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Abstract 

This work presents a comprehensive analysis of the statistical mechanics of randomly cross-linked polymer gels, 
starting from a microscopic model of a network made of instantaneously cross-linked Gaussian chains with excluded 
volume, and ending with the derivation of explicit expressions for the thermodynamic functions and for the density 
correlation functions which can be tested by experiments. 

Using replica field theory we calculate the mean field density in replica space and show that this solution contains 
statistical information about the behavior of individual chains in the network. The average monomer positions change 
affinely with macroscopic deformation and fluctuations about these positions are limited to length scales of the order of 
the mesh size. 

We prove that a given gel has a unique state of microscopic equilibrium which depends on the temperature, the solvent, 
the average monomer density and the imposed deformation. This state is characterized by the set of the average positions 
of all the monomers or, equivalently, by a unique inhomogeneous monomer density profile. Gels are thus the only known 
example of equilibrium solids with no long-range order. 

We calculate the RPA density correlation functions that describe the statistical properties of small deviations from the 
average density, due to both static spatial heterogeneities (which characterize the inhomogeneous equilibrium state) and 
thermal fluctuations (about this equilibrium). We explain how the deformation-induced anisotropy of the inhomo- 
geneous equilibrium density profile is revealed by small angle neutron scattering and light scattering experiments, 
through the observation of the butterfly effect. We show that all the statistical information about the structure of polymer 
networks is contained in two parameters whose values are determined by the conditions of synthesis: the density of 
cross-links and the heterogeneity parameter. We find that the structure of instantaneously cross-linked gels becomes 
increasingly inhomogeneous with the approach to the cross-link saturation threshold at which the heterogeneity 
parameter diverges. 

Analytical expressions for the correlators of deformed gels are derived in both the long wavelength and the short 
wavelength limits and an exact expression for the total static structure factor, valid for arbitrary wavelengths, is obtained 
for gels in the state of preparation. We adapt the RPA results to gels permeated by free labelled chains and to gels in good 
solvents (in the latter case, excluded volume effects are taken into account exactly) and make predictions which can be 
directly tested by scattering and thermodynamic experiments. Finally, we discuss the limitations and the possible 
extensions of our work. 
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1. Introduction 

Polymer gels are fascinating materials which differ in many respects from ordinary solids. 
Although they possess all the normal characteristics of solids such as stability of shape, resistance 
to shear, etc., they can absorb solvent and swell to dimensions much larger than their dry size and 
exhibit linear elastic response to deformation at strains exceeding (and sometimes, far exceeding) 
unity. The fact that the gel is a solid permeated by solvent means that it can be thought of as 
a combination of a solid and a liquid, and that its state of equilibrium is determined by the 
interplay between the two components. The above statement applies even to dry polymer networks 
in which the “liquid” component can be identified with the un-cross-linked monomers which 
interact repulsively through short range excluded volume forces. When the network is deformed, 
the osmotic pressure of the liquid component adjusts itself to balance the local elastic stresses. If the 
liquid component changes its characteristics (by change of temperature, solvent, etc.), the network 
stresses adjust to the new osmotic pressure, resulting in a new equilibrium. This interplay 
determines the response of the gel to all external perturbations under which the network maintains 
its integrity (i.e., does not break). 

Polymer gels can be synthesized by cross-linking a polymer solution or a melt (they can also be 
formed by polymerizing a mixture of monomers and multi-functional cross-linkers). Although, in 
principle, it is conceivable to cross-link a crystalline polymer solid and, upon melting, obtain a gel 
which “remembers” its original lattice structure, to the best of our knowledge, this has not been 
done to date. Accordingly, gels are disordered solids, the structure of which reflects the state of the 
polymeric solution from which they were formed. The memory of the initial state is frozen into the 
network during its formation and reveals itself in all experiments performed on the network, long 
after the process of cross-linking is terminated. Thus, if one attempts to model the response of the 
gel to some external deformation, one has to know not only the state of the gel immediately prior to 
the deformation but also the conditions under which it was prepared. 

At first sight, the existence of memory effects suggests that in order to understand the behavior 
of polymer networks, one needs to have complete information about their complicated frozen 
structure, i.e., one has to specify a vast number (of the order of the Avogadro number) of 
parameters. If this was the case, it would undermine any attempt to obtain a probabilistic 
description of the physics of polymer gels by the usual methods of statistical physics. This 
seemingly intractable problem can be overcome by noticing, as was done by Edwards and his 
coworkers [ 1,2], that if the gel is formed by instantaneous cross-linking of a polymer solution, the 
probability of observing a particular network structure is identical to the probability of observing 
a state of a polymer liquid in which some monomers (a fraction of which will be cross-linked 
immediately afterwards) are in contact with each other. The latter probability distribution can be 
characterized by only a small number of parameters which define the conditions of preparation, 
such as temperature, solvent quality, degree of cross-linking and density in the initial state. Similar 
tricks can be applied to other methods of gel preparation such as equilibrium polycondensation, 
etc., for which we can characterize the post-cross-linking state in terms of a known probability 
distribution of the pre-cross-linking state. 

Using the above approach the problem can be reformulated in statistical terms, in which the 
answers to all experimentally relevant questions about the behavior of polymer gels are given in 
terms of averages of the physical quantities we are interested in. In this way the problem reduces to 



S. Panyukov, Y. Rabin/Physics Reports 269 (1996) l-131 5 

finding the probability distribution associated with the physical quantity of interest and averaging 
with respect to this distribution. The possibility of obtaining such a reduced description is related 
to the fact (which will be proved latter) that, in spite of their complexity and frozen randomness, 
gels have a unique state of microscopic equilibrium. Although there is an obvious loss of ergodicity 
associated with the process of cross-linking (of the same kind which accompanies the crystalliza- 
tion of a liquid), gels differ from glasses due to the fact that once they are formed (by irreversible 
cross-linking), their equilibrium state is uniquely determined by (and only by) the parameters that 
characterize this state (temperature, quality of solvent, etc.) and does not depend on their “history” 
after preparation (as long as the integrity of the network is maintained). For example, if a gel is 
synthesized at temperature T’(O) and subsequently studied at a temperature T, its state will depend 
only on T and not on the history of heating process (heating to T’ > T and subsequently cooling to 
T results in the same final state of equilibrium as heating directly from T (‘) to T). In spin glasses the 
final state will depend, in general, on the history of its preparation (after the synthesis of the system). 

This work is based on the Edwards model of instantaneously cross-linked networks of Gaussian 

chains with excluded volume [l]. No additional constraints are introduced to describe the fact that 
real chains cannot cross each other and, therefore, this model does not account for the contribution 
of permanent topological entanglements to the elasticity of polymer networks (recall that although 
all theories of polymer solutions consider only temporary entanglements [3], permanent entangle- 
ments may also be present in irreversibly cross-linked networks). In choosing the above model of 
polymer networks we are guided by considerations of simplicity. Although more complicated 
models (including entanglements and non-Gaussian elasticity) are more realistic, our aim is to start 
with the simplest well-defined microscopic theory and to present a strict mathematical analysis of 
the problem which will serve as a point of reference for future generalizations. We will show that 
the statistical mechanics of this model can be solved exactly (i.e., on the same level of rigor as other 
solved problems of polymer physics) and, in the process, obtain important insights about the 
physics of polymer gels, solve some long-standing puzzles and make new predictions which can be 
tested by scattering experiments on these systems, 

The unusual length of this manuscript is dictated by the need to make a self-contained and 
(hopefully) coherent presentation of our ideas about the statistical mechanics of polymer gels and 
to reach different scientific communities which may be interested in this subject. We would like to 
stress that although this work uses much of the state-of-the-art machinery of theoretical physics, 
the mathematical concepts involved are fairly standard and simple and the more complicated 
derivations are described in considerable detail in the corresponding Appendices. Since this is 
mostly an account of original work, much of which has never been published before, we will refrain 
from reviewing the history of the subject and will refer to the contributions of other investigators 
(and to our own previous work), in the appropriate places in this manuscript. 

In Section 2 we introduce the Edwards formulation of the statistical mechanics of polymer 
networks [l]. We discuss the hitherto unnoticed fundamental property of the instantaneous 
cross-linking process, namely, the existence of the cross-link saturation threshold, which defines the 
maximal achievable density of cross-links in the present model (at this point the number of 
cross-links becomes equal to the average number of inter-monomer “contacts” in the pre-cross- 
linked polymer solution). It will be shown later that when this saturation threshold is approached, 
the length scale associated with the quenched heterogeneity of network structure diverges and 
static heterogeneities appear on all length scales in the gel. 
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We use the self-averaging property of the total free energy in order express it as an average (with 
respect to the probability of synthesis of a given network structure) of the logarithm of the partition 
function of the deformed gel. In order to avoid the inconvenient averaging of the logarithm we 
introduce the standard replica trick (define one replica of the initial state and m replicas of the final 
state) and express the true thermodynamic free energy as the derivative of the replica free energy 
with respect to m, in the limit m + 0. The constraints introduced by the cross-links are replaced by 
an effective attractive potential through the introduction of the grand canonical representation 
which is then extended to all the monomers (i.e., both the number of monomers and the number of 
cross-links are allowed to fluctuate, so that only their average numbers are determined by the 
monomer chemical potential and by the fugacity of cross-links). This illustrates the immense 
computational simplification produced by the transformation to the abstract replica space (defined 
as the space of the coordinates in all the 1 + m replicas):frozen inhomogeneities ofnetwork structure 
(in real space) can be treated as thermaljluctuations in replica space and the seemingly intractable 
calculation of frozen disorder can be performed using the usual methods of equilibrium statistical 
mechanics! While excluded volume interactions act independently in each of the replicas, the 
interactions which represent the cross-links act identically in all the replicas (this is an expression of 
the solid character of the gel) and, therefore, introduce a coupling between the replicas. Finally, the 
thermodynamic free energy is expressed through the grand canonical partition function of the 
replica system. 

Although the interactions (both excluded volume ones and those associated with cross-links) are 
non-local along the chain contour, they are local both in the 3-dimensional physical space and in 
the 3(1 + m)-dimensional replica space. This fact is used in Section 3 where we transform to 
collective coordinates (field theory) and rewrite the interactions in terms of replica space densities 
(for the cross-links) and densities in each of the replicas (for the excluded volume). We then use 
a generalization of de Gennes’ n = 0 method [3] to eliminate the elastic entropy term in the replica 
partition function by introducing a field theoretical representation of the entropy in terms of 
a n-component vector field cp (the limit n = 0 is taken at the end of the calculation), and relate this 
field to the density in replica space. The details of the transformation to the field representation for 
Gaussian chains are given in Appendix A. We represent the replica partition function as a func- 
tional integral of Boltzmann weights defined by a replica generalization of a cp4-type field 
Hamiltonian, and discuss the various continuous and discrete symmetries of this Hamiltonian 
(rotations in n vector space, permutations of the replicas of the final state, rotations in each of the 
replicas and translations in replica space). 

In Section 3 we proceed to look for a mean-field solution which minimizes the field Hamiltonian 
and, therefore, gives the steepest descent estimate of the replica partition function. We derive the 
field equations the solutions of which correspond to the extrema of the Hamiltonian. Guided by the 
expectation that the ground state solution must have the maximal possible symmetry, we first 
consider the constant (in replica state) solution which has the full symmetry of the underlying 
Hamiltonian. However, as is shown in Appendix C, this solution corresponds to the saddle point 
rather than to a minimum of the Hamiltonian and must be rejected. 

The analogy with crystalline solids which can be thought of as solutions with spontaneously 
broken translational symmetry (in real space) which minimize a translationally invariant (i.e., 
which has the symmetry of a liquid) Hamiltonian [4], suggests that we look for a solution with 
spontaneously broken translational symmetry in replica space which obeys the physical condition 
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that it gives rise to a constant mean density in the three-dimensional space associated with each of 
the replicas [S]. The above condition imposes a constraint on the dependence of the mean-field 
solution on the replica space coordinates, i.e., the solution must be invariant under simultaneous 
translation (by a constant) along the principal axes of deformation in each of the replicas of the final 
state. Introducing a partition of the replica space into a 3-dimensional longitudinal (along the 
principal axes of deformation in each of the final state replicas) and a 3m-dimensional transverse 
subspace, we show that the mean-field solution depends only on the coordinates of the transverse 
subspace and is invariant under rotations in this subspace. This allows the replacement of the 
3(1 + m)-dimensional non-linear partial differential equation by a simple non-linear differential 
equation from which the mean-field solution is calculated numerically. We find that the solution is 
localized around a 3-dimensional surface (the longitudinal subspace; see Appendix B) in replica 
space, defined by the ufJine relation between the coordinates in the initial and in each of the final 
replicas, with a characteristic width of the order of the mesh size of the network. The fact that the 
solution is replica symmetric (i.e., invariant under permutations of the replicas of the final state) 
means that the position of any given monomer is nearly identical (up to thermal Juctuations on the 
scale of a mesh) in all of the replicas of thefinal state and that the average position of each monomer 
changes affinely with the deformation of the network. 

Using this inhomogeneous solution, we perform the steepest descent calculation of the replica 
partition function and obtain the mean-field thermodynamic free energy of the gel (details of the 
calculation are given in Appendix B). Our free energy coincides with the Deam and Edwards 
variational estimate [l] which is qualitatively similar (apart from a numerical coefficient and 
logarithmic corrections) to that of classical theories of network elasticity due to Flory and Rehner 
[6,7] and James and Guth [S]. We then calculate the fluctuation corrections to the mean-field free 
energy (Appendix D). We find that the most important corrections due to frozen fluctuations of 
network structure come from ultra-short wavelengths of the order of the monomer size, due to the 
contributions of small “wasted” loops which decrease the number of elastically effective cross-links 
and therefore decrease the elastic modulus. The resulting corrections agree with those obtained by 
Deam and Edwards [l]. 

We proceed to examine the stability of the mean-field solution and check whether or not it 
corresponds to a true minimum of the replica Hamiltonian. To this end we calculate all the 
eigenvalues and eigenfunctions of the operator which gives the energy of fluctuations about this 
solution (the calculation is presented in Appendix C and uses the expressions for the replica space 
correlation functions derived in Appendix E). We find that the fluctuation energy evaluated on the 
homogeneous solution has some negative eigenvalues and therefore does not correspond to a true 
minimum. On the other hand, all the eigenvalues (corresponding to rotations in the space of the 
n-vector model and to shear and density modes in replica space) associated with our inhomo- 
geneous solution are positive. This proves that the inhomogeneous solution minimizes the Hamil- 
tonian and is stable with respect to arbitrary smallfluctuations in replica space, including those which 
break the symmetry with respect to permutations of the replicas of the final state. 

The next step is to check whether the minimum we found is a global one. The existence of other 
solutions with lower or equal energy would undermine the validity of our steepest descent 
calculation of the partition function (since, in the thermodynamic limit, the functional integral will 
be dominated by the true ground state). On a more fundamental level, the issue here is whether 
polymer gels belong to the class of spin glasses (which have multiple minima) or to the class of 
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ordinary solids (which have a single equilibrium state under given thermodynamic conditions). 
Since our inhomogeneous mean-field solution describes a network in which excluded volume 
effects are accounted for by introducing a uniform external field which fixes the average monomer 
density in the system, we proceed to calculate the partition function of a network without excluded 
volume, the surface of which is fixed to walls which enforce the constant density constraint (the 
elastic reference state). As all the functional integrals over the monomer positions are Gaussian, 
they can be calculated exactly and we are left with (also Gaussian) integrals over the coordinates of 
the cross-links and of the monomers which are bound to the walls. Representing each cross-link 
coordinate as the sum of a mean position and the deviation from it, we write the cross-link 
Hamiltonian as sum of quadratic contributions (in the mean cross-link positions and in the 
deviations from these positions) and a term which is linear in the deviations from the mean 
positions. The requirement that the linear term in the expansion must vanish is equivalent to the 
condition of mechanical equilibrium, i.e., to vanishing average force on each cross-link due to the 
“spring’‘-mediated forces of its immediate neighbors. We find that a single solution exists, i.e., that 
the number degrees of freedom (cross-links) is equal to the number of constraints (force balance 
conditions), provided that the matrix of second derivatives of the cross-link Hamiltonian with 
respect to the cross-link coordinates has no vanishing eigenvalues. We show that each such 
vanishing eigenvalue corresponds to a collective mode which does not affect the energy of the 
network (zero-energy mode). Using the properties of the second derivative matrix of a Gaussian 
network, we find that there is only one zero-energy mode and show that it corresponds to uniform 
translation of all the cross-links. This mode is eliminated if one fixes the position of even a single 
cross-link (or of the center of mass of the network) and we conclude that a randomly cross-linked 
network does not have any zero-energy modes. Thus, our inhomogeneous solution defines the only 
mechanically stable state of the gel and no other minima exist (this eliminates not only other stable 
states but also metastable ones). A randomly cross-linked polymer network has a single microscopic 
state of equilibrium in which the average positions of cross-links (and of all monomers) are uniquely 
dejned under given thermodynamic conditions! 

We proceed to analyze the physical content of the mean-field expression for the density of 
monomers in replica space, which is analogous to the Edwards-Anderson order parameter [9] 
familiar from the theory of spin glasses, and find that it contains statistical information about the 
frozen structure of the network. This order parameter defines the probability distribution of 
deviations of network monomers from their mean (i.e., affinely displaced) positions, from which the 
average localization length which determines the length scale of thermal fluctuations of monomers, 
is calculated. Contrary to the Flory assumption [6], we find that both the monomers and the 
cross-linksfluctuate over length scales of the order of the mesh size. 

The above order parameter can also be used to find how the distribution function of the 
end-to-end distances of chains of given contour length is affected by the deformation of the 
network. We present the results of calculations reported elsewhere [lo, 111 (their derivation 
requires the use of methods which differ from the ones used in this work) which show that the 
average deformation of such chains depends both on their length and on the local environment in 
which they are embedded, and that only chains which are larger than the local mesh size are stretched 
afinely with the macroscopic deformation. Strong deviations from Bffinity are obtained for shorter 
network chains (those much shorter than the local mesh size react to deformation only through 
desinterpenetration). These intriguing results also follow from the observation that the rms 
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distance between the ends of a network chain is the sum of a contribution of the average distance 
between the ends (which deforms affinely with the network) and a fluctuation contribution (which 
is not affected by the deformation) and that the latter is important only on length scales of the order 
of the mesh size (the characteristic length scale of thermal fluctuations). Under uniaxial extension, 
the average mesh size deforms affinely along the direction of stretching and its transverse 
dimensions are not affected by the deformation. 

Section 4 begins with the observation that, to make contact with scattering experiments which 
probe the static inhomogeneities and the thermal density fluctuations of the monomer density in 
swollen and stretched networks, we have to eliminate (i.e., integrate over) the contributions of the 
shear modes and of the density modes in the state of preparation. In order to make the calculation 
feasible we assume that the deviations from the average density are small and can be treated within 
the random phase approximation (RPA) [3] which corresponds to keeping only quadratic terms in 
these deviations, We show later that while this assumption always holds for frozen density 
inhomogeneities (for gels prepared away from the cross-link saturation threshold), it breaks down 
for thermal density fluctuations in gels in good solvents where such fluctuations are strong (we 
show in Section 5 that, on length scales larger than the “blob’ size, these strong fluctuations can be 
accounted for by an appropriate renormalization of the RPA parameters). The elimination of the 
“irrelevant” shear and density modes is done by introducing auxiliary fields which couple between 
the replicas of the final state (the calculation is presented in Appendix F). Diagonalization of these 
couplings allows us to calculate the non-averaged free energy functional of the Fourier components 
of the monomer density (p4) and a random field (n,) which represents the structure of the network, 
and to obtain the (Gaussian) distribution function P(n,,) (the probability to observe a given 
amplitude of the random field n4 in the ge1). We find the equilibrium density distribution pGq which 
minimizes the free energy functional and show that it corresponds to the static inhomogeneous 
density projle of the gel, which is uniquely dejined by the structure of the network and by the 
thermodynamic conditions in the jinal deformed state, and which can be detected through the 
observation of static speckle patterns in the intensity of light scattered from gels. We show that the 
field ylq can be interpreted as the inhomogeneous equilibrium density profile of the elastic reference 
state (i.e., of a stretched gel, without excluded volume interactions). Using the free energy functional 
(quadratic in p4 and n,) and the distribution function P[n], we can compute all the statistical 
information about the static density inhomogeneities and thermal density fluctuations in a de- 
formed gel. We relate our theoretical predictions to scattering experiments which measure static 
density correlations (averaged over both space and time), by showing that averaging over the 
ensemble of all possible network structures (consistent with thermodynamic conditions in the state 
of preparation) is equivalent to averaging over the volume of a single polymer gel, and that 
averaging over the ensemble of gels with a given network structure (thermal averaging) is 
equivalent to time averaging over the configurations of a single gel. 

All the information which enables us to calculate the experimentally observable density correla- 
tion functions is contained in two functions, gq and vq, where the former is the correlator of thermal 
density fluctuations in the elastic reference state and the latter is the structure averaged correlator 
which measures the spatial correlations of the inhomogeneous equilibrium density profile in this 
state (explicit analytical RPA expressions for these functions, in both the short wavelength and the 
long wavelength limits, are given in Appendix G). An exact (within the RPA) expression for 
the total structure factor, valid in the entire range of scattering wave vectors, is obtained for gels in 
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the state of preparation. Asymptotic expressions (in both the long wavelength and the short 
wavelength limits) for the experimentally observable density correlators in the final deformed state 
are also given and it is shown that all the structural information about the gel is contained in two 
parameters: the density of cross-links in the state of preparation and the heteroyeneity parameter 
which measures the distance from the cross-link saturation threshold. The total static: structure 
jiictor is dominured hi scattering jirom static monomer density inhomogeneities and when gels are 
subjected to uniuxial extension, the amplitudes of rhe (long wavelength) Fourier components of‘ this 
static density prqjile are enhanced ulong the stretching direction and suppressed normal to it, resulting 
in “butrerfly”-like contours in plots of the isointensiry lines. These butterfly patterns have been 
observed in small angle neutron scattering [ 123 and light scattering [ 13) experiments. The thermal 
structure factor exhibits the reverse anisotropy, an effect which also has been observed in (dynamic 
light scattering) experiments [ 141. 

We show that under most conditions, rhe thermal structure jhctor has a peak at u jinite wuve 
Llector which lies outside the range of our asymptotic expressions. We conjecture that the 
characteristic wavelength associated with the peak is of the order of the mesh size and, therefore, 
that thermal fluctuations are anomalously enhanced at this wavelength. Microphase sepurution in 
poor solcent, as the result of the expulsion of the solvent from the denser regions of the inhomo- 
geneous profile, is predicted. 

WC apply our RPA formalism to the problem of a network permeuted byfiee labelled polymers, in 
which thermal fluctuations are suppressed by strong screening [15]. We find that the structure 
factor depends on an rflectice heterogeneity purumeter which vanishes both in the absence of frozen 
heterogeneities (i.e., for networks prepared away from the cross-link saturation threshold) and in 
the limit of vanishing concentration of the free labelled chains. The scattering increases with the 
heterogeneity parameter (e.g., with the density of cross-links) and with the degree of swelling. We 
analyze the case of uniaxial extension and show that the scattering is enhanced in direction of 
stretching and suppressed normal to it, and that butterfly patterns appear, as the result, in plots of 
the isointensity lines. All the above results are in qualitative agreement with experimental observa- 
tions on gels permeated by polymeric solvents and on blends of short and long chains (in which 
entanglements act as effective cross-links) [ 16. 183. We also study segregation (i.e., expulsion of the 
free chains from the gel) and find that the spinodul is sh$ed by externully applied anisotropic 
dqfijrmations (which promote segregation) and that, for uniaxial extension, it is first reached for 
fluctuations which are normal to the stretching direction. Related experiments on sheared blends 
indicate that segregation is indeed promoted by deformation [ 191. 

In Section 5 we consider semi-dilute gels in good solvents and present a simple method which 
allows one to account for the effect of strong fluctuations by combining renormalization group and 
scaling ideas. We argue that the coarse graining of the microscopic Hamiltonian leads to the 
renormalization of the bare parameters of this Hamiltonian (e.g., monomer size and second virial 
coefficient) and use the known scaling blob parameters [3] to find the fixed points of the 
corresponding renormalization group transformations. This procedure leads to a non-trivial 
renormalization of the mean-field free energy which can no longer be decomposed into indepen- 
dent osmotic and elastic parts, indicating the breakdown ofthe clussicul udditivity ussumption [20]. 
We show that the celebrated c* rheorem [3] applies only at the cross-link saturation threshold and 
that, under normal preparution conditions, there are many chains within the volume of‘ the uverage 
mesh oj’ the network. The number of interpenetrating chains is not affected by swelling (no 
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desinterpenetration), but increases with compression (through expulsion of solvent). We calculate 
the equilibrium swelling ratios and elastic and osmotic moduli and show how these moduli are 
affected by externally applied osmotic pressure. 

We proceed to calculate the density correlation functions for gels swollen in good solvents. 
Density fluctuations are enhanced by isotropic swelling and under uniaxial extension, butterfly 
patterns appear in the isointensity plots of the structure factor. In the high q limit (i.e., for wave 
vectors much larger than the inverse mesh size) the scattering reduces to that of a semi-dilute 
solution of uncross-linked and unstretched chains. In the long wavelength limit (for wavelengths 
much larger than the mesh size), we find that for gels prepared near the cross-link saturation 
threshold, scattering from static inhomogeneities always dominates over that from thermal fluctu- 
ations. Away from the cross-link saturation threshold, thermalfluctuations dominate in the state of 
preparation (in the reaction bath), but static heterogeneities give an increasingly larger contribution 
with progressive swelling and dominate the fluctuation intensity at swelling equilibrium in excess 
solvent. The effect of uniaxial stretching is to enhance the static inhomogeneities compared to the 
thermal fluctuations, in the direction of stretching. The effect is reversed normal to the direction of 
stretching. In all cases, butterfly patterns oriented along the direction of stretching (in plots of the 
isointensity contours) are predicted, in agreement with experiment [12]. This holds even when 
thermal fluctuations dominate, since in this regime the thermal fluctuation intensity is nearly 
angle-independent and the entire angular dependence comes from static inhomogeneities. Another 
interesting (and totally unexpected) prediction is the existence of a maximum at ajnite wave vector, 
in the thermal structure factor of neutral gels in good solvents. The presence of this maximum may 
explain the observed complicated shapes of the total scattered intensity curves, under conditions 
when thermal fluctuations make an important contribution to the static scattering profiles (e.g., in 
lightly cross-linked gels, close to the density of preparation). 

In Section 6 we return to the butterfly effect, the observation of which was the first clear 
demonstration of the failure of the classical theories of gels and prompted our own interest in this 
problem. In order to obtain a simple physical picture of the inhomogeneous equilibrium state of 
stretched polymer networks in terms of balance of forces, we proceed to establish the connection 
between our theory and the continuum theory of elasticity of solids [21]. Following Alexander 
[22], we show that the classical theory of network elasticity (as well as ours) which predicts linear 
elastic response at strains exceeding unity, corresponds to a version of the usual continuum theory 
of elasticity of homogeneous solids, in which one takes into account the usually neglected non- 
linear contributions to the strain tensor. The elastic modulus of a stretched homogeneous network is 
a tensor which depends on both the magnitude and the direction of stretching. When the theory is 
generalized to the case of inhomogeneous continua and osmotic (excluded volume) contributions 
are included, minimization of the free energy yields the force balance condition between forces 
associated with the stretched “springs” (present even in homogeneous networks), forces which drive 
the network towards the inhomogeneous equilibrium state and osmotic forces which tend to swell 
the gel. The resulting inhomogeneous equilibrium density distribution displays the characteristic 
anisotropy observed in static scattering experiments and we conclude that the butterfly efSect arises 
as the result of the interplay among the three phenomena which underlie the physics of polymer gels: 
the elastic response of stretched springs (deformation-dependent modulus), the presence of “liquid-like” 
degrees of freedom (osmotic forces) and the existence of frozen inhomogeneities of network structure 
(inhomogeneous equilibrium state). 
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In Section 7 we summarize the main results obtained in this work. We argue that gels do not 
belong to any of the known classes of solids. Unlike amorphous materials (e.g., glasses), once they 
are formed, they have a single well-defined state of microscopic equilibrium. Unlike crystalline 
solids, they possess no long-range order and their “atoms” (i.e., monomers and cross-links) 
fluctuate over distances which exceed the average distance between neighboring “atoms”. This new 
class of materials can be called soft disordered equilibrium solids. We end this work by discussing the 
limitations of our theory and suggesting possible extensions and generalizations. 

2. The model 

Consider the following situation: a chemically cross-linked polymer network is immersed in 
a good solvent and subjected to mechanical deformation. As long as the deformation does not 
affect the chemical structure of the gel (i.e., as long as the network does not break), the response will 
be determined by both the external conditions (deformation, solvent quality, temperature, etc.) 
which can be varied at will, and by the fixed network structure. The structure of the network 
is uniquely defined by specifying which monomers are joined at each cross-link point and is 
fixed once and for all at the time of preparation of the gel. It can depend on the method of 
cross-linking (irradiation, chemical reaction, etc.) and on the physical conditions (solvent quality, 
temperature. . .) to which the system was subjected during synthesis. In the following, we will refer 
to the state of preparation (following cross-linking) as the initial state. Thefinal state of the swollen 
and deformed network depends indirectly on the conditions of network preparation, since they 
determine the frozen structure of the network. 

We start with the Edwards model of a randomly cross-linked network of Gaussian chains with 
excluded volume [l]. While this microscopic model does not contain explicit topological con- 
straints which would account for the presence of permanent entanglements in real networks, it is 
conceivable that such effects are implicitly contained in the model, due to excluded volume 
interactions that prevent chains from crossing each other. Although we do not have a definitive 
proof that this is not the case (because of our incomplete understanding of the microscopic nature 
of entanglements of polymers), we can easily give a counter example. Consider, for instance, 
a discrete model of a polymer made of beads of finite volume (“monomers”), connected by 
“phantom” springs which can pass freely through each other (the minimal length of a spring is 
larger than the bead diameter). This model gives rise to the same universal static exponents (e.g., the 
scaling of end-to-end distance with molecular weight) as a non-phantom model in which the 
springs are not allowed to cross each other but, unlike the latter, cannot describe entanglements 
(notice that both models reduce to the Edwards Hamiltonian in the continuum limit where both 
the length of the springs and the size of the beads are taken to zero). While such entanglement 
effects can be treated by the ad hoc introduction of an “entanglement tube” into the present model, 
they cannot be described with the same degree of mathematical rigor as the simpler “phantom” 
chains (the concept of an “entanglement tube” does not arise naturally in the microscopic model 
and has to be introduced by hand into our formulation). 

Following Deam and Edwards [l], we neglect dangling ends and assume that the network is 
formed by cross-linking very long chains, well above the gelation point (which corresponds to the 
minimal concentration of cross-links at which an infinite connected network is formed). In order to 
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avoid difficulties associated with the description of a dense polymer liquid, it is assumed that the 
network is prepared by cross-linking chains in a semi-dilute solution in a good solvent, in which the 
interaction between monomers can be described by an effective second virial coefficient, w(O). Since 
chain-end effects can be neglected for sufficiently long percursor chains, the polymer solution can 
be replaced by a single chain of AL monomers where NW is the total number of monomers in the 
original solution (this replacement is allowed as long as we do not consider the conformations of 
individual chains). The constraint of average monomer density p (O) in the pre-cross-linked polymer 
solution is satisfied by confining the chain to a volume I/(‘) such that p(O) = Nt,t/V’o’. 

2. I. Pre-cross-linked polymer 

The conformation of a polymer in a good solvent is defined by the spatial positionx(s) of the sth 
monomer (s takes values from 1 to the number of monomers in a chain). In a continuum 
description of the chain, s becomes a continuous contour parameter which varies between 0 and 
Ntot, and the polymer is modeled by the Edwards Hamiltonian [23], 

TP’[x(s)] 
T’o’ =&[rds($)2 +$!rds[;ds’6[x(s) -x(s)], (2.1) 

where a is the monomer size and T(O) is the temperature in the state of preparation (here and in the 
following we take the Boltzmann constant to be unity). 

The statistical weight of a particular configuration of the chain {x(s)} is given by the canonical 
distribution function 

pliq [X(S)] = Z,’ exp( - S’Y’“‘[X(S)]/T (O)) , 

Zii, = 
s 

Dx(s)exp( - X’“‘[~(s)]/T (O)) . (2.2) 

Here jDx(s) implies functional integration over all the configurations of the chain and Zri, is the 
partition function of the polymer (the subscript liq refers to the liquid-like state of the polymer, 
prior to the introduction of cross-links). 

2.2. Instantaneous cross-linking and cross-link saturation threshold 

In order to elucidate the physics of the process of cross-linking in the above model (to the best of 
our knowledge, this point was never discussed before), let us consider an instantaneous configura- 
tion of a constrained polymer in a good solvent (with average monomer density p(O)) in which there 
are exactly K binary contacts between monomers (these contacts form and disappear due to 
thermal fluctuations). During a contact event, two monomers share a contact volume v (in the 
mean field approximation, the definition of the contact volume coincides with the definition of the 
excluded volume parameter, v = w(O), which appears in the Edwards Hamiltonian, Eq. (2.1)). The 
partition function of the constrained polymer is given by 

Z,,,(K) = 
s 

Dx(s)exp( - s@~‘[x(s)]/T’“‘) 
c 

ds;, n VS[x(si) -x(sj)] , 
(Lji 

(2.3) 
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where the product is taken over all the K pairs of monomers {i, j} which are in contact with each 
other. The integration over SK goes over the contour positions of the 2K monomers which 
participate in the contacts 

dsj (2.4) 

and accounts for the fact that such contacts can occur with equal probability at any location along 
the chain contour. The normalization factor K! arises because all contact pairs are indistinguish- 
able and the factor 2K accounts for the indistinguishability of the two monomers which form each 
contact. 

We can now define the probability that the polymer has exactly K contacts as 

Nmi2 

P(K) = Zhq(K) C Zliq(K) . 
K=O 

(2.5) 

The average number of contacts is given by 

No,/2 

I? = c KP(K) (2.6) 
K=O 

and can be easily estimated from mean-field arguments. Notice that since the excluded volume of 
a monomer is given by the second virial coefficient w(O), each monomer can be represented by an 
impenetrable sphere of volume w (‘) The volume fraction occupied by such spheres is wco)pCo) and, . 

therefore, the average number of binary contacts between the spheres is 

R N ~~,otW(0)P(O) = 4 I/‘o’w’o’(p’o’)2 . (2.7) 

When a polymer is instantaneously cross-linked by irradiation or by other means, a fraction of all 
monomers which are at a distance of the order of (w (‘) ‘I3 from each other (i.e., form a contact) ) 
become cross-linked (see Fig. 2.1). The number of such cross-linked monomers (2N,) depends on 
the intensity of irradiation and determines the average number of monomers between neighboring 
cross-links, m = N,,,/(2iV,). As long as the required density of cross-links #“)/(2m) is smaller than 
the average density of monomer contacts ~‘~‘(p’~))~/2 in the polymer liquid (prior to irradiation), 
the former can be increased by increasing the intensity of irradiation. The saturation density of 
cross-links (or, equivalently, the minimal chain length between cross-links) is obtained by equating 
the two densities (p’“‘/2~)““” - m ~(~)(p’~))~/2 and yields the cross-link saturation threshold 

W(0)p(O)~-min = 1 . (2.8) 

We conclude that the physically meaningful range of parameters describing the initial state 
corresponds to w(‘)p”)N > 1. This simple mean-field estimate should be revised for semi-dilute gels 
in good solvents where strong thermal fluctuations on length scales smaller than the “blob” size 
should be taken into account (by scaling methods [3]). We will show in the section dealing with 
such gels that the maximal attainable density of cross-links corresponds to a situation in which 
there is one cross-link per blob and that the cross-link saturation threshold condition becomes 

(a2W(0))3/5p(0)(~min)4/5 2: 1 . (2.9) 
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Fig. 2.1. Schematic drawing of a network, in the moment of cross-linking. Inter-monomer contacts (0) and cross-link 
points ( x ) are shown. 

Note that the crossover between the mean field and the scaling regimes takes place at p(O) 1: ~(‘)/a~, 
which coincides with the usual limit of applicability of mean-field treatments of excluded volume 
effects [23]. 

What happens when the cross-link saturation threshold is approached (e.g., by increasing the 
intensity of irradiation)? We will show later in this work that the structure of the gel becomes 
increasingly inhomogeneous in the sense that the characteristic length scale of density fluctuations 
increases dramatically as the saturation threshold is approached. We would like to emphasize that 
although the existence of the saturation threshold has only been demonstrated here for instan- 
taneous cross-linking of long chain polymers and therefore may be considered as an artifact of the 
present model, similar phenomena were observed in computer simulations where other methods of 
cross-linking were used [24]. 

2.3. Edwards ,formulation 

Consider a network containing IV, cross-links which has been prepared by instantaneous cross- 
linking, below the saturation threshold. Since at each cross-link point a chemical bond is formed 
between two monomers of the chain (the functionality of cross-links is 4), the resulting N, cross-links 
are characterized by the set of monomers (i, j} with corresponding positions {si, sj> on the chain 
contour. The set S = {si, sj} uniquely defines the structure (topology) of the network. The probability 
distribution which describes the gel under conditions of preparation is given by that of a polymer in 
a solvent, Eq. (2.2), supplemented by the constraint of a given configuration S of IV, monomer contacts, 

9(“)[x(s), S] = [Z(“)(S)] - 1 exp( - ~(“)[x(s)]/T(~~) 

(2.10) 
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where the partition function of the gel in the state of preparation is defined by the normalization 
condition ~Dx(s)~~~~[x(s), S] = 1 (the integration goes over all the configurations in the volume 
I”” occupied by the gel in the state of preparation): 

Z”‘(S) = 
s 

Dx(s)exp( - .X’“‘[~(~)]/T’o’) n 6 [X(si) - x(sj)] (2.11) 
ji. j; 

The above distribution function gives the complete statistical mechanical description of the gel in 
the state of preparation, including its response to small perturbations (linear response). However, 
unlike usual solids, polymer networks display linear elastic response to stretching and swelling well 
into the large deformation regime, which cannot be described by Z (O). The partition function Z(S) 
of an arbitrarily deformed gel differs from that of the undeformed one in the following respects: 
first, the swelling modifies the effective second virial coefficient, i.e., w(O) is replaced by w in the 
Edwards Hamiltonian and in the subsequent equations. Second, the deformation changes the 
volume (T/(O)) occupied by the network and the integration over the polymer coordinates extends 
over the new volume I/. Third, one has to introduce the forces which act on the surface of the gel 
and produce the stretching. The effect of these forces will be represented by introducing the 
appropriate deformation ratios {Aa} along the principal axes of deformation. Furthermore, in 
general, we have to allow for the possibility that the temperature in the final state, T, differs from 
that in the state of preparation T (‘) (see Fig. 2.2). 

Since the calculation of the partition function for a given realization of the network structure S is 
prohibitively difficult, we proceed to simplify the problem by the use of the self-averaging property 
of the free energy of a macroscopic system. This property follows from the additivity of the free 
energy. Imagine that we divide the entire sample into a large number of small but still macroscopic 
domains, each of which has its own unique structure (Fig. 2.3). In the limit of an infinitely large 
number of such domains, the probability P(S) of appearance of a domain with a given structure 
S is determined by the process of cross-linking. Since, in the case of instantaneous cross-linking of 
a polymer in a solvent, the initial state of the gel prior to deformation is a particular realization of 
the equilibrium state of this polymer and since the solution is ergodic, the probability is given by 
the Gibbs distribution function 

P(S) = Z(O)(S) 1s ds’z(“ys’) . (2.12) 

w(O), T('),Nto, w(O), T(0),N+,,,,Nc 

Fig. 2.2. (a) Polymer solution prior to cross-linking (characterized by parameters w (‘) T (O), TV,,,), (b) initial undeformed , 
gel (parameters w(O), T(O), N,,,, N,, {AI}). 
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Fig. 2.3. Partitioning of the gel into macroscopic regions characterized by different network structures. Domains with 
a particular structure S are shaded. 

The total free energy S(S) of a macroscopic network with a given structure S, can be written as the 
sum of free energies of such domains. This sum can be replaced by the sum over all possible 
realizations of network structures. The contribution of each of these structures is weighted by the 
distribution function (2.12), yielding: 

F(NtOt, NC) = - T 
s 

dSB(S)lnZ(S) . (2.13) 

In writing down this formula we took the thermodynamic limit in which the free energy is 
independent of the particular choice of network structure and depends only on thermodynamic 
properties such as the total numbers N,,, and NC of monomers and of cross-links, on volume, 
temperature and quality of solvent. 

2.3.1. Replica formalism 
The averaging in (2.13) can be performed using the replica method which is based on the identity 

Cl1 

In 2 = imO (Zm - 1)/m . (2.14) 

The trick consists of introducing the “replica” free energy &,(Ntot, NC) of a network with N,,, 
monomers and iV, cross-links 

exp[ - .Fm(N,,,, N,)/T] = 
s 

dSZ(O)(S)Z”(S) . (2.15) 

At this stage, 9, has no obvious physical meaning and is introduced only to avoid the cumbersome 
averaging of the logarithm in (2.13). It is easy to show that the physical free energy F(N,,,, NC) 
(2.13) is related to the replica free energy by the expression 

(2.16) 
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Since we are only interested in the m -P 0 limit, the function F,,, can be expanded in a power series in 
m. Eq. (2.16) implies that in the calculation of F,,, one should retain terms only up to first order in m. 

Some intuition about the physical meaning of the replica free energy can be gained by 
considering the limit m + 0 in Eq. (2.15). This yields 

exp[ - Fo(Ntot, N,)/T] = 
s 

dSZ’O’(S) E Zri,(Nc) (2.17) 

and we conclude that in this limit the replica free energy reduces to the free energy - T lnZri,(N,) 
of the constrained partition function of a polymer in a good solvent, with a given number (NC) of 
binary contacts between monomers. 

Going back to Eq. (2.15) we note that, for integer m, the product Zco)(S)Zm(S) can be interpreted 
as the partition function of a replica system which consists of 1 + m non-interacting systems 
(replicas). The 0th replica represents the initial non-deformed gel (with partition function Z(‘)(S) 
corresponding to a particular realization S of network structure) and the other m identical replicas 
represent the final deformed gel (each with partition function Z(S)). The Hamiltonian and the 
partition function of the 0th replica are given by (2.1) and (2.1 l), respectively, where for clarity of 
notation we label the monomer coordinates by the superscript (0). Similarly, the Hamiltonian of the 
kth replica (1 < k I m) is 

2@k’[x(kyS)] 
T 

=-&jr&($) 

No, 

+; ds s s hx 

ds’6 [X(~)(S) - x’~‘(s’)] 3 
0 0 

(2.18) 

where we have used the fact that the quality of solvent and the temperature are identical in all the 
replicas (k 2 1) corresponding to the final state of the gel, i.e., wtk) = w and Tck) = T, respectively. 
The partition function of the kth replica is 

Ztk’(S) = 
s 

Dx’k)(s)exp( - ~(k)[_dk)(s)]/T) n 6[dk)(si) - dk)(sj)] , (2.19) 
[i-j: 

where the integration goes over all chain configurations in the volume I/ occupied by the deformed 
gel. 

Substituting expressions (2.11) and (2.19) into Eq. (2.15) yields 

exp[ - FJN,,,, N,)/T] = dS fi 
s s 

Dx’~‘(s) 
k=O 

X exp( - A?‘k’[X(k)(S)]/T) n S[d”‘(Si) - X’“‘(Sj)] . 

(iPi) 
(2.20) 

Since the replica Hamiltonians in the above equation do not contain the cross-link contour 
coordinates S, we can pull the integrals over these coordinates in front of the product of the 
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&functions and perform NC integrations over the cross-linked pairs of monomers {i, j}. Each of 
these integrations produces a factor 

B[{X’k’}] = Tdsi 
s s 

%” dsj fi 6 [X’k’(si) - x’“‘(Sj)] (2.21) 
k=O 

and, therefore, the integration over S introduces the factor (B[ {x’“‘}])” into the integrand in (2.20). 

2.3.2. Grand canonical representation 
Instead of working directly with the constraints introduced by substituting the b-functions 

(Eq. (2.21)) into Eq. (2.20), we can replace them by effective interactions, using the following 
identity: 

(2.22) 

This relation is analogous to the usual thermodynamic transformation from the canonical to the 
grand canonical ensemble which suggests that z, can be interpreted as thefugacity which defines 
the average number of cross-links in the latter ensemble. Apart from mathematical convenience, 
the use of the grand canonical ensemble reflects the physical observation that only the average 
number of cross-links can be fixed by any physical or chemical method of gel preparation. 

In order to complete the transformation to the grand canonical ensemble we introduce the 
chemical potential p of monomer units (it differs from the usual thermodynamic definition of the 
chemical potential by a factor of T) through the identity 

6(N,,, - M) = -& dpe”(N’N -M) . 

As a result the replica partition function (2.15) takes the form 

(2.23) 

(2.24) 

where Z,,, is the grand canonical partition function: 

E”,(,u, z,) = 11 dMeeWM pi(s) 

exp( - &lds(gy + $ldscds’B[9(s) -;(s’)] 

ds’6 [X(~)(S) - x’~‘(s’)] . (2.25) 

In writing (2.25) we introduced the 3(1 + m)-dimensional vector 2 in the space of the replicas 
(replica space), with components xik) (o! = x,y,z; k = 0, . . . ,m) and used the identities 

(2.26) 
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and 

ri[.qs) - _;(s’)] = fi d[dk’(s) - dk’(s’)] . 
k=O 

(2.27) 

Notice that the expression inside the curly brackets in the exponent in Eq. (2.25) can be interpreted 
as (minus) the effective Hamiltonian of a polymer chain in an abstract replica space. Network 
constraints due to the cross-links (which were present in the original physical space) are replaced, in 
this replica space, by an effective attractive interaction with strength proportional to z,. Unlike the 
usual excluded volume interaction which is expressed as the sum of &functions with coefficients wtk’ 
and, therefore, is diagonal in the replicas, the effective attractive interaction due to the cross-links 
appears as a product of &functions (Eq. (2.27)) which couples the different replicas. This statement 
can be further clarified by the observation that a total Hamiltonian describes a set of non-interacting 
systems, only if it can be represented as the sum of the Hamiltonians of the constituents. 

On a more physical level, the difference between the effects of excluded-volume and cross-links 
stems from the different ways in which they enter the replica formulation of the statistical 
mechanics of polymer networks. Thermal fluctuations take place independently in the different 
replicas and, therefore, different monomer pairs interact via excluded volume in different replicas. 
On the other hand, all the replicas have, by definition, the same network structure (they all 
correspond to the same realization of this structure) and thus, the same monomer pairs interact 
through attractive interactions (which account for the presence of cross-links), in all the replicas. 

The cross-link-induced coupling between the replicas has a dramatic effect on the typical 
conformation of the polymer in the abstract replica space. While the attractions due to the 
cross-links can be stabilized by excluded volume repulsions in each of the replicas, there is nothing 
to balance the attractions between diflerenr replicas, with the consequence that (as will be shown in 
detail in the following) the true ground state of the replica system corresponds not to a state of 
uniform density in replica space but, rather, to a collapsed state of the polymer in this space! 

In the thermodynamic limit, N,,,, N, + CC, the integrals over p and z, in (2.24) can be evaluated 
by the method of steepest descent, with the result 

F,,,(N,,,,, N,)/T = - ln&(p,zc) - N,,,,p + N,lnz, , (2.28) 

where the fugacity z, of cross-links and the chemical potential ,u of monomers can be obtained by 
minimizing the right-hand side of (2.28) 

N,,, = - a In Z,(/l, z,)/Zp , N, = 2 In E,( ,LL ~,)/a In z, . (2.29) 

Substituting Eq. (2.28) into Eq. (2.16), we relate the physical free energy to the replica partition 
function of the grand canonical ensemble: 

.S(N,,, , N,) = - -I- 
alnZm(p, z,) $ 

am 
_ T afn%&z,) 

m=O aP 1 I ,=oam m=O 

=- T alnZm(pL, z,) 
am 

. 
m=O 

(2.30) 
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where the last equality is obtained using (2.29). The monomer chemical potential and the fugacity 
of cross-links which parametrize the grand canonical partition function in Eq. (2.30), should be 
expressed in terms of the parameters N,,, and NC using Eq. (2.29) in the limit m = 0. 

In order to calculate the free energy, Eq. (2.30), one has to evaluate functional integrals over 
the set of trajectories {i(s)) in replica space, in Eq. (2.25). Direct calculation of such integrals 
is prohibitively difficult and, following the usual approach in polymer physics [23], we will 
transform the problem into a more tractable one by going over to collective coordinates (field 
theory). 

2.4. Field theory 

Inspection of the grand canonical partition function reveals the source of the mathematical 
difficulties which arise in theories of interacting string-like objects. While the elastic term 
(Eqs. (2.25) and (2.26)) is local in this representation (i.e., depends only on a single coordinate 
along the chain, s), the interaction terms in Eq. (2.25) are non-local (depend on two coordinates, 
s and s’). An attempt to confront these difficulties head-on was made by Deam and Edwards 
Cl], who used a variational method to calculate the thermodynamic free energy of an instan- 
taneously cross-linked polymer gel. Such an approach is known to give good results for the 
ground state energy (we will see that the variational bound on the thermodynamic free energy 
obtained by the above authors coincides with our result) but is difficult to apply to the calculation 
of density fluctuations for which one has to have complete information about the ground 
state. In this work we take a different path which was proposed by Edwards and Vilgis [25] 
(for modelling end-linked networks, without excluded volume), and which is based on the 
realization that while the interactions are non-local along the chain contour, due to the presence 
of the &functions they are local in real (and in replica) space. Therefore, it is advantageous 
to transform to a description in terms of fields over spatial coordinates (i.e., to collective 
coordinates), in which the local character of the interaction terms is made explicit [23]. 
We now proceed to construct the field theoretical representation of the grand canonical partition 
function. 

2.4. I. Density functional 
We start with the definition of the microscopic (i.e., non-averaged) monomer density in replica 

space 

p(i) s 
s 

dsS [$ - i(s) J = 
s 

ds fi c@z(~) - xCk’(s)] . (2.31) 
k=O 

The thermal average of this expression, (p(2)), is identical to the Edwards-Anderson-order 
parameter in the theory of spin glasses [9J and is a measure of the correlations between the replicas. 
It vanishes (in the thermodynamic limit) in the “liquid” phase where there is no correlation between 
the monomer positions in different replicas and has a finite value in the “solid” phase in which 
the conformations of the network in the different replicas are strongly correlated due to its fixed 
structure [26]. 
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Knowledge of this abstract density can be used to calculate the monomer density in the kth 
replica by integrating over the coordinates of all the other replicas 

/P’(X’k’) = j--Jk sdr”‘#) = ks@‘*’ - X’k$), ) (2.32) 

which can also be represented in the form 

/P’(x) = 
s 

d&$)6 [x - x(k)] . (2.33) 

We now return to the expression for the grand canonical partition function, Eq. (2.25). Contour 
integration over a non-local (in the contour coordinates s) b-function can be replaced by a spatial 
integral over a local (in space) function of the density, as follows. We introduce the identity 

ss ds ds’6[i(s) - i(s’)] = d.%[$ - i(s)] S[.G - i(s’)] = 
s 

d;p2(1;) , (2.34) 

where the second equality is obtained by changing the order of the integrals and using the 
definition of p(i), Eq. (2.31). Similarly, we derive an analogous relation for the kth replica: 

ss ds ds’6 [xck’(s) - x’~‘(s’)] - 
s 

dxck’ [ /I(~)(x(~))] 2 . (2.35) 

The next step is to replace the integration over the monomer coordinates {9(s)} by the integration 
over the collective coordinates {p(9)}. This is done by inserting the representation of unity 

1 +p(x)+(+~dsfi[~-i(s)]) (2.36) 

in front of the exponential in (2.25) and moving the integration over p(i) to the leftmost end of the 
expression on the right-hand side of this equation. Using identities (2.34) and (2.35), the grand 
canonical partition function can be represented as a functional integral over the replica density 
field: 

&,(p, z,) = kp(j?)exp rs(lr, [p(i)]) + $ {tip’@) - f q ~d~(~)[p~~)(x~~‘)]‘j . 
k=O 

(2.37) 

Here, the term proportional to z, accounts for the contribution of cross-links, the terms propor- 
tional to wck) represent the excluded volume interactions, and S(,LL, [p(i)]) is the replica analog of 
the elastic entropy of the polymer chain, with the given monomer density p(i) in replica space: 

exp{S(p, b(31)) = 1: dMeePM ki(s) 

ds6 [9 - i(s)] (2.38) 



S. Panyukov, Y. Rabin JPhysics Reports 269 (1996) I-131 23 

2.4.2. Elastic entropy 
We now derive a field theoretical representation of exp (S}. Introducing the exponential repres- 

entation of the b-function 

i c dsh($(s))] (2.39) 

and moving the integration over A(%?) to the leftmost end of the term on the right-hand side of 
Eq. (2.38), gives 

IS s d.& di2G{&i2, [ih(AI) , (2.40) 

where 

G{i1,i2, [ih(.?)]) = jIdMe-UMl:Di(s)exp{ - [ds[$ (3’ + ihC;(s))]j (2.41) 

can be interpreted as the grand canonical partition function of an ideal Gaussian chain with ends 
fixed at points & and .i$, in an external field i/r(i) (in a 3( 1 + m)-dimensional replica space). In order 
to avoid explicitly handling the constraints associated with the connectivity of the chain, we 
transform the Gaussian chain problem into a field theory [27] (Appendix A). Using the replica 
space generalization (X +a) of the usual trick of relating the polymer problem to the n = 0 limit of 
the n-vector model (Appendix A), G is represented as a functional integral over an n-component 
vector field cp(.?), with components Cpi(.;) (i = 1, . . . , n). Analytic continuation to the limit n + 0 
yields 

(2.42) 

where the effective (dimensionless) Hamiltonian Ho has the form 

Ho[ih(.?), f&Z)] = d.? S[ (2.43) 

Here P is the 3(1 + m)-dimensional gradient operator with respect to replica space coordinates. 
Notice that we now have three different spaces and, in order to avoid confusion, we use different 
designations for vectors embedded in them: x is the usual 3-dimensional vector with components X, 
(a = x, y, z), the vector $ is defined in 3( 1 + m)-dimensional replica space and has components xLk) 
(c! = x,y,z; k = 0, . . . ,m); and the n-dimensional vector cp has components (Pi (i = 1, . . . , n). 

We now substitute Eqs. (2.42) and (2.43) into (2.40) and integrate over the field h, using the 
identity 

s- [*S 1 Dh(x)exp I tih($(p($ - (p2(_?)/2) E 6(&Z) - (p2@)/2) . (2.44) 
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The resulting field theoretical representation of the elastic entropy S, is 

2 W(4 - cp”W) 

(2.45) 

Note that, as a byproduct, we obtain the important relation between the vector field cp and the 
monomer density in the replica space: 

P(i) = V2(W2 (2.46) 

This formula is an exact relation between the two fluctuating fields cp and p. It is the generalization 
of a well-known relation in the y1 = 0, ‘p4 formulation of the excluded volume problem [S] 
(which relates the average of the square of the abstract field cp to the physically observable mean 
density (p)). 

2.4.3. Field Hamiltonian 
Substituting Eq. (2.45) into Eq. (2.37) and carrying out the trivial (due to the b-function) 

integration over the field p(i), we obtain an explicit representation for the grand canonical 
partition function of a Gaussian network, in terms of the field q(i): 

%(cl, 2,) = b#)[ {d-@@)]2exp{ - WW)I} . (2.47) 

In evaluating this expression one has to perform the functional integration over the field cp and then 
make the analytic continuation from integer yt to n = 0 (where n is the number of components of 
this vector field). The Hamiltonian H is given by 

H[q] = ti 
S[ 

+pq2(2) + $&(2))2 -2 ((~~(2))” 1 
(2.48) 

This effective Hamiltonian is a straightforward extension of the (p4 zero-component field theory 
of a polymer chain with excluded volume to the 3(1 + m)-dimensional replica space. It has 
a number of discrete and continuous symmetries: 

1. Arbitrary rotations in the abstract space of the n-vector model. 
2. Permutation of the replicas of the final state. 
3. Arbitrary rotations in the space of each of the replicas. Due to the presence of the excluded 

volume terms, the Hamiltonian is not invariant under arbitrary rotations in replica space which 
would, in general, mix the different replicas (the densities in each of the replicas, p(k’(~(k)), that enter 
the excluded volume interaction term in the Hamiltonian, are not invariant under rotations in 
replica space {&?> which mix the different replicas). 

4. Translation by an arbitrary constant vector in replica space. 
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The existence of the symmetry under translation in replica space suggests (wrongly!) that our 
field theory describes a polymer “liquid” in replica space, with cross-links replaced by effective 
attractions between monomers. Consider, for example, the single replica, m = 0, version of our 
model. In this case, fl, + ,,jd.~“’ is replaced by unity and the corresponding Hamiltonian (2.48) 
becomes 

H[qiJlm=o = dx’O’ s [ $ptp2(x(0)) +; (vtp(x’“‘))2 + ( w(O) - z,) 8 GP ( ))I 2 x(o) 2 
, (2.49) 

which is identical to the Hamiltonian of the IZ --f 0 model of a polymer chain in a solvent, without 
cross-links but with an excluded volume parameter w(O) - z,. Substitution of this Hamiltonian to 
Eq. (2.47) gives the grand canonical partition function of a constrained polymer with a second virial 
coefficient w(O) - c, z confined to a volume I/“). The reduction of the excluded volume parameter 
compared to its bare value w(O) reflects the fact that some of the inter-monomer contacts in any 
configuration of this polymer (N, of them, on the average), represent the cross-links and do not 
contribute to the excluded volume interaction energy. 

Although the above conclusion is perfectly valid for the single-replica case, it misses the fact that 
our model contains not only the replica of the initial state but also m replicas of the final state, and 
that the calculation has to be performed in the 3(1 + m)-dimensional replica space before taking the 
limit m -+ 0. Inspection of Eq. (2.37) shows that while excluded volume repulsions act only within 
the individual replicas (only the sum Ckm,o w’“)[p@)(~)]~ appears in the exponent in Eq. (2.37)) 
cross-link-induced attractions (z~[#)]~) introduce a coupling between all the replicas. The 
presence of this coupling reflects the fact that our model describes a solid. 

3. Mean-field solution 

3.1. The mean-jield equation 

We now proceed to calculate the functional integral (2.47). Due to the presence of the q4 terms, 
this integral is not Gaussian and cannot be calculated exactly. Instead, we resort to a mean-field 
estimate by the method of steepest descent, which is equivalent to finding the solution qrnf that 
minimizes the effective Hamiltonian (2.48). The condition that (Pmf corresponds to an extremum of 
H is 

w’k’p(‘$(X(k)) _ a2 p’ _ 2 dF@) 
> 

%F@) = 0 2 (3.1) 

where, from Eqs. (2.31)-(2.33) the mean-field density of monomer units in the kth replica is 

&(x’~‘) 3 fl 
s 

dx”‘p,r(_?) , where P&$) = &&)/2 . (3.2) 
I#k 

The thermodynamic parameters p and z, which appear in (3.1) can be related to the physical 
parameters which characterize the gel in the state of preparation, i.e., the average monomer density 
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P (‘) = Ntot/V(‘) and the average number of monomers between cross-links which are nearest 
neighbors along the chain contour, m = N,,,/(2N,). The parameters ,LL and z, should be calculated 
from Eq. (2.29), with the corresponding derivatives evaluated at m = 0. In the mean-field approxi- 
mation, this equation can be replaced by 

(3.3) 

where the Hamiltonian H (for m = 0) is defined in Eq. (2.49). 
Since we are looking for a solution of Eq. (3.1) which describes the spatially homogeneous initial 

state of the gel (with density p(O)), the mean-field solution is obtained by setting the expression in 
the brackets in this equation to zero. We obtain 

P (O) = (pif/2 = p/(z, - w(O)) . (3.4) 

Substituting this solution into Eq. (2.49) and using Eqs. (3.3) yields N,,, = p’“)V’o) and iV, = 
~,I/‘~)(p’~))~/2. Using these relations and the definition of N, we obtain the mean-field expressions 
for p and z, in terms of p(O) and m 

/J = l/N - wco)p’o’ z, = l/(p’“‘rn) . (3.5) 

We would like to emphasize that in order to calculate the free energy, Eq. (2.30), it is not enough 
to obtain the solution of the mean-field equation (3.1) and that there are two further conditions 
which must be satisfied by this mean-field solution. 

1. We have to verify that the solution minimizes the effective Hamiltonian. Notice that since 
Eq. (3.1) was obtained from the condition SH/Sq = 0, its solutions correspond to the extrema, but 
not necessarily to the minima of H. A solution of this equation minimizes H if the second derivative 
operator 

(3.6) 

whose eigenvalues {A} give the “energies” of small (but otherwise arbitrary) fluctuations ((6q.)) 
about the mean-field ground state, has only non-negative eigenvalues. The spectrum of eigenvalues 
can be found from the secular equation 

n 

IS 
dfKij(i, al)l/lj(2) = ArCI, 3 (3.7) 

j= 1 

where + are the eigenfunctions corresponding to these eigenvalues (the indices i and j enumerate 
the components of the n-vector field). A complete analysis of this eigenvalue problem will be 
presented later in this work (Section 3.5 and Appendix C). 

2. We have to show that our solution corresponds to the true ground state of the Hamiltonian 
since, in the thermodynamic limit, the steepest descent estimate of the replica partition function is 
dominated by the lowest minimum of H (ground state dominance). This problem will be considered 
in Section 3.6. 
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3.2. Homogeneous solution 

We now proceed to look for a solution of Eq. (3.1) for arbitrary integer m. In principle, this 
complicated non-linear equation may admit many solutions which would correspond to different 
extrema of H. One should find all the solutions, compare their “energy” (by substituting 
the corresponding solution in the definition of H, Eq. (2.48)) and find the one which describes 
the true ground state of the Hamiltonian. A less tedious strategy is based on symmetry arguments, 
i.e., on the expectation that such a solution must have the full symmetry of H, provided, of 
course, that it minimizes the Hamiltonian. Inspection of H, Eq. (2.48) shows that it is in- 
variant under the displacement of the replica space coordinates by an arbitrary constant vector, 
f -+i + i, a condition which is trivially satisfied by the spatially homogeneous (in replica space) 
solution, 

cpmf(-4 = n(Prnf 2 (3.8) 

where n is a constant unit vector in the space of the n-vector model. It is easy to check that Eq. (3.1) 
has indeed a constant (in replica space!) solution which can be determined from this equation by 
setting the expression in the brackets to zero. In the limit m -+ 0, we get 

(Pmf = &s. (3.9) 

However, as will be shown later in this work, the analysis of the spectrum of eigenvalues of the 
second derivative operator K defined in Eq. (3.6) (evaluated on this homogeneous solution) shows 
that some of the eigenvalues are negative, and therefore the constant solution corresponds to 
a saddle point rather than to a minimum of H. We conclude that the homogeneous solution must be 
rejected and proceed to look for another solution of the mean-field equation. 

3.3. Inhomogeneous solution 

The fact that the homogeneous (in replica space) solution does not minimize H, forces us to look 
for a solution that has a lower symmetry than the Hamiltonian, a situation which is commonly 
referred to as spontaneous symmetry breaking. Such a phenomenon arises in crystalline solids in 
which the energy is invariant under arbitrary translations but the ground state is invariant only 
under translations by multiples of lattice vectors, along the symmetry axes of the crystal lattice 
[4]. This suggests an interesting analogy between crystalline and amorphous solids: from the 
knowledge that spontaneous symmetry breaking of translational symmetry in real space gives rise 
to crystalline solids, we expect that the breaking of this symmetry in replica space leads to the 
general class of disordered solids. Note, that according to this view, the difference between 
a disordered solid and a liquid stems only from the breaking of translational symmetry in the 
former, and no additional symmetry breaking is necessary in general. Therefore, since the Hamil- 
tonian is invariant under the permutation of the (k # 0) replicas, we will first look for replica 
symmetric solutions and examine whether they minimize H. After we find the solution which 
minimizes the Hamiltonian, we will show that there are no other solutions which satisfy the 
condition of local equilibrium and, therefore, this solution corresponds to the unique ground state 
of the Hamiltonian. 
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3.3.1. Spontaneous breaking of translational symmetry in replica space 
We proceed to look for a mean-field solution with spontaneously broken translational symmetry 

which is inhomogeneous in replica space (the analysis below was first given by one of us, (SP), in 
Ref. [S]). Since the average density should be constant in real space, in both the initial and the final 
states of the network, we look for solutions of the form &b(x) = const. We now show that this form 
is consistent with Eq. (3.2) if the field cp(i) (and, consequently, p&2)) depends on the coordinates of 
the replicas only through the linear combinations 

yck) =x(k) - l(k)*x(o); k = 1, . . . ,m , (3.10) 

where A(k) are arbitrary constants (the symmetry of Eq. (3.1) with respect to permutation of replicas 
with k 2 1, implies that one should take ncl 1(k) = & for all these replicas) and where we define the 
+ operation by 

(L*& = &X, (3.11) 

(no summation over a!). A similar functional dependence of the mean-field solution on the replica 
coordinates (in the momentum representation) was introduced by Goldbart and coworkers [28] 
for the case of an undeformed gel, { & = l}. 

Clearly, we can always replace P,,,@) = P&X(‘), {xck)}) by a different function of the arguments 
XL’) and yLk) (k 2 l), i.e., write P,,&) =f(.x”‘, {y’“)).). From Eqs. (3.2), the density in the kth replica 
can be expressed as 

p!$(x(‘)) = n dy(‘)f(x(‘), {y(l))) for k = 0 : 
1#0 s 

(3.12) 

PUQ(x(k)) = 
s 

d#J)f(k)(#), x(k) - L sr x(O)) for k # 0 , (3.13) 

where 

f(k)(x(O), y(k)) = n sdylij(x(O), (y(l))) . 
l#k 

(3.14) 

In eqs. (3.12) and (3.14), we shifted the integrations by dx(‘) -+ dy (‘) Our proof follows immediately . 

from inspection of the above integrals, which shows that, for p,r (k) to be independent of xck) (for all k) 
as required,fmust depend on xck) only through the linear combination xck) - Lck) *x(O) (for example, 
iff was a function of both x(O) and {y(r)}, upon performing the integration in Eq. (3.12), we would 
obtain a function ofx(‘) and not a constant!). Furthermore, in order for Eqs. (3.12) and (3.14) to be 
meaningful, the integrals which appear in these equations must be convergent, i.e., the function 
f( {ytk’}) must be a sufficiently rapidly decreasing function of its arguments. 

In order to relate the parameters I,, to the characteristics of the deformed network, we use the 
fact that the functionf(k) depends only onyck) and, therefore, we can replace {dx”’ by ~dy’k’/(L,l~ylLz). 
Inserting the expression forftk) (Eq. (3.14)) and comparing with (3.12), we obtain a relation between 
the mean density of the undeformed gel and that of the deformed one (i.e., any one of the identical 
replicas of the deformed state): 
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Notice that under an arbitrary stretching or compression, the linear dimensions of the system, 
Lo,, Lo,,, tOz, change to L,, L,, L,. The volume changes from V, = LO,LoYLoz to V = L,L,L, 
and, thus, the relation between the final density p and the density prior to the deformation, po, is 
given by p = po(Lo~LoyLoz/LxLyLz). Comparison with Eq. (3.15) shows that A,., lY and 1, must be 
identified with the extension ratios along the principal axes of the deformation of the network, 

i, = L,/Lo, for a = x, y, z . (3.16) 

It is easy to check that any function (e.g., our solution) which depends only on the argument 
#) - i *x(O), is invariant under the following displacement of replica space coordinates: 

(3.17) 

where U, are the components of an arbitrary constant three-dimensional vector and & is a unit 
vector in the 3(1 + m)-dimensional replica space: 

gcx = ( Lea 
(1 + ;p)l,2’ (1 +yjyi)l,LI -.. ’ (1 + m;1,2)‘i2 . 

> 
(3.18) 

Here e, is a unit vector along the direction a (c( = x, y, z) in the usual three-dimensional space. 
The condition of invariance under an arbitrary displacement along the axes kX,, sY and &, 

(Eq. (3.17)), singles out these three directions in replica space. An arbitrary vector $ can be 
decomposed as 

2=&f& (3.19) 

where &, = C,(& ._+& and _?r is orthogonal to &. Condition (3.17) means that our solution can 
depend only on the transverse components _i?T of the vector P. Furthermore, in the basis defined by 
the vectors t$.,, & and t$ and their orthogonal complements (which can be constructed by the 
Graham-Shmidt procedure), only the first three components (& -2 3 xLa) of & are non-vanishing 
and thus, xL can be thought of as a three-dimensional vector. In the same way, we can define 
a 3m-dimensional vector XT. 

Returning to Eq. (3.1), we note that since we are looking for a solution which depends only on xT, 
the Laplacian $’ can be replaced by V;, where the gradient is taken only with respect to the 
components of the transverse vector. Since we are looking for the ground state of the Hamiltonian 
and the spherically symmetric solution has lower energy than the ones that break rotational 
symmetry (in the 3m-dimensional subspace defined by the transverse coordinates), we conclude 
that the solution can depend only on the magnitude of XT, i.e., on the scalar combination (see 
Fig. 3.1) 

(3.20) 

Therefore, the most general form of a solution with spontaneously broken symmetry under 
translation in replica space can be written as [S] 

cpI&) = n44s) > (3.21) 

where the constant unit vector n was defined in Eq. (3.8). 
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Fig. 3.1. The 3(1 + 2)-dimensional replica space (each axis in the figure represents a 3-dimensional subspace) in the 
original and the rotated (longitudinal and transverse) coordinates. The cylindrical symmetry of the inhomogeneous 
mean-field solution about the longitudinal subspace zkL (depends only on 5) is illustrated by the cusp-shaped feature. 

3.3.2. Calculation of the inhomogeneous mean-jield solution 
Inserting the mean-field solution, Eq. (3.21), into the field Hamiltonian, Eq. (2.48), we notice that 

the solution enters the Hamiltonian only through the combinations (p,,&) and [ vq,r(#12. Upon 
the substitution (n)’ = 1, the resulting Hamiltonian becomes independent of the number of 
components y1 of the field and taking the limit y1 + 0 does not affect the final results (the non-trivial 
character of the n-vector field will play a role only when we consider fluctuation corrections due to 
excluded volume effects). 

The calculation of cp,r(q) can be further simplified by the observation that the effective 
Hamiltonian has to be known only up to thejrst order in m. This follows since the free energy is 
obtained by calculating 

dH 

dm m=lJ 
(3.22) 

where the second term in the first equation vanishes since we consider only solutions which 
minimize the Hamiltonian. According to Eq. (3.22), one should first compute the analytic continua- 
tion to the m + 0 limit of the mean-field solution qmf and then substitute it into H and take the 
derivative with respect to m. Alternatively, the m + 0 limit of qmf can be directly calculated from 
Eq. (3.1), by keeping only the k = 0 term in the sum and dropping the term proportional to m in the 
spherical part of the Laplacian, ( V$)+ = 2sa2/a2 + 3ma/?q. This results in the following equation 
for the function qmf(g): 

(l/N - 2a25-(a2FX2) - W2hifk))(Pmf0 = 0 , (3.23) 

where we used the equality p + w (‘) (‘I = l/m (see Eq. (3.5)). Eq. (3.23) can be reduced to a dimen- prnf 
sionless form by introducing the dimensionless variable t z q/(2a2N) and writing 

(3.24) 
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Substituting the expression (3.24) into Eq. (3.23) we find that the dimensionless function x obeys 
the equation [S] 

W’(t) = x(t) - X3(L) > (3.25) 

with the boundary conditions x(O) = 1 and x(t --t co) -+ 0 (these choices are dictated by the form of 
the equation, assuming that x” is finite at the origin and that x is finite at infinity, respectively). The 
asymptotic (t + co) behavior of this function can be easily found, since in this limit the function goes 
to zero and one can neglect the non-linear term in Eq. (3.25). Direct integration of the resulting 
linear equation yields 

x(t) - t’14exp( - 2t112) , t 9 1 . (3.26) 

For arbitrary t the function x(t) is computed numerically (see Fig. 3.2). 
The observation that pmf (and, therefore, pmf(i)) decreases rapidly with xCk) - 1 *x(O) means that 

if xCk) is the position of a monomer in the kth replica, then 

x(1) N . . . =X(m) N ~*x’O’ (3.27) 

Thus, 

1. the positions of monomers in different replicas of the final state (with k # 0) are nearly 

identical (up to thermal fluctuations on length scale nfl), 
2. the average monomer positions in the final state change affinely with the macroscopic 

deformation of the network. 
The localization of the monomers in the final state of the network (in the sense that their average 

position is uniquely defined by their initial state and by the macroscopic deformation of the gel) 

Fig. 3.2. The normalized mean-field solution x(t) is plotted versus the dimensionless variable t = q/(2azN). 
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arises as the consequence of spontaneous breaking of translational symmetry in replica space and 
reflects the solid character of the network. 

As will be shown in the following, the monomer density in replica space 

Pmr(-+ = P:JX2 b~i(4~‘ml (3.28) 

contains statistical information about quantities such as the distribution of mesh sizes and their 
average deformation (or, equivalently, the average deformation of a network chain of a given 
length) and the average length scale associated with thermal fluctuations of monomers about their 
mean positions. It can, therefore, be used to study deviations from affine behavior due to 
small-scale thermal fluctuations. 

A self-consistent scheme to calculate the mean-field density in replica space (which is the 
Edwards-Anderson-order parameter of this model) was proposed in Ref. [28] and numerical 
results were obtained for gels prepared near the gelation threshold (a more genera1 result, valid for 
arbitrary conversion ratios, was obtained in Ref. [29]). The above group has also calculated the 
analog of the spin glass non-linear susceptibility (two-point replica space density correlation 
function), and it was shown that this function diverges at the gelation threshold [30]. 

3.4. Mean-field free energy 

Anticipating that our inhomogeneous mean-field solution with spontaneously broken symmetry 
with respect to translation in replica space, corresponds to the true minimum of the Hamiltonian, 
we will use it to calculate the thermodynamic free energy of the network, via the steepest descent 
estimate of the functional integral, Eq. (2.47). To this end, we first calculate the mean-field 
Hamiltonian obtained by substituting the inhomogeneous mean-field solution, Eq. (3.24), into 
Eq. (2.48) (in this calculation we have to keep terms up to first order in m): 

H,f = 
s 

tiA(s) + f V’O’(p’O’)2 + m; l/p2 . (3.29) 

Here A(s) is the Hamiltonian density corresponding to the term in the first square bracket in 
Eq. (2.48). In writing down the last two contributions in the above equation, we use the fact that 
(a) the densities in all the replicas (evaluated on the mean-field solution) are constant and (b) that 
the densities in all the replicas of the final state are equal, p = p(l) = pt2’ = ... = p@“). 

The calculation of H,r is carried out in Appendix B. From this mean-field Hamiltonian one 
calculates (using Eq. (2.47)) the steepest descent estimate for the grand canonical partition function 
(in the thermodynamic limit, V + co): In c”, = - H,r. Substitution into Eq. (2.30) results in the 
following mean-field free energy of the stretched polymer network: 

K&,) 
v VT= ~ [ fed: + ln(afl)3 + +wp2 , 1 (3.30) 

where p = N,,,/V and v s p/(2N) is the density of cross-links in the final state of the gel (note that, 
both v and p depend only on the final volume of the gel and thus, depend on {A,} only through the 
product &;l,&). This expression was previously derived by Edwards [ 11. 
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Eq. (3.30) differs in two important ways from the free energy of the classical theories of polymer 
networks. First, the coefficient in front of the elastic entropy term is v/2 instead of the classical v. 
Second, Flory’s theory 163 contains a ln(;l,L,ll,) term which depends on the deformation of the 
network. The reasons for the discrepancy were discussed by Edwards [l]: the first discrepancy is 
attributed to the neglect of cross-link fluctuations about their mean positions in both the 
Flory-Rehner [6} and the James-Guth [S] theories and the second to the uniform density 
assumption in the former (but not in the latter) model. 

In Appendix D we show that the dominant corrections to the mean-field free energy, Eq. (3.30) 
come from ultra-short wavelength (length scales N a) frozen inhomogeneities and thermal fluctu- 
ations. The former give rise to wasted loop corrections to the mean-field free energy (which were 
also considered in Ref. [l]) that arise due to the formation of small permanent loops (on the length 
scale of monomer size) which do not transmit elastic stresses in the network but contribute to 
monomer and cross-link density (see Fig. 3.3). The contribution of such loops is taken into account 
exactly, using the efSectiue action method [31,27]. The situation is more delicate with regard to 
thermal fluctuations. While ultra-short wavelength thermal fluctuations lead to a trivial shift of the 
chemical potential, the formation of large temporary loops due to long wavelength thermal 
fluctuations leads to the renormalization of the monomer size and of the second virial coefficient, in 
the initial and the final states of the gel. These renormalizations will be performed in a later section 
when we consider semidilute gels in good solvents, and will lead to a non-trivial modification of the 
thermodynamic free energy (i.e., to the violation of the classical additivity assumption of elastic and 
osmotic contributions to the free energy). Here we will assume that the excluded volume perturba- 
tion parameters (w(~)/u~~(~))~/~ and (w/a6p)“’ in the initial and final states, respectively, are small 
and that all corrections due to long wavelength thermal fluctuations are negligible (this is 
equivalent to the strong screening assumption [23]). 

Neglecting logarithmic corrections and constants, the renormalized free energy which includes 
ultra-short wavelength fluctuation corrections, is given by (the derivation is given in Appendix D) 

~wRz> = v 
VT 

2 1 + f MO)lP’“’ 
N=l 1 a 

(3.31) 

where PN(0) is the probability density of forming a loop of N monomers. A similar expression was 
first derived by Deam and Edwards Cl]. 

Fig. 3.3. Schematic drawing of the network. Wasted loops are shown by broken lines. 
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Note that in the idealized case of network chains which are Gaussian down to arbitrarily small 
scales, the sum C,;i= i PN(0) diverges due to the contributions of small loops, and we conclude that 
strictly Gaussian networks have a vanishing elastic modulus due to the proliferation of wasted 
loops. For real chains with local stiffness, CG= i P,(O) is a finite constant which decreases with 
increasing persistence length and can be calculated from models which account for the details of the 
local structure of the chain [32]. Finally, we would like to mention that the presence of wasted loop 
corrections is a characteristic feature of our model of networks formed by cross-linking mid-parts 
of extremely long chains. Modifications of this type do not appear in theories of networks formed 
by end-linking of polymers [25], although in this case one has to introduce corrections due to 
chains which contribute to the monomer density but not to the modulus of the network (i.e., 
dangling ends). 

3.5. Stability of the mean-field solution 

We found that the mean-field equation admits two solutions (i.e., the homogeneous one and the 
one with spontaneously broken symmetry with respect to translation in replica space) which are 
symmetric with respect to permutation of the m replicas of the final deformed state of the gel. In 
order to check which of the mean-field solutions corresponds to a minimum of the Hamiltonian, we 
need to consider their stability with respect to small but otherwise arbitrary fluctuations. 

Another important issue which comes up is the question of replica symmetry breaking (RSB) 
[33]. Although there is a trivial lack of symmetry between the 0th replica (of the initial undeformed 
gel) and all the other ones (those of the final deformed gel), the real issue is the presence or the 
absence of RSB between the m replicas of the final system. A related question is: are gels regular 
solids, characterized by a single ground state or do they belong to the class of spin glasses which 
have multiple ground states separated by infinite barriers? This issue was first considered by 
Goldbart and Goldenfeld [34], who favored the second option. In more recent works of one of 
these authors [35] no RSB was found on a mean-field level for the present model in the absence of 
excluded volume interactions, but it was conjectured that RSB would appear if these interactions 
were included. In this subsection we will not deal with the issue of the existence of other, hitherto 
unknown ground states but, rather, will attempt to answer a more limited question: is the ground 
state solution we found stable against RSB (and other) fluctuations? 

Consider small fluctuations 6&Z) = cp(.?) - cp,,&) about the mean-field solutions we found. In 
order to test the stability of these solutions we have to calculate the spectrum of eigenvalues {A) of 
the second derivative operator K (evaluated on the appropriate mean-field solution), Eqs. (3.6) and 
(3.7) which gives the energy of these fluctuations and check w.hether all of them are positive (i.e., 
whether all small fluctuations increase the energy). In the harmonic approximation, the energy of 
these fluctuations is given by quadratic corrections (in 6q) to the mean-field Hamiltonian: 

The operator K which gives the energy spectrum of fluctuations about a particular mean-field 
solution qrnr, can be obtained by substituting cp(_?) = q,&) + 6&i?) into the Hamiltonian 
(Eq. (2.48)) and expanding up to second order in 6~ (terms linear in 69 vanish since mean-field 

(3.32) 
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solutions correspond to extrema of the Hamiltonian). From the general form of the solution, 
q,#) = n(~,&), we conclude that Kcan be decomposed using the projection operators P” = nn 
and P’ E 1 - nn, which project an arbitrary vector along directions parallel and perpendicular to 
n, respectively. Thus, 

K($, 2) = K” (i, 2) P” + KL (2, 2)P’ , 

where 

(3.33) 

P($,$) = S(i --;‘)[l/N - a’V2 - (2,/2)(p:r()] , (3.34) 

and 

K”(.+2) = 6(Z - -;‘)[l/N - a* p* - 3(z,/2)&(Q] 

+ %l&%Pmf(~21) f W(k)+(k) _ X’W) . (3.35) 
k=O 

The operators K1’ and K’ have eigenfunctions @l’(Z) and I++~@), with eigenvalues Ai’ and /i’, 
respectively, which are determined by the scalar (in the n-dimensional space) variants of Eq. (3.7), 

r d.?K”(k, 2)$!“(2) = A”ip’(.e) , 
J 

s (3.36) 

d_?KL(Q)$L(.C) = /i’$‘($) . 

An important simplification results from the observation that since we are interested in the limit 
m -+ 0, all eigenvalues can be expanded around m = 0, i.e., (1 = /lo + m/l1 + (higher-order terms in 
m). In order to test the stability of the mean-field solution, we only need to check whether the above 
eigenvalues are non-negative in this limit and, therefore, as long as no # 0, the higher-order 
corrections to the spectrum need not be considered. However, if we want to calculate the 
eigenfunctions we cannot set m = 0, since symmetry under permutations of the m replicas of the 
final state implies that these eigenfunctions are degenerate, and the degree of degeneracy must be 
kept a finite integer. The general rule to be followed in taking the limit m --f 0 is that one can safely 
take this limit in all analytical expressions, but one has to keep m finite in all other cases (e.g., in 
summations over the index k, where k = 1, . . . , m), until one arrives at analytic functions of m. This 
rule was already used to derive the mean-field solution where it led to dramatic simplification of 
replica calculations. 

Another important simplification results from the fact that, in order to consider the stability of 
the mean-field solution, it is sufficient to obtain the eigenvalues corresponding to the lowest energy 
fluctuations. Since we expect that this energy is a monotonically decreasing function of the 
wavelength, in this section we will only study long wavelength fluctuations (i.e., fluctuations on 
length scales much larger than the mesh size of the network, aNI’*). 

3.5. I. Homogeneous solution 
In order to examine the stability of the homogeneous solution we have to calculate the spectrum 

of eigenvalues of the operator K” evaluated on this solution, Eq. (3.9). We will show that some of 
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the eigenvalues of this operator are negative and therefore will not study further the spectrum of the 
operator K’ for the homogeneous mean-field solution. In Appendix B we show that the eigenfunc- 
tions of K” are plane waves, $I’($) N exp($ .2);), and that their eigenvalues can be positive (depend- 
ing on the values of the excluded volume parameters in the initial and the final states) for wave 
vectors which are completely confined to the space of one of the replicas (Qti) E (0, . . . q(‘), . _. 0)). 

However, for all other wave vectors, which are not restricted to these sectors (i.e., 
4 = (q(O), . . . q(k), . . . q@“))), the eigenvalues become negative in the long wavelength limit. The 
presence of the negative eigenvalues shows that the constant solution corresponds to a saddle 
point, rather than to a minimum of the Hamiltonian. We conclude that the solution which has the 
full translational invariance of H does not represent its true ground state, and proceed to examine 
the stability of solutions with spontaneously broken translational symmetry. 

3.5.2. Inhomogeneous solution 
We now consider the solutions of the secular equations, (3.36), which correspond to the 

inhomogeneous mean-field solution cp,r(,G) = cp,Jq) (Eq. (3.24)). The details of the calculation are 
given in Appendix B and here we present a brief summary of the main results. 

The general form of the eigenfunctions and of the corresponding eigenvalues can be determined 
from the observation that the mean-field solution is invariant under arbitrary translations in the 
3-dimensional longitudinal subspace spanned by the three vectors &,, a = x, y, z (Eqs. (3.18) and 
(3.19)). The fact that it is only a function ofXT means that it does not depend on the 3-dimensional 
vector xL, defined by the projection xLa of the replica space vector i on the longitudinal subspace 
spanned by the three vectors &,, a = x, y, z (Eqs. (3.18) and (3.19)). Thus, the eigenfunctions are 
plane waves in this subspace 

(3.37) 

and both their amplitudes tiqL(xr) and the corresponding eigenvalues A(qL) are characterized by the 
longitudinal wave vector qL. We now proceed to classify these eigenvalues. 

1. Rotational modes 
The eigenvalues of the operator K’ are 

A’(qL) = a2qt . (3.38) 

The eigenfunctions corresponding to these eigenvalues are associated with the rotations of the 
vector II in the abstract n-dimensional space and are gapless Goldstone modes, i.e., their eigen- 
values are positive definite and vanish in the long-wavelength limit. The situation is equivalent to 
that of a ferromagnet (with n -+ 0 spin components) where the Goldstone modes describe “soft” 
(4 + 0) rotations of the magnetization vector [36], though in our case these modes do not have 
a simple physical interpretation. 

We proceed to calculate the spectrum of the operator K” the eigenmodes of which are the shear 
and the density modes: 

2. Shear modes 
The lowest energy shear modes are Goldstone modes with eigenvalues 

(3.39) 
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which describe the infinitesimal displacement XT --, XT + @(XL) of the coordinatexT (in the abstract 
transverse 3m-dimensional subspace), subject to the condition that it does not affect the densities in 
any of the replicas. 

3. Density modes in initial state 
Eigenmodes for which the density fluctuations &I(~)(x’~‘) are not identically zero have eigenvalues 

&&L.) = (w(O) - z&L + a%_)’ (3.40) 

Since these eigenvalues do not vanish, in general, in the limit 4 + 0, following the usual terminology 
we say that the corresponding solution is massive (i.e., has an energy gap). The gap vanishes at 

Zyx = l/P(0)fimin = w(O) , (3.41) 

which is identical to the cross-link saturation threshold condition, Eq. (2.8) that determines the 
maximal attainable density of cross-links in our model. Our inhomogeneous mean-field solution 
becomes unstable (and therefore unphysical) if this density exceeds the saturation threshold. 

4. Density modes in final state 
The eigenvalues of these modes (with 6pCk)(xCk)) # 0 in at least one of the replicas of the final 

state), 

&(qL) = a2qf + 2wp’“‘a2N(K l * 4d2 (3.42) 

vanish in the limit qL --f 0 and hence the corresponding fluctuations are Goldstone modes. The 
stability criterion AD(qL) > 0 is always satisfied when the final state of the gel corresponds of good 
solvent conditions (w -+ 0). Note that for large deformations the positivity condition can be 
satisfied even for moderately poor solvents (w < 0), since then the network is stabilized against 
collapse by the external forces applied to its surface. 

We conclude that all the fluctuations about the inhomogeneous mean-field solution cp&<) 
(including those which break replica symmetry!) increase the energy of the system and, therefore, 
the above solution corresponds to a true minimum of the Hamiltonian. This shows a fundamental 
difference between the mean-field solution of our model and that of the Sherrington-Kirkpatrick 
model of spin glasses [37]. While our solution corresponds the true minimum of the Hamiltonian, 
the solution of Sherrington-Kirkpatrick model gives only the saddle point of the corresponding 
Hamiltonian. Note that although the above argument does not prove that our solution is the true 
global minimum of the Hamiltonian and that no other minima with lower energy exist, we will 
show that this is indeed the case and that polymer networks do not belong to the class of spin 
glasses. Further support for this statement comes from the work of Goldbart and coworkers [35], 
who use a variational approach to study the present model (neglecting excluded volume interac- 
tions) and find no solutions with RSB. Although the above authors argue that RSB should appear 
in a more complete treatment of the Edwards model of polymer networks which would account for 
excluded volume effects, we have shown by now that replica symmetry is maintained even when 
these interactions are exactly taken into account by the collective coordinates method. 

3.6. Uniqueness of the ground state 

We have found an inhomogeneous (in replica state) solution of the mean-field equations and 
showed that this solution is, at least, a local minimum of the Hamiltonian (i.e., is stable against 
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arbitrary small fluctuations). The question which is still unanswered is: are there other minima of 
the Hamiltonian or is the ground state we found unique? We will show now that under given 
thermodynamic conditions (temperature, solvent quality and forces at the boundaries) there exists 
a unique state of the gel, which is fully characterized by specifying the average positions of all the 
cross-links. In this state the network is in a mechanical equilibrium, i.e., the total force on each of 
the cross-links vanishes. 

Our inhomogeneous mean-field solution (as well as any other mean-field solution which is 
characterized by constant monomer density p) describes a network in which excluded volume 
effects are taken into account by introducing a uniform external field h = wp (recall that p is the 
mean monomer density). The free energy is given by the sum of the energy of this external field 
TN,,,h and the elastic free energy Fe, which describes the elasticity of a network without excluded 
volume (which occupies the same volume as our original network, with excluded volume) i.e., 
9 = TN,,,h + Fel. The physical meaning of the replacement of excluded volume by an external 
field is quite clear: on a mean-field level the only role of excluded volume is to fix the average 
monomer density in the gel and, therefore, we can replace it by external forces applied to the surface 
of the network which stretch it to this average density (against the restoring elastic forces of the 
stretched network). Thus, instead of considering our original problem, we can consider a network 
without excluded volume, the surface of which is fixed to the walls. 

The partition function of this elastic reference system is given by 

z,, = ,-AiT = D ( ) j x s exp[ -&r”‘ds($y] 

’ JJ sCx(Si) -4sj)l ndC4Sk) -Xkbl 3 
(3.43) 

(Lji k 

where the first product of the &functions expresses the constraints introduced by NC cross-links 
(using the notation in Eq. (2.11)), and the second product introduces the constraints due to the 
attachment of A$, surface monomers to the walls (the skth surface monomer is fixed to the point X! 
on the wall). Integrating over the coordinates of all the monomers between cross-links, we are left 
with a functional of the positions of cross-links (XT) and monomers attached to the boundary (x!) 

only, 

Zel = consten 
s 

dxfexp[ - H,(xp,~,b}] , (3.44) 
i 

where the integration is over the positions of the cross-links (the positions of the boundary 
monomers are fixed). The cross-link Hamiltonian H, is a quadratic form in the distances Xi + 1 - xi 

between cross-links (or boundary monomers) which are neighbors along the chain contour 

(3.45) 

In the above expression the summation over the index m goes over all cross-links and boundary 
monomers and, for each m, the summation 1; goes over the four neighboring cross-links (or 
boundary monomers) along the chain contour (N,,, is the number of network monomers in the 
chains connecting the neighboring cross-links or boundary monomers 1 and m). 
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Using the standard method of calculation of Gaussian integrals we represent each cross-link 
coordinate as 

x; = (XF) + sxp ) (3.46) 

where the average position of the cross-link is determined by the condition that there will be no 
linear terms in SXF in the Hamiltonian obtained by substituting Eq. (3.46) into Eq. (3.45): 

H,{X;,x;) = Hc{(X;),X:) + ~(~>4xp + H,{6x;,o) . (3.47) 

The coefficient of the linear term in the expansion, (A), is given by 

' (3.48) 

where the summation is taken over the four neighboring (along the chain contour) cross-links (or 
boundary monomers for which (x;) =A$‘) of the given cross-link i. Note that (J;) is the total 
average force acting (through the connecting chains) on cross-link i. The condition that the linear 
terms in Eq. (3.47) vanish 

(J> =0 (3.49) 

is simply the condition of mechanical equilibrium in the system. Note that since the Hamiltonian 
can be written as the sum of independent contributions along the three axes X, y and z, we can 
restrict our consideration to a one-dimensional problem. 

Two scenarios can possibly arise, depending on the value of the determinant det M of the matrix 
M, the elements of which are 

Mj(l = a2H,{x;, O}/&@xf . (3.50) 

If detM # 0, the resulting N, linear equations (for each component of the force) impose NC con- 
straints on the NC average positions ({ (xF) >) of the cross-links and guarantee the uniqueness of the 
state of mechanical equilibrium (it will be stable if all the eigenvalues of the matrix Mare positive). 
In this case one can perform all the Gaussian integrations in Eq. (3.44) and obtain the free energy 
(up to an additive constant) 

F,, = TH,{ (x;), xk”) . (3.51) 

If the network is deformed with deformation ratios {A,}, the positions of the monomers attached to 
the boundary change affinely with the displacement of the boundaries, xk --) &xk, etc. The linearity 
of the mechanical equilibrium conditions equation (3.49) ensures that the average positions of the 
cross-links also change affinely, 

<xF) +&(x;) , (YZ) -+ &(YF) 9 (ZF) -+ i,(zF) . (3.52) 

Substituting these values into the free energy gives the classical dependence of the free energy on the 
deformation ratios, Fe, cc A: + A,2 + J.f. 

The situation becomes more complicated when detM = 0. This happens when the rank of the 
matrix M is smaller than its dimensionality and some of the eigenvalues of the matrix M vanish. 
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The eigenvalues n and corresponding eigenfunctions Xi’ of the matrix M are determined by the 
secular equation (1 labels the eigenfunctions and the indices i and j label the cross-links and 
boundary monomers) 

(3.53) 

To find the eigenfunctions corresponding to zero eigenvalues n = 0 (since these collective 
displacements do not change the Hamiltonian we will call them “zero-energy” modes), we can 
multiply both sides of Eq. (3.53) by Xf and perform the summation over i. The resulting equation 
takes the form 

pfijXfXf = 1 ‘“$-l- xfl2 = 0. 

i,j i t.* + 1 

(3.54) 

Notice that this equation is equivalent to the set of conditions 

x;+i = xf (3.55) 

and, therefore, all Xf should be equal in a connected network, {Xi = Xl>. Furthermore, this 
condition must be satisfied for all the zero-energy modes and since the normalization of the 
eigenfunctions is arbitrary, we conclude that all these modes are identical and thus there is only 
a single zero-energy mode, (Xi = X1 = l} ( we chose the normalization Xi = 1). 

In order to understand the physical meaning of this zero-energy mode we note that the 
coordinates of each cross-link can be expanded as a linear combination of the zero- and non-zero- 
energy modes (NZEM), 

xz = ax! + contribition of NZEM = R + contribition of NZEM , (3.56) 

This is equivalent to shifting the coordinates of all cross-links by a constant vector a and we 
conclude that the zero-energy mode describes a global translation of the entire network! Applying 
the same expansion to the coordinates of the fixed boundary monomers, we find that the expansion 
coefficient u must vanish and thus such (trivial) translation cannot occur in a gel with a fixed 
boundary (or with any single fixed point, e.g., center of mass). 

This completes our proof of the uniqueness of the state of mechanical equilibrium of the network 
and since we have shown that our inhomogeneous mean-field solution corresponds to a minimum of the 
replica Hamiltonian (i.e., is stable against arbitrary small fluctuations), we conclude that the solution 
we found is indeed the true unique ground state of the gel. 

The existence of a unique ground state is of fundamental importance to the physics of polymer 
networks and means that a gel with a given structure and subjected to given thermodynamic 
conditions, has a unique microscopic state of equilibrium defined by the complete set of the average 
positions of all the cross-links and, therefore, of all the monomers (note that a similar conclusion has 
been reached already by James 1381, in his study of localized phantom networks). In this sense, gels 
resemble crystalline solids and differ dramatically from spin glasses [33] and amorphous materials 
in which there are many distinct microscopic equilibrium states under given thermodynamic 
conditions. A corollary of this statement is the somewhat astonishing prediction that if the 
thermodynamic parameters are changed in an arbitrary way (by changing the solvent, temperature, 
forces on the boundaries, etc., without rupturing the network) and then returned to their initial values, 
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all the network monomers will$rst undergo some displacementfrom their initial average positions and 
then will return to their original locations. This prediction can be tested by experiments which probe 
the static inhomogeneous density distribution of the gel, e.g., by checking the reproducibility of the 
observed (seemingly random) specie patterns of the intensity of light scattered from the gel, 
following a cyclic variation (A + B + A) of thermodynamic parameters. In spin glasses such cyclic 
variations do, in general, change the microscopic state of the sample. 

Although the above proof applies only to the uniqueness of the mean-field solution, we have also 
shown that while strong ultra-short wavelength fluctuations can change the mean-field solution, 
they do not affect its stability. Since the mean-field solution which accounts for these ultra 
small-scale fluctuations, minimizes the effective action Hamiltonian which differs from the original 
one only by the replacement of the bare parameters by their renormalized values (see Appendix D), 
it also describes a unique microscopic equilibrium state of the network. The uniqueness proof 
applies also to gels in good solvents where, as will be shown in Section 5, strong fluctuations on 
length scales smaller than the blob size renormalize the parameters of the mean-field Hamiltonian 
but do not affect its functional form. Finally, question the existence of a unique microscopic 
equilibrium state in models of polymer networks which account for the existence of entanglements. 
Note that the introduction of permanent (topological) entanglements (at the same the number of 
permanent cross-links) adds additional constraints on the mean positions of the cross-links (and of 
the monomers). Hence, we expect that the main effect of the entanglements is to suppress the 
fluctuations of the average positions of all the monomers (the minimum becomes “sharper”) and 
that, in this case too, there exists a unique microscopic equilibrium state characterized by the set of 
these average positions. 

3.7. Local deviations from ajfinity 

We have shown that our inhomogeneous mean-field solution cpmr(q) defines a unique micro- 
scopic state of the gel, in the sense that once we have specified the thermodynamic parameters, the 
average positions of all the cross-links are uniquely defined by these parameters and by their 
positions in the state of preparation. We will show now that cp,r(<) also tells us about how these 
positions fluctuate about their mean values. 

3.7.1. Fluctuations about afinely deformed monomer positions 
In order to gain some understanding about the information content of our solution, we notice 

that the mean-field density in replica space, p,#) = 4&(~)/2 can be expressed in terms of the 
Laplace transform n(o) of ~~r(~)/p~r(O): 

e) Oc s &If(O) 0 
don(a)exp( - 0~) . (3.57) 

Using the definition 5 = 2+/2 (Eq. (3.20)) we can express the exponential as 

exp( - 05) = exp - ; c f (x(x”‘)2 
a k=O 

s 

dr 
= @#iZ a312exp - IC j!J (xp’ - raeLk))2 , 

OL k=O 1 (3.58) 
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where the second equality can be easily checked by performing the Gaussian integration and using 
the normalization condition, CFZo(eLk))” = 1. Since cr has the dimensions of inverse length squared, 
it is convenient to introduce a length R and define c = l/R’. With the above substitutions, 
Eq. (3.57) is recast into the form 

dRP(R) n fi W(xLk’ - r,ekk) 1 R) , 
a k=O 

(3.59) 

where 

P(R) = (2/R3)n(l/R2) , (3.60) 

and 

W(Ax 1 R) = [1/(2nR2)1/2]exp[ - (Ax)~/~R~] . (3.61) 

Both functions are normalized to unity, jdRP(R) = jdon(cr) = 1 and jd(Ax)W(Ax 1 R) = 1 and 
admit a simple physical interpretation. According to the definition of the function p(i) (Eq. (2.31)) 
the left-hand side of Eq. (3.59) is simply the mean-field expression for the probability to find a given 
monomer at points (xCk)}, in each of the replicas (i.e.,x(‘) in the zeroth replica,x(‘) in the first replica, 
etc.). The function W(xkk) - roreik’ 1 R) can be interpreted as the conditional probability to observe 
a fluctuation of the monomer position xLk) around its mean position r,eLk’ in the kth replica, given 
that the rms deviation from this mean position (localization length) is R. The function P(R) is then 
the probability of finding a monomer with a localization length R. This function is expressed 
through the Laplace transform of the mean-field density and has the same characteristic scale of 
variation, aPi (independent of the deformation il,), as the mean-field solution qmf(g). It 
can be calculated numerically and is shown in Fig. 3.4. The function n(o) (which determines the 

3.0 

Fig. 3.4. The probability P(R) of finding a monomer with localization length R, is plotted versus the dimensionless 

variable R/(a,/%). 
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distribution of localization lengths, P(R) - see Eq. (3.60)) was calculated numerically, for unde- 
formed networks close to the gelation threshold, in Ref. [28]. 

The physical meaning of the above probabilities becomes clear in the limit rn + 0. In this case, 
Eq. (3.18) yields eL”’ = 1 and ei’) = R, and the argument of the function W becomes XL” - Y, and 
X(k) _ &rcr (for k > 0). Thus, if the average position of a monomer in the initial state is (xi*‘) = Y,, 
tie corresponding average position in the replicas of the deformed state is (xik’) = A,(x~~‘) which 
means that the average position of every monomer changes afinely with the deformation of the 
network. The mean deviation from affine behavior of a typical monomer under deformation is given 
by R and, therefore, the localization length R can be interpreted as the length scale for thermal 
fluctuations of a typical monomer. It must be considered as a random variable which fluctuates in 
the space of the network (the probability of observing such a fluctuation is P(R)), both due to the 
frozen inhomogeneity of the structure of the network, and due to the fact that the thermal 
fluctuations of a given monomer will depend on its position along the contour. 

We can show that the probability of having non-fluctuating monomers vanishes in our model 
(P(0) = 0), which means that all monomers, including cross-links, fluctuate about their average 
positions. If the cross-links were strictly pinned down (as in Flory’s mode [6]), one would expect 
this probability to be of the order of the fraction of cross-links, P(0) - m- ‘. 

Up to this point we considered the behavior of a single monomer and showed that, on the 
average, its position changes affinely with the deformation of the network and that deviations from 
affine behavior are only due to fluctuations. Different information can be obtained if we consider 
two-monomer quantities such as the rms distance between two end monomers of a network chain. 
The results of such a calculation [lo] are discussed in the following. 

3.7.2. Non-afine deformation qf network chains 
The analysis of this problem requires generating functional methods which differ from those used 

in this work and hence we will only present the results of calculations reported elsewhere [lo]. In 
order to learn about the deformation of network chains of a given length aN (averaged over all 
such chains in the network), we calculate the distribution function WN{R, I&} which gives the 
probability that a chain of contour length aN has components of the end-to-end distance vector R, 
((x = x, y, z), given that the network is stretched by factors i, with respect to the initial state: 

The normalized distribution function P(5) defined in Eq. (3.60) is a function of the dimensionless 
variable </(aiS1’2) only and, in general, has to be calculated numerically from ~p,,,~(q). The universal 
plot of P(c) as a function of 5/(aW”2) is shown in Fig. 3.5. The average projection of the ccth 
component squared of the end-to-end distance vector for a given value of 5, is given by 

(Ri(N, 5 I A,)) = a2N(1 -t i,‘a2N/t2)/(l + a2N/12) . (3.63) 

Note that the above expression is the sum of two contributions: the first one, proportional to A,‘, 
reflects the affine deformation of the average distance between the chain ends and the other one 
(independent of 1:) gives the purely fluctuational contribution which is not affected by the 
macroscopic deformation. 
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P(&) 

Fig. 3.5. Plot of the probability distribution P(l) of the random length 5, versus the dimensionless variable t/(am”‘). 

What is the physical interpretation of the length t? We know that 4 is a random variable 
characterized by the distribution function P(t) and that its average value is of the order of the 
unperturbed size of the average chain (mesh size), c 2: 0.27&” (see Fig. 3.5). Further insight can 
be obtained from Eq. (3.63) which describes the response of a chain of contour length UN to 
a macroscopically-induced deformation. The fact that the chain under consideration is coupled to 
a network, the local properties of which (e.g., density of cross-links) may vary from point to point 
due to the random character of the cross-linking process, is reflected in the appearance of the 
random length 5. We can distinguish between the following cases [ll]: 

Case A: In the direction of elongation, & > 1, and there are 3 regimes depending on N, t snd A, 
(these regimes become well-separated only in the limit 1, P 1) 

1. For N + [[/(a&)]’ the size of the chain is essentially unaffected by the macroscopic elonga- 
tion. For such short chains, macroscopic deformation can only lead to desinterpenetration of 
undeformed chains. 

2. Chains with number of monomers in the range [</(a&)]” < N 6 (</u)~ are stretched non- 
affinely, with R,Z = (a2N/~2)a2NA~ 4 a2N11i. 

3. Finally, when N 9 (l/~)~, the chain stretches affinely with the applied strain, i.e., the condition 
Rz = a2NAz is satisfied. In this case, the rms distance between the ends of the chain is determined 
by the applied deformation and the fluctuational contribution is negligible. 

Case B: In the direction of compression, 1, < 1 there are also three regimes of chain length: 
1. Chains with N smaller than (t/a)” interpenetrate without changing their undeformed size. 
2. When [[/(uA,)]~ % N % (C/U)~ the distance between chain ends is unaffected by compression 

and remains pinned down at 5. 
3. For [</(a&)]’ $ N, the chains are compressed affinely with the network. 
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The most important geometric characteristic of the network is the average mesh size which can 
be defined as the rms end-to-end distance of an average chain (of iV monomers). It follows from our 
analysis that the average mesh size deforms affinely under macroscopic stretching or swelling, i.e., 

(3.64) 

but does not change under compression of the network (i.e., compression leads to enhanced 
interpenetration of the meshes [39,40]) 

PGz{ x aNliz . (3.65) 

We have seen that our mean-field solution tells us that the average positions of all the monomers 
change afJinely with the macroscopic deformation ofthe network. It also gives us statistical informa- 
tion about the fluctuations of monomers about these mean positions and about the fluctuations of 
the end-to-end distance of chains of a given contour length. Deviations from afine displacement 01 
average monomer positions occur only due to thermuljluctuutions and take place only on length scales 
smaller than the mesh size. 

Note that our mean-field solution, by its very nature, does not contain any information about 
the deviations of the monomer density from its average value. Such deviations occur due to static 
inhomogeneities introduced by the statistical nature of the cross-linking process and due to 
thermal fluctuations about this inhomogeneous density distribution. In the next section we proceed 
to study these density fluctuations and, in the process, gain important insights about the inhomo- 
geneous structure of polymer networks. 

4. Static inhomogeneities and thermal fluctuations 

We now proceed to obtain all the statistical information concerning density fluctuations about 
the mean-field solution which, in spite of its rich physical contents, tells us nothing about the static 
inhomogeneities and the thermal fluctuations of the monomer density in polymer networks. 
Although we did study fluctuations about the mean-field solution (in order to test its stability), we 
have been working in an abstract replica space in which all fluctuations - those of the frozen 
structure of the network, as well as thermal ones - have been treated on the same footing (recall 
that the original reason for posing the problem in the language of replica field theory was to avoid 
dealing with the complicated averaging over the ensemble of different network structures and to 
treat static inhomogeneities in real space as thermal fluctuations in replica space). The price we had 
to pay is that we can no longer distinguish in a simple way between these two, physically very 
distinct, types of fluctuations. In order to recover the important information on the inhomogeneous 
structure of polymer networks and on the thermal fluctuations about this structure, we first 
eliminate all the collective coordinates which do not affect the monomer density and then to go 
back to real space in which the distinction between static inhomogeneities and thermal density 
fluctuations comes out naturally. This program will be carried out in the following. 

4. I. RPA free energy density functional 

In principle, one can express the replica space fluctuation Hamiltonian (3.32) in terms of the 
shear and density modes and obtain the full information about all shear and density fluctuations in 
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the gel. In a similar way, the above Hamiltonian governs the response of the stretched and swollen 
network to small (in the linear response regime) deformations, on top of the stretching and swelling 
described by the deformation ratios {A,}. The continuum limit of such a theory will give rise to 
a generalized theory of elasticity of two-component systems in which one of the components is 
a solid and the other a liquid [41,29]. Such an approach (using a variational method) was used in 
Ref. [42] where elastic moduli describing small deformations of an unstretched network (A = 1) 
were calculated. Although conceptually important, a mesoscopic (i.e., finite q) description of stress 
and strain fluctuations is of somewhat limited interest from the experimental point of view, since 
most scattering experiments do not measure the strain-strain (or stress-stress) correlation func- 
tions which can be calculated in this framework (information about such quantities can be 
obtained, in principle, from studies on the propagation of shear waves in the gel). In order to focus 
on issues which are of direct relevance to neutron and light scattering experiments which probe 
static density inhomogeneities and thermal density fluctuations in the gel, we will eliminate (i.e., 
integrate over) all the other degrees of freedom and obtain a reduced description in terms of the 
density fluctuations only. 

Throughout this section we will assume that deviations from the mean density due to both 
thermal fluctuations and static inhomogeneities are small (this does not apply to the short 
wavelength fluctuations which were already taken into account in the preceding section) and can be 
described on a Gaussian (quadratic in the fluctuations) level. For thermal fluctuations this 
simplifying assumption is equivalent to the random phase approximation (RPA) which works well 
for concentrated polymer systems (for example, for polymer blends) but breaks down in the 
semi-dilute regime of polymer solutions in good solvents. Note, however, that RPA can be also 
applied to the study of long wavelength fluctuations in semi-dilute polymer solutions, provided 
that one uses renormalized (due to strong fluctuations on scales smaller than the correlation length) 
instead of the bare values of the parameters (monomer size, second virial coefficient) in the RPA 
Hamiltonian. This will be done in Section 5 where we discuss gels swollen in good low molecular 
weight solvents. 

While the physical reasons for the breakdown of RPA due to the existence of strong 
thermal fluctuations on length scales smaller than the thermal correlation length (blob size) 
are well understood, nothing is known about the limits of applicability of RPA to static 
inhomogeneities. We will show in the next section that, when gels are prepared away from 
the cross-link saturation threshold, static inhomogeneities of monomer density are limited 
to length scales comparable to the average mesh size of the network and are therefore “weak’. 
Thus, as long as one does not approach the “critical” regime of cross-link densities near the 
saturation threshold, one can safely assume the applicability of RPA to the study of such 
inhomogeneities. 

Recall that the fluctuation Hamiltonian can be written as the sum of a rotational part (AH’) and 
a part which describes shear and density fluctuations (AH”). Since rotational modes do not couple 
to the latter fluctuations, they do not contribute to the partition function of shear and density 
modes (defined by Eq. (D.4)), 

(4.1) 
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where the Hamiltonian of shear and density fluctuations in replica space can be written as 

= 5 A”‘;;f’k’1 _ AS&,] . 

k=O 

(4.2) 

In the second equality we used the definition of the K’ operator, Eq. (3.39, to represent the 
fluctuation Hamiltonian (for the shear and the density modes) as a sum of excluded volume 

W’k’ T ‘k’ 

AU’k’[Gp(k’] = 2 
s 

d#[+(k’(,&k’)]2 

and “entropic” 

(4.3) 

contributions. Here TCk’ is the temperature (which can be different in replicas of the initial and the 
final state). 

We proceed to eliminate the shear fluctuations and the density fluctuations in the initial state, 
i.e., integrate over those fluctuations which do not affect the densities in each of the replicas of the 
,final state (we are only interested in density fluctuations in the final state; those in the state of 
preparation can be obtained from the latter by setting T = T”‘, w = w(O) and (/I, = 13). This is 
done by inserting the following representation of the unity: 

1 = fi 
k=l s 

D[Gp’k’]6[Sp’k’(~) - 
s 

ti ~~~(5) 6~#)6(x - x(~‘)] (4.5) 

into the integrand in Eq. (4.1) and moving the integration over SpCk’ to the leftmost side of the 
integral. We obtain 

SD = 
-m + AS,[{Sp’k’)] (4.6) 

where T is the temperature in the final state, and 

exp(AS,[ {@~‘~‘f]) = 
AU’“‘[6p’o’] 

T (0’ 

(4.7) 

Note that although AS,,, depends only on the replica densities $I’~’ in the final state, it includes 
exactly all the contributions of both the density fluctuations in the initial state and the shear 
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fluctuations. The total entropy functional defined in Eq. (4.7) is calculated in Appendix E and can 
be written as 

expAS,[ { 6p(“)}] = fi exp AS[n, 6pCk)] 
> 

, (4.8) 
k=l n 

where 

AS[n, 6pCk’] = - 
s 

dq (p;’ - n&p?‘, - n-& 
m 

29, * 
(4.9) 

The entropy AS[n, 6pCk)] is a functional of the density in the kth replica and of a random field n (the 
physical meaning of which will be discussed later). The averaging, ( ),, in Eq. (4.8) is taken with 
respect to the distribution function (see Appendix E) 

1 dq P[n] =exp - - 
is [ 2 (2743 

ln(2nv,) - y II , (4.10) 

with the correlator 

(n,n-,)n = vq . (4.11) 

General expressions for the function gq and for the correlator v4 are given in Appendix G. 
In order to derive the grand canonical partition function of the replica system, we substitute 

Eq. (4.8) into Eq. (4.6) and use the independence of the n and the QCk) fields to change the order of 
averaging (with respect to n) and integration (over ptk)): 

(4.12) 

Using the identity of the contributions from the different replicas of the final state and introducing 
the free energy functional 

FjJ6p] = AU[Q] - TAS,[~P] , 

where 

(4.13) 

and 

s dq (P, - n&p-, - n-g) 
Asn[spl = - (243 ,,; 29, ’ 

we can rewrite Eq. (4.12) as 

E:D= ([k[Pp]exp( -q)1”>. . 

(4.14) 

(4.15) 

(4.16) 
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Substituting this expression into Eq. (D.2) and using Eq. (2.30), we obtain the final expression for 
the fluctuation contribution to the free energy of the deformed network, A@{&> = 
F{&> - %v{&> (=%V is defined in Eq. (3.31)), 

AF(&} = - T DnP[n]ln 1 [j&%Klexp( -?)I, 

where P[n] is given by Eq. (4.10), and 

(P, - n,)b, - ~1 + wp p_ 
gq 1 4 rl’ (4.18) 

Note that since all the functional integrals in Eq. (4.17) are Gaussian (see Eqs. (4.10) and (4.18)) 
they can be calculated exactly and one can obtain a complete expression for the thermodynamic 
free energy in which all fluctuation corrections are included on the RPA level. In order to carry out 
this program, one has to calculate Fourier integrals over combinations of the functions v, and gq for 
which only asymptotic (i.e., in the long and short wavelength limits) results are available at present. 
Since the resulting corrections are small (otherwise, our RPA calculation is inconsistent), we will 
not consider them here and come back to this issue in a latter section, where we study (by 
renormalization group and scaling methods) the effects of strong thermal fluctuations in semi- 
dilute gels in good solvents. 

4.2. Inhomogeneous equilibrium density projile 

What is the physical meaning of the random field n? Comparison between the definition 
of the free energy functional Fj,[6p] defined in Eq. (4.18) and the expression for the thermo- 
dynamic free energy, Eq. (2.13), shows that the probability functional P[n], defined in Eq. (4.10), 
gives the probability of realization of a given network structure S which is characterized by the 
value of n (in general n is a complicated functional of S and depends on the deformation of the 
network) 

P[n] = 
s 

dSP(S)G[n - n(S)] , (4.19) 

where g(S) is defined in Eq. (2.12). As long as we are interested in observable quantities such as 
density correlation functions, which can be represented as statistical averages, we do not need the 
explicit functional form of n(S) and it is sufficient to specify the probability functional P[n] or, 
alternatively, the function vq. It is shown in Appendix G that the function vq depends on the frozen 
structure of the network and on the deformation but does not depend on the quality of solvent in 
the final state. 

In order to obtain further insight into the meaning of II, we note that the non-averaged free 
energy & [Sp] defines (through the Boltzmann factor, exp{ - g,,[Sp]/ T >) the probability of 
observing a thermal fluctuation of the moncmer density (at a wave vector q), pih = pq - p,‘“, with 
respect to the inhomogeneous equilibrium density profile in the final deformed state of the network, 
piq (in the following we will refer to the Fourier transform of the deviation from the average 
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monomer density as the “density” distribution, since the true density distribution can be recon- 
structed from it by inverse Fourier transform, p’“(x) = p + 6peq(x) = p + j [dq/(2K)3] x 
ptq exp(iq .x)). The existence of a unique inhomogeneous equilibrium density profile which charac- 
terizes the state of the gel under given thermodynamic conditions is guaranteed by our demonstra- 
tion (in Section 3.6) that a network which is stabilized against collapse by excluded volume forces 
or, equivalently, by external forces applied to its surface, has a unique microscopic equilibrium 
state characterized by the set of the average positions of all network monomers. In the collective 
coordinate representation this set of average monomer coordinates can be replaced by the 
(generally) inhomogeneous density field p’“(x). 

The equilibrium monomer density profile is found by minimizing the free energy F,,[6p] with 
respect to pq. This gives 

4 
p4eq = 1 + wgq . (4.20) 

Since, for w = 0, this density coincides with n4, we conclude that nq can be interpreted as the 
equilibrium density profile of the network in the absence of excluded volume interactions but under the 
constraint that the macroscopic deformation of the gel is the same as it was in our final deformed state 
in the presence of excluded volume forces (the initial state is a particular case, with {A, = l}, w = w(O) 
and T = T(O)). Under the above conditions (no excluded volume) only elastic forces act in the bulk 
of the network and, if no external forces were applied to its surface, the network would collapse to 
dimensions of the order of the mesh size. In view of the above, we will refer to the state 
characterized by the static density distribution n,, as the elastic reference state. Information about 
the static density profile in the elastic reference state can be obtained by the following procedure: 
first, a network is prepared in a good solvent (w(O) > 0) and deformed. Then, the solvent is brought 
to its O-point (w = 0) while keeping the macroscopic deformation fixed (if there was no external 
deformation applied initially, one should simply fix the surface of the gel in order to prevent it from 
shrinking). The inhomogeneous monomer density distribution in this elastic reference state can 
then be probed by scattering experiments. 

In the general case (w # 0), the presence of excluded volume interactions results in a new unique 
equilibrium state which is characterized by the inhomogeneous density distribution pGq. As can be seen 
from Eq. (4.20), the new density profile will be more homogeneous than that of the corresponding 
elastic reference state (the presence of excluded volume tends to suppress local density fluctuations 
or, equivalently, to decrease the Fourier amplitudes of the density field). This static density 
distribution (which fluctuates in space but remains constant in time) leads to the stationary speckle 
patterns observed in light scattering from gels [43]. 

4.3. Thermal and structure averages 

Although, in principle, a given realization of network structure is described by the value of the 
field n(x) at each point x in the gel, if we are interested in statistical information, we only have to 
know the probability P[n(x)] (defined in Eq. (4.10)) of observing this particular value at this point 
in space. Thus, the only meaningful information about the density profile one can obtain from our 
statistical mechanical description involves averages of moments of the density field (e.g., density 
correlation functions). 
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We now introduce two important relations. The first is the consequence of our demonstration 
that a gel with a given network structure and thermodynamic parameters has a unique microscopic 
equilibrium state characterized by a density distribution piq. When the network is deformed, a new 
equilibrium state results which is characterized by a different equilibrium density distribution. Gels 
are, of course, non-ergodic in the sense that the configurational space available to the cross-linked 
network is smaller than that of the pre-cross-linked polymer solution. Nevertheless, the existence of 
a single state of equilibrium under given thermodynamic conditions implies that they possess 
restricted ergodicity, i.e., that if we prepare an ensemble of gels with identical structures, averaging 
over this ensemble with respect to the Gibbs distribution is the same as measuring time averages 
in a single gel. We therefore conclude that thermal (annealed) averaging is equivalent to time 
averaging. 

The second relation is based on the fact that, as long as the cross-linking is done away from the 
cross-link saturation threshold, the resulting static density inhomogeneities will be uncorrelated 
over macroscopic distances. We can, therefore, mentally decompose the entire network into small 
but still macroscopic domains, each of which is characterized by a different structure. In the 
thermodynamic limit, the probability to find a region with a given structure S is the same as that 
to find a network with this structure, from the ensemble of networks with all possible structures 
(but prepared under the same conditions, i.e., temperature, density of cross-links, etc.). Thus, the 
structure average of a quantity over the latter ensemble is equivalent to the spatial average of this 
quantity over the volume of a single network. The averages we calculate are structure averages over 
the ensemble of different structures and the above equivalence implies that our results can be 
directly applied to scattering experiments which measure averages over the volume of a single gel 
with a unique structure. 

We begin the calculation of the density correlation functions with the definition of thermal (time) 
and structure (spatial) averages. Thermal averages for a given network structure (which enters 
through the value of n) are taken with respect to the Gibbs probability distribution 

W - R&W7 

P’c6P1 E jD[@]exp( - Fj,[Sp]/T) ’ 
(4.21) 

where &[Sp] is defined in Eq. (4.18). The thermal average of a functional A[@] is denoted by 

(ACW) = 
s 

JX~PIU$I~~C~PI~ (4.22) 

The structure average of a functional B[n] will be denoted by 

! 
B[n] = dSP(S)B[n(S)] = 

s 
DnB[n]P[n] = (B[n]), , (4.23) 

where we used Eq. (4.19) to replace the averaging over the structure by averaging with respect to 
the density distribution in the elastic reference state, 12. Finally, the complete structure and thermal 
(spatial and time) average of the functional C,[Sp] is defined as 

(4.24) 
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4.4. Density correlation functions 

One of the salient characteristics of gels is the presence of static spatial inhomogeneities of the 
density. While in liquids the time average of the density fluctuations vanishes ((6~) = 0), in 
polymer gels static spatial density inhomogeneities are always present due to the statistical nature 
of the process of cross-linking which results in a unique equilibrium density distribution pGq. 
Straightforward calculation (by Gaussian integration, using the probability distribution defined in 
Eq. (4.21)) of the thermally averaged Fourier component of the density fluctuations gives the 
amplitude of this density distribution: 

(p,) = $--&- = PG” 7 
4 

(4.25) 

where the last equality follows from Eq. (4.20). Since every given realization of the network is 
characterized by a unique equilibrium density profile p”“(x) = p + 6peq(x) = p + j [dq/(2rc)3] x 
piqexp(iq sx), the time-averaged density (p(x)) will fluctuate in space across the network. This 
phenomenon has been recently detected through the observation of stationary speckle patterns and 
through the detection of a time-independent component in measurements of the temporal decay of -- 
intensity correlations in light scattering from gels [43,44]. Finally, we note that piq E (p,) = 0, as 
expected for an average deviation from the mean density p = IV,,,/ I/. 

Using the above equation we can introduce the amplitude of thermal density fluctuations 
Gpth(x, t) as the deviation of the instantaneous density p(x, t) from its equilibrium value, 

6pth(x, t) = p(x, t) - p”“(x) ) (4.26) 

which, according to Eq. (4.25), satisfies (6pth(x)) = 0 (we replace time averaging by ensemble 
averaging). We now proceed to calculate the different density correlators, evaluating Gaussian 
integrals by the method described in Appendix A. 

The correlator of the thermal density fluctuations is given by 

G, = (pf’p’-“q> = gq/U + w,) . (4.27) 

The above expression can be rewritten in a form which emphasizes the similarity with the RPA 
relation of the theory of polymer liquids [23], that gives the effective Hamiltonian of thermal 
fluctuations (G; ‘) as the sum of entropic and excluded volume contributions: 

G; r = g, r + w . (4.28) 

Thus, gq can be interpreted as the thermal structure factor of the gel, in the absence of excluded volume 
interactions (i.e., in the elastic reference state). 

The correlator of the static density inhomogeneities (the Fourier transform of the spatially 

averaged two-point correlation function 6p”‘+)6p”q(x’)) can be found using the definition (4.25) 
and Eq. (4.11) 

c, E p;qp”-“, = v,/(l + wgq)2 . (4.29) 
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Setting w = 0 in the above expression we conclude that v, can be interpreted as the spatially 
averaged (structure averaged) equilibrium density correlator, in the absence of excluded volume 
interactions (in the elastic reference state). 

Using Eq. (4.26) we arrive at the following expression for the total structure factor, which 
includes the contributions of both static inhomogeneities and thermal fluctuations and which is 
a measure of the total deviation of the density from its mean value, N,,,/ I/: 

S, - (p,p-,) = G, + C, . 

This structure factor is proportional to the scattered intensity at a wave vector q, measured in static 
scattering experiments. 

4.5. Analytical expressions for the correlators 

4.5. I. Initial state 
An exact (within the RPA) expression for the structure factor can be obtained in the important 

case of density fluctuations in the initial undeformed state of the gel. Note that this case can be 
obtained from our general results for the final deformed state by making the substitutions {a = 11, 
w = w(O) and T = T(O). The symmetry of permutation of all the replicas (since in this case the final 
state coincides with the state of preparation) leads to drastic simplifications and, as shown in 
Appendix G, we arrive at the following RPA expression (valid for arbitrary q), 

Sip’ = 2p’O’/( - 2/R + 2p’O’w’O’ + a2q2) . 

The characteristic scale of fluctuations (correlation length), ~2(2p(~)w(~) - 2/m)- ‘j2, diverges at the 
cross-link saturation threshold (Eq. (2.8)). W e can define the dimensionless network heterogeneity 
parameter 

Xf(p* = l/(p’O’w’O’N - 1) ) (4.32) 

which diverges at the cross-link saturation threshold and goes to a small value away from it 
(for p’“)w(o’m 9 1). When the gel is prepared at the saturation threshold, XRPA + co, the long 
wavelength static fluctuations of network density become infinitely large and our RPA approxima- 
tion for the static density inhomogeneities breaks down. 

The physical reason for the increasingly inhomogeneous network density profile as the cross-link 
saturation threshold is approached, is as follows. At this threshold, nearly all the inter-monomer 
contacts which are present in a typical configuration of the pre-cross-linked polymer chain, are 
turned into cross-links. The introduction of any further cross-links cannot take place by cross- 
linking a typical configuration of the polymer (in which the average number of contacts is I? - see 
Section 2.2) and the formation of a network with number of cross-links NC 2 I? can occur only 
starting from atypical (and therefore highly improbable) configurations of the polymer, in which 
K > R. Since the probability of contacts is proportional to the square of the local monomer 
density, a higher number of contacts will arise in configurations with inhomogeneous density 
profiles than in those with more uniform density (the gain due to increased number of contacts in 
the high-density regions overcompensates for the loss due to their decreased number in the 
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low-density regions). This can be achieved either by increasing the contrast (i.e., the amplitude of 
density fluctuations), or by increasing the size of the inhomogeneous regions. Since large density 
gradients are penalized by “surface tension”-type forces, the latter mechanism will be energetically 
preferable and the dominant contribution will come from configurations characterized by large 
alternating domains which differ only slightly in monomer concentration (i.e., the amplitude of 
density fluctuations becomes progressively smaller with the approach to the cross-link saturation 
threshold). The above physical picture is similar to that of critical phenomena, where the correla- 
tion length diverges while the amplitude of the fluctuations goes to zero at the critical point. The 
predicted increase of the size of the inhomogeneities with degree of cross-linking (with decreasing 
N) was observed in light scattering studies [45]. 

Away from the cross-link saturation threshold, the 2/N term can be neglected and the predicted 
scattered intensity from a gel at the state of preparation is identical to that from a solution of 
disconnected chains at the same density and solvent conditions. Nearly identical scattering from 
gels and from solutions was reported in some cases [46,47], indicating that the networks were 
prepared away from the saturation threshold. In other cases, stronger scattering was observed from 
gels in the state of preparation than from solutions [48,49], apparently because the networks were 
prepared closer to the cross-link saturation threshold. 

It is important to emphasize that the exact (for all q) analytical expression for the total 
structure factor, Eq. (4.31), is obtained as the result of strong interference between the spatial 
density inhomogeneities and the thermal density fluctuations in the initial undeformed state of 
the network (the calculation of their separate contributions, for arbitrary q, is prohibitively 
difficult). This interference arises due to the screening of the presence of static inhomogeneities 
by the thermal fluctuations which “adjust” themselves to the local distribution of the former 

c501. 
We now proceed to discuss analytical results for the RPA density correlation functions in the 

final deformed state of the gel. 

4.5.2. Final state, long wavelength limit 
Simple analytical formulae for the functions gq and vq which enter the expressions (4.27)--(4.30) 

for the structure factor of the gel in the final state, can be obtained in the continuum limit q + 0 
(these formulae are derived in Appendices E-G). 

The continuum limit of the correlator of thermal fluctuations in the elastic reference state, gq, is 
given by 

gq +o = 2pivq2/(i * q)2 . (4.33) 

Note that this function retains its angular dependence (associated with the direction of the wave 
vector q) for anisotropic deformations, even in the limit q -+ 0. The presence of the q2/(i * q)2 term 
is related the fact that 911-O is a response function which governs thermal fluctuations about an 
anisotropic deformed equilibrium state of the network (in the elastic reference state). It can be 
shown that the elastic moduli of such a deformed network depend on the deformation and are 
anisotropic and that this anisotropy results in the above dependence. This will be done in Section 6, 
where we analyze the connection between the long wavelength limit of the present theory and the 
continuum theory of elasticity of gels. 
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We now consider the correlator of the static inhomogeneities in the elastic reference state, vq. In 
the long wavelength limit v, approaches a constant value: 

V4 +O = ;mOnqn_, = pm(6 + ~/(w(~$+~)N - 1)) , (4.34) 

where p is the density of monomers in the jnal deformed state of the network. The quantity 
vq +. diverges at the cross-link saturation threshold, Nmin = l/(~(~)p’~)), at which the characteristic 
size of static spatial inhomogeneities of cross-link (and hence of monomer) density diverges. We 
would like to emphasize that the finite value of vq +. (away from the saturation threshold) does not 
mean that there are frozen clusters of macroscopic dimensions, but is a trivial consequence of the 
Fourier representation (all length scales contribute to the Fourier transform of the density in the 
limit q + 0). 

We can now estimate the amplitude of static density inhomogeneities and check the applicability 
of RPA. Away from the saturation threshold one can neglect the second term in the square brackets 
in Eq. (4.34) and write 

(4.35) 

where we have used the fact that there are no static density inhomogeneities on length scales 
smaller than the mesh size UN ‘I2 The RPA assumption that the amplitude of inhomogeneities is . 

much smaller than the mean density p, corresponds to the condition 

pa3iV1i2 9 1 , (4.36) 

which is equivalent to the assumption that the volume of an average chain between cross-links is 
permeated by many other chains. In the following we will assume that this condition is always 
satisfied and that static inhomogeneities are correctly described in the RPA approximation. 

It is interesting to consider the limiting case of cross-linking in the melt (strictly speaking, this 
case is outside the domain of applicability of our model since excluded volume in a melt cannot be 
described by a second virial coefficient). In this limit w(O) m l/p”) N a3 and vq+, N 6pm. The finite 
value of vq +. tells us that even though there are no density fluctuations in the melt, there are still 
finite inhomogeneities of the network structure which can be revealed upon swelling. 

An explicit form for the correlators in the final deformed state of the network, can be given in the 
continuum limit (q + 0), using expressions (4.33) and (4.34) for the functions gq and vq in Eqs. (4.27) 
and (4.29): 

G 
2piV 

q+o = (A*q/[q[y + 2wpN ’ 
(4.37) 

C 
(A* q/1qj)4pN(6 + 9/(~(~)p’~‘N - 1)) 

q-0 = 
w~*fz/lrlo2 + 2wpm2 . 

(4.38) 

Several general comments can be made regarding the properties of the RPA correlators in the 
continuum limit: 

1. For anisotropic deformations both correlators have an angular singularity associated with 
the direction of the scattering wave vector q, even in the limit q + 0. In the important case of 
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uniaxial deformations, thermal jkctuations are suppressed along the extension axis and enhanced 
normal to it and static inhomogeneities exhibit the reverse behavior. The enhancement of scattering 
along the stretching axis due to static inhomogeneities (C,,O ) has been predicted theoretically by 
Bastide et al. [51] and by Onuki [52]. It was observed in static small angle neutron scattering [12] 
and light scattering [13] from gels and is known as the butterfly efect. The fact that the anisotropy 
appears already is the limit q + 0, is in agreement with experimental observations of this effect on 
the longest wavelengths probed by small angle neutron and light scattering. Suppression of thermal 
fluctuations along the stretching direction was predicted in Ref. [52] and observed (indirectly) in 
dynamic light scattering experiments [14] which monitored the decay rate of thermal density 
fluctuations (proportional to G;_$,) in a stretched gel. 

2. The only explicit dependence on the conditions of preparation of the gel (apart from the trivial 
dependence on the density of cross-links) appears in the correlator of the static inhomogeneities 
C B_+0 which diverges at the cross-link saturation threshold. The control parameter which measures 
the “strength” of these inhomogeneities is the heterogeneity parameter, XRPA = (~(~)p’~‘~ - 1)-l. 

3. Static inhomogeneities are more sensitive than the thermal ones to deformation and swelling. 
Away from the O-point (wpN % l), G, +. - l/w is nearly independent of the deformation and of the 
density of cross-links. The intensity of scattering from static inhomogeneities, Cqeo - 

(~*!7/l(iI)4/(W2p~)Y increases with the degree of cross-linking (this prediction is confirmed by 
experiments [48,49,53]). When the gel is uniformly swollen (1 - l/~“~), scattering from static 
inhomogeneities increases with swelling (the RPA prediction of l/p 7/4 dependence will be modified 
for gels in good solvents - see Section 5.4.2). In uniaxial extension experiments it grows rapidly with 
the deformation ratio in the stretching direction (as L4) and decreases normal to it as (1/A2). In the 
vicinity of the O-point, the intensity of thermal fluctuations G,,. decreases as l/l2 along the 
stretching direction (and increases as 1 normal to it) and C, 1. approaches a constant (independent 
of A). 

4.5.3. Final state, mesoscopic range (finite q) 
The explicit expressions for the density correlators, Eqs. (4.37) and (4.38), are valid only in the 

continuum limit (q + 0). In ordtr to relate to scattering experiments which probe the mesoscopic 
range of length scales (50-5000 A), we have to include terms of higher order in q. This can be done 
by calculating the correlators in the elastic reference state gq and vg (Appendices E and F), to order 
a2Rq2. We first consider the thermal correlator gp. 

In the long wavelength limit a2Rq2 -+ 1, the thermal correlator gg of the elastic reference state is 
given by (to order q2) 

gq = L'p~'l(J~ * ii)“1 Cl + 4i>Q21 > (4.39) 

where 4 = q/)ql is the unit vector in the direction of the wave vector q, Q is the dimensionless wave 
vector, defined as Q2 E a2Nq2 and 

a(i) = 211 [(A * 4)’ - l] + 12(/? * i)” ) 

with the constants I1 N 0.524 and I2 = 0.033. 
In the short wavelength limit a2Nq2 B 1, we get (to order qe4) 

(4.40) 

gq = PP~/Q~)U + b/Q’) > (4.4 1) 
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where I3 = 1.395. The leading contribution ( cc qm2) to this function is identical to that of 
a polymer solution. 

We now present the long and short wavelength limits of the correlator of static density 
inhomogeneities vq. We can write it, in general, in the form 

vq = 2pmA, + B,$P!,/&$,~, , (4.42) 

where asymptotic expressions for the functions A, and B, were derived in Appendix G 

A 3 - {I - 41,[(i*i)2 - 1-j - 51,(l*G)2}Q2 for Q Q 1 , = 
9 (2 - 13)2Q-4 for Q& 1 

and 

9 - 6{1 41,[(I*G)2 - - l] -41,(i*+)‘)Q’ for Q 4 1 B , 

4 

= 

(2 - 13)4Q-4 ’ for Q 9 1 
(4.44) 

All the dependence on preparation conditions in Eq. (4.42) enters through the function S:o!,, 
defined by substituting q + 1 *q into Eq. (4.31). 

Since the above RPA expressions for the structure factors cannot be directly applied to gels in 
good solvents (in which thermal fluctuations are strong), we will not analyze them any further here. 
In Section 5 we will show how these expressions can be adapted to the physically important case of 
gels in good solvents, by an appropriate renormalization of the RPA parameters. 

4.5.4. Spinodal decomposition in poor solvent 
Inspection of Eq. (4.40) shows that for et(i) > 0, the thermal correlator gq increases linearly with 

q2 for small wavelengths (Eq. (4.39)) and decreases as qp2 in the short wavelength limit (Eq. (4.41)). 
This leads to the totally unexpected conclusion that the thermal density correlationfunction of the 
elastic reference state has a maximum at some wave vector q = q*, the presence of which is a familiar 
feature of systems which exhibit microphase separation (such as diblock copolymers)! Since the 
maximum appears only for a(i) > 0, it is present in the undeformed state ((1, = l}), under 
conditions of uniform swelling ({A, > 1)) an d in uniaxially stretched swollen gels, for wave vectors 
along directions for which (A * 4)” 3 1 (see Eq. (4.40)). The point a(i) = 0 at which a maximum at 
a finite value of q first appears, corresponds to (A+ 4)” 2: 0.97 (for smaller values it is located at 

4* = 0). 
What can we say about this maximum? Since the only length scale in our problem is the mesh 

size, we speculate that the maximum is achieved for wave vectors of the order of the inverse mesh 
size 

l/q* N am1l2 (4.45) 

and that it is shifted to q* = 0 for a(i) d 0. Unfortunately, wave vectors of such magnitude lie 
outside the region in which our asymptotic expressions for g, apply and therefore our results 
cannot be used to analyze the dependence of the maximum on the thermodynamic parameters. 

What is the physical origin of this maximum? Using the equipartition theorem we conclude that 
(1/2)Tg; lp~hp’hq is the free energy cost of creating a thermal density fluctuation pih at a wave 
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vector q around the spatially inhomogeneous equilibrium distribution n4 (the elastic reference 
state). Although there is no ordering on any scale in the network, there is a characteristic wave 
vector associated with the static density inhomogeneities which is of the order of the inverse mesh 
size. The existence of a characteristic wave vector implies that the situation is quite similar to that 
arising in the ordered lamellar state of diblock copolymers, in which there is also a characteristic 
wave vector associated with the wavelength of the modulation (the analogy is quite close since in 
there is also no true long-range order in the lamellar state). In the case of diblock copolymers it was 
shown that the fluctuation energy about the modulated state has a minimum at a wave vector 
q = q* corresponding to the inverse wavelength of the pattern [54] and similar considerations can 
be applied to our system. Note that the observation that the maximum at finite q disappears for 
~(4) < 0 (in this regime gq has only a broad maximum at q = 0) is related to the fact that the density 
distribution in the reference state becomes homogeneous under compression (i.e., the contrast 
between dense and dilute regions disappears). 

Can the maximum at q = q* be observed in scattering experiments which probe the thermal 
(time-dependent) contribution to the scattering intensity? Substitution into Eq. (4.27) shows that in 
the good solvent, small degree of swelling regime (wpm 9 l), the thermal structure factor 
G4 becomes independent of gq and we conclude that a peak in thermal scattering (its position, q*, is 
independent of the quality of solvent) can be observed either at large swelling degrees or in the 
vicinity of the O-point. 

Let us now consider a gel in a poor solvent (w < 0). Experimentally, macroscopic collapse can be 
prevented by fixing the volume of the gel (the way it is done in our calculation), or by performing 
the scattering experiment shortly upon the quench to poor solvent conditions, before the gel has 
the time to expel the solvent (since this happens by cooperative diffusion, collapse may take hours 
or days, depending on the volume of the gel). If the experiment is done by first deforming the gel in 
the good solvent and then (under conditions of constant deformation) bringing it into the poor 
solvent regime (e.g., by varying the temperature), the point at which thermal scattering intensity 
diverges defines the q-dependent spinodal of the gel: 

1 + W&q = 0 . (4.46) 

Clearly, this condition is first satisfied at the maximum of gq (at q = q*). Furthermore, since g, is 
largest in the direction of minimal extension (~min), the spinodal is first reached for wave vectors in 
this direction. For Amin < 0.97, the spinodal occurs at q* = 0 and corresponds to macrophase 
separation (the gel will expel the solvent and collapse if we remove the fixed volume constraint). For 
Amin > 0.97, the spinodal occurs at a finite wave vector q*, of the order of the inverse mesh size, at 
w,* given by Eq. (4.46). This corresponds to microphase separation, in the process of which solvent 
is expelled from the denser into the more “dilute” regions of the inhomogeneous static density 
profile (the characteristic size of such regions is of the order of the average mesh size). A peak at 
a finite q value was observed in small angle neutron scattering from weakly charged gels but was 
attributed to electrostatic effects which are beyond the scope of this work [55]. 

The case ~min N 0.97 (a = 0 in Eq. (4.40)) corresponds to the Lifshitz point [56] at which q* -+ 0. 

In principle, we can now insert our RPA expressions for gq and vq into Eqs. (4.27)-(4.30), 
calculate the total structure factor as a function of the various parameters and compare with the 
results of experiments on light and SANS scattering from stretched, swollen gels. However, 
although our RPA results give a qualitatively correct picture of the effects of deformation and 
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swelling on static inhomogeneities and thermal fluctuations, quantitative comparison with experi- 
ments on gels swollen in good solvents is not possible since, in the derivation, we have assumed that 
thermal fluctuations are small. The above assumption is not valid for semi-dilute solutions and gels 
swollen in good solvents in which thermal fluctuations on length scales smaller than the “blob” size 
are large. This well-known problem received much attention in the context of semi-dilute solutions 
and several methods (e.g., renormalization group [27] and scaling 131) were developed to deal with 
it. These methods have to be adapted to the problem of gels in a good solvent where simultaneous 
renormalization of the phenomenological parameters due to small scale fluctuations in both the 
initial and the final state of the gel is necessary. Such a scheme will be presented in Section 5. 
Instead of proceeding directly to gels in good low molecular weight solvents, we first apply our 
RPA results to the related problem of a gel in a polymeric solvent, where strong fluctuation effects 
are expected to be suppressed by screening. The replacement of a low-molecular weight solvent by 
a polymeric one, requires some modifications which will be discussed in the following. 

4.6. Gels in polymeric solvents 

Consider a system which consists of free polymer chains in a network (Fig. 4.1) permeated by 
(small molecular weight) solvent, where the free chains have an arbitrary degree of polymerization, 
L, but the same chemical structure as the network (athermal case). The latter assumption is relaxed 
in the next subsection where we study the segregation of the free chains from the gel. We assume 
that the free chains have an initial monomer concentration c(O) and that wco)cco)L $ 1 (this 
condition corresponds to neglecting the density fluctuations of the polymeric solvent in the initial 
state of the gel). In the final state, the network is, in general, stretched and swollen, with 
corresponding concentrations of network and free chain monomers p and c, respectively, and with 
excluded volume parameter w (for simplicity, this parameter is taken to be the same for both the 
network and the free chain monomers). We further assume that the free chains are confined to the 
volume of the gel and do not leave it following the deformation (this is usually the case in 
experiments [53]). 

We proceed to construct the free energy of the network plus the free chains system in the spirit of 
the RPA method [3], by introducing the elastic entropy of the latter into the free energy, Eq. (4.18). 
The other, trivial, change is to replace the partial monomer density of the network by the total 

Fig. 4.1. Schematic drawing of the network. Free chains dissolved in the gel are shown by broken lines. 
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density due to both polymeric components. The resulting free energy is given by 

(P, - nq)b, - n-q> 
gq 

cqc-, +--- + W(Pq + C&P-q + c-9) 3 % 1 
(4.47) 

where 

s, = CL/(1 + a2Lq2/4) (4.48) 

is the (approximate) Debye structure factor of a free chain without excluded volume (note, that our 
a2 differs by a factor of 3 from the usual definition [23]). The partition function of a network with 
a given structure (represented by n) is defined by 

lD[Sc] lD[Sp]exp( - ~‘~“I). (4.49) 

We now show that the free energy of a network permeated by a polymeric solvent is equivalent 
to the previously derived one (Eq. (4.18)), where we replace w(O) and w by q-dependent virial 
coefficients which are determined by the properties of the free chains (e.g., c and L). Since the free 
energy in Eq. (4.47) describes an arbitrary state of the gel, it can be applied to the initial state, by 
replacing all quantities by their values in this state (by adding a superscript (O)). 

In order to calculate the effective virial coefficient in the state of preparation of the gel, we first 
perform the 6~“) integration in the initial state analog of Eq. (4.49). This gives a free energy which 
depends on n and p(O) 

(pi’) - n,)(L+“l. - n-q) + w’0’pg3p’$ 

% 
1 + w(o)s(o) 

4 1 (4.50) 

and we conclude that the effective virial coefficient in the initial state is given by 

w;o, E w’O’/(l + w%zp)) . (4.51) 

The factor 1 + wCo)sCo) in the denominator of this expression reflects the screening of excluded 
volume interactions 4between network monomers due to the presence of free chains [3]. In the 
assumed limit, wCo)cco)L 9 1, the fluctuations of total density pr’ + cp’ = #‘/(l + w(~)s~)), are 
strongly suppressed by screening and we obtain 

wzp’ = l/sip’ . (4.52) 

Since we will eventually consider only the density fluctuations of the polymeric solvent in the 
final state of the gel, we return to Eq. (4.49) and integrate over the density fluctuations of the 
network, 6~. This yields the effective free energy functional which depends on the density of the free 
polymer chains and the structure of the network, 

%Ccl 1 dq -=- _ 
T s [ 2 (243 

(c, + nq)(C-q + n-,) + CqLq 

gq + l/w % 1. (4.53) 
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In the following we assume that wpN >> 1, in which case we can neglect the l/w term in the 
denominator of Eq. (4.53). This is again equivalent to assuming that fluctuations of the total density 
pe + cq = (c, + n&/(1 + ws,) are suppressed due to strong screening, a condition which guarantees 
the applicability of the RPA to our problem. Comparing Eq. (4.53) with Eq. (4.18), we conclude that 
the free energy of a network permeated by polymeric solvent is formally identical to that of 
a network of Gaussian chains, provided that we replace w with the q-dependent effective virial 
coefficient wq = l/s, in Eq. (4.18). Since we limit ourselves to the case of small fluctuations of the 
density of the free chains, we need to impose the condition that there are many chains of that type 
in the volume occupied by one of them [3], i.e. Ric/L % 1, where RL = uL’/~/~ is the size of the free 
chain. 

An exact (within the RPA) result for the structure factor valid for all q, can be obtained for the 
total structure factor under preparation conditions (i.e., an undeformed and unswollen network, 
i, = l), by substituting w(O) + l/sr) into Eq. (4.31). This yields the Ornstein-Zernicke form 

$0) = p’WX/[ 1 + (pq)2] ) (4.54) 

where the correlation length is defined by 

(t(o))2 = (aVX/2)(1 + p’O’/2c’O’) (4.55) 

and where we defined the dimensionless efictiue heterogeneity parameter (the reason for this name 
will be clarified later on): 

x = ((p’wp’L) - l)- l . (4.56) 

Note that the parameter X can be varied by changing the concentration, the length of the chains 
and the degree of cross-linking of the network, but is not affected by swelling (we assume that the 
labelled chains are trapped in the network throughout the process of swelling and, therefore, 
p’o’/c’o’ = p/c). The cross-link saturation threshold for the network with the free chains, is given by 
X + co (inspection of Eqs. (4.52) and (4.48) shows that the RPA cross-link saturation threshold 
for a gel swollen by a low molecular weight solvent, Eq. (3.41) should be replaced by 
p’“‘~/s~o’ = p’“‘~/c’o’L = 1 for a gel swollen by free polymer chains). 

Near the cross-link saturation threshold l(O) diverges as X1” and the intensity at q -+ 0 diverges 
as X. Away from the cross-link saturation threshold, (t(o))2 + Ri(l + 2c”)/p(‘)) and the structure 
factor reduces to 

SIp)lx+o = 
C’O’L 

1 + R;(l + 2c’“‘/p’o’)q2 ’ 
(4.57) 

i.e., the only dependence on network parameters comes through the initial density p(O). 
The expression coincides (in the limit X + 0) with the structure factor of a solution of chains of 

lengths L (labelled monodisperse chains) and m, of concentrations c(O) and p(O), respectively. Strictly 
speaking, the above statement is correct only if we assume that the distribution of the latter chain 
lengths is the same as in the network. It can be shown that, in the case of random cross-linking in 
the solution (or in the melt), the resulting distribution of chain lengths f(N) is exponential [2], i.e., 

f(N) = (l/N) exp( - N/m) . (4.58) 

Although creating such a distribution may be non-trivial experimentally, it is obvious that 
a meaningful comparison of the scattering from free chains in a network with that from a solution, 
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must be performed under otherwise identical conditions. More generally, in the case of a solution 
with an arbitrary distribution of chains of average length m, one has to replace 2c(O)/p(O) 
-+ r$“)/p’o’ in the denominator of the structure factor (Eq. (4.57)) where the numerical factor q is of 
order unity and can be calculated from the known molecular weight distribution [3]. Note that for 
cCo)/pCo) < 1 (this corresponds to the experimentally studied range of parameters [47,57]), this 
factor drops out and the scattering from the gel in the state of preparation reduces exactly to that 
from an equivalent solution, independent of the molecular weight distribution. Since experiments 
report nearly identical scattering from both systems [47,57] (in the absence of swelling or 
deformation) this suggests that the gels were prepared away from the cross-link saturation 
threshold (i.e., X I 1). 

We now consider the case of a deformed network with free labelled chains inside. An explicit 

expression for the correlator (c+*) can be derived by making the substitutions l/sf) and l/s, 
instead of w(O) and w, in the RPA correlator of a gel in a small-molecule solvent obtained in the 
preceding subsection. The total structure factor can be represented in the form (using Eq. (4.42)): 

s, = Cs,/(l + sg- ‘SJI + Cl/(1 + s,‘g,)“l Cm4 + Hqc2J&$JL1 9 (4.59) 

where the single free chain structure factor s, is defined in Eq. (4.48) and Sip,‘, can be obtained 
by substituting q + ,? *q into the expression for the structure factor in the state of preparation, 
Eq. (4.54). Exact asymptotic expressions for the functions gq, A, and B4 have been calculated in the 
previous subsection. 

We now introduce the reference state of a solution (blend) of free chains (polymers of length 
m and concentration p and polymers of length L and concentration c). Assuming the same 
concentrations as in the case of a network permeated by free chains and using the RPA, we obtain 

srf = (CqC_Jref = 
2piV 

1 + 2(pW/cL)(l + Riq2) ’ 

Although the expressions for the scattering from free labelled chains in a network for arbitrary 
J., and Riq2 are quite complicated, in the limit q2 $- max((a2m)- ‘, RE2} the scattering becomes 
independent of ;1, and reduces to the corresponding limiting scattering from a solution of free 
chains, Eq. (4.48), 

s, N 4cla2q2 . 

This behavior was observed by neutron scattering experiments [53]. 

(4.61) 

4.6.1. Isotropic swelling 
In order to understand the physical phenomena described by Eq. (4.59), we first consider the case 

of isotropic swelling, p(O) + p, starting from the state of preparation. The total structure factor is 
a function of the dimensionless parameters X and the swelling degree Qprep G p”‘/p (defined with 
respect to the state of preparation), since, in the case of isotropic swelling, ;1, = Qi&. In Fig. 4.2 we 
present the dependence of the total scattered intensity at q = 0, on the degree of swelling, for several 
values of X. The scattering increases monotonically with the degree of swelling (as was observed 
experimentally [53]), and grows dramatically with the approach to the cross-link saturation 
threshold, X -+ co (it approaches that from the reference solution of free chains for X + 0). From 
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Fig. 4.2. The scattered intensity at q = 0 (normalized by pm), as a function of the swelling degree Qprep with respect to 
preparation conditions (isotropic swelling), for X = 0.1 (circles) and 1 (squares). The q = 0 values for the corresponding 
reference solutions are given by the solid and the dashed lines, respectively. 

inspection of Eq. (4.59) we conclude that the important quantity in the long wavelength limit is 
Qi&X/(l + X). For small values of this parameter, the thermal scattering is practically indepen- 
dent of the degree of swelling while the scattering from static inhomogeneities increases as Q$$. 
Although the range of Qprep 2/3 X/(1 + X) + 1 may be difficult to realize experimentally, we note that 
in this limit thermal scattering is suppressed (as (1 + X)/XQ$$) and the scattered signal from 
static inhomogeneities approaches a swelling-independent constant. 

We now turn to study the q-dependence of the structure factors. We consider only the long 
wavelength range (RLlq 1 I 1; N < L), for which we have exact analytical expressions for the 
structure factors (the second condition ensures that the structure factors are monotonically 
decreasing functions of q2). In Fig. 4.3 we compare the q dependence of the full structure factor with 
that of the thermal part, for X = 0.5, Qprep = 10 and p = 2&i/L = 0.1. The scattered intensity from 
the reference solution (valid for all q) is also shown for comparison. We note that the thermal 
scattering from the chains in the gel is weaker than that in the reference solution and that the 
scattering from the static inhomogeneities dominates the signal (the effect increases with the degree 
of swelling). 

We conclude that the observation of enhanced scattering from a swollen gel permeated by free 
labelled chains, compared to that from an equivalent solution of un-cross-linked chains, reflects the 
presence of static density heterogeneities in the network. These inhomogeneities affect the scatter- 
ing through their screening effect on the interactions between the labelled monomers. This suggests 
that the effect of swelling on the scattering from the labelled chains is a collective efict which 
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Fig. 4.3. Log-log plots of the full (squares) and the thermal (circles) structure factors (normalized by pN/lOO) as 
a function of R,lql, for the case of isotropic swelling. The parameters are X = 0.5, Qprep = 10 and p = 2j%‘/L = 0.1. The 
structure factor of the reference solution (solid line) is shown for comparison. 

vanishes in the limit of vanishing concentration of these chains. Indeed, for fixed network density p, 
the limit c(O) + 0 corresponds to X + 0, in which case S, + sq in Eq. (4.59), i.e., we recover the 
scattering from undeformed and non-interacting chains. This also shows that the deformation (i.e., 
swelling) of the network does not induce significant deformation of individual labelled chains and 
proves the collective origin of the enhanced scattering phenomenon. It is important to emphasize 
that the scattering off the free chains probes network heterogeneities only indirectly, through their 
effect on the local density of the free chains and that X is an efictive heterogeneity parameter which 
changes both with network structure and with the concentration and the length of the free chains. 

4.6.2. Uniaxial extension 
We consider the case of a network swollen in a good solvent (with degree of swelling Qprep) and 

subsequently stretched along the z-axis, by a stretching ratio a. We assume that the volume of the 
gel is not changed by the stretching and that the labelled chains remain trapped inside the network. 
In this case the deformation ratios 1 (which are affected by both the swelling and the stretching) are 
given by 

(4.62) 

In Fig. 4.4 we present a log-log plot of the scattered intensities S: and St as a function of RLlql 
for c( = 1.5 (the structure factors for the unstretched gel and for the reference solution are included 
for comparison), with X = 0.1 and Qprep = 1 (unswollen case). The scattered intensity is always 
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Fig. 4.4. Log-log plot of the scattered intensities in the direction of elongation (circles) and normal to it (squares) as 
a function of R,lqj, for (x = 1.5 (uniaxial extension), X = 0.1, QP,,, = 1 and p = 0.1 (in units of pN,/lOO). The structure 

factor of the undeformed gel (diamonds) and for the reference solution (solid line) are also shown. 

enhanced along the stretching axis and suppressed normal to it, both effects increasing with a 
(the enhancement effect is much more pronounced than the suppression) [17,18,53]. The lines are 
drawn only in the region RLlql < 1, where our exact (within the RPA) results for the structure 
factor apply. 

In Figs. 4.5 and 4.6, the scattered intensities along and normal to the stretching direction, 
respectively, are plotted (on a log--log plot) versus RLlql with Qprep = 10, X = 0.25 and p = 0.1, for 
several deformation ratios in the experimentally accessible range (1 I a I 2). 

In Fig. 4.7, the scattered intensities in the parallel and the perpendicular directions, at q = 0, are 
plotted as a function of X, for the case Qprep = 10, and CI = 1.5 (the q = 0 structure factor of the 
undeformed network is included for comparison). The intensity increases with the approach to the 
cross-link saturation threshold (X % l), and the effect is quite dramatic for S”. The latter observa- 
tion suggests that the presence of static inhomogeneities has a strong effect on the scattering along 
the axis of stretching, even for rather small deformations (a + 1). 

In Fig. 4.8 we plot the correlation lengths along and normal to the stretching axis as a function of 
a, for Qprep = 10 and X = 0.25, where the correlation lengths are defined as 

a In S” 
t;=-,,2 and t: = - 

alnS,l 

q=o 7 . q=o 
(4.63) 

In Fig. 4.9 we present a contour plot (isointensity lines) of the scattered intensity in the q,,,qL 
plane, for uniaxial stretching (a = 1.2), with Qprep = 10, X = 0.25 and p = 0.1. The butterfly pattern 
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Fig. 4.7. The structure factors in the parallel (circles) and perpendicular (squares) directions are plotted in the 4 = 0 limit 
(for uniaxial extension) as a function of X, for a = 1.5 and Qprep = 10 (the undeformed case is given by the solid line). 
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extension), as a function of a, for X = 0.25 and Qprcp = 10. 
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for uniaxial extension with deformation ratio a = 1.2. The parameters are X = 0.25, Qprep = 10 and p = 0.1. 

shows clearly the presence of an angular singularity at q = 0 and the enhanced scattering along the 
direction of stretching observed in experiments [12]. The predicted contour plot for uniaxial 
compression, CI = 0.8 (where no experimental data are yet available) is shown in Fig. 4.10. 

4.6.3. Segregation of labelled chains 
Up to this point we assumed (for simplicity) that the network and the free chains are chemically 

identical (athermal case) and differ only in length. We now turn to the case of a network permeated 
by free chains (we assume that there is no small molecular weight solvent, i.e., (p + c)a3 = l), in 
which the interaction between the monomers of the free and the network monomers is described by 
the Flory-Huggins parameter x (thermal case [3]). The interaction term in Eq. (4.47) is replaced by 

4 w(pq + cq)(p-q + c-q) -+ a3wqc-q 2 cq + fq = 0 (4.64) 

and, as the result, Eq. (4.53) takes the form 

~tlCc1 1 dq -=- _ s [ tcq + nqwq + n-q) 
T 2 (2743 % 

+cqc-q(~-2a3~)]. (4.65) 

Comparison with Eq. (4.18) shows that the effective virial coefficient for the screened interaction 
between the monomers of the network is 

w,=s,‘-2a3x. (4.66) 
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Fig. 4.10. The same as Fig. 4.9, for uniaxial compression, a = 0.8. 

The correlation functions can be obtained from Eqs. (4.37) and (4.38) by the replacement w + w4. 
Let us first consider the case of long free chains, L $ Iij for which the presence of a maximum in 
gq does not show up in the structure factor. The spinodal (i.e., the onset of segregation) is found 
from the condition for the divergence of thermal fluctuations in the limit q + 0 and is given by 

2xsp = L-1/2(1 - 4Ml (~*!7/lql)2 + l/&J 3 (4.67) 

where & = cu3 is the volume fraction of the free chains. This should be compared with well-known 
expression for the spinodal of a binary blend of free chains [3] with average lengths R (and the 
same exponential distribution of lengths as the network chains - see Eq. (4.58)) and L, 

2X:;“d = l/2(1 - f#,,m + l/&L . (4.68) 

Note that in the absence of deformation (A, = l), xSp = x:fnd. 
Under uniaxial extension (by a factor of a), thermal density fluctuations become anisotropic and 

the spinodal is first reached for fluctuations which are normal to the stretching direction: 

2xsp = 1/2cr(l - &)R + l/&L . (4.69) 

This effect is shown in Fig. 4.11. We conclude that phase separation resulting in the expulsion of the 
free chains from the gel may result when a gel is subjected to stretching (the effect should be most 
pronounced near the spinodal of the undeformed system). Such effects have been observed in 
sheared blends [19] (to which our theory cannot be directly applied, even though a generalization 
of the present approach to transient phenomena in polymer liquids in which temporary entangle- 
ments act as effective cross-links, appears plausible). 
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Fig. 4.11. Plot of spinodal values of the Flory-Huggins interaction parameter x as a function of the volume fraction of 
the free chains inside the network, 4L, for m/L = 0.1 and CL = 1 (solid line), 1.5 (crosses) and 2.5 (dashed line). 

The prediction that the spinodal is first reached for fluctuations perpendicular to the stretching 
direction appears to contradict our previous conclusion that light or small angle neutron scattering 
is always enhanced in the direction of stretching (since the spinodal is usually assumed to be the 
point where the scattering signal diverges). Upon some reflection (see Eqs. (4.37) and (4.38)) we 
realize that the predicted enhancement (away from the spinodal) in the stretching direction comes 
from the A4 factor in the numerator of the correlator of static inhomogeneities. The spinodal 
condition corresponds to the point where the denominators of both the thermal correlator and the 
correlator of static inhomogeneities (in Eqs. (4.37) and (4.38)) vanish, and is first reached in the 
direction perpendicular to the stretching axis. This explains the observations of Ref. [SS] where 
the enhancement of the scattering signal along the stretching direction (consistent with the butterfly 
effect) was interpreted as the signature of the spinodal. We therefore predict that scattering 
experiments on free chains dissolved in a network in the vicinity of the cross-link saturation 
threshold will observe an increase of the scattering in the parallel direction at moderate deforma- 
tions, followed by the divergence of the scattered intensity in the perpendicular direction, at higher 
deformations (Fig. 4.12). From the asymmetry (with respect to composition) of the spinodal in the 
presence of uniaxial extension (see Fig. 4.11), significant stretching-induced shifts of the spinodal 
are expected to occur in networks which contain large concentration of free chains. 

What happens when the free chains are shorter than the network chains, 64/(a3c) 4 L -+ m 
(the first inequality ensures the applicability of the RPA)? This situation is described by our RPA 
analysis of gels in small molecular weight solvents (since small free chains are equivalent to a low 
molecular weight solvent), with the spinodal condition replaced by (using Eqs. (4.46) and (4.66)) 

1 + (l/CL - 2&&g, = 0 . (4.70) 
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Fig. 4.12. Schematic drawing of the ratio of the intensities scattered perpendicular and parallel to the stretching axis 
(IL/Z,,) as a function of the stretching ratio LX, for a network permeated by free labelled chains and prepared close to the 
spinodal. 

The spinodal is first reached for fluctuations with wave vectors in the direction of minimal 
extension. According to the analysis in Section 4.5.4, there are different possible scenarios depend- 
ing on the value of Amin. For &in < 0.97 we have macrophase separation (at q = 0); otherwise, 
microphase separation at a characteristic wave vector of the order of the inverse mesh size will 
result. The spinodal curves (xs, vs. &) are qualitatively similar in both cases, but the one 
corresponding to microphase separation occurs at lower values of xsp. The case &in N 0.97 at 
which the transition from macro to microphase separation takes place corresponds to the Lifshitz 
point. 

5. Gels in good solvents 

Up to this point we assumed that both static inhomogeneities and thermal fluctuations in the gel 
are small and expanded the free energy to second order in the deviations from the mean density. 
This allowed us to carry out the resulting Gaussian integrals and to calculate the density 
correlation functions. While such an approach leads to physically meaningful results for gels 
permeated by polymeric solvent which can be adequately described on a mean-field level (by RPA), 
it fails to account for strong short wavelength thermal fluctuations of a network embedded in 
a good, low molecular weight solvent (we have shown that such a problem does not arise for static 
inhomogeneities which can be always described on the RPA level, for networks prepared away 
from the cross-link saturation threshold). However, since there exist well-known methods (e.g., 
renormalization group and scaling) for dealing with such problems in the case of semi-dilute 
solutions, we can adapt these methods to the present case and obtain a scaling description of gels in 
good solvents. The application of semi-dilute solution ideas to cross-linked gels is based on the fact 
that while static density inhomogeneities take place only on scales comparable to or larger than the 
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characteristic mesh size of the network, thermal fluctuations are dominated by small-scale phe- 
nomena which are quite similar to those in semi-dilute polymer solutions. The absence of static 
inhomogeneities on these small length scales means that, in deriving the long wavelength descrip- 
tion (effective free energy) of the gel, the only contributions from the small scales will come from 
thermal fluctuations. 

5. I. Renormalization and scaling 

The fundamental distinction between the study of fluctuations in polymer networks and in 
polymer solutions is that, in the former case we have to consider fluctuations in both the initial and 
the final state. This observation stems from the fact that gels are prepared from polymer solutions 
and, consequently, thermal fluctuations in these solutions determine the structure of the resulting 
networks. 

In order to describe long wavelength phenomena, we resort to the standard approach of 
renormalization group (RG) theory [59]. We recall the expression for the replica grand canonical 
replica partition function, Eq. (2.47) (from which we omitted the unimportant term which accounts 
for chain end effects), 

z,,, = D(p(T)exp{ - H[q#)I} . (5.1) 

Since strong fluctuations come from small scales it is convenient to separate the slowly (q,(i)) and 
the rapidly (cp <(_Q) spatially varying components of the field cp (by rapidly varying we mean that the 
spatial variation is fast in at least one of the replicas). The separation is done by introducing the 
length scales (RCk’} in each of the replicas and writing 

CPM = CPM + CPA.;), (5.2) 

with the definitions 

and 

(5.3) 

(5.4) 

where {< denotes integration over wave vectors 4 = (&‘),qC1), . . . ,q’“‘), with Iqck’l > l/Rtk’ in at 
least one of the replicas, and J, describes integration over wave vectors which obey ( jq’k’l < l/Rtk’) 
in all of the replicas. The next step is to represent the partition function as a functional of a coarse 
grained Hamiltonian H , , which depends only on the fluctuations of the n-component field cp ,(i), 
on length scales larger than {Rtk)}: 

:: 
Ym = s Dq,(s)exp{ -H> C~>@IlI 2 (5.5) 
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where we define 

exp{ -~,[q>(i)]} G 
s 

D~<(i)ex~{ -H[q]) . (5.6) 

It can be shown that our replica space theory is renormalizable in the sense that the above coarse 
graining procedure does not affect the functional form of the Hamiltonian [60] and thus, 

H, [V> -J = 
s [ 

ti ; cp’, (2) + ; ,zO [a’k’(R(k))]2( v’k’(p>(ZZ))2 

(5.7) 

where Vk) is a 3-dimensional gradient operator with respect to coordinates of kth replica. The 
integration in Eq. (5.6) leads only to the renormalization of the bare parameters of the field 
Hamiltonian (2.48), i.e., to their replacement by the cut-off dependent parameters in the initial 

a’O’ + ,@)(R’O’) ) ww + w(O)(R@)) (5.8) 

as well as the final state, 

a + 4R) 9 w -+ w(R) 3 (5.9) 

where we used the identity of the replicas of the final state to write u’~‘(R’~‘) = a(R) and 
w(k)@(k)) s w(R). The parameters ,L and zC, which determine the chemical structure of the gel, are 
not renormalized under the integration over fluctuations of the field cp < (2) with spatial scales 
smaller than the mesh size of the network (this is related to the previously made statement that 
fluctuations of network structure take place on scales of the order or larger than the mesh size). 

The renormalized Hamiltonian H, [q, ($1 describes fluctuations in initial and final systems 
with spatial scales larger than R(O) and R, respectively. The scales R(O) and R are connected by the 
condition that they determine the linear size of the same topological objects (i.e., network 
segments), but in difSerent states. Note that, due to different physical conditions in the initial and 
final states, the renormalized monomer sizes aco)(R”‘) and a(R) differ one from another, even if they 
were identical in the bare Hamiltonian, H = H, ( {Rck) = a}), Eq. (2.48). The coarse graining 
process is continued until one reaches the jxed points of the RG transformation [61] 

,(o,(R’o’) _+ u(o’(~‘o’) e u;;’ > a(R) -+ 45) 3 afp (5.10) 

and 

,(o)(@‘,) + w(o’([‘o’) E Wrap’, w(R) --) w(c) = wfP . (5.11) 

On the scales R(O) > t(O) and Rck’ > 5, density fluctuations in each of the replicas are suppressed by 
screening effects and there is no renormalization of the parameters of the Hamiltonian upon further 
coarse graining. One can, therefore, identify c(O) and 5 with the correlation lengths in the initial and 
final states, respectively. 
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In order to describe the thermodynamic functions and the 
fluctuations (with wave vectors 4 (‘) 4 l/c(‘) and qtk) < l/t), we can 
with the replacements 

l-131 

behavior of long wavelength 
use our mean-field description, 

(5.12) 

where R(O) = ~$‘jiii1~ and R E ~~,,mi’~ are the sizes of chains of m monomers which depend only 
on the densities of the initial and the final states, respectively, (but not on the deformation of the 
network in these states). The second equality in Eq. (5.12) follows from the replacement of the 
coordinates in the replicas of the final state, X(~) + (afp/aiz))X(k) in the renormalized Hamiltonian, 
Eq. (5.7) (in order to recast it into the form given in Eq. (2.48)), and from the observation that as the 
result of this transformation A, is multiplied by a factor a[i)/a,,. 

Strictly speaking, the values of renormalized parameters in Eqs. (5.8) and (5.9) should be found 
from the solution of the RG equations. However, since the fixed points of these equations can be 
readily obtained by scaling methods, we will limit ourselves to simple scaling considerations. The 
fixed point parameters can be calculated by identifying them with their physically observable 
values, and estimating the latter using the de Gennes blob picture of semi-dilute solutions [3]. In 
the spirit of the scaling approach, we omit all numerical coefficients in the following. 

Consider the case in which both the initial and the jinal states of the network correspond to the 
semi-dilute regime (in the important case of cross-linking in the melt, no renormalization of the 
initial state parameters is necessary) in an athermal solvent with w(O) = w = u3. The renormalized 
monomer sizes u$’ and afp in these states can be evaluated from the mean-field expressions for the 
corresponding correlation lengths, 

5(O) = .~op)(g’O’)“2 ) 5 = afpg1/2 . (5.13) 

Using the well-known blob model estimates of the concentration dependence of the blob para- 
meters, yields 

9 (0) = (pa3)- 5/4 , po, = a-5’4(p’0’)-3/4 ) (5.14) 

where g(O) and c(O) are the number of monomers and the size of the blobs in the initial state. The 
analogous expressions for the final state are 

g = @3)_5/4 ) 4 = &5/494 . (5.15) 

Note that although our approach differs from the standard one [3] in which the bare monomer size 
is used and the ideal chain exponents are replaced by their Flory values (i.e., 5 = ag3’5), it leads to 
the same concentration dependence of the correlation length. 

Substituting the above relations into Eq. (5.13) we find 

QP 
(0) = a5/8 (p(O))- l/8 , afp = a5’8p- 118 (5.16) 

and, therefore, 

R(O) E a;;)N’/2 = a5/6 (p’O’)- 1/8~1/2 (5.17) 
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and 

E E af,~l12 = aS18p-‘/8~‘/2 . (5.18) 

The values of renormalized virial coefficients wi;) and wfP can be calculated by equating the 
renormalized excluded volume interaction terms in the free energy (the osmotic pressures in the 
initial and the final states) to their semi-dilute solution analogs: 

T’“‘w:0,‘(p’o’)2 = T’“‘/(<‘0’)3 , Twfpp2 = T/t3 . (5.19) 

This gives 

w;op) = ,15/4(p’o’)“4 ) wfp = aw4p1/4 . (5.20) 

Note that the latter expression can be written as wfP = u~(u~~)~‘~. The reduction (in the semi-dilute 
regime a3p < 1) of the interaction parameters compared to their bare values is the consequence of 
the well-known correlation hole effect [3]. Eqs. (5.16) and (5.20) complete our discussion of the 
renormalization of our model. We conclude that in order to describe a gel in a good solvent, we 
only have to replace the bare parameters in the previously derived expressions for the free energy, 
correlation functions, etc., by their renormalized values. 

The cross-link saturation threshold ~‘~‘p’~‘m = 1 (Eq. (2.8)) takes the form 

(5.21) 

which is identical to the condition for the threshold of overlap of chains of m monomers (c* 
theorem [3]). Thus, the conditions of preparation under which a gel can be formed, p(O) > pi;l”i’n, 
correspond to a semi-dilute solution of such chains, p(O) > p*. Note that as p(‘) + p* the fluctu- 
ations of network structure diverge and the gel becomes extremely heterogeneous. 

5.2. Thermodynamics 

In the following we use the scaling relations derived in the last subsection to formulate the 
thermodynamic description of deformation and swelling of networks in good solvents. Renormaliz- 
ing the mean-field free energy, (3.30), with the aid of Eqs. (5.16) and (5.20) (neglecting the 
logarithmic term), we obtain the following expression for the free energy of the swollen gel [62-641 

2 
+ p9/4aw4 . (5.22) 

The p914 term contains the well-known fluctuation correction [3] to the mean-field value p2 for the 
osmotic pressure. Although the elastic term resembles the usual expressions of classical theories of 
gel elasticity which also contain a correction factor (FO’/R)‘, in the latter theories this ratio 
depends only on the difference of the qualities of solvent in the initial and the final states [65], and 
does not take into account the swelling-induced change in their respective sizes. In our case this 
ratio is given by 

(5.23) 
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from which the case of cross-linking in the melt is obtained by the substitution p(O) = ae3. The 
presence of the concentration-dependent (R(‘)/R)’ correction to the elastic term in the free energy 
leads to interesting new effects such as the prediction of a negative ej%ctiue Poisson ratio at uniaxial 
deformations of order unity [64]. 

Minimizing the above free energy with the substitution /z = (p’“‘/p)“3 (i.e., balancing the osmotic 
and the elastic forces in the network) we obtain the volume swelling factor (defined with respect to 
the dry state of the gel), 

Q = (pa3)- 1 = (p’O’a3)- 1/4j73i5 . (5.24) 

For networks prepared at the cross-link saturation threshold we can substitute Eq. (5.21) into the 
above equation and obtain Qmax = (p*a3)-’ which corresponds to the c* theorem [3]. We 
conclude that the equilibrium swelling state of gels cross-linked away from the cross-link satura- 
tion threshold is much more concentrated than the c* state and thus there are many other network 
chains in the volume spanned by a chain which connects two adjacent cross-links. This means that 
the mental picture suggested by the c* theorem in which there is only one chain in the volume 
occupied by the average mesh, has to be replaced by one in which there are many chains per mesh 
volume and which corresponds to a semi-dilute solution of interpenetrating network chains. Note 
that while in the former picture, coarse graining over a mesh size leads to an ordered lattice, the 
latter picture corresponds to a topologically disordered gel (see Fig. 5.1). 

The osmotic and the elastic (e.g., shear) moduli at equilibrium swelling in excess solvent, G,, and 
G,, can be read off the expression for the free energy, Eq. (5.22), 

G,, = Gel = (T/a3)Q- 914 = (T/)*/m) (p(o)/p*)9/16 . (5.25) 

These moduli are larger than those predicted by the c* theorem (by a factor of ( p(“)/p*)g/16), due to 
the greater density of the equilibrium state. 

Fig. 5.1. Schematic drawing of a topologically disordered gel as a network made of chains of blobs. The blob size < is 
shown. 
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The above expression for the moduli was derived under conditions of thermal equilibrium in 
excess solvent in which the density p is completely determined by the conditions of preparation and 
the quality of solvent and can be varied only by changing the latter. We now proceed to examine 
the concentration dependence of the moduli in a network which is in thermal equilibrium in the 
presence of externally applied osmotic pressure. In this case, the density can be obtained from the 
thermodynamic relation 

aF 

p = - av N,,, ’ 
NO, 

where Y = - . 
PP 

(5.26) 

For large compressions, the elastic contribution to the free energy can be neglected with respect to 
the osmotic part and we obtain P = Tu’~/~&!‘~, which define the density pp corresponding to 
a given pressure P. This yields the moduli 

G,‘, = ( T/a3) (LZ~~~)“~ 

and 

Gf, = Tp;/‘2(p’0’)5”2/m . 

(5.27) 

(5.28) 

In the compression regime the elastic modulus is smaller than the osmotic one (the two become 
equal and are given by Eq. (5.25) in the limit P + 0). 

It is interesting to examine the limit in which pp = p(O), i.e., the case when the externally applied 
osmotic pressure is large enough to increase the density to its value in the state of preparation. 
Substitution into Eq. (5.28) gives 

Gf’, I;.= l = Tp”‘/N . (5.29) 

This simple result can be interpreted as follows: in the state in which the gel was originally 
cross-linked, the chains between cross-links are undeformed (A = l), and each of them carries T of 
elastic free energy. 

In the extreme case of compression to the dry state (i.e., all solvent is expelled) we obtain 
a universal relationship between the elastic modulus in the dry state and its equilibrium swelling 
factor in a good solvent Q, defined in Eq. (5.24): 

G:;y = (T/u~)Q-~'~ . (5.30) 

This relation does not depend on the structure of the network (characterized by N) and can be 
tested by independent measurements of the factors on both sides of the equality. 

The results obtained in this subsection apply to mechanical and osmotic experiments which 
probe the gel under conditions of thermal equilibrium. Since most mechanical experiments are 
done under conditions in which the gel is in thermal but not in osmotic equilibrium (long time, of 
the order of hours and days, may be needed to reach osmotic equilibrium in macroscopic polymer 
gels), it is important to stress that the above expressions can be applied even to situations in which 
osmotic equilibrium has not been reached. 



78 S. Panyukoc, Y. Rabin/Physics Reports 26Y (1996) I-131 

5.3. Interpenetration and desinterpenetration of network chains 

The number of interpenetrating chains in the volume (8’o’)3 of a mesh in the initial state can be 
estimated as 

#N = ,W(~W)3/~ = (p’O)/p*)S’8 = (/,,Wa3)S:8 &/I:2 , (5.31) 

where we used Eqs. (5.13), (5.14) and (5.21) (R(O) has been defined in Eq. (5.17)). This number 
characterizes the degree of topological disorder and varies between 1 (for gels prepared at the 
cross-link saturation threshold) and IV’/2 (for networks cross-linked in the melt). 

We now estimate the number of interpenetrating chains in a swollen network. We found in the 
mean-field approximation (Eq. (3.64)), that the effective mesh size changes affinely with the 
stretching as Rmesh = alV1!2 i. In order to transform this into the scaling picture we replace a + a$, 
i + i.R”)/R (Eq. (5.12)) and change the length scale as x +xR(“/B. This gives 

Rmesh = R(O);. (5.32) 

from which the average number of interpenetrating chains per mesh in a swollen state is estimated 
as 

nslr = p(jLj?(o))3/N = n(O) (5.33) 

and we conclude that this number remains constant during the swelling of the network. 
The situation is more delicate if we consider the case in which the network is compressed in its 

final state, compared to its state of preparation (this can be done by applying osmotic pressure P, as 
discussed above). We showed (Eq. (3.65)) in the mean-field approximation, that in this case (i.e., 
i. -C l), the mesh size is Rmesh = aN1’2 which upon resealing, becomes R = [(m/g)li2 (it depends on 
the final density as p-1/8) and 

n camp = pR3/W = (p/~*)~:~ > n(O) , (5.34) 

i.e., compression leads to increased overlap (interpenetration) of chains. Indirect support for this 
mechanism comes from measurements on labelled chains in a network which do not decrease 
significantly in size upon compression [46]. If the network is prepared in the semi-dilute regime, 
then dried (i.e., the solvent is removed) and, finally, stretched and reswollen in a good solvent, one 
will observe desinterpenetration of network chains compared to the dry state (ncomp will decrease by 
a factor of (pa3)s!8 compared to the dry value, N”2). 

5.4. Density correlation functions 

We proceed to calculate the density correlation functions of gels in good solvents. In the 
microscopic (short wavelength) range, 141 % t-‘, the analysis of the asymptotic behavior of the 
functions vq and gr shows that the scattering is identical to that from a semi-dilute solution in 
a good solvent (at the same monomer concentration p), i.e., 

c, + 0 (5.35) 
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and 

G z p(a4p3 . (5.36) 

This behavior has been observed in neutron scattering from gels in good solvents [48]. 

5.4.1. Mesoscopic range 
In the mesoscopic range 141 6 t-r (where the correlation length 5 is given by Eq. (5.15)), density 

fluctuations are suppressed by the screening of excluded volume interactions and we can use the 
RPA expressions for the structure factors (Section 4.5.3), in which we replace the mean-field 
parameters by their renormalized values (see Eqs. (5.12),(5.16),(5.20) and (5.23)). Note that since 
5 4 AR(‘) for gels obtained away from the cross-link saturation threshold, the mesoscopic range 
extends to wavelengths smaller that the average mesh size IR(‘) (we showed that this quantity 
describes the mesh size; see Eq. (5.32)). 

In this range, the renormalization of length scales (see the discussion following Eq. (5.12)) which 
leads to the renormalization of A, affects also the wave vectors q, and leads to the replacement 
q + (a/a(‘))q in the mean-field expressions. The resulting replacements to be made in the RPA 
density correlators are: 

(1) a2mq2 + i-fzq2 3 Q2 , 

i.e., the mean-field expression for the size of an average network chain is replaced by the 
corresponding scaling value in the final state, i? = a(pa3)-‘/*P2. 

(2) a2 m(A k q)2 + (R’o))2 (A + q)2 = [ (R’0))2/82] (A + 4)” Q’ 

in which the size of an average network chain is replaced by the corresponding scaling value in the 
initial state iFto) = a(P (‘) 3 -1i8N1’2 (this factor expresses the affine deformation of a chain in the a ) 
initial state). 

(3) (A* q)2/q2 -+ [ (R’O’)2/R2] (2 * qy/q2 . 

(4) Renormalization of the virial coefficients: 

w(O) -+ a3(p(0)a3)‘i4 , w -+ a3(pa3)‘j4 . 

In this way, the renormalized correlators can be obtained from their RPA analogues simply by 
changing the definitions of the dimensionless wave vectors (Q), replacing the second virial coeffi- 
cients by their renormalized values and making the replacement i + (R(O)/@1 in the RPA 
expressions for the correlators gq, vI, G4 and C, given in Section 4. 

The qualitative features of the density correlators of uniaxially stretched gels in good solvents 
(butterfly patterns, etc.) are similar to those of gels in polymeric solvents and we will not repeat the 
analysis here and only present several typical results. A three-dimensional plot of the full structure 
factor for uniaxially stretched gels prepared close to the cross-link saturation threshold, is shown in 
Fig. 5.2. The enhancement of scattering parallel to the stretching direction and the suppression of 
scattering normal to it is clearly visible. Similar behavior is observed for gels prepared away from 
the cross-link saturation threshold and studied at equilibrium swelling (Fig. 5.3), when static 
inhomogeneities dominate. Furthermore, since the angular anisotropy of thermal fluctuations is 
much weaker than that of static inhomogeneities, butterfly patterns oriented along the stretching 
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Fig. 5.2. 3-dimensional plot of the total intensity S, in the (q,,, qs) plane, for a gel prepared close to the cross-link 
saturation threshold, CZAR = a3p = 0.026, m = 100 and cx = 1.2. 
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Fig, 5.3. Isointensity plot in the (q,,, ql) plane, for a gel prepared away from the cross-link 
swollen to equilibrium. The parameters are IV = 100, a3pCo) = 0.3, a3p = 0.05 and CC = 1.1. 

saturation threshold and 
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direction are predicted even for gels prepared away from the cross-link saturation threshold and 
studied at the concentration of preparation, when thermal fluctuations dominate (Fig. 5.4). 

One of the striking predictions of our theory is the existence of a maximum in the thermal 
structure factor of neutral polymer gels in good solvents, at a Jinite wave vector q* (this follows from 
the discussion in Section 4.5.4, where we replace the RPA parameters by their renormalized good 
solvent counterparts). Although the maximum is located at a wave vector which lies outside the 
range of our mesoscopic (or short wavelength) analytical expressions, scaling considerations 
suggest that for gels in the state of preparation or for uniaxially swollen ones, the predicted peak in 
the thermal structure factor appears at a wavelength of the order of the average mesh size of the 
network. The maximum is shifted to q* = 0 when the gel is isotropically compressed to 93% of its 
volume in the state of preparation (this Lifshitz point is defined by the condition a(i) = 0, with 
a obtained by substituting the renormalized good solvent parameters into the RPA expression, 
Eq. 4.40). 

Since static scattering experiments measure the sum of the contributions of thermal fluctuations 
and static density inhomogeneities (the latter contribution is expected to be a monotonically 
decreasing function of q), the above maximum will be observed only under conditions when 
thermal fluctuations make a significant contribution to the scattering. As will be shown in the next 
subsection (5.4.2), scattering from static inhomogeneities always dominates at high degrees of 
cross-linking (near the cross-link saturation threshold), and even away from this threshold, for gels 
swollen to equilibrium in excess solvent. We therefore expect to observe a pronounced maximum 

Fig. 5.4. Isointensity plot in the (q,, , ql) plane of the scattering vector (parallel and normal to the stretching direction), for 
a gel prepared away from the cross-link saturation threshold and studied at the concentration of prepration, 
a3pCo) = a3p = 0.3. The parameters are ?i = 100 and CI = 1.1. 
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at q = 0 (due to scattering from static inhomogeneities), followed by a smaller maximum or 
a “shoulder” at intermediate q values (due to thermal scattering) in plots of the total scattered 
intensity, for lightly cross-linked gels and for gels studied at the state of preparation. The 
“shoulder” should disappear with progressive swelling of the network and at higher degrees of 
cross-linking. Both effects were observed in experiments [66-691. The complex shape of the 
scattering curves has been fitted by the sum of a Lorentzian form for the thermal contribution and 
a Gaussian form for the contribution of scattering from static inhomogeneities [70] (to the best of 
our knowledge, the possibility of a finite q maximum in the thermal structure factor of neutral gels, 
has not been mentioned by any of the previous investigators). 

Note that the effect of the maximum on the static scattering spectrum should become more 
pronounced with the approach to the O-point (poor solvent conditions), where thermal fluctu- 
ations are expected to diverge. Although this effect has been observed for charged gels [SS], it was 
attributed to the interplay between electrostatic and poor solvent phenomena [7i, 721, and similar 
experiments on neutral gels are needed to test our prediction. 

5.4.2. Long wavelength limit 
Exact analytical expressions for the density correlation functions of a gel in a good solvent can be 

obtained in the long wavelength limit (q + 0). When a network prepared at density p(O) undergoes 
an isotropic density change to a concentration p, the correlators of thermal fluctuations and of 
static inhomogeneities become 

Go = 
2@V( p/p’O95” 2 

1 + 2(p/p*)5!4(p/p(“))5!12 

and 

3pR[2(p’“‘/‘p*)5:4 + l] 
co = [(p’o’/p*)5:4 - l][l + 2(p/p*)5’4(p/u’“‘)“‘l2]2 . 

(5.37) 

(5.38) 

Note that the contribution of static inhomogeneities Co diverges near the cross-link saturation 
threshold, p (‘) = p* (Eq. (5.21)) and we predict 
practically all the observed scattered intensity 
the network heterogeneity parameter 

x G l/[(p’O’/p*)5’” - l] , 

that, for networks prepared close to p* conditions, 
comes from these inhomogeneities. We can define 

(5.39) 

which diverges at the cross-link saturation threshold. For X + m, the density in the initial state 
coincides with that in the equilibrium swelling state (swelling is suppressed with the approach to 
the cross-link saturation threshold, i.e., pes z p(O) z p*; see Eq. (5.24)) and the correlators are given 

by 

~ 2fV”s C NllS 

G 0 - 3a3 ’ 0 = a3 [ ( p’o)/p*)5’4 - 11 . 
(5.40) 

If the gel is prepared close to the cross-link saturation threshold (p(O) + p*) and then strongly 
compressed (p P p*), we get 

GoL,,,~ = lla3ta3p)“4t (5.41) 
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and 

83 

COLnP z 
9 

4a31ij5/3(4310)7/3[(p(o)/p*)5/4 - 1-J * 

Thermal fluctuations are independent of the degree of cross-linking and their intensity decreases 
slowly with increasing compression. Near the cross-link saturation threshold static inhomogenei- 
ties increase with increasing degree of cross-linking (as m - 5/3) and are rapidly suppressed by 
compression (as p - 7/3). 

For networks prepared away from the cross-link saturation threshold (p”’ B p*), we can 
distinguish between experiments in which the scattering is performed (1) on the gel in the state of 
preparation, (2) on the gel swollen to equilibrium in excess solvent and (3) on a gel compressed 
(isotropically) with respect to the state of preparation (p @ p(O)). 

(1) State of preparation, p = p(O). In this case, 

(5.42) 

i.e., the thermal component of the scattering does not depend on the density of cross-links (for fixed 
monomer density in the initial state). The scattering from static inhomogeneities increases with the 
density of cross-links and rapidly decreases with the concentration p(O). The ratio Y = Co/Go of the 
contributions of the static inhomogeneities and the thermal fluctuations is given by 

Y,,+ z 3 (p*/py4 4 1 ) (5.43) 

i.e., the thermal scattering dominates in the state of preparation. Note that, in this case, the 
scattering from the gel is expected to be very close to that from an equivalent solution, in agreement 
with experimental observations [47,57]. 

(2) Swelling equilibrium, p = p*(p(“)/p*)1’4 (from Eq. (5.24)): 

Y eq z (p(“)/p*)5’16 3 1 ) (5.44) 

i.e., the scattering comes mostly from static heterogeneities. Note that for gels swollen with respect 
to the state of preparation, the scattering is expected to increase with swelling, Go - pP114 and 
Co - P -7/3 (the effect is especially strong for scattering from static heterogeneities). This effect was 
also observed in experiments [47,57]. 

(3) Isotropic compression, p $ p(O) $ p*: 

Golcomp = 
1 

Colcomp = 
3(P(0))5/6 

.3(&)“4 ’ za’ 5/2~p7/3 * 

The corresponding ratio is 

Y camp z 3(P’“‘lP)5’6(p*/p)“‘4 4 1 , 

(5.45) 

(5.46) 

i.e., thermal fluctuations dominate. 
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We now consider uniaxially stretched gels (with deformation ratio a). The intensity of thermal 
fluctuations at small wave vectors parallel to the direction of elongation, is 

G’b = (2/a2)pm(p/p’0’)5”2 

1 + (2/a2)(p/p*)5’4(p/p’0))5’12 

and the corresponding contribution of static heterogeneities is given by 

c; = 3pR[2(p’“‘/p*)5’4 + l] 

c(P’“‘lP*)5’4 - l] [l + (2/a2)(p/p*)5’4(p/p’o’)5”212 . 

(5.47) 

(5.48) 

Near the cross-link saturation threshold (p(O) + p*) the scattering is always dominated by static 
inhomogeneities. 

Away from the cross-link saturation threshold, we distinguish between cases (1) and (2) (as 
above). In the state of preparation (l), the ratio increases from 

Y ‘L P P (0, 2 3 a”( p*/p@‘)5’4 < 1 (5.49) 

for moderate values of the deformation ratio a (a2 4 2(p(“‘/p*)5’4), to 

Y ‘L {> ,>‘O’ x 3a2 B 1 (5.50) 

for CI~ B 2(p(“‘/p*)5’4, i.e., the contribution of static inhomogeneities to the scattering in the 
direction of elongation dominates in the strong stretching limit. Therefore, the parallel component 
of small angle scattering from gels in the state of preparation, changes from thermally dominated to 
static inhomogeneity dominated regime with increasing stretching. 

Under equilibrium swelling conditions (2), the ratio of the corresponding structure factors is 
given by 

Y& z [3a4/(2 + u’)] (p(“‘/p*)5’16 s 1 (5.51) 

and therefore, scattering from static heterogeneities is always dominant. 
We now proceed to study the long wavelength scattering in the direction normal to the 

stretching axis. The thermal component of the scattering perpendicular to the direction of 
elongation is 

G 
ii 

2apR( p/p’“‘)5’12 

= 1 + 2a(p/p*)5’4(p/p’0’)5’1z 

and the perpendicular scattering from 

(5.52) 

the static heterogeneities is 

c 
; 

3pm[2(p’“‘/p*)5’4 - l] 

= C(P (0’ lP ) * 514 _ 11~1 + 2a(p/p*)5’4(p/p’0’)5’1212 
(5.53) 

As before, near the cross-link saturation threshold most of the scattering comes from static 
inhomogeneities. Away from the cross-link saturation threshold we get 

1. In the state of preparation 

Y,f+ x (3/2a”)(p*/p’“‘)“‘” $ 1 , (5.54) 

i.e., thermal scattering always dominates the scattered intensity in the direction normal to the 
stretching axis. 
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2. At equilibrium swelling 

85 

Y& zz a(2: a) (P’“‘lP*)5’16 ? (5.55) 

i.e., scattering from static inhomogeneities is stronger than that from thermal ones at small 
deformations but the situation is reversed in the large deformation limit. 

5.4.3. State of preparation 
An exact expression for the total structure factor can be obtained for gels in the state of 

preparation by replacing the RPA parameters by their renormalized values in Eq. (4.31) (this 
expression is valid for all wave vectors in the range 141 4 l/t’“)): 

$0) = 
pjq 

q (p(o)/p*)5/4 - 1 + (R’“‘)2q2/2 
(5.56) 

The correlation length, R(“)[(p(o)/p*)5i4 - l] - 1/2, diverges at the cross-link saturation threshold at 
which the length scale associated with the static heterogeneities becomes infinite and our RPA 
approximation for the frozen fluctuations of network structure breaks down. 

Away from the cross-link saturation threshold (p”‘/p* + 1) this expression reduces to 

Slpj ~ (p(“))-1’4a-15’4 

1 + @yq2/2 ’ 

i.e., the correlation length coincides with the size of a blob in the state of preparation (Eq. 

(5.57) 

(5.14)). 
We found that frozen heterogeneities of network structure give the dominant contribution to the 

scattering from gels prepared near the cross-link saturation threshold of the initial state (close to c* 
conditions). Away from the cross-link saturation threshold, thermal fluctuations dominate the 
scattering from an unstretched gel in the state of preparation, but static inhomogeneities dominate 
and the intensity of small angle scattering increases [70] when the gel is swollen to equilibrium. 

When the gel is uniaxially stretched, we predict that the angular dependence of the scattering 
intensity (at small wave vectors) will be always dominated by the static inhomogeneities and that 
butterfly patterns (in isointensity plots) oriented along the stretching direction will be observed. 
This holds even for gels prepared away from the cross-link saturation threshold and studied at the 
concentration of preparation (i.e., when thermal fluctuations dominate), since the angular aniso- 
tropy of static inhomogeneities is stronger than that of thermal fluctuations. 

6. Connection with continuum theory of elasticity 

In the previous sections we derived exact expressions for the density correlators which describe 
the static density inhomogeneities and the thermal density fluctuations in a deformed network. We 
found that the total structure factor is dominated, under most conditions, by the static density 
inhomogeneities and that under uniaxial extension, the predicted long wavelength angular aniso- 
tropy and the dependence on the deformation ratios are in excellent agreement with experimental 
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observations and reproduce the butterfly effect observed in small angle neutron scattering and light 
scattering experiments. 

Although we have presented what we believe to be a complete description of the butterfly effect, 
and found that it is related to the anisotropy of the elastic restoring forces in the stretched network 
and to the existence of an inhomogeneous equilibrium state of a deformed gel, a simple intuitive 
explanation proved to be quite elusive. Our problem can be traced back to the usual difficulty in 
representing polymer elasticity in the language of collective coordinates (i.e., density field) L-231. In 
this language, mechanical force balance conditions have to be reformulated in terms of equilibrium 
conditions on chemical potentials (the gradients of these chemical potentials are the thermodyn- 
amic forces which govern the response to monomer density changes) and, while we have good 
intuition about how osmotic forces can be described in these terms, we are much less familiar with 
the way in which elastic forces are represented in this formulation (note, however, that this problem 
has been considered in the literature in other contexts - see e.g. [73]). 

Can we describe the physics of the inhomogeneous equilibrium state of deformed gels in terms of 
mechanical equilibrium between ordinary forces? From the knowledge that forces are conjugate to 
displacements, we have to reformulate the problem in terms of displacement fields. Following this 
line of argument, we will try to recast the physics of gels into the language of the ordinary theory 
of elasticity of solids, generalized to the case of inhomogeneous deformed continua. Note that 
although such a continuum description cannot capture the small-sale behavior of gels, it should be 
able to reproduce long wavelength phenomena such as the butterfly effect. 

6.1. Anisotropic moduli of homogeneous deformed networks 

We begin with the mean-field free energy of a homogeneous gel, with a constant density of 
cross-links v (Eq. (3.30)), and note that the change in the elastic free energy associated with the 
deformation along the principal axes can be written as (for simplicity we assume that the 
temperature is the same in the initial and the final states): 

K{&> v 
- = -j v X(/t,” - 1) . 

T z 
(6.1) 

We would like to extend this expression to a general class of deformations characterized by an 
arbitrary displacement field u(‘)(x(~)) = x - X(O) which describes the displacement of a point 
x(O) +x in a solid under a given deformation. We can follow the path of the usual continuum 
theory of elasticity of homogeneous and isotropic solids [21] by expanding the free energy in the 
gradients of this displacement field. However, since we are interested in large deformations (strains 
of order of or larger than unity), we must retain the nonlinear terms in the definition of the strain 
tensor (the importance of introducing second-order strains in the present context was emphasized 
by Alexander [22]) 

(6.2) 

Furthermore, in principle, we must keep all higher (than second) orders in the strain tensor in the 
expansion of the free energy. The expansion coefficients will be determined by the requirement that, 
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for deformations given by u(‘)@(O)) = L *t(O) - x(O), our free energy is given by Eq. (6.1). Thus, 

~elcu’“‘l = k(O) 

T s [ v(O) 1 u,,(x’“‘) + 8 1 z&x(o)) 
M %P 

+ KC u,‘(x’“‘) + ... ) 

I 1 

where the scalar form of the expansion coefficients 

(6.3) 

is dictated by the isotropy of the undeformed 
solid (the assumption of local isotropy has to be modified in the presence of static heterogeneities 
which will be considered later). 

Substituting the displacement u(‘)(x(‘)) = ;1 *x(O) - x(O) into the definition of the strain tensor, 
Eq. (6.2), gives 

IA zp = N,” - 1)&p * (6.4) 

Inserting this expression into Eq. (6.3) and comparing with Eq. (6.1), we conclude that the term 
linear in u,, reproduces our mean-field elastic free energy and therefore, that the coefficients of all 
higher-order terms must vanish identically. Furthermore, since the integration in Eq. (6.3) is over 
the volume of the undeformed gel, r/(O) = V/(&1,/2,), the coefficient v(O) is given by v(O) = vll&, 
and can be interpreted as the density of cross-links in the initial state. We conclude that the 
generalization of our elastic free energy for arbitrary deformations (because of the contribution of 
second-order strains this diagonal form describes shear deformations as well as volume changes) is 
given by 

Fe, [zdO’] 
= 

T s dx’“‘v’o’ 1 u,,(x’O’) . 
2 

(6.5) 

Note that terms linear in the strain tensor (such as above) are usually neglected in ordinary 
continuum theories of elasticity of solids [21]. The reason for omitting them is that the theory of 
elasticity is an expansion about the equilibrium state of the solid and it is usually assumed that 
there are no internal stresses in this state. A different situation exists in a polymer gel which is solid 
permeated by a liquid. The equilibrium state of a gel is achieved by balancing the entropic tension 
in the chains against the osmotic pressure (which appears in the full free energy of the gel, equation 
(3.30)) and, therefore, non-vanishing elastic stresses exist in the network even in the absence of 
externally applied deformation [223. 

We proceed to calculate the elastic modulus which governs the response to small fluctuations in 
the final deformed state of the homogeneous gel and, to this end, we consider a small displacement 
with respect to the deformed state. Referred to the initial undeformed state, the displacement can be 
written as 

U(O)(X(O)) = 2 *x(O) - x(O) + u(l *x(O)) ) (6.6) 

where u(A *xl”)) = U(X) is a small displacement of the point x = 1 *x(O) in the affinely stretched 
state of the network (Fig. 6.1). 

We now express the free energy, Eq. (6.5), in terms of the displacement field, referred to the final 
deformed (and, depending on the deformation, possibly anisotropic) state. For this we need to 
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Fig. 6.1. The displacements U(O) (x(O)) and u(A tx) of the point x(O) referred to the coordinates of the undeformed and the 
deformd gel, respectively. The undeformed and the deformed network is shown by solid and broken lines, respectively. 

substitute Eq. (6.6) into Eq. (6.2), insert the expression for u,, into (6.5) and introduce the change of 
variables .X(O) +x. Under this transformation, the gradient operators in the two states are related 

by 

a/axp’ = n,a/ax, (6.7) 

and the volume element transforms as 

dx’O’ = dx/n,n,n, . (6.8) 

Substituting these replacements into Eq. (6.5) and noticing that, upon integration, the terms 
linear in &,(x)/ax, contribute a surface term which balances the externally applied force (this term 
is omitted in the following), we obtain the elastic free energy functional 

(6.9) 

where Fe1 { A,} is given by our mean-field expression, Eq. (6.1), and defines the reference free energy 
of the deformed homogeneous state. 

In the Fourier representation, the free energy associated with small deformations and fluctu- 
ations about the affinely deformed state can be written as 

(6.10) 

Comparing this expression to the general form of the elastic free energy valid for small deforma- 
tions with respect to the anisotropically stretched state 

(6.11) 

we find that the effective elastic modulus for small fluctuations about the deformed state is given by 

/iij;k[ = Tvf?fdikdjl . 
(6.12) 

We conclude that the modulus of an anisotropically deformed network (for which some of the (Ai} 
difSer from each other) depends on the externally imposed deformation and is, in general, anisotropic. 
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6.2. Equilibrium state of deformed inhomogeneous gels and the butterfly efect 

Up to this point we have constructed the expansion of the elastic free energy in terms of 
displacement field U(X), with respect to a deformed homogeneous state. Such a homogeneous state 
can no longer be considered as the equilibrium state of randomly cross-linked networks whose 
state of preparation is characterized by a spatially non-uniform distribution of cross-links and, 
therefore, a linear term in u(x) should appear in the above expansion. The coefficient of the linear 
term can be interpreted as a restoring force (f(x)) produced by the internal elastic stresses, which 
drives the network towards its new inhomogeneous equilibrium state. This restoring force depends, 
in general, on the concrete realization of network structure S and on its deformation {&}. In order 
to obtain the full free energy, we need to include also the osmotic term (wp’(x)/2) which accounts 
for the excluded volume forces that tend to swell the network. The full free energy associated with 
deviations from an affinely deformed homogeneous reference state is 

-(n*q)2(U9.U-9) +f9’u-9 +~(q.*9)(q.u-9) 
1 

) (6.13) 

where we have used the relation 

pq = - ipqau, = - iplqlua (6.14) 

to express the osmotic contributions in terms of the longitudinal components of the displacement 
field (ui). The above equation can be obtained by Fourier transforming the geometric relation 
V . u(x) = - 6&)/p (which follows from the network mass conservation law) between the displace- 
ment U(X) and the monomer density change &p(x) [21]. 

The displacement field (U(X)) which describes the inhomogeneous equilibrium state of the 
deformed gel (referred to the affinely deformed homogeneous state) is obtained by minimizing this 
free energy with respect to u, 

v(~*4)2(ug) +f, + W2q(q*(u,)) = 0 * (6.15) 

The above relation can be interpreted as a force balance condition which defines the mechanical 
equilibrium in the network. The first term describes the elastic forces which arise due to the elastic 
response of stretched chains and tend to compress the network and, as was shown above, such 
a term is present even in a homogeneous network. The second term is a network-structure- 
dependent force which drives the deformed gel towards the inhomogeneous equilibrium state. The 
third (purely longitudinal) term gives the osmotic force which tends to swell the network. The 
vectorial equation can be decomposed into three scalar ones, one for the longitudinal component 
(ui) (equivalent to the density - see Eq. (6.14)) and two for the transverse components (u:) (shear 
displacements). Since earlier in this work we only considered density modes, we will focus on the 
force balance equation for the longitudinal component which can be written as 

(u”) = - 4*.fi 
9 v(l * q)2 + wp2q2 . 

(6.16) 

Using Eq. (6.14), the above equation can be recast into the form 

P9 eq = n,L”/(l + wg,LW) , (6.17) 
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where we defined 

g,“” - p2q2/v(A * q)2 (6.18) 

and 

nkW = ip(q.f*)/v(A *q)2 . (6.19) 

Note that since the density of cross-links is given by v = p/2m, the above definition of 
g,“” coincides with the long wavelength limit of the previously derived expression for the thermal 
correlator of the elastic reference state, gq (Eq. (4.33)). Furthermore, if we identify the expression for 
nfw with the long wavelength limit of the density in the elastic reference state, II,, the expression for 
the Fourier components of the density profile, Eq. (6.17), is identical to the expression for the 
density profile of the inhomogeneous equilibrium state of the deformed gel, Eq. (4.20) (the finite 
value of n4 +0 in Eq. (4.34) is consistent with the requirement that, since f(x) describes the internal 
restoring forces in the network, its integral over the volume of the gel must vanish and therefore 

f q+o = 0). The equality nkW = rrg_,O = const. (see Eq. (4.34) for the structure averaged correlator of 
n,+,) allows us to write the longitudinal component of the restoring force fi as 

f! = - W~*d2/h.711~,-0 . (6.20) 

When the gel is subjected to uniaxial deformation, the amplitudes of the elastic restoring force 
which would be present even in a homogeneous network (the first term in Eq. (6.15)), and of the 
force fi, increase in the stretching direction and decrease normal to it. We conclude that both 
forces originate in the elastic response of stretched chains to further deformation. This response is 
stronger in the direction of the applied deformation and the condition of mechanical equilibrium 
implies that the amplitude of the osmotic force must also increase along this direction, with the 
result that the amplitude of the density modulation which characterizes the inhomogeneous equilibrium 
state of the deformed gel, must increase along the stretching direction and decrease normal to it. This 
density profile produces the butterfly-shaped isointensity lines observed in scattering experiments. 

In order to complete the connection between the present formulation and our RPA density 
functional results, let us now consider the thermal fluctuations about the inhomogeneous equilib- 
rium state of the deformed gel, Since we are interested in the density fluctuations we will consider 
only the contribution of the longitudinal fluctuations of the displacement field @u”(x) = U”(X) 
- (Us’)) to the fluctuation free energy. Expanding the free energy, Eq. (6.13), in the fluctuations 

of the longitudinal component of the displacement field yields 

A@ nuct[U] = f [& [v(3, *q)2 + wp2q2] &.@u”, . (6.21) 

Using the relation between the thermal density fluctuations and the longitudinal fluctuations of the 
displacement field (see Eq. (6.14)), pih = - iplql&ulj, in the equipartition theorem (&@u!,) = 
[v(L + q)2 + wp2q2] - I, we obtain the correlator of thermal density fluctuations about the inhomo- 
geneous equilibrium state of the deformed gel 

( p;hpfhq) = gkW/( 1 + wg,LW) . (6.22) 

where we used the definition of gq Lw, Eq. (6.18). The above result is identical to the previously 
derived expression for the long wavelength limit of the thermal correlator G, (Eq. (4.27)). We 



S. Panyukov, Y. Rabin/Physics Reports 269 (1996) I-131 91 

therefore conclude that the continuum theory of elasticity of inhomogeneous deformed networks is 
equivalent to the long wavelength limit of our RPA density functional formulation. 

The above discussion gives an explanation of the butterfly effect in the familiar language 
of balance of forces. We now understand that the butterfly efict reveals the anisotropic 
and inhomogeneous character of the equilibrium state of the deformed network. The angular 
anisotropy factor (A *q)2 expresses the fact that the elastic moduli of a deformed network 
(whether a homogeneous or an inhomogeneous one) depend on the magnitude and the direction 
of the deformation. The amplitude of the e#ect and the direction of the butterfly pattern (parallel 
to the stretching direction) are determined by the presence of static heterogeneities (non-vanishing 
n,+,) and the efict would disappear in the absence of such inhomogeneities (note that the 
thermal fluctuation contribution to the structure factor is much smaller than that of static 
inhomogeneities and the direction of angular anisotropy is perpendicular to the observed one - see 
Eq. (6.22)). 

7. Discussion 

In this work we studied the statistical mechanics of randomly cross-linked, arbitrarily deformed 
polymer networks. Starting from a “microscopic” Hamiltonian, we have used replica field theory in 
order to account for the heterogeneous structure of polymer networks and obtained extensive 
statistical information about the macroscopic, mesoscopic and microscopic behavior of polymer 
gels. Our solution of the statistical mechanics of this problem is on the same level of mathematical 
rigor as that of the well-established (static) theory of polymer solutions. 

We have shown that once it is formed, a polymer network has a unique state of microscopic 
equilibrium which depends on temperature, quality of solvent, average monomer density and 
externally imposed deformation. This state of equilibrium is characterized by a unique set of 
average monomer positions (which change affinely with the macroscopic deformation of the 
network) or, equivalently, by a unique inhomogeneous monomer density profile. We have given 
a complete statistical characterization of this equilibrium profile in terms of the moments of the 
static equilibrium density profile. 

We found that the intrinsic inhomogeneity of structure of the gel is determined by the density 
of cross-links in the state of preparation and by a dimensionless inhomogeneity parameter 
which measures the distance from the cross-link saturation threshold. Gels prepared by instan- 
taneous cross-linking away from the cross-link saturation threshold (but still at much 
higher cross-link density compared to the gel point) have microscopic density heterogeneities, 
on length scales comparable to the mesh size (the wavelength associated with these heterogeneities 
increases with the degree of cross-linking and diverges at the cross-link saturation threshold). 
We have shown that gels prepared by cross-linking from semi-dilute solution away from the 
threshold are characterized by strong interpenetration of network chains, i.e., there are many 
cross-links in the volume spanned by a single chain (the shortest contour distance between two 
cross-links). 

We showed that the elastic restoring forces in gels subjected to anisotropic deformation, depend 
both on the magnitude and the direction of the deformation and that the condition of mechanical 
equilibrium between the opposing elastic and osmotic forces, leads to the anisotropic density 
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profile which characterizes the inhomogeneous equilibrium state of stretched networks. This 
static anisotropic profile gives rise to the butterfly patterns in isointensity contours observed 
in static light and small angle neutron scattering experiments. Thermal fluctuations (which 
can be observed by dynamic light scattering) about the anisotropic equilibrium state are 
also anisotropic, but with anisotropy axes rotated by 90” with respect to those of the equilibrium 
profile. 

Although the physical picture which emerges from our work is very different from that of the 
classical theories of polymer gels, many of our thermodynamic results (on the RPA level) agree 
qualitatively with the classical theories of elasticity of polymer networks [6, S] and give rise to 
similar stress-strain relations. Such theories give a good description of the elasticity of swollen gels 
[74] but fail to predict the elastic response of dense networks for which Mooney-Rivlin corrections 
[75] have to be introduced. These corrections are usually attributed to entanglement effects which 
are important for concentrated, sparsely cross-linked (m 2 N,, where N, is the entanglement 
length) networks and which are not considered in this work. 

New thermodynamic predictions made in our work concern phase separation in polymer 
networks swollen by low molecular weight solvents. We found that swollen gels will undergo 
microphase separation on a length scale of the order of the mesh size, at some temperature 
below the O-point. Macrophase separation (by spinodal decomposition) will result under compres- 
sion, or under uniaxial extension in the state of preparation (due to the divergence of thermal 
fluctuations in the directions normal to the stretching axis). Similar effects (stretching-induced 
segregation of free chains dispersed in the network) are predicted for gels swollen by polymeric 
solvents. Although we are unaware of any experimental studies on strain-induced spinodal 
decomposition in gels, shear effects on phase separation were recently observed in polymer 
solutions [76,77], and blends [19]. In these systems, other mechanisms (notably the concentration 
dependence of the viscosity [78]) not considered in our work, are believed to play an important 
role. 

New thermodynamic results were also obtained in the case of semi-dilute gels in good 
solvents. We found that fluctuations renormalize not only the osmotic but also the elastic part 
of the free energy which depends in a non-trivial way on the swelling of the gel. This leads 
to the breakdown of the classical additivity assumption and to the prediction of increased 
chain interpenetration upon compression (and desinterpenetration upon reswelling). Other inter- 
esting effects are the prediction of the concentration dependence of the shear modulus which differs 
from the classical one, and the emergence of a negative effective Poisson ratio at finite elongations 

1641. 
A wealth of phenomena were predicted for the mesoscopic range of wavelengths probed by 

scattering experiments. We showed that the butterfly effect is the characteristic signature of the 
continuum theory of elasticity of polymer networks which gives rise to a deformation-dependent 
anisotropic elastic modulus, and that the observed enhancement of the scattering in the direction of 
stretching is dominated by the static inhomogeneities. Note that since the predicted angular 
dependence of the elastic modulus survives in the continuum limit, it can be observed, in principle, 
even by ultrasonic measurements on stretched networks. 

Our detailed expressions for the structure factors of deformed networks allow us to use the 
results of scattering experiments to obtain (average) structural information about the network in its 
state of preparation, such as the average chain length between cross-links m and the value of the 
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heterogeneity parameter X (which tells us how close to the cross-link saturation threshold the gel 
was prepared). Information about the distribution of chain lengths in the network can also be 
obtained by comparison with the scattering from reference polymer solutions (characterized by 
different molecular weight distributions). Although the present theory is restricted to the case of 
randomly (instantaneously) cross-linked networks, many of its qualitative predictions are 
applicable to networks made by end-linking of monodisperse polymer solutions. We hope 
that future experiments will be able to reproduce this aspect of our model (by preparing 
networks cross-linked by irradiation from solution) and attempt a quantitative comparison with 
our theory. 

We would like to comment on the limitations and the possible extensions of our theory. While it 
does not include some of the features of real polymer gels (such as entanglement contributions to 
elasticity [79] and the non-Gaussian character of real chains [SO]), it does capture what we 
consider to be the most important characteristics of polymer gels: the frozen randomness of their 
structure introduced by the statistical character of their preparation, and the interplay between 
short-range (“liquid”) osmotic and long-range (“solid”) elastic forces. Moreover, entanglement 
effects can be included by a proper generalization of the present model, which accounts for the 
effective “tube” introduced by the topological constraints [Sl]. This will allow one to study the 
transition from Mooney-Rivlin to Flory-type elasticity, with progressive swelling from the dense 
state of preparation to the semi-dilute, equilibrium swelling regime. Although our model strictly 
applies only to semi-dilute gels in which the second virial approximation holds (with the exception 
of the case of free chains dissolved in the network, where strong screening gives rise to a broader 
range of applicability of mean-field arguments), the generalization to the concentrated regime by 
replacing the second virial approximation by a concentration-dependent osmotic free energy, is 
straightforward. 

The theory can be extended (work in progress) to the important case of weakly charged 
polyelectrolyte gels [82]. Another possible extension involves heterogeneous networks formed by 
random cross-linking of two different polymers. The most non-trivial extension involves the 
dynamics of gels and temporary networks [12]. This requires the introduction of viscous friction 
and consideration of temporary entanglements and offers a new perspective for the study of the 
viscoelastic behavior of polymers. 

We would like to conclude this work with some general comments on the nature of randomly 
cross-linked polymer gels. Polymer gels are fundamentally different from both crystalline solids 
and amorphous solids (such as glasses). Unlike glasses, once they are formed by cross-linking, they 
have a unique state of equilibrium in which the average positions of all “atoms” (i.e., monomers) are 
completely defined by the thermodynamic conditions. Although, in the above sense, gels resemble 
ordinary crystalline solids, there are several important differences: 

1. There is no long-range order in gels, whether periodic (as in crystals) or non-periodic (as in 
quasi-crystals). This is a consequence of the fact that the structure of a gel resembles a snapshot of 
the polymer solution from which it was formed. 

2. In ordinary solids, fluctuations take place only on length scales smaller than the distance 
between the neighboring atoms (otherwise they melt, according to the Lindemann criterion). In 
gels, thermal fluctuations take place on length scales of the order of the distance between 
topologically neighboring cross-links (i.e., cross-links which are nearest neighbors along the chain 
contour), which is much larger than the distance between spatially neighboring cross-links (since 
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Fig. 7.1. Schematic drawing of spatially (A and C) and topologically (A and B) neighboring cross-links. The localization 
volume of cross-link A (the length scale of its thermal fluctuations) is indicated by the dashed circle. 

there are many cross-links in the volume of a single mesh) - see Fig. 7.1. Nevertheless, since 
permanent cross-links are formed by strong covalent bonds, these large-scale thermal fluctuations 
do not result in melting and gels maintain their solid character as long as network chains remain 
unbroken. 

3. In ordinary solids the attractive interactions are usually of the nearest-neighbor type. 
In polymer networks, the attractive interaction between cross-links is only due to the con- 
necting chains and since the average distance between cross-links which are neighbors along 
the chain contour is much larger than the distance between cross-links which are neighbors 
in space (Fig. 7.1), the attractive interaction has a long-range character. This also means that 
the length of the average minimal cycle (the minimal contour length of a closed path emanating 
from a cross-link) is much larger than the mesh size. Since this contour length determines the 
length scale on which the shear rigidity of a solid is established [22] (there would be no resistance 
to shear at all, in the absence of such cycles, in a non-entangled polymer network), gels are soft 
solids. 

The above discussion suggests that polymer gels are the only known example of a new class of 
materials which can be called soft disordered equilibrium solids. 
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Appendix A. Field theoretical preliminaries 

A. 1. Functional integrals 

We start with the following fundamental identity for a Gaussian field $(x): 

dx’h(x)g(x,x’)h(x’) 

95 

64.1) 

where the averaging is performed with the weight 

64.2) 

In Eq. (A.l) h( x is an auxiliary vector field and g is an arbitrary positive-definite operator. Its ) 
inverse, g - i, is defined by 

s dx”g_ l(x,x)‘)g(x’),x’) = 6(x -x’) . (A.3) 

Identity (A.l) can be proved by introducing a shift 

V+(X) + $(x) + 
J’ 

dx’g(x,x’)h(x’) 

into the second term in Eq. (A.l). Differentiating the third term in this equation with respect to the 
field h and taking the limit h = 0, yields 

a’ g(x’x’) = 6h(x)6h(x’) (ev{ jhh(xM(x))>, IhzO 

= s W,WW’PCIC/(4l = hW,4W, . 

Here we have used the usual definition of a functional derivative 

6I[h]=I[h+6h]-I[h]= ddh(x)$$, 
s 

(A.4) 

(A-5) 

which holds to first order in the arbitrarily small variation 6h. 
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In the case when the function g depends only on the difference of its arguments, g(x,x’) 
= g(x - x’), it is convenient to write down Eqs. (A.l)-(A.4), in terms of the Fourier coefficients. 

The averaging is performed with the weight 

dq WI = exp k m is [ In (2rrg4) - * , gq 11 

64.6) 

64.7) 

where the ln(27cg,) contribution comes from integrating the denominator in Eq. (A.2). In deriving 
the above equation we used the fact that Eq. (A.3) becomes a trivial identity in the Fourier 
representation, g; ’ = 1 /gq. Eq. (A.4) transforms into 

% = @5711/-q>* . (A.@ 

A.2. Field representation for Gaussian chains 

Eq. (A.4) can be used to construct the field theoretical representation of the partition function of 
a Gaussian chain of N monomers with ends fixed at points x and x’, in an external field h(x). This 
function is given by the functional integral 

G~{x,x’;Chl} = J)Ws)ev{ - J)[&($>’ + 4-44)]}v (A.9) 

which is the solution of the diffusion-like equation 

[ 
&--a2V2+h(x) GN(x,x’;[h])=O, 1 (A.lO) 

with the “initial” condition 

GN{x,x’; [h(x)]} lNcO = 6(x -x’) . (A.ll) 

It is convenient to introduce the grand canonical analog of this partition function by the Laplace 
transform: 

J 
a) 

G (x,x’; [h] ) = dNemgNGN(x,x’; [h]) , (A.12) 
0 

where p is the chemical potential of monomers. Using the Laplace transform of Eq. (A.lO) with the 
initial condition (A.ll), it can be shown that this function obeys the equation 

[p - a2 V2 + h(x)] G{x,x’; [h]} = 6(x -x’) . (A.13) 

Comparison of Eqs. (A-3) and (A.13) shows that the inverse operator G-l {x,x’; [h]} is defined by 

G-l{x,x’; [h]} = 6(x -x’)[p - a2Vz + h(x)] . (A.14) 
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We proceed to derive an explicit field theoretical expression for the grand canonical partition 
function of a Gaussian chain. Substituting the operator G- ’ into (A.2), performing the integration 
over x’ with the aid of the b-function, and transforming the Laplacian into a square gradient by 
integration in parts, we finally obtain 

G (x,x’; [!I] ) = 
SDcPcP(x)cp(x’)exp{-HoCh,cp]3 

jDqexp(-HoCkcpl’I ’ 

where the effective (dimensionless) Hamiltonian Ho is defined as 

(A.15) 

(A.16) 

In order to avoid dealing with the denominator in Eq. (A.15) we introduce de Gennes’ n = 0 model. 
The trick consists of introducing an n-component vector field v(x) with components pi(x); 
i=l 9 .** 7 n and noticing that Eq. (A.15) can be formally written as 

[S 1 
n- 1 

G{x,x’; [h]} = tyo Dqexp{ --H~Ckcpll 

x s Dcpl~p,WqolW)w( - ~0Ck4hll . (A-17) 

Since, for integer n one can write 

[s 
Dqexp{ - fMkd1 3” =.j2J Dqi exp { -Ho Ck Vi1 1 3 

Eq. (A.17) can be recast into the simple expression: 

(A.18) 

Dcpcp,(x)cpl(x’)exp{-HoCh,cpl} v (A.19) 

where an analytic continuation over the number of components of the field cp, from integer values 
of n to the limit n = 0 is 
using 

(p2(x) 2 i &xx), 
i= 1 

implied. Here, HO[h, cp] is defined by replacing cp by cp in HO& cpl and 

wP(x))2 = i: vcpiw2 . 
i=l 

(A.20) 

Appendix B. Mean-field Hamiltonian 

B. 1. Replica space integration 

We start with expression (3.29) for the mean-field Hamiltonian (reproduced here again, for 
convenience): 

Hmf = s d&l(s) + T V’O’(p’O’)2 + m ; I/g . (B-1) 
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We first calculate the replica integrals j&R(5) = J dxLJdx,fi(5). Since the integrand depends 
only on the variable 5 = f(kT)2, the XT integration can be splitted into the product of a trivial 
angular factor JdsZ which gives the surface area of a 3mdimensional unit sphere, 
S3,,, = 2r~~““~/r(3m/2) (r is the gamma-function), and an integral of the form jdlxTl l~rl~“‘-~. The 
last integral can be written as Jr d5(25)3”‘2-1 and combining both contributions and integrating 
by parts, we obtain 

s % (2~5)~~‘~ dfi(5) =- 
0 (3m/2) - ~3~12) d(5) . 

(B-2) 

In obtaining the last equality we have used the relation B(co) = 0, which follows from the 
observation that the integrand (the Hamiltonian density, fi(c)) is a polynomial in cp&5), and thus 
it decreases exponentially fast with <, for 5 --) co (see Eqs. (3.24) and (3.26)). Expanding to first order 
in m and using the relations (3m/2). r(3m/2) = r(l + 3m/2) + 1 - 3my/2 (y is Euler’s constant) and 
(2~5)~m’~ + 1 + (3m/2)ln(2n5), yields 

s &T&5) s Cc 

0 

d51n(2rc[eY) @$) . (B.3) 

In order to calculate the above integral it is convenient to introduce the dimensionless variable 
t defined in Eq. (3.24). Writing In 5 = ln(a2m) + In t and neglecting the In t term, yields 

ii(O)[l + mln(afl)3]. 
The exponentially fast decrease (with 5) of the integrand in Eq. (B.2), means that dominant 

contribution to the integral comes from values of 5 in the interval between zero and a2W. We can 
use this fact to perform the remaining dxL integration, which goes over an infinite region (the 
integrand does not depend on the coordinates xL). Note that the condition 5 = 0 is equivalent to 

(k) = 0 or, equivalently to x, 
k+inition of xL (Eq. (3.19)), 

(k) = 3Lmxko) (see Eq. (3.10)). Substituting the latter relation into the 

(B.4) 

and integrating over X(O) we find that the integration over xLa contributes the factor 

VL z I/“’ n(l + mA,2)"' , 
r 

(B.5) 

where I/(O) is the initial volume of the gel. Finally, multiplying the results of the transverse and 
longitudinal integrations and expanding to first order in m yields 

s d&(5) = B(O) v (O) [ ( 1 + m ln(a$?)3 + i 11: , 2 >I u3.6) 

where Q(O) is obtained from Eq. (3.19), B(O) = /~pgi - z,(p$)‘. 



S. Panyukov, Y. Rabin/Physics Reports 269 (1996) l-131 99 

We proceed to calculate the contribution of the second term on the right-hand side of Eq. (B.l). 
The density in the zeroth replica is evaluated using the equality 

(B.7) 

where the second equality is obtained from the definition (2.33). Notice that since no assumptions 
about the precise functional form of A(g) were used in the derivation of Eq. (B.6), we can write 

(using L&O) = PZ~) 

N,,, = p:; Y-(O) 1 + m [ ( ln(afl)3 + i C n,” n )I . (B.8) 
This defines the density in the replica of the initial state, p(O) = Ntot/V(‘). 

Collecting all the terms in (B.l) and using Eqs. (3.4) and (3.5), after some algebra we arrive at the 
expression 

Hmf = fp (pjfj)’ T/(O) + m N, 
[ ( 

fc 
a 

i:+ln(aJZ)‘)+FVp”]. (B-9) 

B.2. The longitudinal subspace 

We now show that the condition s = 0 is equivalent to demanding that the deformation is affine 
in each of the replicas of the deformed state, i.e., x (k) = 1 +x(O). Using Eq. (3.20), the former 
condition can be written as 

(B.10) 

where the first equality is obtained, upon some algebra, from the definition (3.10), yck) = 
X(~) - i *r(O). All the eigenvalues of the matrix in brackets can be shown to be positive and, 
therefore, the last equality can be satisfied only if y, (k) = 0 (for all a and k), which completes our 
proof. We conclude that the condition 5 = 0 defines a 3-dimensional surface in the replica space, on 
which the affine relation between the coordinates of the initial and the final replicas is satisfied. This 
surface will be called the longitudinal subspace in the following. Its volume VL was calculated in 
Eq. (B.5). Since the mean-field solution decays on a length scale of the order of the average distance 
between cross-links, &I12 (see Eq. (3.26)), we conclude that the average positions of all the 
monomers in the replicas of the deformed state are uniquely defined by their positions in the initial 
undeformed state (they can be obtained from the latter by the affine transformation x(O) + 1 *x(O)), 
and that deviations from affinity can only take place due to thermal fluctuations about these 
average positions, on distances of the order of the mesh size. 
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Appendix C. Spectrum of fluctuations 

An arbitrary fluctuation 6q can be represented as a linear combination of the eigenmodes rj. 
Since t,G is the solution of a linear equation, it is only defined up to a multiplicative constant. In the 
following, we will choose this constant to be unity so that for each fluctuation mode we have 

&p(i) = I#) . (C-1) 

C. 1. Homogeneous solution 

The first step is to calculate the spectrum of eigenvalues of the operator K” (Eq. (3.35)) evaluated 
on the constant solution cp,&) = const. We will show that some of the eigenvalues of this operator 
are negative and therefore will not study further the spectrum of the operator K’ for the 
homogeneous mean-field solution. The secular equation is obtained by substituting Eq. (3.35) into 
Eq. (3.36) and removing a(.% - 2) by integrating over f’: 

(C.2) 

As can be verified by direct substitution into the resulting equation, the solutions are plane waves, 
I(/“@) N exp(iQ*$. Using the identities: jdxexp(iq*x) = 0 for q # 0 and jdxexp(iq*x) = I/ for 
q=O(V isth e volume of the final system), we have the following scenarios, depending on the 
direction of the wave vector ij: 

1. For wave vectors which lie in the ith (#‘) = (0, . . . qti', . . . 0)) sector of replica space, the only 
contribution comes from the ith term in the sum (since otherwise, one of the integrations over the 
1 # k replicas will be over the coordinatex”’ and the corresponding integral will vanish). In this case 
the factor exp(iC*$) can be taken outside the integrals and the integrations will result in the product 
of the volumes of all replicas except the ith one. We have to distinguish between two cases: 

(a) For wave vectors lying completely in the 0th (i.e., G(O) = (q(O), 0, . . . ,0)) replica, the integration 
produces a factor of V” and taking the limit m + 0 and collecting the terms in Eq. (C.2) we find the 
eigenvalues 

/ii (#O’) = (w(O) - z&J& + 2(q'Oy 

(b) For wave vectors which lie completely in the kth (i.e., 4(k) = (0, . . . 

space (k # 0), the integration produces a factor of I/“’ V m- ’ and in the 
eigenvalues 

nl (q(k)) = (wP'/V - Z&&f + a2(q(k))2 . 

(C.3) 

qfk),O)) sector of replica 
limit m + 0 we find the 

(C-4) 

2. For all other wave vectors, which are not restricted to these sectors (i.e., 4 = 
(q (0) ) . . . ,qtk), . . . , q""))), the sum in Eq. (C.2) does not contribute to the eigenvalue equation and we 
obtain 

A” (4) = - z, cp& + ,242 . (C-5) 
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The presence of the negative eigenvalues in Eq. (C.5) (for small enough values of 4) shows that the 
constant solution corresponds to a saddle point, rather than to a minimum of the Hamiltonian. We 
conclude that the solution which has the full translational invariance of H does not represent its 
ground state, and proceed to examine the stability of solutions with spontaneously broken 
translational symmetry. 

C.2. Inhomogeneous solution 

We turn to the calculation of the solutions of the secular equations, (3.36), which correspond to 
the inhomogeneous mean-field solution cp,,&) = ~~~(5) (Eq. (3.24)). Note that the mean-field 
solution does not depend on the 3-dimensional vector xL, defined by the projection xLa of the 
replica space vector 1 on the longitudinal subspace spanned by the three vectors i,, c1 = x, y, z 
(Eqs. (3.18) and (3.19)). This fact can be used to simplify the calculations by performing a partial 
Fourier transform with respect to the coordinates xLa 

where XT is a 3m-dimensional vector in the transverse subspace defined as the orthogonal 
complement to the longitudinal subspace (here f(k) is an arbitrary function of replica space 
coordinates). The advantage of this representation becomes evident by noticing that when the 
Laplacian p2 is applied to the functionf@), we obtain 

dq, (v+ - qi)fqL(XT)exp(iqL’xL) , 

where the Laplacian V’: is taken only with respect to the XT coordinates. 
In the following, we will express all eigenfunctions rl/(i), in terms of their longitudinal Fourier 

components 

$ &) = & cxT) w@zL ‘XL) , K-8) 

and label the corresponding eigenvalues as A(qL), 

C.2.1. Rotational modes 
The eigenvalues and eigenfunctions of the operator K’ can be obtained by substituting the 

mean-field solution cp&cJ into Eq. (3.36). Using the above-defined Fourier representation for the 
eigenfunctions +‘(Z), the corresponding secular equation becomes 

(C.9) 

The general solution of this equation, which satisfies the orthogonality condition $iL(xT). n = 0, is 
of the form $&T) = $,‘,(X+z4,, where &zq, is an arbitrary vector which satisfies the condition 
6n,, an = 0. The function II/,‘, is obtained from the scalar variant of Eq. (C.9). Since the vector 
&zBI. has n - 1 independent components, each of the eigenvalues A’(qL) is n - l-fold degenerate. 

Notice that the above equation has the form of a Shroedinger equation with a spherically 
symmetric potential. As is well-known from quantum mechanics, the ground state solution which 
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corresponds to the minimal value of ,4l is spherically symmetric [83]. Although there are also 
non-spherically symmetric solutions, they have higher energy and do not have to be considered in 
the present context (study of the stability of the inhomogeneous solution, cp,,,r(g)). 

The spherically symmetric solution can be found from the observation that Eq. (C.9) is identical 
in form to the mean-field Eq. (3.1) and, therefore, the solution is simply 

ti,‘,(-Q) = (Prn&)~~~, 7 (C.10) 

where 5 = x:/2. The corresponding eigenvalues are obtained by substituting this solution back into 
Eq. (C.9) and using Eq. (3.1): 

‘4’(4L) = a2q; . (C.11) 

These eigenfunctions and eigenvalues are associated with the rotations of the vector n in the 
abstract n-dimensional space. This can be demonstrated by showing how the field cp transforms 
under the infinitesimal rotation n 4 n + 6n, with &I@) = 6n,! exp(iq,*x,J. Under this rotation 

6%(i) = (PInf(S)n + bn - cPnlr(5) = 43nIf(s)on(~) . (C.12) 

Since &n(k) is orthogonal to n, the deviation (C.12) corresponds to the transverse mode of the 
fluctuations. These solutions are gapless Goldstone modes, i.e., their eigenvalues are positive 
definite and vanish in the long wavelength limit. The situation is equivalent to that of a ferromagnet 
(with n + 0 spin components) where the Goldstone modes describe “soft” (q + 0) rotations of the 
magnetization vector [36], although in our case these modes do not have a simple physical 
interpretation. 

We proceed to calculate the spectrum of the operator K1!. The secular equation (3.36) is obtained 
by substituting the mean-field solution, expression (3.24), into Eq. (3.35), where for simplicity of 
notation, we drop the superscript I, everywhere in the following: 

[l/N - a2 v2 - 3(~,/2)(p~,(~)]rj(Z) + q&q) f wtk) ;i~‘~‘(x(~)) = /iII/(i) , 
k=O 

(C.13) 

with wfk) = w for k = 1, . . . ,m. Here, 

g/P (X(k)) = s d.? r)(X’k’ - X’(k)) (p,f (5’) I+4 (3) (C.14) 

is the density fluctuation in the kth replica (this identification follows from Eqs. (2.32) (2.46) and 

(Cl)). 
Eqs. (C.13) and (C.14) admit two types of solutions which can be classified according to whether 

the density fluctuations 6p ‘k) do or do not vanish identically in all the replicas (i.e., for all k). 

C.2.2. Shear modes 
Consider the case 

&p’k)(~‘k’) = 0 for all k , (C. 15) 
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Such fluctuations correspond to pure shear modes, i.e., to displacements in replica space which do 
not affect the density in each of the replicas. Substituting the partial Fourier transform, Eq. (3.37), 
into Eq. (C.13) we can recast the latter into the form: 

(C.16) 

It is convenient to represent this equation in a dimensionless form by introducing the 3m- 

dimensional vector r 3 _x,/(uN~~~). Defining tiqL(xT) = t(r) and t = r2/2, yields the dimensionless 
eigenvalue equation 

(1 - 7,” - 3X2(t))&) = a<(r) , 

where x is defined in Eq. (3.24) and where the eigenvalues /1 and a are related by 

(C.17) 

II = a2q; + m/m . (C.18) 

Eq. (C.17) has the standard form of a Shroedinger equation in a spherically symmetric potential. 
Its solution can be represented as a product of a radial (function oft only) and an angular (function 
of the direction of r only) part [83]. The latter is an eigenfunction of the angular momentum 
operator (in the 3m-dimensional space) and is labelled by the angular momentum quantum number 
1 = 0, 1,2, . . . (the eigenvalue q is (3m - 1)1+ 1 degenerate). 

The lowest “energy” solution is spherically symmetric (1 = 0) and is therefore a function oft only. 
Substitution into Eq. (C.14) shows that such a solution cannot satisfy the condition (C.15) and thus 
must be rejected. The I= 1 case corresponds to the dipole-type solution tl(r) = V,x(t), with the 
eigenvalue zrrl = 0. This solution will be studied in detail below. Solutions which correspond to 
higher harmonics (with 1 > 1) have positive definite arl which increase monotonically with 1. The 
corresponding fluctuations have positive-definite eigenvalues (Eq. (C.18)) and therefore do not 
affect the stability of our mean-field solutions. They describe complicated distortions in replica 
space and will not be considered further in this appendix (their contribution will be included when 
we derive the fluctuation corrections to the partition function, in Appendices D and F). 

We now return to the case 1 = 1 and note that an equation of the same form as (C.16), can be 
obtained by applying the VT operator to Eq. (3.1) and, therefore, V&pmf(g) is a solution of Eq. (C.16). 
The general solution of (C.13) is obtained by multiplying the transverse gradient by a constant 
vector iiT: 

Ic/&T) = &T ’ ~T)%I&) . (C.19) 

This solution has to satisfy the 1 + m conditions &#“(.@) = 0, or in terms of their Fourier 
transforms, 

p$!, = 
s 

di exp( - i~(k)~~)~mf(~)~(~) = 0 , (C.20) 

where, as before, we define 4(k) = (0, . . . qck), . . . 0). The integral can be calculated by separating the 
integration into longitudinal and transverse components, d_? --f d&d+. In order to perform the 
integration over the longitudinal component, it is convenient to define the projections of these 
replica space wave vectors on the parallel and the perpendicular directions to the subspace spanned 
by the three unit vectors 2, (Eq. (3.18)). The corresponding projections are given by #) = &#~Z, 
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and @’ z G(k) _ @, where &A = Qck) - 2, can be treated as the components of a three-dimensional 
vector qf’. Similarly, the 3mdimensional vector q?) is defined by the projection of the replica 
vector 4(k) on the transverse subspace. Substituting Eq. (3.18) for 2, yields (in the limit m + 0) 

qp = q(o), (q$‘))’ = 0 , qc) = A*qck) for k # 0 , (C.21) 

where the second equality is obtained from the first one by noticing that (&‘))2 = 
(#“)’ - ($?)2 = 0. The rather strange peculiarity of vectors in replica space is that, in the limit 
m + 0, we may have (@‘))” = 0 but @ - q$) # 0 (an example is given by an 3m-component vector 
UT = (1, 1, . . . , 1) whose elements are all different from zero but whose norm vanishes in the limit 
m + 0). 

With the above definitions, the replica space product in the exponent of Eq. (C.20) can be written 
as the sum of longitudinal and transverse contributions: 

^(k) 
4 *i = qf)‘x,_ + #‘XT. (C.22) 

Making the above replacement in Eq. (C.20) and using Eq. (3.37), the integration over dxL gives 
a b-function, 6(qf) - qL). Substituting Eq. (C.7) into the remaining integral over dxT and moving 
the constant iiT outside the integral, condition (C.20) becomes 

CT' s &T exp( - iqf"xT)%f(d vThf(d = 0 . (C.23) 

Using (~~~(5) VT~p,f(5) = VT;.&(5)/2 and integrating by parts, we finally obtain (the surface term 
vanishes since cp,r( 5 --+ co) + 0) 

(iT’qt)) 
s 

dxT exp( - i&)‘+)&(5) = 0 . (C.24) 

Since the above integral is, in general, non-vanishing, the vector iiT must obey the condition 

iiT*qT (k) = 0. 

The eigenvalues are calculated by comparing Eq. (C.16) with the equation for VTqD,f(5) (obtained 
by applying the gradient to Eq. (3.1)). This gives 

M4L) = a2q; T (C.25) 

i.e., shear modes are gapless Goldstone modes. We show below that the eigenfunctions (C.19) 
describe the infinitesimal displacement XT +xT + UT($) of the coordinate XT (in the abstract 
transverse 3m-dimensional subspace). Under the displacement UT(&) = UTq exp(iq l xL), the vari- 
ation of the field PI has the form 

&P(2) = 4&f (5)IxT+xT+uT - %fk-) = uT(xL)e bihnf(d = tiq,tXT) . (C.26) 

Under this displacement, the argument of the function qmf(5) changes as 5 --f 5 + XT-UT and, 
expanding t0 f&t order in UT, we obtain the second equality in Eq. (C.26). The third equality 
follows from comparison with (C.19), upon identifying the arbitrary vector iiT with the displace- 
ment UT. The additional condition UT - qT (k) = 0 (see Eq. (C.24)) means that the displacement UT has 
to be orthogonal to the m + 1 vectors qT . (k) This condition imposes m + 1 constraints on the 3m 
components of the vector UT and we conclude that the shear modes are 2m - l-degenerate. 
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We now return to Eq. (C.14) and consider the general case in which at least one of the density 
fluctuations @I’~‘(x’~‘) is not identically zero. It is convenient to work with functions over the usual 
three-dimensional space (i.e.,xfk’) in each of the replicas, instead of the 3( 1 + m)-dimensional replica 
space. This is achieved by recasting Eq. (C.13) into an equation for QI(~)(x’~‘). This equation can be 
used to express rl/ through 6ptk’, 

l)(i) = - dE-‘D(A;i,iycp,,(~‘) i s ,(b+‘k’ (X40) , 

k=O 
(C.27) 

where D is defined by the equation 

[l/N - /I - a2v2 - 3(z,/2) &&)I 0(&i,?) = 6(i -2). (C.28) 

Substituting (C.27) into (C.14), we obtain a closed system of linear integral equations for 6p’k’: 

Q(k)(X) + f M:“) 
s 

du’g$l(x, x’)+P(x’) = 0 ) (C.29) 
I=0 

where we define the replica space density correlation functions: 

g$l(x,x’) = di&J#(x -Xtk’) d.?cp,f(~‘)ij(X’ -x’“‘)D(/i;&?) . 
s s 

(C.30) 

The problem can be further simplified by Fourier transforming Eq. (C.29). For this we have to 
calculate the Fourier transform of the functions g:‘(x,x’), 

g$‘(qtk), q(I)) = d.?cp (5) d2 c~~~(~‘)D(/i;i,~)exp(i~(~).~ - i#“*i’) . 
s mf s 

(C.31) 

Changing the integration d_? + dxLdxT (and dG -+ dxL du;) and performing the integrations over 
the longitudinal coordinates using Eq. (C.22), yields 

(C.32) 

x D(/i - u2 (qp’)2; XT, x;)exp(i&’ ‘XT - i# ‘x;) . (C.33) 

In deriving Eq. (C.33), we used the replacement p2 + V: - (qf’)2, which introduced the shift 
LI -+ /1 - a2(qf’)2 (Eq. (C.7)) into the longitudinal Fourier transform of Eq. (C.28). In calculating 
the above integrals we only consider the usual continuous description of a solid in which one only 
considers wavelengths that are much larger than the characteristic microscale (in our case, this 
microscale corresponds to the average spatial distance between cross-links, UN 1’2). Since this 
distance is the characteristic length scale for the decay of the classical solution (cp,,(s $ u2N) + 0), 
in evaluating the integrals we can expand the exponentials and keep only terms to second order 
in 4:’ .xT. Furthermore, since 1q’;)l and lqr’[ can differ only by a factor of order unity (i.e., by 
a multiplicative factor of E.), the functions g:’ (qf’) have to be calculated also only to order (qf))2. 

This calculation is carried out in Appendix E. 
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Fourier transforming Eq. (C.29) and eliminating the integrations using the b-functions in (C.32) 
yields a set of algebraic relations between the Fourier coefficients of the solutions Zip(O)(x) 
= ~$2, exp(iq”) OX) and Gp”‘)(x) = pf) exp(iq ‘x), with q(O) = 1, *q = qL 

[ 1 + w(O)g:O(qL)] p$ + wg$’ (qL) -f pp’ = 0 ) 

k=l 

Cl +  WkIYbzL) - sfi2(4L)n PF’ + w’O’gy(qL) p$! + wg;2 (qL) -f pz.“’ = 0 , (C.34) 
k=l 

where we used the identity of the k # 0 replicas to replace the general replica indices (k, 1) in the 
functions (C.33), by those of the first and the second replicas. This symmetry can be used in 
Eq. (C.29), in order to recast it into a system of equations for the fields p$! and qs = IF= 1 pik’: 

[ 1 + w’“‘g,oo(qL,]p$i + wgy(qL) f& = 0 , 

Cl + w(g,szL) - d2(qL) + ~d2(4L))1 qq + mw’O’dO(qL) Py = 0 . (C.35) 

The eigenvalues A(qL) are obtained from the condition of solvability of this linear system of 
equations, 

[l +w ‘“‘s?o(qL)3 Cl + W(dhL) - d’@zL) + ed12(4L))1 

= mw(O)w [gy(qL) J” . (C.36) 

Strictly speaking, we can set m + 0 in the above equation and find the two eigenvalues from the 
condition that one of the two terms in the square brackets vanishes. Extra care must be taken in 
calculating the corresponding eigenfunctions since Eq. (C.36) admits three different types of 
eigenmodes, two of which become degenerate in the limit m + 0. 

C.2.3. Density modes in initial state 
The first type of eigenmodes corresponds to eigenvalues &)(qL) which, in the limit m 4 0, are 

determined by setting to zero the term in the first square bracket on the left-hand side of Eq. (C.36) 

1 + w’“‘g;o(qJ_) = 0 (C.37) 

Substituting the expressions (Appendix E) for gi” (in the limit m + 0) into (C.37) we find 

&,(qL) = (w(O) - z,) 4& + a2(qL)’ . (C.38) 

Since this eigenvalue does not vanish, in general, in the limit q + 0, following the usual 
terminology we say that the corresponding solution is massive (i.e., has an energy gap). The gap 
vanishes at 

z, = llpV.Yl\Jmin = wW 
, (C.39) 

which can be interpreted as the cross-link saturation threshold that defines the highest density of 
cross-links that can be achieved by instantaneous cross-linking of a polymer solution. 

Further inspection of eqs. (C.34) and (C.35) leads to the conclusion that the above solution 
corresponds to the case of identical densities pik) in all the replicas of the final state (k = 1, . . . ,m). 
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Furthermore, in the limit m + 0 (taken in the above defined sense), these modes obey the affine 
relation between the densities pk’) = piTp!, in the final and the initial states. 

In order to construct the eigenfunctions of the density modes which correspond to the eigen- 
values (C.38) we have to Fourier transform (see Eq. (C.6)) Eq. (C.27) for the functions $(k): 

6 qmds’) D (A - a2 4;; XT> 4) f wtk)pik) exp(iq$).xi) . 

k=O 

(C.40) 

Using the rapid decrease of ~~~(5’) with 5’ = (~~)~/2, one can expand the exponentials in the above 
expression to second order in qf) *xi and, taking into account the definitions of the functions 
@ and Y (Eqs. (E.4) and (E.ll), Appendix E), one arrives at the general result 

@q&T) = f &)[@(/i - a2qE; 5) + iq$?.xT !?(A - a2qt; 4-)] . 
k=O 

(C.41) 

Explicit expressions for the eigenfunctions can be obtained from (C.41) by substituting the 
corresponding eigenvalues /1 and using the appropriate relations between the of’ coefficients in 
each of the modes, Eq. (C.34) and (C.35). Since we are interested in the continuum limit, we can set 
qL = 0 in @ in the above expression. The next step is to realize that for the massive mode 

(A gap + constant as q + 0), the function !P remains finite in the limit q --) 0. In this case, the second 
term on the right-hand side of Eq. (C.41) is of order q$? .xT and can be neglected with respect to the 
first term. This gives 

i&(i) = @((w(O) - z,) CPL; s) exp(iqr 'XL) , (C.42) 

where the function @ is defined as the solution of Eq. (E.6), Appendix E, and where we dropped the 
(constant) pj,!“ terms which appear in (C.41), since the latter only affect the (arbitrary) normalization 
of the eigenfunctions. An analytic expression for @ can be obtained only at the cross-link saturation 
threshold, @(O; g) = W28cpmr/aN (Eq. (E.9) Appendix E). 

C.2.4. Density modes in final state 
In the limit m + 0, the eigenvalue equation for the density modes in the final state is obtained by 

setting to zero the term in the second square bracket on the left-hand side of Eq. (C.36) 

1 + w(gY @IL) - Sfi2(4L)) = 0 * (C.43) 

The functions g i’ and gi’ are calculated in the continuous limit (q2a2N < 1) in Appendix E. The 
gapless density modes AD(qL) N qi are obtained by noticing that for this modes, !P(/i - a2qi; 5) 
N qL2 (Eq. (E.18) A ppendix E) and therefore, the second term on the right-hand side of Eq. (C.41) 

dominates in the long wavelength limit. Substituting the relation XTa~,f(#?~ = t+j&,,f(~) into 
Eq. (E.18) we obtain the eigenfunctions given in Eq. (3.42): 

&(qI,) = a2q; + 2wp’%z2W(K 1 * qLy . (C.44) 

Since AD(qL --t 0) --) 0, the corresponding fluctuations are Goldstone modes. Note that the 
condition AD(qL) > 0 is always satisfied when the final state of the gel corresponds to good solvent 
conditions (w > 0). In fact, for large deformations the positivity condition can be satisfied even for 



108 S. Panyukov, Y. Rabin/Physics Reports 269 (1996) I-131 

moderately poor solvent (w < 0), since the network can be stabilized against collapse by the 
external forces applied to its surface. 

The next step is to calculate the eigenfunctions corresponding to the above eigenvalue. We find 
that there are m degenerate eigenfunctions (in the limit m --) O!) and therefore, before taking this 
limit we have to consider the case of arbitrary integer m. 

Consider modes for which p$! = Q = 0 but pk.“) # 0 (for k = 1, . . . , m). In this case we cannot use 
the secular equation (C.36) and have to return to Eq. (C.34). This gives the eigenvalue equation 

JmtnDtqL)) = o > (C-45) 

where we define 

Jd4 = 1 + wYbzI_) - dl”(4L)) * 

The (m - l)-degenerate eigenfunctions corresponding to this eigenvalue are obtained by calculat- 
ing the integrals in Eq. (C.27), 

~~a&) 
> 

exptiqL~xL) , j = 1, . . . ,m - 1 . 

Here, p’*) is the mean density in the initial state. The arbitrary coefficients Sp) obey the 
relation 

(C.47) 

which follows from the condition q4 = 0 (this can be checked by substituting ll/j into Eq. (C.20) and 
summing over k). The condition of orthogonality of the eigenfunctions, j wi&)$j*(i) = 0 for i # j 
(where * denotes a complex conjugate and where the volume of the system is kept finite during the 
integration over xT), imposes another relation between the Sg) coefficients: 

f Sjk’ sg” (dkl - qt/q2) = 0 for i #j . (C-48) 
k,l= 1 

In order to gain some insight into the physical meaning of the above eigenfunctions we note that 
the gradient term (C.46) describes the infinitesimal displacement XT -+ XT + &&) of the coordinate 
XT (see Eq. (C.26)), where 

UdXL) = 
iq$) 

- exp(iqL *XL) , 42p’*’ 
(C.49) 

The displacements UT given by Eq. (C.49) are orthogonal to the displacements which lead to pure 
shear modes (in replica space) derived in a previous subsection. Unlike the former, they correspond 
to fluctuations in the densities of the replicas. 

We now consider yell # 0 (and, consequently, pk% # 0), in which case all the pa’ are equal 
and the eigenvalue spectrum is obtained from the secular equation (C.36), which can be rewritten 



S. Panyukov, Y. RabinJPhysics Reports 269 (1996) I-131 

in the form 

J,(A) = mw 
[ 

w’“‘(sst’(qL))2 
1 + w’O’g:O(qL) 

- gA2(qJ . 1 

109 

(C.50) 

Using this expression we obtain, to first order in m, 

4.d = Mqd + m4h7d, 

where 

(C.51) 

A;)(qL) E w [ 
w’“‘(sslL))2 _ g12(q ) 

a&/an 1 + w’O’g:O(qL) n L 1 (C.52) 

should be evaluated in the limit m -+ 0. The corresponding fluctuations do not affect the density in 
the initial state since in this limit p$% w y1 = rnp$l' -+ 0. 

The eigenfunction corresponding to the eigenvalue (C.51) is obtained by calculating the integrals 
in Eq. (C.27) 

(C.53) 

Comparing this equation with the expression for the degenerate eigenmodes, Eq. (C.46) and 
using Eq. (C.47), we can write down a general expression for all m density eigenmodes 
(j = 0, . . . ,m - 1) 

-$$$a V&&f(q) - wv)exp(iqL.x,) , (C.54) 

where all Sg”) are equal to each other. From Eq. (C.48) and the automatic orthogonality of 
eigenfunctions corresponding to different eigenvalues, we can write the general ortho-normality 
condition 

(C.55) 

where a convenient choice of normalization was made. 
We end this appendix with a brief summary. We proved that the homogeneous solution is 

unstable against fluctuations which mix the replicas and does not correspond to a minimum of the 
Hamiltonian. We then proceeded to study the fluctuations about the inhomogeneous mean-field 
solution cp,r(g). We showed that, for this solution, all the eigenvalues A of the second derivative 
operator K are positive for networks prepared in sufficiently good solvents. We found that all the 
fluctuations increase the energy of the system and, therefore, the above solution corresponds to 
a true minimum of the Hamiltonian. There are six different types of fluctuation modes, the first two 
of which do not have a direct physical interpretation: 

1. Rotational modes of the n-vector model, which are related to excluded volume effects. 
2. Massive (i.e., with an energy gap) shear modes which do not affect the densities in the replicas 

(they correspond to spherical harmonics with 1~ 1; see the discussion following Eq. (C.18)). 
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The other four modes describe shear and density fluctuations in the space of the replicas and are 
summarized as 

2m - 1 gapless m - 1 gapless 
shear modes density modes 

gapless 
density mode 

massive 
density mode 

The appearance of Goldstone modes is the consequence of the fact that the ground state of the 
stretched network corresponds to a solution with spontaneously broken symmetry with respect to 
translations in replica space, which describes a disordered solid. 

The above classification contains information about the quenched (frozen) versus annealed 
(thermal) character of the fluctuations described by the 3m physical modes. Shear modes mix both 
types of fluctuations. The degenerate $j(j # 0) density modes correspond to independent density 
fluctuations in the replicas of the final state (ptk) are only constrained by the relation q = 0) and 
therefore describe purely annealed thermal fluctuations of the final density. The non-degenerate 
modes y90 and tigap describe density fluctuations which are identical in the replicas of the final state 
($1’ = pcz) = . . . = p(“)) and thus correspond to pure quenched fluctuations. 

Appendix D. Ultra-short wavelength corrections to free energy 

We proceed to calculate the fluctuation corrections to the mean-field free energy, Eq. (3.30). To 
this end one has to account for fluctuations at arbitrary wave vectors q (we will show that the 
dominant contributions come from ultra-short wavelength fluctuations). 

We have shown in Appendix C that any small fluctuation around the mean-field solution can be 
expressed as a sum of orthogonal rotational, shear and density modes 

64@) = &q(9) + 6,(p(%) + 6n@) . (D-1) 

It is convenient to separate the fluctuation contributions to the grand canonical partition function 
which come from the integration over the rotational modes (.Fi), and rewrite Eq. (2.47) in the form 

E&i, z,) = exp( - H,r) (Ez)“- ’ EzD , P.2) 

where we have taken into account the n - l-fold degeneracy of the rotational modes (in the 
space of the n-vector model) and defined the rotational partition function by integrating over 
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the scalar field 6~: 

i7R 
urn = s DC~cpl ev ( - AH’ CW) , 

rSD contains the contributions of shear and density fluctuations and is given by -m 

=SD = 
-rn s D[Scp] exp ( - AHi1 [Scp]) . 

In the limit y1+ 0, Eq. (D.2) becomes 

&( p, z,) = exp ( - H,,) EiD/Zi. 

D. I. Rotational partition function 

The rotational Hamiltonian in Eq. (D.3) is given by 

AiY’[&J =; ~d_WS~(~)K’(k,Z’)6@‘), 

(D.3) 

(D.4) 

(D.5) 

w-5) 

where K’ was defined in Eq. (3.34). The Gaussian integral in Eq. (D.3) can be calculated by 
expanding a general fluctuation in a linear combination of the normalized eigenfunctions of the 
operator K’, 

03.7) 

and replacing the 6~ integration by the integration over the expansion coefficients Ci: 

=R 
nS 

d Ci (qr.) Mm = 271 exp C - 3& (qL) GWI . P.8) 
iaL 

Performing the Gaussian integration we obtain 

(D.9) 

where the eigenvalues /il of the rotational eigenmodes are defined by Eq. (C.9) and VL is the 
volume of the longitudinal subspace, defined in Eq. (B.5) (Appendix B). 

The logarithmic singularity coming from Goldstone modes with eigenvalues A’(qL) = a2qt that 
vanish in the limit qL --) 0, disappears upon integration. The expression in the exponent of Eq. (D.9) 
is dominated by the qL -+ co and i -+ GO contributions (the eigenvalues increase monotonically 
with i). In this limit the spectrum becomes continuous and we can replace the discrete index i by the 
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continuous wave vector qT and write 

yqg$ In /II (qL) + T/(O) V m 
s 

@ 

(274 
3(l+m)ln~%) 3 (D.lO) 

where 4 = eL + GT. In order to calculate the contribution of n”(i) we note that in the limit 
141 $ (am “‘)-r, the operator in the eigenvalue equation, (C.9), is dominated by the transverse 
Laplacian and therefore, the normalized eigenfunctions are plane waves $(2) = (V(O) Vm)-liz x 
exp(iq -2). Recalling the Shriiedinger-like form of this equation and following the usual quantum 
mechanical procedure [83], the contribution of the other terms in this equation can be calculated in 
first-order perturbation expansion (using the above zeroth-order eigenfunctions): 

A’($ = $ + a2i2 - 2v’zoc’vm s d%it&) . (D.ll) 

Substituting Eq. (D.11) into Eq. (D.lO), we observe that the resulting integral over 4 diverges. In 
the following we show that an identical divergence occurs in the calculation of szD and that the 
leading divergences cancel each other in the ratio Zi’/Zt, which appears in the derivation of the 
total partition function, Eq. (D.5). 

0.2. Partition function of shear and density modes 

We now return to Eq. (D.4) and write 

where the operator K” is defined in Eq. (3.35). The calculation of the Gaussian integrals follows the 
same steps as in the preceding subsection, with the result 

(D.13) 

where the main contribution to the integral comes, again, from large wave vectors. The eigenvalues 
of K” can be calculated from Eq. (C.13), by expanding about the (high ij) plane wave solutions, 
$(2) = (V(o)l/m)-i/2 exp(ii ok). This gives 

where 

(D. 14) 

(D.15) 
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0.3. Elimination of divergences 

Using Eq. (D.9) and (D.13), the short wavelength contribution to the total partition function can 
be represented as 

(D.16) 

We now substitute expressions (D.ll) and (D.14) for the eigenvalues and expand the logarithm of 
their ratio in the limit u2(q(k))2 $ max{N-‘, w(~)P(~)) (in the following we will assume that 
W-1 .+ ,,,(k) (k) p ). This leads to exact cancellation of the leading divergences and yields 

(D-17) 

Substituting Eq. (D.17) into expression (D.16) we realize that although we have removed the 
most divergent terms, the remaining integrals (in Eq. (D.22)) still diverge due to ultra-short 
wavelength contributions from wave vectors 141 - l/u. The origin of the problem can be traced 
back to the inadequacy of our Gaussian chain model for the description of the polymers on spatial 
scales 5 a. This follows from the observation that all the divergent integrals are of the form 

and can be written as 

Qy(s) = jm d)J fi p~“s”(x’“‘) , 
0 k=O 

(D.18) 

(D.19) 

where PR”” (x) is the normalized end-to-end distribution function (i.e., probability density) of 
a Gaussian chain of N monomers, 

PK”““(x) = (2nu2N)- 312 exp[ - x2/(2u2N)] . (D.20) 

The divergence of QR”“” (0) in Eq. (D.18) reflects an unphysical aspect of the Gaussian chain model 
which allows the formation of loops on arbitrarily small scales. 

In order to eliminate the divergence in Eq. (D.18), we have to revise the continuous model of the 
polymer and take into consideration the stiffness of polymer chains on small spatial scales (loops 
cannot form on length scales smaller than the size of a single chemical monomer!). This revision has 
no influence on the large-scale behavior and leads only to the replacement of Py”” by the 
end-to-end probability distribution of real chains, PN: 

Q~“““(2) + Q,,,(2) = f fj PN(~(k)) , 
N=l k=O 

(D.21) 

which is finite for all f. 
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Inserting eq. (D.17) into (D.16) and using the substitution (D.21), we arrive at the following 
expression for the logarithm of the grand canonical partition function (Eq. (DS)): 

(D.22) 

Since Qm(0) is a finite quantity (related to the probability of formation of small loops in a real 
polymer), and the integral over 2 converges, we conclude that the second term on the right-hand 
side of Eq. (D.22) is now well-defined. The last term on the right-hand side of the above equation 
can be simplified by noticing that 

a(~(~) - x’(~)) Qm(k - Z’) = &x(~) - x’(~)) 2 PN(0) n P&8) - x’(~)) , (D.23) 
N=l l#k 

The fUnCtiOnS PN(x(‘) - ‘(‘) x ) in the above product, decay over length scales of the order of UN”‘. 
We note that in the derivation of Eq. (D.22) we have used the short wavelength approximation, 
a2(qck)) $ wck)pck) (which allowed us to consider only terms linear in wtk) in the expansion of the 
logarithm, Eq. (D.17)). This means only length scales l.~(‘) - x’(‘)( 4 t(k) = u(~(~)p(~))- “’ (screening 
length) contribute in Eq. (D.22). For cCk’ $ UN iI2 (the characteristic length scale for the decay of 
cpmr(5)), the functions cp,,,r(5’) in the integrals can be replaced by 

%I&‘) = cpnlf(5) + : 1 (XP’ - x’kk’) vfik’ cPm&) 
k=O a 

+ $ f C ($4 _ x’ik) ) (XC’ - x14”) v:k’vycpmf(~) . (D.24) 
Lk=O a 

With this substitution and changing the integration variables 2 -t.?’ - 2, Eq. (D.22) is recast 
into the form 

- In %(cc, zdl,, = H [qDmfl - [ 2 Q,,,(O) - w(o) ; mw Q.(o)] ~W~lp(s) 
1 

-- 2 
s 

d%k(5) 5 d Vk’)” (vck92%r(5) , 
k=O 

where 

A(LI’~‘)~ E 

and 

A(u’~‘)~ E 

WW’O’ 1 PN(O) d-=2pN(x) 
N=l J 

[w(O) + (m - l)w] f PN(o) dxw2 PN(X) 
N=l s 

(D.25) 

(D.26) 

(D.27) 
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for k > 0. The above integrals can be estimated by introducing a cutoff on a length scale 5(“) and, in 
the limit m + 0, we obtain 

A (a’“‘)” = 0 , A(a(k))2 = a2 [(w/a”p)“2 - (w(“)/a6p(o))1/2] 

The last term in Eq. (D.25) can be recast, through integration by parts, in the form 

(D.28) 

i /d-i? f A(a(k’)2 (V’k’qp,,(<))2 . 
k=O 

(D.29) 

Comparing the coefficients of the (V(k)~)2 terms in this expression and in the expression for the 
Hamiltonian, Eq. (2.48), we conclude that this term describes the renormalization of the size of 
a statistical segment (“monomer”) due to thermal fluctuations. Upon adding the contributions of 
the (Vck1q)2 terms, the coefficient in front of the squared gradient must be interpreted as (atk))‘/2, 
where atk) is the observed size of the effective monomer, which is related to the end-to-end distance 
(Rckj2) of a chain of contour length L G Nabare by (RckJ2) = 3(a(k))2N (N is the dimensionless 
chain length expressed in units of the size of monomers in the absence of excluded volume 
interactions, abare). 

The renormalization corrections to a are small if [23] (w(k)/a6p’k’)“2 << 1, for all k. If these 
conditions are not satisfied, our short wavelength approximation breaks down and we have to 
include contributions to Eq. (D.27) which come from increasingly larger length scales. This 
problem is identical to the usual difficulties with the application of mean field theory to semi-dilute 
polymer solutions, and has to be treated by non-perturbative methods (e.g., renormalization group 
[27,84,85-J and scaling [3]). Such a treatment will be presented in Section 5. 

We return to Eq. (D.25) and dropping the last term on the right-hand side of this equation (this 
term is absorbed in the renormalization of the monomer size a), rewrite it in the form 

- ln G(P, z,) Isw = &f bmfl 

= H Cqwl - $ Q,(O) - C(W’~’ + mW21 QoO IS d%%s) . (D.30) 

The unphysical divergences which appeared in the original expression for the partition function, 
eq. (D.16), are replaced by sums over the probability densities PN(0) of finding closed loops of 
N monomers. Note that, for N $ 1, PN(0) -+ Pr (0) and since the latter decreases as NP312 with 
N, only the smallest loops (with size of the order of the persistence length) contribute to the sum for 
Qm(0) in Eq. (D.21). F or such small N, the function PN(0) is non-universal and must be calculated 
from models (e.g., persistent, freely rotating, rotational isomer, etc. [32]) which account for the local 
stiffness of real polymer chains. 

The small loop corrections to the mean-field partition function have a simple physical interpreta- 
tion. The term with the coefficient z,Q,JO) describes the reduction of the elastic modulus of the 
network (simultaneously in all the replicas) due to permanent wasted loops which do not transmit 
stresses in the network but contribute to monomer and cross-link density [l]. The second term, 
with the coefficient (w(O) + mw)Qo(0), reflects the increase in the excluded volume interactions 
between neighboring monomers (in each of the replicas, separately) due to temporary small loops 
which form in the network due to thermal fluctuations. 
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0.4. Wasted loops corrections to free energy 

Although the small loop contributions enter only additively into the replica free energy Fm (see 
Eqs. (D.25) and (2.28)), this additivity is the consequence the Gaussian approximation which 
assumes that the fluctuation corrections to the mean-field Hamiltonian are small and can be 
treated in first-order perturbation theory. While (as was shown in the previous subsection) 
corrections due to ultra-short wavelength (a 1 q 1 - 1) fluctuations are not infinite for networks made 
of real polymers, they are not necessarily small compared to the mean-field Hamiltonian. This 
suggests that the one loop approximation may not suffice and that one must resort to non- 
perturbative resummation methods. 

The contribution from all small loops can be summed up exactly by the effective action method 
[31,27]. This method allows us to use the results of the first-order perturbation expansion, in order 
to construct all the higher-order contributions of terms of such type and to obtain a new ground 
state which includes exactly the effect of the dominant ultra-short wavelength fluctuations. We 
begin by writing 

- ln &b, zc)lsw = mp Kffbl , (D.3 1) 

where qmin(-%) s cp&.?) is found by minimizing the eflective Hamiltonian Heff[~] (instead of 
minimizing the bare Hamiltonian H[q] in Eq. (2.48)), defined by replacing qmf -+ q in the 
argument of Heff, in Eq. (D.30). Upon this replacement, the calculation of the solution which 
minimizes the effective Hamiltonian proceeds in exactly the same way as that of cp,r(g). 

For m = 0, the extremum condition gives the following expression for qo,, 

(P2 SW = C~P/(Z, - w’“‘)l - Qo@) > (D.32) 

which, in the case Qo(0) = 0 (vanishing probability of loop formation) is identical to Eq. (3.4). 
Using Eqs. (2.29), the parameters p and z, are expressed through the physically observable p(O) 

and W: 

P = (do’ + QoW2) CMP’~’ + QoP)) - ~(~~1 , (D.33) 

and 

z, = l/m(p”’ + Qo(0)) . (D.34) 

The above equations reduce to expressions (3.5), for Qo(0) = 0. The cross-link saturation threshold 
condition becomes (Eq. (3.41)): 

w(O) = z, = [&+” + Qo(0))]-’ . (D.35) 

In order to calculate the short-wavelength corrections to the free energy, we have to find the 
solution cp,,,@) which minimizes the effective Hamiltonian for finite m. This can be done simply by 
noticing that H,rf[cp] can be obtained from the bare Hamiltonian by the substitution 

P -+ P - (z,P)Q,(O) + Ck’“’ + mw)/21 QoO (D.36) 
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and the renormalization of the monomer size in the final state with respect to that in the initial 
state. The latter effect is assumed to be small in concentrated gels and will be neglected in this 
section (this approximation will be relaxed when we consider semi-dilute gels in good solvents). We 
conclude that the only effect of including the contribution of ultra-short wavelength fluctuations is 
to introduce the replacement 

m --) N( 1 + Qo (0)/p(O)) (D.37) 

in the expressions for the inhomogeneous mean-field solution (Eq. (3.24)) the cross-link saturation 
threshold (Eq. (3.41)) and the mean-field free energy (Eq. (3.30)). 

Neglecting logarithmic corrections and constants, the renormalized free energy which includes 
ultra-short wavelength (coming from length scales - a) fluctuation corrections, is given by 

K&L> 
VT 

(D.38) 

The correction due to permanent wasted loops formed in the process of cross-linking 

Twl = [ 1 + Qo(0)/pco’] - 1 (D.39) 

depends only on the local stiffness of the chain and on the concentration of the network in the state 
of preparation. Recall that Qo(0) is expressed in terms of the probability densities of loop 
formation, 

Qo(O) = f PN@) . (D.40) 
N=l 

Note that neglecting the corrections to the monomer size, the renormalization of the free energy 
by ultra-small-scale fluctuations does not affect the fundamental additivity property of the 
mean-field free energy, which can be expressed as the sum of purely elastic and purely osmotic 
terms. Violation of additivity will play an important role in semi-dilute networks in good solvents, 
for which one must include the effect of fluctuations on intermediate scales (between the monomer 
and the mesh sizes). Such effects will be treated by a combination of renormalization group and 
scaling methods in Section 5. 

Appendix E. Correlation functions of the replica system 

We proceed to calculate the replica space correlation functions 

&(4r_) = JdX%r(S) jd&&) 

x D(A - a2(qj?)2;XT,~~)exp(iq~‘.xT - iq$)*x+) , 

where the function D is the solution of the differential equation 

[l/w - (A - a2q;) - a2V+ - (3~,/2)&(q)]D(/i - a2q;;xT,xf) = 6(xT -x;) . 

(E.1) 

(E.2) 
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E.I. Calculation of g!” 

The function g:” can be represented in the form (recall that (q$‘))’ = 0; see Eq. (C.21)) 

9:‘(4iJ = 
s 

d+~&5) @(A - a2qZ; 5) , 

where @ is defined by 

(E.3) 

@(A - a2qi; 5) 3 s d&cp,&‘)D(A - a2q&,&) . (E-4) 

Due to the spherical symmetry of the differential operator in Eq. (E.2), Qi depends only on the scalar 
combination 5 = x+/2. The integral (E.3) is calculated in the same way as in eqs. (B.2) and (B.3) 
(Appendix B) in which we replace A(5) by q&5)@@ - a2qt; s) and take the limit m --f 0 (note that 
in calculating S dxr 14 (5) we only used the property that q&5) is an exponentially decreasing 
function of 5). This yields 

ss1”(qi_) = cp,f(O) @(A - a2qL 0) . (E.5) 

In order to calculate the function @, we apply the differential operator in Eq. (E.2) to the 
left-hand side of eq. (E.4) and remove the resulting d-function by integrating over x$ on the 
right-hand side of the resulting equation. This gives the following equation for @: 

Cl/m - (A - a2&) - 2a25(a2/a52) - (3~12) dddi @(A - a2& 4-l = 44dd - (E.6) 

For 5 = 0 the equation reduces to an algebraic relation 

@(A - a2qt; 0) = %nf(O) 
- 2/iV - A + a2qt 

and, upon inserting this expression into Eq. (ES), we finally get 

ss1O(qJ = 
2p’O’ 

- 2/N - A + a2qt ’ 

(E.7) 

(E.8) 

Substituting g:” into the eigenvalue equation, (C.37), Appendix C, we obtain the eigenvalue /1,, 
of the “massive” density mode. We will show in the following that the corresponding eigenfunction 
is simply @(A,,,(qL) - a2qi; 5). Its functional form cannot be given, in general, since for arbitrary 5, 
Eq. (E.6) can only be solved numerically. There is, however, one important case in which we can 
find a simple analytical solution: 

%nf (5) 
@(O; g) = - 7 = 

@%nfk) 
-ET-’ (E.9) 

This result can be checked by differentiating Eq. (3.1) for q,,,r(5) with respect to p and comparing 
the resulting expression with Eq. (E.6). 
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E.2. Calculation of & 

We now proceed to calculate the replica space correlation function g:’ for general k, 1. In order to 
obtain the q2 corrections to g“‘, we have to expand the exponential in Eq. (E.l) to fourth order in qT 
(linear terms vanish due to angular integrations): 

(E.lO) 

In order to calculate the above integrals, it is convenient to introduce the function 

xT y(n - u2qt; 5) = s dxTq&(g’) D (A - u2qt; xT,xk)xi . (E.ll) 

Returning to the definition of @, Eq. (E.4) and using the symmetry of the integrand in Eq. (E.lO) 
under the replacement XT-.x i, we can rewrite the latter in the form 

x [(qf’-xT)2 + (q$)-XT)‘] + y(n - a2qt; 5) [tq?'eXT) (q$"xT) 

- i(# ‘xT)3 (&’ ‘XT) - &&’ ‘XT) (4:’ -xT)3]} . (E.12) 

The angular integrations over the direction of the vector XT in Eq. (E.12) are pa-fmmed with the aid 

of the formulae 

s dS2XTiXTj = S3-~ 6ij , 

s dQXTiXTjXT1XTk = s3m (E.13) 

where S3,,, = 2~t~“‘~/r(3rn/2) is the surface area of a unit 3m-dimensional sphere (r is the gamma 
function). In the limit m -+ 0 this yields 

SkL(4L) = goo(4L) - ; 
s 

Oc d<(Prnk) C(q$“)2 + (q:‘)21 
0 

x @(A - a2q;; 5) + J dg(P,,&) (q$'.q;') yu(n - a2q;;d 

0 

-- 

; 0 J Q-add Ctq$‘)2 + tq;')21 t&‘-q:‘) ytn - a2qt; 4-J . (E.14) 
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E.2.1. Long wavelength limit, q -P 0 
We first calculate the functions gkl, defined by Eq. (E.14), in the limit q --) 0. From the definition of 

&‘, Eq. (C.21), 

&&’ = &k).#0 _ &Qg’ 

= (l-‘*q,)2dkl - 4; > 

and, consequently, (&‘)’ = (g$‘)’ for 

k#O, l#O (E.15) 

k, I # 0. Using these relations, we express the combination 
gA1(qL) - giZ(qL) in Eq. (C.43), in terms of the function Y 

s Cc 

9Yh) - d12(4L3 = W1**d2 dsads) W - a2q& s) . (E.16) 
0 

The function Y can be calculated from the following equation (which can be obtained by 
applying the differential operator in Eq. (E.2) to both sides of Eq. (E.ll)): 

i - (A - a2qf) - 2a”g; - 2a$ - 3$4&(S) 1 
x y(n - a2q;; d = cplnfk). (E.17) 

In general, the function Y(A - a2q& CJ) has to be calculated numerically. Note, however, that the 
differential operator in Eq. (E.17) has an eigenvalue a2qi - A, with an eigenfunction of the form 
@,,,&)/a~ (this can be checked by differentiating the mean-field equation (3.23), with respect to 
s and comparing to Eq. (E.17)). Thus, when looking for the solution of the equation (E.17) in the 
form of an expansion over eigenfunctions of this operator, in the limit A - a2qE + 0 we can retain 
only the contribution of this eigenfunction (ground state dominance): 

Y (A - a2q;; s) --, 
co ahfk) 

a2qt--A as ’ 

where Co is obtained from the normalization condition which yields 

Substituting this expression into Eq. (E.16) we obtain 

(~-1*4L)2 dlw - d2kL) = c $*; _ A 3 

where the constant C is given by 

(E.18) 

(E.19) 

(E.20) 

(E.21) 
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The numerator and the denominator in this expression are readily calculated by integrating by 
parts 

J 
00 

dSq = %iftd Ot = _ dlf 
m 

0 2 0 2 

and 

(E.22) 

(E.23) 

where, in obtaining the second equality, we have used Eq. (3.23) for q,,,r(5). Substituting the above 
into Eq. (E.21) gives 

C = 2p(0)a2rJ (E.24) 

The eigenvalues corresponding to the gapless density modes are found by substituting the 
expression for gA1(qL) - gA2(qL) (Eqs. (E.20) and (E.23)) into the eigenvalue equation, (C.43). This 
gives the eigenvalues, Eqs. (3.42). 

E.2.2. Long wavelength limit, q2 corrections 
We proceed to calculate the q2 corrections to the functions gk’, defined by Eq. (E.14). Since all 

what we need are the functions D, @ and Y defined for A = 0, we can simplify the notation by 
omitting the argument A. Begin with the calculation of the function Y, defined by Eq. (E.11) (with 
A = O), 

[l/N + a2q? - 2a25(a2/a52) - 2a2(Va5) - (k/W&f(5)1 y(5) = cPmf(5) . 

To solve this equation, let us rewrite its right-hand side as the sum of two terms, 

(E.25) 

&nr(S) 

s 

oc 
%lf(S) = co- 

~35 
+ klf(5) > d5&,,f(5) y = 0 , (E.26) 

0 

the first of which is “parallel” to the eigenfunction aqmf(5)/a5 of the differential operator in 
Eq. (E.25) and the second one is orthogonal to it. The constant Co was calculated earlier (Eq. 
(E.19)). The solution of the equation can be represented in the same form as in Eq. (E.26) 

Y(5) = - - CO a%f(5) + p(5) 
s 

-= 
&zt a5 

3 (E.27) 

where the function p(5) is the solution of Eq. (E.25), where on the right-hand side we replace the 
function cpmf(5) by Gmf(5). Since we are interested only in terms of order q2, we can omit the a2qt 
term in this equation. 
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To solve this equation let us introduce the dimensionless function _ 
F(s) = - d-- y L!?(t) ) 

c 

t = & ) (E.28) 

which obeys the equation 

(1 - 3x2(t))9(t) - tlY’(t) - l!?‘(t) = x(t) + x’(t) ) (E.29) 

with x(t) defined in Eq. (3.24). Although we do not know the explicit analytical expression for the 
function x(t), the general solution of the differential equation can be found, since we know one of 
the solutions (X’(t)) of the corresponding homogeneous equation. This general solution can be 
written as 

S(t) = i[x(t) + Q’(t)] + x’(t) Cl + c [ 2s’&J (E.30) 

where C1 and C2 are integration constants. Since the integral diverges we have to take C2 = 0. 
Also, we must have C1 = 0 because of the orthogonality condition, Eq. (E.27). 

We now turn to the calculation of the functions g k’, Eq. (E.14). Substituting the expression 
Q(g) = N2acp,r(s)/aN, Eq. (E.4), in the first integral, we find 

s m 

ds~,,(+@(s)=N2$ 
a 

dS %%(s) 2a2N2 a = 
-=-_ 

2 aN c 0 

dt,&) = 0 

0 0 2, 

Substituting the expressions (E.27) and (E.28) into Eq. (E.14) we find 

s a 

Qkf(4d = Qoohd + ~s%SZnds) (#d’) 
0 

(E.3 1) 

(E.32) 

where 

ZIE a s dtx2(t) = 0.524 . (E.33) 
0 

Using the definition (E.28), we can rewrite the corresponding integral in Eq. (E.32) in the 
form 

s 03 

ds~‘(sh,&) = Q”‘NZ2 

0 

(E.34) 

Z2E O” 

s 

WA0 + tx’W (x(t) + x’(t)) . 

0 

(E.35) 
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Let us estimate the integrals which appear in Equation (E.35). Multiplying Equation (3.25) for 
the function x(t) by TV’ and x(t) and integrating by parts, we obtain 

oc 

0 

dtt(X’(t))’ = ; 
s 

00 m 
dtX4(t) > (E.36) 

0 

dtX2(t) -; 
s 0 

1 -- s =dtt(x’(t))’ 
2 0 

= [;dtx’(t) - j;dtx4(t), 

respectively. Combining these two equations, we find 

(E.37) 

s cc 

0 

dtt(X’(t))’ = ; 
s 

Udtx2(t) - ; . 

0 

(E.38) 

Multiplying Eq. (3.25) by factors x’(t) and integrating by parts, yields 

s 00 

dt(x’(t))2 = ; . 
0 

(E.39) 

Using these relations we finally obtain 

12=;-; mdtx2(t)=0.033. s 0 

(E.40) 

E.2.3. Short wavelength limit 
We now calculate the functions gk’(qL), defined in Eq. (E.l), with A = 0, in the short wavelength 

limit a2N(l * q)2 % 1. In this limit the Laplacian gives the leading contribution to the differential 
operator in Eq. (E.2). Its eigenfunctions are plane waves, exp(iq,x,), and corresponding eigen- 
values are 

(E.41) 

In the limit m + 0 this takes the form 

a(q+) = a2(qi + q+) - 2/N . 

The short wavelength limit of the function D is 

(E.42) 

D(xT,xk) = s dqT ek. (% - 4) 

(2@n E(q;) ’ 

where, for the sake of simplicity, we omit the argument A. 
Substituting this function into Eq. (E.l) we find 

SkY4d = s ‘h 'PkT - @) Cp( - qT + 4;‘) 
(2K)3” 

Gza 
> 

(E.43) 

(E.44) 
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where the function (p(qT) is the Fourier transform (in the transverse subspace) of the function cpmr(g) 

(p(qT) = 
i^ 

dxT cpmf(q) e-iqr~xr . (E.45) 

Since this function has a very sharp peak at the origin and falls down exponentially at infinity, we 
can estimate the integral (E.45) in the limit of large qg = (q$))2 = (q$)2 as 

1 
= - 

44;) s 
dXTq$(g)exp [i(q$’ - q$))xT] . (E.46) 

We now Split the XT integration into an angular integration and an integration over 1~~1. In 
calculating the former we use the equality 

s dQeiqT’XT = S3,,,r 1 + 3” ( 2 ) (,qf11;l,2)z”‘2 J3mi2(kTl JG . 

Substituting it into expression (E.46) we find (in the limit m + 0): 

In the short wavelength limit this equation reduces to 

SkY41J = 
2p’O’ 

a2(X 1 * qL)2 - 2/m 
for k = 1 . 

(E.47) 

(E.48) 

(E.49) 

In the case k # I we use the equality 

(qF’ _ qt’)2 = (@JO _ 4’92 = q- 1 * qL)2 

and find from Eq. (E.48): 

(E.50) 

(E.51) 

where 13(o) = 1 and, according to eqs. (E.30) and (3.26), the function Q(g) decreases when 5-+ cc as 
exp{ - 4[</(2a2N)]1’2}. S ince the asymptotics under consideration does not depend on the form of 
this function, we can use this exponent for e(5) in the entire region of variation of 5. This gives 

Sk%lL) = P’“‘Ix’(o)l 
a2(il-‘*q~)2 [a2N(A-‘*q,)2 - 21 

for k # 1 , (E.52) 

where numerical calculations give x’(0) = - 1.21. 
Notice that in the derivation of expressions (E.50) and (E-52) we neglected terms of order of q< 6. 
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F. Derivation of the entropy density functional 

F.I. Elimination of shear fluctuations and of density jluctuations in the initial state 

An explicit expression for the entropy in the final state (k = 1, . . . , m), A S,[{C?#‘)}], Eq. (4.7), is 
found by introducing the Fourier representation of the b-function through the auxiliary fields 
(hCk’(x)) (the field hCk) is conjugate to 6pCk’): 

6 6p (x) - 
[ (k) s 

d2q,&)6q(i);)s(x -xck)) = 1 s D[hCk’] 

dx~?p(~)(x) hCk) (x) - i cL?cp,r(~) Q(.?) htk) (xCk)) 
> 

, (F.1) 

where we used 6(x - xCk)) to integrate over x, in the second term on the right-hand side of this 
expression. Substituting into Eq. (4.7) and moving the integration over { htk’(x)) to the leftmost side 
of the resulting expression, gives 

= jD{h”‘)exp(i$r ~~ap(*)(x)hik)(X))ICihlk))l , (F.2) 

where 

I[{h(k’)] = SD [Scp] exp ( - i [d@&~)S@) ii h(k)(x(k)) 

-; d2 d?&p(2)K~(.2,~)6Cp(.?) 
s s > 

. (F.3) 

The operator Kb is defined by expression (3.35) for I<“, in which we take w = 0. 
In order to perform the integration over 6q in the functional I, it is convenient to remove the 

term linear in 69 by shifting the integration variables, Q(k) + 6q(.?) + c#@) and demanding that 
the field $,, obeys the relation: 

s d.Y Z&l;, al) (bh(iY) = iv&g) i h(k)(xX’k)) . 
k=l 

The remaining Gaussian integration can be easily carried out with the result 

I [{h’k’)] = [det Ki]-1/2 exp dk’(~,,&‘)&,@‘) $ hCk’(xCk)) . 
k=l 1 

(F.4) 

F-3 

The determinant det Kb is given by the product of the eigenvalues &(q,J of the operator 
Kb which are obtained by substituting w = 0 in the eigenvalues of the operator K”. We have shown 
that all the eigenvalues are positive and therefore det Kb is a well-defined quantity which introduc- 
es fluctuation corrections to the mean-field free energy. Since these corrections were calculated in 
the previous section, we will omit them in the following. 
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Eq. (F.4) for the response field &,(.?) can be rewritten as 

c lim - ~2 $2 - 3(~,/2) d(;)i 4d-3 

+ (Pmf(S)W’O)pjp)(~‘O)) = icp,,(g) f h’y-P) , 
k=l 

where 

pjp’(x’“‘) = s di! h (x(O) - X”O’)(Pmf( g’) c$‘#) F.7) 

can be interpreted as the density variation in the 0th replica of initial state, induced by the fields 
{!I’~‘) in the replicas of final state. Since the {/I’~‘} fields were introduced as conjugate fields to the 
densities (6p’k’} in the replicas of the final state, the fact that the density in the initial state is also 
affected by {/I’~)} appears strange at first sight. Further reflection reveals that the above relation 
expresses the simple physical fact that the densities in the initial and the final state are strongly 
correlated, since the structure of the network is identical in all the replicas. 

Returning to Eq. (F.6), we notice that this equation is the inhomogeneous variant of the 
homogeneous equation, (C. 13), Appendix C and solve Eq. (F.6) by recasting it 
the field p~“‘(x’o’). We first express $,, through p;“, 

&(k) = - 
1 

d.YD(O; i. 2’) cp,r(<‘) 
[ 

w’“)~lp’(x”O’) - i f P(x’) , 
k=l 1 

where D is defined by Eq. (C.28), with the substitution n = 0. Substituting 
Eq. (FS) yields 

I[{h”‘f] = exp { - ildx jdx’[,g 1 .4k’(X,X’)h(k)(X)h(f)(X’) 

+ iw’“‘pjp’(x)gol(x,x’) t /I’~‘@‘) , 

k=l 

where we define the Green’s function gk’ by 

gk’(x, x’) = $I%, x’)ln _ 0 2 

into an equation for 

(F.8) 

this expression into 

(F.9) 

(F.lO) 

with g:‘(x,x’) defined in Eq. (C.30) (the long wavelength and short wavelength limits of the Fourier 
transforms of these functions are calculated in Appendix E). 

We now proceed to eliminate P,, ‘O) in theexpression for I[(/I’~‘}]. Inserting Eq. (F.8) into Eq. (F.6). 
we obtain a linear integral equation for the function Spjp’(x): 

Spjp’(x) + w(O) 
s 

dx’gOO(x, x’) Gpjp’(x’) = i 
s 

dx’g”(x,x’) f /z’~‘(x’) 
k=l 

Fourier transforming equation (F.11) we find (analogously to Eq. (C.34)), 

(F.11) 

[l + wco)goo(q’o))] $2 = i gO’(q’O’) kEl hLk’ , (F.12) 
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where the wave vectors q co) and q in the initial and the final states, respectively, are related by the 
affine transformation 

4 ‘O) = 3,*-q. (F.13) 

Substituting this solution into Eq. (F.5) yields an explicit expression for Z[{hCk)}] in terms of the 
Fourier components (I$“) : 

with the coefficients 

g”(a*q) - g12(/z*q) 
qq = a,a,3., 

and 

vq =A 
[ 

g12(;l*q) - 
w(O) [go’@ * q)]Z 

‘X ,’ z 1 1 + w(O)gOO(~ *q) ’ 

(F.14) 

(F.15) 

(F.16) 

where the functions gk’ are the replica space correlation functions calculated in Appendix E. The 
fact that the wave vectors transform as q co) = 2 *q automatically implies that the coordinates 
transform as x = ;1 *x(O), where x and X(O) are the coordinates of a point in the deformed and the 
undeformed network, respectively. The factor IX&l, = V/V (O) in Eqs. (F.15) and (F.16) reflects the 
change of volume in going from the initial to the final (deformed) state of the network. 

F.2. Diagonalization in the replicas 

Note that expression (F.14) contains non-diagonal terms in the replicas. The “interaction” 
between the replicas reflects the fact that all replicas have identical network structure. This 
observation is made more transparent if we diagonalize these terms using the identity (Eq. (A.6) in 
Appendix A, with the replacement $ -+ n) 

(F.17) 

where ylq is a Fourier component of a random Gaussian field whose correlator (see Eq. (A.@, in 
Appendix A) is 

(n,n -Jn = vq . (F.18) 

The probability distribution of this random field can be obtained from Eq. (A.7) 

ln(2rcv,) - y 11 . (F.19) 
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We can now use identity (F.17) to represent Eq. (F.14) in the diagonal in the replicas form 

l[{h’k’)l = (fil eXP{ - j& [~hfJh(t)q - ih;k)n_q]l>n . (F.20) 

Upon inserting this relation into Eq. (F.2) and performing the Gaussian integrals over {hck)} we 

get 

expdS,[{p(k)}] = fi expAS[n,6p(k)] , 

k=l > n 
(F.21) 

where the entropy functional is given by the simple expression: 

AS[n, 6p’k’] = - 
s 

dq (PZ.“’ - a,) (P”‘, - n - 9) - 
(2703 2% 

(F.22) 

Appendix G. Asymptotic expressions for correlators gq and v,, 

We begin with the summary of the main results of Appendix E for the correlation functions g:’ of 
the replica system (with /i = 0), and then derive exact asymptotic expressions for the long and the 
short wavelength limits of the correlators gq and vq. 

An exact (to all orders in q2) expression for go0 is given in Eq. (E.8). Substituting _4 = 0 in the 
above expression we find 

gOO@ * q) = 
2/P’ m 

- 2 + Q2 ’ (G.1) 

where we introduced the dimensionless wave vector Q, defined as Q” = a2Nq2. Due to the 
symmetry of the replica Hamiltonian with respect to permutations of all the replicas in the case of 
an undeformed network ((2% = l}), we find (see Appendix E) that all gk’ are equal for k # 1 and that 
gkk = go0 for k = 1, . . . , m. Substituting eqs. (F.15) and (F.16) into eqs. (4.27)-(4.30) and using these 
symmetry relations, we find upon some algebra that all dependence of the total structure factor on 
the non-diagonal elements of gk’ drops out, and we obtain 

Sip’ = gOO(q)/[l + w’“‘goo(q)] . (G.2) 

In the general case, {A, # l}, the replica space correlation functions have been calculated in 
Appendix E only in the long wavelength (Q 4 1) and the short wavelength (Q % 1) limits. 
Combining the expressions for the functions gk’ obtained in the above appendix, we write 

w [l + a($Q2] 

gl’(A*q) - glZ(/l*q) = 

: 

(A *i)’ 
for Q 4 1, 

2p’W 
~(1 + 13/Q2) for Q 9 1 , 

(G.3) 
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where we introduce the unit vector 4 = q/lq[ in the direction of the wave vector q, and 

a($ = 211 [(A * 4)” - l] + I& * 6)’ ) 

129 

(G.4) 

with the constants I1 2: 0.524, I2 2~ 0.033 
In the same approximation, we find 

00 9 - g’2 

2p’O’N [I 

goov * 4) - g’2(~ * 4) = 2p(0)N 

F(1 

and I, N 1.395. 
the long and short wavelength limits of the function 

+ mQ21 

+ MQ2) 

We complete our consideration of replica correlation 

I 

2p”‘N [1 + rxo(i)Q2] 

90°(i * 4) - 9i0(l * 4) = 2p(0)&j 
+l + hlQ2) 

where (x0($ is defined by the expression 

a&) = IJ(A*@ - l] + 12(jl*+)2 . 

for Q 4 1 , 

VW 

for Q 9 1 . 

functions with the function go0 - gi”, 

for Q 4 1 , 

(G.6) 

for Q+ 1, 

(G.7) 

The knowledge of these functions is sufficient to calculate the correlators in the elastic reference 
state gr and v4 defined by Eqs. (F.15) and (F.16). The function gq is directly expressed through the 
following combination of replica correlation functions: 

The correlator of static inhomogeneities vq can be rewritten in the form 

v 4 + g’yA*q) - 
w’“‘[go’(l * q)]” 

1.x y z [ 1 + w(0)gOO(A *q) 1 $0 = 2pfiA, + Bq$ , 
xY= 

(G.8) 

(G.9) 

where all the dependence on preparation condition enters through the function S$.T”!, (see Eq. (4.31), 
with the substitution q + i * q), 

s!O’ 
A*q - 2P 

U,~z - 2/N + 2p@)w(O) + a2(;1* qy ’ 

and where we defined the functions 

1 
A, E ~ 

[sO’(A * d12 
2p(o)m 912(A*q4) - 9°o(~*4) 

(G.lO) 

(G.11) 

and 

B, = gol(il t q),‘goo(l + q) . (G.12) 
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Using the asymptotic expressions for the functions gk’ which were derived in this appendix, we 
obtain the following asymptotics for the functions A, and B,: 

A 1 3 - + - (1 ~(4) ~cG,((~)Q~ for Q -+ 1 , 
4 

= 

(2 13)2Q-4 - for Q % 1 , 

B 9 - - for 6(1 2a&))Q2 Q < 1 , 
9 

= 

(2 Z3)4Q-4 for - Q% 1, 

(G.13) 

(G.14) 
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