ¼ 50 on the scale of Fig. 3.

In order to prove this property analytically, let us expand the scalar product
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between jaiðsÞ and jaið1Þ in series of parameter jaj. One finds the following power

series expansions [20]

ð1Þhajaið1Þ ¼ 1 � 1

4
jaj4 þ 1

9
jaj6 � Oðjaj8Þ

ð1Þhajaið2Þ ¼ 1 � 1

12
jaj6 þ 3

64
jaj8 � Oðjaj10Þ

ð1Þhajaið3Þ ¼ 1 � 1

48
jaj8 þ 1

75
jaj10 � Oðjaj12Þ ð27Þ
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Figure 2. Generalized coherent states. The superposition coefficients bðsÞn for jaiðsÞ versus dis-

placement parameter amplitude jaj for: (a) n ¼ 0, (b) n ¼ 1, and (c) n ¼ 2 in the Hilbert spaces of

different dimensionality: s ¼ 1 (dotted), s ¼ 2 (dot–dashed), s ¼ 3 (dashed), and s ¼ 1 (solid curves).
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Figure 3. Generalized coherent states (black bars) versus truncated coherent states (white

bars): photon-number distribution PsðnÞ as a function of n in FD Hilbert spaces with s ¼ 5; . . . ; 50

for the same displacement parameters a ¼ �a ¼ 4.
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for particular values of s. We see that, with increasing dimension, the generalized

CS approach the conventional CS as

ð1ÞhajaiðsÞ ¼ 1 � jaj2ðsþ1Þ

2ðs þ 1Þ!þ Oðjaj2ðsþ2ÞÞ ð28Þ

for jaj2 � s.

On insertion of the coefficients (23) into the general formula (17), we get the

Wigner function for jaiðsÞ in the form

Wsðn; ymÞ ¼
Xs

k¼Mþ1

exp½ið2k � M � s � 1Þðym � jþ p=2Þ�
½k!ðM � k þ s þ 1Þ!�1=2

G1k

þ
XM

k¼0

exp½ið2k � MÞðym � jþ p=2Þ�
½k!ðM � kÞ!�1=2

G0k ð29Þ

where

GZk ¼
ðs!Þ2

ðs þ 1Þ3

Xs

p¼0

Xs

q¼0

exp½iðxq � xpÞjaj�
HekðxpÞHeM�kþZðsþ1ÞðxqÞ

½HesðxpÞHesðxqÞ�2
ð30Þ

with Z ¼ 0; 1. By writing Eq. (29) in a form more similar to the Vaccaro–Pegg

expression, we arrive at

Wsðn; ymÞ ¼
Xs

k¼2nþ1

ð�1Þk�n�s=2 sin½ð2k � 2n � s � 1Þðym � jÞ�
½k!ð2n � k þ s þ 1Þ!�1=2

G1k

þ
X2n

k¼0

ð�1Þk�n cos½ð2k � 2nÞðym � jÞ�
½k!ð2n � kÞ!�1=2

G0k ð31Þ

for n � s=2, and

Wsðn; ymÞ ¼
X2n�s�1

k¼0

ð�1Þk�n�s=2 sin½ð2k � 2n þ s þ 1Þðym � jÞ�
½k!ð2n � k � s � 1Þ!�1=2

G0k

þ
Xs

k¼2n�s

ð�1Þk�n cos½ð2k � 2nÞðym � jÞ�
½k!ð2n � kÞ!�1=2

G1k ð32Þ

for n > s=2. As readily seen, we cannot generally factorize this function into a

product of amplitude jaj- and phase j-dependent parts. The Wigner functions for

the generalized CS are presented for s ¼ 18 in Fig. 4. We observe the following
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behavior of the Wigner function. The shape of the respective graph is

approximately periodic (referred to as the quasiperiodic) in the parameter jaj
with quasi-period Ts � 8:8. We find that for small j�a j the shape is essentially the

same as that described in Ref. [57]—for n � s=2, there are two peaks for

opposite phases, whereas for n > s=2 we observe a peak and an antipeak. Note,

the peaks at the borders are artificially split up in our Cartesian representation of

the Wigner function. The peaks or antipeaks are located at such positions that on

summing the W function with constant n (or ym) over ym (or n), we get the

probability distribution of n (or ym, respectively). Then, with increasing jaj,
interesting oscillations in photon number appear. Their culmination is at

jaj ¼ Ts=2 (Fig. 4c), where only even photon numbers are present. For this

value of a, the generalized coherent state approaches an even CS, namely, the

case of a Schrödinger cat state, described in detail in Section V.C. By further

enlarging jaj, the W function returns to its previous shapes through the transition

regime (for jaj � 2Ts=3 in Fig. 4d) to the case of the inner two-peak and outer

peak–antipeak structure, similar to the Vaccaro–Pegg results. For jaj � 5Ts=6 as
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Figure 4. Generalized coherent states: Wigner function Wsðn; ymÞ in FD Hilbert space with

s ¼ 18 for jaið18Þ with different values of displacement parameter a, chosen as fractions of the

quasiperiod T � T18 � 8:8. As in Fig. 1, higher values of Wigner function are depicted darker.

Negative regions are marked additionally by crosses.
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given in Fig. 4e, the W function is very similar to that presented in Fig. 4a for

jaj � Ts=6, but with opposite phase. Finally, for jaj ¼ Ts as presented in Fig. 4f,

we arrive at an almost vacuum state. By further increasing jaj, these shapes of the

W-function graph reappeared for several quasiperiods Ts. Similar behavior can

be observed also for other values of s.

This quasiperiodicity can be explained as follows. By applying the fitting

procedure, based on the WKB (Wentzel–Kramers–Brillouin) method, one can

find that the smallest positive root x1 � x
ðsþ1Þ
1 of the Hermite polynomial

Hesþ1ðxÞ is approximately equal to

x
ðsþ1Þ
1 � 2pffiffiffiffiffiffiffiffiffiffiffiffiffi

4s þ 6
p ð33Þ

(for even s). Besides, it is well known that the nearest-to-zero roots of the

Hermite polynomials are approximately equidistant. Thus, their difference

�x � xkþ1 � xk is approximately given by (33), which is 0.71 for s ¼ 18. The

predominant terms of the sum in (23) depend on jaj approximately as

expðig�xjajÞ, where g ¼ 0;�1;�2; . . . . These exponential functions are

quasiperiodic with approximate mean period (referred to as the quasiperiod)

given by [20,64]

Ts �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s þ 6

p
ð34Þ

for even s. From Eq. (34), the quasiperiod for s ¼ 18 is approximately equal to

8:8. For odd n, the property Henð�xkÞ ¼ ð�1Þn
HenðxkÞ holds. On the other hand,

the odd coefficients n in the sum (23) contain sine functions, which are zero in the

middle of their period. Therefore, for jaj ¼ Ts=2, the odd n terms almost

disappear, and we get an approximately even coherent state. We analyze in detail

the W functions for even s only. Nonetheless, for completeness of our discussion,

we give the explicit approximate expression for the quasiperiod

Ts � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4s þ 6

p
ð35Þ

for odd s, which is twice larger than the quasi-period given by (34) for a chosen

value of s.

B. Truncated Coherent States

Kuang et al. [17] defined the normalized FD coherent states by truncating the

Fock expansion of the conventional ID coherent states or equivalently by the

action of the operator expð�a âyÞ (with proper normalization) on vacuum state.

The Kuang et al. approach is similar to the Vaccaro–Pegg treatment [57] of the
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Wigner function for CS. The state j�a iðsÞ, where �a ¼ j�a jexpðijÞ, can be defined

by its Fock expansion [17]

j�a iðsÞ ¼ Ns expð�a ây
sÞ j0i ¼

Xs

n¼0

bðsÞ
n jni ð36Þ

with the Poissonian superposition coefficients

bðsÞ
n ¼ Ns

Xs

n¼0

�anffiffiffiffi
n!

p ð37Þ

normalized by

Ns ¼
Xs

n¼0

j�a j2n

n!

��1=2

¼ fð�1Þs
L�s�1

s ðj�a j2Þg�1=2 ð38Þ

where Ln
s ðxÞ is the generalized Laguerre polynomial. Equation (36) is just the

Fock expansion of the conventional ID CS, which are truncated at an sth term and

properly normalized. For this reason we shall refer to the state (36) as the

truncated CS. In Fig. 5, the superposition coefficients b
ðsÞ
n , given by Eq. (37) for

the truncated CS j�a iðsÞ are presented as a function of the parameter j�a j � jaj
in HðsÞ with s ¼ 1; 2; 3 and s ¼ 1. As seen in Fig. 5, the coefficients b

ðsÞ
n are

aperiodic functions of j�a j. We emphasize the essential difference between the

generalized and truncated CS. The former are periodic or quasiperiodic, while

the latter are aperiodic in j�a j ¼ jaj. Nevertheless, both jaiðsÞ and j�a iðsÞ, go over

into the conventional Glauber CS in the limit of s ! 1 as is convincingly

depicted in Fig. 3. By definition, the truncated CS go over into the Glauber CS in

the limit of s ! 1. Nevertheless, for better comparison with the generalized CS,

given by (20), we show this property explicitly by expanding the scalar products
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Figure 5. Truncated coherent states. Superposition coefficients bðsÞn of j�aiðsÞ versus

displacement parameter amplitude j�aj for the same cases as in Fig. 2.
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between j�a iðsÞ and jaið1Þ in power series of jaj. We have [20]

ð1Þhaj�a ið1Þ ¼ 1 � 1

4
jaj4 þ 1

6
jaj6 � Oðjaj8Þ

ð1Þhaj�a ið2Þ ¼ 1 � 1

12
jaj6 þ 1

16
jaj8 � Oðjaj10Þ

ð1Þhaj�a ið3Þ ¼ 1 � 1

48
jaj8 þ 1

60
jaj10 � Oðjaj12Þ ð39Þ

where we put a ¼ �a . We find by induction that, with increasing dimension

ðs þ 1Þ, the truncated CS approach the conventional CS

ð1Þhaj�a iðsÞ ¼ 1 � jaj2ðsþ1Þ

2 ðs þ 1Þ!þ Oðjaj2ðsþ2ÞÞ ð40Þ

for jaj � j�a j2 � s. Although Eqs. (28) and (40) have the same form, a closer

comparison of Eqs. (27) and (39) shows that the states jaiðsÞ approach jaið1Þ

slower than j�a iðsÞ do and, in fact, the corrections Oðjaj2ðsþ2ÞÞ in Eq. (39) are

smaller than those in Eq. (27). Finally, let us expand the scalar product between

jaiðsÞ and j�a iðsÞ for s¼1, 2, 3 in power series of a � �a . We find that

ð1Þhaj�a ið1Þ ¼ 1 � 1

18
jaj6 þ 1

15
jaj8 � Oðjaj10Þ

ð2Þhaj�a ið2Þ ¼ 1 � 1

64
jaj8 þ 9

800
jaj10 � Oðjaj12Þ

ð3Þhaj�a ið3Þ ¼ 1 � 1

300
jaj10 þ 13

5040
jaj12 � Oðjaj14Þ ð41Þ

The expansions up to jaj2ðsþ2Þ
can be written in general form as

ðsÞhaj�a iðsÞ ¼ 1 � jaj2ðsþ2Þ

2s!ðs þ 2Þ2
þ Oðjaj2ðsþ3ÞÞ ð42Þ

All these three types of CS are approximately equal for j�a j2 ¼ jaj2 � s, since

the scalar products between them tend to unity. The higher s, the greater is the

range of jaj, where the scalar product tends to unity. However, the states are

significantly different for values jaj2 � s. By comparing Eqs. (28), (40), and (42)

for the same s, we observe that jaiðsÞ and j�a iðsÞ approach each other faster than

jaið1Þ.
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In order to calculate the Wigner function, we substitute Eq. (37) into Eq. (17),

arriving at

Wsðn; ymÞ ¼
Ns

2

s þ 1

XM
k¼0

j�a jMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!ðM � kÞ!

p exp½ið2k � MÞðym � jÞ�
 

þ
Xs

k¼Mþ1

j�a jMþsþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!ðM � k þ s þ 1Þ!

p
!

ð43Þ

where M ¼ 2n modðs þ 1Þ. Equation (43) can be written in a form useful for a

comparison with the Vaccaro–Pegg result

Wsðn; ymÞ ¼
1

s þ 1
½�1ðn; j�a jÞ�1ðn; ym;jÞ þ �2ðn; j�a jÞ�2ðn; ym;jÞ� ð44Þ

where

�1ðn; j�a jÞ ¼
N2

s j�a j
M

m1!

�1ðn; ym;jÞ ¼ m1!
XM

k¼0

cos½ð2k � MÞðym � jÞ�
½k!ðM � kÞ!�1=2

ð45Þ

and

�2ðn; j�a jÞ ¼
N2

s j�a j
Mþsþ1

m2!

�2ðn; ym;jÞ ¼ m2!
Xs

k¼Mþ1

cos½ð2k � M � s � 1Þðym � jÞ�
½k!ðM � k þ s þ 1Þ!�1=2

ð46Þ

Here, m1 ¼ ½½M=2�� is the integer part of M=2, and similarly m2 ¼ ½½ðM þ 1þsÞ=2��.
We note that the functions �i do not depend on the phase j of �a and similarly the

functions �i do not depend on its amplitude j�a j. In the Vaccaro–Pegg treatment,

j�a j2 was always much less than s, so that the second term of Eq. (44) could be

neglected. Then the Wigner function was factorizable into the amplitude-

dependent function �1 and the phase-dependent function �1, and the normal-

izing constant Ns was approximated by expð�j�a j2=2Þ. It can be seen that for

general values of �a of the truncated CS this factorization is no longer feasible.

Moreover, for large j�a j, the second term of Eq. (44) becomes predominant. We

compare different shapes of the W functions for various �a in Fig. 6. The

functions are computed for s ¼ 18. With jaj increasing from zero, the shape of

the generalized CS is initially very similar to that of the truncated CS (see Fig. 4).

172 adam miranowicz et al.



It occurs up to the peak–antipeak transition from n ¼ s to n ¼ 0 around the value

j�a j2 � s=2 (corresponding to jaj � Ts=3 in Fig. 6b). However, if j�a j2 � s=2, the

situation is inverse: the second term of Eq. (44) is now predominant and we

observe two peaks for n > s=2 and a peak–antipeak structure for n � s=2 (e.g.,

Fig. 6d). In the case when j�a j2 � s (Fig. 6c), the W function has a more general

shape. With increasing j�a j the two-peak structure shifts to larger values of n,

while the peak–antipeak structure gradually vanishes at n � s=2 (Fig. 6d,e). The

shape is still comparatively simple because the function Eq. (44) is a sum of only

two factorizable terms. By further increasing j�a j � Ts, the Wigner function has

a very simply structure representing the number state jsi. Even for j�a j ¼ 2Ts, as

presented in Fig. 6f, the peak–antipeak structure at n � s=2 vanishes almost

completely. In the limit of j�a j2=s ! 1, the truncated CS approaches the number

state jsi. This conclusion can also be deduced from the behavior of the

superposition coefficients b
ðsÞ
n in their dependence on j�a j as depicted Fig. 5. In

contrast to the generalized CS, the behavior of the truncated CS is aperiodic in

j�a j.
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Figure 6. Truncated coherent states. Wigner function for j�aið18Þ with different displacement

parameters �a given by fractions of T ¼ 8:8.
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C. Example: Two-Dimensional Coherent States

The simplest nontrivial FD states are those spanned in a two-dimensional

system, namely, for s ¼ 1. States in such a system have intensively been studied

by authors dealing with the general problem of finite-dimensional quantum

optical states [16,17,28]. Here, we would like to discuss this problem from other

points of view. Two-dimensional systems are well known in various fields of

physics, and we thus can apply the results and concepts to describe our

situation. Examples of realizations of such a system can be given by the spin

projection of spin-1
2

particle, two-level atom, or quantum dot. Hence, the CS in

Hð1Þ [see Eqs. (48) and (50)] can, in fact, be identified with the coherent spin-1
2

state [4] or equivalently with the two-level atomic coherent state [5]. In the case

of s ¼ 1, the terms photon number, phase, and FD harmonic oscillator are a bit

confusing and should be understood, for example, as [55] z component of spin

divided by �h, angle of orientation about the z axis, and spin, respectively, or

equivalently as atomic quantities [5,16]. We use the notion two-dimensional

space or states to be consistent with our general terminology applied in earlier

sections. Although, we are aware that this terminology might be misleading. In

this section we use a Poincaré sphere representation for the description of the

states discussed and their properties, like various operator averages and

squeezing degrees. Finally, we present the W function for two-dimensional CS.

It is well known that states in a two-dimensional system can be described by

means of the Stokes parameters and visualized by means of the Poincaré sphere.

The density matrix of any two-state system can be written in the form

r̂ ¼ 1

2

1 þSz Sx þ iSy

Sx � iSy 1 �Sz

� �
ð47Þ

where Sx; Sy, and Sz are the Stokes parameters. Using these parameters as

coordinates of a point in three-dimensional space, any state corresponds to a

point on a unit radius sphere, the so-called Poincaré sphere. Pure states are

represented by points on the surface, while mixed-state points lie inside the

sphere. Now, using this tool, we can display both the two-dimensional

generalized and truncated CS and compare their expressions.

For the two-dimensional generalized CS, given by

jaið1Þ ¼ cosjajj0i þ expðijÞsinjaj j1i ð48Þ

the Stokes parameters are found to be

Sx ¼ sin 2jaj cosj

Sy ¼ �sin 2j aj sinj

Sz ¼ cos 2jaj ð49Þ
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We note that any pure state inHð1Þ is coherent. The interpretation of the parameter

a is very simple; its module is proportional to the polar coordinate, while its argu-

ment j is the azimuthal coordinate of the representative Poincaré sphere point.

Similarly, we find the Stokes parameters for the truncated CS, given by (36). The

two-dimensional state j�a ið1Þ, with the parameter �a ¼ j�a jexpðijÞ, is expressed by

j�a ið1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ j�a j2
q j0i þ expðijÞ j�a jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ j�a j2
q j1i

¼ cosðarctan j�a jÞj0i þ expðijÞ sinðarctan j�a jÞ j1i ð50Þ
The Stokes parameters are now

Sx ¼ 2
j�a j

1 þ j�a j2
cosj

Sy ¼ �2
j�a j

1 þ j�a j2
sinj

Sz ¼
1 � j�a j2

1 þ j�a j2
ð51Þ

The function of the argument j is the same as for the generalized CS, while the

meaning of module j�a j is different from that of jaj. We observe, for instance,

neither periodicity nor quasiperiodicity in j�a j. To interpret j�a j, we write the last

equation in (51) in the form j�a j=ð1 �S2
z Þ

1=2 ¼ 1=ð1 þSzÞ. Thus, for a given �a ,

one can construct the corresponding Poincaré sphere point as follows [20]: (1) by

locating the complex number �a in the SxSy plane, so that the Sx (�Sy) coor-

dinate is the real (imaginary) part of �a , respectively; and (2) by connecting this

point with the lower pole of the Poincaré sphere by a straight line. The other inter-

section of the line and the sphere is then the point representing the coherent state.

For the case of two-dimensional CS, there have been computed quantities

such as the mean values and variances of the various operators, including N̂ and

�̂ quadratures and their commutators [16,17]. Most of these quantities can

easily be displayed on the Poincaré sphere and expressed by means of the

Stokes parameters. We find that the following mean values and variances are

given respectively by

hN̂i ¼ 1 �Sz

2

hð�N̂Þ2i ¼
S2

x þS2
y

4

h�̂i ¼ ð1 �SxÞp
2

hð��̂Þ2i ¼
ðS2

y þS2
z Þp2

4

ð52Þ
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and the mean value of the N̂ � �̂ commutator is

h½N̂; �̂�i ¼ ipSy

2
ð53Þ

The degrees of squeezing SN and S� are defined by

SN ¼ 2hð�N̂Þ2i jh½N̂; �̂�ij�1 � 1

S� ¼ 2hð��̂Þ2i jh½N̂; �̂�ij�1 � 1 ð54Þ

They can be written in terms of the Stokes parameters as

SN ¼ 1

p

S2
x þS2

y

jSyj
� 1

S� ¼ p
S2

y þS2
z

jSyj
� 1 ð55Þ

We found for the case of s ¼ 1 that the averages of the quantum optical quantities

are simply related to the Stokes parameters. The correspondence can also be

expressed in terms of the operators N̂ and �̂ in relation to the Pauli matrices ŝz

and ŝx, or the quadratures X̂a and Ŷa related to ŝx and ŝy.

Finally, we find the explicit expression for the Wigner function in n and y for

two-dimensional generalized CS. We get

Wsðn; ymÞ ¼
1

4

h
1 þ ð�1Þn

cosð2jajÞ

þ ð�1Þm
ffiffiffi
2

p
sin ð2jajÞ cos


j�ð�1Þn p

4

�i
ð56Þ

On simple replacement of jaj by arctan j�a j in Eq. (56), one obtains the W-

function for the two-dimensional truncated CS.

V. OTHER FD QUANTUM-OPTICAL STATES

Analogously to the generalized CS in a FD Hilbert space, analyzed in Section

IV.A, other states of the electromagnetic field can be defined by the action of the

FD displacement or squeeze operators. In particular, FD displaced phase states

and coherent phase states were discussed by Gangopadhyay [28]. Generalized

displaced number states and Schrödinger cats were analyzed in Ref. 21 and

generalized squeezed vacuum was studied in Ref. 34. A different approach to

construction of FD states can be based on truncation of the Fock expansion of

the well-known ID harmonic oscillator states. The same construction, as for the
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truncated CS, was applied to analyze, for instance, truncated Schrödinger cats

by Zhu and Kuang [25,35], Miranowicz et al. [21], and Roy and Roy [24];

truncated phase CS by Kuang and Chen [27]; truncated displaced number states

by Miranowicz et al. [21], or truncated squeezed vacuum by Miranowicz et al.

[34].

A. FD Phase Coherent States

Here, we study two kinds of FD phase coherent states associated with the Pegg–

Barnett Hermitian optical phase formalism [26]. First states, referred to as the

generalized phase CS or coherent phase states, are generated by the action of the

phase displacement operator. This definition of the phase CS was applied by

Gangopadhyay [28] in close analogy to Glauber’s idea of the conventional CS.

The second definition of phase CS is based on another phase ‘‘displacement’’

operator formally designed by Kuang and Chen [27]. We shall refer to these

states as the truncated phase CS to stress its similarity to the truncated CS

described in Section IV.B. We construct the phase CS explicitly and derive their

discrete Wigner representation. The FD phase CS are not only mathematical

structures. A framework for their physical interpretation is provided by cavity

quantum electrodynamics and atomic physics.

1. Generalized Phase CS

Gangopadhyay [28] has proposed a definition of the generalized phase CS in

formal analogy to the generalized CS, defined by Eq. (20). The main idea is to

choose a preferred phase state jy0i, and then to construct the phase creation (f̂y
s)

and phase annihilation (f̂s) operators analogously to the conventional (photon-

number) creation and annihilation operators. The phase CS are then constructed

by replacing vacuum j0i by jy0i, and the operators âs and ây
s by f̂s and f̂y

s ,

respectively, as given by Eq. (11). Thus, the generalized phase CS is defined to

be [28]

jb; y0iðsÞ ¼ D̂sðb; y0Þ jy0i ð57Þ

by the action of the phase displacement operator

D̂ðsÞðb; y0Þ ¼ exp½bf̂y
s � b�f̂s� ð58Þ

on the preferred phase state jy0i. By generalizing the method described in

Appendix, one can find the following phase-state representation of the general-

ized phase CS [29]

jb; y0iðsÞ ¼
Xs

m¼0

eiðm�m0Þj bðsÞ
m jymi ð59Þ
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where j ¼ Arg b and the decomposition coefficients are

bðsÞ
m � bðsÞ

m ðy0Þ ¼
s!

s þ 1
ð�1Þmþm0

im0þmffiffiffiffiffiffiffiffiffiffiffi
m!m0!

p

�
Xs

k¼0

exp ixkgsjbjð ÞHemðxkÞHem0
ðxkÞ

He2
s ðxkÞ

ð60Þ

Here, xl � x
ðsþ1Þ
l are the roots of the Hermite polynomial, Hesþ1ðxlÞ ¼ 0. For

brevity, we have denoted m ¼ m þ m0 modðs þ 1Þ and gs ¼
ffiffiffiffiffiffi
2p

sþ1

q
. The values ym

are chosen modð2pÞ. We also assume that the permitted values of y0 are not

completely arbitrary but restricted to 2p
sþ1

m0 modð2pÞ (where m0 ¼ 0; 1; . . .). In a

special case, for y0 ¼ 0 and s ¼ 1, the phase CS reduce to the state jb; y0 ¼ 0ið1Þ
studied by Gangopadhyay [28]. Here, for simplicity, we also consider the case of

y0 ¼ 0.

2. Truncated Phase CS

Kuang and Chen [27] defined the FD phase CS, denoted as j�b ; y0iðsÞ, by the

action of the FD operator expð�bf̂y
sÞ on the phase state jy0i. The reference phase

y0 is chosen as zero [27]. Therefore, on comparing the explicit expressions for

âs and f̂s, it is clear that the states j�b ; y0iðsÞ are in close analogy to the truncated

CS [20]. For this reason we shall refer to the states j�b ; y0iðsÞ as the truncated

phase CS in HðsÞ. For completeness, we present the phase-space expansion with
�b ¼ j�bjexpðijÞ given by [27]

j�b; y0iðsÞ ¼ Nsexpð�bf̂y
sÞjy0i ¼

Xs

m¼0

eimj bðsÞ
m jymi ð61Þ

where

bðsÞ
m ¼ Ns

ðgsj�bjÞmffiffiffiffiffi
m!

p ; Ns ¼
Xs

n¼0

ðgsj�bjÞ2n

n!

 !�1=2

ð62Þ

and gs ¼
ffiffiffiffiffiffi
2p

sþ1

q
as in Eq. (60). In particular, squeezing properties of the truncated

phase CS were analyzed by Kuang and Chen [27]. They have paid special

attention to the two-dimensional case.

Although many properties of the phase CS are known by now, for their better

understanding it is very useful to analyze graphs of their quasidistributions. The

discrete Wigner function, as defined by Wootters [55] (see also Ref. 57), takes

the following form for s > 1

Wsðn; ymÞ ¼
1

s þ 1

Xs

p¼0

b
ðsÞ
mþp bðsÞ

m�pexp �2ip
2p

s þ 1
n þ j

� �� �
ð63Þ
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for the generalized phase CS with b
ðsÞ
n given by (60) and for the truncated phase

CS with superposition coefficients (62). In Eq. (63), the subscripts m � p are

assumed to be modðs þ 1Þ. One can obtain the particularly simple Wigner

function for s ¼ 1 [55].

The generalized phase CS, jb; y0iðsÞ, and truncated phase CS, j�b ; y0iðsÞ, are

associated with the Pegg–Barnett formalism of the Hermitian phase operator �̂s.

The operators �̂s, f̂s, and f̂y
s do not exist in the conventional ID Hilbert space

Hð1Þ. Thus the generalized and truncated phase CS are properly defined only in

HðsÞ of finite dimension. States jb; y0iðsÞ and j�b ; y0iðsÞ, similar to jaiðsÞ and j�aiðsÞ,
approach each other for jbj2 ¼ j�bj2 � s=p [20]. This can be shown explicitly by

calculating the scalar product between generalized and truncated phase CS. We

find (b ¼ �b)

ðsÞhb; y0j�b; y0iðsÞ ¼ 1 � ð
ffiffiffi
p

p
jbjÞ2ðsþ2Þ

2s!ðs þ 2Þ2
þ Oðjbj2ðsþ3ÞÞ ð64Þ

For values jbj2 ¼ j�bj2 � s=p or greater than s=p, the differences between

jb; y0iðsÞ and j�b ; y0iðsÞ become significant.

In Fig. 7, a few examples of the Wigner function for jb; 0ið18Þ are presented

for different values of the phase displacement parameter b. Because of space

limits in this chapter, the corresponding figures for the truncated phase CS are

not presented. In Fig. 7c, we observe that jb; 0iðsÞ is quasiperiodic in b. Closer

analysis of Eq. (60), in comparison to (23), shows that the quasiperiod Ts for

jb; 0iðsÞ is the same as that for the generalized coherent states. Thus, it is given

by Eq. (34) for even s and Eq. (35) for odd s. Yet, the evolution of the

generalized phase CS is more complicated than that for the generalized CS, as

seen on comparing Figs. 7a,b with the corresponding Figs. 4b,d. As was
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Figure 7. Generalized phase coherent states. Wigner function for jb; 0ið18Þ with different phase

displacement parameters b chosen to be fractions of the quasiperiod T ¼ T18 ¼ 8:8.
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discussed in Ref. 29, the truncated phase CS are aperiodic in �b for any

dimension.

B. FD Displaced Number States

In this section, we propose two nonequivalent definitions of the displaced

number states (DNS) in the FD Hilbert space and show that the FD states go

over into the conventional DNS discussed, for instance, by de Oliveira et al.

[65].

1. Generalized DNS

Analogously to the generalized CS, given by Eq. (20), we define the generalized

DNS as follows

ja; ndiðsÞ ¼ D̂
ðsÞðaÞjndi ð65Þ

as the result of action of the displacement operator D̂
ðsÞðaÞ, given by Eq. (21), on

the number state jndi. By using the same method as described in Appendix for

jaiðsÞ, we find the following explicit Fock representation of the generalized DNS

ja; ndiðsÞ ¼ D̂sðaÞjndi ¼
Xs

n¼0

eiðn�ndÞj bðsÞ
n jni ð66Þ

where

bðsÞ
n � bðsÞ

n ðndÞ ¼
s!

s þ 1

indð�iÞnffiffiffiffiffiffiffiffiffiffi
n!nd!

p
Xs

k¼0

eixkjaj
HenðxkÞHend

ðxkÞ
He2

s ðxkÞ
ð67Þ

and a ¼ jajexpðijÞ. In the dimension limit, s ! 1, the generalized DNS go

over into the conventional DNS defined, for example, in Refs. 65 and 43. This

property can readily be deduced from lims!1 D̂s ¼ D̂1 � D̂. Obviously, in the

special case of nd ¼ 0 the generalized DNS reduce to the generalized CS defined

by Eq. (20).

2. Truncated DNS

Let us define the finite-dimensional DNS, which in a special case go over into

the truncated CS of Kuang et al. [17] and into the conventional DNS [65] in the

limit of s ! 1. We define the truncated displaced number states, j�a; ndiðsÞ, by

the following Fock representation

j�a; ndiðsÞ ¼
Xs

n¼0

bðsÞ
n eiðn�ndÞjjni ð68Þ
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where

bðsÞ
n � bðsÞ

n ðndÞ ¼ Ns
n1!

n2!

� �1=2

ð�1Þn2�n j�a jn2�n1 Ln2�n1
n1

ðj�a j2Þ ð69Þ

Ns � Nsðjaj; ndÞ ¼
Xs

n¼0

n1!

n2!
j�aj2ðn2�n1Þ½Ln2�n1

n1
ðj�aj2Þ�2

 !�1=2

ð70Þ

For brevity, we have introduced the indices n1 � minðn; ndÞ and

n2 � maxðn; ndÞ. The state (68) is, in fact, given by the Fock expansion of the

conventional ID DNS [43,65], which are truncated at the ðs þ 1Þth term and

properly normalized. This construction justifies our name for Eq. (68).

Alternatively, the states (68) can be defined by the action of the FD factorized

displacement operator, expð�a âs
yÞexpð��a �âsÞ, on a number state jndi:

j�a; ndiðsÞ ¼ Nsexpð�aâs
yÞexpð��a�âsÞjndi ð71Þ

The equation explicitly shows how the concept of the truncated CS, given by

(36), is generalized. The truncated DNS are different from the generalized DNS,

given by (65). The differences are particularly distinct for values j�a j2 � jaj2 of

the order s or greater. However, for j�aj2 � jaj2 � s; the FD displaced number

states ja; ndiðsÞ and j�a ; ndiðsÞ approach each other.

In Fig. 8, we present a few examples of the Wigner function for the

generalized DNS with nd ¼ 1, and 2. We observe that ja; ndiðsÞ are quasiperiodic

in jaj with the same quasiperiods as those for the generalized CS given by Eqs.

(34) and (35) for even and odd s, respectively. At multiples of Ts, the initial

number state jndi is partially recovered, as observed in Figs. 4f and 8c,f.

However, the periodicity is deteriorated with increasing photon number nd. The

most precise periodicity is observed for ja; 0iðsÞ, as depicted in Fig. 4f. It is worse

for ja; 1iðsÞ (Fig. 8c), and even worse for ja; 2iðsÞ as seen in Fig. 8f. In fact, the

entire evolution of ja; ndiðsÞ becomes more complicated with increasing number

nd as can be observed by comparing Figs. 4b,c,f, 8a–c and 8d–f, respectively.

For brevity, we omit the corresponding figures for the truncated DNS. The

Wigner functions for ja; ndiðsÞ and j�a ; ndiðsÞ are almost indistinguishable for the

displacement parameter jaj ¼ j�aj and nd much less than s. However, for higher

values of these parameters, the generalized and truncated DNS behave quali-

tatively different. As discussed, the former states are periodic or quasiperiodic,

but the latter are aperiodic with the increasing displacement parameter.

C. FD Schrödinger Cats

Superpositions of two CS have attracted much attention [13,66] as simple

examples of Schrödinger cats. In this Section, we will discuss two kinds of FD
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analogs of the conventional ID even and odd CS of Malkin and Man’ko [13].

The Schrödinger cats in FD Hilbert spaces were discussed, for example, by Zhu

and Kuang [25], Miranowicz, Opatrný and Bajer [21], and Roy and Roy [24].

1. Generalized Schrödinger Cats

Let us define the generalized even CS by [21]

ja0iðsÞ ¼ M0s jaiðsÞ þ j � aiðsÞ
� �

ð72Þ

and odd CS by

ja1iðsÞ ¼ M1s jaiðsÞ � j � aiðsÞ
� �

ð73Þ

where the normalization is guaranteed by Mds (d ¼ 0; 1). On inserting Eq. (22)

into (72) and (73), we find the Fock expansions of the Schrödinger cats in
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Figure 8. Generalized displaced number states. Wigner function for ja; ndiðsÞ ¼ ja; 1ið18Þ (a–c)

and ja; 2ið18Þ (d–f) with different displacement parameters a given by fractions of the quasiperiod

T ¼ T18 ¼ 8:8.
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the forms

ja0iðsÞ ¼ N0s

X½½s=2��

n¼0

ei2nj b
ðsÞ
2n j2ni

ja1iðsÞ ¼ N1s

X½½s=2��

n¼0

eið2nþ1Þj b
ðsÞ
2nþ1j2n þ 1i ð74Þ

where the coefficients b
ðsÞ
n are given by Eq. (23); ½½s=2�� is the integer part of s=2,

and the normalizations are (d ¼ 0; 1):

Nds ¼
X½½s=2��

n¼0

�
b
ðsÞ
2nþdÞ

2

 !�1=2

ð75Þ

Analogously one can construct FD superpositions of several CS, that is, FD

Schrödinger cat-like or kitten states, which in the limit go over into the

conventional ID ones [66,67].

2. Truncated Schrödinger Cats

FD even and odd CS can be constructed in a way slightly different from that

presented in the preceding paragraph. Instead of the generalized CS, the

truncated CS can be used in the definitions (72) and (73). This approach was

explored by Zhu and Kuang [25], and Roy and Roy [24]. We rewrite briefly

their explicit expressions for j�a 0iðsÞ and j�a 1iðsÞ in Fock representation

j�a diðsÞ ¼ Nds

X½½s=2��

n¼0

�a 2nþdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n þ dÞ!

p j2n þ di ð76Þ

where d ¼ 0 for even cats and d ¼ 1 for odd cats. The normalization is

Nds ¼
X½½s=2��

n¼0

j�a j2ð2nþdÞ

ð2n þ dÞ!

 !�1=2

ð77Þ

Equation (76) can directly be calculated from Eqs. (72) and (73) after replacing

j � aiðsÞ by j � �a iðsÞ, given by their Fock expansion (36). Therefore, we refer to

the states (76) as the truncated states.

Several examples of the Wigner function for the generalized even and odd

CS are presented in Fig. 9. Their interpretation is quite clear. These are two-

peak structures with many interference fringes. The fringes in the Wigner
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function are typical of superposition states, and are not observed for a mixture

of states. The main difference between the Wigner functions presented in

Fig. 9a–c and d–f consists in a shift of the interference fringes. Let us note that

the generalized CS for jaj ¼ Ts=2, presented in Fig. 4c, is approximately equal

to the even CS for the same value of jaj. Unfortunately, because of space

limitations here, the corresponding Wigner functions for the truncated cats are

skipped. Let us mention that only for small displacement parameter

j�a j2 ¼ jaj2 � s, the truncated and generalized cats have similar properties

since approximately holds ja0iðsÞ � j�a 0iðsÞ and ja1iðsÞ � j�a 1iðsÞ. However, for

higher values of jaj2 (roughly estimated to be greater than Ts=3), discrepancies

between the generalized and truncated Schrödinger cats become essential since

they are defined in terms of the CS j�aiðsÞ and j��a iðsÞ exhibiting different

properties for large jaj2 as seen by comparing Figs. 4c–f and 6c–f. These

discrepancies result from periodic or quasiperiodic behavior of the generalized

states and aperiodic behavior of the truncated states.
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Figure 9. Generalized Schrödinger cats. Wigner function for ja0ið18Þ (a–c) and ja1ið18Þ (d–f)

with a given by fractions of the quasiperiod T ¼ T18 ¼ 8:8.
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D. FD Squeezed Vacuum

Here, we discuss two kinds of FD squeezed vacuum. We will present explicit

forms of these states, which reveal the differences and similarities between them

and the conventional IF squeezed vacuum [68] or FD coherent state. We will

show that our states are properly normalized in HðsÞ of arbitrary dimension and

go over into the conventional squeezed vacuum if the dimension is much greater

than the square of the squeeze parameter. Squeezing and squeezed states in FD

Hilbert spaces were analyzed, in particular, by Wódkiewicz et al. [31], Figurny

et al. [32], Wineland et al. [33], Bu�zek et al. [16], and Opatrný et al. [20]. An FD

analog of the conventional squeezed vacuum was proposed by Miranowicz et al.

[34].

1. Generalized Squeezed Vacuum

By analogy with the conventional squeezed vacuum [68], we define the genera-

lized squeezed vacuum in the (s þ 1)-dimensional Hilbert space by [34]

j�iðsÞ ¼ Ŝsð�Þ j0i ð78Þ

as the result of action of the generalized FD squeeze operator

Ŝsð�Þ ¼ exp 1
2
ð�ây2

s � ��â2
s Þ

� �
ð79Þ

on vacuum. Here, � ¼ j�jexpðijÞ is the complex squeeze parameter; âs and ây
s

are, respectively, the FD annihilation and creation operators defined by Eq. (8).

The method for finding explicit number-state representation of the generalized

CS, presented in Appendix, can also be applied here. We find the following

explicit Fock expansion of the generalized squeezed vacuum

j�iðsÞ ¼
Xs
n¼0

b
ðsÞ
2n einjj2ni ð80Þ

with the superposition coefficients given by

b
ðsÞ
2n ¼ ð�iÞn ð2sÞ!ffiffiffiffiffiffiffiffiffiffi

ð2nÞ!
p Xs

k¼0

exp i
2
j�jxk

� � GnðxkÞ
GsðxkÞG 0

sþ1ðxkÞ
ð81Þ

where s ¼ ½½s=2�� and GnðxÞ are the Meixner–Sheffer orthogonal polynomials

defined by the recurrence relation [69]

Gnþ1 ¼ xGn � 2nð2n � 1ÞGn�1 ð82Þ
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for n ¼ 2; 3; . . ., together with G0ðxÞ ¼ 1 and G1ðxÞ ¼ x. In Eq. (81), xk � x
ðsþ1Þ
k

is the kth root (k ¼ 0; . . . ;s) of the polynomial Gsþ1ðxÞ and G 0
sþ1ðxkÞ denotes

the x derivative at x ¼ xk. Since Eq. (81) is of a rather complicated form, we

present a few examples of the FD squeezed vacuum for small dimensions. For

s ¼ 2 and 3, we find

j�ið2Þ ¼ j�ið3Þ ¼ cos bj0i þ eijsinbj2i ð83Þ

where b ¼ 1
2
j�x

ð2Þ
0 j ¼ 1ffiffi

2
p j�j. For s ¼ 4; 5, we have

j�ið4Þ ¼ j�ið5Þ ¼
1

7
ð6 þ cosbÞj0i þ eij 1ffiffiffi

7
p sinbj2i þ e2ij 2

7

ffiffiffi
6

p
sin2 1

2
b

� �
j4i

ð84Þ

where b ¼ 1
2
j�x

ð3Þ
0 j ¼

ffiffi
7
2

q
j�j. The generalized squeezed vacuum, given by (80),

has more complicated form in Fock basis than that for the generalized CS,

described by (22). In particular, the solution (81) contains rather complicated

Meixner–Sheffer polynomials instead of the well-known Hermite polynomials,

which occur in the expansions for the generalized CS.

Here, we discuss only a few basic properties of generalized squeezed

vacuum, given by (78). By definition, it is properly normalized for arbitrary

dimension of the Hilbert space. There are several ways to prove that the

generalized squeezed vacuum goes over into the conventional squeezed vacuum

(j�i) in the limit of s ! 1. By definition (78), one can conclude that the

property lims!1 j�iðsÞ ¼ j�ið1Þ ¼ j�i holds, since the FD annihilation and

creation operators go over into the conventional ones: lims!1 âs ¼ â and

lims!1 ây
s ¼ ây. One can also show, at least numerically, that the superposition

coefficients (81) approach the coefficients bn for the conventional squeezed

vacuum: lims!1b
ðsÞ
n ¼ bn for n ¼ 0; . . . ; s. We apply another method based on

the calculation of the scalar product h�j�iðsÞ. We show the analytical results for

j�j � 1 only. We have found the scalar product between conventional and

generalized squeezed vacuums in the form (for even s)

h�j�iðsÞ ¼ h�j�iðsþ1Þ ¼ 1 þ
X1
k¼1

ð�1Þk
c
ðsÞ
k j�jsþ2k � 1 ð86Þ

where the coefficients c
ðsÞ
k are positive and less than one for any k and s. We find

that the explicit expansion up to j�jsþ2
can be given in terms of the binomial

coefficient as follows:

h�j�iðsÞ ¼ h�j�iðsþ1Þ ¼ 1 �
s þ 1

1

2
s þ 1

0
@

1
A j�j

2

� �sþ2

þOðj�jsþ4Þ ð87Þ
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In particular, for s ¼ 2; . . . ; 7, we have

h�j�ið2Þ ¼ h�j�ið3Þ ¼ 1 � 3

16
j�j4 þ 1

8
j�j6 � Oðj�j8Þ

h�j�ið4Þ ¼ h�j�ið5Þ ¼ 1 � 5

32
j�j6 þ 185

1024
j�j8 � Oðj�j10Þ

h�j�ið6Þ ¼ h�j�ið7Þ ¼ 1 � 35

256
j�j8 þ 7

30
j�j10 � Oðj�j12Þ ð88Þ

It is clearly seen that, for a given �, the scalar products become closer to unity

with increasing space dimension. We conclude that the generalized state (78)

approaches the conventional squeezed vacuum in the dimension limit.

2. Truncated Squeezed Vacuum

One can propose another definition of a FD squeezed vacuum, such as by

truncation of the Fock expansion of the conventional squeezed vacuum at the

state jsi. Thus, we define the truncated squeezed vacuum as follows [34]

j�� iðsÞ ¼
Xsþ1

n¼0

b
ðsÞ
2n einjj2ni ð89Þ

with the superposition coefficients

b
ðsÞ
2n ¼ Ns

ffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p
n!

t n ð90Þ

normalized by

N�2
s ¼ cosh j�� j � 2t2sþ2 2sþ 1

s

� �
2F1ð1;

3

2
þ s; 2 þ s

� �
; 4t2Þ ð91Þ

where s ¼ ½½s=2��; t ¼ 1
2

tanh j�� j, and 2F1 is the generalized hypergeometric

function. We marked with a bar the complex squeeze parameter �� for the

truncated states in order to distinguish it from the generalized squeezed vacuum

defined by applying the FD squeeze operator. We give an example of the

truncated squeezed vacuum. For s ¼ 2;3, Eq. (89) reduces to

j�� ið2Þ ¼ j�� ið3Þ ¼
j0i þ

ffiffiffi
2

p
tj2iffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2t2
p ð92Þ
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The state (89), by definition, goes over into the conventional squeezed vacuum in

the limit of large dimension: lims!1 j�� iðsÞ ¼ j�� i � j�i. We can explicitly

show this by expanding the scalar products between them in power series with

respect to j�j2 ¼ j�� j2 � s. We find (for even s)

ð1Þh�j�� iðsÞ ¼ ð1Þh�j�� iðsþ1Þ ð93Þ

under assumption j ¼ �j. In particular, we have

ð1Þh�j�� ið2Þ ¼ ð1Þh�j�� ið3Þ ¼ 1 � 3

16
j�j4 þ 3

16
j�j6 � Oðj�j8Þ

h�j��ið4Þ ¼ h�j��ið5Þ ¼ 1 � 5

32
j�j6 þ 65

256
j�j8 � Oðj�j10Þ

h�j��ið6Þ ¼ h�j��ið7Þ ¼ 1 � 35

256
j�j8 þ 119

384
j�j10 � Oðj�j10Þ ð94Þ
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Figure 10. Generalized squeezed vacuum. (a) Vacuum-state probability, P18ð0Þ ¼ jbð18Þ
0 j2, for

j�ið18Þ as a function of the squeeze parameter amplitude j�j; (b–f) Wigner function for j�ið18Þ with �
given by fractions of the quasiperiod T 0 ¼ T 0

18 ¼ 12:8.
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We can also explicitly compare j�� ; 2n0iðsÞ with j�; 2n0iðsÞ with the help of their

scalar products. In particular, by putting j ¼ j, we have

ð2Þh�j�� ið2Þ ¼ ð2Þh�j�� ið3Þ ¼ 1 � 1

16
j�j6 þ 7

80
j�j8 � Oðj�j10Þ

ð4Þh�j�� ið4Þ ¼ ð5Þh�j�� ið5Þ ¼ 1 � 75

210
j�j8 þ 131

210
j�j10 � Oðj�j12Þ

ð6Þh�j�� ið6Þ ¼ ð7Þh�j�� ið7Þ ¼ 1 � 49

640
j�j10 þ 189

210
j�j12 � Oðj�j14Þ ð95Þ

By comparing Eq. (95) with Eqs. (88) and (94), we can conclude that the

differences between the generalized and truncated squeezed vacuums are smaller

than those between them and the conventional squeezed vacuum. All these states

coincide in the high-dimension limit. In Fig. 10b–f, we have presented the

Wigner representation of the generalized squeezed vacuum for those values of

the squeeze parameter j�j, which correspond to maximum and minimum values

of the vacuum-state probability given by Psð0Þ ¼ jbðsÞ
0 j2 (see Fig. 10a). We

find that the generalized squeezed vacuum is quasiperiodic in j�j. Although, its

quasi-period T 0
s differs from Ts for the generalized CS, phase CS, displaced

number states or Schrödinger cats, as given by Eqs. (34) and (35). The truncated

squeezed vacuum is aperiodic in j�� j, similarly to other truncated quantum-

optical states discussed in Sections IV and V.

VI. CONCLUSION

We have compared two approaches to define finite-dimensional (FD) analogs of

the conventional quantum-optical states of infinite-dimensional Hilbert space.

We have contrasted (1) the generalized coherent states (CS), defined by the

action of the generalized FD displacement operator on vacuum, with (2) the

truncated CS, defined by the normalized truncated Fock expansion of the

conventional Glauber CS. We have shown both analytically and graphically that

these CS constructed in FD Hilbert spaces exhibit essentially different

behaviors; the generalized CS are periodic (for s ¼ 1,2) or quasi-periodic (for

higher s < 1) functions of the displacement parameter, whereas the truncated

CS are aperiodic for any s (even for s ¼ 1). Both the generalized and truncated

CS go over into the conventional CS in the dimension limit. Nevertheless, the

truncated CS approach the conventional Glauber CS faster than the generalized

CS do. Besides, as the special case, we have compared in detail the two-

dimensional CS. We have analyzed other finite-dimensional quantum-optical

states. In particular, we have discussed: (1) FD phase coherent states, (2) FD

displaced number states; (3) FD Schrödinger cats, including even and odd CS;

and (4) FD squeezed vacuums. We have confronted two essentially different
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ways of defining states in FD Hilbert spaces. We have constructed explicitly all

of these states generated by various finite-dimensional displacement or squeeze

operators using the method developed in Ref. 18 for the generalized CS. We

have also presented graphical representations of the discrete number-phase

Wigner function, which enabled us a very intuitive understanding of the

properties of the generalized and truncated quantum-optical states.

APPENDIX

Here, after Ref. 18, we present a method for finding the coefficients b
ðsÞ
n of Fock

representation of the generalized CS, given by Eq. (22).

The Baker–Hausdorf formula cannot be used to solve this problem because

the commutator of the annihilation âs and creation ây
s operators is not a c

number. A numerical procedure, leading to the coefficients b
ðsÞ
n , was proposed

by Bu�zek et al. [16]. In order to solve this problem analytically [18], it is of

advantage to express the conventional coherent state, jai, in the Fock

representation in a different manner

jai ¼
X1
n¼0

ðaay � a�aÞn

n!
j0i

¼
X1
n¼0

X½½n=2��

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � 2kÞ!

p
n!

dn;n�2kð�a�Þkan�kjn � 2ki ðA:1Þ

where

dn;k ¼
n

k

 �
ðn � k � 1Þ!! ðA:2Þ

and ½½x�� is the integer part of x. Thus, Eq. (A.1) for the generalized CS can be

rewritten as

jaiðsÞ ¼
Xs

k¼0

X1
n¼k

ffiffiffiffi
k!

p

n!
d
ðsÞ
nk ð�a�Þðn�kÞ=2aðnþkÞ=2

" #
jki �

Xs

k¼0

c
ðsÞ
k jki ðA:3Þ

The problem reduces to derivation of the coefficients d
ðsÞ
n;k satisfying the condition

in the dimension limit

lim
s!1

d
ðsÞ
nk ¼ d

ð1Þ
n;k � dnk ¼

n

k

 �
ðn � k � 1Þ!! ðA:4Þ

We obtain the following simple recurrence formula

d
ðsÞ
nk ¼ ykd

ðsÞ
n�1;k�1 þ ðk þ 1Þykþ1d

ðsÞ
n�1;kþ1 ðA:5Þ
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with the conditions d
ðsÞ
00 ¼ 1 and d

ðsÞ
n;nþk ¼ 0 for s; k > 0. In Eq. (A.5), yn is the

Heaviside function defined to be

yn � yðs � nÞ ¼
1 for s � n

0 for s < n

�
ðA:6Þ

The solution of the recurrence formula (A.5) is

d
ðsÞ
nk ¼ s!

k!ðs þ 1Þ
Xs

l¼0

HekðxlÞ
½HesðxlÞ�2

xn
l ðA:7Þ

where xl � x
ðsþ1Þ
l are the roots of the Hermite polynomial Hesþ1ðxÞ. A solution

similar to ours (A.7) was found by Figurny et al. [32] in their analysis of the

eigenvalues of the truncated quadrature operators. On performing summation in

Eq. (A.3) with the coefficients d
ðsÞ
nk , given by (A.7), one readily arrives at

CðsÞ
n ¼ s!

s þ 1

1ffiffiffiffi
n!

p
Xs

k¼0

exp i n
j� p

2

 �
þ xk aj j

h in o HenðxkÞ
½HesðxkÞ�2

� einjbðsÞ
n ðA:8Þ

or, equivalently, Eq. (23). Our procedure provides the coefficients b
ðsÞ
n in a closed

analytical form. This is the solution of the problem formulated by Bužek et al.

[16].
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I. INTRODUCTION

As it was mentioned in the first part of this study [1], the finite-dimensional (FD)

quantum-optical states have been a subject of numerous papers. For instance,
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various kinds of FD coherent states [2–6], FD Schrödinger cats [5–7], FD

displaced number states [5], FD phase states [8], and FD squeezed states [9,10]

were studied by many authors. In this chapter we concentrate on some schemes

of generation of the FD quantum-optical states. These states can be produced as

a finite superposition of n-photon Fock states. As a consequence, the problem of

generation of FD states can be reduced to the choice of the mechanism of n-

photon Fock state generation. For instance, Fock states can be achieved in the

systems with externally driven cavity filled with the Kerr media [11–13].

Moreover, they can be produced in the cavities using micromaser trapped

states [14]. Another way to obtain Fock states is that proposed by D’Ariano et al.

[15] based on the optical Fock-state synthesizer, in which the conditional

measurements have been performed for the interferometer containing Kerr

medium. The cavities with moving mirror [16] can also be utilized for the FD

state generation. Recently, several schemes for the optical-state truncaction

(quantum scissors), by which FD quantum-optical states can be produced via

teleportation, have been analyzed [17,18]. Various other methods for preparation

of Fock states [19] and their arbitrary superpositions [20] have been developed

(see also Ref. 21).

However, we concentrate here on the generation methods in which we are

able to get directly the FD quantum state desired. Namely, we shall describe the

models involving quantum nonlinear oscillator driven by an external field [11–

13,22]. For this class of systems we are able to get the quantum states that are

very close for instance, to the FD coherent states [2,3] or to the FD squeezed

vacuum [10].

II. FD COHERENT STATES GENERATED BY NONLINEAR
OSCILLATOR SYSTEMS

This section is devoted to the method of generation of the FD coherent states

making a class of states defined in FD Hilbert space. We shall concentrate on the

states proposed by Bužek et al. [2] and further discussed by Miranowicz et al.

[3,23], where both the Glauber displacement operator and the states are defined

in the FD Hilbert space [1]. The method of generation discussed here is based

on the quantum systems containing a Kerr medium represented by nonlinear

oscillator. It was introduced in Ref. 12 as a way of generating one-photon Fock

states and was further adapted for the FD coherent-state generation [24]. The

model discussed here represents a quantum nonlinear oscillator that interacts

with an external field. Systems of this kind can be a source of various quantum

states. For example, quantum nonlinear evolution can lead to generation of

squeezed states [25], minimum uncertainty states [26], n-photon Fock states

[11–13,22], displaced Kerr states [27], macroscopically distinguishable super-

positions of two states (Schrödinger cats) [28,29], or higher number of states
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(Schrödinger kittens) [30]. Of course, the problem of practical realization of the

system arises. At this point one should emphasize that the most commonly

proposed practical realization is that in which a nonlinear medium is located

inside one arm of the Mach–Zehnder interferometer [26]. However, models of a

quantum nonlinear oscillator can be achieved in various ways. For instance,

systems comprising trapped ions [31], trapped atoms [32], or cavities with

moving mirrors [16] can be utilized to generate states of our interest.

A. Two-Dimensional Coherent States

Let us start the discussion of practical possibilities of the FD coherent-state

generation from the simplest case, where only superpositions of vacuum and

single-photon state are involved (the Hilbert space discussed is reduced to two

dimensions). We consider the system governed by the following Hamiltonian

defined in the interaction picture (in units of �h ¼ 1) to be

ĤðtÞ ¼ w
2
ðâyÞ2

â2 þ Eðây þ âÞ f ðtÞ ð1Þ

where w denotes the nonlinearity constant, which can be related to the third-

order susceptibility of the Kerr medium; E is the strength of the interaction with

the external field, and ây and â are bosonic creation and annihilation operators,

respectively. Moreover, using function f ðtÞ we are able to define the shape of the

envelope of external field. For simplicity, we shall assume that the excitation is

of the constant amplitude and hence, we put f ðtÞ ¼ 1. Obviously, one should

keep in mind that models discussed here concern a real physical situation

(although they naturally involve certain limitation) and all operators, appearing

in Eq. (1), are defined in the infinite-dimensional Hilbert space.

Let us express the wave function for our system in the Fock basis as

jcðtÞi ¼
X1
n¼0

CnðtÞjni ð2Þ

where the complex probability amplitude CnðtÞ corresponds to the nth Fock

state jj i and determines its time evolution. This wave function obeys the

following Schrödinger equation

i
d

dt
jcðtÞi ¼ w

2
ðâyÞ2

â2 þ Eðây þ âÞ
� �

jcðtÞi ð3Þ

for the Hamiltonian (1). Applying the standard procedure to our wavefunction

(2) and Hamiltonian (1), we obtain a set of equations for the probability

amplitudes CnðtÞ. They are of the form

i
d

dt
CnðtÞ ¼

w
2

nðn 	 1ÞCnðtÞ þ E½
ffiffiffi
n

p
Cn	1ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
Cnþ1ðtÞ� ð4Þ
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where n corresponds to the n-photon Fock state. Obviously, one should keep in

mind that we deal with the infinite-dimensional Hilbert space and so the set of

equations for CnðtÞ, given by (4), is infinite, too. However, our aim here is to

show that under special conditions our system behaves as one defined in the FD

Hilbert space. The first step is to assume that the external excitation is weak

(E  w). As a consequence, we assume a perturbative approach. Moreover, and

this is the main point of our considerations, the part of Hamiltonian (1)

corresponding to the nonlinear evolution of the system

ĤNL ¼ w
2
ðâyÞ2

â2 ð5Þ

produces degenerate states corresponding to n ¼ 0 and n ¼ 1. As we take into

account not only the first part of Hamiltonian (1) but also the second part, we

see that a resonance arises between the interaction described by the latter and

the degenerate states generated by ĤNL. This resonance and the weak interaction

lead to a situation when the system dynamics becomes of the closed form and

cuts some subspace of states out of all the n-photon Fock states. As a

consequence, assuming that the dynamics of the physical process starts from

vacuum 0j i, the evolution of the system is restricted to the states 0j i and 1j i
solely. This situation resembles in some sense the problem of two degenerate

atomic levels coupled by a zero-frequency field, where this resonant coupling

selects, from the whole set of atomic levels, only those of them that lead to a

closed system dynamics. For the case discussed here our system evolution

corresponds to the two-level atom problem, where the interaction with

remaining atomic states can be treated as a negligible perturbation [34].

Obviously, one should note that the character of the resonances commonly

discussed in various papers, where the cavity field and the difference between

the energies of the atomic levels (or cavity frequencies) have identical values, is

different than that of those discussed here.

Thus, we write following equations of motion

i
d

dt
C0ðtÞ ¼ EC1ðtÞ

i
d

dt
C1ðtÞ ¼ E½C0ðtÞ þ

ffiffiffi
2

p
C2ðtÞ� ð6Þ

i
d

dt
C2ðtÞ ¼ wC2ðtÞ þ E½

ffiffiffi
2

p
C1ðtÞ þ

ffiffiffi
3

p
C3ðtÞ�

..

.

for the probability amplitudes corresponding to the system discussed here. Since

we have assumed E  w, Eqs. (6) indicate that the amplitude CnðtÞ rapidly
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oscillates in comparison with the amplitudes CNðtÞ if n > N. Hence, analogously

to the description of driven atomic systems within the rotating-wave approxi-

mation (RWA) [34], we neglect the influence of the probability amplitudes CnðtÞ
for n � 2. Therefore, the dynamics of our system can be described by the

following set of two equations

i
d

dt
C0ðtÞ ¼ EC1ðtÞ

i
d

dt
C1ðtÞ ¼ EC0ðtÞ ð7Þ

and their solution

C0ðtÞ ¼ icosðEtÞ
C1ðtÞ ¼ sinðEtÞ ð8Þ

where we have assumed that the system starts its evolution from vacuum 0j i.
Clearly, this result resembles that for a two-level atom in an external field [34]

and the dynamics of the system exhibits well-known oscillatory behavior. This

result is identical to that derived for the simplest case (i.e., for N ¼ s þ 1 ¼ 2)

of the FD generalized coherent states discussed by us in the first part of this

work [1]. Of course, one should keep in mind that the set of Eqs. (7) gives zero-

order solutions in perturbative treatment. As a consequence, the FD coherent

states can be produced by the system discussed within the error following from

this approximation.

The preceding result concerns the situation where the external excitation is

characterized by a constant envelope: f ðtÞ ¼ 1. For the general case, the

solution can be obtained easily, applying the same procedure as for a resonantly

driven two-level atom [34]. Then, the general solution can be expressed as

C0ðtÞ ¼ icos�ðtÞ
C1ðtÞ ¼ sin�ðtÞ ð9Þ

where the symbol �ðtÞ denotes the pulse area and is defined to be

�ðtÞ ¼ E
ðt

0

f ðt0Þdt0 ð10Þ

B. N-Dimensional Coherent States

It is possible to extend our considerations to the case of the FD Hilbert space

with arbitrary dimension. Similarly as in [24] we introduce a system comprising
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a nonlinear oscillator with the Nth-order nonlinearity and governed by the

following Hamiltonian:

ĤðtÞ ¼ w
N
ðâyÞN

âN þ Eðây þ âÞf ðtÞ ð11Þ

The first term in (11) is the N-photon Kerr Hamiltonian [35], giving rise to

optical bistability, and w is related to the (2N 	 1)-order susceptibility of the

medium. The second term in (11) represents coherent pumping modulated by

classical function f ðtÞ. Similarly, as in the previous section, we assume that the

excitation has a constant envelope: i.e. f ðtÞ ¼ 1. Applying the procedure

analogous to that described in the previous section we get the following

equations

i
d

dt
C0ðtÞ ¼ EC1ðtÞ

i
d

dt
C1ðtÞ ¼ E½C0ðtÞ þ

ffiffiffi
2

p
C2ðtÞ�

..

.

i
d

dt
CN	1ðtÞ ¼ E½

ffiffiffiffiffiffiffiffiffiffiffiffi
N 	 1

p
CN	2ðtÞ þ

ffiffiffiffi
N

p
CNðtÞ�

i
d

dt
CNðtÞ ¼ wðN 	 1Þ!CNðtÞ þ E½

ffiffiffiffi
N

p
CN	1ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
CNþ1ðtÞ�

..

.
ð12Þ

for the probability amplitudes CnðtÞ. As is assumed that E  w, we can exclude

all probability amplitudes CnðtÞ for n > N 	 1. Hence, we get the set of

equations in the closed form and the dynamics of the system is practically

restricted within a space spanned over N Fock states. For instance, for N ¼ 3

Eqs. (12) reduce to

i
d

dt
C0ðtÞ ¼ EC1ðtÞ

i
d

dt
C1ðtÞ ¼ E½C0ðtÞ þ

ffiffiffi
2

p
C2ðtÞ�

i
d

dt
C2ðtÞ ¼ E

ffiffiffi
2

p
C1ðtÞ ð13Þ
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and have the solutions

C0ðtÞ ¼
1

3
½2 þ cosð

ffiffiffi
3

p
EtÞ�

C1ðtÞ ¼
	iffiffiffi

3
p sinð

ffiffiffi
3

p
EtÞ

C2ðtÞ ¼
ffiffiffi
2

p

3
½cosð

ffiffiffi
3

p
EtÞ 	 1� ð14Þ

Again, these solutions are identical to those derived by Miranowicz et al. [3]

[compare Eq. (25) in Ref. 1]. Of course, we can write the equations for arbitrary

value of the parameter N and hence, get the formulas for the probability

amplitudes for the n-photon state expansion of the FD coherent state defined in

the N-dimensional Hilbert space. In general, for any dimension N and arbitrary

real periodic function f ðtÞ with the period T , we find that the system evolves at

t ¼ kT into the state [33]

jfðkTÞi ¼
XN	1

n¼0

Cnjni þ ECN jNi þ OðE2Þ ð15Þ

where the superposition coefficients Cn ¼ hnjfðkTÞi for n ¼ 0; . . . ;N 	 1 are

given by

Cn ¼ ðN 	 1Þ!
N

ð	1Þnffiffiffiffi
n!

p
XN	1

m¼0

exp ikxmEc0ð Þ HenðxmÞ
½HeN	1ðxmÞ�2

ð16Þ

and for n ¼ N are

CN ¼
ffiffiffiffi
N

p
BCN	1 ¼ ð	1ÞN	1

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN 	 1Þ!

N

r XN	1

m¼0

expðikxmc0EÞ
HeN	1ðxmÞ

ð17Þ

Here, xm � x
ðNÞ
m are the roots of the Hermite polynomial of order N, HeNðxmÞ ¼

0. The coefficient B is defined to be

B ¼ 1

2p

X1
n¼	1

cn

n þ a
ð18Þ

where

cn ¼
ðT

0

f ðtÞexp 	i2pn
t

T

� �
dt ð19Þ
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is the Fourier transform and a ¼ TwðN 	 1Þ!=ð2pÞ. In the first part of this work

[see Eq. (20) in Ref. 1], we have defined the N-dimensional generalized

coherent states to be (N � s þ 1)

jaiðsÞ ¼ exp
�
aây

s 	 a�âs

�
j0i ð20Þ

in terms of the FD annihilation and creation operators

âs ¼
Xs

n¼1

ffiffiffi
n

p
jn 	 1ihnj; ây

s ¼
Xs

n¼1

ffiffiffi
n

p
jnihn 	 1j ð21Þ

respectively. On omitting terms proportional to E, we explicitly show that

ja ¼ 	ikc0EiðsÞ ¼ jfðkTÞi þ OðEÞ ð22Þ

Thus, the state created in the process governed by the Hamiltonian (11) is the

finite-dimensional coherent state.

III. NUMERICAL CALCULATIONS

It is possible to verify our considerations performing appropriate numerical

calculations. As, we have excluded here all damping processes, the dynamics of

our system can be described by the unitary evolution. Therefore, we define the

unitary evolution operator

Û ¼ exp 	i
w
N
ðâyÞN

âN þ Eðây þ âÞ
h i

t
n o

ð23Þ

on the basis of Hamiltonian (1). In (23) all operators are defined in the N-

dimensional Hilbert space. For example, for N ¼ 4 the wavefunction cðtÞj i can

be expressed as

cðtÞj i ¼

C0ðtÞ
C1ðtÞ
C2ðtÞ
C3ðtÞ

0
BBB@

1
CCCA ð24Þ

whereas the annihilation and creation operators (â and ây, respectively) can be

represented by the following matrices

â ¼

0 1 0 0

0 0
ffiffiffi
2

p
0

0 0 0
ffiffiffi
3

p

0 0 0 0

2
664

3
775; ây ¼

0 0 0 0

1 0 0 0

0
ffiffiffi
2

p
0 0

0 0
ffiffiffi
3

p
0

2
664

3
775 ð25Þ

202 wiesLaw leoński and adam miranowicz



which are special cases of (21) for s ¼ 3. As a consequence, the Hamiltonian

(11) can be constructed using the Eq. (25) matrix representations. Next we

should construct the evolution operator Û. Since this operator is in the form of

the matrix exponential, it could be necessary to solve eigensystem with the

Hamiltonian Ĥ. This step can be easily done by applying standard numerical

procedures [36]. Obviously, other methods of calculating matrix exponentials

can be utilized as well. For instance, the Taylor series expansion of the operator

Û can be helpful in this case. Using the evolution operator derived, we are in a

position to generate the wave function for arbitrary time t.

Thus, assuming that the system starts its evolution from vacuum 0j i, we act

(numerically) Û on the wavefunction of the system represented by the N-

element vector

cð0Þj i ¼

1

0

0

..

.

0

0
BBBBBB@

1
CCCCCCA

ð26Þ

and obtain the vector representation of the desired wavefunction cðtÞj i
corresponding to the state of our system for the time t:

cðtÞj i ¼ Û cð0Þj i ð27Þ

It would be interesting to compare Eqs. (26) and (27) with the Glauber

definition of the coherent state [37]

ja >ð1Þ¼ D̂ða; a�Þj0 > ð28Þ

where the Glauber displacement operator D̂ða; a�Þ is defined as

D̂ða; a�Þ ¼ expðaây 	 a�âÞ ð29Þ

It is seen that the operator Û defined in Eq. (23) plays the same role as the

Glauber displacement operator D̂ða; a�Þ. Obviously, it should be kept in mind

that Û is defined in the FD Hilbert space, contrary to the definition of D̂ in

which the space has been assumed to be infinite-dimensional. Therefore, we

conclude that within the assumptions introduced here we deal with the

following correspondence:

Û
��
1$ D̂ ð30Þ
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To check our analytical formulas derived in the previous sections, we shall

concentrate on the two cases where the parameter N ¼ 2; 3. First, for N ¼ 2 we

apply the evolution operator

Û ¼ exp 	i
w
2

ây� �2
â2 þ E ây þ â

� �h i
t

n o
ð31Þ

and the results are shown in Fig. 1, which also shows the analytical results for

the probabilities of finding the system in vacuum 0j i and one-photon 1j i states

together with those of the numerical method. The analytical and numerical

results agree almost perfectly and for these two cases we obtain the well-known

oscillatory behavior. Obviously, one should keep in mind that the interaction

with the external field is weak ðE  wÞ and we assume that E ¼ p=50 contrary

to w ¼ 1.

Analogously, for N ¼ 3 three states are involved in the system evolution. For

this case the evolution operator should be of the form

Û ¼ exp 	i
w
3

ây� �3
â3 þ E ây þ â

� �h i
t

� �
ð32Þ
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Figure 1. Time-evolution of the probabilities (analytical results) for vacuum j0i (solid curve)

and one-photon state j1i (dotted curve) for the system with Kerr medium described by

the Hamiltonian 1
2
wðâyÞ2

â2. The circle marks denote numerical results. The pulse strength is

E ¼ p=50.
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whereas the parameters E and w are the same as for the case of N ¼ 2. Similarly

as for N ¼ 2, the agreement of the analytical results with their numerical

counterparts is very good. Thus, Fig. 2 depicts oscillations of the probabilities

for the states 0j i, 1j i and 2j i. The amplitude of the oscillations for one-photon

state 1j i is considerably smaller than that for other two states involved in the

evolution. This fact agrees with the properties of the Fock expansion of the FD

coherent state [3].

Applying the numerical method described here we, can also estimate the

error of the perturbative treatment introduced in the previous sections. In Fig. 3

we show the probability corresponding to the three-photon state 3j i as a

function of time. It is seen that the probability oscillates in a similar way as

those corresponding to the states 0j i, 1j i, and 2j i. However, the amplitudes of

the oscillations differ significantly. Thus, the probability for the state 3j i
oscillates between 0 and � 1:2 � 10	3 whereas that corresponding to the state

1j i changes its value from 0 to � 0:3 (Fig. 2). We see that the dynamics of

the system described by the Hamiltonian (1) is restricted in practice to the

closed set of the Fock states. This fact and the behavior of the probabilities

shown in Figs. 1 and 2 proves that the quantum states generated by the system

described by Hamiltonian (1) are very close to the FD coherent states described

in Ref. 3.
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Figure 2. The same as in Fig. 1 but for the system with the Kerr medium described by
1
3
wðâyÞ3

â3. Analytical results for: vacuum j0i (solid curve), one-photon state j1i (dashed curve), and

two-photon state j2i (dotted curve). The numerical results are marked by circles.
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IV. STATE GENERATION IN DISSIPATIVE SYSTEMS

It is obvious that in the real physical situations we are not able to avoid

dissipation processes. For dissipative systems, we cannot take an external

excitation too weak (the parameter E cannot be too small) since the field

interacting with the nonlinear oscillator could be completely damped and hence,

our model could become completely unrealistic. Moreover, the dissipation in

the system leads to a mixture of the quantum states instead of their coherent

superpositions. Therefore, we should determine the influence of the damping

processes on the systems discussed here. To investigate such processes we can

utilize various methods. For instance, the quantum jumps simulations [38] and

quantum state diffusion method [39] can be used. Description of these two

methods can be found in Ref. 40, where they were discussed and compared.

Another way to investigate the damping processes is to apply the approach

based on the density matrix formalism. Here, we shall concentrate on this

method [12,41,42].

As we have discussed earlier, the time dependence of the envelope of

external excitation does not influence the final analytical result discussed here.

The parameter f ðtÞ appears only inside the integral determining the external

pulse area yðtÞ [Eq. (10)]. Therefore, we can assume without losing generality

of our considerations that the excitation is in the form of a series of ultrashort
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Figure 3. The probability for the three-photon state j3i obtained from the numerical

calculations. All parameters are the same as for Fig. 2.
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pulses. Then the function f ðtÞ can be modeled by the Dirac delta functions as

f ðtÞ ¼
X1
k¼0

dðt 	 kTÞ ð33Þ

where T is a time between two subsequent pulses. For such situation the time

evolution of the system can be divided into two different stages. When the

damping processes are absent, the first stage is a ‘‘free’’ evolution of the

nonlinear oscillator determined by the unitary evolution operator

ÛNL ¼ exp 	i
wT

2
ây� �2

â2

� �
ð34Þ

We assume the simplest case, where the time evolution is restricted to two

quantum states, 0j i and 1j i. The second stage of the time-evolution of the

system is caused by its interaction with an infinitely short external pulse. This

part of the evolution is described by the second term of the Hamiltonian (1) and

can be described by the following evolution operator

ÛK ¼ exp ½	iEðây þ âÞ� ð35Þ

The overall evolution of the system can be described as a subsequent action of

the operators ÛNL and ÛK on the initial state. When we take into account losses

during the time evolution between two pulses we should solve the appropriate

master equation. It can be written as

dr
dt

¼ 	i
w
2

ây� �2
â2 þ g

2
2ârây 	 âyâr	 râyâ
� �

ð36Þ

The solution of this master equation in the Fock number states basis is given by

[41,42]

hpjrðt þ TÞ qj i ¼ exp i
#

2
ðp 	 qÞ

� �
½gðTÞ�ðpþqÞ=2ffiffiffiffiffiffiffiffi

p!q!
p

X1
n¼p

hnjrðtÞ n 	 ðp 	 qÞj i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!½n 	 ðp 	 qÞ�!

p
ðn 	 pÞ! ð1 þ idÞ	ðn	pÞ

1 	 gðTÞ½ �ðn	pÞ ð37Þ

where

d ¼ p 	 q

k
gðTÞ ¼ exp 	k#	 i#ðp 	 qÞ½ �

k ¼ g
w

# ¼ wT ð38Þ
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The symbol g appearing above is a damping constant responsible for the cavity

loss. Thus, solving the master equation (36), we can determine the probabilities

of finding the system in an arbitrary n-photon state. Of course, the evolution

during single ultrashort, external pulse is determined by the operator ÛK as

before.

Thus Fig. 4 shows probabilities for vacuum 0j i and one-photon 1j i state for

weak external excitation once more. We have chosen two values of the damping
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Figure 4. The probabilities for vacuum j0i (solid curve) and one-photon state j1i (dashed

curve) for the Kerr medium described by 1
2
wðâyÞ2

â2. The damping constants are (a) g ¼ 0:01 and (b)

g ¼ 0:1. The pulse strength in E ¼ p=50 and the time T ¼ p.
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parameter: g ¼ 0:1 (Fig. 4a) and g ¼ 0:01 (Fig. 4b). It is seen that for weak

damping we observe slow oscillations of the probabilities, similarly as for the

case of the quantum nonlinear oscillator without dissipation. Moreover, for

(g ¼ 0:01) the amplitude of the oscillations reaches over 75% of its value for the

case of g ¼ 0. As a consequence, we are able to get the field very close to the

desired quantum state. However, as the damping increases the situation changes

considerably. For g ¼ 0:1 the oscillations of the probabilities vanish, and the

resulting state is far from the FD coherent state defined in the two-dimensional

Hilbert space. We see that the dissipation in the system can drastically lower the

effectiveness of producing the FD coherent states. Nevertheless, one should

keep in mind one of the crucial points of our considerations: the assumption of

weak external excitation. Hence, we hope that for sufficiently weak damping,

our system can evolve to a state that is very close to the quantum state of our

interest.

V. GENERALIZED METHOD FOR FD SQUEEZED
VACUUM GENERATION

The method described in the previous sections can be easily generalized to be

useful for generation of various FD quantum-optical states different from the FD

coherent state. Thus, we shall show an example of how to adapt our method to

generate the FD squeezed vacuum [10]. In the first part of this work [see Eq.

(78) in Ref. 1], we have defined the ðs þ 1Þ-dimensional generalized squeezed

vacuum to be

xj iðsÞ¼ exp
x
2
ðây

sÞ
2 	 x�

2
â2

s

� �
j0i ð39Þ

where x ¼ jxjexpðifÞ is the complex squeeze parameter, whereas âs and ây
s are,

respectively, the FD annihilation and creation operators defined by (21). Since

the properties of the FD squeezed vacuum have already been discussed [1], here

we shall concentrate on the method of its generation.

We assume that our system consists of a Kerr medium of the ðs þ 1Þth-order

nonlinearity and a parametric amplifier driven by a series of ultrashort external

classical light pulses. Thus, the Hamiltonian describing our system can be

written in the interaction picture as

Ĥ ¼ w
ðs þ 1Þ ðâ

yÞsþ1
âsþ1 þ Eðây2 þ â2Þ f ðtÞ ð40Þ

where the first term describes the ðs þ 1Þ-photon nonlinear oscillator (Kerr

medium) as in (11), and the second term represents a pulsed parametric
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oscillator modulated by f ðtÞ, given by (33). This situation differs from those

discussed in the previous sections in one important point, namely, in the

character of external excitation. For this case we assume that the oscillator is

driven by a second-order parametric process instead of linear excitation

involved in the FD coherent-state generation. The model, described by (40) with

the two-photon Kerr Hamiltonian, was studied by Milburn and Holmes [42] in

their analysis of quantum coherence and classical chaos. The system for s ¼ 1

and f ðtÞ ¼ 1 is referred to as the Cassinian oscillator and has been analyzed in

the context of squeezing by, for instance, Gerry et al. [43] and DiFilippo et al.

[44]. The time evolution of the system leads to the generation of the quantum

states that differ significantly from the FD coherent states. In a similar way as

for the generation of the latter, we assume that the excitation is weak (E  w),

and we can apply the perturbative treatment again. As a consequence, we get the

formula for the n-photon state expansion

jfðtÞi ¼
Xs
n¼0

C2nðtÞj2ni þ EC2sþ2ðtÞj2sþ 2i þ OðE2Þ ð41Þ

where the expansion coefficients C2n ¼ h2njfðtÞi for n ¼ 0; . . . ;s are

C2nðtÞ ¼ ð	1Þn ð2sÞ!ffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p Xs
k¼0

exp ðixkEtÞ GnðxkÞ
GsðxkÞG 0

sþ1ðxkÞ
ð42Þ

and

C2sþ2ðtÞ ¼ 2	s	1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ 1Þð2sþ 2Þ

p
C2sðtÞ ð43Þ

The functions GnðxÞ appearing above are the Meixner–Sheffer orthogonal

polynomials; the prime sign in (42) denotes their x derivative, and s ¼ Intðs=2Þ
is the integer part of s=2. If we omit the terms proportional to E and higher, we

get the expansion for the FD squeezed vacuum as

x ¼ 	2Etj iðsÞ¼ fðtÞj i þ OðEÞ ð44Þ

So, our system evolves to a state close to the FD squeezed vacuum discussed in

Ref. 10.

VI. SUMMARY

We have discussed one of the possible methods of generation of the FD

quantum-optical states. Although, it is possible to generate n-photon Fock states
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and then to construct a desired state from these states, we have concentrated on

the generation schemes that can lead directly to the FD coherent states and FD

squeezed vacuum. The method described here is based on the quantum

nonlinear oscillator evolution. We have assumed that this oscillator is driven by

an external excitation. We have shown that within the weak excitation regime

we are able to generate with high accuracy the appropriate FD quantum state.

Thus, depending on the character of the excitation, we can produce various FD

states. For instance, for the linear excitation case we generate the FD coherent

state, whereas for the parametric excitation, the FD squeezed vacuum can be

achieved. Moreover, we have shown that the mechanism of the generation does

not depend on the shape of the excitation envelope. Hence, various forms of the

latter can be assumed depending of the feasibility of our model from the

experimental or mathematical point of view.

For the situations discussed here appropriate analytical formulas for the

generated states have been derived. These results have been obtained within the

perturbation theory, and they agree with those of the n-photon expansion of the

appropriate FD states. Moreover, we have proposed methods for checking our

results numerically, and we have shown that numerical results agree very well

with the analytical ones. Since we are not able to avoid dissipation processes

from real physical situations, we have discussed damping processes two. It has

been shown that although dissipation can play crucial role in the whole system

dynamics and is able to destroy the effect of the FD state generation completely,

under special assumptions these states can be achieved.
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9. K. Wódkiewicz, P. L. Knight, S. J. Buckle, and S. M. Barnett, Phys. Rev. A 35, 2567 (1987);
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I. INTRODUCTION

The subject of correlated or collective spontaneous emission by a system of a

large number of atoms was first proposed by Dicke [1], who introduced the

concept of superradiance that the influence on each atomic dipole of the

electromagnetic field produced by the other atomic dipoles could, in certain

circumstances, cause each atom to decay with an enhanced spontaneous emis-

sion rate. The shortening of the atomic lifetime resulting from the interaction

between N atoms could involve an enhancement of the intensity of radiation up

to N2.

The earliest investigations into correlated spontaneous emission from mul-

tiatom systems were motivated by attempts to detect coherent effects in the

interaction of light with resonant atomic systems [2–4]. Another intrinsic

feature of correlated spontaneous emission is that the emitted field exhibits

strong nonlinear and directional behavior [5]. Moreover, the interest in cor-

related spontaneous emission lies in its close connection with the quantum and

classical as well as with the spontaneous and stimulated aspects of atomic

emission [6].

The phenomenon of collective emission is, in general, characteristic of

macroscopic systems with a large number of emitting atoms confined a region

much smaller than the optical wavelength. However, to understand collective

effects from a macroscopic system of atoms, it is necessary to have a micro-

scopic formulation of the interaction between the atoms and the electromagnetic

field. Therefore, some previous work has been devoted to study collective

effects in the case of few atoms [7–10]. Although a system of two or three atoms

is admittedly an elementary model, it offers some advantages over the

multiatom problem. Because of its simplicity, one obtains detailed and almost

exact dynamical solutions with a variety of initial conditions. Many of the results

predicted for the system of two or three atoms are analogous to phenomena that

one could expect in multiatom systems. Early treatments of two or three-atom

systems assumed a constant interatomic separation during the radiation process.

When averaged over all such possible interatomic separations the collective

effects average out, which made them difficult to observe experimentally.

In the 1990s, advances in trapping and cooling of small number of ions and

neutral atoms greatly renewed the interest in collective effects in the interaction

216 zbigniew ficek and ryszard tanaś



of atoms with the electromagnetic field [11–13]. The trapped atoms are

essentially motionless and lie at a known and controllable distance from one

another, permitting qualitatively new studies of interatomic interactions not

accessible in a gas cell or an atomic beam. The advantage of the trapped atoms

is that it allows separation of collective effects, arising from the correlations

between the atoms, from the single-atom effects. The question of to what extent

the interatomic interactions can alter the dynamics of a multiatom system has

become of interest as it contains information about the internal structure of the

collective system.

A central topic in the current studies of collective effects is the theoretical

and experimental investigation of the concept of correlated superposition states

(entangled states) of a multiatom system [14]. The entangled states are linear

superpositions of the internal states of the system that cannot be separated into

product states of the individual atoms. This property is recognized as an entirely

quantum-mechanical effect and has played a crucial role in many discussions of

the nature of quantum measurements and, in particular, in the development of

quantum communications. It has been realized that entangled states can have

many practical applications, ranging from quantum computation [15,16], infor-

mation processing [17,18], and cryptography [19] to atomic spectroscopy [20].

An example of entangled states in a two-atom system are the symmetric and

antisymmetric states, which correspond to the symmetric and antisymmetric

combinations of the atomic dipole moments, respectively [1,7,21]. These states

are created by the dipole–dipole interaction between the atoms and are charac-

terized by different spontaneous decay rates that the symmetric state decays

with an enhanced, whereas the antisymmetric state decays with a reduced

spontaneous emission rate [7]. For the case of two atoms confined into the

region much smaller than the optical wavelength, the antisymmetric state does

not decay at all, and therefore can be regarded as a decoherence-free state.

Another particularly interesting entangled states of the two-atom system are

two-photon entangled states that are superpositions of only those states of the

two-atom system in which both or neither of the atoms are excited. These states

have been known for a long time as pairwise atomic states [22] or multiatom

squeezed states [23]. The two-photon entangled states cannot be generated by a

coherent laser field coupled to the atomic dipole moments. The states can be

created by a two-photon excitation process with nonclassical correlations that

can transfer the population from the two-atom ground state to the upper state

without populating the intermediate one-photon states. An obvious candidate

for the creation of the two-photon entangled states is a broadband squeezed

vacuum field that is characterized by strong nonclassical two-photon correla-

tions [24,25].

A number of theoretical methods have been proposed to prepare a two-atom

system in an entangled state [26–29,31–34], and two-atom entangled states have
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already been demonstrated experimentally using ultracold trap ions [35] and

cavity quantum electrodynamic (QED) schemes [36]. The preparation of

correlated superposition states in multiatom system has been performed using

a quantum nondemolition (QND) measurement technique [37]. A mapping of

entangled states of light on atoms has also been proposed [38,39] and

experimentally demonstrated [40].

In this chapter, we review schemes proposed for the preparation of two 2-

level atoms in an entangled state. Since we focus here on basis aspects of the

atom–atom entanglement, we begin in Section II with a derivation of the master

equation for two nonidentical two-level atoms interacting with the quantized

three-dimensional vacuum field and driven by a single-mode coherent laser

field. Sections III and IV are concerned mainly with techniques proposed for the

preparation of a two-atom system in entangled states. The cases of maximally

and nonmaximally entangled states are discussed. In Section V, we discuss

methods of detecting of a particular entangled state. In Section VI, we describe

the method of preparation of a two-atom system in two-photon entangled states.

We also present a method of mapping of the entanglement of light on atoms.

II. MASTER EQUATION OF TWO COUPLED ATOMS

There are several theoretical approaches that can be used to calculate the

dynamics and correlation properties of two atoms interacting with the quantized

electromagnetic field. One of the methods is the wavefunction approach in

which the dynamics are given in terms of the probability amplitudes [9].

Another approach is the Heisenberg equation method, in which equations of

motion for the atomic and field operators are found from the Hamiltonian of a

given system [10]. The most popular approach is the master equation method, in

which the equation of motion is found for the density operator of an atomic

system weakly coupled to a system regarded as a reservoir [7,8,41]. There are

many possible realizations of reservoirs. The typical reservoir to which atomic

systems are coupled is the quantized three-dimensional multimode vacuum

field. The major advantage of the master equation is that it allows us to consider

the evolution of the atoms plus field system entirely in terms of atomic

operators.

A. Atomic System and Hamiltonian

We consider a system of two nonidentical and nonoverlapping atoms at

positions r1 and r2, coupled to the quantized three-dimensional electromagnetic

field. The initial state of the field is the product of a single-mode coherent state

of a driving laser field, and the vacuum state of the rest of the modes. Each atom

is assumed to have only two levels: the ground level jgii and the excited level

jeiiði ¼ 1; 2Þ, separated by an energy �hoi ¼ Eei
� Egi

, and connected by an

218 zbigniew ficek and ryszard tanaś



electric dipole transition with the dipole matrix elements l1 and l2. The dipole

transitions are represented by the dipole raising Sþ
i and lowering S�

i operators

defined as

Sþ
i ¼ jeiihgij; S�

i ¼ jgiiheij ð1Þ

and satisfying the relations

½Sþ
i ; S�

j 
 ¼ 2Sz
idij; Sþ

i S�
i þ S�

i Sþ
i ¼ 1 ð2Þ

where Sz
i ¼ 1

2
jeiiheij � jgiihgijð Þ is the energy operator of the ith atom. If the ith

atom is in its ground state jgii, then hSz
i i ¼ � 1

2
, whereas hSz

i i ¼ 1
2

if the atom is in

its excited state.

The atoms interact with the quantized three-dimensional vacuum field and

are also driven by a single-mode coherent laser field. We express the quantized

multimode field in terms of the annihilation and creation operators âks and â
y
ks of

field mode ks, which has wavevector k, frequency ok, and polarization �eks.

Thus, we write the electric field operator at position r in the form

Ê r; tð Þ ¼ i�h
X

ks

ok

2E0�hV

� �1=2

�eksðâks eik�r � â
y
kse

�ik�rÞ ð3Þ

where V is the normalization volume.

The total Hamiltonian of the interacting systems in the electric dipole and

RWA approximations [42] is given by

H ¼ HA þ HF þ HI ð4Þ

where

HA ¼ �ho1Sz
1 þ �ho2Sz

2 ð5Þ

is the Hamiltonian of the atoms

HF ¼
X

ks

�hok â
y
ksâks þ

1

2

� �
ð6Þ

is the Hamiltonian of the field, and HI ¼ Hv þ HL is the interaction Hamiltonian

composed of two terms:

Hv ¼ �i�h
X

ks

f½l1 � gksðr1ÞSþ
1 þ l2 � gksðr2ÞSþ

2 
âkse
iokt � H:c:g

HL ¼ � 1

2
i�h½ð�1Sþ

1 þ �2Sþ
2 ÞeiðoLtþfLÞ � H:c:
 ð7Þ
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The first term in Eq. (7) represents the interaction of the atoms with the quantized

multimode vacuum field, while the second term is the interaction of the atoms

with a classical driving laser field (H.c. denotes Hermitian conjugation). Here, oL

and fL are the frequency and the phase of the driving field, respectively

gksðriÞ ¼
ok

2E0�hV

� �1=2

�eks eik�ri ð8Þ

is the mode function of the three-dimensional vacuum field, evaluated at the

position ri of the ith atom, and

�i ¼
li � ELeikL�ri

�h
ð9Þ

is the Rabi frequency of the ith atom with EL and kL denoting the amplitude and

the wave vector of the driving field, respectively.

If the dipole moments of the atoms are parallel, the Rabi frequencies �1 and

�2 are related by

�2 ¼ �1
jl2j
jl1j

eikL�r12 ð10Þ

where r12 ¼ r2 � r1 is the vector in the direction of the interatomic axis and

jr12j ¼ r12 is the distance between the atoms. Thus, for two atoms with equal

magnitudes of the dipole moments ðjl1j ¼ jl2jÞ, the Rabi frequencies differ only

by the phase factor expðikL � r12Þ arising from different positions of the atoms.

However, the phase factor expðikL � r12Þ also depends on the orientation of the

interatomic axis in respect to the direction of propagation of the driving field, and

expðikL � r12Þ can be equal to one even for large interatomic separations r12. This

happens when the direction of propagation of the driving field is perpendicular to

the interatomic axis, kL � r12 ¼ 0. When kL � r12 6¼ 0, the atoms are subject to

different Rabi frequencies ð�1 6¼ �2Þ.

B. Master Equation

Starting from the Hamiltonian (4), we can write the Schrödinger equation for

the density operator rT of the total system, two atoms plus the electromagnetic

fields, as

q
qt
rT ¼ 1

i�h
½H; rT 
 ð11Þ

We are interested in the interaction of two atoms with the vacuum field, and

therefore we transform Eq. (11) into the interaction picture with

~rT tð Þ ¼ ei HAþHFþHLð Þt=�hrT e�i HAþHFþHLð Þt=�h ð12Þ
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and find that the transformed density operator satisfies the equation

q
qt
~rTðtÞ ¼

1

i�h
½~HvðtÞ; ~rTðtÞ
 ð13Þ

where

~Hv tð Þ ¼ ei HAþHFþHLð Þt=�hHv e�i HAþHFþHLð Þt=�h ð14Þ

The master equation involves the so-called reduced density operator r
describing the system of two atoms, which is obtained from the total density

operator rT by tracing over vacuum field (reservoir) states

~rðtÞ ¼ TrF~rTðtÞ ð15Þ

We will assume that the interaction is turned on at t ¼ 0, and no correlations exist

between the atoms and the vacuum field at this initial time. Hence, we can write

the density operator ~rT 0ð Þ as a product of the density operator of the atoms ~r 0ð Þ
and the density operator of the reservoir ~rF 0ð Þ:

~rT 0ð Þ ¼ ~r 0ð Þ~rF 0ð Þ ð16Þ

The properties of the vacuum field are specified by the density operator ~rF 0ð Þ,
from which correlation functions of the field operators can be determined as

hâksi ¼ TrF½rFð0Þâks
 ¼ 0; hây
ksi ¼ TrF½rFð0Þâ

y
ks
 ¼ 0

hâksâ
y
k0s0 i ¼ TrF½rFð0Þâksâ

y
k0s0 
 ¼ d3ðk � k0Þdss0

hây
ksâk0s0 i ¼ TrF½rFð0Þâ

y
ksâk0s0 
 ¼ 0

hây
ksâ

y
k0s0 i ¼ TrF½rF 0ð Þây

ksâ
y
k0s0 
 ¼ 0

hâksâk0s0 i ¼ TrF rFð0½ Þâksâk0s0 
 ¼ 0 ð17Þ

We now integrate Eq. (13), substitute the solution for ~rT tð Þ inside the

commutator on the right-hand side (r.h.s.) of Eq. (13), and after taking the

trace over the reservoir states, we find that the reduced density operator ~r tð Þ
satisfies the integrodifferential equation

q
qt
~rðtÞ ¼ 1

i�h
TrF½~HvðtÞ; ~rð0Þ~rFð0Þ


� 1

�h2

ðt

0

dtTrFf½~HvðtÞ; ½~Hvðt � tÞ; ~rTðt � tÞ

g ð18Þ

correlated superposition states in two-atom systems 221



In the derivation of Eq. (18), we have assumed that the total density operator
~rT tð Þ factorizes at t ¼ 0. At later times correlations between the atoms and the

field may arise as a result of the coupling through the Hamiltonian Hv. Here, we

assume that the interaction between the atoms and the field is weak, which

allows us to make the so-called Born approximation that ignores the back-

reaction effects of the atoms on the field. Thus, ~rT t � tð Þ ¼ ~r t � tð Þ ~rF t � tð Þ ¼
~r t � tð Þ~rF 0ð Þ for all times t � t > 0. Moreover, we make the Markov

approximation in which we assume that the correlation time of the field is

much shorter than the timescale of radiation processes in the atoms. This allows

us to replace ~r t � tð Þ by ~r tð Þ.
Substituting Eq. (17) into Eq. (18) and after the Born–Markov approxima-

tion, the master equation takes the form

q
qt
~rðtÞ ¼ � i

�h
½Hc; ~rðtÞ


� 1

2

X2

i;j¼1

�ijðSþ
i S�

j ~rðtÞ þ ~rðtÞSþ
i S�

j � 2S�
j ~rðtÞSþ

i Þ ð19Þ

where

Hc ¼ �hd1Sþ
1 S�

1 þ �hd2Sþ
2 S�

2 þ �h�12ðSþ
1 S�

2 þ Sþ
2 S�

1 Þ ð20Þ

represents the vacuum-induced shifts of the atomic transition frequencies and the

coherent interaction between the atoms. The parameter

�i � �ii ¼ p
X

ks

li � gks rið Þj j2d3 k � k0ð Þ ði ¼ 1; 2Þ ð21Þ

describes the spontaneous emission rate of the ith atom resulting from the

interaction of the individual atoms with the vacuum field, and

�ij ¼ �ji ¼ p
X

ks

½l1 � gksðr1Þ
½l�
2 � g�

ksðr2Þ
d3ðk � k0Þ; ði 6¼ jÞ ð22Þ

are collective spontaneous emission rates arising from the coupling between the

atoms through the vacuum field, and k0 ¼ k1 þ k2ð Þ=2.

The parameters

di ¼ P
X

ks

jli � gksðriÞj2
1

ok þ oi

� 1

ok � oi

� �
ð23Þ
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represent a part of the Lamb shift, induced by the first-order coupling in the

Hamiltonian Hv, of the ground and excited states of the atoms, while

�12 ¼ P
X

ks

½l1 � gksðr1Þ
½l�
2 � g�

ks r2ð Þ
 1

ok þ o0

þ 1

ok � o0

� �
ð24Þ

represents the vacuum-induced coherent interaction between the atoms, P refers

to the Cauchy principal value, and o0 ¼ ðo1 þ o2Þ=2 is the average frequency of

the atomic transitions.

The parameters di are usually considered to be absorbed into the atomic

frequencies o1 and o2, by redefining the frequencies ~oi ¼ oi þ di and are not

explicitly included in the master equations. However, we are interested in the

qualitative effects of the interactions between the atoms, and the role played by

�12 in their dynamics. It is evident from Eq. (20) that the parameter �12 does

not appear as a shift of the energies, but rather as a coherent coupling between

the atoms. Thus, the interaction with the vacuum field not only gives rise to the

dissipative spontaneous emission but also leads to a coherent coupling between

the atoms.

We may find the explicit form of the collective parameters �12 and �12 by

using the spherical representation of the unit orthogonal polarization vectors

[41]

�ek1 ¼ ð�cos y cosf;�cos y sinf; sin yÞ;
�ek2 ¼ ðsinf;�cosf; 0Þ ð25Þ

and changing the sum over k into an integral

1

V

X
ks

�! 1

2pcð Þ3

X2

s¼1

ð1
0

o2
k dok

ðp
0

sin y dy
ð2p

0

df ð26Þ

where ðk; y;fÞ denote spherical coordinates.

Substituting Eq. (26) into Eqs. (22) and (24), we obtain the following explicit

expressions for the collective spontaneous emission rate

�12 ¼ 3

4

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
½1 � ð�l � �r12Þ2
 sinðk0r12Þ

k0r12

�

þ½1 � 3ð�l � �r12Þ2
 cosðk0r12Þ
ðk0r12Þ2

� sinðk0r12Þ
ðk0r12Þ3

" #)
ð27Þ
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and the collective coupling between the atoms

�12 ¼ 3

4

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
�½1 � �l � �r12ð Þ2
 cos k0r12ð Þ

k0r12

�

þ½1 � 3 �l � �r12ð Þ2
 sin k0r12ð Þ
k0r12ð Þ2

þ cos k0r12ð Þ
k0r12ð Þ3

" #)
ð28Þ

where �l is the unit vector along the dipole moments of the atoms, which we have

assumed to be parallel ð�l ¼ �l1 ¼ �l2Þ, and �r12 is the unit vector along the

interatomic axis.

The collective parameters (27) and (28), which both depend on the intera-

tomic separation, determine the collective properties of the two-atom system.

The parameter (28) is the familiar retarded dipole–dipole interaction between

the atoms [7,9,10,21], while �12 gives rise to the collective spontaneous

emission. In Fig. 1, we plot �12=
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
and �12=

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
as a function of

r12=l0, where l0 is the resonant wavelength. For large separations ðr12 � l0Þ
the parameters are very small ð�12 ¼ �12 � 0Þ. By contrast, for atomic separa-

tions much smaller than the resonant wavelength (the small sample model), the

parameters reduce to

�12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
ð29Þ

0 1 2 3 4

r12/λ0

Γ 1
2 

, Ω
12

−0.5

0

0.5

1

1.5

Figure 1. Collective parameters �12=
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
(solid line) and �12=

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
(dashed line) as a

function of r12=l0 for �l ? �r12.
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and

�12 � 3
ffiffiffiffiffiffiffiffiffiffi
�1�2

p

4ðk0r12Þ3
½1 � 3ð�l � �r12Þ2
 ð30Þ

For this case �12 corresponds to the quasistatic dipole–dipole interaction

potential.

On transforming Eq. (19) into the Schrödinger picture, the master equation of

the two-atom system takes the form

q
qt
r ¼ � i

�h
½H0; r


� 1

2

X2

i;j¼1

�ijðSþ
i S�

j rþ rSþ
i S�

j � 2S�
j rSþ

i Þ ð31Þ

where

H0 ¼ Hs þ HL þ �h�12ðSþ
1 S�

2 þ Sþ
2 S�

1 Þ ð32Þ

Equation (31) is the final form of the master equation that gives us an elegant

description of the physics involved in the dynamics of two interacting atoms.

The collective parameters �12 and �12, which arise from the mutual interaction

between the atoms, significantly modify the master equation of a two-atom

system. The parameter �12 introduces a coupling between the atoms through the

vacuum field that the spontaneous emission from one of the atoms influences

the spontaneous emission from the other. The dipole–dipole interaction �12

introduces a coherent coupling between the atoms. Owing to the dipole–dipole

interaction, the population is coherently transferred back and forth from one

atom to the other. Here, the dipole–dipole interaction parameter �12 plays a role

similar to that of the Rabi frequency in the atom–field interaction.

III. COLLECTIVE ATOMIC STATES

The presence of the collective parameters �12 and �12 introduces off-diagonal

terms in the Hamiltonian H0 and in the dissipative part of the master equation.

This suggests that in the presence of the interaction between the atoms the bare

atomic states are no longer the eigenstates of the two-atom system. We can

diagonalize the Hamiltonian (32) with respect to the dipole–dipole interaction

and find collective states of the two-atom system.

In the absence of the driving laser field and the dipole–dipole interaction, the

basis states of the two-atom system are the four direct products states

jg1ijg2i; je1ijg2i; jg1ije2i; je1ije2i ð33Þ
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In the basis of these states the matrix representation of the Hamiltonian H0, with

�1 ¼ �2 ¼ 0, is given by

H0

�h
¼

0 0 0 0

0 o0 � 1
2
� �12 0

0 �12 o0 þ 1
2
� 0

0 0 0 2o0

0
BBB@

1
CCCA ð34Þ

where o0 ¼ 1
2
o1 þ o2ð Þ and � ¼ o2 � o1.

Evidently, in the presence of the dipole–dipole interaction the matrix (34) is

not diagonal, which indicates that the product states (33) are not the eigenstates

of the two-atom system. We will diagonalize the matrix (34) for the case of

identical ð� ¼ 0Þ as well as nonidentical ð� 6¼ 0Þ atoms to find eigenstates of

the system and their energies.

A. Collective States of Two Identical Atoms

We begin by studying the collective properties of the system of two identical

atoms ð� ¼ 0Þ. In order to find eigenstates and corresponding energies of the

system, we diagonalize the matrix (34), and find that in the case of two identical

atoms the eigenstates are given by [1,7]

jgi ¼ jg1ijg2i

jsi ¼ 1ffiffiffi
2

p je1ijg2i þ jg1ije2ið Þ

jai ¼ 1ffiffiffi
2

p je1ijg2i � jg1ije2ið Þ

jei ¼ je1ije2i ð35Þ

with corresponding energies

Eg ¼ 0

Es ¼ �h o0 þ �12ð Þ
Ea ¼ �h o0 � �12ð Þ
Ee ¼ 2�ho0 ð36Þ

The eigenstates (35) are the collective states of two interacting atoms and are

known in quantum optics as the Dicke states of the two-atom system [1]. We note

here that the collective states jsi and jai are an example of maximally entangled

states of the two-atom system that the eigenstates of the system are linear

superpositions which cannot be separated into product states of the individual

atoms.
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The collective states are shown in Fig. 2. It is seen that in the collective states

representation, the two-atom system behaves as a single four-level system with

the ground state jgi, the upper state jei, and two intermediate states: the sym-

metric state jsi and the antisymmetric state jai. The energies of the intermediate

states depend on the dipole–dipole interaction and these states suffer a large

shift when the interatomic separation is small.

From Eqs. (1) and (35), we find the following relations between the atomic

and collective operators

Sþ
1 ¼ 1ffiffiffi

2
p ðAes � Aea þ Asg þ AagÞ

Sþ
2 ¼ 1ffiffiffi

2
p ðAes þ Aea þ Asg � AagÞ ð37Þ

where Aij ¼ jiih jj; ði; j ¼ e; a; s; gÞ are the collective operators that represent

the energies ði ¼ jÞ of the collective states and transition dipole moments ði 6¼ jÞ.
Substituting the relations (37) into Eq. (31), we find that in terms of the

collective operators, the master equation is given by

q
qt
r ¼ � i

�h
½Hcs; r
 �

1

2
ð�þ �12ÞfðAee þ AssÞrþ rðAee þ AssÞ

� 2ðAse þ AgsÞrðAes þ AsgÞg �
1

2
ð�� �12ÞfðAee þ AaaÞr

þ rðAee þ AaaÞ � 2ðAae þ AgaÞrðAea þ AagÞg ð38Þ

| e >

| s >

| a >

| g >

Ω12

Ω12

ω0

ω0

Figure 2. Collective states of two identical atoms. The dipole–dipole interaction �12 shifts the

energies of the symmetric and antisymmetric states in the opposite directions.
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where the Hamiltonian Hcs reads

Hcs ¼ �h½2o0Aee þ ðo0 þ �12ÞAss þ ðo0 � �12ÞAaa


� �h

2
ffiffiffi
2

p fð�1 þ �2Þ½ðAes þ AsgÞeiðoLtþfLÞ þ H:c:


þ ð�1 � �2Þ½ðAea þ AagÞeiðoLtþfLÞ þ H:c:
g ð39Þ

The master equation (38) provides the simplest example of the effects

introduced by the coherent interaction of atoms with the radiation field. These

effects include the shifts of the energy levels of the system, produced by the

dipole–dipole interaction, and the phenomena of enhanced (superradiant) and

reduced (subradiant) spontaneous emission, which appear in the changed

damping rates to 1
2
�þ �12ð Þ and 1

2
�� �12ð Þ, respectively.

B. Collective States of Two Nonidentical Atoms

The collective states (35) are eigenstates of the system of two identical atoms. If

the atoms are not identical, the situation becomes more complicated and we will

discuss here some consequences of the fact that the atoms could have different

transition frequencies and/or different spontaneous emission rates. When the

atoms are nonidentical with different transition frequencies, the states (35) are

no longer the eigenstates of the Hamiltonian (32). The diagonalization of the

matrix (34) with � 6¼ 0 leads to the following eigenstates [43]

jgi ¼ jg1ijg2i
js0i ¼ bje1ijg2i þ ajg1ije2i
ja0i ¼ aje1ijg2i � bjg1ije2i
jei ¼ je1ije2i ð40Þ

with energies

Eg ¼ 0

Es0 ¼ �h o0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12 þ
1

4
�2

r !

Ea0 ¼ �h o0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12 þ
1

4
�2

r !

Ee ¼ 2�ho0; ð41Þ

where

a ¼ wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ �2

12

p ; b ¼ �12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ �2

12

p ð42Þ

and w ¼ 1
2
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12 þ 1
4
�2

q
.
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The energy system of two nonidentical atoms is similar to that of the

identical atoms, with the ground state jgi, the upper state jei, and two

intermediate states js0i and ja0i. It is apparent that the effect of the frequency

difference � on the collective atomic states is to increase the splitting between

the intermediate levels, which now is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12 þ 1
4
�2

q
. However, the most

dramatic effect of the detuning � is on the degree of entanglement of the states

js0i and ja0i that in the case of nonidentical atoms the states js0i and ja0i are not

maximally entangled states. For � ¼ 0 the states js0i and ja0i reduce to the

maximally entangled states jsi and jai, whereas for � � �12 the entangled

states js0i and ja0i reduce to the product states je1ijg2i and �jg1ije2i,
respectively.

We follow exactly the same route as in the preceding section, and rewrite the

master equation (31) in terms of the collective operators Aij ¼ jiih jj, where now

the collective states are given in Eq. (40). First, we find that in the case of

nonidentical atoms the atomic and collective operators are related by

Sþ
1 ¼ bAes0 � aAea0 þ aAs0g þ bAa0g

Sþ
2 ¼ aAes0 þ bAea0 þ bAs0g � aAa0g ð43Þ

In terms of the collective operators Aij the master equation can be written as

q
qt
r ¼ � i

�h
Hna; r½ 
 �Ldr�Lndr ð44Þ

where

Hna ¼ �h 2o0Aee þ o0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12 þ
1

4
�2

r !
As0s0

(

þ o0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

12 þ
1

4
�2

r !
Aa0a0

)

� �h

2
fða�1 þ b�2Þ½ðAes0 þ As0gÞei oLtþfLð Þ þ H:c:
:

þ ða�1 � b�2Þ½ðAea0 þ Aa0gÞei oLtþfLð Þ þ H:c:
g ð45Þ

is the Hamiltonian of the system in the collective states basis. The diagonal

dissipative part of the master equation reads

Ldr ¼ ��es0 ðAeerþ rAee � 2As0erAes0 Þ
� �s0gðAs0s0rþ rAs0s0 � 2Ags0rAs0gÞ
� �a0gðAa0a0rþ rAa0a0 � 2Aga0rAa0gÞ
� �ea0 ðAeerþ rAee � 2Aa0erAea0 Þ ð46Þ
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while the off-diagonal is given by

Lndr ¼ ��a0s0 fðAa0s0 þ As0a0 Þrþ rðAa0s0 þ As0a0 Þ
� 2Aga0rAs0g � 2Ags0rAa0gg
� ½abð�1 þ �2Þ þ �12
ðAs0erAs0g þ Ags0rAes0 Þ
þ ½abð�1 þ �2Þ � �12
ðAa0erAa0g þ Aga0rAea0 Þ
þ ½�a0s0 � 2ðb2 � a2Þ�12
ðAs0erAea0 þ Aa0erAes0 Þ
þ ða2�1 � b2�2ÞðAa0erAs0g þ Ags0rAea0 Þ
� ðb2�1 � a2�2ÞðAs0erAa0g þ Aga0rAes0 Þ ð47Þ

with the coefficients

�es0 ¼
1

2
ðb2�1 þ a2�2 þ 2ab�12Þ

�s0g ¼ 1

2
ða2�1 þ b2�2 þ 2ab�12Þ

�ea0 ¼
1

2
ða2�1 þ b2�2 � 2ab�12Þ

�a0g ¼ 1

2
ðb2�1 þ a2�2 � 2ab�12Þ

�a0s0 ¼
1

2
½abð�1 � �2Þ þ ðb2 � a2Þ�12
 ð48Þ

In the absence of the driving field, the Hamiltonian (45) has a simple

diagonal form, where the different terms represent energies of the collective

states. In contrast, the dissipative part of the master equation is very extensive

and complicated and unlike the case of identical atoms, is not diagonal. The

diagonal dissipative part of the master equation, Eq. (46), contains the familiar

relaxation terms corresponding to spontaneous transitions between the collec-

tive states, and the coefficients �es0 , �s0g, �ea0 , and �a0g are the spontaneous

emission rates of the transitions. The off-diagonal part, Eq. (47), contains

spontaneously induced coherences between the transitions. They are of im-

portance only in systems of atoms with different transition frequencies ð� 6¼ 0Þ.
Similar to the case of identical atoms, there are two channels of transitions

jei ! js0i ! jgi and jei ! ja0i ! jgi which decay with the rates �es0 , �s0g and

�ea0 , �a0g, respectively. However, in contrast to the case of identical atoms, these

two channels of transitions are not independent and their decays are correlated

through various off-diagonal terms. The decay rates �ea0 and �a0g are much

smaller than the decay rates �es0 , �s0g involving the symmetric state and can be

reduced to zero. This happens only for atomic separations much smaller than the

optical wavelenght (the small sample model). In particular, the decay rate �a0g
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of the antisymmetric state to the ground state, shown in Fig. 3, vanishes when

[43]

�12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
and

b
a
¼

ffiffiffiffiffi
�2

�1

r
ð49Þ

The first condition, �12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
, is satisfied when the atoms are separated by

distances much smaller than the optical wavelength. The second condition is

satisfied when

� ¼ ��12ð�1 � �2Þ
2
ffiffiffiffiffiffiffiffiffiffi
�1�2

p ð50Þ

Thus, with the condition (49) the antisymmetric state does not decay to the

ground state. Moreover, at the condition (49) the interference term vanishes,

�a0s0 ¼ 0. Since in the trapping condition (49) the state ja0i is also decoupled

from the interaction with the laser field, the only way to populate this state is by

spontaneous emission from the upper state jei.
The decoupling of the antisymmetric state ja0i from the coherent field

prevents the state from the external coherent interactions. This is not, however,

a useful property in terms of quantum computation, where it is required to

0.0 10.0 20.0 30.0 40.0 50.0

∆

0.0

0.1

0.2

0.3

0.4

0.5

Γ a
′g

/Γ
1

Figure 3. The spontaneous emission damping rate �a0g as a function of � for �12 ¼ 5�1, and

different �2: �2 ¼ �1 (solid line), �2 ¼ 2�1 (dashed line), �2 ¼ 5�1 (dashed–dotted line).
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prepare entangled states which are decoupled from the external environment

and simultaneously should be accessible by coherent processes.

C. Maximally Entangled States of Two Nonidentical Atoms

The choice of the collective states (40) as a basis leads to a complicated master

equation whose physical properties are tractable only for very specific values of

the parameters involved. A different choice of basis collective states is proposed

here, which allows us to obtain a simple master equation of the system of two

nonidentical atoms. Moreover, we will show that it is possible to create a

maximally entangled state in the system of two nonidentical atoms that can be

decoupled from the external environment and, at the same time, the state

exhibits a strong coherent coupling with the remaining states.

In order to show this, we introduce superposition operators S�
s and S�

a , which

are linear combinations of the atomic operators S�
1 and S�

2 , as

Sþ
s ¼ uSþ

1 þ vSþ
2 ; S�

s ¼ u�S�
1 þ v�S�

2

Sþ
a ¼ vSþ

1 � uSþ
2 ; S�

a ¼ v�S�
1 � u�S�

2 ð51Þ

where the parameters u and v are in general complex numbers such that

uj j2þ vj j2¼ 1 ð52Þ

The operators S�
s and S�

a represent, respectively, symmetric and antisymmetric

superpositions of the atomic dipole operators. In terms of the operators (51), we

can rewrite the dissipative part Lr of the master equation as

Lr ¼ ��ssðSþ
s S�

s rþ rSþ
s S�

s � 2S�
s rSþ

s Þ
� �aaðSþ

a S�
a rþ rSþ

a S�
a � 2S�

a rSþ
a Þ

� �saðSþ
s S�

a rþ rSþ
s S�

a � 2S�
a rSþ

s Þ
� �asðSþ

a S�
s rþ rSþ

a S�
s � 2S�

s rSþ
a Þ ð53Þ

where the coefficients �mn are

�ss ¼ juj2�1 þ jvj2�2 þ ðuv� þ u�vÞ�12

�aa ¼ vj j2�1 þ uj j2�2 � uv� þ u�vð Þ�12

�as ¼ uv��1 � u�v�2 � ð uj j2� vj j2Þ�12

�sa ¼ u�v�1 � uv��2 � ð uj j2� vj j2Þ�12 ð54Þ

The first two terms in Eq. (53) are familiar spontaneous transitions terms and the

parameters �ss and �aa are spontaneous emission rates of the symmetric and

antisymmetric superpositions, respectively. The last two terms are due to
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coherence between the superposition states and the parameters �as and �sa

appear as cross-damping rates between the superpositions.

If we make the identification

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1

�1 þ �2

r
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�1 þ �2

r
; ð55Þ

then the parameters (54) simplify to

�ss ¼
1

2
ð�1 þ �2Þ þ

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
ð�12 �

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
Þ

�1 þ �2

�aa ¼ ð
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
� �12Þ

ffiffiffiffiffiffiffiffiffiffi
�1�2

p

�1 þ �2

�sa ¼ �as ¼
1

2

�1 � �2ð Þ
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
� �12

� �
�1 þ �2

ð56Þ

Clearly, the cross-damping terms �as and �sa vanish when the damping rates of

the atoms are equal ð�1 ¼ �2Þ. Furthermore, if �12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
, then the

spontaneous emission rates �aa, �as, and �sa vanish regardless of the ratio

between the �1 and �2. In this limit, which corresponds to the case of the atoms

confined to the region much smaller than the optical wavelength, the

antisymmetric superposition does not decay and also decouples from the

symmetric superposition.

An interesting question arises as to whether the nondecaying antisymmetric

superposition can still be coupled to the symmetric superposition through the

coherent terms contained in the Hamiltonian H0. To check it, we first transform

the Hamiltonian (32) into the interaction picture and next rewrite the trans-

formed Hamiltonian in terms of the S�
s and S�

a operators as

H0 ¼ ��h

�
�L �

1

2
u2 � v2
� �

�

� �
Sþ

s S�
s þ �L þ

1

2
u2 � v2
� �

�

� �
Sþ

a S�
a :

��uv Sþ
s S�

a þ Sþ
a S�

s

� ��
þ �h�12 2uv Sþ

s S�
s � Sþ

a S�
a

� ��
þ u2 � v2
� �

Sþ
s S�

a þ Sþ
a S�

s

� �

 � �h

2
u�1 þ v�2ð ÞSþ

s

�
þ v�1 � u�2ð ÞSþ

a þ H:c:

�
ð57Þ

where �L ¼ o0 � oL.

In Eq. (57), the first term arises from the Hamiltonian HA and shows that the

energies of the symmetric and antisymmetric superpositions depend on the

energy difference � between the atomic transition frequencies and the sponta-

neous emission rates �i. It is interesting to note that the energy difference �
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introduces a coherent coupling between the superpositions. If the atoms are

identical, � ¼ 0 �1 ¼ �2, and then the superpositions have the same

energies and there is no contribution to the coherent interaction from the

Hamiltonian HA.

The second term in Eq. (57), proportional to the dipole–dipole interaction

between the atoms, has two effects on the dynamics of the symmetric and

antisymmetric superpositions. The first is a shift of the energies, and the second

is the coherent interaction between the superpositions. It is seen from Eq. (57)

that the contribution of �12 to the coherent interaction between the super-

positions vanishes for �1 ¼ �2, and then the effect of �12 is only the shift of the

energies from their unperturbed values. Note that the dipole–dipole interaction

�12 shifts the energies in the opposite directions.

The third term in Eq. (57) represents the interaction of the superpositions

with the driving laser field. We see that the symmetric superposition couples to

the laser field with an enhanced Rabi frequency proportional to u�1 þ v�2,

whereas the Rabi frequency of the antisymmetric superposition is proportional

to v�1 � u�2 and vanishes for v�1 ¼ u�2.

We may rewrite the Hamiltonian (57) in a physically transparent form that

shows explicitly the presence of the coherent coupling between the super-

positions

H0 ¼ ��h

�
�L �

1

2
�0

� �
Sþ

s S�
s þ �L þ

1

2
�0

� �
Sþ

a S�
a

þ�c Sþ
s S�

a þ Sþ
a S�

s

� ��
� �h

2
u�1 þ v�2ð ÞSþ

s

�
þ v�1 � u�2ð ÞSþ

a þ H:c:g ð58Þ

where �0 and �c are given by

�0 ¼ ½ðu2 � v2Þ�þ 4�12uv

�c ¼ ½ðu2 � v2Þ�12 ��uv
 ð59Þ

The parameters �0 and �c allow us to gain physical insight into how the

dipole–dipole interaction �12 and the frequency difference � can modify the

dynamics of the two-atom system. The parameter �0 appears as a shift of the

energies of the superposition systems, while �c determines the magnitude of the

coherent interaction between the superpositions. For �12 6¼ 0 and identical

atoms the shift �0 6¼ 0, but can vanish for nonidentical atoms. This occurs for

�12 ¼ � 1

4

ð�1 � �2Þ�ffiffiffiffiffiffiffiffiffiffi
�1�2

p ð60Þ

234 zbigniew ficek and ryszard tanaś



In contrast to the shift �0, which is different from zero for identical atoms, the

coherent coupling �c can be different from zero only for nonidentical atoms.

However, even in this case the coupling can vanish, which happens for

� ¼ �12ð�1 � �2Þffiffiffiffiffiffiffiffiffiffi
�1�2

p ð61Þ

Obviously, with the condition (61) and �12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
the antisymmetric super-

position of two nonidentical atoms completely decouples from the interactions.

Thus, the condition �12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
for suppression of spontaneous emission

from the antisymmetric state is valid for identical as well as nonidentical atoms,

whereas the coherent interaction between the superpositions appears only for

nonidentical atoms with different transition frequencies and / or spontaneous

damping rates.

The symmetric and antisymmetric superpositions (51) can be represented by

collective states of the system

jei ¼ je1ije2i
jþi ¼ uje1ijg2i þ vjg1ije2i
j�i ¼ vje1ijg2i � ujg1ije2i
jgi ¼ jg1ijg2i ð62Þ

In the general case of �1 6¼ �2, the superposition states jþi and j�i are non-

maximally entangled states. However, the states jþi and j�i can be represented

by linear superpositions of the maximally entangled states of two identical atoms

as

jþi ¼ ðu þ vÞ sj i þ ðu � vÞ aj i
j�i ¼ ðu þ vÞjai � ðu � vÞ sj i ð63Þ

The entangled states jþi and j�i are independent of �, but depend on the

damping rates �1 and �2. For �1 ¼ �2 ðu ¼ vÞ the states are maximally

entangled, whereas for either �1 � �2 or �1 � �2 the entangled states reduce to

the product states.

IV. SELECTIVE EXCITATION OF THE COLLECTIVE
ATOMIC STATES

We now consider excitation and population transfer processes that can lead to a

preparation of the two-atom system in one of the collective states. In particular,

we will focus on processes that can prepare the two-atom system in the
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entangled symmetric state jsi. Our main interest, however, is in the preparation

of the system in the maximally entangled antisymmetric state jai, which, under

the condition �12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
, is a decoherence-free state.

A. Preparation of the Symmetric State by a Pulse Laser

It has been shown [31] that a system of two identical two-level atoms may be

prepared in the symmetric state jsi by a short laser pulse. The conditions for a

selective excitation of the collective atomic states can be analyzed from the

interaction Hamiltonian of the laser field with the two-atom system. We make

the unitary transformation

~HL ¼ eiH0t=�hH0e�iH0t=�h ð64Þ
where

H0 ¼ �hf2�Ljeihej þ ð�L þ �12Þjsihsj þ ð�L � �12Þjaihajg ð65Þ

and find that in the case of identical atoms, �1 ¼ �2 and � ¼ 0, the transformed

interaction Hamiltonian ~HL is given by

~HL ¼ � �h

2
ffiffiffi
2

p fð�1 þ �2ÞðSþ
ese

ið�L��12Þt þ Sþ
sgei �Lþ�12ð ÞtÞ

þ ð�1 � �2ÞðSþ
ageið�L��12Þt þ Sþ

eaeið�Lþ�12ÞtÞ þ H:c:g ð66Þ

where Hamiltonian represents the interaction of the laser field with the collective

two-atom system, and in the transformed form contains terms oscillating at

frequencies ð�L � �12Þ, which correspond to the two separate groups of

transitions between the collective atomic states at frequencies oL ¼ o0 þ �12

and oL ¼ o0 � �12. The �L þ �12 frequencies are separated from �L � �12

frequencies by 2�12, and hence the two groups of the transitions evolve

separately when �12 � �. Depending on the frequency, the laser can be

selectively tuned to one of the two groups of the transitions. When oL ¼ o0þ
�12 ð�L þ �12 ¼ 0Þ, the laser is tuned to exact resonance with the jei � jai and

jgi � jsi transitions, and then the terms appearing in the Hamiltonian (66) and

corresponding to these transitions have no explicit time dependence. In contrast,

the jgi � jai and jei � jsi transitions are off-resonance and the terms correspond-

ing to these transitions have an explicit time dependence exp �2i�12tð Þ. If

�12 � �, the off-resonance terms rapidly oscillate with the frequency 2�12, and

then we can make a secular approximation in which we neglect all those rapidly

oscillating terms. The interaction Hamiltonian can then be written in the

simplified form:

~HL ¼ � �h

2
ffiffiffi
2

p ½ð�1 þ �2ÞSþ
sg þ ð�1 � �2ÞSþ

ea þ H:c:
 ð67Þ
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It is seen that the laser field couples to the transitions with significantly different

Rabi frequencies. The coupling strength of the laser to the jgi � jsi transition is

proportional to the sum of the Rabi frequencies �1 þ �2, whereas the coupling

strength of the laser to the jai � jei transition is proportional to the difference of

the Rabi frequencies �1 � �2. According to Eq. (10), the Rabi frequencies �1

and �2 of two identical atoms differ only by the phase factor expðikL � r12Þ. Thus,

in order to selectively excite the jgi � jsi transition, the driving laser field should

be in phase with both atoms: �1 ¼ �2. This can be achieved by choosing the

propagation vector kL of the laser orthogonal to the line joining the atoms. Under

this condition we can make a further simplification and truncate the state vector

of the system into two states jgi and jsi. In this two-state approximation we find

from the Schrödinger equation the time evolution of the population PsðtÞ of the

state jsi as

Ps tð Þ ¼ sin2 1ffiffiffi
2

p �t

� �
ð68Þ

where � ¼ �1 ¼ �2.

The population oscillates with the Rabi frequency of the jgi � jsi transition

and at certain times PsðtÞ ¼ 1, indicating that all the population is in the

symmetric state. This happens at times

Tn ¼ 2n þ 1ð Þ pffiffiffi
2

p
�
; n ¼ 0; 1; . . . ð69Þ

Hence, the system can be prepared in the state jsi by simply applying a laser

pulse, for example, with the duration T0, that is a standard p pulse.

The two-state approximation is of course an idealization, and a possibility

that all the transitions can be driven by the laser imposes significant limits on

the Rabi frequency and the duration of the pulse. Namely, the Rabi frequency

cannot be too strong in order to avoid the coupling of the laser to the jsi � jei
transition, which could lead to a slight pumping of the population to the state

jei. On the other hand, the Rabi frequency cannot be too small as for a small �
the duration of the pulse, required for the complete transfer of the population

into the state jsi, becomes longer and then spontaneous emission can occur

during the excitation process. Therefore, the transfer of the population to the

state jsi cannot be made arbitrarily fast and, in addition, requires a careful

estimation of the optimal Rabi frequency, which could be difficult to achieve in

a real experimental situation.

B. Preparation of the Antisymmetric State

1. Pulse Laser

If we choose the laser frequency such that �L � �12 ¼ 0, the laser field is then

resonant to the jai � jgi and jei � jsi transitions and, after the secular
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approximation, the Hamiltonian (66) reduces to

~HL ¼ � �h

2
ffiffiffi
2

p ½ð�1 � �2ÞSþ
ag þ �1 þ �2ð ÞSþ

es þ H:c:
 ð70Þ

Clearly, for �1 ¼ ��2 the laser couples only to the jai � jgi transition. Thus, in

order to selectively excite the jgi � jai transition, the atoms should experience

opposite phases of the laser field. This can be achieved by choosing the

propagation vector kL of the laser along the interatomic axis, and the atomic

separations such that

kL � r12 ¼ 2n þ 1ð Þp; n ¼ 0; 1; 2; . . . ð71Þ

which corresponds to a situation that the atoms are separated by a distance

r12 ¼ ð2n þ 1Þl0=2.

The smallest distance at which the atoms could experience opposite phases

corresponds to r12 ¼ l0=2. However, at this particular separation the dipole–

dipole interaction parameter �12 is small (see Fig. 1), and then all of the

transitions between the collective states occur at approximately the same

frequency. In this case the secular approximation is not valid, and we cannot

separate the transitions at �L þ �12 from the transitions at �L � �12.

One possible solution to the problem of the selective excitation with opposite

phases is to use a standing laser field instead of the running wave field. If the

laser amplitudes differ by the sign, namely, EL1
¼ �EL2

¼ E0, and kL1
� r1 ¼

�kL2
� r2, the Rabi frequencies experienced by the atoms are

�1 ¼ 2i

�h
l1 � E0 sin

1

2
kL � r12

� �

�2 ¼ � 2i

�h
l2 � E0 sin

1

2
kL � r12

� �
ð72Þ

where kL ¼ kL1
¼ kL2

and we have chosen the reference frame such that

r1 ¼ 1
2

r12 and r2 ¼ � 1
2

r12. It follows from Eq. (72) that the Rabi frequencies

oscillate with opposite phases independent of the separation between the atoms.

However, the magnitude of the Rabi frequencies decreases with decreasing r12.

2. Indirect Driving through the Symmetric State

We now turn to the situation of nonidentical atoms and consider different

possible processes of the population transfer to the antisymmetric state that

could be present even if the antisymmetric state does not decay to the ground

level. This can happen when �12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
, that is, when the separation between

the atoms is negligible small. Under this condition the antisymmetric state is

also decoupled from the driving field. According to Eq. (58), the antisymmetric
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state can still be coupled, through the coherent interaction �c, to the symmetric

state jþi. However, this coupling appears only for nonidentical atoms.

From the master equation (31), we find that under the condition

�12 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
the equation of motion for the population of the state j�i is

given by [33]

_r�� ¼ ð�1 � �2Þ2

�1 þ �2

ree þ i�cðrþ� � r�þÞ

� 1

2
i�

ð�1 � �2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2

p ðre� � r�eÞ ð73Þ

This equation shows that the nondecaying antisymmetric state �j i can be

populated by spontaneous emission from the upper state ej i and also by the

coherent interaction with the state þj i. The first condition is satisfied only when

�1 6¼ �2, while the other condition is satisfied only when �c 6¼ 0. Thus, the

transfer of population to the state �j i from the upper state jei and the symmetric

state jsi does not appear when the atoms are identical, but is possible for

nonidentical atoms.

We illustrate this effect in Fig. 4, where we plot the steady-state population

of the state �j i as a function of �L for two different types of nonidentical

atoms. In the first case the atoms have the same damping rates ð�1 ¼ �2Þ but

different transition frequencies ð� 6¼ 0Þ, while in the second case the atoms

have the same frequencies ð� ¼ 0Þ but different damping rates ð�1 6¼ �2Þ. It is
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Figure 4. The steady-state population of the antisymmetric state j�i for � ¼ 5�1;�12 ¼ 10�1

and �2 ¼ �1;� ¼ �1 (solid line), �2 ¼ 2�1;� ¼ 0 (dashed line).
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seen from Fig. 4 that in both cases the antisymmetric state can be populated

even if is not directly driven from the ground state. The population is transferred

to �j i through the coherent interaction �c, which leaves the other excited states

completely unpopulated. This is shown in Fig. 5, where we plot the steady-state

populations rþþ and ree of the states jþi and jei. It is apparent from Fig. 5 that

at �L ¼ ��12 the states jþi and jei are not populated. However, the population

is not entirely trapped in the antisymmetric state j�i, but rather in a linear

superposition of the antisymmetric and ground states. This is shown in Fig. 6,

where we plot the steady-state population r�� for the same parameters as in

Fig. 5, but different �. Clearly, for a small � the steady-state population r�� � 1
2
,

and the amount of the population increases with increasing �. The population

r�� attains the maximum value r�� � 1 for a very strong driving field.

This result shows that we can relatively easily prepare two nonidentical

atoms in the maximally entangled antisymmetric state. The closeness of the

prepared state to the ideal one is measured by the fidelity F. Here F is equal to

the obtained maximum population in the state �j i. For � � � the fidelity of the

prepared state is maximal, equal to 1. As we have already mentioned, the system

has the advantage that the maximally entangled state �j i does not decay, that is,

is a decoherence-free state.

3. Atom–Cavity–Field Interaction

There have been several proposals to generate the antisymmetric state jai in a

system of two identical atoms interacting with a single-mode cavity field. For
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Figure 5. The steady-state populations of the upper state jei (solid line) and the symmetric

state jþi (dashed line) for �2 ¼ �1;� ¼ 5�1;�12 ¼ 10�1 and � ¼ �1.
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example, Plenio et al. [30] have considered a system of two atoms trapped

inside an optical cavity and separated by a distance much larger than the optical

wavelength. This allows for the selective excitation of only one of the atoms. In

this scheme the generation of the antisymmetric state relies on the concept of

conditional dynamics due to continuous observation of the cavity field. If only

one atom is excited and no photon is detected outside the cavity, the atoms are

prepared in a dark state [44], which is equivalent to the antisymmetric state jai.
Several investigators [26–28] have analyzed two-atom Jaynes-Cummings

models for a violation of Bell’s inequality, and have shown that the atoms

moving across a single-mode cavity can be prepared in the antisymmetric state

via the interaction with the cavity field. In this scheme, the preparation of the

antisymmetric state takes place in two steps. In the first step, one atom initially

prepared in its excited state je1i is sent through a single-mode cavity being in

the vacuum state j0ic. During the interaction with the cavity mode, the atomic

population undergoes the vacuum Rabi oscillations, and the interaction time was

varied by selecting different atomic velocities. If the velocity of the atom is such

that the interaction time of the atom with the cavity mode is equal to a quarter of

the vacuum Rabi oscillations, then the state of the combined system, the atom

plus the cavity mode, is a superposition state:

ja1ci ¼ 1ffiffiffi
2

p ðje1ij0ic � jg1ij1icÞ ð74Þ
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Figure 6. The Steady-state population of the antisymmetric state j�i for �2 ¼ �1;�12 ¼
10�1;� ¼ �1 and different �: � ¼ �1 (solid line), � ¼ 5�1 (dashed line), � ¼ 20�1 (dashed–

dotted line).
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Hence, the state of the total system, two atoms plus the cavity mode, after the first

atom has crossed the cavity is

j	1i ¼
1ffiffiffi
2

p ðje1ij0ic � jg1ij1icÞjg2i ð75Þ

If we now send the second atom, which is in its ground state, with the selected

velocity such that during the interaction with the cavity mode the atom

undergoes half of the vacuum Rabi oscillation, the final state of the system

becomes

j	12ci ¼ 1ffiffiffi
2

p ðje1ij0icjg2i � jg1ij0icje2iÞ

¼ 1ffiffiffi
2

p ðje1ijg2i � jg1ije2iÞj0ic ¼ jaij0ic ð76Þ

Thus, the final state of the system is a product state of the atomic antisymmetric

state jai and the vacuum state of the cavity mode. In this scheme the cavity mode

is left in the vacuum state, which protects the antisymmetric state against any

noise of the cavity. The scheme to entangle two atoms in a cavity, proposed by

Cirac and Zoller [28], has been realized experimentally by Hagly et al. [36].

Gerry [29] has proposed a similar method based on a dispersive interaction of

the atoms with a cavity mode prepared in a coherent state jai. The atoms enter

the cavity in superposition states

ja1i ¼
1ffiffiffi
2

p ðje1i þ ijg1iÞ

ja2i ¼
1ffiffiffi
2

p ðje2i � ijg2iÞ ð77Þ

After passage of the second atom, the final state of the system is

j	12ci ¼ 1

2
jg1ijg2i þ je1ije2ið Þj�aif

þ i je1ijg2i � jg1ije2ið Þjaig ð78Þ

Thus, if the cavity field is measured and found in the state jai, the atoms are in

the antisymmetric state. If the cavity field is found in the state j�ai, the atoms are

in the entangled state:

j	12ð�aÞi ¼ 1

2
ðjg1ijg2i þ je1ije2iÞ ð79Þ
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The state (79) is called a two-photon entangled state. In Section VI, we will

discuss another method of preparing the system in the two-photon entangled

state based on the interaction of two atoms with a squeezed vacuum field.

C. Preparation of a Superposition of Antisymmetric
and Ground States

In the section IV.B.2, we have shown that two nonidentical two-level atoms can

be prepared in an arbitrary superposition of the maximally entangled antisym-

metric state jai and the ground state jgi

j
i ¼ Zjai þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � jZj2

q
jgi ð80Þ

However, the preparation of the superposition state requires that the atoms have

different transition frequencies. Beige et al. [32] have proposed a scheme in

which the superposition state j
i can be prepared in a system of two identical

atoms placed at fixed positions inside an optical cavity.

Here, we discuss an alternative scheme where the superposition state j
i can

be generated in two identical atoms driven in free space by a coherent laser

field. This can happen when the atoms are in nonequivalent positions in the

driving field, where the atoms experience different intensities and phases of the

driving field. The populations of the collective states of the system can be found

from the master equation (31). We use the set of the collective states (35) as an

appropriate representation for the density operator

r ¼
X

ij

rijjiih jj; i; j ¼ g; s; a; e ð81Þ

where rij are the density matrix elements in the basis of the collective states.

After transforming to the collective state basis, the master equation (31) leads

to a closed system of 15 equations of motion for the density matrix elements

[46]. However, for a specifically chosen geometry for the driving field, namely,

that the field is propagated perpendicularly to the atomic axis ðkL � r12 ¼ 0Þ, the

system of equations decouples into 9 equations for symmetric and 6 equations

for antisymmetric combinations of the density matrix elements [45–50]. In this

case, we can solve the system analytically, and find that the steady-state values

of the populations are [45,46]

ree ¼
1

4

�4

D

rss ¼
1

4

2�2ð�2 þ�2
LÞ þ �4

D

raa ¼ 1

4

�4

D
ð82Þ
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where

D ¼ �4 þ ð�2 þ�2
LÞ �2 þ 1

4
½ �þ �12ð Þ2þ �L � �12ð Þ2


� �
ð83Þ

and �L ¼ o0 � oL.

In this case all of the collective states are populated with the population

distribution ree ¼ raa < rss. Moreover, for a very strong driving field

ð� � �;�LÞ, the excited states are equally populated with ree ¼ rss ¼ raa ¼
1
4
. The population distribution changes dramatically when the driving field

propagates in directions different from perpendicular to the interatomic axis

[49–50]. In this situation the populations strongly depend on the interatomic

separation and the detuning �L. This can produce the interesting modification

that the collective states can be selectively populated. We show this by solving

numerically the system of 15 equations for the density matrix elements. The

populations are plotted against the detuning �L in Fig. 7 for the laser field

propagating in the direction of the interatomic axis. We see from Fig. 7 that the

collective excited states are populated for most values of �L, except

�L ¼ ��12. At this detuning the antisymmetric state is significantly populated,

whereas the population of the symmetric and upper states is close to zero. Since

raa < 1, the population is distributed between the antisymmetric and the ground
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Figure 7. The steady-state populations of the collective atomic states of two identical atoms as

a function of �L for the driving field propagating in the direction of the interatomic axis, � ¼ 2:5�,

r12=l0 ¼ 0:08 and �l ? �r12: ree (solid line), raa (dashed line), rss (dashed–dotted line).
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states, and therefore at �L ¼ ��12 the system is in a superposition of the

maximally entangle state jai and the ground state jgi.
Turchette et al. [35] have realized experimentally a superposition state of the

ground state and a nonmaximally entangled antisymmetric state in two trapped

ions. In the experiment two trapped barium ions were sideband-cooled to their

motional ground states. Transitions between the states of the ions were induced

by Raman pulses using copropagating lasers. The ions were at positions that

experience different Rabi frequencies �1 and �2 of the laser fields. By

preparing the initial motional ground state with one ion excited je1ijg2ij0i,
and applying the laser fields for a time t, the following entangled state j	 tð Þi
was created

j	ðtÞi ¼ � i�2

�
sin �tð Þjgij1i þ �2

2

�2
ðcos�t � 1Þ þ 1

� �
je1ijg2i

�

þ �1�2

�2
cos�t � 1ð Þ

� �
jg1ije2i

�
j0i ð84Þ

where �2 ¼ �2
1 þ �2

2.

For �t ¼ p the entangled state (84) reduces to a nonmaximally entangled

antisymmetric state

j	ai ¼
�2

1 � �2
2

�2
je1ijg2i �

2�1�2

�2
jg1ije2i

� �
j0i ð85Þ

Franke et al. [51] proposed using the nonmaximally entangled state (85) to

demonstrate the intrinsic difference between quantum and classical information

transfers. The difference arises from the different ways in which the probabil-

ities occur and is particularly clear in terms of entangled states.

V. DETECTION OF THE ENTANGLED STATES

In this section we discuss problems that could be involved in any attempt to

detect an internal entangled state of two coupled atoms in free space. Beige et al.

[34] have proposed a scheme, based on the quantum Zeno effect, to observe a

decoherence-free state in a system of two 3-level atoms located inside an optical

cavity. Here, we discuss possible schemes to detect entangled states of two

2-level atoms in free space.

A. Fluorescence Intensity

One of the possible ways to detect an internal state of two coupled atoms is to

observe the fluorescence field emitted from the system. It is well known that the

fluorescence from the two-atom system exhibits strong directional properties

[7,10,48,52].
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To show this, we consider the fluorescence intensity detected at a point R in

the far-field zone of the radiation emitted by the atomic system. The intensity is

proportional to the first-order correlation functions of the atomic dipole

operators as [7,8]

IðR; tÞ ¼ UðRÞ
X2

i; j¼1

Sþ
i t � R

c

� �
S�

j t � R

c

� �� �
eik�R�rij ; ð86Þ

where

U Rð Þ ¼ o4
0m

2

2R2pe0

� �
sin2j ð87Þ

is the geometric factor with j the angle between the observation direction

R ¼ R�R and the atomic dipole moment l.

From Eqs. (86) and (81) the fluorescence intensity can be written in terms of

the density matrix elements in the collective states representation as

IðR; tÞ ¼ UðRÞfðree þ rssÞ½1 þ cos kr12 cosyð Þ

þ ðree þ raaÞ½1 � cosðkr12 cosyÞ

þ iðrsa � rasÞsinðkr12 cosyÞg ð88Þ

where y is the angle between the observation direction �R and the vector r12.

The first term in Eq. (88) arises from the fluorescence emitted on the

jei ! jsi ! jgi transitions, which involve the symmetric state. The second

term arises from the jei ! jai ! jgi transitions through the antisymmetric

state. These two terms describe two different channels of transitions for which

the angular distribution is proportional to 1 � cos kr12 cosyð Þ½ 
. The last term in

Eq. (88) originates from interference between these two radiation channels. It is

seen from Eq. (1.88) that the angular distribution of the fluorescence field

depends on the population of the entangled states jsi and jai. Moreover,

independent of the interatomic separation r12, the antisymmetric state does

not radiate in the direction perpendicular to the atomic axis, as for y ¼ p=2 the

factor 1 � cos kr12 cosyð Þ½ 
 vanishes. In contrast, the symmetric state radiates in

all directions.

It is evident from Eq. (88) that the radiation pattern is nonspherical unless

rss ¼ raa and then the pattern is spherically symmetric independent of the

interatomic separation. Therefore, an asymmetry in the radiation pattern would

be compelling evidence that the entangled states jsi and jai are not equally

populated. If the fluorescence were detected in the direction perpendicular to the

atomic axis, the observed intensity (if any) would correspond to the fluores-

cence field emitted from the symmetric state jsi and/or the upper state jei. On

the other hand, if there is no fluorescence detected in the direction perpendicular
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to the atomic axis, the population is entirely in a superposition of the anti-

symmetric state jai and the ground state jgi.
Guo and Yang [53] have analyzed spontaneous decay from two atoms

initially prepared in an entangled state. They have shown that the time evolution

of the population inversion, which is proportional to the intensity (87), depends

on the degree of entanglement of the initial state of the system. Ficek et al. [10]

have shown that in the case of two nonidentical atoms, the time evolution of the

intensity I R; tð Þ can exhibit quantum beats that result from the presence of

correlations between the symmetric and antisymmetric states. In fact, quantum

beats are present only if initially the system is in a nonmaximally entangled

state, and no quantum beats are predicted for maximally entangled as well as

unentangled states.

B. Interference Pattern

An alternative way to detect an internal state of the two atom system is to

observe an interference pattern of the fluorescence field emitted in the direction

R, not necessary perpendicular to the interatomic axis. The usual measure of the

depth of modulation of the interference fringes is a visibility defined as

V ¼ Imax � Imin

Imax þ Imin
ð89Þ

where Imax corresponds to cos k�R � r12ð Þ ¼ 1, whereas Imin corresponds to

cos k�R � r12ð Þ ¼ �1. This scheme is particularly useful when the antisymmetric

state is a decoherence-free (dark) state.

Using Eq. (88), we can write the visibility in the basis of the collective states as

V ¼ rss � raa

rss þ raa þ 2ree

ð90Þ

This equation shows that the sign of V depends on the population difference

between the symmetric and antisymmetric states. For rss > raa the visibility V
is positive, and then the interference pattern exhibits a maximum (bright center),

whereas for rss < raa the visibility V is negative and then there is a minimum

(dark center). The optimum positive (negative) value is V ¼ 1 ðV ¼ �1Þ, and

there is no interference pattern when V ¼ 0. The later happens when rss ¼ raa.

Similar to the fluorescence intensity distribution, the visibility can provide us

an information about the internal state of the system. When the system is

prepared in the antisymmetric state or in a superposition of the antisymmetric

and the ground states, rss ¼ ree ¼ 0, and then the visibility has the optimum

negative value V ¼ �1. On the other hand, when the system is prepared in the

symmetric state or in a linear superposition of the symmetric and ground states,

the visibility has the maximum positive value V ¼ 1.
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There have been several theoretical studies of the fringe visibility in the

fluorescence field emitted by two coupled atoms, and the Young’s interference-

type pattern has been observed experimentally in the resonance fluorescence of

two trapped ions [11]. The experimental results have been explained theoreti-

cally by Wong et al. [54], and can be understood by treating the ions as

independent radiators that are synchronized by the constant phase of the driving

field. It has been shown that for a weak driving field, the fluorescence field is

predominantly composed of an elastic component and therefore the ions behave

as point sources of coherent light producing an interference pattern. Under

strong excitation the fluorescence field is mostly composed of the incoherent

part and consequently there is no interference pattern. Dung and Ujihara [52]

have shown that an interference pattern can be observed in spontaneous

emission from two interacting atoms even if it is known for certain which

atom is excited initially. Michelson type (temporary) interference pattern has

been predicted in spontaneous emission from two non-identical atoms [43].

Kochan et al. [55] have shown that the interference pattern of the strongly

driven atoms can be partially recovered by placing the atoms inside an optical

cavity. The coupling of the atoms to the cavity mode induces atomic correla-

tions, which improves the fringe visibility. Meyer and Yeoman [56] have

reported an even stronger cavity induced modification of the interference pattern

that occurs when the coherent driving field is replaced by an incoherent field.

They have shown that in contrast to the coherent excitation, the incoherent field

produces an interference pattern with a dark center. Interference pattern with a

dark center has also been predicted when the atoms experience different

intensities of the driving field [57] or in the case where the driving field is

replaced by a squeezed vacuum field [58].

VI. TWO-PHOTON ENTANGLED STATES

We have already discussed different methods of generating two-atom entangled

states of the form

j	i ¼ c1je1ijg2i � c2jg1ije2i ð91Þ

These states are generated by the dipole–dipole interaction between the atoms

and the preparation of these states is sensitive to the difference � between the

atomic transition frequencies and to the atomic decay rates.

There are two other collective states of the two-atom system: the double

atomic ground state jgi ¼ jg1ijg2i and the double atomic excited state

jei ¼ je1ije2i, which are also product states of the individual atomic states.

These states are not affected by the dipole–dipole interaction �12, the detuning

� and the spontaneous emission rates.
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Here, we discuss a method of preparing a two atom system in entangled

states involving only the double atomic ground jgi and excited jei states

j�i ¼ cgjgi � cejei ð92Þ

where cg and ce are constant parameters such that jcgj2 þ jcej2 ¼ 1. The

entangled states of the form (92) are known in the literature as pairwise atomic

states [22] or multiatom squeezed states [23]. According to Eq. (36), the collec-

tive ground and excited states are separated in energy by 2�ho0, and therefore we

can call the states j�i as two-photon entangled (TPE) states.

The two-photon entangled states cannot be generated by a simple coherent

excitation. A coherent field applied to the two-atom system couples to one-

photon transitions. The problem is that coherent excitation populates the upper

state jei but also populated the intermediate states jsi and jai. The two-photon

entangled states (92) are superpositions of the collective ground and excited

states with no contribution from the intermediate collective states jsi and jai.
The two-photon behavior of the entangled states (92) suggests that the

simplest technique for generating the TPE states would be by applying a two-

photon excitation process. An obvious candidate is a squeezed vacuum field,

which is characterized by strong two-photon correlations that would enable the

transition jgi ! jei to occur effectively in a single step without populating the

intermediate states. We will illustrate this effect by analyzing the populations of

the collective atomic states.

A. Two Atoms in a Squeezed Vacuum

The dynamics of the collective two-atom system in a squeezed vacuum can be

determined from the master equation of the density operator of the system or

from the equations of motion for the transition probability amplitudes [22]. In

Section II.B, we derived the master equation for the density operator of a two

atom system interacting with the ordinary vacuum field. It is our purpose to

extend the master equation to the case of a squeezed vacuum field. The method

of derivation of the master equation is a straightforward extension of that

presented in Section II.B.

The correlation functions for the field operators âks and â
y
ks, which describe a

three-dimensional field in a squeezed vacuum state, are given by [24,25]

hâksi ¼ hây
ksi ¼ 0

hâksâ
y
k0s0 i ¼ ðNðokÞ þ 1Þd3ðk � k0Þdss0

hây
ksâk0s0 i ¼ NðokÞd3ðk � k0Þdss0

hây
ksâ

y
k0s0 i ¼ MðokÞd3ð2ks � k � k0Þdss0

hâksâk0s0 i ¼ M�ðokÞd3ð2ks � k � k0Þdss0 ð93Þ
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where N okð Þ is the number of photons in the mode ok and M okð Þ ¼ M 2os � okð Þ
is the two-photon correlation function, which is symmetric about the squeezing

carrier frequency 2os. The parameters N okð Þ and M okð Þ ¼ jM okð ÞjexpðifÞ are

not independent of each other but are related by the inequality

M okð Þj j2� N okð Þ N 2os � okð Þ þ 1ð Þ ð94Þ

where the term þ1 on the r.h.s arises from the quantum nature of the squeezed

field [25], and f is the phase of the squeezed vacuum field.

Substituting the interaction Hamiltonian (7), we find that the evolution of the

density operator depends on the second order correlation functions of the

reservoir operators. We assume that a part of the reservoir modes is in a

squeezed vacuum state for which the correlation functions are given by Eq. (93).

In order to optimize the squeezing effects on the atom, the mode function

Us okð Þ of the squeezed vacuum field should be perfectly matched to the mode

function gks rið Þ of the three-dimensional vacuum field coupled to the atoms.

Such a requirement of the perfect matching is practically impossible to achieve

in present experiments [59]. Therefore, we consider mode functions that

correspond to an imperfect matching of the squeezing modes to the vacuum

modes surrounding the atoms. In this case, we can write the mode function

Us okð Þ as

Us okð Þ ¼
N okð Þ½ 
�1=2l�

i � g�
ks rið ÞD okð Þ for yk � ym

0 for yk > ym

(
ð95Þ

where N okð Þ is the normalization constant such that Us okð Þj j2¼ 1, the

parameter D okð Þ determines the coupling efficiency of the squeezed field

mode function Us okð Þ to the vacuum field mode function gks rið Þ, and ym is the

maximum angle over which the squeezed modes are propagated. For perfect

coupling efficiency D okð Þj j ¼ 1, whereas D okð Þj j < 1 for an imperfect coupling.

The parameter D okð Þ contains both the amplitude and phase coupling, and its

explicit form depends on the method of propagation and focusing the squeezed

field. For example, in the case of a Gaussian profile of a focused squeezed field,

the parameter D okð Þ is given by [60,61]

D okð Þ ¼ exp ½�W0 sin2yk � ikzf cosyk
 ð96Þ

where W0 is the beam spot size at the focal point zf . In a cavity situation, for

example, the parameter D okð Þ is identified as the cavity transfer function, the

absolute value square of which is the Airy function of the cavity [61,62].

Before returning to the derivation of the master equation, we should remark

that in the squeezing propagation case in which the squeezed modes lie inside

the cone of angle ym < p, we assume that the modes outside the cone are in their

ordinary vacuum state. In practice, the modes will be in a finite-temperature
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blackbody state, which means that inside the cone the modes are in mixed squeezed

vacuum and blackbody states. However, this is not a serious practical problem as

experiments are usually performed at low temperatures where the blackbody

radiation is negligible. In principle, we can include the blackbody radiation effect

(thermal noise) to the problem replacing N okð Þ in (93) by N okð Þ þ �N; where �N is

proportional to the photon number in the blackbody radiation.

We now return to the derivation of the master equation of the atom in

a squeezed vacuum field. Substituting the interaction Hamiltonian (7) into

Eq. (18) and using the correlation functions (93), we obtain

q
qt
~r tð Þ ¼

X2

i; j¼1

f½S�
i Yij t; tð Þ; Sþ

j 
 þ ½S�
i ; Yij t; tð ÞSþ

j 


þ ½Sþ
i Nijðt; tÞ; S�

j 
 þ ½Sþ
i ;Nijðt; tÞS�

j 

þ ½Sþ

i Mijðt; tÞ; Sþ
j 
 þ ½Sþ

i ;Mijðt; tÞSþ
j 


þ ½S�
i M�

ijðt; tÞ; S�
j 
 þ ½S�

i ;M�
ij t; tð ÞS�

j 
g
� i
X
i 6¼j

�ij½Sþ
i S�

j ; ~rðtÞ
 ð97Þ

where �ij is given in Eq. (28),

Yij t; tð Þ ¼ 1

c3

ð
doko2

k ½w
ðNÞ
ij ðtÞ þ wijðtÞ


ðt

0

dt~rðt � tÞei oi�okð Þt

Nijðt; tÞ ¼
1

c3

ð
doko2

kw
ðNÞ
ij ðtÞ

ðt

0

dt~rðt � tÞe�iðoi�okÞt ð98Þ

Mij t; tð Þ ¼ 1

c3

ð
dokokð2os � okÞwðMÞ

ij ðtÞ
ðt

0

dt~rðt � tÞeiðoi�okÞt

with

wijðtÞ ¼
ð

d�k

X
s

½li � gksðriÞ
½l�
j � g�

ksðrjÞ
eiðoi�ojÞt

wðNÞ
ij tð Þ ¼ NðokÞjDðokÞj2e�iðoi�ojÞt

�
X

s

ð
�s

d�k½l�
i � g�

ksðriÞ
½lj � gksðrjÞ


wðMÞ
ij ðtÞ ¼ MðokÞjDðokÞj2eið2oo�oi�ojÞt

�
X

s

ð
�s

d�k½li � gksðriÞ
½lj � gksðrjÞ
 ð99Þ

and �s is the solid angle over which the squeezed modes are propagated.

The master equation (97) with parameters (98) is quite general in terms of

the matching of the squeezed modes to the vacuum modes and the bandwidth of

the squeezed field relative to the atomic linewidths. The master equation is in the
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form of a differential integral equation, and we can simplify the form employing

the Markov approximation. In this approximation the integral over the time

delay t contains functions that decay to zero over a short correlation time tc:
This correlation time is of the order of the inverse bandwidth of the squeezed

field, and the short correlation time approximation is formally equivalent to

assume that squeezing bandwidths are much larger than the atomic linewidths.

Over this short timescale, the density operator would hardly have changed from

r tð Þ, thus we can replace ~r t � tð Þ by ~r tð Þ in (98) and extend the integral to

infinity. Next, we can perform the integration and find

lim
t!1

ðt

0

dt~rðt � tÞeixt � ~r tð Þ pd xð Þ þ i
P

x

� �
ð100Þ

where P indicates the principal value of the integral. Finally, to carry out the

polarization sums and integrals over d�k in (99), we use the plane-wave

description of the vacuum mode function gks rð Þ, and assuming that the dipole

moments are parallel l1kl2ð Þ; the sums over s and the integrals over d�k in (99)

lead to

Yijðt; tÞ ¼ �ij½1 þ NðoiÞjDðoiÞj2vðymÞ
~rðtÞeiðoi�ojÞt

Nijðt; tÞ ¼ �ijNðoiÞjDðoiÞj2vðymÞ~rðtÞe�iðoi�ojÞt

Mijðt; tÞ ¼ �ijMðoiÞjDðoiÞj2vðymÞ~rðtÞei 2os�oi�ojð Þt ð101Þ

where

vðymÞ ¼
1

2
1 � 1

4
3 þ cos2ym

� �
cosym

� �
ð102Þ

In the derivation of (101), we have ignored the principal value parts that

contribute to the energy shifts of the atomic levels. In fact, the shifts are very

small for a broadband squeezed field, and their contribution to the atomic

dynamics are negligible [63].

With the parameters (101), the master equation of two atoms in a broadband

squeezed vacuum, written in the Schrödinger picture, reads as

qr
qt

¼ � 1

2

X2

i; j¼1

�ij½1 þ ~NðoiÞ
ðrSþ
i S�

j þ Sþ
i S�

j r� 2S�
j rSþ

i Þ

� 1

2

X
ij

�ij
~NðoiÞðrS�

i Sþ
j þ S�

i Sþ
j r� 2Sþ

j rS�
i Þ

� 1

2

X
ij

�ij
~MðkiÞð½Sþ

i r; Sþ
j 
 þ ½Sþ

j ;rSþ
i 
Þ

� 1

2

X
ij

�ij
~M�ðoiÞð½S�

i r; S�
j 
 þ ½S�

j ; rS�
i 
Þ �

i

�h
H0; r½ 
 ð103Þ
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where

~NðoiÞ ¼ ZNðoiÞ
~MðoiÞ ¼ ZMðoiÞ ð104Þ

with Z ¼ D oið Þj j2v ymð Þ, and the Hamiltonian H0 as given in Eq. (32).

The parameter Z determines the matching of the squeezed modes to the

modes surrounding the atom. This includes the coupling efficiency of the

mode functions, given by the parameter D okð Þ, and the angular dimensions, given

by the angle ym, of the squeezed modes. For an imperfect matching the master

equation (103) is formally identical to that for perfect matching: the only

difference is the replacement of the squeezing parameters N and M by the

matching modified parameters ~N and ~M. The master equation (103) is a starting

equation to calculate the stationary state of a two-atom system interacting with a

squeezed vacuum field.

B. Steady-State Populations

In order to calculate the stationary state of the two-atom system, we have to know

the steady-state populations rii of the collective atomic states and the coherencies

rijði 6¼ jÞ. First, we consider a system of two identical atoms ð� ¼ 0;�1 ¼ �2Þ
separated by an arbitrary distance r12 and interacting with a squeezed vacuum field.

Moreover, we assume that the carrier frequency os of the squeezed vacuum field is

resonant to the atomic transition frequencies ðos ¼ o0Þ.
From the master equation (103), we find equations of motion for the

populations of the collective atomic states, which in the absence of the coherent

driving field ð�1 ¼ �2 ¼ 0Þ can be written as

q
qt
ree ¼ ��ðn þ 1Þree þ

1

2
ðn � 1Þ½ð�þ �12Þrss þ ð�� �12Þraa


þ �12ð ~M�reg þ ~MrgeÞ
q
qt
rss ¼

1

2
ð�þ �12Þfðn � 1Þ � ð3n � 1Þrss � ðn � 1Þraa þ 2ree

� 2ð ~M�reg þ ~MrgeÞg
q
qt
raa ¼ 1

2
ð�� �12Þfðn � 1Þ � ð3n � 1Þraa � ðn � 1Þrss þ 2ree

þ 2ð ~M�reg þ ~MrgeÞg
q
qt
reg ¼ q

qt
rge

� ��
¼ �12

~M � n�reg

� ~M½ð�þ 2�12Þrss � ð�� 2�12Þraa
 ð105Þ

where n ¼ 2~N o0ð Þ þ 1 and ~M ¼ ~M o0ð Þ.
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It is seen from Eq. (105) that the evolution of the populations depends on the

two-photon coherencies reg and rge, which can transfer the population from the

ground state jgi directly to the upper state jei leaving the states jsi and jai
unpopulated. The evolution of the populations depends on �12, but is com-

pletely independent of the dipole–dipole interaction �12.

There are two different steady-state solutions of Eqs. (105) depending on

whether �12 ¼ � or �12 6¼ �. This fact is connected with the existence of a

combination of the density matrix elements involving the antisymmetric state

S2ðtÞ ¼ 2 � 2raaðtÞ ð106Þ

which, for �12 ¼ � is a constant of motion. In this case the population in the

antisymmetric state does not change in time. Thus an initially unpopulated

antisymmetric state remains unpopulated for all times, and then the population is

distributed only between three collective states jei; jsi, and jgi.
Assuming that �12 ¼ � and setting the left-hand side of Eqs. (105) equal to

zero, we obtain the steady-state solutions for the populations of the states jei
and jsi, and the two-photon coherence jregj. A straightforward algebraic

manipulation of Eqs. (105) leads to the following steady-state solutions

ree ¼
nðn � 1Þ2 � 4ðn � 2Þj ~Mj2

nð3n2 þ 1 � 12j ~Mj2Þ

rss ¼
ðn2 � 1Þ � 4j ~Mj2

3n2 þ 1 � 12j ~Mj2

ru ¼ 8j ~Mj
nð3n2 þ 1 � 12j ~Mj2Þ

ð107Þ

where ru ¼ rege�if þ rgeeif.

The steady-state populations depend on the squeezing correlations M and

the coupling efficiency Z. For a classical squeezed field with the maximal

correlations M ¼ N, the steady-state populations reduces to

rss ¼
ZN

3ZN þ 1

ree ¼
Z2N2

ZN þ 1ð Þ 3ZN þ 1ð Þ ð108Þ

In this case both the excited states are populated and the populations obey a

Boltzmann distribution with rgg > rss > ree.
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The population distribution is qualitatively different for a quantum squeezed

field with jMj2 ¼ NðN þ 1Þ. In this case the populations are given by

rss ¼
ZN 1 � Zð Þ

3ZN 1 � Zð Þ þ 1

ree ¼
ZN 1 þ 2 1 � Zð ÞN½ 


2ZN þ 1ð Þ 3Z 1 � Zð ÞN þ 1½ 
 ð109Þ

Clearly, the population in the symmetric state can be reduced to zero. This

happens for Z ¼ 1, that is, when the squeezed field is perfectly matched to the

atoms. In this case the population is distributed only between the ground state jgi
and the upper state jei.

The issue we are interested in concerns the final state of the system and its

purity. To answer this question, we apply the steady-state solutions (107) and

find the stationary density matrix of the system

r ¼
rgg 0 rge

0 rss 0

reg 0 ree

0
B@

1
CA ð110Þ

where rij are the nonzero steady-state density matrix elements.

It is evident from Eq. (110) that in the squeezed vacuum the density matrix of

the system is not diagonal, due to the presence of the two-photon coherencies

rge and reg. In this case the collective states jgi, jsi and jei are no longer

eigenstates of the system. The density matrix can be rediagonalized by

including reg and rge to give the new (entangled) states

j�1i ¼ P1 � reeð Þjgi þ regjei
�  

=½ðP1 � reeÞ2 þ reg

!! !!2
1=2

j�2i ¼ ½rgejgi þ P2 � rgg

� �
jei
=½ðP2 � rggÞ2 þ reg

!! !!2
1=2

j�3i ¼ jsi ð111Þ

where the diagonal probabilities are

P1 ¼ 1

2
ðrgg þ reeÞ þ

1

2
½ðrgg � reeÞ2 þ 4 reg

!! !!2
1=2

P2 ¼ 1

2
ðrgg þ reeÞ �

1

2
½ðrgg � reeÞ

2 þ 4 reg

!! !!2
1=2

P3 ¼ rss ð112Þ
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In view of Eq. (111), it is easy to see that the squeezed vacuum causes the system

to decay into entangled states j�ii, which are linear superpositions of the

collective ground state jgi and the upper state jei. The intermediate symmetric

state remains unchanged under the squeezed vacuum excitation. In general, the

states (111) are mixed states. However, for perfect coupling of the squeezed

vacuum to the atoms ðZ ¼ 1Þ and jMj2 ¼ NðN þ 1Þ the populations P2 and P3

are zero, leaving the population only in the state j�1i. Hence, in the limit of

perfect coupling Z ¼ 1 the state j�1i is a pure state of the system of two atoms

driven by a squeezed vacuum field. From Eqs. (111), we find that the pure

entangled state j�1i is given by

j�1i ¼
1ffiffiffiffiffi
2n

p ½
ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
jgi þ

ffiffiffiffiffiffiffiffiffiffiffi
n � 1

p
jei
 ð113Þ

The pure state (113) is nonmaximally entangled state; it reduces to a maximally

entangled state for N � 1. The entangled state is analogous to the pairwise

atomic state [22] or the multiatom squeezed state [23], (see also Ref. 24),

predicted in the small sample model of two coupled atoms.

C. Effect of the Antisymmetric State on the Purity of the System

The preparation of a two-atom system in the pure entangled state j�1i requires

perfect matching of the squeezed modes to the atoms and interatomic separa-

tions much smaller than the optical wavelength. To achieve perfect matching

ðZ ¼ 1Þ, it is necessary to squeeze of all the modes to which the atoms are

coupled: that is, the squeezed modes must occupy the whole 4p solid angle of

the space surrounding the atoms. This is not possible to achieve with the present

experiments in free space, and in order to avoid the difficulty cavity environ-

ments have been suggested [59]. Inside a cavity the atoms interact strongly only

with the privileged cavity modes. By the squeezing of these cavity modes,

which occupy only a small solid angle about the cavity axis, it would be

possible to achieve perfect matching of the squeezed field to the atoms.

However, it is difficult experimentally to fulfil the second requirement that

interatomic separations should be much smaller than the resonant wavelength.

In fact, present atom trapping and cooling techniques can trap two atoms only

within distances of the order of a resonant wavelength [11–13]. It is therefore of

interest to examine the effect of increasing the interatomic separation so that the

simple three-state representation of two atoms, presented in the preceding

section, eventually ceases to be valid. With a finite interatomic separation, the

two-atom system is represented by the full four-level system of (35).

With the interatomic separation included, the antisymmetric state jai fully

participates in the dynamics of the two-atom system. In this case �12 6¼ � and
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the steady-state solutions of Eqs. (105) are

ree ¼
n � 1ð Þ2

4n2
þ a2j ~Mj2 2n � 1ð Þ

Q

rss ¼
n2 � 1ð Þ

4n2
� aj ~Mj2 2n2 � að Þ

Q

raa ¼ n2 � 1ð Þ
4n2

þ aj ~Mj2 2n2 þ að Þ
Q

ru ¼ 2an3j ~Mj
Q

ð114Þ

where

Q ¼ n2½n4 þ 4j ~Mj2 a2 � n2
� �


 ð115Þ

This result shows that the antisymmetric state is populated in the steady-state

even for small interatomic separations ða � 1Þ. For large interatomic separations

a � 0, and then the symmetric and antisymmetric states are equally populated.

When the interatomic separation decreases, the population of the state jai
increases, whereas the population of the state jsi decreases and rss ¼ 0 for very

small interatomic separations. In Fig. 8, we plot the steady-state populations as a

function of the interatomic separation. We see that the collective states are

unequally populated and for small r12 the state jai is the most populated state of

the system, whereas the state jsi is not populated.

However, the vanishing of the population in the state jsi does not mean that

the system is in a pure TPE state. This is due to the presence of the anti-

symmetric state jai which is significantly populated for small interatomic

separations. To show this, we calculate the quantity

Tr r2
� �

¼ r2
gg þ r2

ss þ r2
aa þ r2

ee þ ruj j2 ð116Þ

which determines the purity of the system. Trðr2Þ ¼ 1 corresponds to a pure state

of the system, while Trðr2Þ < 1 corresponds to a mixed state. Trðr2Þ ¼ 1
4

describes a completely mixed state of the system. In Fig. 9, we display Trðr2Þ as

a function of the interatomic separation r12 for perfect matching Z ¼ 1, jMj2 ¼
NðN þ 1Þ, and various N. Clearly, the system is in a mixed state independent of

the interatomic separation. Moreover, the purity decreases as N increases.

For small interatomic separation, the mixed state of the system is composed

of two states: the TPE state j�1i and the antisymmetric state jai. We can
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Figure 9. Trðr2Þ as a function of the interatomic separation for Z ¼ 1; jMj2 ¼ N N þ 1ð Þ,
�l ? �r12 and different N: N ¼ 0:1 (solid line), N ¼ 0:5 (dashed line), N ¼ 1 (dashed–dotted line).
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Figure 8. The steady-state populations of the collective atomic states as a function of the

interatomic separation for Z ¼ 1; jMj2 ¼ N N þ 1ð Þ;N ¼ 0:5, �l ? �r12 and ree (solid line), raa

(dashed line), rss (dashed–dotted line).
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illustrate this by diagonalizing the steady-state density matrix of the system

r ¼

rgg 0 0 rge

0 raa 0 0

0 0 rss 0

reg 0 0 ree

0
BBB@

1
CCCA ð117Þ

When we diagonalize the matrix (117), we find the new (entangled) states

j�1i ¼
P1 � reeð Þjgi þ regjei

½ P1 � reeð Þ2þ reg

!! !!2
1=2

j�2i ¼
rgejgi þ P2 � rgg

� �
jei

½ðP2 � rggÞ2 þ reg

!! !!2
1=2

j�3i ¼ jsi
j�4i ¼ jai ð118Þ

where the diagonal probabilities (populations of the entangled states) are

P1 ¼ 1

2
rgg þ ree

� �
þ 1

2
½ðrgg � reeÞ

2 þ 4 reg

!! !!2
1=2

P2 ¼ 1

2
rgg þ ree

� �
� 1

2
½ðrgg � reeÞ2 þ 4 reg

!! !!2
1=2

P3 ¼ rss

P4 ¼ raa ð119Þ

Note that the states j�1i; j�2i and j�3i are the same as for the small sample

model, discussed in the preceding section. This means that the presence of the

antisymmetric state does not affect the two-photon entangled states, but it can

affect the population distribution between the states and the purity of the

system. In Fig. 10, we plot the populations Pi of the states j�ii as a function of

the interatomic separation. The figure demonstrates that the atoms are driven

into a mixed state composed of two states j�1i and jai, and there is a vanishing

probability that the system is in the states j�2i and jsi.
However, the system can decay to the pure TPE state j�1i with the

interatomic separation included, provided the observation time is shorter than

��1. The antisymmetric state aj i decays on a time scale �ð�� �12Þ�1
, and for

�12 � � the decay rate of the antisymmetric state is much longer than ��1. By

contrast, the state sj i decays on a time scale �ð�þ �12Þ�1; which for �12 � �
is shorter than ��1. Clearly, for observation times shorter than ��1; the

antisymmetric state does not participate in the interaction and the system

reaches the steady-state only between the triplet states. Thus, for perfect
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matching of the squeezed modes to the atoms the symmetric state is not

populated and then the system is in the pure TPE state j�1i.

D. Two-Photon Entangled States for Two Nonidentical Atoms

By employing two nonidentical atoms of significantly different transition

frequencies ð� � �Þ, it is possible to achieve the pure TPE state with the

interatomic separation comparable to the resonant wavelength, and the anti-

symmetric state fully participating in the interaction.

Assuming that � 6¼ 0, the master equation (103) leads to the following

equations of motion for the density matrix elements

q
qt
ree ¼ �� n þ 1ð Þree þ

1

2
n � 1ð Þ � rss þ raað Þ þ �12 rss � raað Þei�t

�  
þ �12j ~Mjðrege�i 2 os�o0ð Þtþf½ 
 þ rgeei 2 os�o0ð Þtþf½ 
Þ

q
qt
rss ¼

1

2
ð�þ �12ei�tÞ n � 1ð Þ � 3n � 1ð Þrss � n � 1ð Þraa þ 2ree½ 


� �j ~Mjðrege�i 2 os�o1ð Þtþf½ 
 þ rgeei 2 os�o1ð Þtþf½ 
Þ

� �12j ~Mjðrege�i 2 os�o0ð Þtþf½ 
 þ rgeei 2 os�o0ð Þtþf½ 
Þ
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Figure 10. The populations Pi of the entangled states (115) as a function of the interatomic

separation for Z ¼ 1; jMj2 ¼ N N þ 1ð Þ, �l ? �r12 and N ¼ 0:5; P1 (solid line), P2 (dashed line), P3

(dashed–dotted line), P4 (dotted line).
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q
qt
raa ¼ 1

2
�� �12ei�t
� �

n � 1ð Þ � 3n � 1ð Þraa � n � 1ð Þrss þ 2ree½ 


þ �j ~Mjðrege�i 2 os�o1ð Þtþf½ 
 þ rgeei 2 os�o1ð Þtþf½ 
Þ
� �12j ~Mjðrege�i 2 os�o0ð Þtþf½ 
 þ rgeei 2 os�o0ð Þtþf½ 
Þ

q
qt
reg ¼ q

qt
rge

� ��
¼ �12

~Mei 2 os�o1ð Þtþf½ 
 � n�reg

� � ~Mei 2 os�o1ð Þtþf½ 
 rss � raað Þ
þ 2�12

~Mei 2 os�o0ð Þtþf½ 
 rss þ raað Þ ð120Þ

where o0 ¼ 1
2
o1 þ o2ð Þ.

Equations (120) contain time-dependent terms that oscillate at frequencies

expð�i�tÞ and exp½�2iðos � o0Þt þ f
. If we tune the squeezed vacuum field

to the middle of the frequency difference between the atomic frequencies,

namely, os ¼ ðo1 þ o2Þ=2, the terms proportional to exp ½�2iðos � o0Þt þ f

become stationary in time. None of the other time-dependent components is

resonant with the frequency of the squeezed vacuum field. Consequently, for

� � �, the time-dependent components oscillate rapidly in time and average to

zero over long times. Therefore, we can formulate a secular approximation in

which we ignore the rapidly oscillating terms, and find that Eqs. (120) give us

the following steady-state solutions [64]:

ree ¼
1

4

n � 2ð Þ
n

þ 1

ðn2 � 4a2j ~Mj2Þ

" #

rss ¼ raa ¼ 1

4
1 � 1

ðn2 � 4a2j ~Mj2Þ

" #

ru ¼ 2aj ~Mj
nðn2 � 4a2j ~Mj2Þ

ð121Þ

These equations are quite different from Eqs. (114) that in the case of non-

identical atoms the symmetric and antisymmetric states are equally populated

independent of the interatomic separation. These are, however, similar to the

steady-state solutions for the small sample model that for small interatomic

separations rss ¼ raa � 0 and then only the collective ground and the upper

states are populated.

E. Mapping of the Entanglement of Light on Atoms

The generation of the pure TPE state is an example of mapping of a state of

quantum correlated light onto an atomic system. The two-photon correlations
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contained in the squeezed vacuum field can be completely transferred to the

atomic system. It is seen from Eq. (121) that the collective damping parameter

aða ¼ �12=
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
Þ plays the role of a degree of the correlation transfer from

the squeezed vacuum to the atomic system. For large interatomic separations,

�12 � 0, and there is no transfer of the correlations to the system. In contrast,

for very small separations, �12 � �, and then the correlations are completely

transferred to the atomic system.

However, the complete transfer of the correlations does not necessary mean

that the two-photon correlations are stored in the pure TPE state. This happens

only for the small sample model and two atoms with significantly different

transition frequencies, where the steady state is the pure TPE state. For identical

atoms separated by a finite distance r12, a part of the correlations is stored in the

antisymmetric state. This fact can lead to an interesting modification of the

interference pattern of the fluorescence field. Using the steady-state solutions

(114), we find that the visibility in the interference pattern is given by [58]

V ¼ � 4aZ2jMj2

n3 n � 1ð Þ þ 4Z2jMj2 a þ n � n2ð Þ
ð122Þ

This visibility is negative, indicating that the squeezing correlations stored in

the antisymmetric state generate an interference pattern with a dark center. In

Fig. 11, we plot the visibility V as a function of the interatomic separation for

0 0.5 1 1.5 2

r12/λ0

0.8

0.4

0

0.4

V

Figure 11. The visibility V as a function of the interatomic separation for Z ¼ 1; jMj2 ¼
N N þ 1ð Þ, �l ? �r12 and different N: N ¼ 0:1 (solid line), N ¼ 0:5 (dashed line), N ¼ 5 (dashed–

dotted line).
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Z ¼ 1 and jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

p
. An interference pattern with a dark center is

observed for small interatomic separations ðr12 < l0Þ with the maximal negative

value V � � 1
2
. The value V � � 1

2
compared to the possible negative value

V ¼ �1 indicates that 50% of the squeezing correlations are stored in the

antisymmetric state. Thus, the visibility can be used to measure the degree of

correlations stored in the entangled state jai.
The two-photon correlations stored in the pure TPE state can be measured by

detecting fluctuations of the fluorescence field emitted by the atomic system.

Squeezing in the fluorescence field is proportional to the squeezing in the

atomic dipole operators (squeezing in the atomic spins) which, on the other

hand, can be found from the steady-state solutions for the density matrix

elements.

The fluctuations of the electric field are determined by the normally ordered

variance of the field operators as

h: �Eyð Þ2:i ¼
X

ks

Ekð2hay
ksaksi þ haksaksie2iy þ hay

ksa
y
ksie�2iyÞ ð123Þ

Using the correlation functions (93) and choosing y ¼ p=2, the variance of the

incident squeezed vacuum field can be written as

h: ð�Ev
p=2Þ

2 :i ¼ 2E0 N � jMjð Þ ð124Þ

where E0 is a constant.

Since jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

p
, the variance (124) is negative, indicating that we

have a squeezed field.

On the other hand, the normally ordered variance of the emitted fluorescence

field can be expressed in terms of the density matrix elements of the two-atom

system as

h: �EF
y

� �2
:i ¼ E0 2rss þ 2ree þ jrujcos2yð Þ ð125Þ

Using the steady-state solutions (107) and choosing y ¼ p=2, we find

h:ð�EF
p=2Þ

2 :i ¼ 2E0
N � jMjð Þ
2N þ 1

ð126Þ

Thus, at low intensities of the squeezed vacuum field ðN � 1Þ the fluctuations in

the incident squeezed vacuum field are perfectly mapped onto the atomic system.

For large intensities ðN > 1Þ, the thermal fluctuations of the atomic dipoles

dominate over the squeezed fluctuations, resulting in a reduction of squeezing in

the fluorescence field.
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Kozhekin et al. [38] proposed a method of mapping of quantum states onto

an atomic system based on the stimulated Raman absorption of propagating

quantum light by a cloud of three-level atoms. Hald et al. [40] have experi-

mentally observed the squeezed spin states of a system of three-level atoms

driven by a squeezed field. The observed squeezed spin states have been

generated via entanglement exchange with the squeezed field completely

absorbed in the process. Fleishhauer et al. [39] have considered a similar

system of three-level atoms and have found that quantum states of single-photon

fields can be mapped onto collective states of the atomic system. In this case the

quantum state of the field is stored in a dark state of the collective states of the

system.
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I. INTRODUCTION

Multipolar polarizabilities contribute to molecular interactions in dense media

and may influence macroscopic properties of matter (e.g., dielectric virial

coefficient, susceptibilities, light scattering intensities) [1]. However, until the

late 1970s or so, these molecular constants have not been studied very

extensively. In 1978, it was shown for the first time that the induced rotational

transitions associated to dipole-multipole polarizabilities of molecules induce

depolarized scattering in compressed gases [2]. Then scattering experiments

have been used to study multipolar polarizability for several types of molecules.

For isotropic molecules, for which the polarizability tensor is a scalar, there are

no allowed rotational bands around the Rayleigh line and multipolar contribu-

tions have been observed in the depolarized Rayleigh wings where they appear

mixed with a strong contribution from the dipole-induced dipole (DID) effect

[2–8]. In this way, the dipole quadrupole polarizability A and/or the dipole

octopole polarizability E have been measured for CH4, CD4, neopentane, CF4,

and SF6 [2–12]. Recently it has been shown that these multipolar contributions

may also be measured in the isotropic Rayleigh wings without any perturbation

from DID interactions [13,14]. In the case of linear molecules the allowed

rotational lines of each individual molecule yield a large scattering around the

Rayleigh line and hide multipolar polarizabilities contributions at low frequency

shifts. However in the case of N2 and CO2 [15,16] from studies of scattering

intensities in the very far wings of the Rayleigh band, the dipole–octopole

polarizability E may be deduced. Consideration of isotropic scattering inten-

sities in these molecules allows us to avoid any perturbation from the rotational

bands of free molecules contrary to the depolarized scattering spectrum [15].

Multipolar polarizabilities effects may also be observed outside the Rayleigh
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frequency domain and in particular in the vibrational Raman bands. For CF4 and

SF6 the measurement of scattering intensities in the totally symmetric n1 Raman

band have provided experimental value for their normal coordinate derivative

multipolar polarizabilities dA=dR and/or dE=dR [14,17,18].

In this chapter we first give a general presentation of collision-induced

scattering (CIS) also named interaction induced scattering. The different types

of molecular interaction are mentioned with a special emphasis on the multi-

polar polarizabilities contributions studied in our laboratories [19] since the

beginning of 1990s. Then we describe the setup and the experimental procedure

used for the measurement of the scattering on an absolute scale. In the following

paragraphs we discuss the multipolar contributions to depolarized and isotropic

CIS for specific molecular symmetries. We present studies in the Rayleigh

wings of isotropic molecules such as CF4 and SF6 and of linear molecules such

as N2 and CO2. Finally we report on observations made in the wings of

vibrational Raman bands of CF4 and SF6.

II. THEORY OF LIGHT SCATTERING

A. Historical Background

The approach of the molecules or atoms and their dispersal accompanying the

collisions between them involve temporary changes in the resultant polariz-

ability of an interacting pair or in general a cluster of molecules. The

polarizability Aab of the pair of molecules A and B:

Aab ¼ AabðAÞ þ AabðBÞ þ�AabðABÞ ð1Þ

is no longer a simple sum of the internal polarizabilities AabðAÞ and AabðBÞ and

some additional polarizability �AabðABÞ appears known as the collision-

induced or interaction-induced polarizability, originating from all possible

interactions between the molecules. At least two reasons for its appearance

can be identified: (1) the fluctuating electric field produced by the neighboring

molecule different from the electric field of the external source of radiation and

(2) short-range interactions, such as of the overlap type and the dispersion

interactions deforming the electron clouds of the interacting molecules and thus

changing their internal polarizabilities. This incremental polarizability is

manifested in the dielectric and optical properties of the concentrated gases

and liquids. Changes in the mean polarizability (a) of a pair of interacting

molecules determine the second dielectric virial coefficient [20], the second

virial coefficient of the light refraction index and rototranslational wings of the

isotropic Rayleigh and Raman light scattering [1,21]. The collision-induced

anisotropy contributes to the second virial coefficient for the Kerr effect, to the

electric-field-induced birefringence, and is a source of rototranslational wings in
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the vicinity of the Rayleigh and Raman lines [22]. Besides, in the system of two

molecules or atoms, the above-described mechanisms cause the appearance of

collision-induced additional dipole moment (static or modulated by vibrations)

which is a source of the collision-induced absorption [23]. In this chapter we

concentrate on the processes prompted by the collision-induced polarizability,

or to be more exact, its spectral manifestations. Thus, we consider the effect of

the excess polarizability on the Rayleigh and Raman light scattering for the

systems whose density implies a significant role of binary interactions. As

follows from our measurements, at room temperature the binary interaction

approximation can be used for gas N2 up to 150 amagat [15] and for CO2 [16]

and CF4 [8,13] up to 100 amagat. For greater densities higher order correlations

begin to play an important role and interpretation of the collision-induced

mechanisms becomes more complex or even problematic.

Naturally, collision-induced contributions are present in all kinds of spectra.

They are much less sensitive to the limitations imposed by the selection rules

and always accompany the allowed transitions. In interpretation of such single-

molecule spectra, the collision-induced part should be recognized so that it

could be correctly separated from the single-molecule mechanism. In some

circumstances, such a collision-induced part of the spectrum may be identified

more easily; it is the case of: (1) the spectrum of H2 (because of large distances

between the rotation lines of permanent anisotropy) [24], and (2) the spectrum

of H2S (because of a very low value of the anisotropy constant) [25] . In most

cases, however, the collision-induced spectra accompanying the allowed transi-

tions are difficult for interpretation (e.g., the problem of cross effects) and the

information they provide are less reliable—this concerns in particular the

depolarized component of the scattered light. The situation is generally different

for the polarized component which includes an anisotropic part and an isotropic

part where the latter is caused by the mean polarizability a of the molecular pair.

The intrinsic mean polarizability of an isolated molecule is the source of a

strong and very narrow central line of the spectrum (the Q branch). Thus, the

wings of the isotropic part of the scattered radiation are of a collision-induced

nature [15] and can provide much information on the rotational collision effects

(they have a relatively weak translation spectrum of only second-order DID

type) [13]. However, the spectral studies of the wings (in particular its high-

frequency domain) in the isotropic part of the scattered radiation are very

difficult to measure and for molecules only a few works have been devoted to

this subject [13,15,18,25,26].

The collision-induced polarizability is best manifested if it is the only reason

for the phenomenon observed. In such a case the intermolecular interactions

break the selection rules of isolated molecules and a process forbidden in the

single-molecule approximation becomes allowed in concentrated gas or liquid.

For example, it occurs when we observe the depolarized component of light
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scattered by noble gases or gases composed of isotropically polarized molecules

such as CH4, CF4, or SF6 [8,13,17,18] or when we observe vibrations n2 and n3

(forbidden in single-molecule Raman spectroscopy) of such molecules as CO2

and CS2. Then, investigation of the scattered radiation spectrum allows direct

insight into the mechanisms responsible for the excess polarizability �AabðABÞ
and dynamics of intermolecular interactions.

We begin our review by describing collision-induced light scattering me-

chanisms in the language of Cartesian tensors. We continue our description by

the way of irreducible spherical tensors showing that the irreducible spherical

tensors approach is indispensable for the spectral lineshape computation.

B. Pair Polarizability Tensor

In a dense medium, collisional effects as well as time and space fluctuations of

multipolar molecular fields will in general lead to changes in the molecular

polarizability tensor. Then, according to Eq. (1), the pair polarizability tensor of

two molecules A and B, Aab, acquires an incremental collision-induced

polarizability of linear origin �A
ðLÞ
ab ðABÞ and of nonlinear origin �A

ðNLÞ
ab ðABÞ:

Aab ¼ AabðAÞ þ AabðBÞ þ�A
ðLÞ
ab ðABÞ þ�A

ðNLÞ
ab ðABÞ ð2Þ

The excess collision-induced pair polarizability of molecules A and B results as

a self-consistent solution of a set of equations for local fields polarizing mole-

cules A and B and the multipolar moments induced in molecules A and B. In a

first approximation, the long range field-induced change in the pair polariz-

ability, related to the linear multipolar polarizabilities of molecules, is [27]:

�A
ðLÞ
ab ¼ 1 þPABð Þ

�X1
m¼1

X1
n¼1

ð�1Þn 2mþnm!n!

ð2mÞ!ð2nÞ!

ð1ÞAðmÞðoAÞ½m�ðmÞTðnÞðRABÞ½n�ðnÞAð1ÞðoBÞ
�

ab
ð3Þ

where the tensor ð1ÞAðmÞðoiÞ of rank 1 þ m determines the linear dipole mth-

rank multipole polarizability due to dipole–2		m-pole electric transitions in a

molecule i, the symbol [m] denotes m-fold contraction whereas PAB permutes

the indices A and B. Moreover, the tensor

ðmÞTðnÞðRABÞ ¼ rm
Arn

B

1

RAB

� �
ð4Þ

of m þ n rank defines 2		m-pole–2		n-pole interaction between molecules A and

B separated by a distance RAB.
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The additional variation in the pair polarizability due to nonlinear molecular

polarizabilities combined with permanent multipoles in a first approximation

has the form [27]

�A
ðNLÞ
ab ¼ 1 þPABð Þ

�X1
m¼1

X1
n¼1

ð�1Þn 2mþnm!n!

ð2mÞ!ð2nÞ! :

ð1ÞBð1þmÞðoAÞ½m�ðmÞTðnÞðRABÞ½n�QðnÞðoBÞ
�

ab
ð5Þ

where the tensor ð1ÞBð1þmÞðoiÞ of rank 2 þ m determines the nonlinear (second

order) dipole-mth rank multipole hyperpolarizability due to dipole–dipole-2		m-

pole electric transitions in a molecule i. Moreover QðnÞðoiÞ defines the 2		n

order intrinsic molecular multipole moment of molecule i.

Some time ago we contributed to the development of the irreducible spherical

tensor multipolar theory of light scattering [13,28]. According to Ref. 13, the M

component of the Kth-rank dipole–arbitrary order multipole linear polarizability

of a pair of interacting molecules A and B reads as

�A
ðLÞ
KM ¼ 2

X
jAjB�
lAlB

ð�1ÞjAþN 2N

ð2lAÞ!ð2lBÞ!

� �1=2

XjAjBNx

jA jB x

1 1 K

lA lB N

8><>:
9>=>;

TNðRABÞ � að1lAÞ
jA

� að1lBÞ
jB

 �
ðxÞ

� �
KM

ð6Þ

whereas the nonlinear part of the pair polarizability has the form

�A
ðNLÞ
KM ¼ � 1 þPABð Þ

X
JAlAlB

2N

ð2lAÞ!ð2lBÞ!

� �1=2

ð�1ÞlB XNJAx

XK

N lB lA

JA K x

� �
T
ðABÞ
N ðR12Þ � bJA

½ð11ÞKlA� � QlB

� �
ðxÞ

n o
KM

ð7Þ

where

a b c

d e f

g h j

8<:
9=; ð8Þ

is the 9 � j Wigner symbol, whereas

a b c

d e f

� �
ð9Þ
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stands for the 6 � j Wigner symbol. Moreover, A
ð1;liÞ
ji

is the irreducible jith-rank

spherical tensor of dipole-lith-rank multipole polarizability tensor of molecule i

and TN denotes the spherical multipole interaction tensor, Xab... f ¼
½ð2a þ 1Þð2b þ 1Þ    ð2f þ 1Þ�1=2;N ¼ lA þ lB and � stands for the irreducible

tensor product. Besides, in Eq. (7) Qlimi
denotes the mi component of the lith-

order spherical electric multipole moment of the molecule i and bJiMi
½ð11Þali�

stands for the irreducible Ji rank spherical tensor of dipole–dipole–2		a-pole

hyperpolarizability of molecule i in a coupling scheme where two dipoles are

first connected and, subsequently the 2		a-pole multipolar moment.

C. Pair Correlation Function

When induction operators of high-order multipoles are taken into account

intensity calculations tend to become very cumbersome [30,31]. We propose

a relatively easy way of performing these calculations using the irreducible

spherical tensor theory of multipole light scattering [e.g., Eqs. (6) and (7)]

together with symbolic calculations of the Wigner coefficients by computer.

We consider a macroscopically isotropic system composed of N-like mole-

cules in an active scattering volume V illuminated by laser radiation of

frequency oi, linearly polarized in the direction e. We analyze the secondary

electromagnetic radiation emitted by the system in response to that perturbation.

At a point R distant from the center of the sample, the radiation scattered at o is

measured on traversal of an analyzer with polarization n. The pair double-

differential cross sections for scattered interaction-induced radiation becomes

q2s
q�qo

¼ kik
3
s

1

2p

ð
expð�iotÞFðtÞdt ð10Þ

where

FðtÞ ¼
X
k¼0;2

�kkFkkðtÞ ð11Þ

with geometric factors equal to �00 ¼ 1
3
ðe  nÞ2

for the isotropic spectrum and

�22 ¼ 1
30
½3 þ ðe  nÞ2� for the anisotropic spectrum. First we analyze the multi-

polar collision-induced light scattering. Then FkkðtÞ becomes the autocorrela-

tion function of (6)

FkkðtÞ ¼ h�AðkÞð0Þ ��AðkÞðtÞi ð12Þ

where � denotes a scalar tensor product and h i is a canonical average.

Using Eq. (6) and decoupling procedures for irreducible spherical tensors

[32], we easily derive the following general form of the autocorrelation function
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(13) for the dipole–arbitrary-order multipole light scattering induction operator

[33]:

FkkðtÞ ¼ 4ð2k þ 1Þ
X
j1 ;j2
l1 ;l2

X
k1 ;k2

m1 ;m2

ð�1Þgþhþl1þm1
2N1þN2

ð2l1Þ!ð2l2Þ!ð2m1Þ!ð2m2Þ!

� �1=2

Xj1j2k1k2N1N2gh

h k2 1 k 1 k1 g

j2 m2 l1 k1

1 l2 N1 a N2 m1 1

8><>:
9>=>;

h½TN1
ðR12ð0ÞÞ � TN2

ðR12ðtÞÞ�ðaÞ � ½ðAð1;l1Þ
j1

ð1; 0Þ�

A
ð1;m1Þ
k1

ð1; tÞÞðgÞ � ðAð1;l2Þ
j2

ð2; 0Þ � A
ð1;m2Þ
k2

ð2; tÞÞðhÞ�ðaÞi ð13Þ

where we used the 18-j coefficient of 28M1 type defined as [34]

a b g k h r s

c f p t

d e j l m u w

8><>:
9>=>; ¼

X
x1x2

ð�1Þcð2x1 þ 1Þ

ð2x2 þ 1Þ
l x1 x2

k j m

� � l x1 x2

a b c

s t r

8><>:
9>=>;

m k x1

f g b

u w t

8><>:
9>=>;

j k x2

p h r

e d c

8><>:
9>=>; ð14Þ

and c ¼ a þ s þ j þ m þ c þ t þ w þ d � u � e.

With symbolic computation programs [35], we calculate rather easily the

values of the 18 � j symbols of (6) for selected multipole light scattering

mechanisms. For instance, taking N1 ¼ N2 ¼ 3; j1 ¼ k1 ¼ 3; l1 ¼ m1 ¼ 2;
j2 ¼ k2 ¼ 0; l2 ¼ m2 ¼ 1, we obtain excellent agreement with the dipole-in-

duced quadrupole autocorrelation function derived by Posch [7]. The correlation

function (13) deals with a general situation when rotational and translational

degrees of freedom are coupled. However, when considering radiation scattered

by low-density gaseous systems, we usually are justified in assuming that the

molecules of the scattering volume are correlated radially but uncorrelated

orientationally [2,7,36]. That assumption was used when the theory of collision-

induced rotational Raman (CIRR) effect was developed by Buckingham and

Tabisz [2,37]. Our general autocorrelation function (13) reduces to the auto-

correlation function of CIRR if g ¼ h ¼ a ¼ 0. Then, taking into account the
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explicit form of the spherical interaction tensor [33,38]:

TNðR12Þ ¼ ð�1ÞN ð2NÞ!
2N

� �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
2N þ 1

r
R
�ðNþ1Þ
12 YNðbR12Þ ð15Þ

where YNðbR12Þ stands for spherical harmonic function, our Eq. (13) becomes:

FkkðtÞ ¼
16 p ð2k þ 1Þ

2 N1 þ 1

X
j1 ;j2
l1 ;l2

X
k1 ;k2

m1 ;m2

ð�1Þl1þm1 2N1

½ð2 l1Þ! ð2 l2Þ! ð2 m1Þ! ð2 m2Þ!�1=2

1 1 l2 m2

1 l1 1 m1

k j2 j1 N1

264
375 A

ð1;l1Þ
j1

ð1; 0Þ � A
ð1;m1Þ
j1

ð1; tÞ
 �D E

�1ð0Þ

A
ð1;l2Þ
j2

ð2; 0Þ � A
ð1;m2Þ
j2

ð2; tÞ
 �D E

�2ð0Þ
R
�ðN1þ1Þ
12 ð0ÞYN1

ðbR12ð0Þ�
D

R
�ðN1þ1Þ
12 ðtÞYN1

ðbR12ðtÞ
�E

�12ð0Þ
ð16Þ

where

a b e f

d h c g

p q s r

264
375 ¼ ð�1Þ�pþq�rþs

X
x1

X 2
x1

a b x1

c d p

( )
c d x1

e f q

( )
e f x1

g h r

( )
g h x1

a b s

( )
ð17Þ

stands for the 12–j Wigner symbol of the second kind [32]. Introducing the

notation

SNðtÞ ¼ hDN
0 0ðd�12ðtÞÞR12ð0Þ�ðNþ1Þ

R12ðtÞ�ðNþ1Þi ð18Þ

RjðtÞ ¼ D j
n n d�ðtÞð Þ

# $
and averaging isotropically over the initial orientation �i of molecule i, we

obtain

A
ð1;liÞ
ji

ði; 0Þ � A
ð1;miÞ
ji

ði; tÞ
 �D E

�ið0Þ
¼ ~A

ð1;liÞ
ji

� ~A
ð1 ;liÞ
ji

 �
RjiðtÞ ð20Þ
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where ~A
ð1 ;liÞ
ji

stands for the irreducible multipolar polarizability tensor of the ith

molecule in its molecular frame reference system. Averaging over the initial

orientation of the intermolecular vector gives us

R
�ðN1þ1Þ
12 ð0ÞYN1

ðbR12ð0Þ � R
�ðN1þ1Þ
12 ðtÞYN1

ðbR12ðtÞ
 �D E

�12ð0Þ
¼ 2 N1 þ 1

4p
SN1

ðtÞ

ð21Þ

In this way we transform our key equation, (16), to the form suitable for

computer programming:

FkkðtÞ ¼
4 ð2k þ 1Þ
2 N1 þ 1

X
j1; j2
l1;l2

X
m1;m2

ð�1Þl1þm1
2N1

ð2 l1Þ! ð2 l2Þ! ð2 m1Þ! ð2 m2Þ!½ �1=2

1 1 l2 m2

1 l1 1 m1

k j2 j1 N1

264
375 ~A

ð1;l1Þ
j1

ð1Þ � ~A
ð1;m1Þ
j1

ð1Þ
 �

~A
ð1;l2Þ
j2

ð2Þ � ~A
ð1;m2Þ
j2

ð2Þ
 �

� Rj1ðtÞRj2ðtÞ SN1
ðtÞ ð22Þ

It would be relatively easy to extend here our computer symbolic calcula-

tions to ‘‘the hyperpolarizability part’’ of the pair polarizability [see Eqs. (5) and

(7)]. However, from all our numerical computations done for N2, CO2, and CF4,

it results that nonlinear part of the pair polarizability has a weak influence on the

resulting spectrum (for details, see Refs. 8, 13, and 15–18). Bearing in mind

these results in this review, we restrict our discussion to multipolar light

scattering mechanisms. Formula (22) allows us to write the following simple

symbolic program in Mathematica calculating the analytical form of the

autocorrelation function (16) for a selected dipole-arbitrary order multipole

induction operator:

Fkk=(2 kþ1) 4 (�1)^(l1þm1) (2 N1)!/Sqrt[(2 l1)! (2 (N1-l1))! (

2 m1)! (2 (N1-m1))!] Sum[(2 xþ1) SixJSymbol[{1,1,x},{1,1,k}

] SixJSymbol[{1,1,x},{N1-l1,N1-m1,j2}

] SixJSymbol[{N1-l1,N1-m1,x},{m1,l1,N1}] SixJSymbol[{m1,l1,x},

{1,1,j1}],{x,0,2}] (Sum[(�1)^m A[1,j1,l1,m] A[1,j1,m1,�m],{m,

�j1,j1}] Sum[(�1)^m A[2,j2,(N1-l1),m] A[2,j2,(N1-m1),�m],{m,

�j2,j2}]) R[j1,t] R[j2,t] S[N1,t]

In our program we distinguish multipolarizabilities of molecules 1:

A[1,j1,l1,m] and molecule 2: A[2,j2,l2,m] so in practice our program can

be used to light scattering computations for mixtures. Having an analytical form
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of the autocorrelation function, one easily calculates [see (10)] the double

differential cross section of scattered radiation. Before running the above

program, we must specify the value of k ðk ¼ 0, isotropic scattering; or

k ¼ 2, anisotropic scattering) the rank of the interaction tensor N1 and the set

of indices j1, j2, l1, and m1. Our program easily gives the double differential

cross section for molecules of an arbitrary symmetry and selected multipole

light scattering mechanisms, provided, however, that the explicit form of the

respective irreducible multipole polarizability molecular frame tensors ~A
ð1;lnÞ
jn

is

available [29]. In other words, once we know the irreducible form of the

multipole polarizability tensors involved in the light scattering mechanism

considered, our program gives the double differential cross section due to this

mechanism without often cumbersome (especially for high-order tensors)

unweighted rotational averaging of many directional cosines [30,31]. For

tetrahedral molecules, these sets are assembled in Table I for the successive

multipolar induction operators up to dipole-induced octopole light scattering

mechanism. For octahedral molecules, symmetry constraints reduce the number

of possible light scattering mechanisms allowed; for instance, A � 0. However,

Table I can be used as well for all light scattering mechanisms active in

collision-induced spectra of octahedral molecules. Moreover, in general, before

running our program we must define the form of the molecular frame spherical

irreducible multipole polarizability tensor for the considered light scattering

mechanism. In Table II we specify this form for tetrahedral molecules and light

scattering mechanisms ranging from the dipole–dipole induction operator up to

the dipole–octopole one. The way of utilizing of our program for linear

molecules is discussed in section II.C.2.

1. Globular Molecules

We start illustrate our program considering tetrahedral and octahedral mole-

cules. Let us begin the calculation of the double differential cross section of the

isotropic component of the light scattered due to octopole–octopole (OO) ETE
mechanism. In this case k¼0, j1¼4, j2¼4, l1¼3, m1¼3, N1¼6. It is

TABLE I

The Set of Indices j1; j2; l1 and m1 for Induction Operators Ranging from Dipole–Dipole

to Dipole–Octopole

Operator j1 j2 l1 m1 Operator j1 j2 l1 m1

aT ð2Þa 0 0 1 1 A T ð4Þ A 3 3 2 2

aT ð3Þ A 0 3 1 1 A T ð5Þ E 3 4 2 2

3 0 2 2 4 3 3 3

aT ð4Þ E 0 4 1 1 E T ð6Þ E 4 4 3 3

4 0 3 3
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TABLE II

The Form of the Molecular Frame Multipole Polarizability Tensor Ranging from Dipole–Dipole to

Dipole–Octopole Light Scattering Mechanisms

Light Scattering Mechanisms The Molecular Frame Multipole Polarizability Tensor

Dipole-Dipole A½1; 0; 1; 0� ¼�
ffiffiffi
3

p
a1

A½2; 0; 1; 0� ¼�
ffiffiffi
3

p
a2

A½1; 2; 1; 0� ¼0

A½2; 2; 1; 0� ¼0

A½1; 2; 1; 1� ¼0

A½2; 2; 1;�1� ¼0

A½1; 2; 1; 2� ¼0

A½2; 2; 1;�2� ¼0

Dipole–quadrupole A½1; 3; 2; 0� ¼0

A½2; 3; 2; 0� ¼0

A½1; 3; 2; 1� ¼0

A½1; 3; 2;�1� ¼0

A½2; 3; 2; 1� ¼0

A½2; 3; 2;�1� ¼0

A½1; 3; 2; 2� ¼ I
ffiffiffi
2

p
A1

A½1; 3; 2;�2� ¼�I
ffiffiffi
2

p
A1

A½2; 3; 2; 2� ¼ I
ffiffiffi
2

p
A2

A½2; 3; 2;�2� ¼�I
ffiffiffi
2

p
A2

A½1; 3; 2; 3� ¼0

A½1; 3; 2;�3� ¼0

A½2; 3; 2; 3� ¼0

A½2; 3; 2;�3� ¼0

Dipole–octopole A½1; 4; 3; 0� ¼
ffiffiffi
7

p
=2E1

A½2; 4; 3; 0� ¼
ffiffiffi
7

p
=2E2

A½1; 4; 3; 1� ¼0

A½1; 4; 3;�1� ¼0

A½2; 4; 3; 1� ¼0

A½2; 4; 3;�1� ¼0

A½1; 4; 3; 2� ¼0

A½1; 4; 3;�2� ¼0

A½2; 4; 3; 2� ¼0

A½2; 4; 3;�2� ¼0

A½1; 4; 3; 3� ¼0

A½1; 4; 3;�3� ¼0

A½2; 4; 3; 3� ¼0

A½2; 4; 3;�3� ¼0

A½1; 4; 3; 4� ¼
ffiffiffiffiffi
10

p
=4E1

A½1; 4; 3;�4� ¼
ffiffiffiffiffi
10

p
=4E1

A½2; 4; 3; 4� ¼
ffiffiffiffiffi
10

p
=4E2

A½2; 4; 3;�4� ¼
ffiffiffiffiffi
10

p
=4E2
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straightforward to find that in utilizing our program after one push of a

computer key, we obtain

F00ðtÞ ¼ 55

3
E 4 R½4; t�2 S½6; t� ð23Þ

Looking for depolarized component of this scattering, we use k¼2, j1¼4,

j2¼4, l1¼3, m1¼3, N1¼6. Then the result of our program reads as

F22ðtÞ ¼ 11330

21
E 4 R½4; t�2 S½6; t� ð24Þ

In this way using Tables I and II we calculate double differential cross sections

for all light scattering mechanisms of globular molecules consider in our work.

2. Linear Molecules

The symmetry of linear molecules imposes less constraints on the multipole

polarizability tensors than does tetrahedral symmetry, so the forms of the

respective tensors for linear molecules are usually more highly complicated

than for tetrahedral ones. This certainly complicates interpretation of light

scattering results but has much less influence on complications in running our

program. By means of the same methods as in the case of tetrahedral molecules

we calculate the spherical irreducible components of the dipole–dipole, dipole–

quadrupole, and dipole–octopole polarizability tensors as dipole–dipole

A
ð11Þ
00 ¼ �

ffiffiffi
3

p
a ð25Þ

A
ð11Þ
20 ¼

ffiffiffi
2

3

r
g ð26Þ

dipole–quadrupole

A
ð12Þ
10 ¼ �

ffiffiffiffiffi
10

p

5
ðAk þ 2 A?Þ ð27Þ

A
ð12Þ
30 ¼

ffiffiffiffiffi
15

p

15
ð3 Ak � 4 A?Þ ð28Þ

or dipole–octopole:

A
ð13Þ
20 ¼

ffiffiffiffiffi
21

p

21
E2 ð29Þ

A
ð13Þ
40 ¼ 2

ffiffiffi
7

p

7
E4 ð30Þ
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Putting in our program N1¼4 and the following sets of j1; j2; l1;m1 indices —

(0,2,1,1); (2,0,3,3); (0,4,1,1); (4,0,3,3); (2,2,1,1); (2,2,3,3); (2,2,1,3); (2,2,3,1) —

we easily obtain the anisotropic F22ðtÞ and isotropic F00ðtÞ correlation

functions for the dipole–octopole aTE) induction operator [15,36]:

F22ðtÞ ¼
�

32

21
ða E2Þ2

R½0; t�R½2; t� þ 880

189
ða E4Þ2

R½0; t�R½4; t�

þ 16

105
ðgE2Þ2

R½2; t�2 þ 704

243
ðgE4Þ2

R½2; t�R½4; t�
�

S½4; t� ð31Þ

F00ðtÞ ¼
�

128

27
ða E4Þ2

R½0; t�R½4; t� þ 128

945
ðg E2Þ2

R½2; t�2

þ 352

1701
ðg E4Þ2

R½2; t�R½4; t�
�

S½4; t� ð32Þ

with a; g;E2;E4 polarizability invariants of molecule i defined as in Ref. 15.

III. EXPERIMENTAL CONSIDERATIONS

A. Setup

Interaction-induced light scattering intensities may be measured by a conven-

tional scattering experimental setup. However these intensities are generally

weak and the collection of accurate data needs some specific arrangements,

especially when polarization studies are concerned. For the data reported here

we used the experimental apparatus shown in Fig. 1. The light source is a 15-W

argon ion laser operating on the green line at lL ¼ 514:5 nm. The laser light is

linearly polarized perpendicularly to the scattering plane, which is defined by

the laser beam and the axis of the scattered light. The direction of the laser

polarization may be rotated and set parallel to the scattering plane using a half-

wave plate associated with a glan polarizer. The laser beam is focused on a

sample cell with a convergent lens (L1) and the light scattered at 90� is collected

with an another lens (L2). The collection angle is kept as small as possible (7�

maximum). The scattered light is analyzed by a double monochromator with

two holographic gratings. Then it is detected by either a photomultiplier (PM) or

a charge-coupled-device (CCD). The PM is a low-noise tube with a bialkali

photocathode cooled at �5�C associated with a photon counter. It gives the

signal intensity at one frequency. The CCD is a silicon chip detector that

consists of 1024 � 256 pixels. It is associated to a holographic filter to stop the

light at the laser frequency and gives the intensities for any frequency of a

spectral domain above 160 cm�1. By cooling the CCD at 140 K and using

specific software, we have been able to measure very weak signals with this

detector corresponding to one photon per week and per pixel. For gaseous
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sample we used high-pressure cells with four fused silica windows of high optic

quality and with diaphragms inside to stop the parasitic light. When low

temperature studies were performed, the cell was set in a specially designed

continuous-flow cryostat from the Air Liquide Company. The temperature was

monitored with an accuracy of about 1 K using a platinum calibrate resistance

inside the cell. With this apparatus our cell can work with several hundred bars

of gas from liquid helium to room temperature.

B. Experimental Procedure

The scattering spectra induced by binary interactions at the low-density limit for

the gaseous samples studied have been deduced from the analysis of the density

behavior of the spectral Stokes intensities. For each Raman frequency n studied,

we have measured the scattering intensities IðnÞ at several densities r and fitted

the resulting data to a power series expansion in density of the form

IðnÞ ¼ I0ðnÞ þ I1ðnÞ rþ I2ðnÞ r2 þ I3ðnÞ r3 þ    ð33Þ

where I0ðnÞ represents an intensity contribution independent of the gas density

and due mostly to laser light reflections, I1ðnÞ is the scattering from monomers

L1

L2
Scrambler

CCD

Filter
Double

monochromator

Laser

PM

DiscriminatorPhoton counterComputer

Cell

Prism

Glan λ/2

Figure 1. Experimental arrangement for the study of collision-induced light scattering. L1 and

L2 are convergent lens.
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and is proportional to the gas density, I2ðnÞ is the binary intensity induced by the

two-body interactions that we are looking for, and I3ðnÞ describes three-body

contributions to the scattering. The density expansion given by Eq. (33) is an

approximation and must be used with caution. It may be consider valid for

relatively low densities. The spectral response of the apparatus has been taken

into account in order to compare experimental intensities obtained at different

frequencies. This has been done by means of a spectral correction factor

determined from measurement of the sensitivity of our device using a precali-

brated spectral lamp. Since intensities obtained in a first step from the

experiment are on a relative scale, a calibration is needed to put them on an

absolute scale. In our case, we used an external calibration, in which two types

of experiments are conducted under the same experimental conditions. The

first one was to measure the induced interaction signal Sp [in counts per

second (cps)] scattered by the sample at a specific frequency shift n0. The

second one was to measure the frequency integrated intensity Si
r (in cm�1cps)

for a reference rotational line of a molecule B serving as a standard. If the

integrated cross section of the reference line (ds=d�) is known, the interaction-

induced intensity at n0 per unit of frequency shift, Iðn0Þ, can be calculated

from [39]

Iðn0Þ ¼
ds
d�

Sp

Si
r

2 nr

n2
p

ð34Þ

where np and nr are the number density of the sample studied and of the

molecule B, respectively. For several of our studies, the rotational line S0ð1Þ of

hydrogen was used as reference line. In order to study polarization properties of

CIS, two scattering components are measured with different optical arrange-

ment. The perpendicular scattering component I? is obtained when the

polarization of the laser beam in the cell is perpendicular to the scattering

plane. The parallel scattering component Ik is measured when this laser

polarization inside the cell is parallel to the scattering plane. However, some

mixing between perpendicular and parallel components may occur because of

the nonzero value of the collection angle of the light scattered by the sample. To

obtain the values of the perpendicular and the parallel intensities scattered at

90�, I0? and I0k, respectively, and corresponding to a collection angle close to

zero, a correction may be applied [16,40]. In our experiment the scattered beam

was collected in a cone with a half-angle about 6.2�, and we now have

I0k ¼ 1:006Ik � 0:006I? ð35Þ

I0? ¼ 1:003I? � 0:003Ik ð36Þ
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Then the depolarized and the isotropic spectra, IdepðnÞ and IisoðnÞ respectively,

can be obtained on an absolute scale from the calibrated values of intensities I0k
and I0? for each studied frequency n. We thus have [41]

IdepðnÞ ¼ I0kðnÞ ð37Þ

IisoðnÞ ¼ I0?ðnÞ �
7

6
I0kðnÞ ð38Þ

IV. SCATTERING IN THE RAYLEIGH FREQUENCY REGION

A. Optically Isotropic Molecules

1. Theory

One particular feature of the light scattering by noble gases and optically

isotropic molecules is the collision-induced (CI) origin of spectral wings around

the Rayleigh line. There are two kinds of CI spectra: the depolarized and the

isotropic ones. Whereas first-order DID contribution to the depolarized spec-

trum is predominant at low-frequency shifts, DID mechanism is of second-order

in the isotropic case so that other contributions may be more distinctively

displayed. These other contributions are due to short-range effects such as

overlap, exchange, orientational, and, in the case of globular molecules,

collision-induced multipolar effects. Models of various contributions and their

numerical evaluations allow us to determine the relative importance of multi-

polar mechanisms in depolarized or isotropic CIS spectra for optically isotropic

molecules.

a. DID: A Pure Translational Mechanism. Based on a point-like molecule

approximation, the DID model involves only the relative translational motion of

a pair of molecules. All computations may be done by considering the scalar

distance R12 between two interacting molecules, an isotropic intermolecular

potential VðR12Þ, and the DID pair polarizability tensor. The trace of this tensor,

aDIDðR12Þ ¼ 6 a3 R�6
12 , is a second-order term that weakly affects the isotropic

CI spectrum. On the contrary its first-order anisotropy, bDIDðR12Þ ¼ 6 a2 R�3
12 , is

responsible for most of the integrated intensity for the depolarized CI spectrum

IdepðnÞ (where n stands for the frequency shift relatively to the Rayleigh line).

This means that the zero-order spectral moment of the depolarized spectrum

M0;d ¼ 15
2

lL

2p

% &4Ð1
�1 IdðnÞ dn [74] may be in first approximation identified to the

canonical average of the DID anisotropy:

MDID
0;d ¼ b2

DIDðR12Þ
# $

¼
ð
b2

DIDðR12Þ gðR12Þ 4pR2
12 dR12

ð39Þ
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where [43]

gðR12Þ ¼
�

1 þ �h2

12mkBT

�
1

2

d

dR12

VðR12Þ
kBT

� �2

� 2

r

d

dR12

VðR12Þ
kBT

� d2

dR2
12

VðR12Þ
kBT

��
exp

�VðR12Þ
kBT

� �
ð40Þ

is close to expð�VðR12Þ=kBTÞ for heavy molecules such as globular ones. On

the other hand, the DID depolarized intensities IDID
d ðnÞ may be calculated either

quantally (by solving Schrödinger’s equation) or classically (via Newton’s

equations of motion) [44]. Quantum-mechanical methods consist in computing

the various matrix elements corresponding to level transitions of an interacting

pair of molecules. Till now, they have been used mainly for noble gases

[44–46]). Classical method consists in computing molecular trajectories of free

dimers (a pair of colliding molecules coming from infinite). This method has

been exhaustively described in many publications [47]. For a relatively heavy

noble gas such as argon, it has been shown that quantal and classical methods

provide very similar intensities, at least for 15 < n < 200 cm�1 [39,48]; a

similar result is a fortiori expected in spectral regions of experimental data

for heavier systems such as globular molecules. However, the contribution of

bound dimers (pair of interacting molecules trapped in the well of the effective

intermolecular potential) must also be considered. This accounts for 100x% of

the zero-order moment, where x � 0:1–0.5 can be evaluated by using a

statistical method described by Levine [49] and depends strongly on the choice

of the potential. For each frequency shift n, bound dimer contribution can be

calculated by way of quantum mechanics [48,50] as well as by using a

semiclassical method that provides intensities due to bound and free dimers

[51,52]. The contribution of bound dimers to the DID spectral lineshape is

limited to the lower-frequency range (0 < n < 15 cm�1) and does not influence

directly spectral studies focused on the determination of multipolar effects

(which take place in a higher-frequency range).

b. Other Mechanisms Involved in the Pure Translational Spectrum. Other

processes must be considered in the computation of the theoretical pure

translational depolarized spectrum: terms in R�6
12 , overlap and exchange effects,

and consequences of the non-point-like size and of the nonspherical shape of

globular molecules. The R�6
12 terms (involving the second-order DID term, the

second hyperpolarizability g, and the coefficient C6 of the dispersion

interaction) may be easily inserted in the anisotropy equation, but do not

contribute significantly to the spectrum in the low-frequency region, where pure

translational mechanisms predominate. Overlap and exchange effects probably
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play a more important role. Unfortunately, a quantum-mechanical analysis of

effects concerning a pair of globular molecules is very complicated and has not

yet been done. Several authors propose to modelize overlap and exchange

effects by adding an exponential term to the anisotropy [10,53]:

bðR12Þ ¼ bDIDðR12Þ þ 6a3 þ gC6

3a

� �
R�6

12 � Bexp
�R12

R0

� �
ð41Þ

Here, the exponential term accounts for the electron overlap and exchange

effects. The adjustable parameters B and R0 are deduced from measurements

relative to noble gases and CH4 and by using a law of corresponding states [53]:

R0 ¼ 0:09531 Rmin and B ¼ 2580 ð6a2
0Þ=ð4pE0R3

minÞ, where Rmin is the inter-

molecular separation at the minimum of the potential. A similar method can be

used in order to compute the trace of the polarizability [54]. However, the

correspondence between results concerning noble gases and results concerning

other atomic or molecular systems is not well established. It has been shown

that the anisotropy model given in Eq. (41) is not satisfactory in the case of hot

mercury vapor [55], and that the DID contribution must be suppressed at short

interatomic distances [55,56]. Damping functions are then introduced in order

to avoid nonphysical singularities of R�n
12 terms when the interatomic distance

R12 tends to zero [55–57]. As they take account of some of the negative

contribution due to overlap effects, the B value of the exponential term of

Eq. (41) is necessarily affected by the choice of these functions [56]. Therefore,

in the case of globular molecules, the use of semiempirical terms such as the

exponential one must be done very carefully. The consequences of the

molecular frame distortion and of the spatial charge distribution of the non-

point-like globular molecules might also be taken into account in the anisotropy

model. Moreover, any calculation might consider that intermolecular potentials

of globular molecules are partly anisotropic. All these uncertainties shed a

shadow on a procedure that would be founded on the study of the depolarized CI

spectrum alone and would attempt to discriminate pure translational and

rototranslational mechanisms in the frequency range where these two contribu-

tions may have the same order of magnitude (e.g. for CF4: about n � 60 cm�1).

In fact, the depolarized CI spectrum must be analyzed together with the

isotropic one (where rototranslational contributions due to multipolar mechan-

isms play the leading role).

c. Rototranslational Spectrum. Considering the spectral frequency range of

experimental data, only the first-order Rayleigh rototranslational mechanisms

must be taken into account: aT A (DQ), aT E (DO), A T A (QQ), A T E (QO)

and E T E (OO). Here, the tensors a, A, and E stand for dipole–dipole, dipole–
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quadrupole, and dipole–octopole polarizability ones respectively, whereas T is

the spherical interaction tensor of Eq. (4). The correlation functions defined in

Eq. (22) of these successive multipolar induction operators for depolarized and

isotropic CI spectra may be directly deduced from Table III in the case of

tetrahedral molecules [8,13]. It is noteworthy that, in the case of centrosym-

metric molecules like octahedral ones, the terms including the independent

component A ¼ Ax;yz of the dipole–quadrupole polarizability tensor vanish (the

dipole–octopole independent component E ¼ Ez;zzz remains alone). For each

correlation function, rotational and translational motions are represented

separately by functions RjðtÞ and SNðtÞ defined in Eqs. (18) and (19),

respectively. Therefore, a Fourier transform of a correlation function is a

convolution product of a rotational spectrum RðnÞ and of a translational

contribution SðnÞ. The Fourier transform of any rotational function RjðtÞ may

be done by using spherical top wave functions for the evaluation of transition

matrix elements. The Fourier transform of Rj1ðtÞRj2ðtÞ then has the form [7]

Rj1; j2ðnÞ ¼ gI1
gI2

ð2J1 þ 1Þ ð2J2 þ 1Þ ð2J0
1 þ 1Þ ð2J0

2 þ 1Þ
Z1Z2

exp �ðEJ1
þ EJ2

Þ
kB T

� �
dðn � nJ1 J2 J0

1
J0

2
Þ ð42Þ

where gIi
stands for the nuclear spin statistical factor of molecule i and

EJ ¼ JðJ þ 1ÞB whereas

nJ1J2J0
1
J0

2
¼ � J01ðJ0

1 þ 1Þ þ J02ðJ0
2 þ 1Þ � J1ðJ1 þ 1Þ � J2ðJ2 þ 1Þ

� �
B ð43Þ

TABLE III

Coefficients jN; j1 ; j2
LL Involved in the Rayleigh Isotropic and Depolarized light Scattering Correlation

Functions FLLðtÞ ¼
P

N; j1; j2
jN; j1 ; j2

LL SNðtÞRj1 ðtÞRj2 ðtÞ for the Successive Multipolar

Induction Operators

CIS Rayleigh Isotropic Depolarized

Mechanism Case N j1 j2 jN; j1 ; j2
00 jN; j1 ; j2

22

DID aTa 2 0 0 0 24a4

DQ aT A 3 0 3 160
7

a2 A2 192
7

a2 A2

DO aT E 4 0 4 224
9

a2 E2 220
9

a2 E2

QQ A T A 4 3 3 1408
189

A4 125;824
945

A4

QO A T E 5 3 4 416
21

A2 E2 9280
21

A2 E2

OO E T E 6 4 4 55
3

E4 11;330
21

E4
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Here, B is the rotational constant and Zi denotes the rotational partition function.

The selection rules have the following form:

� J1 ¼ 0;� 1;� 2 . . .� j1 J1 þ J1
0 � j1 ð44Þ

� J2 ¼ 0;� 1;� 2 . . .� j2 J2 þ J2
0 � j2 ð45Þ

Using Eqs. (42)–(45), a rotational stick spectrum RðnÞ can be calculated for

each multipolar mechanism (where each stick is separated from the neighboring

one by a frequency shift equal to a few B). Concerning Fourier transforms of the

translational functions SNðtÞ, no exact solution can be found easily. Never-

theless, an accurate knowledge of their spectral profile is not essential because

they are convoluted with the rotational contributions. They serve to fill in the

intensity between the sticks of each rotational spectrum with the result that the

convolution product is not very sensitive to their particular lineshapes [12].

Therefore, it is possible to make use models of the translational parts involved.

This model, by Birnbaum and Cohen (BC) [58], needs only the calculation of

translational spectral moments. For relatively large molecules such as CF4 and

SF6, these moments may be either classical or semiclassical (including quantum

mechanical corrections) [13]. More generally, however, it is better to base

computations on semiclassical moments of zeroth, first and second order. For a

light scattering mechanism of order N, these moments may be written [59]

M
ðNÞ
0 ¼ hR�2ðNþ1Þ

12 i ð46Þ

M
ðNÞ
1 ¼ �h

2m
ðN þ 1Þ ð2N þ 1Þ hR�2ðNþ2Þ

12 i ð47Þ

M
ðNÞ
2 ¼ 2kBT

�h
M1 þ 1

3

�h

2kBT

� �2
clM

ðNÞ
4 þ Oð�h4Þ ð48Þ

where the fourth-order classical moment clM
ðNÞ
4 is [60]

clM
ðNÞ
4 ¼ 2ðN þ 1ÞðN þ 2Þð2N þ 1Þð2N þ 3Þ kBT

m

� �2

hR�2ðNþ3Þ
12 i

þ ðN þ 1Þ2

m2
R
�2ðNþ2Þ
12

dVðR12Þ
dR12

� �2
* + ð49Þ

From these moments, characteristic times ti may be deduced

t1 ¼ M0

M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

M1

t1 �
M1

M0

t0 � 1

r
ð50Þ

t2 ¼ t0
M2

M1

t1 �
M1

M0

t0 � 1

� ��1=2

ð51Þ
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where t0 ¼ �h=ð2kBTÞ. Finally, the BC model for translational contribution of

consecutive light scattering mechanisms may be written as [58]

SBC ðnÞ ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

0 þ t2
2

p
p

exp
t1

t2

� �
expðnt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðnt1Þ2

q K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

0 þ t2
2

p
t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðnt1Þ2

q !

ð52Þ

where K1ðzÞ is a modified Bessel function of the second kind. It is noteworthy

that this translational contribution depends on moments and thus on the

potential VðR12Þ. The intensity of the rototranslational spectrum can therefore

be affected by the choice of the intermolecular potential.

d. Nonlinear Contributions to Rototranslational Spectrum. According to Eqs.

(5) and (7), the pair polarizability results as well from nonlinear light scattering

mechanisms. These mechanisms are induced by hyperpolarizability tensors and

permanent multipole moments. For tetrahedral molecules, they contribute only

to the correlation functions related to the depolarized spectrum and governed by

double rotational transitions. Consequently, some corrections �jN; j1; j2
22 must be

added to the linear-origin terms jN; j1; j2
22 of Table III. These correction due to

nonlinear mechanism are successively [8]

�j4;3;3
22 ¼ � 768

5
A2 bxyz � þ 384

7
b2

xyz �
2 ð53Þ

�j5;3;4
22 ¼ � 576

7
A E �B� þ 144

25
�B2 �2 � 192 A E bxyz �

þ 96

7
bxyz �B�� þ 240

7
b2

xyz �
2 ð54Þ

�j6;4;4
22 ¼ � 1056

7
E2 �B� þ 176

15
�B2�2 ð55Þ

where �B ¼ ð3 Bzz;zz � 4 Bxz;xzÞ. The nonzero components bxyz and Babgd stand

for these of the dipole–dipole and dipole–dipole-quadrupole hyperpolarizability

tensors, respectively. Moreover, � and � denote the independent components of

the permanent octopole and hexadecapole moments. In the case of octaedral

molecules, only �j6;4;4
22 is different from zero and must be considered.

2. Results and Discussion

The influence of multipolar polarizabilities has been examined subsequently in

several optically isotropic molecules such as CH4, CD4, neopentane, CF4, or

SF6 [4,7–14,17,18]. In this review, our attention is focused on CF4 for which

both Rayleigh [8,13] and n1 Raman [17,18] depolarized and isotropic bands

have been studied and published by us. In the Rayleigh studies, we measured the

I?ðnÞ and IkðnÞ intensities that are scattered by gaseous CF4 up to 340 cm�1, in
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the 2-105 Amagat density range and at 294.5 K. Beyond 150 cm�1, the spectral

intensities varies linearly with gas density and are not of CI nature. For the

lowest-frequency shifts, a negative contribution due to the three-body processes

appears at high pressures. However, we checked that I?ðnÞ and IkðnÞ are

proportional to the density square r2 below r ¼ 40 Amagat for n < 20 cm�1

and for all the pressure range studied beyond this frequency. Thus, we have been

able to deduce the pair contributions I
p
?ðnÞ and I

p
kðnÞ to the scattered intensities

and the Rayleigh pair depolarization ratio Zp
expðnÞ ¼ I

p
kðnÞ=I

p
?ðnÞ given in Fig. 2

up to 150 cm�1. It is noteworthy that Zp
exp decreases with n from 6/7 (expected

value of a completely depolarized spectrum) to less than 0.4. For both

perpendicular and parallel scattering components, this shows that the first order

DID mechanism (for which Zpth ¼ 6=7) predominates in the lower-frequency

domain whereas dipole–quadrupole (DQ) and dipole–octopole (DO) mechan-

isms (for which Zpth ¼ 9
23
� 0:39 and Zpth ¼ 22

63
� 0:35, respectively [33])

predominate for upper frequencies.
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Figure 2. Experimental depolarization ratio Zp
expðnÞ ¼ I

p
k ðnÞ=I

p
?ðnÞ of the binary Rayleigh

band of gaseous CF4 (þ ) at 294.5 K. The depolarization ratio for the n1 Raman band is also

reported (�).

multipolar polarizabilities 289



a. Anisotropic Scattering. Using Eqs. (35) and (37), the depolarized binary

intensities IdepðnÞ have been deduced directly from I
p
?ðnÞ and I

p
kðnÞ. We

calibrated them in absolute units by comparing Idepð20 cm�1Þ with the

integrated intensity of the S0ð0Þ rotational line of gaseous H2 (taking for the

polarizability anisotropy of the latter b ¼ 0:317 � 10�24 cm3 [61] we thus found

Idepð20 cm�1Þ ¼ ð1:33 � 0:16Þ � 10�53 cm6Þ. In Fig. 3, these experimental

absolute intensities are reported together with their error bars. We equally

report in the same figure theoretical contributions due to DID (classical

calculation) and dipole–multipole mechanisms for a CF4 Lennard-Jones

potential [62], a ¼ 2:93
3

(extrapolated at lL ¼ 514:5 nm from CF4 refractive

index measurements provided in Ref. 63) and a couple of multipolarizability

values ðA; EÞ ¼ ð1:0 4
; 1:5

5Þ close to those which has been recently calcu-

lated ab initio by Maroulis ð0:97
4
; 1:15

5Þ [64,65]. It is noteworthy that

nonlinear origin corrections to the dipole–multipole contributions have been
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Figure 3. Two-body depolarized scattering spectrum for CF4 gas at 294.5 K. The full circles

(�) indicate experimental data with error bars [8]. Theoretical curves are provided for several

contributions using a ¼ 2:93 Å3, A ¼ 1 Å, E ¼ 1:5 Å5: DID (— —), DQ (- - -), DO (— - —),

QQþQOþDO (- - - - - -) and DIDþDQþDOþQQþQOþOO (———).
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taken into account by using in Eqs. (53)–(55) the values of bxyz, �B, � and �
computed by Maroulis in the same work. For ðA; EÞ ¼ ð1:0 4

; 1:5
5Þ, we

found that these nonlinear contributions enhance the QQ, QO, and OO

contributions by 21%, 10% and 0%, respectively. In Ref. [8], another vector

ðA; EÞ was provided ð1:2 4
; 3:5

5Þ which allows a better fit of theoretical and

experimental data. Nevertheless as we will see below that at least this E value is

not compatible with isotropic spectrum measurements. Moreover, in this depo-

larized spectrum case, a good agreement between theory and experiment is not

necessarily significant. The aforementioned uncertainties on the pure transla-

tional contribution (mainly, overlap and exchange effects) shed some doubt on

the validity of any fitting procedure in the 50–100-cm�1 frequency region,

where DID and DQ contributions are of the same order of magnitude. Moreover,

for CF4, several potentials exist that are not all close together. Among available

potentials, we found that three ones [47,62,66] provide an integrated intensity of

the strong DID contribution to the depolarized spectrum compatible with our

measurements. Overall, both integrated intensity and spectral lineshape of this

purely translational contribution may be significantly affected by the uncertainties

concerning the potential. This shows that the presence of a strong purely

translational component prevents the depolarized spectrum to be a very good tool

for evaluating the dipole–multipole polarizabilities of the globular molecules.

b. Isotropic Scattering. Using the ratio Zp
expðnÞ given in Fig. 2 and the pair

depolarized absolute intensities IdepðnÞ provided in Fig. 3, pair isotropic

absolute intensities can be directly deduced from Eqs. (35)–(38). We report

them in Fig. 4 together with error bars. The experimental uncertainties are

generally substantial. This is mostly due to the fact that in Eq. (38) we subtract

two quantities which are close to each other at low frequencies [when

Zp
expðnÞ � 6

7
] and relatively weak at high frequencies. Nevertheless, the pair

isotropic intensities have been measured within satisfactory accuracy in the

50–150-cm�1 frequency range and may be compared with theoretical models.

In Fig. 4, we also report the theoretical second-order DID and dipole–multipole

(DQ, DO, QQ, QO, OO) contributions to the isotropic spectrum for the same

potential [62] and the same set ða;A;EÞ of multipolarizabilities used in Fig. 3.

The first remark is that DID contribution is not significant in the frequency

range of experimental data. The second remark concerns the discrepancy

observed in the higher-frequency range of the isotropic spectrum. We assume

that it may be attributed to short-range effects such as overlap and exchange

effects, which, in the case of CF4, are not yet known. The third and most

important remark is that the chosen values of A and E allow an acceptable fit of

experimental and theoretical spectra below 120 cm�1. Considering the error bars

and the mutual competition of the DQ and DO contributions, it is nonetheless

obvious that this choice of A and E is not unique. Using a set inversion

Å Å

Å Å
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mathematical approach, it is possible to evaluate the set of all vectors ðA;EÞ
such that the theoretical spectrum due to dipole multipole mechanism goes

through experimental error bars [67]. For frequencies below 120 cm�1, this set

is included in the box defined by jAj < 1:2
4

and jEj < 3:5
5Þ (i.e. the

maximum values that may be attributed separately to jAj and jEj). The value of

A is therefore at least 2 times lower than previous experimental estimations

of this CF4 multipolarizability (A ¼ 2:2
4

[4,10]). Moreover for a given value

of jAj, a more restricted interval of confidence is found for jEj. For jAj ¼ 1:2
4
,

jEj must be necessarily lower than 0:5
5
. Considering the value A ¼ 0:97

4

computed by Maroulis [64,65], we get jEj < 2:75
5
. Conversely, for the

jEj ¼ 1:15
5

found by Maroulis, we get 0:75 < jAj < 1:15
5
. This shows that

ab initio values of Maroulis make theory compatible with experiment. This is

fully coherent with the assertion that the isotropic Rayleigh spectrum is due

mainly to dipole–multipole contributions. On the other hand, we checked that
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Figure 4. Two-body isotropic scattering spectrum for CF4 gas at 294.5 K. The full circles (�)

indicate our experimental data with error bars; triangles (�) are just estimated data. Theoretical

curves are provided for several contributions using a ¼ 2:93 Å3, A ¼ 1 Å4, E ¼ 1:5 Å5: DID

(– – –), DQ (- - -), DO (— - —), QQþQOþOO (- - - - - -) and DIDþDQþDOþQQþ
QOþOO (————).
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the spectral profiles of dipole–multipole contributions are not significantly

modified in the 0–150-cm�1 frequency domain by the use of another potential

among the three ones [47,62,66] compatible with our depolarized spectrum

measurements [13]. This is due to the fact (explained above) that the main cause

of each rototranslational profile is a rotational stick spectrum (which does not

depend on the potential). Indeed, each dipole–multipole contribution may be

shifted upward or downward according to the chosen potential (because the

latter determines its integrated intensity via its convoluted translational part).

But for these three potentials, intensity changes in the DQ and DO contributions

are less than 20% and corresponding corrections expected for A and E may be

evaluated to less than 10%. Therefore at the present time, the study of the

isotropic Rayleigh spectrum in absolute units appears to be the most reliable

tool for measuring the dipole–multipole components.

B. Linear Centrosymmetric Molecules

1. Theory

For linear centrosymmetric molecules such as N2 and CO2 we encounter more

complicated conditions for observation of CIS scattering than in the case of

globular molecules. The polarizability tensor of linear molecules is no longer

isotropic and its anisotropy leads to a very strong allowed rotational spectrum.

As a result of a pressure broadening mechanism, this allowed spectrum

produces substantial intensities even at very high frequencies [68,69]. The

excess interaction-induced part of the pair polarizability creates a continuous

rototranslational relatively weak but very broad spectral distribution of scattered

light. Finally in experiment, both the allowed spectrum and the CIS spectrum,

overlap. For depolarized spectra, collision-induced contribution appears to be

significant only at very high frequencies. For isotropic intensities, however, the

allowed rotational spectrum is composed of one line (Q line), and this creates

much better conditions for observation of collision-induced wings.

We briefly discuss, in Cartesian tensor notation, the inductional variations

�AðkÞ used in our theoretical calculations of collision induced spectra of linear

molecules. In the range of intermolecular separations R12 where the molecular

charge distributions do not overlap �A, up to order R�6
12 , reads [70–72] as

�Aab ¼ ð1 þP12Þ
�
að1Þag TgdðR12Það2Þdb þ að1Þag TgdðR12Það2ÞdE TEfðR21Það1Þfb

þ 1

15
að1Þag TgdEfðR12ÞEð2Þ

b;dEf þ 1

15
E
ð2Þ
a;gdETgdEfðR21Það1Þfb

� 1

9
B
ð1Þ
ab;gdTgdEfðR12Þ
ð2Þ

Ef þ   
�

ð56Þ
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where a is the dipole–dipole polarizability tensor of the unperturbated molecule,

E is its dipole–octopole polarizability tensor, B is the dipole–dipole–quadrupole

hyperpolarizability tensor, and H is the permanent quadrupole moment of the

molecule; moreover, P12 permutes the indices 1 and 2. The first and second

term of inductional polarizability (56) originates, respectively, in the first- and

second-order dipole-induced dipole (DID) light scattering mechanism. The third

and fourth terms are due to the dipole-induced octopole (DO) mechanism,

whereas the last term comes from the permanent quadrupole moment of the

molecule and its dipole–dipole–quadrupole hyperpolarizability tensor B.

However, when dealing with molecular rotations for linear molecules, it is

very desirable to express �AðkÞ in the language of spherical harmonics [73].

For linear centrosymmetric molecules all nonzero spherical harmonics coeffi-

cients of Eq. (56) for anisotropic scattering ðk ¼ 2Þ are assembled in the

Appendix given in Ref. 16 and for isotropic scattering ðk ¼ 0Þ, in Ref. 15.

We calculate the pure rotational part of our spectrum taking into account all

the light scattering mechanisms described in Eq. (56). Then the resulting

spectrum takes the form of the convolution of the rotational and translational

parts [see Eqs. (31) and (32)]. We deal numerically with the rotational and

translational spectra and their convolution [15,16,36] by methods described in

the previous section for optically isotropic molecules.

2. Results and Discussion

a. Isotropic Scattering. We have studied the isotropic light scattering from

gaseous nitrogen at 295 K and at two densities 41 and 169 Amagat. Two

components of the Stokes-side intensities have been measured for frequency

shifts up to 700 cm�1 at 90� geometry with incident light parallel IkðnÞ and

perpendicular I?ðnÞ to the scattering plane. The isotropic part of the scattered

radiation has been calculated from IkðnÞ and I?ðnÞ by using Eqs. (35)–(38). The

density dependence of the experimental intensities was studied for several

frequency shifts. The ratio Ikð450Þ=Ikð60Þ increases linearly with density up to

170 Amagat. From these results, considering that the intensity measured at

n ¼ 60 cm�1 was due predominantly to permanent polarizability anisotropy and

proportional to the gas density and a function of the local field, it follows that

the scattering in the high-frequency part of IkðnÞ is induced by binary

mechanisms only. We assume that the same conclusion holds for I?ðnÞ.
Therefore in our study we investigate experimentally and theoretically the

isotropic spectrum in its binary regime.

We calculate our theoretical isotropic spectrum as a convolution of the

rotational stick spectra and the translational spectra. Our rotational stick spectra

result from the first- and second-order DID light scattering mechanisms, and

from the dipole–octopole (aE) and dipole–dipole–quadrupole (B
) multipolar

light scattering mechanisms and their cross contributions. We then convolute,
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these rotational spectra with translational spectra of Birnbaum–Cohen origin.

Figure 5 compares experimental and theoretical isotropic spectra calculated in

absolute units. The weak isotropic scattering spectrum originates as the

difference of the two, close-in-value, relatively strong ‘‘parallel and perpendi-

cular’’ experimental spectra. This procedure of obtaining the isotropic spectrum

involves considerable uncertainty in its values. Because of the very large uncer-

tainty of the experimental isotropic spectrum values at low and very high

frequencies, we must analyze the isotropic spectrum in the frequency range

300–600 cm�1 only. The theoretical spectrum shown in Fig. 5 was calculated

with the use of the molecular multipolar polarizabilities given in the first

column of Table IV. In the course of our calculations we found that the high-

frequency part of the isotropic spectrum is, as in depolarized scattering [36], due

mainly to the components B
ð0Þ
4044ðR12Þ ¼ B

ð0Þ
0444ðR12Þ [15] of the dipole–induced

1

10

100

300 400 500 600

ν(cm−1)

V
 (

∂2 σ/
∂ω

∂Ω
) IS

O
 (

10
−6

0 c
m

6 )

Figure 5. Rototranslational experimental (þ , r) and theoretical isotropic double-differential

cross sections of N2 at 295 K. Overall theoretical spectrum (———) computed using

(E4¼ �0:69 Å5 [74]); (- - - -) overall theoretical spectrum computed for (E4¼ �0:27 Å5 [75]);

(– – –) DID spectrum only. The figure also shows the theoretical spectrum (–�–) computed for

jE4j ¼ 1:5 Å5 with an exponential contribution exp(– n=n0) (n0 ¼ 118 cm�1) added to represent

very short time light scattering mechanisms.

multipolar polarizabilities 295



octopole light scattering mechanism with the dipole-octopole tensor anisotropy

E4 and the isotropic part a of the linear polarizability involved. These

components of �Að00Þ induce molecular transitions with selection rules

�J1 ¼ �4;�J2 ¼ 0, and �J1 ¼ 0;�J2 ¼ �4. The contribution of the compo-

nents given by the nonlinear part of the pair polarizability to the resulting

spectrum is negligible because of their small value for N2. From our calcula-

tions, 5% of the total integrated intensity of the wings of our isotropic nitrogen

spectrum originates in the second order DID mechanism and its cross contribu-

tions with other light scattering mechanisms. The second-order DID related

contributions, however, are located at frequencies up to 350 cm�1 and do not

influence the high-frequency rototranslational wings considered here. The high-

frequency wings of our theoretical spectrum (above 400 cm�1), however almost

totally result from multipolar dipole-induced octopole mechanism (for nitrogen,

practically from E4). We found that the high-frequency part of the nitrogen

spectrum is mainly associated with the induced dipole–octopole aE light

scattering mechanism whereas the influence of the hyperpolarizability and the

permanent quadrupole moment term B
 is almost insignificant. This observa-

tion is similar to the conclusion of Cox and Madden [76] concerning the

importance of the aA term and almost negligible significance of b
 term in

their purely interaction-induced spectra of CS2.

Our theoretical multipolar isotropic spectrum, shown in Fig. 5 and calculated

for E4 ¼ �0:69
5

[74], lies slightly below the experimental spectrum in the

entire experimental frequency range considered. It is generally believed that

electron overlap mechanisms strongly contribute to isotropic spectra [73,77].

Then we attribute the abovementioned moderate difference in the theoretical

and experimental spectra to overlap effects.

Å

TABLE IV

Numerical Values of Nitrogen and Carbon dioxide Multipole Polarizabilities and Permanent

Quadrupole Moment Used in Our Calculations a

Nitrogen Carbon Dioxide

Ex; xxx �20.30 [74] �64.10 [84]

Ez;zzz 23.88 [74] 176.56 [84]

Bx;x;xx �108 [75] �140 [84]

Bx;x;zz 62 [75] 79 [84]

Bz;z;zz �177 [75] �305 [84]

Bx;z;xz �104 [75] �205 [84]

y �0.9054 [75] �3.239 [84]

a 11.959 [83]b 17.626 [84]

g 4.825 [83]b 14.271 [84]

a All values are in atomic units (a.u). Reference numbers appear in brackets next to the values.
b For lL ¼ 514:5 nm
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b. Anisotropic Scattering. We have studied experimentally the anisotropic

light scattering from gaseous nitrogen at 295 K and at two densities, 41 and 169

Amagat [36], as well as the anisotropic scattering from carbon dioxide at 294 K

and 23 Amagat [16]. In the case of nitrogen, the low-temperature (150 K)

spectrum has been also considered. For the depolarized spectrum of nitrogen,

second-order quantum-mechanical calculations [68] as well as relaxation matrix

considerations [69] show that most of the intensity at relatively large frequency

shifts is due to wings of the pressure broadened rotational Raman lines. In this

case collision-induced contribution to the depolarized nitrogen spectrum

appears to be significant only at very high frequencies. Figure 6 compares the

experimental and theoretical depolarized CO2 spectra. We note that the

experimental and theoretical spectra have almost the same shape (slope) but the

intensities of the theoretical spectrum at high frequencies are roughly of one

order of magnitude smaller than the experimental ones. We attribute this

discrepancy to pressure-broadening-allowed rotational Raman lines and overlap

effects during CO2 collisions but, to our knowledge, high-frequency-allowed
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Figure 6. Theoretical and experimental (þ þ þ þ ) CO2 spectra at 23 Amagat and 294.5 K.

Theoretical double-differential cross section (- - -) calculated using the first-order DID þ the first-

order DIO þ the first-order B
 light scattering mechanisms; (———) theoretical double-

differential cross section including second-order DID light scattering mechanism.
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rotational Raman spectrum and numerical overlap details of the excess pair

polarizability are not yet available for CO2. Obviously, consideration of the next

multipole contributions (shorter range than R�6
12 ) could reduce this discrepancy

as well. Moreover, Fig. 6 shows that second-order DID CO2 contributions,

although not great in value, visibly improve the comparison between the

theoretical and experimental spectra.

V. SCATTERING IN THE RAMAN VIBRATIONAL BANDS OF
OPTICALLY ISOTROPIC MOLECULES

A. Theory

For the n1 vibration of CF4, the Raman polarizability tensor of an isolated

molecule is isotropic, and, consequently, monomer polarizabilities of Eq. (2) do

not contribute to n1 depolarized Raman spectral wings. On the other hand, the

Raman incremental pair polarizability tensor for the normal vibration n1 that

takes place in Eq. (2) is [78]

ðRMÞ�Aab ¼
q�Aab

qQA
1

QA
1 þ q�Aab

qQB
1

QB
1 ð57Þ

where Q
p
1 is the normal coordinate for the mode n1 and the molecule p. The

autocorrelation functions of the isotropic and anisotropic parts of this Raman

pair polarizability are provided in Table V for successive multipolar induction

operators. In Table V, the Fþ function for the Raman Stokes side of the ~n1

normal vibration refers to [79]

Fþ ¼
b2
n1

1 � e� h c ~n1=kB T½ � ð58Þ

TABLE V

Coefficients jN; j1 ; j2
LL Involved in Raman Isotropic and Depolarized Light Scattering Correlation

Functions FLLðtÞ ¼
P

N; j1 ; j2
jN; j1 ; j2

LL SNðtÞRj1 ðtÞRj2 ðtÞFþ for Successive Multipolar

Induction Operators

Raman Isotropic Depolarized

CIS N j1 j2 jN; j1 ; j2
00 jN; j1 ; j2

22

DID 2 0 0 0 48 ða a0Þ2

DQ 3 0 3 160
7

½ða0 AÞ2 þ ðaA0Þ2� 192
7

½ða0 AÞ2 þ ðaA0Þ2�
DO 4 0 4 224

9
½ða0 EÞ2 þ ðaE0Þ2� 220

9
½ða0 EÞ2 þ ðaE0Þ2�

QQ 4 3 3 2816
189

ðA A0Þ2 251;648
945

ðA A0Þ2

QO 5 3 4 416
21

½ðA E0Þ2 þ ðA0 EÞ2� 9280
21

½ðA E0Þ2 þ ðA0 EÞ2�
OO 6 4 4 110

3
ðE E0Þ2 22;660

21
ðE E0Þ2
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where bn1
¼ ½h=ð8p2 c ~n1Þ�1=2

is the zero-point vibrational amplitude of the

mode (h being the Planck’s constant, c the light velocity, and ~n1 the normal

mode frequency in cm�1). Moreover as in Table III, A and E stand for the

independent components of the tensors A and E, whereas each derivative of a

(multi)polarizability Z is defined as Z0 ¼ qZ=qQ
p
1. It is noteworthy that the

latter is related to a corresponding bond length R derivative. For CF4 with four

equivalent bonds this relation has the form [79]

q a
qQ1

� �
molecule

¼ 1

2
ffiffiffiffiffiffi
mF

p
q a
qR

� �
molecule

ð59Þ

which may be extended to any multipolarizability, hyperpolarizability, or

multipole moment.

As in the Rayleigh case, the pair polarizability results as well from nonlinear

light scattering mechanisms (induced by hyperpolarizabilities and permanent

multipole moments). For tetrahedral molecules nonlinear mechanisms contri-

bute to some correlation functions listed in Table V—only those related to the

depolarized spectrum and governed by double rotational transitions (QQ, QO,

and OO). The nonlinear origin corrections �jN; j1; j2
22 which must be added to the

linear origin terms jN; j1; j2
22 of Table V for a tetrahedral molecule are successively

[17]

�j4;3;3
22 ¼ � 768

5
A A0 ðb0

xyz � þ bxyz �
0 Þ

þ 192

7
½ðb0

xyz �Þ2 þ 2 bxyz b0
xyz ��0 þ ðbxyz �

0Þ2� ð60Þ

�j5;3;4
22 ¼ � 576

7
A0E�B�0 þ AE0 �B0 �ð Þ þ 144

25
½ð�B0 �Þ2 þ ð�B�0Þ2�

� 192 A0 E b0
xyz � þ A E0 bxyz �

0% &
þ 96

7
b0

xyz �B�0 �
%

þ bxyz �B0 ��0& þ 240

7
½ðb0

xyz �Þ2 þ ðbxyz �
0Þ2� ð61Þ

�j6;4;4
22 ¼ � 1056

7
E E0 ð�B0 � þ�B�0Þ

þ 88

15
½ð�B0 �Þ2 þ 2�B�B0 ��0 þ ð�B�0Þ2� ð62Þ

where b0
xyz and �B0 stand for the normal coordinate derivatives of the afore-

mentioned dipole–dipole–dipole and dipole–dipole–quadrupole hyperpolariz-

ability tensors, respectively. Similarly, �0 and �0 denote the normal coordinate
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derivatives of the permanent octopole and hexadecapole, respectively. For

octahedral molecules, both �j4;3;3
22 and �j5;3;4

22 terms vanish for symmetry

reasons.

Computations of various dipole–multipole contributions have been done by

using a procedure similar to that used for Rayleigh spectra. In fact, the main

change consists in replacing the coefficients jN; j1; j2
22 of Table III by these of

Table V.

B. Results and Discussion

1. Experimental and Theoretical Spectra

Using our experimental setup, CI Raman band intensities of CF4 were measured

at 294.5 K for several densities up to 250 Amagat and for frequency shifts

ranging from 3 to 110 cm�1 and measured from the center of the n1 line of CF4.

Except for n � 130 cm�1, the intensities increase as the square of the density up

to 250 Amagat. This shows that binary interactions predominate in these density

and frequency ranges [17]. As shown previously [80], four-body interactions do

not contribute to CIS inside a Raman vibrational band. However, a negative

contribution due to three-body interactions appears for n � 30 cm�1 at high

densities (50 and 100 Amagat for n ¼ 20 and 30 cm�1, respectively). Therefore,

we took off the latter from experimental data in order to get the binary spectra at

low frequencies. Moreover, we have checked that in our experiment, leakages

and mixing between polarized and depolarized components due to experimental

polarization errors do not affect significantly our data. The whole binary

spectrum has been calibrated in absolute units from measurements of the

depolarized CIS at n ¼ 15 cm�1 from the center of the n1 band relatively to

the integrated intensity of the S0ð2Þ line of H2 gas. For the Raman depolarized

intensity, we obtained Idð15 cm�1Þ ¼ ð2:03 � 0:35Þ 10�56 cm6. Then, by using

Eqs. (35)–(38) and the values of the Raman experimental depolarization ratio

provided in Fig. 2, we got in absolute units both depolarized and isotropic

spectra of the light scattered in the vicinity of the n1 Raman line of CF4. These

depolarized and isotropic intensities are provided together with their error

bars in Figs. 7 (see also Table VI) and 8, respectively. In Figs. 7 and 8, the

total theoretical spectra and their successive multipolar contributions are

equally reported for a Lennard-Jones potential [62], a couple ða; a0Þ ¼
ð2:93

3
; 4:00

2Þ of dipolar polarizabilities and a set ðA;A0;E;E0Þ of dipole–

multipole polarizabilities provided in Table VI. Contributions of nonlinear

origin [Eqs. (60)–(62)] have been taken into account by using ab initio data

computed by Maroulis [64,65]. Nevertheless in the case of CF4, they contribute

to less than a few percents to the QQ, QO, and OO intensities and may be

neglected. The values of a (used above in the Rayleigh case) and of its bond

length R derivative a0 (deduced from Raman studies [79,81]) are close to these

Å Å
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computed by Maroulis [64,65] ð2:89
3
; 3:92

2Þ and may be regarded with

confidence. The values of A and E have been deduced from our Rayleigh

measurements (see Figs. 3 and 4) and are also close to these of Maroulis. The

values of the bond length R derivatives A0 and E0 have been estimated according

to a fitting procedure applied to both depolarized and isotropic Raman spectra in

a frequency range (30–80 cm�1) for which we assume that dipole–multipole

mechanisms are predominant.

2. Discussion

a. Depolarization Ratio. As can be observed in Fig. 2, Raman depolarization-

ratio data measured in the 10–110-cm�1 frequency-shift range of the n1 Raman

band are significantly different from these observed in the Rayleigh band. At

low frequencies (10–20 cm�1) the upper Raman value measured is about 0.5

Å Å
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Figure 7. Two-body depolarized scattering Stokes spectrum of the n1 Raman band of gaseous

CF4 in absolute units at 294.5 K. Full circles (�) indicate experimental data together with error bars.

Theoretical curves (DID — — —, DQ - - - - -, DO — - —, QQþQOþOO - - - - - -, and total

theoretical ———) are computed using a Lennard-Jones potential [62], a ¼ 2:93 Å3, a0 ¼ 4:00 Å2,

and a set of multipolarizability values provided in Table VI.
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Figure 8. Two-body isotropic scattering Stokes spectrum of the n1 Raman band of gaseous CF4 in

absolute units at 294.5 K. Full circles (�) indicate experimental data together with error bars.

Theoretical curves (DID — — —, DQ - - - - -, DO — - —, QQþQOþOO - - - - - -, and total

theoretical ———) are computed using a Lennard-Jones potential [62], a ¼ 2:93 Å3, a0 ¼ 4:00 Å2,

and a set of multipolarizability values provided in Table VI.

TABLE VI

Multipolarizabilities and Their Bond Length R Derivatives for CF4
a

Polarizability Theory Experiment CIS spectrum [Ref.]

jAj 0:972 Å4 1: Å4b Isotropic Rayleigh [13]

jA0j ¼ qA
qR

// // 4:09 Å3 5: Å3b Raman [17,18]

jEj 1:15 Å5 1:5 Å5b Isotropic Rayleigh [13]

jE0j ¼ qE
qR

// // 5:53 Å4 < 18 Å4b Raman [17,18]

aTheoretical values were computed ab initio by Maroulis [64,65]. Experimental values were deduced

from our CIS experiments [13,18].
bSame set of values used in Figs. 7 and 8.
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when the corresponding Rayleigh one is almost 6
7
ð�0:86Þ. In the 60–110-cm�1

frequency region, Zp
expðnÞ � 0:2, that is, 3 times smaller than the value obtained

for the Rayleigh scattering. As DID scattering is depolarized (contrary to

multipolar scattering [33]), the aforementioned result may be partly explained

by the different value of the DID contribution relatively to the depolarized CIS

intensities in the Rayleigh and in the vibrational Raman bands. Indeed, we see

from Figs. 3 and 7 that the ratio of the free-dimer DID intensity to the DQ

intensity is higher in the Rayleigh spectrum than in the vibrational Raman one

by about one order of magnitude, whatever the frequency is. Consequently, the

DID intensity and the DQ intensity are equal for a frequency shift of about

40 cm�1 in the Raman case instead of about 60 cm�1 in the Rayleigh case.

b. Depolarized Spectrum. In the Rayleigh part, in order to make coherent our

theoretical model with both depolarized and isotropic spectra, we concluded

that the profile of the pure translational component of the depolarized spectrum

is affected for n � 60 cm�1 by uncertainties related to overlap and exchange

effects (not yet known in the case of CF4) or to the intermolecular potential.

However, it can be seen in Fig. 3 that our computed DID spectrum fits well

experimental depolarized Rayleigh data until about 40 cm�1. It is a good

indication on the reliability of the DID contribution to the depolarized Raman

band in this restricted frequency domain. At higher frequencies for the Raman

depolarized spectrum, the DQ contribution becomes predominant. Therefore,

the restrictions put in the Rayleigh study about the reliability of the depolarized

spectrum for measuring dipole–multipole polarizabilities now partly vanish. On

the other hand, it can be seen in Figs.7 and 8 that the lack of theoretical isotropic

intensity does not concern anymore the depolarized spectrum as in the Rayleigh

case (except at highest frequencies) but the isotropic spectrum for all the

frequency range scanned. A bigger value of A0 could fill this lack of intensity but

would involve an excess of theoretical depolarized intensity; the sum DID+DQ

remain lower than or equal to every upper error bar limit of the depolarized

spectrum only if A0 is lower than A0
max ¼ 6:3

3
. This maximum value is close

to the fitted one (5
3
) which is itself close to the computed A0 ¼ 4:09

3
of

Maroulis [64,65]. This confirms that the depolarized Raman spectrum allows a

good evaluation of the derivative of the dipole–quadrupole polarizability.

Nevertheless, using A0 ¼ 5
3

and a value of E0 close to this found by Maroulis

(5:53
4
), the theoretical depolarized spectrum goes through error bars until 80

cm�1 only. Using instead the fitted derivative E0 � 18
4

the theoretical

spectrum fits well up to 100 cm�1, whereas this E0 value is three times the ab

initio calculated one. As the dipole-octopole mechanism is the shortest-range

multipolar mechanism considered here, either discrepancy or overstatement

make up for the short-range effects that are not considered by our model and

may affect spectrum intensities at high frequencies (n � 80 cm�1). Therefore,

Å

Å Å

Å

Å

Å
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the fitted E0 value must be regarded as providing an order of magnitude rather

than a real estimation.

c. Isotropic Spectrum. Because of the low depolarization ratio in the Raman

case, the error bars of the experimental isotropic intensities are much smaller

than in the corresponding Rayleigh case. Consequently, the spectrum frequency

range provided in Fig. 8 starts from 10 cm�1 (instead of 50 cm�1 in the

Rayleigh experiments). Concerning various theoretical contributions, only DQ

and DO contributions must be considered (second-order DID and double

rotational contributions may be neglected). As n tends to zero, the lineshape of

the experimental isotropic spectrum deviates from the theoretical one. This

discrepancy may be attributed, at least partly, to the vibrational–rotational

coupling present in the n1 Q line [82]. A similar deviation exists for the highest

frequencies scanned, which can be attributed to short-range effects as in the

depolarized case. However, in the 30–80-cm�1 range, where we assume that

multipolar mechanisms are predominant, our theoretical intensities are nearly

but not high enough to fit experimental data well. The value of A0 for which the

DQ intensities remain lower than the upper limit of the experimental error bars

in the 30–80-cm�1 range becomes 10:5
4

(2 times our fitted value of A0). The

aforementioned rotovibrational coupling of the n1 Q line cannot be considered

as responsible for this overstatement; its width at half intensity is just several

cm�1 at a few Amagat values, whereas the effect of coupling decreases with

density and with frequency. The influence of the potential must also be

dismissed; a potential that would modify dipole–multipole intensities could not

allow simultaneous ‘‘decrease’’ of the theoretical depolarized spectrum and

‘‘increase’’ of the theoretical isotropic spectrum in order to make them closer to

depolarized and isotropic experiments, respectively. Therefore, the particular

sensitivity of the trace-induced isotropic spectrum to short-range interactions

appears to be the main cause of the observed discrepancy. Overlap and exchange

effects may here play a role, but may molecular frame distortion and the non-

point-like size of the CF4 molecule. However, these effects are not important

enough to preclude an evaluation of A0 by using both depolarized and isotropic

spectra. This evaluation is in good agreement with an ab initio calculation of

Maroulis [64,65]. We assume that this result is due to at least two factors: (1) the

dipole–quadrupole mechanism (DQ) is predominant from 30 up to 80 cm�1 for

both depolarized and isotropic spectra; and (2) our theoretical model is correct

in this frequency range.

VI. CONCLUSION

It has been shown that multipolar polarizabilities contribute significantly to the

collision-induced scattering from fluids composed of linear (N2, CO2) or

Å
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optically isotropic (CF4, SF6) molecules. Several studies concern depolarized

scattering in the Rayleigh frequency region. From them, multipolar polariz-

ability constants of globular or linear molecules have been estimated [2–4,

7–12]. However, when depolarized scattering is considered alone, specific

effects alter the measurement of multipolar polarizabilities. In particular, the

depolarized spectrum includes a strong first-order DID spectrum and/or allowed

rotational lines. Because of some inaccuracy of the potential and/or pressure

broadening of the rotational lines and/or short-range effects, these contributions

cannot be always clearly discriminated from multipolar contributions. On the

other hand, these effects do not influence or influence weakly isotropic

scattering due to multipolar polarizabilities. Therefore, the isotropic CI

Rayleigh spectrum is more adapted to measurements of multipolar polarizabil-

ities than the depolarized spectrum. Analysis of both depolarized and isotropic

scattering yields thus a better determination of multipolar polarizability con-

stants. The derivatives of the multipolar polarizabilities may also be deduced

from studies related to CI wings of vibrational Raman lines, as it has been

shown in recent studies on light scattered in the vicinity of the n1 lines of CF4

and SF6 [14,17,18]. Like in the Rayleigh case, these first and only works

concerning vibrational Raman bands show that it is better to study both

depolarized and isotropic components.

In summary, since the early 1980s or so, collision-induced light scattering

experiments on molecular fluids have demonstrated that the study of the

collision-induced absolute-unit spectra (depolarized and/or isotropic ones) is

an useful tool, and up to now the only one, to measure multipolar polariz-

abilities of molecules.
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I. INTRODUCTION

Electrodynamics in vacuum or in media with moving boundaries was the subject

of numerous studies in the twentieth century. It is sufficient to remember that the

famous Einstein paper that gave birth to the relativity theory was entitled

‘‘Electrodynamics of moving bodies’’ [1]. The total number of publications in

this field is enormous, since it includes, in particular, such important problems

as radiolocation. In this review we confine ourselves to the problem of cavities

with (ideal) reflecting moving boundaries. This means that we consider the

fields confined in some limited volume, thus leaving aside the problem of the

field propagation in the (semi)infinite space and reflection from single boun-

daries (as numerous references on this ‘‘full space’’ problem can be found in the

literature, e.g., Refs. 2–5).

The plan of the chapter is as follows. In the next section we give a brief his-

torical review of the relevant studies, in the fields of both classical and quantum

electrodynamics, providing an extensive list of the known publications. Although

we tried to give a more or less complete list, it is clear that some publications

have been (undeliberately) omitted. However, we should mention that for decades

different groups of physicists and mathematicians performed studies in their

own fields of interest, not suspecting the existence of analogous results found in

other areas. We hope that our review will serve to help diminish this gap.

It is clear that all results accumulated for several decades cannot be collected

in one chapter. Therefore, in the following sections we have decided to empha-

size mainly a detailed exposition of our own results concerning the analytical

solutions for the cavities with resonantly oscillating boundaries, since we hope

that these solutions could be important for further studies on the problem known

as the nonstationary Casimir effect or the dynamical Casimir effect.

II. BRIEF HISTORY OF STUDIES ON ELECTRODYNAMICS
WITH MOVING BOUNDARIES

A. Classical Fields in Cavities with Moving Boundaries

The first exact solution of the wave equation (c ¼ 1)

q2A

qt2
� q2A

qx2
¼ 0 ð1Þ

310 v. v. dodonov



in a time-dependent domain 0 < x < LðtÞ [where LðtÞ is the given law of motion

of the right boundary], satisfying the boundary conditions

Að0; tÞ ¼ AðLðtÞ; tÞ ¼ 0 ð2Þ

was obtained by Nicolai [6] for

LðtÞ ¼ L0ð1 þ atÞ ð3Þ

The solution was interpreted in terms of the transverse vibrations of a string

with a variable length. A few years later, these results were published [7], and

were extended to the case of electromagnetic field. A similar treatment was

reported by Havelock [8] in connection with the problem of radiation pressure.

About 25 years later, the one-dimensional wave equation in the time-dependent

interval interval 0 < x < a þ bt was considered [9] under the name ‘‘Spaghetti

problem.’’

A new wave of interest to the problem of an electromagnetic field in a cavity

with moving boundaries arose only in the early 1960s, motivated, in part, by

experiments [10] on ‘‘field compression,’’ accompanied by frequency multi-

plication (for 2.3 times) due to multiple reflections of the initial H011 wave

(lin ¼ 10 cm) from the opposite sides of a resonator, one of which was a

‘‘plasma piston’’ moving uniformly with the velocity v � 2 � 107 cm/s. Kurilko

[11] studied linearly polarized electromagnetic field between two ideal infinite

plates moving with equal constant velocities toward each other. He considered

consecutive reflections of the waves from each boundary, writing explicit

expressions for the finite timespace intervals, corresponding to zero, one, two,

and further reflections. Balazs [12] gave a detailed study of the string problem

with the aid of the method similar to that used by Nicolai and Havelock. Besides

considering the uniformly moving boundary, he has found an exact solution for

LðtÞ ¼ t2 þ 1ð Þ1=2
, and presented some graphical method of finding the solution

for an arbitrary law of motion LðtÞ. Greenspan [13] studied the one-dimensional

string with the uniformly moving right boundary, assuming the boundary

condition at the left point in the form Að0; tÞ ¼ sinðotÞ. The problem of the

‘‘field compression’’ between two ideal infinite moving walls (the same

geometry as in Ref. 11) was studied by Stetsenko [14,15]. An approximate

solution for the electromagnetic field in a rectangular waveguide cavity with a

uniformly moving boundary was also obtained [16]. In this case one has to solve

the equation (c ¼ 1)

Axx � Att ¼ k2A ð4Þ

with the same boundary condition as in (2). The detailed paper by Baranov

and Shirokov [17] can be considered, in a sense, as a concluding study of the
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one-dimensional problem with a uniformly moving boundary (although many

publications on this subject have continued to appear). Experiments on laser

cavities with uniformly moving mirrors have been described [18–22]. In these

experiments, the constant velocity of the mirror varied from 7 cm/s [18] to

400 m/s [22].

In short note [23], Askar’yan has pointed out two possible effects of

oscillating surfaces on the electromagnetic field inside the (laser) resonator

cavities. The first effect is the influence of oscillations on the generation and

intensity of the laser radiation. It was extensively studied in many experiments,

devoted, in particular, to such problems as the generation of optical pulses

[24,25], phase locking of laser modes (where the frequencies of the mirror

oscillations varied from 50 Hz [26] to 500 kHz [27,28] and 1 MHz [29,30] (see

the review in Ref. 31), or modulation of the laser radiation [32,33] (in Ref. 33

the frequencies varied from 17 to 70 kHz). The theory of these phenomena was

considered, for example in Refs. 34–36.

The second effect predicted by Askar’yan was the field amplification inside

the cavity under the parametric resonance condition, when the mirror oscillates

at twice the field eigenfrequency. It has not been observed yet, as far as we

know, and the main part of the present review is devoted only to the progress in

the theoretical treatment of this phenomenon achieved so far.

In 1967, Grinberg [37] proposed a general method of solving the wave

equation in the case of an arbitrary law of motion of the boundary, based on

expanding the solution over the complete set of ‘‘instantaneous modes.’’

Krasil’nikov [38] seems to be the first to give a rather detailed study of the

electromagnetic vibrations in a spherical cavity with an oscillating boundary.

The one-dimensional cavity with a resonantly oscillating boundary was con-

sidered with the aid of the method of characteristics in a 1968 study [39], where

it was shown that the energy is ‘‘pumped’’ to the high-frequency modes at the

expense of the lower-frequency ones.

A significant contribution was made in a series of papers by Vesnitskii and

co-authors. In 1969 [40] he gave an exact solution for the problem of a

rectangular waveguide with a uniformly moving lateral wall, specifically, for

the equation and the boundary conditions

Axx þ Azz � Att ¼ 0; Ajx¼0 ¼ Ajx¼LðtÞ ¼ 0 ð5Þ

with LðtÞ ¼ L0ð1 þ atÞ (in this case, A is the Ey component of the field of the

type Hn0). A spherical resonator, whose radius linearly changed with time, was

considered in 1971 [41]. A general (although implicit, in some sense) solution

of the one-dimensional problem with an arbitrary law of motion of the boundary

was given in the same year [42], showing that a complete set of solutions to the

problem (1)–(2) can be expressed through the solution of some simple func-
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tional equation [see equation (7) in the next subsection]. The solutions of the

inhomogeneous one-dimensional wave equation for the law of motion

LðtÞ ¼ L0ð1 þ atÞ
1
, with an arbitrary inhomogeneity and arbitrary initial

conditions, were also given in 1971 [43]. A family of concrete laws of motion

admitting simple explicit expressions for the mode functions was found in the

framework of the inverse problem in Ref. 44. The two-dimensional rectangular

membrane with a single uniformly moving boundary was considered 6 years

later [45]. The possibility of frequency modulation in the waveguide with a

slowly oscillating boundary was also studied [46]. The results obtained by

Vesnitskii and co-authors were reviewed in a later publication [47].

Exact solutions for the waveguide with nonuniformly moving boundary

(problem (5)) have been found by Barsukov and Grigoryan [48,49]. They also

considered the electromagnetic resonator with a moving boundary [50]. Similar

problems were studied later [51,52]. Periodic solutions of a one-dimensional

wave equation with homogeneous conditions on moving boundaries were also

considered [53]. Transition processes in one-dimensional systems with moving

boundaries were studied in 1982 [54]. Oscillations of a round membrane with a

uniformly varying radius were considered later [55]. A nonlinear transformation

was applied to solve the inhomogeneous problem of the forced resonance

oscillations in a one-dimensional cavity with moving boundaries [56]. The

scaling transformation method, which reduces the problem with moving

boundaries to that with fixed ones by means of the transformations such as

x ! x=LðtÞ, was also considered in [57,58].

In the 1990s, the problem of a vibrating string with moving boundaries was

studied in [59] (two supports moving toward each other with constant velo-

cities) and in [60–64] (oscillating supports). The electromagnetic (better to say,

massless scalar) field in one-dimensional ideal cavities with periodically

moving boundaries were also considered in [65–69]. Analytical solutions for

the field in circular waveguides with (linearly) moving boundaries were

obtained more recently [70,71]. The ‘‘dynamical’’ field modes in the one-

dimensional and spherical cavities with uniformly moving boundaries were

found once more time, in 1998 [72]. The same problem for the expanding/

contracting ideal spherical cavity, whose radius varies as RðtÞ ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ at

p
,

was solved in 2000 [73]. [A family of the laws of motion of the boundary, which

includes, in particular, the dependences such as RðtÞ ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ at þ bt2

p
,

RðtÞ ¼ Dt þ E þ FðAt þ BÞ�1
, and their combinations, was considered in the

case of the diffusion-type equations [74,75], showing that this family admits

exact solutions of the problem.]

B. Quantum Fields in the Presence of Moving Boundaries

Moore’s paper [76] seems to be the first one devoted to the problem of quantum

fields in cavities mith moving boundaries. It was motivated by the studies of a
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more general problem of the particle (in particular, photon) creation in the

nonstationary universe [77] and in external intense fields (see, e.g., two books

[78,79] and a review [80]), which is closely related to the problem of field

quantization in the spaces with nontrivial (e.g., time-dependent) geometry.

Considering a model of the ‘‘scalar electrodynamics’’ (when the field depends

on a single space coordinate), Moore has found a complete set of solutions to

the problem (1)–(2) in the form

Anðx; tÞ ¼ Cn exp �ipnRðt � xÞ½ � � exp �ipnRðt þ xÞ½ �f g ð6Þ

where function RðxÞ must satisfy the functional equation

Rðt þ LðtÞÞ � Rðt � LðtÞÞ ¼ 2 ð7Þ

In fact, a quite similar approach was used [6–8] for a linear function LðtÞ.
Independently, equation (7) was obtained by Vesnitskii [42]. Moore’s approach

was developed later [78,81,82]. However, the most efforts were applied to the

case of a single mirror (not necessarily plane) moving with a relativistic velocity

or with a great acceleration, when the effect of particle production becomes

significant [83–100].

The case of two or more boundaries, one of which moves with a constant

relativistic velocity, was analyzed [101–104] (the case of constant relative

acceleration was also considered [105]). For the uniform law of motion of the

boundary (3) the solution to Eq. (7), found by many authors cited above, reads

(remember that we assume c ¼ 1)

RaðxÞ ¼
2 ln j1 þ axj

ln jð1 þ vÞ=ð1 � vÞj ; v ¼ aL0 ð8Þ

Evidently, if a ! 0, this function goes to R0ðxÞ ¼ x=L0. For an arbitrary non-

relativistic law of motion, one can find the solution in the form of the expansion

over subsequent time derivatives of the wall displacement. We give it in the

form obtained in a 1992 study [106]:

RðxÞ ¼ xlðxÞ � 1

2
x2 _lðxÞ þ 1

6
x�lðxÞ x2 � L2ðxÞ

� �
þ � � � ; lðxÞ � L�1ðxÞ ð9Þ

In the special case LðtÞ ¼ L0=ð1 þ atÞ, when �lðxÞ � 0, Eq. (9) yields another

exact solution, RðxÞ ¼ L�1
0 ðxþ 1

2
ax2Þ. Unfortunately, the expansions such as

(9) cannot be used in the long-time limit x ! 1, since the terms proportional to

the derivatives of lðxÞ (which are supposed to be small corrections) become

bigger than the unperturbed term xlðxÞ.
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Castagnino and Ferraro [93] have found several solutions of the Moore

equation (7) with the aid of the inverse method, which was used earlier by

Vesnitskii [44]. In this method, one chooses some reasonable function RðxÞ and

determines the corresponding law of motion of the boundary LðtÞ using the

consequence of Eq. (7):

_LðtÞ ¼ R0½t � LðtÞ� � R0½t þ LðtÞ�
R0½t � LðtÞ� þ R0½t þ LðtÞ� ð10Þ

To solve a differential equation (10) with some simple functions, using RðxÞ is

easier (as this can be done numerically) than solving the functional equation (7)

for the given function LðtÞ. However, for many simple functions RðxÞ, the

dependence LðtÞ appears inadmissible from the point of view of physics (the

velocity may occur greater than the speed of light, or some discontinuities may

arise). Actually, the cases considered in Ref. 93 correspond to some mono-

tonous displacements of the mirror from the initial to final positions. Typical

functions RðxÞ used in that work [93] were some combinations of x=L0 and

some trigonometric functions such as sinðmpx=L0Þ. A long list of simple

functions RðxÞ (rational, exponential, logarithmic, hyperbolic, trigonometrical,

and inverse trigonometrical) and their corresponding functions LðtÞ was given in

Ref. 47. However, no one of these functions can be used in the parametric

resonance case. The asymptotical solution of the Moore equation in the

parametric resonance case LðtÞ ¼ L0 1 þ Esinðpqt=L0Þ½ �, q ¼ 1; 2; . . . , was

found in other studies [107–110]. For Et � 1 it has the form (here L0 ¼ 1)

RðtÞ ¼ t � 2

pq
Im ln 1 þ � þ expðipqtÞð1 � �Þ½ �f g ð11Þ

� ¼ exp ½ð�1Þqþ1pqEt�

which clearly demonstrates that the asymptotical mode structure in the reso-

nance case is quite different from the mode structure inside the cavity with

unmoving walls. The solution (11) was improved and generalized to the case of

two vibrating boundaries [111,112]. However, the form of this solution is not

very convenient for the calculation of various sums giving the mean numbers of

photons, energy, and so on, so a lot of rather sophisticated calculations must be

done before the final physical results could be obtained.

One of the first estimations of the number of photons that could be created

from vacuum in a cavity whose boundary moves with nonrelativistic velocity

have been performed by Rivlin [113], who considered the parametric amplifica-

tion of the initial vacuum field oscillations in the framework of the classical

approach. He estimated the number of created photons N � ðEo1tÞ2
, where

E � dL=L is the relative amplitude of the variation of the distance between the
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walls and o1 is the fundamental unperturbed field eigenfrequency (provided the

frequency of the wall vibrations ow is close to 2o1). A similar estimation was

given by Sarkar [114], who used an approximate solution to the Moore equation

(7) in the form of the asymptotic series with respect to a small parameter E [115]

(such solutions were constructed earlier [17,42]). However, the tremendous

numerical values obtained by Sarkar were quite unrealistic, since he used the

value of E, which was many orders of magnitude higher than those that can be

achieved in the laboratory under real conditions. Moreover, the oversimplified

approach of Rivlin and simple perturbative solutions of Sarkar are not valid, in

fact, under the resonance conditions, due to the presence of the secular terms (as

it always happens for parametric systems). Actually, the structure of the

‘‘dynamical’’ modes in the resonance case is completely different (in the

most interesting long-time limit) from the simple standing waves existing in the

cavity with unmoving walls. The same is true for the estimation by Askar’yan

[23] in the classical case. He evaluated the average work done by the moving

wall on the field as A �
Ð

pv dt, where v ¼ v0 sinðowt þ fÞ is the wall velocity

and pðtÞ is the radiation pressure. Taking the monochromatic dependence

pðtÞ ¼ p0 sin2ð2o1tÞ, he obtained the linear dependence on time in the reso-

nance case ow ¼ 2o1: A � p0v0t sinfþ const. However, these evaluations can

serve only as some indication that in the resonance case the energy of the field

can grow at the expense of the mechanical work done by the vibrating wall. The

real-time dependence can be quite different, since the law pðtÞ ¼ p0 sin2 ð2o1tÞ
holds, in fact, only until Eo1t � 1, whereas for larger times the effect of the

mode reconstruction must be taken into account. One of the goals of this review

is to demonstrate what happens in reality in the resonance case.

Approximate solutions to the Moore equation, such as (9), were used [116] to

evaluate corrections to the famous Casimir attractive force between infinite

ideal walls [117] (for the reviews on the Casimir effect see, e.g., Ref. 118–121)

due to the nonrelativistic motion of the walls. The leading term of these

corrections turned out to be proportional to the square of velocity of the

boundary (i.e., of the order of ðv=cÞ2
). The Casimir force in the relativistic

case was also calculated in [76,78,81,90,91,93,101,103]; it depends in the

generic case not only on the instantaneous velocity but also on the whole

time dependence LðtÞ [through the function RðxÞ, i.e., on the acceleration and

other time derivatives]. The first calculations of the forces acting on the single

mirrors moving with nonrelativistic velocities due to the vacuum or thermal

fluctuations of the field were performed in the framework of the spectral

approach (using the fluctuation–dissipation theorem) in Ref. 122 (three-

dimensional case, the force proportional to the fifth-order derivative of the

coordinate) and in Ref. 123 (one-dimensional model, the force proportional to

the third-order derivative of the coordinate). It was mentioned that the force

could be significantly amplified under the resonance conditions, either in the LC
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contour [122] or in the Fabry–Perot cavity [123] (such a possibility was

discussed earlier [124]). These studies were later continued in [125–133],

assuming that the velocity of the boundary is perpendicular to the surface.

The Casimir force between two parallel plates, when their relative velocity is

also parallel to the surfaces, was considered by Levitov [134]. Later, the theory

of ‘‘Casimir friction’’ was developed [135–139]. Reviews of these approaches

can be found in Refs. 140 and 141.

Various quantum effects arising due to the motion of dielectric boundaries,

including the modification of the Casimir force and creation of photons, in both

one and three dimensions, and for different orientations of the velocity vector

with respect to the surface, have been studied in detail in the series of papers by

Barton and his collaborators [142–148]. In one paper [142] the term mirror-

induced radiation (MIR) was introduced.

Another term, nonstationary Casimir effect (NSCE), was introduced earlier

[116] for the class of phenomena caused by the reconstruction of the quantum

state of field due to a time dependence of the geometric configuration [149–

152]. Its synonym is the term dynamical Casimir effect, which became popular

after the series of articles by Schwinger [153–157] who tried to explain the

phenomenon of sonoluminescence by the creation of photons in bubbles with

time-dependent radii, oscillating under the action of acoustic pressure in the

liquids (see a brief discussion of this subject in Section X).

A possibility of generating the ‘‘nonclassical’’ (in particular, squeezed) states

of the electromagnetic field in the cavity with moving walls was pointed out in

several studies in [106,114,124,158–161]. The dynamical Casimir force has

been interpreted as a mechanical signature of the squeezing effect associated

with the mirror’s motion [123,125] (see also Ref. 162).

It has also been suggested [106,124,159,160] that a significant amount of

photons could be created from vacuum even for quite small nonrelativistic

velocities of the walls, provided the boundaries of a high-Q cavity perform

small oscillations at a frequency proportional to some cavity unperturbed

eigenfrequency, due to an accumulation of small changes in the state of the

field for a long time. Indeed, using the asymptotical solutions of the Moore

equation (11), it was shown [107–110] that the rate of photon generation in each

mode becomes constant in the long-time limit, as it is linearly proportional to

the product Eo1, and that the photons are generated in a wide frequency band

whose width grows exponentially fast in time [163]. Other approximate or exact

solutions of the Moore equation for the specific periodical time dependences of

the cavity dimensions were found by different methods [111,112,164–168],

which confirmed the effect of resonance generation of photons.

Moore’s approach is based on the decomposition (6) of the field over the

mode functions satisfying automatically the (one-dimensional) wave equation

(1). There exists another approach (proposed in the framework of the classical

nonstationary casimir effect and analytical solutions 317



problem as far back as in 1967 [37]), when the mode functions are chosen in

such a way that they satisfy automatically the time-dependent boundary condi-

tions (2), see Eq. (17) (below). In this case it is possible to describe the behavior

of the field with the aid of some effective Hamiltonian, which is an infinite-

dimensional quadratic form of the boson creation/annihilation operators with

time-dependent coefficients responsible for the coupling between different

modes. Such an approach was considered for the first time (in the quantum

case) by Razavy and Terning [169–171] (the case of massive field was also

considered by Razavy [172]; see also Ref. 173). However, the resulting infinite

set of coupled evolution equations for the annihilation and creation operators

turned out to be rather complicated in the generic case. and for this reason they

were treated only perturbatively [170]. Later, a similar method was used by

Calucci [174], who confined, however, only with the case of adiabatically slow

motion of the wall, when no photons could be created (this adiabatic case was

studied in detail in 1998 [175]). Essential progress in the development of the

Hamiltonian approach (we shall call it also the instantaneous basis method or

IBM method) was achieved after the papers by Law [176,177], who has

demonstrated that the effective Hamiltonian can be significantly simplified

under the resonance conditions. Nonetheless, even the reduced coupled equa-

tions of motion resulting from the simplified Hamiltonians have been treated for

some time either perturbatively (i.e., in the form of the Taylor expansion with

respect to the time variable) or numerically (actually, also in the short-time limit

corresponding to the initial stage of the process); see the studies for the 1D

cavity model [176–181] and for a three-dimensional cavity and a waveguide

[182]. The general structure of the effective infinite-dimensional quadratic

Lagrangians and Hamiltonians arising in the canonical approach to the dyna-

mical Casimir effect has been analyzed and classified [183–185]. The methods

of diagonalization of such Hamiltonians were also considered [186,187].

The first analytical solutions describing the field inside the one-dimensional

(1D) cavity with resonantly oscillating boundaries have been found in the

simplest cases by Dodonov et al. [188–190]. More general solutions have also

been obtained [191–193]. They hold for any moment of time (provided the

amplitude of the wall vibrations is small enough; this limitation, however, is

quite unessential under realistic conditions). Moreover, these solutions enable us

not only to calculate the number of photons created from an arbitrary initial

state (thus giving, e.g., the temperature corrections) but also to account for the

effects of detuning from a strict resonance. Besides, they enable us to calculate

the degree of squeezing in the field quadrature components, to find the photon

distribution function and the energy density distribution inside the cavity, and so

on. Therefore, one of the main purposes of this chapter is to give a detailed

description of the analytical solutions found in the literature [188–193] and to

discuss their physical consequences.
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Another goal is to consider the simplest models of the three-dimensional

cavity, following the scheme given for ideal boundaries [188,189] and for lossy

cavities [194,195]. A more detailed study of the quantum properties of the

electromagnetic field in rectangular 3D cavities, which takes into account the

polarization of the field, was also performed [196,197], but only for the uniform

motion of the walls. Periodic motion was considered in 1998 [198], also

accounting for the polarization and the influence of all three dimensions, but

in the framework of some approximations equivalent to the short-time limit. The

case of a three-dimensional rectangular cavity divided in two parts by an ideal

mirror, which suddenly disappears, was considered in 1999 [199].

The term motion induced radiation was applied to the effect of radiation

emission outside the cavity with vibrating walls [200]. Using the spectral

approach, Lambrecht et al. [200] showed that the radiation can be essentially

enhanced under the resonance conditions (by the orders of magnitude, compared

with the case of a single mirror). The problem of the photon generation by a

single perfectly reflecting mirror performing a bounded nonrelativistic motion

was studied by Maia Neto and others [201,202], who factored in the effects of

polarization and found the spectral and angular distributions of the emitted

photons. Arbitrary spacetime deformations of a single moving mirror have been

treated [203,204] using the path integral approach. The same approach was used

in the case of a cavity with deformable perfectly reflecting boundaries [205].

The creation of photons or specific (e.g., squeezed) states of the electro-

magnetic field due to the motion of some effective mirrors made of the free

electrons moving with (ultra)relativistic velocities was studied [206–207].

Another kind of ‘‘effective moving mirror’’ consisting of the electron–hole

plasma generated in semiconductors under the action of powerful laser pulses

was also suggested [208,209].

The influence of temperature on the dynamical Casimir effect has been

evaluated [110,210]; a more detailed analysis was given in the framework of the

Hamiltonian approach [211], using the thermofield dynamics [212], and

especially by Dodonov and Andreata [192,193]. The energy density distribution

inside the cavity under the resonance conditions is no longer uniform; on the

contrary, the main part of the energy is concentrated in several sharp peaks that

move from one boundary to another, becoming narrower with time. This effect

was studied in the framework of numerical calculations [112,164–166,168]

(earlier, it was discussed for the classical field [44]). The analytical form of the

pulses, including their ‘‘fine structure’’ in the case of initial states different from

the vacuum or thermal ones, was also found [193]. A similar pulse structure of

radiation emitted from the high-finesse vibrating cavity with partially transpar-

ent mirrors has been studied [210,213].

The evolution of classical fields in the cavities filled in with media whose

dielectric properties vary in time was considered, for example, as far back as in
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1966 [214]. Yablonovitch [215] proposed using a medium with a rapidly de-

creasing in time refractive index (‘‘plasma window’’) to simulate the so-called

Unruh effect [216]: the creation of quanta in an accelerated frame of reference.

More rigorous and detailed studies of quantum phenomena in nonstationary

(deformed) media have been performed [159,160,217–229]. The case when the

dielectric constant changes simultaneously with the distance between mirrors

(in one dimension) was also considered [230,231]. Johnston and Sarkar

compared the spectra of photons created by the motion of mirrors and by the

time variations of the dielectric permeability [232]. An analog of the nonsta-

tionary Casimir effect in the superfluid 3He, namely, the friction force on the

moving interface between two different phases, was discussed by Volovik [233].

The problem of the interaction between the electromagnetic field created due

to the NSCE and various detectors (harmonic oscillators, two-level systems,

Rydberg atoms, etc.) placed inside the cavity with moving walls was studied by

different methods [188,189,234–238]. It is also discussed in this chapter.

The first experiments on the interaction between the powerful laser radiation

and freely suspended light mirrors were reported in two studies in the early

1980s [239,240], where the effect of the optical bistability, similar to that

usually observed in the so-called Kerr media, was observed. The first theoretical

study of this phenomenon in the cavities whose walls can move under the action

of the radiation pressure force appeared in 1985 [241]. This subject has received

much attention since 1991 or so in connection with different problems, such as

the attenuation or elimination of noise in interferometers [242–253]. This is

important, in particular, for the gravitational wave detectors and for the general

problem of measuring weak forces acting on a quantum system (see, e.g., Refs.

254 and 255 for more details). Another possible application could be the

generation of the so-called ‘‘nonclassical states’’ of the field and the mirror itself

(when it is also considered as a quantum object) [253,256–258]. The stability of

such states, in turn, is closely related to the general problem of decoherence in

quantum mechanics, and one of the mechanisms that can destroy the coherence

of pure quantum superpositions is just the dynamical Casimir effect [259,260].

The backreaction of the dynamical Casimir effect was studied more recently

[261]. The influence of fluctuations of the positions of the walls on the field

inside the cavity was considered [115,205,262], as was the Brownian motion of

the walls due to the field fluctuations [140,263]. The role of the dynamical

Casimir effect in the cosmological problems was also studied [264,265].

III. ONE-DIMENSIONAL CAVITY WITH
OSCILLATING BOUNDARIES

Let us start with the case of a single-space dimension. Consider a cavity formed

by two infinite ideal plates moving in accordance with the prescribed laws

xleftðtÞ ¼ uðtÞ; xrightðtÞ ¼ uðtÞ þ LðtÞ
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where LðtÞ > 0 is the time-dependent length of the cavity. Taking into account

only the electromagnetic modes whose vector potential is directed along z axis

(‘‘scalar electrodynamics’’ [76]), one can write down the field operator in the

Heisenberg representation Âðx; tÞ at t < 0 (when both the plates were at rest at

the positions xleft ¼ 0 and xright ¼ L0) as (we assume c ¼ �h ¼ 1)

Âin ¼ 2
X1
n¼1

1ffiffiffi
n

p sin
npx

L0

b̂n exp �iontð Þ þ H:c: ð12Þ

where b̂n means the usual annihilation photon operator and on ¼ pn=L0 (H.c.

denotes Hermitian conjugation). The choice of coefficients in Eq. (12) corre-

sponds to the standard form of the field Hamiltonian

Ĥ � 1

8p

ðL0

0

dx
qA

qt

� 	2

þ qA

qx

� 	2
" #

¼
X1
n¼1

on b̂y
nb̂n þ

1

2

� 	
ð13Þ

For t > 0 the field operator can be written as

Âðx; tÞ ¼ 2
X1
n¼1

1ffiffiffi
n

p ½b̂nc
ðnÞðx; tÞ þ H.c. � ð14Þ

To find the explicit form of functions cðnÞðx; tÞ, n ¼ 1; 2; . . . , one should take

into account that the field operator must satisfy the wave equation (1), the

boundary conditions (2) or their generalization

AðuðtÞ; tÞ ¼ AðuðtÞ þ LðtÞ; tÞ ¼ 0 ð15Þ

and the initial condition (12), which is equivalent to

cðnÞ x; t < 0ð Þ ¼ sin
npx

L0

expð�iontÞ ð16Þ

Following the approach in other studies [37,170,174,176,191], we expand the

function cðnÞðx; tÞ in a series with respect to the instantaneous basis:

cðnÞðx; t > 0Þ ¼
X1
k¼1

Q
ðnÞ
k ðtÞ

ffiffiffiffiffiffiffiffi
L0

LðtÞ

s
sin

pk½x � uðtÞ�
LðtÞ

� 	
; n ¼ 1; 2; . . . ð17Þ

with the initial conditions

Q
ðnÞ
k ð0Þ ¼ dkn; _Q

ðnÞ
k ð0Þ ¼ �iondkn; k; n ¼ 1; 2; . . .
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In this way we satisfy automatically both the boundary conditions (15) and the

initial condition (16). Putting expression (17) into the wave equation (1), we can

arrive after some algebra at an infinite set of coupled differential equations

[180,184,191]

�Q
ðnÞ
k þ o2

kðtÞQ
ðnÞ
k ¼ 2

X1
j¼1

gkjðtÞ _QðnÞ
j þ

X1
j¼1

_gkjðtÞQðnÞ
j þ Oðg2

kjÞ ð18Þ

where okðtÞ ¼ kp=LðtÞ, and the time-dependent antisymmetric coefficients

gkjðtÞ read (for j 6¼ k)

gkj ¼ �gjk ¼ ð�1Þk�j 2kjð _L þ _uEkjÞ
j2 � k2ð ÞLðtÞ ; Ekj ¼ 1 � ð�1Þk�j ð19Þ

For u ¼ 0 (with the left wall at rest), equations such as (18) and (19) have been

derived in [174,177].

If the wall comes back to its initial position L0 after some time interval T ,

then the right-hand side (r.h.s.) of Eq. (18) disappears, so at t > T one can write

Q
ðnÞ
k ðtÞ ¼ xðnÞk e�iokðtþdTÞ þ ZðnÞ

k eiokðtþdTÞ; k; n ¼ 1; 2; . . . ð20Þ

where xðnÞk and ZðnÞ
k are some constant complex coefficients. Consequently, at

t > T the initial annihilation operators b̂n cease to be ‘‘physical,’’ because of the

contribution of the terms with ‘‘incorrect signs’’ in the exponentials expðioktÞ.
Introducing a new set of ‘‘physical’’ operators âm and ây

m, which give the decom-

position of the vector potential operator at t > T in the form analogous to (12)

Âðx; tÞ ¼
X1
n¼1

2ffiffiffi
n

p sin
pnx

L0

� 	
½âne�ionðtþdTÞ þ H.c. � ð21Þ

one can easily check that the two sets of operators are related by means of the

Bogoliubov transformation

âm ¼
X1
n¼1

b̂nanm þ b̂y
nb

�
nm

 �
; m ¼ 1; 2; . . . ð22Þ

with the coefficients

anm ¼
ffiffiffiffi
m

n

r
xðnÞm ; bnm ¼

ffiffiffiffi
m

n

r
ZðnÞ

m ð23Þ
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The unitarity of the transformation (22) implies the following constraints:

X1
m¼1

ða�nmakm � b�nmbkmÞ ¼
X1
m¼1

m

n
ðxðnÞ�m xðkÞm � ZðnÞ�

m ZðkÞ
m Þ ¼ dnk ð24Þ

X1
n¼1

ða�nmanj � b�nmbnjÞ ¼
X1
n¼1

m

n
ðxðnÞ�m xðnÞj � ZðnÞ�

m ZðnÞ
j Þ ¼ dmj ð25Þ

X1
n¼1

ðb�nmank � b�nkanmÞ ¼
X1
n¼1

1

n
ðZðnÞ�

m xðnÞk � ZðnÞ�
k xðnÞm Þ ¼ 0 ð26Þ

The mean number of photons in the mth mode equals the average value of the

operator ây
mâm in the initial state jini (remember that we use the Heisenberg

picture), since just this operator has a physical meaning at t > T:

Nm � hinjây
mâmjini

¼
X

n

jbnmj
2 þ

X
n;k

a�nmakm þ b�nmbkm

 �
hb̂y

nb̂ki þ 2Re bnmakmhb̂nb̂ki
 �� �

¼
X1
n¼1

m

n
jZðnÞ

m j2 þ
X1
n;k¼1

mffiffiffiffiffi
nk

p ðxðnÞ�m xðkÞm þ ZðnÞ�
m ZðkÞ

m Þhb̂y
nb̂ki

þ 2Re
X1
n;k¼1

mffiffiffiffiffi
nk

p ZðnÞ
m xðkÞm hb̂nb̂ki ð27Þ

The first sum in the right-hand sides of each relationship above describes the

effect of the photon creation from vacuum due to the NSCE, while the other

sums are different from zero only in the case of a nonvacuum initial state of the

field.

To find the coefficients xðnÞk and ZðnÞ
k , one has to solve an infinite set of

coupled equations (18) (k ¼ 1; 2; . . .) with time-dependent coefficients; more-

over, each equation also contains an infinite number of terms. However, the

problem can be essentially simplified, if the walls perform small oscillations at

the frequency ow close to some unperturbed field eigenfrequency:

LðtÞ ¼ L0 1 þ eL sin po1ð1 þ dÞt½ �ð Þ; uðtÞ ¼ euL0 sin po1ð1 þ dÞt þ j½ �:

Assuming jeLj; jeuj � e � 1, it is natural to look for the solutions of equation

(18) in the form similar to (20)

Q
ðnÞ
k ðtÞ ¼ xðnÞk e�iokð1þdÞt þ ZðnÞ

k eiokð1þdÞt ð28Þ
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but now we allow the coefficients xðnÞk and ZðnÞ
k to be slowly varying functions of

time. The further procedure is well known in the theory of parametrically

excited systems [266–268]. First we put expression (28) into equation (18) and

neglect the terms �x; �Z (keeping in mind that _x; _Z � e, while �x; �Z � e2), as well

as the terms proportional to _L2 � _u2 � e2. Multiplying the resulting equation for

Qk by the factors exp iokð1 þ dÞt½ � and exp �iokð1 þ dÞt½ � and performing

averaging over fast oscillations with the frequencies proportional to ok (since

the functions x;Z practically do not change their values at the time scale of

2p=ok), one can verify that only the terms with the difference j � k ¼ 
p

survive in the right-hand side. Consequently, for even values of p the term _u in

gkjðtÞ does not make any contribution to the simplified equations of motion; thus

only the rate of change of the cavity length _L=L0 is important in this case. On

the contrary, if p is an odd number, then the field evolution depends on the

velocity of the center of the cavity vc ¼ _u þ _L=2 and does not depend on _L
alone. These interference effects were discussed for the short-time limit

eo1t � 1 in Ref. 180 (see also Ref. 200). We assume hereafter that u ¼ 0

(i.e., that the left wall is at rest), since this assumption does not change anything

if p is an even number, whereas one should simply replace _L=L0 by 2vc=L0 if p

is an odd number.

The final equations for the coefficients xðnÞk and ZðnÞ
k contain only three terms

with simple time-independent coefficients in the right-hand sides:

d

dt
xðnÞk ¼ ð�1Þp½ðk þ pÞxðnÞkþp � ðk � pÞxðnÞk�p� þ 2igkxðnÞk ð29Þ

d

dt
ZðnÞ

k ¼ ð�1Þp½ðk þ pÞZðnÞ
kþp � ðk � pÞZðnÞ

k�p� � 2igkZðnÞ
k ð30Þ

The dimensionless parameters t (a ‘‘slow’’ time) and g read (e � eL)

t ¼ 1

2
eo1t; g ¼ d

e
ð31Þ

The initial conditions are

xðnÞk ð0Þ ¼ dkn; ZðnÞ
k ð0Þ ¼ 0 ð32Þ

Note, however, that uncoupled equations (29) and (30) hold only for k � p. This

means that they describe the evolution of all the Bogoliubov coefficients only if

p ¼ 1. Then all the functions ZðnÞ
k ðtÞ are identically equal to zero because of the

initial conditions (32); consequently, no photon can be created from vacuum.

Moreover, in the next section we show that the total number of photons (but not

the total energy) is an integral of motion in this specific case.
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IV. ‘‘SEMIRESONANCE’’ CASE (p ¼ 1)

If p ¼ 1, one has to solve the set of equations (k; n ¼ 1; 2; . . .)

d

dt
xðnÞk ¼ ðk � 1ÞxðnÞk�1 � ðk þ 1ÞxðnÞkþ1 þ 2igkxðnÞk ð33Þ

An immediate consequence of these equations and the condition xðnÞk ð0Þ ¼ dkn is

the identity X
m

mxðnÞm ðtÞxðkÞ�m ðtÞ � ndnk ð34Þ

which is simply the unitarity condition of the Bogoliubov transformation in this

special case. Taking into account this identity, one can easily verify that the total

average number of photons in all modes is conserved in time:

N ¼
X
nkm

mffiffiffiffiffi
nk

p xðnÞ�m xðkÞm hinjb̂y
nb̂kjini ¼

X
n

hinjb̂y
nb̂njini ð35Þ

A similar phenomenon in the classical case was discussed in Ref. 44, whereas

the quantum case was considered in Ref. 176 and especially in Ref. 190. Also,

using Eqs. (33) and (34), one can verify that the total energy (normalized by o1)

E ¼
X
nkm

m2ffiffiffiffiffi
nk

p xðnÞ�m xðkÞm hinjb̂y
nb̂kjini

satisfies the simple equation (hereafter overdots mean the differentiation with

respect to the dimensionless time t)

�E ¼ 4a2Eþ 4g2Eð0Þ � 2g ImðG1Þ ð36Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
ð37Þ

G1 ¼ 2
X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ 1Þ

p
hb̂y

nb̂nþ1i ð38Þ

The quantum averaging is performed over the initial state of the field (no matter

pure or mixed). The initial values of the total energy and its first derivative (with

respect to t) are given by

Eð0Þ ¼
X1
n¼1

nhb̂y
nb̂ni; _Eð0Þ ¼ ReðG1Þ ð39Þ
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Consequently, the solution to equation (36) can be expressed as

EðtÞ ¼ Eð0Þ þ 2 sinh2ðatÞ
a2

Eð0Þ � g
2

ImðG1Þ
h i

þ ReðG1Þ
sinhð2atÞ

2a
ð40Þ

One can easily prove that j _Eð0Þj � Eð0Þ. Thus the total energy grows exponen-

tially when t � 1 (provided g < 1), although it can decrease at t � 1, if
_Eð0Þ < 0. Since the total number of photons is constant, such behavior is

explained by the effect of pumping the highest modes at the expense of the

lowest ones (this effect was also noticed in the classical case [39]).

We see that the total energy can be found without any knowledge of the

Bogoliubov coefficients. However, these coefficients are necessary, if one wants

to know the distribution of the energy or the mean photon numbers over the

modes. To solve the infinite set of equations (33), we introduce the generating

function

XðnÞðz; tÞ ¼
X1
k¼1

xðnÞk ðtÞzk ð41Þ

where z is an auxiliary variable. Using the relation kzk ¼ zðdzk=dzÞ one obtains

the first-order partial differential equation

qXðnÞ

qt
¼ ðz2 � 1 þ 2igzÞ qXðnÞ

qz
þ xðnÞ1 ðtÞ ð42Þ

whose solution satisfying the initial condition XðnÞð0; zÞ ¼ zn reads as

XðnÞðz; tÞ ¼ zgðtÞ � SðtÞ
g�ðtÞ � zSðtÞ

� �n

þ
ðt

0

xðnÞ1 ðxÞ dx ð43Þ

where

SðtÞ ¼ sinhðatÞ
a

; gðtÞ ¼ coshðatÞ þ igSðtÞ ð44Þ

Differentiating (43) over z, we find

xðnÞ1 ðtÞ ¼ n½�SðtÞ�n�1

½g�ðtÞ�nþ1
ð45Þ

Putting this expression into the integral in the right-hand side of equation (43)

we arrive at the final form of the generating function

XðnÞðz; tÞ ¼ zgðtÞ � SðtÞ
g�ðtÞ � zSðtÞ

� �n

� �SðtÞ
g�ðtÞ

� �n

ð46Þ
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which satisfies automatically the necessary boundary condition XðnÞðt; 0Þ ¼ 0.

The right-hand side of (46) can be expanded into the power series of z with the

aid of the formula [see Ref. 269, Vol. 3, Section 19.6, Eq. (16)]

ð1 � tÞb�cð1 � t þ xtÞ�b ¼
X1
m¼0

tm

m!
ðcÞmFð�m; b; c; xÞ

where Fða; b; c; xÞ is the Gauss hypergeometric function, and ðcÞk � �ðc þ kÞ=
�ðcÞ. In turn, the function ðcÞmFð�m; b; c; xÞ with an integer m is reduced to the

Jacobi polynomial in accordance with the formula [Ref. 269, Vol. 2, Section

10.8, Eq. (16)]

ðcÞmFð�m; b; c; xÞ ¼ m!ð�1Þm
Pðb�m�c; c�1Þ

m ð2x � 1Þ

Consequently

ð1 � tÞb�cð1 � t þ xtÞ�b ¼
X1
m¼0

ð�tÞm
Pðb�m�c; c�1Þ

m ð2x � 1Þ ð47Þ

and the coefficient xðnÞm ðtÞ reads

xðnÞm ðtÞ ¼ ð�kÞn�mlnþmPðn�m;�1Þ
m 1 � 2k2

 �
ð48Þ

where

kðtÞ ¼ Sffiffiffiffiffiffiffi
gg�p � SðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ S2ðtÞ
p ð49Þ

lðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðtÞ=g�ðtÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2k2

p
þ igk; jlj ¼ 1 ð50Þ

The form (48) is useful for n � m. To find a convenient formula in the case of

n � m we introduce the two-dimensional generating function

Xðt; z; yÞ ¼
X1
m¼1

X1
n¼1

zmynxðnÞm ðtÞ ¼
X1
n¼1

XðnÞðz; tÞyn

¼ yz

½g�ðtÞ þ ySðtÞ�½g�ðtÞ � gðtÞyz þ SðtÞðy � zÞ� ð51Þ

The coefficient at zm in (51) yields another one-dimensional generating function

Xmðt; yÞ ¼
X1
n¼1

ynxðnÞm ðtÞ ¼ y
½gðtÞy þ SðtÞ�m�1

½g�ðtÞ þ ySðtÞ�mþ1
ð52Þ
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Then equation (47) results in the expression

xðnÞm ¼ ð1 � k2Þkm�nlnþmP
ðm�n; 1Þ
n�1 1 � 2k2

 �
ð53Þ

Note that the functions SðtÞ, coshðatÞ, and kðtÞ are real for any value of g. For

g > 1, it is convenient to use, instead of (44), the equivalent expressions in

terms of the trigonometrical functions:

~SðtÞ ¼ sinð~atÞ
~a

; ~gðtÞ ¼ cosð~atÞ þ ig~SðtÞ; ~a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
ð54Þ

In the special case g ¼ 1 one has SðtÞ ¼ t and gðtÞ ¼ 1 þ it. In particular,

xðnÞm ðt; g ¼ 1Þ ¼ tm�nð1 þ itÞn�1

ð1 � itÞmþ1
P
ðm�n; 1Þ
n�1

1 � t2

1 þ t2

� 	
ð55Þ

The knowledge of the two-dimensional generating function enables to verify

the unitarity condition (25). Consider the product X�ðt; z1; y1ÞXðt; z2; y2Þ, which

is a four-variable generating function for the products xðnÞ�m xðkÞl . Taking

y1 ¼
ffiffiffi
u

p
expðijÞ, y�2 ¼

ffiffiffi
u

p
expð�ijÞ and integrating over j from 0 to 2p,

one obtains a three-variable generating function
P

z�m
1 zl

2unxðnÞ�m xðnÞl . Dividing it

by u and integrating the ratio over u from 0 to 1, one finally arrives at the

relation

X1
n;m;l¼1

z�m
1 zl

2

1

n
xðnÞ�m xðnÞl ¼ � ln 1 � z�1z2

 �
¼
X1
k¼1

1

k
ðz�1z2Þk ð56Þ

which is equivalent to the special case of (25) for ZðkÞ
m � 0:

X
n

1

n
xðnÞ�m ðtÞxðnÞj ðtÞ � 1

m
dmj ð57Þ

A. Examples

Suppose that initially there was a single excited mode labeled with an index n.

Because of the linearity of the process, one may assume that the mean number

of photons in this mode was nn ¼ 1. Then the mean occupation number of the

m-th mode at t > 0 equals

NðnÞ
m ¼ m

n
½xðnÞm �2 ¼ m

n
½ð1 � k2Þkm�nP

ðm�n; 1Þ
n�1 1 � 2k2

 �
�2 ð58Þ
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where k is given by (49). For example, in the special case g ¼ 0 we have

Nð1Þ
m ¼ mðtanh tÞ2m�2

ðcosh tÞ4

Nð2Þ
m ¼ mðtanh tÞ2m�4

2ðcosh tÞ4
½ðm � 1Þ � ðm þ 1Þ tanh2 t�2

The maximum of function Nð1Þ
m ðtÞ is achieved at sinh tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm � 1Þ=2

p
. For

m � 1 it equals Nð1Þ
m ðtmaxÞ � 4= me4ð Þ. For a fixed value of t � 1, the

occupation number distribution Nð1Þ
m reaches its maximum at m

ð1Þ
maxN ¼

cosh2 t, and Nð1Þ
max ¼ e cosh2 t

 ��1� 1. The maximum of the energy distri-

bution is shifted to the right, m
ð1Þ
maxE ¼ 2 cosh2 t, and its value is not decreased

with time: Eð1Þ
max ¼ 4=e2. This explains the exponential growth of the total

energy.

Although formula (58) seems asymmetric with respect to the indices m and

n, actually the relation

NðnÞ
m ¼ NðmÞ

n ð59Þ

holds. To prove it, we calculate the generating function

Qðu; vÞ �
X1

m;n¼1

vmunNðnÞ
m ð60Þ

It is related to the function Xðz; yÞ (51) as follows:

Qðu; vÞ ¼ v
d

dv

ðu

0

dr

ð2p

0

ð2p

0

djdc

ð2pÞ2
X

ffiffi
r

p
eij;

ffiffiffi
v

p
eic �

X� ffiffi
r

p
eij;

ffiffiffi
v

p
eic �

Having performed all the calculations, we arrive at the expression

2Qðu; vÞ ¼ 1 þ uv� k2ðu þ vÞ
f½1 þ uv� k2ðu þ vÞ�2 � 4uvð1 � k2Þ2g1=2

� 1 ð61Þ

Then (59) is a consequence of the relation Qðu; vÞ ¼ Qðv; uÞ.
The initial stage of the evolution of NðnÞ

m ðtÞ does not depend on the detuning

parameter g, since the principal term of the expansion of (58) with respect to t
yields

N
ðnÞ
n
qðt ! 0Þ ¼ n 
 q

n

nðn 
 1Þ � � � ðn 
 q � 1Þ
q!

� �2

t2q
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However, the further evolution is sensitive to the value of g. If g � 1, then the

function NðnÞ
m ðtÞ has many maxima and minima (especially for large values of

m and n), but finally it decreases asymptotically as mna4= cosh4ðatÞ. On the

contrary, if g > 1, then the function NðnÞ
m ðtÞ is periodic with the period p=~a, and

it turns into zero for t ¼ kp=~a, k ¼ 1; 2; . . . (except in the case m ¼ n). The

magnitude of the coefficient NðnÞ
m ðtÞ decreases approximately as g�2jm�nj for

g � 1.

Now let us assume for simplicity that g ¼ 0. Then Eq. (53) can be re-

presented in the equivalent form:

xðnÞm ¼ n
ðtanh tÞm�n

cosh2 t
ð�1Þn�1

F 1 � n;m þ 1; 2;
1

cosh2 t

� 	
ð62Þ

If m � n � Oð1Þ, then ðmÞk � mk (k � n), so the Gauss hypergeometric

function in Eq. (62) can be replaced by the confluent hypergeometric function

with a negative integral first index, which is reduced to the associated Laguerre

polynomial [269] L
ð1Þ
n�1ðmÞ of the scaled variable m ¼ m=cosh2 t. Using the

approximation ðtanh tÞ2m � expð�m= cosh2 tÞ valid for t � 1, we arrive at a

simplified expression

EðnÞ
m ¼ mNðnÞ

m ¼ 1

n
m2e�m½Lð1Þ

n�1ðmÞ�
2 ð63Þ

describing the energy distribution over the modes with large number m.

The fluctuations of the occupation numbers can be calculated with the aid of

the formula (again for g ¼ 0)

hN̂2imðtÞ � hN̂imðtÞ ¼
m2

n2
½xðnÞm ðtÞ�4 hN̂2inð0Þ � hN̂inð0Þ

� �
which is an immediate consequence of Eq. (57). Consequently, the type of the

photon statistics (sub- or super-Poissonian) is conserved. In particular, if the

initial mode was in a coherent state, then all other modes will be excited in the

coherent states, too.

The assumption on the equidistant eigenmode spectrum can be justified to a

certain extent for the longitudinal modes of a Fabry–Perot resonator with perfect

mirrors, if the order of interference (the mode number) is high enough. So let us

suppose that initially some single mode with n � 1 was excited. Although the

lowest modes are not equidistant in this case, for a limited period of time in

the beginning of the process [until t � logð2nÞ], the evolution of the chosen

mode and its neighbors can be described by the solutions obtained above, since

the influence of the ‘‘remote’’ modes becomes essential at sufficiently large

times. Then the populations of the modes exhibit strong oscillations, since they
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are proportional to the squares of the Jacobi polynomials of large degrees. The

asymptotics of these polynomials [see Ref. 269, Eq. 10.14(10)] yields

NðnÞ
m � 2

npsinð2jÞ cos2 ðm þ nÞj� ½2jm � nj þ 1� p
4

n o
; sinj ¼ tanh t

This formula holds provided that n � jm � nj � Oð1Þ and nsinð2jÞ � 1. For

t � 1 we observe fast oscillations, whose amplitude is modulated with the

period p=t, whereas for t � 1 we have slower periodic variations of NðnÞ
m as

the function of m with the period pet=2.

An interesting problem is the field evolution in a cavity that was initially in

the equilibrium state at a finite temperature, when the initial occupation

numbers were given by the Planck distribution nn ¼ ½expðbnÞ � 1��1
. Let us

consider two limit cases. The first one corresponds to the low-temperature

approximation nn ¼ expð�bnÞ. Then the occupation number of the mth mode is

merely the coefficient at vm in the expansion (61) with u ¼ expð�bÞ. Using the

well-known generating function of the Legendre polynomials PmðzÞ [Ref. 269,

Eq. 10.10(39)], one can obtain the following expression (for g ¼ 0):

Nfbg
m ¼ 1

2

e�b � r2

1 � e�br2

� 	m

PmðxÞ þ Pm�1ðxÞ½ �; r � tanhðtÞ

x ¼ e�b 1 � r2ð Þ2þr2ð1 � e�bÞ2

e�b � r2ð Þ 1 � e�br2ð Þ

In particular, N
fbg
1 ¼ e�bðcosh tÞ�4ð1 � e�b tanh2 tÞ�2

.

In the special case of a cavity filled in with a high-temperature thermal

radiation, the initial distribution over modes reads nnð
Þ ¼ 
=n, where the

constant 
 is proportional to the temperature. Then Nf
g
m ¼

P
n nnð
ÞNðnÞ

m .

This sum is simply 
 multiplied by the coefficient at vm in the Taylor series

expansion of the function

~QðvÞ ¼
ð1

0

du

u
Qðu; vÞ ¼ ln

1 � vk2ðtÞ
1 � v

Thus we have

Ef
g
m ¼ mNf
g

m ¼ 
ð1 � ½kðtÞ�2mÞ

We see that the resonance vibrations of the wall cause an effective cooling of

the lowest electromagnetic modes (provided jgj < 1). The total number of

quanta and the total energy in this example are formally infinite, due to the

equipartition law of the classical statistical mechanics. In reality both these

quantities are finite, since nnð
Þ < 
=n at n ! 1 because of the quantum

corrections.
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V. GENERIC RESONANCE CASE ( p � 2)

If p � 2, we have p � 1 pair of coupled equations for the coefficients with lower

indices 1 � k � p � 1

d

dt
xðnÞk ¼ ð�1Þp½ðk þ pÞxðnÞkþp � ðp � kÞZðnÞ

p�k� þ 2igkxðnÞk ð64Þ
d

dt
ZðnÞ

k ¼ ð�1Þp½ðk þ pÞZðnÞ
kþp � ðp � kÞxðnÞp�k� � 2igkZðnÞ

k ð65Þ

In this case some functions ZðnÞ
k ðtÞ are not equal to zero at t > 0; thus we have

the effect of photon creation from the vacuum.

It is convenient to introduce a new set of coefficients rðnÞk , whose lower

indices run over all integers from �1 to 1:

rðnÞk ¼
xðnÞk ; k > 0

0; k ¼ 0

�ZðnÞ
�k ; k < 0

8><>: ð66Þ

Then one can verify that equations (29)–(30) and (64)–(65) can be combined in

a single set of equation (k ¼ 
1;
2; . . .) [191]

d

dt
rðnÞk ¼ ð�1Þp½ðk þ pÞrðnÞkþp � ðk � pÞrðnÞk�p� þ 2igkrðnÞk ð67Þ

with the initial conditions (n ¼ 1; 2; . . .)

rðnÞk ð0Þ ¼ dkn ð68Þ

A remarkable feature of the set of equations (67) is that its solutions satisfy

exactly the unitarity conditions (24)–(26) (although the coefficients xðnÞk and ZðnÞ
k

introduced via equation (28) have additional phase factors in comparison with

the coefficients defined in Eq. (20), these phases do not affect the identities

concerned), which can be rewritten asX1
m¼�1

mrðnÞ�m rðkÞm ¼ ndnk; n; k ¼ 1; 2; . . . ð69Þ

X1
n¼1

m

n
½rðnÞ�m rðnÞj � rðnÞ��m rðnÞ�j � ¼ dmj; m; j ¼ 1; 2; . . . ð70Þ

X1
n¼1

1

n
½rðnÞ�m rðnÞ�j � rðnÞ�j rðnÞ�m� ¼ 0; m; j ¼ 1; 2; . . . ð71Þ
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For example, calculating the derivative I ¼ ðd=dtÞ
P1

m¼�1 mrðnÞ�m rðkÞm with the

aid of Eq. (67) and its complex conjugated counterpart, one can easily verify

that I ¼ 0. Then the value of the right-hand side of (69) is a consequence of the

initial conditions (68). The identities (70) and (71) can be verified in a similar

way, if one uses instead of (67) the recurrence relations between the coefficients

rðnÞm with the same lower index m but with different upper indices [see Eqs. (87)

and (88)].

Because of the initial conditions (68), the solutions to (67) satisfy the relation

rðkþnpÞ
jþmp � 0 if j 6¼ k ð72Þ

j; k ¼ 0; 1; . . . ; p � 1; m ¼ 0;
1;
2; . . . ; n ¼ 0; 1; 2; . . .

Consequently, the nonzero coefficients rðnÞm form p independent subsets

y
ðq; jÞ
k � rð jþqpÞ

jþkp ð73Þ

j ¼ 0; 1; . . . ; p � 1; q ¼ 0; 1; 2; . . . ; k ¼ 0;
1;
2; . . .

The subset y
ðq;0Þ
k is distinguished, because y

ðq;0Þ
k � 0 for k � 0 and the upper

index q begins at q ¼ 1. One can verify that the functions y
ðn;0Þ
m ðtÞ with m � 1

are given by the formulas for xðnÞm ðtÞ found in the preceding section, provided

one replaces t by ð�1Þp
pt and g by ð�1Þpg, whereas y

ðn;0Þ
m ðtÞ � 0 for m � 0.

In the generic case j 6¼ 0 it is reasonable to introduce a generating function in

the form of the Laurent series of an auxiliary variable z

Rðn; jÞðz; tÞ ¼
X1

m¼�1
yðn; jÞ

m ðtÞzm ð74Þ

since the lower index of the coefficient y
ðn; jÞ
m runs over all integers from �1 to

1. One can verify that the function (74) satisfies the homogeneous equation

qRðn; jÞ

qt
¼ s

1

z
� z

� 	
þ 2ig

� �
j þ pz

q
qz

� 	
Rðn; jÞ; s ¼ ð�1Þp ð75Þ

The solution to (75) satisfying the initial condition Rðn; jÞðz; 0Þ ¼ zn reads as

Rðn; jÞðz; tÞ ¼ z�j=p zgðptÞ þ sSðptÞ
g�ðptÞ þ zsSðptÞ

� �nþj=p

ð76Þ
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where the functions SðtÞ and gðtÞ are as defined in (44). The coefficients of the

Laurent series (74) can be calculated with the aid of the Cauchy formula

yðn; jÞ
m ðtÞ ¼ 1

2pi

þ
C

dz

zmþ1
Rðn; jÞðz; tÞ ð77Þ

where the closed curve C rounds the point z ¼ 0 in the complex plane in the

counterclockwise direction. Making a scale transformation, one can reduce the

integral (77) with the integrand (76) to the integral representation of the Gauss

hypergeometric function [see Ref. 269, Vol 1, Section 2.1.3]

Fða; b; c; xÞ ¼ �i�ðcÞexpð�ipbÞ
2sinðpbÞ�ðc � bÞ�ðbÞ

þð0þÞ

1

tb�1ð1 � tÞc�b�1

ð1 � txÞa dt ð78Þ

where Reðc � bÞ > 0, b 6¼ 1; 2; 3; . . . , and the integration contour begins at the

point t ¼ 1 and passes around the point t ¼ 0 in the positive direction. After

some algebra, one can obtain the expression

yðn; jÞ
m ¼ �� �m � j=pð Þ� 1 þ n þ j=pð Þsin p m þ j=pð Þ½ �

p� 1 þ n � mð Þ

� ðskÞn�mlmþnþ2j=pF n þ j

p
; �m � j

p
; 1 þ n � m ; k2

� 	
ð79Þ

We assume hereafter k � kðptÞ and l � lðptÞ, the functions kðxÞ and lðxÞ
being defined as in (49) and (50). Using the known formula

�ð�zÞsinðpzÞ ¼ � p
�ðz þ 1Þ ð80Þ

one can eliminate the gamma function of a negative argument:

yðn; jÞ
m ¼ � 1 þ n þ j=pð ÞðskÞn�mlmþnþ2j=p

� 1 þ m þ j=pð Þ� 1 þ n � mð Þ

� F n þ j

p
; �m � j

p
; 1 þ n � m; k2

� 	
ð81Þ

The form (81) gives an explicit expression for the coefficient xðjþpnÞ
jþpm with

0 � m � n. Moreover, it clearly shows the fulfilment of the initial condition

y
ðn; jÞ
m ðt ¼ 0Þ ¼ dmn. Transforming the hypergeometric function with the aid of
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the formula [269,270]

lim
c!�n

Fða; b; c; xÞ
�ðcÞ ¼

ðaÞnþ1ðbÞnþ1xnþ1

ðn þ 1Þ! Fða þ n þ 1; b þ n þ 1; n þ 2; xÞ

(n ¼ 0; 1; 2; . . .) and the identity (80), one obtains an equivalent expression

yðn; jÞm ¼ � m þ j=pð Þð�skÞm�nlmþnþ2j=p

� n þ j=pð Þ� 1 þ m � nð Þ

� F m þ j

p
; �n � j

p
; 1 þ m � n; k2

� 	
ð82Þ

which gives a convenient form of the coefficient xðjþpnÞ
jþpm for m � n. Formula (79)

with negative values of the lower index gives an explicit expression for the

nonzero coefficients ZðpnþjÞ
pk�j (k � 1; n � 0):

ZðpnþjÞ
pk�j ¼ � � k � j=pð Þ� 1 þ n þ j=pð Þsin p k � j=pð Þ½ �

p� 1 þ n þ kð Þ

� ðskÞnþkln�kþ2j=pF n þ j

p
; k � j

p
; 1 þ n þ k; k2

� 	
ð83Þ

Note that the expressions (81)–(83) are valid for j ¼ 0, too. In this case they

coincide with the formulas obtained in the preceding section. Formulas (81)–

(83) immediately give the short-time behavior of the Bogoliubov coefficients at

t ! 0; it is sufficient to put k � pt, l � 1 and to replace the hypergeometric

functions by 1. In this limit the detuning parameter g drops out of the

expressions (in the leading terms of the Taylor expansions).

At t ! 1, we have the following asymptotics of the functions kðptÞ and

lðptÞ (if g � 1):

k � 1 � 1

2
S�2ðptÞ ! 1; l ! a þ ig; t ! 1

Then equation (79) together with the known asymptotics of the hypergeometric

function Fða; b; a þ b þ 1; 1 � xÞ at x � 1 [269,270]

Fða; b; a þ b þ 1; 1 � xÞ ¼ �ða þ b þ 1Þ
�ða þ 1Þ�ðb þ 1Þ 1 þ abx lnðxÞ þ OðxÞ½ � ð84Þ
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lead to the asymptotical expression for the Bogoliubov coefficients:

yðn; jÞ
m ðt � 1Þ ¼ sin ½pðm þ j=pÞ�

pðm þ j=pÞ ða þ igÞmþnþ2j=psn�m

� 1 þ O
mn

S2
ln S

� �h i
ð85Þ

For g < 1 the correction has an order mnt expð�2aptÞ, while for g ¼ 1 it has an

order mn lnðtÞ=t2.

One can verify that the generating function (76) satisfies the recurrence

relation

qRðq; jÞ

qt
¼ ðj þ qpÞfs½Rðq�1; jÞ � Rðqþ1; jÞ� þ 2igRðq; jÞg ð86Þ

Its immediate consequence is an analogous relation for the Bogoliubov coeffi-

cients with the same lower indices:

d

dt
rðnÞm ¼ nfs½rðn�pÞ

m � rðnþpÞ
m � þ 2igrðnÞm g ð87Þ

Equation (87) is valid for n > p [when q � 1 and j � 1 in (86)], since the

coefficients rðnÞm are not defined when n < 0. However, using the chain of

identities

Rð�1; jÞðzÞ ¼ z�j=p S þ gz

g� þ Sz

� �j=p�1

¼ 1

z

1

z

� 	j=p�1
S þ g�=z

g þ S=z

� �1�j=p

¼ 1

z
½Rð0;p�jÞð1=z�Þ�� ¼ 1

z

X1
k¼�1

y
ð0;p�jÞ�
k

1

z

� 	k

¼
X1

k¼�1
y
ð0;p�jÞ�
�k�1 zk

one can obtain the first p � 1 recurrence relations

d

dt
rðnÞm ¼ nfs½rðp�nÞ�

�m � rðpþnÞ
m � þ 2igrðnÞm g; n ¼ 1; 2; . . . ; p � 1 ð88Þ

To treat the special case n ¼ p (which corresponds to the distinguished subset

with j ¼ 0), one should take into account that Rð0;0ÞðzÞ � 1, which means

formally that rð0Þm ¼ dm0. So the last recurrence relation reads as

d

dt
rðpÞm ¼ pf�srð2pÞ

m þ 2igrðpÞm g; m � 1

336 v. v. dodonov



(remember that rðpÞm � 0 for m � 0). Now one can verify that the unitarity

conditions (70) and (71) are the consequencies of the equations (87) and (88).

VI. PHOTON STATISTICS

To evaluate the mean number of photons and the statistical properties of the

quantum field created in the cavity at t > T , we introduce the Hermitian

quadrature component operators

q̂m ¼ âm þ ây
mffiffiffi

2
p ; p̂m ¼ âm � ây

m

i
ffiffiffi
2

p

Their variances are defined as

Um ¼ hq̂2
mi � hq̂mi2; Vm ¼ hp̂2

mi � hp̂mi2

whereas the covariance is given by

Ym ¼ 1

2
hp̂mq̂m þ q̂mp̂mi � hp̂mihq̂mi

The average values must be calculated in the state defined with respect to the

initial operators b̂n (remember that we use the Heisenberg picture here).

A. Initial Vacuum State

The vacuum state is defined by means of the relations b̂nj0i ¼ 0. In this case,

Um þ Vm ¼ 2NðvacÞ
m þ 1, where NðvacÞ

m is the mean number of photons created

from vacuum in the mth mode. It is given by the single sums over index n in Eq.

(27). Initially, Umð0Þ ¼ Vmð0Þ ¼ 1
2
, Ymð0Þ ¼ 0. Using (22) and assuming for

simplicity o1 ¼ 1, we obtain the following expressions for t > 0

Um ¼ m

2

X1
n¼1

1

n
rðnÞm � rðnÞ�m

�� ��2; Vm ¼ m

2

X1
n¼1

1

n
rðnÞm þ rðnÞ�m

�� ��2 ð89Þ

Ym ¼
X1
n¼1

m

n
Im½rðnÞ�m rðnÞ�m� ð90Þ

where the coefficients rðnÞ
m should be taken at the moment T ; thus their

argument is tT � 1
2
eo1T . Strictly speaking, the expressions (89) and (90)

have physical meanings at those moments of time T when the wall returns to

its initial position, that is, for T ¼ Np=½pð1 þ dÞ� with an integer N. Conse-

quently, the argument tT of the coefficients rðnÞ
m in (89) and (90) assumes
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discrete values tðNÞ ¼ Nep=½2pð1 þ dÞ�. One should remember, however, that

something interesting in our problem happens for the values t � 1 (or larger).

Then N � e�1 � 1, and the minimal increment �t � e is so small that tT can

be considered as a continuous variable (under the realistic conditions, e � 10�8

[189]). For this reason, we omit hereafter the subscript T , writing simply t
instead of tT or tðNÞ.

Differentiating the right-hand sides of equations (89) and (90) with respect to

the ‘‘slow time’’ t, one can remove the fraction 1=n with the aid of the

recurrence relations (87) and (88). After that, changing if necessary the

summation index n to n 
 p, one can verify that almost all terms in the right-

hand sides are canceled, and the infinite series are reduced to the finite sums:

dUm

dt
dVm

dt

)
¼ sm

Xp�1

n¼1

Reð½rðp�nÞ
m � rðp�nÞ

�m �½rðnÞ�m � rðnÞm �Þ

dYm

dt
¼ sm

Xp�1

n¼1

ImðrðnÞ�m rðp�nÞ�
m þ rðnÞ�mr

ðp�nÞ
�m Þ

Now one should take into account the structure of the coefficients rðnÞm ; they are

different from zero provided the difference between the upper index n and the

lower one m is some multiple of the number p. If m ¼ j þ pk with

j ¼ 1; . . . ; p � 1 and k ¼ 0; 1; 2; . . . , then only the terms with n ¼ j or

n ¼ p � j survive in the sums above. Depending on whether j ¼ p=2 or

j 6¼ p=2, we obtain two different sets of explicit expressions for the derivatives

of the (co)variances:

1. If m ¼ j þ pk but j 6¼ p=2 (in particular, for all odd values of p), then

dUm

dt
¼ dVm

dt
¼ 2smReðrðjÞm rðp�jÞ

�m Þ; dYm

dt
¼ 0 ð91Þ

In this case Ym � 0 and Um ¼ Vm ¼ NðvacÞ
m þ 1

2
.

2. A different situation happens in the distinguished modes with the numbers

m ¼ pðk þ 1
2
Þ, k ¼ 0; 1; 2; . . . :

dUm

dt
¼ �mReð½rðp=2Þ

m � rðp=2Þ
�m �2Þ; dVm

dt
¼ mReð½rðp=2Þ

m þ rðp=2Þ
�m �2Þ ð92Þ

dYm

dt
¼ m Imð½rðp=2Þ�

m �2 þ ½rðp=2Þ
�m �2Þ ð93Þ

We shall call such modes the ‘‘principal’’ ones; they exist only if p is an

even number. In the strict resonance case (g ¼ 0) all the coefficients rðp=2Þ
m

are real, so Ym ¼ 0 and dUm=dt � 0 in the whole interval 0 � t < 1,
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resulting in the inequality UmðtÞ < 1
2
, which tells us that the field occurs in

the squeezed quantum state.

1. Squeezing in the ‘‘Principal’’ Modes

Note that the coefficients rðpnþp=2Þ
pmþp=2

depend on the parameter p only through the

dependence of the variable k on the product pt [see Eq. (79) or (81)]. Thus, to

study the squeezing properties of the field created as a result of the NSCE (non-

stationary Casimir effect) it is sufficient to consider the most important special

case of the parametric resonance at the double fundamental frequency 2o1 (i.e.,

p ¼ 2), since the formulas for p > 2 can be obtained by a simple rescaling of the

‘‘slow time’’ (for the ‘‘principal’’ modes). In this case, only the odd modes can

be excited from the vacuum, and they do exhibit some squeezing.

Using Eqs. (92) and (93), one can immediately find the Taylor expansions of

the (co)variances at t ! 0 (assuming ð�1Þ!! � 1):

U2mþ1

V2mþ1

)
¼ 1

2
� t2mþ1 ð2m � 1Þ!!

m!

� �2�
1 � 2m þ 1

ðm þ 1Þ2
tþ Oðt2Þ

�
ð94Þ

Y2mþ1 ¼ �2gð2m þ 1Þt2ðmþ1Þ ð2m � 1Þ!!
m!

� �2

þ � � � ð95Þ

We see that the U variances are always less than 1
2

at the initial stage, but the

degree of their squeezing rapidly decreases with increase of the number m. Note

that the dependence on the detuning parameter g in the short-time limit appears

only in terms of the order of t2mþ3 (and higher).

In the opposite limit t ! 1 (or k ! 1), using Eqs. (92) and (93) and the

asymptotics of the Bogoliubov coefficients (85), we obtain constant time

derivatives

dU2mþ1

dt

����
t!1

¼ 16a

p2ð2m þ 1Þ sin2 m þ 1

2

� 	
f

� �
:

dV2mþ1

dt

����
t!1

¼ 16a

p2ð2m þ 1Þ cos2 m þ 1

2

� 	
f

� �
:

dY2mþ1

dt

����
t!1

¼ � 8a

p2ð2m þ 1Þ sin 2m þ 1ð Þf½ �:

where f � arcsin g. Consequently, all the (co)variances increase with time

linearly, giving the constant photon generation rate in the ‘‘principal’’ (odd)

modes

dN2mþ1

dt

����
t!1

¼ 8a

p2ð2m þ 1Þ ð99Þ
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Equation (99) results in a simple estimation of the mean photon number in the

mth mode at t > 1: NmðtÞ � at=m.

Since the covariance Ym is different from zero if g 6¼ 0, the initial vacuum

state of the field is transformed to the correlated quantum state [223,271,272].

One should remember, however, that the values of Um, Vm, and Ym yield the

(co)variances of the field quadratures only at the moment t ¼ T (when the wall

stopped oscillating). At the subsequent moments of time the quadrature

variances exhibit fast oscillations with twice the frequency of the mode. For

example (omitting the mode index), one obtains

sqðt0Þ ¼ U cos2ðot0Þ þ V sin2ðot0Þ þ Y sinð2ot0Þ; t0 ¼ t � T

Therefore the physical meanings do not have the values Um, Vm, and Ym

themselves, but rather the minimal smin � um and maximal smax � vm values

of the quadrature variances during the period of fast oscillations [273,274]

um

vm

 
¼ 1

2

�
Um þ Vm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Um � Vm
 �2þ4Y 2

m

q 	
ð100Þ

Only in the special case of the strict resonane (g ¼ 0) do we have um ¼ Um and

vm ¼ Vm. In the generic case g 6¼ 0, all three (co)variances, Um, Vm, and Ym,

linearly increase with the interaction time T if tT � t � 1, due to Eqs. (96)–

(98). Nonetheless, the minimal variance um tends to a constant value at t ! 1.

This is shown in Section VI.B. Examples of explicit time dependences of the

coefficients um and vm are given in Section VI.C.

2. Mean Photon Number

Differentiating the ‘‘vacuum’’ part of sum (27) with respect to t and performing

the summation over the upper index n with the aid of (87) and (88) [remember-

ing that the coefficients rðnÞm are different from zero provided the difference

n � m is a multiple of p], one can obtain the formula for the photon generation

rate from vacuum in each mode (0 � j � p � 1, q ¼ 0; 1; 2; . . .):

d

dt
N

ðvacÞ
jþpq ¼ �2sð j þ pqÞRe ½xðjÞjþpqZ

ðp�jÞ
jþpq �

¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2k2

p sinðpj=pÞ�ðq þ j=pÞ�ð1 þ q þ j=pÞ�ð2 � j=pÞ
p�ð j=pÞ�ðq þ 1Þ�ðq þ 2Þ k2qþ1

� F q þ j

p
; � j

p
; 1 þ q; k2

� 	
F q þ j

p
; 1 � j

p
; 2 þ q; k2

� 	
ð101Þ
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We see that there is no photon creation in the modes with numbers p; 2p; . . . . In

the short-time limit

_N
ðvacÞ
jþpq � t2qþ1; t � 1

In the long-time limit the photon generation rate tends to the constant value (if

g < 1)

d

dt
N

ðvacÞ
jþpq ¼ 2ap2 sin2ðp j=pÞ

p2ð j þ pqÞ 1 þ O
pq

S2
ln S

� �h i
; apt � 1 ð102Þ

For q � 1 and for a fixed value of k, one can simplify the right-hand side of

(101) using Stirling’s formula for the gamma functions and the easily verified

asymptotic formula

Fða; b; c; zÞ � ð1 � az=cÞ�b; a; c � 1

In this case

d

dt
N

ðvacÞ
jþpq � 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2k2

p sinðpj=pÞ�ð2 � j=pÞk2qþ1

p�ð j=pÞq2ð1�j=pÞ 1 � k2ð Þ1�2j=p
; q � 1 ð103Þ

In particular, if q � S2ðptÞ � 1, then

d

dt
N

ðvacÞ
jþpq � 2pa

sinðpj=pÞ�ð2 � j=pÞ S2=qð Þ2ð1�j=pÞ

p�ð j=pÞS2
expð�q=S2Þ ð104Þ

Comparing (102) and (104), one can conclude that the number of effectively

excited modes (i.e., the modes with a time-independent photon generation rate)

increases in time exponentially, approximately as S2ðtÞ= ln SðtÞ.
The total number of photons generated from vacuum in all the modes equals

NðvacÞ ¼
X1

m;n¼1

m

n
jZðnÞ

m j2 ð105Þ

Differentiating (105) with respect to t and performing the summation over m

with the help of Eqs. (66) and (67), one can obtain the formula

dNðvacÞ

dt
¼ 2sRe

X1
n¼1

1

n

Xp

m¼1

mðp � mÞrðnÞ��m ðtÞrðnÞp�mðtÞ ð106Þ
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Evidently, the right-hand side of this equation equals zero in the ‘‘semi-

resonance’’ case p ¼ 1.

Differentiating equation (106) once again over t, one can perform the

summation over the upper index n with the aid of Eqs. (87) and (88) to obtain

a closed expression for the second derivative of the total number of ‘‘vacuum’’

photons:

d 2

dt2
NðvacÞ ¼ 2Re

Xp�1

m¼1

mðp � mÞ½xðmÞ
m xðp�mÞ

p�m þ Zðp�mÞ�
m ZðmÞ�

p�m�

¼ 2
Xp�1

m¼1

mðp � mÞ
"

mðp � mÞ k
p

F
m

p
; 1 � m

p
; 2; k2

� 	� �2

þ 1 � 2g2k2
 �

F
m

p
; �m

p
; 1; k2

� 	
F

m

p
� 1; 1 � m

p
; 1; k2

� 	 
ð107Þ

In the short-time limit, one obtains

�NðvacÞ ¼ 1

3
pðp2 � 1Þ; japtj � 1 ð108Þ

In the long-time limit the formulas (80), (84), and
Pp�1

m¼1 sin2ðpm=pÞ ¼ p=2

lead to another simple expression (provided p � 2):

�NðvacÞ ¼ 2a2p3

p2
; apt � 1; a > 0 ð109Þ

Consequently, the total number of photons created from vacuum due to NSCE

increases in time quadratically both in the short-time and in the long-time limits

(although with different coefficients).

B. Arbitrary Initial Conditions

For an arbitrary initial state of the field, one can write Um ¼ U
ðvacÞ
m þ�Um,

where U
ðvacÞ
m is given by equation (89); similar expressions can be written for Vm

and Ym. The corrections due to the nonvacuum initial states are given by

�Um

�Vm

)
¼ Re

X
n;j

mffiffiffiffi
nj

p ð½rðnÞm � rðnÞ�m�
�½rð jÞ

m � rð jÞ
�m�½hb̂y

nb̂ji � hb̂y
nihb̂ji�


 ½rðnÞm � rðnÞ�m�½rð jÞ
m � rð jÞ

�m�½hb̂nb̂ji � hb̂nihb̂ji�Þ ð110Þ

�Ym ¼ Im
X
n; j

mffiffiffiffi
nj

p ð½rðnÞ�m rð jÞ
�m � rð jÞ

m rðnÞ��m �½hb̂y
nb̂ji � hb̂y

nihb̂ji�

þ ½rðnÞm rð jÞ
m � rðnÞ�mr

ð jÞ
�m�½hb̂nb̂ji � hb̂nihb̂ji�Þ ð111Þ
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where the average values such as hb̂y
nb̂ji are calculated in the initial state. All the

corrections disappear in the case of the initial coherent state, b̂njai ¼ anjai. If

the initial density matrix is diagonal in the Fock basis (as happens, e.g., for the

Fock or thermal states), then hb̂y
nb̂ji ¼ nndnj (nn � 0), and all other average

values in (110) and (111) are equal to zero. In this case the double sums are

reduced to the single ones:

�Um ¼ m
X

n

nn

n
rðnÞm � rðnÞ�m

�� ��2; �Vm ¼ m
X

n

nn

n
rðnÞm þ rðnÞ�m

�� ��2 ð112Þ

�Ym ¼ 2m
X

n

nn

n
Im½rðnÞ�m rðnÞ�m� ð113Þ

We see that the initial fluctuations always increase both the variances Um and Vm

(for the diagonal density matrix). However, asymptotically at t ! 1 the

corrections are bounded for the physical initial states having finite total numbers

of photons, because the coefficients jrðnÞm 
 rðnÞ�mj2 and Im½rðnÞ�m rðnÞ�m� do not

depend on the summation index n in this limit. For example, if p ¼ 2, then

rð2nþ1Þ
2mþ1 ðt � 1Þ � 2ð�1Þm

pð2m þ 1Þ ða þ igÞmþnþ1 ð114Þ

rð2nþ1Þ
�2m�1ðt � 1Þ � 2ð�1Þm

pð2m þ 1Þ ða þ igÞn�m ð115Þ

and the exponent n disappears in the sums, because ja þ igj ¼ 1. Thus we have

in the ‘‘principal’’ m modes (taking p ¼ 2 for the sake of simplicity)

�U
ð1Þ
m

�V
ð1Þ
m

�Y
ð1Þ
m

9>>=>>; ¼ 8Z

p2m
�

2sin2 mf
2

� �
2cos2 mf

2

� �
�sin mfð Þ

8>>>><>>>>: ð116Þ

where

f � arcsin g; Z ¼
X1
k¼0

n2kþ1

2k þ 1

The expressions in (116) are very similar to those in equations (96)–(98). The

consequence of Eq. (116) is the important result that in the limit t ! 1 the

minimal variance um does not depend on the initial state of the field inside
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the cavity, provided the initial density matrix was diagonal in the Fock basis.

Indeed, in this case, combining the equations (96)–(98) and (116), we can write

the variances at t � 1 as (we omit the subscript m)

UðtÞ
VðtÞ
YðtÞ

0B@
1CA ¼

2F sin2 w
2

 �
þ f

2F cos2 w
2

 �
þ g

�F sinwþ h

0BB@
1CCA; F ¼ 8ðatþZÞ

p2m
; w ¼ mf ð117Þ

The corrections f , g, and h can be found by integrating equations (92) and (93);

therefore they do not depend on the initial state. At t ! 1 these corrections

tend to finite limits, so they are much smaller than F. Evidently, U þ V ¼
2F þ f þ g, whereas

ðU � VÞ2 þ 4Y2 ¼ 4F2 þ 4F½ðg � f Þcosw� 2hsinw� þ ð f � gÞ2 þ 4h2:

For F � f ; g; h we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � VÞ2 þ 4Y 2

q
¼ 2F þ ðg � f Þcosw� 2hsinwþ O

1

F

� 	
so the minimal variance uðtÞ (100) tends to the finite limit

uð1Þ ¼ f cos2 w
2

� �
þ gsin2 w

2

� �
þ hsinw ð118Þ

which does not depend on Z, that is on the initial state.

The correction to the mean number of photons in the mth mode for the

‘‘diagonal’’ initial distributions is given by the sum

�Nm ¼ m
X

n

nn

n
ð rðnÞm

�� ��j2 þ rðnÞ�m

�� ��2Þ
It tends to the limit �Nð1Þ

m ¼ 8Z= p2mð Þ.
The total number of photons in all the modes equals N ¼ NðvacÞ þNðcavÞ,

where

NðcavÞ ¼ Nð0Þ þ 2
X1

m;n;k¼1

mffiffiffiffiffi
nk

p ½ZðnÞ�
m ZðkÞ

m hb̂y
nb̂ki þ ReðZðnÞ

m xðkÞm hb̂nb̂kiÞ� ð119Þ

[to obtain this formula, one should use the identity (24)]. Differentiating (119)

with respect to t and performing the summation over m with the help of

equations (29), (30), (64), (65), or (67), one can obtain the formula

dNðcavÞ

dt
¼ 2s

X1
n;k¼1

hb̂y
nb̂kiffiffiffiffiffi
nk

p
Xp

m¼1

mðp � mÞ½rðnÞ��m rðkÞp�m þ rðkÞ�mr
ðnÞ�
p�m�

� 2sRe
X1
n;k¼1

hb̂nb̂kiffiffiffiffiffi
nk

p
Xp

m¼1

mðp � mÞ½rðnÞ�mr
ðkÞ
m�p þ rðnÞm rðkÞp�m� ð120Þ
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Using equation (120) and replacing the coefficients rðnÞm by their asymptotic

values (85), one can obtain the expression

dNðcavÞ

dt
¼ 4ap2

p2

Xp�1

m¼1

sin2 pm

p

� 	 X1
n;k¼0

snþkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm þ pnÞðm þ pkÞ

p
� fhb̂y

mþpnb̂mþpkiða þ igÞk�n � sRe½hb̂mþpnb̂mþpkiða þ igÞkþnþ1�g
ð121Þ

which holds provided apt � 1 and a > 0. For the physical initial states the sum

in the right-hand side of (121) is finite. This is obvious if a finite number of

modes was excited initially. But even if the cavity was initially in a high-

temperature thermal state, so that hb̂y
nb̂ki ¼ dnk
=n, hb̂nb̂ki ¼ 0, the sum over

n; k yields a finite value 

P1

n¼0 ðm þ pnÞ�2
. Consequently, the total number of

‘‘nonvacuum’’ photons increases in time linearly at apt � 1, whereas the total

number of quanta generated from vacuum increases quadratically in the long

time limit.

C. The ‘‘Principal Resonance’’ ( p ¼ 2)

Many formulas obtained above can be simplified in the special case p ¼ 2. In

this case there are two subsets of nonzero Bogoliubov coefficients. The first one

consists of the coefficients with even upper and lower indices xð2qÞ
2k which are

reduced to the coefficients xðqÞk of the ‘‘semiresonance’’ case. However, since

Zð2qÞ
2k � 0, this subset does not contribute to the generation of new photons. The

second subset is formed by the ‘‘odd’’ coefficients, which can be written as

[k � kð2tÞ]

xð2nþ1Þ
2mþ1 ¼

� n þ 3
2

 �
kn�mlmþnþ1

� m þ 3
2

 �
� 1 þ n � mð Þ

� F n þ 1

2
; �m � 1

2
; 1 þ n � m; k2

� 	
; n � m ð122Þ

xð2nþ1Þ
2mþ1 ¼

ð�1Þm�n� m þ 1
2

 �
km�nlmþnþ1

� n þ 1
2

 �
� 1 þ m � nð Þ

� F m þ 1

2
; �n � 1

2
; 1 þ m � n; k2

� 	
; m � n ð123Þ

Zð2nþ1Þ
2kþ1 ¼

ð�1Þk�1� k þ 1
2

 �
� n þ 3

2

 �
knþkþ1ln�k

p� 2 þ n þ kð Þ

� F n þ 1

2
; k þ 1

2
; 2 þ n þ k; k2

� 	
ð124Þ
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It is known [275] that the hypergeometric function Fða; b; c; zÞ with half-

integral parameters a; b and an integral parameter c can be expressed in terms of

the complete elliptic integrals

KðkÞ ¼
ðp=2

0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 sin2a

p ¼ p
2

F
1

2
;

1

2
; 1; k2

� 	
ð125Þ

EðkÞ ¼
ðp=2

0

da
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 sin2a

p
¼ p

2
F � 1

2
;

1

2
; 1; k2

� 	
ð126Þ

In particular

xð1Þ1 ¼ 2

p
lðkÞEðkÞ; Zð1Þ

1 ¼ 2

pk
~k2 KðkÞ � EðkÞ
� �

ð127Þ

rð1Þ3 ¼ 2l2ðkÞ
3pk

1 � 2k2
 �

EðkÞ � ~k2 KðkÞ
� �

ð128Þ

rð1Þ�3 ¼ � 2

3pk2lðkÞ 2 � k2
 �

EðkÞ � 2~k2 KðkÞ
� �

ð129Þ

where

~k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p
¼ 1 þ S2ð2tÞ
� ��1=2 ð130Þ

and lðkÞ is as defined in (50).

The general structure of the coefficients rð1Þm (we confine ourselves to the case

p ¼ 2) is as follows

rð1Þ2mþ1 ¼ 2lmþ1ðkÞ
pkm

fm k2
 �

EðkÞ þ ~k2gm k2
 �

KðkÞ
� �

ð131Þ

rð1Þ�2m�1 ¼ 2

pkmþ1lmðkÞ rm k2
 �

EðkÞ þ ~k2sm k2
 �

KðkÞ
� �

ð132Þ

where fmðxÞ; gmðxÞ; rmðxÞ; smðxÞ are the polynomials of the degree m which can

be found from the recurrence relations (67).

The photon generation rate from vacuum in the principal cavity mode

(m ¼ 1) reads

dN
ðvacÞ
1

dt
¼ �2Re½Zð1Þ

1 xð1Þ1 � ¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2k2

p
p2k

EðkÞ EðkÞ � ~k2KðkÞ
� �

ð133Þ

The average number of photons in the first mode can be obtained by integrating

this equation. It is convenient to integrate with respect to the variable k, taking
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into account the relation (for p ¼ 2, e.g.)

dk ¼ 2b~k2dt; b ¼ Rel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2k2

p
For example, in the case of the quadrature variance U1, we arrive at the equation

dU1

dk
¼ � 2

p2~k2k2b
k2 1 � 2g2k2
 �

þ 1 � 2bk
� �

E2ðkÞ
,

�2~k2ð1 � bkÞEðkÞKðkÞ þ ~k4K2ðkÞ
-

ð134Þ

Let us consider first the case g ¼ 0, when b ¼ 1. Taking into account the

differentiation rules [276]

dKðkÞ
dk

¼ EðkÞ
k~k2

� KðkÞ
k

;
dEðkÞ

dk
¼ EðkÞ � KðkÞ

k
ð135Þ

we may suppose that the factor ~k2 in the denominator of the right-hand side of

Eq. (134) comes from the derivative dK=dk. Thus it is natural to look for the

solution in the form

U1 ¼ 2

p2k
AðkÞK2ðkÞ þ BðkÞKðkÞEðkÞ þ CðkÞE2ðkÞ
� �

ð136Þ

where AðkÞ, BðkÞ, and CðkÞ are some polynomials of k. Putting the expression

(136) into equation (134), we obtain a set of coupled equations for the unknown

functions A;B;C. Writing AðkÞ ¼ a0 þ A1ðkÞ, BðkÞ ¼ b0 þ B1ðkÞ, and CðkÞ ¼
c0 þ C1ðkÞ, we determine the constant coefficients a0, b0, and c0 by putting

k ¼ 0 in that equations. Then we obtain new equations for the functions A1ðkÞ,
B1ðkÞ, and C1ðkÞ and repeat the procedure. After a few steps we arrive at the

equations that have obvious trivial solutions An ¼ Bn ¼ Cn ¼ 0. This confirms

our hypothesis on the polynomial structure of the functions AðkÞ, BðkÞ, and

CðkÞ and gives the final answer. The equations for the variances Um, Vm, and so

on with m � 3 can be integrated in the same manner; the only difference is that

one should write km instead of k in the denominator of the expression such as

(136). In the generic case g 6¼ 0, we notice that the factor b can appear in the

denominator of the expression (134) as a result of differentiating the function

bðkÞ, since db=dk ¼ �g2k=b. Therefore we split each function, A;B;C in the

‘‘b-even’’ and ‘‘b-odd’’ parts such as A ¼ AeðkÞ þ bðkÞAoðkÞ. The equations

for the ‘‘even’’ and ‘‘odd’’ coefficients turn out to be independent, and we solve

them using the procedure described above.
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The results of the integrations are as follows:

N
ðvacÞ
1 ðkÞ ¼ 2

p2
KðkÞ 2EðkÞ � ~k2KðkÞ

� �
� 1

2
ð137Þ

U1 ¼ 2

p2k
~k2ðb� kÞK2ðkÞ � 2ðb� kÞKðkÞEðkÞ þ bE2ðkÞ
� �

V1 ¼ 2

p2k
2ðbþ kÞKðkÞEðkÞ � ~k2ðbþ kÞK2ðkÞ � bE2ðkÞ
� �

Y1 ¼ 2g
p2

~k2K2ðkÞ � 2KðkÞEðkÞ þ E2ðkÞ
� �

Making the transformation [269,270]

K
1 � ~k
1 þ ~k

� 	
¼ 1 þ ~k

2
KðkÞ; E

1 � ~k
1 þ ~k

� 	
¼ EðkÞ þ ~kKðkÞ

1 þ ~k

one can rewrite formulas (127) and (137) in the form found for the first time in

Ref. 189 (in the special case of g ¼ 0). Using the asymptotic expansions of the

elliptic integrals at k ! 1 [276]

KðkÞ � ln
4

~k
þ 1

4
ln

4

~k
� 1

� 	
~k2 þ � � �

EðkÞ � 1 þ 1

2
ln

4

~k
� 1

2

� 	
~k2 þ � � �

one can obtain the formula

N
ðvacÞ
1 ðt � 1Þ ¼ 8a

p2
tþ 4

p2
ln

2

a

� 	
� 1

2
þ O te�4at

 �
; a > 0 ð138Þ

In the special case of g ¼ 1 one can obtain the expansion

N
ðvacÞ
1 ðt � 1Þ ¼ 4

p2
ln tþ 12

p2
ln 2 � 1

2
þ O t�2

 �
If g > 1, the number of photons in the principal mode oscillates with the period

p=ð2~aÞ. For g � 1 one can write k � sinð2~atÞ=~a, i.e. jkj � 1. In this case

N
ðvacÞ
1 � k2

4
� sin2ð2~atÞ

4~a2
� 1
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Equation (100) yields the minimal and maximal invariant variances

u1 ¼ 2

p2k
~k2ð1 � kÞK2ðkÞ � 2ð1 � kÞKðkÞEðkÞ þ E2ðkÞ
� �

ð139Þ

v1 ¼ 2

p2k
2ð1 þ kÞKðkÞEðkÞ � ~k2ð1 þ kÞK2ðkÞ � E2ðkÞ
� �

ð140Þ

which depend on the detuning parameter g only implicitly, through the

dependence on g of the function kðtÞ. In the short-time limit t � 1 (then

k � 2t) we obtain, using the Taylor expansions of the complete elliptic

integrals, u1 ¼ 1
2
� tþ t2 þ � � � and v1 ¼ 1

2
þ tþ t2 þ � � � in accordance with

Dodonov et al. [124]. More precisely

u1

v1

)
¼ 1

2
1 � kþ 1

2
k2 � 1

4
k3 þ 7

32
k4 þ � � �

� 	
The minimal variance u1 monotonously decreases from the value 1

2
at t ¼ 0 to

the constant asymptotic value 2=p2 at t � 1, confirming qualitatively the earlier

evaluations [107,110] and giving almost 50% squeezing in the initial vacuum

state. The variance of the conjugate quadrature monotonously increases, and for

t � 1 it becomes practically linear function of time: v1ðt � 1Þ � 16t=p2. The

asymptotic minimal value u1ðt ¼ 1Þ does not depend on g provided g � 1

(only the rate of reaching this asymptotic value decreases with g as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
).

In the strongly detuned case, g > 1, the minimal variance oscillates as a

function of t (it is always greater than 2=p2), since in this case the function

kðtÞ oscillates between �g�1 and g�1.

The minimal variance does not go to zero when t ! 1 because of the strong

intermode interaction, which results in a high degree of quantum mixing for

each mode. Since the state originating from the initial vacuum state belongs to

the class of Gaussian states (see the next subsection), the quantum ‘purity’

wm � Tr r̂2
m of the mth field mode (described by means of the density matrix r̂m)

can be expressed in terms of the (co)variances as [277] wm ¼ 4 UmVm�ð½
Y 2

mÞ�
�1=2

. Using equations (117) and (118), one can check that for t � 1,

UV � Y 2 ¼ 2Fuð1Þ þ Oð1Þ � t. Consequently, the purity factor w asymptoti-

cally goes to zero as t�1=2. For instance, for m ¼ 1, we have (writing simply K
and E instead of KðkÞ and EðkÞ)

w1 ¼ p2

4
k 4KE3 þ 4~k4 K3E � 6~k2 K2E2 � E4 � ~k6 K4
� ��ð1=2Þ ð141Þ

The initial dependence on k is rather weak: wðk � 1Þ ¼ 1 � 3
32
k4 þ � � �. But

when k ! 1, w rapidly goes to zero: wð~k � 1Þ � ð8=p2Þ ln 4=~kð Þ½ ��1=2
, with

dw=dk ! �1.
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The expressions for the variances in the modes with numbers m � 3 are rather

involved. Here we give only one explicit example—the variance U3 for g ¼ 0:

U3 ¼ 2

9p2k3
~k2ð1 � kÞ 4 þ 10kþ 9k2

 �
K2ðkÞ

�
þð1 � kÞ 4k3 � 14k2 � 20k� 8

 �
KðkÞEðkÞ

þ 4k4 þ 6k3 � k2 þ 6kþ 4
 �

E2ðkÞ
�

ð142Þ

The Taylor expansion of the right-hand side of (142) coincides with the

expansion (94). The asymptotical value at t ! 1 equals U3ðk ¼ 1Þ ¼
38=ð9p2Þ � 0:43. We see that the squeezing rapidly disappears with increase

of the mode number m. The variance V3 can be obtained from (142) by means of

a simple substitution k ! �k. Therefore, the mean number of photons in the

third mode is given by

N3 ¼ 2

3p2k2
3k2 � 2
 �

K 2E � ~k2K
 �

þ 2 1 þ k2
 �

E2
� �

� 1

2
ð143Þ

The second derivative of the total mean number of photons created from

vacuum in all the modes (107) takes the form

d2NðvacÞ

dt2
¼ 8

p2k2
~k4K2 � 2~k2KE þ 1 þ k2 � 2g2k4

 �
E2

� �
ð144Þ

Integrating this equation with the account of the condition dNðvacÞ=dt ¼ 0 at

t ¼ 0 [which is a trivial consequence of Eq. (106)], we obtain a very simple

expression:

NðvacÞ ¼ 2

p2
KðkÞ KðkÞ � EðkÞ½ � ð145Þ

In the limiting cases this formula yields

NðvacÞðt � 1Þ � t2

NðvacÞðt � 1Þ ¼ 8a2t2

p2
þ OðtÞ; a > 0

If g � 1, then jkj � 1, but g2k2 � sin2ð2~atÞ � Oð1Þ. In this case the Taylor

expansion of the second derivative yields �NðvacÞ ¼ 2cosð4~atÞ þ Oðg�2Þ. In-

tegrating this equation with account of the initial conditions _NðvacÞð0Þ ¼
NðvacÞð0Þ ¼ 0, one obtains NðvacÞ � N

ðvacÞ
1 � sin2ð2~atÞ=ð4~a2Þ.

D. Photon Distribution

Now let us turn to the photon distribution function (PDF) f ðnÞ � hnjr̂mðtÞjni,
where jni is the multimode Fock state, n � n1; n2; . . .ð Þ, and r̂mðtÞ is the time-

dependent density matrix of the mth field mode in the Schrödinger picture. Note

that all the calculations in the preceding sections were performed in the
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framework of the Heisenberg picture. Nonetheless, the available information is

sufficient to calculate the PDF for the special (but very important) class of

Gaussian initial states (defined as the states whose density matrices, or

wavefunctions, or Wigner functions, are described by some Gaussian exponen-

tials). This class includes coherent, squeezed, and thermal states; in particular, it

includes the vacuum state.

The solution is based on two key points. The first one is the statement

[170,176,183–185] that the field evolution in a cavity with moving boundaries

can be described not only in the Heisenberg picture but, equivalently, in the

framework of the Schrödinger picture, with a quadratic multidimensional time-

dependent Hamiltonian. The second key point is the fact [278,279] that the

evolution governed by quadratic Hamiltonians transforms any Gaussian state to

another Gaussian state. Knowing these facts, it remains to take into account that

the photon distribution function of any Gaussian state is determined completely

by the average values of quadratures and by their variances [280,281], which

obviously do not depend on the quantum-mechanical representation.

In the most compact form the information on the photon distribution f ðnÞ in

some mode (we suppress here the mode index) is contained in the generating

function

GðzÞ ¼
X1
n¼0

f ðnÞzn

For a generic one-mode Gaussian state it can be expressed as [192,280,281]

GðzÞ ¼ ½GðzÞ��1=2
exp

1

D

zg1 � z2g2

GðzÞ � g0

� �� 	
ð146Þ

where

GðzÞ ¼ 1

4
½ð1 þ zÞ2 þ 4 UV � Y2

 �
ð1 � zÞ2 þ 2ðU þ VÞ 1 � z2

 �
� ð147Þ

D ¼ 1 þ 2ðU þ VÞ þ 4 UV � Y2
 �

¼ 4Gð0Þ

g0 ¼ hp̂i2ð2U þ 1Þ þ hq̂i2ð2V þ 1Þ � 4hp̂ihq̂iY

g1 ¼ 2hp̂i2
U2 þ Y2 þ U þ 1

4

� 	
þ 2hq̂i2

V2 þ Y2 þ V þ 1

4

� 	
� 4hp̂ihq̂iYðU þ V þ 1Þ

g2 ¼ 2hp̂i2
U2 þ Y2 � 1

4

� 	
þ 2hq̂i2

V2 þ Y2 � 1

4

� 	
� 4hp̂ihq̂iYðU þ VÞ
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In the generic case f ðnÞ is related to the two-dimensional ‘‘diagonal’’ Hermite

polynomials [280]:

f ðnÞ ¼ F0

n!
HfRg

nn x; x�ð Þ ð148Þ

where

F0 ¼ f ð0Þ ¼ 2D�1=2 exp
�g0

D

� �
x ¼

ffiffiffi
2

p
ð2V � 1Þhq̂i � 2Yhp̂i þ i ð1 � 2UÞhp̂i þ 2Yhq̂i½ �f g

2ðU þ VÞ � 4 UV � Y2ð Þ � 1

and 2 � 2 symmetric matrix R has the elements

R11 ¼ R�
22 ¼ 2

D
ðV � U � 2iYÞ; R12 ¼ R21 ¼ 1

D
1 � 4 UV � Y2

 �� �
The two-dimensional Hermite polynomials are defined via the expansion [269]

exp � 1

2
aRa þ aRx

� 	
¼
X1

m;n¼0

am
1 an

2

m!n!
HfRg

mn x1; x2ð Þ ð149Þ

where x ¼ x1; x2ð Þ, a ¼ a1; a2ð Þ. The properties of these polynomials were

studied in 1994 [281,282]. In particular, they can be expressed as finite sums of

the products of the usual (one-dimensional) Hermite polynomials. The corre-

sponding formula for the probabilities reads as [280]

f ðnÞ ¼ F0
�

D

� 	nXn

k¼0

S

�

� 	k
n!

½ðn � kÞ!�2k!
Hn�kðxÞj j2 ð150Þ

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � VÞ2 þ 4Y2

q
; S ¼ 4 UV � Y2

 �
� 1

x ¼ ð2V þ 1Þhq̂i � 2Yhp̂i þ i ð1 þ 2UÞhp̂i � 2Yhq̂i½ �
2DðV � U � 2iYÞ½ �1=2

If hp̂i ¼ hq̂i ¼ 0, then the generating function (146) is reduced to ½GðzÞ��1=2
,

that is, it has the same structure as the known generating function of the

Legendre polynomials PnðxÞ. In this case, we have the following expression for
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the photon distribution in the mth field mode:

fmðnÞ ¼
2 ð2um � 1Þð2vm � 1Þ½ �n=2

ð2um þ 1Þð2vm þ 1Þ½ �ðnþ1Þ=2
Pn

4umvm � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2

m � 1
 �

4v2
m � 1

 �q
0B@

1CA ð151Þ

This depends only on the invariant minimal and maximal variances um and vm.

Note that the argument of the polynomial in (151) is always outside the

‘‘traditional’’ interval ð�1; 1Þ (in particular, this argument is purely imaginary

if 2um < 1), being exactly equal to 1 for the ‘‘nonprincipal’’ modes with

um ¼ vm ¼ Nm þ 1
2
, when formula (151) transforms to the time-dependent

Planck distribution

fmðn; tÞ ¼
Nn

mðtÞ
NmðtÞ þ 1½ �nþ1

Only for the ‘‘principal’’ m modes is the spectrum of photons different from

Planck’s one because of the squeezing effect.

The function (151) can be simplified in the long-time limit t � 1, when the

average number of created photons N � �n � ðV þ UÞ=2 exceeds 1. Then the

mean-square fluctuation of the photon number has the same order of magnitude

as the mean photon number itself,
ffiffiffiffiffiffi
sn

p �
ffiffiffi
2

p
N, and the most significant part

of the spectrum corresponds to the values n � 1. Using the Laplace–Heine

asymptotical formula for the Legendre polynomial [283]

PnðzÞ �
z þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p �nþ1=2ffiffiffiffiffiffiffiffi
2pn

p
z2 � 1ð Þ1=4

; n � 1

one can simplify (151) for the fixed values of the invariant variances u and v
as

f ðnÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnðv� uÞ

p 2v� 1

2vþ 1

� 	nþ1=2

ð152Þ

provided the positive difference v� u is not too small. Another approximate

formula can be used if v � 1 but u � 1:

f ðnÞ �
ffiffiffi
2

p
ð2u � 1Þn=2ffiffiffi

v
p ð2u þ 1Þðnþ1Þ=2

e�n=ð2vÞPn

2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2 � 1

p
� 	

; n � 8v2 ð153Þ
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The first and second derivatives of the generating function (146) at z ¼ 1

yield the first two moments of the photon distribution (hereafter we suppress

subscript m)

�n ¼ 1

2
ðu þ v� 1Þ; sn � n2 � ð�nÞ2 ¼ 1

4
2u2 þ 2v2 � 1
 �

ð154Þ

which result in the Mandel parameter [284]

Q � sn

�n
� 1 ¼

u2 þ v2 � u � vþ 1
2

u þ v� 1
ð155Þ

This parameter appears positive for all values of t, so the photon statistics is

super-Poissonian, with strong bunching of photons (the pair creation of photons

in the NSCE was discussed elsewhere [142,198,200,213]). In particular,

Q2mþ1ðt ! 0Þ � ðm þ 1Þð2m � 1Þ!!
m!

� �2 t2m

2m þ 1
; Q1ð0Þ ¼ 1;

whereas Qm � VmðtÞ � 1 for t � 1 (if g � 1).

VII. ENERGY AND FORMATION OF PACKETS

A. Energy Density

The mean value of the energy density operator in one space dimension

Ŵðx; tÞ ¼ 1

8p
qÂ

qt

 !2

þ qÂ

qx

 !2
24 35 ð156Þ

at t � T equals (hereafter we assume L0 ¼ 1, i.e. o1 ¼ p)

~Wðx; tÞ ¼ p
X1

m; j¼1

ffiffiffiffiffi
mj

p
cos ½pðm þ jÞx�Re½hâmâjie�ipðmþjÞt0 �
n

þ 1

2
cos ½pðm � jÞx�½hây

mâjieipðm�jÞt0 þ hâmâ
y
j ie�ipðm�jÞt0 �

 
ð157Þ

where the quantum mechanical averaging h� � �i is performed over the initial

state of the field (the Heisenberg picture) and t0 � t þ dT .
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1. Regularization and Casimir’s Energy

Because of the commutation relations ½âm; â
y
j � ¼ dmj, the series (157) contains

the vacuum divergent ‘‘diagonal’’ part with m ¼ j:

~W ðvacÞ ¼ ðp=2Þ
X1
m¼1

mexpð�ipmt0 þ ipmt0Þ ð158Þ

The recipe for regularizing this divergence was given by Fulling and Davies

[81]. One should write the first term in the argument of the exponential in (158)

as it stands, but to replace t0 in the second term by t0 þ iZ, Z > 0 (this is the so-

called point-splitting method). Then the sum becomes convergent, giving

~W ðvacÞðZÞ ¼ ðp=2Þ
X1
m¼1

me�mpZ ¼ ðp=8Þ sinh
pZ
2

� �h i�2

The Taylor expansion of this function reads ~W ðvacÞðZÞ ¼ ð2pZ2Þ�1� p=24þ
OðZ2Þ. According to [81], one should remove the divergent term ð2pZ2Þ�1

and

after that proceed to the limit Z ! 0. This limit value gives us the known

expression for the one-dimensional negative vacuum Casimir energy [81,117–

120] (which does not depend on the coordinate x in the case involved):

~W ðCasÞ ¼ �p
24

or � p�hc

24L2
0

in the dimensional units

� 	
ð159Þ

Extracting this vacuum energy from ~W , we arrive at the expression

W � ~W � ~W ðCasÞ ¼ p
X1

m; j¼1

ffiffiffiffiffi
mj

p
Re½hâmâjicos ½pðm þ jÞx�e�ipðmþjÞt0

þ hây
mâjicos ½pðm � jÞx�eipðm�jÞt0 � ð160Þ

The same expression (160) can be obtained if one calculates the mean value of

the normally ordered (with respect to the operators ây
n and ân) counterpart of the

operator (156) [164]. Then the total energy (without the vacuum part) assumes

the usual form

E ¼
ðL0

0

Wðx; tÞdx ¼
X1
n¼1

onhây
nâni ð161Þ

which justifies the choice of the normalization in (12) and (21).

Since the initial quantum state was defined with respect to the ‘‘in’’ operators

b̂y
n and b̂n, we must express the ‘‘out’’ operators ây

m and âm in terms of b̂y
n and b̂n
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by means of formula (22). Thus we arrive at the expression containing a

combination of the mean values hb̂nb̂ki, hb̂y
nb̂

y
ki, hb̂y

nb̂ki, and hb̂nb̂
y
ki calculated in

the initial quantum state. For the initial vacuum state defined according to the

relations b̂nj0i ¼ 0, n ¼ 1; 2; . . . , the only nonzero mean values are hb̂nb̂
y
ki ¼

dnk. Then (160) is transformed into the triple sum

W0ðx; tÞ ¼ p
X1

n;m;j¼1

mj

n
Refcos ½pðm � jÞx�eipðm�jÞt0rðnÞ�mr

ðnÞ�
�j

� cos ½pðm þ jÞx�eipðmþjÞt0rðnÞ�mr
ðnÞ�
j g ð162Þ

Evidently, W0ðx; tÞ ¼ 0 for t � 0. For an arbitrary initial state the energy density

can be written as a sum of the ‘‘vacuum’’ and ‘‘nonvacuum’’ contributions

W ¼ W0 þ W1; W1 ¼ p
X1
n;k¼1

1ffiffiffiffiffi
nk

p Re½hb̂nb̂kiBðnkÞ þ hb̂y
nb̂ki~BðnkÞ� ð163Þ

where

BðnkÞ ¼
X1

m; j¼1

mjfcos ½pðm þ jÞx�½e�ipðmþjÞt0rðnÞm rðkÞj þ eipðmþjÞt0rðnÞ�mr
ðkÞ
�j �

� cos ½pðm � jÞx�½e�ipðm�jÞt0rðnÞm rðkÞ�j þ eipðm�jÞt0rðnÞ�mr
ðkÞ
j �g ð164Þ

~BðnkÞ ¼
X1
m;j¼1

mjfcos ½pðm � jÞx�½e�ipðm�jÞt0rðnÞ��m rðkÞ�j þ eipðm�jÞt0rðnÞ�m rðkÞj �

� cos ½pðm þ jÞx�½e�ipðmþjÞt0rðnÞ��m rðkÞj þ eipðmþjÞt0rðnÞ�m rðkÞ�j �g ð165Þ

Changing the summation index j ! �j in the first term of (162), we can write

W0ðx; tÞ ¼ �pRe
X1
n¼1

X1
m¼1

X1
j¼�1

mj

n
cos ½pðm þ jÞx�eipðmþjÞt0rðnÞ�mr

ðnÞ�
j

Similarly, changing the indices m ! �m or j ! �j in (164) and (165), we can

reduce four sums with apparently different summands and the indices running

from 1 to 1 to the unified sums whose two indices run from �1 to 1:

BðnkÞ ¼
X1

m; j¼�1
mjcos ½pðm þ jÞx�e�ipðmþjÞt0rðnÞm rðkÞj

~BðnkÞ ¼
X1

m; j¼�1
mjcos ½pðm � jÞx�eipðm�jÞt0rðnÞ�m rðkÞj
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Now, replacing the cosine function by the sum of two imaginary exponentials,

we see that Wðx; tÞ is actually the sum of two identical functions of the light-

cone variables:

Wðx; tÞ ¼ p
2

Fðu; tÞ þ Fðv; tÞ½ �; u ¼ t0 þ x; v ¼ t0 � x ð166Þ

where

F ¼ F0 þ
X1
n;k¼1

1ffiffiffiffiffi
nk

p Re½hb̂nb̂kiFðnkÞ þ hb̂y
nb̂ki~FðnkÞ� ð167Þ

F0ðu; tÞ ¼ �Re
X1
n¼1

X1
m¼1

X1
j¼�1

mj

n
eipðmþjÞurðnÞ�mðtÞr

ðnÞ�
j ðtÞ ð168Þ

FðnkÞðu; tÞ ¼
X1

m¼�1

X1
j¼�1

mje�ipðmþjÞurðnÞm ðtÞrðkÞj ðtÞ ð169Þ

~FðnkÞðu; tÞ ¼
X1

m¼�1

X1
j¼�1

mjeipðm�jÞurðnÞ�m ðtÞrðkÞj ðtÞ ð170Þ

The extra argument t in the preceding expressions is introduced in order to

emphasize that the energy density depends not only on the value of the current

time variable t [which must satisfy the condition t > ð1 þ dÞT] but also on the

moment of time T when the wall stopped moving. It is worth mentioning that

the variables t and t are independent, as are u and t or v and t.

Evidently, the double sums (169) and (170) are factorized to the products of

independent sums over m and j:

FðnkÞðu; tÞ ¼ GðnÞðu; tÞGðkÞðu; tÞ; ~FðnkÞðu; tÞ ¼ GðnÞ�ðu; tÞGðkÞðu; tÞ

GðnÞðu; tÞ ¼
X1

m¼�1
me�ipmurðnÞm ðtÞ ¼ i

p
q
qu

X1
m¼�1

e�ipmurðnÞm ðtÞ ð171Þ

The last sum in (171) can be easily expressed in terms of the generating

function (74) if one writes n ¼ j þ kp, m ¼ j þ lp, and z ¼ expð�ippuÞ. Thus

we obtain

GðnÞðu; tÞ ¼ nz zgðptÞ þ sSðptÞ½ �n=p�1

g�ðptÞ þ zsSðptÞ½ �n=pþ1

�����
z¼ exp ð�ippuÞ

¼ nf 1=2�n=p ð172Þ
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where

f ðu; kÞ ¼ g�ðptÞ þ zsSðptÞj j�4¼ 1 � k2ð Þ2

1 þ k2 þ 2skcosðppu � jÞ½ �2
ð173Þ

� ¼ zgðptÞ þ sSðptÞ
g�ðptÞ þ zsSðptÞ ¼ eið2j�ppuÞ 1 þ skexp ½iðppu � jÞ�

1 þ skexp ½iðj� ppuÞ� ð174Þ

k ¼ SðptÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ S2ðptÞ

p ; expðijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2k2

p
þ igk

In the ‘‘vacuum’’ contribution (168) we have some asymmetry between the

indices m and j, since m runs from 1 to 1, whereas j runs from �1 to 1. This

asymmetry can be eliminated if one differentiates both sides of equation (168)

with respect to the independent variable t at a fixed value of u and performs the

summation over the superscript n with the aid of the recurrence relations (87)

and (88). It is easy to verify that all the summands with n � p are canceled, so

the infinite series over n can be reduced to the finite sum from 1 to ðp � 1Þ:

qF0ðu; tÞ
qt

¼ �sRe
Xp�1

n¼1

X1
m¼1

X1
j¼�1

mj eipðmþjÞu

� ½rðnÞ�mðtÞr
ðp�nÞ
�j ðtÞ þ rðp�nÞ�

m ðtÞrðnÞ�j ðtÞ� ð175Þ

Changing the summation indices m ! �m, j ! �j, n ! p � n in the first

product inside the square brackets, one can reduce two sums in the right-hand

side of (175) to the single series where both the indices m and j run from �1 to

1. Moreover, the sums over m and j become completely independent, giving

rise to the equation

qF0ðu; tÞ
qt

¼ �sRe
Xp�1

n¼1

GðnÞðu; tÞGðp�nÞðu; tÞ ð176Þ

where GðnÞðu; tÞ is given by (171). As a result of (172), the sum in the right-

hand side of (176) is reduced to the sum
Pp�1

n¼1 nðp � nÞ ¼ 1
6

pðp2 � 1Þ.
Introducing the variable Z ¼ expð2aptÞ, we obtain the explicit expression

qF0ðu;ZÞ
qZ

¼ � ðp2 � 1Þa4Z Z2ð1 þ aþ bÞ þ a� b� 1½ �
12 Z2ð1 þ aþ bÞ � 2Zðg2 þ bÞ þ 1 þ b� a½ �3

ð177Þ

where a ¼ sacosðppuÞ and b ¼ sgsinðppuÞ. Integrating (177) with the initial

condition F0 ¼ 0 at t ¼ 0 (or Z ¼ 1), we arrive after some algebra at the simple
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expression

F0ðu; kÞ ¼ B f ðu; kÞ � 1½ �; B � p2 � 1

24
ð178Þ

where function f ðu; kÞ is given by (176). Finally, we obtain the following

expression for the function Fðu; tÞ defined by Eq. (166):

F ¼ �Bþ f ðu; tÞ Bþ
X1
n;k¼1

ffiffiffiffiffi
nk

p
Re½hb̂nb̂ki�ðnþkÞ=p þ hb̂y

nb̂ki�ðk�nÞ=p�
( )

ð179Þ

In the special case of the initial states whose density matrix is diagonal in the

Fock basis, so that hb̂y
nb̂ki ¼ nndnk and hb̂nb̂ki ¼ 0 (e.g., the Fock or thermal

states; nn is the mean number of quanta in the nth mode), the sum in (179) is

proportional to the initial total energy E0 in all the modes (above the Casimir

level):

FðdiagÞðu; tÞ ¼ �Bþ f ðu; tÞ BþN0½ � ð180Þ

N0 ¼
X1
n¼1

nnn ¼ E0

p
� E0

�ho1

B. Packet Formation

Now let us analyze the expressions for the energy density obtained above. For

the initial vacuum state we see immediately from equations (173) and (178) that

in the generic case the function W0ðx; tÞ with the fixed value of the ‘‘fast time’’ t

has p peaks in the interval 0 � x � 1, whose positions are determined by the

equations scosðppu � jÞ ¼ �1 and scosðppv� jÞ ¼ �1. Obviously, for

t > T the energy density is a periodic function of the time variable t, with the

period �t ¼ 1 if p is an even number and �t ¼ 2 if p is odd.

For the even values of the resonance multiplicity p, we have p=2 peaks

moving (with the light speed) in the positive direction and p=2 peaks moving in

the negative direction. If p is odd, then the numbers of peaks of each kind differ

by 1. All the peaks have the same height

W ðvacÞ
max ¼ 2pBk

ðk� 1Þ2
¼ p

2
B e4pt � 1
 �

ð181Þ

(in this section the expressions containing t are related to the special case of the

strict resonance g ¼ 0), except for some distinguished instants of time when two
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peaks moving in the opposite directions merge, forming a peak with double the

height.

If k ! 1 (i.e., t > 1 and g < 1), then the energy density can be approximated

in the vicinity of each peak by the Lorentz-like distribution

W ðvacÞðdxÞ ¼ W
ðvacÞ
max

½1 þ 2dx=�1=4

 �2�2
ð182Þ

where the width

�1=4 ¼ 2

pp
1 � kffiffiffi

k
p � 4

pp
e�2pt

of each peak is defined as the double distance between the position of the

maximum and the point where the energy density decreases 4 times. One can

also introduce the ‘‘energy width’’ of each peak by means of the relation

Wmax�E ¼ EðtÞ=p. For k ! 1, we obtain

�E � 1 � k
2pp

� ðppÞ�1
e�2pt

Except for narrow regions of the length �þ � ðppÞ�1
ffiffiffiffiffiffiffiffiffiffiffi
1 � k

p
�

ffiffiffi
2

p
ðppÞ�1

e�pt

nearby the peaks the ‘‘dynamical’’ energy density is less than its initial vacuum

value, in agreement with other results [112,164,165,168] obtained in the

framework of different approaches. The minimum values of W0 far off peak

are given by [taking into account the contributions of both the functions F0ðuÞ
and F0ðvÞ]

Wmin ¼ �4pB
k

ðkþ 1Þ2
¼ pB e�4pt � 1

 �
ð183Þ

If k ! 1, Wmin ! �p p2 � 1ð Þ=24. Adding to this expression the initial Casimir

energy (159), we obtain the total asymptotical minimum value [164]

~W
ðasÞ
min ¼ �pp2

24
ð184Þ

For an arbitrary initial state the energy density has, besides the ‘‘vacuum’’

part, the additional terms given in Eq. (179). Since these terms are proportional

to the same functions f ðu;kÞ or f ðv; kÞ, which determine the structure of the

‘‘vacuum’’ part, the positions of the peaks are not changed (remember that

j�j ¼ 1). For the initial states with diagonal density matrices in the Fock basis
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(in particular, for the thermal states) all the peaks still have equal heights,

increased by the quantity �Wmax ¼ 1
2
E0ð1 þ kÞ2=ð1 � kÞ2

, compared with the

vacuum case. However, the asymptotical minimal value of the energy density at

k ! 1 does not depend on the initial state, as it is given by formula (184) for all

the cases.

If the initial density matrix in the Fock basis has nonzero off-diagonal

elements (as occurs, in particular, for any pure state different from the Fock one,

e.g., for the coherent states), different terms in the sum (179) can interfere. As a

consequence, the peaks acquire some kind of ‘‘fine structure.’’ For example, if

only the first mode was excited initially in the coherent state jai,
a ¼ jajexpðicÞ, then for p ¼ 2 and g ¼ 0 (the strict resonance), we have

�W � W � W ðvacÞ ¼ pjaj2 1 � k2ð Þ2 ksinðz þ cÞ þ sinðz � cÞ½ �2

½ð1 � kÞ2 þ 4ksin2z�3

where z � p u � u�ð Þ and u� is the position of the vacuum peak determined

above. If c ¼ p=2, then we have the high maximum �W max
p=2 ¼ pjaj2ð1 þ kÞ2=

ð1 � kÞ2
at z ¼ 0. However, if c ¼ 0, then instead of a maximum, we have the

minimum �W ¼ 0 at the same point z ¼ 0, and the peak is split in two

symmetric humps with equal maximal heights �W max
0 ¼ ð½1 þ k�2=27kÞ�W max

p=2

located at the points sin z ¼ 
ð1 � kÞ=
ffiffiffiffiffiffi
8k

p
. In the intermediate case 0 < c <

p=2 asymmetric forms of the peaks are observed. If p > 2 or several modes

were excited initially, the interference between different terms in (179) can

result in different heights of the peaks and more complicated fine structures

[provided hb̂nb̂ki 6¼ 0 for some n and k].

If the detuning g is different from zero, then some deformations of the form

of peaks are observed, although the maximal heights are still of the same order

of magnitude as in the case g ¼ 0, as far as g � 1. But if the detuning exceeds

the critical value g ¼ 1, the energy becomes an oscillating function of the ‘‘slow

time’’ t, where the amplitude of oscillations is proportional to approximately

g2 � 1ð Þ�1
[191,192]. The peaks become rather wide and low, since the

parameter k is limited by the inequality k � g�1 if g > 1. The illustrations

can be found in Ref. 193.

Since the components of the energy-momentum tensor T00 and T11 are given

by similar expressions in the case of single space dimension, the force acting on

each wall has the same time dependence as the energy density at the points

x ¼ 0 and x ¼ 1. For the most part of time during the period of field oscillations

2L0=c (where L0 is the distance between the walls at rest), this force is negative,

as it is less than the static Casimir force, with the maximal amplification

coefficient p2. However, the average value of the force over the period is

positive because of the creation of real photons inside the cavity.
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If the walls possess some small transmission coefficient, then a small part of

radiation accumulated inside the cavity can leave it. In this case one could

observe sharp pulses of radiation outside the cavity [210], whose amplitudes

must be proportional to the heights of the peaks inside the cavity multiplied by

the small transmission coefficient. The intensity of these pulses can be

significantly increased, if the initial state is different from vacuum and possesses

sufficient energy, such as thermal states [210,211] or coherent states. However,

to describe the form of the pulses exactly, it is necessary to develop a more

general theory that would account for the boundary conditions corresponding to

the partially transmitting walls (because the nonzero transmission coefficient

can change significantly the pulse shape, just as the nonzero detuning deformed

the form of packets in the examples considered above).

C. Total Energy

The total energy (161) of the field inside the cavity (above the initial Casimir

level) can be obtained by integrating the density WðxÞ (166) over x. The

contribution of the vacuum [function F0 in (167)] and ‘diagonal’ terms (given

by the partial sum in (167) over n ¼ k) can be calculated with the aid of the

formula ðp
0

dx

ða þ bcosxÞ2
¼ pa

a2 � b2ð Þ1=2

To find the contribution of ‘‘nondiagonal’’ terms (n 6¼ k), it is convenient to

replace the integration over x by the integration in the complex z plane

(z ¼ exp ½�ippu� or z ¼ exp ½�ippv�) over the circle jzj ¼ 1. One can check

that this circle is passed p times when x goes from 0 to 1 (if one takes into

account both the u and v contributions). It turns out that the integrals of the

‘‘nondiagonal’’ terms are different from zero if and only if the corresponding

integrands in the z plane have simple poles inside the circle jzj ¼ 1. This occurs

only when k þ n ¼ p in the first term inside the square brackets in (179) and

k � n ¼ p in the second term inside the same brackets.

Finally we obtain a simple expression

EðtÞ ¼ E0 þ 2S2ðptÞ E0 þ pBþ gs
2

ImðGÞ
h i

� s
2

Sð2ptÞReðGÞ ð185Þ

where

G ¼ 2p
X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn þ pÞ

p
hb̂y

nb̂nþpi þ p
Xp�1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðp � nÞ

p
hb̂nb̂p�ni ð186Þ
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[if p ¼ 1, the last sum in (186) should be replaced by zero]. Formula (185) was

found for the first time in a different way by Dodonov [191]. In particular, for

the initial vacuum state of field we have

EðvacÞðtÞ ¼ p2 � 1

12a2
sinh2ðpatÞ ð187Þ

The total energy increases exponentially at t ! 1, provided g < 1. In the

special case g ¼ 0 such asymptotic behavior of the total energy was obtained

also in the frameworks of other approaches in [164–166,177]. Here we have

found the explicit dependence of the total energy on time in the whole interval

0 � t < 1, as well as a nontrivial dependence on the initial state of field, which

is contained in the constant parameter G. This parameter is equal to zero for

initial Fock or thermal states of the field. However, in a generic case G 6¼ 0, and

it can affect significantly the total energy, if Eð0Þ � 1. Consider, for example,

the case p ¼ 2. If initially the first mode (n ¼ 1) was in the coherent state jai
with a ¼ jajeif, jaj � 1, and all other modes were not excited, then

Eð0Þ ¼ jaj2, G ¼ a2, so for t � 1 and g ¼ 0 (exact resonance) we have

Eðt � 1Þ � 1
4
jaj2e4t 2 � cosð2fÞ½ �. The maximal value of the energy in this

case is 3 times greater than the minimal one, depending on the phase f.

According to (185), the initial stage of the evolution does not depend on the

detuning parameter g for all states that yield ImðGÞ ¼ 0, since at t ! 0 one has

EðtÞ � Eð0Þ � sReðGÞptþ 2 Eð0Þ þ p2 � 1

24
þ gs

2
ImðGÞ

� �
ðptÞ2 ð188Þ

Formula (188) is exact in the case of g ¼ 1.

If g > 1, then one should replace each function sinhðaxÞ=a in (185) by its

trigonometrical counterpart sinð~axÞ=~a [see Eq. (54)]. In this case the total

energy oscillates in time with the period p=ðp~aÞ, returning to the initial value at

the end of each period. For a large detuning g � 1 the amplitude of oscillations

decrease as g�1 if ReG 6¼ 0 and as g�2 otherwise.

Note that the total vacuum and nonvacuum energies increase exponentially

with time, if g < 1 and t > 1, whereas the total number of photons increases

only as t2 and t, respectively, under the same conditions. The origin of such a

great difference in the behaviors of the total energy and the total number of

photons becomes clear if one looks at the asymptotic formulas (102)–(104).

They show that the rate of photon generation in the mth completely excited

mode decreases approximately as _Nm � 1=m (except the modes whose

numbers are multiples of p), so the stationary rate of the energy generation
_Em ¼ m _Nm asymptotically almost does not depend on m. In turn, the number

of the effectively excited modes increases in time exponentially. These two
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factors lead to the exponential growth of the total energy (see also Ref. 163 in

the special case g ¼ 0).

VIII. THREE-DIMENSIONAL NONDEGENERATE CAVITY

A. Empty Cavity

Now let us proceed to the three-dimensional case. For definiteness we choose a

rectangular cavity with dimensions Lx; Ly; Lz (briefly designated by symbol

fLg). If these dimensions do not depend on time, each field mode is determined

by three integers m; n; l, responsible for the eigenfrequency

omnl ¼ p
m

Lx

� 	2

þ n

Ly

� 	2

þ l

Lz

� 	2
" #1=2

ð189Þ

and by two orthogonal directions of polarization. In order to simplify the

exposition and to get rid of extra unessential indices, let us consider the case

when Lz � Lx � Ly. Then the frequencies with l 6¼ 0 are much greater than

those with l ¼ 0. It is clear that the interaction between low- and high-frequency

modes in the nonstationary case is weak. Consequently, studying the excitation

of the lowest modes, we may confine ourselves to the case of l ¼ 0. Then the

only possible polarization of the vector potential is along z axis, so the low-

frequency part of the Heisenberg field operator at t < 0 reads

Âzðx; y; t < 0Þ ¼
X

n

2p
on

� 	1=2

cn x; yjfLgð Þ b̂ne�iont þ b̂y
neiont

� �
ð190Þ

The difference from the similar expression (12) is that now the suffix n is

replaced by its ‘‘vector’’ counterpart n ¼ ðm; nÞ, and the function cn x; yjfLgð Þ
depends on two space coordinates:

cn x; yjfLgð Þ ¼ 2 LxLyLz

 ��1=2
sin

mpx

Lx

sin
npy

Ly

The coefficients in Eq. (190) are chosen again to correspond to the standard

form of the field Hamiltonian (13).

Now let the dimension Lx to depend on time according to the given law LðtÞ.
To satisfy the boundary conditions

Azjx¼0 ¼ Azjx¼LðtÞ ¼ Azjy¼0 ¼ Azjy¼Ly
¼ 0
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we write the field operator at t > 0 in the same functional form (190), but with

the time-dependent parameter LðtÞ:

Âzðx; y; tÞ ¼ 2
ffiffiffi
p

p X
n

cnðx; yjLðtÞ; LyÞQ̂nðtÞ ð191Þ

In the stationary case the operators Q̂nðtÞ coincide with the (coordinate)

quadrature components of the field mode operators. Putting (191) into the

wave equation

q2Az

qt2
��Az ¼ 0

we arrive at the equation exactly resembling Eq. (18):

�Q
ðnÞ
k þ o2

kðtÞQ
ðnÞ
k ¼ 2lðtÞ

X
j

gkj
_Q
ðnÞ
j þ _lðtÞ

X
j

gkjQ
ðnÞ
j

þ l2ðtÞ
X

jl

gjkgjlQ
ðnÞ
l ð192Þ

Now lðtÞ ¼ _LðtÞ=LðtÞ, all the indices are ‘‘2-vectors,’’ the frequencies are given

by Eq. (189) with l ¼ 0 and LðtÞ instead of Lx, and the constant numerical

coefficients gkj are given by the integrals

gkj ¼ L

ðL

0

dx

ðLy

0

dy

ðLz

0

dzcjðrjLÞ
qckðrjLÞ

qL

The explicit form of two-dimensional coefficients gkj is more complicated than

a simple formula (19). However, these coefficients remain antisymmetrical:

gkj ¼ �gjk, due to the normalization of functions ck,ðfLg

0

drcmcn ¼ dmn

and due to zero boundary conditions at x ¼ L. (Moreover, they do not depend on

the cavity dimensions.)

Although we use the same notation as in the 1D case, the operators Q̂nðtÞ in

Eq. (191) differ from their analogs in a similar decomposition (17). Now Q̂nðtÞ
means the Hermitian operator coinciding with the (‘‘coordinate’’) quadrature

component of the field mode operator.

Suppose for simplicity that the wall oscillates at twice the eigenfrequency of

some unperturbed mode

LðtÞ ¼ L0 1 � EL cosð2omtÞ½ �; jELj � 1
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and let us look for the solution to Eq. (192) in the form

QkðtÞ ¼ xkðELtÞexp �ioktð Þ þ ZkðELtÞexp ioktð Þ ð193Þ

[we have omitted ‘‘hats’’ (inverted carets) over operators]. Contrary to the one-

dimensional case, now all the terms on the right-hand side of Eq. (192)

disappear after averaging over fast oscillations, since the spectrum oj is not

equidistant. Indeed, the first and the second sums on the right-hand side do not

contain functions Qk because of the antisymmetricity of coefficients gkj,

whereas the last sum is proportional to l2 � E2
L. Consequently, after multi-

plication by the proper exponential functions, the right-hand side will consist of

the terms containing the factors such as expði½
oj 
 ok 
 2om�tÞ with j 6¼ k.

After averaging all these terms turn into zero. [Strictly speaking, the frequency

spectrum (189) contains the ‘‘equidistant subset,’’ corresponding to the indices

m; n; l multiplicated by the same integral factors. However, this fact does not

change the conclusion, because the ‘‘coupling constants’’ gkj between such

modes are equal to zero.]

Consequently, in the resonance case the field problem is reduced [188,189]

to that of a one-dimensional parametric oscillator with the time dependence of

the eigenfrequency in the form

oðtÞ ¼ o0 1 þ 2~ecosð2o0tÞ½ � ð194Þ

where o0 � omn is the unperturbed eigenfrequency of the resonance mode.

Here the frequency modulation depth ~e is related to the cavity length modula-

tion depth EL as follows:

~e ¼ 1

2
EL 1 þ nL0

mLy

� 	2
" #�1=2

We use the notation ~e to avoid confusion between the dimensionless modulation

parameters in the one-dimensional and three-dimensional cases.

At this point we may abandon the Heisenberg picture and proceed to the

Schrödinger representation. Of course, both representations are equivalent, as

soon as the field problem has been reduced to studying a finite-dimensional

quantum system. However, the most of numerous investigations of the time-

dependent quantum oscillator, since Husimi’s paper [285], were performed in

the Schrödinger picture. So it is natural to use the known results. According to

several studies [279,285,286], all the characteristics of the quantum oscillator

are determined completely by the complex solution of the classical oscillator

equation of motion

�u þ o2ðtÞu ¼ 0 ð195Þ
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satisfying the normalization condition

_uu� � _u�u ¼ 2i ð196Þ

Let us assume that function oðtÞ takes the constant value o0 at t � 0 and at

t > tf > 0. Moreover, it is convenient to choose the initial conditions for u

function as follows:

uð0Þ ¼ 1ffiffiffiffiffiffi
o0

p ; _uð0Þ ¼ i
ffiffiffiffiffiffi
o0

p ð197Þ

Then the quantum mechanical average number of photons created from the

ground state due to the time dependence of the frequency in the interval of time

0 < t < tf is given by the formula

hni ¼ 1

4o0

ðj _uj2 þ o2
0juj

2Þ � 1

2
ð198Þ

Looking for the solution of Eq. (195) in the parametric resonance case (194) in

the form

uðtÞ ¼ 1ffiffiffiffiffiffi
o0

p xðtÞeio0t þ ZðtÞe�io0t
� �

ð199Þ

[the opposite signs in the arguments of the exponential functions in Eqs. (193)

and (199) are due to the different representations: the former equation is written

in the Heisenberg picture, while the latter – in the Schrödinger one] and using

the method of averaging over fast oscillations, one can easily obtain the first-

order differential equations for the amplitudes (provided j~ej � 1):

_x ¼ io0~eZ; _Z ¼ �io0~ex ð200Þ

Their solutions satisfying initial conditions (197) (up to the terms of the order of
~e) read as [214,287–290]

xðtÞ ¼ coshðo0~etÞ; ZðtÞ ¼ �i sinhðo0~etÞ ð201Þ

According to Eqs. (198), (199), and (201), the average number of photons (and

the total energy in the cavity) grows in time exponentially:

hni ¼ jZj2 ¼ sinh2 o0~etð Þ ð202Þ

It is well known that the initial vacuum state of the oscillator is transformed into

the squeezed vacuum state, if the frequency depends on time (see, e.g., reviews
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in Refs. 223 and 279 and numerous references cited therein). Moreover, looking

at Eq. (202), one can immediately recognize the combination o0~et as the so-

called squeezing parameter. Therefore, the probability of registrating n photons

exhibits typical oscillations:

P2m ¼ tanh o0~etð Þ½ �2m

cosh o0~etð Þ
ð2mÞ!
2mm!ð Þ2

; P2mþ1 ¼ 0 ð203Þ

This distribution possesses the photon-number variance sn ¼ 1
2

sinh2ð2o0~etÞ.
Similar formulas for the amount of photons created in a cavity filled with a

medium with a time-dependent dielectric permeability (and stationary bound-

aries) have been found [222]. The quadrature variances change in time as (now

t ¼ ~eo0t)

U ¼ 1

2
e�2t; V ¼ 1

2
e2t ð204Þ

An unlimited squeezing can be achieved in this case because of the absence of

interaction with other modes.

B. Interaction with a Probe Oscillator inside the Cavity

The situation changes drastically if the field mode is allowed to interact with

some detector placed inside the cavity. Following other findings [188,189] we

demonstrate the effect in the framework of a simplified model, when a harmonic

oscillator tuned to the frequency of the resonant mode is placed at the point of

maximum of the amplitude mode function cmn x; yjfLgð Þ in the 3D rectangular

cavity.

Assuming the interaction between the oscillator and the field to be described

by means of the standard minimal coupling term �ðe=mcÞpA, we arrive at the

following two-dimensional Hamiltonian governing the evolution of the coupled

(field oscillator þ detector) system:

H ¼ 1

2
P2 þ o2ðtÞQ2 þ p2 þ o2

0q2 � 4o0kpQ
� �

ð205Þ

Here P;Q are the quadrature components of the field oscillator and p; q are

those of the probe oscillator. We neglect the interaction with nonresonant

modes, since it is reasonable to suppose that under the resonance conditions

their contribution is not essential at e � 1.

In general, the dimensionless coupling coefficient k must depend on time,

due to the decomposition (191). However, since this coefficient is small, its

variations of the order of ek can be neglected in comparison with the relative

variation of the eigenfrequency do=o � e. So k is assumed to be constant.
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Suppose that the lowest cavity mode is resonant. Then one can evaluate the

dimensionless coupling constant as k � e2=2pmc2Lð Þ1=2
(here we return to the

dimensional variables). The maximum value of parameter e is (see the discus-

sion in Section X) emax � dmaxvs=2pc, where dmax � 0:01 is the maximal

possible relative deformation in the material of the wall, and vs � 5 � 103 m/s

is the sound velocity inside the wall. Then the ratio ~e=k cannot exceed the value

dmax mv2
s L=8pe2

 �1=2� 0:05 for L � 1 cm and m � the mass of electron (for

these parameters k � 2 � 10�7). Consequently, one may believe that in the real

conditions ~e=k � 1.

In the time-independent case, oðtÞ ¼ const ¼ o0, we have two eigenfre-

quencies

o
 ¼ o0ð1 
 kÞ ð206Þ

(provided that jkj � 1). Let us assume that the wall vibrates exactly at twice the

lower frequency o�:

oðtÞ ¼ o0 1 þ 2~ecosð2o�tÞ½ � ð207Þ

Then the lower and upper modes practically do not interact in the limit of
~e � k.

The Schrödinger equation with Hamiltonian (205) can be solved in the

framework of the general theory of multidimensional quantum systems with

arbitrary quadratic Hamiltonians, first proposed in 1975 [278] and exposed in

detail, for instance, in 1989 [279]. In particular, if both the field and the probe

oscillators were initially in their ground states,

cðQ; q; 0Þ ¼
ffiffiffi
1

p

r
exp � 1

2
Q2 þ q2
 �� �

ð208Þ

then the wavefunction of the coupled (field þ probe oscillator) system at t > 0

can be written as [189]

cðQ; q; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

p cosh m

s
exp �it � 1

2
aðtÞQ2 þ bðtÞq2 � 2cðtÞqQ
� �� 	

ð209Þ

with the following coefficients:

aðtÞ ¼ 1 þ i tanh me�2ij� � ikei½tanh me�ið1 þ tanh msineijÞ � sinj�
bðtÞ ¼ 1 � i tanh me�2ij� � ikei½tanh me�ið1 � tanh msineijÞ þ sinj�
cðtÞ ¼ tanh me�2ij� þ ik½1 � cosje�i þ i tanh2 msineiðj�2Þ�
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Here

 ¼ oþ þ o�ð Þt ¼ 2o0t; j ¼ oþ � o�ð Þt ¼ 2o0kt ¼ k

m ¼ ~eo0t; � ¼ 1 � cosh mcos

In all the formulas above, the terms of the order of k2 were neglected, as well as

the terms proportional to ~e (except, of course, the arguments of the hyperbolic

functions). Evidently,  � j � m. Hereafter we confine our discussion to the

most interesting long-time limit case, when m � 1. Then all the terms propor-

tional to k can be neglected, so we can write

aðtÞ ¼ 1 þ iw; bðtÞ ¼ 1 � iw; cðtÞ ¼ w; w ¼ tanh me�2ij�

Equation (209) shows that the coupled system turns out in a two-mode

squeezed state at t > 0. The properties of this state, as well as of any Gaussian

state are determined completely by its covariance matrix

M ¼ Mab

55 55 ¼ Mpp Mpx

Mxp Mxx

5555 5555; Mab ¼ 1

2
hẑaẑb þ ẑbẑai

where the four-dimensional (in the present case) vector z is defined as follows:

z ¼ ðp; xÞ ¼ ðP; p;Q; qÞ (evidently, hzi ¼ 0 in the case under study). Using

the general formulas for multidimensional Gaussian states given elsewhere

[279], we have obtained [189] the following explicit expressions for the two-

dimensional blocks of matrix M in the long-time limit m � 1:

Mpp ¼ 1

2
cosh2 m

1 þ tanh msinf � tanh mcosf

� tanh mcosf 1 � tanh msinf

5555 5555
Mxx ¼

1

2
cosh2 m

1 � tanh msinf tanh mcosf

tanh mcosf 1 þ tanh msinf

5555 5555
Mpx ¼ eMxp ¼

1

4
sinhð2mÞ

�cosf � tanh m� sinf

tanh m� sinf cosf

5555 5555
where f ¼ 2j�, and eM means the transposed matrix. Consequently, there exists

a strong correlation between the field and probe oscillators in the long-time

limit. For instance, the correlation coefficient between the quadrature compo-

nents reads as

rqQ � hqQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq2ihQ2i

p ¼ sinh mcosfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðsinh mcosfÞ2

q
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(If f � p=2, this coefficient, as well as other analogous elements of the

covariance matrix, does not turn exactly into zero; in such a special case

rqQ � k, due to neglected terms of the order of k.)

It is clear that the density matrix of the probe oscillator [which is obtained

from the density matrix of the total system r Q; q;Q0; q0ð Þ ¼ c Q; qð Þc� Q0; q0ð Þ
by putting Q ¼ Q0 and integrating over Q] also has the Gaussian form. Its

properties are determined completely by the reduced covariance matrix (it

inadvertently coincides with Mxx when o0 ¼ 1):

Mpr ¼
1

2
cosh2 m

1 � tanh msinf tanh mcosf
tanh mcosf 1 þ tanh msinf

5555 5555 ð210Þ

A similar matrix for the field oscillator can be obtained from Eq. (210) by

means of changing the sign of parameter m. As was shown in [280], the photon

statistics in Gaussian one-mode states is determined completely by two

invariants of the covariance matrix,

d ¼ det M; T ¼ Tr M ð211Þ

Evidently, parameter T is twice the energy of quantum fluctuations. The

parameter d characterizes the degree of purity of the quantum state, due to

the relation [277]

Tr r̂2 ¼ 1

2
ffiffiffi
d

p ð212Þ

where r̂ is the statistical operator of the system. The degree of squeezing,

defined as the minimal possible value of the variance of some quadrature

component, normalized by its vacuum value (which is equal to �h=ð2moÞ for an

oscillator with mass m and frequency o), is determined jointly by both

parameters, T and d, according to the relation [274] [cf. Eq. (100)]

s � 2hq2i ¼ T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � 4d

p
ð213Þ

Both subsystems have identical invariants:

T ¼ 4d ¼ cosh2 m

so for m � 1 they appear in highly mixed quantum states, with rather moderate

degree of squeezing, which tends asymptotically to 50% (cf. the one-dimen-

sional case described in Section VI.C):

s ¼ e�m cosh m ¼ 1

2
1 þ e�2m �
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The average number of quanta in each subsystem equals

hni ¼ 1

2
ðT � 1Þ ¼ 1

2
sinh2 m

that is, twice less than in the case of an empty cavity. The variance of the

number of quanta (photons) equals

sn � hn2i � hni2 ¼ 1

4
2T2 � 4d � 1
 �

¼ 1

4
sinh2 m coshð2mÞ

Mandel’s parameter [defined by Eq. (155)] turns out to be much greater than

unity for m � 1, indicating that the photon statistics is highly super-Poissonian:

Q � sinh2ðmÞ

The photon distribution function can be expressed in terms of the Legendre

polynomials, according to the general formula (151)

Pn ¼ 2ðizÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3 cosh2 m

p Pnð�izÞ ð214Þ

where

z ¼ sinh mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3 cosh2 m

p
Actually the right-hand side of Eq. (214) is a polynomial of degree n with

respect to the variable z2, due to the recurrence relation

nPn ¼ z2 ð2n � 1ÞPn�1 þ ðn � 1ÞPn�2½ �

If m � 1, then z2 � 1
3
. The behavior of the distribution function (214) has been

shown [189]. Since the argument of the Legendre polynomial is purely

imaginary, Pn has no oscillations, in contradistinction to the vacuum squeezed

state.

C. Interaction with a Two-Level Detector

Another model of the detector, which has only two energy levels, has been

considered [188]. The most significant features can be described, in the rotating-

wave approximation (RWA), in the framework of the following generalization

of the Jaynes–Cummings (JC) Hamiltonian:

H ¼ aya þ 1

2
�sz þ kðasþ þ ays�Þ þ

~e
2

sinðowtÞ½a2 þ ay �2� ð215Þ
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The eigenfrequency of the unperturbed mode is assumed o0 ¼ 1, � is the

energy-level difference of the detector, k and ~e � k have the same meaning as

above; and a; ay and sþ;s�;sz are the standard photon and spin operators. The

wavefunction of the (field þ detector) system can be written as

cðtÞ ¼
X1
n¼0

ðcð�Þ
n ðtÞjn;�i þ cðþÞ

n ðtÞjn;þiÞ

where the meanings of the symbols are clear. If ~e ¼ 0, then the known solution

of the JC model reads as [291]

c
ð�Þ
0 ðtÞ ¼ c ð216Þ

c
ð�Þ
nþ1ðtÞ ¼ an cos#n exp ½�itEþ

n � � bn sin#n exp ½�itE�
n � ð217Þ

cðþÞ
n ðtÞ ¼ an sin#n exp ½�itEþ

n � þ bn cos#n exp ½�itE�
n � ð218Þ

where n ¼ 0; 1; 2; . . . , and

E

n ¼ n þ 1

2

 ln; ln ¼ 1

4
ð1 � �Þ2 þ k2ðn þ 1Þ

� �1=2

tan#n ¼ 2ln � 1 þ �

2ln þ 1 � �

� 	1=2

We suppose that initially the system was in the ground state with the only

nonzero coefficient c
ð�Þ
0 ð0Þ ¼ 1, and that the frequency of wall’s vibrations is

close to twice the frequency of the unperturbed mode: ow ¼ 2 � n. Looking for

the solution at ~e 6¼ 0 in the same form (216)–(218), but with time-dependent

coefficients, and neglecting the rapidly oscillating terms containing expð2itÞ,
we get the following equation for the coefficient cðtÞ:

_c ¼
ffiffiffi
2

p

4
~e b1 sin#1 exp it l1 � nð Þ½ � � a1 cos#1 exp �it l1 þ nð Þ½ �f g

Assuming n ¼ l1 ¼ ½1
4
ð1 � �Þ2 þ 2k2�1=2

and neglecting the terms oscillating

with the frequencies of the order of k, one can check that the infinite system of

equations for an and bn is reduced to the following two equations:

_c ¼
ffiffiffi
2

p

4
~esin#1 b1; _b1 ¼ �

ffiffiffi
2

p

4
~esin#1 c
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Consequently, in the resonance case we have only three nonzero amplitudes:

c
ð�Þ
0 ¼ cosðatÞ; c

ð�Þ
2 ¼ sin#1 sinðatÞexp ½�itE

ð�Þ
1 �

c
ðþÞ
1 ¼ �cos#1 sinðatÞexp ½�itE

ð�Þ
1 �

where a ¼ sin#1 ~e
ffiffiffi
2

p
=4. Only two photons can be created, and the probability

of finding the detector in an excited state PðþÞ is always less than 1
2
. All the

probabilities, in contradistinction to the first example, are periodically oscillat-

ing functions of time:

P1 ¼ PðþÞ ¼ cos2#1 sin2ðatÞ; P2 ¼ sin2#1 sin2ðatÞ

It is interesting that the upper level of the detector never can be populated with

100% probability, since #n > 0 for all values of parameters. For � ¼ 1,

#n ¼ p=4, and P1 ¼ P2 ¼ PðþÞ ¼ 1
2

sin2ð~et=4Þ. Large detuning, 1 � � � k,

results in increasing PðþÞ
max, since #1 ! 0. However, in such a case a ! 0, as

well, and the applicability of JC-model to the description of the interaction

between the detector and field becomes questionable. Recently, a more general

model was considered in [238].

IX. INFLUENCE OF DAMPING

The complete theory of the field quantization in media with moving nonideal

boundaries is not available at present. The field quantization in spatially

inhomogeneous, but nonabsorbing dielectrics has been studied [292,293], and

the same problem for nonabsorbing media with time-dependent parameters has

also been considered [217–219,222]. The case of absorbing media has been

analyzed [294–297]. The theory of the field quantization in leaky cavities has

been developed [298–300]. However, in all those studies the boundaries were

fixed. Because of the complexity of the problem, only a few of the simplest

models have been considered up to now in the case of moving walls.

For example, one can try, as the first step, to neglect coupling between

different field modes inside the cavity. Such an approximation can be justified,

for instance, for an adiabatic motion of the cavity walls, when the characteristic

mechanical frequency, om, is many orders of magnitude less than the electro-

magnetic field eigenfrequency, oe. However, no new photons can be created

under the condition om � oe (and the photon number distribution cannot be

changed, as well), since the photon number operator is the adiabatic invariant in

this case.

Fortunately, as was shown in the preceding section, the interaction between

different field modes can also be neglected in the case of a three-dimensional
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cavity with a nonequidistant spectrum of the field eigenfrequencies, under the

parametric resonance condition om � 2oe. In such a case, one can infer some

quantitative information regarding the behavior of the field in the cavity,

studying the problem of the parametrically excited oscillator with damping.

The influence of an environment on the parametric amplification was

considered in detail, for instance, in Ref. 301, where an explicit coupling

with a heat bath consisting of harmonic oscillators was introduced. More

general models of the environment were studied, such as, in the framework

of the influence functional approach [302], mainly in connection with cosmo-

logical problems. It was shown in [299,300,303,304] that the influence of the

‘‘modes of the universe’’ outside the cavity with fixed mirrors can be described

effectively in the framework of the Heisenberg–Langevin equation of motion

for the photon annihilation and creation operators â; ây. An equivalent descrip-

tion in the Schrödinger picture is achieved in the framework of the ‘‘standard

master equation’’ [305–310], whose simplest form reads as

_̂r ¼ i

�h
½r̂; Ĥ� þ g

2
2âr̂ây � âyâr̂� r̂âyâ
� �

ð219Þ

where r̂ is the statistical operator of the distinguished field mode, Ĥ is the

Hamiltonian, and the damping coefficient g absorbs all the details of the loss

mechanism, including the transmissivity of the mirror and the coupling between

the field and the atoms inside the wall, so that it is proportional to the reciprocal

of the dissipation timescale. It was assumed [256,257] that Eq. (219) can be used

as well in the case of the moving mirrors, with the same value of the damping

coefficient as in the case of the fixed boundaries. Following the same line as in

Refs. 256 and 257, we also assume that the time evolution of the mixed quantum

state of the resonance field mode is governed by a linear master equation

(although one cannot exclude the possibility that such an approach is over-

simplified; see, e.g., Refs. 311 and 312). However, instead of using an operator

equation such as (219), we consider the most general linear equation of the

Fokker–Planck type for the Wigner function Wðq; p; tÞ [277,308,313] (q; p are

the quadrature components of the field mode):

qW

qt
¼ q

qq
½gqq � p�W
 �

þ q
qp

½gpp þ o2ðtÞq�W
 �

þ Dqq

q2W

qq2
þ Dpp

q2W

qp2
þ 2Dqp

q2W

qqqp
ð220Þ

The coefficients gi and Dij ¼ Dji depend on the concrete form of the micro-

scopic interaction between the system involved and an environment [305–

308,314]. For example, the simplest models of the damped optical oscillator
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with a constant frequency o0 yield the following set of coefficients [308,315]

gp ¼ gq ¼ psðo0Þjgðo0Þj2 ð221Þ

Dpp ¼ o2
0Dqq ¼ gqEeqðo0Þ; Dpq ¼ 0 ð222Þ

where sðoÞ is the density of states of the reservoir, gðo0Þ is the function

describing the intensity of coupling between the distinguished oscillator and the

reservoir degrees of freedom, and Eeqðo0Þ is the equilibrium energy of the

oscillator with frequency o0 at temperature T:

Eeq o0ð Þ ¼ 1

2
�ho0 coth

�ho0

2kBT

� 	
ð223Þ

Choosing different couplings between the oscillator under study and the

reservoir, one can obtain various other sets of the drift and diffusion coefficients

[308,314], but all of them must obey the constraint [277,316–319]

DppDqq � D2
qp �

�h2ðgp þ gqÞ2

16
ð224Þ

which guarantees an absence of nonphysical solutions violating the uncertainty

relations and corresponding to nonpositively definite density matrices. Besides,

the coefficients Dpp and Dqq must be positive. However, it will be shown in this

section that in the case of a weak damping, the evolution depends on two

combinations of the damping and diffusion coefficients only:

g ¼ 1

2
ðgp þ gqÞ; E� ¼

1

2g
ðDpp þ o2

0DqqÞ ð225Þ

With the fluctuation–dissipation theorem, the diffusion coefficients are propor-

tional to the damping coefficients; therefore, E� does not depend on g, at least

up to small corrections of an order of g2. The physical meaning of the

parameters g and E� is elucidated below; 2g is the reciprocal energy relaxation

time of the cavity due to all possible mechanisms (a real dissipation in the walls

and the leakage through the boundaries), namely, 2g ¼ o0=Q, where Q is the

cavity quality factor, whereas E� ¼ Eeq o0ð Þ.
Solutions to Eq. (220) with a constant frequency and different sets of

constant diffusion coefficients were obtained by many authors; they were

analyzed in detail in two studies [277,308], where other references can be

found. Since Eq. (220) looks like a two-dimensional Schrödinger equation with

a quadratic (although non-Hermitian) Hamiltonian, its propagator can be
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calculated in the framework of the method of quantum integrals of motion

[278]. The explicit form of this propagator in the generic case of time-dependent

coefficients can be found in Refs. 277 and 320. Here we only calculate the

second order statistical moments and the energy (the number of photons) of the

field oscillator.

A. Evolution of the Energy and the Second-Order Moments

The time dependence of the energy and the second-order statistical moments

(variances) of the field mode quadrature components, sab � 1
2
hab þ bai�

haihbi, is governed by the equations following from Eq. (220):

_sqq ¼ 2spq � 2gqsqq þ 2Dqq ð226Þ

_spq ¼ spp � o2ðtÞsqq � 2gspq þ 2Dpq ð227Þ

_spp ¼ �2o2ðtÞspq � 2gpspp þ 2Dpp ð228Þ

We assume that the oscillator eigenfrequency depends on time as

oðtÞ ¼ o0 1 þ 2~esinð�tÞ½ �; � ¼ 2ðo0 þ dÞ; jdj � o0; j~ej � 1 ð229Þ

where o0 is the unperturbed field eigenfrequency, and � is the frequency of the

wall vibrations. Then one could suppose that the damping and diffusion coeffi-

cients must depend on time as well. We argue, however, that in the case under

study the coefficients ga and Dab can be considered as time-independent. For

example, let us look at the expressions (221) and (222). In the case of a vibrating

cavity, the time variable could enter the coefficients ga and Dab through the

coupling function gðo0Þ, which can depend on the variable length of the cavity

LðtÞ ¼ L0 1 þ xL~esinð�tÞ½ �, where xL is a numerical coefficient. Then one could

expect a similar time dependence of the coefficients of the Fokker–Planck

equations, gðtÞ ¼ g0 1 þ xg~esinð�tÞ
� �

, DðtÞ ¼ D0 1 þ xD~esinð�tÞ½ �, where xg
and xD are some other numerical coefficients. One should remember, however,

that the modulation parameter ~e is very small under the realistic conditions; its

absolute value cannot exceed 10�8 [188,189]. The set of equations (226)–(228)

contains three small dimensionless parameters—~e, d=o0, and g0=o0—and we

are interested in the weak damping case, when these parameters are of the same

order of magnitude. Under this condition, the time-dependent parts of the

coefficients ga and Dab are proportional to the products ~eg0=o0 � Oð~e2Þ �
10�16, so it seems reasonable to neglect these extremely small terms.

A significant time dependence of the damping and diffusion coefficients

could arise in the specific case of an unstable reservoir, provided the reservoir

oscillators having the frequencies close to o0 could be also excited as a result of

some resonance processes between the vibrating surface of the wall and the
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reservoir. In such a case, the energy of the resonant oscillators would increase in

time, resulting in increasing values of the damping and diffusion coefficients

[see Eq. (222)]. As a consequence, we would obtain an additional amplification

of the energy of the field mode due to the interaction with the reservoir.

However, such a model seems unrealistic, since it implies that some distin-

guished degrees of freedom of the reservoir are practically isolated from the rest

of the reservoir. This conjecture contradicts the usual concept of the reservoir

consisting of a great number of strongly interacting particles, so that the state of

the reservoir is not sensitive to small external perturbations. Therefore, we

assume that the only time-dependent coefficient in Eqs. (226)–(228) is oðtÞ.
The set of equations (226)–(228) is equivalent to the third-order differential

equation for the variance sqq � s

d3s
dt3

þ 6g
d2s
dt2

þ 4o2ðtÞ ds
dt

þ 4o0ð _oþ 2go0Þs ¼ 8gE� ð230Þ

where the coefficients g and E� are given by Eq. (225) (we neglect the terms of

the second order with respect to g, Dab, and ~e). To find an approximate explicit

solution to Eq. (230) with function oðtÞ given by Eq. (229), we use the well-

known method of slowly varying amplitudes, which was exposed, for instance,

in three textbooks [266–268] and applied to the quantum parametric oscillator

[289,301]. Following this method, we write

sqqðtÞ ¼ AðtÞ þ BðtÞcosð�tÞ þ CðtÞsinð�tÞ ð231Þ

so that the function (231) with A;B;C ¼ const is an exact solution to Eq. (230)

for ~e ¼ g ¼ d ¼ 0. Supposing that the dimensionless small parameters g=o0 and

d=o0 have the same orders of magnitude as the small parameter ~e, that is,

g ¼ ~g~eo0, d ¼ ~d~eo0, ~g; ~d � Oð1Þ, we assume that the amplitude coefficients

A;B;C are functions of the ‘‘slow time’’ t ¼ ~et, so that the time derivatives

dkA=dtk; dkB=dtk; dkC=dtk are proportional to ~ek (k ¼ 1; 2; 3). Then we put the

function (231) into Eq. (230) and neglect the terms proportional to ~e2 and ~e3.

Besides, we perform averaging over fast oscillations with the frequency �, in

order to eliminate higher harmonics with frequences m�, m ¼ 2; 3; . . . , whose

amplitudes are proportional to ~em�1 [267,268]. Finally, we arrive at the

following set of equations for the slowly varying amplitudes (here the overdot

means the derivative with respect to the real time t, and the new parameter

k � ~eo0 has the dimensionality of frequency, e.g., g and d):

_A ¼ �2gA þ 2kB þ 2gE� ð232Þ
_B ¼ 2kA � 2gB � 2dC ð233Þ
_C ¼ 2dB � 2gC ð234Þ
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This system can be easily solved for an arbitrary time dependent function gðtÞ,
since the substitution AðtÞ ¼ ~AðtÞexp �2

Ð
gðtÞdt

� �
removes the function gðtÞ

from the homogeneous parts of Eqs. (232)–(234). However, we consider the

case of constant coefficients only, because of the physical reasons discussed

above.

To simplify the formulas, we assume hereafter �h ¼ o0 ¼ 1; thence � ¼ 2 in

the amplitude coefficients. Neglecting small terms of the order of g=�, k=�, and

d=� in the amplitude coefficients, one can express the variances spp and spq as

follows:

sppðtÞ ¼ AðtÞ � BðtÞcosð�tÞ � CðtÞsinð�tÞ ð235Þ

spqðtÞ ¼ CðtÞcosð�tÞ � BðtÞsinð�tÞ ð236Þ

Then the initial conditions for the set (232)–(234) read as

Að0Þ ¼ sqqð0Þ þ sppð0Þ
2

; Bð0Þ ¼ sqqð0Þ � sppð0Þ
2

; Cð0Þ ¼ spqð0Þ

Evidently, AðtÞ coincides with the mean energy to within small corrections of

the order of ~e, g, and d:

EðtÞ � spp þ sqq

2
¼ AðtÞ

In order to elucidate the meaning of the coefficients B and C, consider the

determinant of the invariance matrix [cf. Eq. (211)]:

d � sppsqq � s2
pq � �h2

4
ð237Þ

Here the last inequality holds due to the Schrödinger–Robertson uncertainty

relation [271,279,321,322]. The meaning of the parameter d as the universal

quantum invariant has also been discussed [323]. The minimal invariant

variance (100) can be expressed in terms of E and d as

u ¼ E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � d

p
¼ d

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � d

p ð238Þ

and one can easily verify the relations

d ¼ A2 � B2 � C2; u ¼ A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2

p
ð239Þ
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The solutions to Eqs. (232)-(234) read

AðtÞ ¼ A� þ e�2gt½a0dþ aþke2nt þ a�ke�2nt� ð240Þ

BðtÞ ¼ B� þ e�2gt½aþne2nt � a�ne�2nt� ð241Þ

CðtÞ ¼ C� þ e�2gt½a0kþ aþde2nt þ a�de�2nt� ð242Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � d2

p
, and

a0 ¼ 1

n2
kCð0Þ � dAð0Þ þ E�d½ � ð243Þ

a
 ¼ 1

2n2
kAð0Þ � dCð0Þ 
 nBð0Þ � kgE�

g� n

� �
ð244Þ

A� ¼
g2 þ d2

g2 � n2
E�; B� ¼

kgE�
g2 � n2

; C� ¼
kdE�
g2 � n2

The meanings of the parameters g and E� become clear, if one considers the

special case of the oscillator with time-independent coefficients, k ¼ d ¼ n ¼ 0.

Then we see that 2g is the energy relaxation coefficient, so that it can be

expressed in terms of the cavity Q factor by means of the relation 2g ¼ o0=Q.

The energy of the oscillator in this special case tends to E� as t ! 1, and this

value can be identified with the thermodynamic equilibrium oscillator energy

Eeq given by Eq. (223) [up to corrections of the order of ðg=o0Þ2
] [277,308].

The sign of the difference n� g determines the regions of stable and unstable

solutions of Eq. (230) in the space of parameters k; d; g (for small values of

these parameters). The stable (limited in time) solutions exist for large values of

the damping or detuning coefficients, n < g:

g2 þ d2 > k2 ð245Þ

In this case, the final state of the oscillator does not depend on the initial

conditions. The asymptotic values of the energy, the d factor, and the minimal

invariant variance read

Eð1Þ ¼ g2 þ d2

g2 � n2
Eeq; dð1Þ ¼ g2 þ d2

g2 � n2
E2

eq; uð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ d2

p
kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ d2

p Eeq

ð246Þ

At zero temperature, when k tends to the threshold, the minimal variance u goes

to the value 1
4
, which is twice less than in the coherent state.
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Above the threshold, that is, in the instability region n > g, the energy (or the

number of photons) increases exponentially for ðn� gÞt � 1

EðtÞ ¼ aþke2ðn�gÞt ð247Þ

and it depends on the initial conditions through the coefficient aþ. Using

Eq. (244) and taking into account the uncertainty relation d � 1
4

(for �h ¼ 1), one

can verify that the coefficient aþ is bounded from below by a positive value:

aþ >
kgEeq

2n2ðn� gÞ

Consider a special case of initial thermal equilibrium state. Then

a
ðeqÞ

 ¼ kEeq

2nðn� gÞ ; a
ðeqÞ
0 ¼ 0; dð0Þ ¼ E2

eq ð248Þ

thus d factor (239) depends on time as

dðtÞ ¼
E2

eq

nðn2 � g2Þ 2k2ge�2gt sinhð2ntÞ þ k2ne�4gt � nðg2 þ d2Þ
� �

ð249Þ

If g > 0 and ðn� gÞt � 1, then, according to Eq. (238), the minimal variance

tends asymptotically to a constant value

u1 ¼ g
gþ n

Eeq ð250Þ

Consequently, a large squeezing can be achieved even for a high-temperature

initial state, if n � g. If g ¼ 0, then d does not depend on time, d � E2
eq, and for

nt � 1 the minimal variance goes asymptotically to zero as u � Eeqðn=kÞ2

expð�2ntÞ. One should remember, nonetheless, that the solutions indicating the

exponential growth of the energy are justified until t � t2 � ðo0~e2Þ�1
, since for

larger times the neglected second-order terms in Eqs. (230), (232)–(234) could

become important. However, the time t2 is very large under the realistic

conditions.

X. DISCUSSION

We have demonstrated a significant progress in our understanding and quanti-

tative description of quantum processes in cavities with moving boundaries,

achieved 30 years after the pioneer paper by Moore [76] and almost 80 years
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after the first papers on classical electrodynamics in such cavities by Nicolai

and Havelock [6–8]. We have shown that quanta of electromagnetic field can be

created from vacuum in a cavity with vibrating walls under the resonance

condition (and cannot be generated for nonresonance nonrelativistic laws of

boundary motion, in particular, in the case of a large detuning from the re-

sonance), and the quantum state of field exhibits the ‘‘nonclassical’’ properties.

The possibility of observing the effect depends crucially on the achievable

values of the wall displacement amplitude. For the cavity dimensions of

the order of 1 � 100 centimeters, the resonance frequency o0=p varies from

30 GHz to 300 MHz. It is difficult to imagine that the wall could be forced to

oscillate as a whole at such a high frequency. Rather, one could think of the

oscillations on the surface of the cavity wall. In such a case one has to find a

way of exciting a sufficiently strong standing acoustic wave at frequency

ow ¼ 2o0 inside the wall. The amplitude a of this wave (coinciding with the

amplitude of oscillations of the free surface) is connected to the relative

deformation amplitude d inside the wall as d ¼ owa=vs, where vs is the sound

velocity. Since the usual materials cannot bear the deformations exceeding the

value dmax � 10�2 [324], the maximal possible velocity of the boundary appears

vmax � dmaxvs � 50 m/s (independent on the frequency). Thus the maximal

dimensionless displacement e ¼ a=L0 is emax � ðvs=2pcÞdmax � 3 � 10�8 for

the lowest mode with the frequency o0 � cp=L0. It also does not depend on the

frequency. Consequently, the maximal rate of photon generation in the principal

mode of a 1D cavity can be estimated as

dP1

dt

� 	
max

¼ 4

p2

vs

c
dmax

o1

2p
� 6 � 10�8o1

2p
ð251Þ

It is proportional to the frequency. For o1=2p ¼ 10 GHz (corresponding to a

distance between the plates of the order of several centimeters) we get 600

photons/s.

This number can be significantly increased in a 3D cavity, according to the

exponential law (202). For the same frequency o0=2p ¼ 10 GHz, the maximal

value of parameter m ¼ go0t equals mmax � 600t, time t being expressed in

seconds. Even if the amplitude of the vibrations were 100 times less than the

maximal possible value, in t ¼ 1s one could get about sinh2ð6Þ � 4 � 104

photons in an empty cavity. Obviously, the concrete shape of a 3D cavity is not

important. The significant requirements are (1) the nondegenerate character of

the eigenfrequency spectrum and (2) the condition of the parametric resonance

between the oscillating wall and some electromagnetic mode. The total energy

of photons created in the 1D cavity is approximately the same as in the three-

dimensional case. The difference is that in the 1D case this energy is spread over

many interacting modes, resulting in moderate numbers of quanta in each mode.
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The rate of photon generation in the mth (odd) mode of the 1D cavity is

approximately m times less than in the principal mode with m ¼ 1 (in the

asymptotical regime).

To create the abovementioned 600 or 4 � 104 photons, one should vibrate the

wall for no less than 1s. The necessary Q factor of the cavity must be

Q � 3 � 1010. This value was achieved in experiments in 1990 [325]. An

unsolved problem is how to excite the high-frequency surface vibrations with a

sufficiently large amplitude. One could think, for instance, of using some kind

of piezo effect. This method was successfully applied in early experiments

devoted to solving the mode-locking and pulse production problems in lasers

with the aid of vibrating mirrors. Displacements of the mirror from 0.1 to 0.7 mm

at the frequency 500 kHz have been achieved [27,28]. In 1966 [24] resonance

vibrations of the mirror in a laser with a length of 250 cm (i.e., at a frequency

about 100 MHz) were excited with the aid of a quartz transducer. However, for

our purposes the frequency 100 MHz is too small, since the parameter m
becomes 100 times less, compared to the estimations given above (remember

that emax does not depend on the frequency).

Fortunately, the results of recent studies [192,210–212] show that the

influence of temperature is not as significant as it might appear at first glance.

Moreover, in certain situations the initial temperature fluctuations could be used

to amplify the effect [211]. However, the resonance requirements are rather

hard; for values of frequency o � 1010 Hz and maximal possible modulation

parameter e � 10�8, the admissible detuning should not exceed 100 Hz during

the whole time interval � 1s, necessary to accumulate the resonance effect.

One of the reasons for the studies on the dynamical Casimir effect was

Schwinger’s hypothesis [153–157] that this effect could explain the sonolumi-

nescence phenomenon, specifically, the emission of bright short pulses of the

visible light from the gas bubbles in the water, when the bubbles pulsate because

of the pressure oscillations in a strong standing acoustic wave. (Several reviews

and numerous references related to this effect are available, [121,326–328].)

There are several publications [329–331], whose authors considered the models

giving tremendous numbers of photons that could be produced even in the

visible range as a result of the fast motion of the boundaries. However, analysis

of these models shows that they are based on such laws of motion of the

boundaries that imply the superluminal velocities, so they are not realistic.

Although the results of this chapter, which were obtained in the framework

of simplified one-dimensional and three-dimensional models, cannot be applied

directly to the analysis of the sonoluminescence problem, they are not in favor

of Schwinger’s hypothesis. The main difficulty is connected with quite different

timescales of the phenomena. The accumulation of the ‘‘dynamical Casimir

energy’’ is a very slow process, which needs a great number of wall oscillations,

whereas the sonoluminescence pulses (containing up to 107 photons) have the
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duration of the order of picoseconds. Moreover, the wall oscillations must be in

extremely finely tuned resonance with the field eigenfrequencies, since the

detuning d > e completely destroys the energy growth [191]. In particular, if the

frequency of the wall oscillations owall is much less than the minimal field

eigenfrequency o1, then the field variation is adiabatic, and the mean number of

created photons is proportional to [189] e2 owall=o1ð Þ4� 1. These features

survive in the three-dimensional model considered in this chapter, too. There-

fore, it is difficult to believe that very specific conditions of the parametric

resonance described above could arise naturally in the sonoluminescence case.

For other discussions of the problem see, for example, Ref. 332 and the

contributions in Ref. 333.

Actually, the main obstacle to producing the ‘‘Casimir light’’ is the very low

ratio of the wall velocity to the speed of light in laboratory experiments. If the

velocity of the boundary were of the order of c, then a sufficient number of

photons could be created from vacuum practically for any law of motion. For

the nonrelativistic velocities, the only possibility is to accumulate the effect

gradually under the resonance conditions. Nonetheless, perhaps, the experi-

mental situation could be improved in the case of using some kinds of

‘‘effective mirrors,’’ such as the layers made of the electron–hole plasma

[209], or some others. Therefore, we cannot exclude a possibility that in a

not very remote future one could assist a show of ‘‘quantum magics,’’ when

some ‘‘quantum magician’’ takes an empty box, then shakes it well, opens it,

and an astonished audience sees a large number of photons that have appeared

‘‘from nothing’’ as a result of the nonstationary Casimir effect.
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185. G. Plunien, R. Schützhold, and G. Soff, in M. Bordag (Ed.), The Casimir Effect Fifty Years

Later, Proc. 4th Workshop on Quantum Field Theory under the Influence of External Conditions

(Leipzig, Germany, Sept. 14–18 1998), World Scientific, Singapore, 1999, p. 133.

186. Y. Wu, M.-C. Chu, and P. T. Leung, Phys. Rev. A 59, 3032 (1999).

187. X.-X. Yang and Y. Wu, J. Phys. A 32, 7375 (1999).

188. V. V. Dodonov, Phys. Lett. A 207, 126 (1995).

189. V. V. Dodonov and A. B. Klimov, Phys. Rev. A 53, 2664 (1996).

190. V. V. Dodonov, Phys. Lett. A 213, 219 (1996).

191. V. V. Dodonov, J. Phys. A 31, 9835 (1998).

192. V. V. Dodonov and M. A. Andreata, J. Phys. A 32, 6711 (1999).

193. M. A. Andreata and V. V. Dodonov, J. Phys. A 33, 3209 (2000).

194. V. V. Dodonov, Phys. Lett. A 244, 517 (1998).

195. V. V. Dodonov, Phys. Rev. A 58, 4147 (1998).
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I. INTRODUCTION

Before we start to investigate that, let us try to realize what we do know, so as to

make the most of it, and to separate the essential from the accidental.

—Sir Arthur Conan Doyle, The Priory School

Since the pioneering paper by Dirac [1], the formalism of quantum electro-

dynamics (QED) has been based on the use of the photon creation and

annihilation operators, forming a representation of the Weyl–Heisenberg alge-

bra, and on the notion of the electromagnetic vacuum state [2–4]. As far as a

denumerable set of Fock number states can be generated from the vacuum state

by successive action of the creation operator, one can choose to interpret the

electromagnetic vacuum as a ‘‘physical system’’ ready for support of any elec-

tromagnetic radiation.

It is not heretical to consider the electromagnetic vacuum as a ‘‘physical

system.’’ In fact, it manifests some physical properties and is responsible for a

number of important effects. For example, the field amplitudes continue to

oscillate in the vacuum state. These zero-point oscillations cause the sponta-

neous emission [1], the natural linebreadth [5], the Lamb shift [6], the Casimir

force between conductors [7], and the quantum beats [8]. It is also possible to

generate quantum states of electromagnetic field in which the amplitude

fluctuations are reduced below the symmetric quantum limit of zero-point

oscillations in one quadrature component [9].

In spite of the great success of QED, there still are a number of unclear

principal problems [10–15]. Leaving aside the detailed discussion of founda-

tions of QED, we shall concentrate here on the problems of localization of

photons and quantum phase of electromagnetic radiation, which have attracted a

great deal of interest.

The point is that the photon creation and annihilation operators are defined in

QED as nonlocal objects. In other words, the photon number operator gives the

total number of photons in the volume of quantization without specification of

their spacetime location [14,15]. Moreover, it has been proved by Newton and

Wigner [16] that no position operator can exist for the photon. There is a

widespread belief that the maximum precise localization appears in the form of
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a wavefront [17]. At the same time, the specific falloff of the photon energy

density and of the photodetection rate can be interpreted as the photon

localization in space [18,19].

Perhaps the most evident and bright example of photon localization is

provided by the photodetection process, when a photon is transformed into

electronic signal in the sensitive element of the detecting device [20]. Such a

localization is usually described in the operational way (in terms of what can be

measured by a macroscopic detector) through the use of the so-called config-

uration number operator, determining the number of photons in the cylindrical

volume sc�t, where s denotes the area of the sensitive element, c is the light

velocity, and �t is the detector exposition time [14,20]. Other interesting

examples are provided by the localization in photonic crystals [21] and by

the emission and absorption of radiation by atoms and molecules [22].

We now stress that, in the usual treatment of photon localization, the

radiation field is considered as though it consist of the plane waves of photons

[14–20]. In reality, the radiation emitted by the atomic transitions corresponds

to the multipole photons [23] represented by the quantized spherical waves [2].

Although the classical plane and spherical waves are equivalent in the sense

that they both form complete orthogonal sets of solutions of the homogeneous

Helmholtz wave equation [24,25], there is a strong qualitative difference

between the two quantum representations. The plane waves of photons corre-

spond to the running-wave solutions of the homogeneous Helmholtz wave

equation in a large but finite cubic cavity with periodic boundary conditions

[1,2,14,15]. This choice of the boundary conditions corresponds to the transla-

tional symmetry of solutions and leads to the states of photons with given linear

momentum [3,10,11]. In turn, the solution of the homogeneous Helmholtz wave

equation in terms of spherical waves assumes the existence of a singular point,

corresponding to an atom (source or absorber of radiation) whose size is small

with respect to the wavelength [24–26]. In this case, the boundary conditions

correspond to the rotational symmetry and lead to the states of photons with

given angular momentum [2,4,27]. Since the components of linear and angular

momenta do not commute, the two representations of quantum electromagnetic

field correspond to physical quantities that cannot be measured at once.

The simplest way to show the principal difference between the representa-

tions of plane and multipole photons is to compare the number of independent

quantum operators (degrees of freedom), describing the monochromatic radia-

tion field. In the case of plane waves of photons with given wavevector ~k
(energy and linear momentum), there are only two independent creation or

annihilation operators of photons with different polarization [2,14,15]. It is well

known that QED (quantum electrodynamics) interprets the polarization as given

spin state of photons [4]. The spin of photon is known to be 1, so that there are

three possible spin states. In the case of plane waves, projection of spin on the
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direction of ~k is forbidden because of the translational invariance, and hence

only two transversal polarizations are allowed [4].

In turn, the monochromatic multipole photons are described by the scalar

wavenumber k (energy), parity (type of radiation either electric or magnetic),

angular momentum j ¼ 1; 2; . . . , and projection m ¼ �j; . . . ; j [2,26,27]. This

means that even in the simplest case of monochromatic dipole ð j ¼ 1Þ photons

of either type, there are three independent creation or annihilation operators

labeled by the index m ¼ 0;�1. Thus, the representation of multipole photons

has much physical properties in comparison with the plane waves of photons.

For example, the third spin state is allowed in this case and therefore the

quantum multipole radiation is specified by three different polarizations, two

transversal and one longitudinal (with respect to the radial direction from the

source) [27,28]. In contrast to the plane waves of photons, the projection of spin

is not a quantum number in the case of multipole photons. Therefore, the

polarization is not a global characteristic of the multipole radiation but changes

with distance from the source [22].

Another very important difference between the plane and multipole photons

consists in the character of zero-point oscillations of the field strengths [29]. We

shall show here that, unlike the former case with spatially homogeneous zero-

point oscillations, the multipole vacuum noise strongly depends on the distance

from the singular point (atom). It is not an unexpected result. In fact, zero-point

oscillations reflect the structure of the electromagnetic vacuum state, which, in

turn, depends on the boundary conditions for the homogeneous Helmholtz wave

equation [3]. Let us note in this connection that the possible influence of an

atom on the electromagnetic vacuum state in the absence of radiation has been

discussed in QED for a long time [30,31]. It should be stressed that the spatial

inhomogeneity of the multipole vacuum noise can be very important for

prognosis of experiments with trapped atoms [32] and single-atom laser [33],

especially in the engineered entanglement in the atom–photon systems [32].

We now note that, since the 1990s entanglement has been recognized as one

of the most fundamental features of quantum systems as well as an important

tool of quantum communication and information processing [34]. One of the

promising ways in the engineered entanglement is represented by the so-called

two-photon polarization entanglement (see Sec. 12.14 in Ref. 14). In this case,

the cascade decay of an atomic transition leads to the creation of two entangled

photons with different polarizations and different directions of propagation.

Therefore, an adequate estimation of the vacuum noise in atom–photon interac-

tions seems to be of great importance.

While the simplified picture based on the model of plane waves of photons,

neglecting the presence of sources and absorbers, is incapable of describing the

photon localization, we show here that the use of the rich physical properties of

multipole photons leads to an adequate description of localization in the atom–
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field interaction processes as well as in conventional photodetection. We note

that the causal relation between the boundary conditions for the homogeneous

Helmholtz wave equation and photon localization has been discussed since the

late 1990s [19,22,29,35].

The representation of multipole photons is also useful in the investigation of

the quantum phase problem [36]. In the pioneering paper [1] on the quantization

of electromagnetic field, Dirac first postulated the existence of a Hermitian

phase operator defined by the polar decomposition of the annihilation operator

and conjugated to the photon number operator. Later it was realized that the

Dirac’s phase operator cannot be considered as a properly defined Hermitian

operator, describing the quantum phase properties of electromagnetic radiation

(for reviews, see Refs. 14 and 37–40). In particular, Susskind and Glogower [41]

emphasized that the main difficulty in the correct definition of the phase

operator arises because the spectrum of the number operator is bounded from

below. An extension of the eigenvalue spectrum to negative values allows for

the correct mathematical construction of the Hermitian phase operator [42,43],

which leads to nonphysical states. An attempt to use the cosine and sine of the

phase operators rather than the quantum phase operator has also been discussed

[44].

A way to overcome the difficulties in the definition of the Hermitian phase

operator has been proposed by Pegg and Barnett [40,45]. Their method is based

on a contraction of the infinite-dimensional Hilbert–Fock space of photon states

H. Within this method, the quantum phase variable is determined first in a finite

s-dimensional subspace of H, where the polar decomposition is allowed. The

formal limit s ! 1 is taken only after the averages of the operators, describing

the physical quantities, have been calculated. Let us stress that any restriction of

dimension of the Hilbert–Fock space of photons is equivalent to an effective

violation of the algebraic properties of the photon operators and therefore can

lead to an inadequate picture of quantum fluctuations [46].

Perhaps, the most important result in the field of quantum phase problem was

obtained by Mandel et al. [47] within the framework of the operational approach.

According to their analysis, there is no unique quantum phase variable, des-

cribing universally the measured phase properties of light. This very strong

statement has obtained a totally convincing confirmation in a number of

experiments [47,48]. The results of the operational approach can be interpreted

with the aid of the method based on the special quasiprobability distribution

functions [49].

Generally speaking, the quantum phase variables can be divided into two

classes. First, we have the pure operational phases that are completely deter-

mined by the scheme of measurement. This has no contradiction with the exis-

tence of an intrinsic quantum-dynamical variable responsible for the phase

properties of light [50]. In addition, there might be some inherent quantum
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phases related to the quantum properties of photons. Since any photon can be

specified by its energy, angular momentum, and/or linear momentum, the

inherent phase should be determined by either the angular or linear momenta,

as the energy is a scalar. The former is connected with the spin states and hence,

with the polarization of radiation field. The latter can lead to some ‘‘geometric’’

phase, which, for example, can be measured as the phase difference between

two plane waves emitted by one source in opposite directions.

It is well known that the angular momentum of a quantum mechanical

system is specified by a representation of the SU(2) algebra. If the correspond-

ing enveloping algebra contains a uniquely defined scalar (the Casimir opera-

tor), the polar decomposition of the angular momentum can be obtained [51].

This polar decomposition determines a dual representation of the SU(2) algebra

expressed in terms of so-called phase states [51]. In particular, the Hermitian

operator of the SU(2) quantum phase can be constructed [51].

Although the angular momentum of quantum multipole radiation is well

defined in terms of the multipole photon operators of creation and annihilation,

the direct polar decomposition of the corresponding SU(2) subalgebra in the

Weyl–Heisenberg algebra is impossible. The point is that this SU(2) subalgebra

has no isotype representation [52]. This means that the Casimir operator (scalar)

cannot be uniquely determined in the whole Hilbert–Fock space of photon states.

Hence, the quantum phase of the angular momentum of multipole photons

cannot be determined by a method proposed [51] as valid for the quantum

mechanical systems.

An approach focused on overcoming this difficulty has been developed

[36,46,53,54]. The main idea, which seems to be a very natural one, is to

consider the radiation of a given quantum source (atom or molecule) rather than

a source-free electromagnetic field represented by the plane waves. Even in the

classical picture, the multipole radiation can be determined completely only if

the source functions, describing a local source at the origin, are known [25].

Within the quantum picture where the atom–field interaction is described in

terms of the perturbation theory [26], we can take into account the source

dependence of radiation using the conservation laws. In particular, the con-

servation of angular momentum in the process of radiation [26] permits us first

to define the SU(2) quantum phase of the atomic transition, following the

method by Vourdas [51], an then to construct an operator complement of

the atomic cosine and sine operators with respect to the integrals of motion in

the whole atom–field system [36].

Many attempts have been made to define the quantum phase of light via

the angular momentum (e.g., see Ref. 55 and references cited therein). The

new element of our approach [36,46,53,54] is that we determine the quantum

phase of radiation via the quantum phase of the angular momentum of its

source.
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Let us stress that the electromagnetic vacuum state has no phase at all. This is

the same as saying that the vacuum state is degenerated with respect to the

phase or that the phase is distributed uniformly over the vacuum [14,15]. The

degeneration is taken off in the process of creation of the photon by atomic

transition. Thus, it seems quite logic to assume that the inherent quantum phase

of photons is generated by the source [36,46]. Definitely, this is not an unusual

assumption. Actually, the classical amplitudes of the multipole field are

completely determined by the source functions, describing the charge density,

current density, and magnetization [25]. Hence, the multipole photon operators,

which are obtained by the quantization of classical amplitudes [1,2], are also

specified by the source [56].

We also note that, in contrast to the Pegg–Barnett formalism [45], we

consider an extended space of states, including the Hilbert–Fock state of

photons as well as the space of atomic states [36,46,53,54]. The quantum phase

of radiation is defined, in this case, by mapping of corresponding operators from

the atomic space of states to the whole Hilbert–Fock space of photons. This

procedure does not lead to any violation of the algebraic properties of multipole

photons and therefore gives an adequate picture of quantum phase fluctuations

[46].

We provide here a review of investigations of the photon localization and

quantum phase problems based on the use of the representation of multipole

photons. Section II presents a general consideration of the field quantization. In

particular, we compare the zero-point oscillations of the plane and multipole

waves of photons and show that the vacuum noise is concentrated in some

vicinity of atoms. In Section III we discuss the atom–field interaction leading to

the multipole radiation and consider the SU(2) quantum phase representation of

atomic variables. Here we also discuss a connection between the SU(2) quantum

phase states and entanglement phenomenon. In Section IV we describe the

quantum phase of multipole radiation caused by the angular momentum

conservation in the process of radiation. We compare this approach with the

Pegg–Barnett formalism and with Mandel’s operational approach. In Section V

we consider the quantum polarization properties of multipole radiation. Then, in

Section VI, we discuss the photon localization, quantum measurements, and

causality. To simplify the reading, we supplement each section by a brief

summary. A general conclusion and the implications of this work are presented

in Section VII.

II. QUANTUM MULTIPOLE FIELD

We must not think of the things that we could do with, but only of the things we

can’t do without.

—Jerome K. Jerome, Three Men in a Boat
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A. Classical Electromagnetic Field

An arbitrary free classical electromagnetic field is described by the vector

potential ~Að~rÞ, which obeys the wave equation [14,24,25]

r2 ~A � 1

c2

q2 ~A

qt2
¼ 0 ð1Þ

and Coulomb gauge condition

~r 	 ~A ¼ 0 ð2Þ

The field strengths are then defined as follows:

~E ¼ � 1

c

q ~A

qt
; ~B ¼ ~r
 ~A ð3Þ

Equation (1) can be solved by separation of variables [24]:

~Að~r; tÞ ¼
X
‘

q‘ðtÞ~u‘ð~rÞ ð4Þ

Employing (1) then gives the homogeneous Helmholtz wave equations of the

form

d2q‘

dt2
þ o2

‘q‘ ¼ 0

r2~u‘ þ
o2
‘

c2
~u‘ ¼ 0 ð5Þ

where o‘ are some constants, arising from the separation of variables [24].

Solution of the first equation in (5) gives the harmonic time dependence

q‘ ¼ expð�io‘tÞ. Because of the harmonic time dependence in (4), it is

customary to represent the vector potential in terms of the positive and negative

frequency parts:

~Að~rÞ ¼ ~Að~rÞ þ~A�ð~rÞ ð6Þ

where ~A  expð�iotÞ.
The energy density of the field is

Wð~rÞ ¼ 1

16p
½~E�ð~rÞ 	~Eð~rÞ þ ~B�ð~rÞ 	 ~Bð~rÞ� ð7Þ
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In turn, the flux of energy is given by the real part of the complex Poynting

vector

~Sð~rÞ ¼ 1

8p
~Eð~rÞ 
~B�ð~rÞ ð8Þ

where, according to (3), we obtain

~Eð~rÞ ¼ �ik~Að~rÞ; ~Bð~rÞ ¼ ~r
~Að~rÞ

The angular momentum density of the field has the form [25]

~Mð~rÞ ¼ 1

4pc
~r 
 ½~Eð~rÞ 
 ~Bð~rÞ� ð9Þ

One possible solution of the first equation in (5), corresponding to the plane

waves, traveling along the z axis and having the same amplitude and phase

everywhere [24], has the form [14,24,25]

~u‘ð~rÞ ¼
X
‘

X
s¼x;y

~e‘sei~k‘	~ra‘s þ c:c ð10Þ

(where c.c. denotes complex conjugates). Here a‘s are the complex field

amplitudes,~ex;y are the unit vectors of polarization which, due to the Coulomb

(guage) condition (2), obey the relation

8‘ ~ex;y 	~k‘ ¼ 0 ð11Þ

and k2
‘ ¼ o2

‘=c2. Employing (3), (6), and (10) then gives

Exð~rÞ ¼ i
X

k

kAkxð~rÞ ¼ Byð~rÞ

Eyð~rÞ ¼ i
X

k

kAkyð~rÞ ¼ �Bxð~rÞ ð12Þ

To simplify the notations, we omit the index ‘ here. According to (10), we have

Að~rÞ ¼
X

k

gk

X
s¼x;y

~eksei~k	~rakse�iot ð13Þ

where gk is the normalization factor. Another possible solution of the

homogeneous Helmholtz wave equation (5) convenient for electromagnetic

boundary-value problems possessing spherical symmetry properties is provided
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by the spherical waves [24,25]. In this case, it is supposed that there is a singular

point at the origin, corresponding to a localized source distribution or to an

absorber (in the case of incoming spherical waves).

In the spherical coordinates x ¼ r sinycosf; y ¼ r sinysinf, and z ¼ r cosy,

the second equation in (5) takes the form [24]

q2u‘

qr2
þ 2

r

qu‘

qr
þ 1

r2 siny
q
qy

siny
qu‘

qy

� �
þ 1

r2 sin2y
q2u‘

qf2
þ o2

‘

c2
u‘ ¼ 0 ð14Þ

A corresponding solution can be found by the separation of variables

u ¼ RðrÞ�ðyÞ�ðfÞ in the mode function in (5), which yields the following

set of ordinary differential equations [24]:

d2R

dr2
þ 2

r

dR

dr
þ o2

c2r2
� jð j þ 1Þ

� �
R ¼ 0

1

siny
d

dy
sin y

d�

dy

� �
þ jðj þ 1Þ � m2

sin2 y

� �
� ¼ 0

d2�

df2
þ m2� ¼ 0 ð15Þ

The solution of these equations is represented by certain combinations of

spherical Bessel or Hankel functions and spherical harmonics [24–26].

To establish contact with the quantum picture, consider the so-called helicity

basis [27]

~w� ¼ �~ex � i~eyffiffiffi
2

p ; ~w0 ¼~ez ð16Þ

It is clear that f~wmg formally coincide with the three states of spin 1 of a photon.

Therefore, one can choose to interpret ~w� as the unit vectors of circular

polarization with either positive or negative helicity, while ~w0 gives the linear

polarization in the z direction [27]. We note here that to within the sign at~w� the

helicity basis (16) coincides with the so-called polarization basis frequently

used in optics [57].

In the basis (16), any vector ~A can be expanded as follows:

~A ¼
X1

m¼�1

ð�1Þm~w�mAm
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In this basis, for the positive-frequency part of the vector potential in (6) we get

[2,24–27]

~Alð~rÞ ¼
X

k

X
m

X
j

Xj

m¼�j

ð�1Þm~w�mVlkjmmð~rÞalkjme�iot ð17Þ

Here l ¼ E;M denotes the type of radiation, either electric or magnetic, index j

takes the values 1, 2, . . . , and index m ¼ �j; . . . ; j. The complex field

amplitudes are defined in terms of the source functions, describing the local

distribution of current and intrinsic magnetization [25]. The mode functions in

(17) can be represented in the following form [2,26,27]:

VEkjmm ¼ gEkj½
ffiffi
j

p
fjþ1ðkrÞh1; j þ 1; m;m � mj jmiYjþ1;m�mðyfÞ

�
ffiffiffiffiffiffiffiffiffiffi
j þ 1

p
fj�1ðkrÞh1; j � 1; m;m � mj jmiYj�1;m�mðy;fÞ�

VMkjmm ¼ gMkj fjðkrÞh1; j; m;m � mj jmiYjmðy;fÞ ð18Þ

Here glkj is the normalization constant, h	 	 	 j jmi denotes the Clebsch–Gordon

coefficient, and Y‘m is the spherical harmonics. The radial contribution into the

mode functions (18) depends on the boundary conditions as follows [24]

f‘ðkrÞ ¼
h
ð1Þ
‘ ðkrÞ; outgoing spherical wave

h
ð2Þ
‘ ðkrÞ; incoming spherical wave

j‘ðkrÞ; standing spherical wave

8><
>: ð19Þ

where h
ð1;2Þ
‘ denotes the spherical Hankel function of the first and second kinds,

respectively, and j‘ is the spherical Bessel function [24,25].

Unlike the case of plane waves of photons, the multipole field (18)

propagates as a uniformly expanding spherical shell rather than propagates

along a given direction of ~k. Instead of the symmetry relations (12), for the

spherical waves of photons we get the following reciprocity relations [2,27]:

~EEkjm ¼ ~BMkjm ¼ ik~AEkjm

~EMkjm ¼ �~BEkjm ¼ ik~AMkjm ð20Þ

B. Quantum Electromagnetic Field

The canonical quantization of the field has introduced by Dirac [1] (see also

Refs. 2–4,10,11,14,15,26,27) is provided by the substitution of the photon

operators, forming a representation of the Weyl–Heisenberg algebra, into the
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expression for the vector potential instead of the complex field amplitudes. For

example, in the case of plane waves, described by the positive-frequency part of

the vector potential (13), we get the following operator construction

Að~rÞ ¼
X

k

X
s¼x;y

ffiffiffiffiffiffiffiffiffiffi
2p�hc

kV

r
~eksei~k	~raks ð21Þ

where V is the volume of quantization, which is supposed to be a large cubic box

with periodical boundary conditions. Here the harmonic time dependence is

included into the photon operators that obey the commutation relations

½aks; aþ
k0s0 � ¼ dkk0dss0 ð22Þ

As a result of the translational symmetry along the z direction, the plane waves

of photons, described by (21) and (22), correspond to the states of the radiation

field with given linear momentum

~P ¼
X
ks

�h~kaþ
ksaks

where ~k ¼ k~ez.

The multipole electromagnetic field ‘‘can be quantized in much the same

way as plane waves’’ [2]. We have to subject the complex field amplitudes in the

expansion (17) to the Weyl–Heisenberg commutation relations of the form

½alkjm; aþ
l0k0j0m0 � ¼ dll0dkk0djj0dmm0 ð23Þ

Then, the positive-frequency part of the operator vector potential of the

multipole radiation of a given type l takes the form [2,27]

~Alð~rÞ ¼
X

k

X
m

X
j

Xj

m¼�j

ð�1Þm~w�mVlkjmmð~rÞalkjm ð24Þ

where the harmonic time dependence is again included into the definition of the

photon operators of creation and annihilation. In the case of standing waves of

photons in an ideal spherical cavity of volume V, the normalization factors in

(18) take the form [2,27]

gEkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p�hc

kVð2j þ 1Þ

s

gMkj ¼
ffiffiffiffiffiffiffiffiffiffi
2p�hc

kV

r
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Within the quantum picture, the Clebsch–Gordon coefficients in (18) represent

the vector addition of the spin and orbital parts of the total angular momentum

of the field [2]. The indices j and m in (23) and (24) correspond to the angular

momentum and projection of angular momentum on the quantization axis. The

electric-type multipole radiation is interpreted as having the parity of state

ð�1Þ jþ1
, while the magnetic-type multipole radiation is specified by the states

with parity ð�1Þ j. Because of the spherical symmetry of solutions (17)–(19), the

representation of spherical waves of photons (23)–(24) corresponds to the states

of quantum multipole field with given angular momentum. Since the compo-

nents of the linear and angular momenta do not commute with each other, the

two representations (21)–(22) and (23)–(24) are different in principle. They

correspond to the physical observables that cannot be measured simultaneously.

For both the plane and multipole waves of photons, the vacuum state can be

defined by the stability condition in the same way [3,4]:

8k;s aksj0i ¼ 0

8l; k; j;m alkjmj0i ¼ 0 ð25Þ

Then, the corresponding Fock number states are defined as follows

jnksi ¼
ðaþ

ksÞ
n
ksffiffiffiffiffiffiffiffi

nks!
p j0i

jnlkjmi ¼
ðaþ

lkjmÞ
n
lkjmffiffiffiffiffiffiffiffiffiffi

nlkjm
p j0i ð26Þ

where n � 0 is an integer.

As can be seen from the equations (21)–(22) and (23)–(24), there is an

essential difference between the representations of plane and multipole waves of

photons. In particular, a monochromatic plane wave of photons is specified by

only two different quantum numbers s ¼ x; y, describing the linear polarization

in Cartesian coordinates. In turn, the monochromatic multipole photons are

described by much more quantum numbers. Even in the simplest case of the

electric dipole radiation when l ¼ E and j ¼ 1, we have three different states of

multipole photons in (23) with m ¼ 0;�1. Besides that, the plane waves of

photons have the same polarization s everywhere, while the states of multipole

photons have given m. It is seen from (24) that, in this case, the polarization

described by the spin index m can have different values at different distances

from the singular point. In Section V we discuss the polarization properties of

the multipole radiation in greater detail.

A more profound difference between the two representations can be traced in

the properties of the zero-point oscillations. In fact, the energy operators
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obtained by quantization of (7) in the plane and spherical wave representations

have the form [26–59]

HðplaneÞ ¼
X
k;s

�hok aþ
ksaks þ 1

2

� �

HðmultiÞ ¼
X

k

�hok

X
l; j;m

aþ
ljmaljm þ 1

2

� �

Thus, the energies of the vacuum state are

H
ðvacÞ
ðplaneÞ ¼

X
k;s

�hok

2
¼
X

k

�hok

H
ðvacÞ
ðmultiÞ ¼

X
k

�hok

X
l; j;m

1

2
¼
X

k

�hok

X
j

ð2j þ 1Þ
 !

ð27Þ

According to the definition of k, both expressions give an infinite energy and, at

first sight, cannot be compared with each other. In fact, this infinity is inessential

because of the following reason. The contribution of zero-point oscillations can

be observed only via measurement which implies an averaging of physical

quantities over a finite ‘‘volume of detection’’ and exposition time of detector.

Such an averaging plays a part of filtration leading to a selection of a certain

finite transmission frequency band [58]. It is then seen that, even if the filtration

process leads to separation of the dipole photons only, the second term in (27)

exceeds the first one 3 times. From the physical point of view, this result is

caused by the more number of quantum degrees of freedom in the case of

multipole photons.

Much more interesting and important result can be obtained from the

consideration of the spatial properties of the vacuum fluctuations. The simplest

example is provided by the calculation of vacuum average of the squared

electric field strength [58,59]

Wð~rÞ ¼ h0j~E 	~Ej0i ¼ k2h0j ~A 	 ~Aj0i

obtained from (6) by the canonical quantization of the field. It follows from the

definition of the vacuum state (25) that this expression can be put into the form

Wð~rÞ ¼ k2h0j½~A;~Aþ�j0i ¼ k2½~A;~Aþ�

independent of the type of representation. Consider first the monochromatic

plane waves of photons. Using (21) together with the commutation relations
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(22), we get

W ðplaneÞð~rÞ ¼ W ðplaneÞ ¼
X
k;s

�hok

2V
; ok ¼ kc ð28Þ

Here V has the same meaning as in (21). Thus, the zero-point fluctuations of the

electric field strength of plane waves have the same magnitude at any space

point. By construction, (28) describes the zero-point fluctuations in empty

space.

In turn, employing the representation (23)–(24) then gives for (27) in the case

of multipole photons the following equation:

W ðmultiÞð~rÞ ¼ k2
X

l¼E;M

X
m

X
k; j;m

jVlkjmmð~rÞj2 ð29Þ

It is seen from the definition of the mode functions (18) and (19) that, in contrast

to (28), the zero-point oscillations of the electric field strength of multipole

photons manifest the spatial inhomogeneity.

For simplicity, we can compare the monochromatic contributions into (28)

and (29) at the same k and V. Then

W
ðplaneÞ
k ¼

X
s¼1;2

�hkc

2V

and

W
ðmultiÞ
k ð~rÞ ¼

X
jmm

2p�hkc

V


 j
ffiffiffiffiffiffiffiffiffiffiffiffi

j

2j þ 1

s
fjþ1ðkrÞh1; j þ 1;m;m � mj1miYjþ1;m�m

"

�
ffiffiffiffiffiffiffiffiffiffiffiffi
j þ 1

2j þ 1

s
fj�1ðkrÞh1; j � 1; m;m � mj1miYj�1;m�mj2

þ j fjðkrÞh1; j; m;m � mj1miYj;m�mj2�

Since Y‘;m�m  eiðm�mÞf, this form is independent of the azimuthal angle f.

Moreover, it is a straightforward matter to arrive at the conclusion that

W
ðmultiÞ
k ð~rÞ ¼ W

ðmultiÞ
k ðrÞ

(see discussion in Section V.C).
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Consider first the case of standing spherical waves in an ideal spherical

cavity when, according to (19)

f‘ðkrÞ ¼
ffiffiffiffiffiffiffi
p

2kr

r
J‘þ1=2ðkrÞ

We stress here that, in the quantum theory of radiation, exactly the standing

spherical waves are usually considered [2,27]. Unlike the outgoing and incoming

spherical waves of photons, this choice does not lead to the divergence of the

vector potential at r ! 0. Taking into account the properties of Bessel functions

J|ðxÞ, it is easily seen that the principal contribution into W ðmultiÞ in vicinity of

the singular point (atom) comes from J1=2ðkrÞ, corresponding to the electric

dipole radiation. The radial dependence of W ðmultiÞ at fixed k and j ¼ 1 is shown

in Fig. 1. It is seen that the vacuum fluctuations are concentrated near atoms

where their level can strongly exceed that calculated within the framework of

the model of plane waves.

0

0.2

0.4

0.6

0.8

1

2 4
x

6 8 10

Figure 1. Contribution into the zero-point oscillations (29) from the terms with j ¼ 1 in the

case of an ideal spherical cavity as a function of x ¼ kr; (b) the level (28) is shown by the straight

line.
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The case of outgoing and incoming spherical waves can be examined under

the standard assumption that the atom located at the origin has a finite size that

permits us to avoid the divergence at kr ! 0. It is seen that, in some small

vicinity of the atom, the zero-point oscillations, corresponding to the multipole

field in an infinite space, strongly exceed those in the ideal spherical cavity (see

Fig. 2).

It should be stressed that the preceding results were obtained under the

assumption that the atom exists only at the origin, no matter whether we use it

as an emitter or absorber of radiation. In other words, the spatial inhomogeneity

of the zero-point oscillations in (29) reflects the existence of the singular point

that, in fact, is the boundary condition for the homogeneous Helmholtz wave

equation (5). It is possible to say that the electromagnetic vacuum state ‘‘feels’’

the presence of an atom at the origin and is ready to support any radiation (with

all possible l; j, and m) either outgoing or incoming. This is not an astonishing

result. The influence of the electromagnetic vacuum state by the presence of an

atom has been discussed in quantum electrodynamics for a long time [7,30,31].

The new result here is that the zero-point oscillations are concentrated in some

vicinity of atoms where their levels can exceed the standard level (28), which is

usually considered.

The point is that the zero-point oscillations are responsible for the so-called

shot noise [14,15], determining the quantum limit of uncertainty in different

optical measurements. The preceding result shows that the presence of an atom

causes the increase of shot noise and hence a deterioration of the quantum limit

of precision of measurements, at least, in some vicinity of the atom [22,29]. We

discuss this effect in more details in Section VI.

0
1 1.5 2

x
2.5 3

2

4

6

8

Figure 2. Contribution into (29) from the term j ¼ 1 for outgoing spherical waves outside the

atom with radius ra ¼ 1 in arbitrary units. The straight line shows the level of W
ðplaneÞ
k .
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C. Summary

1. Although the monochromatic plane waves of photons are described by

only two quantum numbers, specifying the polarization, the monochro-

matic multipole waves of photons have much more quantum degrees of

freedom: the type of radiation (parity) l ¼ E;M and the angular momen-

tum j � 1 and its projection m ¼ �j; . . . ; j.

2. The zero-point oscillations of the energy density of plane waves of photons

have the same magnitude everywhere. In contrast, those calculated in the

presence of a singular point (source or absorber) manifest spatial inhomo-

geneity. Precisely, the vacuum noise is concentrated in some vicinity of

the singular point.

III. ATOM–FIELD INTERACTION

‘‘Well! I’ve often seen a cat without a grin’’, thought Alice; ‘‘but a grin without a

cat! It’s the most curious thing I ever saw in all my life’’.

—Lewis Carroll, Alice’s Adventures in Wonderland

A. Multipole Jaynes–Cummings Model

In the previous section, the classical and quantum electromagnetic fields were

considered as absolutely free sourceless objects. This picture follows from the

existence of nontrivial solutions of the homogeneous Helmholtz wave equation

(5). In some textbooks, this mathematical fact is interpreted as the claim of the

following type: the electromagnetic field can exist in the absence of any charge

(e.g., see Ref. 60). At the same time, as we know, no one has ever observed

photons that had not been created by a source. According to the quantum picture,

the electromagnetic vacuum state contains unborn photons of all possible types.

They are extracted from this state in the form of overvacuum excitations (waves)

in the process of source–photon interaction, leading to the photon generation.

The observable properties of real photons are governed by this interaction, which

causes the success of conventional [23,61] and correlation [62,63] spectroscopy.

Rephrasing Lewis Carroll’s Alice’s Adventures in Wonderland, it is possible to

say that the source is similar to Cheshire Cat, creating grin which propagates in

spacetime (see Fig. 3).

The simplest quantum source of photons is the atomic transition, creating,

according to the selection rules, multipole photons. The simplest model of the

interaction of an atom with the electromagnetic radiation is associated with the

notion of so-called two-level atom [64]. In fact, this model originates from the

famous study of radiation kinetics by Einstein [65]. With the development of

laser, the notion of two-level atom entered firmly into the practice of quantum

optics. The fact is that, using lasers as sources of electromagnetic radiation, one
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can act on the atom with field having frequency very close to the transition

frequency between any pair of levels. In this case, the influence of the other

levels can be ignored, and one need the consider only a two-level atom (in

general, an atom with a finite number of levels) [64]. On the other hand, the use

of high-quality cavities has the consequence that an atom in such a cavity

interacts with only one or very few modes of the field quantized in the volume

of the cavity [32,33,66].

The branch of quantum optics studying the processes of interaction of one or

a few atoms with the quantized cavity modes is usually called cavity quantum

electrodynamics (cavity QED). The theoretical concepts of cavity QED are

based in the first place on investigation of the Jaynes–Cummings model [67]

and its generalizations (for a review, see Ref. 68). The reason for this is that the

model describes fairly well the physical processes under consideration and at

the same time admits an exact solution.

In the usual formulation of the Jaynes–Cummings model, the atom is

considered as though it consisted of two nondegenerated levels [67] . In

contrast, the radiative transitions in real atoms occur between the states with

given angular quantum numbers j j;mi ! j j0;m0i such that j > j0 � 0

[23,26,61]. This means that, at least the upper level, is degenerated with respect

to the quantum number m ð�j � m � jÞ. For example, in the simplest case of

the electric dipole transition between the states j j ¼ 1;m ¼ 0;�1i and

Figure 3. Transmission of information from atom to detector as propagation of the grin of a

Cheshire cat. In the upper picture, the atom keeps information about excited level (cat’s grin). In the

lower picture, the atom hands this information to a photon, propagating to a detector.
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j j0 ¼ 0;m0 ¼ 0i, the excited state is triple degenerated (see Fig. 4). The

corresponding generalization of the Jaynes–Cummings model has been dis-

cussed [36,53]. Similar models have been considered in different problems of

interaction of quantum light and matter [69].

Interaction between a single atom and a radiation field is usually considered

within the framework of perturbation theory using the following Hamiltonian

[26,64]

H ¼ H0 þ
1

2me

~p � e

c
~A

� �2

ð30Þ

where H0 describes the unperturbed atom and field and the rest is written for the

interaction between a single spinless electron with charge e, mass me, momen-

tum p, and free electromagnetic field described by the vector potential ~A.

Following earlier observations [36,53], consider a two-level atom with the

electric dipole transition between the triple-degenerated excited atomic state

with j ¼ 1 and nondegenerated ground state with j0 ¼ 0. The atom is supposed

to be located at the center of an ideal spherical cavity. The coupling constant of

the atom–field interaction can be found by calculating the matrix element

[26,27]

� e

2mec
h0; 0 j~p 	~A þ~A 	~p j1;mi ¼ ik0h0; 0 j~d 	~Aj1;mi ð31Þ

obtained from (30). The A2 term is excluded because of the use of the so-called

rotating-wave approximation [64]. Here ~d ¼ e~r is the dipole moment and ~Að~rÞ
is the operator vector potential (24) with the radial dependence of the mode

functions (18) described by f‘ðkrÞ ¼ j‘ðkrÞ in (19) due to the choice of the

boundary conditions.

Assuming the central symmetry of atomic field and taking into account the

fact that the spin state of an atom does not change under the electric dipole

m = 0

m = 0m = +1 m = −1

j = 0

j = 1

Figure 4. Scheme of transitions between the triple degenerated excited state j j ¼ 1;m ¼ 0;�1i
and ground state j j 0 ¼ 0;m ¼ 0i in a two-level atom with the dipole transition.
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transition [27,61], we can represent the atomic states in (31) as

j1;mi ¼ R1ðkrÞY1mðy;fÞ; j0; 0i ¼ R0ðkrÞY00ðy;fÞ

where R‘ is the radial part of the atomic wave function. Then, representing the

dipole moment ~d in the helicity basis (16) and carrying out the calculations of

integrals in (31) over the atomic volume, we get

8m g � k0h1;mj~d 	~Aj0; 0i ¼ k0D

ffiffiffiffiffiffiffiffiffiffi
3�hc

10kR

r
ð32Þ

where

D ¼ e

ðra

0

drr3 f1ðkrÞ f0ðkrÞ

is the effective dipole factor. Here R and ra denote the cavity and atomic radii

respectively and k is the wave number, describing the cavity field.

Taking into account the explicit form of spherical Bessel functions [70]

j0ðkrÞ ¼ sinkr

kr
;

j2ðkrÞ ¼ 3 � ðkrÞ2

ðkrÞ3
sinkr � 3coskr

ðkrÞ2
ð33Þ

we note that, owing to the structure of the mode functions (18), all other radial

functions do not contribute (24). Assuming that the atom is a point-like object

(in fact, very small with respect to the wavelength of radiation field), we get

lim
kr!0

j0ðkrÞ ¼ 1; lim
kr!0

j2ðkrÞ ¼ 0

Using the properties of the Clebsch–Gordon coefficients [71] and spherical

harmonics [70], for the mode functions (18) in this limit we get

VEk1mð0Þ  �dmm

Inserting this into (24), we obtain

~AEk1ð0Þ ¼ �
ffiffiffiffiffiffiffiffi
�hc

3kV

r X1

m¼�1

ð�1Þm~w�maEk1mdmm

This means that the electric dipole transition j1;mi!j0; 0i creates a photon

with spin state (polarization) m ¼ m. However, the picture of the polarization
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changes with the distance from the atom because of the position dependence of

the mode functions (18).

Thus, the Jaynes–Cummings Hamiltonian for the electric dipole transition

can be written as follows [36,53]:

H ¼ H0 þ Hint

H0 ¼
X1

m¼�1

foaþ
E1maE1m þ o0Rmmg

Hint ¼ g
X1

m¼�1

fRmgaE1m þ aþ
E1mRgmg ð34Þ

Here o0 ¼ �hk0c and o ¼ �hkc are the energies of the atomic transition and cavity

field, respectively, and the atomic operators are defined as follows:

Rmg ¼ j1;mih0; 0j; Rmm0 ¼ j1;mih1;m0j ð35Þ

The first term in (34) describes the energy of the free cavity field and atom,

while the second term gives the energy either of the transition j1;mi ! j0; 0i
with generation of the multipole photon or of the transition j0; 0i ! j1;mi
accompanied by the absorption of corresponding electric dipole photon.

Generalizations of the Jaynes–Cummings model (34) in the case of quad-

rupole and other high-order multipole transitions can be constructed in the same

way.

B. The SU(2) Atomic Phase States

In the model Hamiltonian (34), the excited atomic state is specified by the

following three orthogonal states:

j1; 1i; j1; 0i; j1;�1i ð36Þ

On this basis, we can construct a representation of the SU(2) algebra with the

following generators [53,54]

Jz ¼ Rþþ � R��

Jþ ¼
ffiffiffi
2

p
ðRþ0 þ R0�Þ

J� ¼
ffiffiffi
2

p
ðR0þ þ R�Þ ð37Þ

which obey the standard commutation relations

½Jþ; J�� ¼ 2Jz; ½Jz; J�� ¼ �J� ð38Þ
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The enveloping algebra of (37)–(38) contains the uniquely defined Casimir

operator

J2 ¼ 2
X1

m¼�1

Rmm � 2 
 1 ð39Þ

where

1 ¼ j1; 1ih1; 1j þ j1; 0ih1; 0j þ j1;�1ih1;�1j

is the unit operator in the space spanned by the basis (36).

The existence of (39) permits us to use the method, proposed by Vourdas

[51], to construct the dual representation of the SU(2) algebra (37)–(38).

Following [51], we represent the lowering and rising operators in (37) as

Jþ ¼ Jre; J� ¼ eþJr ð40Þ

where Jr is the Hermitian ‘‘radial’’ operator and E is the unitary

eeþ ¼ 1

‘‘exponential of the phase’’ operator. The terminology here is borrowed from

complex calculus. It is clear that the phase variable here describes the azimuth

of the angular momentum of the excited atomic state. Equations (40) can now

be done in a straightforward manner to yield

Jr ¼
ffiffiffi
2

p
ð1 � R��Þ

e ¼ Rþ0 þ R0� þ eicR�þ ð41Þ

where c is an arbitrary real parameter describing the so-called atomic reference

phase [53,54]. It is clear that E is a Coxeter-type operator [72] because

e3 ¼ eic 
 1

In analogy to complex calculus, we can now define the cosine and sine of the

atomic SU(2) phase operators [36]

Ca ¼ eþ eþ

2
; Sa ¼ e� eþ

2i
ð42Þ

such that

C2
a þ S2

a ¼ 1 ð43Þ
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and

½Ca; Sa� ¼ 0 ð44Þ

Following [51], we now introduce the dual representation of the SU(2) algebra

(37)–(38). Consider first the eigenstates of the exponential operator in (41):

ejfmi ¼ eifm jfmi ð45Þ

It is a straightforward matter to arrive at the relations [46]

jfmi ¼
1ffiffiffi
3

p
X1

m0¼�1

e�im0fm j1;mi; fm ¼ 2mp� c
3

ð46Þ

where m acquires the values 0 and �1 as above. It is easily seen that the so-

called phase states [51] (45) determine the basis dual to (36) [46]. In particular

X1

m¼�1

jfmihfmj ¼ 1

Then, the atomic SU(2) quantum phase operator can be defined as follows:

f̂ ¼
X1

m¼�1

fmjfmihfmj ¼ �c
3

1 � 2ip

3
ffiffiffi
3

p ðe�ic=3E� eic=3EþÞ ð47Þ

In turn, the cosine and sine operators (42) can be represented as the functions

Ca ¼ cos f̂; Sa ¼ sin f̂

of the operator (47). Then, the dual representation of the atomic SU(2) algebra

(37) is provided by the following generators:

JðfÞ
z ¼

X
m

mjfmihfmj

J
ðfÞ
þ ¼

X
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � mðm þ 1Þ

p
jfmþ1ihfmj

JðfÞ
� ¼

X
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � mðm � 1Þ

p
jfm�1ihfmj ð48Þ

Similar results can be obtained for an arbitrary atomic multipole transition in

much the same way as above. For example, in the case of the excited atomic
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state with j ¼ 2, the representation of the SU(2) algebra takes the form

Jþ ¼
ffiffiffi
2

p
j2ih1j þ

ffiffiffi
3

p
j1ih0j þ

ffiffiffi
3

p
j0ih�1j þ

ffiffiffi
2

p
j � 1ih�2j

J� ¼
ffiffiffi
2

p
j1ih2j þ

ffiffiffi
3

p
j0ih1j þ

ffiffiffi
3

p
j � 1ih0j þ

ffiffiffi
2

p
j � 2ih�1j

Jz ¼ 2j2ih2j þ j1ih1j � j � 1ih�1j � 2j � 2ih�2j

where jni � jm ¼ ni. The corresponding exponential of the phase operator is

e ¼ j2ih1j þ j1ih0j þ j0ih�1j þ j � 1ih�2j þ eicj � 2ih2j

In this case, the eigenvalues of the phase variable take the following five

independent values:

fm ¼ cþ 2mp
5

; m ¼ 2; 1; . . . ;�2

In the general case of an arbitrary integer j � 1, the number of independent

eigenvalues of the phase variable fm is ð2j þ 1Þ.

C. EPR Paradox and Entanglement

The preceding formalism of SU(2) phase states can be used in a number of

problems of quantum physics. As an illustrative example of great importance,

consider the so-called Einstein–Podolsky–Rosen (EPR) paradox [73] (see also

discussions in Refs. 14, 15, 74, and 75). The EPR paradox touches on the

conceptual problems of reality and locality and existence of hidden variables in

quantum physics as well as the more technological aspects of quantum

cryptography [34].

In the original EPR gedanken experiment [73], a two-component system,

consisting of two spin-1
2

particles, is considered. Up to some time t0, these

particles are taken to be in a bounded state of zero angular momentum. At t0, the

binding is taken off without any disturbance of the spin states. Then, the

separated particles move off in the opposite directions. Since the particles are in

the common quantum state, the measurement of one chosen variable of particle

1, moving ‘‘to the left,’’ completely determines the outcome of a measurement

of corresponding variable of particle 2, moving ‘‘to the right.’’

Before making the measurement, the system is supposed to be in the EPR

state, which is also called the entangled state. It is described by the wavefunc-

tion of the form

j�ðEPRÞ
� i ¼ 1ffiffiffi

2
p ðj "L#Ri � j #L"RiÞ ð49Þ
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Here jlL;Ri denotes the spinup or spindown state of the left or right particle. The

two state vectors in the right-hand side of (49) form a basis of the corresponding

Hilbert space in which we can define the representation of the SU(2) algebra by

the following generators

Jþ ¼ j"L#Rih#L"R j
J� ¼ j#L"Rih"L#R j

Jz ¼
1

2
ðj"L#Rih"L#R j � j#L"Rih#L"R jÞ ð50Þ

so that these operators obey the commutation relations (38) as well as the

condition (39). Hence, the operators (47) admit a polar decomposition of the

form discussed in the previous subsection. In particular, the exponential of the

SU(2) phase operator (41) takes the form

e ¼ j"L#Rih#L"R j þ eicj#L"Rih"L#R j ð51Þ

where c is again an arbitrary real reference phase. The SU(2) phase states of the

type of (45), and (46) which are defined to be the eigenstates of the operator

(51), have the form

jfsi ¼
1ffiffiffi
2

p ðj"L#Ri þ eifs j#L"RiÞ ð52Þ

where

fs ¼ c
2
þ sp; s ¼ 0; 1

It is now easily seen that, at c ¼ 0, the SU(2) phase states (52) coincide with the

EPR states (49). Thus, the EPR states can be interpreted as the eigenstates of the

exponential of the phase operator (51) of the SU(2) algebra (50). The corres-

ponding quantum phase operator takes the form

f̂ ¼ cþ p
2


 1 � p
2

e�ic=2e ð53Þ

where

1 � j"L#Rih"L#R j þ j#L"Rih#L"R j

By construction, the operator (53) describes the relative phase between the two

EPR states (49).

There are many different physical realizations of the EPR or entangled states

in optics and condensed-matter physics. For example, the creation of two

photons with different helicities by a single atom in the process of cascade
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decay of transition of the type j � j0 ¼ 0 leads to the polarization-entangled state

of the photons, leaving the atom in opposite directions (e.g., see Section 12.14.1

in Ref. 14).

Another important example of entanglement is provided by the system of

two 2-level atoms in an optical resonator [76]. Such a system can be described

by the following Jaynes–Cummings Hamiltonian:

H ¼ H0 þ Hint

H0 ¼
X
f¼1;2

of jef ihef j þ oaþa

Hint ¼
X
f¼1;2

igf ðjef ihgf ja � aþjgf ihef jÞ ð54Þ

Here index f denotes the atom in the cavity, jef iðjgf iÞ is the excited (ground)

state of the corresponding atom, gf is the atom–field coupling constant, and the

operators aþ and a describe the cavity photons. Among the eigenstates of (54)

jc0i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1 þ g2

2

p ðg1j0; g1; ef i � g2j0; e1; g2iÞ

jc�i ¼
1ffiffiffi
2

p j1; g1; g2i �
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
1 þ g2

2

p ðg2j0; g1; e2i þ g1j0; e1; g2iÞ
 !

ð55Þ

there is a maximally entangled atomic state jc0i, which, under the assumption

that g1 ¼ g2, takes the form

jc0i ¼ j0i � jcenti

jcenti ¼
1ffiffiffi
2

p ðjg1; e2i � je1; g2iÞ ð56Þ

similar to EPR state (49). In the above formulas we use the following notations:

j0; ef ; gf 0 6¼f i ¼ j0ifield � jef i � jgf 0 i
j1; g1; g2i ¼ j1ifield � jg1i � jg2i

To establish contact with the SU(2) phase states, we can consider the following

representation of generators of the atomic SU(2) algebra

Jþ ¼ je1ihe2j
J� ¼ je2ihe1j

Jz ¼
1

2
ðje1ihe1j � je2ihe2j
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similar to (50). Then, the exponential of the phase operator takes the form (for

simplicity, we put here c ¼ 0)

e ¼ je1ihe2j þ je2ihe1j

It is now seen that the maximally entangled atomic state in (55) is again the

SU(2) quantum phase state.

An interesting example of entanglement in condensed matter is represented

by the formation of Cooper pairs in conventional superconductors. It is well

known that the electron–phonon interaction in metals can lead to formation of

collective quantum states of paired electrons with opposite spins and linear

momenta [77]. In the simplest quasispin form, the system can be specified by

the Hamiltonian [78,79]

H ¼
X

p

Eps z
p �

X
p;p0

Jpp0s�
p s

þ
p0 ð57Þ

where Ep denotes the energy spectrum depending on the momentum p of

electrons, Jpp0 is the effective coupling constant, and the Pauli operators

s�
p ¼ 0

0

1

0

� �
; sþ

p ¼ 0

1

0

0

� �
; s z

p ¼ 1

2

1

0

0

�1

� �

correspond to the pairs of electrons with opposite spins and momenta. Since the

Pauli operators obey the commutation relations

½s�
p ;s

þ
p0 � ¼ 2s z

pdpp0 ; ½sz
p;s

�
p0 � ¼ �s�

p dpp0

which coincide with (38); by performing an analysis similar to that described in

previous subsection, we get

ep ¼ s�
p þ eicsþ

p

This is the SU(2) exponential of the phase operator similar to (41) defined for

each p.

It is also known that, in the so-called thermodynamic limit, when the number

of electrons tends to infinity at constant density, the state of the system with the

quasispin Bardeen-Cooper-Shriefer (BCS) Hamiltonian (57) is the eigenstate of

the trial Hamiltonian, in which the interaction part of (57) is changed by the

operator [79]

Hint ¼ �Tc

X
p

ðs�
p �þ sþ

p �
� � j�j2Þ
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where Tc is some constant related to Jpp0 in (57) and � is the complex

parameter, characterizing the gap in the spectrum of eigenenergy and depending

on the temperature. Thus, at c ¼ �2 arg �, the superconducting state (the

eigenstate of ep) is the SU(2) quantum phase state, describing entangled

electrons with opposite spins and momenta (Cooper pair). Therefore, the phase

transition into the superconducting state can be interpreted as the creation of

collective entangled state of electrons.

D. Summary

1. For the electric dipole radiation described by the Jaynes–Cummings

Hamiltonian (34), the polarization of photons at kr ! 0 is defined by the

quantum number m ¼ 0;�1, describing the excited atomic state.

2. For any atomic multipole transition, the excited state can be described in

terms of the dual representation of corresponding SU(2) algebra,

describing the azimuthal quantum phase of the angular momentum. In

particular, the exponential of the phase operator and phase states can be

constructed. The quantum phase variable has a discrete spectrum with

ð2j þ 1Þ different eigenvalues.

3. In a special case of j ¼ 1
2
, the eigenstates of the exponential of the phase

operator coincide with the EPR (entangled) states, which can be

interpreted as the SU(2) phase state.

IV. QUANTUM PHASE OF MULTIPOLE RADIATION

No, my dear Watson, the two events are connected – must be connected. It is for us

to find the connection.

—Sir Arthur Conan Doyle, The Second Stain

A. Conservation of Angular Momentum in the Process of Radiation

We now turn to the problem of the SU(2) quantum phase of multipole radiation.

As a particular example of some considerable interest, we investigate the

electric dipole field. All other types of the multipole radiation can be considered

in the same way.

In Section III.B, we introduced the atomic quantum phase states through the

use of the representation of the SU(2) algebra (37) and dual representation (48),

corresponding to the angular momentum of the excited atomic state. The

multipole radiation emitted by atoms carries the angular momentum of the

excited atomic state and can also be specified by the angular momentum

[2,26,27]. The bare operators of the angular momentum of the electric dipole
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radiation have the form

Mþ ¼
ffiffiffi
2

p
ðaþ

þa0 þ aþ
0 a�Þ

M� ¼
ffiffiffi
2

p
ðaþ

0 aþ þ aþ
�a0Þ

Mz ¼
X1

m¼�1

maþmam ð58Þ

This result can be obtained by canonical quantization of the components of

classical angular momentum (9) [2]. Hereafter in this section we use the

following notation:

am � aEk1m

Taking into account the commutation relations (23), it is easy to check that

½Mþ;M�� ¼ 2Mz; ½Mz;M�� ¼ �M� ð59Þ

so that the operators (58) form a representation of the SU(2) subalgebra in the

Weyl–Heisenberg algebra (18) of the electric dipole photons.

The electric dipole photons, as well as the operators (58), are defined in the

Hilbert space

Hfield ¼
O1

m¼�1

Hm ð60Þ

where each subspace Hm is spanned by the countable set of Fock vectors jnmi
ðnm ¼ 0; 1; 2; . . .Þ, which obey the orthogonality condition

hn0
m0 jnmi ¼ dnn0dmm0

and the completeness condition

O1

m¼�1

X1
nm¼0

jnmihnmj ¼ 1 ð61Þ

Here 1 is the unit operator, acting in (60). Unlike (39)

M2 ¼ M2
z þ MþM� � Mz 6¼ 1

in the whole Hilbert space (60). In other words, there is no isotype

representation [52] of (58) in (60). Therefore, the polar decomposition of the
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SU(2) subalgebra (58) in the Weyl–Heisenberg algebra of electric dipole

photons cannot be constructed in the way discussed in Section III.B.

At the same time, we know that the photons carry information obtained from

the atom in the process of generation. This information is transmitted through

the conservation laws. In particular, the photon carries the angular momentum

of the excited state because

½ðJa þ Ma;H� ¼ 0 ð62Þ

Here Ja denotes the atomic SU(2) generators (37) with a ¼ z;�;Ma is the

component of the field angular momentum operator (58), and H is the Jaynes–

Cummings model Hamiltonian (34).

Since the atomic SU(2) quantum phase, discussed in Section III.B, is defined

by the angular momentum of the excited atomic state, the conservation law (62)

can be used to determine the field counterpart of the exponential of the phase

operator (41) and other operators referred to the SU(2) quantum phase [36,46].

For example, it is easily seen that the operator

erad ¼ aþ
þa0 þ aþ

0 a� þ aþ
�aþ ð63Þ

complements the atomic exponential of the phase operator (41) (at c ¼ 0) with

respect to the integral of motion:

½ðea þ eradÞ;H� ¼ 0 ð64Þ

The operator (63) can be considered as the result of ‘‘mapping’’ of the atomic

exponential of the SU(2) phase operator (41) on the field variables through the

use of the integral of motion (64). Unlike (41), it is not unitary

eradeþrad 6¼ 1

but it is a normal operator

½erad; eþrad� ¼ 0

commuting with the total number of photons

½erad;
X

m

aþ
mam� ¼ 0 ð65Þ

In the same way, it is easy to show that the operator constructions erad þ eþrad and

�iðerad � eþradÞ complement the atomic cosine and sine of the SU(2) phase

operators (42) with respect to the integrals of motion with the atom–field

Hamiltonian (34).
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B. Dual Representation of Dipole Photons

We now turn to the construction of the dual representation of the photon

operators, providing the field counterpart of the SU(2) phase representation of

the atomic variables. It is easily seen that the atomic exponential of the SU(2)

phase operator (41) takes [in the representation of dual states (46)] the following

diagonal form

eðfÞa ¼
X1

m¼�1

eifm jfmihfmj ð66Þ

where fm takes the values (46) (hereafter we put c ¼ 0 without loss of

generality). Thus, the dual representation of the atomic operators leads to the

diagonal form of the exponential of the phase operator.

In turn, the field operator (63), representing the field counterpart of (41), can

be diagonalized by the following Bogolubov-type [80] canonical transformation

[46]

am ¼ 1ffiffiffi
3

p
X1

m0¼�1

e�im0fm am0

am ¼ 1ffiffiffi
3

p
X1

m0¼�1

eim0fm am0 ð67Þ

which has the form of finite Fourier transformation with fm defined in (46). It

follows from the commutation relations (23) that

½am; aþ
m0 � ¼ dmm0 ð68Þ

Hence, the operators a in (67) also form a representation of the Weyl–

Heisenberg algebra of the electric dipole photons. Employing this transforma-

tion (67) then gives the diagonal representation of the operator (63)

eðfÞrad ¼
X1

m¼�1

eifm aþ
mam ð69Þ

similar to (66). It is now a straightforward matter to arrive at the integral of

motion:

½ðeðfÞa þ eðfÞrad Þ;H� ¼ 0 ð70Þ

By construction, it corresponds to (64) in the dual representation of the

dynamical variables for the atom and radiation field. This integral of motion

reflects the fact that the SU(2) phase information is also transmitted from the
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atom to photon in the process of generation. In other words, the integral of

motion (70) is responsible for the mapping of the atomic SU(2) phase on the

field variables. Therefore, one can choose to interpret am and aþ
m in the canonical

transformation (67) as the annihilation and creation operators of the electric

dipole photons with given radiation phase [46].

As can be seen from the transformation (67), the operators am obey the same

stability condition (25) as am

8m;m0 amj0i ¼ am0 j0i ¼ 0 ð71Þ

where the dipole vacuum state is defined as follows:

j0i �
O1

m¼�1

j0mi

Hence, the creation operators aþ
m in (67) can be used to generate the Fock

number states in the ‘‘phase representation’’

jnmi ¼
1ffiffiffiffiffiffiffi
nm!

p ðaþ
mÞ

nm j0i ð72Þ

such that

aþ
mamjnmi ¼ nmjnmi; nm ¼ 0; 1; . . .

and

hnmjn0m0 i ¼ dmm0dnn0 ;
O1

m¼�1

X
nm

jnmihnmj ¼ 1

The unit operator here coincides with (61). Thus, the states (72) form a basis in

the Hilbert space (60) dual to the basis of conventional number states jnmi. In

analogy to the atomic phase states (46), we call (72) the radiation phase states

of the electric dipole photons. It follows from (69) that the radiation phase states

(72) are the eigenstates of the operator eðfÞrad :

eðfÞrad jnmi ¼ nmeifm jnmi ð73Þ

In contrast to the relation (45), the eigenvalues of eðfÞrad in (73) contain, in

addition to the exponential, a factor of nm, describing the number of photons in a

given radiation phase state. Thus, this is an non-normalized exponential of the

phase operator.
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The preceding results lead to the conclusion that the radiation phase states

(72) are dual to the conventional Fock number states jnmi. In turn, the operators

(67) form the representation of the Weyl–Heisenberg algebra of the electric

dipole photons dual to the operators am and aþ
m [46].

Although the canonical transformation (67) has the very simple form of the

finite Fourier transformation, the connection between the conventional number

states and the radiation phase states (72) is not simple:

jnmi ¼
ffiffiffiffiffiffiffi
nm!

3nm

r Xnm

n0¼0

Xnm�n0

nþ¼0

exp½ðiðnm � n0 � 2nþÞfm�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0!nþ!ðnm � n0 � nþÞ!

p 
 jnþ; n0; nm � n0 � nþi

ð74Þ

It is interesting that the ‘‘dual’’ coherent states

jaðaÞi ¼
Y

m

DðaÞ
m ðaðaÞÞj0i

jaðaÞi ¼
Y

m

DðaÞðaðaÞÞj0i

are equivalent up to the following transformation of the parameters:

aðaÞm0 ¼ 1ffiffiffi
3

p
X

m

e�im0fm0aðaÞm

aðaÞm0 ¼ 1ffiffiffi
3

p
X

m

eimfm0aðaÞm

similar to the canonical transformation (67). Here

DðaÞ
m ¼ expðaðaÞm aþ

m � H:c:Þ
DðaÞ

m ¼ expðaðaÞm aþ
m � H:c:Þ

are the ‘‘dual’’ Glauber displacement operators [81] (H.c. denotes Hermitian

conjugation). If we consider, as an example, the state jaþ; 0; 0i of the electric

dipole radiation with only one component m ¼ þ1, we will see that it is

represented by the dual coherent state

O
m

jaðaÞm i; aðaÞm ¼ 1ffiffiffi
3

p aðaÞþ ei2mp=3

in which all the three ‘‘phase’’ components of the electric dipole radiation are in

the coherent states.
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The dual representation of the photon operators (67) reflects the transmission

of ‘‘phase information’’ from the atomic transition to the radiation field via the

integral of motion (70). This statement can be illustrated with the aid of the

Jaynes–Cummings model (34). Employing the atomic phase states (46), we can

introduce the dual representation of the atomic operators (35) as follows:

R
ðfÞ
mm0 � jfmihfm0 j; RðfÞ

mg � jfmihgj ð75Þ

Then, the simultaneous use of the dual representation of the atomic operators

(75) and the canonical transformation of photon operators (67) leads to the

following form of the Jaynes–Cummings Hamiltonian (34):

HðfÞ ¼ H
ðfÞ
0 þ H

ðfÞ
int

H
ðfÞ
0 ¼

X1

m¼�1

½oaþ
mam þ o0RðfÞ

mm�

H
ðfÞ
int ¼ þgðRðfÞ

mg am þ aþ
mRðfÞ

gm Þ� ð76Þ

which has exactly the same operator structure as (34) in the dual representation

[46]. Since the dual atomic operators (75) describe the transition between the

atomic phase states and ground state, and the operators am and aþ
m determine the

annihilation and creation of photons with given radiation phase, the interaction

term in (76) describes the transmission of the quantum phase information from

the atom to photons.

We now note that the quantum phase in the Jaynes–Cummings model has

been examined in a huge number of papers (for reviews, see Refs. 39 and 68).

Most of them are based on the approach proposed in the pioneering paper by

Dirac [1] and developed by a number of authors. Among the principal

contributions to the field, the Pegg–Barnett approach [45] should be mentioned

as the currently most popular. The main idea of the approach consists in defining

the quantum phase operator first in a finite s-dimensional subspace of the

infinite-dimensional Hilbert space Hfield with subsequent formal limit transition

s ! 1, which is taken only after the averages have been calculated. In contrast,

we consider the extended space of states Ha �Hfield in which the quantum

phase of radiation is defined by mapping of corresponding atomic operators

from Ha into the whole Hilbert space Hfield (60), using the conservation of

angular momentum. In view of the dual form of the Jaynes–Cummings

Hamiltonian (76), it is possible to say that the radiation phase is expressed in

terms of what can be generated by a given quantum source.

So far our observations have been applied only to electric dipole radiation. It

is straightforward to find the general form of the canonical transformation (67)
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in the same way as above. In the case of an arbitrary monochromatic pure ðl; jÞ-
pole radiation, we get [46]

alkjm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1

p
Xj

m0¼�j

eim0fjm alkjm0 ; fjm ¼ 2pm

2j þ 1
ð77Þ

Here we again put c ¼ 0.

C. Structure of Radiation Phase

We now examine the spectrum of radiation phase constructed in the preceding

subsection. Consider the state

jfðradÞi ¼
O1

m¼�1

jnmi ð78Þ

where jnmi is the radiation phase state (72). It is clear that (78) is the eigenstate

of the operator (73). Since the operator (73) commute with the total number of

photons

N ¼
X1

m¼�1

aþ
mam ¼

X1

m¼�1

aþ
mam

the eigenstates and eigenvalues of eðfÞrad can be specified by the index

n ¼
X1

m¼�1

nm

describing the total number of photons in a given state (72) and (74) and by an

additional index ‘, describing a given distribution of n photons over the three

independent phase components of the electric dipole radiation in (72) and (74).

The total number of possible different values of ‘, corresponding to a given n, is

clearly

1

2
ðn þ 2Þðn þ 1Þ

Then

eðfÞrad jf
ðradÞ
n‘ i ¼ eijn‘kn‘jfðradÞ

n‘ i ð79Þ
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where jfðradÞ
n‘ i denotes the state (78) at given n and ‘. The modulus of the eigen-

states in (79) is determined as

k2
n‘ ¼ hfðradÞ

n‘ jeðfÞrad ðe
ðfÞ
rad Þ

þjfðradÞ
n‘ i ¼

X
mm0

nmn0meiðm�m0Þ2p=3

¼
X

m

n2
m � ðnþn0 þ n0n� þ n�nþÞ

¼ n2 þ 2ðn2
þ þ n2

�Þ � 3nðnþ þ n�Þ þ 3nþn�

ð80Þ

In turn, for the ‘‘phase eigenvalues’’ jn‘ in (79), we get [46]

tanf ¼
ffiffiffi
3

p
ðnþ � n�Þ

2n0 � ðnþ þ n�Þ
ð81Þ

Taking into account the physical meanings of the atomic operators (41) and (66)

and the integrals of motion (64), we can consider the field operators (63) and

(69) as the nonnormalized exponential operators of the radiation phase, which,

by construction, is the SU(2) phase of the multipole (electric dipole) radiation.

By performing a similar analysis to that described in Section III.B, we can

define the cosine and sine operators of the radiation phase as follows [36]

Crad ¼ Kðerad þ eþradÞ; Srad ¼ �iKðerad þ eþradÞ ð82Þ

where K is the normalization coefficient determined from the natural condition

hC2
rad þ S2

radi ¼ 1 ð83Þ

where h	 	 	i is the averaging over the states of the electric dipole radiation under

consideration. It is clear that Crad and Srad are commuting Hermitian operators

so that corresponding physical quantities can be measured at once. In the dual

representation provided by the canonical transformation (67), the operators (82)

take the diagonal form

C
ðfÞ
rad ¼ K

X1

m¼�1

aþ
mam cosfm

S
ðfÞ
rad ¼ K

X1

m¼�1

aþ
mam sinfm ð84Þ
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Therefore, averaging over the phase states (78), we get

hfðradÞ
n‘ jCðfÞ

rad jf
ðradÞ
n‘ i ¼ 2kn‘ cosjn‘

hfðradÞ
n‘ jSðfÞ

rad jf
ðradÞ
n‘ i ¼ 2kn‘ sinjn‘

According to the condition (83), we obtain

K ¼ 1

2kn‘

in this case. Hence, the radiation phase states (78) are the eigenstates of the

operators (84), which, because of their structure, can be interpreted as the cosine

and sine of the radiation phase operators. It is interesting that the eigenvalues of

the radiation phase variable defined by (81) belong to the interval ð0; 2pÞ and

form a discrete set for any finite number of photons n and

‘ ¼ 1; 2; . . . ;
ðn þ 1Þðn þ 2Þ

2

The first few eigenvalues are shown in Table I and Fig. 5.

It is not difficult to see that the vacuum averages of the operators (84) have

the form

h0jCðfÞ
rad j0i ¼ h0jSðfÞ

rad j0i ¼ 0

TABLE I

List of Eigenvalues (81)a

n ¼ 1 Eð1Þ ¼ 1 jð1Þ ¼ 2‘p=3

n ¼ 2 Eð2Þ ¼ 2 jð2Þ ¼ 2‘p=3

Eð2Þ ¼ 1 jð2Þ ¼ ð2‘þ 1Þp=3

n ¼ 3 Eð3Þ ¼ 3 jð3Þ ¼ 2‘p=3

Eð3Þ ¼
ffiffiffi
3

p
fð3Þ ¼ �ðp=2 þ ‘p=3Þ

n ¼ 4 Eð4Þ ¼ 4 jð4Þ ¼ 2‘p=3

Eð4Þ ¼
ffiffiffi
7

p
jð4Þ ¼ � tan�1ð

ffiffiffi
3

p
=5Þ þ 2‘p=3

Eð4Þ ¼ 2 jð4Þ ¼ ð2‘þ 1Þp=3

Eð4Þ ¼ 1 jð4Þ ¼ 2‘p=3

n ¼ 5 Eð5Þ ¼ 5 jð5Þ ¼ 2‘p=3

Eð5Þ ¼
ffiffiffiffiffi
13

p
jð5Þ ¼ tan�1ð

ffiffiffi
3

p
=7Þ � 2‘p=3

jð5Þ ¼ � tan�1ð
ffiffiffi
3

p
=7Þ þ 2‘p=3

Eð5Þ ¼
ffiffiffi
7

p
jð5Þ ¼ � tan�1ð

ffiffiffi
3

p
=5Þ þ pþ 2‘p=3

Eð5Þ ¼ 2 jð5Þ ¼ 2‘p=3

Eð5Þ ¼ 1 jð5Þ ¼ ð2‘ ¼ 1Þp=3

aHere ‘ ¼ 0;�.
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while the vacuum variances

h0jð�C
ðfÞ
rad Þ

2j0i ¼ h0jð�S
ðfÞ
rad Þ

2j0i ¼ 1

2

Hence, as all one can expect, the vacuum distribution of the radiation phase is

uniform.

Now consider the electric dipole radiation with coherent components

m ¼ �1, while the component m ¼ 0 is in the vacuum state:

jai ¼ jaþi � j0i � ja�i ð85Þ

at jaþj ¼ ja�j � jaj. In this case, the condition (83) gives

K ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jaj2ð2 þ jaj2Þ

q
so that

hCðfÞ
rad Þi ¼

jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 þ jaj2

q cos�þ�

hSðfÞ
rad Þi ¼

jajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 þ jaj2

q sin�þ� ð86Þ

n = 1 n = 2 n = 3

n = 5n = 4

Figure 5. The structure of eigenvalues (80)–(81) corresponding to the phase states with

n ¼ 1; . . . ; 5 photons. The bold lines correspond to the double-degenerated eigenstates.
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where

�þ� � argaþ � arga�

One can see that at jaj ! 1 we get

hCðfÞ
rad Þi ! cos �þ�; hSðfÞ

rad Þi ! sin �þ�

so that in the classical limit of infinitely many coherent photons the operators

(113) define the cosine and sine of the phase difference between the two

components of the radiation field (85). In turn, for the variances we get

h0jð�C
ðfÞ
rad Þ

2j0i ¼ h0jð�S
ðfÞ
rad Þ

2j0i ¼ 2 þ cos�þ�

2ð2 þ jaj2Þ
ð87Þ

Here the right-hand side tends to zero when jaj ! 1. Hence, the radiation

phase has the natural classical limit.

At first sight, Eq. (87) gives wrong limit at jaj ! 0:

lim
jaj!0

h0jð�C
ðfÞ
rad Þ

2j0i ¼ lim
jaj!0

h0jð�S
ðfÞ
rad Þ

2j0i ¼ 2 þ cos�þ�
4

ð88Þ

In fact, this is an illusory contradiction. Because of the degeneration of the

vacuum state with respect to the phase difference, the limit transition jaj ! 0

should imply the averaging over all possible � 2 ð0; 2pÞ, which leads to the

natural value of the vacuum variances.

Now consider the case when jaþj 6¼ ja�j in the state (85). Then, instead of

(86) and (87), we get

hCðfÞ
rad Þi ¼

cos�þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ jaþj�2 þ ja�j�2

q
hSðfÞ

rad Þi ¼
sin�þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ jaþj�2 þ ja�j�2
q ð89Þ

and

hð�C
ðfÞ
rad Þ

2i ¼ hð�S
ðfÞ
rad Þ

2i

¼ jaþj2 þ ja�j2 þ jaþjja�jcos�þ�

2ðjaþj2 þ ja�j2 þ jaþj2ja�j2Þ
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respectively. Examine now the averages (89) and variance (90) as a function of

jaþj at fixed ja�j [54]. We obtain

hCðfÞ
rad Þi ! 0

hSðfÞ
rad Þi ! 0

h0jð�C
ðfÞ
rad Þ

2j0i ! 1
2

h0jð�S
ðfÞ
rad Þ

2j0i ! 1
2

8>>>>><
>>>>>:

ð91Þ

because the operators (84) define properties of the relative phase (phase

difference between the components) which does not exist when only component

m ¼ �1 is emitted. It is seen that, under the condition

jaþka�j < cos�þ� � 1 ð92Þ

which can be realized in the strong quantum case of very low intensities, the

value of the variances (90) can exceed the vacuum limit of 1
2
. The maximum in

(90) is achieved at

jaþj ¼ ja�j 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja�j4 þ ð1 þ ja�j2Þcos�þ�

q
� ja�j2

ð1 þ ja�j2Þcos�þ�

The dependence of the variances (90) on jaþj at fixed ja�j is shown in Fig. 6.

The qualitative explanation of this effect of strong increase of quantum

fluctuations in the low-intensity limit is based on the consideration of the

probability to have a given phase difference �þ� . At jaþj ¼ 0, there is a

uniform probability distribution in the system, causing the limit relations (91).

Creation of very few photons of the mode m ¼ þ1 leads to the formation of

some domains with almost equal probabilities having phase differences �þ�
and �� þ p. So, it looks like a ‘‘phase bunching’’ (for the bunching of photons,

see Refs. 14 and 15). Further increase of jaþj leads to formation of a more or

less sharp probability distribution that cannot reach the d-function shape

because the variances (90) achieve the saturation described by the expression

lim
jaþj!1

hCðfÞ
rad Þi ¼ lim

jaþj!1
hSðfÞ

rad Þi ¼
1

2ð1 þ ja�j2Þ

which coincides with the classical limit only if ja�j ! 1 as well. This means

that the presence of one quantum component in the coherent state (85) leads to

quantum phase fluctuations.
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Using the standard representation of Glauber coherent states in terms of the

number states of photons [14,81]

jai ¼ e�jaj2=2
X1
n¼0

anffiffiffiffi
n!

p jni

and making use of the relation (74), we can represent the coherent state (85) in

the following way

jaþ; 0; a�i ¼
Y1

m¼�1

e�ijaðaÞm j2=2
X1
nm¼0

ðaðaÞm Þnmffiffiffiffiffiffi
nm

p jnmi

where the parameters aðaÞm have been defined at the end of Section IV.A. Assume

that jaþj ¼ ja�j � jaj. Then

X
m

jaðaÞm j2 ¼ 2jaj2

0

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.2 0.4 0.6 0.8
x

1.41 1.2

Figure 6. The dependence of variances (90) on jaþj at fixed ja�j ¼ 0:275 and �þ� ¼ p=6.
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and the probability of observing the radiation field in a given phase state (72),

(74) is

jhnþ; n0; n�jaþ; 0; a�ij2¼e�2jaj2 2

3

� �n jaj2n

nþ!n0!n�!

Y1

m¼�1

1 þ cos �þ� � 2mp
3

� �� �nm

ð93Þ

where n ¼
P

m nm. It is easily seen that this probability tends to zero when

jaj ! 0 or jaj ! 1. This means that the eigenvalues of the radiation phase are

distributed uniformly over the interval ð0; 2pÞ in the vacuum state as well as in

the classical limit of high-intensity coherent state. Between these two extrema,

the probability (93) has a maximum, which can be considerably high. It is

interesting that the position of the maximum is completely determined by the

mean number of photons jamaxj2 ¼ n, while the magnitude also depends on the

phase difference �þ� (see Fig. 7).

Let us now calculate the probability to have a given value of the radiation

phase in the coherent state under consideration. Consider, for example, the

eigenvalue of the radiation phase j ¼ 2p=3. Employing equations (80) and (81)

then gives the following properties of the states corresponding to this radiation

phase:

n � 3n� ¼ kn nþ ¼ n � 2n� n0 ¼ n�

30 60 90 120 150 180 (degrees)
0

0.5

1

P (x100)

Figure 7. Probability (93) versus �þ�.
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It is easy to see that the states obeying these conditions have the following

structure:

jnp � 2kp; kp; kpi ð94Þ

where p is an integer and for each np ¼ 3p; 3p � 1; 3p � 2 the numbers kp take

the values kp ¼ 0; 1; . . . ; p � 1. For example, at np ¼ 10, we get p ¼ 4 and

np ¼ 3p � 2, while the states (94) are

j10; 0; 0i; j8; 1; 1i; j6; 2; 2; i; j4; 3; 3i

Consider first the states jnp; 0; 0i in (94). Then, the probability (93) takes the

value

Pnp
� jhnp; 0; 0jaþ; 0; a�ij2


 e�2jaj2 2

3

� �np jaj2np

np!
1 þ cos �þ� � 2p

3

� �� �np

It is then clear that Pnp
reaches its maximum at �þ� ¼ 2p=3. Then, the total

probability to have the phase states jnp; 0; 0i is

P ¼
X1
np¼1

Pnp
¼ e�2jaj2=3 � e�2jaj2 � 0 ð95Þ

(see Fig. 8). It is clear that this function P gives the lower bond of the total

probability to observe the radiation phase j ¼ 2p=3 in the coherent state under

consideration. The contribution of the other states (94) can be calculated in the

same way.

D. Radiation Phase in Jaynes–Cummings Model

To illustrate the exchange of the phase information between the atomic

transition and the multipole field, consider the electric dipole Jaynes–Cummings

model (34). Assume that the field consists of two circularly polarized

components in a coherent state each. The atom is supposed to be initially in

the ground state. Then, the time-dependent wave function of the system has the

form [53]

j�ðtÞi ¼
X
nþ;n�

Pðnþ; n�Þ½cosðg
ffiffiffiffi
nt

p
Þj0; 0i

þ ðaþj1; 1i þ a�j1;�1iÞxðnþ; n�Þ�jnþn�i ð96Þ
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where jnmi denotes the Fock number state with nm photons with the quantum

number m; j1;mi and j0; 0i are the excited and ground atomic states, respec-

tively; g is the coupling constant in (34), n ¼ nþn�

Pðnþ; n�Þ ¼ e�ðjaþj2�ja�j2Þ=2 anþ
þ an�

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ!n�!

p

and

xðnþ; n�Þ ¼
sinðgt

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
Þffiffiffiffiffiffiffiffiffiffiffi

n þ 1
p e�iðnþ1Þot

Then, the mean values of the operators (82), describing the cosine and sine of

the radiation phase, take the form

hCradit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþj2ja�j2

jaþj2ja�j2 þ jaþj2ja�j2

s
haþ

þaþ þ aþ
�a�it

jaþj2 þ ja�j2
cos�þ�

hSradit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþj2ja�j2

jaþj2ja�j2 þ jaþj2ja�j2

s
haþ

þaþ þ aþ
�a�it

jaþj2j þ a�j2
sin�þ� ð97Þ

1
0

0.1

0.2

0.3

0.4

0.5

2 3 4 5

P

Figure 8. Lower estimate of the probability to have the radiation phase j ¼ 2p=3 as a function

of jaj2 at �þ� ¼ 2p=3.
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Here

haþ
þaþ þ aþ

�a�it ¼ jaþj2 þ ja�j2 �
X1

nþ;n�¼0

jPðnþ; n�Þj2 sin2gt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ þ n�

p

and �þ� � arg aþ � arg a�. Thus, the averages (97) describe the Rabi oscilla-

tions of cosine and sine of the phase difference between the two coherent

components of the field. Corresponding variances have the form

hð�CradÞ2it ¼
haþ

þaþ þ aþ
�a�it

jaþj2 þ ja�j2
½hð�CradÞ2i0 þ bCQ�

hð�SradÞ2it ¼
haþ

þaþ þ aþ
�a�it

jaþj2 þ ja�j2
½hð�SradÞ2i0 þ bSQ� ð98Þ

Here

hð�CradÞ2i0 ¼ 1

2
cos �þ�

hð�SradÞ2i0 ¼ jaj2 þ ja�j2 � jaþka�j
jaj2 þ ja�j2 þ jaþka�j

cos�þ�

and

bC ¼ jaþka�j
ðjaj2 þ ja�j2 þ jaþka�jÞðjaj2 þ ja�j2 þ jaþka�jÞ

cos2�þ�

bC ¼ jaþka�j
ðjaj2 þ ja�j2 þ jaþka�jÞðjaj2 þ ja�j2 þ jaþka�jÞ

sin2�þ�

In (98), Q is the Mandel factor [14], describing the deviation of the photon

statistics from the Poisson distribution for the total intensity:

Q ¼ h½�ðaþ
þaþ þ aþ

�a�Þ�2i � hðaþ
þaþ þ aþ

�a�Þi
hðaþ

þaþ þ aþ
�a�Þi

It is seen that the time-averaged Mandel Q factor is always positive, which

shows the super-Poissonian number distribution for the total field.

Since hCradit and hð�CradÞ2it can be transformed into hSradit and hð�SradÞ2it,

respectively, by the change of phase difference

�þ� ! �þ� þ kp
2
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it suffices to examine only one pair of these functions. In Fig. 9, the Rabi

oscillations of the variance hð�CradÞ2it are shown as a function of time for

different �þ�. At small �þ�, the collapse and revival picture of Rabi

oscillations behaves quite typically for the Jaynes–Cummings model [68], while

the increase of �þ� leads to a confluence of the nearest revivals. The Rabi

oscillations of hCradit have similar behavior.

It should be emphasized that the system under consideration completely

describes the process of transmission of the phase information between the field

and the atom. Initially the atom is in the ground state with the angular

momentum 0 and has no SU(2) atomic phase at all. Absorption of photons

induces an atomic phase that coincides with the phase difference between the

two coherent components of the field. This can be concluded from a direct

calculation of the expectation value of the atomic cosine operator (43) over the

state (96):

hCait ¼
X1

nþ;n�¼0

jPðnþ; n�Þj2
sin2ðgt

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
Þ

n þ 1
cos�þ�

This again clearly demonstrates the one-to-one correspondence between the

atomic SU(2) phase and the radiation phase.

Let us also stress that, according to (98), the variances of the cosine and sine

of the radiation phase can be measured in the same way as the Mandel Q factor.
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Figure 9. Rabi oscillations of the variance of the field cosine operator as a function of scaled

time ts ¼ gt=ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ þ n�Þ

p
at n� ¼ 25 and g ¼ 1. Graphs from top to bottom correspond to the

relative phase �þ� ¼ 0#, 45#, 75#, 90#, respectively.
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E. Radiation Phase and Pegg–Barnett Quantum Phase

Following [54], let us compare the quantum statistical behavior of the radiation

phase, constructed in Sections IV.A–IV.D and that obtained within the Pegg–

Barnett approach [45], which has received a lot of attention since the early

1990s years and has led to many important results (for a review, see Refs. 39

and 40). We use here the form of the Pegg–Barnett approach considered in

Ref. 82. The point is that Ref. 82 deals with a generalization of the Pegg–

Barnett approach to the case of two circularly polarized modes. Then, the phase

distribution over the phases of two circularly polarized modes is determined as

Pc ¼ jhfþ;f�jcij2

where jfþ;f�i is the Susskind–Glogower phase state [41] and jci is the state

of the radiation field. To establish the connection with the results already

obtained in this section, suppose that

jci ¼ jaþi � j00i � ja�i ð99Þ

Since the formalism of the radiation phase is focused on the phase difference

between the components, we need to use the distribution function for the

relative phase

f ¼ fþ � f�

We use here the notations of Refs. 54 and 82. Referring to the procedure

suggested in Refs. 82 and 83 to cast the range of f into 2p range from 4p range,

we take

P2p ¼
X1
n¼0

jhfðnÞjcij2

where

jfðnÞi ¼ 1ffiffiffiffiffiffi
2p

p
Xn

nþ¼0

eifnþ jnþi � j00i � jn � nþi

Using this distribution function, one can calculate the mean value of any

function FðfÞ of the relative phase as follows [82]:

hFðfÞi ¼
ðp
�p

dfP2pðfÞFðfÞ
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In the case under consideration, the relative phase represents the phase

difference between the two circularly polarized components in coherent state.

Then, for the Pegg–Barnett cosine of the relative phase, we get

hcosfPBi ¼ eðjaþj
2þja�j2Þ

X1
n�¼0

jaþj2nþ ja�j2n�

nþ!n�!

 Reðaþa��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ þ 1Þðn� þ 1Þ
p ð100Þ

In turn, the average of the squared cosine takes the form

hcos2fPBi ¼
1

2
þ eðjaþj

2þja�j2Þ

2

X1
n�¼0

jaþj2nþ ja�j2n�

nþ!n�!


 Reðaþa��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ þ 2Þðnþ þ 1Þðn� þ 2Þðn� þ 1Þ

p ð101Þ

Here fPB denotes the Pegg–Barnett quantum phase operator [45]. These

expressions can be now compared with the results (89) and (90) for the radiation

cosine and its variance. To clarify the difference between the two approaches,

we represent (89) and (90) in the same manner as (100) and (101) [54]:

hCðfÞ
rad i ¼ eðjaþj

2þja�j2Þ
X1
n�¼0

jaþj2nþ ja�j2n�

nþ!n�!


 Reðaþa��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþj2 þ ja�j2 þ jaþj2ja�j2

q ð102Þ

and

hðCðfÞ
rad Þ

2i ¼ 1

2
þ hCðfÞ

rad i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþj2 þ ja�j2 þ jaþj2ja�j2

q

þ ½Reðaþa��Þ�
2

2ðjaþj2 þ ja�j2 þ jaþj2ja�j2Þ
X1
n�þ0

jaþj2nþ ja�j2n�

nþ!n�!
ð103Þ

One can easily see that each term in the sums in Eqs. (100) and (101) has

different normalization, while in Eqs. (102) and (103) all the terms have the

same normalization factor related to our choice of the constant K in (82) and

(83). In addition, Eq. (103) contains an extra term proportional to hCðfÞ
rad i. This

term comes from the vacuum fluctuations related to the mode m ¼ 0. This

causes a striking difference when one of the modes m ¼ �1 is in the quantum
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domain. Specifically, the existence of the ‘‘phase bunching’’ discussed in

Section IV.C is caused just by this term. At the same time, both approaches

show the saturation of the variances when one of the intensities tends to infinity

while the second is kept constant (Fig. 10). It is seen that the quantum

fluctuations of the phase difference between the two circularly polarized

coherent fields with different helicity calculated with the aid of the radiation

phase always exceed those calculated within the Pegg–Barnett approach.

This fact can be explained in the following way. The cutoff of the Hilbert

space, which is a distinctive feature of the Pegg–Barnett approach [45], leads to

an effective change of the algebraic properties of the photon operators. In fact,

such a cutoff of the Fock basis leads to the definition of the unit operator, which

can be considered as some approximation of the Casimir operator of the SU(2)

subalgebra, describing the angular momentum of radiation, but only in a

particular subspace of the Hilbert space of photons. Existence of the unit

operator makes it possible to perform direct polar decomposition and determine

the corresponding quantum phase properties. This can be clearly traced in

Ref. 84. At the same time, the cutoff procedure reduces the algebraic properties

of photons responsible for the quantum fluctuations. The limit taken in the

Pegg–Barnett approach after the calculation of all expectation values cannot

completely restore these properties, which are especially important in the

quantum domain.

Unlike the Pegg–Barnett approach, the definition of the radiation phase is

based on the conservation laws for electromagnetic radiation and canonical
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Figure 10. Variance of cosine. The lower curve represents the Pegg–Barnett cosine; the upper

curve, the radiation phase cosine. Both curves are drawn at �þ� ¼ 0 and I� ¼ 0:275.
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transformation (67), which does not disturb the Weyl–Heisenberg algebra of the

photon operators.

F. Radiation Phase and Mandel’s Operational Approach

We now note that the operators (69) and (84) introducing the radiation phase are

defined in terms of bilinear forms in the photon operators. At first glance, such a

definition runs counter to the original idea by Dirac to determine the Hermitian

quantum phase via linear forms in the photon operators [1] (see also Refs. 38,

42, and 44). Leaving aside Dirac’s problem of existence of a Hermitian quantum

phase variable of a harmonic oscillator, we should emphasize that the use of

bilinear forms seems to be quite reasonable from the physical point of view. It

can be argued in the following way:

1. The phase information is transmitted from the quantum source (atom) to

photons via the conservation laws. In fact, only three physical quantities

are conserved in the process of radiation: energy, linear momentum, and

angular momentum [26]. All of them are represented by the bilinear forms

in the photon operators.

2. The detection process is also based on the transmission of energy, linear

momentum, and/or angular momentum from the photons to a detecting

device [14]. In other words, the Hermitian bilinear forms in (84)

corresponds to what can be emitted by the source and detected by a

photodetector.

Let us stress that the operational definition of the quantum phase of radiation

[47] is also based on the use of bilinear forms in the photon operators. In the

simplest form, the idea of the operational approach to the phase difference can

be illustrated with the aid of the two-port interferometer shown in Fig. 11 (see

Refs. 14 and 47 for more detailed discussion). The two incident monochromatic

(or quasimonochromatic) light beams are combined by a symmetric beamsplitter

oriented at 45# to each beam. The resultant intensities emerging from each

output port are measured by the two photodetectors connected with a ‘‘com-

parator’’ (computer) as in the Hanbury–Brown–Twiss interferometer [85] (also

see Refs. 14, 15, and 86). Following Noh et al. [47], we denote by a1 and a2 the

photon annihilation operators, describing the field at the two input ports, and by

a3 and a4 the corresponding operators at the two output ports. Then

a3 ¼ ta1 þ r0a2

a4 ¼ ra1 þ t0a2

where t and r denote the complex-amplitude transmittance and reflectance from

one side of the beamsplitter and r0 and t0 from the other side. The number of

quantum multipole radiation 445



photons in the output modes is defined as follows

n̂3 ¼ jtj2n̂1 þ jrj2n̂2 þ t�r0aþ
1 a2 þ tr0

�
aþ

2 a1

n̂4 ¼ jrj2n̂1 þ jtj2n̂2 þ t0r�aþ
1 a2 þ rt0

�
aþ

2 a1

where n̂‘ � aþ
‘ a‘. It is clear that

n̂4 � n̂3 ¼ exp½iargr � argr0Þ�aþ
2 a1 þ exp½iðarg t0 � arg tÞ�aþ

1 a2

Hence, the sine and cosine of the phase difference between the two output

beams can be defined as follows [47]

SM ¼ K1ðexp ½iðargr � arg t0Þ�aþ
2 a1 þ exp½iðarg t0 � argrÞ�aþ

1 a2Þ
CM ¼ iK2ðexp½iðargr � arg t0Þ�aþ

2 a1 � exp½iðarg t0 � argrÞ�aþ
1 a2Þ

where K1 and K2 are some constants. It is clear that, apart from the exponential

factors caused by the measuring device, these equations for SM and CM have the

operator structure similar to the cosine and sine operators of the radiation phase

(82). Of course, the operational definition by Mandel et al. [47] discussed above

does not take into consideration the third component of the multipole radiation.

Therefore, the operators (104) do not commute with each other.

Input 1

Input 2 Output 4

Output 3

Detector 4

Detector 3

Figure 11. Outline of the scheme of two-part interferometer.
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From the preceding discussion, one can conclude that the method of

radiation phase, defining the quantum phase variable in terms of what can be

emitted by the source, complements the operational phase, which deals with

what can be measured in a real experiment.

G. Phase Properties of Radiation in Fabry-Pérot Resonator

Our consideration so far have applied to photons in an ideal spherical cavity.

Consider now the very important case of interaction between a single atom with

electric dipole transition and cavity field in the case of Fabry–Perot resonator

formed by two parallel ideal reflecting mirrors. In this case, the cavity field can

consist only of the photons propagating along the axis of resonator (z axis)

because all other photons should leave the space limited by the mirrors. This

means that the cavity photons have well-defined direction and therefore are in a

state with given linear momentum (21)–(22). Hence, the radiation emitted by

the electric dipole transition consists of the two modes with m ¼ �1, while the

radiation of the third mode m ¼ 0 is forbidden. In this case, the photons with

given helicity can be represented in terms of linearly polarized photons as

follows [27];

am ¼ � ax � iayffiffiffi
2

p ; m ¼ �1 ð104Þ

Since the atom–field interaction in the Fabry-Perot resonator is allowed for the

two electric dipole transitions

j1;�1i ! j0; 0i

the interaction term in the electric dipole Jaynes–Cummings Hamiltonian (34)

takes the form

Hint ¼ g
X
m¼�1

ðRmgam þ aþ
m RgmÞ ð105Þ

Then, the representation of the SU(2) algebra corresponding to the excited state

in (105) takes the form

Jz ¼
Rþþ � Rþ�Þ

2

Jþ ¼ Rþ�

J� ¼ R�þ ð106Þ

similar to (50). Then, the exponential of the atomic SU(2) phase operator takes

the form

e ¼ Rþ� þ eicR�þ ð107Þ
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such that

eeþ ¼ Rþþ þ R�� ¼ 1

and

e2 ¼ eic1

Here again c denotes an arbitrary reference phase. The atomic cosine and sine

of the phase operators (42) are defined in the case under consideration as

follows:

C ¼ ðRþ�e�ic=2 þ R�þeic=2Þcos
c
2
¼ ee�ic=2 cos

c
2

S ¼ ðRþ�e�ic=2 þ R�þeic=2Þsin
c
2
¼ ee�ic=2 sin

c
2

ð108Þ

It is clear that these are commuting Hermitian operators.

In analogy to (45) and (46), we can define the atomic phase states as follows:

jfmi ¼
1ffiffiffi
2

p ðj1;þ1i þ eifm j1;�1iÞ ð109Þ

where

fm ¼
cþ ð1 � mÞp

2
; m ¼ �1 ð110Þ

It is seen that, apart from a factor of eic=2, the states (110) formally coincide

with the EPR states (49). It is clear that the operator (107) is represented in

terms of states (109) in the diagonal form

e ¼
X
m¼�1

eifm jfmihfmj ð111Þ

[cf. (66)].

Following the approach discussed in Section IV.A, we note that the field

counterpart of (106) is provided by the operators

Mz ¼
aþ
þaþ � aþ

�a�

2

Mþ ¼ aþ
þa�

M� ¼ aþ
�aþ ð112Þ
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which form the representation of the SU(2) subalgebra in the Weyl–Heisenberg

algebra of photons. As in (58), this is not an isotype representation. In analogy

to (63), we introduce the field counterpart of (107)

erad ¼ aþ
þa� þ eicaþ

�aþ ð113Þ

It is easy to verify that (113) complements the atomic operator (107) with

respect to the integral of motion with the Jaynes–Cummings Hamiltonian (34)

with the interaction term of the form (105). In analogy to (82), we introduce the

cosine and sine of the radiation phase operators:

Crad ¼ Kðeþrad þ eradÞ ¼ 2Ke�ic=2erad cos
c
2

Srad ¼ iKðeþrad � eradÞ ¼ 2Ke�ic=2erad sin
c
2

ð114Þ

such that

½Crad; Srad� ¼ 0

and

½ðC þ CradÞ;H� ¼ ½ðS þ SradÞ;H� ¼ 0

Then, the condition (83) takes the form

hC2
rad þ S2

radi ¼ 4K2e�iche2
radi ¼ 1 ð115Þ

In analogy to (66), the operator (113) is diagonalized by the canonical

transformation of the form

am ¼
1ffiffiffi
2

p
X
m0¼�1

e�ið1�m0Þfm=2am0

am ¼
1ffiffiffi
2

p
X
m0¼�1

eið1�m0Þfm=2am ð116Þ

where fm is the phase variable (110).

Taking into account the equation (104), expressing the photons with given

helicity in terms of linearly polarized photons, it is easily seen from (116) that

we get

aþ ¼ �axEic=2; a� ¼ �iaye�ic=2

quantum multipole radiation 449



Hence, the dual representation of the photon operators (104) with given helicity

coincides, apart from certain unimportant factors, with the photon operators

with given linear polarization. In the representation (116), the operators (113)

and (114) take the diagonal form

eðfÞrad ¼
X
m¼�1

eifmaþ
m am cos

c
2

C
ðfÞ
rad ¼ 2k

X
m¼�1

aþ
m am cosfm cos

c
2

S
ðfÞ
rad ¼ 2k

X
m¼�1

aþ
m am sinfm cos

c
2

ð117Þ

where the phase variable fm is defined in (110). Since the condition (115) can

now be done in a straightforward manner to yield

K ¼ 1

2cosðc=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðaþ

þaþ � aþ
�a�Þ2i

q ð118Þ

the expressions for cosine and sine operators in (117) take the form

C
ðfÞ
rad ¼

P
m aþ

m am cosfmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð
P

m maþ
m amÞ2i

q
S
ðfÞ
rad ¼

P
m aþ

m am sinfmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð
P

m maþ
m amÞ2i

q ð119Þ

This representation explicitly manifests the structure of the cosine and sine

operators in terms of cosine and sine of phase variable (110).

In analogy to (72) and (74) we now construct the dual Fock number states

jnmi ¼
ðaþ

m Þ
nmffiffiffiffiffiffi

nm!
p j0i

¼
Xnm
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm!

2nmk!ðnm � kÞ!

s
ð�1Þnm�kjkiþ � jnm � ki� ð120Þ

Here nm is an integer such that

aþ
m amjnmi ¼ nmjnmi
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and the states in the right-hand side correspond to the photons with given

helicity. It is easy to show that the states (120) obey the orthonormality and

completeness conditions.

Following the method described in Section IV.C, we introduce the state

jfðradÞi ¼
O
m¼�1

jnmi ð121Þ

[see (78)], which can be interpreted as the radiation phase state in the resonator

under consideration. For a given total number of photons n ¼
P

m nm, there are

n þ 1 different phase states with degenerated ‘‘eigenphase’’:

jn‘ ¼
c
2
þ 2‘p; ‘ ¼ 1; . . . ; n þ 1

This result is obtained by analogy with (79)–(81). Thus, unlike the case of

spherical cavity, the spectrum of the SU(2) phase of photons in the Fabry–Perot

resonator is trivial.

To complete the comparison with the previous results obtained in Sections

IV.C and IV.E, let us average the cosine operator in (114) over the states with

two circularly polarized coherent modes jaþ; a�i. We get

hCradi ¼
2jaþjja�jcosð�þ� þ c=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jaþj2 þ ja�j2 þ 4jaþj2ja�j2cos2ð�þ� þ c=2Þ
q cos

c
2

ð122Þ

It is clear that

hCradi ! 0

in the ‘‘vacuum limit’’ ja�j ! 0 independent of c, and

hCradi ! cos
c
2

in the classical limit ja�j ! 1. The behavior of corresponding variance is

shown in Figs. 12 and 13 in the cases of jaþj ¼ ja�j � jaj and fixed ja�j
respectively. It is seen, that the variance shows the ‘‘normal’’ behavior and that

the ‘‘phase bunching,’’ discussed in Section IV.C, does not exist in the case

under consideration. In contrast to (90), the presence of the component m ¼ �1

in the quantum state ðja�j2 $ 1Þ leads to the decrease of fluctuations.
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H. Summary

1. There is no isotype representation of the SU(2) subalgebra, describing the

angular momentum of radiation, in the Weyl–Heisenberg algebra of

photons. Therefore, the SU(2) quantum phase of angular momentum of

radiation field cannot be constructed in the same way as that of a

quantum-mechanical system with a finite number of degrees of freedom.

2. At the same time, the conservation of angular momentum in the process of

radiation makes it possible to map the atomic phase variable into the field

variables via corresponding integrals of motion.

3. The Weyl–Heisenberg algebra of multipole photons allows the dual

representation in which we deal with the photons with given radiation

phase (the SU(2) phase of angular momentum) instead of standard

photons with given projection of the angular momentum.

4. Through the use of the dual representations of the atomic and field

operators, it is possible to construct an equivalent form of the Jaynes–

Cummings Hamiltonian, describing the exchange of the ‘‘phase informa-

tion’’ between the atom and radiation field.
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Figure 12. Variance of the cosine of radiation phase (119) in the two-mode coherent state at

jaþj2 ¼ ja�j2 ¼ jaj2 versus jaj2.
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5. The radiation phase of multipole photons has discrete spectrum in the

interval ð0; 2pÞ. In the classical limit of high-intensity coherent field, the

eigenvalues of the radiation phase are distributed uniformly over ð0; 2pÞ.
6. The quantum fluctuations of the radiation phase manifest qualitative

difference from those calculated within the Pegg–Barnett approach. In

particular, the ‘‘phase bunching’’ effect can be observed for a multipole

radiation in a spherical cavity in the quantum domain of low intensity.

This effect does not occur in a linear cavity (Fabry–Perot resonator).

7. Our approach, leading to the definition of the radiation phase, is the

natural complement of Mandel’s operational approach. The radiation

phase is defined in terms of what can be transmitted from a quantum

mechanical system to photon and vice versa.

V. POLARIZATION PROPERTIES OF
MULTIPOLE RADIATION

It is not really difficult to construct a series of inferences, each depends upon its

predecessor and each simple in itself.

—Sir Arthur Conan Doyle, The Dancing Men
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Figure 13. Variance of the cosine of radiation phase (119) in the two-mode coherent state as a

function of jaþj2 at fixed ja�j2 ¼ 0:1, respectively.
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A. Polarization of Classical Field

In previous sections, we considered the polarization as a formal property of

either plane or spherical waves of photons described by the corresponding index

in the expansion (13) and (17). In this Section, we examine the quantum

properties of polarization in more details. In particular, we show that the

radiation phase of electric dipole radiation formally coincides with the inherent

quantum phase of polarization which is the SU(2) phase of spin of photons.

It is well known that the polarization measurements play an important role in

optics and spectroscopy [87]. The description usually given of the polarization

is a classical one, defining the polarization as a measure of transversal

anisotrophy of the plane electromagnetic waves [57]. It is based on the fact

that the field strengths (11) have only two symmetric spatial components. At the

same time, these complex components may have different magnitudes and

phases. The quantitative description of polarization is provided by the so-called

polarization matrix with the elements [14,57]

Pss0 ¼ E�
sð~rÞEs0 ð~rÞ ð123Þ

Here Esð~rÞ denotes the component of the positive-frequency part of the

classical electric field strength. For monochromatic plane waves, in view of (13)

we get

Pss0 ¼ g2a�
ksaks0 ð124Þ

By definition [14,25,57], the diagonal elements in (26) and (27) give the

contribution of the corresponding spatial components of the radiation field into

the energy density, while the off-diagonal elements give the ‘‘phase’’

information concerning the phase difference between the components.

The polarization matrix (124) can also be represented in the helicity basis

(16) at ~w0 ¼~k=k as follows

Pmm0 ¼ g2a�
kmakm0 ð125Þ

where m; m0 ¼ �1 and

ak� ¼ � akx � iakyffiffiffi
2

p ð126Þ

It is seen from (123)–(125) that P is the Hermitian ð2 
 2Þ matrix. In spite of the

position dependence of the mode functions in (13), the elements of (124) and

(125) have the same value everywhere. This means that the polarization is the

global property of classical plane waves.
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In contrast to the plane waves, the field strengths of the multipole radiation

can have any direction. In fact, the electric multipole radiation obey the condi-

tion ~B 	~r ¼ 0, while it can have nonzero longitudinal component ð~E 	~r 6¼ 0Þ of

the electric field strength [25]. In other words, this is the transversal magnetic

radiation. In turn, the magnetic multipole field is characterized by the relations

~E 	~r ¼ 0; ~B 	~r 6¼ 0

Hence, the polarization of either multipole radiation should be specified by the

spatial anisotrophy of the field strengths rather than the transversal anisotrophy

as in the case of plane waves [28,46,54,88]. Thus, the polarization of the

classical multipole field should be described by bilinear forms in all three

components of the field strengths which leads to the Hermitian ð3 
 3Þ matrix

with the elements [28,46]

P
ðEÞ
mm0 ð~rÞ ¼ E�

mð~rÞEmð~rÞ; m; m0 ¼ �1; 0 ð127Þ

Here we again consider a monochromatic radiation field. Let us stress that this

expression describes the spatial anisotrophy of the electric field and therefore

specifies the polarization of the electric multipole radiation. In the case of

magnetic multipole radiation, the spatial anisotrophy of magnetic induction can

be described by the following polarization matrix [89]:

P
ðMÞ
mm0 ð~rÞ ¼ B�

mð~rÞBm0 ð~rÞ ð128Þ

Now consider the monochromatic multipole field with given l and j. Exactly

this field is emitted by an atomic transition. Employing (21) and (17) then gives

P
ðEÞ
mm0 ¼ k2

X
mm0

V �
Ekjmmð~rÞVEkjm0m0 ð~rÞa�

EkjmmaEkjm0m0

PðMÞ ¼ k2
X
mm0

V �
Ekjmmð~rÞVEkjm0m0 ð~rÞa�

MkjmmaMkjm0m0 ð129Þ

Thus, the difference between PðEÞ and PðMÞ lies in the definition of the complex

field amplitudes, while the position dependence is described in the same way.

Within the classical picture, these amplitudes are defined differently in terms of

the source functions [25]. For example, if the source of radiation is represented

by the harmonically varying current~Jð~rÞ and intrinsic magnetization ~Mð~rÞ, the

field amplitudes for the electric radiation are determined by the integral of the

function

~M þ 1

ck2
~r
~J

� �
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over the volume of the source localization, while those for the magnetic

radiation by the integrals of

~J

c
þ ~r
 ~M

 !

It should be mentioned here that the quantum multipole radiation, defined in

terms of the source, has also been considered [56].

In direct analogy to the case of plane waves, the diagonal elements of (129)

describe the contribution of the components of the field strengths into the energy

density. The off-diagonal elements give the ‘‘phase information’’ about the

phase differences between the spatial components with different polarization.

Unlike the plane waves, there are three phase differences [46,54]:

�mm0 ð~rÞ ¼ arg AEmð~rÞ � arg AEm0 ð~rÞ

In view of the evident equality

�þ0 þ�0� þ�þ ¼ 0

valid at any point ~r, only two of the phase differences �mm0 are independent.

In contrast to (124) and (125), the polarization matrix (129) of either

multipole radiation depend on the position with respect to the source (origin).

Since the component Am¼0 vanishes at far distance much faster than do the two

transversal components, the polarization in the so-called far zone ðkr % 1Þ is

similar to that of the plane waves.

In addition to the Hermitian polarization matrix with complex elements, the

spatial anisotrophy of the electromagnetic field can be described by an

equivalent set of real Stokes parameters [14,57].

The classical Stokes parameters of plane waves are usually defined in the

linear polarization basis as follows:1

s
ðplaneÞ
0 ¼ j~ex 	~Ej2 þ j~ey 	~Ej2

s
ðplaneÞ
1 ¼ j~ex 	~Ej2 � j~ey 	~Ej2

s
ðplaneÞ
2 ¼ 2Re½ð~ex 	~E

�Þð~ey 	~EÞ�

s
ðplaneÞ
3 ¼ 2Im ½ð~ex 	~E

�Þð~ey 	~EÞ� ð130Þ

1Unfortunately, there is no uniform notation for the Stokes parameters. Our notation is that of

Ref. 57.
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In the helicity basis (16) we get

s
ðplaneÞ
0 ¼ jE�j2 þ jEþj2

s
ðplaneÞ
1 ¼ �2ReðE�

þE�Þ
s
ðplaneÞ
2 ¼ 2ImðE�

þE�Þ

s
ðplaneÞ
3 ¼ jE�j2 � jEþj2 ð131Þ

where Em �~wm 	~E. It is clear that the parameter s
ðplaneÞ
0 measures the relative

intensity of the wave. At the same time, the expressions (130) and (131) show a

rearrangement of the roles of the Stokes parameters with respect to the two

bases. The parameter s
ðplaneÞ
1 in (130) gives the preponderance of the x-linear

polarization over the y-linear polarization, while in (131) it concerns the phase

difference between the two components with opposite helicities. The parameter

s
ðplaneÞ
2 in (130) gives the cosine of the phase difference between the linearly

polarized components, while in (131) it gives the sine of the phase difference

between the circular polarized components. In turn, the parameter s
ðplaneÞ
3 in (48)

specifies the sine of the phase difference in the Cartesian basis with linear

polarizations, while in (131) it gives the preponderance of polarization with

negative helicity over positive helicity.

Now consider the set of classical Stokes parameters of the monochromatic

pure ðl; jÞ-pole radiation. Since the polarization, in this case, is described by the

Hermitian ð3 
 3Þ matrix (127), the set should consist of nine Stokes parameters

because all three spatial components of the field strength contribute into

polarization [46]. For definiteness, let us consider the electric-type radiation.

To establish a contact with the previous result (131), we choose the set of Stokes

parameters as follows [46]:

s
ðmultiÞ
0 ð~rÞ ¼

X
m

jEmj2

s
ðmultiÞ
1 ð~rÞ ¼ �2ReðE�

þE0 þ E�
0E� þ E�

�EþÞ
s
ðmultiÞ
2 ð~rÞ ¼ 2ImðE�

þE0 þ E�
0E� þ E�

�EþÞ
s
ðmultiÞ
3 ð~rÞ ¼ jE�j2 � jEþj2

s
ðmultiÞ
4 ð~rÞ ¼ jEþj2 þ jE�j2 � 2jE0j2

s
ðmultiÞ
5 ð~rÞ ¼ �2ReðE�

þE�Þ
s
ðmultiÞ
6 ð~rÞ ¼ 2ImðE�

þE�Þ

s
ðmultiÞ
7 ð~rÞ ¼ �2ReðE�

0EþÞ
s
ðmultiÞ
8 ð~rÞ ¼ 2ImðE�

0EþÞ ð132Þ
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These parameters have very simple physical meanings. The parameter s0

measures the contribution of all three components into the energy density. The

parameters s1;2;5;6;7;8 give the phase information about the phase differences

between the circular and linear polarized components. The parameter s3 gives

the preponderance of negative helicity over positive helicity and the parameter

s4 gives the preponderance of transversal circular polarization over linear

(radial) polarization. Unlike (131), the multipole Stokes parameters (132)

describe the local properties of polarization due to the position dependence of

the mode functions (18). It is clear that, at far distances ðkr % 1Þ when E0 is

negligibly small in comparison with E�, the set (132) formally coincides with

(131) because

s
ðmultiÞ
1 ! s

ðmultiÞ
5 / s

ðplaneÞ
1

s
ðmultiÞ
2 ! s

ðmultiÞ
6 / s

ðplaneÞ
2

s
ðmultiÞ
4 ! s

ðmultiÞ
0 / s

ðplaneÞ
0

8>><
>>:

and

s
ðmultiÞ
7 ! 0

s
ðmultiÞ
8 ! 0

(

in this limit.

B. Polarization of Quantum Radiation

The quantum counterpart of the polarization matrices can be constructed in

direct analogy to the field quantization [90]. We have to subject the field

amplitudes in (124), (125), and (129) to the Weyl–Heisenberg commutation

relations (22) and (23) respectively. Thus, we get the operator matrices of

polarization of the multipole radiation of the form

P̂
ðE;nÞ
mm0 ¼ k2

X
mm0

V�
Ekjmmð~rÞVEkjm0m0 ð~rÞaþ

EkjmmaEkjm0m0

P̂
ðM;nÞ
mm0 ¼ k2

X
mm0

V�
Ekjmmð~rÞVEkjm0m0 ð~rÞaþ

MkjmaMkjm0 ð133Þ

These are the Hermitian ð3 
 3Þ matrices with the operator elements defined in

terms of the normal order of the creation and annihilation photon operators.

To clarify the structure of (133) and establish a contact with previous results

for the radiation phase, consider the bare operator form of P̂ðE;nÞ in (133) in the

case of the electric dipole radiation in a spherical cavity. The bare operator
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structure is provided by the limit kr ! 0 in the mode functions (18). This means

that we consider the polarization of radiation directly near a source. Using the

properties of spherical Bessel functions discussed in Section III.A, we get

[28,46]

P̂
ðE;nÞ
mm0 ¼ gE1aþ

Ek1maEk1m0 ð134Þ

where gE1 is an unimportant normalization factor.

Now consider the set of Stokes operators that can be obtained by canonical

quantization of (132). On the other hand, the Stokes operators should by

definition represent the complete set of independent Hermitian bilinear forms

in the photon operators of creation and annihilation. It is clear that such a set is

represented by the generators of the SU(3) subalgebra in the Weyl–Heisenberg

algebra of electric dipole photons. The nine generators have the form [46]

ðaþ
þaþ � aþ

0 a0Þ ðaþ
0 a0 � aþ

�a�Þ ðaþ
�a� � aþ

þaþÞ
1

2
ðaþ

þa0 þ aþ
0 aþÞ

1

2
ðaþ

0 a� þ aþ
�a0Þ

1

2
ðaþ

�aþ þ aþ
þa�Þ

1

2i
ðaþ

þa0 � aþ
0 a�Þ

1

2i
ðaþ

0 a� � aþ
�a0Þ

1

2i
ðaþ

�aþ � aþ
þa�Þ

ð135Þ

and only eight of them are independent. To simplify the notations we omit here

the indexes E; k, and j ¼ 1. To get the set of Stokes operators, we have to use

the generators (135) or independent linear combinations of this generators

together with the operator

S0 ¼
X1

m¼�1

aþ
mam ð136Þ

describing the total number of multipole photons. It seems to be logical to

choose the rest of the set of Stokes operators as follows [46]

S1 ¼ ðerad þ eþradÞ
S2 ¼ iðeþrad � eradÞ
S3 ¼ aþ

þaþ � aþ
�a�

S4 ¼ aþ
þaþ þ aþ

�a� � 2aþ
0 a0

S5 ¼ ðaþ
þa0 þ aþ

0 aþÞ
S6 ¼ iðaþ

0 aþ � aþ
þa0Þ

S7 ¼ ðaþ
0 a� þ aþ

�a0Þ
S8 ¼ iðaþ

�a0 � aþ
0 a�Þ ð137Þ
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Here the operator erad is as defined in (63). Thus, the operators S1 and S2 in

(137) coincide, apart from a normalization factor, with the cosine and sine of the

radiation phase operators (82). It seems to be natural. By construction, the

operators S1 and S2 give the phase information about the phase differences �mm0

defined in the previous subsection.

Additional phase information is provided by the operators S6–S8 in (137). To

clarify the physical meaning of the phase-dependent operators in (137), let us

average them over the two-mode coherent state (85) at jaþj ¼ ja�j � jaj. We

get

hS‘i ¼

2jaj2 at ‘ ¼ 0; 3

2jaj2 cos�þ� at ‘ ¼ 1

2jaj2 sin�þ� at ‘ ¼ 2

0 otherwise

8>>><
>>>:

ð138Þ

Here

�þ� � arg aþ � arg a�

as in Section IV.C. It is seen that the first two averages in (138) formally

coincide with the conventional phase-dependent Stokes parameters defined in

the helicity basis (131) [25,57]. Hence, the Stokes operators S1 and S2 give the

cosine and sine of the radiation phase while the operators S5–S8 give the cosine

and sine of the phase differences �0� between the linear and one of the circular

polarizations. Since

½S1; S2� ¼ 0; ½S1; S0� ¼ ½S2; S0� ¼ 0 ð139Þ

the operators S1 and S2 form the Cartan algebra in the SU(3) subalgebra (135) of

the Weyl–Heisenberg algebra of multipole photons.

The remaining Stokes operators S0, S3, and S4 in (133) and (134) also have

simple physical meaning. In fact, S0 describes the total number of photons

(intensity), S3 gives the preponderance of positive helicity over negative helicity,

and S4 defines the preponderance of transversal circular polarization over

longitudinal linear polarization.

In spite of the formal coincidence between the Stokes parameters (138) and

those obtained by quantization of (131) and further averaging over the coherent

state (85), there is also a essential difference. Consider, for example, the

variances of the Stokes operators S1 and S2 in (137):

hð�S1Þ2i ¼ 2jaj2ð2 þ cos �þ�Þ
hð�S2Þ2i ¼ 2jaj2ð2 � cos �þ�Þ ð140Þ
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In turn, the variances of the corresponding Stokes operators describing the phase

properties of plane waves of photons in the two-mode coherent state (85) have

the form

hð�S1Þ2i ¼ hð�S2Þ2i ¼ 2jaj2 ð141Þ

Hence, the quantum fluctuations of the physical quantities, describing the phase

information in the Stokes parameters are much stronger in the case of multipole

radiation in comparison with the case of plane waves of photons. Moreover,

they are qualitatively different because of the phase dependence in (140).

One more difference follows from the fact that, because of condition

(139), the physical quantities described by S1 and S2 in (137) can be measured

at once. At the same time, the operators, obtained by quantization of S1; S2,

and S3 in (131), form a representation of the SU(2) algebra that excludes

the possibility of simultaneous measurement of corresponding physical

quantities.

C. Spatial Properties of Polarization

Our consideration of polarization so far has applied to the bare operator forms,

corresponding to the normal-ordered polarization matrix and Stokes operators

at the source location when r ! 0. In reality, (133) describes the position-

dependent operator polarization matrix of the multipole radiation. In addition to

the normal-ordered form of the operator polarization matrix (133), one can

define the antinormal form:

P̂
ðE;anÞ
mm0 ¼ k2

X
mm0

V�
Ekjmmð~rÞVEkjm0m0 ð~rÞaEkjm0 aþ

Ekjm

P̂
ðM;anÞ
mm0 ¼ k2

X
mm0

V�
Ekjmmð~rÞVEkjm0m0 ð~rÞaMkjm0m0 a

þ
Mkjmm ð142Þ

It is seen that, in view of the commutation relations (23), the difference

P
ð0Þ
mm0 ð~rÞ ¼ P̂

ðl;anÞ
mm0 � P̂

ðl;nÞ
mm0 ¼ k2

X
m

V�
Ekjmmð~rÞVEkjmm0 ð~rÞ ð143Þ

defines the zero-point or vacuum oscillations of the components of the

polarization of either multipole field [22,91]. In fact, the matrix elements of Pð0Þ

in (143) coincide with the commutators of the type

½Alkjmm;Aþ
lkjm0m0 �
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The trace of (143) coincides, apart from an unimportant factor, with the zero-

point fluctuations of energy (29).

It is seen from (143) that the vacuum polarization matrix is independent of

index l, describing the type of the multipole field. This seems to be natural,

because the vacuum properties are affected by the presence of the singular point

(atom) without respect to the type of radiation that might be emitted.

A similar object can be constructed in the case of plane waves of photons. In

analogy to (133) and (142), we can construct the quantum counterpart of (123)

and corresponding antinormal operator polarization matrix. Then, using the

commutation relations (22) and definition (143), we get

P
ð0Þ
plane ¼

2p�hok

V

1 0

0 1

� �
ð144Þ

In contrast to (143), this is a diagonal matrix independent of the spatial

variables. Hence, in exactly the same way as with the zero-point oscillations of

energy density, the vacuum fluctuations of polarization in empty space has the

global nature, while those in the presence of the singular point manifest certain

spatial inhomogeneity.

It is intuitively clear that the spatial properties of the vacuum noise of

polarization described by (143) should be determined by the distance r from the

source independently of the spherical angles y and f. In fact, all directions from

the singular point should be equivalent in the absence of radiation. It is possible

to say that the multipole vacuum state is degenerated with respect to the

directions from the source or is invariant under rotations about an arbitrary axis,

passing through the source. This degeneration is offset by the generation of

radiation of a given type l and with given j and m, which causes the

characteristic radiation pattern [25].

Consider first the polar direction when y ¼ 0 in (18). Then, due to the known

property of spherical harmonics [70]

Yj�1;m�mð0;fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð j � 1Þ þ 1

4p

r
dmm

the mode functions in (19) are independent of the spherical angle f. Consider

pure electric multipole radiation with given j. Then, the corresponding

polarization matrix in (33) takes the form

P
ðE;nÞ
mm0 ðr; 0;fÞ ¼ k2F�

jmðrÞFjm0 ðrÞaþ
EjmaEjm0 ð145Þ

462 alexander s. shumovsky



where

FjmðrÞ � VEjmmðr; 0;fÞdmm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hc

2kVð2j þ 1Þ

s
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2j þ 3Þ

p
fjþ1ðkrÞh1; j þ 1; m; 0j jmi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð j þ 1Þð2j � 1Þ

p
fj�1ðkrÞh1; j � 1; m; 0j jmi�

It is seen that the photon operators with jmj � 2 do not contribute to the

polarization of radiation in the polar direction even if j � 2. It is straightforward

to calculate the elements of the vacuum polarization matrix (143) at y ¼ 0:

P
ð0Þ
mm0 ðr; 0;fÞ ¼ k2

X1
j¼1

jF�
jmðrÞj

2dmm0 ð146Þ

Thus, the vacuum noise of polarization in the polar direction is represented by

the diagonal matrix. Since the vacuum noise of polarization is supposed to be

independent of the direction in the space, the matrix (143) can be put into the

form (146) by a proper transformation of the reference frame spanned by the

base vectors (16). We have

Uð~rÞPð0Þð~rÞUþð~rÞ ¼ Pð0ÞðrÞ; Uþð~rÞUð~rÞ ¼ 1 ð147Þ

As a result of this transformation, ~w0ð~rÞ !~r=r: Here

Pð0ÞðrÞ ¼
PTðrÞ 0 0

0 PLðrÞ 0

0 0 PTðrÞ

0
@

1
A ð148Þ

and

PTðrÞ ¼ k2
X1
j¼1

jFj�ðrÞj2; PLðrÞ ¼ k2
X1
j¼1

jFj0ðrÞj2

The element PT describes the vacuum noise of transversal (with respect to ~r )

circular polarizations with positive and negative helicity, while PL gives the

zero-point oscillations of linear polarization in the longitudinal direction (along

~r ). The explicit form of the unitary transformation (147) is

Umm0 ¼
Dmm0 þ ð1 � DmmÞdmm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
P

n6¼m jDmnj2
q ð149Þ
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Here Dmm0 ð~rÞ is expressed in terms of the elements of matrices (143) and (148)

as follows

Dþ0 ¼ 1

Fþ
½Pð0Þ

��ðPT � P
ð0Þ
þþÞ þ jð0ÞPþ�j2�

Dþ� ¼ � 1

Fþ
½Pð0Þ

0�ðPT � P
ð0Þ
þþÞ þ P

ð0Þ�
þ0 P

ð0Þ
þ��

D0þ ¼ 1

F0

½Pð0Þ
��ðPL � P

ð0Þ
00 Þ þ jPð0Þ

0�j
2�

D0� ¼ � 1

F0
½Pð0Þ

þ�ðPL � P
ð0Þ
00 Þ þ P

ð0Þ
þ0P

ð0Þ
0��

D�þ ¼ 1

F�
½Pð0Þ�

þ0 ðPT � Pð0Þ
��Þ þ P

ð0Þ
0�P

ð0Þ�
þ� �

D�0 ¼ � 1

F�
½Pð0Þ

þþðPT � Pð0Þ
��Þ þ jPð0Þ

þ�j2�

where

Fþ ¼ ðPð0Þ�
þ0 Pð0Þ

�� � P
ð0Þ�
þ� P

ð0Þ
0�Þ

F0 ¼ ðPð0Þ
þ0Pð0Þ

�� � P
ð0Þ�
0� P

ð0Þ
þ�Þ

F� ¼ ðPð0Þ
þ�P

ð0Þ�
þ0 � P

ð0Þ
0�P

ð0Þ
þþÞ

It follows from the structure of (148) that the vacuum noise of transversal (with

respect to ~r ) polarization described by PT is independent of helicity. At the

same time, the transversal and longitudinal vacuum noises show different

behavior as functions of distance (see discussion at the end of Section II).

To illustrate the spatial properties of the polarization of multipole radiation,

consider the normal-ordered operator polarization matrix (133) in the case of

monochromatic electric-type pure j-pole radiation. Assume that the radiation

field is in a single-photon state j1mi with given m. Then, the average of (133)

takes the form

hP̂ðE;nÞ
mm0 ð~rÞi ¼ k2V�

Ekjmmð~rÞVEkjmm0 ð~rÞ

It is seen that the state with given m contributes to the polarization with different

m. For variances of the elements of the polarization matrix, we get

h½�P̂
ðE;nÞ
mm0 ð~rÞ�2i � hP̂ðE;nÞ2

mm0 i � hP̂ðE;nÞ
mm0 i2

¼ k4V�
EkjmmVEkjmm0

X
m0 6¼m

V�
Ekjm0mVEkjm0m0
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It is also seen that the vacuum fluctuations of the field with m0 6¼ m contribute to

the quantum noise of polarization of the mode with given m. Similar results can

be obtained for the position dependent Stokes operators obtained from (132) by

canonical quantization.

D. Operator Polarization Matrix in the Proper Frame

We saw that an appropriate choice of a local reference frame leads to the

diagonal representation (148) of the vacuum polarization matrix (142). The use

of the unitary transformation (147) allows the operator polarization matrix (142)

to be cast into the form

PðE;nÞð~rÞ ¼ Uð~rÞPðE;nÞð~rÞUþð~rÞ ð150Þ

where

P
ðE;nÞ
mm0 ð~rÞ ¼ k2Aþ

Ekjmð~rÞAEkjm0 ð~rÞ ð151Þ

and

AEkjmð~rÞ ¼
X1

m0¼�1

U�
mm0 ð~rÞ

Xj

m¼�j

VEkjmm0 ð~rÞaEkjm ð152Þ

Similar representation can be constructed for the magnetic-type operator

polarization matrix in (142) as well.

It is clear that, in view of (22), the operators (152) obey the commutation

relations

½Alkjmð~rÞ;Aþ
l0k0j0m0 ð~rÞ� ¼ dll0 dkk0 djj0 dmm0 


PTðrÞ at m ¼ �1

PLðrÞ at m ¼ 0

(
ð153Þ

Here Pm¼� � PT and Pm¼0 � PL are the matrix elements of the diagonal

vacuum polarization matrix (148). The representation of the Stokes operators in

the proper frame can be constructed in the same way.

We now note that the only difference between (153) and commutation

relations (23) is the presence of position-dependent factors in the right-hand

side of (153). It seems to be quite tempting to introduce the normalized local

operators

blkjmð~rÞ ¼
Alkjmð~rÞffiffiffiffiffiffiffiffiffiffiffi

Pmð~rÞ
p ð154Þ
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which obey the standard Weyl–Heisenberg commutation relations

½blkjmð~rÞ; bþ
l0k0j0m0 ð~rÞ� ¼ dll0dkk0djj0dmm0 ð155Þ

at any point ~r. Hence, the local transformation (152), representing the

components of the operator vector potential in the proper frame, can be

interpreted as a local Bogolubov canonical transformation [80], conserving the

commutation relations. In fact, Eqs. (152) and (154) describe the transformation

of global multipole photon operators alkjm with given m ¼ �j; . . . ; j into the

local photon operators blkjmð~rÞ with given polarization m ¼ 0;�1 at any point of

the space.

Due to the form of the operator polarization matrix (142) and corresponding

Stokes operators, the polarization, defined to be the spin state of photons [4,27],

is not a global property of the quantum multipole radiation. Any atomic

transition emits photons with given quantum number m, which yields, in view

of (18), (24), and (142), the polarization of all three types depending on the

distance from the atom. The structure of (152) and (154) just shows us how the

photons with different m contribute into the polarization at an arbitrary point~r.

Using the operators (154), we can construct, for example, the local bare operator

representation of the polarization matrix (142) as follows

p
ðE;nÞ
mm0 ð~rÞ ¼ bþ

Ekjmð~rÞbEkjm0 ð~rÞ ð156Þ

as well as of the Stokes operators:2

S0ð~rÞ ¼
X
m

bþ
m ð~rÞbmð~rÞ

S1ð~rÞ ¼ eð~rÞ þ eþð~rÞ
S2ð~rÞ ¼ �iðeð~rÞ � eþð~rÞÞ
S3ð~rÞ ¼ bþ

þð~rÞbþð~rÞ � bþ
�ð~rÞb�ð~rÞ

S4ð~rÞ ¼ bþ
þð~rÞbþð~rÞ þ bþ

�ð~rÞb�ð~rÞ � 2bþ
0 ð~rÞb0ð~rÞ

S5ð~rÞ ¼ ðbþ
þð~rÞb0ð~rÞ þ bþ

0 ð~rÞbþð~rÞÞ
S6ð~rÞ ¼ �iðbþ

þð~rÞb0ð~rÞ � bþ
0 ð~rÞbþð~rÞÞ

S7ð~rÞ ¼ ðbþ
0 ð~rÞb�ð~rÞ þ bþ

�ð~rÞb0ð~rÞÞ
S8ð~rÞ ¼ �iðbþ

0 ð~rÞb�ð~rÞ � bþ
�ð~rÞb0ð~rÞÞ ð157Þ

where

eð~rÞ � bþ
þð~rÞb0ð~rÞ þ bþ

0 ð~rÞb�ð~rÞ þ bþ
�ð~rÞbþð~rÞ ð158Þ

2Hereafter we omit all unimportant indices.
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It is seen that (157) has the operator structure and algebraic properties similar to

those of (136)–(137). At r ! 0, the set (157) exactly coincides with (136)–

(137). Due to the commutation relations (155), the operators (157) have the

same algebraic properties as do (136)–(137) at any given point. In particular, we

can construct the local representation of the radiation phase operators in the

same way as in Section IV, using the operator (158) instead of (63). By

construction, this gives us the SU(2) quantum phase of spin or polarization with

the properties described in Section IV.C.

Let us stress a very important difference between the representations of

Stokes operators (137) and (157). If the former is valid only for the electric

dipole photons, the latter describes an arbitrary multipole radiation with any l
and j. The similarity in the operator structure and quantum phase properties is

caused by the same number of degrees of freedom defining the representation of

the SU(2) subalgebra in the Weyl–Heisenberg algebra.

E. Summary

1. The polarization is described by a bilinear forms in the field components

corresponding to the spin states of photons. In general, the polarization is

defined by nine physical parameters (operators, in the quantum picture).

In the case of plane waves of photons when only two spin states are

allowed, the polarization is specified by only four parameters (operators).

2. The set of Stokes operators in the general case corresponds to a

representation of the SU(3) subalgebra in the Weyl–Heisenberg algebra of

photons. In the case of plane waves of photons, it reduces to the

representation of the SU(2) subalgebra.

3. The SU(2) quantum phase of spin (polarization) of photons described in a

proper reference frame coincides with the radiation phase of electric

dipole radiation discussed in Section IV.

VI. MEASUREMENT, LOCALITY, AND CAUSALITY

And then he would have lost sight of the mark he had made on the wall, where the

nail was to go in, and each had to get up on the chair, besides him, and see if we

could find it; and we would each discover it in a different place, and he would call

us all fools, one after another, and tell us to get down. And he would take the rule,

and re-measure, and find that he wanted half thirty one and three-eights inches

from the corner, and try to do it in his head, and go mad.

—Jerome K. Jerome, Three Men in a Boat

A. Measurement and Photon Localization

It was indicated in Section I that, although the photon operators refer to the

radiation field in all space, it looks tempting to interpret the electronic signal
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registered by a photodetector as due to a photon localization in a vicinity of the

sensitive area of this detector. The corresponding operational definition of

localization has been done by Mandel [20] (see also Refs. 14, 15, and 92). It is

based on the consideration of a plane wave of photons, being absorbed by the

sensitive area s of photodetector during some finite time �t. Then, it is logical

to interpret this process as a measurement of photons located in a cylindrical

volume V ¼ s 	 ð�tÞ (Fig. 14).

Following [14], we introduce a photon absorption operator at the point ~r at

time t as follows:

~að~r; tÞ ¼ g
X
k;s

0~eksakseið~k	~r�kctÞ ð159Þ

Here g is the normalization factor, aks are the operators (21)–(22), and summa-

tion is taken over a finite set of modes to which the detector responds. The so-

called configuration space number operator [14] is defined by the relation

NðV; tÞ ¼
ð
V

~a 0ð~r; tÞ 	~að~r; tÞd3r

¼ g2
X
k;s

X
k0;s0

~eks 	~ek0s0e�ið~k�~k 0Þ	~reiðk�k0Þctaþ
ksak0s0

ð160Þ

where the integral is taken over the volume of photon localization. The

operators (159) and (160) obey the following commutation relations [14]

½NðV; tÞ;NðV0; tÞ� ¼ 0 ð161Þ

D

k

Figure 14. Photodetection and region of localization.
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and

½~að~r; tÞ;NðV; tÞ� ' �~að~r; tÞ if ~r 2 V
0 otherwise

�
ð162Þ

Let us stress that (162) has an approximate sense.

There is a principal difference that complicates the direct use of the operation

approach to the problem of localizing photons in the case of multipole radiation.

The point is that the multipole photons are in a state with given angular

momentum and therefore they have no well-defined direction of propagation. In

view of the wave–particle dualism, one can say that the multipole photons

emitted by a point-like quantum source propagate as outgoing spherical waves.

Definitely, these photons are localized initially inside the source.

Consider a model of Hertz-type experiment on emission and detection of a

multipole photon in the system of two identical atoms separated by a distance d.

If we assume that a photon is first emitted by the atom 1 (source) and then

absorbed by the atom 2 (detector), it is most natural to consider the field as a

superposition of outgoing and incoming spherical waves focused on the source

and detector, respectively (Fig. 15). This superposition should obey the

boundary conditions for the real radiation field. Then, in analogy to (159) and

(160), one can construct a configuration space photon number operator via the

integration of the corresponding local operator over the spherical volume of

radius c�t, surrounding the detecting atom. Here �t is again the detection

time.

Figure 15. The scheme of two-atom Hertz experiment.
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Considering into account that (159) is simply the positive-frequency part of

the vector potential (21), we can introduce the multipole photon absorption

operator as follows

~að~r; tÞ ¼
X
m

ð�1Þm~w�m

X
lkjm

0 Vlkjmmð~rÞe�ikcalkjm

which coincides with (24) apart from the fact that the sum is taken over the

modes allowed by the selection rules. Here the mode function is defined by

Eq. (18) with the radial part (19) corresponding to the incoming spherical wave.

Then, the configuration space multipole photon number operator takes the form

NðV; tÞ ¼
ð
V

~aþð~r; tÞ 	~að~r; tÞd3r

similar to (162). Here the volume of detection is

V ¼ 4p
3
½ðc�tÞ3 � r3

a �

where ra is the atomic radius. We have to exclude the ‘‘volume of generation’’

occupied by the atom to avoid the divergence at r ! 0 in the case of outgoing

and incoming spherical waves of photons. By virtue of the transformation (152),

we can rewrite it as

NðV; tÞ ¼
ð
V

~Aþð~r; tÞ 	 ~Að~r; tÞd 3r ð163Þ

where the definition of the components of ~A differs from (152) by summation

over all allowed modes.

Taking into account the properties of spherical harmonics [70], Clebsch–

Gordon coefficients [71], and spherical Bessel and Hankel functions [70], it is

possible to show that the mode functions in (18) obey the following condition of

symmetry:

Vlkj;�m;�mð~rÞ ¼ ð�1Þmþj�m
V�
lkjmmð~rÞ

Then, it can be easily seen that the commutation relation (161) is valid for the

operators N as well:

½NðV; tÞ;NðV0; tÞ� ¼ 0
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The commutation relation corresponding to (162) is less simple. It can be

proven as an approximate one.

Thus, the picture of measurement in the atom–detector system of two

identical atoms is compatible with Mandel’s operational approach to the photon

localization. For example, the multipole photon statistics in finite volume can be

examined in the same way as in Refs. 14 and 20. The commutators for different

t can also be constructed in analogy to Ref. 20.

Nevertheless, there is one important difference. The point is that the zero-

point oscillations of the multipole field are concentrated in a vicinity of the

atoms, where they can strongly exceed the level calculated in the model of plane

waves in empty space (see Section II.B). If the atomic separation is large in

comparison to the wavelength, then a major contribution into the vacuum noise

of measurement comes from the presence of the detecting atom. At the

intermediate and short distances, the vacuum noise in the vicinity of the

detecting atom is increased because of the influence of the source atom via

the superposed zero-point oscillations of outgoing and incoming spherical

waves. Since the vacuum noise influences the precision of measurements

[14,15,58,59,86], this fact seems to be very important, especially for the

experiments with trapped Ridberg atoms, which are usually separated by

distances corresponding to the intermediate and even near zone [32,66].

Now consider the measurement of monochromatic plane photons by a

photodetector shown in Fig. 14. At far distances, the photons are specified by

a unique wave vector ~k. Mandel’s localization of photons in the vicinity of the

sensitive area s assumes that the wave converges to s. This means that there is

a variety of directions of the wavevectors near s (Fig. 16). This picture can be

described by a proper expansion over spherical waves. In view of the discussion

D

k

Figure 16. Absorption of radiation by photodetector.
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above, it should lead to an increase of the vacuum noise of measurement over

the level of plane waves as well.

B. Causality in the Two-Atom Hertz Experiment

In the previous subsection, we considered the field emitted by one atom and

then absorbed by another atom as a superposition of outgoing and incoming

spherical waves of multipole photons. This wave picture completely eliminates

an inquiry concerning the trajectory of photons between the atoms. In fact, the

path of a particle in quantum mechanics is not a well-defined notion. The most

that we can state about the path of a quantum particle in many cases is that it is

represented by a nondifferentiable, statistically self-similar curve [93]. For

example, the path of a tunneling electron and time spending in the barrier are

not still defined unambiguously [94]. Moreover, some experiments on photonic

tunneling and transmission of information show the possibility of superluminal

motion of photons inside an opaque barrier [95].

We now note that, according to the principles of quantum theory, not the

path, but causality in the transmission of information from one object to another

is important [3,10–13,31]. In the Hertz experiment with two atoms separated by

empty space, this means that the detecting atom cannot be excited earlier than in

d=c seconds after the emission of a photon by the first atom. Here d denotes the

interatomic distance. Such a causality has been proven recently by Kaup and

Rupasov [96]. Here we briefly discuss their proof.

In the model experiment under consideration, the field is represented by the

outgoing and incoming spherical waves of photons, which are specified by a

continuous distribution of k or of o ¼ ck. Assume that the two identical atoms

are the two-level atoms of the type of (34) with the electric dipole transition.

Because of the simple geometry of the problem (Fig. 17), it can be considered as

a quasiunidimensional integrable system [69]. The effective spatial dependence

of the photon operators can be introduced with the aid of the Fourier

transformation

cmðxÞ ¼
ð1
�1

do
2p

eiðo�o0ÞxamðoÞ ð164Þ

d

x

Figure 17. Effective geometry of the model. The x axis corresponds to the quasi-one-

dimensional time-dependent wavefunction.
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where amðoÞ � aE1km and o0 is the frequency of the atomic transition.

According to (23), the operators obey the commutation relations

½cmðxÞ; cþm0 ðx0Þ� ¼ dmm0dðx � x0Þ ð165Þ

In analogy to (34), the Hamiltonian of the system under consideration can be

represented as follows:

H ¼ H0 þ Hint þ o0N

H0 ¼ �i
X

m

ð1
�1

cþmðxÞ
d

dx
cmðxÞ

� �
dx

Hint ¼
ffiffiffiffi
Z

p X
m

X
f¼1;2

ð1
�1

½Rðf Þ
mgcmðxÞ þ cþmðxÞRðf Þ

gm�dðx � xf Þdx

N ¼
X

m

X
f

Rðf Þ
mm þ

ð1
�1

cþmðxÞcmðxÞdx

" #
ð166Þ

Here
ffiffiffiffi
Z

p
denotes the coupling constant, index f ¼ 1; 2 denotes the atoms, xf is

the atomic position along the x axis (see Fig. 17), and the operator N describes

the total number of excitations in the system. It is clear that

½N;H� ¼ 0 ð167Þ

Using the notation of Section III.A, we define the ground state of the system

jGroundi ¼ j j 0 ¼ 0;m0 ¼ 0if¼1 � j j 0 ¼ 0;m0 ¼ 0if¼2 � j0i

as the state of two unexcited atoms and vacuum field.

Assume that the first atom is initially excited into one of the sublevels of the

excited state with a given probability:

jini ¼
X

m

pmRð1Þ
mg jgroundi

X
m

jpmj2 ¼ 1 ð168Þ

Then, the Schrödinger time evolution is described by the wavefunction

j�ðtÞi ¼ e�iHtjini ð169Þ
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Let us denote by j	i the eigenstates of the Hamiltonian (166):

Hj	i ¼ Ej	i ð170Þ

Here, in general, 	 is a complex parameter. Then, the wavefunction (169) can be

represented in the following way:

j�ðtÞi ¼
ð1
�1

d	

2p
Lð	Þe�iEtjini ð171Þ

To find the eigenstates j	i and eigenvalues E in (170), we now note that, because

of the initial condition (168), the states with single excitation only are allowed

in the system. These states, in general, can be chosen as follows:

j	i ¼
X

m

X
f

xðf Þm ð	ÞRðf Þ
mg þ

ð1
�1

ei	xfmð	; xÞcþmðxÞdx

" #
jgroundi ð172Þ

Employing (170) then gives the following set of equations for unknown

functions fmð	; xÞ and xðf Þm ð	Þ:

i
d

dx
½ei	xfmð	; xÞ� þ Eei	xfmð	; xÞ ¼ ffiffiffiffi

Z
p X

f

xðf Þm dðx � xf Þ

ffiffiffiffi
Z

p ð
ei	xfmð	; xÞdðx � xf Þ ¼ Exðf Þm ð	Þ ð173Þ

It is seen that the first equation in (173) gives formally a nonphysical

discontinuity at x ! xf . To avoid this, we have to consider the finite-size atoms

and change dðx � xf Þ by a smooth distribution function uðx; xf Þ, then solve the

equations, and after that to put uðx; xf Þ ¼ dðx � xf Þ. We get

fmð	; xÞ ¼
Y

f¼1;2

	 � iðZ=2Þsgnðx � xf Þ
	 þ iZ=2

xð1Þm ¼
ffiffiffiffi
Z

p

	 þ iZ=2
ei	x1

xð2Þm ¼ 	 � iZ=2

	 þ iZ=2

ffiffiffiffi
Z

p

	 þ iZ=2
ei	x2 ð174Þ

where

sgnðx � xf Þ ¼
1 at x > xf

�1 at x < xf

0 at x ¼ xf

8<
:

and E ¼ 	, which is real. Thus, the function (172) is completely defined.
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Since any two states (172) obey the orthogonality condition

h	j	 0i ¼ 2pdð	 � 	 0Þ

and, in view of (171) the initial state can be expanded in the following way

jini ¼
ð

d	

2p
Lð	Þj	i

and for the coefficients in (172) we get

Lð	Þ ¼ h	jini ¼
ffiffiffiffi
Z

p

	 � iZ=2

Finally, for the function (172), describing the time evolution of the system, we

get

j�ðtÞi ¼
X

m

pm

ð1
�1

d	

2p

ffiffiffiffi
Z

p

	 � iZ=2
e�i	tj	i ð175Þ

This wavefunction can be used to calculate the evolution of any physical

quantity in the system under consideration. To prove the causality, we now have

to calculate the time-dependent expectation value

hRð2Þ
mmit ¼ jpmj2

ð
d	

2p
Z

ð	 þ iZ=2Þ2
e�i	ðt�d=cÞ

�����
�����
2

ð176Þ

describing the evolution of population of corresponding sublevel of the

detecting atom. It is now a straightforward matter to arrive at the following

result

hRð2Þ
mmi ¼ jpmj2 


0 0 � t � d
c

Z2 t � d
c

 !2
e�

ffiffiffi
Z

p ðt�d=cÞ t > d
c

(
ð177Þ

(see Fig. 18). It is seen that this average shows the causal behavior.

C. Polarization Measurements

Instead of discussing the well-known methods of polarization measurements

[87], we now turn our attention to the fluctuations in the measurement of the
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parameters of polarization. Following [97], consider first a fully polarized

coherent plane wave in the weak quantum limit. To measure the Stokes

parameters, one can use the six-port scheme shown in Fig. 19, which reflects

the principal ideas of Mandel’s operational approach to phase measurements

[47]. A similar scheme has been analyzed [98]. The beam whose polarization

is to be measured is first split by the non-polarizing beamsplitter BS1. One of

the output beams is sent to a polarizing beamsplitter PBS1, which defines

two linearly polarized orthogonal polarization eigenmodes labeled by i ¼ 1,2.

Then, the intensities I1 and I2 are measured by the photodetectors. The

other output beam from BS1 is further split at BS2 with the purpose of

simultaneous measuring the sine and cosine of the phase difference between the

polarized components of the field. One of the output beams from BS2 is

analyzed with PBS2, which is oriented at 45# with respect to the axes i ¼ 1,2

defined by PBS1. The other output beam from BS2 goes through a quarter-wave

plate whose fast and slow axes are aligned along the i ¼ 1,2 directions. This

beam is then analyzed at PBS3, whose axes are aligned with PBS2.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

X

Figure 18. Time dependence of the mean population of the excited level of the detecting atom.
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Consider first the measurement of the classical field. Then, for 50%
nonpolarizing beamsplitters, the detectors d1; . . . d6 measures the intensities

I1 ¼ 1

2
jE1j2

I2 ¼ 1

2
jE2j2

I3 ¼ 1

4
ðjE1j2 þ jE2j2Þ þ 2jE1j2jE2j2 cos �

I4 ¼ 1

4
ðjE1j2 þ jE2j2Þ � 2jE1j2jE2j2 cos �

I5 ¼ 1

4
ðjE1j2 þ jE2j2Þ þ 2jE1j2jE2j2 sin �

I5 ¼ 1

4
ðjE1j2 þ jE2j2Þ � 2jE1j2jE2j2 sin � ð178Þ

Where I‘ denotes the intensity measured by the detector d‘. From these

relations, the classical Stokes parameters (130) can be found as

s
ðplaneÞ
0 ¼ I1 þ I2; s

ðplaneÞ
1 ¼ I1 � I2

s
ðplaneÞ
2 ¼ I2 � I4; s

ðplaneÞ
4 ¼ I5 � I6 ð179Þ

PBS3

PBS2

BS2BS1

w (1) w (2)

λ/4

v (2)v (1)

a

w (3)

d5

d6

d3

d4

PBS1

d1

d2

Figure 19. The experimental setup for measurement of the Stokes parameters.
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were 1 $ x and 2 $ y. Having defined our measurement in the classical

domain, we next look at the quantum case when the unused ports in the

beamsplitters are considered as input for vacuum fields [14]. These vacuum

fields are indicated in Fig. 19 by v‘ and w‘ for BS and PBS, respectively.

The photon annihilation operators associated with the field at the output arms

of PBS1 are related to those at the input through

d1 ¼ ra1 þ tv
ð1Þ
1 ; d2 ¼ ra2 þ tc

ð1Þ
2 ð180Þ

where r ¼ i=
ffiffiffi
2

p
and t ¼ 1=

ffiffiffi
2

p
are the field reflection and transmission

coefficients, respectively, and v
ð1Þ
‘ describes the polarized vacuum field in the ‘

direction entering through the vacuum port of BS1 (cf. Section 4.6). The vacuum

fields wðkÞ ðk ¼ 1; 2; 3Þ do not couple with the measured field operators since

they are orthogonal to them.

In analogy to the classical definition of the angular functions

sin y ¼ 2

ffiffiffiffiffiffiffiffi
I1I2

p

I1 þ I2

; cos y ¼ I1 � I2

I1 þ I2

where y is related to the ellipticity angle [87], we define the operators [97]

Sy ¼ 2

ffiffiffiffiffiffiffiffiffi
n1n2

p

n1 þ n2

; Cy ¼
n1 � n2

n1 þ n2

ð181Þ

Here
n‘ � dþ

‘ d‘; ‘ ¼ 1; 2

are the photon number operators for the fields measured at the detectors 1 and 2.

From the Weyl–Heisenberg commutation relations for the photon operators, we

get
½Sy;Cy� ¼ 0 ð182Þ

so that these two quantities can be measured at once. It is also seen that

S2
y þ C2

y ¼ 1

On the other hand, at the output ports of PBS2 and PBS3, the field operators are

d3 ¼ 1ffiffiffi
2

p ½ðtrða1 þ a2Þ þ r2ðvð1Þ1 þ v
ð1Þ
2 Þ þ tðvð2Þ1 þ v

ð2Þ
2 Þ�

d4 ¼ �1ffiffiffi
2

p ½trða1 � a2Þ þ r2ðvð1Þ1 � v
ð1Þ
2 Þ þ tðvð2Þ1 � v

ð2Þ
2 Þ�

d5 ¼ 1ffiffiffi
2

p ½r2ðia1 þ a2Þ þ trðivð1Þ1 þ v
ð1Þ
2 Þ þ rðivð2Þ1 þ v

ð2Þ
2 �

d6 ¼ �1ffiffiffi
2

p ½r2ðia1 � a2Þ þ trðivð1Þ1 � v
ð1Þ
2 Þ þ rðivð2Þ1 � v

ð2Þ
2 � ð183Þ
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Then, in analogy to the classical functions

cos� ¼ I3 � I4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI3 � I4Þ2 þ ðI5 � I6Þ2

q
sin� ¼ I5 � I6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI3 � I4Þ2 þ ðI5 � I6Þ2
q

we get the operators

C� ¼ n3 � n4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn3 � n4Þ2 þ ðn5 � n6Þ2

q
S� ¼ n5 � n6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn3 � n4Þ2 þ ðn5 � n6Þ2
q ð184Þ

such that

½C�; S�� ¼ 0

Here n‘ denotes the number operators constructed from the photon operators

(183).

It is now a straightforward matter to calculate the variances of the operators

(181) and (184) [97]. In particular, it is possible to show that the quantum

fluctuations imply the uncertainty relations

hð�S
ðplaneÞ
2 Þ2ihð�C�Þ2i � 1

4
hS�i

hð�S
ðplaneÞ
2 Þ2ihð�S�Þ2i � 1

4
hC�i ð185Þ

similar, in some sense, to the Susskind–Glogower uncertainty relations [41] and

those of the operational definition of quantum phase [47]. Here S
ðplaneÞ
2 is the

Stokes operator obtained by the quantization of the Stokes parameter s
ðplaneÞ
2 in

(179).

D. Nondemolition Polarization Measurement

In the preceding subsection, we discussed the polarization measurement through

the use of the detection of the field variables done by photocounting techniques,

which are field-destructive. As a result, successive measurements of the field

variables yield different results. It seems to be tempting to use the measurement

schemes avoiding backward action of the detecting device on the detected
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observable. Such a measurement is usually called a quantum nondemolition

measurement [99]. Here, following our results [100], we discuss the possibility

of quantum nondemolition measurement of polarization of the electromagnetic

field via the Aharonov–Bohm effect [101].

First, we note that the standard photodetection is a local measurement of the

field variables (intensities). At the same time, the Aharonov–Bohm effect

represents a topological measurement referred to the properties of vector

potential along some loop. In the usual form, the Aharonov–Bohm effect deals

with static or slowly time-varying magnetic fields [101]. The effect consists in

the appearance of a persistent current in a metallic loop over which the magnetic

flux passes. This current is a periodic function of magnetic flux with the period

of flux quantum hc=e. Besides that, certain resistance oscillations in the loop

incorporated into an external circuit with the same period can occur.

An important case of varying magnetic field has been considered by Aronov

et al. [102] under the assumption that the space-dependent time-varying

electromagnetic field produces static electron energy minibands in the loop.

These minibands have been suggested to appear due to electron motion in a

time-averaged electrostatic potential periodic with coordinate along the loop

circumference, produced by the square of time-varying electric field [103].

However, in the quantum case, an electron reflection forms an oscillating

potential causes time-dependent phase shifts, resulting in an effective chaotiza-

tion of the phase of electron wavefunction, except at energy multiples of �ho,

where o is the field frequency.

In our papers [100], we considered the case of optical frequencies

o > �E=�h, where �E is the width of the electron conduction band of the

metal. Under this condition, the elastic scattering of electrons is prohibited if the

separation between the conduction and higher nonoccupied bands of a metal is

larger than �ho. In this case, the magnetic component of electromagnetic field

represents the main source of the electron wavefunction phase shift. The effect

of oscillating magnetic field results in the modulation of the electron transmis-

sion amplitude between the parts of the loop. As a result of the quantum

interference of electron waves in oscillating potential, the dependence of the

loop resistance of the time-varying field amplitude manifests a non-monotone

character.

The geometry of the experiment assumes that the magnetic field oscillates

along the axis orthogonal to the plane of the loop circumference and passing

through its center. An example is provided by a small metallic ring surrounding

an optical fiber. In this case, the largest contribution to the conductance

oscillations comes from the TE01 mode of the fiber field [100] (about the fiber

modes; see Ref. 104). Definitely, such a measurement does not perturb the

quantum state of the fiber mode. Another example is provided by the magnetic

dipole radiation, when a longitudinal oscillating magnetic field can be observed,
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at least in some vicinity of the source. In the case of radioband frequencies, this

vicinity seems to be extended enough to make a macroscopic measurement. As

a powerful localized source of such a radiation the radioband Dicke super-

radiance [105] can be used. The geometry of the experiment is simplified, in this

case, by a characteristic sharp radiation pattern of superradiance [64].

To make necessary estimations, consider a one-dimensional loop in a tight-

binding approximation with two transmittance amplitudes t1 and t2 at the points

A and B, connecting two parts of the ring (see Fig. 20). It is supposed that

t1; t2 $ t0, the hopping amplitude between the nearest points inside the upper

and lower parts of the ring. The system under consideration is described by the

Hamiltonian [100]

H ¼ �t0

X
n

ðaþ
n anþ1 þ bþ

n bnþ1Þ þ H:c:þ Hint

Hint ¼ �t1aþ
n1

bn1
eia1 � t2aþ

n2
bn2

eia2 þ H:c: ð186Þ

where a; b are the electron (not photon) annihilation operators. The phases of

transmission amplitudes at the contraction points ni are

ai ¼ a0
i þ Ai sinðot þ diÞ

where a0
i accounts for the effect of a static magnetic field applied perpendicular

to the plane of the ring

a0
1 � a0

2 ¼ 2p�S

�0

; �s ¼
ð
~B 	 d~S; �0 ¼ hc

e

while Ai are the amplitudes of high-frequency field at corresponding points.

L1

L2

R2

A′ B′

A

A

B

n2

R1
n1

(a)

B

(b)

Figure 20. The scheme of one-dimensional Aharonov–Bohm loop, surrounding the direction

of propagation of a longitudinal mode and weakly coupled at points A and B with the external leads

L1 and L2 [(a) and (b)]. (d) The model of an ac normal-metal interferometer. R1 and R2 are the

thermal reservoirs held at voltages �V=2; respectively.

quantum multipole radiation 481



The model with the Hamiltonian (186) can be solved exactly [100]. It is a

straightforward matter to arrive at the following relation for the current

J ¼
ðp

0

dk

2p
W0

Wk

W0 þ Wk

þ W�k

W0 þ W�k

� �

 f0 Ek �

eV

2

� �
� f0 Ek þ

eV

2

� �� �
ð187Þ

Here f0ð	Þ denotes the equilibrium distribution function of electrons, Ek ¼
�2t0 cosk, W�k is the forward ðþkÞ or backward ð�kÞ scattering probability,

and V is the voltage. Then, the conductance G can be found from (187) as

follows:

G ¼ dJ

dV
ð188Þ

It follows from (187) that the dependence of G on the phase a and on the

electromagnetic field amplitude leads to two different effects. First, the

oscillatory dependence Gð�SÞ is the standard mesoscopic interference effect

similar to that in static electron interferometer [101]. Another type of oscillating

dependence GðAÞ is completely caused by the time-varying field. The

dependence of the conductance on the field intensity P is shown in Fig. 21.

1.0

1.0

0.0

G
−G

0

P, arb. units
20.0

Figure 21. Direct-current conductance of the loop versus square root of ac power: solid line,

A1 : A2 ¼ 1 : 1; dotted line, A1 : A2 ¼ 1 : 2. Change in the conductance is normalized with respect

to static conductance oscillation amplitude.
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The observation of such oscillations requires temperatures low enough to allow

the phase-breaking length of electron scattering ‘f to exceeds the circumference

of the ring L. For the loop size of the order of L ¼ 1 mm, which is technically

reasonable, the condition ‘f > L is valid at T � 1 K.

At L ¼ 1 mm, the measurement can be done at the magnetic field B  10�7 T,

which corresponds to the oscillating power P  10�3 W [100]. This seems to be

not very high. Estimated in a different way as a minimum number of optical

photons transmitted through the loop, the field should contain n  1=a  137

photons, where a � e2=�hc is the fine-structure constant. This estimation

corresponds either to an optical soliton propagating through the fiber [104] or

to the superradiant pulse in the radioband superradiance [105].

Thus, the linearly polarized longitudinal component of electromagnetic

radiation arising in corresponding geometry (fiber or localized source) can be

measured in nondemolition way with the aid of the Aharonov–Bohm effect at

optical frequencies.

E. Summary

1. Localization of multipole photons at generation and absorption by an

atom, described in terms of outgoing or incoming waves of photons, is

compatible with Mandel’s conception of localization.

2. The photon localization at detection leads to a strong increase of the

vacuum noise in a certain vicinity of a detector (atom or active area of

photodetector).

3. The two-atom scheme of the Hertz experiment with multipole photons, in

which the radiation field is described by a superposition of outgoing and

incoming waves focused on the emitting and detecting atoms respectively,

obeys the causality principle even though the path of detecting photons is

indefinite.

4. The quantum fluctuations of polarization can be measured in the multiport

six-detector scheme similar to that proposed by Mandel for the phase

measurements.

5. The linear polarization of longitudinal component of electromagnetic field

caused by a characteristic geometry of the system (cylindrical geometry in

an optical fiber or spherical in the case of field generated by a local

source) can be measured in a nondemolition way with the aid of the

Aharonov–Bohm effect.

VII. CONCLUSION

Every problem becomes very childish when once it is explained to you.

—Sir Arthur Conan Doyle, The Dancing Men
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In this chapter we have reviewed some results concerning the quantum multi-

pole radiation. Although the representation of quantum electromagnetic radia-

tion in terms of spherical waves of photons known since the first edition in 1936

of the famous book by Heitler on quantum theory of radiation [2], where this

subject is discussed in the Appendix, this representation is not a widespread one.

The spherical waves of photons are considered in very few advanced mono-

graphs on quantum optics [26]. The brilliant encyclopedic monographs [14,15]

just touch on the subject.

At the same time, the quantum multipole radiation is precisely what the

atomic transitions between the states with given angular momenta emit. The

states of multipole (spherical) photons are specified by given angular momen-

tum and projection of the angular momentum, while the spin state (polarization)

is changed in spacetime. On the contrary, the common representation of plane

waves of photons is specified by a given linear momentum and polarization

everywhere. This difference reflects the boundary conditions used in the

canonical quantization of the free electromagnetic field [2].

It was shown in Section I that the clear-cut distinction between the symmetry

properties of plane and spherical waves leads to a qualitative difference in the

zero-point oscillations. While the former are homogeneous in space (along the

direction of propagation), the latter concentrate in a certain vicinity of a local

source (atom) where they may exceed the level calculated in the model of plane

waves. Although the result is simple in itself, to our knowledge, it was indicated

for the first time in 1999 [46] and then discussed later [22,29]. Since the zero-

point oscillations define the quantum limit of precision of measurements of

corresponding physical quantity [14,15,99], this result seems to be very

important. The estimations based on the results of Section II.B show that the

zero-point oscillations exceed the conventional level provided by the represen-

tation of plane waves at the distances r � 0:2l, where l is the wavelength.

Within the standard classification, it corresponds to the so-called intermediate

zone. Let us stress that this distance is of the order of the typical interatomic

separation in experiments with trapped Ridberg atoms [32].

One of the major trends of current research is the study of transmission of

‘‘information’’ between the atom and photons in the process of emission and

absorption. In particular, the conservation of angular momentum provides the

transmission of the ‘‘quantum phase information’’ in the atom–field system. The

atomic quantum phase can be constructed as the SU(2) phase of the angular

momentum of the excited atomic state (Section III). It is shown that this phase

has very close connection with the EPR paradox and entangled states in general.

Via the integrals of motion, it is mapped into the Hilbert space of multipole

photons (Section IV.A). This mapping is adequately described by the dual

representation of multipole photons, constructed in another study [46] (see also

Section IV.B, below). Instead of the quantum number m, corresponding to the
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projection of angular momentum, these photons are specified by the quantum

phase index. The spectrum of corresponding quantum (radiation) phase is

discrete and lies in the interval ð0; 2pÞ. In the classical limit provided by the

high-intensity coherent multipole radiation, the eigenvalues of the radiation

phase are distributed uniformly over this interval. By construction, the radiation

phase is complementary to Mandel’s operational phase [47]. It defines the

quantum phase in terms of what can be generated by a quantum local source. In

the quantum limit of weak intensity, the behavior of radiation and the Pegg–

Barnett [45] quantum phases are completely different. They are caused by the

specific truncation procedure used within the Pegg–Barnett approach, which

leads to an effective violation of the Weyl-Heisenberg algebra of photons.

The radiation phase is closely related to the polarization of the multipole

field. In contrast to the plane waves, the polarization of multipole radiation is

specified by three orthogonal directions of the field oscillations or by three

allowed spin states of photons [28]. Therefore, the polarization is described by

the ð3 
 3Þ Hermitian matrix of polarization (operator matrix, in the quantum

case) (Sections V.A and V.B). This general form of the polarization matrix gives

in the limit the standard case of ð2 
 2Þ matrix in the representation of plane

waves. The set of multipole Stokes operators corresponds to a representation of

the SU(3) subalgebra in the Weyl–Heisenberg algebra of photons. The Cartan

algebra of this SU(3) subalgebra corresponds to the representation of the

radiation phase in the case of the angular momentum j ¼ 1. Thus, the polari-

zation of multipole radiation has a certain inherent quantum phase that, in some

important cases, can be interpreted as the phase difference between the com-

ponents with different polarization (Section V.B). The quantum properties of

polarization can be measured with the aid of a multiport scheme [97] (Section

VI.C).

The polarization and quantum phase properties of multipole photons change

with the distance from the source. This dependence can be adequately described

with the aid of the local representation of the photon operators proposed in Ref.

91 and discussed in Section V.D. In this representation, the photon operators of

creation and annihilation correspond to the states with given spin (polarization)

at any point. This representation may be useful in the quantum near-field optics.

As we know, so far near-field optics is based mainly on the classical picture of

the field [106].

The local representation of multipole photons is compatible with the Mandel

operational definition of photon localization [20]. In addition to the localization

at photodetection, it permits us to describe a complete Hertz-type experiment

with two identical atoms used as the emitter and detector (Section VI.A).

Although the photon path is undefined from the quantum-mechanical point of

view, the measurement process in such a system obeys the causality principle

(Section IV.B). The two-atom Hertz experiment can be realized for the trapped
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Ridberg atoms. Let us stress that such a measurement is closely connected with

the problem of atomic entanglement discussed in Ref. 76.

The standard measurement of different properties of quantum electromag-

netic radiation is based on the photodetection, which is field destructive.

Following our consideration of the possibility of the Aharonov–Bohm effect

at optical frequencies [100], we propose here a new nondemolition method of

polarization measurement in which the linearly polarized longitudinal mode of

the field is detected without any perturbation of its quantum state (Section

VI.D). The estimation of physical conditions shows that such a measurement

can be done either for the photons propagating through the fiber, or for the

superradiant photons in radioband frequencies.

In this review, we relied to a large extent on our own results. We believe,

however, that this chapter covers a number of topics important for quantum

optics, and that the reported results may stimulate an interest in further investi-

gations. Success in the field of quantum optics has convicingly shown that

developments in optics have very often had a direct influence on other fields,

both pure and applied.
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I. INTRODUCTION

In this chapter we provide a review of nonlinear phenomena in quantum

optics, giving an overview of scientific activities in quantum optics at the

Natural Science Faculty of Palacký University in Olomouc (Czech Republic).

Contributions of various authors are included in this chapter as sections and

names of the corresponding authors are given after the section titles in brackets.

The first section is devoted to quantum and classical methods to obtain photon

statistics in higher-harmonics generation, including a method of classical

trajectories. It is followed by a discussion of photon bunching and antibunching

of nonstationary fields. The chapter continues with a discussion of methods for

reconstruction of quantum states. The following part of the chapter deals with

the process of frequency downconversion with pulses, Zeno and anti-Zeno

effects based on optical parametric processes, Raman nonlinear couplers as

switching elements and sources of nonclassical light for optoelectronics and

photonics, and quantum cryptography. Finally, quantum spatial propagation of a

two-mode squeezed light in a cubically behaved quadratic medium is treated as

another feature of a two-field squeezed steady-state light, and this approach is

compared with the conventional one.

II. QUANTUM, CLASSICAL, AND SEMICLASSICAL
ANALYSES OF PHOTON STATISTICS IN HARMONIC

GENERATION ( J. BAJER and A. MIRANOWICZ)

A. Introduction

Harmonic generation is one of the earliest discovered and studied nonlinear

optical processes. For 40 years, since the first experimental demonstration of
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second-harmonic generation (SHG) by Franken and co-workers [1] followed by

its rigorous theoretical description by Bloembergen and Pershan [2], harmonic

generation has unceasingly attracted much attention [3]. In particular, harmonic

generation has been applied as a source of nonclassical radiation (see Refs. 4

and 5 for a detailed account and bibliography). It was demonstrated that photon

antibunched and sub-Poissonian light [6,7], as well as second- [8] and higher-

order [9,10] squeezed light, can be produced in SHG. In experimental schemes,

second-harmonic generation is usually applied for the sub-Poissonian and

photon antibunched light production, whereas second-subharmonic generation

(also referred to as two-photon downconversion) is used for the squeezed-light

generation [4,11]. Nonclassical effects in higher-harmonic generation have also

been investigated, including sub-Poissonian photocount statistics [5,7,12,13],

squeezing [5,14,15], higher-order squeezing [16,17] according to the Hong–

Mandel definition [9], or higher-power-amplitude squeezing [18,17] based on

Hillery’s concept [10]. In this contribution, we will study photocount statistics

of second- and higher-harmonic generations with coherent light inputs.

Photocount noise of the observed statistics can simply be described by the

(quantum) Fano factor [19]

FQ � h �n̂ð Þ2i
n̂h i ¼

n̂2
� �

� n̂h i2

n̂h i ð1Þ

where n̂h i is the (ensemble) mean number of detected photons and h �n̂ð Þ2i is

the variance of photon number. We also analyze the global (quantum) Fano

factor defined to be [20]

FG � hh �n̂ð Þ2ii
hhn̂ii ¼ hhn̂

2ii � hhn̂ii2

hhn̂ii ð2Þ

where the mean values hhn̂kii are obtained by the ensemble and time averaging;

hhn̂kii ¼ lim
T!1

1

T

ð T

0

hn̂kðtÞi dt ð3Þ

In the classical trajectory approach, the Fano factor is defined to be

FS � ð�nÞ2

�n
¼ n2 � �n2

�n
ð4Þ

as a semiclassical analog of the quantum Fano factor. The mean values nk in Eq.

(4) are obtained by averaging over all classical trajectories, as will be discussed

in detail in Sections II. B and II. C.
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Coherent (ideal laser) light has Poissonian photon-number distribution thus

described by the unit Fano factor. For F < 1, the light is referred to as light sub-

Poissonian since its photocount noise is smaller than that of coherent light with

the same intensity. Whereas for F > 1, the light is called super-Poissonian with

the photocount noise higher than that for coherent light.

We shall compare different descriptions of photon-number statistics in

harmonic generation within quantum, classical and semiclassical approaches.

First, we will study the exact quantum evolution of the harmonic generation

process by applying numerical methods including those of Hamiltonian diag-

onalization and global characteristics. As a brief introduction, we will show

explicitly that harmonic generation can, indeed, serve as a source of nonclassi-

cal light. Then, we will demonstrate that the quasistationary sub-Poissonian

light can be generated in these quantum processes under conditions correspond-

ing to the so-called no-energy-transfer regime known in classical nonlinear

optics. By applying method of classical trajectories, we will demonstrate that

the analytical predictions of the Fano factors are in good agreement with the

quantum results. On comparing second- [21], third- [22] and higher- [23]

harmonic generations in the no-energy-transfer regime, we will show that the

highest noise reduction is achieved in third-harmonic generation with the

Fanofactor of the third harmonic equal to FQ
3 
 FS

3 ¼ 13
16

.

B. Second-Harmonic Generation

1. Quantum Analysis

The quantum process of second-harmonic generation (SHG) can be described

by the following interaction Hamiltonian [4,5]:

Ĥ ¼ �hg â2
1â
y
2 þ â

y2
1 â2

� �
ð5Þ

where â1 and â2 denote annihilation operators of the fundamental and second-

harmonic modes, respectively; g is a nonlinear coupling parameter. The

Hamiltonian (5) describes a process of absorption of two photons at frequency

o1 and simultaneous creation of a new photon at the harmonic frequency

o2 ¼ 2o1, together with the inverse process. Unfortunately, no exact solution of

quantum dynamics of the model, described by (5), can be found. Thus, various

analytical approximations or numerical methods have to be applied in the

analysis of the conversion efficiency, quantum noise statistics, or other char-

acteristics of the process [5]. Because of mathematical complexity of the

problem, the investigations of nonclassical effects in harmonic generation

have usually been restricted to the regime of short interactions (short optical

paths or short times). Theoretical predictions of quantum parameters (including

the Fano factor or, equivalently, the Mandel Q-parameter) were obtained
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under the short time approximation only [4,5,13]. This is a physically sound

approximation in case of weak nonlinear coupling of optical fields. The Fano

factors under the short-time approximation (i.e., for gt  1) for coherent

inputs a1 ¼ r1 exp if1ð Þ and a2 ¼ r2 exp if2ð Þ are given by the expansions (for

r1; r2 6¼ 0)

FQ
1 ¼ 1� 4siny r2gt

þ 4r�2
1 r2

2 � 2r2
1 þ 8½2þ cosð2yÞ�r2

2

� �
ðgtÞ2 þ OfðgtÞ3g

FQ
2 ¼ 1� 16

3
siny r2

1r2ðgtÞ3

þ 4

3
2r2

2 þ 16r2
1r2

2 � ½4þ 3cosð2yÞ�r4
1

� �
ðgtÞ4 þ OfðgtÞ5g ð6Þ

where y ¼ 2f1 � f2 and Ofxg denotes the order of magnitude. Equation (6)

determines whether the generation of harmonics (oþ o! 2o) or subharmo-

nics (2o! oþ o) occurs. It also determines the sub-Poissonian or super-

Poissonian photon-number statistics of light generated during the short-time

interactions. For spontaneous SHG process (i.e., for r2 ¼ 0), the well-known

expansions for the quantum Fano factors are

FQ
1 ¼ 1� 2ðr1gtÞ2 þ 4

3
r2

1 3r2
1 þ 1

� 	
ðgtÞ4 þ OfðgtÞ6g

FQ
2 ¼ 1� 4

3
ðr1gtÞ4 þ 4

45
r4

1 36r2
1 þ 17

� 	
ðgtÞ6 þ OfðgtÞ8g ð7Þ

or, equivalently, for the normally ordered photon-number variances [4,6,7]:

h: �n̂1ð Þ2:i � h �n̂1ð Þ2i � n̂1h i ¼ �2r4
1ðgtÞ2 þ OfðgtÞ4g

h: �n̂2ð Þ2:i � h �n̂2ð Þ2i � n̂2h i ¼ �
4

3
r8

1ðgtÞ6 þ OfðgtÞ8g ð8Þ

It is seen that the photon-number statistics of fundamental mode exhibits, in the

short-time regime, much stronger sub-Poissonian behavior than that of harmo-

nic mode.

For longer interaction times (gt > 1), there are no exact analytical solutions,

thus the numerical analysis has to be applied. We have used two methods to

study the quantum dynamics: (1) the well-known Hamiltonian diagonalization

proposed by Walls and Barakat [24] and (2) the method of global characteristics

based on manipulation with spectra [20]. These methods can be applied for

arbitrary initial photon statistics. Nevertheless, for the purpose of our chapter,

we restrict our analysis to the initial coherent fields solely. Owing to computa-
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tional difficulties, the results can be obtained for small numbers of interacting

photons only. The analysis of about 100 interacting photons reaches practically

the computational capabilities of the standard mathematical software.

Analysis of a typical evolution of the Fano factors FQ
1;2, such as presented in

Fig. 1a, leads to the conclusion that after initial short-time (gt < 1) relaxations

in both modes, a strongly super-Poissonian (FQ
1;2 � 1). This behavior occurs for

the majority of initial coherent states ja1i and ja2i except a certain set of initial
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Figure 1. Fano factors of the fundamental, FQ
1 , and the second-harmonic mode, FQ

2 , in the

long-time interaction for initial coherent states with real amplitudes (a) a1 ¼ 6;a2 ¼ 1, and (b)

a1 ¼ 6; a2 ¼ 3. Case a is a typical example of super-Poissonian behavior in both modes outside the

no-energy-transfer regime. In case b, the harmonic mode exhibits stable sub-Poissonian statistics

with FQ
2 ’ 0:83. It is a charactersitc example of the sub-Poissonian behavior within the no-energy-

transfer regime along the line ja1j ¼ 2ja2j.
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states concentrated along the line ja1j ¼ 2ja2j > 0 and y ’ 0 (see Fig. 1b). The

same conclusion can be drawn by analyzing the global Fano factors FG
1;2. We

find that the global Fano factor of the harmonic mode remains independent of

amplitude jakj and equal to FG
2 ¼ 0:83 < 1 along the line ja1j ¼ 2ja2j (see

Figs. 2 and 3). As depicted in Fig. 1b, when the initial relaxation oscillations

fade out, the harmonic mode remains sub-Poissonian for a long interaction time

interval. In the classical theory of SHG, this case is referred to as the no-energy-

transfer regime [25], because of the conservation of energy in every mode. We

have found a quantum analog of this regime for coherent inputs with amplitudes

satisfying the conditions: ja1j ¼ 2ja2j and y ’ 0.

By analyzing Figs. 2 and 3, an intriguing question arises: Why does the

harmonic-field photocount statistics in the no-energy-transfer regime remain

sub-Poissonian with the Fano factor almost independent of the interaction time

gt > 1? This behavior can be understood better by plotting the Husimi Q

function. Let us have a look at the snapshots of typical evolution of Q functions

for both modes at six time moments gt¼0; 0:5; . . . ; 2:5 with initial amplitudes

a1¼6; a2¼3 (Fig. 4). These results were obtained numerically and represent

the exact quantum solution of the model (5). One can observe how the cross-

sections of the Q-functions change from circles (for initially coherent fields)
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4.5 − 5.0
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Figure 2. Global Fano factor, FG
2 , of the second-harmonic mode as a function of the initial

coherent state amplitudes a1 and a2 with y ¼ 0. It is seen that the harmonic mode exhibits globally

sub-Poissonian behavior (FG
2 < 1) near the diagonal ja1j ¼ 2ja2j and y ¼ 0.
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through crescents into rings. We note that both modes have relatively small

photon-number variances and small Fano factors, FQ
1 
 1:50 and FQ

2 
 0:83

[see also Fig. 1b]. The ring shapes, once formed, are very stable. So, not only

the Fano factors, but the entire quantum states become stationary.

The Q functions are very wide, thus no linearization of the quantum problem

is possible and no pure quantum technique can be used for estimation of the

observed values FQ
1 
 1:50 and FQ

2 
 0:83. However, good quantitative ex-

planation of these numerical values can be obtained by the method of classical

trajectories as will be shown in Section II.B.

Our discussion is focused on photon-number statistics rather than squeezing

or other phase-related properties. Nevertheless, by analyzing the Q-function

evolution presented in Fig. 4, we can draw the conclusion that squeezing cannot

be observed for initial coherent fields at interaction times exceeding the

relaxation time. In fact, the quadrature squeezing variances (k ¼ 1; 2)

SQ
k � hð�X̂kÞ2i ¼ h½�ðâke�iy þ â

y
keiyÞ�2i ð9Þ

are monotonically rising from the standard shot-noise-limit (SQ
k ¼ 1) to much

more noisy state with the saturated quadrature variances

SQ
1 ¼ 1þ 8r2 � 1

SQ
2 ¼ 1þ 2r2 � 1 ð10Þ
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Figure 3. Global Fano factors FG
1 and FG

2 along the line ja1j ¼ 2ja2j for y ¼ 0. Dotted lines

denote the RMS deviation of oscillations in the long-time interaction. It’s seen that the harmonic

mode exhibits globally sub-Poissonian behavior.
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It is evident that the no-energy-transfer regime is not useful for the quadrature

squeezing generation.

2. Classical Analysis

Complete quantum solution of the model given by Hamiltonian (5) can be found

by applying sophisticated numeric methods on a fast computer only. However,

since we are interested in a special type of solution for strong fields, we can

adopt approximate classical and semiclassical methods to obtain some analy-

tical results.

In analogy with Eq. (5), the classical model of SHG can be described by

H ¼ g½a2
1a
�
2 þ ða�1Þ

2a2� ð11Þ

where a1 and a2 are complex amplitudes of the fundamental and second-

harmonic modes, respectively, and g is a nonlinear coupling parameter. The

exact solution of the model, described by (11), is well-known [26]. The solution
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Figure 4. Quantum evolution of the Q function for the fundamental (outer contour plots) and

the second-harmonic mode (inner plots) at six time moments for initial coherent states with

a1 ¼ 6;a2 ¼ 3; y ¼ 0. Solution obtained by quantum numerical method.
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is periodic and can be written in terms of the Jacobi elliptic function. A few

special cases (e.g., the phase-matched second-harmonic generation) have

monotonous solution described by hyperbolic functions. The classical solution

is a good approximation for strong fields, for which gives correct predictions of

the output light intensities and frequency conversion efficiency. Unfortunately, it

cannot be used to describe the photocount noise and other statistical properties

of generated light. Now, we will summarize some classical results, which we

will use in the method of classical trajectories.

The Hamiltonian (11) for the classical SHG leads to the following system of

complex differential equations [26]

_a1 ¼ �2iga�1a2

_a2 ¼ �iga2
1 ð12Þ

One obtains, after substitution of ak ¼ rkeifk , a new system of real equations for

the amplitudes and phases:

_r1 ¼ �2r1r2 siny

_r2 ¼ r2
1 siny

_y ¼ r2
1

r2

� 4r2


 �
cosy ð13Þ

where y ¼ 2f1 � f2: The system has two integrals of motion: E ¼ r2
1 þ 2r2

2 ¼
n1 þ 2n2 and � ¼ r2

1r2 cosy. By extracting r1 and y from Eq. ( 13), we get the

following equation for r2:

ðr2 _r2=gÞ2 þ �2 ¼ r2
2ðE � 2r2

2Þ
2 ð14Þ

or even in simpler form for the intensity n2 ¼ r2
2:

_n2

2g


 �2

þ�2 ¼ n2 E � 2n2ð Þ2 ð15Þ

Separation of t and n2 leads to the equation

2gdt ¼ dn2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðE � 2n2Þ2 � �2

q ð16Þ

which can be rewritten as

4gdt ¼ dn2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� n2ð Þ b� n2ð Þ n2 � cð Þ

p ð17Þ
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where the numbers a; b; c are the roots of cubic equation n2ðE � 2n2Þ2 � �2 ¼
0. For c � u � b < a, the solution of Eq. (17) reads asðu

c

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� xð Þ b� xð Þ x� cð Þ

p ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
a� c
p asn

ffiffiffiffiffiffiffiffiffiffiffi
u� c

b� c

r
; k


 �
ð18Þ

in terms of the inverse Jacobi elliptic function, asnðx; kÞ, with parameter

k ¼
ffiffiffiffiffiffi
b�c
a�c

q
. Finally, the inversion of (18), gives the required solution

n2 tð Þ ¼ cþ b� cð Þ sn2 ½2g
ffiffiffiffiffiffiffiffiffiffiffi
a� c
p

ðt � t0Þ; k� ð19Þ

where snðu; kÞ is the Jacobi elliptic function with the same parameter k. Solution

(19) can be simplified in special cases. In particular, the well-known elementary

solution is obtained for second-harmonic generation from vacuum, where

r1 0ð Þ ¼ r and r2 0ð Þ ¼ 0: In this case k ¼ 1 and the Jacobi elliptic function

simplifies to hyperbolic tangent. Thus, the solution reads as

r1 tð Þ ¼ r coshð
ffiffiffi
2
p

rgtÞ

r2 tð Þ ¼ rffiffiffi
2
p tanhð

ffiffiffi
2
p

rgtÞ ð20Þ

and y tð Þ ¼ p=2: Subharmonic generation does not occur in this classical model,

since for r1 0ð Þ ¼ 0 and r2 0ð Þ ¼ r implies that r1 tð Þ ¼ 0; r2 tð Þ ¼ r for any evolu-

tion time t. Another important special case of solution (19) can be obtained for

the initial zero phase difference, y 0ð Þ ¼ 0, and the initial amplitudes satisfying

r1 0ð Þ ¼ 2r and r2 0ð Þ ¼ r. Here, E ¼ 6r2; � ¼ 4r3; a ¼ 4r2; b ¼ c ¼ r2; k ¼ 0

and Jacobi elliptic function simplifies to trigonometric sinus. Finally, this

elementary solution reads as

a1 tð Þ ¼ 2re�2irgt

a2 tð Þ ¼ re�4irgt ð21Þ

which corresponds to the no-energy-transfer regime, in which energy is

conserved in every mode. Phase trajectories of that solution are presented in

Fig. 5a. The slightly perturbed solution in the no-energy-transfer regime can also

be approximated by k 
 0 and elementary function sinus with small amplitude

b� cð Þ 
 0 (see Fig. 5b,c).

3. Classical Trajectory Analysis

The answer to our question concerning the origin of sub-Poissonian behavior

can be found by the method of classical trajectories. The method is very general.
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It can be applied in the analysis of almost every nonlinear quantum process.

Even external pumping and energy losses can be easily described. In the classi-

cal trajectory approach to SHG [27], deterministic solutions of the classical

SHG are used, while quantum noise of initial fields is artificially simulated by

Gaussian distribution. One can study the time evolution of the bunch of
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Figure 5. Classical trajectories of the fundamental and second-harmonic modes in the no-

energy-transfer regime for a1 ¼ 6 and a2 ¼ 3: (a) classical evolution according to Eq. (19) for

0 < gt < 0:5; (b) 50 random trajectories out of 10,000 trajectories used in the simulations for

0 < gt < 0:5; (c) same as in (b), but for 0 < gt < 5; (d) snapshot of the Q function, obtained from

10,000 random trajectories at time gt ¼ 5:0. Triangles denote starting points (gt ¼ 0) of the

trajectories, and circles are their ends.
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trajectories like the evolution of quantum distributions. This semiclassical

method can often shed some light on complicated quantum dynamics. For

strong inputs, where the quantum noise can be assumed small, the method gives

surprisingly good results.

According to the classical trajectory method, one assumes that the input

stochastic amplitudes are of the form

a1 ¼ r1 þ x1 þ iy1

a2 ¼ r2 þ x2 þ iy2 ð22Þ

where rk are coherent complex amplitudes, whereas xk and yk are real and

mutually independent Gaussian stochastic quantities with identical variances

s2 ¼ 1

4
 r2

k : ð23Þ

By analogy with our quantum analysis, we calculate the semiclassical Fano

factor, defined by Eq. (1.4), and quadrature squeezing variance

SS
k � ð�XkÞ2 ¼ ½�ðake�iy þ a�keiyÞ�2 ð24Þ

as counterparts of quantum parameters (1) and (9), respectively. By applying the

method of classical trajectories with the noise variance given by Eq. (23), we

find the semiclassical quadrature squeezing and Fano factor given by

SS
k ¼ 4s2 ¼ 1

FS
k 
 4s2 ¼ 1 ð25Þ

respectively. According to the method described above, one needs to solve

thousands of the classical SHG trajectories. The mean values are simply

obtained by averaging over all these trajectories. In Fig. 6, we have presented

graphically snapshots in a selected time interval of all complex solutions in

phase space. These clouds of points naturally correspond to the Q functions in

the quantum picture (see Fig. 4). We have found that this semiclassical method

gives the results surprisingly similar to the quantum results even for relatively

weak fields! This very good agreement is clearly seen by comparing Figs. 4 and

6, where the initial amplitudes are chosen to be a1 ¼ 6; a2 ¼ 3. The patterns

given by 50 random trajectories out of the total number of 10,000 analyzed

trajectories are shown in Fig. 5b in the time interval gt 2 0; 0:5ð Þ and Fig. 5c in

gt 2 0; 5ð Þ. The final snapshot of the ‘‘cloud’’ ring at gt ¼ 5 is given in Fig. 5d.

The method of classical trajectories can be used not only numerically (Figs. 5

and 6) but also analytically in special cases. For example, the evolution of
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low-noise fields in the no-energy-transfer regime can be found analytically in

the first approximation with the solution given by elementary trigonometric

functions. To show this, let us analyze integrals of motions. On assuming the

initial amplitudes of the forms a1 ¼ 2r þ x1 þ iy1 and a2 ¼ r þ x2 þ iy2, the

integrals of motion can be expressed in the form of successive corrections

E ¼ 6r2 þ�E1 þ�E0

� ¼ 4r3 þ��2 þ��1 þ��0 ð26Þ

where we denote �E1 ¼ 4rðx1 þ x2Þ, �E0 ¼ x2
1 þ y2

1 þ 2ðx2
2 þ y2

2Þ, and ��2 ¼
4r2ðx1 þ x2Þ; ��1 ¼ rðx2

1 � y2
1 þ 4x1x2Þ and ��0 ¼ x2ðx2

1 � y2
1Þþ 2x1y1y2: By

substituting n2 ¼ E=6þ E, where E is a small correction, and after omitting the

cubic term 2E3, we find that the denominator in Eq. (16) can be approximated by

the quadratic function

n2ðE � 2n2Þ2 � �2 
 2EðA2 � E2Þ ð27Þ

Re α

Im
 α

−5

−5

0

0

5

5

Im
 α

−5

−5

0

0

5

5

Re α
−5

−5

0

0

5

5

−5

−5

0

0

5

5

Re α
−5

−5

0

0

5

5

gt = 2.5gt = 2gt = 1.5

gt = 1gt = 0.5gt = 0

−5

−5

0

0

5

5

Figure 6. Classical trajectory simulation of quantum evolution of the Q function for the same

initial conditions and interaction times as in Fig. 4. In our simulation 10,000 trajectories were

calculated.
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Now, we can perform integration of these elementary functions leading to the

simple result

n2ðtÞ ¼ r2 þ Bþ Acos�gt ð28Þ

where � ¼
ffiffiffiffiffiffi
8E
p

; A ¼ 2
3

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � 2x2Þ2 þ 3ðy2

1 þ y2
2Þ

q
and B ¼ 2

3
rðx1 þ x2Þ We

get a similar result

n1ðtÞ ¼ E � 2n2 ¼ 4r2 þ 4B� 2Acos�gt ð29Þ

for the fundamental (or subharmonic) mode. Both solutions are constant

functions weakly perturbed by harmonic function. The evolution in phase space

can be understood clearly by analyzing Figs. 5 and 6. Because of the frequency

dispersion �ðfxk; ykgÞ (see Fig. 5b,c), different trajectories are drifting variously

and create a crescent-shaped cloud in phase space, which develops later into

a full ring as seen in Figs. 5 and 6. One has to perform the averaging of

solutions to calculate the required statistical moments. We find n1 ¼ 4r2;
n2 ¼ r2; and

n2
1 ¼ 16r4 þ 16B2 þ 2A2

n2
2 ¼ r4 þ B2 þ 1

2
A2 ð30Þ

where B ¼ 0; A2 ¼ 44
9

r2s2 ¼ 11
9

r2, B2 ¼ 8
9

r2s2 ¼ 2
9

r2 and cos 2�gt ¼ 1
2
. Finally,

we arrive at the semiclassical Fano factors given by simple rational numbers:

FS
1 ¼

1

r2
4B2 þ 1

2
A2


 �
¼ 3

2

FS
2 ¼

1

r2
B2 þ 1

2
A2


 �
¼ 5

6
ð31Þ

By analyzing Figs. 1b and 3 as well as Tables I and II, we conclude that our

estimations (31) are in very good agreement with those values of Fano factors

obtained by the quantum numerical analysis of Section II.B.

C. Higher-Harmonic Generation

1. Quantum Analysis

In this section, we will generalize our results of Section II. B to describe the

processes of the Nth-harmonic generation. Again, we will focus on predictions

of the sub-Poissonian photon-number statistics.
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Processes of the Nth-harmonic or subharmonic generation can be described

by the conventional interaction Hamiltonian [5]

Ĥ ¼ �hg âN
1 â
y
N þ â

yN
1 âN

� �
ð32Þ

for N ¼ 2; 3; . . .. In (32), â1 and âN denote annihilation operators of the

fundamental and Nth-harmonic modes, respectively, and g is a nonlinear

coupling parameter. For short evolution times, the following approximation of

the quantum Fano factors can be obtained for the fundamental mode [13]

FQ
1 ¼ 1� 2N N � 1ð ÞrN�2

1 r2 siny gt þ OfðgtÞ2g ð33Þ

with N ¼ 2; 3; . . . , and for higher harmonics:

FQ
3 ¼ 1� 36r3

1r2 r2
1 þ 2

� 	
siny ðgtÞ3 þ OfðgtÞ4g

FQ
4 ¼ 1� 64r4

1r2ð17þ 12r2
1 þ 2r4

1Þsiny ðgtÞ3 þ OfðgtÞ4g ð34Þ

TABLE II

Same as in Table I, but for the Nth-Harmonic Mode; FS
N Calculated From Eq. (155)

N FQ
N FS

N jFQ
N � FS

N j=FQ
N

1 1 1 0

2 0.83228800 5
6

0.0013

3 0.81125970 13
16

0.0015

4 0.81924902 41
50

0.00092

5 0.8333127 5
6

0.000026

TABLE I

Quasistationary Values of the Quantum Fano Factors FQ
1 and their Semiclassical Approximations FS

1 ,

Given by Eq. (54), for the Fundamental Mode in Nth-Harmonic Generation with N ¼ 1� 5 in

No-Energy-Transfer Regime a

N FQ
1 FS

1 (FQ
1 -FS

1Þ=FQ
1

1 1 1 0

2 1.5029291 3
2

0.0020

3 1.8202032 29
16

0.0042

4 2.0323293 101
50

0.0061

5 2.1830414 13
6

0.0075

aThe values of FQ
1 are calculated for r ¼ rN ¼ 5.
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where rk are input amplitudes, and y ¼ Nf1 � fN is the input phase mismatch.

For spontaneous harmonic generation (i.e., for rN ¼ 0), Eqs. (33)–(34) simplify

to the formulas derived by Kozierowski and Kielich [14]. This analysis shows

the possibility of sub-Poissonian light generation in short-time regime under the

proper phase condition.

On testing different coherent input amplitudes and phases in order to

minimize the Fano factor for long interaction times, we have discovered a

regime for which the harmonic field exhibits the quasistationary sub-Poissonian

photocount noise. The regime occurs if the ratio of amplitudes ja1j and jaN j is

equal to N, and phases are related by Nf1 ¼ fN. As described in Section II. B

for SHG, this is a quantum analog of the no-energy-transfer regime [25] known

from classical nonlinear optics as an evolution exhibiting the no-energy transfer

between the interacting modes. The intensities of both modes remain quasi-

stationary during the interaction. Obviously, in quantum analysis some small

energy fluctuations between modes are observed as a consequence of vacuum

fluctuations. However, the influence of energy fluctuations can be neglected for

strong fields.

For better comparison of theoretical predictions for different-order processes,

we have plotted the quantum Fano factors for both interacting modes in the no-

energy-transfer regime with N ¼ 2� 5 and r ¼ 5 in Fig. 7. One can see that all

curves start from FQ
1;N 0ð Þ ¼ 1 for the input coherent fields and become quasi-

stationary after some relaxations. The quantum and semiclassical Fano factors

coincide for high-intensity fields and longer times, specifically for t � 50=ð��gÞ,
where �� will be defined later by Eq. (54). In Fig. 17, we observe that all

fundamental modes remain super-Poissonian [FQ
1 tð Þ > 1], whereas the Nth

harmonics become sub-Poissonian (FQ
N tð Þ < 1). The most suppressed noise is

observed for the third harmonic with the Fano factor FQ
3 
 0:81. In Fig. 7, we

have included the predictions of the classical trajectory method (plotted by

dotted lines) to show that they properly fit the exact quantum results (full

curves) for the evolution times t � 50=ð��gÞ. The small residual differences

result from the fact that the amplitude r was chosen to be relatively small

(r ¼ 5). This value does not precisely fulfill the condition r � 1. We have taken

r ¼ 5 as a compromise between the asymptotic value r !1 and computational

complexity to manipulate the matrices of dimensions 1000� 1000. Unfortu-

nately, we cannot increase amplitude r arbitrary due to computational limita-

tions.

Numerical values of the quantum Fano factors in comparison to their

semiclassical approximations for the fundamental mode, given by Eq. (56),

are presented in their dependence on N in Table I and Fig. 8a. Analogously,

those values for harmonics are presented in Fig. 8b and Table II as calculated by

the numerical quantum method and from analytical semiclassical formula (57).

It is seen that the approximate predictions of the Fano factors, according to (56)
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and (57), fit very well the values obtained by applying the numerical quantum

method. In fact, the differences between the approximate and exact values are

hardly visible on the scale of Fig. 8. Nevertheless, some small (< 1%) dif-

ferences in FQ
1;N (see Tables I and II) can be explained by the fact that the value

of r for numerical analysis was chosen too small.
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Figure 7. Time evolution of the exact quantum Fano factors: (a) FQ
1 ¼ FQ

1 ðNÞ for the

fundamental mode and (b) FQ
N for the harmonic mode in Nth-harmonic generation for N ¼ 2

(thickest curve), 3, 4 and 5 (thinnest curve). Time t is rescaled with frequency ��, given by (52), and

coupling constant g. The harmonic mode amplitude is r ¼ rN ¼ 5. The dotted lines correspond to the

semiclassical Fano factors, given by (54) and (55). It is seen that the fundamental mode is super-

Poissonian, whereas the harmonic mode is sub-Poissonian for all nonzero evolution times.
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2. Classical Analysis

Our classical analysis of higher-harmonic generation follows the same method

as described in Sect. II. B. The classical model of the Nth-harmonic generation

can be described by

H ¼ g aN
1 a
�
N þ ða�1Þ

NaN

� �
ð35Þ

which in a special case of N ¼ 2 goes over into Eq. (11). In Eq. (35), a1 (aN) is

the complex amplitude of the fundamental (Nth-harmonic) mode. The Hamil-

tonian (35) leads to the pair of complex differential equations [26]

_a1 ¼ �igNa�N�1
1 aN

_aN ¼ �igaN
1 ð36Þ
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Figure 8. Semiclassical (solid bars) and quantum (dithered bars) Fano factors versus order N

of harmonic generation for (a) fundamental and (b) Nth-harmonic modes in the quasistationary no-

energy-transfer regime. Panels (a) and (b), for N ¼ 1� 5, correspond to Tables I and II, respectively.

It is seen that the quantum results are well fitted by the semiclassical Fano factors. According to both

analyses, the third-harmonic mode has the most suppressed photocount noise.
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On introducing real amplitudes and phases, ak ¼ rkeifk , (36) can be transformed

into a system of three real equations:

_r1 ¼ �gNrN�1
1 rN siny

_rN ¼ grN
1 siny

_y ¼ g
rN

1

rN

� N2rN�2
1 rN


 �
cosy ð37Þ

where y ¼ Nf1 � fN is the phase mismatch. Equations (37) have two integrals

of motion:

E ¼ r2
1 þ Nr2

N ¼ n1 þ NnN

� ¼ rN
1 rN cosy ð38Þ

On extraction of r1 and y from Eq. (37), we find an equation for the amplitude

rN :

rN _rN

g


 �2

þ�2 ¼ r2
N E � Nr2

N

� 	N ð38Þ

or its simpler form for the intensity nN ¼ r2
N :

_nN

2g


 �2

¼ nN E � NnNð ÞN��2 ð40Þ

The general solution for nN tð Þ is a periodic function oscillating between the

values nmin and nmax. The solution can be given in terms of the Jacobi elliptic

functions for N ¼ 2 and N ¼ 3, and in terms of hyperelliptic functions for

N > 3.

One elementary solution of set of Eqs. (37) is obtained for the zero initial

phase mismatch y ¼ 0 and the initial amplitudes satisfying the condition

r1 ¼ NrN . The solution reads as

a1 tð Þ ¼ r1 expð�igtrN�1
1 Þ

aN tð Þ ¼ rN exp �iNgtrN�1
1

� 	
ð41Þ

which corresponds to the no-energy-transfer regime, since the amplitude and

energy in both the interacting modes remain constant n1 tð Þ ¼ a1 tð Þj j2¼ r2
1 and

nN tð Þ ¼ aN tð Þj j2¼ r2
N [25].
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3. Classical Trajectory Analysis

The results of Section II.C can be used in the method of classical trajectories

in analogy with the technique described in Section II. B. We need to express the

trajectories in their dependence on small noise parameters xk and yk: The

integrals of motion, given by (38), can be expressed in a form of corrections in

successive powers of large r:

E ¼ N N þ 1ð Þr2 þ�E1 þ�E0 ð42Þ

where

�E1 ¼ 2N x1 þ xNð Þr
�E0 ¼ x2

1 þ y2
1 þ N x2

N þ y2
N

� 	
ð43Þ

and

� ¼ NNrNþ1 þ��N þ��N�1 þ��N�2 þ � � � ð44Þ

where

��N ¼ x1 þ xNð Þ Nrð ÞN

��N�1 ¼
N � 1

2
x2

1 � y2
1

� 	
þ N x1xN þ y1yNð Þ

� �
Nrð ÞN�1 ð45Þ

The lower-order terms ��N�2; ��N�3; . . . can be neglected in further con-

siderations. On assumption of high-intensity fields (r � 1), we can substitute

nN ¼
E

N N þ 1ð Þ þ E ð46Þ

where E is a small correction of stationary value. Then, the right-hand side of

(40) can be rewritten as

nN E � NnNð ÞN��2 
 NN

2 N þ 1ð ÞN�2
EN�1 A2 � E2

� 	
ð47Þ

on omission of higher-order terms involving E3, E4; . . . . One arrives at the simple

equation

_E
2g


 �2

¼ NN

2 N þ 1ð ÞN�2
EN�1 A2 � E2

� 	
ð48Þ
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Thus, the solution of (40) reads as

nN tð Þ ¼ r2 þ Bþ Asin�gt ð49Þ

where the frequency � is given by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NNEN�1

N þ 1ð ÞN�2

s
ð50Þ

and

A ¼ r

N þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðx1 � NxNÞ2 þ 2NðN þ 1Þ y1 � yNð Þ2

q
B ¼ �E1

N N þ 1ð Þ ¼
2

N þ 1
r x1 þ xNð Þ ð51Þ

From (38), a result similar to that from (49) is obtained for the fundamental

mode:

n1 tð Þ ¼ E � NnN tð Þ ¼ N2r2 þ N2B� NAsin�gt ð52Þ

It is seen that both solutions (49) and (52) are given in a form of large constants

weakly perturbed by harmonic function.

Now, on applying the classical trajectory method, one should perform

averaging over all solutions (49) and (52) to calculate the required statistical

moments. Here, we calculate the first and second-order field intensity moments

necessary for determination of the Fano factors. The mean intensities of the

fundamental and harmonic modes are simply given by �n1 ¼ N2r2 and �nN ¼ r2,

respectively. The second-order moments of field intensity are found to be

n2
1 ¼ N4r4 þ N4B2 þ 1

2
N2A2

n2
N ¼ r4 þ B2 þ 1

2
A2 ð53Þ

in terms of A2 ¼ r2ð2N2 þ N þ 1Þ=ðN þ 1Þ2 and B2 ¼ 2r2=ðN þ 1Þ2. We note

that �B vanishes. The term sin2�gt can simply be estimated with 1
2

for

sufficiently long time t, when nk tð Þ and FQ
k tð Þ become quasistationary. The

relaxation in nk tð Þ and FQ
k tð Þ is observed for short times t, due to the presence of

harmonic sine function and residual phase synchronization. The mean value of

the frequency (50), given by

�� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N N þ 1ð Þ

p
Nrð ÞN�1 ð54Þ
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enables estimation of the oscillation period Tosc ¼ 2p=�, whereas the standard

deviation

�� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N N þ 1ð Þ

p
NN�1rN�2 N � 1

N þ 1
ð55Þ

determines the duration Trel ¼ 2p=�� of relaxation. By comparing the char-

acteristic times Tosc and Trel, one finds that the evolution time can be scaled by

t ¼ ��gt to synchronize optimally the oscillations of the exact quantum solu-

tions for different N. These synchronized oscillations of the Fano factors are

clearly presented in Fig. 7.

Finally, we arrive at the semiclassical Fano factors

FS
1 ¼

1

2

6N2 þ N þ 1

N þ 1ð Þ2
ð56Þ

FS
N ¼

1

2

2N2 þ N þ 5

N þ 1ð Þ2
ð57Þ

which are the compact-form analogs of the quantum Fano factors. The semi-

classical Fano factors for the fundamental and higher harmonics for various

values of N are listed in Tables I and II, and plotted in Fig. 7a and b, respectively.

Our solutions (56) and (57) reduce to the results derived in Ref. 21 for N ¼ 2,

and those of Ref. 22 for N ¼ 3. By analyzing (57), we find that higher

harmonics evolve into quasistationary sub-Poissonian states (FS
N < 1) for any

N > 1. Except for second harmonic, the photocount noise reduction in higher

harmonics becomes less effective with increasing N. Thus, the deepest noise

reduction occurs for the third harmonic as described by the Fano factor

FS
3 ¼ 13

16
¼ 0:8125. The photocount noise reductions for the second and fifth

harmonics are predicted to be the same, although the quantum analysis (see

Table II) reveals that they differ slightly (< 1%). As comes from (56), the

fundamental mode has solely the super-Poissonian photocount statistics

(FS
1 > 1) with noise monotonically growing in N for the no-energy-transfer

regime. For N ¼ 1, the process is linear and no change in the photon statistics

occurs. The interacting modes remain coherent with the unit Fano factors for

both modes. It is worth noting that qualitatively different photocount statistics of

the fundamental mode is observed in the short-interaction regime as given by

Eqs. (6) and (33)–(34).

We have shown, in agreement with the results presented in Ref. 21, that the

method of classical trajectories gives very good predictions in the case of

strong-field interactions (i.e., for the photon numbers larger than 10). The

calculation speed of the method does not depend on numbers of interacting
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photons. But a better approximation is achieved with the increasing number of

photons. Thus, the method is very fast and significantly simplifies the tedious

exact quantum calculations.

D. Conclusion

We have presented quantum, classical and semiclassical descriptions of second-

and higher harmonic generations. We have demonstrated that these processes

can be a source of sub-Poissonian light. On testing different coherent input

amplitudes and phases in order to minimize the Fano factor, we have discovered

a quantum regime for which the long-interaction output is generated with the

quasi-stationary sub-Poissonian photocount noise [21–23]. The regime occurs

if the initial coherent state amplitudes are related by ja1j ¼ NjaN j and

ArgðaNÞ ’ NArgða1Þ. This is a quantum analog of the no-energy-transfer

regime [25] known in classical nonlinear optics as an evolution exhibiting no-

energy transfer between the interacting modes. The intensities of both modes

remain quasiconstant in time during the interaction. Obviously, in a quantum

analysis some small energy fluctuations between modes are observed as a

consequence of vacuum fluctuations. However, the influence of energy fluctua-

tions can be neglected for strong fields.

We have proved that in the no-energy-transfer regime, the fundamental mode

evolves into a quasistationary state with the super-Poissonian (FQ
1 > 1) photo-

count statistics, whereas the Nth harmonic goes over into a sub-Poissonian

(FQ
N < 1Þ quasistationary state. We have found that the most suppressed photo-

count noise is obtained for the third harmonic as described by the quantum Fano

factor FQ
3 ¼ 0:811 . . . . Good analytical predictions of the quantum Fano factors

for both the fundamental and harmonic modes (FS
3 ¼ 13

16
¼ 0:8125) were

obtained under the semiclassical approximation in the strong-field limit.

III. PHOTON BUNCHING AND ANTIBUNCHING EFFECTS IN
NONSTATIONARY FIELDS (A. MIRANOWICZ, J. BAJER,

M. KOASHI, and N. IMOTO)

A. Introduction

In the 1950s, Hanbury-Brown and Twiss [28] carried out the fundamental

measurements of photon-number correlations demonstrating that photons of

classical light exhibit a tendency to distribute themselves preferentially in

bunches rather than at random. This effect was coined the photon bunching

(PB). The Hanbury-Brown and Twiss experiments have triggered theoretical

and experimental search for light exhibiting effect opposite to PB, namely, the

so-called photon antibunching (PAB). It was first observed in the process of

resonance fluorescence from an atom by Kimble et al. [29] only 20 years after

the first demonstration of PB [28]. Subsequent generations of PAB in resonance
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fluorescence were reported in Ref. 30. Antibunched light was also generated in

other processes, including parametric downconversion [31], degenerate [32] and

nondegenerate [33] parametric amplification, or destructive two-photon

interference [34]. Analysis of PB and PAB effects in nonlinear optical systems

has been one of the hot topics of quantum optics for several decades [35–38].

It is a well known fact, that the PAB of stationary fields is one of the

manifestations of nonclassical properties of light. PAB cannot be understood

within the classical field theory describing light as a wave. But, on the other

hand, it has a simple interpretation in particle (photon) models by the rise of the

joint probability of two detected particles upon the increase of their time

separation t close to zero.

In this chapter we would like to address the following question: how to

describe PB and PAB in non-stationary fields in a way closest to the original

photodetection interpretation of the effect in stationary field regime, having a

guarantee that the PAB cannot occur for classical light. PAB of non-stationary

fields has already been analyzed theoretically in various nonlinear optical

models [39–44]. Here, we show that the approaches developed for stationary

fields, when applied directly to analyze the non-stationary fields, are by no

means unique and might lead to self-contradictory predictions [45]. And what is

more counterintuitive, we will show that, in some cases, the standard definitions

do not exclude the possibility of observation of the PAB artifacts in classical

nonstationary fields [46].

The classical light is usually defined [35,36] to be one for which the

Glauber-Sudarshan P function, namely, the weight factor in the coherent state

representation of the density matrix

r̂ ¼
ð

d2fajgPðfajgÞjfajgihfajgj ð58Þ

is a probability distribution, that is, nonnegative and cannot be more singular

than the Dirac d function. Otherwise, the state is nonclassical. In Eq. (58), the

compact notation for the multimode field is used, where the argument fajg
stands for ða1; a2; . . .Þ.

To test various definitions of photon antibunching, we analyze a parametric

frequency conversion—a process of exchanging photons between signal and

idler optical modes of different frequencies. It is one of the most fundamental

models in quantum optics both from theoretical and experimental viewpoints.

The model has been successfully applied to describe various optical phenomena.

In particular, wave mixing and beamsplitting [36,47], Raman scattering [36,48],

a two-level atom driven by a single-mode electromagnetic field [49] or, by

straightforward generalization, coherent or incoherent spontaneous emission

from a system of N two-level atoms [50]. There have been great advances in the
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construction of frequency converters since the late 1950s. The frequency

conversion devices are based on the coupling of light waves in, for instance,

nonlinear dielectric crystals such as KDP, LiNbO3, or LiIO3 [51]. A simple

quantum description of the parametric frequency conversion was given by

Louisell [52]. The remarkable property of the Louisell model is the classical-

like evolution or, explicitly, the conservation of quasidistributions along

classical trajectories as was predicted by Glauber [53] and experimentally

observed by Huang and Kumar [54] for initial quantum states. Our interest in

the frequency conversion comes from this conservation of the initial (classical

or quantum) character of the fields during the process.

This paper is organized as follows. In Section II.B, we give a short account of

the most popular definitions of PAB and we propose a generalized definition. In

Section II.C, we briefly review the parametric frequency converter model and

Glauber’s theorem useful for our analysis of PAB. In Section II.D, we show

discrepancies between three definitions of PAB for quantum nonstationary

fields. In Section III.E, we show that there are classical non-stationary fields

exhibiting apparently PAB according to the standard definitions.

B. Criteria for Photon Antibunching

The central role in definitions of PAB in a single-mode radiation field plays the

intensity correlation function [55]

Gð2Þðt; t þ tÞ ¼ hT : n̂ðtÞn̂ðt þ tÞ :i ¼ ðacSÞ�2
P2ðt; t þ tÞ ð59Þ

where n̂ðtÞ denotes the photon-number density operator, and products of the

operators are written in normal order (: :) and in time order (T). As was proved

by Glauber [55], Gð2Þðt; t þ tÞ is directly related to the joint detection prob-

ability, P2ðt; t þ tÞ, of detecting two photons, one at time t and another at time

ðt þ tÞ, by photodetector of quantum efficiency a with photocathode of area S.

In Eq. (59), c denotes the light velocity; the space coordinates are suppressed

and only one photodetector is assumed.

Different normalizations of Gð2Þðt; t þ tÞ can be applied in the analysis of

photon-number correlations. Here, we analyze the normalized two-time second-

order intensity correlation functions defined as

g
ð2Þ
I ðt; t þ tÞ ¼ Gð2Þðt; t þ tÞ

Gð1ÞðtÞ½ �2

g
ð2Þ
II ðt; t þ tÞ ¼ Gð2Þðt; t þ tÞ

Gð1ÞðtÞGð1Þðt þ tÞ

g
ð2Þ
III ðt; t þ tÞ ¼ Gð2Þðt; t þ tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gð2Þðt; tÞGð2Þðt þ t; t þ tÞ
p ð60Þ
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where Gð1ÞðtÞ ¼ hnðtÞi ¼ hbayðtÞbaðtÞi is the light intensity. Yet another definition

can be obtained if the correlation function g
ð2Þ
III ðt; t þ tÞ can be replaced by the

so-called correlation coefficient [56]

�g
ð2Þ
III ðt; t þ tÞ � Covfn̂ðtÞ; n̂ðt þ tÞg

sfn̂ðtÞgsfn̂ðt þ tÞg ¼
�Gð2Þðt; t þ tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Gð2Þðt; tÞ�Gð2Þðt þ t; t þ tÞ
p ð61Þ

where �Gð2Þðt; t þ tÞ � Gð2Þðt; t þ tÞ � Gð1ÞðtÞGð1Þðt þ tÞ is the covariance in

time and normal order, and sfn̂ðtÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Gð2Þðt; tÞ

p
is the standard deviation.

The correlation coefficient has well-known properties and simple geometrical

interpretation applied in probability theory and mathematical statistics [56].

The photon antibunching according to the jth ( j ¼ I; II; III) definition occurs

if the normalized intensity correlation function g
ð2Þ
j ðt; t þ tÞ increases from its

initial value at t ¼ 0;

�gjðt; t þ tÞ � g
ð2Þ
j ðt; t þ tÞ � g

ð2Þ
j ðt; tÞ > 0 ð62Þ

The photon bunching occurs for decreasing correlation function g
ð2Þ
j ðt; t þ tÞ,

whereas photon unbunching takes place if g
ð2Þ
j ðt; t þ tÞ is locally constant.

Alternatively, on assumption that gjðt; t þ tÞ is a well-behaved function of t, the

PAB according to the jth definition occurs if the lowest-order (say, n0) non-

vanishing derivative of g
ð2Þ
j ðt; t þ tÞ [or �gjðt; t þ tÞ] is positive at t ¼ 0, i.e.,

exists such n0 � 1 that

gjðtÞ � gðn0Þ
j ðtÞ ¼

qn0

qtn0
g
ð2Þ
j ðt; t þ tÞ

����
t¼0

> 0 ð63Þ

if the derivatives ðq=qtÞng
ð2Þ
j ðt; t þ tÞ vanish at t ¼ 0 for n ¼ 1; . . . n0 � 1. The

field exhibits PB if the lowest-order nonvanishing derivative, gjðtÞ, is negative.

If the derivatives of all orders vanish, gjðtÞ ¼ 0, the field is said to be

unbunched. In the Sections III.D and III.E, we will use both parameters gjðtÞ
and correlation functions �gjðt; t þ tÞ to analyze PB and PAB effects in a model

of frequency conversion.

Both Def. I (see Ref. 36 and references cited therein) and Def. II (see, e.g.,

Ref. 37) have been applied to analyze PAB of nonstationary light generated in

various nonlinear optical processes. In particular, analysis of PAB in non-

stationary light has been studied by, for instance Singh [43] and Feng et al. [44]

with the help of Def. I, and by, for instance, Kryszewski and Chrostowski [39],

Srinivasan and Udayabaskaran [40], Dung et al. [41], and Aliskenderov et al.

[42] by applying Def. II.
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For stationary fields, namely, fields satisfying the property Gð2Þðt; t þ tÞ ¼
Gð2ÞðtÞ, Defs. I–III are equivalent up to t-independent function. In Section III.D,

we will show that the predictions of PAB according to Defs. I–III can be

essentially different for nonstationary fields, even though they coincide in

stationary fields. Differences between various approaches to PAB result from

the normalization functions of Gð2Þðt; t þ tÞ, which for Def. I is independent of

t, whereas in cases of Defs. II and III, the normalizations are t-dependent but in

two not equivalent ways for nonstationary fields.

The Cauchy-Schwarz inequality,�
Gð2Þðt; t þ tÞ

�2 � Gð2Þðt; tÞGð2Þðt þ t; t þ tÞ ð64Þ

must be fulfilled for any classical field. Thus, the violation of inequality (64) can

reflect the corpuscular nature of light and can serve as a criterion of PAB. All

definitions of the PAB effect for stationary fields are based on the Cauchy–

Schwarz inequality. However, for non-stationary fields, PAB according to Defs. I

and II does not imply violation of the Cauchy-Schwarz inequality (64). In

Section III.E, we will give examples of classical nonstationary fields exhibiting

apparently PAB according to Defs. I and II. By contrast, PAB according to

Def. III occurs for nonclassical fields only, independent of the stationary field

condition. This conclusion is readily obtained by comparing the form of the

correlation functions g
ð2Þ
III ðt; t þ tÞ with the Cauchy–Schwarz inequality, given

by (64).

C. Model for Testing Photon Antibunching

We will test different approaches to PB and PAB in a process of parametric

frequency conversion. The model can be described by the interaction

Hamiltonian [52]:

Ĥint ¼ �hk âa â
y
b expði �otÞ þ H:c: ð65Þ

where �o ¼ oL þ ob � oa, and âa;b are the annihilation operators for the signal

(with subscript a) and idler (subscript b) modes; k is the real coupling constant

(H.c. denotes Hermitian conjugation). For simplicity, we analyze only the reso-

nance case for �o ¼ 0. One can interpret the process described by Eq. (65) as

the conversion of frequency oa to ob assisted by intensive classical light of

frequency oL. Thus, instead of exact quantum Hamiltonian describing the three-

photon interaction, Ĥint ¼ �hk0âLâaâ
y
b þ H:c:, we use its approximation given by

(65), where the amplitude of classical light is included in the coupling constant

k ¼ k0hâLi ¼ k0aL. Model given by Eq. (65) can be realized by a beamsplitter.

The solutions of the Heisenberg equation of motion for the signal and idler

modes are [52]

âjðtÞ ¼ cosðktÞ âj � i sinðktÞ âk ð66Þ
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where âj � âjð0Þ, j ¼ a; b and k ¼ b; a, respectively. According to Glauber’s

theorem [53], the two-mode Glauber–Sudarshan P function can be given by

Pðaa; ab; tÞ ¼ P aað�tÞ; abð�tÞ; 0f g ð67Þ

where

ajðtÞ ¼ cosðktÞaj � i sinðktÞak ð68Þ

are the solutions of classical equations of motion for the frequency converter

[52]. The two-mode P function remains constant along classical trajectories

ajðtÞ. In other words, if both the signal and idler modes are initially quantum

(classical), then they will preserve their original quantum (classical) character

for the whole evolution. This property was experimentally verified by Huang

and Kumar [54].

In the following sections, we will analyze PAB in quantum and, then,

classical nonstationary fields generated by this model.

D. Photon Correlations in Quantum Fields

Let us analyze the parametric frequency conversion of the signal and idler

modes initially in Fock states with photon numbers Na and Nb, respectively. By

applying Eq. (67), we readily find the evolution of the two-mode Glauber–

Sudarshan P-function

Pðaa; ab; tÞ ¼ 1

p2

Y
j¼a;b

Nj!

ð2NjÞ!
expðr2

j Þ
rj

q
qrj


 �2Nj

dðrjÞ
�����
rj¼jajð�tÞj

ð69Þ

via derivatives of the Dirac d function of the classical solutions, given by

Eq. (68). It is seen that the P function remains singular evolving along classical

trajectories. Thus, the field is nonclassical for arbitrary evolution times.

Here, we analyze all cases for which the three definitions of PAB might not

be equivalent for some evolution times. These cases are listed in Table III with

examples of the nonclassical signal fields presented graphically in Fig. 9 for the

parameters gj and in Fig. 10 for the correlations �gj. We refer to these ordinal

numbers of the cases throughout the chapter. In particular, they are given in the

upper part of the figures. We present correlation functions for the signal mode

only. Thus, we can consequently omit subscript a in correlation functions:

Gð2Þðt1; t2Þ � G
ð2Þ
a ðt1; t2Þ, g

ð2Þ
j � g

ð2Þ
j;a , and �gj � �gj;a for j ¼ I; II; III. Because

of the symmetry of the solutions (66) for j ¼ a; b, one can deduce the explicit

expressions for the idler mode simply by interchanging the subscripts. Exact

analytical solutions for the normalized correlation functions g
ð2Þ
j ðt; t þ tÞ
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(j ¼ I; II; III) were obtained in Ref. 45 for arbitrary initial Fock states. However,

for the purpose of our presentation, it is sufficient to analyze only two special

cases.

If the initial signal mode is in Fock state with Na ¼ 2, and idler mode in Fock

state with Nb ¼ 1, the Taylor expansions of the correlation functions

�gjðt; t þ tÞ are

�gIðt; t þ tÞ ¼ �1þ 3cosð2ktÞ
hnaðtÞi2

sinð2ktÞðktÞ þ Oðt2Þ

�gIIðt; t þ tÞ ¼ 1þ 5cosð2ktÞ
hnaðtÞi3

sinð2ktÞðktÞ þ Oðt2Þ

�gIIIðt; t þ tÞ ¼ 2 sec2ðktÞ 3� 5cosð2ktÞ
5� 3cosð2ktÞ½ �2

ðktÞ2 þ Oðt3Þ ð70Þ

where the mean photon number is hnaðtÞi ¼ 1
2
½3þ cosð2ktÞ�; and OðtkÞ �

OðfktgkÞ denotes the order of magnitude. The discrepancies between Defs. I, II,

and III are well pronounced both analytically and graphically in Fig. 9a with the

help of the parameters gj and in Fig. 10 directly in terms of the correlation

functions �gjðt; t þ tÞ ( j ¼ 1; 2; 3). During the evolution of initial Fock states

jNa;Nbi ¼ j2; 1i almost all (except cases 2 and 3) are observed. The remaining

TABLE III

All Possible Predictions of Photon Bunching and Antibunching of Quantum Fields

According to Defs. I, II, and III a

Case Def. I Def. II Def. III Examples

1 Bunching Bunching Bunching kt 2 p� ff3
5
g;pÞ0

�
2 Antibunching Bunching Bunching kt 2 p� ff1

3
g;pÞ00

�
3 Bunching Antibunching Bunching kt 2 0; ff1

3
gÞ00

�
4 Antibunching Antibunching Bunching kt 2 0; ff1

5
gÞ0

�
5 Bunching Bunching Antibunching kt 2 ff� 3

5
g; p

2

� 	0
kt 2 p� ff1

3
g;p� ff3

5
g

� 	0
kt 2 ff� 1

3
g; p

2

� 	00
6 Antibunching Bunching Antibunching kt 2 p� ff� 1

5
g;p� ff1

3
g

� 	0
kt 2 p� ff� 1

3
g;p� ff1

3
g

� 	00
7 Bunching Antibunching Antibunching kt 2 ff1

3
g; ff� 1

5
g

� 	0
kt 2 ff1

3
g; ff� 1

3
g

� 	00
8 Antibunching Antibunching Antibunching kt 2 ff3

5
g; ff1

3
g

� 	0
kt 2 p

2
; p� ff� 1

5
g

� 	0
kt 2 p

2
; p� ff� 1

3
g

� 	00
aSignal and idler modes are initially in Fock states with (1) Na ¼ 2, Nb ¼ 1 (marked by prime)

and (2) Na ¼ 3, Nb ¼ 1 (double prime). Here, ffxg � 1
2

arccos ðxÞ.
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two cases can be found, for example, in the signal field evolution of the initial

Fock states jNa;Nbi ¼ j3; 1i. Here, we obtain

�gIðt; t þ tÞ ¼ � 6sin2ðktÞ
hnaðtÞi2

sinð2ktÞðktÞ þ Oðt2Þ

�gIIðt; t þ tÞ ¼ 3
1þ 3cosð2ktÞ
hnaðtÞi3

sinð2ktÞðktÞ þ Oðt2Þ

�gIIIðt; t þ tÞ ¼ 1� 3cosð2ktÞ
3� cosð2ktÞ½ �2

sec2ðktÞ ðktÞ2 þ Oðt3Þ ð71Þ

(a)

(b)

cases

cases

4

−2

2

0

2.5

0.0

−2.5

8 7

3 7

5 8

8

6

6 2

3.141.570.00

3.141.570.00

5

5

1

κτ

κτ

γ j

Figure 9. Quantum field evolution of the parameters gIðtÞ (dashed lines), gIIðtÞ (dot–dash) and

gIIIðtÞ (solid). Initially, both signal and idler modes are in Fock states with (a) Na ¼ 2;Nb ¼ 1 and

(b) Na ¼ 3;Nb ¼ 1.
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where hnaðtÞi ¼ 2þ cosð2ktÞ. The evolution of the parameters gj, given by the

expansion coefficients in (71) are presented in Fig. 9b. We find six out of eight

different predictions, including cases 2 and 3 not observed in the evolution of

jNa;Nbi ¼ j2; 1i. The latter two cases are also presented in Fig. 10 in a standard

way for the correlation functions evolving with the time separation t for fixed

values of time t. The values of evolution times t given in Table III are calculated

from (70) and (71).

In conclusion, during the evolution of the nonclassical signal field in the

parametric frequency converter, one observes that both PB and PAB effects

from Defs. I–III can be accompanied, for some evolution times, with the same

or different correlations of photons derived from other two definitions. We have

given examples of all these cases in Figs. 9 and 10, and Table III.

E. Photon Correlations in Classical Fields

If the initial modes are in a superposition of coherent states (with amplitudes

aj0, where j ¼ a; b) and chaotic fields (with intensities hnch; ji), then the

evolution of the frequency converter is described by the following Glauber–

Sudarshan P function

Pðaa; ab; tÞ ¼ 1

p2

Y
j¼a;b

1

hnch; ji
exp � jajð�tÞ � aj0j2

hnch; ji

 !
ð72Þ

∆g
j(t

,t+
τ)

∆g
j(t

,t+
τ)

case 5
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case 4
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Figure 10. Illustration of eight different predictions of photon antibunching of quantum fields,

corresponding to the cases analyzed in Table III and Fig. 9. The two-time signal-mode correlation

functions �gIðt; t þ tÞ (dashed curves), �gIIðt; t þ tÞ (dot–dashed), and �gIIIðt; t þ tÞ (solid) are

plotted in their dependence on the rescaled time separation kt for fixed values of the evolution time:

(case 1) kt ¼ 2:8; ð2Þ kt ¼ 2:6; ð3Þ kt ¼ 0:1; ð4Þ kt ¼ 0:1; ð5Þ kt ¼ 1:0; ð6Þ kt ¼ 2:3; ð7Þ kt ¼ 0:7,

and ð8Þ kt ¼ 1:8. Signal and idler modes are initially in Fock states with Na ¼ 3 and Nb ¼ 1 in cases

2 and 3, or with Na ¼ 2 and Nb ¼ 1 in all other cases.
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evolving along the classical solutions, given by Eq. (68). The P function (72) is

a product of regular and positive Gaussian functions, thus describing explicitly

the classical behavior of the idler and signal fields during the whole process

of frequency conversion. Here, we analyze two special cases of these classical

fields.

First, for simplicity, we assume that the mean photon numbers of chaotic

photons in both modes are the same hnch;ai ¼ hnch;bi � hnchi and the initial

coherent amplitudes aj0 are real. We find

�gIðt; t þ tÞ ¼ �2hnaðtÞi�2�hnchi þ hnaðtÞi
�

N� sinð2ktÞ ðktÞ þ Oðt2Þ

�gIIðt; t þ tÞ ¼ 2hnaðtÞi�3hnchihncoh;aðtÞiN� sinð2ktÞðktÞ þ Oðt2Þ

�gIIIðt; t þ tÞ ¼ �fGð2Þðt; tÞðhnchi þ 2NþÞ � 4N2
�
hnchisin2ð2ktÞg

� hnchi½Gð2Þðt; tÞ��2ðktÞ2 þ Oðt3Þ � 0 ð73Þ

where N� ¼ 1
2
ða2

a0 � a2
b0Þ. The time-dependent mean intensity of the signal

mode is given by hnaðtÞi ¼ hnchi þ hncoh;aðtÞi, where hncoh;aðtÞi ¼ a2
a0 cos2ðktÞþ

a2
b0 sin2ðktÞ is the time-dependent intensity of input coherent fields, and hnchi is

the initial intensity of chaotic field. Moreover, Gð2Þðt; tÞ ¼ hncoh;aðtÞi2 þ 4

hnchihncoh;aðtÞi þ 2hnchi2 is the single-time correlation function. In expansion

(73), similar to Eq. (71), the first t derivative of g
ð2Þ
III ðt; t þ tÞ vanishes at t ¼ 0.

Expansions (73) have simple interpretation. The correlation function

�gIIIðt; t þ tÞ is never positive; thus PAB according to Def. III cannot be

observed. On the contrary, both �gIðt; t þ tÞ and �gIIðt; t þ tÞ oscillate

between negative and positive values; therefore, PAB according to Defs. I

and II is apparently not prohibited. Surprisingly, predictions of Defs. I and II are

opposite. As comes from Eq. (73), �gIðt; t þ tÞ and �gIIðt; t þ tÞ have opposite

signs and the same time-dependent function. Our conclusion is supported by

graphical representations of the parameters gj in Fig. 11a and �gjðt; t þ tÞ in

Fig. 12 (cases 2 and 3) for the initial condition

r1ð0Þ ¼ rfa2
a ¼ hnch;ai ¼ hnch;bi ¼ 1; ab ¼ 0; t ¼ 0g: ð74Þ

Whenever PB is predicted according to one of Defs. I and II, it must be

accompanied by the classical-field PAB artifact according to the other.

As the second example, we analyze another special case of the field (72),

evolving in a way opposite the field evolution under initial condition (74). Let

the signal mode is initially coherent (with real amplitude aa0), whereas the idler

mode is chaotic (with the mean photon number hnch;bi). We obtain the following
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power expansions of the normalized correlations �gjðt; t þ tÞ are

�gIðt; t þ tÞ ¼ 2
�
½2y cotðktÞ � x tanðktÞ�hnaðtÞi � xy tanðktÞ

�
� hnaðtÞi�2 ðktÞ þ Oðt2Þ

�gIIðt; t þ tÞ ¼ 4x2y cscð2ktÞhnaðtÞi�3 ðktÞ þ Oðt2Þ

�gIIIðt; t þ tÞ ¼ � 2a2
a0hnch;biðx2 þ 2y2Þ
ðx2 þ 4xyþ 2y2Þ2

ðktÞ2 þ Oðt3Þ � 0 ð75Þ

in terms of the mean signal mode intensity, hnaðtÞi ¼ xþ y, where x ¼ a2
a0

cos2ðktÞ and y ¼ hnaðtÞi � x. The short-time solution (75) reveals non-positive

character of �gIIIðt; t þ tÞ, thus excluding the possibility of PAB according to

case 3
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0.00
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Figure 11. Clasical-field evolution of the parameters gjðtÞ for initial superpositions of coherent

state with thermal field: (a) r1ð0Þ and (b) r2ð0Þ given by Eqs. (74) and (76), respectively. Labels are

the same as in Fig. 9.
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Figure 12. Illustration of all four possible different predictions of PB and the PAB artifacts for

classical fields as listed in Table III. Initial conditions are given by Eqs. (74) and (76): (case 1) r2ð0Þ
at kt ¼ 2; (case 2) r1ð0Þ at kt ¼ 2; (case 3) r1ð0Þ at kt ¼ 0:6, and (case 4) r2ð0Þ at kt ¼ 0:4.

Evolution times kt are chosen with the help of Fig. 11. Labels and notation are the same as in Fig. 10.
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Def. III. By contrast, both �gIðt; t þ tÞ and �gIIðt; t þ tÞ change their signs

during evolution. On further assumption of equal initial intensities of the signal

and idler modes, namely

r2ð0Þ ¼ r
�
a2

a ¼ hnch;bi > 0; ab ¼ hnch;ai ¼ 0; t ¼ 0
�

ð76Þ

we find that the normalized correlation functions g
ð2Þ
I ðt1; t2Þ ¼ g

ð2Þ
II ðt1; t2Þ, and

g
ð2Þ
III ðt1; t2Þ are independent of the initial intensities. Equations (75) reduce to

�gIðt; t þ tÞ ¼ �gIIðt; t þ tÞ ¼ cos2ðktÞsinð2ktÞ ðktÞ þ Oðt2Þ ð77Þ

�gIIIðt; t þ tÞ ¼ � 1þ 4sin2ðktÞ þ 3cos2ð2ktÞ
2½2� cos4ðktÞ�2

ðktÞ2 þ Oðt3Þ � 0 ð78Þ

Evidently, the solution (77) takes positive values at some evolution times. We

conclude that the classical field PAB artifact according to Def. I occurs

whenever it exists according to Def. II for the signal under the initial condition

(76). These results are graphically represented in Fig. 11b and Fig. 12 (cases 1

and 4). It is worth comparing solution (77) with Eqs. (73) for �gIðt; t þ tÞ and

�gIIðt; t þ tÞ, describing their opposite (out-of-phase) behavior (see Fig. 11a).

Table IV summarizes our investigations of PB effects in classical fields. By

virtue of the Cauchy–Schwarz inequality, PAB according to Def. III cannot

occur for classical fields, thus cases 5–7 in Table IV are excluded. However, the

remaining cases 1–4 are observed in the evolution of classical fields as

presented in Figs. 11 and 12. The classical PAB apparently exists according

to both Defs. I and II.

PAB of classical fields can only be an artifact. So, it seems necessary to

modify the conventional definitions in a nonstationary regime. For instance, one

TABLE IV

Same as Table III but Examples are Given for Classical Fieldsa

Case �gI (Def. I) �gII (Def. II) �gIII (Def. III) Examples

1 Negative (bunching) Negative (bunching) Negative (bunching) kt 2 ðp
2
; pÞ00

2 Positive Negative (bunching) Negative (bunching) kt 2 ðp
2
; pÞ0

3 Negative (bunching) Positive Negative (bunching) kt 2 ð0; p
2
Þ0

4 Positive Positive Negative (bunching) kt 2 ð0; p
2
Þ00

5 Negative (bunching) Negative (bunching) Positive Forbidden

6 Positive Negative (bunching) Positive Forbidden

7 Negative (bunching) Positive Positive Forbidden

8 Positive Positive Positive Forbidden

aSignal and idler modes are initially described by Eq. (74) (marked by prime) or Eq. (76) (double

prime).

526 jiří bajer et al.



can add an extra condition, which guarantees the nonclassical character of the

field but keeping the original inequalities unchanged. Nevertheless, the problem

of the unique description of PAB in nonstationary case would remain in the

conventional definitions. On the contrary, these problems do not arise in the

generalized approach to PAB (Def. III), where the Cauchy–Schwarz inequality

is applied directly without any further assumptions.

F. Conclusion

We have generalized the concept of PB and PAB to describe nonstationary

fields. The definition is based on the two-time second-order intensity correlation

function Gð2Þðt1; t2Þ normalized by the square root of single-time second-order

intensity correlations at two moments t1 and t2. This is contrary to the standard

approaches to PAB, where the two-time correlation Gð2Þðt1; t2Þ is normalized by

either (1) the single-time first-order intensity correlations at two moments, or (2)

functions independent of the time separation t ¼ t2 � t1. In a special case, when

a field is stationary the generalized definition is equivalent to the standard

definitions. However, as we have shown, the predictions of PAB according to

these three approaches might be different for nonstationary fields. As an

example, we have analyzed evolution of the signal mode during the parametric

frequency conversion of initial Fock states and have found all (i.e., eight)

possible different cases, when PAB (and also PB) effect according to one

definition can be accompanied by arbitrary photon correlation effects according

to other two definitions. One may conclude that the three definitions describe

distinct quantum nonstationary phenomena.

The generalized definition of PAB was proposed on the basis of the Cauchy–

Schwarz inequality without any assumptions concerning properties of the fields.

Whereas the standard definitions come from the Cauchy–Schwarz inequality

under stationary-field condition. Thus, PAB according to the generalized

definition cannot occur for classical fields. However, as we have shown in the

parametric frequency converter with classical initial conditions, the classical

nonstationary fields possibly exhibit PAB artifacts according to the standard

definitions without violating any classical inequalities.

IV. MAXIMUM-LIKELIHOOD PHASE RECONSTRUCTION
(J. ŘEHÁČEK, Z. HRADIL, O. HADERKA, and M. HENDRYCH)

There is no doubt that the concept of phase has turned out to be useful in the

classical theory. Phase measurements in the domain of classical wave optics are

well established and belong to the most precise measurement schemes currently

available. It is natural that many attempts have been made to translate this

concept to the language of quantum theory. Quantum phase, however,
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encountered theoretical difficulties when an adequate quantum theory was

constructed [57–62].

There are several concepts for the description of phase in quantum theory at

present. Some of them are accenting the theoretical aspects, other the experi-

mental ones. Quantization based on the correspondence principle leads to the

formulation of operational quantum phase concepts. For example, the well-

known operational approach formulated by Noh et al. [63,64] is motivated by

the correspondence principle in classical wave theory. Further generalization

may be given in the framework of quantum estimation theory. The prediction

may be improved using the maximum-likelihood estimation. The optimization

of phase inference will be pursued in the following.

Phase measurements do not belong to the category of conventional measure-

ments since a Hermitian phase operator does not exist. What is usually measured

in practice is energy, and various phase sensitive devices (interferometers, etc.)

are used to transform phase shifts into variations of output energies. Because of

the statistical nature of quantum theory the resulting relationship between the

measured quantities and the parameters of interest is not deterministic. This sort

of indirect inferences is usually called estimation. The scheme of an estimation

procedure is the following

r! true phase

shift �y
! rð�yÞ ! detection ! v ¼ fv1 � � � vng !

! estimation ! yðvÞ ð81Þ

Here r is the known initial density matrix, v is a set of outcomes of the given

measurement, and y is our phase estimate based on the measured data v. The

true phase shift inside the interferometer �y, which is a nonfluctuating parameter

controlled by the experimentalist, should be carefully distinguished from the

phase estimate y, which is (usually) a random quantity. Hereafter, the latter is

denoted by y.

To proceed some measure of error of estimation is needed. The error is

quantified with the help of the ‘‘cost function.’’ The choice of the cost function

depends on the given problem. Two most often used cost functions are as

follows:

Cðy; �yÞ%&
ðy� �yÞ2 least-square fit

�dðy� �yÞ maximum likelihood

ð82Þ

According to the well-known Bayes theorem, the posterior probability distribu-

tion of an estimate reads as

pð�yjvÞ / pðvj�yÞzð�yÞ ð83Þ
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where pðvj�yÞ is the probability of the occurrence of the outcome v provided that

the true phase shift is �y,

pðvj�yÞ ¼ TrfrðyÞjvihvjg ð84Þ

and zð�yÞ quantifies our prior knowledge of unknown phase shift �y. In absence of

any information the uniform prior distribution or a prior distribution invariant

with respect to a certain class of transformations can be chosen. In the following

the uniform prior distribution is used.

After detection of data v the risk of a particular phase estimate y can be

defined in the following way

rðyjvÞ ¼
ð

Cðy; �yÞpð�yjvÞd�y ð85Þ

The best strategy then consist in minimizing the overall risk. This is done by

choosing the phase estimate having minimum risk (85)

yðvÞ ¼ argfmin
y

rðyjvg ð86Þ

Using ‘‘d peaked’’ cost function (82) and posterior distribution (83) in Eq. (85),

we obtain rðyjvÞ ¼ �pðyjvÞ. Minimizing risk (85) is therefore equivalent to

maximizing the likelihood function

L � pðyjvÞ / pðvjyÞ ð87Þ

Equation (87) is a nice demonstration of the maximum-probability principle.

After registration of data the estimate of the unknown parameter is chosen, which

would give rise to the observed data with greatest probability. This principle is

very general and maximum-likelihood (ML) estimation as well as many other

reconstruction methods (maximum entropy, etc.) follow from this principle [65].

A. Quantum Phase Estimation

First, let us show that the operational phase concepts can naturally be embedded

in the general scheme of quantum estimation theory [66,67] as was done by

Hradil, Zawisky, and others [68–71]. Let us consider the eight port homodyne

detection scheme [63,72] with four output channels numbered by indices

3,4,5,6, where the actual values of intensities are registered in each run. Assume

that these values fluctuate in accordance with some statistics. The mean

intensities are modulated by a phase parameter �y

�n3;4 ¼
N

2
ð1� V cos�yÞ

�n5;6 ¼
N

2
ð1� V sin�yÞ ð88Þ
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where N is the total intensity and V is the visibility of the interference fringes.

This device is equivalent to a Mach–Zehnder interferometer, when the measure-

ment is performed with zero and p=2 auxiliary phase shifters. In this case, data

are not obtained simultaneously, but are collected during repeated experiments.

Provided that a particular combination of outputs fn3; n4; n5; n6g has been

registered, the phase shift can be inferred. The point estimators of phase

corresponding to the ML estimation will be used here [73,74]. In accordance

with the ML approach [75], the sought-after phase shift is given by the value,

which maximizes the likelihood function (87).

Now, let us assume that the phase-sensitive device operates with a Gaussian

signal with phase-insensitive noise. This is only an approximation to the real

situation since realistic signals are discrete. Under such approximation the

likelihood function corresponding to the detection of given data reads as

L / exp � 1

2s2

X6

i¼3

½ni � �ni�2
( )

ð89Þ

Here the variance s2 represents the phase-insensitive noise of each channel.

The sampling of intensities may serve for an estimation of phase shift and

the visibility simultaneously. Likelihood function (89) is maximized on the

physically allowed space of parameters V � 1 by the following phase and

visibility:

eiy ¼ n3 � n4 þ iðn5 � n6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn3 � n4Þ2 þ ðn5 � n6Þ2

q ð90Þ

V ¼ min 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn3 � n4Þ2 þ ðn5 � n6Þ2

q
P6

i¼3 ni

; 1

0@ 1A ð91Þ

Notice that the prediction of Gaussian theory (90) coincides with the operational

quantum phase of Noh, Fougèeres, and Mandel (NFM) [64]. This means that

NFM phase concept can be thought of as a special case of ML phase

estimation — ML estimation for Gaussian signals. This also means that NFM

phase prediction should be optimum only for signals represented by continuous

Gaussian signal with phase-independent and symmetric noises.

Since realistic signals are discrete, the phase prediction can be optimized by

considering the actual statistics of the experiment. This can be demonstrated on

the case of Poissonian signals. These are frequently encountered in laboratories

as lasers and thermal sources of particles (like neutrons) are Poissonian.
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Assume the Poissonian statistics of an ideal laser. ML estimation based on

the Poissonian likelihood function

L /
Y6

i¼3

�nni

i e��ni ð92Þ

gives optimum values for phase shift and visibility

eiy ¼ 1

V

n4 � n3

n4 þ n3

þ i
n6 � n5

n6 þ n5

� �
ð93Þ

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4 � n3

n4 þ n3


 �2

þ n6 � n5

n6 þ n5


 �2
s

ð94Þ

provided the estimated visibility (94) is smaller than unity. In the opposite case

it is necessary to maximize the likelihood function (92) on the boundary

(V ¼ 1) of the physically allowed region of the parameter space numerically.

Relations (93) and (94) provide a correction of the Gaussian theory with respect

to Poissonian signals.

The apparent difference between inferred phases (90) and (93) represents the

theoretical background of the presented treatment. The principles of inference

together with two different assumptions about the nature of the signal give rise

to two different phase estimates. One may wonder whether the improvement of

phase inference gained by taking the correct statistics of the experiment into

account is worth of giving up the simple NFM formalism and resorting to

numerical methods. Could the optimization of the information yield from

detected data lead to a significant increase of the accuracy of phase fitting?

The difference between (90) and (93) can be tested in a controlled phase

measurement. The phase difference may be adjusted to a certain value and

estimated independently using both the methods (90) and (93) in repeated

experiments. The efficiency of both methods is then compared by evaluation of

confidence intervals. Since any imperfections of the detection scheme will

smooth the differences, it is questionable whether both the schemes can be ex-

perimentally distinguished. This idea will be pursued in the following sections.

To compare two or more phase estimators, some measure of the estimation

error is needed. Dispersion defined by the relation

s2 ¼ 1� heiyi
�� ��2 ð95Þ

can well be used. Here the average is taken over posterior phase distribution of

the corresponding phase estimator.

The evaluation of the average quadratic cost (95) is not the only way to

compare efficiencies of different estimation procedures. Another possibility is to
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use the rectangular cost function

Cðy� �yÞ ¼ �1 jy� �yj � �y
0 jy� �yj > �y

"
ð96Þ

The averaged rectangular cost hCðy� �yÞi measures how many times an

estimate falls within the chosen window �y spanning around the true phase �y
The difference

�E ¼ hCðy� �yÞiGauss � hCðy� �yÞiPoiss ð97Þ

then measures how much is the Poissonian prediction better than the Gaussian

one. If this quantity is found to be positive, the ML estimation is better than its

NFM counterpart.

Although the dispersion (95) and �E cannot be calculated explicitly for

arbitrary input intensity N, it is possible to analyze the limit cases [71].

Obviously, both the predictions (90) and (93) will coincide provided that there

is almost no information available in the low-field limit N ! 0. Not so obvious

is the fact that both predictions will coincide also in the high-energy limit

N � 1 provided the visibility is low V ! 0. To see this, let us compare the

asymptotic dispersion of the NFM estimator

s2
G 


1

V2
N�1 þ O

1

N2


 �
ð98Þ

with the asymptotic expression for the Cramér–Rao lower bound (CRLB) on the

dispersion of any estimator:

s2
CRLB ¼

V2 � 1� 1
4

V4 sin2 2�y

V2 � 1� 1
2

V2 sin2 2�y
V�2N�1 þ O

1

N2


 �
ð99Þ

In the limit of low visibility both expressions become identical. Therefore NFM

theory is optimal in this limit case [76].

Asymptotic expressions for various phase estimators in the opposite limit of

high visibility V 
 1 are given in Table V where u-ML is the phase prediction

given by Eq. (93), that is, one accepts possible unphysical inferred visibilities

V > 1, and ML(1) is the phase prediction obtained by putting V ¼ 1 in the

likelihood function (92) and maximizing it only with respect to phase (max-

imization on the boundary of the physical space of parameters).

Notice that uncertainty of all the estimators scales as 1=
ffiffiffiffi
N
p

, which is the

standard quantum limit. Best-known proposed phase measurements scale as

1=N [77,78], but these methods necessitate the use of exotic quantum states of
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light, which are still not readily available in laboratories. Notice that by taking

physical constraints into account the accuracy of phase fitting is improved.

Single-parameter ML estimator outperforms all the other studied estimators.

It attains the CRLB and hence is optimum. This optimum evaluation of

measured data yields a phase prediction whose uncertainty is reduced by a

factor of
ffiffiffi
2
p

, that is, by about 70%, in comparison with the semiclassical NFM

theory. However, some caution is necessary when the actual visibility is less

then one or fluctuates. In this case, using V ¼ 1 in the likelihood function (92)

leads to biased phase predictions. For large intensities the bias might spoil the

estimation [71].

B. Experiments

The performance of the Gaussian and Poissonian phase estimators have been

determined in a series of experiments utilizing two principal sources of

particles: laser light [71] and a beam of thermal neutrons [70]. The main goal

of the experiments was to compare the optimum phase prediction with the NFM

semiclassical theory in the (quantum) regime of only a few input particles. As a

side result, the theoretical asymptotic uncertainties given in Table V were tested

in a real experiment.

The dispersions (95) of the NFM (or equivalently Gaussian) and ML phase

estimators found in experiments with light are shown in Fig. 13. The true phase

was fixed at �y ¼ p=3. The number of detected quadruples fn3; n4; n5; n6g used

for the calculation of the dispersions varied from 1000 samples for the input

mean number of photons N ¼ 60 to more than 100; 000 samples for N ¼ 0:1.

The error bars corresponding to these finite numbers of samples are the result of

numerical simulation. The visibility during the experiments was better than

99:6%.

The most distinct (absolute) difference between the dispersions of the ML

and NFM estimators is seen for the input mean number of photons N 
 7:5. For

TABLE V

Asymptotic Dispersions and Overall Quadratic Costs of Various Phase Estimators a

Estimator s2 �C �
R
s2 d�y

NFM 1/N 2p=N

u-ML (1þ cos2 2�yÞ=2N 3
2
p=N

ML 
 ð1þ 0:5 cos2 �yÞ=2N 
 5
4
p=N

ML (1) 1=2N p=N

CRLB 1=2N p=N

aKey: u-ML — unconstrained ML estimation; ML(1) — single-parameter ML estimation. For

comparison, CRLB is shown.
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even weaker signals, both estimators become ‘‘equally bad.’’ In the opposite

limit of a strong signal the difference decreases from the vanishing of both

dispersions simultaneously.

The ML estimator was found to be significantly more accurate (by many

standard deviations) than its NFM semiclassical counterpart. This was con-

firmed by evaluating the difference of the rectangular costs (97), see Fig. 14. �E

was calculated using 7500 experimental samples measured in experiment with

N ¼ 10 photons and visibility of 99:6%. The chosen input energy roughly fits

the maximum seen in Fig. 13. Standard deviation corresponding to 7500

measured samples is shown in Fig. 14 as error bars for each phase window.

A significant difference between the effectiveness of semiclassical and

optimal treatments is apparent in Fig. 14. The optimal treatment provides an

improvement in estimation procedure, and the difference is more than 10

standard deviations beyond the statistical error. High stability and visibility of

interference fringes in the optical interferometer along with a high repetition

rate of pulsed lasers made the improvement of the NFM phase prediction more

evident than in a similar comparison that had been done with thermal neutrons

[70] (see Fig. 15).

An experimental comparison of three phase estimations—NFM, uncon-

strained ML, and ML estimators—in the asymptotic regime is shown in Fig.

16. The experiment was done with photons. For comparison, the theoretical

values of dispersions given in Table V are also shown. Several important
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Figure 13. The experimentally observed difference between dispersions of the NFM and ML

estimators as a function of the input mean number of photons N for fixed true phase �y ¼ p=3. Error

bars corresponding to 68% confidence intervals are shown.

534 jiří bajer et al.



conclusions can be drawn from Fig. 16. (i) We can see that the uncertainty of the

constrained ML estimation is definitely below the uncertainty of the uncon-

strained estimation in agreement with theory presented in Table V. This means

that insisting on the physical constraints (here non-negativity of the intensity) is

important not only for the sake of interpretation, but it also makes the estimation

more efficient. Of course, both ML estimations beat the phase resolution of the

semiclassical NFM theory. (ii) The observed values of dispersion exhibit a

systematic error. The additional noise above the theoretical uncertainty is

caused by inherent phase fluctuations in the experimental setup, and their

magnitude can be estimated from Fig. 16 as 0:020� 0:003 rad. This value is in

an excellent agreement with the value 0:019 rad obtained by an independent

method. Hence our statistically motivated evaluation of experimental data can

be used for inferring the amount of fluctuations, and therefore it provides an

independent and nontrivial way for calibrating an interferometer. Moreover, a

slightly different sensitivity of different phase estimators to various parameters

of the setup makes it possible, at least in principle, to distinguish between

different sources of phase noise.

A precise analysis of the noise is not the only merit of the phase estimation.

Since phase detection represents an indirect measurement, it could serve as the

simplest example of quantum tomography. Similar treatment inspired by the

ML estimation may be applied to the reconstruction of a generic quantum state,

namely that of entangled qubits.
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Figure 14. Experimentally obtained �E (squares) compared to theoretical values (circles).

Error bars corresponding to 7500 measured samples are shown. N ¼ 10 photons.
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V. FREQUENCY PARAMETRIC DOWNCONVERSION WITH
PULSED FIELDS (J. PEŘINA, JR.)

The process of spontaneous parametric downconversion has been studied

extensively [79,80] for cw (continuous-wave) pump lasers over the last decades.

A great deal of attention has been paid to the process of spontaneous parametric
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Figure 15. (a) Detected intereference fringe in ordinary channel as mean of 690 single

measuremens (") and error bars corresponding to the Poissonian detection statistics. The mean

number N ¼ 8:54 of incoming neutrons was asymmetrically split between the ordinary (No ¼ 2:21Þ
and extraordinary (Nh ¼ 6:33) channels. The average visibility was about 31%. A typical single

detection denoted by full squares is shown as an example. (b) Experimentally obtained �E denoted

by full squares are compared with theoretical prediction denoted by corresponding mean values (")
and eror bars for 690 samples.
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downconversion pumped by femtosecond pulses. Pairs of downconverted

photons generated from ultrashort pump pulses may be synchronized in time

and create optical fields with more than two mutually entangled photons this

way [81,82]. Such fields have already been successfully used when observing

quantum teleportation [83] and generating GHZ (Greenberger-Horne-Zeilinger)

states [84–86]. The basic theoretical model of spontaneous parametric down-

conversion process pumped by an (ultrashort) Gaussian pulse has been devel-

oped in [87–89].

The process of spontaneous parametric downconversion is described by the

following interaction Hamiltonian [79]:

ĤintðtÞ ¼
ð0

�L

dz wð2ÞEðþÞp ðz; tÞÊð�Þ1 ðz; tÞÊð�Þ2 ðz; tÞ þ H:c: ð100Þ

where wð2Þ is the second-order susceptibility, E
ðþÞ
p denotes the positive-

frequency part of the electric field amplitude of the pump field, and Ê
ð�Þ
1

(Ê
ð�Þ
2 ) is the negative-frequency part of the electric field operator of down-

converted field 1 (2). The nonlinear crystal extends from z ¼ �L to z ¼ 0. The

symbol H.c. means Hermitian conjugate.

Second-order perturbational theory then provides the entangled two-photon

state jcð2Þð0; t0Þi for times t0 sufficiently long so that the nonlinear interaction is
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Figure 16. Asymptotic dispersions of the NFM estimator; theory (solid line) and

experimentally obtained values (squares). Asymptotic dispersions of the unconstrained ML

estimator; theory (dashed line) and experimentally obtained values (triangles). Experimentally

obtained dispersions of the ML estimation on the physical space of parameters (circles). The

corresponding input mean number of photons and the estimated visibility were N ¼ 160 and

V ¼ 99:2%, respectively.
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complete in the form [90]:

jcð2Þð0; t0Þi¼Cc

ð0

�L

dz
X

kp

X
k1

X
k2

EðþÞp ð0;okp
� o0

pÞâ
y
1ðk1Þây2ðk2Þexp ½iðkp � k1

� k2Þz�dðokp
� ok1

� ok2
Þexp iðok1

þ ok2
Þt½ �jvaci; ð101Þ

where Cc is a constant. The symbol EðþÞp ð0;okp
� o0

pÞ denotes the positive-

frequency part of the envelope of the pump beam electric field amplitude at the

output plane of the crystal; kp stands for the wavevector of a mode in the pump

beam, and o0
p is the central frequency of the pump beam. The symbol â

y
1ðk1Þ

(â
y
2ðk2Þ) represents the creation operator of the mode with wave vector k1 (k2)

and frequency ok1
(ok2

) in the downconverted field 1 (2); jvaci denotes a

multimode vacuum state. The symbol d means the Dirac d function.

A. Properties of One-Photon Fields

The mean number of photons Nj in downconverted field j is given as follows:

NjðtÞ ¼ hcð2Þð0; t0ÞjÊð�Þj ð0; t0 þ tÞÊðþÞj ð0; t0 þ tÞjcð2Þð0; t0Þi ð102Þ

The positive-frequency part of the electric field operator Ê
ðþÞ
j has the form

Ê
ðþÞ
j ðzj; tjÞ ¼

X
nj

ejðnjÞâjðnjÞexp ½ikvj ðo0
j þ njÞzj � iðo0

j þ njÞtj� ð103Þ

and ejðnjÞ denotes the amplitude per photon of the mode with the frequency

o0
j þ nj (o0

j stands for the central frequency of mode j); kvj means a wavevector

in vacuum in the jth field. Substituting Eqs. (101) and (103) into Eq. (102), we

arrive at the expression for Nj in the form [91]

NjðtÞ ¼
ð2pÞ2jCNj

j2

jDj

ð0

�L

dzjEðþÞp ð0; t� DpjzÞj2 ð104Þ

in which

Dpj ¼
1

vp

� 1

vj

¼ �þ ð�1Þ j D

2
; j ¼ 1; 2

� ¼ 1

vp

� 1

2

1

v1

þ 1

v2


 �
D ¼ 1

v1

� 1

v2

ð105Þ
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The symbol EðþÞp ð0; tÞ denotes the positive-frequency part of the envelope of

the pump-field amplitude at the output plane of the crystal; CNj
is a constant.

The relation
Ð1
�1 dtN1ðtÞ ¼

Ð1
�1 dtN2ðtÞ reflects the fact that photons are in the

nonlinear process generated in pairs.

The time dependence of NjðtÞ in Eq. (104) resembles that of the pump field,

if DpjL tchar (tchar is a characteristic time of the change of pump-field

intensity). This means that one-photon multimode Fock-state fields with a given

mean-photon-number time dependence can be generated for suitably chosen

pump-field-intensity profiles. For instance, if the pump field consists of two

femtosecond pulses of the same duration and one has no chirp whereas the other

one is highly chirped, the overall pump field as well as NjðtÞ have a peaked

structure (see Fig. 17).

The spectrum Sj of downconverted field j,

SjðnjÞ ¼ hcð2Þð0; t0Þje�j ðnjÞâyj ðnjÞejðnjÞâjðnjÞjcð2Þð0; t0Þi ð106Þ

can be expressed as a function of the pump pulse spectrum:

SjðnjÞ ¼ jCSj
ðnjÞj2

ð1
�1

dnp EðþÞp ð0; npÞ
��� ���2L2sinc2 L

2
Dp 3�jnp � Dnj

� 	� �
ð107Þ
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Figure 17. Mean number of photons N1ðtÞ of the signal field; t1 ¼ 1� 10�13 s, t2 ¼ 0:5�
10�13 s, a1 ¼ 0; a2 ¼ 10; �1 ¼ �2 ¼ 1;L ¼ 0:05 mm, f ¼ 0 rad, y ¼ 0 s, jCN1

j2 ¼ 1 m�2 (after

Ref. 91). Values of the inverse group velocities appropriate for the BBO crystal with type interaction

at the pump wavelength lp ¼ 413 mm ðlp ¼ 397:5 nm) and at the downconversion wavelengths

l1 ¼ l2 ¼ 826 nm ðl1 ¼ l2 ¼ 795nm) are used in Figs. 1, 2, and 5 (4).
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where

EðþÞp ð0; npÞ ¼
1

2p

ð1
�1

dtEðþÞp ð0; tÞexpðinptÞ ð108Þ

sincðxÞ ¼ sinðxÞ=x, and CSj
ðnjÞ is a constant. The spectrum of a downconverted

field is obtained as a convolution of the pump pulse spectrum with a function

(sinc2) characterizing phase matching of the interacting fields in the nonlinear

crystal. If the pump field spectrum jEðþÞp ð0; npÞj2 has a peaked structure,

oscillations in the spectrum SjðnjÞ occur for longer crystals (see Fig. 18).

Oscillations in the spectrum SjðnjÞ do not occur for shorter crystals, because a

peaked structure of the pump pulse spectrum jEðþÞp ð0; npÞj2 is smoothed out by

the wide sinc2 function in Eq. (107).

A downconverted field in multimode Fock state with a required spectrum Sj

can be generated if the pump-field spectrum jEðþÞp ð0; npÞj2 is suitably chosen. A

suitable pump-pulse spectrum is provided by the inverse formula to that in

Eq. (107). If jDp1j � jDp2j, the spectrum S1 can be expressed in terms of the

spectrum S2 [91]. The obtained relation is a consequence of entanglement of

photons emerging during their generation and shows how photons in modes of

the downconverted fields are correlated.
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Figure 18. Spectrum S1ðn1) of the signal field for various values of the delay #;# ¼ 0 s (solid

curve without symbols), # ¼ 3� 10�13 s ð�Þ; # ¼ 10� 10�13 s ð^), and # ¼ 50� 10�13 s (~);

t1 ¼ t2 ¼ 1� 10�13 s; a1 ¼ a2 ¼ 0; �1 ¼ �2 ¼ 1; L ¼ 10 mm; f ¼ 0 rad, and jCS1
j2 ¼ 1 m�2

(after Ref. 91).
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B. Properties of Two-Photon Fields

Two-photon properties of downconverted fields are studied in coincidence-count

measurements. Such measurements are conveniently described in terms of a

two-photon amplitude A12 defined as follows:

A12ðt1; t2Þ ¼ hvacjÊðþÞ1 ð0; t0 þ t1ÞÊðþÞ2 ð0; t0 þ t2Þjcð2Þð0; t0Þi ð109Þ

Using the state jcð2Þð0; t0Þi given in Eq. (101), we arrive at the expression

(o0
1 ¼ o0

2 is assumed)

A12ðT0; tÞ ¼ CA
1

jDj expð�2io0
1T0Þ rect

t
DL


 �
EðþÞp 0;

�

D
tþ T0


 �
ð110Þ

t ¼ t1 � t2 and T0 ¼ ðt1 þ t2Þ=2. The symbol rect means the rectangular

function (rectðxÞ ¼ 1 for 0 < x < 1, rectðxÞ ¼ 0 otherwise); CA is a constant.

We further consider one of typical interferometric configurations, the

polarization analog of the Hong–Ou–Mandel interferometer. Its scheme is

shown in Fig. 19. Assuming type II parametric downconversion, two mutually

perpendicularly polarized photons occur at the output plane of the crystal. They

propagate through a birefringent material (with group velocities g1 and g2) of a

variable length l and then hit a 50/50% beamsplitter. The coincidence-count rate

Rc is then given by the number of simultaneously detected photons at both

detectors DA and DB in a given time interval. Analyzers rotated by 45 degrees

with respect to ordinary and extraordinary polarization directions of the non-

linear crystal enable quantum interference between two paths leading to a

coincidence count; either a photon from field 1 is detected by the detector DA

and a photon from field 2 by the detector DB or vice versa. The normalized

BSdelay line

NLC

AA

AB FB

FA

DA

DB

C

ωp ω1
ω2

ι

Figure 19. Sketch of the polarization analog of the Hong–Ou–Mandel interferometer: pump

pulse at the frequency op generates in the nonlinear crystal NLC downconverted photons at the

frequencies o1 and o2. They propagate through a delay line of the length l and are detected at the

detectors DA and DB; BS denotes a beamsplitter, AA and AB are analyzers, FA and FB are frequency

filters, and C means a coincidence device.
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coincidence-count rate Rn in this setting and for the two-photon amplitude A12

given in Eq. (110) can be expressed as follows (D > 0 is assumed [91]):

RnðlÞ ¼ 1� rðlÞ ð111Þ

where

rðlÞ ¼ jCAj2

2R0D2

ðDL=2�j�tlj

�DL=2þj�tlj
dt
ð1
�1

dT0

� Re EðþÞp 0;
�

D
tþ T0


 �
Eð�Þp 0;��

D
tþ T0


 �" %
ð112Þ

and

R0 ¼
jCAj2

2D2

ðDL

0

dt
ð1
�1

dT0 EðþÞp 0;
�

D
tþ T0


 ����� ����2 ð113Þ

The symbol Re means real part, �tl ¼ tl � DL=2 and tl ¼ ð1=g2 � 1=g1Þ=l.

The interference term rðlÞ given in Eq. (112) is nonzero only in the interval

0 � tl � DL for an arbitrary pump field. The interference pattern has the shape

of a dip of the width DL. The change of envelope of the pump field leads only to

a small modification of this shape. On the other hand, internal structure of the

pump field may result in the occurrence of peaks at the bottom of the dip [91].

This behavior is well understood from the general relation between the shape of

the two-photon amplitude and the profile of the interference pattern (for details,

see Ref. 90).

The coincidence-count interference pattern has already been measured for a

Gaussian pump pulse and for the downconverted fields being filtered by narrow

frequency filters [88,92].

C. Effects of Dispersion in the Polarization Analog of the
Hong–Ou–Mandel Interferometer

The wavevectors kpðokp
Þ, k1ðok1

Þ, and k2ðok2
Þ of the pump, signal, and idler

beams in the nonlinear crystal can be expressed in the following form including

material dispersion up to the second order [90]:

kjðokj
Þ ¼ k0

j þ
1

vj

ðokj
� o0

j Þ þ
Dj

4p
ðokj
� o0

j Þ
2; j ¼ p; 1; 2 ð114Þ

k0
j ¼ kjðo0

j Þ. The symbol Dj stands for second-order dispersion coefficient of

field j. Wave vectors of the down-converted beams in a dispersive material

outside the crystal can be expressed similarly.
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The coincidence-count rate RnðtlÞ forms a triangular dip of width DL with

the visibility 1 for cw pumping [79]. An ultrashort pump pulse of duration tDi

leads to a loss of visibility but the width of the dip remains unchanged [88].

The shorter the pump pulse duration the smaller the values of visibility. Increas-

ing values of the chirp parameter ai lead to a reduction of visibility but the width

of the dip does not change.

Second-order dispersion in the pump beam broadens the pump pulse. As a

result, an increase in the second-order dispersion parameter Dp causes an

increase of visibility, but no change in the width of the dip. Second-order

dispersion in the downconverted beams leads to a broadening of the dip, as well

as asymmetry and oscillations at its borders.

Second-order dispersion in an optical material (d1 and d2 are second-order

dispersion parameters of the signal and idler beams in the material) through

which downconverted photons propagate leads to asymmetry of the dip. The dip

is particularly stretched to larger values of l (see Fig. 20) as a consequence of

the deformation and lengthtening of the two-photon amplitude A12;l in a

dispersive material. The higher the difference d1 � d2 of the dispersion para-

meters, the higher the asymmetry and the wider the dip; moreover its minimum

is shifted further to smaller values of l (see Fig. 20).

Asymmetry of the dip caused by second-order dispersion in an optical

material through which downconverted photons propagate can be suppressed
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Figure 20. Coincidence-count rate RnðlÞ for various values of the second-order dispersion

parameter d ¼ d1 � d2 of an optical material (the material for the delay line is assumed to be quartz

[91,90]); d ¼ 0 s2/mm (plain curve), d ¼ 1� 10�26 s2/mm ð�Þ; d ¼ 5� 10�26 s2/mm (~), and

d ¼ 1� 10�25 s2/mm (^); tDi
¼ 1:55� 10�13 s;L ¼ 3 mm, and s1 ¼ s2 ¼ 50 nm; values of the

other parameters are zero (after Ref. 90).
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under the following conditions; either the magnitude of second-order dispersion

in the path of the first photon (given by d1l) equals that of the second photon

(given by d2l) or the pump pulse duration has to be sufficiently long (in the cw

regime). Dispersion cancellation has its origin in the entanglement of the

photons, specifically, in the fact that the permitted values of the frequency o1

and the frequency o2 are governed by the relation dðop � o1 � o2Þ, where op

lies within the pump pulse spectrum.

D. Interference of Two Entangled Two-Photon Fields in the
Polarization Analog of the Hong–Ou–Mandel Interferometer

We assume that the overall pump field consists of two partially overlapping

ultrashort pulses (their mutual delay is denoted as #). Then the overall down-

converted field can be considered as composed of two partially overlapping two-

photon fields that are mutually coherent and interfere. Interference between two

entangled two-photon fields has its origin in the mutual coherence of the pump

pulses.

The fourth-order interference pattern in the polarization analog of the Hong–

Ou–Mandel interferometer behaves as follows. The visibility V of the

coincidence-count pattern (coincidence-count dip [79]) as a function of the

delay # is shown in Fig. 21. For # ¼ 0 s the entangled two-photon fields

completely overlap, so in fact, there is only one entangled two-photon field with

a given visibility. As the delay # increases, two entangled two-photon fields are

gradually formed at the output plane of the crystal. When the delay # increases,
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Figure 21. Visibility V ½V ¼ ðRn;max � Rn;minÞ=ðRn;max þ Rn;minÞ� as a function of the delay

#; t1 ¼ t2 ¼ 1� 10�13 s; a1 ¼ a2 ¼ 0; �1 ¼ �2 ¼ 1; L ¼ 1:5 mm; f ¼ 0 rad, and jCAj2 ¼ 10 m�2

(after Ref. 91).
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the overlap of the two entangled two-photon fields becomes smaller and higher

values of the visibility V occur. This means that distinguishability of the signal

and idler photons decreases with increasing # because the higher the visibility

the lower the distinguishability of the signal and idler photons [88]. For greater

values of #, the visibility V decreases. When the pump pulses are delayed so

much that they do not overlap, there are two nonoverlapping downconverted

fields and the visibility V is back to the value appropriate for # ¼ 0 s. The

increase of the visibility V caused by partially overlapped entangled two-photon

fields might be useful in various multiparticle experiments for which high

visibilities are required.

E. Absorption of Entangled Multiphoton Fields

Multiphoton absorption cross sections as functions of entanglement times and

path delayes reflect quantum correlations among the optical fields constituting

an entangled state [93,94]. There may occur entanglement-induced multiphoton

transparency—the value of absorption cross section drops to zero for some

values of entanglement times and path delayes (see Fig. 22 for entangled three-

photon absorption cross section).

The dependence of multiphoton absorption cross sections on entanglement

times and path delayes may, in principle, be used for the determination of

spectrum and dipol moments of the absorbing material (for two-photon (three-

photon) absorption, see Ref. 95 (Ref. 94).

The process of spontaneous parametric downconversion generates photons in

mutually entangled multimode Fock states. Properties of such states depend

strongly on the pump pulse characteristics; that is, entangled states with

prescribed properties can be generated. The single-photon fields composing

an entangled state are correlated in sharp time windows and this correlation is

responsible both for a typical triangular dip in the Hong–Ou–Mandel inter-

ferometer and suppression of dispersion effects in dispersive materials. It also

leads to entanglement-induced transparency. Properties of entangled fields are

also conveniently applied in quantum cryptography [96] and metrology [97], as

well as in experiments testing quantum theory.

VI. QUANTUM ZENO EFFECT IN FREQUENCY
DOWNCONVERSION (J. ŘEHÁČEK and J. PEŘINA)

In quantum optics a downconversion process may be visualized as the decay of

a pump photon into a pair of signal and idler photons of lower frequency.

Provided the pumping remains not depleted and phase matching takes place, the

energy of the spontaneously downconverted light monotonically increases and

that of the pump beam monotonically decreases. From this point of view the

downconversion process may be regarded as the decay process of an unstable
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system. It is well known that frequent monitoring of a quantum system leads to

inhibition of its evolution. This phenomenon is called the quantum Zeno effect

(QZE) [98,99]. QZE has been studied in variety of physical systems including

truly unstable systems and systems with finite recurrence time. For an excellent

overview, see Ref. 100. Nonlinear optical systems are especially suitable for the

analysis of QZE. Well-established methods of quantum optics can be used to

deepen insight into this interesting phenomenon. Nonlinear optical realizations

are also promising in view of possible future experiments. In the following

paragraphs we will focus on QZE in frequency downconversion. Downcon-

version of light has already proved to be an invaluable tool in many fundamental

experiments confirming quantum theory and extending the understanding of

nature at the quantum level. This is true also for the study of QZE.
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Figure 22. Entangled three-photon absorption cross section sðT21; T32Þ for the transition

1s! 4f in atomic hydrogen; the state 4f is assumed to be Lorentzian broadened with the lifetime

10�6 s; �ho0
1 ¼ 4 eV; �ho0

2 ¼ �ho0
3 ¼ 4:37 eV; y3 ¼ 10 fs; Ae2 ¼ Ae3 ¼ 10�10 m2; log denotes a

decadic logarithm (after Ref. 94).
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A. Pulsed Observations

A thought experiment has been suggested [101] in which it is possible to

determine the place where the conversion of the pump photon took place inside

the nonlinear crystal. The idea goes as follows. The nonlinear crystal is

transversely cut in N pieces, which are then carefully aligned so that the signal

and pump photons, leaving, say, the kth slice become the input signal and pump

photons to the ðk þ 1Þth slice of the crystal (see Fig. 23). The idler photons, on

the other hand, are removed after each slice, thus allowing for a future

measurement to be performed on them. By increasing the number of slices,

the actual position of birth of the signal and idler photons becomes more certain.

Each piece of crystal will be described by the effective interaction Hamiltonian

HI ¼ �ðaysa
y
i þ asaiÞ; �h ¼ c ¼ 1 ð115Þ

where � is nonlinear coupling constant (proportional to the second-order

susceptibility), and we assume that the strong pump beam is unaffected by

the decay and can be treated in classical terms. We also assume that the process

is perfectly phase-matched:

� � ðkp � ks � kiÞz ¼ 0 ð116Þ

Here axes z is chosen along the direction of propagation. We adhere to the

natural units �h ¼ c ¼ 1 hereafter. First recall the unobserved dynamics of a

weakly nonlinear downconvertor. The probability of the emission of one signal

photon in one crystal of length L is approximately

Psð1Þ 
 ha0ysa0si 
 ð�LÞ2 ð117Þ

It is this short-time quadratic region that makes it possible to suppress the decay

by repeated measurements. Such monitoring will be done as shown in Fig. 23.

With this modification, the moment of emission can be inferred with accuracy

dL ¼ L=N without disturbing the signal photons. Now, the probability of having

as

ai1
a′ ai2 ai3

1 2 3 N

δL

i1

a′
iN

a′
s

a′
i2

Figure 23. Scheme devised to infer the moment of emission of a signal downconverted photon.
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one signal photon in the cascade becomes inverse proportional to the number of

pieces:

~Psð1Þ 
 ha0ysa0si 

ð�LÞ2

N
ð118Þ

This is clearly manifestation of QZE. If the accuracy of the observation is

increased by increasing N, the probability of the emission decreases at the same

rate. In agreement with the Misra-Sudarshan theorem [99], the decay of pump

photons is completely suppressed in the limit of very frequent monitoring

N !1. Further insight into the effect can be gained by rewriting Eqs. (117)

and (118) in terms of uncertainty dL:

Psð1Þ 
 N2ð�dLÞ2; ~Psð1Þ 
 Nð�dLÞ2 ð119Þ

We may say that for the unobserved system the emission is a cooperative effect

of the N parts, whereas for the observed system we have an ordinary

spontaneous emission from the N pieces. More to this, for the unobserved

case the N emitters are stimulated by the same vacuum, imparting phase

correlations between them. On the observed system the pieces are influenced

by different and statistically independent vacuum fields leading to mutually

incoherent emissions.

B. Continuous Monitoring—Kerr Interaction

The idea of considering the continuous interaction with an external agent as a

sort of ‘‘steady gaze’’ at the system goes back to Kraus [102] and has recently

been revived in relation with QZE [103]. Schulman [104], in particular, has even

provided a quantitative relation between QZE produced by pulsed measure-

ments (in the sense of the discussion in Ref. 99) and continuous observation (in

the sense discussed below) performed by an external system.

Continuous observation offers distinct advantages for practical realization,

since the strength of the observation can be controlled by a more accessible

parameter than N, e.g. an intensity. Instead of dividing the crystal into pieces, let

us assume another nonlinear interaction of the Kerr type between the idler mode

and an auxiliary mode b (see Fig. 24). We replace (115) by the interaction

Hamiltonian

HI ¼ �ðaysa
y
i þ asaiÞ þ ka

y
i aib

yb ð120Þ

Now the information concerning the moment of emission of the signal photon is

contained in the phase of the mode b, where the phase of the field b is

proportional to the length covered by the idler photon since it has been emitted.
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The instant of emission of the signal photon can then be inferred by a phase-

dependent measurement on the output field b.

Assuming weak nonlinearity as before we easily get the probability of

emitting one signal photon,

~Psð1Þ 
 ð�LÞ2hjj sinðkLbyb=2Þ
kLbyb=2

� �2

jji ð121Þ

where jji is the initial state of the auxiliary mode b. One can see that the pro-

bability of emission of the signal photon is always less than or equal to the

probability of the unobserved case (117), and it depends on the choice of

the input state jji of the auxiliary field b. On the other hand, the accuracy of the

inference of the emission time of the signal photon also depends strongly on the

choice for jfi. Two extreme cases can be recognized. In the limit when jji
tends to vacuum state the probability (121) tends to that of the unobserved

system (117). However, in this limit the phase of the field b is completely

uncertain and the inference of the moment of the emission fails to give any

meaningful information. In order to have a precise measurement of the phase

shift a field jji with strong intensity is needed. However, in the limit of an

intense field b, the probability (121) tends to zero and the emission is again

prohibited.

This can be again interpreted in terms of QZE. Although the influence of the

measuring apparatus (here mode b) cannot be described by a projection

postulate in the sense of von Neumann, the evolution of the system is hindered

in a way that is reminiscent of QZE. In contrast to previous ‘‘discrete’’ scheme,

strength rather than frequency of observation is relevant here. It is interesting to

notice that similarly to the discrete case, the suppression of the downconversion

process can again be traced to the change of the phase relations between the

interacting fields. Photon-number measurements based on Kerr-like interactions

do not disturb the photon number of the measured system. However they affect

its phase, and the frequency downconversion is very sensitive to the phase

relations between the signal and idler beams. This dynamical explanation of the

QZE will be studied in Section VI.D in greater detail.

⇒
idler (i)

signal (s)pump (p)
Γ

κ

auxiliary (b)

Figure 24. Downconversion process coupled to an auxiliary mode b.
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C. Inverse Zeno Effect in Downconversion

In a dynamical explanation of QZE the inhibition of the original evolution is not

a mandatory consequence. For instance, it has been shown in [105,106] that

provided the phase matching condition is not fulfilled in the process of

downconversion, the observation may, on the contrary, enhance the emission

for a properly chosen N (inverse Zeno effect).

Let us consider once again a nonlinear medium cut into N pieces (Fig. 23).

But now assume that the geometry of the original nonlinear process was such

that the phase matching condition was not satisfied. The phase mismatch � can

be accounted for by changing the interaction Hamiltonian to

HI ¼ �ðaysa
y
i e�i�t þ asaie

i�tÞ ð122Þ

It is well known that mismatched nonlinear processes are always less effective

than perfectly matched ones. One might wonder what will happen if a phase

mismatched process is further disturbed by repeated measurements. Straightfor-

ward calculation gives the simple expression

~Psð1Þ 
 ð�LÞ2 1

N

sinð�L=2NÞ
�L=2N

� �
ð123Þ

for the probability of emitting one signal photon in the limit of weak

nonlinearity. Notice that two opposite tendencies compete in Eq. (123). There

is inhibition of emission due to the 1=N term. In the absence of mismatch it

gives rise to QZE. Besides, there is a second effect due to the term in brackets

that influences in the opposite direction. It tends to one in the limit of accurate

observation. In this limit, however, the term 1=N will prevail. But before

reaching this limit a question arises as to whether the combination of the two

mentioned effects improves the emission in comparison with unobserved phase-

mismatched process [obtained by putting N ¼ 1 in Eq. (123)]. This would be a

manifestation of the inverse Zeno effect (IZE). The rigorous answer can be

obtained by comparing the original asymptotic exponential decay law with the

exponential decay law forced by the repeated measurements [100,107]. It turns

out that if � >
ffiffiffi
3
p

� IZE is possible. The maximum emission rate results for N

set to the nearest integer to 0:429�L; let us call this integer Nmax. The Zeno/

inverse Zeno interplay shows up nicely in Fig. 25. It has an appealing

explanation in terms of destructive and constructive interference of subsequent

emissions inside the nonlinear crystal [101,105,106]. We have already seen that

the emission in the unobserved case results from the coherent superpositions of

probability amplitudes originated in each part of the crystal. As a result of phase

mismatch, this interference is partially or completely destructive depending on
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�L. After interrupting N times the idler mode, N < Nmax, the loss of coherence

prevents this destructive interference and the probability of emission increases.

But the mutual incoherence of the N emitters prevents also constructive

interference and probability (123) is always less than it would be in the

unobserved and phase-matched case (117).

If the original interference is destructive, the emission probability can be

increased by repeated measurements (IZE). But this has a limit, since it is not

possible to convert destructive interference into constructive interference by

these means.

D. Continuous Monitoring—Linear Interaction

In Section VI.B a Kerr interaction has been used to extract some information

about the time of the emission of signal photon. One may wonder what will

happen if the Kerr interaction is replaced by a simpler one, for instance, by
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Figure 25. Interplay between the frequency of observations and phase mismatch. The mean

number of signal photons hni � hnsi behind N nonlinear crystals is shown for various nonlinear

mismatches �k � �; � ¼
ffiffiffi
2
p

=10; L ¼ 1 (arbitrary units).
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simple linear exchange of energy between the idler and auxiliary modes. At first

sight it might seem that linear interaction cannot give rise to a similar effect

since only the output fields are accessible to measurement in the experimental

setup in Fig. 24, and no relevant information is readily available in mode b

about the place where the signal and idler photons are created. In this sense, no

bona fide measurement is being performed on the fields by auxiliary mode. This

point is discussed by Nakazato et al. [108] in connection with the experiment

performed by Itano et al. [109]. Nevertheless, it is still possible (and useful) to

speak about QZE in the more general sense given above. The exposition

presented closely follows Ref. 110.

A downconversion process linearly coupled to an auxiliary mode b can be

modeled by the following interaction Hamiltonian

HI ¼ �aysa
y
i ei�t þ ka

y
i bþ H:c: ð124Þ

where k is strength of the linear coupling. A possible realization of the

Hamiltonian (124) could be a waveguide made of nonlinear material coupled

to a linear waveguide, such as by means of evanescent waves [111].

First let us see how the linear coupling influences the dynamics of a phase

matched process. To this end it is convenient to use ‘‘dressed modes.’’ If � ¼ 0,

the Hamiltonian (124) can be rewritten in terms of dressed modes as follows

HI ¼
�ffiffiffi
2
p aysc

yeikt þ �ffiffiffi
2
p aysd

ye�ikt þ H:c:; ð� ¼ 0Þ ð125Þ

where the operators of the dressed modes are simply linear combinations of the

old operators,

c ¼ ai þ bffiffiffi
2
p

d ¼ ai � bffiffiffi
2
p ð126Þ

By comparing the Hamiltonian (125) with the Hamiltonian of a phase-

mismatched process (122), one immediately sees that the coupling and the

phase mismatch influence the downconversion process in a similar way. The

coupling of the idler mode ai with the auxiliary mode b yields two dressed

modes c and d the pump photon can decay to. They are completely decoupled

and due to their energy shift exhibit a phase mismatch �k. Since the phase

mismatch effectively shortens the time during which a fixed phase relation holds

between the interacting beams, the amount of converted energy is smaller than

in the ideal case of a perfectly phase-matched interaction. A strong linear
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coupling then makes the subsequent emissions of converted photons interfere

destructively and the nonlinear interaction is frozen.

There is an intuitive explanation of this behavior; since the linear coupling

changes the phases of the amplitudes of the interacting modes, the constructive

interference yielding exponential increase of the converted energy is destroyed,

and downconversion becomes frozen. In this respect the disturbances caused by

the linear coupling and by frequently repeated measurements are similar and we

can interpret the phenomenon as QZE in the following sense: by increasing the

coupling with the auxiliary mode, one performs a better ‘‘observation’’ of

the idler mode and therefore of the ‘‘decay’’ of the pump. The hindering of the

evolution results. We should mention that a more general definition of QZE has

been given [100], which better fits into the present context than the original

more stringent one given, for example, in Ref. 99.

The interpretation given in the preceding paragraph is strengthen by the fact

that linear interaction can yield a kind of IZE under conditions similar to that

discussed in Section VI.C. We shall show that when both linear coupling and

phase mismatch are present in the process, the linear coupling can, rather

surprisingly, compensate for the phase mismatch and vice versa, so that the

probability of emission of the signal and idler photons can almost return back to

its undisturbed value.

We start from the equations of motion generated by the full interaction

Hamiltonian (124)

_as ¼ �i�a
y
i e

i�t

_ai ¼ �i�ayse
i�t � ikb; ð� 6¼ 0;k 6¼ 0Þ

_b ¼ �ikai ð127Þ

Although it is easy to write down the explicit solution of the system (127), here

we shall provide only a qualitative discussion of the solution. The main features

are then best demonstrated with the help of a figure. Eliminating idler and

auxiliary mode variables from Eq. (127) we get a differential equation of the

third order for the annihilation operator of the signal mode. Its characteristic

polynomial (on substitution asðtÞ=asð0ÞexpðiltÞ)

l3 þ 2�l2 þ ð�2 � k2 þ �2Þlþ��2; k 6¼ 0 ð128Þ

is recognized as a cubic polynomial in l with real coefficients. An oscillatory be-

havior of the signal mode occurs only provided the polynomial (128) has three

real roots (causus irreducibilis); thus, its determinant D must obey the condition

D < 0. The case �� � is of main interest here. The resulting intervals are

Hyperbolic behavior: k 2 h��
ffiffiffi
2
p

�;�þ
ffiffiffi
2
p

�i
Oscillatory behavior: k 2 h0;��

ffiffiffi
2
p

�Þ [ ð�þ
ffiffiffi
2
p

�;1Þ
ð129Þ
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In the absence of linear coupling the downconverted light shows oscillations and

the overall effectiveness of the nonlinear process is small owing to the presence

of strong phase mismatch �� �. However, as we switch on the coupling

between the idler and the auxiliary mode, the situation changes. By increasing

the strength of the coupling the period of the oscillations gets longer and its

amplitude gets larger. When k becomes larger than ��
ffiffiffi
2
p

�, the oscillations

are no longer seen and the intensity of the signal beam starts to grow

monotonically. We can say that in this regime the initial nonlinear mismatch

has been compensated by the coupling.

The interplay between nonlinear mismatch and linear coupling is illustrated

in Fig. 26. A significant production of signal photons is a clear manifestation of

IZE. In correspondence with the observations in other studies [105,106]

(Section VI.C), such IZE occurs only provided a substantial phase mismatch

is introduced in the process of downconversion. It is worthwhile to compare the

interesting behavior seen in Fig. 26 with QZE and IZE observed in a sliced

nonlinear crystal (Fig. 25). It can be seen that the coupling parameter k here

plays a role similar to the number of slices N, into which the crystal is cut in the

latter scheme. Moreover, the sharpness of the ‘‘observation’’ (k or N), at which

a maximum output intensity occurs, is approximately a linear function of the

introduced phase mismatch in both schemes. There are, however, also some

points of difference. For example, the maximum output intensity obtainable for
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Figure 26. Interplay between linear coupling and phase mismatch. The mean number of signal

photons hnsi behind the nonlinear medium of length L ¼ 1:5 is shown versus strength k of linear

coupling and nonlinear mismatch � ð� ¼ 0:5Þ.
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a given � by slicing the crystal decreases with increasing phase mismatch �
[106]. On the other hand, no matter how strong the mismatch is, it can always be

removed with the help of a suitable linear coupling (and vice versa). This

difference is due to the 1=N scaling of intensities of output light generated by a

process under observation [101,105,106]. An analogous factor is missing here.

Several intuitive explanations of IZE seen in Fig. 26 are at hand. From the

point of view of constructive and destructive interference one can say that since

the linear coupling effectively changes the phase relations among interacting

modes, the destructive interference of subsequent pump photon decays caused

by phase mismatch is suppressed in the same way as the constructive

interference has been suppressed in the case of perfectly matched interaction.

Figure 26 can also be interpreted in a quantitative way in analogy with the

dressed state description of interaction of atoms with intense light [112]. In

terms of the dressed modes c and d of Eq. (126), if � 6¼ 0, in place of the

Hamiltonian (125), one gets

HI ¼
�ffiffiffi
2
p aysc

yeið�þkÞt þ �ffiffiffi
2
p aysdyeið��kÞt þ H:c: ð130Þ

The energy scheme implied by Hamiltonian (125) is shown in Fig. 27. Under the

influence of the coupling with the auxiliary mode b the mismatched down-

conversion splits into two dressed energy–shifted interactions. It is apparent that

when k ¼ �� one of the two interactions becomes resonant. The other one is

‘‘counterrotating’’ and acquires a phase mismatch 2�, yielding oscillations.

Also, the amplitude of such oscillations decreases as ��2 and the mode output

becomes negligible compared to the other one. The linear coupling to an

auxiliary mode compensates for the phase mismatch up to a change in the

effective nonlinear coupling strength �! �=
ffiffiffi
2
p

.

To summarize, the statement ‘‘the downconversion process is mismatched’’

means that the nonlinear process is out of resonance in the sense that the mo-

mentum of the decay products (signal and idler photons) differs from the

∆+κ

∆ ∆−κ

Figure 27. Energy scheme of a mismatched downconversion process subject to linear

coupling. The bottom solid lines denote a resonant process.
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momentum carried by the pump photon before the decay took place. When the

linear interaction is switched on, the system gets ‘‘dressed’’ and the energy

spectrum changes. A careful adjustment of the coupling strength k then makes it

possible to tune the nonlinear interaction back to resonance. In this way the

probability of pump photon decay can be greatly enhanced. This occurs when

k ’ �� and explains why IZE takes place along the line k ¼ � in Fig. 26.

In a certain sense, QZE is a consequence of the new dynamical features

introduced by the coupling with an external agent that (through its interaction)

‘‘looks closely’’ at the system. When this interaction can be effectively described

as a projection operator in the sense of von Neumann, we obtain the usual

formulation of the QZE in the limit of very frequent measurements. In general,

the description in terms of projection operators may not apply, but the dynamics

can be modified in a way that is strongly reminiscent of QZE. Examples of the

type analyzed here advocate a broader definition of quantum Zeno effect.

VII. QUANTUM STATISTICS OF LIGHT PROPAGATING IN
RAMAN COUPLERS (J. FIURÁŠEK and J. PEŘINA)

A. Introduction

Attention has increasingly been paid to the propagation of light in nonlinear

optical couplers, devices formed from two (or more) closely lying waveguides,

whose guided modes are thus mutually linearly coupled by means of evanescent

waves. Moreover, some nonlinear optical processes are active in the cores of the

waveguides. Nonlinear couplers can serve as efficient ultrafast all optical

switches [113–115] or logical gates [116,117].

Quantum description of the light propagation in the couplers allows inves-

tigation of the generation of nonclassical light in such devices. The nonlinear

processes considered in this context include degenerate [113,118,119] and non-

degenerate [114,120–122] parametric downconversion, Kerr effect [123,124],

and Raman and Brillouin scattering [125–128]. Various configurations were

investigated, including symmetric (nonlinear processes are in operation in both

the waveguides) and asymmetric ones (one of the waveguides is linear) as well

as codirectional and contradirectional propagation. In connection with the latter

case quantum consistent input–output description was developed [129]. It was

shown that squeezed light as well as light with sub–Poissonian photocount

distribution can be generated in single modes or compound modes composed of

two modes depending on the type of nonlinear interaction. Influence of various

phase mismatches has been discussed [118, 126]. The quantum phase of optical

fields propagating in nonlinear couplers has been studied [130,131]. For

reviews, see Refs. 132 and 133.

In this contribution we focus on nonlinear couplers operating by means of

Raman scattering [125–128]. This nonlinear process was thoroughly studied in
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quantum optics, and several models were considered. In the simplest description

one assumes strong coherent laser pumping and broad reservoir of phonon

modes that are elliminated in Wigner–Weisskopf approximation [134–136]. A

more complicated model includes one effective phonon mode [137,138],

possibly coupled to reservoir. This allows for investigation of the quantum

statistics and dynamics of the phonon field. Fully quantum treatment including

laser modes can be found in Ref. 139.

B. Quantum Dynamics of Raman Couplers

We investigate the spatial evolution of the optical fields propagating in the

Raman coupler depicted in Fig. 28. Working in the Heisenberg picture, we solve

a set of Heisenberg–Langevin equations for the z-dependent field operators. It is

convenient to employ momentum operator Ĝ rather than Hamiltonian Ĥ to

describe the operation of the coupler because this approach allows us to take

dispersion into account.

1. Heisenberg–Langevin Equations

The momentum operator Ĝ corresponding to the Raman coupler shown in

Fig. 28 reads as [125]

Ĝ ¼
X

j¼L1;S1;A1;V1

�hkjâ
y
j âj þ

X
j¼L2;S2;A2;V2

�hkjâ
y
j âj

þ
X
k¼1;2

½�h~gAk
âLk

âVk
â
y
Ak
þ �h~gSk

âLk
â
y
Vk

â
y
Sk
þ H:c:�

þ ½�hkSâS1
â
y
S2
þ �hkAâA1

â
y
A2
þ H:c:� ð131Þ

Âj1
(0) Âj1

(L)

Âj2
(L)

Âj2
(0)

gS1

~ gA1

~

gA2

~
gS2

~

κS κA

Figure 28. Sketch of the nonlinear Raman coupler formed from two waveguides of the

length L .
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Here H.c. denotes Hermitian conjugation; â
y
j and âj are creation and annihilation

operators of laser (L), Stokes (S), anti-Stokes (A), and vibration (V) modes in

the first (1) and second (2) waveguides. We can see that momentum operator

(131) consists of a sum of three different parts. The first is the momentum

operator of the free fields, kj are propagation constants of the guided modes. The

second part of Ĝ describes nonlinear scattering in the cores of first and second

waveguides, ~gSj
and ~gAj

, j ¼ 1; 2 are nonlinear Stokes and anti-Stokes coupling

constants characterizing intensity of Stokes and anti-Stokes processes, respec-

tively. Finally the third term, which typically appears if we study couplers,

represents linear coupling of Stokes and anti-Stokes modes in both the

waveguides, and kS and kA are the corresponding linear coupling constants.

In the Heisenberg picture one has to solve a set of ordinary differential

equations for creation and annihilation operators,

i�h
dâj

dz
¼ ½Ĝ; âj� ð132Þ

Here ½; � denotes commutator. All operators fulfill standard boson-type commu-

tation rules

½âi; âj� ¼ 0; ½âyi ; â
y
j � ¼ 0; ½âi; â

y
j � ¼ dij ð133Þ

We assume strong coherent pumping of laser modes and replace the operators

âLj
with corresponding complex amplitudes aLj

expðikLj
zÞ. To simplify the

notation, we define new parameters gSj;Aj
¼ aLj

~gSj;Aj
; j ¼ 1; 2.

To remove fast oscillations we work in the interaction picture introducing

new operators Âj ¼ âjðzÞexpð�ikjzÞ. The damping of vibration modes is

modelled as coupling of each vibration mode to the broad reservoir of harmonic

oscillators in thermal equilibrium [140]. The two important parameters are

damping constants gVj
and mean number of chaotic phonons hnVj

i; j ¼ 1; 2.

Finally we arrive at [127] the following:

dÂS1

dz
¼ igS1

ei�kS1
zÂ
y
V1
þ ik�Se�i�KSzÂS2

dÂA1

dz
¼ igA1

ei�kA1
zÂV1
þ ik�Ae�i�KAzÂA2

dÂV1

dz
¼ �gV1

ÂV1
þ igS1

ei�kS1
zÂ
y
S1
þ ig�A1

e�i�kA1
zÂA1
þ L̂V1

ðzÞ ð134Þ

Equations for other operators can be obtained from the symmetry and by

Hermitian conjugation. Operators of Langevin forces L̂Vj
ensure the validity of
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commutation relations (133) for all z and they fulfill Markoffian properties [140]

hL̂Vi
ðzÞi ¼ 0; hL̂Vi

ðz1ÞL̂Vj
ðz2Þi ¼ 0; hL̂yVi

ðz1ÞL̂yVj
ðz2Þi ¼ 0

hL̂yVi
ðz1ÞL̂Vj

ðz2Þi ¼ 2gVi
hnVi
idðz1 � z2Þdij; i; j ¼ 1; 2 ð135Þ

Various phase mismatches appearing in (134) are defined as follows:

�KS ¼ kS1
� kS2

; �KA ¼ kA1
� kA2

�kSj
¼ kLj

� kVj
� kSj

; �kAj
¼ kLj

þ kVj
� kAj

ð136Þ

The actual values of these phase mismatches depend on the dispersion of the

waveguides forming the coupler.

The set of equations (134) and related ones separates into two independent

subsets, one for Â
y
S1
; ÂA1

; ÂV1
; Â
y
S2

, ÂA2
, ÂV2

and the other for their Hermitian

conjugates. It is useful to take advantage of matrix formalism and to rewrite

(134) to the compact form [127,128]

d

dz
ÂðzÞ ¼MðzÞÂðzÞ þ L̂ðzÞ ð137Þ

here Â and L̂ are column vectors

Â ¼ Â
y
S1
; ÂA1

; ÂV1
; Â
y
S2
; ÂA2

; ÂV2

� �T

; L̂ ¼ 0; 0; L̂V1
; 0; 0; L̂V2

� 	T

and the elements of matrix MðzÞ can be determined from (134). We can write

the generic solution of (137) as

ÂðzÞ ¼ FðzÞÂð0Þ þ FðzÞ
ðz

0

F�1ðz0ÞL̂ðz0Þdz0 ð138Þ

We have introduced the matrix of the fundamental solution FðzÞ, which is the

solution of the homogeneous equation

d

dz
FðzÞ ¼MðzÞFðzÞ; Fð0Þ ¼ E ð139Þ

Here E is the identity matrix. FðzÞ can be expressed in a simple form if M does

not depend on z, or if one can transform (134) to a system with constant

coefficients [127], then FðzÞ ¼ expðMzÞ.

2. Dynamic Regimes of the Coupler

If all phase matching conditions are fulfilled, that is, all phase mismatches are

zero, then the dynamics of the coupler is fully characterized by the eigenvalues
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�j of the matrix M, which does not depend on z. Positive or negative real parts

of the eigenvalues correspond to exponential amplification or attenuation and

imaginary parts give the period of oscillations.

Simple analytical results can be obtained for asymmetric configuration when

the nonlinear scattering takes place only in the first waveguide and damping is

neglected. One eigenvalue is zero, �5 ¼ 0, the others are roots of biquadratic

equation

�j ¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ 2q

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 2q

p� �
ð140Þ

where

p ¼ jgS1
j2 � jgA1

j2 � jkSj2 � jkAj2

q2 ¼ jkSj2jkAj2 þ jkSj2jgA1
j2 � jkAj2jgS1

j2 ð141Þ

The influence of coupling constants on the dynamic properties of the coupler

can be deduced from (140). The following qualitative classification is valid

[127]:

1. q2 < 0—anti-Stokes scattering is weakened by linear coupling kA.

Simultaneously the nonlinear Stokes interaction is stronger than Stokes

linear coupling, jkSj < jgS1
j, which enables amplification due to Stokes

scattering. Two roots are real and two are purely imaginary.

2. q2 > 0, p > 0, p2 > 4q2 — Stokes scattering dominates, jgS1
j > jgA1

j, and

the linear coupling is weak; all four roots are real.

3. q2 > 0, p < 0, p2 > 4q2 — strong Stokes linear coupling suppresses the

amplification, all four roots are purely imaginary.

4. q2 > 0, p2 < 4q2 — the interplay of Stokes and anti-Stokes linear

coupling allows for amplification, all four roots are complex.

Since the amplification is accompanied by exponential increase of noise

transferred from the phonon reservoirs, the oscillating dynamics of region 3

is optimal for the generation of nonclassical states of light in the coupler.

The region of oscillatory dynamics further reduces when the damping of

vibration modes is taken into account. An analysis based on Hurwitz criterion

reveals that exponential amplification takes place for almost all values of the

parameters except for a class of special configurations meeting [127]

jkSj ¼ jkAj ¼ k; jgS2
j ¼ cjgS1

j; jgA2
j ¼ cjgA1

j
argðkSkAgS1

gA1
g�S2

g�A2
Þ ¼ p; jgSj

j < jgAj
j

ð142Þ
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where c � 0 is an arbitrary nonnegative real number. Damping constants of

vibration modes gV1
and gV2

are arbitrary and perfect phase matching is

assumed.

The phase mismatches can alter the dynamics significantly [126,127] and

they can either support or suppress the amplification. Their influence depends in

complex manner on the coupling parameters and damping constants of the

coupler.

C. Quantum Statistical Properties of Light

1. Generalized Superposition of Coherent Signal and Quantum Noise

The linearization of the Heisenber–Langevin equations (134) allows us to treat

the quantum statistical properties of light within the framework of generalized

superposition of coherent signal and quantum noise [140]. Quantum states

belonging to this class are also called Gaussian states, because the quasi-

distributions (phase-space representations of the quantum state) have Gaussian

form. Similarly, the normal characteristic function is Gaussian:

CNðfbjg; zÞ ¼ exp
X

j

�BjðzÞjbjj2 þ
1

2
CjðzÞb�j

2 þ c:c:


 �� �(
þ
X

j

X
k>j

½DjkðzÞb�j b�k þ �DjkðzÞbjb
�
k þ c:c:�

þ
X

j

½bjx
�
j ðzÞ � c:c:�

)
ð143Þ

(where c.c.¼complex conjugates). The sum is performed over all modes taking

part in the interaction. The complex amplitudes xjðzÞ and noise parameters

Bj;Cj;Djk; �Djk are defined as [140]

xjðzÞ ¼ hÂjðzÞi ð144Þ

BjðzÞ ¼ h�Â
y
j ðzÞ�ÂjðzÞi; DjkðzÞ ¼ h�ÂjðzÞ�ÂkðzÞi

CjðzÞ ¼ h�ÂjðzÞ�ÂjðzÞi; �DjkðzÞ ¼ �h�Â
y
j ðzÞ�ÂkðzÞi

ð145Þ

where �ÂjðzÞ ¼ ÂjðzÞ � hÂjðzÞi.
To calculate complex amplitudes and noise functions we insert the solution

(138) to (144) and (145), perform the averages using (135), and evaluate the

resulting integrals [127,135,141]. The amplitudes and noise coefficients at given

z depend on the initial values xjð0Þ, Bjð0Þ;Cjð0Þ and mean numbers of chaotic

phonons hnVj
i. Usually the input modes are not correlated, hence Djkð0Þ ¼

�Djkð0Þ ¼ 0.
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The photon-number operator of the jth mode reads as n̂j ¼ Â
y
j Âj, and in case

of multimode field we introduce the total photon-number operator n̂ ¼
P

j n̂j.

The photon-number statistics can be conveniently characterized by reduced

factorial moments (RFMs) of the kth order

RFM ¼ h: n̂k :i
hnik

� 1 ð146Þ

where : : denotes normal ordering. Explicit formulas for RFM of Gaussian states

can be found in Ref. 140. The negative value of the second RFM indicates

violation of classical statistical inequalities and such nonclassical state of light

is called sub-Poissonian because the photon-number variance is lower than

mean number of photons.

Let us now turn to squeezed light. We define quadrature components of

single and compound modes;

p̂j ¼ �iðÂj � Â
y
j Þ; q̂j ¼ Âj þ Â

y
j

p̂jk ¼ p̂j þ p̂k; q̂jk ¼ q̂j þ q̂k

Squeezing occurs if one of the quadrature variances hð�p̂Þ2i, hð�q̂Þ2i is below

the coherent state level. A more general definition deals with single and

compound mode principal squeeze variances lj and ljk [140]

ljðzÞ ¼ 1þ 2½BjðzÞ � jCjðzÞj�;
ljkðzÞ ¼ 2 1þ BjðzÞ þ BkðzÞ � 2Re½�DjkðzÞ� � jCjðzÞ þ CkðzÞ þ 2DjkðzÞj

� �
ð147Þ

Single-mode squeezing occurs when lj < 1 and compound mode is squeezed if

ljk < 2. Yet more general definition of the squeezing is possible, the so-called

generalized squeezing [128,142]. The generalized squeeze variance lG is

related to the lowest eigenvalue of the matrix defining the quadratic form in

the exponent on the right-hand side of Eq. (143) [128,142].

The structure of the interaction implies that if Cjð0Þ ¼ 0, then CjðzÞ ¼ 0 and

either DjkðzÞ ¼ 0 or �DjkðzÞ ¼ 0 for all j. This means that nonclassical light

cannot be generated in single modes. Photocount distribution of single modes is

super–Poissonian and no squeezing occurs. Thus the focus is on compound

modes that can exhibit various nonclassical properties.

2. Squeezing of Light in the Coupler

Because of the linearity of Heisenberg–Langevin equations, the squeezing does

not depend on the initial complex amplitudes of optical modes. Squeezed light
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can be generated in compound modes composed of Stokes and anti-Stokes

modes; also, the compound photon–phonon mode consisting of Stokes and

vibration modes can exhibit suppression of the quadrature fluctuations below

the coherent state level.

If damping of vibration modes is negligible, then the evolution governed by

Heisenberg equations (134) is unitary and input pure multimode state remains

pure during the propagation. In particular, input multimode coherent state

evolves to pure multimode Gaussian state. Such minimum-uncertainty states

are either coherent or nonclassical, exhibiting multimode generalized squeezing

[143]. In the latter case, there exists a quadrature formed by linear combinations

of the quadratures of all six involved modes, whose variance falls below the

coherent state level. Of course, the unitary evolution is also optimal for the

generation of the two-mode squeezing in compound Stokes and anti-Stokes

modes.

Usually, however, the damping of vibration modes is significant, the evolu-

tion is not unitary, input pure Gaussian state evolves into mixed state and the

uncertainty increases as the noise is transferred from the reservoir to the optical

modes. It turns out that the special configurations (142) exhibiting oscillatory

dynamics and no amplification are optimal for the squeezed-light generation in

the initial stage of the interaction [127,128].

An example of principal squeeze variances of compound mode ðS1;A1Þ is

given in Fig. 29 for three different asymmetric configurations. When gV1
¼ 0

(no damping) we have maximal squeezing and periodic dependence on z,

whereas for gV1
¼ 2:5 the oscillations are damped and l reaches some

asymptotic value. Figure 29 also illustrates that nonzero mean number of

chaotic phonons makes the squeezing less pronounced.

3. Sub-Poissonian Light Generation

It holds for the class of fields with Gaussian quasidistributions that the sub-

Poissonian photon-number statistics are closely related to the squeezing. More

precisely, the occurrence of generalized squeezing is necessary in order to

reduce photon-number fluctuations below the coherent state level [143]. Such

reduction can be achieved by properly adjusting the coherent components xjð0Þ
of the input modes. In this way we can control the position of the noise ellipsoid

in the phase space and distribute the quantum fluctuations in such a way that the

photon-number variance is reduced below the mean photon number [143]. Sub-

Poissonian light can be generated in compound (Stokes, anti-Stokes) modes. An

example is given in Fig. 30, which illustrates typical behavior of the second

RFM of the compound mode ðS1;A1Þ. The regions of sub-Poissoninan statistics

appear in the initial stage of the interaction and for larger z the light becomes

super-Poissonian. The noise from phonon reservoir can strongly reduce the

nonclassical behavior. Cooling of the coupler can reduce the mean number of
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Figure 29. Principal squeeze variance l for mode ðS1;A1Þ; gV1
¼ 0; hnV1

i ¼ 0 ð�Þ; gV1
¼

2:5; hnV1
i ¼ 0 ("); gV1

¼ 2:5; hnV1
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¼ 2, kS ¼ kA ¼ 10;BV1
ð0Þ ¼ 0, and other

parameters are zero. All optical modes are initially in coherent states.
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Figure 30. The second RFM for the mode ðS2;A1Þ;kS ¼ kA ¼ 5; gS1
¼ i; gA1

¼ 2i; gV1 ¼ 0:5;
BV1
ð0Þ ¼ hnV i ¼ 0; xS1

¼ 0:5; xS2
¼ i; xA1

¼ 2; xA2
¼ i and the other parameters are zero. Fields are

initially coherent.
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chaotic phonons hnVj
i, thus enhancing the desired suppression of photon-

number fluctuations [127].

D. Summary

The nonlinear optical couplers are emerging as promising devices for the

controlled generation and transfer of nonclassical states of light, which may

find broad applications in optical communication systems. Several types of

nonlinear optical processes have been considered in this context and greatest

attention has been paid to couplers based on degenerate or nondegenerate

parametric downconversion. However, second-order processes require non-

centrosymmetric media and it need not be easy to fabricate couplers with

sufficient second-order nonlinear susceptibility. Therefore, couplers based on

Raman scattering may represent an alternative to the couplers operating by

means of downconversion. We have seen that the Raman coupler is capable of

generating squeezed light as well as light with sub-Poissonian statistics. The

transfer of noise from phonon reservoir to optical modes can spoil the

nonclassical features, but this unwanted effect can be minimized if the coupler

is properly designed and the amplification leading to inevitable increase of noise

is avoided.

VIII. QUANTUM CRYPTOGRAPHY (O. HADERKA,
M. HENDRYCH, and M. DUŠEK)

For ages people have wished to find a way to communicate in secrecy so as to

allow nobody to overhear their messages. This wish or desire may come true

with the aid of cryptography. Cryptography may be defined as the art of writing

and deciphering messages in code.

The use of cryptography in everyday life has grown enormously since the

1980s. The outburst of electronic communications between banks, state agen-

cies, and various institutions handling private data, as well as the fast develop-

ment of e-commerce on the Internet, has lead to a huge increase of demand for

secure cryptographic methods and devices. Today most of cryptographic tasks

are solved with the help of cryptosystems [144] that rely on computational

complexity, such as on the difficulty in factoring large numbers. However,

advances in mathematical algorithms and computing power compromise the

security of these methods, which is maintained by continual lengthening of

cryptographic keys. Classical cryptography also faces an increasingly serious

menace arising from the construction of quantum computers. Algorithms

capable of breaking public-key ciphers have already been developed [145].

Although the construction of a practical device is still hypothetical, experi-

mental advances are very rapid. Another threat to classical systems comes from

single-purpose massively parallel optoelectronic devices [146].
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In contrast to classical cryptographic methods, the security of quantum

cryptography is based on the fundamental laws of physics. It is guaranteed by

the Heisenberg uncertainty principle and is independent of any mathematical or

technological developments.

The first prototype of quantum cryptographic apparatus came into existence

around 1990 [147]. In the meantime, quantum cryptography has become a well-

known technique of communication in a provably secure way, and together with

an intensive research in the field of quantum computers it has given rise to a

whole new branch of science: quantum information theory [148]. Viewed

from this perspective, quantum cryptography today is only a subset of a broad

field of quantum communications that also include quantum teleportation,

quantum dense coding, quantum error-correcting codes, and quantum data

compression.

The purpose of this review is to give an overview of both theoretical and

experimental achievements in the field with a focus on recent developments.

A. Cryptographic Tasks

Current classical cryptographic methods are used to solve a number of tasks.

One of the most important ones is secure message exchange, which allows two

parties to communicate in such a way that their messages are unintelligible to

any third party. An unconditionally secure method that enables to achieve this

goal is the so-called Vernam cipher [149], or a one-time pad, which was

invented in 1917. The principle of this cipher is that addition of a string of

random bits, called the ‘‘key,’’ to a message, renders the resulting string also

completely random. For this cipher to be unconditionally secure, three require-

ments must be satisfied: (1) the key must be as long as the message, (2) it must

be purely random, and (3) it may be used once and only once. The only way to

reveal the contents of the original message is to subtract the key. Thus the task

of secure message exchange can be reduced to the problem of secure distribu-

tion of the cryptographic key.

Other tasks challenging cryptographers include mutual identification, secret

sharing, and multiparty computations. The goal of mutual identification is for

individual parties to assure each other of their identities. Secret sharing is a

method that enables us to split a secret string, such as a vault password, into

several shares in such a way that individual shares contain absolutely no

information about the secret, however, certain minimal subsets of the shares,

pieced together, can recover the original secret. Multiparty computations allow

two or more parties to perform a common computation without disclosing the

input data of individual participants. After each party submits its input, every

participant learns the output, computed from the inputs, without learning the

inputs of the others, except those inferable from the output. This can be used,

such as for voting ballots.
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It should be mentioned that all these tasks can be solved classically, but they

suffer either from the key-distribution problem or from the absence of an

unconditional security proof, and therefore from vulnerability to future decrypt-

ing techniques, quantum or classical.

On the other hand, quantum physics enables us to design a cryptographic

primitive, which resolves at least part of the tasks mentioned above. This

primitive is called quantum key distribution.

B. The Principle

The quantum key distribution (QKD) procedure allows two parties to establish a

common random secret key. It takes advantage of the fact that quantum

mechanics does not allow us to distinguish nonorthogonal states with certainty.

The security of QKD is guaranteed by their overlap.

Within the framework of classical physics, information encoded into a

property of a classical object, can be acquired without affecting the state of

the object. However, if information is encoded into a property of a quantum

object, any attempt to discriminate its nonorthogonal states inevitably changes

the original state with a nonzero probability. And since eavesdropping is also

governed by the laws of quantum mechanics, these changes cause errors in

transmissions and reveal the eavesdropper.

An eavesdropper could also try to amplify the signal and split off its part,

however, cloning of quantum states is also forbidden by quantum principles

[150]. Thus QKD cannot prevent from eavesdropping, but it enables legitimate

users to discover it. If any eavesdropping is detected, the key is simply thrown

away and a new one is generated. No leakage of information occurs, since the

key is just a random sequence.

1. Communication Protocol BB84

The first QKD protocol was proposed by C. H. Bennett and G. Brassard in 1984

[151] (therefore the acronym BB84), following the first ideas by S. Wiesner

[152]. At present time this protocol has been best elaborated, both theoretically

and experimentally. The properties that may be employed to encode information

are, for example, polarization of photons, phase, or quantum correlations (entan-

glement) of quantum systems. How does this protocol work? Let us first describe

a system, where information is encoded into linear polarizations of photons:

At the beginning, the two parties that wish to communicate, traditionally

called Alice and Bob, agree on two polarization bases mutually rotated by 45",
and determine which polarization in each basis corresponds to a logical 1 and 0;

for instance,

Base þ : l ¼ 0 $ ¼ 1

Base � : $¼ 0 $ ¼ 1
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Then Alice generates random bits, chooses randomly between the two polar-

ization bases, and sends photons with corresponding polarizations to Bob. Bob

also chooses randomly (and independently of Alice) his detection bases,

namely, the orientation of his polarization analyzer. The two outputs of the

analyzer are fed to detectors. One detector corresponds to a ‘‘1’’, the other to a

‘‘0’’. Next, Alice and Bob tell each other through a public channel (computer

network, telephone, etc.), which bases they used for individual photons. Note

that they communicate bases only , not particular polarizations of photons. They

keep only those bits when their bases coincided. In those cases their bits should

be identical as the results of Bob’s measurements are deterministic. Thus they

obtain a shared key. When they used different bases, the outcomes of Bob’s

measurements are random, and are discarded. Afterward Alice and Bob

‘‘sacrifice’’ a random part of this sequence by publicly comparing it. Their

strings should be identical; possible differences reveal an eavesdropper’s

activity. The disclosed part of the key must be thrown away and cannot be

used for any other purposes. The whole procedure is summarized in the

following table:

ð1Þ 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1

ð2Þ � þ � þ þ þ þ þ � � þ � � � þ
ð3Þ $$ $ $ $ $ $ $ $ $$ $ $ $ $
ð4Þ þ � � þ þ � � þ � þ � � � � þ
ð5Þ 1 1 1 0 0 0 1 1 1 0 1

ð6Þ þ � þ � � þ þ � � � þ
ð7Þ OK OK OK OK OK OK

ð8Þ 1 1 0 1 0 1

ð9Þ 1 0

ð10Þ OK OK

ð11Þ 1 0 1 1

A. Quantum distribution:

(1) Random bits generated by Alice

(2) Polarization bases randomly chosen by Alice

(3) Polarizations of photons sent by Alice

(4) Random orientations of Bob’s polarization analyzer

(5) Bits obtained by Bob (blank spaces mean that the photon was lost)

B. Public discussion:

(6) Bob announces his polarization bases

(7) Alice announces coincidences of their bases

(8) Random shared sequence of bits (in the absence of an eavesdropper and

noise, these bits must be identical with the bits sent by Alice)
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C. Test for eavesdropping:

(9) Bob picks a random part of his bits and makes them public in order to

detect eavesdropping

(10) Alice checks these bits and informs Bob if they are correct (eavesdropp-

ing would have caused errors)

(11) Secret bits shared by Alice and Bob—the key

2. Eavesdropping on Quantum States

Let us suppose that two parties, Alice and Bob, want to interchange a secret key

by means of a channel which is accessible to a third party, eavesdropper,

traditionally called Eve. Eve is allowed to use all the power of quantum

mechanics. What happens if Eve is listening? First, we should realize that

classical eavesdropping is out of the question. Eve simply cannot draw out a

small part of the signal. Since a single particle is used for each bit, she can get

either nothing or the whole particle. In the latter case the particle is lost for Bob

and the corresponding bit is not contained in the key (some loss is tolerated).

Eve cannot even copy (or clone) the quantum state of the particle [150]. The

simplest reasonable Eve’s strategy is to use a measuring device, similar to that

of Bob, to measure the polarization of incoming photons, and resend each bit

again to Bob with the help of a device similar to Alice’s. If Eve chooses the

‘‘wrong’’ polarization basis for her measuring and preparation apparatuses (i.e.,

different from Alice’s and Bob’s ones), she inevitably changes the polarization

state of the photon and then there is a nonzero probability that Bob gets a result

different from the original Alice’s bit. These differences enable Alice and Bob

to disclose Eve.

Of course, Eve may use some more sophisticated measurements (e.g., such

that does not swallow up the original photon). However, it can be shown that the

resultant effect is qualitatively the same (see Section VIII.D). In general any

interaction modifies the states of a photon.

Eve is assumed to know the types of bases Alice and Bob use. This is why

Alice and Bob must alternate randomly and independently between two

conjugated bases (e.g., polarization bases rotated by 45"). Now, even if Eve

has known the bases, she could hit the right one only in 50% of cases on

average. Thus continual eavesdropping using the described strategy causes a

25% error rate. By comparing part of transmitted bits, Alice and Bob can

estimate the error rate and detect Eve’s activity.

Note that Eve could also modify the ‘‘auxiliary’’ information transmitted

through the classical open channel. For example, she can cut both channels and

pretend to be Bob in front of Alice. Therefore authentication of the messages

sent over the open channel is necessary [144,153]. The recipient must be able to

check that the message has come from the ‘‘proper’’ sender and that it has not
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been modified. This requires of Alice and Bob to share a small amount of secret

information (an authentication password) at the beginning. After each transmis-

sion, this password is replaced by a new one, obtained from the transmitted

sequence. Therefore, the QKD cryptosystem works rather as an ‘‘expander’’ of

shared secret information.

In any real apparatus, there is noise which may also cause errors. Therefore,

some small amount of errors have to be tolerated. Of course, it is possible to

correct errors by standard error correction procedures [147,154]. Nevertheless,

we cannot exclude the possibility that the errors are due to Eve and not due to

‘‘technological’’ noise. Fortunately, the amount of information, which could

have leaked out to Eve, can be estimated from the error rate for a large class of

eavesdropping strategies [147,155,156]. To minimize Eve’s information, a

privacy amplification procedure can be applied to the key at the cost of its

shortening [147,157]. Finding the limit of the amount of information that Eve

can obtain for the most general attack allowed by quantum mechanics is the

cornerstone of the efforts to provide the ultimate security proof of quantum

cryptography (see Section VIII.D).

3. Other Communication Protocols

Besides BB84, other protocols were designed. The B92 protocol [158] uses only

two nonorthogonal states. A strong reference pulse is used to prevent an

eavesdropper from misusing vacuum states on a lossy quantum channel. The

same trick may be used to enhance the security of BB84 — this protocol is

known as the ‘‘4 þ 2 protocol’’ [159]. In the six-state protocol, three non-

orthogonal bases are used [160]. Although the latter protocols offer security

improvements compared to BB84, they have not attracted the attention of

experimentalists yet.

Another class of QKD protocols is based on entangled quantum systems

[162]. Both Alice and Bob receive one member of a pair of particles obtained

from the parametric downconversion process [161]. These particles feature

nonclassical properties; results of suitably chosen measurements on the particles

exhibit, even when spatially separated, correlations that cannot be explained by

any classical theory consistent with local realism. When Alice and Bob decide

to establish a key, they perform independent measurements in randomly chosen

bases (from a given nonorthogonal set), and using a public channel they arrive at

a secret shared key in a way similar to BB84. Later developments showed a way

to improve the security of this protocol by means of the so-called entanglement

purification techniques [163].

We note that also protocols using orthogonal states have been designed [164].

Superpositions of quantum states are employed. A superposition is divided into

parts, which are sent separately with a time delay larger than the time distance
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between Alice and Bob. This requirement, however, makes such schemes

difficult to implement.

There have also been a number of other, more or less, exotic proposals.

C. Quantum Cryptographic Methods in Practice

The quantum communication protocols described above may be used to

implement quantum counterparts to the classical solutions of cryptographic

tasks mentioned in Section VIII.A. Until now most of the efforts were devoted

to a quantum solution of the key-distribution problem, which may readily be

applied to secure message exchange or can be used as a building block for

different cryptographic schemes.

1. Quantum Key Distribution

The first QKD prototype operated over a distance of 32 cm in free space [147].

Since then, experimental techniques have undergone a tremendous progress and

today QKD systems at almost a commercial level are offered [165]. A number

of problems must have been solved. Communication distance has reached

several tens of kilometers in optical fibers [166–169]. Also, free-space systems

are being developed with earth–satellite communication on mind [170]. It

should be noted that only a few systems presented until now have exhibited

parameters that would ensure a secure key generation.

Two main conceptions of QKD apparatuses have been followed. Until late

1990s, most of the attention was devoted to the construction of QKD devices,

which used dim laser pulses as the source of photons. Pulses from a laser diode

are attenuated down below one photon per pulse. Since laser pulses exhibit

Poissonian statistics in photon-number distribution, this unavoidably results in a

nonnegligible fraction of vacuum and multiphoton pulses.1 Bit values are

encoded into polarization states of the laser pulses [167,170,171] or into phase

differences in a large Mach–Zehnder interferometer [165,166,168, 169]. The

former method requires stabilization of polarization over the communication

distance, which is achieved by active stabilization. It was shown that it is

possible to operate such a system in field conditions over a distance of 23 km

[167]. The interferometric method achieves the stabilization of the Mach–

Zehnder interferometer over the communication distance by splitting the

interferometer into two unbalanced interferometers and by using time-multi-

plexing over a single transmission fiber. This method has been successfully

applied over 46 km in the field [168]. While polarization measurements are

more precise than phase interferometry, the latter method seems to gain more

1For instance, when pluses are attenuated to 0.1 photon per pulse, then 90.5% pulses contain no

photons at all, 9% of pulses contain exactly one photon, and only 0.5% of pulses contain two or more

photons.
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popularity amongst experimentalists after the development of highly stable

interferometric schemes employing Faraday mirrors [165,169]. Error rates

below one percent are achievable. The main obstacles both these methods

face are attenuation in optical fibers, and low efficiency and high noise level in

currently available detectors. These factors result in a serious limitation of the

secure transmission distance.

Free-space QKD also advances at a rapid pace. Filtering of the stray light is

achieved by means of carefully adjusted telescopes and by tight spectral and

time filtering. It was shown that under good atmospheric conditions, QKD is

feasible up to 1.6 km [170], a distance approaching the effective turbulent

atmospheric thickness in a surface–satellite path. Observed error rates were

around 5% and 3% by day and night, respectively.

Interest in correlated photon pairs has been revived, although the original

Ekert proposal originated in 1991 [162]. It was shown that the entanglement can

be preserved over large distances [172]. To discover an eavesdropper, the

communication protocol can either test the Bell inequalities [162,173,174], or a

variant of the BB84 can be applied [173,175]. Both energy– time [162,174] and

polarization [173,176,177] entanglements have been used. A novel source of

entangled photons brings cryptography with correlated photons closer to

applications [174,178]. At the present experimental level, error rates fall only

slightly below 10% at communication distances approaching 10 km.

Another way to employ correlated photons pairs in quantum cryptography

has been suggested [179,180]. The idea is to take advantage of the fact that in

the downconversion process photons are always created as in pairs. Performing

a photon-number measurement in one of the beams, only single-photon states

can be selected in the other beam. Such a source would not only extend the

distance limit of secure QKD, but it would also conform with the ultimate

security proof which was derived under the assumption that single-photon states

are used [181]. A more detailed investigation [182] shows that even though

physical imperfections in real experiments keep such sources far from single

photons, they still offer certain benefits compared to dim laser pulses.

The development of QKD also stimulated the construction of high-quality

random-number generators [183]. This is an important question, because to pre-

serve the level of security, Alice’s and Bob’s choices of encoding and measure-

ment bases and bit values must be truly random. Quantum generators based on

the division of a weak photon flux at a beamsplitter seem to accomplish this task.

2. Quantum Identification

Attempts have been made to build a quantum identification system [184] by first

implementing another cryptographic primitive, the so-called bit commitment

[185]. This task, however, has been proved impossible to implement in a secure

way [186].
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Later a secure solution of this task was found. It combines a classical three-

step identification procedure with QKD [187]. The identification procedure uses

random sequences which are used just once, and the QKD procedure supplies

the users with new key material. Moreover, the identification procedure may

easily be incorporated into the public discussion within the QKD, which subs-

tantially simplifies the system.

Other ways to solve mutual identification were proposed using correlated

particles [188,189]. Here again, modifications of the QKD procedure are used.

In the latter case, a third communicating party, ‘‘trusted arbitrator,’’ is required.

3. Quantum Secret Sharing

A theoretical proposal of how to implement secret sharing in a quantum way

was proposed in [190]. This method uses three-particle quantum entanglement

of Greenberger–Horne–Zeilinger states, which, however, have not neatly been

produced in the laboratory yet. Later a modification of the secret sharing

protocol was developed, which expediently utilizes the entanglement of EPR

photon pairs, and which is already within the reach of today’s technologies

[191]. This task has already been implemented experimentally, too [192].

4. Multiparty Computations

The hope for secure quantum implementation of multiparty computations using

a cryptographic primitive, called ‘‘oblivious transfer’’ [193], was dashed to-

gether with the bit commitment [186]. Until now, no other solution has been

published.

D. Security

Provided that quantum theory is a right description of our physical world,

quantum cryptography offers, in principle, unconditional security. However,

there are several problems in practice. First, each real apparatus and transmis-

sion line exhibit losses, imperfections, and misalignments. This results in

nonzero error rates during transmissions even in the absence of an eavesdropper.

The unconditional security is imperiled. Second, there is no easy-to-use single-

particle carrier in the optical domain where naturally quantum cryptography is

likely to be employed. The sources used until now suffer from a certain content

of vacuum or multiphoton states, both of which open security risks. Multiphoton

events can in principle be identified by Eve, and she can eavesdrop on them by

splitting and diverting part of the signal without risking disclosure. Vacuum

states, on the other hand, can be used for manipulations that can hide the

consequences of eavesdropping.

These actualities force communicating parties to undertake steps (privacy

amplification [147,157]) to eliminate information possibly leaked to an eaves-

dropper. Since it is impossible to discriminate between errors caused by
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technology and by eavesdropping, legitimate users must attribute all the errors

to Eve’s activity. To estimate the amount of Eve’s knowledge from the detected

error rate, one has to consider possible eavesdropping strategies; not only those

technologically possible today but all strategies possible in principle. The

intercept/resend attack, described in Section VIII.B, was investigated in detail

first [147,194–196]. Then more general attacks on single quantum bits (qubits)

— such that Eve could use positive-operator-valued measurement (POVM)—

were considered [194,155]. Other generalizations of eavesdropping strategies

‘‘enable’’ Eve to use ‘‘probes’’ interacting with information carriers. These

probes could be stored and measured (by POVM) later — after the announce-

ment of Alice’s and Bob’s bases [156]. The next step has covered the so-called

collective and coherent attacks. In these cases it is supposed that an eaves-

dropper can carry out measurements not only on individual qubits but also on

the key as a whole by means of collective measurement on nonentangled probes

corresponding to individual qubits (collective attack), or by means of an

unrestricted, arbitrarily complex ‘‘common’’ probe (coherent or joint attack)

[197]. Proofs of security of the BB84 scheme against the most general attack,

even in the presence of noise, have finally been obtained [181,198]. It was

shown that if the technological error rate does not exceed a certain limit,

quantum key distribution can still be unconditionally secure.

However, all the proofs mentioned in the previous paragraph are idealized in

the following sense. A proof of security is independent of the physical

implementation of signal states as long as they have the correct overlap

probabilities and if the recipient is able to detect exactly the same set of states

as are sent. But the latter condition represents a serious difficulty in practice.

Real detectors are usually not able to distinguish the number of impinging

particles. It could be overcome by sending quantum states of exactly one

particle. Unfortunately, it is also a hard technological problem. If Alice cannot

guarantee one-photon signals and Bob’s detectors just either fire or they do not

fire, an eavesdropper can split and read some signals without the recipient

detecting it. The difficulties implied, for example, by the use of weak coherent

states in combination with lossy lines have been pointed out and their various

aspects have been discussed [159,180,195,199,200]. This subject has been

further analyzed [179,180,182], where bounds on coverable distances were

given. Positive security proofs for individual attacks for sufficiently short

distances taking account of realistic signals have been given [180]. It has

been shown that with the best current technology (transmission line made of

optical fiber at 1550 nm, Ge or InGaAs avalanche detectors, and weak laser

pulses as a source of quantum state carriers), the distance allowing secure QKD

is limited to about 25 km. The hope for extending this range above 120 km by

using a source based on postselection from correlated photon pairs has been

weakened when a more realistic treatment found a limit of about 55 km
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achievable with present laboratory skills [182]. There is also some work in

progress on the positive security proof for the case of coherent attacks [201]. On

the other hand, the eavesdropping attacks which may undermine the secrecy of

the key for setups exceeding these secure distances, are still quite complicated.

The eavesdropper needs perform a nondemolition measurement of the total

photon number in the signal state, then she has to split off one photon providing

a multiphoton signal has occurred, store that photon, and then, finally, measure

it after the public discussion.

E. Prospects

It is clearly apparent that quantum cryptography is now ready to offer efficient

and user-friendly systems providing an unprecedented level of security. While

classical methods are still safe enough for short-lifetime encryption, quantum

cryptography may prove valuable when thinking with longer prospects. The

development of quantum computers can play a significant role in speeding up

the increase of the need for QKD in the IT (information technology) market.

Still there is a lot to be done. While the security of single-photon methods is

already quite well defined, the security of cryptography with correlated pairs is

much less understood. It would also be useful to perform a rigorous analysis of

what is the optimum protocol. QKD itself is now well elaborated, but its further

propagation to other areas of cryptography (or discovery of another quantum

primitive) still stands ahead.

Theoretical progress will no doubt be immediately followed by experimental

advances. The development of new technologies can extend the limit of secure

communication. Mainly detectors in the 1550-nm fiber-optic communication

window require a big improvement. Any reduction of the fiber attenuation

would also greatly contribute to extending the communication range.

It should be stressed that future practical applications of quantum crypto-

graphy are by far not the only benefit of this area of research. As already

mentioned, a whole new field has been stimulated, which has helped us better

understand the nature. It is believed that this resource is still far from being

exhausted.

IX. CUBIC BEHAVIOR OF IMPEDED SECOND-HARMONIC
GENERATION (V. PEŘINOVÁ and A. LUKŠ)

The phase mismatch which impedes the second-harmonic generation leads also

to the cascading of quadratic nonlinearities and the induced phase shift. This

effect has been used in continuous-wave optical devices and much effort has

been devoted to the classical description of light propagation. We address the

quantum theory of steady-state propagation of light and compare this formalism
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with the conventional modal quantum description, which seems, however, to be

more appropriate for the propagation of light pulses in the impeded second-

harmonic generation.

A. Introduction

The power-dependent self-phase modulation is useful for all-optical switching

and emerging applications [202]. The self-phase modulation as a cubic non-

linear effect was previously large enough to screen the fact that also quadratic

nonlinear effect may contribute to the origin of a Kerr-like property. This occurs

in the nearly phase-matched second-harmonic generation and other parametric

processes [203,204]. Other intensity-dependent effects known to take place in a

Kerr medium can also be present in a quadratic medium [205–207]. Interest-

ingly, one of these is the soliton formation. The bistability due to cascaded

quadratic nonlinearities was demonstrated experimentally [208]. Thorough

studies go beyond the Kerr-like properties of a quadratic medium; for example,

chaotic behavior of the ring cavity has been derived [209].

The study of self-phase modulation of one wave may not neglect the

statistical properties of the quantum phase. The study of statistical properties

of the quantum phase in the situation of self-phase modulation of one wave has

a long tradition. To the investigation of the propagation in the Kerr medium

including the Kerr nonlinear devices, the nonlinear oscillator model has been

applied (see Ref. 210 and references cited therein). The work has been reviewed

laying the emphasis on properties of the nonlinear phase shift such as a

generation of superposition states.

A coherent phase shift has been treated as a transient effect or a short-time

behavior. Therefore, only a few papers have been devoted to the quantitative

study of coherent phase shift in which they have used mean phase [211] or the

preferred phase [212–214] to characterize this shift. The quantum statistical

approach developed in that work is relevant to the coherent phase shift due to

cascading of quadratic nonlinearities.

The propagation of light in a quadratic medium has been investigated from

the quantum optical viewpoint [215]. It has been taken into account that in

noncentrosymmetric crystals, the role of the tensor of macroscopic suscept-

ibility is much greater than in the Kerr-like media, whose cubic susceptibility

tensor is isotropic; that is, the tensorial character of mismatch must be included

in the formulas for the normally ordered quadrature variances of the second-

harmonic and fundamental fields [215]. A simplified treatment of the second-

harmonic generation is restricted to some polarization components of some

interacting modes and uses the appropriate components of the susceptibility

tensor. Immense effort was devoted to the study of the quantum behavior of the

phase-matched second-harmonic generation in the very early days of quantum

optics (see Ref. 216 for other references). Near the phase-matching angle of the
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codirectional propagation, the efficiency of the mode conversion is lowered. But

a Kerr-like behavior results in the fundamental mode [203,204]. The joint phase

distribution of the two modes has demonstrated that in the phase-matched case

the initial two-mode coherent state with the vacuum in the second-mode com-

ponent does not exhibit any quantum phase shift in the fundamental mode [217].

In contrast, Ref. 218 presents the fundamental-mode Q function, which, by its

peak, indicates that a quantum phase shift occurs on the assumption of the phase

mismatch. In Ref. 217 the canonical phase distribution has been determined;

however, the figures in Ref. 218 are not far from the phase distribution derived

out of the Q function. Although these papers studied the coherent phase shift,

they have not expressed its behavior in terms of the mean phase or the preferred

phase, as they were devoted to the nonlinear effects in general. Special interest

in the cascading effect is reflected in Ref. 219–222. These papers have used the

method of linearization around the classical solutions to determine the quantum

progression and they have predicted quantum noise reduction as well as the

squeezing of a quadrature. The principal squeezing variance and the phase of

expectation value of the annihilation operator in the fundamental mode have

been determined [223,224] using a perturbative method. The effective Kerr-type

nonlinearity has been demonstrated by the induced quantum phase shift and the

principal squeezing behavior.

The phase-matched second-harmonic generation can be achieved artificially

by a periodic poling of the nonlinear susceptibility (quasiphase matching). For

the optimization of the cascading effect, the periodicity could be chosen

appropriately. Quasiphase matching in fibers, waveguides, and semiconductors

can allow one to realize compact and integrable squeezing devices [225].

Besides the phase of the fundamental mode, strictly speaking, the preferred

phase, many other characteristics have been studied in [226]. Because a large

mismatch was chosen, they have lacked any trend, but an interesting oscillatory

behavior has been discovered for the initial two-mode coherent state. Within

each period, the phase-matched second-harmonic and second-subharmonic

generation processes can be prepared. The model of an ideal Kerr-like medium

[223] have been considered for a comparison with cascaded quadratic non-

linearities. It follows that these nonlinearities exhibit not only self-phase

modulation in the fundamental mode but also a cross-phase modulation of the

modes that can be considered for a nondemolition measurement.

B. Macroscopic Approach to Propagation

In the exposition of various macroscopic theories of electromagnetic field in

dispersive media [227–229], limitations and possibilities of narrow-bandwidth

quantum fields were considered. Such quantum fields are common in the study

of quantum solitons. Similar quantum fields are derived in the study of paraxial

propagation [230,231]. We will present partial differential equations for these
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fields and specify the equal-time commutation relations. Such differential

equations can be solved only by the renormalization, if possible, but we will

not even try the renormalization or prove the impossibility thereof [227,232].

As usual in this situation, we will use the linearization around a classical

solution. We will consider a classical solution in terms of the elliptic functions.

Since the classical solution describes a steady-state field, we will find a steady-

state solution of linearized quantum equations. To this end we will find the state

of the field, which is an eigenstate of an appropriate quadratic Hamiltonian to

the classical solution using the generalized approach of Deutsch and Garrison

[230], namely, the ansatz that the eigenstate will be a functionally squeezed

vacuum, generalized to the assumption that the eigenstate is a Bogolubov

transformed vacuum.

Generalizing somewhat the approach of Deutsch and Garrison [230,231], we

consider (non-Hermitian) envelope field operators ĉjðz; tÞ, j ¼ 1; 2, with the

property

½ĉjðz; tÞ; ĉykðz0; tÞ� ¼ djkdðz� z0Þ1̂
½ĉjðz; tÞ; ĉkðz0; tÞ� ¼ 0̂; j; k ¼ 1; 2 ð148Þ

In the application to the optical field, the vector potential (or the electric field in

the lowest order) corresponding to carrier plane waves of given frequencies oj,

wavenumbers kj, and polarizations ej

ÊðþÞo1;o2
ðz; tÞ ¼

X2

j¼1

ej
2p�hoj

An2ðojÞ


 �1=2

ĉjðz; tÞ ð149Þ

where A is the beam area, nðojÞ is a dispersive index of refraction, o1 is the

fundamental frequency, o2 is the second-harmonic frequency, o2 ¼ 2o1,

jkjj ¼ ojnðojÞ=c, j ¼ 1; 2, k1 > 0, and k2 > 0 or k2 < 0 for the directional or

contradirectional propagation, respectively. For the effective interaction of the

two waves, the total Hamiltonian can be written as

Ĥ ¼ Ĥenv þ Ĥint ð150Þ

with

Ĥenv ¼ �
i�h

2

ðX2

j¼1

oj

kj

ĉyj ðz; tÞ q
qz

ĉjðz; tÞ � q
qz

ĉyj ðz; tÞĉjðz; tÞ
� �

dz ð151Þ

Ĥint ¼ ��hc

ð
½g�ĉy21 ðz; tÞĉ2ðz; tÞ þ H:c:� dz ð152Þ
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where Ĥenv is the Hamiltonian governing the free evolution of the envelope and

Ĥint is the interaction Hamiltonian. In the spacetime Heisenberg picture with

smoothed and slowly varying field operators

�̂jðz; tÞ ¼ ĉjðz; tÞexp �iðkj z� ojtÞ
� �

; j ¼ 1; 2 ð153Þ

the equations of motion for these operators read as

q
qt
�̂jðz; tÞ ¼ � i

�h
½�̂jðz; tÞ; Ĥslow�; j ¼ 1; 2 ð154Þ

where the total Hamiltonian

Ĥslow ¼ ĤðslowÞ
env þ Ĥ

ðslowÞ
int ð155Þ

should be understood as dependent on �̂jðz; tÞ, with

ĤðslowÞ
env ¼ Ĥenv

��
ĉjðz;tÞ!�̂jðz;tÞ ð156Þ

Ĥ
ðslowÞ
int ¼ ��hc

ð
½g��̂y21 ðz; tÞ�̂2ðz; tÞexpði�k zÞ þ H:c:� dz ð157Þ

with the phase mismatch �k given by �k ¼ k2 � 2k1. Here Ĥ
ðslowÞ
env is the

envelope Hamiltonian and Ĥ
ðslowÞ
int is the interaction Hamiltonian. If we adopt the

spatial and temporal Heisenberg pictures gradually, we encounter the virtual

carrier wave Hamiltonian

Ĥc ¼ �h

ðX2

j¼1

ojĉ
y
j ðz; tÞĉjðz; tÞ dz ð158Þ

Equations (154) can be written in the form

nðo1Þ
c

q
qt
þ q
qz

� �
�̂1ðz; tÞ ¼ 2inðo1Þg��̂y1ðz; tÞ�̂2ðz; tÞexpði�k zÞ;

k2

jk2j
nðo2Þ

c

q
qt
þ q
qz

� �
�̂2ðz; tÞ ¼ i

k2

jk2j
nðo2Þg�̂2

1ðz; tÞexpð�i�k zÞ: ð159Þ

Let us remark that the coefficients nðojÞ on the right-hand sides in (159) need

not be present in other versions of macroscopic theory. Let us replace Eq. (159)

with corresponding classical equations for ��jðz; tÞ, j ¼ 1; 2. The solution will be

given later. Introducing the quantum corrections

d�̂jðz; tÞ ¼ �̂jðz; tÞ � ��jðz; tÞ1̂; j ¼ 1; 2 ð160Þ
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we arrive at the linearized equations:

nðo1Þ
c

q
qt
þ q
qz

� �
d�̂1ðz; tÞ ¼ 2inðo1Þg�½��2ðz; tÞd�̂y1ðz; tÞ

þ ���1ðz; tÞd�̂2ðz; tÞ�expði�k zÞ
k2

jk2j
nðo2Þ

c

q
qt
þ q
qz

� �
d�̂2ðz; tÞ ¼ 2i

k2

jk2j
nðo2Þg��1ðz; tÞd�̂1ðz; tÞ

� expð�i�k zÞ ð161Þ

These equations can be obtained as the equations of motion if we make the

replacement �̂jðz; tÞ by d�̂jðz; tÞ in (151) and consider, instead of Ĥ
ðslowÞ
int , the

quadratic Hamiltonian

Ĥ
ð2 slowÞ
int ¼ ��hc

ðL

0

n
g�½��2ðz; tÞd�̂y21 ðz; tÞ þ 2���1ðz; tÞd�̂y1ðz; tÞd�̂2ðz; tÞ�

� expði�k zÞ þ H:c:
o

dz ð162Þ

We denote the envelope Hamiltonian after this replacement by a new notation,

ĤðslowÞ
env

��
�̂jðz;tÞ!d�̂jðz;tÞ¼ Ĥð2 slowÞ

env ð163Þ

We rewrite the Hamiltonian (162) in the form

Ĥ
ð2 slowÞ
int ¼

ð
H12ðz; tÞd�̂y1ðz; tÞd�̂2ðz; tÞ þ H21ðz; tÞd�̂y2ðz; tÞd�̂1ðz; tÞ
h i

dz

þ 1

2

ð
I11ðz; tÞd�̂y21 ðz; tÞ dzþ H:c:

� �
ð164Þ

where

H12ðz; tÞ ¼ ��hc2g� ���1ðz; tÞexpði�k zÞ
H21ðz; tÞ ¼ ½H12ðz; tÞ��

I11ðz; tÞ ¼ ��hcg� ��2ðz; tÞexpði�k zÞ ð165Þ

The method of linearization is useful in the case where a displaced two-field

squeezed or unsqueezed vacuum state jf��1; ��2gifx11;x12;x22g is the initial state

(for t ¼ 0)

jf��1; ��2gifx11;x12;x22g ¼ D̂½��1; ��2�j0ifx11;x12;x22g ð166Þ

or

jf��1; ��2gi ¼ D̂½��1; ��2�j0i ð167Þ
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where D̂½��1; ��2� is a displacement operator

D̂½��1; ��2� ¼ exp

ðX2

j¼1

½��jðzÞ�̂yj ðzÞ � ���j ðzÞ�̂jðzÞ� dz

( )
ð168Þ

and j0ifx11;x12;x22g is a two-field squeezed vacuum state

j0ifx11;x12;x22g ¼ Ŝ½x11; x12; x22�j0i ð169Þ

with the two-field squeezing operator

Ŝ½x11; x12; x22� ¼ exp
n 1

2

ð
½x11ðzÞ�̂

y2
1 ðzÞ þ 2x12ðzÞ�̂

y
1ðzÞ�̂

y
2ðzÞ

þ x22ðzÞ�̂
y2
2 ðzÞ� dz� H:c:

o
ð170Þ

It is easy to see that a statistical use of the operators (160) is possible

jf��1; ��2gifx11;x12;x22g ¼ Ŝð2Þ½x11; x12; x22�jf��1; ��2gi ð171Þ

where

Ŝð2Þ½x11; x12; x22� ¼ D̂½��1; ��2�Ŝ½x11; x12; x22�D̂y½��1; ��2� ð172Þ

¼ exp
n 1

2

ð
½x11ðzÞd�̂

y2
1 ðzÞ þ 2x12ðzÞd�̂

y
1ðzÞd�̂

y
2ðzÞ

þ x22ðzÞd�̂
y2
2 ðzÞ� dz� H:c:

o
ð173Þ

The action of the two-field squeezing operator can be as follows

d ~̂�jðzÞ � Ŝð2Þy½x11; x12; x22�d�̂jðzÞŜð2Þ½x11; x12; x22� ð174Þ

¼
X2

k¼1

m�kjðzÞd�̂kðzÞ � nkjðzÞd�̂ykðzÞ
h i

; j ¼ 1; 2 ð175Þ

where mjkðzÞ � mjkðx11ðzÞ; x12ðzÞ; x22ðzÞÞ, njkðzÞ � njkðx11ðzÞ; x12ðzÞ; x22ðzÞÞmay

be simply expressed only when arranged in matrices. The formula (175) can be

simplified, since m�kjðzÞ ¼ mjkðzÞ, nkjðzÞ ¼ njkðzÞ. The matrix ðmjkðzÞÞ is positive

definite. For the general form, it holds that [233]

X2

l¼1

ðmjlm
�
kl � njln�klÞ ¼ djk ð176Þ

X2

l¼1

ðmjlnkl � njlmklÞ ¼ 0; j ¼ 1; 2; k ¼ 1; 2 ð177Þ
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We assume that the amplitudes of the displacement are ��jðzÞ � ��jðz; 0Þ
initially, and, for t � 0, we have the amplitudes ��jðzÞ � ��jðz; tÞ given as

classical solutions of the classical equations such that

��jðz; tÞ
��
t¼0
¼ ��jðz; 0Þ; j ¼ 1; 2 ð178Þ

Adopting the slowly varying operator picture, we are interested in the temporal

evolution of the operators d�̂jðz; tÞ, j ¼ 1; 2; or in the solutions of the equations

(161). The squeeze parameters x11; x12; x22 do not then vary. In the calculation

of statistics we can express �̂jðz; tÞ from the relation (160); that is, we always

consider the amplitudes of displacement ��jðz; tÞ that correspond to the time at

which one of the statistics is calculated.

Adopting the interaction picture, we are concerned with the temporal evolu-

tion of the squeeze parameters x11 � x11ðz; tÞ, x12 � x12ðz; tÞ, x22 � x22ðz; tÞ.
The quantum fluctuation of the displaced state continues to undergo the two-

field squeezing transformation. The state j�i evolves by the Schr�odinger

equation

q
qt
j�i ¼ � i

�h
ðĤð2 slowÞ

env þ Ĥ
ð2 slowÞ
int Þj�i ð179Þ

In the calculation of statistics we again express ��jðz; tÞ from the relation (160),

where nevertheless d�̂jðz; tÞ ¼ d�̂jðz; 0Þ for all time (they do not vary).

Following Deutsch and Garrison [230] we are interested (in such an

interaction picture) in an initial state that does not vary any more, or does so

that only its unimportant overall factor varies. The amplitude of its displacement

is given by the classical solution being of the same property, namely, a solution

of the classical equations (corresponding to) (159), from which the differential

operator q=qt and its factor have been left out, let us say ��jðz; tÞ ¼ �AjðzÞ,
j ¼ 1; 2 independent of t. We are therefore concerned with the two-field

squeezed vacuum state which is an eigenstate

ðĤð2 slowÞ
env þ Ĥ

ð2 slowÞ
int Þj�iss ¼ lj�iss ð180Þ

We will omit the subscript ss in what follows.

Recalling that the operators are replaced by the mean complex amplitudes,

we observe that equations (159) become

d

dz
�A1ðzÞ ¼ i2g��A�1ðzÞ�A2ðzÞexpði�kzÞ ð181Þ

d

dz
�A2ðzÞ ¼ ig�A2

1ðzÞexpð�i�kzÞ ð182Þ
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We may consider the solution in the form

�AjðzÞ ¼ �rjðzÞexp ½i�jjðzÞ�; j ¼ 1; 2 ð183Þ

where

�r1ðzÞ ¼
ffiffiffiffiffi
W
p

uð�jgj
ffiffiffiffiffiffiffi
2W
p

zÞ; �r2ðzÞ ¼
ffiffiffiffiffi
W

2

r
vð�jgj

ffiffiffiffiffiffiffi
2W
p

zÞ ð184Þ

with

W ¼ j �A1ð0Þj2 þ 2j �A2ð0Þj2 ð185Þ

and [234]

vð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

a þ ðv2
b � v2

aÞ sn2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

c � v2
a

q
ð� þ �0Þ; g�

r

uð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

a � ðv2
b � v2

aÞ sn2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

c � v2
a

q
ð� þ �0Þ; g�

r
ð186Þ

v2
a � v2

b � v2
c are the roots of the cubic equation

v2ð1� v2Þ2 � ���s

2
½v2 � ½vð0Þ�2�

" %2

¼ 0 ð187Þ

�s ¼ �k

jgj
ffiffiffiffiffiffiffi
2W
p ; � ¼ 1

W

ffiffiffiffiffiffiffi
1

2W

r
g

jgj
�A2

1ð0Þ�A�2ð0Þ þ c:c:

� �
ð188Þ

½vð0Þ�2 ¼ 2

W
j�A2ð0Þj2 ð189Þ

�0 is determined by the initial ‘‘mean’’ complex amplitudes �Ajð0Þ, j ¼ 1; 2, and

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

b � v2
a

v2
c � v2

a

s
ð190Þ

The phases are

�j1ðzÞ ¼ �j1ð0Þ þ 2

ðz

0

1

j�A1ðz0Þj2
W

ffiffiffiffiffiffiffi
2W
p

jgj��s ��kj �A2ðz0Þj2
h i

dz0

�j2ðzÞ ¼ �j2ð0Þ þ
ðz

0

1

j�A2ðz0Þj2
W

ffiffiffiffiffiffiffi
2W
p

jgj��s ��kj �A2ðz0Þj2
h i

dz0 ð191Þ

where

��s ¼ �þ �k

jgjW
ffiffiffiffiffiffiffi
2W
p jA2ð0Þj2 ð192Þ
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On the substitution from the definition (171), we see that x11ðzÞ, x12ðzÞ,
x22ðzÞ, and l should be solutions of the equation

Ŝð2Þy½x11; x12; x22�ðĤð2 slowÞ
env þ Ĥ

ð2 slowÞ
int ÞŜð2Þ½x11; x12; x22�jf��1; ��2gi ¼ ljf��1; ��2gi

ð193Þ

Applying the operators d�̂jðzÞ, j ¼ 1; 2, to both the sides of (193) and taking

into account that

ld�̂jðzÞjf��1; ��2gi ¼ 0 ¼ Ŝð2Þy½x11; x12; x22�ðĤð2 slowÞ
env þ Ĥ

ð2 slowÞ
int Þ

� Ŝð2Þ½x11; x12; x22�d�̂jðzÞjf��1; ��2gi; j ¼ 1; 2 ð194Þ

we rewrite the eigenvalue problem in the l-independent form

½Ŝð2Þy½x11; x12; x22�ðĤð2 slowÞ
env þ Ĥ

ð2 slowÞ
int ÞŜð2Þ½x11; x12; x22�; d�̂jðzÞ�jf��1; ��2gi

¼ 0 ¼ ~̂C
ð2Þ
j jf��1; ��2gi; j ¼ 1; 2; ð195Þ

where the commutators ~̂C
ð2Þ
j are

~̂C
ð2Þ
j ¼

i�h

2

n
�
X

mjl

ol

kl

q
qz
½nmld�̂ymðzÞ� �

X
mjl

q
qz

ol

kl

nmld�̂ymðzÞ
� �

þ
X

njl

q
qz

ol

kl

mmld�̂
y
mðzÞ

� �
þ
X

njl

ol

kl

q
qz
½mmld�̂

y
mðzÞ�

o
þ
X

mjkHklnmld�̂ymðzÞ þ
X

njkHlkmmld�̂
y
mðzÞ

�
X

njkI�klnmld�̂ymðzÞ �
X

mjkIklmmld�̂
y
mðzÞ

þ i�h

2

nX
mjl

ol

kl

q
qz
½m�mld�̂mðzÞ� þ

X
mjl

q
qz

ol

kl

m�mld�̂mðzÞ
� �

�
X

njl

q
qz

ol

kl

n�mld�̂mðzÞ
� �

�
X

njl

ol

kl

q
qz
½n�mld�̂mðzÞ�

o
�
X

mjkHklm�mld�̂mðzÞ �
X

njkHlkn�mld�̂mðzÞ

þ
X

njkI�klm
�
mld�̂mðzÞ þ

X
mjkIkln�mld�̂mðzÞ; j ¼ 1; 2 ð196Þ

with
P
�
P2

l¼1

P2
m¼1 or

P
�
P2

k¼1

P2
l¼1

P2
m¼1, according to which sub-

scripts repeat and H11 � H22 � I12 � I21 � I22 � 0. For a simple generalization

of the Deutsch–Garrison technique to be feasible, it is needed that the

commutators do not comprise the derivatives ðq=qzÞd�̂yj ðzÞ, j ¼ 1; 2. This

happens when neither dispersion nor contradirectional propagation need be

taken into account.
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The eigenvalue condition requires that the coefficients at d�̂yj ðzÞ, j ¼ 1; 2,

vanish, yielding the desired propagation equationsX
mjl

d

dz
nkl � njl

d

dz
mkl


 �
¼ i

�h

nðoÞ
c

X
ð�mjlHlmnkm � njlHmlmkm

þ njlI
�
lmnkm þ mjlIlmmkmÞ; j; k ¼ 1; 2 ð197Þ

where
P
�
P2

l¼1 or
P
�
P2

l¼1

P2
m¼1 according to which subscripts repeat.

Taking into account thatX
mjl

d

dz
nkl � njl

d

dz
mkl


 �
¼
X dnjl

dz
mkl �

dmjl

dz
nkl


 �
ð198Þ

we may give the propagation equations (197) a manifestly symmetric form; the

left-hand sides are

1

2

X
mjl

d

dz
nkl � njl

d

dz
mkl


 �
þ dnjl

dz
mkl �

dmjl

dz
nkl


 �� �
ð199Þ

Three of these equations suffice, j ¼ 1; 2, k ¼ 1; 2 for j ¼ 1

2 for j ¼ 2

"
. The parti-

cular form of the two-field squeezing of a state presents a restriction. Such two-

field squeezed states provide a solution (an eigenstate) only when one may get

rid also of the derivatives ðq=qzÞd�̂yj ðzÞ, j ¼ 1; 2. But this is possible only in

case the propagation velocities are of the same magnitude and direction. No

generalization of the form (170) is considered in this section.

In order to solve these equations, we consider classical corrections dAjðzÞ,
j ¼ 1; 2, and the equations

d

dz
dAjðzÞ ¼ �

i

�h

X2

k¼1

½HjkðzÞdAkðzÞ þ IjkðzÞdA�kðzÞ� ð200Þ

We write down the solutions in the form

dAjðzÞ ¼
X2

k¼1

½mðgÞ�kj ðzÞdAkð0Þ � nðgÞkj ðzÞdA�kð0Þ� ð201Þ

where the matrix elements mðgÞjk ðzÞ and nðgÞjk ðzÞ have the properties (176) and

(177). According to an important theorem on the polar decomposition, there is a

unitary matrix ðujkðzÞÞ such that the elements

mjk ¼
X2

l¼1

u�ljm
ðgÞ
lk ; j; k ¼ 1; 2 ð202Þ
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form a positive definite Hermitian matrix. It can be proved that the elements

njk ¼
X2

l¼1

u�ljn
ðgÞ
lk ; j; k ¼ 1; 2 ð203Þ

form a symmetric matrix, and that the elements mjk, njk together obey the

equations (197). Let us remind the reader that we assume the equal propagation

velocities.

It has been proved that, on this assumption, we obtain the simpler statistics–

the single-point ones—the same as in the framework of the usual problem

formulation, which follows. It is understood that the linearization can be used in

both the formulations to make a comparison ‘‘fair’’ and transparent.

C. Modal Approach

We may consider the normalized wavefunctions fjinðzÞ and fjoutðzÞ, which are

different from zero in the infinite intervals ð�1; 0�, ½L;1Þ, respectively, for

j ¼ 1 and on the same condition for j ¼ 2 and the codirectional propagation and

with the obvious exchange of the infinite intervals for j ¼ 2 and the contra-

directional propagation. We may introduce the annihilation operators

Âjin ¼
ð
fjinðzÞ�̂jðz; 0Þ dz

Âjout ¼
ð
fjoutðzÞ�̂jðz; 0Þ dz ð204Þ

In order to complete the description of propagation, let us assume that in

front of the nonlinear crystal it holds that

��jðz; tÞ ¼ �Ajð0Þf�jinðzÞ; j ¼ 1; 2; z � 0; all t ð205Þ

Further it holds that

x11ðzÞ ¼ x12ðzÞ ¼ x22ðzÞ ¼ 0; z � 0 ð206Þ

In other words, the input field is in a displaced unsqueezed vacuum state.

On choosing a positive wavefunction and adopting the unit of length such

that ð
fjinðzÞdz ¼

ð
fjoutðzÞdz ¼ 1; j ¼ 1; 2 ð207Þ

the result of integration of the decomposition (160) according to (204) (intro-

ducing dÂjin, dÂjout) will be simple and the mean complex amplitudes will
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remain unchanged. Behind the nonlinear crystal it holds that

��jðz; tÞ ¼ �AjðLÞf�joutðzÞ; j ¼ 1; 2; z � L, all t ð208Þ

Further it holds there that

x11ðzÞ;x12ðzÞ;x22ðzÞ;z � L ð209Þ

are determined by mjkðLÞ and njkðLÞ. We may integrate also the relation (175),

which characterizes the squeezing and introduce d~̂Ajout. The use of the

wavefunctions fjin, fjout is possible, but the connection with the modal

approach that follows still stays partial.

The preceding analysis has been appropriate to the study of propagation and

to the study of continuous-wave optical processes and devices. For comparison,

we will review a simpler approach that can be rather securely applied to the

interaction of pulsed light fields, but that had better not to be used for study of

propagation problems. The modal approach consists in considering annihilation

operators ÂjðzÞ, j ¼ 1; 2, related to the pulses centered at the frequencies oj,

j ¼ 1; 2. It is assumed that these operators obey the quasiclassical equations

d

dz
Â1ðzÞ ¼ i2g�Ây1ðzÞÂ2ðzÞexpði�k zÞ

d

dz
Â2ðzÞ ¼ i

k2

jk2j
gÂ2

1ðzÞexpð�i�k zÞ ð210Þ

where the phase mismatch �k is given by

�k ¼ k2 � 2k1 ð211Þ

and that they fulfill the initial conditions for the codirectional propagation

Â1ðzÞjz¼0 ¼ Â1ð0Þ; Â2ðzÞjz¼0 ¼ Â2ð0Þ ð212Þ

and the boundary conditions for the contradirectional propagation

Â1ðzÞjz¼0 ¼ Â1ð0Þ; Â2ðzÞjz¼L ¼ Â2ðLÞ ð213Þ

In the latter case �k  0. From the Eq. (210) it can be derived that

d

dz
Â
y
1ðzÞÂ1ðzÞ þ 2

k2

jk2j
Â
y
2ðzÞÂ2ðzÞ

� �
¼ 0̂ ð214Þ

nonlinear phenomena in quantum optics 587



We consider the input field operators at z ¼ 0 for the mode of the frequency o1

and the input ones at z ¼ 0 or z ¼ L for the mode of the frequency o2 according

to whether the propagation is co- or contradirectional, respectively. Further we

consider the output field operators at z ¼ L for the mode of the frequency o1 and

the output ones at z ¼ L or z ¼ 0 for the mode of the frequency o2 according to

the direction of propagation. We assume the ordinary commutation relations in

cases k2<
>

0

½Â1in; Â
y
1in� ¼ ½Â2in; Â

y
2in� ¼ 1̂

½Â1in; Â2in� ¼ ½Â1in; Â
y
2in� ¼ 0̂ ð215Þ

where Â1in, Â2in are understood in the sense of the relations (the codirectional

case)

M̂in ¼ M Â1ð0Þ; Â2ð0Þ
� 	

ð216Þ

and (the contradirectional case)

M̂in ¼ M Â1ð0Þ; Â2ðLÞ
� 	

ð217Þ

The system of equations (210) does not admit a closed analytical solution. The

approximations according to Ref. 215 have been extended to the contradirec-

tional propagation in Ref. 224. We rewrite the initial problem (210) and (212)

and the boundary problem (210) and (213) as integral equations for ÂjðzÞ,
j ¼ 1; 2;

Â1ðzÞ ¼ Â1ð0Þ þ i2g?

ðz

0

Â
y
1ðz0ÞÂ2ðz0Þexpði�k z0Þ dz0; k2<

>
0 ð218Þ

Â2ðzÞ ¼ Â2ð0Þ þ ig

ðz

0

Â2
1ðz0Þexpð�i�k z0Þ dz0; k2 > 0 ð219Þ

Â2ðzÞ ¼ Â2ðLÞ þ ig

ðL

z

Â2
1ðz0Þexpð�i�k z0Þ dz0; k2 < 0 ð220Þ

We solve the joint equations (218), (219) for k2 > 0 or (218), (220) for k2 < 0

by the iterative method, and in the resulting series, we restrict ourselves to terms

up to second order in z except the z factors that go together with �k. We denote

by Ĵ3ðzÞ the ideal consisting of all formal operator series that start with the order

z3. Thus we obtain that

Âjout � Â
ðapprÞ
jout ¼ Âjin þ Lâj1ð�k LÞ þ L2âj2ð�k LÞ mod Ĵ3ðLÞ ð221Þ
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where

Lâ11ð�k LÞ ¼ 2K1ðLÞÂy1inÂ2in

L2â12ð�k LÞ ¼ �4K12ðLÞÂ1inÂ
y
2inÂ2in þ 2K12ðL; k2ÞÂy1inÂ2

1in ð222Þ

Lâ21ð�k LÞ ¼ K2ðLÞÂ2
1in

L2â22ð�k LÞ ¼ 4K21ðLÞ Â
y
1inÂ1in þ

1

2
1̂


 �
Â2in ð223Þ

with

K1ðzÞ ¼
g?

�k
½expði�k zÞ � 1�

K2ðzÞ ¼ �
g

�k
½expð�i�k zÞ � 1� ð224Þ

K12ðzÞ ¼ jgj2 �i
z

�k
þ 1

ð�kÞ2
½expði�k zÞ � 1�

( )

K21ðzÞ ¼ jgj2 i
z

�k
þ 1

ð�kÞ2
½expð�i�k zÞ � 1�

( )
ð225Þ

and

K12ðL; k2Þ ¼ Re½K12ðLÞ� þ i
k2

jk2j
Im ½K12ðLÞ� ð226Þ

The notation A � B mod C means that the difference A� B belongs to the set C.

It can be verified that

½ÂðapprÞ
1out ; Â

ðapprÞy
1out � � ½Â

ðapprÞ
2out ; Â

ðapprÞy
2out � � 1̂ mod Ĵ3ðLÞ

½ÂðapprÞ
1out ; Â

ðapprÞ
2out � � ½Â

ðapprÞ
1out ; Â

ðapprÞy
2out � � 0̂ mod Ĵ3ðLÞ ð227Þ

While for k2 > 0 these relations are usual in the Heisenberg picture, for k2 < 0

it is a new result, although very weak.

In the codirectional case, the description is standard and the unitary pro-

gression operator can be found as the solution to the initial problem

d

dz
ÛðzÞ ¼ i

�h
ÛðzÞĜðzÞ ð228Þ
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where ĜðzÞ is a generator of the spatial progression having units of momentum

[235]

ĜðzÞ � ĜintðzÞ ¼ �h g�Ây21 ðzÞÂ2ðzÞexpði�k zÞ þ H:c:
h i

ð229Þ

and

ÛðzÞjz¼0 ¼ 1̂ ð230Þ

The role of the system (218)–(219) is played here by a single integral equation:

ÛðzÞ ¼ 1̂þ i

�h

ðz

0

Uðz0ÞĜðz0Þ dz0 ð231Þ

Using the iterative method, we can found ÛapprðLÞ such that

ÛðLÞ � ÛapprðLÞ mod Ĵ3ðLÞ ð232Þ

Exploiting the operator ÛðLÞ, we expect the output operators to be in the

form

M̂out ¼ ÛyðLÞM̂inÛðLÞ ð233Þ

providing

M̂out ¼ M Â1ðLÞ; Â2ðLÞ
� 	

ð234Þ

If we were lucky enough to have in hand the relation (233) with an appropriate

unitary operator ÛðLÞ also in the contradirectional case, this would yield

M̂out ¼ M Â1ðLÞ; Â2ð0Þ
� 	

ð235Þ

In particular,

Âjout ¼ ÛyðLÞÂjinÛðLÞ ð236Þ

This is valid in descriptions of lossless linear and nonlinear processes which

lead to a linear system similar to (218)–(220). We will show that in the co- and

contradirectional cases, the relation

Âjout � ÛyapprðLÞÂjinÛapprðLÞ mod Ĵ3ðLÞ ð237Þ
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holds. Here ÛapprðLÞ entering the congruence (232) for k2 < 0 will be derived by

the following method. Introducing û1ð�k LÞ and û2ð�k LÞ, we express

ÛapprðLÞ ¼ 1̂þ Lû1ð�k LÞ þ L2û2ð�k LÞ ð238Þ

where û
y
1ð�k LÞ ¼ �û1ð�k LÞ.

Setting M̂in ¼ 1̂, we obtain M̂out ¼ 1̂ for all L and hence

Re½û2ð�k LÞ� ¼ 1

2
û2

1ð�k LÞ ð239Þ

where û1ð�k LÞ is the same as in the codirectional case

Lû1ð�k LÞ ¼ K1ðLÞÂy21inÂ2in þ K2ðLÞÂ2
1inÂ

y
2in ð240Þ

Now we introduce the operators m̂1ð�k LÞ and m̂2ð�k LÞ and assume that M̂out

has the form

M̂out � M̂in þ Lm̂1ð�k LÞ þ L2m̂2ð�k LÞ mod Ĵ3ðLÞ ð241Þ

in order to determine the anti-Hermitian part i Im½û2ð�k LÞ�. From Eq. (233)

reduced modulo the ideal Ĵ3ðLÞ, we obtain the equation

�i M̂in; Im½û2ð�k LÞ�
� �

¼ 1

2
½½M̂in; û1ð�k LÞ�; û1ð�k LÞ� � m̂2ð�k LÞ ð242Þ

Let us consider particularly

M̂ðzÞ ¼ Â1ðzÞ; Â
y
1ðzÞ; Â2ðzÞ; Â

y
2ðzÞ ð243Þ

which on the substitution into (242) enables us to determine

iL2Im½û2ð�k LÞ� ¼ ½K21ðLÞ � K12ðLÞ�

� 2 Â
y
1inÂ1in þ

1

2
1̂

� �
Â
y
2inÂ2in �

k2

2jk2j
Â
y2
1inÂ2

1in

" %
ð244Þ

The relation (244) can be simplified as k2 < 0. It can be verified in an

appropriate way that it holds also in the codirectional case where k2 > 0.

D. Floquet Theory

We will demonstrate a quantum counterpart of the well-known classical Kerr-

like behavior for the cascaded second-order nonlinearities. We restrict our
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treatment of this effect to the case of codirectional propagation. Although

clasical optics predicts that the oscillations will be superposed on the Kerr-like

trend, quantum optics represents a suitable decomposition. According to the

Floquet theorem, there exists the decomposition [223]

ÛðzÞ ¼ ÛnonpriðzÞÛpriðzÞ ð245Þ

where ÛnonpriðzÞ is a nonperiodic unitary operator and ÛpriðzÞ is a periodic

unitary operator. These are given by the relations

ÛnonpriðzÞ ¼ Û
2p
�k


 �� �ð�k=2pÞz

ÛpriðzÞ ¼ Û
y
nonpriðzÞÛðzÞ ð246Þ

and have the properties

ÛnonpriðzÞ
��
z¼0
¼ 1̂; Ûpri zþ 2p

�k


 �
¼ ÛpriðzÞ ð247Þ

Up to the second order the second relation in (246) yields

ÛpriðzÞ ¼ 1̂þ zû1ð�k zÞ þ z2û2prið�k zÞ mod Ĵ3ðzÞ ð248Þ

where

û2prið�k zÞ ¼ û2ð�k zÞ � 2p
�k z

û2ð2pÞ ð249Þ

The manipulations with the first relation in (246) are very simple, because the

operator û1ð2pÞ ¼ 0̂. In the approximation exact up to the second order, we

obtain that

ÛnonpriðzÞ � 1̂þ z2û2nonprið�k zÞ mod Ĵ3ðzÞ ð250Þ

where

z2û2nonprið�k zÞ ¼ z
2p
�k z

û2ð2pÞ

¼ ijgj2 z

�k
½Â2

1ð0ÞÂ
y
2ð0Þ; Â

2y
1 ð0ÞÂ2ð0Þ� ð251Þ

Compare also (244). On introducing the photon-number operators n̂jðzÞ ¼
â
y
j ðzÞâjðzÞ, we observe that the complicated commutator in (251) is of the form

�n̂1ð0Þ½n̂1ð0Þ � 1̂� þ 4 n̂1ð0Þ þ
1

2
1̂

� �
n̂2ð0Þ ð252Þ
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This is reminiscent of the interaction Hamiltonian for a nonlinear medium

where mode 1 has the Kerr property, unlike mode 2, which is a linear oscillator

and there is a nonlinear intensity coupling between these modes.

E. Conclusion

In this section we have studied the cascaded quadratic processes with an input

two-mode coherent state in order to characterize the quantum phase shift. We

have assumed the steady-state fields and illustrated this situation by the

Deutsch–Garrison technique. To fit in the framework of such a technique, we

perform a linearization around a classical solution. Further we have adopted the

traditional approach to the propagation. We have determined a z-dependent

unitary progression operator of the two-mode system in the Schr�odinger picture

by direct integration. We have compared the results in the large-mismatch limit

with a model of an ideal Kerr-like medium, whose properties are effectively

those of the cascaded quadratic nonlinearities.
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90. J. Peřina, Jr., A. V. Sergienko, B. M. Jost, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 59, 2359

(1999).
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140. J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, Kluwer, Dordrecht,

1991, Chap. 9.

nonlinear phenomena in quantum optics 597
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157. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, IEEE Trans. Inform. Theor. 41, 1915

(1995).

158. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

159. B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys. Rev. A 51, 1863 (1995).

160. D. Bruss, Phys. Rev. Lett. 81, 3018 (1998).

161. See, e.g., D. F. Walls and G. J. Milburn, Quantum Optics, Springer, Berlin, 1995, Chap. 5.

162. A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

163. D. Deutch, A. K. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett.

77, 2818 (1996).

164. L. Goldenberg and L. Vaidman, Phys. Rev. Lett. 75, 1239 (1995); A. Peres, Phys. Rev. Lett. 77,

3264 (1996); L. Goldenberg and L. Vaidman, Phys. Rev. Lett. 77, 3265 (1996); M. Koashi and

N. Imoto, Phys. Rev. Lett. 79, 2383 (1997).

165. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, J. Mod. Opt. 47, 517 (2000).

166. C. Marand and P. D. Townsend, Opt. Lett. 20, 1695 (1995).

167. A. Muller, H. Zbinden, and N. Gisin, Europhys. Lett. 33, 335 (1996).

168. R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, and C. Simmons, Lecture Notes

Comput. Sci. 1109, 329 (1996).

169. M. Bourennane, D. Ljunggren, A. Karlsson, P. Jonsson, A. Hening, and J. P. Ciscar, J. Mod. Opt.

47, 563 (2000).

170. W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson,

Phys. Rev. Lett. 84, 5652 (2000).

171. J. D. Franson and B. C. Jacobs, Electron. Lett. 31, 232 (1995).
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I. INTRODUCTION

Molecular photonics has come of age at the threshold of the new millennium.

With the main principles of molecule–photon interaction generally well under-

stood, and with laser science mature, it is a field in which we are now witnessing

an unparalleled advancement in science and technology, and the realisation of

many new and exciting applications. It is nonetheless a field in which the gulf

between the two disciplines of chemistry and optics, which represent its

molecular and photonic heritage, demands a conceptual and mathematical bridge

of sufficient strength to support its progeny. At one extreme, the chemists and

materials scientists whose work is increasingly directed toward the devising,

synthesis, and characterization of novel photonic materials, need a framework

that can accommodate and relate to their insights into the relationships between

molecular quantum mechanics, structure, and optical properties. At the other,

laser physicists and optical engineers need a vehicle for the furtherance of theory

in a form that can reveal the detailed format of the quantum optical parameters

that relate to particular materials.

As a theory that addresses the full extent of its molecular photonics remit

with the equitable rigour of quantum mechanics, quantum electrodynamics is

undoubtedly the tool of choice for this demanding task. In a previous review,

one of us has delineated the development of a quantum electrodynamical

framework for the generation of optical harmonics in molecular systems [1].

The present work has a rather different focus and is intended to supplement that

review, making reference to it but expanding its remit and elaborating on

different topics. Theory is cast in a form suitable to address any condensed-

phase system of independent atoms or molecules, for example liquids, solutions,

molecular crystals, or mesoscopically more intricate structures such as

membranes. Among other things, this present work focuses on a number of

more recent topical issues such as the quantum-optical basis for dissipative and

refractive effects, the role of permanent dipole moments, resonance damping,

and time-reversal symmetry. Attention is also drawn to a new diagram-based

calculational device that appears to offer significant advantages over the

traditional time-ordered diagrammatic methods.

II. FOUNDATIONS

To fully develop the photonic and material components of quantum-optical

response invites the application of quantum electrodynamics (QED). The

defining characteristic of this theory is that it addresses every optical interaction

in terms of a closed dynamical system where light and matter are treated on an

equal footing, each component addressed with full quantum-mechanical rigor. It

is a theory whose predictions have been tested to a higher degree of precision
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than any other in modern physics, and that remains unchallenged by the most

sophisticated experimental measurements [2]. Even in the noncovariant form

commonly employed for dealing with the optical interactions of conventional

matter, QED accommodates retardation features associated with the finite time

of signal propagation. The success of QED in leading to the correct form of the

Casimir–Polder interaction, for example, owes its origin to this intrinsic property

of its formulation [3–6]. Indeed, it has recently been shown that even the

application of properly retarded classical electrodynamics produces results of

significantly different form [7]. In the subjects to be described below, retardation

effects are not specifically at issue—and the advantages of a QED foundation,

which we shall highlight, are entirely independent of such features. The need to

apply QED in order to properly accommodate retardation features in the quantum

optics of nanostructures has nonetheless been demonstrated by Chernyak and

Mukamel [8]. The interested reader may also find another body of work on

resonance energy transfer and cooperative absorption, in which we have

described several processes where retardation is a highly significant factor.

The primary references to such work can be found elsewhere in reviews of that

subject area [9,10].

The familiar semiclassical basis for optical calculations has been compared

to the QED method previously [1]. Some of its shortcomings in connection with

nonlinear optics and electro-optics have recently been highlighted [11]. Not

surprisingly, the semiclassical theory is inconsistent with the general principles

of quantum optics, allowing for example the detection of a single photon by two

different detectors [12]. The semiclassical invocation of an electric polarization

as the oscillating moment of a radiating dipole, coupled with the electric field

vector of the ensuing radiation, generally casts the signal amplitude in the form

of a sum of contributions associated with physically distinct processes—when it

is a fundamental violation of the superposition principle to summarize the

amplitudes of transitions between nonidentical sets of initial and final radiation

states. Again, the semiclassical polarization formalism does not allow the full

incorporation of magnetic and diamagnetic interactions. For example, in a

general three-wave interaction mediated by a species that supports E12M1 (two

electric dipoles, one magnetic dipole) but not E13 channels, the magnetic dipole

interaction in the former can be associated with each of the three waves, yet for

obvious reasons only two are accommodated in the electric polarization. It has

also been remarked that outside of QED there is no formal basis for establishing

the gauge transformations that underpin the familiar multipolar description of

optical interactions [13,14a,b].

The definitive molecular formulation of quantum electrodynamics estab-

lished by Power [3] and Craig and Thirunamachandran [15] forms the primary

basis for the theory developed below (see also Dalton et al. [16]). This

framework provides for direct calculation of the tensor parameters involved in
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linear and nonlinear optical interactions, which naturally emerge from the

derivation of observables such as signal intensities. The starting point for such

calculations is the QED Hamiltonian for the dynamical system, wherein matter

is conventionally described in terms of individual components with distinct

electronic integrity and overall electrical neutrality. In the following text we cast

theory in a form suitable to address any condensed-phase system of independent

atoms or molecules, for example, liquids, solutions, molecular crystals, or even

mesoscopically more intricate structures such as membranes. The theory can

also be applied to subunits such as ions or chromophores, assuming that it is the

transitions in these that dominate the optical response of the medium, so that

each ion or chromophore can be treated as the optical representative of a local

environment that is itself electrically neutral. For simplicity, the term molecules

is used here as an umbrella term for the distinct optical units labeled x. In

multipolar form the system Hamiltonian may then be represented as follows;

H ¼ Hrad þ
X
x

Hmol xð Þ þ
X
x

Hint xð Þ ð1Þ

Here Hrad is the Hamiltonian for the radiation field in vacuo, Hmol the field-free

Hamiltonian for molecule x, and Hint is a term representing molecular interaction

with the radiation. It is worth emphasising that the basic simplicity of Eq. (1)

specifically results from adoption of the multipolar form of light-matter inter-

action. This is based on a well-known canonical transformation from the

minimal-coupling interaction [17–21]. The procedure results in precise cancel-

lation from the system Hamiltonian of all Coulombic terms, save those intrinsic

to the Hamiltonian operators for the component molecules; hence no terms

involving intermolecular interactions appear in Eq. (1).

An important implication of developing theory from the full QED Hamilto-

nian is that neither the eigenstates of Hrad nor those of HmolðxÞ are stationary

states for the system described by it. Thus the presence of the radiation field

modifies the form of the molecular wavefunctions, and equally the presence of

matter modifies the form of the radiation wavefunctions. Since the Hamiltonian

remains the same irrespective of the state of the system, then even when no light

is present the coupling still effects a modification of the molecular wave-

functions. This is, for example, manifest in the occurrence of spontaneous

emission (luminescence) from isolated molecules in excited states, the lifting of

degeneracy between the 22S1=2 and 22P1=2 states of atomic hydrogen (the Lamb

shift), also the Casimir force between conducting plates, and yet again the

corrections responsible for what was once considered the ‘‘anomalous’’

magnetic moment of the electron.

We now consider the detailed nature of the terms in the QED Hamiltonian.

The simplest to deal with is the middle term, which denotes a sum of the normal
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nonrelativistic Schrödinger operators Hmol xð Þ for each molecule, the operator

counterparts of their classical energies, which need no further elaboration.

Equally, the radiation field term Hrad is the operator equivalent of the classical

expression for electromagnetic energy—which, recalling the relation c2 ¼
1=ðm0e0Þ between the vacuum electric susceptibility e0 and magnetic perme-

ability m0, is expressible as

Hrad ¼
1

2

ð
½e0e?2ðrÞ þ m�1

0 b2ðrÞ�d3r ð2Þ

Here e? is the fundamental transverse microscopic electric field operator and b is

the corresponding magnetic field operator. The superscript on the electric field

operator designate its transverse character with respect to the direction of

propagation, redundant in the case of the magnetic field as it is intrinsically

transverse, namely, divergence-free, since it arises from the curl of a vector

potential field a(r). Since the electric field also derives from a(r), we concentrate

first on the second-quantized form of this vector potential, which is cast in terms

of a summation over radiation modes as follows:

a? rð Þ ¼
X
k;l

�h

2Voe0

� �1=2

½eðlÞk a
ðlÞ
k eik	r þ e

ðlÞ
k a

yðlÞ
k e�ik	r� ð3Þ

Here V denotes the quantization volume, and e
ðlÞ
k is the unit polarization vector

for the radiation mode characterized by wavevector k, polarization l and circular

frequency o ¼ cjkj; where it appears, an overbar denotes complex conjugation.

The polarization vector is considered a complex quantity specifically to admit the

possibility of circular or elliptical polarizations. Associated with each mode

(k; l) are a Hermitian conjugate pair of photon annihilation and creation

operators, a
ðlÞ
k and a

yðlÞ
k , respectively, which operate eigenstates of Hrad with

mðk; lÞ photons (m being the mode occupation number) as follows

a
ðlÞ
k jm k; lð Þi ¼

ffiffiffiffi
m
p
jðm� 1Þðk; lÞi ð4Þ

a
yðlÞ
k jmðk; lÞi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ

p
jðmþ 1Þðk; lÞi ð5Þ

reducing the number of (k; l) photons by one in the former case and increasing it

by one in the latter. We note in passing that these operators are not form-

invariant, meaning that although the same symbols are used in connection with

field expansions in the minimal coupling formalism, the operators themselves

differ as from those we employ for multipolar coupling, as the radiation states on

which they operate also differ when matter is present [22].
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Our efforts will be repaid if we take pause to examine the properties of the

vector potential, and thereby also its derivative fields. The vector potential is

self-evidently Hermitian, as befits the status of the field it represents. Its parity

with respect to space-inversion is odd, since P operation reverses the sign of r,

e, and k. Its character with respect to time-inversion T , which is also of interest,

is less self-evident. First, this operation gives

a?ðrÞ�!T
X
k;l

�h

2Voe0

� �1=2

½�eðlÞ�ka
ðlÞ
�keið�k	rÞ þ e

ðlÞ
�ka

yðlÞ
�k e�ið�k	rÞ�

since it reverses the sign of k and complex conjugates all numbers. Then, since

the sum over the dummy variable k extends in all directions, it is convertible to a

sum over �k, and using the permissible relation �e
ðlÞ
�k ¼ �e

ðlÞ
k [23,24], we obtain

the result that a?ðrÞ is also of odd parity in time. Now, using the source-free

result

eðrÞ ¼ � qaðrÞ
qt

ð6Þ

implemented in the interaction picture where time features explicitly [compare

with the later equations (30)–(32)], we obtain the following expression for the

electric field operator:

e?ðrÞ ¼ i
X
k;l

�ho
2Ve0

� �1=2

½eðlÞk a
ðlÞ
k eik	r � �e

ðlÞ
k a

yðlÞ
k e�ik	r� ð7Þ

Equally, from

bðrÞ ¼ curl aðrÞ ð8Þ

we have a magnetic field given by

bðrÞ ¼ i
X
k;l

�hom0

2V

� �1=2

½bðlÞk a
ðlÞ
k eik	r � �b

ðlÞ
k a

yðlÞ
k e�ik	r� ð9Þ

where the complex unit vector b
ðlÞ
k is defined as

b
ðlÞ
k ¼ k̂� e

ðlÞ
k ð10Þ

Again, both the electric and magnetic fields are obviously of Hermitian character.

What also emerges from the route of their derivation through Eqs. (3), (6), and

608 david l. andrews and philip allcock



(8) is that the electric field operator is of odd parity with respect to space, and

even parity with respect to time; the magnetic field operator is of even parity with

respect to space and odd with respect to time.

Employing the preceding field operator expansions enables the radiation

Hamiltonian (2) to be recast in a form that more readily identifies its own

quantum properties, explicitly featuring the photon creation and annihilation

operators:

Hrad ¼
X
k;l

a
yðlÞ
k a

ðlÞ
k þ

1

2

� �
�ho ð11Þ

The 1
2
�ho associated with each radiation mode is the energy associated with the

familiar vacuum fluctuations, the origin of spontaneous emission and self-energy

corrections. The eigenstates jmðk; lÞi of Hrad are number states; states that more

closely model the coherence and other properties of laser light will be introduced

later.

To complete the definitions of the terms in Eq. (1), the full expression for the

interaction Hamiltonian HintðxÞ, before multipolar decomposition, can be wri-

tten as follows

Hint xð Þ ¼ �e�1
0

ð
p? x; rð Þ 	 d? rð Þd3r�

ð
m x; rð Þ 	 b rð Þd3r

þ 1

2

ð ð
Oij x; r; r0ð Þbi rð Þbj rð Þd3r d3r0 ð12Þ

where p? x; rð Þ is the transverse electric polarization vector field, m x; rð Þ is the

magnetization vector field, and O x; r; r0ð Þ is the diamagnetization tensor asso-

ciated with molecule x. Each has a multipolar expansion (see, e.g., Refs. 20 and

21) leading to an infinite series of terms, the leading contributions of which

provide the leading terms of HintðxÞ as follows:

Hint xð Þ ¼ �e�1
0 m xð Þ 	 d? Rx

� �
� e�1

0 Qij xð Þri d
?
j Rx
� �

�m xð Þ 	 b Rx
� �

� 	 	 	
ð13Þ

Here lðxÞ is the electric dipole (E1) operator for molecule x located at position

Rx, QijðxÞ is the corresponding electric quadrupole (E2) operator, and mðxÞ is the

magnetic dipole (M1) operator. The diamagnetization does not contribute to this

order of approximation. We also recognize in Eqs. (12) and (13) the microscopic

transverse displacement electric field, d?, whose quantum operator form will be

discussed in the next section. Explicit expressions for the components of the
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leading molecular multipoles are as follows

mi xð Þ ¼
X
aðxÞ

eaðqaðxÞ � RxÞi ð14Þ

QijðxÞ ¼
1

2

X
aðxÞ

ea ðqaðxÞ � RxÞiðqaðxÞ � RxÞj �
1

3
jqaðxÞ � Rxjdij

	 

ð15Þ

mi xð Þ ¼
1

2

X
aðxÞ

ea½ðqaðxÞ � RxÞ � _qaðxÞ�i ð16Þ

where summations are taken over each constituent particle aðxÞ of charge ea and

position vector qa. In passing it may be noted that employment of the traceless

form of the electric quadrupole and higher-order multipoles is consistent with the

divergence-free character of the electric displacement field on which the gradient

operator,r, acts in Eq. (13). In general, each electric multipole (En) is time-even

and carries a ð�1Þn signature for space inversion; the corresponding magnetic

multipole (Mn) is time-odd and has ð�1Þn�1
space parity. Hence the time-even,

space-even nature of Hint is secure.

The electric dipole term in (13) normally represents the strongest coupling

between matter and radiation and is sufficient for the majority of cases, in which

the electronic excitations of molecules are restricted to regions significantly

smaller than the wavelengths of the radiation engaged. The electric quadrupole

and magnetic dipole terms together are then smaller by a factor typically of the

order of the fine structure constant a ¼ 1
137

. The leading diamagnetisation

contribution is of the order a2, and thus comes into play at the same level as

electric octupole and magnetic quadrupole interactions. Although in many

quantum optical calculations the detailed, multipolar form of the coupling is

deemed largely irrelevant, the spatial and temporal symmetries depend crucially

on the multipoles involved, as do the magnitudes of the corresponding coupling

constants.

III. MEDIA CORRECTIONS

The development of the quantum field theory so far has been cast in a form most

directly suited for applications in which the material part of the system comprises

only those molecules or optical centers involved in the interactions of interest,

with no other matter present. More generally in condensed-phase materials, such

centers are surrounded by other atoms or molecules whose electronic properties

modify the fields experienced (and produced) by those optical centers. To take

account of such influences, we introduce the microscopic displacement electric

field d. This arises as a direct consequence of working within the multipolar
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formalism and is related to the fundamental electric field e and microscopic

polarization field p by

d? ¼ e0e? þ p? ð17Þ

At this stage the molecular and optical properties are neatly entwined. In its

semiclassical macroscopic counterpart, Eq. (17) is termed a material equation

because of its engagement of a bulk polarization P; the microscopic and bulk

polarisations are, for simple cubic systems, related through the succinct expre-

ssion
P

3
¼ p ð18Þ

It is common practice in the semiclassical formalism to incorporate all the

ensuing material-induced (Lorentz) field corrections as an integral part of the

optical susceptibilities in an ad hoc manner. In using quantum field theory, and

considering all interactions to occur through the exchange of transverse photons,

it is not necessary to modify the corresponding molecular polarizabilities, if the

field operators take full account of the light propagation environment. Then all

matter-induced corrections are carried with the displacement field, and the

appropriately modified operator automatically accommodates the local field or

media effects.

The nature of media effects relates to the fact that, since the microscopic

displacement field is the net field to which molecules of the medium are

exposed, it corresponds to a fundamental electric field dynamically ‘‘dressed’’

by interaction with the surroundings. The quantized radiation is in consequence

described in terms of ‘‘dressed photons’’ or polaritons. A full and rigorous

theory of dressed optical interactions using noncovariant molecular quantum

electrodynamics is now available [25–27], and its application to energy transfer

processes has been delineated in detail [10]. In the present context its

deployment leads to a modification of the quantum operators for the auxiliary

fields d? and h, which fully account for the influence of the medium—the

fundamental fields of course remain unchanged. Expressions for the local

displacement electric and the auxiliary magnetic field operators [27], correct for

all microscopic interactions, are then as follows

d? rð Þ ¼ i
X
k;l;m

�hv
ðmÞ
g oðmÞk e0

2cVnðoðmÞk Þ

 !1=2
fnðoðmÞk Þg

2 þ 2

3

 !

� ½eðlÞk P
ðlÞ
k;meiðk	rÞ � e

ðlÞ
k P

yðlÞ
k;m e�iðk	rÞ� ð19Þ

h?ðrÞ ¼ i
X
k;l;m

�hv
ðmÞ
g oðmÞk nðoðmÞk Þ

2m0cV

 !1=2

½bðlÞk P
ðlÞ
k;meiðk	rÞ � �b

ðlÞ
k P

yðlÞ
k;m e�iðk	rÞ� ð20Þ
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where m0 is the magnetic permeability of the vacuum m0 ¼ 1=e0c2ð Þ. To fully

appreciate these expressions for the new auxiliary field operators, it is expedient

to dwell briefly on their key features and elucidate the new symbols which appear

in the preceding equations.

Compared with the mode expansions of their fundamental field counterparts,

Eqs. (7) and (9), the most obvious difference apparent in Eqs. (19) and (20)

relates to the introduction here of additional summations over m. This index

labels the branches of polariton dispersion and runs from m ¼ 1; 2; . . .M, where

M ¼ Mmol þ 1 and Mmol is the number of molecular frequencies. For example,

in a two-level molecular system characterized by a single transition frequency,

there are two branches to the dispersion curve. In general, the summations over

k extend to k� 2p=a, where a is a characteristic intermolecular separation.

Consequently the auxiliary operators are properly invoked only when dealing

with the propagation and interactions in condensed media of infrared, optical, or

ultraviolet light—where a description in terms of refractive index is entirely

legitimate. Nonetheless, the theory properly accommodates not only transparent

but also dispersive regions where the polariton wavevector and frequency are

not linearly related, signifying resonant or near-resonant optical response. It also

affords a means for the representation of photonic bandgap materials. Figure 1

illustrates the photonic and exciton-like regions for conventional two-, three-

and multilevel systems. The index m, which identifies each of the dispersion

branches in the general case, has to be incorporated in the definition of the

polariton frequency, as given by

oðmÞk ¼ ck

nðoðmÞk Þ
ð21Þ

where several normal frequencies are associated with each value of k, again as

evident in Fig. 1. The mode expansions (19) and (20) also feature polariton

annihilation and creation operators, P
ðlÞ
k;m and P

yðlÞ
k;m , respectively, with similar pro-

perties to their vacuum counterparts of Eqs. (4) and (5). Finally, Eqs. (19) and (20)

also feature the group velocity v
ðmÞ
g , defined for each specific polariton mode as

vðmÞg ¼ c
qoðmÞk nðoðmÞk Þ

qoðmÞk

( )�1

¼ qoðmÞk

qk
ð22Þ

and again incorporating the frequency-dependent refractive index defined as

½nðoðmÞk Þ�
2 ¼ 1þ

�aðoðmÞk Þr=e0

1� �aðoðmÞk Þr=3e0

ð23Þ
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Figure1. Schematiccurves illus-

trate the dispersion relationship be-

tween the polariton frequency/oðmÞðkÞ
and the wave-vector/k. Figure 1(a)

illustrates the dispersion if only a

single molecular frequency is present

(Hopfield model), and (b) the case of

two molecular resonances; (c) depicts

a situation in which a number of such

dispersion branches are present.

a quantum electrodynamical foundation 613



representing a quantum extension of the Lorentz–Lorenz equation. Here �a is the

average molecular polarizability of the homogeneous host, based on an

electronically isotropic medium, and r is the number density of host molecules.

In the majority of applications to quantum and nonlinear optical phenomena,

it is only the photon-like branches of the dispersion curves that are of interest,

and the m index in the preceding expressions can generally be left implicit.

Again, as we shall be concerned with photonic regions, it is legitimate to engage

a
ðlÞ
k and a

yðlÞ
k in place of P

ðlÞ
k and P

yðlÞ
k . In keeping with this policy, we shall from

here on once again refer only to photons, although it is understood that the quanta

involved are, strictly speaking, optical branch polaritons. The case of vacuum

propagation can then be viewed as a special case of the more general formalism.

For example, if the refractive index is set to unity in Eq. (19), the group velocity

is simply c, the polariton operators become identical to those representing the

annihilation and creation of pure photons, and the expression reduces directly to

the fundamental electric field operator of Eq. (7), multiplied by e0.

At this juncture we have in place a formalism that fully accounts for the

refractive and dissipative modifications of the fundamental fields due to the

dispersive electronic properties of the optical medium. This has been achieved

not by any phenomenological or other ad hoc approach, but from first principles,

using the theoretical methods of molecular QED. As a result, the necessary local

field corrections in condensed media naturally emerge from the detailed form of

the auxiliary field operators, obviating the need to encompass them indirectly in

terms of macroscopic bulk susceptibilities, as is necessary in the semiclassical

theory.

IV. PERTURBATIVE DEVELOPMENT

With the full Hamiltonian given by Eq. (1), the time evolution of the system

wavefunction c is determined by the time-dependent Schrödinger equation:

i�h
qc tð Þ
qt
¼ Hc tð Þ ð24Þ

Solutions of high precision, fully incorporating electronic media effects, can be

derived on the assumption that the coupling between matter and radiation is

treated as a perturbation on the eigenstates of H0, where

H0 ¼ Hbath þ
X
x

0Hmol xð Þ ð25Þ

with

Hbath ¼ Hrad þ
X
x

00 HmolðxÞ þ HintðxÞð Þ ð26Þ
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In Eq. (25) the prime on the summation denotes its limitation to those molecules

whose transitions are engaged either directly or indirectly in the optical response.

The double prime on the summation in Eq. (26) denotes the exclusion of those

molecules. The eigenstates of H0 thus contain products of the eigenstates of the

optically prominent molecules and the dressed-photon eigenstates of Hbath. As

usual, if the system is in an eigenstate of H0 at time 0, the wavefunction at any

later time t is expressible as

jcðtÞi ¼ exp
�iH0t

�h

� �
Uðt; 0Þjcð0Þi ð27Þ

defining a unitary time evolution operator Uðt; 0Þ for the evolution of the system

in the time interval (0; t). Substitution of Eq. (27) into Eq. (24) leads to an exact

result for Uðt; 0Þ expressible as the following series expansion

Uðt; 0Þ ¼ 1þ
X1
m¼1

ði�hÞ�m

ðt

t0

ðt1

t0

	 	 	
ðtm�1

t0

~Hintðt1Þ~Hintðt2Þ 	 	 	 ~HintðtmÞdt1 dt2 	 	 	 dtm

ð28Þ

where ~HintðtÞ is the interaction representation of the operator responsible for the

coupling between light and matter, given by ~HintðtÞ ¼ expðiH0t=�hÞHint

expð�iH0t=�hÞ. In the electric dipole approximation this results in the expression

~HintðtÞ ¼ �e�1
0 l 	 ~dðr; tÞ ð29Þ

where the corresponding microscopic electric displacement operator, ~dðr; tÞ in

the interaction representation, may be expressed as a sum of two parts:

~dðr; tÞ ¼ ~dðþÞðr; tÞ þ ~dð�Þðr; tÞ ð30Þ

~dðþÞðr; tÞ ¼ i
X
k;l;m

�hv
ðmÞ
g oðmÞk e0

2cVnoðmÞ
k

( )1=2 n2

oðmÞ
k

þ 2

3

0
@

1
Ae
ðlÞ
k a

ðlÞ
k exp½iðk 	 r� oðmÞk tÞ�

ð31Þ

~dð�Þðr; tÞ ¼�i
X
k;l;m

�hv
ðmÞ
g oðmÞk e0

2cVnoðmÞ
k

( )1=2 n2

oðmÞ
k

þ 2

3

0
@

1
Ae
ðlÞ
k a

yðlÞ
k exp½�iðk 	 r� oðmÞk tÞ�

ð32Þ
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In this form, the time-even and space-odd character of the electric displacement

is again apparent. Also, development of the magnetization reveals its time-odd

and space-even character.

In developing the quantum amplitude for an optical process, it is necessary to

determine the matrix elements of the time evolution operator, and to this end it is

frequently expedient to invoke an expansion in terms of operators rather than the

embedded time integrals of Eq. (28). The method of resolvent operators, which

affords a framework for both perturbative and nonperturbative analysis [28–30],

proceeds through the introduction of a retarded Green function, KþðtÞ ¼
Uðt; 0ÞyðtÞ, together with its advanced counterpart, K�ðtÞ ¼ �Uðt; 0Þyð�tÞ,
where yðtÞ is the Heaviside function. These functions allow us to extend to

infinity the temporal dependence of the evolution operator, enabling us to

express the time evolution operator UIðt; t0Þ as

Uðt; 0Þ ¼ KþðtÞ � K�ðtÞ ¼
1

2pi
eiEf t=�h

ðþ1
�1

eiEf t=�h½G�ðEÞ � GþðEÞ�dE ð33Þ

where Ef denotes the (final) system energy and the retarded and advanced

propagators, GþðEÞ and G�ðEÞ, respectively, are Fourier transforms of the

retarded and advanced Green functions:

G�ðEÞ ¼
1

i�h

ðþ1
�1

eiEt=�hK�ðtÞdt ¼ lim
Z!0þ

ðE � H � iZÞ�1 ð34Þ

At this stage it is convenient to define a set of subsystems, each containing one of

the optically prominent molecules x and the bath. Introducing and expanding in

perturbative fashion the corresponding resolvent operator [31]

TsubðxÞðzÞ ¼ ðz� H0 � Hint xð ÞÞ�1

¼ ðz� H0Þ�1 þ ðz� H0Þ�1
HintðxÞðz� H0Þ�1

þ ðz� H0Þ�1
HintðxÞðz� H0Þ�1

HintðxÞ z� H0ð Þ�1	 	 	

¼
X1
p¼0

½T0ðzÞHint xð Þ�pT0ðzÞ ð35Þ

enables the requisite optical amplitude to be determined. Specifically, for a

process associated with an initial system state jii and a final system state j f i, we

have a quantum probability amplitude that can be evaluated from the equation

cfi ¼ h f jUðt; 0Þjii ¼ 1

2pi
eiEf t=�h

þ
e�izt=�hh f jTsubðxÞðzÞjiidz

¼ 1

2pi
eiEf t=�h

X1
p¼0

þ
e�izt=�hh f j T0ðzÞHint xð Þ½ �pT0ðzÞjiidz ð36Þ
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where the contour for integration encompasses the real axis. Using the method of

residues to evaluate the contour integral, and discarding optical frequency

oscillatory terms, we thus obtain

cfi ¼ dfi � 2pid Ef � Ei

� �X
x

Mfi xð Þ ð37Þ

The first term denotes the trivial nonprocess in which the initial and final states of

the entire system are identical, and can be discarded for any real process. The

subsequent term, in which the delta function serves to ensure overall energy

conservation, leads to a rate equation expressed by the familiar Golden Rule

[32–34]

� ¼ 2p
�h

� �X
x

MfiðxÞ
�����

�����
2

dðEf � EiÞ ð38Þ

cast in terms of a transition matrix whose elements are

Mfi xð Þ ¼ fsubðxÞjHint xð Þ þ Hint xð ÞTsubðxÞHint xð ÞjisubðxÞ
� �

¼ h fsubðxÞjHint xð Þ þ
X1
p¼0

Hint xð Þ T0Hint xð Þ½ �p T0Hint xð ÞjisubðxÞi ð39Þ

and where the resolvent operators T0 and TsubðxÞare evaluated for z ¼ E0.

V. TIME ORDERINGS AND STATE SEQUENCES

For each molecule x, every other molecule yields a vanishing contribution to the

summands in Eq. (39). Hence, by invoking the completeness relation for the

subsystem states, the matrix elements Mfi can succinctly be expressed as

Mfi¼h f jHintjii þ
X
rð1Þ

h f jHintjrð1Þihrð1ÞjHintjii
Ei � Erð1Þð Þ

þ
X

rð2Þ;rð1Þ

h f jHintjrð2Þihrð2ÞjHintjrð1Þihrð1ÞjHintjii
Ei � Erð2Þð Þ Ei � Erð1Þð Þ

þ
X

rð3Þ;rð2Þ;rð1Þ

h f jHintjrð3Þihrð3ÞjHintjrð2Þihrð2ÞjHintjrð1Þihrð1ÞjHintjii
Ei � Erð3Þð Þ Ei � Erð2Þð Þ Ei � Erð1Þð Þ þ 	 	 	

ð40Þ

where all states and energies are eigenstates of H0 and thus relate to the total

system containing both the bath and the molecule, with the summations over the
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virtual intermediate states rð1Þ; rð2Þ; . . . taken over all such states excluding i or f .

In passing it is worth noting that this specifically does not exclude the molecular

initial or final state from inclusion in the intermediate state summations, a point

that has often been misunderstood but that is quite clear in the QED formulation.

The representation of any m-photon interaction entails terms involving m-photon

operators. In view of the linearity in the photon creation and annihilation

operators of all the electric and magnetic multipole interactions, this represen-

tation generates its leading contribution from the term involving the mth power

of Hint, and for most processes it is sufficient to consider only the leading

nonvanishing term. Writing the system states explicitly as products of molecular

and radiation states, we then have

M
ðmÞ
fi ¼

X
r
ð1Þ
mol

	 	 	
X
r
ðm�1Þ
mol

X
r
ð1Þ
rad

	 	 	
X
r
ðm�1Þ
rad

h frad; fmoljHintjrm�1
mol ; r

ðm�1Þ
rad i

� hrðm�1Þ
rad ; r

ðm�1Þ
mol jHintjrðm�2Þ

mol ; r
ðm�2Þ
rad i 	 	 	 hrð1Þrad; r

ð1Þ
moljHintjimol; iradi

� ½ðEimol
� E

r
ðm�1Þ
mol

Þ þ ðEirad
� E

r
ðm�1Þ
rad

Þ��1 	 	 	 ½ðEimol
� E

r
ð1Þ
mol

Þ

þ ðEirad
� E

r
ð1Þ
rad

Þ��1 ð41Þ

In each of the (m� 1) summations over the intermediate radiation states jrðjÞradi,
there are only a limited number of possibilities that can make nonvanishing

contributions, determined by the sequencing of the creation and annihilation

events for the photons emitted and absorbed during the overall interaction. Each

of these sequences is conventionally represented using Feynman time-ordered

graphs. Calculations based on this method are commonly expedited by the

construction of all topologically different diagrams connecting the same initial

and final states; the summations over the intermediate states jrð1Þradi to jrðm�1Þ
rad i in

Eq. (41) are then equivalent to summations over the various time orderings. An

alternative method based on state sequences [35] enables the complete set of

interaction sequences for any process to be cast in the form of a single diagram.

The latter method offers a more concise presentation and improved calculational

expediency, particularly in the case of high-order interactions.

Optical frequency doubling affords a simple illustration of each of these

diagrammatic methods. For clarity, it is expedient to write down the system

states for the conversion process (although familiarity with either method

enables this information to be read off directly from the diagrams). The initial

and final states for the interaction are as follows:

jimol; iradi ¼ jE0; qðk; lÞ; q0ðk0; l0Þi ð42Þ
j fmol; fradi ¼ jE0; ðq� 2Þðk; lÞ; ðq0 þ 1Þðk0; l0Þi ð43Þ
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Given that the molecule is initially in its ground state, there are initially q photons

of the pump mode (k; l) and q0 photons of the harmonic mode (k0; l0). There are

three possible sequences of photon annihilation and creation (a, b, and c) that can

provide a route from the initial to the final state, each involving different virtual

intermediate states. To avoid confusion, the intermediate state labels rð1Þ and rð2Þ

are redesignated here as r and s, respectively, and the latter appear below with

superscripts to identify the route

jrmol; ra
radi ¼ jEr; ðq� 1Þðk; lÞ; q0ðk0; l0Þi

jsmol; sa
radi ¼ jEs; ðq� 2Þðk; lÞ; q0ðk0; l0Þi

)
ð44Þ

jrmol; rb
radi ¼ jEr; ðq� 1Þðk; lÞ; q0ðk0; l0Þi

jsmol; sb
radi ¼ jEs; ðq� 1Þðk; lÞ; ðq0 þ 1Þðk0; l0Þi

)
ð45Þ

jrmol; rc
radi ¼ jEr; qðk; lÞ; ðq0 þ 1Þðk0; l0Þi

jsmol; sc
radi ¼ jEs; ðq� 1Þðk; lÞ; ðq0 þ 1Þðk0; l0Þi

)
ð46Þ

as represented by the three time-ordered diagrams of Fig. 2. For example, in

Fig. 2a, the sequence of interactions is as follows. First, a photon of the pump

mode is annihilated by a molecule in its ground state j0i, which thereby

undergoes a transition to a state jri. A second pump photon is then annihilated,

and the molecule proceeds to a state jsi. Finally, a harmonic frequency photon is

emitted, and the molecule returns to its ground state. Figures 2b and 2c represent

the two other possible sequences in which emission of the harmonic photon

precedes either one, or both of the pump photon interactions. It is important to

emphasize that no single time-ordered diagram represents a physically distingui-

shable process; these diagrams are ultimately only calculational aids based on

s

r

0

0

k′,λ′

k,λ

k,λ

(a) (b) (c)

Figure 2. The three time-ordered diagrams representing second harmonic generation. Pump

photons of wave vector k and polarization l impinge on the molecule from the left and the

subsequent harmonic (k0;l0) leaves the molecular world line from the right. We assume the initial

and final state of the molecule is the ground state 0; the intermediate states are labelled r and s.
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the approximations of perturbation theory. Collectively, the photon creation and

annihilation events that take place at each molecule appear simultaneously, as far

as real experimental measurements with finite time resolution are concerned.

However, the time–energy uncertainty relation does permit short-lived inter-

mediate states that are not properly energy-conserving. This helps explain why it

is necessary to include the diagrams corresponding to extremely counterintuitive

time sequences such as that of Fig. 2c. Nonetheless, all possible interaction

sequences must be included in calculating any matrix element.

The state sequence diagram of Fig. 3 accommodates all three routes between

the initial and final states; those states are represented by boxes on the far left

and far right of the diagram, respectively. The intervening columns represent

intermediate system states r and s connected by links that represent valid

operations by Hint on a preceding state. In these diagrams, lines thus represent

interactions and vertices (where data boxes appear) represent states; in this

sense they bear a reciprocal space relationship to the Feynman diagrams, where

the converse applies.

VI. TENSOR REPRESENTATION

To proceed with the general development, it is useful to extract from the quantum

amplitude those elements that involve properties belonging solely to the radiation

and molecular tensors, respectively. Thus we formulate matrix elements through

the appropriate tensor products for deployment in the Golden Rule.

Consider an m-photon process involving modes of radiation ðkm; lmÞ; . . . ;
ðk1; l1Þ, all potentially different, initially containing qm; . . . ; q1 photons, respec-

tively. Equation (41) may be factorized as a tensor product of two terms, only

one of which is dependent on any intrinsic molecular properties:

Mfi k1; l1ð Þ 	 	 	 km; lmð Þf g ¼ ð�1Þme�m
0 aim			i2i1 �om;o1; . . . ;onð Þ

� rim			i2i1
km; lmð Þ; . . . ; ðk1; l1f Þg ð47Þ

k, k

k, k, k′

k, k, k′

k, k′

k′

Figure 3. State sequence diagram for SHG. The intial state is represented by the solitary box in

the column on the left and the final state by the corresponding the box on the right; columns with

more then one box indicate virtual states r and s. An example is afforded by the uppermost route

through the diagram, which corresponds identically to the time-ordering of Fig. 2(c).
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Specifically, this equation entails the m-fold tensor contraction of aðmÞðom; . . . ;
o1Þ, a rank-m microscopic nonlinear polarisability tensor containing all the

molecular variables (with a parametric dependence on the optical frequencies),

with qðmÞfðkm; lmÞ; . . . ; ðk1; l1Þg, a tensor constructed solely from radiation

parameters, including all the necessary local field corrections. Note the

incorporation in Eq. (47) of a sign prefactor, serving to redefine each energy

denominator so that the absorption of a photon is associated with a negative

radiative frequency and emission with a positive frequency. This results in

nonlinear polarisability expressions conforming to the usual conventions. An

example might be n-harmonic generation where a tensor written as aðmÞð�om;
o1; . . . ;o1Þ indicates the absorption n photons of frequency o1 and emission of a

single photon at a frequency om � no1.

We postpone to a later section a detailed explanation of the explicit

expressions for the molecular tensors aðmÞ; we next identify the structure of the

radiation tensor qðmÞ, which in the electric dipole approximation is given by the

following:

qðmÞfðkm; lmÞ; . . . ; ðk1; l1Þg ¼ hðmm þ 1Þðk; lÞjd?jðmmÞðk; lÞi; . . . ;
hðm1 � 1Þðk; lÞjd?jðm1Þðk; lÞi ð48Þ

In general, to incorporate the matrix elements of Eq. (47) into the rate equation

(38), it is necessary to sum, over all molecules in the system, the tensor product

entailed in the former—and to this end it proves useful to isolate the one part of

the above radiation tensor that is molecule-specific. This simply reflects the fact

that the tensor is a field quantity, sensitive to the position of the molecule at

which it is evaluated, as follows from the phase factors in (19) and (20). The

tensor representing the radiation field for the interaction at molecule x may, in

fact, be written in the following general form, irrespective of the order or nature

of the multipolar interactions involved:

q xð Þ ¼ q0 expði�k 	 RxÞ ð49Þ

Here r0 is a position-independent radiation tensor, Rx is the position vector of the

molecule relative to an arbitrary fixed origin, and �k the wavevector mismatch

for the process as defined by

�k ¼
Xm

r

grkr ð50Þ

where gr assumes the value of þ1 for each absorbed photon and �1 for each

emitted photon. For instance, the radiation tensor for frequency doubling carries

the phase factor exp½ið2k� k0Þ 	 Rx�, and hence �k ¼ ð2k� k0Þ. Such features
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are responsible for the all-important issue of coherence. Combining the above

results, it thus transpires that any optical process rate may be written in a general

Golden Rule form as

� ¼ 2p
�h

XN

x

e�m
0 aðxÞim			i2i1

r0im			i2i1
exp i�k 	 Rx
� ������

�����
2

d Ei � Ef

� �
ð51Þ

This equation lies at the heart of the theoretical development; the precise

structure of the molecular and radiation tensors it involves will depend on the

detailed nature of the optical interaction to be modeled.

VII. CONSTRUCTION OF RADIATION TENSORS

Having stated that all optical interactions can be modeled through Eq. (51), we

now outline the explicit details of both radiation and molecular tensors

embedded in the matrix element. As we have shown, the radiative features

that are of interest are cast in the tensor r introduced in Eq. (48). For any optical

process the components of this tensor are explicitly given by a position-

independent expression, which follows from Eq. (49):

r0fðkm; lmÞ; . . . ; ðk1; l1Þg ¼ r0im			i1fðkm; lmÞ; . . . ; ðk1; l1Þg

r0im			i1fðkm; lmÞ; . . . ; ðk1; l1Þg ¼ f�iðmÞgsim			i1fðkm; lmÞ; . . . ; ðk1; l1Þg

�
Ym
i¼1

�hv
ðmÞ
g oðmÞk e0

2cVnok

 !1=2
n2
ok
þ 2

3

� � ffiffiffi
q
p

2
4

3
5
ðjkijÞ

ð52Þ

Here, qi is the number of photons in the ith mode within the quantization volume

V . If no photons of a particular mode are initially present, as would be the case

for spontaneous emission processes, qi is equal to unity, as the photon creation

operator then acts on the vacuum state. The symbol sfðkm; lmÞ; . . . ; ðk1; l1Þg
represents a polarization tensor defined by

Sim			i1fðkm; lmÞ; . . . ; ðk1; l1Þg ¼ ei1ðk1; l1Þ 	 	 	 eimðkm; lmÞ � ei1 	 	 	 eim ð53Þ

The arguments associated with each unit vector are now dropped for brevity. The

polarization unit vectors ei refer to each photon involved in the interaction

process. The polarization vectors are represented as above for each photon that is

annihilated, but created photons carry the overbar to represent complex
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conjugation, thus allowing for the possibility that the light is circularly or

elliptically polarised. It is also customary if two photons are from the same mode,

as for example would be the case in single-color two-photon absorption or a

harmonic process, to place parentheses around the appropriate indices to signify

permutational symmetry.

In order to relate to the specific conditions produced by a given laser source,

it is clearly necessary to express results in terms of physically meaningful

radiation parameters in lieu of the artificial quantization volume V and photon

number q that appear in Eq. (52). The procedure for this reformulation allows

consideration of pump radiation states characterized by various forms of photon

statistics, leading to results appropriate for several different kinds of intensity

distribution. In an earlier review [1] it was shown how to develop theory in

terms of quantum optical states more realistic than the zero-fluctuation number

states jqðk; lÞi hitherto employed in the general formulation. Although these

states are the most usual basis for QED calculations based on time-dependent

perturbation theory, they are associated with infinite phase uncertainty and do

not adequately represent any real laser input. One basis set of states that appears

rather better suited to the modeling of laser radiation is the overcomplete set

represented by the coherent states jbðk; lÞi. These states, characterized for any

given radiation mode by minimization of the uncertainty in phase and

occupation number [36,37], are eigenstates of the corresponding annihilation

operators, satisfying the result

aðlÞðkÞjbðk; lÞi ¼ bðk; lÞjbðk; lÞi ð54Þ

where bðk; lÞ is a complex number whose modulus relates to the mean photon

number q through q ¼ jbðk; lÞj2. It should nonetheless be mentioned that the

employment of coherent or other states can, if caution is not exercised, produce

spurious features resulting from the fact that they are not eigenstates of the

radiation Hamiltonian, so that neither photon creation followed by annihilation

nor annihilation followed by creation is an identity operation. This feature is

commonly overlooked, but it provides one of the best reasons for working with

number states if quantum optical aspects are not at issue.

Rate equations expressed in terms of mean photon number and quantization

volume are still not directly applicable to experiment. Moreover, since the

quantization volume is no more than a theoretical artifact, it must invariably

cancel out in any final result. However, the ratio of these two quantities, which

represents a mean photon density, is directly related to the mean irradiance, and

the relationship may be derived as follows. Consider a quantization volume

represented by a small cube of space of side length l and volume V through

which the incident beam passes; by definition, this cube contains on average q

photons of circular frequency ok, and its energy content is q�hok (see Fig. 4). For
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a group of q photons with a mean group velocity vg, it takes a time l=vg for the

energy q�hok to traverse the cube; hence the mean irradiance IðokÞ (power per

unit beam cross-sectional area) is given by fq�hok=ðl=vgÞg=l2, so that

IðokÞ ¼
q�hvgok

V
ð55Þ

In passing we may note that the mean interval t between photon arrival times for

any one molecule of physical cross section s is directly related to IðokÞ through

t ¼ �hok

IðokÞs
ð56Þ

The parameter t is rarely featured in the literature but in the case of non-

parametric excitation and decay processes in molecular media, its value relative

to the decay lifetime affords a useful gauge of excitation efficiency.

For the generation of radiation through any incoherent optical process, the

general freedom in propagation direction means that each photon is spontane-

ously created into any one of an infinite set of radiation states, subject to energy

conservation. For a collection of free molecules, uncertainty in the molecular

state energy, due to the presence of densely packed quasicontinuous vibrational

and rotational energy levels, ensures that a density of states representation can

legitimately replace the delta function of Eq. (51); see, for example, the work by

Craig and Thirunamachandran [15].

Even in coherent processes whose nature serves to define the principal

direction of the emergent radiation, and where the initial and final molecular

states are necessarily identical, the general theory leads to quantum amplitudes

in which the final state of the radiation field is not yet completely specified with

regard to the wavevector and polarization of the emitted radiation. As such, the

sums over all possible values of k0 and l0 should remain in the general ampli-

tudes of the radiation tensor q0. However, the restrictions imposed on parametric

ι

Figure 4. The schematic illustrates a photon flux through a quantization volume. Each side of

the chosen cube is assigned a length l. The photons traverse the box in a time l=vg where vg is the

group velocity in the medium.
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processes by virtue of energy conservation and wavevector matching conditions

[1] ensures that radiation is emitted into a small pencil of solid angle centered

around k0 þ d k0, where the prime indicates that the photon is emitted. In

effecting the associated sums, we achieve a result of a form that correctly loses

dependence on the quantization volume (i.e., except for processes occurring in

geometrically confined microcavities where the quantization volume retains

physical significance). In the limit of a large quantization volume, the sum over

k0 is conveniently replaced by an integral of the form

1

V

X
k0
¼)

V!1

ð
d3k0

ð2pÞ3
¼ 1

ð2pÞ3
ð1

0

þ
k02dk0d	 ð57Þ

where it is understood that the solid angle d	 extends over all angles. For

coherent emission into a pencil of solid angle d	 (� 4p steradians) centered

around k0, it is legitimate to substitute for the sum over k0 by

X
k0
¼) d	V

ðwpÞ3
ð1

0

k02dk0 ð58Þ

Using Eq. (58), any remaining V factor can be successfully removed from the

appropriate expressions.

To illustrate a case to be revisited in detail later, we explicitly derive the rate

for coherent second-harmonic generation in a system containing M molecules.

Using the general expression Eq. (52) for the radiation tensor together with the

Golden Rule, and retaining a sum over the emitted harmonic in the matrix

elements, we first obtain an expression of the form

�coh ¼
2p
�he6

0

�hvgoke0

2cVnok

� �2 n2
ok
þ 2

3

� �4

qðq� 1Þ

�
X
k0;l0
ðZM �MÞ

�hv0go
0
k0e0

2cVno0
k0

 !
n2
o0

k0
þ 2

3

 !2

jbiðjkÞð�2o;o;oÞ�e0iejekj2

� dð�hok � 2�hokÞ ð59Þ

Several points deserve mention. First, retention of the sum over the harmonic

wavevector and polarization signifies an initial condition that assumes the

absence of any harmonic radiation prior to interaction, so that no direction is

favored on the basis of stimulated emission (i.e., although the emergent

wavevectors are equal in magnitude, they may differ in direction). Secondly,

although photon branch indices are suppressed for conciseness, they are to be
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regarded as still implicit. Finally, the parentheses around the molecular tensor

indices represent index symmetry. (This will be explained in more detail when

we deal with the molecular tensors explicitly in the following sections.)

The delta function in Eq. (59) serves to ensure energy conservation, while the

factor ðZM �MÞ signifies the extent to which photon momentum is conserved,

as determined by wavevector matching. As shown previously [1,38], we have

ZM ¼ M2 in the limit of exact wavevector matching. Now, substituting Eqs. (55)

and (58) into (59) allows the rate of coherent harmonic production, into an

infinitesimal solid angle d	, to be expressed as follows:

d�coh ¼
I2ðokÞgð2Þok

d	

4�hð2pÞ2c2e3
0n2

ok

n2
ok
þ 2

3

� �4X
l0

ð1
0

k02dk0
do0k0
dk0

�ho00
2cno0

k0

 !

�
n2
o0

k0
þ 2

3

 !2

jbiðjkÞð�2o;o;oÞ�e0iejekj2dð�ho0k0 �2�hokÞ ðZM �MÞ ð60Þ

Here the group velocity of the harmonic wave is written explicitly as do0k0=dk0,
and we have introduced the second-order degree of coherence gð2Þ as appropriate

for a generalization beyond number states

gð2Þ ¼ hqðq� 1Þi
hqi2

ð61Þ

where the angular brackets indicate expectation values based on the number state

operators, q � aya. We proceed with the assumption that the output is polarized,

thus obviating the need for the polarization sum l0. Then, using the definition

k0 ¼ o0k0no0
k0
=c and exploiting delta function properties and after a little algebra,

we finally arrive at the expression

d�coh ¼
I2ðokÞgð2Þok

d	o3
kn2ok

4�hc5p2e3
0n2

ok

n2
ok
þ 2

3

� �4
n2

2ok
þ 2

3

� �2

� jbiðjkÞð�2o;o;oÞ�e0iejekj2ðZM �MÞ ð62Þ

which is best recast in terms of a radiant intensity of harmonic emission by using

Iðk0Þ ¼ ð�ho0k0 Þ
d�

d	
¼ ð2�hokÞ

d�

d	
ð63Þ

Significantly, the results of Eqs. (62) and (63) closely resemble those calcu-

lated using the more familiar vacuum electric field operators, modified by the
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inclusion of refractive index-dependent correction factors (see, e.g., Refs. 1 and

15). This reflects the fact that the rates calculated for any interaction using those

methods can, in some sense, incorporate the necessary media contributions if

the matrix elements are phenomenologically modified by the factors

n
�1=2
ok
fðn2

ok
þ 2Þ=3g or n

1=2

o0
k0
fðn2

o0
k0
þ 2Þ=3g, for each absorbed or emitted photon,

respectively, where nok
is the frequency-dependent refractive index. This is a

simple prescription that lacks the details of the underlying physics, including the

implicit photonic branch indexing. The advantage of the complete method

described in the course of this review is that it is directly amenable to systems of

significantly greater optical complexity. In contrast to developments that

directly dress the molecular response with the local field factors, casting the

molecular optical response tensor as a microscopic representative of a bulk

susceptibility, Eq. (62) explicitly retains all such factors whose value is

determined by the properties of the input radiation, as modified within the bulk

of the nonlinear medium.

VIII. PUMP PHOTONICS

Whilst the above is perfectly adequate for the description of processes observed

with continuous-wave (cw) input, proper representation of the optical response to

pulsed laser radiation requires one further modification to the theory. It is

commonly thought difficult to represent pulses of light using quantum field

theory; indeed, it is impossible if a number state basis is employed. However by

expressing the radiation as a product of coherent states with a definite phase

relationship, it is relatively simple to construct a wavepacket to model pulsed

laser radiation [39]. The physical basis for this approach is that pulses necessarily

have a finite linewidth and therefore in fact entail a large number of radiation

modes, so that for the pump radiation, it is appropriate to construct a coherent

superposition

jiradi ¼
Y

l

jaðolÞi ð64Þ

and where

jaðolÞj ¼ q
1=2
l ð65Þ

represents the mean number of photons in the mode labeled by the (positive or

negative) integer l. For simplicity, it may be assumed that each mode is

associated with the same direction of propagation and polarization, so that the

frequency label uniquely identifies each component. If the central frequency is

o0 and the interval between adjacent modes is 	, then we can write

ol ¼ o0 þ l	 ð66Þ
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which, with 	 ¼ pvgðo0Þ=L ½vgðo0Þ denoting the intracavity speed of light at

frequency o0�, serves to represent the frequency distribution of a laser with

optical cavity length L. A phase relationship between the axial cavity modes,

corresponding to perfect mode locking, can now be enforced by writing

aðolÞ ¼ q
1=2
l exp½�iðoltÞ� þ j ð67Þ

with a suitable value for t and arbitrary j. When the initial state defined by (64)

is made subject to this condition and employed in the calculation of matrix

elements as in Eq. (41), this leads to the representation of a pulse train described

by the following temporal envelope function JðtÞ [39]:

JðtÞ ¼
X

l

ðqlolÞ1=2
exp½�il	ðt þ tÞ� ð68Þ

where the time t arises through evaluation of the matrix elements of ~dðþÞ as given

by Eq. (31). Choosing t ¼ �p=	 places time zero exactly in between two

successive pulses, such that Jð0Þ � 0 and the interaction is smoothly switched

on. By extension of these principles to a continuous frequency distribution,

single pulses of radiation can be entertained in the theory through the envelope

function

JðtÞ ¼
ð

AðoÞ exp½�ioðt þ tÞ�dt ð69Þ

The net result of incorporating all these modifications in the theory of harmonic

emission, or any other process entailing the annihilation of n photons from the

pump radiation, is that we now have the following prescription:

q!

ðq� nÞ!

	 

! J2no�n ð70Þ

For coherent state light, each and every coherence factor takes the value of unity,

and it may be observed that the result of effecting Eq. (70) is that a time-

dependent irradiance IoðtÞ now appears, properly defined through

IoðtÞ ¼
�hc

V

� �
J2ðtÞ ð71Þ

To complete the reformulation of results in terms of physically meaningful

parameters, and to relax the unduly restrictive assumption of the last section, we

now consider the possibility of stimulated emission for photons generated by the
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optical process of interest, as, for example, in the case of strong harmonic

pumping. This leads to a matrix element containing a factor ðq0 þ 1Þ1=2=V1=2,

indicating that the rate becomes linearly dependent on ðq0 þ 1Þ=V . When q0 is

large, the rate is essentially proportional to the harmonic photon density. In the

light of the preceding remarks on the pump radiation, it is nonetheless for many

reasons inadvisable to work in terms of q0. Number states are hardly appropriate,

nor is it sensible to suppose that all harmonic photons are delivered into a single

radiation mode. Under conditions of strong emission pumping, it is better to

gauge the mean number of n-harmonic photons by employment of the relation

q0 ¼ n�1ðq0 � qÞ ð72Þ

where q0 is the initial number of pump photons. Equation (72), which basically

reflects energy conservation, may be regarded as an integrated form of the

generalised Manley–Rowe relation

d IðokÞ=okf g
dz

¼
�qd Iðo0

k0 Þ=o0k0
� �

dz
ð73Þ

[40]. The q0 that appears in the rate equations is best interpreted as a ratio of the

stimulated to the spontaneous emission rate (see, e.g., Ref. 41).

IX. CONSTRUCTION OF MOLECULAR RESPONSE TENSORS

In this section we address the detailed form, and in particular the dispersion

behavior, of the molecular response tensors. We note that the frequency depen-

dence of nonlinear polarisabilities and their sum rules have been the subject of a

series of incisive works by Bishop and others; see, for example, the paper by

Bishop and DeKee [42]. In addressing dispersion behavior below, we follow the

same general principles, but at the outset we invoke excited-state damping to

allow for the incorporation of lineshape. This is a matter that, once its context is

established below, we shall return to in the following section.

To begin, from Eqs. (41) and (47) the explicit result for the nonlinear polari-

zability aðmÞ that mediates an m-photon process may be written, in the electric

dipole approximation, as follows:

aðmÞ ¼
X
r
ð1Þ
mol

	 	 	
X
r
ðm�1Þ
mol

X
r
ð1Þ
rad

	 	 	
X
r
ðm�1Þ
rad

h fmoljljrðm�1Þ
mol ihr

ðm�1Þ
mol jljr

ðm�2Þ
mol i 	 	 	 hr

ð1Þ
moljljimoli

½ð ~E
r
ðm�1Þ
mol

� ~Eimol
Þ þ ðE

r
ðm�1Þ
rad

� Eirad
Þ��1 	 	 	 ½ð~E

r
ð1Þ
mol

� ~Eimol
Þ þ ðE

r
ð1Þ
rad

� Eirad
Þ��1

ð74Þ
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The summations over all possible intermediate radiation states are accommo-

dated by reference to the various contributing time orderings, or pathways

through state-sequence diagrams, and generally result in a set of terms. Each

term has a different frequency dependence, as determined by the structure of its

energy denominator. The tildas appearing over the molecular energies in Eq. (74)

represent a complex representation that includes the effects of damping, to be

discussed in detail below. In general, all molecular states carry such damping;

only in the special case of the lowest energy (ground) state is the damping

redundant. When written with explicit reference to its frequency arguments, the

ordering of tensor subscripts in aðmÞ is assumed to relate identically to the

ordering of the frequencies. Thus, for example, in writing the component

að3Þijk ð�o3;o2;o1Þ of the nonlinear optical tensor that mediates sum-frequency

conversion, the index i corresponds to the o3 photon interaction, j to the o2, and k

to the o1 interaction. Since molecular response tensors are seldom completely

index-symmetric [43], preserving an unambiguous correlation between indices

and photon frequencies is a very necessary consideration. In the time-ordered

diagrams, each interaction vertex carries the same index for the corresponding

photon in each diagram, so that the subscript ordering on the molecular

interaction vertices varies from diagram to diagram. On state-sequence diagrams,

the same index set labels the interaction lines denoting state connections.

It is instructive to take as a first example the general expression for molecular

polarizability, the response tensor that formally mediates elastic light scattering

in the electric dipole approximation. The result is obtained by application of

Eq. (74) with m ¼ 2 (one photon is annihilated and another of the same

frequency is created). Here there are only two time orderings, or state-sequence

pathways, as illustrated in Figs. 5 and 6, respectively. Each generates a term

whose numerator is a product of transition dipole moment components. For

r

0

(a) (b)

0

k,λ

k′,λ′

Figure 5. The two time-ordered diagrams required for light scattering. The incident light has

wave-vector k and polarization l and is scattered (re-emitted) with wave-vector and polarization k0

and l0 respectively. The initial and final satate for the molecule is assumed to be the ground state 0;

intermediate state carries the label r.
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example, from Fig. 5a, or the upper pathway in Fig. 6, we obtain the numerator

h f jmijrihrjmjjii. Calculation of each corresponding energy denominator using

Eq. (74) requires us to identify the individual energy components. If we assume

that the response is to be calculated for a molecule in its ground electronic state,

then Eimol
¼ E0 and the radiation field consists of q photons of frequency o,

Eirad
¼ q�ho. The intermediate state energies, ~Ermol

þ Errad

� �
, are again calculated

with the aid of the diagrams. In the intermediate state of the coupled system in

Fig. 5a, a photon has been absorbed by the molecule, which is thereby promoted

to an intermediate electronic state—corresponding to the state box in the center

of the lower pathway in Fig. 6. Therefore the total intermediate state energy is

the sum of the intermediate molecular energy ~Ermol
and the modified radiation

field Errad
¼ ðq� 1Þ�ho. Following Eq. (74), and considering only the first state

sequence, we have as one contribution to the molecular polarizability:

að2;1aÞ
ij ð�o;oÞ ¼

X
r

h0jmijrihrjmjj0i
~Er � E0 þ ðq� 1Þ�ho� q�ho
� � ¼X

r

h0jmijrihrjmjj0i
~Er � E0 � �ho
� �

ð75Þ

Proceeding to evaluate in a similar manner the contribution associated with the

alternative time ordering (Fig. 5b, and the upper pathway in Fig. 6), and then

adding the result to (75), we arrive at the following final expression

að2Þij ð�o;oÞ ¼
X

r

h0jmijrihrjmjj0i
~Er0 � �ho
� � þ h0jmjjrihrjmij0i

~Er0 þ �ho
� �

( )
ð76Þ

using the standard energy difference notation ~Er � E0 ¼ ~Er0.

As an aside, it is useful to obtain from the Eq. (76) a result for the mean

polarizability, whose value is required by Eq. (23). If the transition molecular

dipoles are real (as is the case for nondegenerate transitions, or as may be

enforced by a suitable choice of degenerate basis set), and the molecular

k′, k′

k k′

Figure 6. The state-sequence diagram for scattering.
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environment is randomly oriented, an isotropic average can be employed, and

the mean polarizability is then expressed as

�að�o;oÞ ¼ 1

3

X
r

jhrjlj0ij2
~Er0 � �ho
� �þ jhrjlj0ij2

~Er0 þ �ho
� �

( )

¼ 2

3

X
r

jhrjlj0ij2
~Er0

~E2
r0 � �h2o2

( )
ð77Þ

By explicitly including the wavevector and branch index dependence of the

radiation frequency, and unfolding the detail of the molecular state damping, we

conclude that the mean polarizability as used in Eq. (23) is

�a oðmÞk

� �
¼ 2

3�h

X
r

jhrjlj0ij2ð	r0 � i
2
grÞ

	r0 � i
2
gr

� �2�oðmÞ
2

k

8<
:

9=
; ð78Þ

where by factorizing �h from the expression, 	r0 represents each molecular

frequency defined as 	r0 ¼ 	r � 	0. The imaginary elements in Eq. (78) arise

from the substitution ~Er ¼ Er � 1
2

i�hgr, to properly accommodate finite excited-

state lifetimes as discussed in the next section. It is represented explicitly here to

illustrate that through Eqs. (78) and (23), the refractive index has both real and

imaginary parts. The complex nature of (23), on passing through a particular

molecular frequency, is illustrated in Fig. 7.

A second example, with m ¼ 3, illustrates the nonlinear molecular polariza-

bility responsible for second-harmonic generation. Here each tensor numerator

contains a product of three transition dipole moments. Reading off from the

appropriate diagram, for example, using Fig. 2a, we obtain the numerator

m0s
i msr

j m
r0
k . Here we again assume that the molecule starts and finishes in its

ground electronic state, and we have introduced the shorthand notation

m0s
i msr

j m
r0
k � h0jmijsihsjmjjrihrjmkj0i. Each denominator is a product of factors,

one for each intermediate state, in each of which again the energy of the initial

state is subtracted from the (complex) intermediate state energy. In the case of

Fig. 2a, we find that for the intermediate state jsi, the difference in molecular

energies is ~Es0 ¼ ~Es � ~E0

� �
, and the difference in photon energies �2�ho, thus

giving a factor of ~Es0 � 2�ho
� �

. For the intermediate state jri, the difference in

molecular energies is ~Er0 and the difference in photon energies ��ho, giving a

factor of ~Er0 � �ho
� �

. Proceeding in a similar way from Figs. 2b and 2c and

summing, we thus obtain the following complete expression for the frequency-
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doubling molecular polarizability tensor (the molecular hyperpolarizability)

bijkð�2o;o;oÞ ¼
X

s

X
r

	
m0s

i msr
j m

r0
k

ð~Es0 � 2�hoÞð~Er0 � �hoÞ
þ

m0s
j msr

i m
r0
k

ð~Es0 þ �hoÞð~Er0 � �hoÞ

þ
m0s

j msr
k m

r0
i

ð~Es0 þ �hoÞð~Er0 þ 2�hoÞ



ð79Þ

where we have used the common nomenclature to represent the leading order of

nonlinear molecular response, specifically, bð�2o;o;oÞ � að3Þð�2o;o;oÞ.
A few further general remarks are in order at this stage. One is to note the

fact that the sum over intermediate molecular states, as in Eqs. (76) and (79), in

principle applies not only to electronic but also to vibrational levels. Although

this issue initially received most attention in connection with molecular

hyperpolarizabilities [44], it applies equally to other optical response tensors.

The vibrational contributions, which were previously largely overlooked, have

now been extensively studied and shown to be important in many applications

[45,46]. Second, the polarizabilities associated with nonlinear parametric

processes may in most circumstances be regarded as properties of the ground-

state molecule, since it is the molecular ground state that usually constitutes the

Frequency/Arbitrary units

D
is
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n/

A
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itr
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y 
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its

Figure 7. The dotted line (the real part of Eq. (23) utilizing Eq. (78) as the mean polarizability)

illustrates the dispresion of the refractive index across an arbitrary molecular resonance. The solid

line represents the imaginary part of the refractive index and only contributes close to the resonant

frequency.
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initial and final molecular levels. Certainly it can be anticipated that under

normal conditions the majority of conversion events will be mediated by ground

(usually S0) electronic state molecules, simply because of the overwhelming

population of such molecules compared to those in excited states. However,

other states may play the role of the initial/final state, and their corresponding

polarizabilities can be evaluated in the same way. In fact, it transpires that the

polarizabilities associated with electronic excited states can exceed those

associated with the ground state by orders of magnitude, as has been shown both

in theory and experiment [47–49]. Thus, if the appropriate excited state is

optically pumped so as to provide a significant population of molecules, the

observed polarizability characteristics of the medium can be significantly

enhanced, or diminished. This is an important fact that we shall return to when

discussing optically induced harmonic generation in more detail.

X. DAMPING

The issue of correctly signing the damping of energy denominators in optical

response tensors has been the subject of much recent debate [see, e.g., Refs. 50–

52]. This stems partly from a common confusion in the literature between two

entirely different forms of damping; it also reflects attempts to impose conflicting

conditions on the molecular response. The former obscurity is very easily dealt

with, though; as will be shown below, it forms the ground in which seeds of the

latter conflict have been sown.

First, the emergence of photon (more accurately, bath quantum, polariton)

energies in the denominators of expressions such as Eqs. (76) and (79)

originated in the development of the signal amplitude from Eq. (36). In the

evaluation of the underlying contour integrals invoked at that stage, imaginary

infinitesimals are commonly added to the photon energies to displace the poles

from the real axis. Each photon energy thereby acquires an infinitesimal

addendum, �ho! �hoþ is, with s! þ0. In the polarizability equation (76), for

example, this modification introduces addenda of �is and þis, respectively, to

the two energy denominators—a prescription that also allows the tensor to

retain the property of hermiticity. It has to be emphasized, nonetheless, that the

result has no meaning other than in the specific case of the limit s! þ0.

The second type of resonance modification to energy denominators, alluded

to earlier, is designed to reflect the finite lifetime of each molecular energy level,

phenomenologically implemented by a modification of the corresponding energy

~Er ¼ Er �
1

2
i�hgr ð80Þ

where gr may be considered a sum of the inverse lifetimes associated with

each line-broadening mechanism, and representing the FWHM (full width at
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half-maximum) linewidth of the nonlinear response near resonance. Only the

ground state is undamped, since its lifetime is taken as infinite. Using the positive

sign in equation (80) results in the time dependence of each molecular state jri
acquiring within its phase factor e�i~Ert=�h an exponential decay component.

More significantly, the choice of the positive sign for the damping proves to be

uniformly consistent with time-reversal symmetry, as will be discussed in more

detail below. The result of implementing this correction in the polarizability

equation (76), for example, is the addition of þ 1
2

i�hgr to each energy

denominator, the sign the same in each term. In nonresonant processes, �hgr is

typically several orders of magnitude smaller than Er, and its precise value is

determined by the nature of the molecule and the local structure of the bulk

phase. Near to resonance, the damping serves to give a realistic lineshape to the

optical response. For example, in light scattering close to an optical absorption

band where �ho � Er0, the first term of Eq. (76) dominates and the corresponding

rate acquires a Lorentzian lineshape. Resonance features play a particularly

prominent role in the case of many large organic structures, whose ultrafast

excited-state decay mechanisms produce damping factors on the terahertz scale.

Detailed consideration of lineshape is also necessary in order to properly

accommodate the dispersion behavior featured in the realization of wavevector

matching for parametric processes.

Historically two conventions have been used extensively in the literature for

setting the signs of the phenomenological damping factors. Although mutually

incompatible, justifications for each convention have been made by appeal to

causality—a different line generally being taken in the semiclassical and fully

quantum-mechanical approaches to the interacting system of molecules and

radiation. In earlier work [1] this issue was unresolved and the prevailing

convention (variable signing, discussed in the following paragraphs) was ado-

pted. Now it is clear that constant signing is correct; an example is instructive.

The two conventions with respect to second-harmonic generation are as follows;

in the semiclassical or variable-sign convention (vsc) the signs are chosen

oppositely for interactions preceding and following in time the emission of the

harmonic photon, as follows [53–55]:

bvsc
ijk ð�2o;o;oÞ ¼

X
s

X
r

	
m0s

i msr
j m

r 0
k

ðEs0 � 2�ho� 1
2

i�hgsÞðEr0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
i m

r 0
k

ðEs0 þ �hoþ 1
2

i�hgsÞðEr0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
k m

r 0
i

ðEs0 þ �hoþ 1
2

i�hgsÞðEr0 þ 2�hoþ 1
2

i�hgrÞ



ð81Þ
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In the fully quantum-mechanical development [constant-sign convention, (csc)],

as adopted in most of the literature on Raman scattering, all the signs of the

damping are identical:

bcsc
ijk ð�2o;o;oÞ ¼

X
s

X
r

	
m0s

i m
sr
j m

r 0
k

ðEs0 � 2�ho� 1
2

i�hgsÞðEr0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
i m

r 0
k

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 � �ho� 1
2

i�hgrÞ

þ
m0s

j msr
k m

r 0
i

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 þ 2�ho� 1
2

i�hgrÞ



ð82Þ

The latter result (82) yields a quantum probability amplitude that, under

Hermitian conjugation and time reversal, correctly equates to the corresponding

amplitude for the time-inverse process of degenerate downconversion. To see

this, we note that the matrix element for SHG invokes the tensor product

bijkð�2o;o;oÞrið jkÞ, where the brackets embracing two of the subscripts ð jkÞ in

the radiation tensor denote index symmetry, reflecting the equivalence of the two

input photons. As shown previously [1], this allows the tensor product to be

written without loss of generality as bið jkÞð�2o;o;oÞrið jkÞ, entailing an index-

symmetrized form of the molecular response tensor,

biðjkÞð�2o;o;oÞ ¼ 1

2
fbijkð�2o;o;oÞ þ bikjð�2o;o;oÞg ð83Þ

Each of the six terms of the hyperpolarizability tensor so formed transforms into

one of the six counterpart terms in biðjkÞð2o;�o;�oÞ, the tensor for degenerate

downconversion, on performing the combined operations of Hermitian conjuga-

tion and time reversal (the radiation tensor for downconversion is also obtained

by performing the same procedure on riðjkÞÞ. For example, the last term of

biðjkÞð�2o;o;oÞ, in the order that logically follows from Eqs. (82) and (83),

behaves as follows:

m0s
k msr

j m
r 0
i

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 þ 2�ho� 1
2

i�hgrÞ

�!HT m0r
i mrs

j m
s 0
k

ðEs 0 þ �ho� 1
2

i�hgsÞðEr 0 þ 2�ho� 1
2

i�hgrÞ

and on interchanging the dummy state sum indices r and s, the result is exactly

the first term of bijkð2o;�o;�oÞ as follows from the form given by (82). The
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time reversal represented above is depicted in the time-ordered diagrams of

Fig. 8. The two-step operation of HT is given above to clarify the action of the

two operators, although it introduces assumptions that the indices relate to

contractions with real polarization vectors and that the molecular states are all

nondegenerate and time-even, consistent with spin-paired molecular orbitals.

However, the combined operation is not subject to these conditions, so that the

end result holds in general [11,24,50].

The variable-sign result Eq. (81) produces results that fail to satisfy such

time-reversal symmetry, as shown by Andrews et al. [50]. The requirement for

temporal symmetry remains unequivocal, despite the violation of time-reversal

invariance by the system itself (its engagement of molecular interaction with the

bath leading to state decay), specifically because of the inclusion of damping.

The two conventions agree in ostensibly the most crucial signing, that which

relates to potentially resonant denominator terms; they differ in ‘‘antiresonant’’

terms. Nonetheless, in certain processes they can lead to results with experi-

mentally very significant differences.

The origin of confusion surrounding the correct form of damping is readily

identified on comparison of Eqs. (81) and (82). In the latter, consistent signing is

associated with the consistently positive signs of the energies Es 0 and Er 0; in the

former, the signing appears consistent with the variable signs of the photon

energies �ho, 2�ho. Thus, if the imaginary infinitesimals discussed earlier are

directly substituted by physically meaningful and finite damping constants,

spurious results conforming to the variable-sign rule emerge. Those results

satisfy the Hermitian property of reciprocity, but that is not a principle of

universal application [56]. Any prescription with variable assignment of signs

can also introduce significant ambiguities in connection with processes entailing

two or more outgoing waves, as, for example, in four-wave mixing.

r

s

0

0

(a) (b) (c)
k′,λ′

k,λ

k,λ

Figure 8. The three time-ordered diagrams for degenerate down-conversion, representing exact

time reversal of the SHG orderings illustrated in Fig. 2. Consequently the emitted photons now carry

the wave vector and polarization labels, k and l, and the annihilated photon is characterized by k0; l0.
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The variable-sign convention would also logically lead to a secondary rule,

that where static fields appear in electro- or magneto-optical processes, the

interactions with which they are associated should carry no damping. However,

from a quantum field theoretic viewpoint, static perturbations must induce

damping [52]. All electromagnetic interactions are fundamentally mediated

through the exchange of virtual photons (the gauge bosons). A static field invol-

ved in an electro-optical process in any given molecule is mediated in the same

way. It owes its origin to the coupling between the charges within that molecule

and those constituting the source of the static field. This coupling is expressed

through the accommodation of interactions with virtual photons from modes of

an infinite range, as with any electrodynamic interaction, and summation over

the virtual photon wavevectors and polarizations thereby ensures a result that

properly reflects the conservation of energy. Consequently, the case of a static

field is no different in type from a time-varying field—except that, while

causality is, of course, satisfied, explicit retardation features disappear. Hence

the damping associated with any molecular excited state must be subject to

damping, irrespective of the frequency of the electric field responsible for the

perturbation. Damping factors are not frequency-dependent; each excited state

has a damping of a characteristic magnitude, irrespective of the frequency of the

perturbation with which it is associated. In this connection it has been shown

that the correct constant-signing rule is necessary to uphold the principle that

linear electro-optical response cannot occur in an isotropic liquid, whether

chiral or not [57].

In general, detailed consideration of damping is especially important

when operating near to resonance, which in general occurs when there exists

a molecular state differing in energy from the initial state by an amount

approaching the energy of one or more of the photons involved. For coherent

parametric processes the need to operate in regions of dispersion, in order to

satisfy wavevector matching conditions, is a well-known experimental tech-

nique. Operating in such frequency regions necessitates adoption of the

polariton (rather than vacuum photon) formulation, as described in Section III.

Inspection of the dispersion curves in Fig. 1, considering for simplicity case (a)

with just one molecular frequency, clearly illustrates three areas of interest: (1)

the diagonal curve segments represent photon-like radiation propagating through

the media at transparent frequencies, (2) the horizontal regions exhibit exciton-

like molecular resonances (photons impinging on the medium at such fre-

quencies are readily absorbed into the molecular bulk), and (3) level-crossing

areas signify a dispersive mixing of the molecular and radiation states. It is these

latter regions in which it is commonly necessary to operate. Thus, depending on

whether the radiation frequency is sufficiently above or below a particular mole-

cular resonance will determine the branch index that is appropriate.
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XI. INDEX SYMMETRY AND MOLECULAR STRUCTURE

A number of symmetry factors of quite distinct origins play a significant role in

determining the nullity or nonnullity of the various components of any molecular

optical response tensor (3n components in the case of dipole coupling). Equally,

symmetry considerations determine the number of linearly independent compo-

nents. In second-harmonic generation, for example, the symmetrized tensor

components must satisfy identities such as bzðxyÞ ¼ bzðyxÞ, regardless of whether

the molecule possesses the three- or higher-fold axis of symmetry necessary to

confer degeneracy on the x and y axes. Consequently, of the 33 ¼ 27 tensor

components, only 18 are independent. In general, for n-harmonic processes, the

rigorously index-symmetric polarizability tensor has only 3ðnþ 1Þðnþ 2Þ=2

independent components. The inherent structural symmetry of most molecules

generally reduces this number still further.

It is most important to note that in many cases of harmonic emission, a more

completely index-symmetric form of the polarizability tensor is implicated.

Consider once again the prototypical example of optical nonlinearity afforded

by harmonic generation. When any harmonic is generated from a plane-

polarized beam, in an isotropic medium, it produces photons with the same

polarization vector as the incident light. In such a case the radiation tensor rijk

becomes fully index-symmetric, and arguments similar to those given above

show that only the fully index-symmetric part of the hyperpolarizability tensor,

bijkð�2o;o;oÞ, can be involved. This does not mean that the tensor itself is

inherently fully index-symmetric, but it does mean that experiments of the kind

described cannot determine the extent of any index antisymmetry.

This leads us to the issue of approximate index symmetry. Any nonlinear

optical process involving only static (zero-frequency) fields is correctly des-

cribed in terms of a classical response tensor, which is always fully index-

symmetric. When optical frequencies are involved, the differences between the

energy denominators of the various terms in the tensor remove this symmetry.

The only exception, albeit an important one, is the linear polarizability. Since

this entails the product of two transition moments connecting the same pair of

states, permutational index symmetry is guaranteed. If, however, the photon

frequencies all fall substantially below any electronic transition frequencies of

the material, all energy denominators become approximately equal, (~Es 0 � ~Er 0

in the case of frequency doubling), and the tensor becomes in effect fully index-

symmetric. Under such conditions the polarizability tensor for an n-harmonic

process has only ðnþ 2Þðnþ 3Þ=2 independent components, for example, 10 in

the case of frequency doubling. Index symmetry based on the assumption that

such an approximation is valid, normally referred to as Kleinman symmetry [58]

is nonetheless unjustified in a great many applications [43,59].
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We now establish on the basis of physical symmetry the conditions for the

existence of the m-photon optical response tensor aðmÞ. For any parametric

process, the initial and final molecular states are identical and normally carry

the full ground-state symmetry of the molecule (or, in the case of a crystalline

solid, that of the unit cell). Thus, since each term in the explicit expression (74)

contains a product of m transition moments, the tensor can be nonvanishing only

if the totally symmetric representation of the appropriate point group or space

group is spanned by the product of ðnþ 1Þ translations (in the case of electric

dipole, E1, coupling). The origin of this condition can be traced back to Eq. (41).

Where the molecule or crystal possesses a center of symmetry, the symmetry

condition can be met only in the generation of odd harmonics, where m is even

and the product of translations is thus of gerade (even) symmetry. For the same

reason free atoms cannot support the production of even harmonics, except

under special conditions that effectively disrupt atomic symmetry.

Much more detailed symmetry information follows by considering the

explicit group-theoretic basis. In general, the independent components of the

response tensor form a basis for a reducible representation of the appropriate

molecular or crystallographic group; the reduction of this representation into

irreducible parts leads to results such as those given in Table I, in which DðjpÞ

stands for the irreducible representation of weight j and parity p. In this table,

based on the transformation properties associated the normal E1 coupling, the

second-harmonic polarizability bð�2o;o;oÞ is represented as bSHG and the

third-harmonic as cTHG � cð�3o;o;o;oÞ, although in each case it should be

borne in mind that the same molecular tensors are involved in both coherent and

incoherent harmonic processes. The first entry for each tensor gives the redu-

ction based on consideration of only the index symmetry inherent in the

interaction, as, for example, is denoted by the brackets around the subscripts in

bSHG
iðjkÞ : the second entries give the results that apply under Kleinman assumption

of full index symmetry, such as bSHG
ðijkÞ . In each case the entry in the final column

gives r, the number of independent tensor components. This may be regarded as

TABLE I

Group-Theoretic Representations and Number of Components r of Second- and

Third-Harmonic Polarizabilities

Coupling Tensor Representation r

E1(E12) bSHG
ið jkÞ 2Dð1�Þ � Dð2�Þ � Dð3�Þ 18

(E13) bSHG
ðijkÞ Dð1�Þ � Dð3�Þ 10

E1(E13) gTHG
ið jklÞ Dð0þÞ � Dð1þÞ � 2Dð2þÞ � Dð3þÞ � Dð4þÞ 30

(E14) gTHG
ðijklÞ Dð0þÞ � Dð2þÞ � Dð4þÞ 15
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a maximum, applicable to molecules totally lacking any intrinsic symmetry; any

molecule with a twofold or higher axis of symmetry will inevitably manifest

other relationships between its tensor components which will further reduce the

number of independent parameters.

Any parametric nonlinear polarizability can be supported by a given mole-

cule or crystal only as long as the totally symmetric representation of the

corresponding point or space group is spanned by some components of the

tensor. This remains true even for the parametric polarizabilities associated with

molecular excited states; provided they are nondegenerate, the product of the

initial and final state representations will generate the totally symmetric

representation. In the very rare cases where the polarizability properties of

molecules in degenerate excited states are required, the theory can be extended

in an obvious way. Since components that transform under Dð0þÞ invariably span

the totally symmetric representation, it is immediately apparent from Table I

that, on the basis of molecular symmetry, third-harmonic processes are

universally allowed. Indeed, this is true for all odd harmonics; it is because

the corresponding polarizabilities invariably carry components of Dð0þÞ sy-

mmetry.

By contrast in the case of SHG, for example, only those species whose totally

symmetric representation is spanned by Dð1�Þ, Dð2�Þ, or Dð3�Þ components can

support the hyperpolarizability tensor bSHG, and this excludes all centrosym-

metric species. More interestingly, the condition is satisfied by all polar species,

since these necessarily have Dð1�Þ components transforming under the totally

symmetric representation. In fact, among the common nonpolar molecular point

groups, only the following permit a nonzero hyperpolarizability, by virtue of

having Dð2�Þ and/or Dð3�Þ components transforming under their totally symme-

tric representation: S4; C3h; D2; D3; D4; D6; D3h; D2d; T ; Td [60]. If Kleinman

symmetry is assumed, the hyperpolarizability tensor carries only Dð1�Þ and

Dð3�Þ components: in this case the SHG potential of species with D4 or D6

symmetry, which have only Dð2�Þ components, is not apparent.

Although index symmetry places constraints on the maximum number of

independent elements for any given nonlinear susceptibility, that number is

generally reduced to a significant degree by virtue of molecule, crystal, or site

symmetry, where present. Two features are responsible for this; one is the fact

that symmetry will generally dictate that certain tensor components are

necessarily zero. For example, in any species with a mirror plane perpendicular

to the z axis bSHG
zðzzÞ , must be zero since it has to equal its own negative. Second,

structural symmetry will usually forge relationships between different

components. For example, in species with a threefold axis of proper rotational

symmetry, bSHG
xðxxÞ has to equal minus bSHG

xðyyÞ. The explanation is that the product

xðx2 þ y2Þ does not transform under the totally symmetric representation, and

hence the linear combination ðbSHG
xðxxÞ þ bSHG

xðyyÞÞ must be zero. For such reasons the
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18 tensor components associated with SHG generally reduces to a far smaller

number; in the extreme case of species with tetrahedral symmetry, there is in

fact only one independent component (xyz).

Where local symmetry permits harmonic generation based exclusively on

electric dipole coupling, the inclusion of higher-order multipolar contributions

in the exact coupling equation (13) produces additional terms that are normally

negligible. If electric dipole harmonic generation is forbidden, which, as we

have seen, is the case for even harmonics in a centrosymmetric species, these

higher-order terms can nonetheless become significant and may operate to effect

weak harmonic emission. The exception is the case of an isotropic fluid, where

global symmetry precludes the involvement of any higher multipoles in second-

harmonic emission within the bulk [61–63]. Work by Cao and Zhu [64] has

shown how the multipolar generation of a second harmonic signal in such

systems necessitates the presence of a surface, from which the harmonic can

emerge as a reflected beam. In other systems lacking full rotational symmetry,

the higher multipoles can also be important. For example, if any one of the three

ungerade electric dipole (E1) interactions involved in second-harmonic

generation is replaced by a gerade electric quadrupole (E2) interaction, the

operator product generates a Dð0þÞ contribution as shown in Table II. Since this

invariably spans the totally symmetric representation, the corresponding

response tensor is nonzero even in centrosymmetric materials. In the first row

of Table II the coupling E1(E1E2) refers to the polarizability associated with

one electric dipole and one electric quadrupole annihilation of a pump photon,

with electric dipole emission of the harmonic. The labeling E2(E12) in the

second row relates to electric dipole annihilation of both pump photons and

electric quadrupolar harmonic emission. In the third row the coupling (E12E2)

can refer to either case, but the corresponding representation applies only under

TABLE II

Representations and Number of Components r of Leading Higher-Order Multipole Second-

Harmonic Polarizabilities

Coupling Tensor Representation r

E1(E1E2) ~bSHG
ið jkÞl Dð0þÞ � 2Dð1þÞ � 3Dð2þÞ � 2Dð3þÞ � Dð4þÞ 45

E2(E12) ~bSHG
ðijÞðlkÞ Dð0þÞ � Dð1þÞ � 2Dð2þÞ � Dð3þÞ � Dð4þÞ 30

(E12E2) ~bSHG
ðijklÞ Dð0þÞ � Dð2þÞ � Dð4þÞ 15

E1(E1M1) bSHG
ijk Dð0þÞ � 3Dð1þÞ � 2Dð2þÞ � Dð3þÞ 27

M1(E12) bSHG
ið jkÞ 2Dð1þÞ � Dð2þÞ � Dð3þÞ 18

(E12M1) bSHG
ðijkÞ Dð1þÞ � Dð3þÞ 10
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the assumption of Kleinman index symmetry. Similar remarks apply if one of

the electric dipole couplings is alternatively replaced by a gerade magnetic

dipole (M1) interaction, though in this case the Dð0þÞ representation arises only

where the magnetic interaction is involved in the annihilation of a pump photon.

Moreover, the Dð0þÞ feature is not apparent if Kleinman symmetry is assumed.

XII. TWO-LEVEL SYSTEMS

From the results in the last section it is clear that for particular applied radiative

frequencies or frequency multiples, close to resonance with particular molecular

states, each molecular tensor will be dominated by certain terms in the

summation of states as a result of their diminished denominators—a principle

that also applies to all other multiphoton interactions. This invites the possibility

of excluding, in the sum over molecular states, certain states that much less

significantly contribute. Then it is expedient to replace the infinite sum over all

molecular states by a sum over a finite set—this is the technique employed by

computational molecular modelers, their results often producing excellent

theoretical data. In the pursuit of analytical results for near-resonance behavior,

it is often defensible to further limit the sum over states and consider just the

ground and one electronically excited state. Indeed, the literature is replete with

calculations based on two-level approximations to simplify the optical properties

of complex molecular systems. On the other hand, the coherence features that

arise through adoption of the celebrated Bloch equations are limited to exact

two-level systems and are rarely applicable to the optical response of complex

molecular media.

In the case of a single resonance, optical harmonic conversion is driven

largely by transitions involving just the ground and resonant levels, so that the

kinetics of the process approximates that of a two-level system. Indeed, in the

realm of resonant multiphoton phenomena the two-level approximation is

peculiarly appropriate for harmonic emission, whereas most nonparametric

processes such as multiphoton absorption require three or more levels for their

adequate representation. Consider once again, for example, the case of fre-

quency doubling, where resonance amplification can occur at either the pump or

the harmonic frequency. To begin, it is useful to separate the molecular tensor

into a sum of two parts, in the first of which both the summations over

intermediate states jri and jsi are restricted to the ground level j0i and a

resonant level jui; in the second, all other possibilities are accounted for. Hence

we can write

bijkð�2o;o;oÞ ¼ bTLA
ijk ð�2o;o;oÞ þ bothers

ijk ð�2o;o;oÞ ð84Þ
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where the superscript ‘‘TLA’’ denotes the two-level approximation. It is to be

noted at the outset that the bothers term does not completely exclude the states j0i
and jui from every intermediate state summation; for example, it accommodates

contributions associated with jri ¼ jui, jsi 6¼ fj0i; juig.
Focusing first on the dominant two-level term [65], careful analysis of the

tensor structure, with respect to the proper signs for the damping corrections and

utilizing the freedom to add a j,k index-antisymmetric term (see later), yields

the following result [59,66]:

bTLA
ijk ð�2o;o;oÞ ¼

	
m0u

i m0u
j
�dk

ðEu0 � 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
m0u

j
�djm0u

k

ðEu0 þ �ho� i�uÞðEu0 � �ho� i�uÞ

þ
�djm0u

k m0u
i

ðEu0 þ �ho� i�uÞðEu0 þ 2�ho� i�uÞ



ð85Þ

assuming only that the electric dipole transition moments are real, and for

conciseness introducing the shorthand notation �u ¼ 1
2
�hgu. Where only diagonal

components arise, as, for example, may apply for harmonic generation within a

regular solid, the tensor product bTLA 	 r featured in the rate equation (51)

reduces to a simpler structure first identified by Oudar and Chemla [67]. Both in

its simpler form, and in the general expression Eq. (85), the most significant

feature is the appearance in each term of the vector parameter �d, defined by

�d ¼ luu � l00 ð86Þ

specifically, the difference between the static electric dipole moments of the

resonant and ground states. Hence the two-level hyperpolarizability displays a

linear dependence on the magnitude of �d, which, for example, in extensively

conjugated molecules can reasonably be assumed proportional to the length of

the conjugation chain [67].

It is important to have included the ground state of the molecule in the sums

over intermediate states for the dependence on �d to be recovered, and this

proves significant for two reasons: (1) the result Eq. (85) shows that the two-

level hyperpolarizability can be supported only by molecules with permanent

ground- or excited-state dipoles, which means polar molecules; and (2) it is

clear that there is considerable scope for the two-level response to be enhanced

in polar molecules having a resonant excited state whose equilibrium geometry

is appreciably different from that of the ground state, or in species exhibiting the

characteristically strong absorption associated with a charge-transfer transition.
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Similar features arise in the theory of multiphoton absorption [68–70] and also

single-photon cooperative absorption [71,72]. In connection with second-

harmonic generation, the result has added significance since most species that

can support bð�2o;o;oÞ, and thereby have the potential for frequency

doubling, are, indeed, polar (see previous section).

Let us now consider more specifically the case of a medium possessing an

excited state jui close in energy to that of the emitted harmonic, 2�ho. For

practical application, this condition is generally more useful than resonance at

the fundamental frequency, since the latter condition is likely to result in a

substantial loss of pump power through conventional single-photon absorption.

In view of its denominator structure, it is clearly the first term in Eq. (85) that

will provide the major contribution to the nonlinear response tensor

bTLA
ijk �

m0u
i m0u

j
�dk

ð�h�o� i�uÞð�hoþ �h�o� i�uÞ
ð87Þ

where �o represents the detuning from resonance: both the first and second

terms of Eq. (85) dominate in the case of resonance at the fundamental

frequency. If the molecule has no dipole and possesses a center of symmetry, it is

well known that the all hyperpolarizability tensor components are null and no

second-harmonic generation is possible. However, if only �d vanishes, as in the

case of a tetrahedrally symmetric molecule, then only the two-level contribution

to the tensor, bTLAð�2o;o;oÞ, disappears. The remaining contribution

botherð�2o;o;oÞ, as defined by Eq. (84), persists and is itself dominated by a

term with essentially the same denominator structure as Eq. (87); specifically, the

product of a near-resonant and an off-resonant term. For the general structure that

then emerges, the reader is referred to Andrews [1].

It has been established in a series of works that a transformation of the

electric dipole interaction is valid for deriving the optical characteristics of

molecular systems with a response dominated by two electronic states [68–70;

73–77]. This procedure relates to the employment of a fluctuation dipole

operator [78,79] as given by

H0int ¼ �e�1
0 ½l� l00� 	 d? ð88Þ

in which the subtracted moment is the permanent dipole of the initial molecular

state—usually the ground state. It has been proved how utilizing Eq. (88) for the

form of the interaction operator leads to a new and expedient algorithm for the

calculation of the requisite nonlinear optical polarizabilities [80], based on a

novel interpretation of the appropriate time-ordered diagrams. In establishing the

form for probability amplitudes of systems driven primarily by interactions
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between the ground state j0i, and one other higher electronic state jui, it proves

legitimate and expedient simply to recast the permanent moments, where they

arise as follows

luu ! luu � l00 ¼ �d; l00 ! 0 ð89Þ

while leaving any transition dipoles ðlu0; l0uÞ unchanged. When the various time

orderings for any optical processes of interest are drawn up, application of this

rule enables expressions involving any connected route that entails the ground-

state dipole l00 to be discarded, so long as those entailing the excited state dipole

luu are re-interpreted to invoke �d. This is the algorithm whose illustrative

applications are described below. The method has been explicitly validated for

all parametric and nonparametric processes, both degenerate and fully nonde-

generate [80] and can be shown to correspond to a canonical transformation on

the interaction Hamiltonian [14a,b; 81]. In every case its implementation leads in

a matter of lines to results identical to those previously established by subs-

tantially more laborious means [66,69,70]. It may also be noted that the

fluctuation dipole results are exact, when the correct constant-sign convention is

used for damping; when variable signing is employed, the result is approximate

only [66].

As an example, we again derive the two-level second harmonic tensor, this

time using the algorithm outlined by Eq. (89). The three time-ordered diagrams

as illustrated in Fig. 2a–c are once more employed. The route of molecular

states between the initial (ground) state and the final (also ground) state runs

through two virtual states, jri and jsi, and in the two-level approximation each

of these is summed to represent one of two possibilities, either the ground state

j0i or the excited state jui. The j0i  jsi  jri  j0ið Þ sequences that arise are

thus concisely expressible as 0000, 00u0, 0u00, 0uu0, corresponding to the

dipole products l00l00l00; l00l0ulu0; l0ulu0l00; l0uluulu0, respectively. From

the three time orderings we therefore have 3� 22 ¼ 12 contributions—each a

product of three ‘transition’ dipoles (one or more of which may be permanent),

divided by a product of two energy factors. Application of the algorithm

determines that only the state sequence 0uu0 ðl0uluulu0Þ need be considered in

a suitable reinterpretation of the three time-ordered diagrams, since each of the

other possibilities generates a l00 segment. Utilizing Fig. 2, we therefore obtain

a two-level hyperpolarizability tensor exactly as expressed by Eq. (85). This is

the simplest example of how the algorithm quickly generates results that would

otherwise demand considerable algebraic manipulation. However, it is with

higher-order amplitudes that the method is most obviously efficacious. Even in

(85), the tensor structure obviates simple factorization in terms of �d; higher

orders have the additional complication that terms both linear and in powers of
�d arise.
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The process of third-harmonic generation (THG) serves both to illustrate

the power of the new algorithm and to draw out some new physics. To derive

the form of the susceptibility tensor, one needs to employ either the four

time-ordered diagrams or the equivalent state-sequence diagram represent-

ing THG. Both diagrammatic representations are illustrated in Fig. 9. The

state route connecting the initial and final (ground) states here runs through

three virtual states, r, s, and t, and the two-level approximation requires each to

be either the ground or the excited state. In this case, from the four time

orderings we get a total of 4� 23 ¼ 32 contributions, each a product of four

transition or permanent dipoles divided by three energy quotients. With

the benefit of the algorithmic method delineated above, we can take the four

time orderings and dispense with all except two of the following state

sequences: 00000, 000u0, 00u00, 00uu0, 0u000, 0u0u0, 0uu00, 0uuu0. Speci-

fically, discarding each sequence that includes the segment 00, we retain only

0u0u0 and 0uuu0. With proper reinterpretation of these remaining cases, we

thus immediately obtain the following explicit result comprising only eight

terms, of which each successive pair results from the successive time-ordered

diagrams of Fig. 9a, also corresponding to all routes through the state-sequence

k,λ

k,λ

k,λ

k′,λ′

3 k, k′ 2 k, k′ k, k′

k′3 k

2 k k

(a)

(b)

Figure 9. The four time-ordered diagrams characterizing third harmonic generation (a) and the

state-sequence diagram representing the same process (b).
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diagram of Fig. 9b. [80]

gijklð�3o;o;o;oÞ ¼
mu0

i mu0
j mu0

k mu0
l

ðEu0 � 3�ho� i�uÞð�2�hoÞðEu0 � �ho� i�uÞ

þ
mu0

i1
�dj
�dkmu0

l

ðEu0 � 3�ho� i�uÞðEu0 � 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
mu0

j mu0
i mu0

k mu0
l

ðEu0 þ �ho� i�uÞð�2�hoÞðEu0 � �ho� i�uÞ

þ
mu0

j
�di
�dkmu0

l

ðEu0 þ �ho� i�uÞðEu0 � 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
mu0

j mu0
k mu0

i mu0
l

ðEu0 þ �ho� i�uÞð2�hoÞðEu0 � �ho� i�uÞ

þ
mu0

j
�dk
�dimu0

l

ðEu0 þ �ho� i�uÞðEu0 þ 2�ho� i�uÞðEu0 � �ho� i�uÞ

þ
mu0

j mu0
k mu0

l mu0
i

ðEu0 þ �ho� i�uÞð2�hoÞðEu0 þ 3�ho� i�uÞ

þ
mu0

j
�dk
�dlmu0

i

ðEu0 þ �ho� i�uÞðEu0 þ 2�ho� i�uÞðEu0 þ 3�ho� i�uÞ

ð90Þ

where once again it is the index-symmetrized form, here entailing all

permutations ( jkl), that will feature in the observables. The transition moment

lu0 is taken to be real and hence equal to l0u; also note that the tensor c is minus

that given as c00(�3o;o;o;o) elsewhere [80], because here each energy

denominator expression carries an overall a minus sign, for consistency within

the current work.

One aspect of Eq. (90) deserving comment is its amenability for the

identification of resonances. Three-photon resonances are manifest in the first

and second terms, through the appearance of the factor Eu0 � 3�ho� i�uð Þ; two-

photon resonances Eu0 � 2�ho� i�uð Þ are featured in the second and fourth, and

single-photon resonances Eu0 � �ho� i�uð Þ are seen in each of the first six.

Since exploitation of the latter kind of resonance is in practice usually avoided

because of the competing linear absorption with which it is associated, it is the

two- and three- photon resonances that are of the most interest. Under suitable

conditions, third-harmonic generation in either of those cases is driven largely

by just two of the contributions to Eq. (90). Other contributions, signifying
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minor corrections, are of much the same order of magnitude as those relating to

the involvement of other molecular energy levels.

Further features are evident when the relative magnitudes of the dipole

difference jdj and the transition dipole jlu0j are considered. One immediately

striking feature is the observation that the second, fourth, sixth, and eighth terms

all disappear if jdj ¼ 0, leaving only terms associated with virtual excitation

routes. [Note that no such routes were manifest in the second-harmonic result. If

jdj ¼ 0 then the entire expression Eq. (85) becomes zero—any process involving

an odd number of photons has to entail at least one 00 or uu segment in the

interaction sequence.] In the third-harmonic case, in particular, both terms

associated with two-photon resonances disappear—in other words, there can be

no two-photon resonance enhancement of third-harmonic generation under such

circumstances. If, however, jdj � jlu0j, then the even terms of Eq. (90)

dominate the optical response—and in the case of three-photon resonance, it is

the second term that provides by far the leading contribution. Such consi-

derations should play an important role in implementing strategies for the

calculation of nonlinear optical response; for example in the case just cited, the

dominant term is of a form that had not previously been identified as represe-

nting the major contribution.

XIII. OPTICAL COHERENCE IN DISPERSED PARTICLES

Despite the powerful symmetry rule that precludes the generation of even har-

monics in optically isotropic media, except at surfaces, a number of experimental

results have indicated exceptions to the rule, as detailed in the earlier review [1].

Most entail conditions resulting in a transient, local removal of isotropy, and are

therefore well understood. Nonetheless, two quite different mechanisms have

been found to mediate second-harmonic generation in macroscopically isotropic

systems. In this section we consider a mechanism relating to optical coherence in

small particles in suspension, or locally ordered domains within macroscopically

structureless media. In the next section we shall focus on a six-wave form of

interaction associated with very high pump laser intensities.

The coherent generation of second harmonics from particles in suspension

was first found to operate in the generation of strongly directed SHG signals

from photosynthetic bacterial membranes, randomly oriented in aqueous suspe-

nsion [82,83]. The paradox was resolved when it was shown that the unusually

strong signal detected from such isotropic suspensions is attributable to optical

coherence within the separate particles of the suspension [84]. As such, the

harmonic emission displays an amalgam of the characteristics associated with

full coherence (second-harmonic generation) and incoherence (hyper-Rayleigh

scattering). To understand this, it is necessary to return to the development of

theory in Section VII. Consider a fluid or mesoscopically disordered material
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(or any other optically isotropic system) within which there are small particles

or local domains possessing a microscopically ordered structure. Examples of

such systems include colloids, cell and membrane suspensions, and many pla-

stics, glasses, and other modern materials. In systems of interest, each particle

or domain includes a significant number of optical centers with strong optical

dispersion at the frequency of the pump laser radiation or its harmonic. Let us

suppose that such a system contains M randomly oriented particles (individually

denoted below by the subscript m), each composed of n discrete molecules or

other optical centres (denoted by the subscript x). Within each particle it is

assumed that there is a structurally imposed orientational correlation, that is, a

significant intrinsic rigidity, such that its net optical response can be cast in

terms of an ‘‘effective hyperpolarizability’’ tensor given by

b00
ðmÞijk ¼

Xn

x

b00
ðxÞlmvl

x
ill

x
jml

x
kv ei�k	ðRx�RmÞ ð91Þ

Here the hyperpolarizability of each individual optical center, b00
ðxÞlmv, is given a

superscript label 00 to indicate that it relates to the electronic ground state (an

assumption to be revisited later), and its position is given relative to the common

Cartesian frame. The factor l
x
il(l

x
jm, l

x
kn) is the cosine of the angle between the

space fixed axis ið j; kÞ and the molecule fixed axis lðm; vÞ. If the particles or

ordered domains are small compared to the optical wavelengths involved, then so

will be the internal distances (Rx � Rm), and thus in many circumstances—even

in the complete lack of wavevector matching (�k ¼ 0)—the phase factor in

Eq. (91) can often be taken as effectively unity. However, we retain its explicit

form for generality.

The rate of second-harmonic generation by the entire system of particles is

expressible as a sum of two terms �1 and �2 as follows, where angular brackets

denote the orientational average

�1 ¼ M&hjb00
ðmÞijk�e

0
i ej ekj2i ð92Þ

�2 ¼ ðZM �MÞ&jhb00
ðmÞijk�e

0
i ej ekij2 ð93Þ

in which the latter, which represents a coherent addition of SHG amplitudes from

every optical center in the system, corresponds exactly to the earlier Eq. (59)

(which thereby serves to define the parameter �). When the particles are

randomly oriented, �2 vanishes as a result of the isotropic average, as is well

known. However, since the corresponding average is conducted over the modulus

square in the ‘‘incoherent’’ term, �1, this contribution persists, representing an

addition of the harmonic intensities produced by different particles. As

determined by Eq. (91), these contributions in fact accommodate a coherent
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addition of signals from the various optical centers that each particle contains.

The analysis of angularly resolved measurements of the second harmonic [85]

led to experimental verification of this interpretation, as shown in Fig. 10.

The coherent addition of second-harmonic signals, which can occur only in

regions of local order, leads to intriguing possibilities for materials strongly

pumped by an ultrafast source [86]. Here, the key feature is the relationship

between the hyperpolarizabilities of optical centers in their ground and

electronic excited states, under resonance conditions. To investigate this further,

we return to the two-level model of the previous section, considering the role of

other electronic levels subsequently. The hyperpolarizability for the upper state

u is readily obtained using the transformed interaction Hamiltonian:

H00int ¼ �e�1
0 bl� luuc 	 e? ð94Þ

Here the algorithm given in (89) is modified by interchanging the labels 0 and u:

l00 ! l00 � luu ¼ �d; luu ! 0 ð95Þ

This has the effect of reversing the sign of d and also the energy difference Eu0,

wherever each appears, although the Hermiticity of the dipole operator ensures

that for nondegenerate states the transition dipole suffers no change:

d ¼ luu � l00 ! �d ¼ �ðluu � l00Þ
Eu0 ¼ Eu � E0 ! �Eu0 ¼ E0u

l0u ¼ lu0

0 22
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Figure 10. Intensity (arbitrary units) of optical SHG from a purple membrane suspension.

Experimental data (Allcock et al. 1996) obtained with Nd:YAG laser pumping are shown by the open

circles and the solid line represents the theoretical fit.
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It then transpires that the upper-level hyperpolarizability tensor stands in the

following simple relationship to its ground-state counterpart [86]:

b00
ijkð�2o;o;oÞ ¼ �buu

ijkð�2o;o;oÞ ð96Þ

Similar features arise when third-harmonic generation is considered. In passing

we note that a variable-sign convention for the damping would lead to behavior

of an analytical form substantially different from that discussed below.

Consider a system in which, prior to the input of the pump radiation

responsible for the detected harmonic output, irradiation with a beam of the

appropriate resonant frequency produces a significant population of the elec-

tronic level u among the optical centers in each particle or domain. With first-

order decay kinetics, the probability that a certain center x is excited at time t is

given by

P Rx; t
� �

¼ P0 Rx
� �

exp �k t � t0ð Þð Þ ð97Þ

where k is the decay constant and P0 is the residual probability that the upper

level is excited at time t0, the time at which the pump radiation for SHG detection

is applied. Particular interest expressed below focuses on the case of ultrafast

excitation of sufficient intensity to elicit the onset of saturation, where P0 > 0:5.

While both excited- and ground-state species are present, the two processes

described above contribute to an effective unit hyperpolarizability given by

bðmÞijk ¼
Xn

x

½ð1� PðRx; tÞÞb00
ðxÞlmv þ PðRx; tÞbuu

ðxÞlmv�l
x
ill

x
jmknxei�k	ðRx�RmÞ

¼
Xn

x

½ð1� 2PðRx; tÞÞb00
ðxÞlmv�l

x
ill

x
jml

x
kvei�k	ðRx�RmÞ ð98Þ

leading to a harmonic intensity that features a characteristic decay and recovery

in its temporal profile. Let us assume for simplicity that the probability of initial

excitation is identical for all optical centers, removing the Rx dependence of

PðRx; tÞ. Let us also denote by b the key factor

b ¼
Xn

x

b00
ðxÞlmvl

x
ill

x
jml

x
kv�e
0
iejekei�k	ðRx�RmÞ ð99Þ

which will in general be a complex quantity by virtue of the damping involved in

the hyperpolarizability tensor. For simplicity, assuming continuous-wave pump
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radiation, the intensity of harmonic emission thus acquires a time dependence of

the biexponential form

I ! jbj2½1� 4 expð�kt0Þ þ 4expð�2kt0Þ� ð100Þ

where t0 ¼ t � t0 and P0 Rx
� �

� 1, giving a trace of the form GðtÞ ¼ 1� 4

expð�ktÞ þ 4 expð�2ktÞ as shown in Fig. 11.

To observe this exact time dependence in the second harmonic would require

the satisfaction of certain criteria detailed below. Nonetheless, these conditions

are largely a reflection of the simple two-level model employed, and in the

following discussion we show that the major features of the result should be

manifest in real systems of considerably greater electronic complexity. First, we

note that with the two-level model a necessary condition for observation of a

fall, and recovery of the harmonic output as illustrated in Fig. 11 is the creation

of a transient population inversion by the preceding excitation laser pulse. The

minimum output intensity (which will, in fact, be nonzero) would then be

obtained at the time where the fractional population of the upper level u has

fallen to exactly 0.5, matching the ground-state population in a two-level

system. In practice, achieving initial population inversion is likely to require

that the excitation pulse populate a higher level h that rapidly decays to u, where

the latter plays the role of a population bottleneck as in conventional laser

action. Although this emphasizes the fact that a two-level representation of the

0.0
0.0

0.5

1.0

1.5

1.0 2.0 3.0 4.0

G
(t

)

t

Figure 11. Schematic of the harmonic temporal profile G(t) from Eq. (100) in arbitrary units.
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electronic energy levels is necessarily incomplete—as, indeed, it generally is—

the inclusion of h and any other levels in the electronic structure of the optical

centers will not significantly affect the results, provided those levels are no

longer significantly populated once the pump for harmonic emission is applied.

The harmonic signal will still be dominated by generation in centers in either

the 0 or u state. Other electronic levels will certainly play the role of virtual

states in the hyperpolarizabilities of each of those levels, adding a background

contribution to each.

The effect of involving other levels in the calculations is assessed as follows,

by considering what modifications to the preceding theory ensue. Both the

tensors b00 and buu certainly acquire additional (and different) background contri

butions, also complex, such that

Xn

x

b00
ðxÞlmn l

x
ill

x
jml

x
kn�e
0
i ej ek ei�k	ðRx�RmÞ ! bþ ~b

Xn

x

buu
ðxÞlmn l

x
il l

x
jm l

x
kn�e
0
i ej ek ei�k	ðRx�RmÞ ! �bþ �b

9>>>>=
>>>>;

ð101Þ

This results in a harmonic intensity with a more intricate time dependence of the

form

I ! jðbþ ~bÞ � ð2bþ ~b� �bÞ exp �kt0ð Þj2 ð102Þ

which no longer factorises out the temporal profile Gðt0Þ. Separating the real and

imaginary parts of each parameter b ¼ b0 þ ib00, ~b ¼ ~b0 þ i~b00, �b ¼ �b0 þ i�b00; we

thus have

I ! ½ðb0 þ ~b0Þ � ð2b0 þ ~b0 � �b0Þ expð�kt0Þ�2 þ ½ðb00 þ ~b00Þ
� ð2b00 þ ~b00�b00Þ expð�kt0Þ�2 ð103Þ

Of the two intensity contributions in Eq. (103) the first, associated with the real

parts of the hyperpolarizabilities, will generally dominate, leading to a minimum

in the harmonic emission at a time given by

t0min ! k�1 ln
2b0 þ ~b0 � �b0

b0 þ ~b0

 !
ð104Þ

However, the effect of the second contribution in Eq. (103), corresponding to the

imaginary parts of the hyperpolarizabilities and due to damping effects, will be to

obviate complete cancellation of the harmonic signal at this time—only by a
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spurious accident of hyperpolarizability values could the two harmonic intensity

contributions of Eq. (103) be simultaneously zero. The characteristic fall and

recovery of the harmonic remains.

In the light of the results presented above, it is useful to recall that the

behavior we have identified, in the second-harmonic profile of a system of

randomly oriented small particles or ordered domains in complex materials,

owes its origin to the local quantum coherence between harmonic emission

processes at different optical centers within each particle or domain. This

behavior is dominated by features associated with a two-level optical response,

but, provided the pump or harmonic frequencies are close to resonance, broadly

similar effects are anticipated in systems of considerably greater electronic

complexity. The effects of damping, which have to be included during operation

close to resonance, and also the effects (as virtual states) of higher electronic

levels, are to produce a background emission that prevents the harmonic from

falling quite to zero during the probe pulse throughput. The characteristic signal

recovery nonetheless remains a key feature, and its detailed form reflects the

correct (constant sign) convention for effecting the optical damping. In this

sense, observations might provide ground for experimental verification of the

signing. Determination of the biexponential form of the harmonic profile will

faithfully register the dynamics of excited-state decay.

The result has structural as well as kinetic implications. The local coherence,

responsible for the partial cancellation of the harmonic signal after a chara-

cteristic delay time, is entirely dependent on a structural rigidity within each

particle. This need not mean that all the optical centers are identically aligned,

but that they do not rotate significantly with respect to each other (at least over

the timescale for the harmonic measurements). The extent of recovery in the

harmonic signal serves to register the extent of local coherence, and hence in

many systems the localization of structural order. In any less than completely

rigid system, it might be possible to assess the degree of local flexibility from

the extent of harmonic recovery.

XIV. SIX-WAVE SECOND HARMONIC GENERATION

A spate of papers since the mid-1990s have reported theoretical and experi-

mental studies of second-harmonic generation mediated by six-wave mixing

(SWM), reflecting the new availability of laser sources with sufficient power and

stability to make such observations possible [87–95]. Here we review the theory

underlying the six-wave mechanisms for the evolution of a coherent second-

harmonic signal in media where it is normally forbidden. As we shall see, the

process oþ oþ oþ o! 2oþ 2o is invariably permitted, irrespective of local

or bulk symmetry. We show how the initial results can be neatly adapted to model

real molecular systems. We conclude by exhibiting the experimentally verified
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form of a time-delayed harmonic that emerges if a pump probe system of beams

is employed, which once again is a manifestation of quantum-optical interference.

To calculate the rate, we first construct a matrix element using the general

equation (41) and substitute into the Golden Rule, Eq. (51). The detailed

structure of the nonlinear polarizability að6ÞSWMð�2o;�2o;o;o;o;oÞ, which the

process entails, is obtained using the state-sequence diagram of Fig. 12; in all

there are 15ð¼ 6!=4!2!Þ pathways linking the initial and final states to be taken

into consideration, representing all topologically distinct orderings of the six

electric dipole interactions involved. Again we might have used the time-

ordered diagrams as an alternative—both, of course, lead to identical tensor

expressions—but the concise representation of the state-sequencing is now

clearly evident. For the explicit representation of the somewhat unwieldy

resulting expressions, it is convenient to employ a more compact notation than

we have used for lower-order polarisabilities. Here we follow Naguleswaran and

Stedman [96], and neatly express að6ÞSWMð�o0;�o0;o;o;o;oÞ as

að6ÞSWMð�o0;�o0;o;o;o;oÞ¼
X
p

X
r;s;t;u;v

fðm0v
pð6Þm

vu
pð5Þm

ut
pð4Þm

ts
pð3Þm

sr
pð2Þm

r0
pð1ÞÞ

½f~Er 0 þ �hZpð1Þopð1Þgf~Es 0 þ �hðZpð1Þopð1Þ þ Zpð2Þopð2ÞÞ
� f~Et0 þ �hðZpð1Þopð1Þ þ Zpð2Þopð2Þ þ Zpð3Þopð3ÞÞg
� f~Eu0 þ �hðZpð1Þopð1Þ þ Zpð2Þopð2Þ þ Zpð3Þopð3Þ

þ Zpð4Þopð4ÞÞg � f~Ev0 þ �hðZpð1Þopð1Þ

þ Zpð2Þopð2Þ þ Zpð3Þopð3Þ þ Zpð4Þopð4ÞZpð5Þopð5ÞÞg��1

ð105Þ

where the sign of the photon label ZpðnÞ ¼ þ1 or �1 for emission or absorption,

respectively. The sum over p leads to 30 unique permutations, allowing for

4k,2k′

4k

3k,2k′

3k,k′

3k

2k,k′

2k

2k k

2k,2k′

k,2k′

2k′

k′

k,k′

Figure 12. The state-sequence diagram representing SWM.
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reversal of the time orderings of the signal photons, as is necessary for harmonics

produced with differing wavevectors or polarizations. As an example of the

energy denominator for a particular time ordering, consider the term for which

pð1Þ ¼ n; pð2Þ ¼ m; pð3Þ ¼ l; pð4Þ ¼ k;pð5Þ ¼ j, andpð6Þ ¼ i. An energy deno-

minator of the following form emerges

½ð~Er 0��hoÞð~Es 0�2�hoÞð~Et0�2�hoþ �ho0Þð~Eu0 � 3�hoþ �ho0Þrð~Ev0 � 4�hoþ �ho0Þ�

corresponding to the following temporal ordering: absorptions n and m (o),

emission l (o0), absorptions k and j (o) and finally emission i (o0).
It is worth drawing attention to the presence, and means of dealing with, the

secular resonances that arise in high orders of optical nonlinearity. These

features represent the fact that the quantum amplitudes for such processes can

subsume the matrix elements for lower-order processes, apparently leading to

spurious infinities. The various time orderings of the SWM interaction described

here clearly include some that factor as a product of two sequential SHG time

orderings, and it repays effort to examine in more detail their structure in the

SWM polarizability tensor. Consider a situation where the molecular interme-

diate state jti is represented by the molecular ground state j0i in the sum over t.

When this occurs, certain energy denominators, such as Eti, can suffer a

complete cancellation of the radiation terms to uncover an expression of the

form E00 � i�0 ¼ �i�0; see, for example, Table III, which lists the energy

denominators. As the ground-state lifetime, represented by ��1
0 , is considered

infinite, a divergent signal is suggested. In order to circumvent these secular

resonances, the molecular polarizability has to be reconstructed in such a way as

to remove the possibility of infinite response [79]. We have reported the details

for such a reconstruction explicitly for the SWM polarizability tensor [91]. The

procedure is straightforward and entails properly taking the limit as the virtual

state energy approaches that of the ground state.

Returning to the general form of the SWM interaction, it is next necessary to

form the radiation tensor using the general expression of Eq. (52). Explicitly

incorporating the degree of coherence of the input beam and assuming that there

are initially no photons in the harmonic mode, the following equation, where Io
is the intensity of the pump radiation, is obtained for the rate of six-wave mixing:

�SWM ¼
4p�h
e6

0

� �
Io

2cno

� �4
no þ 2

3

� �8X
k0;l0

n0go
0

2cVno0

� �2
no0 þ 2

3

� �4

gð4Þo ZN

� jhað6Þð�2o;�2o;o;o;o;oÞ 	 �e0�e0eeeeij2dð2�hok0 � 4�hokÞ ð106Þ

The result embodies the coherence factor ZN to account for the phase-matching

characteristics of the process, leading to the familiar sinc2 behavior, which
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demonstrates that the SWM process manifests coherence for emission in the

forward z direction. This is nonetheless subject to optimal wavevector matching:

�k ¼ 4k� k0 � 0.

The question of whether SWM can generate an observable signal in fluids

requires further analysis, and calls for explicit evaluation of the ensemble

average of the tensor product in Eq. (106) as

hað6Þ 	 �e0�e0eeeei ¼ að6ÞðlmÞðvoprÞ�e
0
i�e
0
j ek el em enh‘il‘jm‘kn‘lo‘mp‘nri ð107Þ

Applying a sixth-rank rotational average [97] immediately reveals that the rate

equation entails an overall multiplier of the scalar product (e 	 e), which vanishes

for circular polarizations. The six-wave interaction is thus subject to the same

embargo on conversion of a circularly polarized pump as the conventional SHG

process [98]. In the case of a plane-polarized pump, ensemble averaging leads to

the result;

�SWM ¼
4p�ho2

k

e6
0

� �
Io

2cno

� �4 n2
ok
þ 2

3

� �8

gð4Þo

X
k0;l0

n0go
0
k0

2Vcno0k0

� �2 n2
o0

k0
þ 2

3

 !4

� jf6ðe 	 e0Þ2 � 2gað6ÞðlmÞðlmnnÞ � f2ðe 	 e
0Þ2 � 3gað6ÞðllÞðmmnnÞj

2ZN

� dð2�ho0k0 � 4�hokÞ ð108Þ

following simplication exploiting the inherent permutational symmetry in the

first two and last four indices of the nonlinear response tensor. Equation (108)

illustrates the fact that there need not be full retention of polarization in the

emitted harmonic; indeed, the extent of depolarization r is given by

r ¼ �SWMðe0 ? eÞ
�SWMðe0 keÞ ¼

f3allðmmnnÞ � 2almðlmnnÞg
fallðmmnnÞ þ 4almðlmnnÞg

����
����
2

ð109Þ

whose value must lie in the range 0 # r # 9. If full permutational (Kleinman)

index symmetry applies to the components of the nonlinear susceptibility tensor,

Eq. (109) reduces to the result r ¼ 1
25

. Departure of the degree of depolarization

from this value thus registers invalidity of the Kleinman assumption.

Before further developing the theory to a form more directly suited to a

different kind of experimental application, we outline why SWM is a mecha-

nism allowed for all possible molecular symmetries. By inspection of the index

symmetry in the radiation tensor, it is clear that a harmonic signal can derive

only from that part of the sixth-rank polarizability að6ÞSWM that is symmetric with

respect to permutation among the four indices related to the absorbed pump
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photons, and also between the two indices relating to the two harmonic photons.

Under the operations of the full rotation group SO(3), the group-theoretic

representation of the tensor emerges as 2Dð0þÞ � Dð1þÞ � 4Dð2þÞ � 2Dð3þÞþ
3Dð4þÞ � Dð5þÞ � Dð6þÞ, accommodating a maximum of 90 independent compo-

nents in the case of a molecule lacking any intrinsic symmetry. If full (Kleinman)

index symmetry is assumed, the representation becomes Dð0þÞ � Dð2þÞ � Dð6þÞ,
accounting for a total of just 28 independent components. In either case the

crucial facet of the result is its incorporation of a Dð0þÞ component, which

invariably spans the totally symmetric representation of any point or space

groups. Thus six-wave second-harmonic production entails a nonlinear

polarizability that never vanishes for symmetry reasons; for example, it permits

the process to be supported in centrosymmetric molecules or solids. Naturally,

the six-wave process will be insignificant in media where the normal SHG

process is allowed, since it derives from three orders higher perturbation

theory.

Since the early 1990s, a number of studies on the generation of optically

induced harmonics from isotropic suspensions of organic dyes have led to the

characterization of SWM mechanisms (see, e.g., Refs. 88–90 and 92–95).

However, it has generally been found experimentally expedient to induce the

harmonic by seeding. This requires that samples be pumped not only with the

four beams at the fundamental but also with a probe beam at the harmonic

frequency, allowing for stimulated emission to enhance the interaction. The

experimental setup is usually based on three distinct beams impinging on the

sample. Of these, two are counterpropagating fundamental beams of frequency

o, with the third at a frequency of 2o stimulating the second harmonic into a

specific mode satisfying the wavevector matching conditions. A schematic

experimental geometry is illustrated in Fig. 13. Under such conditions the

number of time-ordered diagrams is increased from the original 15 to 180 (¼6!/

2!2!), indicating a reduction in the extent of permutational symmetry among

both the product radiation and molecular polarizability indices.

Referring to the experimental geometry of Fig. 13, we can assign the

radiation modes r1 ¼ ðk1; l1Þ; r2 ¼ ðk2l2Þ; r3 ¼ ðk3; l3Þ, and r4 ¼ ðk4; l4Þ;
recognizing that k1 ¼ �k2 and k3 ¼ �k4. Using the coherent representation for

a SWM process, [Eq. (106)], and recognizing the appropriate index symmetry,

we can write

�SWM ¼
2p
e6

0

� �
I1

2cno

� �2
I2

2cno

� �2
no þ 2

3

� �8

g
ð2Þ
1 g

ð2Þ
2

I3

2cn2o

� �
n2o þ 2

3

� �2

�
X
k4;l4

n0gok4

2cVno4

� �
no4
þ 2

3

� �2

ZNdð�hok4
þ 2�ho� 4�hoÞ

� jað6Þ
ijðklÞðmnÞð�ok4

;�2o;o;o;o;oÞ�eð4Þi �e
ð3Þ
j e
ð2Þ
k e
ð2Þ
l eð1Þm eð1Þn j

2 ð110Þ
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Note the dependence of the rate on the intensity of the stimulating harmonic or

seeding beam at 2o. On converting the sum over k4 to an integral, utilizing our

knowledge of the delta function and converting to a harmonic intensity, we have

ISWM ¼
1

e6
0ð2pÞ

2

I1

2cno

� �2
I2

2cno

� �2
no þ 2

3

� �8

g
ð2Þ
1 g

ð2Þ
2

I3

2c

� �
ð2oÞ4

2c3

 !
n2o þ 2

3

� �4

ZN

�
X
l4

jað6Þ
ijðklÞðmnÞð�2o;�2o;o;o;o;oÞ�eð4Þi �e

ð3Þ
j e
ð2Þ
k e
ð2Þ
l eð1Þm eð1Þn j

2 ð111Þ

Z

Y

X

ω

2ω

ω
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WP

Sample

r2r4

r3

r1

BS

A

F
P

Detector

Figure 13. Schematic of a typical SWM experimental set-up. Counter-propagating fundamental

beams of mode r1 ¼ ðk1;l1Þ and r2 ¼ ðk2; l2Þ, each contribute two photons while the stimulating

beam r3 ¼ ðk3; l3 and signal beam r4 ¼ ðk4; l4Þ each gain one photon. The laboratory axes are

illustrated and other symbols represent: A-Aperture, BS-beam splitter, C-chopper, F-bandpass filter,

P-polarizer, M-mirror and WP-wave plate.
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where g
ð2Þ
i is the second-order degree of coherence of the ith mode. Notice how

the artificial dependence on the quantization volume disappears. The interesting

features of the optical response are embedded in the molecular polarizability/

radiation tensor product. For an isotropic sample, we again have to perform a

rotational average taken inside the modulus squared. Index symmetry exists only

in the k; l and m; n index pairs, as indicated by parentheses. Therefore, on

applying a sixth-rank average, we calculate the response as

hISWMi ¼
k

105

X6

i¼6

Ei Ai ð112Þ

Here k represents all the molecule-independent and polarization-independent

constants gathered into a single parameter; the Ei values represent the unique

radiation polarization products

E1 ¼ ðeð1Þ 	 eð1ÞÞðeð2Þ 	 eð2ÞÞð�eð3Þ 	 �eð4ÞÞ E3 ¼ ðeð1Þ 	 eð2ÞÞðeð1Þ 	 �eð3ÞÞðeð2Þ 	 �eð4ÞÞ

E2 ¼ ðeð1Þ 	 eð1ÞÞðeð2Þ 	 �eð3ÞÞðeð2Þ 	 �eð4ÞÞ E4 ¼ ðeð1Þ 	 eð2ÞÞðeð1Þ 	 �eð4ÞÞðeð2Þ 	 �eð3ÞÞ

E3 ¼ ðeð1Þ 	 eð2ÞÞðeð1Þ 	 eð2ÞÞð�eð3Þ 	 �eð4ÞÞ E5 ¼ ðeð1Þ 	 �eð3ÞÞðeð1Þ 	 �eð4ÞÞðeð2Þ 	 eð2ÞÞ
ð113Þ

and the Ai values represent the molecular response, in the following format:

A1

A2

A3

A4

A5

A6

2
6666664

3
7777775
¼

8 �5 �5 4 4 5

�5 11 4 �6 �6 4

�5 4 11 �6 �6 4

4 �6 �6 16 2 �6

4 �6 �6 1 16 �6

�5 4 4 �6 �6 11

2
6666664

3
7777775

a1

a2

a3

a4

a5

a6

2
6666664

3
7777775

ð114Þ

Here each independent molecular polarizability invariant is explicitly defined as

a1 ¼ að6Þ
iiðjjÞðkkÞ a4 ¼ að6Þ

ijðikÞðjkÞ

a2 ¼ að6Þ
ijðijÞðkkÞ a5 ¼ að6Þ

jiðikÞðjkÞ ð115Þ

a3 ¼ a
ð6Þ
iiðjkÞðjkÞ a6 ¼ a

ð6Þ
jkðiiÞðjkÞ

In this format we can easily derive expressions for the signal intensity of the

harmonic for arbitrary electric field polarizations. By assuming a laboratory-

frame coordinate axis as illustrated in the experimental setup shown in Fig. 13,
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the polarization vectors for the four fields, characterized by their azimuth and

ellipticity as defined in Fig. 14, are concisely expressed as

eð1Þ ¼ ðcos y1 cosZ1 � isiny1 sinZ1Þx̂þ ðsiny1 cosZ1 þ icosy1 sinZ1Þŷ
eð2Þ ¼ ðcosy2 cosZ2 � i sin y2 sinZ2Þx̂� ðsin y2 cosZ2 þ i cosy2 sinZ2Þŷ
eð3Þ ¼ ðcosy3 cosZ3 � isiny3 sinZ3Þx̂� ðsiny3 cosZ3 þ icosy3 sinZ3Þŷ

� ðcosdŷ� sin dẑÞ
eð4Þ ¼ ðcosy4 cosZ4 � isiny4 sinZ4Þx̂þ ðsiny4 cosZ4 þ icosy4Z4Þŷ

� ðcosdŷ� sindẑÞ
ð116Þ

By placing a plane polarizer in the signal collection geometry ðZ4 ¼ 0Þ and

collecting the signal separately along x̂ðy4 ¼ 0Þ and ŷðy4 ¼ p=2Þ directions, we

are free to select any particular set of polarizations for the applied fields. As an

example of the many controlled polarization plots possible, consider the applied

X

Y

e(i
 
)

θi

ηi

b

a

Figure 14. General representation for an arbitrarily polarized light beam, with polarization

vector eðiÞ as represented by Eq. (116). The definition of the azimuth yi and ellipticity Zi ¼ tan�1(b/

a) is as illustrated with respect to the X- and Y-axis with the Z-axis pointing into the plane of the

paper.
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fields all linearly polarized along the x̂ axis except for beam eð1Þ, which makes

an angle y1 to the others. The signal intensity then reduces from Eq. (112) to

hIðx̂Þ�pol
SWM i ¼ K

105
jðA1 þ A2Þ þ ðA3 þ A4 þ A5 þ A6Þcos2y1j2 ð117Þ

hIðŷ�pol
SWM i ¼

K

105

1

2
ðA5 þ A6Þsin2y1 cosd

����
����
2

ð118Þ

where d is the angle at which the seeding and signal fields propagate with respect

to the laboratory (x̂; ŷ) plane. The calculated signal for collection along the x̂ and

ŷ axis can be plotted as a function of angle y1. This is illustrated in Fig. 15. By

performing a number of similarly designed experiments, detailed information on

the six-wave mixing polarizability tensor can be extracted.

The seeding of molecular harmonics is in some sense a throwback to

experiments where second harmonics were first observed in condensed-matter

isotropic systems. For example, in glass fibers it was observed that a harmonic

was produced after long exposures to fundamental frequency laser light

[99,100]. It was later found that, by introduction of a low intensity seeding beam

at the harmonic frequency, the onset of the harmonic in the glass was essentially

instantaneous [101]. It was at this time that the proposal of a SWM mechanism
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Figure 15. The solid and dotted lines represent theoretically calculated traces for SWM signals

collected under the polarization conditions pertaining to Eqs. (117) and (118), respectively. The solid

trace is normalized and the dotted line scaled by a factor of 4. The results are calculated assuming all

molecular parameters A1 � A6 yield equal contributions.
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was first made [102,103]. However, it is necessary to accommodate additional

features that are observed in the generation of harmonics from suspensions of

organic dyes that absorb at the harmonic frequency. In such media the temporal

behavior of the harmonic evolution is generally considered consistent with some

degree of molecular alignment as a result of the optical perturbations to the

environment [104]. Such perturbations would necessarily be physically distinct

from the process of harmonic production, although engendered by the same

optical input beams. This represents a move away from the instantaneous SWM

mechanism, allowed for all molecular symmetries, focusing instead on time-

dependent molecular orientational symmetry breaking. Here we illustrate how,

with a resonant seeding harmonic, the concept of a molecular population diffrac-

tion grating can be employed as an alternative and more readily comprehensible

means of eliciting the physics of harmonic evolution. This is a quantum optical

effect that does not require the invocation of light-induced orientation. Its

foundation is based on a selective absorption process that is a direct result of a

molecular ensemble initially having an isotropic array of molecules.

The first task then is to show that, in the presence of the two writing beams r2

and r3, the created population grating is of just the correct periodicity to

efficiently generate phase-matched second-harmonic photons from the probe

beam r1. As a result, the r4 signal photons emerge at the second-harmonic

frequency and propagate in the direction exactly opposite that of seeding beam

r3, according to the dictates of wavevector matching. We shall suppose that the

seeding pulses from modes r2 and r3 are coincident with the sample at time

t ¼ 0, and then at t ¼ t the pulse from the probe beam r1 arrives. The sample is

absorbing at the harmonic frequency, and so transition to the excited state is

expected. Nonetheless, there are two ways to accomplish this in the presence of

the two differing input frequencies: (1) two-photon absorption of photons solely

from the fundamental beam and (2) single-photon absorption of photons from

the harmonic beam. (This principle was first considered in connection with ioni-

zation processes by Baranova and Zel’dovich, [105].) We thus need to consider

two time orderings as shown in Fig. 16. The matrix element (quantum pro-

bability amplitude) for the transition in a particular molecule x is thus written as

M
ðxÞ
fi ¼ M

ðx;aÞ
fi þM

ðx;bÞ
fi ð119Þ

where M
ðx;aÞ
fi is the matrix element for graph (a) of Fig. 16 and M

ðx;bÞ
fi is that for

graph (b). By rigorously following the procedures for forming the matrix

elements as outlined in earlier sections, these quantities can be written as

M
ðx;aÞ
fi ¼ �hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq2ihðq2 � 1Þi

p
a10
ðijÞðo;oÞe

ð2Þ
i e
ð2Þ
j ei 2k2	Rx

ð120Þ
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and

M
ðx;bÞ
fi ¼ i

�hn0go
0
k0k
0

2cVe0nok0

� �1=2 n2
o0

k0
þ 2

3

 ! ffiffiffiffiffiffiffiffiffi
hq3i

p
m10

i e
ð3Þ
i eik3	Rx ð121Þ

In these equations the position of the molecule is described by the vector Rx;
the wavevectors of the two beams of modes r2 and r3 are k2 and k3 respectively,

with hq2i and hq3i the corresponding mean photon numbers (mode occupancies);

and eðnÞ is a unit vector describing the polarization state of mode rn. In deriving

Eqs. (120) and (121), the state vectors describing the radiation fields have been

assumed to be coherent laser states, and so, for example, hq2i ¼ hað2Þjn̂jað2Þi;
where jað2Þi is the coherent state representing mode 2 and n̂ is the number

operator; a similar expression may be written for hq3i . Also, the molecular

parameters apparent in Eqs. (120) and (121) are the components of the transition

dipole, m10
i , and the index-symmetric second-order molecular transition tensor,

a10
ðijÞðo;oÞ.

The rate at which the excited state is populated is once again given by

recourse to the Golden Rule [Eq. (51)] and clearly three contributions are

apparent:

� ¼ 2p
�h
jMðxÞfi j

2rð1ÞF ¼ �1 þ �2 þ �3 ð122Þ

r2

r2

r3

r

e1

e0

e1

e0

(a) (b)

Figure 16. The time-ordered diagrams associated with the formation of an appropriate

molecular grating for SHG. The two writing beams r2 and r3 populate the upper electronic state via

two- and single-photon absorption respectively.
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where

�1 ¼
2prð1ÞF

�h

�hngok

2ce0Vnok

� �2 n2
ok
þ 2

3

� �4

hq2ihðq2 � 1Þijað10Þ
ðijÞ e

ð2Þ
i e
ð2Þ
j j

2 ð123Þ

�2 ¼
2prð1ÞF

�h

)
� i

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !
ð124Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq3ihq2ihðq2 � 1Þi

p
a10
ðijÞ�m

10
k e
ð2Þ
i e
ð2Þ
j �e
ð3Þ
k eið2k2�k3Þ	Rx þ c:c

*

and

�3 ¼
2prð1ÞF

�h

�hn0go
0
k0

2ce0Vno0
k0

 !
n2
ok
þ 2

3

� �2

hq3ijm10
i e
ð3Þ
i j

2 ð125Þ

As the transition is to a particular molecular electronic manifold, we have

utilized the convenient density of states representation in the expressions. We see

that the rate at which the exited state is populated depends on the position of the

molecule, through �2—and also on the molecular orientation, through the matrix

elements. It is this �2 term that produces the grating within the sample. We note

here that the periodicity of the grating, determined by eið2k2�k3Þ	Rx � e�ið2k1þk3Þ	Rx,

is exactly that required for phase-matched second-harmonic generation from the

probe beam, where the signal is created in precisely the opposite direction to the

harmonic pump beam.

Thus far we have a position-dependent rate �ðRxÞ at which the upper state is

populated during application of the two writing beams. If we take the effective

time for which the beams are applied as �t, the probability that molecule x is

excited immediately after the pulses have passed is PðRxÞ ¼ �ðRxÞ�t. The

probe pulse arrives after a delay of tð>�tÞ seconds, during which time the

molecule, if excited, may relax. We suppose that it relaxes to the ground state

via a simple exponential decay. At time t the probability that the molecule is

excited is hence

PðRx; tÞ ¼ �ðRxÞ�t e�k10ðt��tÞ ð126Þ

where k10 is the decay constant. It is useful to assume that the molecules remain

clamped in between light pulses, so that we can ignore any movement (rotational

or translational) that may occur during these finite periods. This physically

reasonable assumption is primarily made for calculational expediency; it may be
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dispensed with, but only at the cost of substantially increased complexity [93].

This means that the probe pulse encounters the associated population distribution

in the sample and the harmonic is then produced from it. Again two possibilities

arise, as illustrated in Fig. 17 (in which only the dominant of three contributory

time orderings is shown). Writing as M
0ðx;aÞ
fi and M

0ðx;bÞ
fi the quantum-optical

matrix elements for these component processes, the effective matrix element for

harmonic production will be

M
0ðxÞ
fi ¼ 1� PðRx; tÞ

� �
M
0ðx;aÞ
fi þ PðRx; tÞM0ðx;bÞfi ð127Þ

reflecting a statistical weighting of the appropriate quantum amplitudes. For a

two-level system, Eq. (127) is exact, and follows from use of the completeness

relation for the molecular states. The two components involved in the harmonic

generation process are, in fact, identical in terms of the photonics, differing only

in their molecular mediation, and so we have

M
0ðx;aÞ
fi ¼ �i

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq1iðhq1i � 1Þ

p
b00

iðjkÞ�e
ð4Þ
i e
ð1Þ
j e
ð1Þ
k eið�2k2þk3Þ	Rx ð128Þ

and

M
0ðx;bÞ
fi ¼ �i

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq1iðhq1i � 1Þ

p
b11

ið jkÞ�e
ð4Þ
i e
ð1Þ
j e
ð1Þ
k eið�2k2þk3Þ	Rx ð129Þ

s

r

e0

e0

e1

e1

r1

r1

r1

r4 r4

r1

s

r

(a) (b)

Figure 17. Representative time-ordered diagrams illustrating the harmonic formation from

molecules in (a) the ground electronic state e0 and (b) the excited state e1.
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where hq1i is the mean number of photons in mode r1. The index-symmetric

hyperpolarizbilities are exactly as those given in previous sections (where the

upper level was designated u). They are distinguished by the fact that the har-

monic stems from the labeled states 0 and 1, respectively; as before, the repeated

superscripts indicate that the molecules return to their initial state following the

interaction. As shown in the last section, a two-level model would require that the

hyperpolarizability of the upper level be precisely minus that of the ground state,

as in Eq. (96). In the SWM systems of experimental interest, the two-level model

is too restrictive; however, it can certainly be anticipated that the upper- and

lower-level hyperpolarizabilities will substantially differ, a feature that proves

crucial for the following analysis.

To continue, we now compile the total matrix element for SHG from the

ensemble through

M0fi ¼ �i
�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2 n2
o0

k0
þ 2

3

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq1iðhq1i � 1Þ

p
�e
ð4Þ
i e
ð1Þ
j e
ð1Þ
k

X
x

fb00
iðjkÞ þ PðRx; tÞ�biðjkÞg eið�2k2þk3Þ	Rx

ð130Þ
where the difference in the hyperpolarizabilities between the upper and lower

states has been written

�bið jkÞ ¼ b11
ið jkÞ � b00

ið jkÞ ð131Þ

The rate of production of SHG from the ensemble given by the Golden Rule is

R ¼ 2prð2ÞF

�h

X
x

M
0ðxÞ
fi

�����
�����
2

where rð2ÞF is the density of states for the second (reading) process. Taking an

orientational average and effecting the usual split into incoherent (single site)

and coherent (multi-site interference) terms, we have

hRi ¼ 2prð2ÞF

�h

X
x

jM0ðxÞfi j
2 þ

X
x6¼x0

M
0ðxÞ
fi

�M
0ðx0Þ
fi

* +

The dominant contribution to SHG is hence the coherent term

Rcoh ¼
2prð2ÞF

�h

X
x 6¼x0
hM0ðxÞfi ih �M

0ðx0Þ
fi i ð132Þ

where we have assumed that differing molecules in the solution are

orientationally uncorrelated, as is the case for the majority of pairs in the
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system. For any one particular molecule, one can simply employ Eq. (130),

excluding the sum over x. Referring back to that equation and effecting the

orientational average for individual molecules leads to disappearance of the first

term within the parenthesis, as is usual for SHG in isotropic media. The second

term, however, contains ‘‘hidden’’ orientational factors through PðRx; tÞ, as a

result of which the average is nonzero. Using Eq. (126) we thus have

h�ðRxÞ�t e�k10ðt��tÞ�bið jkÞi ¼ hð�1 þ �2 þ �3Þ�biðjkÞi�t e�k10ðt��tÞ ð133Þ

Of the three contributory terms, it is �2 that is responsible for the observed

signal, as it is the only term to exhibit the necessary phase matching when inser-

ted into Eq. (130). We thus ignore the other two terms in (133). The assumption is

justified by experiments where no SHG signal is observed if either of the writing

beams r2 or r3 is blocked [106]. Using the �2 term in Eq. (133), we now find

h�ðRxÞ�t e�k10ðt��tÞ�biðjkÞi ¼ i
2prð1ÞF

�h

�hngok

2ce0Vnok

� �
n2
ok
þ 2

3

� �2
�hn0go

0
k0

2ce0Vno0
k0

 !1=2

�
n2
o0

k0
þ 2

3

 !
hq3ihq2iðhq2i � 1Þ½ �1=2

� hfa10
ðlmÞ�m

10
n e
ð2Þ
l eð2Þm eð3Þn eið2k2�k3Þ	Rx þ c:c:g

��biðjkÞi�t e�k10ðt��tÞ

with the exponential explicitly exhibiting the phase-matching (and the complex

conjugate term accounting for the fact that SHG can be produced from a funda-

mental beam propagating in the opposite direction, as also observed experi-

mentally). The phase-matched, orientationally averaged matrix element is hence

hM0ðxÞfi i ¼
prð1ÞF

�h

�hngok

2ce0Vnok

� �2 n2
ok
þ 2

3

� �4
�hn0go

0
k0

2ce0Vno0
k0

 !
n2
o0

k0
þ 2

3

 !2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq3ihq2iðhq2i � 1Þhq1iðhq1i � 1Þ

p
� ha10

ðlmÞ�m
10
n �biðjkÞie

ð2Þ
l eð2Þm �eð3Þn �e

ð4Þ
i e
ð1Þ
j e
ð1Þ
k �t e�k10ðt��tÞ ð134Þ

which is necessarily position-independent, so that the phase-matching double

sum in Eq. (132) can be evaluated for the ensemble of N molecules as

NðN � 1Þ � N 2 for large N. The resulting rate of SHG production is

Rcoh¼
2p3ðrð1ÞF Þ

2rð2ÞF

�h3
ðN �tÞ2 �hngok

2ce0Vnok

� �4 n2
ok
þ 2

3

� �8
�hn0go

0
k0

2ce0Vno0
k0

 !2 n2
o0

k0
þ 2

3

 !4

� hq3ihq2iðhq2i � 1Þhq1iðhq1i � 1Þ
� jha10

ðlmÞ�m
10
n �biðjkÞie

ð2Þ
l eð2Þm �eð3Þn �e

ð4Þ
i e
ð1Þ
j e
ð1Þ
k j

2
e�2k10ðt��tÞ ð135Þ
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Casting the result in terms of the mean intensities of the beams, with o0k0 � 2ok,

the final expression for coherent SHG from the grating may be written as

I
ð2oÞ
sig ¼

ðrð1ÞF Þ
2

k0ð Þgð2Þ1 g
ð2Þ
2 ðN �tÞ2

256�h2c5e6
0

ðIðoÞ1 I
ðoÞ
2 Þ

2
I
ð2oÞ
3

� jha10
ðlmÞ�m

10
n �biðjkÞie

ð2Þ
l eð2Þm �eð3Þn �e

ð4Þ
i e
ð1Þ
j e
ð1Þ
k j

2
e�2k10ðt��tÞ ð136Þ

where I
ðoÞ
n is the mean intensity of the nth beam of frequency o and g

ð2Þ
n is its

degree of second-order coherence. Equation (136) thus exhibits the correct

dependence on the intensities of the three input beams (quadratic with respect to

the two fundamental beams and linear in the harmonic writing beam) and also

the sample density (I
ð2oÞ
sig / N2). Dynamically this equation yields a simple

exponential decay due to relaxation of the molecules from the excited to ground

state; the timescale for the decay is therefore governed by the intrinsic fluore-

scence lifetime.

The polarization dependence of Eq. (136) is exactly that found previously for

the case of coincident pulses, represented herein as Eq. (111). It is therefore

interesting to compare the two results and their respective dependences on the

molecular tensor components. Evaluating the sixth-rank average for Eq. (136),

we find

hIð2oÞsig i ¼
ðrð1ÞF Þ

2ðk0Þ3g
ð2Þ
1 g

ð2Þ
2 ðN�tÞ2

256�h2c5e6
0

ðIðoÞ1 I
ðoÞ
2 Þ

2
I
ð2oÞ
3

1

105

X6

i¼1

EiA
0
1

�����
�����
2

e�2k10ðt��tÞ

ð137Þ

where the modified linear matrix A0 now contains a molecular response through

A01
A02
A03
A04
A05
A06

2
666666664

3
777777775
¼

8 �5 �5 4 4 5

�5 11 4 �6 �6 4

�5 4 11 �6 �6 4

4 �6 �6 16 2 �6

4 �6 �6 2 16 �6

�5 4 4 �6 �6 11

2
666666664

3
777777775

�m10
g a10
ðbbÞ�bgðaaÞ

�m10
b a10
ðbgÞ�bgðaaÞ

�m10
g a10
ðabÞ�bgðabÞ

�m10
b a10
ðagÞ�bgðabÞ

�m10
g a10
ðagÞ�bbðabÞ

�m10
a a10
ðggÞ�bbðabÞ

2
66666666666664

3
77777777777775

ð138Þ

The linear matrix E is exactly that as previously defined, in Eq. (113). The

polarization characteristics are similar in form to those of the coincident-pulse

case. Hence, although one would not expect them to be exactly the same because
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of their different dependence on molecular properties, polarization analysis is

unlikely to unambiguously differentiate the contributory mechanisms. The latest

analysis shows experimental results exactly in agreement with this theory [93].

XV. CONCLUSION

In this review we have described some of the advances in the quantum electro-

dynamical formulation of theory for molecular photonics. We have shown how

the framework described in an earlier review has now been extended to new areas

of application, and reformulated for application to real dispersive media—as

reflected in the new treatment of refractive, dissipative, and resonance properties.

With all its conceptual splendor, conventional quantum optics has not generally

been pursued at this level of detail on its dielectric host, and it is our hope that

this work will help match its precepts with quantitative accuracy. Applications of

the new theory have revealed new quantum optical features in two quite different

aspects of the familiar process of second harmonic generation, one operating

through local coherence within small particles and the other, a coherence bet-

ween the quantum amplitudes for fundamental and harmonic excitation. Where

the salient experiments have been performed, they exactly match the theoretical

predictions. The theoretical foundation we have discussed therefore shows pro-

mise for the delivery of accurate insights into other optical processes yet to be

characterized, and it should be well placed to facilitate the determination of

meaningful data from the associated experiments.
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This chapter is based on the part of my research program in general relativity

on electromagnetism. Most of it has been published, since the late 1950s, and is

referred to in the bibliography. The analysis of the theory of electromagnetism

based on its underlying symmetry in relativity theory is reassembled here with

added discussion.

1. INTRODUCTION

An important lesson from Einstein’s theory of relativity is that the underlying

symmetry of any scientific theory reveals many far-reaching physical implica-

tions that are not obvious at first glance. In regard to the subject of electro-

dynamics and its unification with optics, the initially discovered relations in the

nineteenth century, between electrical charges and their motions and the

resulting electric and magnetic fields of force, led to a set of partial differential

equations for the laws of electrodynamics. The formalism was not completed

until Maxwell saw the need, based on symmetry, for an extra term in the

equation that relates current density to a resulting magnetic field. His addition of

the extra term, called ‘‘displacement current,’’ then yielded the full expression

of ‘‘Maxwell’s equations.’’ The latter were recognized as the laws of electro-

dynamics, which were then seen to incorporate the laws of optics.

Indeed, it was Maxwell’s generalization of the laws of electrodynamics that

revealed that the radiation solutions of these equations, which would not have

appeared in the earlier version (without the displacement current term) pre-

dicted all the known optical phenomena. After Maxwell’s investigation of these

optical implications of electrodynamics, other portions of the spectrum of radia-

tion solutions were predicted and discovered empirically: radiowaves, X- rays,

infrared radiation, and gamma rays. Thus, it was Maxwell’s intuitive feeling for

the need of symmetry in his laws of electrodynamics that led to the full

unification of electrodynamics and optics in the expression of Maxwell’s

equations.

James Clerk Maxwell died in 1879, the same year that Albert Einstein was

born. Sixteen years later Einstein recognized that Maxwell’s equations are

covariant with respect to the Lorentz transformations between relatively

moving inertial frames of reference, that is, reference frames that are in constant

relative motion in a straight line. Thus, Einstein recognized in 1895 that the

laws of electrodynamics, expressed with Maxwell’s field equations, must be in

one-to-one correspondence in all possible inertial frames of reference, from the

view of any one of them [1].

The set of transformations of the spacetime coordinates that project the laws

of electrodynamics from any observer’s reference frame to any other (con-

tinuously connected) inertial frame such that the laws remain unchanged is the

symmetry group of the theory of special relativity. It was discovered that this is
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the Poincaré group [2]. Einstein then asserted, 10 years later in 1905, that not

only the laws of electrodynamics and optics, but all the laws of nature must be

covariant under the transformations of the symmetry group of relativity theory.

This is the assertion of ‘‘the theory of special relativity.’’ It is a statement of the

objectivity of the laws of nature regarding all possible inertial frames of

reference [3].

In the next stage, Einstein generalized this symmetry rule to assert that all of

the laws of nature must remain objective (covariant) with respect to transforma-

tions between frames of reference that are in arbitrary types of relative motion.

This is the ‘‘theory of general relativity.’’ As a first step, the theory of general

relativity led to a new explanation for the phenomenon of gravitation, agreeing

with the successful predictions of Newton’s theory of universal gravitation, but

predicting more effects not predicted by the classical theory. General relativity

thereby superceded Newton’s law of universal gravitation [4].

A significant feature of general relativity is the role of geometry in the

mathematical representation of all of the laws of nature. For Einstein found that

the Euclidean (flat) spacetime was not an adequate logic to represent the laws of

interacting matter and radiation. Instead, he had to generalize to Riemannian

(curved) spacetime geometry. The implication was that all the laws of nature,

including the laws of electrodynamics and optics, must be field laws that are

mapped in such a curved spacetime. Later on, in his quest for a unified field

theory, Einstein did insist that one should exploit not only the geometric logic of

the spacetime language but also its algebra. Here he referred to the underlying

group of general relativity—which I have called ‘‘the Einstein group’’. In a

1945 article [5], Einstein said: ‘‘Every attempt to establish a unified field theory

must start, in my opinion, from the group of transformations which is no less

general than that of the continuous transformations of the four coordinates.’’

At the outset, then, it is important to recognize in our study of a general-

ization of the laws of electrodynamics based on the full symmetry of relativity

theory that its covariance is in terms of a continuous group [6] (whether we refer

to special relativity or to general relativity). Such a group does not admit the

discrete reflections in space or time. Further, because of the requirement of

incorporating laws of conservation of energy, momentum and angular momen-

tum, in the flat spacetime limit of the theory, Noether’s theorem prescribes that

the transformations that define the covariance in relativity theory must be

analytic [7]. In other words, the relativistically covariant solutions of the laws of

nature must be regular (i.e., nonsingular) everywhere [8]. Such groups of

continuous, analytic transformations (the Poincaré group for special relativity

[2] and the Einstein group for general relativity) are Lie groups [9]. They

prescribe the algebraic logic of the theory of relativity.

Section II includes an outline of the generalization of the vector potential of

electromagnetic theory so as to include a gauge-invariant pseudovector part.
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This is allowed because of the lack of reflection symmetry in the relativity

groups. In Section III the full form of the equations of electrodynamics in terms

of the irreducible representations of the Lie groups of relativity theory will be

shown. It is a two-component spinor formalism that follows from a factorization

of the standard vector representation of the Maxwell formalism. In Section IV

the theory will be extended to its full form in general relativity. It will be shown

that the 16-component quaternion metrical field equation emerges as a factor-

ization of Einstein’s (10-component) symmetric tensor field equations in general

relativity, once the reflection symmetry elements are removed from the under-

lying covariance group. It is then demonstrated that these 16 independent field

equations may be rewritten as a sum of 10 second-rank symmetric tensor equa-

tions, corresponding exactly with the Einstein field equations, plus 6 second-

rank antisymmteric tensor equations. It is shown that the latter may be put into a

form that corresponds exactly with the formal structure of Maxwell’s equations.

Thus, it is because of removing the reflection symmetry elements from the

underlying group of general relativity, that one arrives at the factorized field

equations that fully unify the gravitational features of matter, in terms of

Einstein’s field equations, with the electromagnetic features of matter in terms

of the Maxwell field equations. The route toward achieving a unified field theory

from general relativity is then to follow the rules of the underlying Lie group by

removing the reflection symmetry elements from the symmetry group of

Einstein’s tensor field equations, thereby yielding a natural structure of the

formalism in terms of spinor and quaternion variables. It will be seen in this

analysis that, in accordance with a generalized Mach principle [10], the

electromagnetic field of a charged body vanishes in a vacuum.

In Section V it will be shown that the quaternion structure of the fields that

correspond to the electromagnetic field tensor and its current density source,

implies a very important consequence for electromagnetism. It is that the local

limit of the time component of the four-current density yields a derived

normalization. The latter is the condition that was imposed (originally by

Max Born) to interpret quantum mechanics as a probability calculus. Here, it

is a derived result that is an asymptotic feature (in the flat spacetime limit) of a

field theory that may not generally be interpreted in terms of probabilities.

Thus, the derivation of the electromagnetic field equations in general relativity

reveals, as a bonus, a natural normalization condition that is conventionally

imposed in quantum mechanics.

II. A GENERALIZATION OF THE
ELECTROMAGNETIC POTENTIAL

After the momentous discovery by C. S. Wu and her collaborators in 1957 that

the weak interaction violates parity (spatial reflection) [11], I addressed the
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question of whether there may be any empirical evidence for the violation of

parity in the electromagnetic interaction [12]. It was thought that only the weak

interaction violates space-reflection symmetry. But if, in the final analysis, there

is a unified field theory in which the weak and the electromagnetic forces, as well

as all of the other forces of nature, are manifestations of a single force field, then

there is an implication in the experimental result of Wu et al. that the electro-

magnetic and the nuclear forces also violate space-reflection symmetry, as well

as time reversal symmetry. Indeed, the continuous group that underlies relativity

theory implies that all discrete symmetries must be excluded from the laws of

nature.

At that time, in the 1950s, there was a problem whereby the calculations

from quantum electrodynamics for the Lamb shift, 2S1=2 � 2P1=2 in the states of

hydrogen, were not in exact agreement with the measurements. Thus it occurred

to me that a small violation of parity symmetry in the electromagnetic interac-

tion might be responsible for this discrepancy.

My investigation proceeded along the following lines [12]. The conventional

coupling of an external electromagnetic potential field Am to an electrical four-

current density of matter jm is in terms of the scalar interaction Lagrangian

L
ðsÞ
int ¼ jm Am ¼ ecðeÞþg0gmcðeÞAm ð1Þ

cðeÞ is the (four-component) bispinor electron field that solves the Dirac

equation

½gmðqm þ ieAmÞ þ m�cðeÞ ¼ 0 ð2Þ

It is assumed here that the electromagnetic vector potential Am is a (polar)

four-vector field. Thus the Lagrangian L
ðsÞ
int is a scalar function in space and time.

If parity should be violated, Am may be generalized by adding an (axial)

pseudovector part, Bm to Am. The Lagrangian then generalizes to a sum of a

scalar part and a pseudoscalar part, Lint ¼ L
ðsÞ
int þ L

ðpsÞ
int , where the latter part,

ecþg0gmcBm, is clearly a pseudoscalar function.

Then what is the source of Bm in electromagnetic theory? Are there

restrictions on Am that should also apply to Bm? The answer is ‘‘yes’’—it is

the restriction of gauge invariance in order to yield a unique representation for

the electric and magnetic field variables. Additionally, gauge invariance is the

necessary and sufficient condition for the existence of conservation laws in the

formalism—in this case the requirement of the conservation of electrical charge

[13]. The latter follows from the continuity equation,

qm:jm ¼ 0 ð3Þ
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The gauge covariance is in two parts: (l) gauge invariance of the first kind, that

is, invariance of the formalism under the phase change c ! c exp ðiZÞ, where,

at this stage, ZðxÞ is an arbitrary scalar field; and (2) gauge invariance of the

second kind—applied to the vector potential, this is the change: Am ! Amþ
ieqmZ. The latter is the addition of a four-gradient of the scalar field Z to the

original potential Am. Applying these two types of gauge transformations to the

Dirac equation (2) then leaves it covariant, thus, its form is left unchanged.

A. The Unique Form of Bm

The form of the pseudovector potential Bm that is gauge-invariant would be a

field that effectively interchanges the roles of the electric and magnetic field

variables in the interaction Hamiltonian that couples a charge q to external

electric and magnetic fields. For such a form leaves the electromagnetic

interaction with charged matter still dependent only on the electric and magnetic

field variables, directly.

The idea is as follows. The electromagnetic field intensity solution of

Maxwell’s equations, expressed in terms of the four-dimensional curl of the

vector potential, is
Fmn ¼ qmAn � qnAm ð4Þ

where the antisymmetric second-rank tensor Fmn is the combination of the

electric and magnetic field variables, E and H, as follows: F0k ¼ �Fk0 ¼
Ek; Fjk ¼ �Fkj ¼ Hn and Fmm ¼ 0; where j 6¼ k 6¼ n ¼ 1; 2; 3 and the ‘‘0’’ sub-

script is the time component. Fmn are the solutions of Maxwell’s equations:

qvFmv ¼ 4pjm; q½r;Fmv� ¼ 0 ð5Þ

The bracket in the second equation in (5) denotes a cyclic sum, and we use units

(henceforth in this article) with c ¼ 1. Combining the definition of Fmv as the

four-dimensional curl of a 4 vector, as in Eq. (4), Maxwell’s equations in terms

of the vector potential are:
&Am ¼ 4pjm ð6Þ

where & is the D’Alembertian operator q2=qt2 �r2, and the vector potential

is subject to the Lorentz gauge, qmAm ¼ 0 , which, in turn, corresponds to

selecting the phase Z(x) to be a solution of the wave equation, &Z ¼0.

Since jm is a 4-vector field and & is a scalar operator, it follows that Am is a

(polar)vector field. Let us now choose the (axial) pseudovector field Bm that

accompanies Am so that 1) it satisfies the same Lorentz gauge as Am, that is,

qmBm ¼ 0, and it solves the field equation (that accompanies (6) for Am:

&Bn ¼ �ix
4p
2

� �
emvlr

ð
qr jl dxm ð7Þ
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where emvlr is the totally antisymmetric Levi–Civita symbol, with e0123 ¼ þ1:
x is an undertermined parameter at this stage of the analysis; it is, physically, a

measure of the ratio of reflection nonsymmetric terms to the reflection-

symmetric terms in the generalized four-potential expression of electrody-

namics, as discussed above.

A solution of Eq. (7) that is compatible with the continuity equation,

qmjm ¼ 0, which in turn leads to the conservation of charge, is

Bv ¼ � ix
2

� �ð
emnlrqrAl dxm ð8Þ

The integration above is defined to be an indefinite line integral. (It is, by

definition, a function of the spacetime coordinates x, not dependent on limits in

the line integral. For example, the line integral
Ð

x dx is defined here to be x2=2).

The integrand in Eq. (8) is the dual of the electromagnetic field tensor,

Fmn ¼ emnlrFlr; that is, it replaces the electric and magnetic field variables,

E$ H. In terms of these variables, the pseudovector potential may be

expressed as follows: Bn ¼ fB;B0g; where

B ¼ x
2

� �ð
ðHdt þ E � drÞ;B0 ¼ ix

2

� �ð
H � dr ð9Þ

B. The Case of Constant Fields

If E and H are constant fields (i.e., independent of the space and time coor-

dinates), then they would come out of the integral signs in Eq. (9). With the

reflection nonsymmetric Lagrangian density Lint ¼ jmðAm þ BmÞ, Lagrange’s

equation of motion then reduces to the following equation of motion of a test

body with charge q:

dp

dt
¼ Fv þ Fpv

where p is the particle’s momentum,

Fv ¼ q½E þ v��H� ð10Þ

is the usual vector (polar) Lorentz force in electrodynamics and

Fpv ¼ �qx½H � v��E� ð11Þ

is a pseudovector (axial) contribution, which I have called the ‘‘anti-Lorentz

force.’’ The latter predicts that a charge q would move along the lines of the
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magnetic field H. Even if the value of the parameter x should be extremely

small, a very large magnitude of the magnetic field intensity H, say, in the

interior or near a rotating galaxy, may make this prediction observable in

astrophysical measurements. The second term in Fpv predicts a motion of a

charge q in an external electric field E such that it would rotate perpendicularly

to the plane of its velocity vector v and the imposed constant electric field E.

C. The Generalized Dirac Hamiltonian

The behavior of an electron in an electromagnetic field, in the context of the

quantum theory, is determined from the solutions of the Dirac equation. Here

the free-particle momentum operator is replaced with the generalized 4-

momentum operator, pn þ eðAn þ BnÞ. The Dirac equation then takes the form

fgnðpn þ eðAn þ BnÞ � imgc ¼ 0 ð12Þ

where pn ¼ �iqn (units are used with h=2p ¼ 1) and the ‘‘Dirac matrices’’ are:

gn ¼ fc; bg; g ¼ �iba; g4 ¼ b

and a; b are the 4�4 matrices defined in terms of the Pauli matrices: a12 ¼
a21 ¼ r; a11 ¼ a22 ¼ 0; b11 ¼ �b22 ¼ I; b12 ¼ b21 ¼ 0; I is the unit 2-matrix,

and gmgn þ gngm ¼ 2dmn (where m; n ¼ 1; 2; 3; 4Þ.
The generalized Dirac equation was applied to the case of the hydrogen atom

[14]. It was to investigate whether the added potential Bm in the Dirac Hamilto-

nian in Eq. (12) would predict a contribution to the Lamb shift, exclusive of

quantum electrodynamics. The exact solutions of (12) were determined for the

hydrogen atom. The very interesting (and unexpected!) result was found that the

added potential did not lift the accidental degeneracy in the states of hydrogen.

In other words, there was no prediction of any contribution to the Lamb shift

from Bm that might have accounted for the small difference between the

experimental observations and the predictions of quantum electrodynamics (in

the late 1950s).

The pseudovector four-potential Bm may still contribute to other effects in the

microscopic domain. For example, it would predict that a particle, such as a

neutron, would have an electric dipole moment, whose value is proportional to

the term in the Dirac Hamiltonian xs � E [12]. However, after much experi-

mental investigation into the possibility of the neutron electric dipole moment, it

has not been found [15]—that is, in the context of this theory, the parameter x, if

it were nonzero, must be too small (the order of 10�13) for this effect to be

observed.

A later analysis was based on a spinor formulation of the electromagnetic

field theory, to be discussed in the next section. It was found that this general-
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ization, based on full conformance to the reflection nonsymmetric field theory,

which is in accordance with the symmetry group of relativity theory, the Lamb

shift is, indeed, fully predicted, exclusive of quantum electrodynamics. The

predictions were in agreement with the empirical facts, within the experimental

error, for the hydrogen states with principal quantum numbers n¼2,3,4 [16].

III. FACTORIZATION OF MAXWELL’S EQUATIONS
TO A SPINOR FORM

In the context of Einstein’s theory of relativity, we must ask whether Maxwell’s

expression of the electromagnetic theory is the most general representation

consistent with the symmetry requirements of relativity. The answer is negative

because the symmetry of Maxwell’s equations based on reducible representa-

tions of the group of relativity theory. Then there must be additional physical

predictions that remain hidden that would not be revealed until the most general

(irreducible) expression of the electromagnetic field theory is used.

Two equivalent forms of Maxwell’s field equations in terms of the standard

vector formalism are Eq. (5), or (6) with the Lorentz gauge qmAm ¼ 0. The

former is in terms of the antisymmetric second-rank tensor solution Fmv, which

is a combination of the electric and magnetic field variables. The latter is in

terms of the vector potential, Am, shown in Eq. (6) [as well as Eq. (7) in terms of

the pseudovector potential Bm, assuming that the parameter x is nonzero].

(Experimental results to this point in time indicate that indeed this parameter is

zero to within experimental accuracy [15]—even though the symmetry of

relativity theory has no reason to exclude it. Henceforth, we will assume that

this parameter is zero.)

The symmetry requirements of the theory of relativity have geometric and

algebraic modes of expression. From the geometric view in special relativity,

the continuous spacetime transformations that leave the laws of nature covariant

(i.e., unchanged in form) in all possible inertial frames of reference, from the

view of any one of them, are the same set of transformations that leave invariant

the squared differential metric:

ds2 ¼ ðdx0Þ2 � dr2 ð13Þ

In general relativity, where the relative motion between frames is not inertial,

the geometric invariant of the resulting ‘‘curved’’ spacetime is

ds2 ¼ gmnðxÞdxmdxn ð14Þ

where m and n are summed from 0 to 3 and gmn ¼ gnm is the 10-component

metric tensor with the flat spacetime limit that takes Eq. (14) into (13), that is, in
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the local limit of a flat spacetime: gmnðxÞ ! ½g00 ¼ 1; gkk ¼ �1; ðk ¼ 1; 2; 3Þ
and gm 6¼n ¼ 0�:

The idea of covariance is then that the same set of spacetime transformations

that leave the differential metric (13) in special relativity, or (14) in general

relativity, unchanged (invariant) also leave all the laws of nature covariant

(unchanged in form) under these transformations between reference frames. The

metric (13) in special relativity, or (14) in general relativity, then guides one to

the forms of the covariant laws of nature, in accordance with the theory of

(special or general) relativity. This is the role of the differential metrics—they

are not to be considered as ‘‘observables’’ on their own!

A significant point here is that it is not the squared invariant ds2 that is to

underlie the covariance of the laws of nature. It is rather the linear invariant ds

that plays this role. How, then, do we proceed from the squared metric to the

linear metric? That is to say, how does one take the ‘‘square root’’ of ds2? The

answer can be seen in Dirac’s procedure, when he factorized the Klein–Gordon

equation to yield the spinor form of the electron equation in wave mechanics:-

the Dirac equation. Indeed, Dirac’s result indicated that by properly taking the

square root of ds2 in relativity theory, extra spin degrees of freedom are revealed

that were previously masked.

The symmetry group of relativity theory tells the story. For the irreducible

representations of the Poincaré group (of special relativity) or the Einstein

group (of general relativity) obey the algebra of quaternions. The basis

functions of the quaternions, in turn, are two-component spinor variables [17].

We start out then with a factorized metric in special relativity, which has the

quaternion form:

ds ¼ smdxm � s0dx0 � r � dr ð15Þ

where s0 is the unit two-dimensional matrix and skðk ¼ 1; 2; 3Þ are the three

Pauli matrices. The set {sm} form the four basis elements of a quaternion

(analogous to the two basis elements {1, i} of a complex number).

In the global extension to general relativity, the geometric generalization

from the flat spacetime description to a curved spacetime, the basis elements

sm ! qmðxÞ, so that the factorized invariant differential element becomes

ds ¼ qmðxÞdxm ð16Þ

This quaternion differential is a generalization of the Riemannian metric. The

4-vector quaternion fields qmðxÞ then replace the second-rank, symmetric tensor

fields gmnðxÞ as the fundamental metric of the spacetime. The metric field qmðxÞ
is a 4-vector, whose four components are each quaternion-valued. This is then a

16-component field, rather than the 10-component metric tensor field gmn of the

standard Riemannian form.
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The 16-component quaternion metric field is then a generalization of the 10-

component metric tensor field to represent gravitation. The increase in the

number of components satisfies the group requirement of general relativity

theory—that the Einstein group is a 16-parameter Lie group, indicating that

there must be 16 essential parameters to characterize the irreducible representa-

tions of the group. This implies that there must be 16 independent field

equations to underlie the spacetime metric. These are the 16 essential para-

meters of the Einstein group. They are the derivatives of four coordinates xm
0 ðxÞ

of one reference frame with respect to those of another: qxm
0
=qxnðm; n ¼

0; 1; 2; 3Þ The basic reason for the increase in the number of components of

the metric field qm, compared with gmn, is that the reflection symmetry elements

of the spacetime have been removed from the underlying symmetry group of the

latter. [It is the same reason why the removal of the reflection symmetry

elements from the covariance of the Klein–Gordon operator yields the extra

(spinor) degrees of freedom in the factorized Dirac operator in quantum

mechanics.] Thus, the factorized metric (16) has no reflection symmetry while

the ‘‘squared’’ metric in special relativity (14) does have reflection symmetry in

space and time.

The key to the generalization achieved is then the removal of the reflection

symmetry elements in the space and time coordinates in the laws of nature. This

then leads to the Poincaré group (of special relativity) or the Einstein group (of

general relativity), since these are Lie groups—groups of only continuous,

analytical transformations of the spacetime coordinate systems that leave the

laws of nature covariant.

Let us now focus on the irreducible expressions of the electromagnetic field

equations in special relativity, using the quaternion calculus. We will then come

to their form in general relativity.

Following from the quaternion differential metric (15), we have the first-

order quaternion differential operator:

smqm ¼ s0q0 � s � r

The basis functions of this operator are the two-component spinor variables.

Guided by the two-dimensional Hermitian structure of the representations of the

Poincaré group, we may make the following identification between the spinor

basis functions faða ¼ 1; 2Þ of this operator and the components (Ek;HkÞðk ¼
1; 2; 3) of the electric and magnetic fields, in any particular Lorentz frame:

ðf1Þ1 ¼ G3; ðf1Þ2 ¼ G1 þ iG2; ðf2Þ1 ¼ G1 � iG2; ðf2Þ2 ¼ �G3

ð�1Þ1 ¼ �4piðrþ j3Þ ð�1Þ2 ¼ �4piðj1 þ ij2Þ ð�2Þ1 ¼ �4piðj1 � ij2Þ
ð�2Þ2 ¼ �4piðr� j3Þ ð17Þ
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where Gk ¼ Hk þ iEk. It is then readily verified that the two uncoupled, two-

component spinor equations:

smqmfa ¼ �aða ¼ 1; 2Þ ð170Þ

precisely duplicate the standard form (5) of Maxwell’s equations [18].

It is important to note at this stage of the analysis that the generalization

achieved in going from the vector representation (5) to the spinor representation

(170) of the electromagnetic field equations is not merely a rewriting of the

Maxwell equations. This is because the spinor formalism has more degrees of

freedom than does the vector formalism; thus it makes more predictions, in

addition to duplicating the predictions of the (less general) vector form of the

theory. This will be demonstrated in the following paragraphs.

Under the Poincaré group of transformations of special relativity, when

xm ! xm; ¼ amn xn; where famng are the vector transformations, covariance of the

spinor field equations (170) is preserved if and only if [17]

faðxÞ ! f0
aðx0Þ ¼ SfaðxÞ; �aðxÞ ! �0

aðx0Þ ¼ Sþ�1�aðxÞ ð18Þ

where the spinor transformations S relate to the vector transformations amn
according to the equation

SþsmS ¼ amns
n ð19Þ

Equation (19) then yields the double-valued spinor transformation:

SðymnÞ ¼ exp
smsnymn

2

� �
ðm; n ¼ 0; 1; 2; 3Þ ð20Þ

Note that this equation is not summed over ðm; nÞ:ymn are the constant (i.e.,

x-independent) parameters that define the 10 transformations in the xm–xn plane

of the 10-parameter Poincaré group: three Eulerian angles of rotation in space,

three components of the relative speed between inertial frames, and the four

translations in space and time.

The solutions Fmn of the standard (reducible) vector form of electromagnetic

field theory transform as a second-rank (covariant) tensor

x ! x0 ) FmnðxÞ ! F0
mnðx0Þ ¼ alma

r
nFlrðxÞ ð21Þ

Thus the identification (17) faðFmnÞ is not to be understood as form-invariant

regarding the dependence (17) of the spinor variables fa on the tensor variables

Fmn in any other Lorentz frame. In other words, the Lorentz transformation of
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faðFmnÞ does not transform form-invariantly into f0
aðF0

mnÞ under the Lorentz

transformations of the Poincaré group, x ! x0. Of course, this is because fa
transforms as a spin-1

2
basis function of the irreducible representations of the

group of relativity while Fmn transforms as the basis functions of the spin-1

(reducible) representations of the group.

The terms of the respective (reducible) tensor and the (irreducible) spinor

expressions of the electromagnetic laws that must correspond in all Lorentz

frames are those that identify with physical observations. These are the con-

servation laws of electromagnetism. They derive, in turn, from the invariants of

the theory.

In accordance with the transformation properties (18), it follows that the

Hermitian products

Iab ¼ fþ
a�b ða; b ¼ 1 or 2Þ ð22Þ

are four complex number invariants, thus corresponding to eight real-number

invariants. Particular linear combinations of these invariants may then be set up

to correspond to the standard invariants of the vector form of electromagnetic

theory. Since there are more independent invariants here than in the standard

theory, there must be more invariants and physical predictions that have no

counterpart in the standard form of the theory.

According to the spinor calculus [19], further invariants, in addition to (22),

that correspond with the standard invariants of electromagnetic field theory, are

I1 ¼ ftr
1ef2 , ðE2 � H2Þ þ 2iE � H ð23aÞ

I2 ¼ �tr
1 e�2 , r2 � j2 ð23bÞ

where the superscript ‘‘tr’’ stands for the transpose of the spinor variable and

e is the two-dimensional Levi–Civita symbol, with e01 ¼ �e10 ¼ 1; and

e00 ¼ e11 ¼ 0.

We see here that the real and imaginary parts of the complex invariant I1

correspond to the two invariants of the standard form of electromagnetic theory,

namely, the scalar and the pseudoscalar terms. They appear together here in a

single complex function because of the reflection-nonsymmetric feature of this

theory. The invariant I2 corresponds to the real-valued modulus of the four-

current density of the standard theory.

A. The Conservation Equations

It follows from the spinor field equation (170) that these equations may be

rewritten in the form of four complex conservation equations:

qmðfþ
a s

mjbÞ ¼ fþ
a�b þ�þ

a fb ð24Þ
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If we set a ¼ b ¼ 1 in (24) and add this to the equation with a ¼ b ¼ 2, it

follows from the identification (17) that their sum corresponds to the standard

form of the conservation equation:

1

2
q0ðE2 þ H2Þ þ div ðE��HÞ ¼ �4pE � j ð25aÞ

q0ðE��HÞ ¼ rE þ j � H ð25bÞ

Thus we see that four of the conservation equations in (24) correspond to all

four conservation equations of the standard theory; one is the conservation of

energy (25a) (Poynting’s equation), and the other three are the conservation of

the three components of momentum (25b) of the standard form of electro-

magnetic field theory. But since (24) are eight real-number valued equations

rather than four, the spinor formalism predicts more facts than the standard

vector Maxwell formalism—it is a true generalization.

B. Faraday’s Interpretation

With Faraday’s interpretation of the electromagnetic field as a ‘‘potentiality’’ of

force exerted by charged matter, then to be actualized by a test body at the

spacetime point x where it is located, there must be a separate field of force for

each charged source. Thus, Maxwell’s equations (5) must be labeled for each

source field

qnFðnÞ
mn ¼ 4pjðnÞm ; q½rF

ðnÞ
mn� ¼ 0 ð26Þ

for the nth source field. Similarly, the spinor expression of the electromagnetic

equations are

smqmf
ðnÞ
a ¼ �ðnÞ

a ð27Þ

It is important to note that while there are fields for each source of the system,

they are all mapped in the same spacetime x, rather than separate spacetimes for

each source. This is the nonlocal feature of this field theory since there are no

individual trajectories for charged discrete particles. This interpretation elim-

inates the problem of the self-energy of the electron, as a singular, charged

particle of matter [20].

The conserved energy in the vector representation with Faraday’s interpreta-

tion is then

X
n

X
m 6¼n

1

16p

� �
ðEðmÞ � EðnÞ þ HðmÞ � HðnÞÞ ð28Þ
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rather than the standard form:

1

8p

� �
ðE2 þ H2Þ ð29Þ

The form (29) is derived from integrating the conservation law (25a) over all of

space and using Gauss’ law. It includes the self-energy terms (m ¼ n) as well as

the free-field (radiation) terms that are independent of any sources. The latter

terms are automatically absent from the expression (28), which is finite from the

outset and entails no ‘‘free radiation.’’

In the spinor formalism (27), the four complex conservation equations, with

Faraday’s interpretation are

qm
X

n

X
m6¼n

fðnÞþ
a smfðmÞ

b ¼
X

n

X
m 6¼n

ðfðnÞþ
a �

ðmÞ
b þ�ðnÞþ

a fðmÞ
b Þ ð30Þ

The right-hand side of this scalar equation, which consists of four complex

relations, then entails eight real-number scalar equations. As in the vector

formalism, there are no self-energy terms present.

It is to be noted that some of the eight equations may be expressed in one-

to-one correspondence with all four conservation equations of the standard

Maxwell formalism. But there are other conservation equations here that have

no counterpart in the standard formalism of electromagnetism. It further

implies that indeed this is a true generalization of the Maxwell form of electro-

magnetism.

It is interesting to note here a difference between the standard theory and the

Faraday interpretation that relies on the Mach principle. Consider the complex

conservation equation (30) with a ¼ b ¼ 1. The imaginary part of this complex

equation is

qm
X

n

X
m 6¼n

ðfðmÞþ
1 smfðnÞ

1 � fðnÞþ
1 smfðmÞ

1 Þ ¼
X

n

X
m6¼n

ðfðmÞþ
1 �

ðnÞ
1 ��

ðnÞþ
1 jðmÞ

1 Þ

þ ð�ðmÞþ
1 fðnÞ

1 � fðnÞþ
1 �

ðmÞ
1 Þ

If m ¼ n, as included in the standard Maxwell theory, the extra four conserva-

tion equations above reduce to 0¼0, which is an ambiguity. However, with the

restriction from Faraday’s interpretation that requires that m 6¼ n, the ambiguity

is removed and the extra conservation equations remain.

Let us now sum up the generalization of electromagnetic field theory thus far.

The starting point is that the symmetry group that underlies Einstein’s theory of

relativity is a Lie group—a group of continuous, analytic transformations that

preserve the covariance of all the laws of nature. This is the rule that all laws of

nature remain in one-to-one correspondence in all continuously connected
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reference frames, from the view of any one of them. This group does not entail

any discrete transformations in space or time.

In Section I of this chapter it was shown that the only gauge-invariant way to

express this extension in the context of the vector potential expression of the

electromagnetic field theory is to add to the standard (polar) vector potential Am

an (axial) pseudovector contribution Bm. This has the effect of interchanging the

roles of the electric and the magnetic field variables in the coupling of a charged

body to this field. Although this addition is theoretically permitted, it was found

to not imply any significant empirical contributions, for the magnitudes of fields

studied thus far in the experimental domain. Future experimental studies of very

high magnetic fields, such as the interiors of galaxies, may reveal possible

observable consequences in astrophysical studies.

In Section II, the group requirement that removes the reflection transforma-

tions was met head-on, without the need to add any new potential terms. It was

seen that the most general expression of electromagnetic field theory, which

excludes reflections in spacetime in the underlying symmetry group, follows

from a factorization of the vector representation of the Maxwell theory to a first-

rank spinor form. This is a natural generalization, following from the irreducible

representations of the covariance group of relativity theory that leads to extra

physical predictions, because of the extra degrees of freedom in the spinor

variables.

In the next section, the final generalization of full symmetrization will be

carried out, whereby the spinor–quaternion expression of the laws of electro-

magnetism will be extended from special relativity to general relativity. This

extension automatically fuses the laws of electromagnetism with those of

gravity. It will be shown that the generalized formalism for electromagnetism

is obtained from a factorization of Einstein’s field equations. The new formal-

ism is presented in terms of a replacement of Einstein’s tensor metric field with

a vector field whose four components are each quaternion-valued. Thus, the new

metric variable qmðxÞ has 16 independent components, rather than the 10 (of the

symmetric tensor gmn of the Einstein formalism) or the 6 (of the antisymmetric

tensor Fmn of the Maxwell formalism). From the factorized metrical field

equations in qm, it will be seen how the Einstein formalism and the Maxwell

formalism are recovered, although now identifying each with the single

quaternion field and its related spinor calculus in a curved spacetime.

IV. EXTENSION OF ELECTROMAGNETIC FIELD THEORY
TO GENERAL RELATIVITY

A. The Group

In accordance with the principle of general covariance—which is the underlying

axiom of the theory of general relativity—the expressions of all laws of nature

in all possible continuously connected frames of reference, from the view of any
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one of them, must be in one-to-one correspondence. The different reference

frames, in turn, relate to each other in terms of continuous, differentiable

transformations, which we call ‘‘motion.’’ (The differentiability of these trans-

formations to all orders, requiring that they be analytic, is dictated by the

requirement of the inclusion of the laws of conservation of energy, momentum,

and angular momentum in the special relativity limit of the theory; this is in

accordance with Noether’s theorem [7].) When the relative motion is inertial,

characterized by 3 constant parameters of relative velocity, 3 (Eulerian) angles

of rotation, and 4 translations, the underlying set of transformations forms the

10-parameter Lie group of special relativity. It is the Poincaré group P [2]. This

is a special limit of the coordinate-dependent (noninertial) transformations

group of general relativity—the Einstein group E. It is a 16-parameter Lie group

whose representations are a global extension of the representations of the Lie

group P [21].

It is important to recognize that, in physics, P is an asymptotic limit of E, but

P is not a subgroup of E. This is for the physical reason that P is exact only in

the case of a vacuum—wherein the entire universe would be empty! For in the

field theory of general relativity, if there should be matter, anywhere in the

universe, the continuous, analytic fields associated with this matter must be

nonzero everywhere. In this case, the parameters that relate a reference frame to

any other must be spacetime-dependent. Thus, special relativity can be viewed

only as an asymptotic limit of general relativity. Its representations may be

approached asymptotically from those of general relativity, as closely as we

please, but not reached in an exact sense! The Einstein group E is a form of a

topological group T.

B. A Mathematical Diversion on the Nature of
E—Pontjagin’s Theorem

1. Three general conditions are noteworthy here: Because E prescribes the

invariance associated with continuous changes from any point of the

function space of field solutions, to any other that is arbitrarily close, E
must be locally compact.

2. Because of the rejection of the discontinuous reflections in the spacetime,

the topological space of this group must be connected; that is, it cannot be

decomposed into two or more disjoint sets.

3. Since the elements of this topological space are a countable number of

fields fcð1ÞðxÞ; . . . ;cðnÞðxÞg—corresponding to the countable modes of

the closed system—and since the continuous changes of these field

variables in their own neighborhoods fdcð1Þ; . . . ; dcðnÞg are induced by

the transformations of the group, it follows that the complete set of

neighborhoods of the topological space is countable. The topological

group T is then said to satisfy the second axiom of countability.
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Pontjagin’s theorem is as follows [22]. Let T be a locally compact, connected

topological field satisfying the second axiom of countability. Then T is

isomorphic with one of the three topological fields: (1) the field of real numbers,

(2) the field of complex numbers, and (3) the field of quaternions.

Since the Einstein group E corresponds to the topological group T, the

most general mathematical system to express the laws of physics in general

relativity is then the set of quaternions [23]. Reducing the quaternion-

valued field from four dimensions to two leads to the complex-number-valued

field and further reduction to one dimension leads to the real-number-valued

field. (The word ‘‘field’’ here refers to an ‘‘algebraic field’’ [22].) The latter two

sets may be seen as subsets of the first, reductions where one loses not only

dimensionality but also the important feature of noncommutability of the

quaternion number system. The quaternion field then expresses the laws of

nature to be compatible with the covariance requirement of the group of general

relativity E.

C. The Electromagnetic Field Equations in General Relativity

The vector representation (5) of Maxwell’s equations extends to general

relativity by globalizing the ordinary derivatives to covariant derivatives that

entail the affine connection �l
mn of the curved spacetime [24]. Thus, (5) takes the

following form in the curved spacetime

F;n
mn ¼ 4pjm ð31aÞ

F
½mn
;l� ¼ 0 ð31bÞ

where the square brackets denote the cyclic sum and

Fab
;g � qgFab þ �a

rgFrb þ �b
rgF

ar ð32Þ

The affine connection coefficients in terms of the metric tensor are [24]

�r
ma ¼ 1

2
grlðqmgla þ qagml � qlgamÞ

The two-component spinor form of electromagnetic field theory (170) is

generalized in the curved spacetime by (1) globally extending the Pauli matrices

to the quaternion elements, sm ! qmðxÞ, and (b) generalizing the ordinary

derivatives to covariant derivatives of the spinor variables. This entails the

‘‘spin–affine connection fields’’ �m as follows:

qmðxÞfa;m � qmðxÞðqm þ �mÞfa ¼ �a ð33Þ
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where

�m ¼ 1

4
ðqmqr þ �r

tmqtÞq�
r ð34Þ

and q�
r is the quaternion conjugate to qr, corresponding to time reversal (or

space reflection) of qr. (From here on, the asterisk over the quaternion variables

denotes the quaternion conjugate, not the complex conjugate. The former is

obtained by reversing the sign of the time component of the quaternion

variable.)

D. The Global Spinor Lagrangian for Electromagnetism

The Lagrangian density that gives, on variation, the topologically covariant field

equations (33) is an explicit function of the spinor variables, f1;f
þ
1 ;f2;f

þ
2 and

their respective covariant derivatives. (The dagger superscript denotes the

Hermitian conjugate of the function.) It has the form:

LM ¼ figM

X
a

ð�1Þa½fþ
a ðqmfa;m � 2�aÞ þ H:c:gð�gÞ1=2 ð35Þ

where ‘‘H.c.’’ stands for the Hermitian conjugate of the term preceding it and

ð�gÞ1=2 ¼ iemnlrqmqn�qlqr�

is the metric density. The multiplicative constant gM in (35) has the dimension

of a length—it is the one extra fundamental constant in this theory. Its

appearance results from the generalization that is effected when the Lagrangian

is expressed in terms of the spinor variables rather than the usual vector vari-

ables. Since the spinor variables fa have the dimension of an electric field inten-

sity, the terms summed have a dimension of energy density per length; thus gM

has the dimension of a length so that the Lagrangian has the proper dimension

of energy density.

The magnitude of gM was determined from the prediction that this

spinor formalism yields the Lamb shift in hydrogenic atoms. It follows from

the new terms in the spinor formulation of electromagnetism that appear in the

Dirac Hamiltonian, which are not present in the standard Dirac equation for

hydrogen [16]. These extra terms then predict a lifting of the accidental

degeneracy in the states of hydrogen, thus the Lamb shift. The new fundamental

constant gM was found to have a magnitude that is the order of 2 � 10�14 cm.

This gives results that are in agreement with the experimental facts on the

Lamb shifts nS1=2� nP1=2 for the principal quantum numbers for hydrogen,

n ¼ 2; 3; 4.
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E. Derivation of the Maxwell Field Formalism from
General Relativity

The covariance groups underlying the tensor forms of the respective Einstein

and the Maxwell field equations are reducible. This is because they entail

reflection symmetry, not required by relativity theory, as well as the required

continuous symmetry of the Einstein group E. When the Einstein field equations

are factorized, they yield the irreducible form, which are then in terms of the

quaternion and spinor variables, rather than the tensor variables. Such a

generalization must then extend the physical predictions of the usual tensor

forms of general relativity of gravitation and the standard vector representation

of the Maxwell theory (both in terms of second-rank tensor fields, one

symmetric and the other antisymmetric) because the new factorized variables

have more degrees of freedom than did the earlier version variables.

The starting point then to achieve the factorization of the Einstein equations

is the factorized differential line element in the quaternion form, ds ¼ qmðxÞdxm,

where qm are a set of four quaternion-valued components of a 4-vector. Thus ds

is, geometrically, a scalar invariant, but it is algebraically a quaternion. As such,

it behaves like a second-rank spinor of the type c� c�, where c is a two-

component spinor variable [17].

We then see that the basic variable that represents the generalized spacetime

that is appropriate to general relativity is a 16-component variable. One may

then speculate at the outset that these 16 independent components of the

metrical field relate to the 10 components of the gravitational field plus 6

components of the Maxwell field, in terms of a single unified field that

incorporates both gravitation and electromagnetism. We will now see that this

is, indeed, the case.

Since there is no reflection symmetry in the quaternion formulation, the

‘‘reflected’’ quaternion qm* must be distinguishable from qm. The conjugate

differential line element to ds is ds� ¼ qm�dxm. The product of the quaternion

and conjugate quaternion line elements is then the real-number-valued element

that corresponds to the squared differential element of the Riemannian geo-

metry:

ds ds� ¼ � 1

2

� �
ðqmqn� þ qnqm�Þdxm dxn , s0 gmndxm dxn

Thus the symmetric second-rank metric tensor gmn of Einstein’s formulation of

general relativity corresponds to the symmetric sum from the quaternion theory,

ð� 1
2
Þðqmqn� þ qnqm�Þ. [The factor ð� 1

2
Þ is chosen in anticipation of the normal-

ization of the quaternion variables.] Thus we see that ds is a factorization of the

standard Riemannian squared differential metric ds2 ¼ gmndxm dxn.
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The following is an outline that leads to a derivation of the factorization of the

Einstein formalism that gives back the gravitational and the electromagnetic

equations from a unified quaternion–spinor formalism.

F. The Variables of a Riemannian Spacetime in Quaternion Form

Let us now exploit the feature of the quaternion metrical field that it has

configuration degrees of freedom, as a 4-vector, as well as spinor degrees of

freedom, as a second-rank spinor of the type: c� c� [25].

Since the quaternion qm is a 4-vector, the product qmq�
m must be invariant

under the continuous spacetime transformations and the reflections in space-

time. It then follows that the covariant derivatives and the second covariant

derivatives of the quaternion fields must vanish. Since qm � ðc� c�Þm, it

follows that (with a; b ¼ 1; 2Þ

0 ¼ ðqm;r;l � qm;l;rÞab ¼ ½ðca;r;l � ca;l;rÞc�
b þ caðcb;r;l � cb;l;rÞ�

þ ð½qm;r;l� � ½qm;l;r�Þ ð36Þ

The squared bracket in Eq. (36) denotes the behavior of the quaternion field

with respect to its vector degrees of freedom alone. The covariant derivatives of

the two-component spinor variables are as follows: c;r ¼ ðqr þ �rÞc and the

‘‘spin–affine connection’’ has two alternative (equivalent) forms [17]:

�r ¼
1

4

� �
ðqrqm þ �m

trqtÞq�
m ¼ � 1

4

� �
qmðqrqm� þ �m

trqt� Þ ð37Þ

�r is the term that must be added to the ordinary derivative of a spinor field in a

curved spacetime in order to define its derivative covariantly; that is, so that the

spinor variable is integrable in the curved spacetime.

The first two terms on the right-hand side of Eq. (36) denote the changes with

respect to the spinor indices; the third term denotes the changes in configuration

space. Their explicit forms are

c;r;l � c;l;r ¼ ðql�r þ �l�r � qr�l � �r�lÞc � Klrc ð38Þ

where Krl ¼ �Klr is the spin curvature tensor. It is clearly a second-rank,

antisymmetric tensor in configuration space. Since the left-hand side of this

equation is a first-rank spinor in spinor space, the spin curvature tensor on the

right, Krl, must be a second-rank spinor that contracts with the first-rank spinor

c on the right to yield a first-rank spinor function. The spin–affine connection

field �r, on the other hand, is a 4-vector in configuration space, but it is not

covariant in spinor space. This is clear since it is the term that must be added to
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the ordinary (noncovariant) derivative of the spinor variable in order to make its

derivative in a curved spacetime covariant.

In the third term in Eq. (36), where the square bracket represents the changes

in qm as a four vector, we have

½qm;r;l� � ½qm;l;r� ¼ Rkmrlqk ð39Þ

This defines the Riemann curvature tensor, Rkmrl, wherein qm could be any

covariant 4-vector.

Substituting (38) and (39) into (36), the relation between the spin curvature

tensor and the Riemann curvature tensor follows:

Krlqm þ qmK
y
rl ¼ �Rkmrlqk ð40Þ

where the dagger denotes the Hermitian adjoint of the function.

In a similar fashion, application of the preceding analysis to the conjugated

quaternion fields yields the accompanying equation to (40):

K
y
rlq�

m þ q�
mKrl ¼ Rkmrlqk� ð41Þ

Multiplying (40) on the right with the conjugated quaternion q�
g and (41) on the

left with the quaternion qg, then adding the resulting equations and using the

identity

qgq
k� þ qkq�

g ¼ 2s0d
k
g

where s0 is the unit two-dimensional matrix, the following correspondence is

derived between the Riemann curvature tensor and the spin curvature tensor:

s0Rkmrl ¼ 1

2
ðKrlqmq�

k � qkq�
mKrl þ qmK

y
rlq�

k � qkK
y
rlq�

mÞ ð42Þ

Next, contracting Rkmrl with the contravariant metric tensor gml yields the

correspondence with the Ricci tensor Rkr:

s0gmlRmkrl � s0Rkr ¼ 1

2
ðKrlqlq�

k � qkql�Krl þ qlK
y
rlq�

k � qkKþ
rlql� Þ ð43Þ

Finally, the scalar curvature field R follows from the further contraction of the

Ricci tensor (43) with the metric tensor, giving

s0R ¼ 1

2
ðKrlqlqr� � qrql�Krl þ qlK

y
rlqr� � qrK

y
rlql�Þ ð44Þ
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G. The Quaternion Field Equations

The Lagrangian density whose vanishing variation leads to the field equations in

ql is chosen to be the trace of the scalar curvature:

LE ¼ ðTr RÞð�gÞ1=2 ¼ 1

2
Trðqr�Krlql þ H:cÞð�gÞ1=2 ð45Þ

If we signify by LM the part of the Lagrangian density that yields the matter

variables on variation with respect to the quaternion variables, then the total

Lagrangian density is L ¼ LE þ LM . Its variation with respect to the conjugated

quaternion variables then yields the field equations [25]:

1

4
ðKrlql þ qlK

y
rlÞ þ

1

8
Rqr ¼ kTr ð46aÞ

Variation with respect to the quaternion variables yields the conjugated

quaternion field equation:

� 1

4

� �
ðKy

rlql� þ ql�KrlÞ þ
1

8
Rq�

r ¼ kT �
r ð46bÞ

(Note that the source term Tr is a quaternion and T �
r is a conjugated

quaternion.)

The quaternion field equations (46a,b) are then the factorization of Einstein’s

tensor field equations:

Rmn �
1

2

� �
gmnR ¼ kTmn ð47Þ

The solutions of the latter equations are the 10 components of the symmetric

second-rank metric tensor gmn. The solutions of the factorized equations (46a)

[or (46b) are the 16 components of the quaternion metrical field qr (or q�
r). We

will now see that this 16-component metrical quaternion field, indeed, incorpo-

rates the gravitational and the electromagnetic fields in terms of their earlier

tensor representations. Gravitation entails 10 of the components in the sym-

metric second-rank tensor gmn. Electromagnetism entails 6 of the components

(the 3 components of the electric field and the three components of the magnetic

field), as incorporated in the second-rank antisymmetric tensor Fmn.

To demonstrate the natural unification of the gravitational and electromag-

netic aspects of the quaternion field equation (46a) and its conjugate equation

(46b), we follow this procedure. Multiply (46a) on the right with the conjugated

quaternion solution q�
g, and the conjugated equation (46b) on the left with qg.
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Then adding (with the constant k on the right) and subtracting (with the constant

k0 on the right) we obtain the following positive/negative pair of equations:

1

2
ðKrlqlq�

g � ð�Þqgq
l�Krl þ qlK

y
rlq�

g � ð�ÞqgK
y
rlql�Þ

þ 1

4
ðqrq�

g � qgqr� ÞR ¼ 2
k

k0

� �
ðTrq�

g � qgT �
rÞ ð48Þ

Examination of eqs. (42)–(44) shows that Eq. (48) (positive) is in one-to-one

correspondence with Einstein’s second-rank symmetric tensor equation (47).

H. The Electromagnetic Field Equations

The antisymmetric second-rank tensor equations (48) (negative), corresponding

to six independent relations, may be reexpressed in terms of the Maxwell field

theory (5) by taking the covariant divergence of (48) (negative), with

Frg ¼ Q
1

4
ðKrlqlq�

g þ qgq
l�Krl þ qlK

y
rlq�

g þ qgK
y
rlql�Þ þ 1

8
ðqrq�

g � qgq�
rÞR

� �

ð49Þ

In this expression for the electromagnetic field intensity tensor, Q is a constant

of proportionality with the dimension of charge, inserted on both sides of Eq.

(48) (negative). The four-current density is

jg ¼
Qk0

4p

� �
ðT ;r

r q�
g � qgT ;r�

r Þ ð50Þ

The role of the Mach principle is revealed at this stage of the analysis. Since Frl

depends on the spin curvature tensor Krl, which automatically vanishes in a

vacuum (i.e., a flat spacetime), the electromagnetic field, and therefore the

previously considered electric charge of any quantity of matter in a vacuum,

must vanish. Thus, not only the inertial mass but also the electric charge of a

‘‘particle’’ of matter does not exist when there is no coupling to other matter. I

have generalized this idea in the field theory based on general relativity, to the

case where all previously considered intrinsic properties of discrete matter, in

addition to inertial mass and electric charge, vanish identically in a vacuum.

This view exorcises all of the remaining features of the discrete, separable

‘‘elementary particle’’ of matter. It is replaced with a view of matter in terms of

a closed, continuous field theory, according to the theory of general relativity. I

have called this view of matter, whereby all of its previously considered

intrinsic properties are explained in terms of coupling within the closed system,

the generalized Mach principle [10].
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I. The Conservation of Charge

Since Frg is an antisymmetric tensor in spacetime and since the components of

the ordinary affine connection �g
ab are symmetric in the indices ðabÞ, it follows

that the 4-divergence of the current density jg automatically vanishes. In other

words, as in the standard formulation, the equation of continuity follows from

taking the covariant divergence of Maxwell’s equation (31a):

j ;gg ¼ 1

4p
F;r;g
rg ¼ 0 ð51Þ

It then follows from the integral form of (51) (in the local domain) that the

integral of the time component j0 over all of 3-space is time-conserved. This

assumes that there is no current flow in or out of the surface containing the

charge Q ¼
Ð

j0 d3x, which gives rise to the electromagnetic field of force Frg.

J. The Absence of Magnetic Monopoles

The form (48) (negative) for the electromagnetic field intensity was seen to

yield four out of the eight of Maxwell’s equations associated with the current

source, as shown in Eq (31a). It also follows that the four of Maxwell’s

equations without source terms

F
½mn
;l� � F

mn
;l þ Flm

;n þ Fnl
;m ¼ 0 ð52Þ

are predicted by the quaternion structure of Frg as given in (49). This implies

the absence of magnetic monopoles [26] since, if they did exist, the right-hand

side of (52) would be nonzero.

This result is a consequence of the dependence of the definition of Frl of the

spin curvature tensor, Krl, according to Eq. (49) (as well as qr;l ¼ 0). This is

because the spin curvature tensor Krl is the four-dimensional curl of a 4-vector

in configuration space:

Krl ¼ ql�r � qr�l þ �l�r � �r�l ¼ �r;l � �l;r ¼ �Klr ð53Þ

which, in turn, follows from the transformation of the spin–affine connection �r

in configuration space as a four-vector. It then follows that the cyclic sum

K½rl;g� ¼ 0.

This result, according to Eq. (49), in turn, implies that Eq. (52), F½rl;g� ¼ 0,

must be true, indicating that there are no magnetic monopoles in this formula-

tion of the electromagnetic field equations—for if there were, there would be a

nonzero source term in Eq. (52).

Thus we have seen that the factorized quaternion field equations (46a) (or

their conjugated equations (46b)) -the irreducible form of electromagnetism
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according to the underlying group of general relativity—indicates a lack of mag-

netic monopoles, in agreement with the standard formulation of the Maxwell

field theory. The factorized field formulation of general relativity, in terms of the

16-component quaternion metrical field, qm, then automatically fuses the laws

according to the Einstein formulation, and the laws of electromagnetism,

according to the Maxwell formulation, in a unified field theory of the gravita-

tional and electromagnetic manifestations of matter.

It is important to recognize at this stage of the analysis that the unified field

equations (46) entail more physical predictions than do the respective earlier

versions of gravitation—Einstein’s field equations—and electromagnetism—

Maxwell’s field equations. We have already seen extra predictions from the spinor

form of the electromagnetic field equations. Though this theoretical analysis does

not focus on the expression of electromagnetism in terms of potential fields, extra

predictions may indeed also follow in the quaternion-spinor formulation from the

structuring of the electromagnetic Bð3Þ potential field, as derived in the theory of

M. Evans and his collaborators [27].

V. ELECTROMAGNETISM AND WAVE MECHANICS

A. Derivation of Born’s Probability Calculus

The conventional conceptual content of quantum mechanics was initiated by the

Copenhagen School when it was recognized that one could express the linear

Schrödinger wave mechanics [28] in terms of a probability calculus, whose

solutions are represented with a Hilbert function space. Max Born then

interpreted the wave nature of matter in terms of a spatially distributed

probability amplitude—a wave represented by a complex function—to accom-

pany the material particle as it moves from one place to another. The

Copenhagen view was then to define the basic nature of matter in terms of

the measurement process, with an underlying probability calculus, wherein the

probability densities (for locating the particles of matter/volume) are the real-

number-valued moduli of the matter wave amplitudes.

But this was not Schrödinger’s intention in his formulation of wave

mechanics [29]! Rather, it was to complete the Maxwell field formulation of

electromagnetic theory by incorporating the empirically verified wave nature of

matter in the source terms on the right-hand sides of Maxwell’s equations.

The ‘‘matter field’’ was originally postulated by Louis de Broglie, and

discovered in the electron diffraction studies of Davisson and Germer [30]

and of G. P. Thomson [31]. From Schrödinger’s understanding of the matter

field of, say, an electron, it must be represented in the source terms (charge and

current density) of Maxwell’s equations, as the moduli of these waves.

Integration of the local limit of Eq. (50) for the four-current density

source of Maxwell’s equations, together with the boundary condition that the
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three-current part of this density, jk, vanishes on the bounding surface of a

volume that contains the total charge Q, then gives the law of conservation of

electric charge:

s0Q ¼
ð

j0 d3x ¼ constant in time ð54Þ

[The insertion of the unit matrix s0 on the left takes account of the matrix

structure (27) of the current density in the quaternion formulation.]

The local limit of j0 in Eq. (50) is

j0 ¼ � Qk0

4p

� �
qrðT ð1Þ

r þ T ð1Þ�
r Þ ð55Þ

where T
ð1Þ
r is the local limit of the matter source of the quaternion metric field

equation. In terms of the Lagrangian density for the matter variables, its form is

�dLM=dqr�.

Taking determinants of both sides of Eq. (55) then yields the value of the

constant k0 as

k0 ¼ �ð4pÞ
j
Ð
qrðT ð1Þ

r þ T
ð1Þ�
r Þd3xj

where the vertical bars denote the determinant.

Thus, the four-current density jg of this expression of the Maxwell theory has

the following general form in a curved spacetime:

jg ¼ QðT ;r
r qg � qgT

;r�
r Þ=

ð
qrðT ð1Þ

r þ T ð1Þ�
r Þd3x

����
���� ð56Þ

The matter density, interpreted in conventional quantum mechanics as a

probability density, is then

s0r ¼ j0

Q
¼ ðq0T ;r�

r � T ;r�
r q�

0Þ=
ð
qrðTð1Þ

r þ Tð1Þ�
r Þd3x

����
���� ð57Þ

In the local limit, q0 ! s0; q�
0 ! s�

0 ¼ �s0 T ;r
r ! qrT

ð1Þ
r

Thus, we have

loc lim

ð
r d3x

����
���� ¼ 1 ð58Þ
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Equation (58) is the normalization condition that was postulated by Max Born,

in his interpretation of Schrödinger’s nonrelativistic wave mechanics as a

probability calculus. As we see here, the derived normalization is not a general

relation in the full, generally covariant expression of the field theory.

We also see from the general form (56) that the three-current density part of

jg is

jk

Q
¼

qkT ;r�
r � T ;r

r q�
k

j
Ð
qrðT ð1Þ

r þ T
ð1Þ�
r Þd3xj

This expression predicts a coupling of the gravitational field (in terms of qk)

with the matter field components Tr to define a gravitational current contribu-

tion. The latter is not foreseen in the conventional theories that neglect the

gravitational coupling to matter fields.

B. Summary

We have seen in this section that the factorization of Einstein’s symmetric,

second-rank tensor field equations (10 relations) to a quaternion form (16 rela-

tions) not only yields the gravitational and electromagnetic manifestations of

matter in a unified field theory but also reveals a feature of quantum mechanics.

In particular, it was found that in the flat-space approximation to the curved-

space representation in general relativity, the time component of the electro-

magnetic four-current density corresponds in a one-to-one way with the

probability density of quantum mechanics. Its integration over all of space in

this limit is found to be unity.

This is a result that was postulated (not derived from first principles) when

Born attempted to identify quantum mechanics with a probability calculus. The

result of this analysis, in which the normalization follows as a derivation from

general relativity, together with a rigorous derivation of the quantum-mechan-

ical equations from general relativity [32] then enforces the view of a paradigm

change in physics. It is from that of quantum theory, which has dominated the

last two-thirds of the twentieth century, to that of general relativity, as a theory

of electromagnetism, gravity, and matter, in all domains. This is a shift to a

paradigm for the laws of matter based fully on the views of continuity,

determinism, and holism, in terms of the nonsingular field concept.

It seems clear that the present quantum mechanics is not in its final form. Some

further changes will be needed, just about as drastic as the changes made in

passing from Bohr’s orbit theory to quantum mechanics. Some day, a new

quantum mechanics, a relativistic one, will be discovered, in which we will not

have these infinities occurring at all. It might very well be that the new quantum

mechanics will have determinism in the way that Einstein wanted. This
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determinism will be introduced only at the expense of abandoning some other

preconceptions that physicists now hold. So, under these conditions I think it is

very likely, or at any rate quite possible, that in the long run Einstein will turn out

to be correct, even though for the time being physicists have to accept the Bohr

probability interpretation [33].
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Löwdin, P. O., 616(31), 673

Lozovik, Y. E., 319(208-209), 320(238),

374(238), 390–391

Lu, N., 374-375(299), 393

Lu, W., 81(8), 152

Lugiato, L. A., 216(3), 264

Luis, A., 14(33), 77, 320(243), 391, 400(55),

408(55), 442(82), 488–489, 528(62),

548(101), 551(101,105), 555(105),

556(101,105), 557(129), 596–598

Lukin, M. D., 81(11), 153, 218(39), 264(39), 265
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447–452

SU(2) atomic phase states, 416–419

Atomic systems:

quantum interference:

coherently driven systems, 105–121

three-level � system, 118–121

three-level V system, 105–118

atomic transitions, 110–115

auxiliary level drive, 105–110

probe absorption interference,

115–118

coupled dipole moment equations, 91–98

atomic operator correlation functions,

92–93

master equation, 94–98

system Hamiltonians, 93–94

dark transition amplification, 121–131

Autler-Townes absorption spectra,

123–126

dressed-atom model, 126–131

inverted transitions, 122–123

experimental evidence, 144–152

master equation, 145–147

molecular energy levels, 144–145

one- and two-photon excitation,

148–152

two-photon excitation, 147–148

non-orthogonal dipole moments, 139–144

anisotropic vacuum approach, 143–144

dressed-atom approach, 141–143

external driving field techniques,

139–141

preselected polarization technique, 143

optical coherence, 82, 89–91

photon correlations, 132–139

distinguishable photons, 133–136

indistinguishable photons, 136–139

research background, 80–82

spontaneous emission control, 98–105

phase control, 100–102

population trapping and dark states,

103–105

rate modification, 99–100

two-atom systems, superposition states:

collective atomic states, 225–235

identical atoms, 226–228

maximally entangled nonidentical states,

232–235

nonidentical atoms, 228–232

selective excitation, 235–245

antisymmetric state preparation,

237–243

superposition of antisymmetric and

ground states, 243–245

symmetric state, pulse laser

preparation, 236–237

entangled state detection, 245–248

fluorescence intensity, 245–247

interference pattern, 247–248

master equation, 218–225

Hamiltonian parameters, 218–220

Schrödinger equation, 220–225

research background, 216–218

two-photon entangled states, 248–264

antisymmetric state and system purity,

256–260

light mapping, 261–264

nonidentical atoms, 260–261

squeezed vacuum states, 249–253

steady-state populations, 253–256

Auler-Townes absorption spectra, quantum

interference, dark transition

amplification, 121, 123–126

Authentication procedures, quantum key

distribution (QKD), 571

Baker-Hausdorff theorem:

finite-dimensional Hilbert space, 160

Fock coefficients, 190–191

Balance condition, quantum interference,

inverted transition amplification,

122–123

Bayes theorem, maximum-likelihood phase

reconstruction, nonlinear quantum

optics, 529–530

730 subject index



BB84 communication protocol, quantum key

distribution (QKD), 568–570

B92 communication protocol, quantum key

distribution (QKD), 571

Beamsplitter measurement, quantum multipole

radiation, polarization measurement,

476–479

Bell’s inequality:

antisymmetric states, superposition in two-

atom systems, atom-cavity-field

interaction, 241–243

quantum key distribution (QKD), 573

Bessel function:

multipole Jaynes-Cummings model, 415–416

quantum multipole radiation:

classical electromagnetic field, 404–405

photon measurement and localization,

470–472

quantum electromagnetic field, 410–411

quantum radiation polarization, 459–461

Bilinear photon operators, quantum multipole

radiation, Mandel operational approach,

radiation phase states, 445–447

Birnbaum/Cohen (BC) model, interaction-

induced Raman scattering, multipolar

polarizabilities:

linear centrosymmetric molecules, 295–297

optically isotropic molecules, 287–288

Blackbody states, superposition in two-atom

systems, squeezed vacuum states,

250–253

Bogolubov transformation:

cavity fields, moving boundary

electrodynamics:

generic resonance case, 335–337

one-dimensional cavity fields, 322–324

semiresonance case, 325–331

quantum multipole radiation:

dual representation, dipole photons, 426–

430

polarization matrix frame, 466–467

Born approximation:

quantum interference, coupled dipole moment

systems, 95–98

superposition states, two-atom systems,

master equation method, 222–225

Born’s probability calculus, symmetric states,

electromagnetism and wave mechanics,

702–705

Boson commutation relation:

quantum optics, 2–13

second-harmonic generation, symbolic

calculations, 27–34

Canonical quantization, quantum multipole

radiation:

dual representation, dipole photons,

427–430

quantum electromagnetic field, 408–411

Canonical transformation, quantum

electrodynamics (QED) theory, 606–610

Cartan algebra, quantum multipole radiation:

quantum radiation polarization, 460–461

SU(3) subalgebra, 485–486

Casimir operator:

cavity fields, moving boundary

electrodynamics:

classical fields, 310–313

damping influence, 374–381

energy and second-order moment

evolution, 377–381

energy density operator, 354–359

general resonance case, 332–337

historical background, 316–320

one-dimensional field, oscillating

boundaries, 320–324

packet formation, 359–362

photon statistics, 337–354

arbitrary initial conditions, 342–345

initial vacuum state, 337–342

photon distribution function (PDF),

350–354

principal resonance, 345–350

quantum fields, 313–320

semiresonance case, 325–331

temperature fluctuations, 383–384

three-dimensional nondegenerate cavity,

364–374

empty cavity, 364–368

probe oscillator interaction, 368–372

two-level detector interaction, 372–374

total energy calculations, 362–364

wall displacement amplitude, 382–384

quantum electrodynamics (QED), 400–401

atom-field interaction, SU(2) phase states,

417–419

theoretical background, 606–610

quantum multipole radiation, radiation phase

states and Pegg-Barnett Hermitian phase

operator, 444–445

subject index 731



Casimir-Polder interaction, quantum

electrodynamics (QED), 605–610

Cassinian oscillator, finite-dimensional squeezed

vacuum, 209–210

Cauchy principal value:

cavity fields, moving boundary

electrodynamics, generic resonance case,

334–337

quantum interference, coupled dipole moment

systems, 97–98

superposition states, two-atom systems,

master equation method, 223–225

Cauchy-Schwarz inequality, nonlinear quantum

optics:

classical photon field correlations, 526–527

photon antibunching criteria, 519,

527–528

Causality:

molecular photonics, quantum

electrodynamics (QED), damping

effects, 635–638

quantum multipole radiation, two-atom Hertz

experiment, 472–475

Cavity fields. See also Atom-cavity-field

interaction

antisymmetric states, superposition in two-

atom systems, atom-cavity-field

interaction, 240–243

cavity quantum electrodynamics (cavity

QED), multipole Jaynes-Cummings

model, 413–416

moving boundary electrodynamics:

classical fields, 310–313

damping influence, 374–381

energy and second-order moment

evolution, 377–381

energy density operator, 354–359

generic resonance case, 332–337

one-dimensional field, oscillating

boundaries, 320–324

packet formation, 359–362

photon statistics, 337–354

arbitrary initial conditions, 342–345

initial vacuum state, 337–342

photon distribution function (PDF),

350–354

principal resonance, 345–350

quantum fields, 313–320

semiresonance case, 325–331

temperature fluctuations, 383–384

three-dimensional nondegenerate cavity,

364–374

empty cavity, 364–368

probe oscillator interaction, 368–372

two-level detector interaction,

372–374

total energy calculations, 362–364

wall displacement amplitude, 382–384

Charge conservation, symmetric states,

Maxwell’s equation, 701

Charge-coupled-device (CCD), interaction-

induced Raman scattering, multipolar

polarizabilities, 280–283

Circular polarization, quantum multipole

radiation, radiation phase states and

Pegg-Barnett Hermitian phase operator,

442–445

Classical electromagnetic field, quantum

multipole radiation, 402–405

polarization properties, 454–458

Classical interference, optical coherence:

first-order coherence, 82–87

second-order coherence, 87–89

Classical light, nonlinear quantum optics,

photon bunching and antibunching,

516–517

Classical mechanics:

cavity fields, moving boundary

electrodynamics, 310–313

quantum electrodynamics (QED) compared

with, 605–610

Classical optics:

cavity fields, moving boundary

electrodynamics, three-dimensional

nondegenerate cavity, 366–374

cubic nonlinear effects, second-harmonic

generation impedance, macroscopic

propagation, 579–587

degenerate downconversion, 64–71

nonlinear quantum optics:

higher-harmonic generation, 510–516

photon field correlations, 523–527

photon statistics:

research background, 493–495

second-harmonic generation, 500–506

principles of, 3

second-harmonic generation, 15–21

numerical techniques, 48–54

sub-Poissonian photon statistics, analogs to

quantum optics, 6–8

732 subject index



Clebsch-Gordon coefficient:

multipole Jaynes-Cummings model, 415–416

quantum multipole radiation:

classical electromagnetic field, 405

photon measurement and localization,

470–472

quantum electromagnetic field, 407–411

Cloud rings, nonlinear quantum optics, second-

harmonic generation (SHG), classical

trajectories, 503–506

Coexeter-type operator, quantum

electrodynamics (QED), atom-field

interaction, SU(2) phase states, 417–419

Coherent population trapping (CPT), quantum

interference, � coherently driven atomic

system, 118–121

Coherent states (CS). See also Optical coherence

finite-dimensional coherent states, 164–176

Fock representation, 190–191

general properties, 164–169

nonlinear oscillator generation, 196–202

N-dimensional coherent states, 199–202

two-dimensional states, 197–199

truncated states, 169–173

finite-dimensional phase-coherent states,

177–180

generalized phase CS, 177–178

truncated phase CS, 178–180

light quantum statistical properties, noise

superposition, 562–563

molecular photonics, quantum

electrodynamics (QED):

pump photonics, 627–629

radiation tensor construction, 623–627

six-wave mixing (SWM), second-harmonic

generation (SHG), 665–672

quantum interference, 105–121

three-level � system, 118–121

three-level V system, 105–118

atomic transitions, 110–115

auxiliary level drive, 105–110

probe absorption interference, 115–118

quantum multipole radiation:

dual representation, dipole photons,

428–430

radiation phase structure, 433–438

quantum optics, 6–7

two-dimensional coherent states, 174–176

Coincidence-count rate, frequency parametric

downconversion, nonlinear quantum

optics, polarization analog, Hong-

Ou-Mandel interferometer, 544–545

Collective atomic states, superposition states,

two-atom systems, 225–235

identical atoms, 226–228

maximally entangled nonidentical states,

232–235

nonidentical atoms, 228–232

selective excitation, 235–245

antisymmetric state preparation,

237–243

superposition of antisymmetric and ground

states, 243–245

symmetric state, pulse laser preparation,

236–237

Collective spontaneous emission, superposition

states, two-atom systems:

collective atomic states, 225–235

entangled states, nonidentical atoms,

232–235

identical atoms, 226–228

nonidentical atoms, 228–232

master equation method, 223–225

research background, 216–218

Collision-induced rotational Raman (CIRR)

effect, interaction-induced Raman

scattering, multipolar polarizabilities,

pair correlation function, 274–280

Collision-induced scattering (CIS):

interaction-induced Raman scattering,

multipolar polarizabilities, 282–283

linear centrosymmetric molecules,

293–298

optically isotropic molecules, 283–293

pair polarizability tensor, 271–273

Raman vibrational bands, 300–304

theoretical background, 269–271

multipolar polarizability interactions, 269

Communication protocols, quantum key

distribution (QKD):

BB84 protocol, 568–570

eavesdropping problems, 570–571

Completeness relation:

molecular photonics, quantum

electrodynamics (QED), time orderings

and state sequences, 617–620

quantum optics, 7

Configuration space operator, quantum

multipole radiation, photon measurement

and localization, 468–472

subject index 733



Conservation equations, symmetric states,

Maxwell’s equation factorization,

689–690

Constant fields, symmetric states,

electromagnetic potential, 683–684

Constant relativistic velocity, cavity fields,

moving boundary electrodynamics,

quantum fields, 314–320

Constant sign convention, molecular photonics,

quantum electrodynamics (QED),

damping effects, 635–638

Continuous group, symmetric states, relativity

theory, 679–680

Continuous monitoring, nonlinear quantum

optics, quantum Zeno effect, frequency

downconversion:

Kerr interaction, 549–550

linear interaction, 552–557

Conversion ratio, degenerate downconversion,

60–71

Cooper pair formation, atom-cavity-field

interaction, Einstein-Podolsky-Rosen

(EPR) paradox, 422–423

Correlation coefficient, nonlinear quantum

optics, antibunching criteria, 518–519

Correlation functions:

quantum interference:

coupled dipole moment systems, 92–93

indistinguishable photons, 136–139

non-orthogonal dipole moments, dressed-

atom model, 142–143

superposition states, two-atom systems,

squeezed vacuum states, 249–253

Cost function, maximum-likelihood phase

reconstruction:

nonlinear quantum optics, 529–530

quantum phase estimation, 532–534

Coulomb gauge condition, quantum multipole

radiation, classical electromagnetic field,

402–405

Coupled dipole moment equations, quantum

interference, 91–98

atomic operator correlation functions,

92–93

master equation, 94–98

system Hamiltonians, 93–94

Covariance, symmetric states:

Maxwell formalism for general relativity,

696–697

Maxwell’s equation factorization, 686–692

Cramer-rao lower bound (CRLB), maximum-

likelihood estimate, quantum phase

estimation, 533–534

Creation operator:

cavity fields, moving boundary

electrodynamics, quantum forces,

318–320

finite-dimensional Hilbert space, 159–160

finite-dimensional state generation,

202–206

frequency parametric downconversion,

nonlinear quantum optics, pulsed fields,

539–546

quantum electrodynamics (QED), 396–397

molecular photonics, 607–610

time orderings and state sequences,

618–620

Cross-damping rate, quantum interference,

coupled dipole moment systems, atomic

correlation functions, 93

Cryptography, nonlinear quantum optics,

566–576

future applications, 576

multiparty computations, 574

quantum identification system, 573–574

quantum key distribution (QKD), 568–573

secret sharing, 574

security issues, 574–576

task analysis, 567–568

Cubic effects, impeded second-harmonic

generation, nonlinear quantum optics,

576–594

Floquet theory, 592–594

macroscopic propagation, 578–587

modal techniques, 587–592

research background, 577–578

Curved spacetime, symmetric states,

electromagnetic field theory extension to

relativity, 694–695

D’Alembertian operator, symmetric states,

electromagnetic potential, 682–683

Damping effects:

cavity fields, moving boundary

electrodynamics, 374–381

energy and second-order moment

evolution, 377–381

light propagation statistics, nonlinear

quantum optics, squeezing in coupler,

563–564

734 subject index



molecular photonics, quantum

electrodynamics (QED), 634–638

Dark transition states:

quantum interference:

amplification, 121–131

Autler-Townes absorption spectra, 123–

126

dressed-atom model, 126–131

inverted transitions, 122–123

distinguishable photons, 135–136

spontaneous emission, 103–105

superposition in two-atom systems, entangled

state detection, 247–248

Decaying atomic transitions, quantum

interference, coherently-driven three-

level V systems, 110–115

Decoherence, cavity fields, moving boundary

electrodynamics, Casimir effect, 320

Degree of coherence, quantum interference,

first-order optical coherence, 84–87

Density matrix elements:

cavity fields, moving boundary

electrodynamics, three-dimensional

nondegenerate cavity, probe oscillator,

371–372

dissipative system state generation, 206–209

molecular photonics, quantum

electrodynamics (QED), 617–620

quantum interference:

coherently-driven three-level V systems:

auxiliary -four level systems, 106–110

decaying atomic transitions, 110–115

indistinguishable photons, 137–139

master equation, 146–147

two-photon excitation, 147–148

superposition in two-atom systems, two-

photon entangled (TPE) states:

nonidentical atoms, 260–261

steady-state populations, 254–256

Density operators:

quantum interference:

coupled dipole moment systems, 91–92

phase control of spontaneous emission,

101–102

superposition states, two-atom systems:

master equation method, 221–225

squeezed vacuum states, 249–253

Depolarization ratio, interaction-induced Raman

scattering, multipolar polarizabilities,

Raman vibrational bands, 301–303

Depolarization spectrum, interaction-induced

Raman scattering, multipolar

polarizabilities, Raman vibrational

bands, 303–304

Detector systems, cavity fields, moving

boundary electrodynamics, three-

dimensional nondegenerate cavity, 372–

374

Deutsch-Garrison technique, nonlinear quantum

optics, cubic impedance, second-

harmonic generation, 581–587

Dicke states, superposition states, two-atom

systems, identical atoms, 226–228

Dielectric boundaries, cavity fields, moving

boundary electrodynamics:

damping effects, 374–381

quantum forces, 317–320

N-Dimensional coherent states, nonlinear

oscillator generation, 199–202

Dipole-dipole interaction:

quantum electrodynamics (QED):

molecular photonics, two-level systems,

645–649

theoretical background, 605–610

superposition states, two-atom systems:

collective atomic states, 225–226

master equation method, 224–225

nonidentical atoms, maximum

entanglement, 234–235

Dipole-induced dipole (DID) effect:

interaction-induced Raman scattering,

multipolar polarizabilities:

linear centrosymmetric molecules, 294–

298

optically isotropic molecules, 283–284

anisotropic scattering, 290–291

isotropic scattering, 291–293

nonlinear rototranslational spectrum,

288–289

translational spectrum, 284–285

Raman vibrational bands, 303–304

Raman scattering, multipolar polarizability

interactions, research background, 268–

269

Dipole moments:

multipole Jaynes-Cummings model, 414–416

quantum interference:

coupled systems, 91–98

atomic operator correlation functions,

92–93

subject index 735



Dipole moments: (Continued)

master equation, 94–98

system Hamiltonians, 93–94

dressed-atom model, dark transition

amplification, 130–131

non-orthogonal dipole moments, 139–144

anisotropic vacuum approach, 143–144

dressed-atom approach, 141–143

external driving field techniques,

139–141

preselected polarization technique, 143

phase control of spontaneous emission,

100–102

spontaneous emission rate modification,

99–100

Dipole photons, quantum multipole radiation:

angular momentum conservation, 424–425

dual representation, 426–430

radiation phase structure, 433–438

Dipole-quadrupole (DQ) interaction,

interaction-induced Raman scattering,

multipolar polarizabilities, Raman

vibrational bands, 303–304

Dirac function:

dissipative system state generation, 207–209

nonlinear quantum optics, photon quantum

field correlations, 520–523

second-harmonic generation, s-parametrized

quasidistribution function, 48–54

symmetric states:

electromagnetic potential, 684–685

Maxwell’s equation factorization,

686–692

spinor formulation for electromagnetism,

695

Direct driving atomic transitions, quantum

interference, coherently-driven three-

level V systems, 110–115

Discrete Wigner function. See Wigner function

Dispersed particles, molecular photonics,

quantum electrodynamics (QED), optical

coherence, 649–655

Dispersion-dispersion effects:

frequency parametric downconversion,

nonlinear quantum optics, polarization

analog, Hong-Ou-Mandel

interferometer, 543–545

molecular photonics, quantum

electrodynamics (QED), damping

effects, 638

Displaced number states (DNS), quantum optics,

finite-dimensional displaced number

states, 180–181

Dissipative systems, finite-dimensional state

generation in, 206–209

Distinguishable photons, quantum interference,

133–136

Downconversion:

nonlinear quantum optics:

photon statistics, research background,

494–495

pulsed fields, 537–546

dispersion-dispersion in polarization

analog, 543–545

entangled multiphoton field absorption,

546

entangled two-photon fields interference,

polarization analog, 545–546

one-photon field properties, 539–541

two-photon field properties, 542–543

vs. second-harmonic generation, 2–3

zeno effect, frequency downconversion,

546–557

continuous monitoring-Kerr interaction,

549–550

continuous monitoring-linear

interaction, 552–557

inverse Zeno effect, 551–552

pulsed observations, 548–549

quantum optics, degenerate downconversion,

55–71

numerical techniques, 58–71

symbolic calculations, 56–58

second-harmonic generation:

numerical techniques, 37–38, 40

phase distribution and evolution to, 54

Dressed-atom model:

nonlinear quantum optics, quantum Zeno

effect, frequency downconversion,

continuous monitoring-linear

interaction, 553–557

quantum interference:

coherently-driven three-level V systems,

108–110

dark transition amplification, 126–131

non-orthogonal dipole moments, 141–143

Dressed photons. See Polaritons

Dressed trapping state, quantum interference,

coherently-driven three-level V systems,

114–115

736 subject index



Dual representation, quantum multipole

radiation:

angular momentum conservation, 423–425

dipole photons, 426–430

radiation phase structure, 431–438

Dynamical Casimir effect. See Casimir effect

Eavesdropping, quantum key distribution

(QKD), 574–576

Eigenstates:

atom-cavity-field interaction, Einstein-

Podolsky-Rosen (EPR) paradox, 421–

423

molecular photonics, quantum

electrodynamics (QED), perturbative

development, 614–617

quantum interference, dressed-atom model,

dark transition amplification, 127–131

quantum multipole radiation, radiation phase

structure, 430–438

superposition states, two-atom systems,

collective identical atomic states, 226–

228

Eigenvalue equation:

quantum interference, coherently-driven

three-level V systems, auxiliary -four

level systems, 107–110

quantum multipole radiation, radiation phase

structure, 430–438

Einstein-Podolsky-Rosen (EPR) paradox:

quantum electrodynamics (QED), atom-field

interaction, 419–423

quantum multipole radiation, Fabry-Pérot
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electrodynamics (QED):

damping effects, 635–638

index symmetry, 640–643

optical coherence, dispersed particles,

649–655

radiation tensor construction, 625–627

six-wave mixing (SWM), 655–672

time orderings and state sequences, 620

nonlinear quantum optics:

cubic impedance, 576–594

Floquet theory, 592–594

macroscopic propagation, 578–587

modal techniques, 587–592

research background, 577–578

interference, 13–54

classical fields, 15–21

linearized equations, 21–26

numerical techniques, 34–54

symbolic calculations, 26–34

photon statistics:

classical analysis, 500–502
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Second-harmonic generation (SHG):

(Continued)

classical trajectory analysis, 502–506

quantum analysis, 495–500

research background, 493–495

vs. downconversion, 2–3

software program for, 74–76

Second-order coherence:

nonlinear quantum optics, higher-harmonic

generation, classical trajectories,

513–516

quantum interference, 87–89

Second-order correlation function:

quantum interference, 89–91

coupled dipole moment systems, 93

distinguishable photons, 133–136

photon correlations, 132–139

second-order optical coherence, 87–89

quantum optics, sub-Poissonian photon

statistics, 6

second-harmonic generation, symbolic

calculations, 30–34

Second-order dispersion, frequency parametric

downconversion, nonlinear quantum

optics, polarization analog, Hong-Ou-

Mandel interferometer, 544–545

Second-order perturbation:

cavity fields, moving boundary

electrodynamics, damping effects and

evolution of, 377–381

frequency parametric downconversion,

nonlinear quantum optics, pulsed fields,

538–546

quantum interference, non-orthogonal dipole

moments, anisotropic vacuum, 143–144

Secret sharing:

quantum cryptography and, 567–568

quantum key distribution (QKD), 574

Secure message exchange, quantum

cryptography and, 567–568, 574–576

Seeding techniques, molecular photonics,

quantum electrodynamics (QED), six-

wave mixing (SWM), second-harmonic

generation (SHG), 660–672

Selective excitation, superposition states, two-

atom systems, collective atomic states,

235–245

antisymmetric state preparation, 237–243

superposition of antisymmetric and ground

states, 243–245

symmetric state, pulse laser preparation,

236–237

Self-phase modulation, cubic nonlinear effects,

second-harmonic generation, research

background, 577–578

Semiclassical analysis:

maximum-likelihood estimates, vs. NFM

theory, 535–537

molecular photonics:

media corrections, 611–614

quantum electrodynamics (QED) compared

with, 605–610

nonlinear quantum optics:

higher-harmonic generation, quantum

analysis, 508–510

second-harmonic generation (SHG),

classical trajectories, 503–506

Semiresonance case, cavity fields, moving

boundary electrodynamics, 325–331

Short-time approximation:

degenerate downconversion, 56–58

second-harmonic generation, symbolic

calculations, 28–34

Shot noise, quantum multipole radiation,

quantum electromagnetic field, 411

‘‘Shot noise,’’ quantum optics, commutation

relation, 7

Single-photon absorption, molecular photonics,

quantum electrodynamics (QED), six-

wave mixing (SWM), second-harmonic

generation (SHG), 665–672

Single-time correlation function, nonlinear

quantum optics, classical photon field

correlations, 524–527

Six-wave mixing (SWM), molecular photonics,

quantum electrodynamics (QED),

second harmonic generation and,

655–672

Sonoluminescence, cavity fields, moving

boundary electrodynamics, 383–384

quantum forces, 317

‘‘Spaghetti problem,’’ cavity fields, moving

boundary electrodynamics, 311–313

Spatial inhomogeneity, quantum multipole

radiation, quantum electromagnetic field,

409–411

Spatial polarization properties, quantum

multipole radiation, 461–465

Spherical harmonics, quantum multipole

radiation:
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classical electromagnetic field, 404–405

photon measurement and localization,

470–472

quantum electromagnetic field, 408–411

spatial polarization properties, 462–465

Spin-affine connection fields, symmetric states,

electromagnetic field theory extension to

relativity, 694–695

Spin curvature tensor, symmetric states,

Riemannian spacetime variables in

quaternion form, 697–698

Spinor formulation, symmetric states:

generalized Dirac equation, 684–685

Lagrangian for electromagnetism, 695

Maxwell’s equation factorization, 685–692

conservation equations, 689–690

Faraday interpretation, 690–692

Riemannian spacetime variables in quaternion

form, 697–698

Spontaneous emission:

collective vs. correlated superposition states,

216–218

frequency parametric downconversion,

nonlinear quantum optics, pulsed fields,

537–546

dispersion-dispersion in polarization

analog, 543–545

entangled multiphoton field absorption,

546

entangled two-photon fields interference,

polarization analog, 545–546

one-photon field properties, 539–541

two-photon field properties, 542–543

quantum interference, 98–105

inverted transition amplification, 122–123

phase control, 100–102

population trapping and dark states, 103–

105

rate modification, 99–100

research background, 81

superposition in two-atom systems,

nonidentical atoms, maximum

entanglement, 232–235

Squared invariance, symmetric states, Maxwell’s

equation factorization, 686–692

Squeezed states:

cavity fields, moving boundary

electrodynamics:

photon statistics, initial vacuum state,

339–340

quantum forces, 317–320

three-dimensional nondegenerate cavity,

367–374

probe oscillator, 371–372

degenerate downconversion, 56

vacuum fluctuations, 57–58

finite-dimensional squeezed vacuum:

generalized model, 185–187

state generation, 209–210

truncated model, 187–189

light quantum statistical properties, coupler

squeezing, 563–564

nonlinear quantum optics, cubic impedance,

second-harmonic generation, 581–587

quantum optics, 5–13

second-harmonic generation, numerical

techniques, 41, 46–54

superposition in two-atom systems:

antisymmetric states and system purity,

256–260

multiatom squeezed states, 249

squeezed vacuum states, 249–253

two-photon entangled (TPE) states, steady-

state populations, 253–256

State sequence diagrams, molecular photonics,

quantum electrodynamics (QED),

617–620

molecular response tensor construction,

630–634

six-wave mixing (SWM), second-harmonic

generation (SHG), 656–672

Static fields, molecular photonics, quantum

electrodynamics (QED), damping

effects, 638

Steady-state solutions:

quantum interference:

master equation, 145–147

population trapping and dark states,

103–105

two-step one-photon coupling, 149–152

superposition in two-atom systems:

antisymmetric-ground state superposition,

243–245

antisymmetric indirect transfer through

symmetric state, 239–240

two-photon entangled (TPE) states,

253–256

antisymmetric states and system purity,

257–260

light mapping, 263–264
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Stirling’s formula, cavity fields, moving

boundary electrodynamics, photon

statistics, mean photon number, 341–342

Stochastic simulations, degenerate

downconversion, 62–71

Stokes parameters:

interaction-induced Raman scattering,

multipolar polarizabilities, 281–283

Raman vibrational bands, 298–304

light propagation statistics, nonlinear

quantum optics, Raman coupling

dynamics, 559–562

quantum multipole radiation:

classical field polarization, 456–458

polarization matrix frame, 465–467

polarization measurement, 476–479

quantum radiation polarization, 459–461

spatial polarization properties, 463–465

two-dimensional coherent states, 174–176

SU(2) algebra:

quantum electrodynamics (QED), 400–401

atom-field interaction, 416–419

Einstein-Podolsky-Rosen (EPR) paradox,

atom-field interaction, 420–423

quantum multipole radiation:

angular momentum conservation, 423–425

classical field polarization, 454–458

dual representation, dipole photons, 426–

430

Fabry-Pérot resonator, radiation phase

properties, 449–452

Jaynes-Cummings radiation phase

structure, 441

polarization matrix frame, 466–467

quantum radiation polarization, 460–461

radiation phase structure, 431–438

SU(3) subalgebra, 485–486

Sub-Poissonian photon statistics:

light propagation, nonlinear quantum optics,

564–566

nonlinear quantum optics:

higher-harmonic generation:

classical trajectories, 514–516

quantum analysis, 506–510

research background, 494–495

second-harmonic generation (SHG):

classical trajectories, 502–506

quantum analysis, 496–500

quantum optics, 5–13

second-harmonic generation:

numerical techniques, 38–54

symbolic calculations, 30–34

Super-Poissonian photon statistics. See also

Photon statistics

cavity fields, moving boundary

electrodynamics:

photon distribution factor (PDF), 324

three-dimensional nondegenerate cavity,

372

nonlinear quantum optics:

higher-harmonic generation, quantum

analysis, 508–510

research background, 494–495

second-harmonic generation (SHG)

quantum analysis, 496–500

second-harmonic generation, numerical

techniques, 41–54

Superposition states:

finite-dimensional squeezed vacuum, 185–

189

quantum interference:

dressed-atom model, dark transition

amplification, 127–131

non-orthogonal dipole moments, external

driving fields, 140–141

photon correlations, 132–139

spontaneous emissions, 81

two-atom systems:

collective atomic states, 225–235

identical atoms, 226–228

maximally entangled nonidentical states,

232–235

nonidentical atoms, 228–232

selective excitation, 235–245

antisymmetric state preparation, 237–

243

superposition of antisymmetric and

ground states, 243–245

symmetric state, pulse laser

preparation, 236–237

entangled state detection, 245–248

fluorescence intensity, 245–247

interference pattern, 247–248

master equation, 218–225

Hamiltonian parameters, 218–220

Schrödinger equation, 220–225

research background, 216–218

two-photon entangled states, 248–264

antisymmetric state and system purity,

256–260
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light mapping, 261–264

nonidentical atoms, 260–261

squeezed vacuum states, 249–253

steady-state populations, 253–256

Susskind-Glogower phase state, quantum

multipole radiation:

polarization measurement, 479

radiation phase states and Pegg-Barnett

Hermitian phase operator, 442–445

Symbolic calculations:

degenerate downconversion, 56–58

second-harmonic generation, quantum optics,

26–34

Symmetric states:

Born’s probablility calculus, 702–704

electromagnetic potential, 680–685

constant fields, 683–684

Dirac Hamiltonian, 684–685

pseudovector potential, 682–683

Maxwell equation factorization to spinor

form, 685–692

conservation equations, 689–690

Faraday’s interpretation, 690–692

molecular photonics, quantum

electrodynamics (QED):

index symmetry and molecular structure,

639–643

six-wave mixing (SWM), second-harmonic

generation (SHG), 659–672

relativity theory, 678–680

electromagnetic field theory and, 692–702

charge conservation, 701

field equations, 700

global spinor Lagrangian, 695

group theory, 692–693

magnetic monopole absence, 701–702

Maxwell field formalism, 696–697

Maxwell’s equations, 694–695

Pontjagin’s theorem, 693–694

Riemannian spacetime variables, 697–

700

superposition in two-atom systems:

collective atomic states, selective

excitation:

antisymmetric indirect transfer, 238–240

pulse laser preparation, 236–237

entangled state detection, fluorescence

intensity, 245–247

nonidentical atoms:

collective states, 230–232

maximum entanglement, 233–235

wave mechanics and electromagnetism,

702–705

Taylor series expansion:

cavity fields, moving boundary

electrodynamics, regularization and

Casimir’s energy, 355–359

second-harmonic generation, quantum optics,

26–34

Temperature fluctuations, cavity fields, moving

boundary electrodynamics:

Casimir effect, historical background,

319–320

semiresonance case, 331

Tensor representation, molecular photonics,

quantum electrodynamics (QED),

620–622

molecular response tensor construction,

629–634

optical coherence, dispersed particles,

650–655

radiation tensor construction, 622–627

six-wave mixing (SWM), second-harmonic

generation (SHG), 656–672

two-level systems, 644–649

Thermal neutron beam, maximum-likelihood

phase estimation, 534–537

Thermodynamic limit, atom-cavity-field

interaction, Einstein-Podolsky-Rosen

(EPR) paradox, 422–423

Third-harmonic generation (THG), molecular

photonics, quantum electrodynamics

(QED):

index symmetry, 640–643

two-level systems, 647–649

Three-dimensional cavity fields:

moving boundary electrodynamics, quantum

forces, 318–320

nondegenerate cavity, moving boundary

electrodynamics, 364–374

empty cavity, 364–368

probe oscillator interaction, 368–372

two-level detector interaction, 372–374

Three-photon resonances, molecular photonics,

quantum electrodynamics (QED), two-

level systems, 648–649

Time evolution operator, molecular photonics,

quantum electrodynamics (QED),

perturbative development, 616–617
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Time-ordered diagrams, molecular photonics,

quantum electrodynamics (QED),

617–620

molecular response tensor construction,

630–634

six-wave mixing (SWM), second-harmonic

generation (SHG), 656–672

two-level systems, 646–649

Time-reversal symmetry, molecular photonics,

quantum electrodynamics (QED),

damping effects, 635–638

Toroidal discrete Wigner functions, finite

dimensional quantum optics, 162–163

Total energy calculations, cavity fields, moving

boundary electrodynamics, 362–364

Translational spectrum, interaction-induced

Raman scattering, multipolar

polarizabilities, optically isotropic

molecules, 284–285

Transversal anisotrophy, quantum multipole

radiation:

classical field polarization, 454–458

spatial polarization properties, 463–465

Transversal magnetic radiation, quantum

multipole radiation, classical field

polarization, 455–458

Trapping states. See also Population trapping

quantum interference, 81

coherently-driven three-level V systems,

dressed trapping state, 114–115

Truncation models, finite-dimensional states:

coherent states, 169–173

displaced number states, 180–181

phase-coherent states, 178–180

quantum optics, research background, 157

Schrödinger cats, 183–184

squeezed vacuum, 187–189

Two-dimensional coherent states:

finite-dimensional properties, 174–176

nonlinear oscillator generation, 197–199

Two-level atomic systems:

cavity fields, moving boundary

electrodynamics, three-dimensional

nondegenerate cavity, 372–374

molecular photonics, quantum

electrodynamics (QED), 643–649

optical coherence, dispersed particles,

653–655

six-wave mixing (SWM), second-harmonic

generation (SHG), 665–672

multipole Jaynes-Cummings model, 412–416

quantum electrodynamics (QED), Einstein-

Podolsky-Rosen (EPR) paradox, atom-

field interaction, 421–423

superposition states:

collective atomic states, 225–235

identical atoms, 226–228

maximally entangled nonidentical states,

232–235

nonidentical atoms, 228–232

selective excitation, 235–245

antisymmetric state preparation, 237–

243

superposition of antisymmetric and

ground states, 243–245

symmetric state, pulse laser

preparation, 236–237

entangled state detection, 245–248

fluorescence intensity, 245–247

interference pattern, 247–248

master equation, 218–225

Hamiltonian parameters, 218–220

Schrödinger equation, 220–225

research background, 216–218

two-photon entangled states, 248–264

antisymmetric state and system purity,

256–260

light mapping, 261–264

nonidentical atoms, 260–261

squeezed vacuum states, 249–253

steady-state populations, 253–256

Two-photon coherent state:

antisymmetric states, superposition in two-

atom systems, atom-cavity-field

interaction, 240–243

degenerate downconversion, 57–58

frequency parametric downconversion,

nonlinear quantum optics, 542–543

interference in polarization analog, Hong-

Ou-Mandel interferometer, 545–546

molecular photonics, quantum

electrodynamics (QED), six-wave

mixing (SWM), second-harmonic

generation (SHG), 665–672

Two-photon downconversion, nonlinear

quantum optics, photon statistics,

research background, 494–495

Two-photon entangled (TPE) state,

superposition in two-atom systems,

248–264
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antisymmetric state and system purity,

256–260

light mapping, 261–264

nonidentical atoms, 260–261

Two-photon excitation:

energy-level molecular model, 145

quantum interference:

experimental evidence, 147–152

motion equations, 147–152

Two-step one-photon coupling, quantum

interference, 148–152

Unified field theory, symmetric states, magnetic

monopole absence, 701–702

Uniformly moving boundary, cavity fields,

moving boundary electrodynamics,

312–313

Unitarity conditions, cavity fields, moving

boundary electrodynamics, generic

resonance case, 332–337

Unitary evolution operator:

dissipative system state generation, 207–209

finite-dimensional state generation,

202–206

quantum multipole radiation, polarization

matrix frame, 465–467

superposition in two-atom systems,

symmetric atomic states, selective

excitation, 236–237

Unruh effect, cavity fields, moving boundary

electrodynamics, classical fields, 320

Vaccaro-Pegg expression, finite-dimensional

coherent states:

generalized model, 167–169

truncated states, 171–173

Vacuum oscillations:

cavity fields, moving boundary

electrodynamics:

Casimir’s energy density regularization,

355–359

packet formation, 360–362

photon statistics, 337–342

mean photon number, 340–342

principal squeezed states, 339–340

degenerate downconversion, 56–58

nonlinear quantum optics, cubic impedance,

second-harmonic generation, 581–587

quantum electrodynamics (QED), 400–401,

609–610

quantum interference, coupled dipole moment

system, 95–98

quantum multipole radiation:

dual representation, dipole photons,

427–430

quantum electromagnetic field, 407–411

radiation phase structure, 433–438

spatial polarization properties, 461–465

quantum optics:

interference and noise from, 4

nonlinear transformation, 71

second-harmonic generation, symbolic

calculations, 32–34

superposition states, two-atom systems:

master equation method, 220–225

squeezed vacuum states, 249–253

Variable sign convention, molecular photonics,

quantum electrodynamics (QED),

damping effects, 635–638

Vector potential:

quantum electrodynamics (QED), 608–610

quantum multipole radiation:

classical electromagnetic field, 402–405

quantum electromagnetic field, 406–411

Vibrational parameters, molecular photonics,

quantum electrodynamics (QED),

response tensor construction, 633–634

Volume of detection, quantum multipole

radiation, quantum electromagnetic field,

408–411

V-type atoms, quantum interference:

coherently-driven three-level systems,

105–118

auxiliary -four level systems, 105–110

dark transition, Autler-Townes absorption

spectra, 123–126

non-orthogonal dipole moments, 139–144

phase control of spontaneous emission,

100–102

photon correlations, 132–139

population trapping and dark states,

103–105

Wall displacement amplitude, cavity fields,

moving boundary electrodynamics,

382–384

Wavefunction theory, superposition states, two-

atom systems, 218

Wave mechanics, symmetric states,

electromagnetism, 702–705
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Wentzel-Kramers-Brillouin (WKB) algorithm,

finite-dimensional coherent states,

generalized model, 169

Weyl-Heisenberg algebra:

finite-dimensional Hilbert space, 160

quantum electrodynamics (QED), 396

quantum multipole radiation:

angular momentum conservation, 424–425

dual representation, dipole photons, 426–

430

Fabry-Pérot resonator, radiation phase

properties, 449–452

polarization matrix frame, 466–467

polarization measurement, 478–479

quantum electromagnetic field, 405–411

quantum polarization, 458–461

Which-way information, quantum interference,

first-order optical coherence, 85–87

Wigner function:

cavity fields, moving boundary

electrodynamics, damping effects,

375–381

degenerate downconversion, 64–71

finite-dimensional coherent states:

generalized model, 167–169

truncated states, 171–173

finite-dimensional Hilbert space, 159–160

finite-dimensional phase-coherent states,

178–180

finite-dimensional quantum optics:

discrete Wigner function, 160–163

research background, 157–158

finite-dimensional Schrödinger cats, 183–184

interaction-induced Raman scattering,

multipolar polarizabilities:

pair correlation function, 273–280

pair polarizability tensor, 272–273

quantum optics, 9–10

Pegg-Barnett Hermitian phase operator,

13

second-harmonic generation, numerical

techniques, 46–54

two-dimensional coherent states, 176

Young’s double-slit experiment, quantum

interference:

background, 82–84

first-order optical coherence, 82–87

Zeno effect:

nonlinear quantum optics, frequency

downconversion, 546–557

continuous monitoring-Kerr interaction,

549–550

continuous monitoring-linear interaction,

552–557

inverse Zeno effect, 551–552

pulsed observations, 548–549

superposition in two-atom systems, entangled

state detection, 245–248

Zero-point oscillations:

vs. multipole photons, 398–401

quantum multipole radiation:

photon measurement and localization,

471–472

plane wave/spherical wave symmetry and,

484–486

quantum electromagnetic field,

407–411

spatial polarization properties, 461–465
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