Modern Organocopper Chemistry. Edited by Norbert Krause Copyright © 2002 Wiley-VCH Verlag GmbH ISBNs: 3-527-29773-1 (Hardcover); 3-527-60008-6 (Electronic)

Edited by Norbert Krause

Modern Organocopper Chemistry

Modern Organocopper Chemistry. Edited by Norbert Krause Copyright © 2002 Wiley-VCH Verlag GmbH ISBNs: 3-527-29773-1 (Hardcover); 3-527-60008-6 (Electronic)

Editor

Prof. Dr. N. Krause
University of Dortmund
Organic Chemistry II
D-44221 Dortmund
Germany

This book was carefully produced. Nevertheless, editor, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Die Deutsche Bibliothek – CIP Cataloguingin-Publication Data

A catalogue record for this publication is available from Die Deutsche Bibliothek

© 2002 WILEY-VCH GmbH, Weinheim All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publisher. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany

Printed on acid-free paper

Composition Asco Typesetters, Hong
Kong
Printing Strauss Offsetdruck GmbH
Mörlenbach
Bookbinding Wilhelm Osswald & Co.,
Neustadt
ISBN 3-527-29773-I

ν

Foreword

Copper is one of the oldest transition metals to be used in synthetic organic chemistry. Starting in the 60's, organocopper reagents became among the most popular synthetic tools in the total synthesis of natural product. This is due to the ease of handling and to the chemo-, regio- and stereoselectivities attained with these reagents. Their unique properties for the conjugate addition, for the clean S_N2 substitution, for the mild opening of epoxides, for the carbometallation of triple bonds, etc... makes them unavoidable reagents for these synthetic transformations.

Over the years, a whole family of reagents evolved with increased selectivity and reactivity. "Homocuprates", "heterocuprates", "higher order cuprates", "mixed cuprates", and others, are terms often employed, and a newcomer chemist may worry about their different properties. Despite a lot of progress in the area of organocopper chemistry there is still a strong lack of knowledge in the mechanistic insights. No reactive intermediates have been trapped, and this "black box" was only considered through analogies with other closely related transition metals or, more recently, through extensive calculations. This is to say that all our knowledge about organocopper chemistry did not came by rational design but through empirical way with experimentation.

Over the years, several review articles appeared on organocopper chemistry. Most often, they cover some aspects or some restricted class of reagents, and they are addressed to chemists knowing already the main reactions of organocopper reagents. In contrast to other transition metals, such as Pd, Ni, Rh etc... only few books, covering the entire area of organocopper chemistry, have been published. The present book is the most comprehensive and all the most recent advances are extensively discussed: Zn-Cu reagents, Sn and Si-Cu reagents, H-Cu reagents, asymmetric reactions. The reader will learn about the structure of organocopper reagents and about the most updated mechanistic beliefs presently known.

Organocopper chemistry is of wide applicability, very efficient and easy to perform. The main problem is to know the most appropriate reagent to use. The reader will find in this book all the details for the reagent of choice, for the scope and limitations, for the type of substrate needed. This book should be helpful not only to advanced research chemists, but also for teaching this chemistry to younger

vi Foreword

students in a comprehensive and modern way. Such a wide coverage of an important piece of chemistry is not only welcome; it was needed!

December 2001 Professor Alexandre Alexakis University of Geneva Geneva

Contents

	Foreword v
	Preface xi
	List of Authors xiii
1	Structures and Reactivities of Organocopper Compounds 1
	Johann T. B. H. Jastrzebski, Gerard van Koten
1.1	Introduction 1
1.1.1	Historical Perspective 1
1.1.2	The Oxidation States of Copper 3
1.1.3	Thermal Stability and Bonding in Organocopper(I) Compounds 6
1.2	Homoleptic Organocopper Compounds Cu _n R _n 8
1.3	Heteroleptic Organocopper Compounds Cu _{n+m} R _n X _m 17
1.4	Organocuprates 26
1.4.1	Neutral Homoleptic and Heteroleptic Organocuprates 27
1.4.2	Anionic Homoleptic and Heteroleptic Organocuprates 32
1.4.3	Lower- and Higher-order Cyanocuprates 34
1.5	Concluding Remarks 37
	Acknowledgement 40
	References 40
2	Transmetalation Reactions Producing Organocopper Reagents 45
	Paul Knochel, Bodo Betzemeier
2.1	Introduction 45
2.2	Transmetalation of Functionalized Organolithium and Organomagnesium
	Reagents 45
2.3	Transmetalation of Organoboron and Organoaluminium Reagents 51
2.4	Transmetalation of Functionalized Organozinc Reagents 54
2.4.1	Preparation of Organozinc Reagents 54
2.4.1.1	Preparation of Organozinc Halides 56
2.4.1.2	Preparation of Diorganozinc Reagents 59
2.4.2	Substitution Reactions with Copper-Zinc Reagents 62
2.4.3	Addition Reactions with Copper-Zinc Reagents 65
2.5	Transmetalation of Organotin, Organosulfur, and Organotellurium
	Reagents 67

2.6 2.7 2.8		70 71
3	Heteroatomcuprates and α-Heteroatomalkylcuprates in Organic Synthesis 7 R. Karl Dieter	79
3.1	Introduction 79	
3.2	Heteroatomcuprates 80	
3.2.1	Group IVA Heteroatoms (Si, Ge, Sn) 80	
3.2.1.1	Conjugate Addition Reactions 83	
	Silylcupration and Stannylcupration of Alkynes and Allenes 93	
	Substitution Reactions 102	
3.2.2	Group VA and VIA Heteroatoms (N, O, P) 108	
3.3	α-Heteroatomalkylcuprates 109	
3.3.1	Group VI Heteroatoms (O, S, Se) 110	
3.3.2	Group V Heteroatoms (N, P) and Silicon 114	
3.3.3	α-Fluoroalkylcuprates and α-Fluoroalkenylcuprates 122	
3.4	Non-transferable Heteroatom(alkyl)cuprates and α -	
	Heteroatomalkylcuprates 123	
3.4.1	Simple Residual Ligands 124	
3. 4 .2	Chiral Ligands 127	
3.5	Summary 133	
	Acknowledgments 134	
	References 134	
4		
4	Copper-mediated Addition and Substitution Reactions of Extended Multiple	
4	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145	
	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder	
4.1	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145	16
4.1 4. 2	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14	16
4.1 4.2 4.2.1	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 146 Acceptor-substituted Dienes 146	16
4.1 4.2 4.2.1 4.2.2	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150	16
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159	16
4.1 4.2 4.2.1 4.2.2 4.2.3	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159	16
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160	16
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163	16
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167	16
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz	16
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 146 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper{I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz Introduction and Background 167	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 5 5.1 5.2	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 146 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz Introduction and Background 167 More Recent Developments: Stoichiometric Copper Hydride Reagents 169	16 68
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 5 5.1 5.2 5.3	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 146 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz Introduction and Background 167 More Recent Developments: Stoichiometric Copper Hydride Reagents 161,4-Reductions Catalytic in Cu(I) 174	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 5 5.1 5.2 5.3 5.4	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz Introduction and Background 167 More Recent Developments: Stoichiometric Copper Hydride Reagents 1,4-Reductions Catalytic in Cu(I) 174 1,2-Reductions Catalyzed by Copper Hydride 179	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 5 5.1 5.2 5.3 5.4 5.5	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Imtroduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 14 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz Imtroduction and Background 167 More Recent Developments: Stoichiometric Copper Hydride Reagents 161,4-Reductions Catalytic in Cu(I) 174 1,2-Reductions Catalyzed by Copper Hydride 179 Heterogeneous CuH-Catalyzed Reductions 182	
4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.4 5 5.1 5.2 5.3 5.4	Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems 145 Norbert Krause, Anja Hoffmann-Röder Introduction 145 Copper-mediated Addition Reactions to Extended Michael Acceptors 146 Acceptor-substituted Dienes 146 Acceptor-substituted Enynes 150 Acceptor-substituted Polyenynes 159 Copper-mediated Substitution Reactions of Extended Substrates 160 Conclusion 162 References 163 Copper(I)-mediated 1,2- and 1,4-Reductions 167 Bruce H. Lipshutz Introduction and Background 167 More Recent Developments: Stoichiometric Copper Hydride Reagents 14,4-Reductions Catalytic in Cu(I) 174 1,2-Reductions Catalyzed by Copper Hydride 179 Heterogeneous CuH-Catalyzed Reductions 182	

viii Contents

6	Copper-mediated Diastereoselective Conjugate Addition and Allylic Substitution
	Reactions 188
	Bernhard Breit, Peter Demel
	Abstract 188
6.1	Conjugate Addition 188
6.1.1	Stereocontrol in Cyclic Derivatives 188
6.1.2	Stereocontrol in Acyclic Derivatives 192
6.1.2.1	y-Heteroatom-substituted Michael Acceptors 192
6.1.2.2	γ-Alkyl-substituted α, β-Unsaturated Carbonyl Derivatives 198
	α,β-Unsaturated Carbonyl Derivatives with Stereogenic Centers in
	Positions other than the y-Position 200
6.1.2.4	Directed Conjugate Addition Reactions 200
	Auxiliary-bound Chiral Michael Acceptors and Auxiliary Chiral Metal
	Complexes 202
6.2	Allylic Substitution 210
3.2	References 218
7	Copper-catalyzed Enantioselective Conjugate Addition Reactions of Organozinc
	Reagents 224
	Ben L. Feringa, Robert Naasz, Rosalinde Imbos, Leggy A. Arnold
7.1	Introduction 224
7.2	Organozinc Reagents 227
7.3	Copper-catalyzed 1,4-Addition 229
7.3.1	Phosphoramidite-based Catalysts 229
7.3.2	Catalytic Cycle 233
7.3.3	Variation of Ligands 234
7.3.4	Cyclic Enones 239
7.3.5	2-Cyclopentenone 240
7.3.6	Acyclic Enones 242
7.4	Synthetic Applications 243
7.4.1	Tandem Conjugate Addition-Aldol Reactions 243
7.4.2	Kinetic Resolution of 2-Cyclohexenones 243
7.4.3	Sequential 1,4-Additions to 2,5-Cyclohexadienones 246
7.4.4	Lactones 250
	Nitroalkenes 250
7.4.6	
7.5	Conclusions 254
7.3	Acknowledgements 255
	References and Notes 255
	References and Moles 255
8	Copper-Mediated Enantioselective Substitution Reactions 259
	A. Sofia E. Karlström, Jan-Erling Bäckvall
8.1	Introduction 259
8.2	Allylic Substitution 261
8.2.1	Allylic Substrates with Chiral Leaving Groups 262
8.2.2	Chiral Auxiliary that is Cleaved off after the Reaction 268

x	Contents	
Ī	8.2.3	Catalytic Reactions with Chiral Ligands 272
	8.3	Epoxides and Related Substrates 283
	8.4	Concluding Remarks 286 References and Notes 286
	9	Copper-Mediated Synthesis of Natural and Unnatural Products 289 Yukiyasu Chounan, Yoshinori Yamamoto Abstract 289
	9.1	Conjugate Addition 289
	9.2	S _N 2 Substitution 296
	9.3	S _N 2' Substitution 302
	9.4	1,2-Metalate Rearrangements 306
	9.5	Carbocupration 309
		References 310
	10	Mechanisms of Copper-mediated Addition and Substitution Reactions 315
		Seiji Mori, Eiichi Nakamura
	10.1	Introduction 315
	10.2	Conjugate Addition Reaction 318
		Four-centered and Six-centered Mechanisms 318
		Single-electron Transfer Theorem 319
		Kinetic and Spectroscopic Analysis of Intermediates 320
		Catalytic Conjugate Addition 322
	10.2.5	, , , ,
	10.3	Carbocupration Reactions of Acetylenes and Olefins 324
	10.3.1	Experimental Facts 324
	10.3.2	Theoretically Based Carbocupration Reaction Pathway 325
	10.4	Substitution Reactions on Carbon Atoms 327
	10.4.1	S _N 2 Mechanism of Stoichiometric Substitution Reactions 327
	10.4.2	S _N 2' Allylation Reactions 329
	10.4.3	Radical Substitution Reaction Mechanisms 330
		Catalytic Substitution Reactions 330
		Theoretically Based Alkylation Reaction Pathways 330
	10.6	Other Issues 332
		Counter-cation Lewis Acid Effects 332
		Me ₃ SiCl Acceleration 333
		Dummy Ligands 335
		The "Higher Order" Cuprate Controversy 337
	10.6.5	Further Issues 338
	10.7	Orbital Interactions in Copper-mediated Reactions 338
	10.8	The Roles of Cluster Structure in Copper-mediated Reactions 339
	10.9	Summary and Outlook 340 References 340
		References 540
		Author Index 347
		Subject Index 369

хi

Preface

"When one equivalent of cuprous iodide was treated with one equivalent of methyllithium the yellow, ether-insoluble product was formed. Both the precipitate and the ether solution gave a negative color test with Michler ketone.... However, when one equivalent of cuprous iodide was treated with two equivalents of methyllithium a clear, practically colorless ether solution was formed. This ether solution gave a strong color test."

H. Gilman, R. G. Jones, L. A. Woods, "The Preparation of Methylcopper and some Observations on the Decomposition of Organocopper Compounds", *J. Org. Chem.* 1952, 17, 1630–1634.

Fifty years ago, Gilman and coworkers marked the beginning of the era of organo-copper reagents as synthetic tools in organic chemistry by describing the first preparation of an organocuprate, namely lithium dimethylcuprate (Me₂CuLi-LiI). Nonetheless, it took more than a decade after this discovery until the widespread use of organocuprates was initiated by the seminal work of House, Corey and others. Soon, the synthetic versatility of organocopper compounds and in particular those of cuprates (which in the case of the composition R₂CuLi-LiX are referred to as Gilman reagents) was exploited and, in its wake, created an abundance of new reagents, methods, and applications.

Notable in this respect are the introduction of heterocuprates, the use of "dummy ligands" in order to improve the "economy" of the reagents, the implementation of "higher-order" and "lower-order" cuprates and the development of chiral organocopper reagents. Last but not least, the refinement of both theoretical and experimental methods (e.g., X-ray, NMR spectroscopy, kinetics) has shed light on the structures of organocopper compounds and the mechanism of their reactions. Although nowadays regarded as indispensable tools in the repertoire of synthetic organic chemists, organocopper chemistry is still a vivid field with numerous new copper-promoted transformations and chiral catalysts being developed over the last years.

This book captures recent advances of organocopper chemistry and serves as a detailed guide to the high standard now reached in the field. Brief summaries of previous achievements as well as thorough discussions of new methods and techniques facilitate (even for students) the entry into *Modern Organocopper Chemistry*, an area that will certainly witness further exciting discoveries in the near future.

Selected authors, all of them being protagonists in the respective area, provide profound expertise about both experimental and theoretical aspects of coppermediated transformations to a wide range of scientists in academia and industry. Combined with essays about structure and mechanism (chapters 1 and 10), Modern Organocopper Chemistry compiles novel techniques for the generation of functionalized organocopper reagents (chapter 2) and heteroatom- as well as heteroatomalkylcuprates (chapter 3). Application of these organometallics in reactions with extended multiple bond systems (chapter 4), in reductions (chapter 5) and in stereoselective conjugate addition and substitution reactions (chapters 6-8), as well as their use for the synthesis of biologically active products (chapter 9), round out this monograph

The idea of this book, bringing together all important aspects of Modern Organocopper Chemistry and presenting them in a prolific way, has emerged over the last years in discussions with many colleagues, students and friends. Here, the European Commission deserves special mention for genereous support of several projects within the framework European Cooperation in the Field of Scientific and Technical Research (COST). I thank the authors of this volume for their determination to complete their contribution in time of the 50th anniversary of Gilman's groundbreaking discovery. Finally, I dedicate this monograph to the over 2000 scientists mentioned in the author index for their original contributions which made the book possible.

Dortmund, December 2001

Norbert Krause

xiii

List of Authors

Leggy A. Arnold
Department of Organic and Molecular
Inorganic Chemistry
Stratingh Institute
University of Groningen
Nijenborgh 4
NL-9747 AG Groningen
The Netherlands

Jan-Erling Bäckvall
Department of Organic Chemistry
Arrhenius Laboratory
Stockholm University
S-10691 Stockholm
Sweden

Bodo Betzemeier Department Chemie Ludwig-Maximilians-Universität München Butenandtstr. 5–13, Haus F D-81377 München Germany

Bernhard Breit Institut für Organische Chemie und Biochemie Albertstr. 21 D-79104 Freiburg Germany

Yukiyasu Chounan Department of Natural Science Faculty of Education Hirosaki University Hirosaki 036-8560 Japan

Peter Demel Institut für Organische Chemie und Biochemie Albertstr. 21 Germany
R. Karl Dieter
Hunter Laboratory
Department of Chemistry
Clemson University
Clemson, SC 29634-0973

D-79104 Freiburg

USA

Ben L. Feringa
Department of Organic and Molecular
Inorganic Chemistry
Stratingh Institute
University of Groningen
Nijenborgh 4
NL-9747 AG Groningen
The Netherlands

Anja Hoffmann-Röder Dortmund University Organic Chemistry II D-44221 Dortmund Germany

Rosalinde Imbos
Department of Organic and Molecular
Inorganic Chemistry
Stratingh Institute
University of Groningen
Nijenborgh 4
NL-9747 AG Groningen
The Netherlands

Johann T. B. H. Jastrzebski Debye Institute Department of Metal-Mediated Synthesis Utrecht University Padualaan 8 NL-3584 CH Utrecht The Netherlands Sofia E. Karlström

Department of Organic Chemistry

Arrhenius Laboratory Stockholm University S-10691 Stockholm

Sweden

Paul Knochel Department Chemie

Ludwig-Maximilians-Universität München

Butenandtstr. 5-13, Haus F

D-81377 München

Germany

Norbert Krause Organic Chemistry II Dortmund University D-44221 Dortmund

Germany

Bruce H. Lipshutz

Department of Chemistry & Biochemistry

University of California Santa Barbara, CA 93106

USA

Seiji Mori

Department of Environmental Sciences

Ibaraki University Mito 310-8512 Japan

Robert Naasz

Department of Organic and Molecular

Inorganic Chemistry Stratingh Institute University of Groningen

Nijenborgh 4

NL-9747 AG Groningen

The Netherlands

Eiichi Nakamura

Department of Chemistry The University of Tokyo

Bunkyo-ku

Tokyo 113-0033

Japan

Gerard van Koten

Debye Institute

Department of Metal-Mediated Synthesis

Utrecht University Padualaan 8 NL-3584 CH Utrecht

The Netherlands

Yoshinori Yamamoto Department of Chemistry Graduate School of Science

Tohoku University Sendai 980-8578

Japan

Finally, some organocopper compounds undergo charge disproportionation under the influence of ligands that bind strongly to copper. Treatment of mesitylcopper with 1,2-bis-(diphenylphosphino)ethane (DPPE), for example, results in the formation of bis(mesityl)copper anions and a copper cation to which four phosphorus atoms of two DPPE molecules are coordinated [75].

The selective formation of symmetric biaryls in high yield through thermal or oxidative decomposition is a feature that can be directly associated with the structure of the compound involved. It has been shown that arylcopper compounds with a structure comprising three-center, two-electron-bonded bridging aryl groups undergo this selective reaction (see Scheme 1.13), while anylcopper compounds in which the Cu atom is η^1 -bonded to the aryl group give a mixture of unidentified decomposition products, most probably by a radical pathway. In structures incorporating bridging aryl groups, the carbon atoms are already in close proximity [76], as shown schematically in Scheme 1.13. Therefore, only a slight further distortion of this geometry is needed to bring the ipso-carbon atoms even closer together, thus promoting the C C bond formation.

Scheme 1.13.

Furthermore, it has been demonstrated that an increase in the electrophilicity of the copper centers in aggregate structures, by incorporation of Cu+ into such structures, for example, favors C C bond formation to give biaryls. Treatment of various organocopper compounds with Cu⁺ (in the form of CuOTf, OTf = trifluoromethanesulfonate) has been studied [77]. For some compounds containing potential coordinating substituents, it was possible to isolate and study species such as [(Cu₆R₄)²⁺][2 OTf] [76], but addition of only catalytic amounts of CuOTf to simple arylcopper compounds such as Cu₄(C₆H₄Me-2)₄ and Cu₄(C₆H₄Me-4)₄ affords the corresponding biaryls in quantitative yield. This was explained in terms of a mechanism involving a valence disproportionation reaction of two Cu(I) into Cu(II) and Cu(0) [77].

Finally, pure organocopper compounds have found applications in one-step syntheses of tri- and diorganotin halides. Its has now become well established that treatment of Grignard and organolithium reagents with tin(IV) halides always gives a mixture of products (Eqn. 1 in Scheme 1.14) rather than the desired tri- or diorganotin halides.

In contrast, treatment of SnCl4 with excess CuPh affords SnPh3Cl as the only product [78] (Eqn. 2 in Scheme 1.14). Furthermore, it has been shown that reaction of functionally substituted arylcopper compounds with organotin halides proceeds very selectively to afford a novel type of pentacoordinate organotin compounds possessing interesting structural features [79]. Treatment of Cu₄(C₆H₄CH₂NMe-2)₄ with four equivalents of SnMeCl₃, for example, gives

$$SnX_4 \xrightarrow{RMgX \text{ or } RLi} R_nSnX_{4-n}$$

$$SnCl_4 \xrightarrow{PhCu} Ph_3SnCl$$

$$1/4 Cu_4(C_6H_4CH_2NMe_2-2)_4 + MeSnCl_3$$

$$(1)$$

$$(2)$$

Scheme 1.14.

SnMeCl₂(C₆H₄CH₂NMe-2) as the only product, in quantitative yield [80] (Eqn. 3 in Scheme 1.14).

1.3 Heteroleptic Organocopper Compounds Cun+mRnXm

As outlined previously, aggregation of organocopper compounds is a consequence of the fact that the carbon moieties in these compounds are capable of bridging between two copper atoms. It is therefore to be expected that other anionic ligands capable of bridging between metal centers - halides, for example - might easily become incorporated into such aggregates.

By the early 1970s it was already recognized that the excess CuBr in the red product obtained on treatment of LiC₆H₄NMe₂-2 with CuBr (for which the elemental analysis pointed to a Cu₃(C₆H₄NMe₂-2)₂Br stoichiometry) is not a contaminant but an integral part of an aggregated species [47]. An X-ray crystal structure determination of this compound showed a structure (see Fig. 1.13) of Cu₆(C₆H₄NMe₂-2)₄Br₂ stoichiometry, with the copper atoms in an octahedral arrangement [44].

Each of the four organic moieties bridges between an equatorial and an axial copper atom through its C(1) atom, while the nitrogen atom in the substituent is coordinated to an adjacent equatorial copper atom. The two bromine atoms bridge, at opposite sites, between two equatorial copper atoms. This structural arrangement has the consequence that the aggregate incorporates two distinct types of

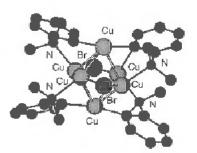


Fig. 1.13. Structure of $Cu_6(C_6H_4NMe_2-2)_4Br_2$ in the solid state.

copper atoms: four equatorial ones with distorted trigonal coordination geometries, and the two apical ones, with distorted digonal coordination geometries.

It should be noted that a combination of various bonding features – bridging organic groups, bridging anionic ligands such as halogen atoms, and also the presence of potentially coordinating substituents – might give rise to more diverse structural patterns, as has been observed for homoleptic organocopper compounds (vide supra). In addition, though, organocopper compounds that do not contain functional substituents can also aggregate with copper halides, as demonstrated by the following observation:

During the synthesis of $\text{Cu}(\text{C}_6\text{H}_4\text{Me-4})$, prepared by gradual addition of a solution of $\text{LiC}_6\text{H}_4\text{Me-4}$ to a suspension of CuBr in Et_2O [16], a completely clear solution is obtained at the stage at which about half of the quantity of $\text{LiC}_6\text{H}_4\text{Me-4}$ has been added. This indicates that at this point the excess CuBr has been solubilized, most probably as a consequence of aggregation with the $\text{Cu}(\text{C}_6\text{H}_4\text{Me-4})$ produced (see Scheme 1.15). It was impossible to isolate any well defined compound from this solution, due to the intrinsic low thermal stability of the species formed.

2 CuBr
$$\frac{\text{LiC}_6\text{H}_4\text{Me 4}}{\text{CuC}_6\text{H}_4\text{Me 4} \text{CuBr}} = \frac{\text{LiC}_6\text{H}_4\text{Me 4}}{\text{CuC}_6\text{H}_4\text{Me 4}} = 2 \left[\text{CuC}_6\text{H}_4\text{Me 4}\right]$$
Scheme 1.15.

To discuss all the structures elucidated for heteroleptic organocopper compounds to date [29, 45] is beyond the scope of this chapter, and so only some representative examples of the various kinds of structural motifs are discussed. As outlined in the previous section, the order of addition of the reagents can play an important role in the synthesis of homoleptic organocopper compounds, and might determine the structure of the final product. Similar observations have been made for the synthesis of organocopper-copper halide aggregates. In other cases, however, the same aggregated species is always formed, irrespective of the order of addition or the stoichiometry of the starting materials. This is most probably the result of a large difference in thermodynamic stability of the possible final products, the most stable one acting as a thermodynamic sink.

Organic moieties containing potentially coordinating substituents are largely responsible for the diversity of structures observed in heteroleptic organocopper compounds. The structures observed in compounds containing one of the ligands depicted in Fig. 1.14 demonstrate that important roles are played not only by

Fig. 1.14. Bidentate-, tridentate- and pentadentate monoanionic ligands applied in the synthesis of various organocopper aggregates.

the number of heteroatoms, but also by the spatial arrangement of the functional groups.

As outlined above, the aggregate Cu₆(C₆H₄NMe₂-2)₄Br₂, incorporating ligand A, comprises a structure with six copper atoms in an octahedral arrangement (see Fig. 1.13). It is interesting to note that the other group 11 metals, silver and gold, can also be incorporated into this metal framework. Compounds of compositions Ag₆(C₆H₄NMe₂-2)₄X₂, Ag₄Cu₂(C₆H₄NMe₂-2)₄X₂, Ag₂Cu₄(C₆H₄NMe₂-2)₄X₂, $Au_2Cu_4(C_6H_4NMe_2-2)_4X_2$, and $Au_2Ag_4(C_6H_4NMe_2-2)_4X_2$ (X = anionic ligand) [77, 81] have been isolated. On the basis of spectroscopic evidence, structures comparable to that observed for Cu₆(C₆H₄NMe₂-2)₄Br₂ have been proposed. For the latter two compounds it is most likely that the Au atoms occupy axial positions, as a consequence of the tendency of gold(I) to attain a linear digonal coordination geometry.

As mentioned in Section 1.2, the organocopper compound derived from ligand B is a discrete, tetranuclear species. Aggregation of this compound with CuCl or CuBr results in an insoluble material with the composition Cu(C6H4CH2NMe2-2)·CuX (X = Br, Cl) [35]. Because of its insolubility, which hampers structural characterization, a polymeric structure has been proposed for this compound.

When the (dimeric and structurally characterized [82]) organolithium compound derived from ligand C is treated with CuBr, either Cu₃Br[C₆H₄CH₂N(Me)CH₂-CH₂NMe₂-2]₂ or Cu₄Br₂[C₆H₄CH₂N(Me)CH₂CH₂NMe₂-2]₂ is formed, depending on the RLi/CuBr molar ratio (see Scheme 1.16).

Scheme 1.16.

The structure of the first compound was unambiguously proven by X-ray crystal structure determination (see Fig. 1.15) [46]. It should be noted that an attempt to prepare and isolate the pure, copper halide-free organocopper compound (by application of less than three equivalents of CuBr) failed, with the 2:1 organocopper-copper bromide aggregate always being isolated, although in lower yield. An interesting structural feature of these compounds is that they may be regarded as

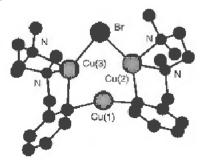


Fig. 1.15. Structure of $Cu_3Br[C_6H_4CH_2N(Me)CH_2CH_2NMe_2-2]_2$ in the solid state.

consisting of a cuprate anionic moiety R_2Cu and either a $[Cu_2Br]^+$ (first compound) or a $[Cu_3Br_2]^+$ (second compound) cationic unit.

Introduction of a second *ortho*-(dimethylamino)methyl substituent, ligand \mathbf{D} in Figure 1.14, affords an aggregated species with $Cu_4Br_2R_2$ stoichiometry, established by X-ray crystal structure determination [83]. The structure comprises two organic, monoanionic, terdentate ligands binding four copper atoms (arranged in a butterfly pattern) through C_{ipso} bridge bonding and N Cu coordination, as well as by two bridging bromine atoms (see Fig. 1.16). This compound may also to be considered as consisting of a R_2Cu (cuprate) anionic unit and a $[Cu_3Br_2]^+$ cationic moiety, held together as a consequence of the special spatial arrangement of the heteroatom-containing substituents.

On extension of the coordinating properties of the ligand system to a monoanionic pentadentate representative – ligand E in Fig. 1.14 – an even less expected structure was obtained. Treatment of the corresponding organolithium compound (which only exists as an aggregate with LiBr [84]) with CuBr afforded an aggregate, the X-ray structure of which is shown in Fig. 1.17. The structure consists of two monoanionic, pentadentate organic groups, five copper atoms, and three bromine

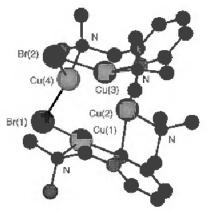
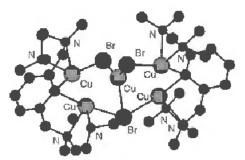
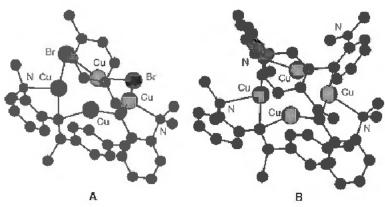



Fig. 1.16. Structure of $Cu_4Br_2[C_6H_3(CH_2NMe_2)_2-2,6]_2$ in the solid state.



 $\textbf{Fig. 1.17.} \quad \text{Structure of } Cu_5Br_3[C_6H_3\left(CH_2N\left(Me\right)CH_2CH_2NMe_2\right)_2-2,6]_2 \text{ in the solid state.}$

atoms, and can be described in terms of two $[RCu_2]^+$ cationic building blocks held together by a central $[CuBr_3]^2$ anionic unit [85].

Treatment of a functionalized vinyllithium compound with two equivalents of CuBr (see Scheme 1.17) afforded an aggregate, the structure of which was established by an X-ray crystal structure determination [41, 42] (see Fig. 1.18A).

Scheme 1.17.

 $\begin{array}{lll} \textbf{Fig. 1.18.} & \textbf{Structures} & \textbf{of} & \textbf{Cu}_{4}\textbf{Br}_{2}[2\textbf{-}Me_{2}\textbf{NC}_{6}\textbf{H}_{4}\textbf{C}(Me) + \textbf{C}(\textbf{C}_{6}\textbf{H}_{4}\textbf{Me-4})]_{2} & \textbf{(A)} & \textbf{and} & \textbf{Cu}_{4}[2\textbf{-}Me_{2}\textbf{NC}_{6}\textbf{H}_{4}\textbf{C}(Me) + \textbf{C}(\textbf{C}_{6}\textbf{H}_{4}\textbf{Me-4})]_{2}[\textbf{C}_{6}\textbf{H}_{4}\textbf{NMe}_{2}\textbf{-}2]_{2} & \textbf{(B)} & \textbf{in the solid state}. \end{array}$

This structure represents the first of the very few examples of structurally characterized organocopper compounds containing vinylic carbon-to-copper bonds. The four copper atoms are arranged in a rhombus-type pattern, while the propenyl groups and the two bromine atoms occupy adjoining edges. As a consequence, the copper atoms are alternately two- and three-coordinate. An interesting feature of this compound is that the two bromine atoms can be replaced by aryl groups on treatment with an aryllithium compound, with retention of the overall structural arrangement [41] (see Fig. 1.18B).

This latter compound represents an example of a heteroleptic organocopper compound containing two different organic moieties: aryl groups and vinyl groups. The existence of such heteroleptic organocopper compounds had been proposed earlier, on the basis of spectroscopic and chemical evidence [77]. Thus, it had been shown by NMR spectroscopic studies that organocopper species in solution undergo interaggregate exchange. Mixing of pure [CuC₆H₄CH₂NMe₂-2]₄ with [CuC₆H₄Me-4]₄, for example, affords an equilibrium mixture of all possible mixed aggregates (Scheme 1.18).

$$\left[\text{CuC}_{8}\text{H}_{4}\text{CH}_{2}\text{NMe}_{2}\text{J}_{4} \right. \\ \left. + \left[\text{CuC}_{8}\text{H}_{4}\text{Me}_{-4}\text{J}_{4} \right. \\ \left. + \left[\text{Cu}_{4}(\text{C}_{8}\text{H}_{4}\text{CH}_{2}\text{NMe}_{2})_{r}(\text{C}_{8}\text{H}_{4}\text{Me}_{-4})_{4} \right. \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right] \\ \left. + \left[\text{CuOT}^{4} \right] \\ \left. + \left[\text{CuOT}^{4} \right] \right]$$

 $Me_2NCH_2C_6H_4C_6H_4CH_2NMe_2 \ + \ MeC_6H_4C_6H_4Me \ - \ Me_2NCH_2C_6H_4C_6H_4Me$ Scheme 1.18.

Decomposition of this equilibrium mixture with catalytic amounts of CuOTf affords a mixture of all three possible biaryls. The formation of the unsymmetrical biaryl $2\text{-Me}_2\text{NCH}_2\text{C}_6\text{H}_4\text{C}_6\text{H}_4\text{Me-4}$ can only be explained by the occurrence of aggregated copper species in which both the $\text{C}_6\text{H}_4\text{CH}_2\text{NMe}_2\text{-}2$ and the $\text{C}_6\text{H}_4\text{Me-4}$ groups are bound to the same copper core [77]. It was furthermore observed that the ratio of the formed biaryls is not statistical, which points to significant differences in the thermodynamic stabilities of the various mixed aggregates present in solution.

Treatment of $Cu_6(C_6H_4NMe_2\cdot 2)_4Br_2$ (Fig. 1.13) with two equivalents of a lithium acetylide resulted in selective replacement of the bromide anions with acetylide groups (see Scheme 1.19) [86]. The aggregate thus formed represents another example of a heteroleptic organocopper compound containing two different organic groups.

Two other synthetic approaches to this type of aggregates are available (Scheme 1.19). The first involves mixing of the pure arylcopper compound with an appropriate copper acetylide in a suitable solvent [87]. In this regard, it is interesting to note that the aggregate $Cu_6(C_6H_4NMe_2-2)_4(C_-CR)_2$ is always obtained irrespective of the stoichiometry of the reagents, thus representing a nice example of selective self-assembly. The second approach involves treatment of a monosubstituted acet-

Scheme 1.19.

ylene with the pure organocopper compound. Partial protonolysis of the organocopper compound produces a copper acetylide, which is immediately trapped by unreacted organocopper compound. The structure of the obtained aggregate was unambiguously proven by an X-ray crystal structure determination (see Fig. 1.19) [88].

An interesting feature of these compounds is that, upon thermolysis in benzene at 80 °C, the unsymmetrical C C coupling product 2-Me₂NC₆H₄C₋CR is formed exclusively. The selectivity of this reaction is probably directly related to the structural features of this heteroleptic aggregate [89].

There is ample evidence that anions other than halides can also become incorporated in aggregate structures. For example, interaggregate exchange between organocopper compounds and copper carboxylates has been observed in reactions between copper benzoate and mesitylcopper in the appropriate molar ratio [90]. In one reaction, a yellow, crystalline material was isolated in high yield. According to X-ray crystallography [90], it appeared to be a trinuclear aggregate with one mesityl group bridge-bonded between two copper atoms, and with the two benzoate anions each binding in a bridging fashion between one of these copper atoms and a third one (see Fig. 1.20).

Other examples are provided by structures with bridging arenethiolate anions. The application of functionally substituted copper arenethiolates as catalysts in

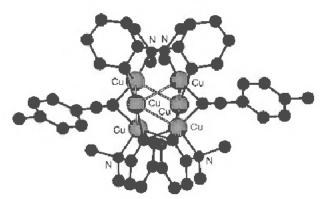


Fig. 1.19. Structure of $Cu_6(C_6H_4NMe_2-2)_4(C_+CC_6H_4Me-4)_2$ in the solid state.

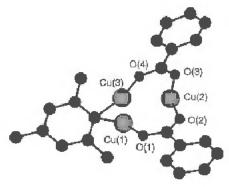


Fig. 1.20. Structure of $Cu_3(Mes)(O_2CC_6H_5)_2$ in the solid state.

copper-mediated C C bond formation reactions is now well established [91, 92], and it has been argued that the formation of mixed arenethiolate alkyl- or arylcopper aggregates might play a role in these reactions. This assumption is supported by the synthesis of $Cu_4(Mes)_2(SC_6H_4CH_2NMe_2-2)_2$, which was achieved by treatment of the appropriate copper arene thiolate with mesitylcopper in 1:1 molar ratio. The molecular geometry of this compound was established by X-ray crystal structure determination (Fig. 1.21) [93].

The structure of this compound consists of four copper atoms in a butterfly arrangement, in which the two mesityl groups bridge opposite edges. The remaining two edges are occupied by the arenethiolate ligands through bridging Cu S bonds, while the nitrogen atoms of the substituents are coordinated to two opposite copper atoms. In this way, two of the copper atoms become three-coordinate and the other two copper atoms two-coordinate.

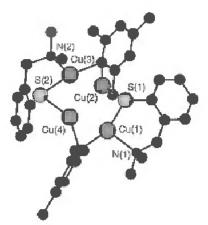


Fig. 1.21. Structure of $Cu_4(Mes)_2(SC_6H_4CH_2NMe_2-2)_2$ in the solid state.

It is not only heteroatom-functionalized organocopper compounds that give rise to a large diversity of aggregates with copper halides. Organocopper compounds with olefinic substituents, which are also able to coordinate to copper, similarly form aggregates, such as $[Cu_5Br_4(C_6H_4CH=CH_2-2)_2]$ and $[Cu_5Br_2(C_6H_4CH=CH_2-2)_4]$ [94]. These anionic aggregates formally belong to an other class of compounds: the cuprates, discussed in the next section.

The ability of organocopper compounds to form various kinds of aggregated species with metal halides is a factor often overlooked when organocopper compounds are applied as reagents in organic synthesis. It needs to be taken into account that copper halides are often formed during reactions of pure organocopper reagents. It is obvious that these can form aggregates with the organocopper reagent, so that, at a certain stage in the reaction, the initial reagent is no longer present. The organocopper-copper halide aggregate produced probably has a reactivity different to that of the initial organocopper reagent. At the current state of knowledge, the consequences are unpredictable and may well be different for each specific organocopper compound. When an aggregate with much higher stability than the pure organocopper compound is formed, any further reaction may be prevented. If, on the other hand, the aggregate has a considerably reduced thermal stability, extensive decomposition might occur, giving rise to the formation of unwanted side products.

An illustrative example is the formation of the symmetric biaryl from the reaction between CuC₆H₄NMe₂-2 and IC₆H₄NMe₂-2, which has been studied in detail in the authors' laboratory [95]. When this reaction is carried out in benzene as a solvent, the reaction stops when one third of the original organocopper compound has been consumed (Eqn. 1 in Scheme 1.20).

The CuI formed during the reaction is immediately trapped by the unreacted organocopper compound, resulting in the formation of Cu₆(C₆H₄NMe₂-2)₄I₂. This aggregate has a structure similar to that of the corresponding bromine compound (Fig. 1.13). Compared to the parent organocopper compound, this aggregate has considerably greater kinetic stability and so blocks any further reaction even when excess of aryl iodide is present. When, however, the same reaction is carried out in DMF, quantitative formation of the biaryl is observed (Eqn. 2 in Scheme 1.20). It appears likely that the good donor DMF effectively cleaves the aggregated species into the parent organocopper compound and solvated CuI, so that the reaction goes to completion. This observation might also explain why co-solvents such as DMF, NMP, or HMPA are often required to produce high yields in reactions involving organocopper compounds.

1.4

Organocuprates

From the viewpoint of their synthetic potential in organic synthesis, the organocuprates are the most important of all organocopper compound types [13, 96–98]. Organocuprates are commonly obtained by addition of more than one equivalent of an organolithium or Grignard reagent to a copper halide [5] (Eqn. 1 in Scheme 1.21). The existence of such species was discovered after the observation that insoluble MeCu reacts with an additional equivalent of MeLi to afford a clear, colorless solution of a compound represented as "Me₂CuLi" (Eqn. 2 in Scheme 1.21) [6, 7].

$$CuX = \frac{2 \text{ RMgX or 2RLi}}{\text{MgX}_2 \text{ or LiX}} + \frac{\text{R}_2\text{Cu(MgX) or (Li)}}{\text{R}_2\text{Cu(MgX) or (Li)}}$$

$$CuX = \frac{\text{Met I}}{-\text{LiX}} + \frac{\text{MeCJ}}{\text{yellow}} + \frac{\text{MeL'}}{\text{coloness}}$$

$$\frac{\text{Impolube}}{\text{insolube}} + \frac{\text{Impolube}}{\text{solution}}$$
(1)

Scheme 1.21.

A large variety of cuprates are known nowadays. They include heteroleptic derivatives R(Y)CuM (Y=alkynyl, halide, amido, alkoxide, thiolato, phosphido; M=Li or Mg), and have found widespread application in organic chemistry. Their syntheses and applications are discussed in the other chapters of this book. In addition, compounds in which the copper to lithium (or magnesium) ratio differs from 1:1 are also known; examples are R_3CuLi_2 and the so-called higher order cyanocuprates introduced by Lipshutz et al. [99].

Studies of the structures of cuprate species were initiated to elucidate the mechanisms by which they interact with substrates and to understand their special reactivities. In the early days these investigations were restricted to solution studies by spectroscopic techniques. It was not until 1982 that the first example of a cuprate species – [(Cu₅Ph₆)(Li(THF₄))] – was structurally characterized by X-ray crystal structure determination [100] (vide infra). It should be noted that most of these studies, reviewed previously [29, 45, 101], were limited to "simple" alkyl and aryl derivatives.

In principle, three different types of organocuprates need to be taken account of. These are:

- (1) the neutral homoleptic organocuprates, as initially discovered by Gilman,
- (2) ionic species, often obtained by adding strongly coordinating molecules such as crown ethers to neutral organocuprates, and
- (3) heteroleptic cuprates, of which the cyanocuprates are the most important and most extensively studied representatives.

However, these borderlines should not be taken too strictly.

Fig. 1.22. Proposed structures for Cu₂Li₂Me₄ (A) and Cu₂Li₂(CH₂SiMe₃)₄ (B)

It is beyond the scope of this chapter to discuss the special reactivities associated with each specific type of cuprate; these are covered in other chapters in this book. Here, we will concentrate on the various structural motifs of organocuprates in organic synthesis.

1.4.1

Neutral Homoleptic and Heteroleptic Organocuprates

Molecular weight determination – by vapor pressure depression, ¹H NMR, and solution X-ray scattering data – made it evident that CuLiMe₂ exists as a dimer in Et₂O solution [102]. A planar cyclic structure Cu₂Li₂Me₄, shown schematically in Fig. 1.22A, has been proposed; it comprises alternating copper and lithium atoms with each of the Me groups bridging between one lithium and one copper atom. Similar conclusions were drawn from variable temperature ¹H NMR studies of LiCH₂SiMe₃ and CuCH₂SiMe₃ in various ratios. It was shown that the only significant "mixed" species present in solution was the 1:1 aggregate, for which a similar dimeric planar structure was proposed (see Fig. 1.22B) [39, 103]. Furthermore, kinetic data relating to the reaction between CuLiMe₂ and MeI implied that the rate-determining step involved the dimeric aggregate, Cu₂Li₂Me₄ [102].

The first example of an arylcuprate isolated as a pure compound and studied in detail was the compound of stoichiometry $CuLi(C_6H_4CH_2NMe_2-2)_2$, incorporating the monoanionic, bidentate $C_6H_4CH_2NMe_2-2$ ligand framework [104]. The synthesis of the corresponding pure aurate, $AuLi(C_6H_4CH_2NMe_2-2)_2$ [105] and the pure argentate $AgLi(C_6H_4CH_2NMe_2-2)_2$ [106] were reported by the same authors. Molecular weight determinations by cryoscopy in benzene revealed that these compounds exist in apolar solvents as dimeric aggregates $M_2Li_2(C_6H_4CH_2NMe_2-2)_4$ (M = Cu, Ag, Au). The presence of different magnetically active nuclei (1H , ^{13}C , $^{107,109}Ag$, and $^{6,7}Li$) in the argentate allowed detailed structural characterization in solution to be carried out by NMR spectroscopy. 1H and ^{13}C NMR spectroscopy showed the presence of four magnetically equivalent organic moieties over the whole temperature range studied ($^{-70}$ to $^{+100}$ $^{\circ}C$). At the low exchange limit ($^{-10}$ $^{\circ}C$), the nitrogen atoms of the substituents are coordinated in pairs to the same type of metal, most probably lithium. Furthermore, the ^{13}C NMR spectrum

Fig. 1.23. Proposed structures in solution for $M_2Li_2(C_6H_4CH_2NMe_2-2)_4$ (A) and $M_2Li_2(C_6H_4Me-4)_4(OEt_2)_2$ (B).

showed that each of the C_{ipso} atoms is coupled to one Li atom ($^1J(^{13}C, ^7Li) = 7.2$ Hz) and to one Ag atom ($^1J(^{13}C, ^{109}Ag) = 136$ Hz). The $^6Li, ^7Li,$ and ^{109}Ag NMR spectra pointed to the presence of one type of silver and one type of lithium atom, with each lithium atom being coupled to two silver atoms and each silver atom coupled to two lithium atoms ($^2J(^7Li, ^{109}Ag) = 3.91$ Hz) [107].

On the basis of these data and of spectroscopic similarities between the Cu, Ag, and Au compounds, a structure for these compounds was proposed. This is shown schematically in Fig. 1.23A. This dimeric aggregated structure is not a consequence of the *ortho* functionalization of the aryl anion with a coordinating heteroatom substituent, as became evident from studies of the structural features of the simple arylcuprate Cu_2Li_2 (C_6H_4Me-4) $_4(OEt_2)_2$ and the corresponding gold compound in solution [108]. For these aggregated species, a structure similar to that of $M_2Li_2(C_6H_4CH_2NMe_2-2)_4$ was proposed (see Fig. 1.23B). However, the lithium atoms are now trigonally coordinated.

The solid state structures of $Cu_2Li_2(C_6H_4CH_2NMe_2-2)_4$ (Fig. 1.24A) [72], $Au_2Li_2(C_6H_4CH_2NMe_2-2)_4$ [109], and $Cu_2Li_2(C_6H_5)_4(OEt_2)_2$ (Fig. 1.24B) [110],

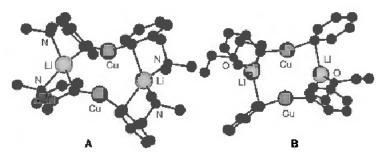


Fig. 1.24. Structures of $Cu_2Li_2(C_6H_4CH_2NMe_2-2)_4$ (A) and $Cu_2Li_2(C_6H_5)_4(OEt_2)_2$ (B) in the solid state.

were later established by X-ray crystal structure determination and appeared to be in full agreement with the corresponding structures in solution as deduced from spectroscopic data.

 $\text{Cu}_2\text{Li}_2(\text{C}_6\text{H}_4\text{CH}_2\text{NMe}_2-2)_4$ was the first neutral cuprate for which the structure could be unambiguously established. A common feature of such structures is the bridging nature of the aryl group. As a consequence of the binding of Cipso to two different metal atoms, this bridging (in comparison with that in homoleptic organocopper compounds) is unsymmetrical (shorter Cu C bond, longer Li C bond). This asymmetry is even more pronounced in the corresponding gold compound [109], which is best described as consisting of two R2Au anionic units linked together by solvated lithium cations through contact ion-pair formation. Another consequence of the bridging between two different metal atoms is the fact that, if the aryl group is not symmetrically substituted, the bridging carbon atom becomes a center of chirality. This has important stereochemical consequences [111]. A particularly complicated situation arises if the benzylic group in, for example, Cu₂Li₂(C₆H₄CH₂NMe₂-2)₄ bears a substituent that gives rise to the presence of different diastereoisomeric units in one aggregate [111]. The pure organocopper compound Cu₄(C₆H₄CH(Me)NMe₂-2)₄, and the corresponding cuprate, Cu₂Li₂(C₆H₄CH(Me)NMe₂-2)₄, were prepared starting both from the enantiopure ligand and from the racemic ligand. It appeared that the organocopper compound Cu₄(C₆H₄CH(Me)NMe₂-2)₄ derived from the racemic ligand exists in solution as a mixture of all possible diastereoisomeric aggregates. This observation, however, contrasts with the situation found for the cuprate $Cu_2Li_2(C_6H_4CH(Me)NMe_2-2)_4$ derived from the racemic ligand. In this case, only aggregates in which all four bridging and benzylic carbon centers have the same relative stereochemical configuration are formed, in a nice example of diastereoselective self-assembly [112].

That the natures both of the organic group and of the additional donor-solvent molecules are factors that determine the actual cuprate aggregates formed is demonstrated by the structure of $[Cu_2Li_2(CH_2SiMe_3)_4(DMS)_2]_n$ in the solid state [113] (see Fig. 1.25). In this structure, the basic framework consists of repeating central

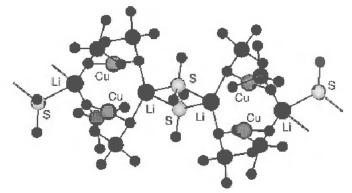


Fig. 1.25. Structure of $[Cu_2Li_2(CH_2SiMe_3)_4(DMS)_2]_n$ in the solid state.

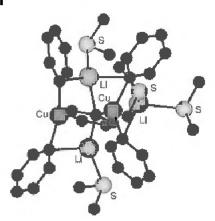


Fig. 1.26. Structure of Cu₂Li₃Ph₅(DMS)₄ in the solid state.

Cu₂Li₂ cores with bridging Me₃SiCH₂ groups. These Cu₂Li₂ cores are interlinked to form linear chains through bridging Me₂S ligands between the lithium atoms of two adjacent Cu₂Li₂ cores.

The solid-state structure of $Cu_2Li_2Ph_4(DMS)_3$ is closely related to that observed for $Cu_2Li_2Ph_4(OEt_2)_2$, except that one of the lithium atoms here is now four-coordinate as a result of coordination of two DMS molecules [114]. This observation shows that even slight changes in the coordinating properties of donor solvent molecules may change the overall structure of the cuprate.

So far, only cuprates with a 1:1 copper/lithium ratio have been considered. Treatment of phenyllithium with various substoichiometric quantities of copper bromide in DMS as solvent afforded so-called higher order cuprates, of which two were characterizable by X-ray crystallography. These have the overall stoichiometries $\text{Cu}_2\text{Li}_3\text{Ph}_5(\text{DMS})_4$ and $\text{Cu}_4\text{Li}_5\text{Ph}_9(\text{DMS})_4$ [114, 115]. The structure of the former compound in the solid state is shown in Fig. 1.26.

The $Cu_4Li_5Ph_9(DMS)_4$ aggregate may be described as consisting of three linear $CuPh_2$ anions, triply bridged by two lithium cations, and of one trigonal Ph_3Cu^2 anion, which is associated with three lithium cations and coordinated by four DMS ligands. The two resulting units $-[(CuPh_2)_3Li_2]$ and $[(CuPh_3)Li_3(DMS)_4]^+$ – are linked together by a bridging phenyl group ipso carbon atom.

The only examples of cuprates in which copper and magnesium atoms are incorporated in one aggregate have the stoichiometries $Cu_2MgPh_4(THF)_n$ [60], $Cu_5Mg_2Ph_4Br_5(THF)_n$ [60], $Cu_4Mg(PhMe-4)_6(OEt_2)$ [116], and $Cu_4MgPh_6(OEt_2)$ [116]. The structure of $Cu_4MgPh_6(OEt_2)$ in the solid state (Fig. 1.27) was established by X-ray crystal structure determination [117].

The structure of $Cu_4MgPh_6(OEt_2)$ comprises a central core of five metal atoms in a trigonal bipyramidal arrangement, with the magnesium atom at an axial position. The six phenyl groups bridge across the axial–equatorial edges of the trigonal bipyramid. One diethyl ether molecule is coordinated to the magnesium atom,

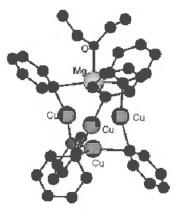


Fig. 1.27. Structure of Cu₄MgPh₆(OEt₂) in the solid state.

to attain coordination saturation. A similar arrangement of the metal framework is observed in the anions $[Cu_5Ph_6]$ and $[Cu_3Li_2Ph_6]$, discussed in the next section.

For reasons outlined above, the neutral heteroleptic cuprates "RCuLiX" (X = heteroatom-containing ligand) are valuable reagents in organic synthesis. Despite this importance, however, only a very few have been structurally characterized. The structure of CuLiMe(t-Bu₂P)(THF)₃ has been established by X-ray crystal structure determination [118] (Fig. 1.28A). The copper atom has a linear C Cu P geometry. In contrast to most other cuprates, in which lithium is involved in twoelectron, three-center bonding with the organic group, the lithium atom is bound in this case to the heteroatom anion (P) and three THF molecules.

Another example of a neutral, heteroleptic cuprate is the arylcopper magnesium arenethiolate [Cu₄Mes₄][Mg(SC₆H₄CH(Me)NMe₂-2)₂]₂ (Fig. 1.28B), formed by self-assembly in solutions of $Cu_3(SC_6H_4CH(Me)NMe_2-2)_3$ and Mes_2Mg [93]. This copper complex may be regarded as a model compound for a possible active species

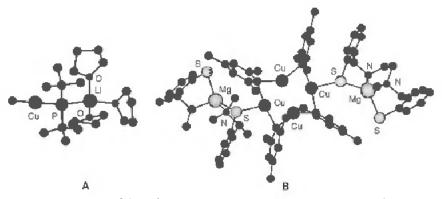


Fig. 1.28. Structures of heteroleptic cuprates CuLiMe(t-Bu₂P)-(THF)₃ (A) and [Cu₄Mes₄] $[Mg(SC_6H_4CH(Me)NMe_2-2)_2]_2$ (B) in the solid state.

when Cu₃(SC₆H₄CH(Me)NMe₂-2)₃ is used as a catalyst in enantioselective 1,4-addition reactions of Grignard reagents to enones [91, 92].

The formation of heteroleptic organocuprates "CuLiRR" in solution has been proposed in, for example, the reaction in diethyl ether between enantiopure $Cu_4(C_6H_4CH(Me)NMe_2-2)_4$ and Li_4Me_4 (Eqn. 1 in Scheme 1.22) to afford a heteroleptic cuprate $Cu_2Li_2(C_6H_4CH(Me)NMe_2-2)_2(Me)_2$. These solutions were applied in 1,4-addition reactions. Although methyl transfer to the substrate occurs, no enantioselective induction is observed [119]. A possible explanation for this lack of stereoselectivity involves the occurrence of a disproportionation reaction of the heteroleptic cuprate into the corresponding homoleptic cuprates $Cu_2Li_2(C_6H_4CH-(Me)NMe_2-2)_4$ and $Cu_2Li_2Me_4$. In the authors' laboratory, the reaction between the corresponding achiral organocopper compound $Cu_4(C_6H_4CH_2NMe_2-2)_4$ and Li_4Me_4 in various ratios has been studied. ¹H NMR spectroscopy has shown that such solutions are complicated equilibrium mixtures (Eqn. 2 in Scheme 1.22) of several aggregates, of which the homoleptic cuprates $Cu_2Li_2(C_6H_4CH_2NMe_2-2)_4$ and $Cu_2Li_2Me_4$ are the most abundant. It should be noted that species in which the Cu/Li ratio is different from 1:1 can also not be ruled out a priori.

Such equilibria are governed by thermodynamics, and so the abundances of the different species in solution are dependent on their relative thermodynamic stabilities. If, however, such a mixture of species is applied in, for example, a conjugate addition reaction, the product formation will be controlled by kinetics, and it is most likely that Cu₂Li₂Me₄ would be kinetically the most active species present.

1.4.2 Anionic Homoleptic and Heteroleptic Organocuprates

The first example of a cuprate structurally characterized by X-ray crystal structure determination was the ionic aggregate $[Cu_5Ph_6][Li(THF)_4]$ [100] (Fig. 1.29A). The structural features of the anionic cuprate unit are closely related to those observed in $[Cu_4LiPh_6]$ [117] and $[Cu_3Li_2Ph_6]$ [20]. These aggregates have in common that the metal atoms are arranged in trigonal bipyramidal fashion, and the lithium atoms in the latter two compounds reside in axial positions. The six phenyl groups are bridge-bonded, spanning the axial–equatorial edges of the trigonal bipyramid.

Two peculiar examples of an ionic aggregated cuprate species are $[Cu_5Br_4(C_6H_4CH=CH_2-2)_2]$ and $[Cu_5Br_2(C_6H_4CH=CH_2-2)_4]$ (Fig. 1.30). In the first compound,

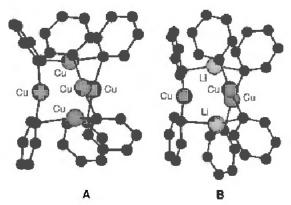


Fig. 1.29. Structures of $[Cu_5Ph_6]$ (A) and $[Cu_3Li_2Ph_6]$ (B) in the solid state.

both vinylic substituents are π -coordinated to two adjacent copper atoms, whilst in the second compound only one of the four available vinylic substituents is involved in π -coordination [94]. Bridge-bonding by the phenyl groups, however, as well as various types of Br-to-Cu bridging, is also clearly present in these structures.

Addition of the strongly coordinating 1,2-bis(diphenylphosphino)ethane (DPPE) ligand to a solution of Cu₅Mes₅ causes a disproportionation reaction, resulting in the formation of ionic [CuMes₂][Cu(DPPE)₂]. This was the first example of a mononuclear cuprate anion for which the structure was established by X-ray crystal structure determination (Fig. 1.31A) [75]. After this discovery, other ionic mononuclear cuprates were prepared by different approaches and structurally characterized. The first approach made use of bulky substituents in the organic groups bound to copper to prevent aggregation. This was achieved in, for example, the crystallization of CuLi[C(SiMe3)3]2 from THF, which gave the ionic compound [Cu(C(SiMe₃)₃)₂][Li(THF)₄] [120]. Another approach used an additional ligand

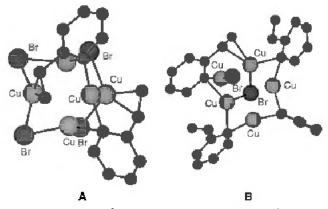


Fig. 1.30. Structures of $[Cu_5Br_4(C_6H_4CH-CH_2-2)_2]$ (A) and $[Cu_5Br_2(C_6H_4CH-CH_2-2)_4]$ (B) in the solid state.

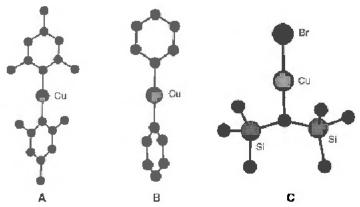


Fig. 1.31. Structures of the mononuclear cuprate anions $[CuMes_2]$ (A), $[CuPh_2]$ (B), and $[Cu(CH(SiMe_3)_2)Br]$ (C) in the solid state.

(such as 12-crown-4 or PMDTA (PMDTA = pentamethyldiethylenetriamine)), capable of binding very strongly to the cation; these can break down the aggregated cuprate to form mononuclear ionic species. Examples of mononuclear ionic cuprates obtained in this way are [CuMe₂][Li(12-crown-4)₂] [121] and [CuPh₂][Li(12-crown-4)₂] [121] (Fig. 1.31B).

The reaction between equimolar quantities of $LiCH(SiMe_3)_2$ and CuBr in the presence of 12-crown-4 afforded $[Cu(CH(SiMe_3)_2)Br][Li(12-crown-4)_2]$, the first example of an ionic mononuclear heteroleptic cuprate [121] for which the structure was established by X-ray crystal structure determination (Fig. 1.31C).

1.4.3 Lower- and Higher-order Cyanocuprates

The importance of cyanocuprates as a synthetic tool in organic chemistry is well established. Depending on the amount of organolithium reagent LiR (one or two equivalents) added to CuCN, two different type of cyanocuprates are formed, with stoichiometries of RCu(CN)Li and R₂Cu(CN)Li₂, respectively [122] (Scheme 1.23). In order to distinguish between these two different types of cyanocuprates, the term "higher-order" cyanocuprates was introduced by Lipshutz et. al. for the second type of cyanocuprate, and the term "lower-order" cyanocuprate consequently

CuCN
$$\longrightarrow$$
 RCu(CN)Li (1)

RLi

CuCN \longrightarrow R₂Cu(CN)Li₂ (2)

Scheme 1.23.

Fig. 1.32. Proposed structures for higher-order cyanocuprates.

became established for the first type. The earliest report on cyanocuprates (with a 1:1 stoichiometry) dates from 1973 [123].

The discovery of these cyanocuprates and their application in organic synthesis particularly of the higher-order cyanocuprates, to which a special reactivity was ascribed [97, 124, 125] - resulted in a scientific controversy concerning the actual structure of these compounds. For a number of years, a large number of reports with appealing titles such as "If the cyano ligand is not on copper, then where is it?" [126] and "It's on Lithium" [127] appeared in the literature. Initially, two models to describe the structure of these cyanocuprates were put forward: (i) a bisanionic species in which two organic groups and the cyanide were bound to the same copper atom (Fig. 1.32A), and (ii) a cyano-Gilman cuprate in which only the two organic groups were bound to copper (Fig. 1.32B). The controversy was resolved in 1999 [128], in favor of proposal B.

For lower-order cyanocuprates, it was already clear at an early stage that the organic group and the cyanide were bound to the same copper atom. An elegant NMR study by Bertz [129] on ¹³C-labeled MeCu(¹³CN)Li showed that a coupling of 22 Hz was present between the cyanide carbon atom and the methyl group, which could only be the case if both groups were bound to the same copper atom. This spectroscopic evidence was later confirmed by X-ray crystal structure determinations of [t-BuCu(CN)Li(OEt)2] [130] (Fig. 1.33) and [2,6-Trip2C6H3Cu(CN)Li] (Trip = $2,4,6-(i-C_3H_7)_3C_6H_3$) [131], which appeared in the literature at practically the same time.

It appeared that [t-BuCu(CN)Li(OEt)2] exists in the solid state as a dimer [t-BuCu(CN)Li(OEt)2]2. Two anionic t-BuCu(CN) units, with almost linear geom-

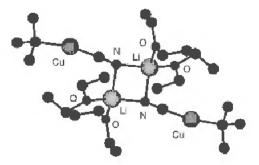


Fig. 1.33. Structure of $[t-BuCu(CN)Li(OEt)_2]_2$ in the solid state.

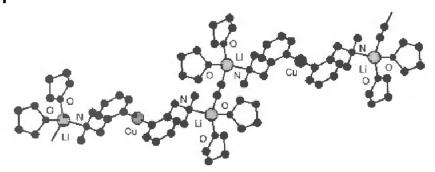


Fig. 1.34. Structure of polymeric $[(C_6H_4CH_2NMe_2-2)_2Cu(CN)Li_2(THF)_4]_n$ in the solid state.

etries, are linked together through bridging cyanide group nitrogen atoms to two lithium cations. Each lithium cation adopts a tetrahedral coordination geometry as a result of coordination of two diethyl ether molecules. The overall structural features of $[2,6\text{-Trip}_2C_6H_3Cu(CN)Li(OEt)_2]_2$ are very similar to those of $[t\text{-Bu}Cu(CN)Li(OEt)_2]_2$.

NMR investigations [129, 132, 133], EXAFS and XANES studies [134–136], and theoretical calculations [127, 137, 138] performed on higher-order cyanocuprates strongly suggested that the cyanide anion was not bound to copper in these $R_2Cu(CN)Li_2$ species. Additional evidence was provided by the first X-ray crystal structure determinations of "higher-order" cyanocuprates: [($C_6H_4CH_2NMe_2-2$)₂ $Cu(CN)Li_2$] [139] (Fig. 1.34) and [(tBu)₂ $Cu(CN)Li_2$] [130] (Fig. 1.35).

The molecular structure of the first compound comprises a polymeric chain, consisting of alternating $[(C_6H_4CH_2NMe_2-2)_2Cu]$ anionic and $[Li_2(CN)(THF)_4]$ cationic units. In the cationic unit, two lithium atoms are end-on bridged by the cyanide group, and two additional THF molecules are coordinated to each lithium atom. The fourth coordination site is occupied by the nitrogen atom of the adjacent (dimethylamino)methylphenyl group of the $[(C_6H_4CH_2NMe_2-2)_2Cu]$ anionic unit.

On the basis of molecular weight determinations by cryoscopy in THF and conductivity measurements, it was concluded that the polymeric chain breaks up in solution to form smaller aggregates, probably giving rise to solvent-separated

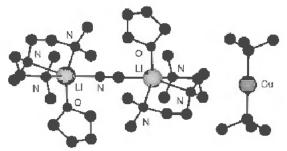


Fig. 1.35. Structure of $[t - Bu_2 Cu][Li_2 CN (THF)_2 (PMDTA)_2]$ in the solid state.

ion-pairs. The presence of donor solvents, THF in this case, may greatly contribute to the (thermodynamic) stability of a particular structure. This may be inferred from the observation that the use of a less polar solvent such as benzene induces a disproportionation reaction, giving the neutral homoleptic cuprate $[Cu_2Li_2(C_6H_4CH_2NMe_2-2)_4]$ (discussed previously) and LiCN.

The structure of [t-Bu₂Cu(CN)Li₂] in the solid state consists of isolated [t-Bu₂Cu] anionic units and [Li₂CN(THF)₂(PMDTA)₂] cationic units (Fig. 1.35). The structural features of the linear R Cu R arrangement are identical to those observed for other [R2Cu] anionic units discussed previously (cf. Fig. 1.31). The [Li₂CN(THF)₂(PMDTA)₂] cationic unit consists of a central cyanide moiety, to which two lithium atoms are bound in end-on fashion. Coordination saturation at each lithium atom is achieved by coordination of the three nitrogen atoms of the PMDTA molecule and one THF molecule, rendering each lithium atom pentacoordinate. Recent ¹H, ⁶Li HOESY experiments showed that this ionic structure found in the solid state is probably retained in polar solvents such as THF [140].

The solution structures of cyano-Gilman cuprates and lower-order cyanocuprates have been studied by cryoscopic measurements in THF [141]. The results of this study have in several cases shown ways to obtain useful single crystals of several higher- and lower-order cyanocuprates and consequently to determine their structures in the solid state. It appears that a number of these cyanocuprates retain their observed solid-state structure when dissolved in THF.

1.5 Concluding Remarks

This review substantiates the earlier opinion [29, 45] that the various types of organocopper compounds known today are almost always highly aggregated species. In spite of this structural information, it remains very difficult (and often also incorrect) to correlate a given structural feature of an organocopper or cuprate reagent with its specific reactivity. It always has to be kept in mind that X-ray crystal structural information is generally obtained from crystalline material that selectively crystallized out of a solution existing as a complicated equilibrium mixture of a number of aggregates, rather than as a solution of one pure compound. The aggregate that crystallizes from solution is the thermodynamically most stable one, and this is often the kinetically less reactive species. Indeed, there are only a very few examples of compounds for which it has been proven that the structure as observed in the solid state is retained in solution. One such is [Cu₂Li₂(C₆H₄CH₂NMe₂-2)₄] in apolar solvents such as benzene.

Another factor that complicates understanding of reaction mechanisms and of the actual species involved in reactions of organocopper compounds is the strong tendency of organocopper compounds and cuprates to aggregate with metal halides. These metal halides are often formed as unavoidable co-products when an organocopper compound or an organocuprate is applied as a reagent in organic synthesis. This means that, during a reaction, the initial reagent is gradually converted into another aggregate with different structural features and, consequently, often a different reactivity (cf. Eqns. 1 and 2 in Scheme 1.24) [95].

To correlate the structural features of a specific copper or cuprate reagent with its reactivity, a better understanding of the interaction of such species with metal halides, ligands, solvents, and, last but not least, substrates is required. Such investigations have already begun and seem to have a promising future. In an elegant NMR study by Krause et. al. [23] it was demonstrated that the reaction between t-BuCu(CN)Li and methyl propiolate (see Scheme 1.25) could be monitored by 13 C NMR. At -100 °C, resonances attributable to the presence of a π -complex between the organocuprate and the substrate were observed. After the temperature had been raised to -40 °C, the 13 C NMR spectrum of a vinylcopper intermediate was observed. Finally, hydrolysis afforded the final product.

Scheme 1.25.

More recently, ¹H, ⁶Li HOESY studies of the structures of cuprates in solution have been undertaken [24, 140]. As outlined in the previous section, the solidstate structures of neutral cuprates such as Cu₂Li₂Ph₄(OEt₂)₂ may be described in terms of contact ion-pairs (CIPs) of [CuPh2] and [Li(OEt2)]+. These studies show that such "simple" cuprates exist in solution in equilibrium between the CIPs and solvent-separated ion-pairs (SSIPs), shown schematically for CuLiMe2 in Fig. 1.36.

Fig. 1.36. Equilibrium between CIP and SSIP structures.

It has become evident that essentially only the CIP is present in less polar solvents such as diethyl ether, whereas in solvents with a strong affinity for Li⁺, such as THF, the major species in the equilibrium is the SSIP. Moreover, this difference in the structural features of the species present in solution could be directly related to its reactivity. In the Michael addition reaction it is most likely that the reactive species is the CIP, as shown by the following experiments. No reaction was observed when CuLiMe2 was treated with 2-cyclohexenone in the presence of two equivalents of 12-crown-4; the pure SSIP is present [142]. Furthermore, it has been observed that the rate of the reaction between CuLiMe2 and 2-cyclohexenone in THF is considerably slower than that of the same reaction in diethyl ether. Again, this solvent dependence can be explained by a CIP/SSIP equilibrium, which in the case of THF as the solvent lies predominantly on the SSIP side. These data are in perfect agreement with the logarithmic reactivity profiles of reactions between CuLiR2 and enones in diethyl ether and THF as reported by Bertz [143, 144]. Moreover, recent theoretical calculations for this type of reactions [145] point to a transition state involving a CIP type of structure for the cuprate moiety (see Fig. 1.37).

The present challenge for scientists is to use modern spectroscopic techniques (such as NMR, in situ IR, in situ EXAFS, and others already available, or which will become available in the near future) in combination with advanced theoretical calculations to obtain new insights into the actual mechanisms and species that play roles in reactions of well known organocopper and cuprate compounds.

Fig. 1.37. Calculated structure of the transition state in the reaction between CuLiMe2 and 2-cyclohexenone.

Acknowledgement

Dr. J. Boersma is gratefully thanked for discussions and corrections to the manuscript.

References

- 1 G. BUCKTON, Ann. 1859, 109, 225.
- R. Reich, C. R. Hebd. Seances Acad. Sci. 1923, 177, 322.
- 3 H. GILMAN, J. M. STRALEY, Recl. Trav. Chim. Pays-Bas 1936, 55, 821.
- 4 M. S. KHARASCH, P. O. TAWNEY, J. Am. Chem. Soc. 1941, 63, 2308.
- H. GILMAN, R. G. JONES, L. A. Woods, J. Org. Chem. 1952, 17, 1630.
- 6 H. O. HOUSE, W. L. RESPESS, G. M. WHITESIDES, J. Org. Chem. 1966, 31, 3128.
- 7 G. M. WHITESIDES, W. F. FISHER, J. SAN FILIPPO., R. W. BASHE, H. O. HOUSE, J. Am. Chem. Soc. 1969, 91, 4871.
- 8 E. J. Corey, G. H. Posner, J. Am. Chem. Soc. 1967, 89, 3911.
- 9 G. H. Posner, C. E. Whitten, J. J. Sterling, J. Am. Chem. Soc. 1973, 95, 7788
- 10 D. M. KNOTTER, A. L. SPEK, G. VAN KOTEN, J. Chem. Soc., Chem. Commun. 1989, 1738.
- 11 B. H. LIPSHUTZ, R. S. WILHELM, J. A. KOSLOWSKI, *Tetrahedron* 1984, 40, 5005.
- 12 B. H. LIPSHUTZ, S. SHARMA, E. L. ELLSWORTH, J. Am. Chem. Soc. 1990, 112, 4032.
- B. H. Lipshutz, S. Sengupta, Org. React. 1992, 41, 135.
- 14 A. CAIRNCROSS, W. A. SHEPPARD, J. Am. Chem. Soc. 1968, 90, 2186.
- 15 A. CAIRNCROSS, H. OMURA, W. A. SHEPPARD, J. Am. Chem. Soc. 1971, 93, 248.
- 16 A. Camus, N. Marsich, J. Organomet. Chem. 1968, 14, 441.
- 17 M. F. LAFFERT, R. PEARCE, J. Chem. Soc., Chem. Commun. 1973, 24.
- 18 G. VAN KOTEN, A. J. LEUSINK, J. G. NOITES, J. Chem. Soc., Chem. Commun. 1970, 1107.

- 19 G. VAN KOTEN, A. J. LEUSINK, J. G. NOITES, Inorg. Nucl. Chem. Lett. 1971, 7, 227.
- 20 H. Hope, D. Oram, P. P. Power, J. Am. Chem. Soc. 1984, 106, 1149.
- 21 J. M. Guss, R. Mason, I. Søtofte, G. van Koten, J. G. Noltes, J. Chem. Soc., Chem. Commun. 1972, 446.
- 22 J. F. MALONE, W. S. McDonald, J. Chem. Soc. Chem. Commun. 1967, 444.
- 23 K. NILSSON, C. ULLENIUS, N. KRAUSE, J. Am. Chem. Soc. 1996, 118, 4194.
- 24 M. John, C. Auel, C. Behrens, M. Marsch, K. Harms, F. Bosold, R. M. Gschwind, P. R. Rajamohanan, G. Boche, Chem. Eur. I. 2000, 6, 3060.
- 25 J. H. BITTER, B. L. MOJET, M. D. JANSSEN, D. M. GROVE, G. VAN KOTEN, D. C. KONINGSBERGER, J. Synchrotron Rad. 1999, 6, 423.
- 26 M. TROMP, J. A. VAN BOKHOVEN, A. M. ARINK, M. D. JANSSEN, B. L. MOJET, J. H. BITTER, G. VAN KOTEN, D. C. KONINGSBERGER, J. Am. Chem Soc. 2001, in press.
- 27 J. A. VAN BOKHOVEN, J. C. A. A. ROELOFS, K. P. DE JONG, D. C. KONINGSBERGER, Chem. Eur. J. 2001, 7, 1258.
- 28 E. NAKAMURA, S. MORI, Angew. Chem. 2000, 112, 3902; Angew. Chem. Int. Ed. Engl. 2000, 39, 3750.
- 29 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, S. L. JAMES, in Comprehensive Organometallic Chemistry II; E. W. ABEL, F. G. A. STONE, G. WILLIAMSON (Eds.), Vol. 3, pp. 57–133, Pergamon, Oxford, 1995, and references cited therein.
- 30 D. McIntosh, G. A. Ozin, *J. Am. Chem. Soc.* 1976, 98, 3167.
- 31 W. HARNISCHMACHER, R. HOPPER, Angew. Chem. 1973, 85, 590; Angew. Chem. Int. Ed. Engl. 1973, 12, 582.

- 32 B. J. HATHAWAY, in Comprehensive Coordination Chemistry, G. WILKINson (Ed.), Vol. 5, pp. 533-774, Pergamon, Oxford, 1987, and references cited therein.
- 33 M. TSUTSUI, Ann. N. Y. Acad. Sci. 1961, 93, 135.
- 34 V. F. MARTYNOVA, Zh. Obsc. Chim. 1962, 32, 2702.
- 35 G. VAN KOTEN, J. G. NOLTES, J. Organomet. Chem. 1975, 84, 419.
- 36 G. van Koten, J. W. Marsman, G. A. K. Breedijk, A. L. Spek, J. Chem. Soc., Perkin Trans II 1977, 1942.
- 37 M. A. Willert-Porada, D. J. Burton, N. C. BAENZIGER, J. Chem. Soc., Chem. Commun. 1989, 1633.
- 38 A. MIYASHITA, T. YAMAMOTO, A. YAMAMOTO, Bull. Chem. Soc. Jpn. 1977, 50, 1109.
- 39 J. A. J. Jarvis, R. Pearce, M. F. LAPPERT, J. Chem. Soc., Dalton Trans. 1977, 999.
- 40 M. P. Gamasa, J. Gimeno, E. Lastra, X. Solans, J. Organomet. Chem. 1988, 346, 277,
- 41 J. G. Noltes, R. W. M. TEN HOEDT, G. VAN KOTEN, A. L. SPEK, J. C. Schoone, J. Organomet. Chem. 1982, 225, 365,
- 42 W. J. J. Smeets, A. L. Spek, Acta Crystallogr., Sect. C 1987, 43, 870.
- 43 S. Mori, E. Nakamura, Tetrahedron Lett. 1999, 40, 5319.
- 44 J. M. Guss, R. Mason, K. M. Thomas, G. VAN KOTEN, J. G. NOLTES, J. Organomet. Chem. 1972, 40, C79.
- 45 G. VAN KOTEN, J. G. NOLTES, in Comprehensive Organometallic Chemistry, G. WILKINSON, F. G. A. STONE, E. W. AREL (Eds.), Vol. 2, pp. 709-763, Pergamon, Oxford, 1982.
- 46 M. D. Janssen, M. A. Corsten, A. L. Spek, D. M. Grove, G. van Koten, Organometallics 1996, 15, 2810.
- 47 G. VAN KOTEN, A. J. LEUSINK, J. G. Noltes, J. Organomet. Chem. 1975, 85,
- 48 A. Camus, N. Marsich, J. Organomet. Chem. 1970, 21, 249.
- T. IKARIYA, A. YAMAMOTO, J. Organomet. Chem. 1974, 72, 145.
- 50 A. MIYASHITA, A. YAMAMOTO, Bull Chem. Soc. Ipn. 1977, 50, 1102.

- 51 P. S. COAN, K. FOITING, J. C. HUFFMAN, K. G. CAULTON, Organometallics 1989, 8, 2724.
- 52 F. A. COTTON, J. TAKATS, J. Am. Chem. Soc. 1970, 92, 2353.
- 53 S. GAMBAROTTA, S. STROLOGO, C. FLORIANI, A. CHISE-VILLA, C. GUASTINI. Organometallics 1984, 3, 1444.
- 54 G. NARDIN, L. RANDACCIO, E. ZANGRANDO, J. Organomet. Chem. 1974, 74, C23.
- 55 H. Schmidbaur, W. Richter, Chem. Ber. 1975, 108, 2656.
- 56 A. CAMUS, N. MARSICH, G. NARDIN, L. RANDACCIO, J. Organomet. Chem. 1973, 21, C39.
- 57 G. VAN KOTEN, J. G. NOLTES, J. Chem. Soc., Chem. Commun. 1972, 452.
- 58 A. Camus, N. Marsich, J. Organomet. Chem. 1968, 14, 441.
- 59 A. CAIRNCROSS, W. A. SHEPPARD, J. Am. Chem. Soc. 1971, 93, 247.
- 60 G. Costa, A. Camus, L. Gatti, N. Marsich, J. Organomet. Chem. 1966, 5, 568,
- 61 M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1990, 112, 8008.
- 62 B. Lenders, D. M. Grove, W. J. J. Smeets, P. van der Sluis, A. L. Spek, G. VAN KOTEN, Organometallics 1991, 10, 786.
- 63 S. Gambarotta, C. Floriani, A. CHISE-VILLA, C. GUASTINI, J. Chem. Soc., Chem. Commun. 1983, 1156.
- 64 E. M. MEYER, S. GAMBAROTTA, C. FLORIANI, A. CHISE-VILLA, C. GUASTINI, Organometallics 1989, & 1067.
- 65 D. Nobel, G. van Koten, A. L. Spek, Angew. Chem. 1989, 101, 211; Angew. Chem. Int. Ed. Engl. 1989, 28, 208.
- 66 X. HE, M. M. OLMSTEAD, P. P. Power, J. Am. Chem. Soc. 1992, 114, 9668.
- 67 A. CAMUS, N. MARSICH, G. NARDIN, L. RANDACCIO, J. Organomet. Chem. 1979, 174, 121.
- 68 R. I. Papasergio, C. L. Raston, A. H. WHITE, J. Chem. Soc., Dalton Trans. 1987, 3085.
- 69 R. I. Papasergio, C. L. Raston, A. H. WHITE, J. Chem. Soc., Chem. Commun. 1983, 1491.

- 70 E. Wehman, G. van Koten, J. T. B. H. Jastrzebski, M. A. Rotteveel, C. H. Stam, Organometallics, 1988, 7, 1477.
- 71 E. WEHMAN, G. VAN KOTEN, M. KNOTTER, H. SPELTEN, D. HEIJDENRIJK, A. N. S. MAK, C. H. STAM, J. Organomet. Chem. 1987, 325, 293.
- 72 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, F. MULLER, C. H. STAM, J. Am. Chem. Soc. 1985, 107, 697.
- 73 A. CAIRNCROSS, W. A. SHEPPARD, J. Am. Chem. Soc. 1968, 90, 2186.
- 74 G. VAN KOTEN, J. G. NOLTES, J. Chem. Soc., Chem. Commun. 1972, 59.
- 75 P. Leoni, M. Pasquali, C. A. Ghilardi, J. Chem. Soc., Chem. Commun. 1983, 240.
- 76 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, J. G. NOLTES, *Inorg. Chem.* 1977, 16, 1782.
- 77 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, J. G. NOLTES, J. Org. Chem. 1977, 42, 2047.
- 78 G. VAN KOTEN, C. A. SCHAAP, J. G. NOLTES, J. Organomet. Chem. 1975, 99, 157
- 79 J. T. B. H. JASTRZEBSKI, G. VAN KOTEN, Advances in Organometallic Chemistry 1993, 35, 241.
- 80 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, J. G. NOLTES, J. Organomet. Chem. 1979, 177, 283.
- 81 A. J. LEUSINK, G. VAN KOTEN, J. G. NOLTES, J. Organomet. Chem. 1973, 56, 270
- 82 M. H. P. RIETVELD, I. C. M. WEHMAN-OOYEVAAR, G. M. KAPTEIJN, D. M. GROVE, W. J. J. SMEETS, H. KOOIJMAN, A. L. SPEK, G. VAN KOTEN, Organometallics 1994, 13, 3782.
- 83 E. Wehman, G. van Koten, C. J. M. Erkamp, D. M. Knotter, J. T. B. H. Jastrzebski, C. H. Stam, Organometallics 1989, 8, 94.
- 84 I. C. M. WEHMAN-OOYEVAAR, G. M. KAPTEIJN, D. M. GROVE, A. L. SPEK, G. VAN KOTEN, J. Organomet. Chem. 1993, 452, C1.
- 85 G. M. KAPTEIJN, I. C. M. WEHMAN-OOYEVAAR, D. M. GROVE, W. J. J. SMEETS, A. L. SPEK, G. VAN KOTEN, Angew. Chem. 1993, 105, 58; Angew. Chem. Int. Ed. Engl. 1993, 32, 72.

- 86 G. VAN KOTEN, J. G. NOITES, J. Chem. Soc. Chem. Commun. 1974, 575.
- R. W. M. TEN HOEDT, G. VAN KOTEN, J. G. NOLTES, J. Organomet. Chem. 1977, 133, 113.
- 88 R. W. M. TEN HOEDT, J. G. NOLTES, G. VAN KOTEN, A. L. SPEK, J. Chem. Soc. Dalton Trans. 1978, 1800.
- 89 G. VAN KOTEN, R. W. M. TEN HOEDT, J. G. NOLTES, J. Org. Chem. 1977, 42, 2705.
- H. L. AALTEN, G. VAN KOTEN, K. GOUBITZ, C. H. STAM., Organometallics 1989, 8, 2293.
- 91 F. LAMBERT, D. M. KNOTTER, M. D. JANSSEN, M. VAN KLAVEREN, J. BOERSMA, G. VAN KOTEN, Tetrahedron: Asymmetry 1991, 2, 1097.
- 92 M. VAN KLAVEREN, E. S. M. PERSSON, D. M. GROVE, J. E. BÄCKVALL, G. VAN KOTEN, Tetrahedron Lett. 1994, 35, 5931.
- 93 D. M. KNOTTER, D. M. GROVE, W. J. J. SMEETS, A. L. SPEK, G. VAN KOTEN, J. Am. Chem. Soc. 1992, 114, 3400.
- 94 H. ERIKSSON, M. OERTENDAHL, M. HAAKANSON, Organometallics 1996, 15, 4823.
- 95 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, J. G. NOLTES, Tetrahedron Lett. 1976, 3, 223.
- N. Krause, "Metallorganische Chemie", Spektrum Akademischer Verlag, Heidelberg, 1996, pp. 175– 200.
- 97 B. H. LIPSHUTZ, in "Organometallics in Synthesis", M. SCHLOSSER (Ed.), Wiley, Chichester, 1994, pp. 283–382.
- N. KRAUSE, A. GEROLD, Angew. Chem. 1997, 109, 194; Angew. Chem. Int. Ed. Engl. 1997, 36, 186.
- 99 B. H. LIPSHUTZ, R. S. WILHELM, J. Am. Chem. Soc. 1982, 104, 4696.
- 100 P. G. Edwards, R. W. Gellert, M. W. Marks, R. Bau, J. Am. Chem. Soc. 1982, 104, 2072.
- 101 P. P. Power, Prog. Inorg. Chem. 1991, 39, 75.
- 102 R. G. PEARSON, C. D. GREGORY, J. Am. Chem. Soc. 1976, 98, 4098.
- 103 R. L. KIEFT, T. L. BROWN, J. Organomet. Chem. 1974, 77, 289.
- 104 G. VAN KOTEN, J. G. NOITES, J. Chem. Soc. Chem. Commun. 1972, 940.

- 105 G. VAN KOTEN, J. G. NOLTES, J. Organomet. Chem. 1974, 82, C53.
- 106 A. J. Leusink, G. van Koten, J. W. Marsman, J. G. Noltes, J. Organomet. Chem. 1973, 55, 419.
- 107 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, C. H. STAM, C. BREVARD, in "Biological and Inorganic Copper Chemistry", K. D. KARLIN, J. J. Zubieta (Eds.), Adenine Press, Guilderland, New York 1985, p. 267.
- 108 G. VAN KOTEN, J. T. B. H. Jastrzebski, J. G. Noltes, J. Organomet. Chem. 1977, 140, C23.
- 109 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, C. H. STAM, N. C. NIEMANN, J. Am. Chem. Soc. 1984,
- 110 N. P. LORENZEN, E. WEISS, Angew. Chem. 1990, 102, 322; Angew. Chem. Int. Ed. Engl. 1990, 29, 300.
- 111 G. VAN KOTEN, J. G. NOLTES, J. Am. Chem. Soc. 1979, 101, 6593.
- 112 G. VAN KOTEN, J. T. B. H. JASTRZEBSKI, Tetrahedron 1989, 45,
- 113 M. M. OLMSTEAD, P. P. POWER, Organometallics 1990, 112, 8008.
- 114 M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1990, 9, 1720.
- 115 M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1989, 111, 4135.
- 116 L. M. SEITZ, R. MADL, J. Organomet. Chem. 1972, 34, 415.
- 117 S. I. KHAN, P. G. EDWARDS, H. S. H. YUAN, R. BAU, J. Am. Chem. Soc. 1985, 107, 1682.
- 118 S. F. MARTIN, J. R. FISHPAUGH, J. M. Power, D. M. Giolando, R. A. Jones, C. M. Nunn, A. H. Cowley, J. Am. Chem. Soc. 1988, 110, 7226.
- 119 A. T. Hansson, M. T. Rahman, C. Ullenius, Acta Chem. Scand., Ser. B 1978, B32, 483.
- 120 C. EABORN, P. B. HITCHCOCK, J. D. SMITH, A. C. SULLIVAN, J. Organomet. Chem. 1984, 263, C23.
- 121 H. HOPE, M. M. OLMSTEAD, P. P. Power, J. Sandell, X. Xu, J. Am. Chem. Soc. 1985, 107, 4337.
- 122 B. H. Lipshutz, R. S. Wilhelm, D. M. FLOYD, J. Am. Chem. Soc. 1981, 103, 7672.

- 123 J.-P. Gorlier, L. Hamon, J. LEVISALLES, J. WAGNON, J. Chem. Soc., Chem. Commun. 1973, 88.
- 124 B. H. LIPSHUTZ, Synthesis 1987, 325.
- 125 B. H. LIPSHUTZ, in "Advances in Metal-Organic Chemistry", L. S. Liebeskind (Ed.), Vol 4, JAI Press, Greenwich, USA, 1995, pp. 1-
- 126 B. H. LIPSHUTZ, B. JAMES, J. Org. Chem. 1994, 59, 7585.
- 127 S. H. BERTZ, G. MIAO, M. ERIKSSON, J. Chem. Soc., Chem. Commun. 1996, 815.
- 128 N. KRAUSE, Angew. Chem. 1999, 111, 83; Angew. Chem. Int. Ed. 1999, 38, 79.
- 129 S. H. BERTZ, J. Am. Chem. Soc. 1991, 113, 5470,
- 130 G. BOCHE, F. BOSOLD, M. MARSCH, K. Harms, Angew. Chem. 1998, 110, 1775; Angew. Chem., Int. Ed. 1998, 37, 1684.
- 131 C.-S. HWANG, P. P. POWER, J. Am. Chem. Soc. 1998, 120, 6409.
- 132 S. H. Bertz, J. Am. Chem. Soc. 1990, 112, 4031,
- 133 S. H. Bertz, K. Nilsson, Ö. DAVIDSON, J. P. SNYDER, Angew. Chem. 1998, 110, 327; Angew. Chem. Int. Ed. 1998, 37, 314.
- 134 T. Stemmier, J. E. Penner-Hahn, P. KNOCHEL, J. Am. Chem. Soc. 1993, 115, 348.
- 135 T. M. BARNHART, H. HUANG, J. E. Penner-Hahn, J. Org. Chem. 1995, 60, 4310.
- 136 H. Huang, C. H. Liang, J. E. Penner-Hahn, Angew. Chem. 1998, 110, 1628; Angew. Chem. Int. Ed. Engl. 1998, 37, 1564.
- 137 T. L. STEMMLER, T. M. BARNHART, J. E. Penner-Hahn, C. E. Tucker, P. Knochel, M. Böhme, G. Frenking, J. Am. Chem. Soc. 1995, 117, 12489.
- 138 J. P. SNYDER, S. H. BERTZ, J. Org. Chem. 1995, 60, 4312.
- 139 C. M. P. Kronenburg, J. T. B. H. JASTRZEBSKI, A. L. SPEK, G. VAN KOTEN, J. Am. Chem. Soc. 1998, 120, 9688.
- 140 R. M. GSCHWIND, P. R. RAJAMOHANAN, M. JOHN, G. BOCHE, Organometallics 2000, 19, 2868.

- 141 A. Gerold, J. T. B. H. Jastrzebski, C. M. P. Kronenburg, G. van Koten, N. KRAUSE, Angew. Chem. 1997, 109, 778; Angew. Chem. Int. Ed. Engl. 1997, 36, 755.
- 142 C. Ouannes, G. Dressaire, Y. LANGLOIS, Tetrahedron Lett. 1977, 815.
- 143 S. H. BERTZ, G. MIAO, B. E. ROSSITER, J. P. SNYDER, J. Am. Chem. Soc. 1995, *117*, 11023.
- 144 S. H. BERTZ, A. CHOPRA, M. Eriksson, C. A. Ogle, P. Seagle, Chem. Eur. J. 1999, 5, 2680.
- 145 S. Mori, E. Nakamura, Chem. Eur. J. 1999, 5, 1534.

45

2

Transmetalation Reactions Producing Organocopper Reagents

Paul Knochel and Bodo Betzemeier

2.1 Introduction

Organocopper reagents constitute a key class of organometallic reagents, with numerous applications in organic synthesis [1]. Their high reactivities and chemoselectivities have made them unique intermediates. Most reports use organocopper reagents of type 1 or 2, which are prepared from organolithiums. This transmetalation procedure confers optimal reactivity, but in many cases it permits only the preparation of relatively unfunctionalized organocopper reagents. More recently, substantial developments have been taking place in transmetalations to organocopper reagents starting from organometallic species that tolerate the presence of functional groups [2], while synthetic methods permitting the preparation of functionalized organolithiums and organomagnesium compounds have also been developed. All organometallics in which the metal M is less electronegative than copper, and all organometallic species of similar electronegativity but with weaker carbon-metal bonds, are potential candidates for transmetalation reactions [3]. Thus, reaction conditions allowing the transmetalation of organo-boron, -aluminium, -zinc, -tin, -lead, -tellurium, -titanium, -manganese, -zirconium and -samarium compounds have all been found, resulting in a variety of new organocopper reagents of type 3. Their reactivity is dependent on the nature of the original metal M, which in many cases is still intimately associated with the resulting organocopper reagent (Scheme 2.1) [3-5].

In this chapter, we will emphasize these recent developments, especially those that allow the preparation of organocopper species not accessible through the standard procedures involving organolithiums as precursors and their use in reactions with organic electrophiles.

2.2 Transmetalation of Functionalized Organolithium and Organomagnesium Reagents

Many functional groups are incompatible with organolithium reagents. Execution of transmetalations at very low temperatures, however, enables functionalized

46 2 Transmetalation Reactions Producing Organocopper Reagents

M = B, Al, Zn, Sn, Pb, Te, Tl, Mn, Zr or Sm

$$RCu \cdot MX = R :$$

Scheme 2.1. Transmetalations producing organocopper reagents.

alkenyllithiums and aryllithiums to be prepared, and subsequent further transmetalation at low temperatures provides the corresponding copper reagents [6]. Thus, treatment of 4-bromobenzonitrile 4 with nBuLi at -100 °C in a THF/ether/pentane mixture provides the corresponding aryllithium within 5 min. (Scheme 2.2), and subsequent treatment with the THF-soluble copper salt CuCN-2LiCl [7] then affords the functionalized arylcopper compound 5. Treatment of this with 2-cyclohexenone in the presence of TMSCl [8] furnishes the expected Michael adduct 6 in 93% yield.

Scheme 2.2. Preparation of functionalized arylcopper reagents from functionalized aryllithiums.

In some cases it can be advantageous first to transmetalate the functionalized aryllithium reagent to the corresponding zinc reagent and then to perform a second transmetalation to afford the corresponding organocopper species. Thus, 2-iodo-1-nitrobenzene 7 is converted into the corresponding lithium reagent by treatment with phenyllithium [9]. Subsequent transmetalation, firstly with ZnI₂ at

-80 °C and then with CuCN·2LiCl [7] at −30 °C, provides the arylcopper 8. This reacts with 3-iodo-2-cyclohexenone to give the expected addition-elimination product 9 in 70% yield.

This method can be extended to the preparation of alkenylcopper compounds. Thus, treatment of the iodoalkenyl azide 10 with nBuLi at -100 °C (Scheme 2.3), followed by transmetalation with ZnI2 in THF and then by a second transmetalation with CuCN-2LiCl, produces the copper species 11. This then effects a cisselective carbocupration of ethyl propiolate to furnish the (E,E) diene 12 in 81% yield.

Scheme 2.3. Preparation of an azido-alkenylcopper reagent from an alkenyl iodide.

In general, the preparation of functionalized organolithiums is difficult, although direct lithiation with lithium powder in the presence of a catalytic amount of 4,4'-di-t-butylbiphenyl (DTBB) as introduced by Yus [10] is a very general approach to a broad range of polyfunctional organolithiums [11–16], which may be converted into the corresponding organocopper compounds by treatment with CuCN-2LiCl [6]. Organomagnesium compounds are less reactive than organolithiums and tolerate a wider range of functional groups. Mild methods are required for their preparation and excellent results have been obtained by insertion of highly reactive "Rieke-magnesium" into alkyl or aryl halides [17]. Unfortunately, the presence of such important electron-withdrawing functional groups as esters or cyano functions inhibits the formation of Grignard reagents [18]. Complementarily, halogen-magnesium exchange [19] has proven to be an excellent method for preparation of functionalized organomagnesium compounds. Thus, treatment of 4-iodobenzonitrile 13 with iPrMgBr or iPr2Mg in THF at -25 °C furnishes the corresponding organomagnesium reagent, which is transmetalated to produce the desired functionalized organocopper 14. Treatment of 14 with allyl bromide produces the allylated product 15 in 75% yield (Scheme 2.4) [20].

This iodine-magnesium exchange can also be performed with heterocyclic iodides, such as the functionalized pyridine 16 [21] or the iodouracil derivative 17 (Scheme 2.5) [22]. In both cases, the intermediate organomagnesium reagent can

Scheme 2.4. Preparation of functional arylcoppers from functionalized arylmagnesium compounds.

Scheme 2.5. Preparation of highly functionalized, six-membered heterocyclic copper reagents.

be converted into the corresponding organocopper compound (18 and 19, respectively) and then treated with several electrophiles such as allyl bromide or benzoyl chloride, resulting in the expected products 20 and 21 in good yields.

The preparation of polyfunctional 5-membered heterocycles can be achieved in the same manner. The ester-substituted imidazole 22 undergoes a smooth iodine-magnesium exchange at -40 °C within 1 h (Scheme 2.6). After transmetalation with CuCN-2LiCl, the copper reagent 23 is obtained. Treatment of this with benzoyl chloride furnishes the benzoylated imidazole 24 in 67% yield [23]. In the case of the 2,3-iodoindole derivative 25, it is possible to perform a selective iodine-magnesium exchange at position 2, furnishing the 3-iodo-2-indolylcopper reagent 26 after transmetalation with CuCN-2LiCl. Treatment of 26 with allyl bromide provides the monoallylated indole derivative 27 in 92% yield [24].

Scheme 2.6. Preparation of highly functionalized, five-membered heterocyclic copper reagents.

Remarkably, halogen-magnesium exchange can also be extended to aryl and heteroaryl bromides [24, 25]. Thus, the functionalized aryl bromides 28 and 29 (Scheme 2.7) were converted, at 0 °C and at -30 °C, respectively, into the corresponding Grignard reagents. After treatment with CuCN, the copper derivative 30 and 31 were obtained. Subsequent treatment with typical electrophiles such as benzoyl bromide or allyl bromide furnished the products 32 and 33, in 70 and 80% yields.

Scheme 2.7. Preparation of functionalized anylcoppers from anyl bromides.

The rate of bromine-magnesium exchange largely depends on the electron density on the aromatic ring, although also being accelerated by the presence of chelating groups [25]. In the case of polyhalogenated heterocycles, these effects enable selective exchange reactions to be accomplished. Thus, the tribromoimidazole 34 (Scheme 2.8) can be successfully converted first into the magnesium derivative and then into the copper reagent 35, by treatment with iPrMgBr followed by

Scheme 2.8. Stepwise Br Mg exchange reactions.

CuCN-2LiCl. This can then be selectively allylated with allyl bromide to provide the dibromoimidazole **36**, which can now be magnesiated by treatment with a further equivalent of *i*PrMgBr, providing the ester-substituted imidazole **37** in 55% yield after carboxylation with ethyl cyanoformate [25].

The halogen-magnesium reaction can be extended to electron-poor heteroaryl chlorides. Thus, tetrachlorothiophene 38 (Scheme 2.9) undergoes chlorine-magnesium exchange at 25 °C, providing the corresponding Grignard reagent in 2 h. Treatment with CuCN-2LiCl gives the copper reagent 39, and allylation with ethyl (2-bromomethyl)acrylate produces the functionalized thiophene 40 in almost quantitative yield.

Scheme 2.9. Execution of a Cl Mg exchange reaction.

All the allylation reactions can be performed using only catalytic amounts of CuCN·2LiCl, with yields the same as those obtained when a stoichiometric amount of the copper salt is deployed. The halogen-magnesium exchange reaction can also be extended to the solid phase, allowing a variety of polyfunctional copper species to be generated on a resin. Thus, various aryl or heteroaryl iodides or bromides can be attached to Wang resins and treated with an excess of *i*PrMgBr (3–8 equiv.) at –30 °C to –15 °C to provide the expected functionalized Grignard reagent. Transmetalation with CuCN·2LiCl then gives, as expected, the corresponding copper reagent, which can react with various electrophiles such as acid chlorides or allylic halides. After cleavage from the resin, a range of functionalized products may be obtained. Use of the resin-bound bromothiophene 41 as starting material furnishes the copper reagent 42, which produces the carboxylic acid 43 after allylation and cleavage from the resin (Scheme 2.10) [19, 24].

* HPLC-purity (UV, 264 nm)

Scheme 2.10. Generation and reaction of functionalized organocopper reagents on the solid phase.

Functionalized organocopper reagents also undergo 1,4-additions. Thus, the alkylcopper 45, prepared from the corresponding Grignard reagent 44, reacts with cyclohexenone at -78 °C to give the expected product 46 [26]. Arylcopper compounds such as 47 add to 2-enones in the presence of TMSCl and CuCN-2LiCl [27] (Scheme 2.11).

Scheme 2.11. Michael additions of functionalized organocopper reagents derived from Grignard compounds.

It is also possible to perform copper-catalyzed alkylation of arylmagnesium compounds. Thus, the copper reagent 48 undergoes a selective cross-coupling [28] with ethyl 4-iodobutyrate to furnish the desired product 49 in 69% yield (Scheme 2.12) [29].

Scheme 2.12. Alkylation of organocopper reagents derived from Grignard compounds.

Transmetalation of Organoboron and Organoaluminium Reagents

Direct transmetalation of organoboranes to organocopper reagents is not a general reaction. Because of their similar bond energies and electronegativities, this transmetalation is limited to the preparation of alkenylcopper and unfunctionalized alkylcopper compounds. In the latter case, the reaction is favored by the formation of an ate-complex [30]. Thus, treatment of tripropylborane with MeLi produces the lithium organoboronate 50, which is converted into the copper boronate 51. Treatment of 51 with benzoyl chloride is not selective, since both the methyl group and the propyl group are transferred, affording a mixture of two ketones (Scheme 2.13).

Scheme 2.13. Acylation of organocopper reagents derived from organoboranes.

The transmetalation of dialkenylchloroboranes of type 52 with methylcopper (3 equiv.) provides an alkenylcopper compound 53, which undergoes cross-coupling with allylic halides to produce mixtures of S_N2 and S_N2' products. Interestingly, this method is also useful for the preparation of functionalized alkenylcoppers such as 54 (Scheme 2.14) [31].

$$MeO_2C(CH_2)-C\equiv CH \xrightarrow{1.9-BBN} MeO_2C(CH_2)_8 \xrightarrow{Cu} \xrightarrow{Br} MeO_2C(CH_2)_8$$

$$54$$

Scheme 2.14. Allylation of alkenylcopper species derived from alkenylboranes.

Better results can be obtained by generating the boronate species with the aid of sodium methoxide. In this case, satisfactory transmetalation occurs on treatment with CuI. Thus, the functionalized copper reagent 55 can be alkynylated with 1-bromo-1-hexyne at -40 °C, furnishing the enyne 56 in 75% yield (Scheme 2.15) [32].

In the presence of a polar cosolvent such as hexamethylphosphoric triamide (HMPA), it is possible to generate the fluorine-substituted copper compound 57,

Scheme 2.15. Alkynylation of alkenylcopper reagents obtained from alkenylboranes.

obtained through a 1,2-migration of a butyl group. After acylation, this provides useful unsaturated ketones such as 58 (Scheme 2.16) [33].

$$CF_3CH_2OTs \xrightarrow{2 \text{ mBuLl}} F_2C \xrightarrow{OTs} \xrightarrow{1. \text{ Bu}_3B} F_2C \xrightarrow{Ph} CCCl \xrightarrow{Ph} CF_2$$

$$CF_3CH_2OTs \xrightarrow{2 \text{ mBuLl}} F_2C \xrightarrow{Ph} F_2C \xrightarrow{Ph} F_2C \xrightarrow{Ph} F_2C$$

Scheme 2.16. Preparation of fluorinated ketones by way of fluorinated alkenylcopper species.

Thus, direct transmetalation of organoboranes to form organocopper compounds is a capricious reaction, not really generally applicable. Much more general access to organocopper compounds can, on the other hand, be achieved by prior conversion of the organoboranes into organozinc compounds. After addition of CuCN-2LiCl [7], the desired copper compounds are then cleanly generated and can be treated with a broad range of electrophiles, giving excellent yields (Scheme 2.17; see also Sect. 2.4) [34].

Scheme 2.17. Preparation of organocopper reagents from organoboranes.

A smoother transmetalation procedure should be ensured by the more electronegative character of aluminium, as first demonstrated by Wipf and Ireland [35]. Thus, hydroalumination of 1-hexyne with DIBAL-H, followed by addition of the cuprate 59, bearing non-transferable alkynyl groups, provides the copper intermediate 60. This adds smoothly to 2-cyclohexenone to produce the Michael adduct 61, in 72% yield (Scheme 2.18) [36].

Scheme 2.18. Michael additions using alkenylcopper species derived from alkenylaluminiums.

Alternatively, by performing a zirconium-catalyzed Negishi methylalumination on 1-hexyne, it is possible to produce stereochemically pure alkenylcopper species 62, which adds to enones in a 1,4-fashion, to give compounds such as 63 (Scheme 2.18) [35, 36].

Wipf has shown that this method is quite general and tolerates several functional groups, such as ethers, thioethers, silanes, halides, aromatic rings, and olefins. The iodoalkyne 64 is readily carbometalated and after treatment with the dialkynylcuprate 59 furnishes the functionalized copper reagent 65, which smoothly undergoes 1,4-addition reactions with enones. Thus, in the case of 2cyclohexenone, the functionalized ketone 66 is produced in 85% yield (Scheme 2.19) [2, 36].

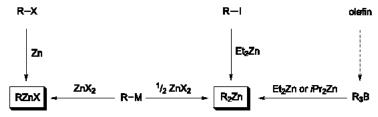
Scheme 2.19. Michael addition of a functionalized alkenylcopper species.

The scope of this transmetalation is very much a function of the availability of interesting alkenylaluminium species [37]. Stannylalumination of alkynes also proceeds through a stannylcopper intermediate 68, obtained by transmetalation of the stannylated aluminium precursor 67. This reaction enables regioselective stannylation of alkynes to be accomplished (Scheme 2.20) [38].

Scheme 2.20. Stannylation of terminal alkynes with stannylcopper reagents derived from stannylated aluminium compounds.

2.4 Transmetalation of Functionalized Organozinc Reagents

2.4.1 Preparation of Organozinc Reagents

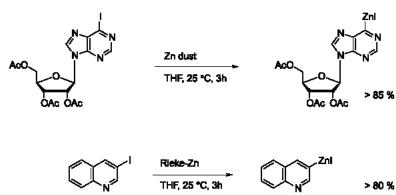

Organozinc compounds have been known for more than 150 years, but their application in organic synthesis was formerly rather limited [39], due to their

moderate reactivity. Only when it was realized that organozincs undergo smooth transmetalations to give a broad range of organometallics did their synthetic applications begin to increase exponentially. Transmetalation of organozinc reagents to give organopalladium intermediates [40] and their transmetalation to organocopper compounds proved to be particularly important [7, 34, 41, 42]. Since it is possible to prepare organozinc compounds bearing a large range of organic functional groups, this methodology broadens the scope of organocopper chemistry considerably. This high functional group compatibility is a function of the pronounced covalent character of the carbon-zinc bond, while the excellent transmetalation capability of organozincs for production of other organometallics is a consequence of the presence of low-lying empty p-orbitals. Especially useful for this transmetalation are THF-soluble copper salts of the type CuCN·2LiX [7, 41]. After transmetalation, the resulting copper species, tentatively represented as RCu(CN)ZnX, reacts with most of those electrophiles E+ that also react with the more classical diorganolithium cuprates (R2CuLi), to afford products of type R-E (Scheme 2.21).

$$RZ_{n}X \xrightarrow{CuCN \cdot 2LiX} RCu(CN)Z_{n}X \xrightarrow{E^{\oplus}} R-E$$

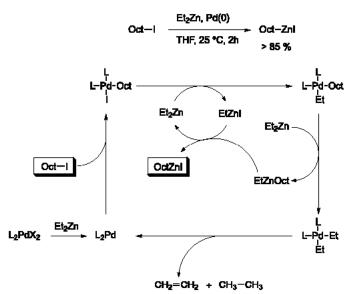
Scheme 2.21. Preparation of zinc-copper reagents.

Notable exceptions are epoxides and alkyl halides, which do not react directly with RCu(CN)ZnX, although reaction conditions for performing alkylation reactions are available [43]. There are two classes of organozinc compounds: organozinc halides (RZnX) and diorganozincs (R2Zn). The reactivity of diorganozincs is slightly higher, but the major difference relevant to this second class of organozinc compounds is the absence of zinc salts (ZnX2), which is highly important for applications in asymmetric addition reactions [44]. The preparation methods are different. Whereas organozinc halides are obtained either by transmetalation reactions or by direct insertion of zinc dust into alkyl halides, diorganozincs are best prepared by means either of an iodine-zinc exchange reaction or of a boron-zinc exchange reaction (Scheme 2.22).


Scheme 2.22. Preparation of organozinc reagents.

2.4.1.1 Preparation of Organozinc Halides

Functionalized organozinc halides are best prepared by direct insertion of zinc dust into alkyl iodides. The insertion reaction is usually performed by addition of a concentrated solution (approx. 3 M) of the alkyl iodide in THF to a suspension of zinc dust activated with a few mol% of 1,2-dibromoethane and Me₃SiCl [7]. Primary alkyl iodides react at 40 °C under these conditions, whereas secondary alkyl iodides undergo the zinc insertion process even at room temperature, while allylic bromides and benzylic bromides react under still milder conditions (0 °C to 10 °C). The amount of Wurtz homocoupling products is usually limited, but increases with increased electron density in benzylic or allylic moieties [45]. A range of polyfunctional organozinc compounds, such as 69–72, can be prepared under these conditions (Scheme 2.23) [41].


Scheme 2.23. Preparation of functionalized zinc reagents by direct insertion of zinc.

Insertion of zinc dust into aryl or heteroaryl iodides is also possible, but polar cosolvents are required in some cases [48, 49]. The use of highly activated zinc (Rieke zinc) prepared by reduction of zinc halides with lithium results in faster insertion (Scheme 2.24) [50–52].

Scheme 2.24. Preparation of functionalized arylzinc reagents.

Crucially, this allows organozinc reagents to be prepared from less reactive aryl bromides and secondary or tertiary alkyl bromides. Alternatively, organozinc iodides can be prepared by means of a palladium(0)-catalyzed reaction between alkyl iodides and Et₂Zn (Scheme 2.25) [53-56].

Scheme 2.25. Pd (0)-catalyzed formation of alkylzinc iodides.

The palladium(0)-catalyzed insertion proceeds through a radical insertion mechanism, allowing radical cyclizations to be performed. This procedure constitutes a new, stereoselective preparation of cyclic zinc reagents from unsaturated, open-chain compounds. Since the cyclization is radical in nature, the relative stereochemistry of the starting alkyl iodide does not need to be controlled. Thus, the unsaturated iodide 73, used as a 1:1 mixture of diastereomers, produces a cyclic organozinc reagent after Pd(0)-catalyzed iodine-zinc exchange, by way of the transition state 74. This then, after transmetalation with CuCN·2LiCl, gives the stereomerically pure organocopper 75. Allylation with ethyl 2-(bromomethyl)acrylate affords the cyclopentane derivative 76 almost as a single stereoisomer (Scheme 2.26) [54].

This reaction can also be applied to the preparation of heterocyclic organocopper reagents such as 77 from readily available secondary alkyl iodides. Ring-closure in this case is catalyzed by Ni(acac)2 rather than by Pd(0), affording new heterocyclic molecules such as 78 (Scheme 2.26) [55]. These cyclization reactions are key steps in the preparation of such natural products as (-)-methylenolactocin 79 [57] and methyl epijasmonate 80 [58] (Scheme 2.27).

Scheme 2.26. Radical cyclizations resulting in cyclic copper organometallics (dppf = 1,1'-bis (diphenylphosphino) ferrocene).

86 %; dr = 95 :5

80: methyl epijasmonate

Scheme 2.27. Preparation of (-)-methylenolactocin 79 and methyl epijasmonate 80.

3. Br — Et

-55 °C, 48 h

Various other less general methods for the preparation of organozinc halides are available, transmetalation from organomagnesium compounds being of interest. Thus, iodine-magnesium exchange in ethyl 2-iodobenzoate 81 produces a magnesium intermediate, which is transmetalated with ZnBr₂ to give the corresponding zinc reagent 82. This undergoes smooth Ni(0)-catalyzed cross-coupling with functionalized alkyl iodides (Scheme 2.28) [59].

Scheme 2.28. Preparation of a functionalized arylzinc halide by transmetalation of an organomagnesium compound.

Finally, the use of homoallylic zinc alcoholates as masked allylic zinc reagents has been described [60]. Thus, the ketone 83 was treated with nBuLi, producing a highly sterically hindered lithium alkoxide that, after conversion to the corresponding zinc alkoxide, underwent a fragmentation reaction to form the allylic zinc reagent 84. After transmetalation with CuCN-2LiCl, this organozinc species underwent an intermolecular addition to the double bond, furnishing the spiroorganometallic compound 85. Benzoylation of this produced the ketone 86, in a diastereomeric ratio of >98:2 and in 60% yield (Scheme 2.29) [61].

Scheme 2.29. Organozinc reagent prepared by an ene reaction.

2.4.1.2 Preparation of Diorganozinc Reagents

Other than transmetalation reactions from organolithium and organomaganesium compounds, there are two general methods for preparing diorganozines. These are boron-zinc exchange and iodine-zinc exchange [42]. The iodine-zinc exchange reaction is catalyzed by the presence of copper(I) salts and is radical in nature. It is best performed with Et₂Zn [62, 63], and usually takes place within 12 h at 50 °C. It is also possible to perform the exchange under irradiation conditions [64]. Provided that the presence of metal salts does not perturb the further course of the reaction, iodine-zinc exchange can be performed by using iPr2Zn generated in situ by treatment of iPrMgBr with ZnBr₂ (0.5 equiv.). With this reagent, the exchange reaction occurs very rapidly (25 °C, 1 h), allowing complex secondary diorganozines to be prepared (Scheme 2.30) [65].

Scheme 2.30. Preparation of a diorganozine compound by iodine-zine exchange.

Because of the radical character of the exchange, it is not possible to prepare chiral diorganozinc reagents in this way [66]. The most general and practical preparation of diorganozincs is the boron-zinc exchange reaction, which has several advantages. It tolerates various functional groups and, since the starting organoboranes used for the exchange are prepared from olefins, numerous functionalized olefins are available as starting materials. More importantly, boron-zinc exchange proceeds with retention of configuration. Thus, chiral organoboranes are excellent precursors for chiral secondary alkylzinc reagents (Scheme 2.31) [42].

Scheme 2.31. Boron-zinc exchange for the preparation of chiral organozinc reagents.

In the case of primary organoboranes, the exchange reaction is best performed with Et_2Zn , whereas less reactive secondary organoboranes require the use of iPr_2Zn . Thus, a wide variety of terminal olefins have been converted into primary diorganozines such as 87–89 (Scheme 2.32).

Scheme 2.32. Preparation of polyfunctional primary dialkylzinc compounds by boron-zinc exchange.

95: 86%

Remarkably, this reaction sequence permits the preparation of diorganozincs bearing acidic hydrogen atoms in the molecule. The unsaturated nitroalkane 90 and the unsaturated alkylidenemalonate 91 are smoothly converted into the corresponding diorganozinc reagents by the sequence shown in Scheme 2.33. Transmetalation with CuCN-2LiCl provides the expected organocopper reagents 92 and 93. After allylation with an excess of allyl bromide, the desired products 94 and 95 are obtained in excellent yields [70].

Scheme 2.33. Preparation of organocopper reagents bearing acidic hydrogens.

91

As mentioned above, chiral diorganozines can be prepared by this procedure. Thus, treatment of 1-phenylcyclopentene (96) with (-)-IpcBH2 provides a chiral organoborane (99% & after recrystallization). Treatment of this with Et₂BH at 60 °C for 16 h gives a diethylorganoborane, which undergoes transmetalation with iPr2Zn to afford the chiral organozinc reagent 97. After further transmetalation with CuCN-2LiCl, the chiral secondary organocopper reagent 98 is formed. Allylation of this with allyl bromide gives the cyclopentane 99 in 44% overall yield (94% ee and 98:2 trans:cis ratio; Scheme 2.34) [71].

Scheme 2.34. Preparation of chiral alkylcopper reagents (lpc = isopinocampheyl).

The same method can be applied to the preparation of chiral acyclic organocopper reagents of somewhat lower configurational stability [72]. Chiral cyclic organocopper compounds can also be prepared by diastereoselective hydroboration of prochiral allylic ethers [73]. Mixed secondary organozinc reagents of the type FG RZnCH₂SiMe₃ (FG = functional group; CH₂SiMe₃: non-transferable group) can also be prepared [74-76].

Substitution Reactions with Copper-Zinc Reagents

Organocopper reagents prepared from organozinc species undergo S_N2' reactions with allylic halides or allylic phosphates in high yields. These reactions display excellent S_N2' regioselectivity. The polyfunctional organozinc species 100, obtained from the corresponding olefin by a hydroboration/boron-zinc exchange sequence, can be smoothly allylated in the presence of the THF-soluble salt CuCN-2LiCl [7, 70] to give the polyfunctional quinoline derivative 101. Selective double S_N2' reaction is observed with 1,3-dichloropropene reagent 102, producing the unsaturated selenide 103 in 89% yield and with high regioselectivity (Scheme 2.35) [77].

Scheme 2.35. Copper(I)-mediated allylation reactions.

In most allylation reactions, only a catalytic amount of CuCN·2LiCl is required [41]. Use of the chiral ferrocenylamine 104 as a catalyst makes enables asymmetric allylation of diorganozinc reagents to be effected with allylic chlorides (Scheme 2.36) [78]. Related electrophiles such as propargylic bromides [79] and unsaturated epoxides [80] also undergo S_N2'-substitution reactions (Scheme 2.37).

Scheme 2.36. Enantioselective allylation with diorganozinc reagents.

Scheme 2.37. Substitution reactions of propargylic bromides and unsaturated epoxides with organozinc reagents.

Substitution reactions also proceed well with cationic η^5 -cycloheptadienyliron complexes such as 105 [81] and related chromium complexes [82], and have found applications in natural product synthesis (Scheme 2.38).

Scheme 2.38. Reactions between copper-zinc reagents and cationic metal complexes.

Alkyl iodides do not react with zinc-copper reagents. However, use of copper species R₂Cu(CN)(MgX)₂·Me₂Zn, obtained by treatment of the cuprate Me₂Cu(CN)-(MgCl)₂ with a diorganozinc compound R₂Zn, results in a cross-coupling reaction at 0 °C in DMPU. The reaction tolerates a number of functional groups, as well as alkyl iodides containing acidic hydrogens, such as 106. The desired crosscoupling product 107 is produced in good yield (Scheme 2.39) [43].

Scheme 2.39. Cross-coupling between copper-zinc reagents and alkyl iodides.

Cross-coupling between functionalized zinc-copper reagents and 1-iodoalkynes or 1-bromoalkynes is very fast [83]. This smooth cross-coupling occurs at low temperatures (-55 °C) and offers high stereoselectivity in reactions with chiral secondary organozinc-copper reagents such as 108 (obtained by a hydroboration/boron-zinc exchange sequence), producing the alkyne 109 in 42% overall yield (Scheme 2.40) [73].

Scheme 2.40. Alkynylation of chiral secondary copper-zinc reagents.

Alkynylation of zinc-copper compounds has been used for the synthesis of polyfunctional acetylenic ethers [84] and for the preparation of building blocks for pharmaceutically active compounds [85]. Whereas cross-coupling between non-activated iodoalkenes and zinc-copper reagents only proceeds at elevated temperatures and in polar solvents such as NMP or DMPU (60 °C, 12 h) [86], alkenyl iodides conjugated with electron-withdrawing groups react under milder conditions. Thus, 3-iodo-2-cyclohexenone undergoes the addition-elimination reaction with the zinc-copper reagent 110 at -30 °C within 1 h, affording the functionalized enone 111 in excellent yield (Scheme 2.41) [46].

The same mechanism is operative for the preparation of squaric acid derivatives of type 112. Treatment of 3,4-dichlorocyclobutene-1,2-dione with two different zinc-copper reagents provides the double addition-elimination product 112 in 67% yield (Scheme 2.41) [87].

Scheme 2.41. Substitution reactions with copper-zinc reagents by addition-elimination mechanisms.

The reaction between zinc-copper reagents and acid chlorides is very general and provides a useful synthesis of ketones [7, 34, 41, 42]. This acylation has also been used to prepare various indoles substituted in position 2 (Scheme 2.42) [88].

Scheme 2.42. Synthesis of 2-substituted indoles by acylation of functionalized organozinc reagents.

2.4.3 Addition Reactions with Copper-Zinc Reagents

Zinc-copper compounds readily undergo Michael addition reactions in the presence of TMSCl, selectively affording 1,4-adducts [7, 34, 41, 42]. In the case of β -disubstituted enones, the 1,4-addition proceeds well in the presence of BF₃·OEt₂ (Scheme 2.43) [89].

Scheme 2.43. Michael additions of copper-zinc reagents to enones.

Prostaglandin derivatives may be prepared by the addition of copper-zinc reagents to substituted cyclopentenones [90-92]. In the presence of a copper(I)monosubstituted sulfonamide, dialkylzincs also add to enones [93]. The addition of zinc-copper compounds to unsaturated esters is difficult, and only efficient if a leaving group is present in the β -position. Alkylidenemalonates, on the other hand, readily undergo Michael additions [94]. The β-phenylsulfonylalkylidenemalonate 113 undergoes an addition-elimination process to provide functionalized alkylidenemalonates such as 114 in excellent yields [95]. Similarly, the β -phenylsulfonylnitroolefin 115 readily reacts with copper-zinc organometallics to provide nitro compounds such as 116, which readily undergo intramolecular Diels-Alder reactions (Scheme 2.44) [96].

Scheme 2.44. Addition-elimination reactions involving copper-zinc reagents.

In general, copper-zinc compounds, unlike organolithium-derived organocopper reagents, undergo clean addition reactions to nitroolefins. After Michael addition, the resulting zinc nitronates can be oxidatively converted into polyfunctional ketones, such as 117 (Scheme 2.45) [96].

Scheme 2.45. Addition of zinc-copper reagents to nitroolefins.

Addition to unsaturated aldehydes results either in the $1,2\cdot$ or in the $1,4\cdot$ addition product, depending on the reaction conditions. Thus, in the case of cinnamaldehyde, the $1,2\cdot$ addition product is produced in the presence of BF₃·OEt₂ and the $1,4\cdot$ addition product is obtained in the presence of Me₃SiCl (Scheme 2.46) [97].

Scheme 2.46. Reactions between zinc-copper compounds and unsaturated aldehydes.

Acetylenic esters react well with copper-zinc compounds. Propiolic esters are especially reactive [83], but other acetylenecarboxylic acid derivatives such as dimethyl acetylenedicarboxylate or propiolamide 118 undergo highly stereoselective *cis* addition (Scheme 2.47) [46].

Scheme 2.47. Addition of zinc-copper compounds to propiolic acid derivatives.

Finally, zinc-copper exchange by treatment of FG RZnI with Me₂Cu(CN)Li₂ provides copper species that add smoothly to various alkynes and which can also be used to perform cyclization reactions (Scheme 2.48) [98].

Scheme 2.48. Intermolecular and intramolecular carbometalation of alkynes with copper-zinc reagents.

60 %

Organozinc copper reagents have very broad synthetic potential and a number of typical experimental procedures have recently been published [99, 100].

2.5 Transmetalation of Organotin, Organosulfur, and Organotellurium Reagents

Transmetalations of alkenylstannanes with copper salts are reversible if they are performed with CuCl in polar solvents [101]. This has found application in cyclization reactions (Scheme 2.49) [102].

Scheme 2.49. Cyclization of alkenylcopper compounds generated from organostannanes.

Transmetalation of this type has also been used to assist palladium(0)-catalyzed cross-coupling reactions in sterically congested substrates. Transmetalation of stannanes into alkenylcopper intermediates considerably accelerates subsequent palladium(0)-catalyzed cross-coupling with arylsulfonates (Scheme 2.50) [103].

Scheme 2.50. Copper(I) chloride as a promoter of Stille cross-coupling.

These transmetalations may be performed not only with copper(I) halides in DMF [104], but also by using Me₂CuLi·LiCN. This transmetalation has been used in the synthesis of prostaglandin derivatives (Scheme 2.51) [105].

Scheme 2.51. Prostaglandin synthesis using Sn. Cu transmetalation.

As well as alkenylstannanes [106–108], other classes such as α -heteroatom-substituted alkyltributylstannanes [109] and, more importantly, allylic stannanes [110, 111] also undergo these Sn Cu transmetalations. Otherwise difficult to prepare, allylic copper reagents may, however, be obtained by treatment of allylic stannanes (produced in turn from organolithium, magnesium, or zinc organometallics) with Me₂CuLi-LiCN. They enter into cross-coupling reactions with alkyl bromides [110] or vinyl triflates (Scheme 2.52) [111].

Michael additions [112] and other reactions typical of organocopper species can also be performed with silylcopper reagents such as TBDMSCu, prepared by Sn/Cu exchange [113] between $Me_3SnSiMe_2(tBu)$ and $Bu(Th)CuLi\cdot LiCN$ (Th = 2-thienyl) (Scheme 2.53) [113, 114].

Transmetalation of thioethers to organocopper compounds can also be performed in some special cases. Thus, treatment of the ester 119 with Me₂CuLi-LiCN provides the copper reagent 120, which can be treated successfully with several electrophiles such as allyl bromide or acid chlorides to afford the expected products such as 121 (Scheme 2.54) [115, 116].

This reaction can be extended to cyanoketone dithioacetals [117]. Alkenyltellu-

87 %

Scheme 2.52. Cross-coupling of allylic copper compounds.

Th = 2-thlenyl

Scheme 2.53. Preparation of silylcuprates by Sn/Cu-transmetalation.

Scheme 2.54. Sulfur/copper exchange reaction.

rium species also undergo exchange with Me₂CuLi·LiCN. The synthetic importance of this exchange is due to the easy availability of (Z)-alkenyltellurium species by reduction of alkynyl tellurides such as 122 (Scheme 2.55) [118].

Scheme 2.55. Te/Cu exchange reactions of (Z)-alkenyltellurium species.

2.6

Transmetalation of Organotitanium and Organomanganese Reagents

Transmetalations with first row transition metal elements such as titanium or manganese have produced useful synthetic applications. Organotitanate species of type 123 show the advantage of high S_N2' selectivity in the *anti* stereochemistry of the resulting copper(I) intermediates (Scheme 2.56) [119, 120].

Scheme 2.56. Copper(I)-catalyzed anti-S_N2' substitution of allylic phosphates.

Organomanganese reagents are very useful organometallics, reacting with high chemoselectivity with acid chlorides [121] and several other classes of electrophiles [122]. The scope of organomanganese reagents can be greatly increased by use of copper(I) catalysis. Especially impressive is the performance of Michael additions [123–128]. Thus, the Michael addition between BuMnCl and pulegone 124, furnishing 125, proceeds in excellent yield in the presence of Li₂CuCl₄ (3 mol%) (Scheme 2.57) [128].

BuMnCl, THF, -30 °C to rt: <5 % BuMnCl, Ll₂CuCl₄ (3 mol%), THF, 0 °C, 1h: 95 % BuMgCl, Ll₂CuCl₄ (3 mol%), THF, 0 °C, 2h: 51 %

Scheme 2.57. Copper-catalyzed Michael addition reactions between organomanganese reagents and pulegone.

Acylation reactions can also be greatly improved in this way, with *t*-alkyl- or *sec*-alkyl-manganese reagents reacting with acid chlorides in excellent yields [123]. The related addition-elimination to 3-ethoxy-2-cyclohexenone is also improved, resulting after acidic aqueous workup in 3-methyl-2-cyclohexenone [125]. The perillaketone 126 was prepared in an improved yield using copper(I) catalysis (Scheme 2.58) [129].

126: 94 % in presence of CuCl (1 mol%) 63 % without CuCi

Scheme 2.58. Preparation of perilla-ketone using copper-catalyzed acylation.

Alkylation of organomanganese reagents with alkyl bromides can also be improved by addition of CuCl (3 mol%). The reactions proceed at room temperature and are complete within a few hours [123, 130]. The opening of epoxides is also improved under these conditions. The reaction also features good chemoselectivity, tolerating the presence of sensitive functions such as ketones (Scheme 2.59) [130].

Scheme 2.59. Copper-catalyzed alkylation of alkyl manganese reagents.

Benzylic organomanganese reagents prepared by direct insertion of activated manganese metal display the same behavior (Scheme 2.60) [131]. Excellent results are also obtained for 1,4-additions of organomanganese reagents to unsaturated esters in the presence of CuCl (3 mol%) [127].

Scheme 2.60. Copper-catalyzed acylation of benzylic manganese reagents.

2.7 Transmetalation of Organozirconium and Organosamarium Reagents

Transmetalation reactions of organozirconium reagents were pioneered by Schwartz [130-132], with improved procedures developed more recently by Lipshutz [133] and Wipf [134]. The hydrozirconation of 1-hexene with H(Cl)ZrCp2 at 25 °C under sonication conditions produces the n-hexylzirconium complex 127, which adds to cyclohexenone in the presence of CuBr·Me₂S (10 mol%) to afford the desired product 128 in 79% isolated yield (Scheme 2.61) [134].

Scheme 2.61. Copper-catalyzed 1,4-addition of alkylzirconium derivatives.

Similarly, alkenylzirconium species prepared by the hydrozirconation of alkynes add in a conjugated fashion to enones. Formation of an intermediate zincate prior to transmetalation to the copper species facilitates the Michael addition (Scheme 2.62) [135]. This methodology has been applied to the preparation of protected misoprostol 129 (Scheme 2.63) [136, 137].

Scheme 2.62. "Michael addition of an alkenylzirconium compound", by successive transmetalation into zinc and copper intermediates.

Scheme 2.63. Synthesis of protected misoprostol 129.

The mechanism and the nature of the reaction intermediates have been carefully studied by Wipf, revealing an activation of the carbonyl group of the enone by the zirconium complex. Remarkably, a variety of primary and secondary alkylzirconium complexes can be added to enones in 1,4-fashion under mild conditions [134, 138]. Interestingly, treatment of zirconocyclopentadienes such as 130 with alkynes such as dimethyl acetylenedicarboxylate in the presence of CuCl gives benzene derivatives such as 131 [136, 137]. A transmetalation from Zr to Cu has been postulated in this reaction. Annelation reactions involving a similar transmetalation of 130 and cross-coupling with 1,2-diodobenzene proceeds in high yield to afford 132 (Scheme 2.64) [139, 140].

Scheme 2.64. Copper-catalyzed reactions of zirconocyclopentadienes.

Cross-coupling reactions between alkenylzirconocenes such as 133 and aryl or alkenyl iodides occur readily in the presence of CuCl and Pd(PPh₃)₄, producing tetrasubstituted olefins such as 134 in good yields (Scheme 2.65) [141, 142].

Scheme 2.65. Cross-coupling between alkenylzirconocene complexes and aryl iodides.

Carbocupration of alkynes by zirconacyclopentane derivatives can be performed according to the same procedure. Thus, the zirconocyclopentane 135, obtained by treatment of Bu₂ZrCp₂ with 1,6-heptadiene, reacts at room temperature with phenylacetylene to afford the adduct 136 through a carbocupration-reductive elimination mechanism. Cross-coupling followed by intramolecular carbocupration takes place in the case of the reaction with 1-bromohexyne, producing 137 (Scheme 2.66) [143].

Scheme 2.66. Copper-catalyzed reactions of zirconacyclopentane derivatives.

Finally, spiro-compounds such as 138 can be prepared by treatment of zirconacylopentadienes such as 139 with 3-iodo-2-cyclohexenone in the presence of CuCl (2 equiv.) (Scheme 2.67) [144].

Scheme 2.67. Spirometalation of zirconacyclopentadienes.

Very few transmetalations between organolanthanides and organocopper reagents have been reported. Organosamarium(III) reagents, prepared by treatment of SmI₂ with alkyl halides in THF/HMPA, undergo easy conjugate addition to unsaturated ketones and nitriles in the presence of TMSCl, producing the corresponding Michael adducts. Functionalized alkyl bromides such as 140 react chemoselectively with cyclohexenone in the presence of TMSCl and CuBr·Me₂S (0.1 equiv.) to afford the polyfunctional ketone 141 in 60% yield (Scheme 2.68) [145].

Scheme 2.68. Copper-catalyzed 1,4-addition of organosamarium reagents.

2.8 Conclusion

Transmetalations of various organometallic species with copper salts have been found to produce highly useful organocopper reagents of great synthetic interest. Many different organometallic precursors have proved valuable, depending on the functionality present in the copper reagent. The scope of organocopper chemistry has been greatly enhanced by these new transmetalation reactions and these reagents have found many applications in organic synthesis.

References

- 1 B. H. LIPSHUTZ, S. SENGUPTA, Org. React. 1992, 41, 135.
- 2 P. Wipf, Synthesis, 1993, 537.
- 3 E. NEGISHI, Organometallics in Organic Synthesis, Wiley: New York, 1980.
- 4 N. Krause, Angew. Chem. 1999, 111, 83; Angew. Chem. Int. Ed. Engl. 1999, 38, 79.
- 5 G. Boche, F. Bosold, M. Marsch, K. HARMS, Angew. Chem. 1998, 110, 1779; Angew. Chem. Int. Ed. Engl. 1998, 37, 1684.
- 6 C. E. TUCKER, T. N. MAJID, P. KNOCHEL, J. Am. Chem. Soc. 1992, 114, 3983.
- 7 P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. 1988, 53, 2390,
- 8 Y. Horiguchi, S. Matsuzawa, E. NAKAMURA, I. KUWAJIMA, Tetrahedron Lett. 1986, 27, 4025.
- 9 J. F. Cameron, J. M. J. Fréchet, J. Am. Chem. Soc. 1991, 113, 4303.
- 10 C. NAJERA, M. YUS, Recent Res. Devel. in Organic Chem. 1997, 1, 67.
- 11 C. Gomez, F. F. Huerta, M. Yus, Tetrahedron Lett. 1997, 38, 687.
- 12 C. Gomez, F. F. Huerta, M. Yus, Tetrahedron 1998, 6177.
- 13 D. J. RAMON, M. Yus, Tetrahedron Lett. 1993, 34, 7115.
- 14 C. Gomez, F. F. Huerta, M. Yus, Tetrahedron 1998, 54, 1853.
- 15 F. Foubelo, A. Gutierrez, M. Yus, Tetrahedron Lett. 1997, 38, 4837.
- 16 A. GUIJARRO, M. YUS, Tetrahedron 1995, 51, 231.
- 17 R. D. RIEKE, Science 1989, 246, 1260.
- 18 T. P. Burns, R. D. Rieke, J. Org. Chem. 1987, 52, 3674.
- 19 M. ROTTLÄNDER, L. BOYMOND, L. BÉRILLON, A. LEPRÊTRE, G. VARCHI, S. Avolio, H. Laaziri, G. Quéguiner, A. Ricci, G. Cahiez, P. Knochel, Chem. Eur. J. 2000, 6, 767.
- 20 L. BOYMOND, M. ROTTLÄNDER, G. CAHIEZ, P. KNOCHEL, Angew. Chem. 1998, 110, 1801; Angew. Chem. Int. Ed. Engl. 1998, 37, 1701.
- 21 L. Bérillon, A. Leprêtre, A. Turck, N. Plé, G. Quéguiner, G. Cahiez, P. Knochel, Synlett 1998, 1359.

- 22 M. ABARBRI, P. KNOCHEL, Synlett 1999, 1577.
- 23 F. Dehmel, M. Abarbri, P. Knochel, Synlett 2000, 345.
- 24 M. Abarbri, J. Thibonnet, L. Bérillon, F. Dehmel, J. Org. Chem. 2000, 65, 4618.
- 25 M. Abarbri, F. Dehmel, P. Knochel, Tetrahedron Lett. 1999, 40, 7449.
- 26 B. H. LIPSHUTZ, D. A. PARKER, S. L. NGUYEN, K. E. McCarthy, J. C. BARTON, S. E. WHITNEY, H. KOTSUKI, Tetrahedron 1986, 42, 2873.
- 27 G. VARCHI, A. RICCI, G. CAHIEZ, P. KNOCHEL, Tetrahedron 2000, 56, 2727.
- 28 G. Cahiez, C. Chaboche, M. JÉZÉQUEL, Tetrahedron 2000, 56, 2733.
- 29 W. Dohle, L. Bérillon, M. Wimmer, P. KNOCHEL, manuscript in preparation.
- 30 N. MIYAURA, N. SASAKI, M. ITOH, A. Suzuki, Tetrahedron Lett. 1977, 18, 173,
- 31 H. YATAGAI, J. Org. Chem. 1980, 45, 1640.
- 32 H. C. Brown, G. Molander, J. Org. Chem. 1981, 46, 645.
- 33 J. ICHIKAWA, S. HAMADA, T. SONODA, H. Kobayashi, Tetrahedron Lett. 1992, 33, 337.
- 34 P. Knochel, Synlett, 1995, 393.
- 35 R. E. IREIAND, P. WIPF, J. Org. Chem. 1990, 55, 1425.
- 36 P. Wipf, J. H. Smitrovich, C.-W. Moon, J. Org. Chem. 1992, 57, 3178.
- 37 P. Wiff, L. Lim, Angew. Chem. 1993, 105, 1095; Angew. Chem. Int. Ed. Engl. 1993, 32, 1068.
- 38 S. Sharma, A. C. Oehlschlager, J. Org. Chem. 1989, 54, 5064.
- 39 E. FRANKLAND, Liebigs Ann. 1849, 71,
- 40 E. NEGISHI, Acc. Chem. Res. 1982, 15, 340.
- 41 P. Knochel, R. Singer, Chem. Rev. 1993, 93, 2117.
- 42 P. Knochel, J. J. Almena Perea, P. Jones, Tetrahedron 1998, 54, 8275.
- 43 C. E. Tucker, P. Knochel, J. Org. Chem. 1993, 58, 4781.
- 44 K. Soai, S. Niwa, Chem. Rev. 1992, 92, 833.

- S. C. Berk, M. C. P. Yeh, N. Jeong, P. Knochel, Organometallics 1990, 9, 3053.
- 46 H. P. Knoess, M. T. Furlong, M. J. Rozema, P. Knochel, *J. Org. Chem.* 1991, 56, 5974.
- 47 C. Janikaram, P. Knochel, Tetrahedron 1993, 49, 29.
- 48 T. N. MAJID, P. KNOCHEL, Tetrahedron Lett. 1990, 31, 4413.
- 49 T. M. STEVENSON, A. S. B. PRASAD, J. R. CITINENI, P. KNOCHEL, Tetrahedron Lett. 1996, 37, 8375.
- 50 L. Zhu, R. M. Weymeyer, R. D. Rieke, J. Org. Chem. 1991, 56, 1445.
- 51 R. D. RIEKE, M. V. HANSON, J. D. BROWN, Q. J. NIU, J. Org. Chem. 1996, 61, 2726.
- 52 M. V. Hanson, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 10775.
- 53 H. STADTMÜLLER, R. LENTZ, C. E. TUCKER, T. STÜDEMANN, W. DÖRNER, P. KNOCHEL, J. Am. Chem. Soc. 1993, 115, 7027.
- 54 H. STADTMÜLLER, C. E. TUCKER, A. VAUPEL, P. KNOCHEL, Tetrahedron Lett. 1993, 34, 7911.
- 55 A. VAUPEL, P. KNOCHEL, Tetrahedron Lett. 1994, 35, 8349.
- 56 H. STADTMÜLLER, A. VAUPEL, C. E. TUCKER, T. STÜDEMANN, P. KNOCHEL, Chem. Eur. J. 1996, 2, 1204.
- 57 A. VAUPEL, P. KNOCHEL, Tetrahedron Lett. 1995, 36, 231.
- 58 H. STADTMÜLLER, P. KNOCHEL, Synlett 1995, 463.
- 59 R. GIOVANNINI, T. STÜDEMANN, A. DEVASAGAYARAJ, G. DUSSIN, P. KNOCHEL, J. Org. Chem. 1999, 64, 3544.
- 60 P. Jones, P. Knochel, J. Org. Chem. 1999, 64, 186.
- 61 N. MILLOT, P. KNOCHEL, Tetrahedron Lett. 1999, 40, 7779.
- 62 M. J. ROZEMA, A. SIDDURI, P. KNOCHEL, J. Org. Chem. 1992, 57, 1956
- 63 M. J. ROZEMA, C. EISENBERG, H. LÜTJENS, R. OSTWALD, K. BELYK, P. KNOCHEL, Tetrahedron Lett. 1993, 34, 3115.
- 64 A. B. CHARETTE, A. BEAUCHEMIN, J. F. MARCOUX, J. Am. Chem. Soc. 1998, 120, 5114.

- 65 L. MICOUIN, P. KNOCHEL, Synlett 1997, 327.
- 66 R. Duddu, M. Eckhardt, M. Furlong, H. P. Knoess, S. Berger, P. Knochel, Tetrahedron 1994, 50, 2415.
- L. SCHWINK, P. KNOCHEL, Tetrahedron Lett. 1994, 35, 9007.
- 68 A. Devasagayaraj, L. Schwink, P. Knochel, J. Org. Chem. 1995, 60, 3311.
- 69 A. LONGEAU, F. LANGER, P. KNOCHEL, Tetrahedron Lett. 1996, 37, 2209.
- 70 F. Langer, L. Schwink, A. Devasagayaraj, P.-Y. Chavant, P. Knochel, J. Org. Chem. 1996, 61, 8229
- C. Darcel, F. Flachsmann,
 P. Knochel, Chem. Commun. 1998,
 205.
- 72 A. BOUDIER, F. FLACHSMANN, P. KNOCHEL, Synlett 1998, 1438.
- 73 A. BOUDIER, E. HUPE, P. KNOCHEL, Angew. Chem. 2000, 112, 2396; Angew. Chem. Int. Ed. Engl. 2000, 39, 2294.
- 74 S. BERGER, F. LANGER, C. LUTZ, P. KNOCHEL, T. A. MOBLEY, C. K. REDDY, Angew. Chem. 1997, 109, 1603; Angew. Chem. Int. Ed. Engl. 1997, 36, 1496.
- 75 C. LUTZ, P. KNOCHEL, J. Org. Chem. 1997, 62, 7895.
- 76 P. Jones, P. Knochel, J. Chem. Soc. Perkin Trans. 1 1997, 3117.
- 77 H. G. CHEN, J. L. GAGE, S. D. BARRETT, P. KNOCHEI, Tetrahedron Lett. 1990, 31, 1829.
- 78 F. DÜBNER, P. KNOCHEL, Tetrahedron Lett. 2000, 41, 9233.
- 79 M. J. DUNN, R. F. W. JACKSON, J. Chem. Soc. Chem. Commun. 1992, 319.
- 80 B. H. LIPSHUTZ, K. WOO, T. GROSS, D. J. BUZARD, R. TIRADO, Synlett 1997, 477.
- W. Blankenfeldt, J.-W. Liao, L.-G. Lo, M. G. P. Yeh, Tetrahedron Lett. 1996, 37, 7361.
- 82 J. H. RIGBY, M. KIROVA-SNOVER, Tetrahedron Lett. 1997, 38, 8153.
- 83 M. C. P. YEH, P. KNOCHEL, Tetrahedron Lett. 1989, 30, 4799.
- 84 H. Sörensen, A. E. Greene, Tetrahedron Lett. 1990, 31, 7597.

- 85 E. J. Corey, C. J. Helal, Tetrahedron Lett. 1997, 38, 7511.
- 86 S. MARQUAIS, G. CAHIEZ, P. Knochel, Synlett 1994, 849.
- 87 A. SIDDURI, N. BUDRIES, R. M. LAINE, P. KNOCHEL, Tetrahedron Lett. 1992, 33, 7515.
- 88 H. G. CHEN, C. HOECHSTETTER, P. Knochel, Tetrahedron Lett. 1989, 30, 4795.
- 89 M. C. P. YEH, P. KNOCHEL, W. M. BUTLER, S. C. BERK, Tetrahedron Lett. 1988, 29, 6693,
- 90 H. Tsujiyama, N. Ono, T. Yoshino, S. OKAMOTO, F. SATO, Tetrahedron Lett. 1990, 31, 4481.
- 91 T. Yoshino, S. Okamoto, F. Sato, J. Org. Chem. 1991, 56, 3205.
- 92 K. MIYAJI, Y. OHARA, Y. MIYAUCHI, T. TSURUDA, K. ARAI, Tetrahedron Lett. 1993, 34, 5597.
- 93 M. KITAMURA, T. MIKI, K. NAKANO, R. Noyori, Tetrahedron Lett. 1996, 37, 5141.
- 94 G. Cahiez, P. Venegas, C. E. TUCKER, T. N. MAJID, P. KNOCHEL, J. Chem. Soc., Chem. Commun. 1992, 1406.
- 95 C. E. Tucker, P. Knochel, Synthesis 1993, 530.
- 96 C. Jubert, P. Knochel, J. Org. Chem. 1992, 57, 5431.
- 97 M. C. P. YEH, P. KNOCHEL, L. E. SANTA, Tetrahedron Lett. 1988, 29, 3887.
- 98 S. A. RAO, P. KNOCHEL, J. Am. Chem. Soc. 1991, 113, 5735.
- 99 P. Knochel, M. J. Rozema, C. E. TUCKER, in Organocopper Reagents, A Practical Approach, R. J. K. TAYLOR (Ed.), Oxford University Press, Oxford, 1994, pp. 85-104.
- 100 P. Knochel, P. Jones (Eds.), Organozinc Reagents: A Practical Approach; Oxford University Press, Oxford, 1999.
- 101 V. FARINA, S. KAPDIA, B. KRISHNAN, C. WANG, L. S. LIEBESKIND, J. Org. Chem. 1994, 59, 5905.
- 102 E. Piers, E. J. McEachern, P. A. Burns, Tetrahedron 2000, 56, 2753.
- 103 X. HAN, B. M. STOLTZ, E. J. COREY, J. Am. Chem. Soc. 1999, 121, 7600.
- 104 E. Piers, T. Wong, J. Org. Chem. 1993, 58, 3609.

- 105 J. R. BEHLING, K. A. BABIAK, J. S. NG, A. L. CAMPBELL, R. MORETTI, M. Koerner, B. H. Lipshutz, J. Am. Chem. Soc. 1988, 110, 2641.
- 106 E. Piers, E. J. McEachern, P. A. Burns, J. Org. Chem. 1995, 60, 2322.
- 107 E. Piers, J. M. Chong, Can. J. Chem. 1988, 66, 1425.
- 108 E. Piers, H. E. Morton, J. M. CHONG, Can. J. Chem. 1987, 65, 78.
- 109 J. R. FALCK, R. K. BHATT, J. YE, J. Am. Chem. Soc. 1995, 117, 5973.
- 110 B. H. LIPSHUTZ, R. CROW, S. H. DIMOCK, E. L. ELLSWORTH, R. A. J. SMITH, J. R. BEHLING, J. Am. Chem. Soc. 1990, 112, 4063.
- 111 B. H. LIPSHUTZ, T. R. ELWORTHY, J. Org. Chem. 1990, 55, 1695.
- 112 B. H. LIPSHUTZ, J. I. LEE, Tetrahedron Lett. 1991, 32, 7211.
- 113 B. H. LIPSHUTZ, D. C. REUTER, E. L. Ellsworth, J. Org. Chem. 1989, 54, 4975.
- 114 B. H. Lipshutz, S. Sharma, D. C. REUTER, Tetrahedron Lett. 1990, 31, 7253.
- 115 M. Hojo, S. Tanimoto, J. Chem. Soc. Chem. Commun. 1990, 1284.
- 116 M. Hojo, H. Harada, A. Hosomi, Chem. Lett. 1994, 437.
- 117 M. Hojo, H. Harada, C. Watanabe, A. Hosomi, Bull. Chem. Soc. Jpn. 1994, 67, 1495.
- 118 J. V. Comasseto, J. N. Berriel, Synth. Commun. 1990, 20, 1681.
- 119 M. Arai, E. Nakamura, B. H. LIPSHUTZ, J. Org. Chem. 1991, 56,
- 120 M. ARAI, B. H. LIPSHUTZ, E. NAKAMURA, Tetrahedron 1992, 48, 5709.
- 121 G. Friour, G. Cahiez, J. F. NORMANT, Synthesis 1984, 37.
- 122 G. CAHTEZ, An. Quim. 1995, 91, 561.
- 123 G. CAHIEZ, S. MARQUAIS, Pure Appl. Chem. 1996, 68, 53.
- 124 G. Cahiez, M. Alami, Tetrahedron 1989, 45, 4163.
- 125 G. CAHIEZ, M. ALAMI, Tetrahedron Lett. 1989, 30, 3541.
- 126 G. CAHIEZ, M. ALAMI, Tetrahedron Lett. 1989, 30, 7365.
- 127 G. CAHIEZ, M. ALAMI, Tetrahedron Lett. 1990, 31, 7423.

- 128 G. Cahiez, S. Marquais, M. Alami, Org. Synth. 1993, 72, 135.
- 129 G. CAHIEZ, P.-Y. CHAVANT, E. MÉTAIS, Tetrahedron Lett. 1992, 33, 5245.
- 130 D. B. CARR, J. SCHWARTZ, J. Am. Chem. Soc. 1979, 101, 3521.
- 131 M. Yoshifuji, M. J. Loots, J. Schwartz, Tetrahedron Lett. 1977, 18, 1303.
- 132 J. Schwartz, M. J. Loots, H. Kosugi, I. Am. Chem. Soc. 1980, 102, 1333.
- 133 B. H. LIPSHUTZ, E. L. ELLSWORTH, J. Am. Chem. Soc. 1990, 112, 7440.
- 134 P. Wipf, J. H. Smitrovich, J. Org. Chem. 1991, 56, 6494.
- 135 B. H. LIPSHUTZ, M. R. WOOD, J. Am. Chem. Soc. 1993, 115, 12625.
- 136 K. A. Babiak, J. R. Behling, J. H. Dygos, K. T. McLaughlin, J. S. Ng, V. J. KALISH, S. W. KRAMER, R. L. SHONE, J. Am. Chem. Soc. 1990, 112, 7441.
- 137 B. H. LIPSHUTZ, M. R. WOOD, J. Am. Chem. Soc., 1994, 116, 11689.

- 138 P. Wipf, W. Xu, J. H. Smitrovich, R. LEHMANN, L. M. VENANZI, Tetrahedron 1994, 50, 1935.
- 139 T. Takahashi, M. Kotora, Z. Xi, J. Chem. Soc. Chem. Commun. 1995, 361.
- 140 T. Takahashi, R. Hara, Y. Nishihara, M. Kotora, J. Am. Chem. Soc. 1996, 118, 5154.
- 141 R. Hara, Y. Nojshihara, P. D. LANDRÉ, T. TAKAHASHI, Tetrahedron Lett. 1997, 38, 447.
- 142 M. Kotora, C. XI, T. Takahashi, Tetrahedron Lett. 1998, 39, 4321.
- 143 Y. LIU, B. SHEN, M. KOTORA, T. Takahashi, Angew. Chem. 1999, 111, 966; Angew. Chem. Int. Ed. Engl. 1999, 38, 949.
- 144 C. XI, M. KOTORA, N. NAKAJIMA, T. Takahashi, J. Org. Chem. 2000, 65,
- 145 P. Wipf, S. Venkatraman, J. Org. Chem. 1993, 58, 3455.

79

3 Heteroatom cuprates and α -Heteroatom alkylcuprates in Organic Synthesis

R. Karl Dieter

3.1 Introduction

Organocopper(I) chemistry slowly emerged from Reich's preparation of phenyl copper (1923) and Gilman's subsequent reports on ethyl copper (1936) and lithium dimethylcuprate (1952) [1]. The conjugate addition reactions [2] of Kharasch (RMgX/cat CuX, 1941) and House (R2CuLi, 1966) and the substitution reactions of Corey and Posner [3] inaugurated a period of rapid development in organocopper chemistry. Simple alkylcopper or lithium dialkylcuprate reagents increasingly became employed for the introduction of simple, non-functionalized alkyl groups in natural product synthesis. The fact that only one of the alkyl groups was transferred from lithium dialkylcuprates to carbon electrophiles stimulated the development of heteroatom(alkyl)cuprates. In these reagents, the heteroatom bound to copper served as a non-transferable or residual ligand, enabling the transferable alkyl groups to be conserved [4]. Chiral, non-transferable heteroatom ligands also saw service in asymmetric organocopper reactions [5]. Although earlier reports had referred to silvlcopper and stannylcopper reagents, the development and synthetic applications of these reagents was stimulated by the reports of Fleming (1978) and Piers (1980) [6]. Developments in the chemistry of silicon and tin resulted in the exploration of silylcuprates and stannylcuprates, where the synthetic value of the copper-mediated reactions lay in subsequent transformations involving the resultant C Si and C Sn bonds. The silyl and stannyl substituents were exploited as tools for regiocontrol and stereocontrol, and in the subsequent construction of C C bonds.

Utilization of heteroatom-functionalized organocopper reagents posed a major hurdle. The nature of the preparation of organocopper reagents, from organolithium and Grignard reagents, severely limited the type of alkyl ligand that could be introduced onto copper. Copper-mediated transfer of complex heteroatom-functionalized alkyl ligands, however, is a particularly attractive synthetic goal, since the organocopper transformations are often complementary to the organolithium and Grignard reactions. Successes in this field came with the development of procedures for oxidative addition of metallic copper with organic electrophiles [7], lithiation [8], and developments in transition metal chemistry that permitted

preparation of cuprate reagents from organometallic species other than lithium and Grignard reagents. Transmetalation from a variety of transition organometallic reagents to copper has developed into a powerful tool for uniting copper chemistry and highly functionalized alkyl ligands [9]. While Knochel's copper-mediated organozinc reactions [10] have admirably solved many problems in this area, lithium α -aminoalkylcuprates have provided a useful expansion of the corresponding organolithium chemistry [11].

This chapter focuses on heteroatom cuprates and α -heteroatomalkylcuprates and the potential they offer in the development of synthetic strategies. Alkylcuprate chemistry involving heteroatom functionality at a location other than the α -position is the topic of Chapt. 2.

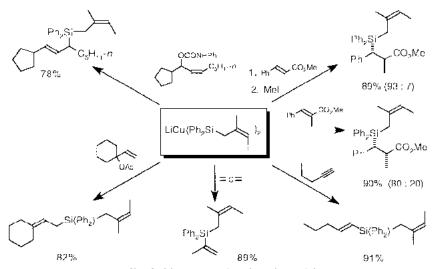
3.2 Heteroatomcuprates

Heteroatom copper and cuprate reagents contain a ligand bound to copper through a heteroatom, which may either be transferred to an organic electrophile or serve as a non-transferable or residual ligand. Reagents derived from copper in its low valent oxidation state [that is, Cu(I)] readily transfer Group IVA ligands to a wide range of organic electrophiles, while Group VA ligands commonly act as residual ligands. Nevertheless, a limited number of Group VA ligand transfer reactions have been reported (vide infra).

3.2.1 Group IVA Heteroatoms (Si, Ge, Sn)

While organocopper(I) (RCu) and organocuprate reagents [RCu(L)Li] have been known for over half a century, the corresponding silyl and stannyl reagents are of recent origin. Like their carbon analogues, these reagents [6, 12, 13] can be prepared by the addition of silyllithium or stannyllithium reagents to Cu(I) salts in ethereal solvents [14, 15], tetrahydrofuran (THF) being the solvent most often used. The combination of Cu(I) salt, substitution pattern of the silyl or stannyl ligand, use of non-transferable residual ligands, and ligand:copper stoichiometries can result in a bewildering array of reagents (Tab. 3.1), which are likely to display different reactivities, regioselectivities, and stereoselectivities in their reactions with carbon electrophiles. The silylcuprates and stannylcuprates appear to be more thermally stable than the organocuprates, and preferentially transfer the Si [6, 14b, i] or Sn [14b, 16] heteroatom in mixed alkyl(heteroatom)cuprates [(R3M)CuRLi; M = Si, Sn]. The preferential transfer of the silvl or stannyl group has been attributed to weaker Cu Si or Cu Sn bonds or alternatively to copper ligand HOMO/ electrophile LUMO orbital interactions [14i]. The higher energy Cu M (M = Si, Sn) HOMO orbital will be closer in energy to the electrophile LUMO orbital than the energetically lower lying Cu C HOMO orbital, which is consistent with the observed selectivity. The mixed (R3M)Cu(alkyl)CNLi2 (M = Si, Sn) reagents con-

Tab. 3.1. Representative silyl and stannylcuprate reagents.


Silylcuprate Reagents	C–Si to C–OH	Ref.	Stannylcuprate Reagents	Ref.
(Me ₃ Si) ₂ CuLi	No	14a	Me₃SnCu·SMe₂	15a, 6
(PhMe2Si)2CuLi	Yes	22a	n-Bu ₃ SnCu·SMe ₂	15b
PhMe2SiGu(CN)Li	Yes	14 b −c	Me ₃ SnCu(CN)Li	14b, 6
(PhMe2Si)2CuLi-LiCN	Yes	14 b -c, 24, 6	(Bu ₃ Sn) ₂ CuLi	15c, 37b
PhMe ₂ SiCu(Me)CuLi·LiCN	Yes	14 b ,d	(Me ₃ Sn) ₂ CuLi	15d
[{MeHC=CMeCH ₂ }Ph ₂ Si] ₂ CuLi	Yes	14e	(Bu ₃ Sn)Cu(n-Bu)Li-LiCN	16b, 6
Et ₂ NPh ₂ SiCu(CN)Li	Yes	14f, 6	(Bu ₃ Sn)Cu(Me)Li·LiCN	14b, 15d
t-BuMe ₂ SiCu(n-Bu)Li-LiCN	No	14g, 6	Me ₃ SnCu(Bu)Li·LiCN	16c
(t-BuPh ₂ Si) ₂ CuLi	Yes	14g	Me ₃ SnCu(SPh)Li	15e
$[(Me_3Si)_3Si]_2CuLi$	_	14h	$(Ph_3Sn)_2CuLi$	15f

serve silyl and stannyl ligands, which are not always completely transferred from (R₃M)₂CuLi reagents, and minimize Group IVA by-products (such as R₃MMR₃, R₃MH, R₃MOH) formed with the latter reagents. Although the greater thermal stability renders formation of silylcuprates and stannylcuprates less capricious than that of the carbon-centered reagents, the mode and method of preparation may play important roles. The (PhMe2Si)2CuLi reagent is generally employed, due to difficulties in preparing trimethylsilyllithium and because the PhMe2Si group is readily converted into a hydroxy substituent [6].

Mixed alkyl(silyl)cuprates or alkyl(stannyl)cuprates are readily prepared by ligand exchange with lithium dialkylcuprates and R₃SnSi(R¹)₃ [16a], Me₃SnH [16b, c], $Me_3SiSnMe_3$ [16d], and $Me_3SnSnMe_3$ [16e]. $R_3SnSi(R^1)_3$ reagents can afford either silylcuprates or stannylcuprates, depending upon the steric bulk of R and R¹. The ligand exchange procedures obviate the necessity of generating silyllithium and stannyllithium reagents. Procedures catalytic in copper have been developed [17], while a procedure using disilane and (CuOTf)2.PhH also avoids the use of silyllithium reagents [18]. For cuprate preparations, the use of CuCN is generally more reliable than that of CuI or CuCl, perhaps because of diminished yields with purified CuI [19] and the sensitivity of CuCl to light, air, and moisture. NMR studies (1H, 13C, 119Sn, and 31P for HMPA additive) of silylcuprates [14b, c, i] and stannylcuprates [14b] reveal rapid dynamic ligand exchange, with the R₃MCu(R')CNLi₂ composition as the thermodynamic sink. While these mixed heteroatomcuprates are often depicted as "higher order" cuprate reagents [R3MCu(R')CuCNLi2] [14b, c, i, 16] and several "higher order" organocuprates have been confirmed both by NMR spectroscopy and by X-ray analysis [20], this formulation may be open to reappraisal [21]. Although these NMR studies reveal multiple species, depending upon R₃M/RLi/CuCN stoichiometry, the "higher order" compositions need not necessarily have three ligands bound to copper. Alternative complexation arrays are possible and ligand exchange faster than the NMR timescale [14i] might preclude firm structural conclusions. In this account, the formulations (R₃M)₂CuCNLi₂ and (R₃M)₂CuLi·LiCN are used interchangeably, reflecting the original literature, and serve only to convey the stoichiometry of reagent preparation. Although free lithium species may be present (depending upon stoichiometries [14i]), the less basic silyllithium and stannyllithium reagents generally pose fewer problems than the more basic alkyllithium reagents.

Early work on silylcopper and stannylcopper reagents found the same reaction profiles as exhibited by carbon-ligated copper reagents [6]. These include conjugate addition reactions [22, 23], silylcupration [24] and stannylcupration [15d, 25] of alkynes, and substitution reactions with acid chlorides [26, 27], allylic [28, 29] and propargylic [30, 31] substrates, vinyl substrates [32, 33], epoxides [26c, 34], alkyl electrofuges [34, 16b, d], and iminium salts [35]. While allenes generally fail to undergo carbocupration, they are readily amenable to silylcupration [27, 30, 36] and stannylcupration [36c, 37] reactions.

The synthetic power of these silylcuprate and stannylcuprate reactions lies in the synthetic utility of the product silanes and stannanes for carbon-carbon bond formation and also in the utilization of the silyl [38] or stannyl substituents as agents for stereocontrol and regiocontrol. Additionally, use of appropriate silylcuprates permits conversion of the produced C Si bond into a C OH bond (Tab. 3.1) [39]. This C Si to C OH conversion is a particularly difficult transformation for an allyl silane, and the development of lithium diphenyl(2-methyl-2-butenyl)silylcuprate for this purpose illustrates the characteristic transformations of silylcuprates (Scheme 3.1) [14e]. Several silyl substituents convertible into hydroxy groups are not amenable to the cuprate methodology [14e]. Allyl and vinyl silanes – generated by treatment of silylcuprates with allylic substrates and by silylcupration of alkynes, respectively – are synthetically powerful nucleophiles for carbon-carbon bond construction [40]. The corresponding stannylcuprates undergo similar transforma-

Scheme 3.1. Reactivity profile of silylcuprates with carbon electrophiles [14e].

tions, independent of the method of cuprate preparation [16b, d] (Scheme 3.2). While allyl stannanes can be used as allylic nucleophiles [41], vinyl and aryl stannanes are frequently employed in the palladium-catalyzed Stille coupling, with vinyl, aryl, and alkynyl halides and sulfonates [42].

$$B = Me$$
 $B = Me$
 $B =$

Scheme 3.2. Reactivity profile of stannylcuprates with carbon electrophiles [16b, d].

3.2.1.1 Conjugate Addition Reactions

Although trialkylstannyllithium reagents undergo conjugate addition reactions with 2-enones and enoates, the trialkylsilyllithium reagents are limited to 2-enones [6]. Silylcuprate conjugate adducts are sometimes formed in low yields if the intermediate enolate participates in a subsequent Michael reaction with the starting α, β -unsaturated substrate [43]. Sterically unhindered substrates and unsaturated aldehydes and ketones are particularly susceptible. This side reaction can be suppressed by addition of trimethylsilylchloride (TMSCl) or by use of zincate reagents (Scheme 3.3). The TMSCl presumably works either by trapping the enolate anion as the silyl enol ether or by accelerating the conjugate addition reaction (or both),

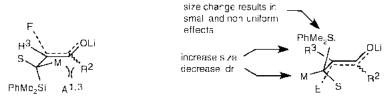
	% <u>y.eld</u>			
	cuprate		zincate	
	with	without	with	without
	TMSC	TMSCI	TMSCI	1MSCI
R ³ H, Mo; R ² + Me, MeO, NMe ₂ , H	57 80	6 42	64-78	5-37
R^1 , $R^2 = H$, CN or Me_2C =CHCH ₂ , OEt	50-83	23-29	75-93	21-35
mothyl crotonate	/2	95	72	80

Scheme 3.3. Conjugate addition reactions of silylcuprates and zincates in the presence and absence of TMSCI [43].

while the zincate gives rise to formation of a less reactive zinc enolate anion. The use of TMSCl with methyl crotonate, however, afforded lower yields than those achieved without the additive, this procedure being used in the synthesis of (\pm) -lavandulol [43].

The silylcuprate conjugate addition reaction has been used for the protection of an enone double bond, which can be regenerated with CuBr₂ [22a], and for the strategic introduction of the silyl substituent for stereocontrol and regiocontrol purposes. Enantiopure 5-trimethylsilyl-2-cyclohexenone can be prepared by conjugate addition reaction [44] and the appropriate enantiomer has been converted into a number of natural products (Scheme 3.4) [38]. These synthetic strategies exploit

Scheme 3.4. Synthesis of enantiopure (+)- and ()-5-trimethylsilyl- and 5-tri-n-butylstannyl-2-cyclohexenone [44] and natural products prepared from the silyl synthons [38].

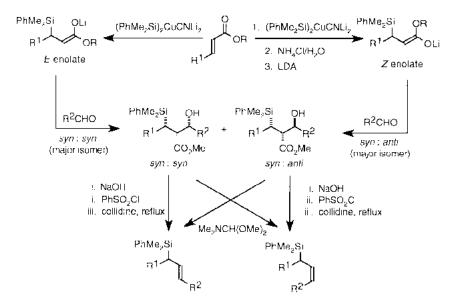

the *anti* directing effect of the silyl substituent in subsequent conjugate addition reactions. It also proved possible to prepare the corresponding enantiopure 5-tri-*n*-butylstannyl-2-cyclohexenone. Alternatively, the stereoselectivity of the silylcuprate 1,4-addition can be directed by an existing substituent, as illustrated by the syntheses of (+)-compactin, (+)-mevinolin, and (+)-pravastatin (Scheme 3.5) [45].

Scheme 3.5. Silylcuprate conjugate addition in syntheses of (+)-compactin, (+)-mevinolin, and (+)-pravastatin [45].

The enolate anions resulting from silylcuprate conjugate addition to α, β unsaturated systems can be trapped with a wide variety of electrophiles, providing opportunities for relative asymmetric induction [46]. Conjugate addition to an αalkyl-substituted α, β -unsaturated system generally gives the syn (aldol notation) diastereomer, while the anti diastereomer is produced from enolate alkylation of the substrate unsubstituted in the α -position (Schemes 3.1 and 3.6). The ease of the former reaction is in marked contrast to the reluctance of carbon cuprates to transfer alkyl groups to α-alkyl-substituted enones and enoates. The evidence suggests that this stereoselectivity is the result of a favored transition state in which the silyl substituent is anti-periplanar to the enolate π -system, the medium-sized group on the stereo center is "away" from the enolate group and thus can avoid A1,3 interactions, and approach of the electrophile is from the side anti to the silyl substituent (Scheme 3.6).

$$\begin{array}{c} \text{PhMe}_2\text{Si} & \text{O} \\ \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} \\ \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} \\ \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} \\ \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} \\ \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{Si} & \text{PhMe}_2\text{S$$

	anti : syn	% yield	anti: syn	% yield
H ²	$(\mathbf{R}^1 = \mathbf{H}) \ \mathbf{M}$	lethylation	(H ¹ Me)	profonation
OMe	97:3	88	15:85	84
Me	98:2	57	30:70	
Н	92:8	74	11:89	93
P.	high	70	-	-
NMe ₂	97:3	86	18:82	83
O. I	64:36	63	-	-
CN in place of COR ²	54:46	65	14:86	77



Favored transition state

Scheme 3.6. Diastereoselectivity in silylcuprate conjugate addition-alkylation (alkyl halides) or protonation reactions with α, β -enoates [46].

The geometry of the enolate double bond appears to play no role in the diastereoselectivity of electrophile quenching of the enolate, as long as there is a group larger than hydrogen (R²) syn to the stereocenter. This accounts for the diminished diastereoselectivity in the methylation reaction with unsaturated aldehydes and the loss of selectivity with unsaturated nitriles. Similar diastereoselectivities (94:6 to 92:8) were observed for a series of alkyl halides (RX, where R = Me, Et, n-Bu, i-Pr, PhCH₂, CH₂=CHCH₂, and MeO₂CCH₂; X = I, Br). Substrates undergoing protonation may have different transition state geometries, due to unfavorable R3/silyl gauche interactions, but they take place with the same sense even for nitrile substrates. This strategy has been employed in a synthesis of the Prelog–Dejerassi lactone [47]. Quaternary centers at the α -position can be generated with good diastereoselectivity when small α -substituents (R³ = Me, Et, CH₂C=CH₂, CH₂CO₂Me; E⁺ = EtI, *i*-PrI, CH₂=CHCH₂Br, BrCH₂CO₂Me: 80:20 to 90:10 dr, 63–95% yields) are present, while moderately sized α -substituents (such as *i*-Pr: 60:40 dr) give poor diastereoselectivity [46].

Similar diastereoselectivities have been observed for trigonal electrophiles [48] [for example, anti:syn ratios from the E enolate and Z enolate respectively (E,Z): $E^+ = CH_2O$ (71:29, 81:19), $CH_2 = C(SiMe_3)COMe$ (93:7, 91:9), $(CH_2 = NMe_2)^+I$ (87:13, 82:18)], with the E and Z enolates again giving the same major diastereomer in modest yields (43–78%). It was also possible to carry out alkylations on the resultant silyl enol ethers in the presence of Lewis acids, but diastereoselectivities ranged from excellent to poor, depending upon the electrophile. Silylcuprate conjugate addition to 2-enoates produces E enolates directly, while quenching of the enolate and regeneration of it with lithium diisopropylamide affords the Z enolate. The direct formation of the E enolate implies that the conjugate addition reaction proceeds preferentially from the s-cis enoate conformer. The E and E enolates display normal stereoselectivities in the aldol reaction with aldehydes, which can be accounted for in terms of the Zimmerman–Traxler chair transition state, and this permits the synthesis of a major diastereomer with control over three contiguous stereogenic centers (Scheme 3.7, Tab. 3.2). Similar diastereoselectivities

Scheme 3.7. Diastereoselective formation of β -silyl (\mathcal{E})- or (\mathcal{Z})-ester enolates by silylcuprate conjugate addition followed by alkylation with aldehydes [49]. Stereoselective synthesis of (\mathcal{E})-and (\mathcal{Z})-allyl silanes [50].

Tab. 3.2. Diastereoselectivity in the aldol reactions between (E)- or (Z)- β -silyl ester enolates and aldehydes (Scheme 3.7).

	From E enolate		From Z enolate	
	syn, syn:syn, anti	% Yield	syn, syn:syn, anti	% Yield
$R = R^1 = R^2 = Me$	89:11	73	6:94	81
$\mathbf{R} = \mathbf{R}^1 = \mathbf{Me}; \ \mathbf{R}^2 = \mathbf{Ph}$	94:6	90	9:91	79
$R = Me; R^1 = Ph; R^2 = Me$	85:15	81	9:91	78
$\mathbf{R} = \mathbf{Me}; \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{Ph}$	91:9	81	10:90	79

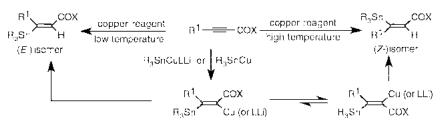
are observed for the stannylcuprate conjugate addition and subsequent aldol reaction, although the selective formation of one major diastereomer is not as high. Stereospecific syn [49a] or anti [49b] decarboxylative elimination of the β -hydroxy acids selectively affords either the E or the Z allylsilane (Scheme 3.7) [50].

Stannylcuprates participate in conjugate addition reactions with 2-enones [16, 23e, 51-53], enals [51], enoates [51, 52], and enamides [54]. They also undergo substitution reactions with 3-iodo-2-enones [53], enol triflates of cyclic β -keto esters [16d, 55], and 2-enoates [56] containing good leaving groups (such as Cl, I, PhS) at the β -position. These substitution reactions may proceed through a conjugate addition-elimination pathway or by direct substitution. β -Haloacrylates and β phenylthioacrylates afford 2:1 adducts with the stannyllithum reagent and diminished yields with the cuprate reagents [56a]. Optimal yields and stereocontrol, with retention of configuration, were achieved with the tributylstannylcopper reagent, while the poor stereoselectivity obtained with 3-phenylthioacrylate appears to be related to leaving group ability (Scheme 3.8). A similar substitution reaction has been achieved with Bu₃SnCu(2-thienyl)Li·LiCN and a 3-sulfonyl-substituted 2-enoate [56b]. The resulting 3-stannyl-2-enones and enoates undergo oxidative homo coupling with CuCl [55c]. The substitution reaction fails with coumarinderived triflates; the stannylcuprates [Me₃SnCu(L)Li·LiCN, L = Me, 2-thienyl] either transfer the methyl ligand preferentially or give complex product mixtures [57]. Palladium-catalyzed coupling of the triflate and hexamethylditin gave the 4stannylcoumarins in good yields.

X CO ₂ Mc	Bu ₃ SnCu Bu ₃ Sn	CO ₂ Me +	Bu _s Sn	`CO _y Me
substrate	reaction cond.	% yield	EΖ	_
$F \setminus \{X = C_0, I\}$	-78 °C, 40 min	58-62	100:0	
$E \setminus \{X = Gi, I\}$	-78 °C, 1 h; 0 °C, 4 h; 25 °C, 4 h	50	25:75	
Z (X - Cı, I)	78 °C, 40 min	47-62	0:100	
Z (X Ofs)	-78 °C, 1 h; 0 °C, 4 h; 25 °C, 4 h	59	0:100	
E (X - SPt)	-78 °C, 1 h; 0 °C, 4 h; 25 °C, 1 h	50	25:75	

Scheme 3.8. Stereospecific substitution of (*E*)- and (*Z*)- β substituted acrylates with Bu₃SnCu [56a].

The reaction between stannyl cuprates and enol triflates of cyclic β -keto esters has been exploited in an annulation strategy culminating in the synthesis of (\pm)-chiloscyphone [55a] (Scheme 3.9). Stannyl cuprate conjugate additions to 2-ynoates affords vinyl stannes, which upon transmetalation to vinyl cuprates can react intramolecularly with an original or subsequently introduced electrophile in a versatile ring-forming procedure [55d].


Scheme 3.9. Annulation and ring-formation strategies based on reactions between stannylcuprates and triflates of cyclic β -keto esters [55a] and functionalized ynoates [55d].

Stannylcuprates generally offer no advantage over stannyllithium reagents for conjugate additions to simple 2-enones and enoates. The stannyllithium reagents successfully undergo 1,4-addition to 3,3-dialkyl-2-enoates, which are unreactive toward the cuprate reagents [53]. Although stannylcuprate additions to enantiopure conjugated SAMP [(S)-1-amino-2-methoxymethylpyrrolidine] hydrazones proceeded with high diastereoselectivities, the major product was that arising from conjugate addition of the resultant enolate to the starting hydrazone [58], a common problem with 1,4-additions of silylcuprates and stannylcuprates to Michael acceptors. Chiral 4-heteroatom-substituted 2-enoates also provide opportunities for diastereoselection, now arising in the initial conjugate addition process and induced by the adjacent stereogenic center [59]. Comparisons of the stannyllithium, cuprate, and zincate reagents provided no useful predictive model because of wide variation in the reaction conditions. In general, the Z enoates gave excellent but opposite diastereoselectivities with the lithium and cuprate reagents, while the E enoates gave poor selectivities. The zincates gave excellent selectivities in the same sense with both the E and the Z enoates (Scheme 3.10).

	Z-en	Z-enoate		Ecroate	
reagent	% yield	(Sl:He)	% yield	(SI:Rc)	
Bu _a SnLi	58	100:0	50	74:26	
n-Bu _s Sh(Bu)CuLi-LiCN	37	10:90	84	43:57	
n Bu _g Sn(Et) _p ZnLi	84	0: (00	73	10:90	

Scheme 3.10. Diastereoselectivity in 1,4-addition of stannyllithium, cuprate, and zincate reagents to enantiopure 4-heteroatom-substituted 2-enoates [59].

Conjugate addition reactions of stannylcopper(I) reagents are most often employed with 2-ynoates, to afford E:Z mixtures of 3-stannyl-2-enoates [6, 23a-d, 51, 54, 60]. Several cuprate reagents [Me₃SnCuLLi, L = SPh, SnMe₃, C₋CC(OMe)Me₂, CN], and also the organocopper reagent Me₃SnCu·SMe₂, transfer the stannyl group to 2-ynoates and the reaction works well with protected 4-hydroxyalkynoates [51, 61]. The phenylthiocuprate reagent selectively affords the E isomer, through syn addition, when added to ynoates [60a] at low temperatures in the presence of a proton source, and the Z isomer at higher temperatures (-48 °C). The organocuprate reagent, (Me₃Sn)₂CuLi, and an acetylenic mixed cuprate stereoselectively gave E isomers through syn addition, although the former reagent is commonly the one of choice (Scheme 3.11, Tab. 3.3). Excellent stereoselectivites are also achieved with the cyanocuprate, which is less capricious than Me₃SnCu(SPh)Li [60c]. These E:Z diastereoselectivities can also be achieved with chiral 4-amino-2-ynoates; the E diastereomers can be converted into 4-tributylstannylpyrrolin-2-ones (Scheme 3.12) [61]. The unprotected lactams were unstable and generally isolated as the t-butoxycarbonyl (Boc)-protected derivatives. These vinyl stannanes underwent effective palladium-catalyzed coupling with vinyl halides and acid chlorides [61b].

Scheme 3.11. E:Z Diastereoselectivities in conjugate additions of stannylcuprates to α, β -unsaturated derivatives.

Tab. 3.3. Stereoselectivity in stannylcopper or cuprate additions to 2-ynonates (Scheme 3.11).

R ⁷	x	Cuprate	Reaction conditions	% Yield	E:Z	Ref.
Me, RO(CH ₂) ₂ a)	MMa.	Me ₃ SnCu·SMe ₂	THF, 78 °C, 3 h	77–83	>99:1	
Me, RO(Gn2)2	_		, ,			54
	NIVIE2	Me₃SnCuSPhLi	THF, 48 °C, 1 h 20 °C, 1 h; 0 °C, 2 h	68–72	7:93	34
Me, Et, $R_3 { m SiO}(CH_2)_2^{-aj}$	OMe, OEt	Me₃SnCuSPhLi	cuprate (2), MeOH (1.7), 100 °C, 15 min; 78 °C, 3 h	78-82	≥96:4	60a
	OMe	Me₃SnCuSPhLi	i. cuprate (1.3), 78 °C,	76-81	≥4:96	60a
	OEt		15 min; 48 °C, 4 h			
			ii. MeOH			
Me	OEt	Me₃SnCuSPhLi	48 °C, 4 h	76	2:98	60a
		(Me ₃ Sn) ₂ CuLi	48 °C, 4 h	74	32:68	60a
		Me ₃ SnCRLi ^{b)}	48 °C, 4 h	82	99:1	60a
		Me ₃ SnCu·SMe ₂	48 °C, 4 h	68	99:1	60a
Et	OEt	Me₃SnCuCNLi	i. THF, 48 °C, 2 h; 0 °C, 2 h	72	1:99	60c
			ii. NH ₄ Cl, NH ₄ OH, H ₂ O			
		Me₃SnCuCNLi	i. THF, MeOH, 78 °C,	74	99:1	60c
			ii. NH ₄ Cl, NH ₄ OH, H ₂ O			
n-Pr	OMe	Bu ₃ SnCu(Bu)Li·LiCN	50 °C, 2 h	80-85	15:85	60d
		Bu ₃ SnCu(2-Th)Li-LiCN	25 °C, 2 h	80-85	10:90	60d
		Bu ₃ SnCu(N-imid)Li-LiCN	•	>85	4:96	60d
CH ₂ NHBoc	OMe	Bu₃SnCu(Bu)Li-LiCN	78 °C, 10 min	72	50:50	61Ь
•		, , , , , , , , , , , , , , , , , , , ,	MeOH, 78 °C, 10 min	79	100:0	61Ь
OTHP	OMe		78 °C, 10 min	66	0:100	61 b
			MeOH, 78 °C, 10 min	75	100:0	61 b

a) $R = t \cdot Bu Me_2 Si$

$$\begin{array}{c} \text{NHP} \\ \text{R} \\ \\ \text{OMe} \\ \\ \text{OMe} \\ \\ \text{MeOH, row temperature} \\ \\ \text{MeOH, row temperature} \\ \\ \text{R} \\ \\ \text{ShBu}_2 \\ \\ \text{NHP} \\ \\ \text{ShBu}_2 \\ \\ \text{OMe} \\ \\ \\ \text{OMe} \\ \\$$

Scheme 3.12. Synthesis of chiral 4-stannylpyrrolin-2-ones by means of stannylcuprate additions to chiral 2-ynoates [61a] (Boc = *t*-butoxycarbonyl).

b) R = C=CC (OMe)Me₂ (Th = thienyl. imid = imidazole)

These observed stereoselectivites can be interpreted in terms of an α -cuprio ester formed by syn addition at low temperature and intercepted by proton quenching [60a] to afford the E adduct. Selective formation of the Z diastereomer at higher temperatures, requires either formation and stereoselective protonation of an allenyl enolate or isomerization of the Z α -cuprio ester to the E α -cuprio ester and stereoselective protonation. Recent mechanistic studies involving alkylcuprates and alkynoates have found isomerization between E and Z α -cuprio esters through the allenolate intermediate, with the resulting adduct E:Z diastereomeric ratio reflecting the alkenyl cuprate equilibrium E:Z ratio (Scheme 3.11) [62]. Application of this argument to the stannylcuprate reactions requires the E α -cuprio esters to be thermodynamically more stable than the Z isomers, and sufficiently so as to account for the high stereoselectivity. Stannylcuprate additions have been shown to be reversible and can sometimes give the 2-stannyl regioisomers. The initial conjugate adduct obtained from alkynyl esters cannot generally be trapped with electrophiles other than a proton, although the adduct obtained with Me₃SnCu(2thienyl)Li and ethyl 4-t-butyldimethylsilyloxy-2-butynoate has been trapped with reactive electrophiles such as methyl iodide, allyl bromide, and propargyl bromide to afford the Z diastereomers in moderate yields (40-65%) [51]. Higher yields of trapping products can be achieved with 2-alkynyl amides [54] which, in contrast, afford the E diastereomers. Similarly, treatment of 1-triphenylsilyl-1-propynone with Bu₃SnCu(Bu)Li-LiCN gives an adduct that can be trapped with acid chlorides, allyl halides, and carbon dioxide to afford the $E \alpha, \beta$ -unsaturated acylsilane [27]. Trapping can also be achieved intramolecularly, to afford a β -trimethylstannylcyclopentenecarboxylate (77%), although the higher homologue gave the cyclohexenecarboxylate in low yield (3%) together with 1-trimethylstannyl-1-carbomethoxymethylenecyclopropane (45%). The formation of the latter product illustrates the reversibility of the reaction, formation of the 2-stannyl regioisomer, and subsequent cyclization [60a]. The formation of either trialkylstannyl regioisomer can be achieved with judicious choice of reagents. Addition of Bu3SnCu(Bu)Li to alkynyl acids affords the 3-stannylenoic acids, which can be trapped with iodine, while treatment with diethyl(tributylstannyl)aluminium in the presence of CuCN reverses the regioselectivity (Scheme 3.13) [63].

Scheme 3.13. Reagent regios electivity in the stannylcupration of 2-ynoic acids [63].

Piers has exploited these 2-ynoate stannylcupration reactions in the preparation of donor and dipolar synthons (Scheme 3.14) [64]. Stereoselective stannylcupration followed by deconjugation provides a stereocontrolled route to vinyl 1,3-dipolar synthons (i.e., donor/acceptor sites) which has been employed in synthetic routes to dolastane-type diterpenoids, (\pm) -amijitrienol [64c], and the marine sesterterpenoid (\pm) -palouolide [64e].

Scheme 3.14. Selected synthons available through stannylcuprate additions to 2-ynoates [64].

d = donor site, a = acceptor site

Silylcuprates have been reported to undergo reactions with a number of miscellaneous Michael acceptors [65]. Conjugate addition to 3-carbomethoxy acyl pyridinium salts [65a] affords 4-silyl-1,4-dihydropyridines. Oxidation with p-chloranil generates a 4-acyl pyridinium salt that gives the 4-silylnicotinate upon quenching with water, and methyl 4-silyl-2-substituted dihydronicotinates upon quenching with nucleophiles (nucleophilic addition at the 6-position). The stabilized anion formed by conjugate addition to an α , β -unsaturated sulfone could be trapped intramolecularly by an alkyl chloride [65b].

The conjugate addition reactions of trimethylgermylcopper and cuprate reagents have only been explored recently [66] (Scheme 3.15). In cuprate reagents containing two trimethylgermyl ligands, both ligands are transferred, promoting efficient ligand utilization. While Me₃SnLi exclusively gives conjugate addition with 2-cyclohexenone, Me₃GeLi gives a 1:3.8 mixture of the 1,4 and 1:2-adducts. The conjugate addition of germylcuprates to isophorone was not enhanced with TMSCl as an additive, although TMSBr proved effective. With 2-ynoates, the germylcopper

and cyanocuprate reagents gave the E diastereomeric product with excellent stereoselectivity, while the mixed cuprate reagent gave the Z diastereomer with modest stereoselectivity. E Stereoselectivity appears to result from syn addition of the copper reagent and thermal stability of the intermediate vinylcopper (cuprate) intermediate, while Z diastereoselectivity is a product of vinylcuprate intermediates prone to isomerization to the allenolate intermediate and subsequent protonation of the allenolate anti to the large germyl substituent. The conjugate addition reaction to ynoates can be used for the stereoselective synthesis of trisubstituted double bonds and has been exploited in a synthesis of (\pm) -sarcodonin G [66b].

Reagent	% yield from 2-cyclohexenane	% y eld from isophorone	% yield from ethyl 2-butynoate (dr)
Me _a GeCu Me _a S	77		81 (99:1)
(Me ₃ Ge) ₂ CuLi	88a		90 (1.7:1)
Me ₃ GeCuCNLi	90		90 (99:1)
(Me _g Ge) _g Cut i-LiCN	85 ⁸		
Me.,GeCuMeCNLi	87	33	86 (1:3.9)
<u>.</u>		33b	
		66°	

⁸ Reagent employed (0.65 equiv). ^b TMSCI (1.5 equiv). c TMSBr (4 equiv).

Scheme 3.15. Conjugate addition reactions of germylcopper and cuprate reagents [66a].

3.2.1.2 Silylcupration and Stannylcupration of Alkynes and Allenes

The silylcupration and stannylcupration of unactivated alkyne and allene π -bonds has been reviewed [67], focusing on the work of Fleming and Pulido. Silylcupration of terminal alkynes proceeds uneventfully with (PhMe2Si)2CuLi-LiCN, regiospecifically affording intermediate 2-cuprio alkene reagents that can be trapped with a variety of electrophiles [24, 68], although modest regioselectivity (60:40) has been observed with PhMe2SiCuCNLi [14c]. Only the 1-lithio alkyne afforded small amounts of the regioisomeric 2-silylalkene (10:1 ratio, 80% yield). With reactive electrophiles (such as I2, CO2, MeCOCl, MeI at 0 °C; 71-94%), the vinylcuprate intermediate can be trapped directly, but activation with hexamethylphosphoramide (HMPA) or hexynyllithium is required for less reactive electrophiles (such as n-BuI, 2-cyclohexenone, and propylene oxide, 54-69%). An excess of the terminal alkyne will protonate the vinylcuprate intermediate. Assuming formation of a vinyl(silyl)cuprate intermediate, the results suggest preferential transfer of a vinyl ligand over a silyl ligand. Comparable or superior yields are obtained with (t-BuPh₂Si)₂CuLi·LiCN in silylcupration of alkynes followed by electrophilic trapping, and this methodology has been used to produce vicinal vinyldisilanes and vinyl(silyl)stannanes (Scheme 3.16) [69]. Disubstituted alkynes are less reactive and give vinylsilanes in low yields.

$$E = SiPh_2^{\dagger}Bu$$

$$52-93\%$$

$$E = H. I, SiMe_5, SiMe_2Ph, SnBu_3$$

$$Mc, Ac, CH_2=CHCH_2,$$

$$3-exocyclohexyl$$

$$R = SiMe_5, SnBu_5, MeO_2C,$$

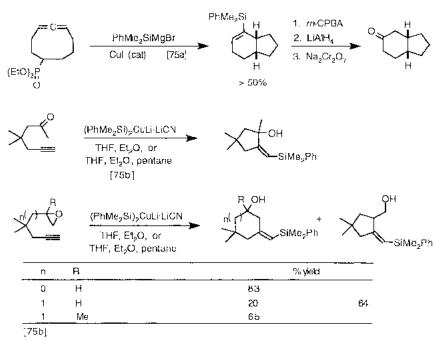
$$Bu, Ph, PhCH_2$$

$$E = H, I, Ac, Me, SiMe_3$$

Scheme 3.16. Silylcupration of alkynes with (*t*-BuPh₂Si)₂CuLi-LiCN and electrophilic trapping of the vinylcuprate reagent [69].

Silylcupration also works with 1-aminoalkynes [70], propargyl sulfides [71], propargyl amines [14a, 72] – where it has been exploited in the synthesis of saturated and unsaturated y-silyl- α -amino acids (Scheme 3.17) – and propargyl ethers, where

Scheme 3.17. Synthesis of functionalized α -amino acids by silylcupration [72a] or stannylcupration [81c] of chiral propargyl amines (Boc = t-butoxycarbonyl; TFA = trifluoroacetic acid).


it has been exploited in syntheses of α-dietyopterol [73a] and (+)-crotanecine [73b]. Modest regioselectivity was achieved in the low temperature silylcupration of a chiral cyclohexyl ethynyl ether, used in the synthesis of (+)-crotanecine, although good selectivity was achievable at 0 °C. The single intermediate regioisomer (1trimethylsilyl-2-alkenyl)(trimethylsilyl)cuprate obtained from propargyl amines has been trapped with electrophiles (such as vinyl halides, 2-halothiophenes, CO₂, methyl chloroformate, allyl halides, and propargyl halides, I2; 58-95%) [14a]. Trapping of the vinylcuprate derived from homopropargyl amines with carbon dioxide provides a synthetic route to 3-(trimethylsilylmethylidine)-2-pyrrolidinones. Vinyl silanes prepared from propargyl amines can also participate in carbodesilylation reactions under Hiyama [tris(diethylamino)sulfonium difluorotrimethylsilicate (TASF) or Bu₄NF/PdCl₂)] conditions, or in Heck reactions, regioselectively and stereoselectively producing aryl-substituted olefins [72c, 74].

Intramolecular trapping of the intermediate vinylcuprate provides opportunities for ring-formation, depending upon the relative reactivities of the alkyne and the participating electrophilic functionality with the silylcuprate reagent. These silylcupration-cyclization reactions have been achieved in modest to good yields with ω -alkynyl tosylates, mesylates, ketones, and epoxides (Scheme 3.18), and in low yields with ω-alkynyl-2-enoates and acetylenes [75]. Although the coppercatalyzed reactions were described as involving addition of the silylmagnesium reagent across the triple bond, the presence of copper(I) salts seems more consistent with silylcupration [75a]. The actual species involved would be dependent upon the relative rates of silylcupration and silylmagnesiation in any potential catalytic cycle. These studies have found that silylcupration of an alkyne is:

- · generally faster than reaction of the silylcuprate with sulfonate esters, ketones, and epoxides when cyclization is successful,
- · comparable in rate with 1,4-additions to 2-enones when low yields of cyclized products are obtained,
- and slower than reaction of the silylcuprate with allylic acetates and aldehydes when the cyclization reaction fails [75b].

In successful cyclization reactions, transfer of the silyl ligand to both electro philic centers is sometimes a competing reaction, which can be minimized by use of the less reactive mixed cuprate PhMe2SiCuMeLi-LiCN. The presence of a gemdimethyl group in the backbone facilitates cyclization to small rings through the Thorpe-Ingold effect (that is, a decrease in angle deformation or ring strain, relative to that in the system lacking the gem-dialkyl group, upon cyclization). A similar stannylcupration-cyclization has also been observed [75c].

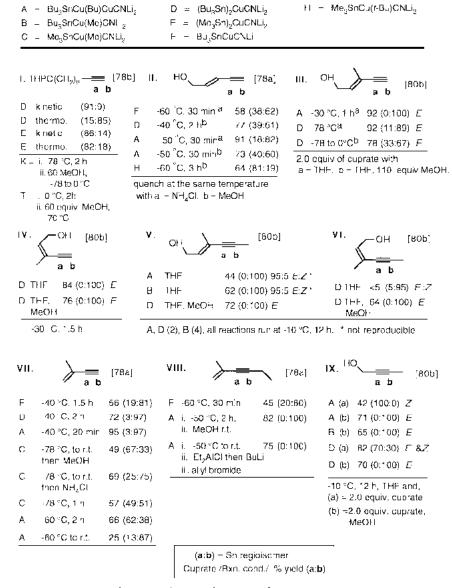
The initial reports in 1982-83 by Westmijze et. al. [25a] and Piers [25b] on the addition of stannylcopper and cuprate reagents to simple alkynes were followed by full studies [76] and reports from several laboratories [14b, 16b-e, 25c, 77-78]. In the earlier studies, the vinylcopper species could only be trapped with a proton. Marino achieved success in the addition to cyclohexenone of the vinyl cuprate generated by addition of Bu₃SnCuCNLi to acetylene [79a-b], and Fleming [79c]

Scheme 3.18. Ring-formation by intramolecular trapping of the vinylcuprates resulting from silylcupration of alkynes with magnesium silylcuprates [75a] or lithium silylcuprates (mCPBA = m-chloroperbenzoic acid) [75b].

generalized the procedure using Bu₃SnCu(Me)Li and trapping the vinyl cuprate with a variety of electrophiles (Scheme 3.19).

The reaction has been incorporated into a synthetic approach to enediynes [77]. Structural and mechanistic studies by Oehlschlager established the reversibility of these stannylcupration reactions [25c]. Although the resultant vinylcopper reagents were thermodynamically favored, crossover experiments found facile ligand exchange processes. Efforts to control the regiochemistry of the addition were met

Scheme 3.19. Stannylcupration of acetylene and trapping of the vinylcuprate with electrophiles [79c].


with only modest success. Stannylcupration of 3-butynoic acid or 3-hexynoic acid regioselectively afforded the 4-stannyl-3-enolates, which were stereoselectively converted into the vinyl iodides (Scheme 3.20). The regiochemistry could be reversed by use of a cuprate reagent prepared from a stannylaluminium reagent or by use of stannyl esters [63a].

$$R = \begin{array}{c} O \\ X \end{array} \begin{array}{c} \begin{array}{c} 1. \ Bu_3SnM \\ \hline 2. \ E^+ \\ \hline 3. \ l_2, \ ether, 25^\circ C \end{array} \end{array} \begin{array}{c} I \\ R \end{array} \begin{array}{c} E \\ O \\ R \end{array} \begin{array}{c} O \\ OH \end{array} + \begin{array}{c} E \\ OH \end{array} \begin{array}{c} O \\ OH \end{array}$$

R	Х	E ⁺	reagent (M)	% yield	natio
Н	ОН	H	Cu(Bu)Li, LiCN	55	95:5
н	ОH	Н	AlEt ₂ , 15% CuCN	28	20:80
Н	OSnBu _u	Н	Cu(Bu)Li, LiCN	47	5:95
Et	ы	Н	Cu(Bu)Li, LiCN	40	90:10
Н	ОН	Me	Cu(Bu)Li, LiCN	55	98:2

Scheme 3.20. Regioselective stannylcupration of 3-ynoic acids or esters [63a].

Although excellent regioselectivity could, at times, be achieved with terminal alkynes, enynes, and propargyl systems, it proved to be extremely sensitive to copper reagent, substrate structure, reaction temperatures, proton sources, and the temperature at which the reaction was quenched (Scheme 3.21). Steric factors, both in the cuprate reagent and in the substrate, influenced regiochemical outcomes, while use of alcohols as proton sources gave rise to deeply colored solutions suggestive of the formation of mixed alkoxy(stannyl)cuprate intermediates. The use of mixed stannyl(alkyl)cuprate reagents sometimes resulted in lower yields, and this was attributed to deprotonation of the 1-alkynes by these more basic cuprate reagents. Optimal reaction conditions for regiocontrol in stannylcupration of 1-alkynes, whydroxy-1-alkynes, enynes, and propargyl alcohols were developed by Oehschlager and Pancrazi [78, 80]. The complexity of these reactions is illustrated by the results tabulated in Scheme 3.21. Similar results have also been obtained with propargyl amines [81–82], propargyl acetals [83], and higher homologue 1-alkynyl acetals [83b, 84]. Stannylcupration of chiral propargyl amines followed by coupling reactions mediated by vinyl iodide or vinylstannane provides a versatile synthetic route

Scheme 3.21. Regioselectivity in the stannylcupration of 1-alkynes, -hydroxy-1-alkynes, enynes, and propargyl alcohols.

to β , y-unsaturated- α -amino acids (Scheme 3.17) [81c] or the saturated analogues. Copper-catalyzed addition of stannylmagnesium reagents to 1-alkynes [85] provides excellent, regioselective formation of 1-stannylalkenes and, although used infrequently, has been employed with terminal alkynyl enynes [86a] and enynyl acetals [86b]. With enynyl acetals, identical regioselectivity was achieved by use of Bu₃SnMgBr/CuCN (15 mol%) and of Bu₃SnCuBuLi-LiCN [i.e., 1-stannyl:2-stannyl dienes: 80:20 versus 85:15 respectively], although better regioselectivity could be achieved by modification of the acetal functionality. The 1,3-dioxolane acetal gave a 98:2 regioselectivity, which was attributed to dimer formation through intermolecular complexation between the acetal oxygens and the copper center. As expected, the selectivity diminished with decreasing concentration.

Complexation effects have also been seen in the stannylcupration of alkynyl ethers and thio ethers (Scheme 3.22) [87]. (E)-2-Stannylvinyl ethers are regioselectively prepared under thermodynamic conditions, while stannylcupration at low temperatures affords the 2-stannyl-2-alkoxyalkenes [87a]. In the latter case, the (E)-2-alkoxyvinylcuprate undergoes trans elimination above -20 °C to afford ethynyl(tributyl)tin. The addition of HMPA stabilizes the (E)-2-alkoxyvinylcuprate intermediate, allowing isomerization at higher temperatures to the 1-alkoxyvinylcuprate, the greater stability of which is attributed to intramolecular oxygen/copper complexation. Deuterium labeling studies have indicated E:Z isomerization during methanolysis of the 2-alkoxyvinylcuprate generated from Bu₃SnCuMeLi·LiCN, but not from that produced from (Bu₃Sn)₂CuLi-LiCN. This was interpreted in terms of protonation of the enol ether to give a β -cuprio cation, with elimination of a cuprate after 60° rotation giving retention of configuration, while elimination after 120° rotation gave the product with inversion of configuration.

Regioselective stannylcupration of terminal alkynes and allenes, followed by quenching of the cuprate intermediate with ethylene oxide, provides a facile synthesis of cyclobutene and alkylidine cyclobutane derivatives, respectively (Scheme 3.23) [15c]. A number of total syntheses have exploited regioselective stannylcup-

alkynyl thioethers (TBDMS = t-butyldimethylsilyl) [87b].

Scheme 3.23. Cyclobutene and alkylidine cyclobutane synthesis by stannylcupration of alkynes and trapping of the resultant vinylcuprate with epoxides [15c].

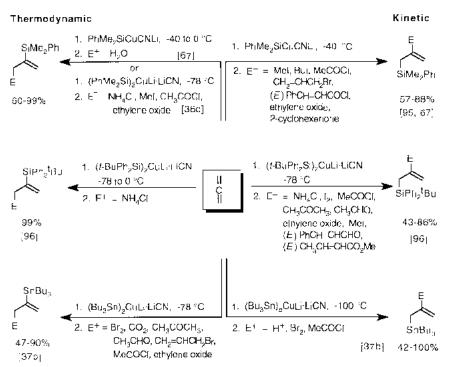
ration reactions. Stannylcupration of endiynes has been used in the synthesis of (13*E*)-trifluoromethylretinoates [88], (all *E*)- and (8*Z*)-anhydroretinols [89a], and the polyene alarm pheromone of the Cephalaspidean mollusks [89b]. The stannylcupration of propargyl ethers has been used in the synthesis of the C14–C26 segment of the macrolide antitumor agent rhizoxin [90a] and in the synthesis of the tetrahydrofuran fragment of the elfamycin antibiotic aurodox [90b], while the stannylcupration of a homopropargyl acetal was employed in the synthesis of macrolactin A [91]. Regioselective and stereoselective stannylcupration of 1-trimethylsilyl-1,3-pentadiyne was exploited in the synthesis of (–)-rapamycin [92]. Vinyl stannanes prepared by stannylcupration have been utilized in copper chloride-promoted coupling reactions [93].

Germylcupration of terminal alkynes was reported nearly sixteen years ago [94] and can be achieved with several cuprate reagents [such as $(Ph_3Ge)_2CuLi\cdot LiCN$, $(Ph_3Ge)_2CuLi$ from CuI or $CuBr\cdot SMe_2$], but only in the presence of proton donor such as alcohols, water, aldehydes, or ketones for the reagent $(Ph_3Ge)_2CuLi\cdot LiCN$. Here, the equilibrium of a reversible reaction lies toward the starting alkynes and germylcuprates and the presence of a weak acid is required to trap the vinylcuprate intermediate. Germylcupration of alkynes with the triethyl derivatives (such as $(Et_3Ge)_2CuLi\cdot SMe_2$), unlike the triphenylgermylcuprate case, proceeds to completion and the vinylcuprate can be trapped with electrophiles (such as D_2O , MeI, allyl bromide; 82–96%). Regioselectivity varies as a function of cuprate preparation and alkyne structure; 2-germyl-1-alkenes are favored with 1-dodecyne and cuprate reagents prepared from CuCN and either Ph_3GeLi or Et_3GeLi , while phenylacetylene or enynes favor formation of the 1-germyl-1-alkenes.

Silylcupration [36] and stannylcupration [36c, 37] of allenes afford intermediate vinyl or allyl copper species (Scheme 3.24), depending upon the copper reagent, temperature, and the electrophile employed to trap the copper intermediate [67]. Treatment of allene with (PhMe₂Si)₂CuLi·LiCN affords vinyl silanes upon quenching with alkyl halides, acid chlorides, epoxides, enones, or chlorine. Allyl silanes are formed upon quenching with bromine or iodine [36c]. This electrophile-induced regioselectivity appears not to involve equilibrating allyl and vinylcuprate

$$= C = + (R_3 M)_p C_3 Li \cdot Li CN \text{ or } R_3 M C_4 CN(1)$$

$$M = Si, Sr_1$$


$$C_{U_1}(L)$$

$$MR_3$$

$$C_{U_1}(L)$$

$$MR_3$$

$$I_1 = (R_4 M Li) \text{ or } CNLi$$

Scheme 3.24. Silylcupration and stannylcupration of allenes under kinetic and thermodynamic control [37c, 67, 95, 96].

reagents and is not understood. Quenching of the intermediate cuprate with enones results in 1,2-nucleophilic addition to the ketone carbonyl rather than the conjugate addition reaction characteristic of organocopper reagents. Although 1-substituted vinyl silanes are available by direct silylcupration of allene with (PhMe₂Si)₂CuLi·LiCN, substituted allyl silanes must be prepared indirectly, via the vinyl iodide. Alternatively, use of the cyanocuprate reagent PhMe₂SiCuCNLi under thermodynamic control affords the allyl cyanocuprate reagent, but produces the vinyl cyanocuprate reagent under kinetic control [95]. Only the latter reagent can be alkylated with a variety of carbon electrophiles (Scheme 3.24). Although these reagents are depicted as silylcopper species (R₃SiCu), their preparation from one equivalent of silyllithium and one equivalent of CuCN corresponds to the mixed cuprate composition R₃SiCuCNLi as normally written for lithium organo(cyano)-cuprates. Since copper reagents RCu are generally produced without removal of the

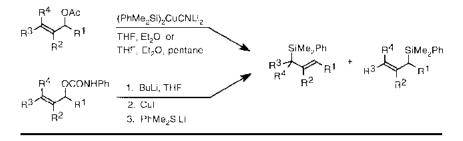
resultant lithium salts (LiX, X = Cl, Br, I, etc.), it seems likely that the reactivities of these species reflect mixed heteroatomcupratess of the type RCuXLi. Use of the sterically more hindered cuprate (t-BuPh2Si)2CuLi-LiCN [96] gives the same thermodynamic and kinetic selectivity and, once more, the allylic cuprate produced under thermodynamic control cannot be trapped with electrophiles other than a proton. The counterpart vinylcuprate reacts with a range of electrophiles (Scheme 3.24). Vinyl cyanocuprate reagents generated from allene and PhMe₂SiLi [95] or t-BuPh₂SiLi [67] and CuCN undergo 1,4-addition reactions with 2-enones or enals, although BF3 is employed with the latter reagent. This contrasts with the bis(stannyl)cuprate reagents [36c, 96], which transfer the vinyl ligand in 1,2-fashion to 2-enones and enals and the t-BuPh2Si ligand in a 1,4-fashion to 2-enoates. The reactions between vinyl cyanocuprate reagents generated from allene and PhMe2SiCuCNLi and acid chlorides, 2-enals, and enones [97] provide opportunities, respectively, for silicon-directed Nazarov cyclizations or for cyclizations and annulations involving Lewis acid-promoted addition of allyl silanes to aldehyde and ketone carbonyls. Silylcupration of terminal allenes followed by treatment of the intermediate vinylcuprates with allyl phosphonates provides a facile synthesis of silylated 1,4-dienes [98a]. A catalytic version of the reaction using 20 mol% CuCN afforded a 50% yield of diene, corresponding to a catalyst turnover of 2.5. The first examples of silylcupration of alkenes were reported in 2001 for styrenes [98b] and 1,3-dienes [98c]. The intermediate cuprate arising in the latter reaction could be trapped with allylic phosphates in a highly regioselective fashion.

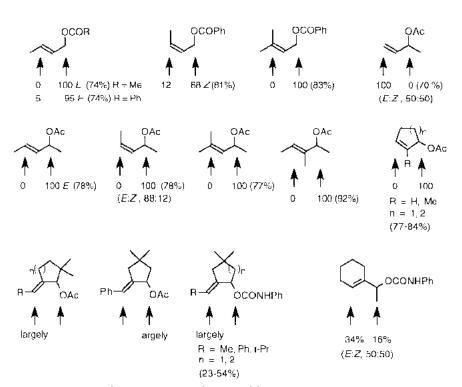
The stannylcuprate reagent (Bu₃Sn)₂CuLi-LiCN displays the same thermodynamic and kinetic selectivity with allene, but the allylcuprate can in this case be trapped with a variety of electrophiles, while the vinylcuprate reacts only with reactive electrophiles (Scheme 3.24) [37, 67]. The vinyl to allylcuprate equilibrium takes place at -78 °C effectively limiting the procedure to the preparation of allylcuprates. Quenching with MeI gives irreproducible results, while methyl propiolate affords a conjugate adduct and 2-enones afford 1,2-addition products. Substituted allenes generally give either vinyl metal or allyl metal derivatives (M = SiR₃ [36c, 96, 99]; M = SnR₃ [36c, 37, 100]), depending upon the substitution pattern of the allene, although mixtures sometimes occur. In general, the trialkylmetal ligand adds to the least substituted carbon atom of the allene functionality.

3.2.1.3 Substitution Reactions

Reactions between allylic electrophiles and organometallic reagents pose problems of regiocontrol and stereocontrol. Nucleophilic substitution can proceed with (S_N2') or without (S_N2) allylic rearrangement, and the configuration of the product olefin may be affected. Regioselective S_N2' allylic substitution occurs with (PhMe₂Si)₂CuLi and tertiary allylic acetates [28a, b], while labeling studies on allylic chlorides found a regioselective and stereoselective anti-S_N2' process as the predominant pathway [101]. A detailed study on allylic substitutions with Me₃ SiCu identified some interesting patterns (Scheme 3.25) [102]. The silylcopper reagent promoted allylic rearrangement, while regioselectivity decreased with increased solvent polarity and with better leaving groups. Better regiocontrol could be achieved

X	×	М	solvent	% yleld	d stribution
t		Cu	НМРА	75	57:33:10
Br		Cu	HMPA	08	60:13:27
CI		Cu	HMPA	BO	B7:13:0
CI		Cu	HMPA-Et _e O	87	98:2:0
CI		Li	HMPA-Et _p O	78	0:100:0
	OMs	Сп	THF	52	6.5:32:61

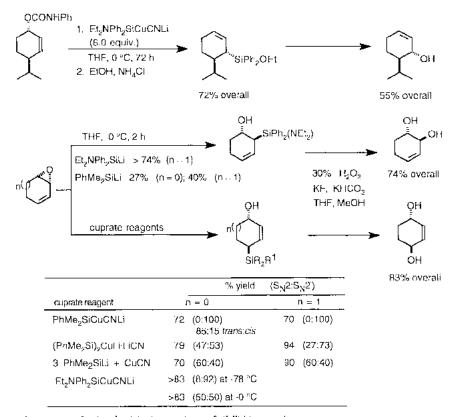

Scheme 3.25. Reactions between silylcopper reagent and allylic substrates [102].


with allylic chlorides than with allylic sulfonate esters, the latter substrates giving mixtures of E and Z diastereomers with poor stereocontrol.

Regiocontrol and stereocontrol can be achieved with (PhMe2Si)2CuLi-LiCN and a wide range of allylic acetates and benzoates containing primary, secondary, or tertiary centers at the leaving group site or at the other end of the allyl system and secondary or tertiary centers at the central carbon atom (Scheme 3.26) [103]. The cuprates (PhMe2Si)2CuLi-LiCN and (PhMe2Si)2CuLi, however, failed to react with secondary allylic acetates [101, 103]. Since the CuCN-derived cuprate can only be prepared in THF, addition of ether or of ether-pentane solvent mixtures was necessary to induce reaction with secondary allylic acetates, where regiochemical control is more challenging. Good regiocontrol can be achieved when one end of the allylic system is more substituted than the other end or has a neopentyl 'like' substitution pattern and the silyl ligand adds to the least sterically hindered site. Although the allylic ester-cuprate combination shows no great bias either towards the $S_N 2$ pathway or towards the $S_N 2'$ one, there may be a slight preference for direct substitution, in contrast to the silylcopper-allylic chloride reactions (Scheme 3.25). When the substitution is secondary at both ends of the allylic system in disubstituted olefins, Z diastereomers generally give reasonable and E diastereomers poor regiocontrol, while both give E:Z diastereomeric mixtures of allyl silanes.

The silyl ligand can be directed to the more substituted end of the allyl system by use of a carbamate methodology that delivers the silyl group in an intramolecular fashion, by way of an amido(silyl)cuprate reagent generated in situ. These reactions proceed in low to modest yields with significant recovery of starting carbamate. Good yields can be achieved by use of excess reagent though, and excellent regiocontrol and stereocontrol can be achieved in some instances (Scheme 3.27) [104a]. Use of Et₂NPh₂SiCuCNLi transfers a heteroatom-substituted silyl group that, in the presence of an allylic double bond, can be converted into an alcohol functionality. The aminosilane is unstable to chromatography, however, and is sometimes converted into a silyloxy group [104a]. Treatment of allylic epoxides with silylithium reagents proceeds with direct substitution, while the cuprate reagents act with allylic rearrangement (Scheme 3.27) [104], offering complementary proce-

104 3 Heteroatomcuprates and a-Heteroatomalkylcuprates in Organic Synthesis



Scheme 3.26. Regioselectivity in reactions between silylcuprate reagents and allylic acetates and carbamates [103].

dures for the preparation of regioisomeric cycloalkenediols. The regioselectivity of the latter process is dependent upon the cuprate reagent. Like organocuprates, silylcuprates effect preferential allylic substitution on 4-bromo-2-enoates [105].

A consequence of the $anti\cdot S_N2'$ pathways, both in the silylcuprate substitution reaction and in the allyl silane protiodesilylation, is that a mixture of allylic substrates differing in configuration at both the olefin and stereogenic center will all stereoselectively afford the same diastereomeric product [28b]. Propargyl substrates would give enantiomers if appropriately substituted [28b]. This feature of $anti\cdot S_N2'$ pathways has been exploited in syntheses of the Prelog–Dejerassi lactone [47] and of (\pm) -dihydronepetalactone (Scheme 3.28) [106], while regiocontrol and stereo-

Scheme 3.27. Regioselectivity in reactions of silyllithium and silyl cuprate reagents with allylic carbamates and epoxides [104].

Scheme 3.28. Stereochemical aspects of allylic substitution and application in the synthesis of (+)-dihydronepetalactone (m-CPBA = m-chloroperbenzoic acid) [106].

control were also easily achieved in a rigid bicyclic system used in the synthesis of (\pm) -carbacyclin analogues (Scheme 3.29) [107]. Allyl silanes prepared from allylic substrates and silylcuprates have been used in syntheses of (-)- and (+)-dihydrocodeinone and (-)- and (+)-morphine [108], (+)-14-deoxyisoamijiol [109], and (+)-lanostenol [110]. The opening of an *endo* cyclic allylic lactone with the Fleming silylcuprate was employed in the synthesis of *epi*-widdrol and widdrol as a 3:1 mixture [111]. Allylic substitution using $[Ph_2((Z)-2-methyl-2-butenyl)Si]_2CuLi$ (cf. Scheme 3.1) was used in a prostanoid synthesis requiring the conversion of an allyl silane into an allylic alcohol [14e].

$$H = \begin{array}{c|c} CO_2Me & CO_2Me & CO_2Me \\ \hline (PhMe_pS')_2CuLifliCN & THF, Et_2O, pentane \\ \hline COBDMS & COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & COBDMS & COBDMS & COBDMS \\ \hline \\ COBDMS & C$$

Scheme 3.29. Silylcuprate substitutions in the synthesis of (\pm) -carbacyclin analogues (TBDMS = ϵ -butyldimethylsilyl) [107].

Stannylcuprates [112] and germylcuprates [113] also participate in allylic substitution reactions, and an allyl stannane prepared in this manner was exploited in the synthesis of (\pm) -10-epi-elemol [112b]. A mixed stannyl cuprate reagent reacted chemoselectively with a tertiary allylic acetate (Scheme 3.30), providing an allyl stannane that was cyclized to an intermediate 1,2-dienylcyclohexane. Although allylic chlorides afford only low yields, allyltriethylgermanes are readily prepared by treatment of allylic acetates or allylic phenyl sulfides with lithium bis(triethylgermyl)cuprate. The addition is highly regioselective, favoring addition of the germyl substituent to the least sterically hindered site in the allyl system. Primary allylic acetates give direct $S_N 2$ substitution with retention of olefin configuration, while secondary and tertiary allylic acetates containing a terminal olefin give products of allylic rearrangement as mixtures of E and E diastereomers. The reaction of the allylic acetates shows high regioselectivity, favoring direct substitution

Scheme 3.30. Stannylcuprate allylic substitution in the synthesis of (+)-10-epi-elemol (dba = dibenzylideneacetone) [112b].

 $(S_N 2: S_N 2' = ca. 9:1)$, when both ends of the allylic system correspond to secondary centers [113], while the corresponding allylic sulfide reactions proceed without regioselectivity.

Silylcuprates also participate in substitution reactions with acid chlorides [26, 27, 114], or with acyl imidazoles [115]. The zinc cuprate reagents (PhMe2Si)2CuCN(ZnCl)2 and PhMe2SiCuCN(ZnCl) are significantly less reactive than the corresponding lithium reagents. Although the latter reagent gives low yields of acylsilanes, the former one gives higher yields than the lithium silylcuprates (0 to 25 °C, 10 h) with highly functionalized acid chlorides [114a]. Treatment with α - or β -amino acid chlorides or imidazoles affords α - or β -aminoacylsilanes, which can be utilized in synthetic routes to enantiopure β - [114d, 115a] (Scheme 3.31) or y-amino alcohols [114d]. Alkylation of silylcuprates with alkyl halides and

Scheme 3.31. Synthesis of β -amino alcohols by acylation of silylcuprates (Boc = t-butoxycarbonyl) [114d, 115a].

sulfonates has been exploited in a synthesis of silicon-containing alanines for use as non-protenogenic amino acids (Scheme 3.32) [116a]. Seebach's procedure (Bu₂CuLi·LiCN + R₃SiCl [116b]), which transfers the silyl group to 2-enoates or lactones, failed to effect coupling with these alkyl halides, and the silylcuprates were generated from the silyllithium reagents.

Scheme 3.32. Synthesis of silylalanines by means of alkyl halide alkylation of silylcuprates [116a].

Stannyl cuprates couple with vinyl halides or triflates [16c-d, 85], and a vinyl stannane produced this way has been used in the synthesis of 7-[(E)-alkylidene]cephalosporins [117]. Vinyl substitution reactions starting from dihydrofurans are also possible (Scheme 3.33) and the reaction has been used in a synthetic approach to the C10–C15 fragments of (\pm) -tylosin aglycon [118a] and des-epoxy-rosaramycin (Scheme 3.33) [118b]. Dihydropyrroles undergo the same reaction [118c].

Scheme 3.33. Metalate rearrangement of a mixed vinyl (stannyl) cuprate derived from a 2,3-dihydrofuran (TIPS = triisopropylsilyl) [118b].

3.2.2 Group VA and VIA Heteroatoms (N, O, P)

Although heteroatoms of Group VA and VIA frequently serve as non-transferable ligands in cuprate chemistry, there are a few studies that have explored the synthesis of amines and ethers from these reagents. Treatment of primary or secondary amines with lithium dialkylcuprates (or alkylcopper species from Grignard reagents) followed by treatment with molecular oxygen affords substituted amines in modest to good yields, with ethereal solvents giving higher yields than hydrocarbon solvents (Scheme 3.34) [119]. Similar yields were achieved by addition of a lithiated amide to butylcopper and subsequent oxidation, suggesting the intermediacy of lithium (alkyl)amidocuprates. Amine alkylation could be achieved with 2-anilinoethanol without protecting the alcohol functionality, although the use of five equiv-

Scheme 3.34. Alkylation or anylation of amines by treatment of organocopper reagents with amines [119].

alents of cuprate reagent should have deprotonated both the arylamine and alcohol functional groups. Coupling of arylamidocuprates [Ar(Me)NCuXLi, X = Cl, CN (5 equiv.)] with ortho-lithiated benzamides generated by directed ortho metalation (DOM) provides a synthesis of N-arylanthranilamides (23–63%) which may be cyclized to acridones (25-95%) [120]. Efficient ligand utilization was achieved with lithium and zinc cyanocuprates (RCuCNM: M = Li, ZnCl) and lithium amides, and the procedure was extended to the synthesis of hydrazines [121]. EPR studies indicated the formation of aminyl radicals upon addition of molecular oxygen to the amidocuprate solutions, suggesting product formation by radical coupling [121a]. Improvements were obtained by judicious combination of cuprate and oxidation reagents. Oxidation of the less reactive zinc cuprates with an oxygen/odinitrobenzene (20 mol%) combination and use of the milder oxidizing system Cu(NO₃)₂/O₂ with the more reactive lithium cuprates proved particularly effective [121b]. The procedure provides for the alkylation, arylation, and vinylation of amines, but may not be synthetically competitive with the corresponding palladium chemistry. A recent Cu(I) catalyzed amine arylation is general [121c].

Treatment of N-alkoxyamines or N-silyloxyamines with cuprate reagents affords substituted amines, through displacement of the alkoxy [122a] or siloxy group [122] by an alkyl or aryl ligand from the cuprate reagent. Gilman and R2CuLi-LiCN reagents are employed, and presumably one ligand is sacrificed to deprotonate the amine; the resultant amido(aryl or alkyl)cuprate undergoing reductive elimination to afford the substituted amine [122b]. Primary amines can be prepared by treatment of lithium dialkyl cuprates or alkylcopper reagents with 4,4'-bis(trifluoromethyl)benzophenone o-methylsulfonyloxime [122c]. Yields can be improved by addition of HMPA, while alkylcopper reagents generated from either Grignard or organolithium species afford the amines without the need for oxidation with molecular oxygen. Use of Grignard reagents offers a procedure catalytic in copper, affording primary amines containing primary, secondary, or tertiary alkyl groups in good to excellent yields (61–96%). Oxidative addition of the alkylcopper or cuprate reagent into the N O bond, followed by reductive elimination, accounts for the observed products. In the absence of copper, Grignard or lithium reagents fail to give substitution products. Treatment of amido- or α-heteroarylcopper reagents with ICH₂ZnI affords α-aminomethyl- (vide infra) or heteroarylmethylcuprates, which react with allylic halides to afford homoallylic amines or 2-(3-alkenyl)furans and thiophenes [123]. A detailed mechanistic study of the copper-catalyzed reaction between sodium methoxide and aryl bromides to afford anisole derivatives implicates a cuprate intermediate, Na[Cu(OMe)2], and a mechanism involving electron transfer [124].

3.3 a-Heteroatomalkylcuprates

Ligands containing a heteroatom at the organometallic site generally exhibit lower cuprate reagent reactivity and introduce difficulties in cuprate preparation. Developments in α-heteroatomalkylcuprate chemistry have generally followed advances in the preparation of the corresponding organolithium and/or transition metal reagents. The synthetic potential of these heteroatom-functionalized cuprate reagents remains largely unexplored, awaiting solutions to the problems of reactivity and preparation.

3.3.1

Group VI Heteroatoms (O, S, Se)

The first example of an α-alkoxyalkylcuprate was provided by direct deprotonation of t-butyl methyl ether (sec-BuLi/KOtBu), lithium bromide-induced conversion to the lithium reagent, and treatment with CuBr·SMe2. High yields were achieved in the use of this reagent with an acid chloride and 2-cyclohexenone (90%) [125a] and it has also been utilized in the synthesis of (-)-aristermycin and (-)-neopanocin A [125b]. Linderman [126] and Fuchs [127] concurrently prepared α-alkoxyalkylcuprates from organolithium reagents generated by transmetalation of organostannanes. Good yields of enone conjugate adducts could be obtained with the cuprate reagent R2CuLi-LiCN in the presence of TMSCl, while the absence of TMSCl or the use of RCuCNLi resulted in low yields. Good yields of conjugate adducts could also be obtained either with two equivalents of alkyl copper reagents (RCu) and BF3·Et2O, or, if BF3·Et2O was added after the enone, with only one equivalent of the copper reagent [127]. These reactions were complicated by the formation of homo-coupled dimers arising from the cuprate reagents and the side reaction was attributed to impurities in the organostannanes [126] and Cu(I) salt [127]. Impure organostannane precursors gave rise to heterogenous cuprate solutions. Use of highly pure organostannanes or in situ treatment of commercial CuCN (which contains 6-8% CuCl) with 5 mole% isopropylmagnesium chloride to scavenge Cu(II) trace impurities minimized the amounts of homo-coupling products. Cuprate formation was further complicated by the thermal lability of the α alkoxylithium reagents, and use of solid CuCN requiring elevated temperatures for cuprate formation was sometimes problematic. The THF/diisopropyl sulfidesoluble CuBr·SMe2 complex permitted cuprates to be formed at -78 °C and to be obtained free of Cu(II) impurities. Conjugate addition of R₂CuLi-LiCN reagents to 2-enals in the presence of TMSCl (added to both the cuprate and the enal solutions) afforded the syn conjugate adducts (syn:anti, 45:1 to 250:1) in modest yields (18-46%); substantial amounts of alcohols arising from 1,2-additions were also formed [128]. Use of TMSCl in combination with HMPA, DMAP, or TMEDA all favored 1,2-addition over 1,4-addition. Sequential α-alkoxyalkylcuprate conjugate addition, enolate trapping with TMSCl, and silyl enol ether alkylation provides a one-pot synthesis of tetrahydrofurans (Scheme 3.35) [129]. Cyclic enones afford cis-fused tetrahydrofurans, while acyclic systems give complex mixtures of diastereomers. α-Alkoxyalkylcopper reagents also participate in allylic substitution reactions with ammonium salts [127].

At low temperatures, a-alkoxyalkyllithium reagents are configurationally stable and the resultant alkylcopper or alkylcuprate reagents can transfer the ligand with

Scheme 3.35. Tetrahydrofuran synthesis by means of MOM αalkoxyalkylcuprate conjugate additions followed by Lewis acidpromoted cyclization (MOM = methoxymethyl) [129].

retention of configuration. This methodology has been utilized in the transfer of enantiopure glucosyl [127] and α-alkoxyalkyl ligands [130] in conjugate addition reactions (Scheme 3.36). Cyclic α-alkoxyalkylcuprates prepared from the corresponding enantiopure stannanes [127, 130] can sometimes transfer the α-alkoxyalkyl ligand with retention of configuration. In acyclic systems, stereocontrol is capricious [130a], and racemization or isomerization occurs at higher temperatures both in cyclic and in acyclic systems. Oxygen-induced dimer formation with retention of configuration from an enantiopure α-alkoxyalkylcuprate (40% yield, >90% retention) suggests that racemization does not occur during the transmetalation step. The degree of racemization increases with increasing amounts of dimer and both events may be induced by trace amounts of oxygen [130]. The conjugate ad-

Scheme 3.36. Conjugate addition reactions of enantiopure α -alkoxyalkylcuprates (DIPS = diisopropylsulfide) [127, 130].

Tab. 3.4. Reactions of α -alkoxyalkenyl-, α -heteroaryl-, and acylcuprate reagents [180].

Cuprate	Electrophile	Reaction conditions	Product	% Yield	Ref.
O Cui.Li $L = C_{-}CC_{3}H_{7}$		_	Ů	91	133c
L=2-dihydropyranyl	ОТНР	i. THF, 0–20 °C ii. H [⊕] , H ₂ O		64	133b
Mg, CuCl (car)	СОМе	THF, 0-20°C	OH COMe	25	134
^t BuCOCuCNLi		THF, Et ₂ O, pentane 110 to 25 °C	<u></u>	82	136
(SzicuLi	OAc Ph ₂ C=N CO ₂ Et	THF, 5°C,6h	2-threnyl Ph ₂ C = N CO ₂ Et	71	135

dition does not proceed by a radical pathway and racemization could conceivably occur in a reversible $d-\pi^*$ complexation event. In the cyclic systems, enantiopure alkylcopper reagents prepared from CuBr-SMe2 or CuI-TMSI give retention of configuration in conjugate addition reactions to a greater extent than R2CuLi-LiCN reagents do. Either poor or no stereocontrol is achieved at the newly created stereocenter β to the carbonyl group.

Geminal α-dialkoxyalkylcopper reagents prepared via stannanes also participate in conjugate additions to 2-enones, but fail with methyl crotonate. The copper reagent prepared from CuI-PBu3 gives better yields than the corresponding cuprate reagent (92% versus 25%) [131]. Phenylation of a cuprate derived from a mixed O,S-acetal has also been reported [132]. Although these reagents add to enones and ynoates, they have not been extended to other Michael acceptors or to other reactions characteristic of cuprate reagents. A number of α-alkoxyalkenylcuprates and αheteroarylcuprates have been used in synthesis (Tab. 3.4) [133–135]. The yields are generally good, reflecting the propensity of alkenyl ligands to participate in cuprate reactions (the preferential transfer of alkenyl ligands relative to easily transferred silyl ligands, for example) and the α-alkoxyalkenylcuprates undergo substitution reactions with epoxides and acetates. Acyl cuprates, generated by treatment of primary, secondary, or tertiary alkyl cuprates (R2CuLi·LiCN [136a] or RCuCNLi [136b]) with carbon monoxide, selectively transfer the acyl group in conjugate ad-

dition reactions with 2-enones and enals. Only the t-butyl ligand competitively transfers, albeit in low yields (14-24%), again illustrating the ease with which sp2hybridized ligands preferentially participate in cuprate reactions. The former reagent is unstable at $-78~^{\circ}\mathrm{C}$, decomposing within 30 minutes, while the latter can be utilized at room temperature. The technique has been extended to allylic cuprates [137], employing a mixed homocuprate [(allyl)MeCuLi·LiCN]. Use of TMSCl results in formation of products resulting from alkyl ligand transfer. Diacylation of enones can be achieved by quenching the enolate resulting from acyl ligand transfer with an acid chloride [138].

α-Thionocarbamoyl stannanes [R₂NC(=S)OCHR(SnBu₃)] undergo in situ transmetalation with catalytic amounts of CuCN between room temperature and 23-50 °C, and the resultant α-alkoxy(cyano)cuprate reagents undergo conjugate addition reactions with 2-enones and enals and substitution reactions with allylic epoxides [139]. Successful conjugate addition required the use of TMSCl; poor yields were obtained with CuCl, CuBr2, or [ICu·PBu3]4. The reaction gave good yields of 1,4addition products as mixtures of diastereomers (dr = 1:1.2-2.4) in THF or DME, but poor yields in Et₂O, benzene, DMSO, or HMPA; acceptable yields sometimes required the use of THF/acetone. Deuterium incorporation into the destannylation products from THF-d₈ suggests a radical pathway in the formation of these byproducts. In situ transmetalation of α -(2-pyridylthio)allylstannanes can also be achieved with catalytic amounts of CuI in DMSO-THF, although the reaction fails with simple allyl stannanes (Scheme 3.37) [140]. Regioselective alkylation of the allyl copper reagent with allylic halides takes place y to the sulfur atom for allylic chlorides and bromides, and α to sulfur for allylic iodides. Increased substitution at either the β - or the y-positions in the allylic halide increases the degree of allyl copper α -alkylation (α :y = 87:13 for 1-chloro-3-methyl-2-butene, $S_N2:S_N2' = 37:63$). Low chemical yields and α -selectivity on the allyl copper reagent are observed with the phenylthio analogues. These observations suggest that the pyridine nitrogen facilitates transmetalation and or cuprate reactivity and plays a role in the regioselectivity of the reaction.

$$\begin{array}{c} \text{Bu}_3 \text{Sn} \\ \text{R1} \\ \text{R1} \\ \text{R2} \\ \end{array} \\ \begin{array}{c} \text{DMSO-THF, r.t., 1 h} \\ \text{Cul (0.2 equiv)} \\ \text{X} \\ \text{(1.1 equiv)} \\ \text{R1} \\ \text{R2} \\ \text{R3} \\ \end{array} \\ \begin{array}{c} \text{R2-PyS} \\ \text{R1} \\ \text{R3} \\ \text{R4} \\ \text{R4} \\ \text{R4} \\ \text{R5} \\ \text{R4} \\ \text{R5} \\ \text{R5} \\ \text{R5} \\ \text{R4} \\ \text{R5} \\ \text{R5} \\ \text{R6} \\ \text{R6} \\ \text{R7} \\ \text{R7} \\ \text{R8} \\ \text{R1} \\ \text{R9} \\ \text{R$$

Scheme 3.37. Reaction of α-thioallylcuprates generated in situ from stannanes and allylic halides [140].

Mukaiyama reported the conjugate addition of α-dithioalkylcuprates to 2-enones (73-94% yields) for the synthesis of 1,4-diketones, and the reaction was exploited in a synthesis of (\pm) -dihydrojasmone [141]. Few reports on α -thioalkylcuprates have appeared since then. Cuprates formed from lithiated ketene dithioacetals and CuI-P(OMe)₃ undergo 1,4-addition to cyclohexenone with α -regioselectivity (98:2), while the lithium reagents display y-selectivity (3:1 to 35:1) on the allylic organometallic reagent [142]. The cuprate reagent prepared from [phenylthio(trimethylsilyl)]methyllithium and CuI at low temperatures over one hour undergoes conjugate addition to simple enones in good yields (such as 2-cyclohexenone, 2pentenone, isophorone; 52-83%); shorter times for cuprate preparation and higher temperatures resulted in 1,2-addition products and dimerization of the cuprate ligands occurred at -23 °C [143].

Although a-lithio alkoxides and sulfides are readily available, this approach requires the use of strong bases and affords lithium α-heteroatomalkylcuprates prone to side reactions and limited in effective cuprate/electrophile combinations. The lithium cuprates are most effective when the α -heteroatom is part of an sp²hybridized ligand (Tab. 3.4). Exploiting organozinc chemistry and the Zn Cu transmetalation technique [10], Knochel has developed effective procedures for the generation of α -alkoxy- [144] and α -thioalkylcuprates [145]. Acylation of α arylselenoalkylcuprates, prepared in similar fashion, affords α-arylselenoketones [146]. The addition of THF-soluble CuCN-2LiCl to solutions of zinc reagents (RZnX or R2Zn) presumably affords the corresponding zinc cuprate reagents (-30 °C, 5 min), which are both more stable and less reactive than the corresponding lithium cuprate reagents. Although less reactive than zinc alkylcuprates, these zinc α-heteroatomalkylcuprates react with a wide range of electrophiles (such as allyl halides, 2-enones, 3-halo-2-enones, acid chlorides, 2-ynoates, 1-halo-1-alkynes, nitroalkenes, and aldehydes (Scheme 3.38). Nevertheless, individual combinations of α heteroatomalkylcuprate and electrophile can prove troublesome [144]; this appears to be related to proximity of the heteroatom and copper centers. Zinc α-alkoxyalkylcuprates have been utilized in the synthesis of (\pm) -rhopaloic acid A [147] and dynemicin [148] and added to cationic iron tricarbonyl pentadienyl complexes [149]. They also participate in conjugate addition reactions with nitroolefins, although the corresponding cuprates containing α-sulfur, nitrogen, or boron atoms fail to add [144b].

3.3.2 Group V Heteroatoms (N, P) and Silicon

Although zinc phthalimidomethylcuprate reacted with 3-iodo-2-cyclohexenone in good yield (72%) [144] (Scheme 3.8), the reagent was unreactive with other electrophiles. An α-aminomethyl zinc cuprate prepared from piperidinylcopper and ICH₂ZnI was readily alkylated with allyl halides [123], although other electrophiles appear not to have been examined. In contrast to these limited applications, α-heteroarylzinc cuprates prepared from 2-iodoimidazoles, 2-iodothiazoles, 2-iodopyridines, or 2-iodoquinolines react with allylic halides, 1-iodo-1-alkynes, and 3-iodo-2enones to afford coupled products in good yields [150]. Coupling of the heteroarylzinc reagents with vinyl iodides, aryl halides, and heteroaryl halides required the use of palladium catalysis. These results once more illustrate the facility with which sp2 centers bound to copper participate in ligand transfer, even in systems of

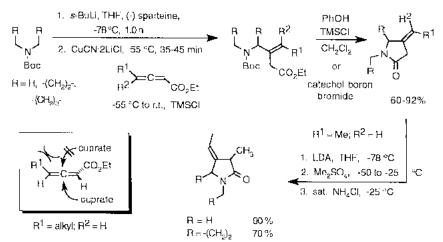
Scheme 3.38. Reactions of zinc α-alkoxy-, α-acyloxy-, α-arylthio-, α-acylthio-, and α-amino-, α-stannyl-, or α-borylalkylcuprates with various electrophiles [144a, 145].

reduced reactivity. Early work on cuprate reagents containing an α-nitrogen atom consistently involved sp² centers bound to copper [11a, 151-154], although good yields of conjugate addition products could also be obtained from allylic type systems (Tab. 3.5) [155-156]. Carbamoylation can be achieved with carbamoyl cuprates prepared from lithium amides, copper halides, and carbon monoxide [152]. The first examples of α-aminoalkylcuprates (sp³ centers bound to copper) were employed by Meyers [157] and Gawley [158] in an effort to avoid SET events in alkylations of the corresponding lithium reagents and were limited to reactions with alkyl and allyl halides [157]. Dieter and Alexander reported the first examples of a-aminoalkylcuprate conjugate addition reactions (Tab. 3.5) involving hydrazone-[156] and formamidine-derived cuprates [11b]. The inability to remove either protecting group in the presence of the ketone functionality prompted an examination of Beak's α -lithiated carbamates [159] for the preparation of α -aminoalkylcuprates [11c, 160].

α-Aminoalkylcuprates, prepared from α-aminoalkylstannanes by way of an Sn to Li to Cu transmetalation sequence, reacted with acyclic and cyclic enones in THF to afford good to excellent yields of conjugate adducts [R2CuCN-LiCN (50-99%),

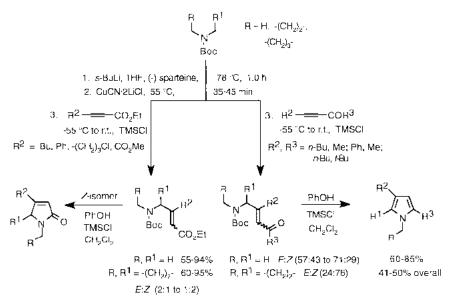
 $\textbf{Tab. 3.5.} \quad \text{Reactions of α-nitrogen and phosphorus alkyl-, alkenyl-, and acylcuprate reagents [180].}$

Cuprate	Electrophile	Reaction conditions	Product	% Yield	Ref.
NtBu CuC≡CCuH,	Br(CH₂)₃Cl	THF, 20°C	N ^t Bu C:	76	157
NtBu CusphLi		THF, 78°, 1 h, 10 h r.t.	t _{BuN} N	86	11 b
N=N ^t Bu CuSPhLi	V CO₂Et	THF 78°C to r.t., 3 h	N=N [†] Bu CO₂Ei	88 (35:65 dr)	156
$X = CuC = CC^2H'$	Br	THF, Et₂O 20 °C, 4 h	N. N	87	151a
N ¹ Bu X = BEt ₃ , CuCN		THF 20°C, 20 min	F ^N tBn	60	151b
(O N → CuLi	Br	THF, HMPA CO, 25 °C, 12 h	0 N - C	93	152a
t _{B∪N} ⇒ Cu		Et ₂ O 78 to 0 °C	N [†] Bu s _{BL}	65	153
MeO N Cui.i		THF, DMS 70°C	MeO N OMe	71	155a
Ph ₂ C=NCH ₂ Cu/SMe ₂	■ OMs	THF, 50°C 45 min	Ph _y C=NCH ₂ CH=C≕(H Pr-n	49	155Ъ
Culi	Ph CO ₂ Et	Et ₂ O 0 °C, 20 min	CO ₂ Et	82	154
O (EtO) ₂ P Cu	Bu Br	THF, 16 h 35 to 25 °C	Q II Q C (EIO) ₉ P B _u	70	176a


 $(\mathsf{DMS} = \mathsf{dimethylsulfide}, \ \mathsf{HMPA} = \mathsf{hexamethylphosphoramide})$

RCuCNLi (25–62%)]. Successful conjugate addition required the activating influence of TMSCl [11c], and rather modest yields (25–64%) were obtained with β,β -dialkyl-substituted 2-enones. Cuprate preparation directly from the organolithium

species, available by s-butyllithium deprotonation of the carbamate [159], by utilization of THF-soluble CuCN-2LiCl, afforded a procedure less sensitive to the effects of diamine (added to assist deprotonation), temperature, manner of organolithium preparation and s-butyllithium quality [160]. The use of CuCN-2LiCl resulted in the first successful examples of α-aminoalkylcuprate conjugate addition to α, β -unsaturated carboxylic acid derivatives [161] (2-enoates, thiol esters, imides) (Scheme 3.39) and gave significantly higher yields of 1,4-adducts with 2-enals,


Scheme 3.39. Reactions between α -aminoalkylcuprates and α, β unsaturated carboxylic acid derivatives [161].

accompanied by smaller amounts of 1,2-addition products [160]. Conjugate addition of a-aminoalkylcuprates to allenic esters occurred stereoselectively, anti to the substituent at the y-carbon atom to afford (E)-3-aminoalkyl- β , y-unsaturated esters [162]. Carbamate deprotection and lactonization with PhOH/TMSCl regioselectively and stereoselectively afforded 4-alkylidene-2-pyrrolidinones, 4-alkylidene-2-pyrrolizidinones, and 4-alkylidene-2-indolizidinones. These products could be alkylated at the 3-position of the y-lactam through the lactam enolate (Scheme 3.40).

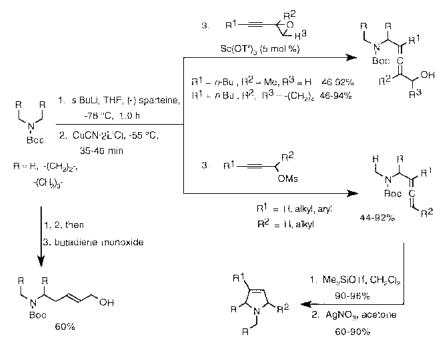
Scheme 3.40. Stereoselective reaction between α -aminoalkylcuprates and allenic esters, with formation of 4-alkylidine-2pyrrolidinones [162].

Conjugate addition of RCuCNLi reagents to 2-ynoates gave E:Z mixtures of 4amino-2-enoates. Although the Z isomers could be directly cyclized to pyrrolidinones, E isomers needed to be heated neat with thiophenol. Conjugate addition to 2-ynones afforded E:Z mixtures of 4-amino-2-enones, but treatment of the adducts with PhOH/TMSCl effected Boc deprotection and cyclization to pyrroles [163]. The procedure is versatile, permitting introduction of substituents at three of the four carbon atoms of the pyrrole ring system (Scheme 3.41). The reaction between cuprates and alkynyl ketones or esters may well proceed by way of a 1,2-addition or carbocupration process [62] (vida supra) and the use of TMSCl and CuCN-2LiCl in the a-aminoalkylcuprate reactions facilitates E:Z isomerization of the intermediate α -cuprio- α , β -unsaturated ketones and alkynes. The poor stereoselectivity in the ynoate reactions may be circumvented with the aid of the stereospecific substitution reaction between α-aminoalkylcuprates and 3-iodo-2-enoates [164]. Although the less reactive zinc phthalimidomethylcuprate failed to undergo 1,4-addition to nitro-olefins [144b], the reaction was successful with α-aminoalkylcuprates containing a single electron-withdrawing substituent on nitrogen, this procedure being used in the preparation of triplex DNA-specific intercalators [165].

Scheme 3.41. Reactions between α-aminoalkylcuprates and alkynyl ketones [163] or esters [161b], and formation of pyrroles and pyrrolidinones (Boc = t-butoxycarbonyl).

α-Aminoalkylcuprates also participate in a variety of substitution reactions (Scheme 3.42). Reagents prepared from copper cyanide (R2CuLi-LiCN or RCuCNLi) or CuCl (RCu·LiCl) react with alkyl, aryl, and alkenyl acid chlorides to afford α-amino ketones in good to excellent yields [166]. Use of the latter two reagents is efficient in aminoalkyl ligand, although yields are slightly lower than

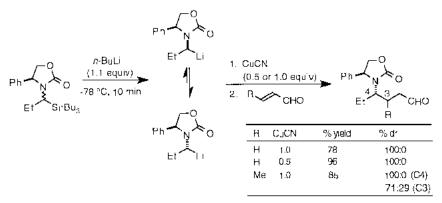
 $R^1 = alkyl, aryl, vinyl 46-98%$


Scheme 3.42. Substitution reactions between α -aminoalkylcuprates and acid chlorides [166], vinyl triflates [167], and vinyl iodides (Boc = t-butoxycarbonyl) [168].

those obtained with $R_2CuLi\cdot LiCN$. α -Aminoalkylcuprates prepared from CuI, $Cu_CC_4H_9$, CuMe, or $CuPPh_2$ and α -lithiocarbamates gave low to moderate yields of allylic amines on treatment with vinyl triflates prepared from cyclic ketones [167]. Good to excellent yields could be achieved with the $R_2CuLi\cdot LiCN$ reagent, although the reaction was sensitive to steric factors, giving low to modest yields of allylic amines with the vinyl triflates derived from camphor and 2-methyl-cyclohexanone. Failure to prepare acyclic vinyl triflates stereoselectively prompted an examination of vinyl iodides, which can be prepared stereoselectively from alkynes. Initially, successful stereospecific vinylation of α -aminoalkylcuprates with vinyl iodides required use of THF-soluble CuCN-2LiCl [168]. Good to excellent yields of allylic amines were obtained with $R_2CuLi\cdot LiCN$, while slightly lower yields were obtained in two cases with the RCuCNLi and RCu-LiCl reagents. The methodology was employed in a stereoselective synthesis of (\pm) -norruspoline.

A study of the factors affecting α -aminoalkylcuprate chemistry examined the influence of s-BuLi quality, the role of alkoxide impurities in the s-BuLi, temperature, and Cu(I) source (e.g., insoluble CuCN versus THF-soluble CuCN·2LiCl) [169]. α -Aminoalkylcuprates prepared from α -lithiocarbamates with poor quality s-BuLi containing LiH and/or s-BuOLi gave good yields of the conjugate addition product with methyl vinyl ketone or the substitution product with (E)-1-iodo-1-hexene, although nearly quantitative yields could be obtained when high quality s-BuLi was employed. When prepared with high quality s-BuLi, α -aminoalkylcuprates displayed good thermal stability (3 h at 25 °C, for example), which decreased when poorer quality s-BuLi was employed. The vinylation reaction and 1,4-addition to methyl

crotonate could be achieved in nearly quantitative yields using either solid CuCN or THF-soluble CuCN·2LiCl, although use of solid CuCN required elevated temperatures for complete cuprate formation. The α -lithiocarbamates appear to be significantly less thermally stable than the α -aminoalkylcuprates, and use of THF-soluble CuCN·2LiX permitted rapid cuprate formation at -78 °C, minimizing α -lithiocarbamate decomposition.


Substitution reactions with allyl halides or phosphonates afforded mixtures of rearranged (S_N2') and unrearranged (S_N2) products and little regioselective control could be achieved [170]. These results are consistent with initial formation of an olefin-copper π -complex, followed by allylic inversion (i.e., S_N2' , generally with anti stereoselectivity) to give a σ -alkylcopper complex. This σ -allyl complex can undergo reductive elimination to afford the S_N2' substitution product, or isomerize through a π -allyl complex to give a rearranged σ -allyl complex, which on reductive elimination affords the S_N2 substitution product. Alkylation of α -aminoalkylcuprate reagents with allylic sulfides prepared from benzothiazole-2-thiol resulted in regio-specific S_N2 substitution in modest to good yields (31–80%). Excellent regiocontrol could also be achieved with allylic epoxides [171] and with propargyl sulfonates and epoxides [172], resulting in exclusive S_N2' substitution in most systems (Scheme 3.43). Propargyl acetates were unreactive. Substitution without allylic rearrangement (i.e., S_N2) was only observed when severe steric crowding was present in the α -amino alkyl ligand or in the propargyl substrate. The resultant allenyl carbamates

Scheme 3.43. Reactions of α -aminoally/cuprates with allylic epoxides [171] and propargylic substrates (Boc = t-butoxy-carbonyl) [172].

can be deprotected with trimethylsilyltriflate to afford the allenyl amines [172], which can be cyclized to pyrrolines in excellent overall yields by use of AgNO₃ [173]. When coupled with non-racemic propargyl alcohols, this synthetic methodology provides an excellent route to enantiopure pyrroline derivatives, which can be exploited for the synthesis of a variety of heterocyclic compounds such as aza sugars.

Beak's extensive studies on asymmetric deprotonation of carbamates with (-)sparteine [159] raise the intriguing prospect of maintaining configuration stability of the C M bond during lithiation, cuprate formation, and cuprate reaction. In preliminary studies, the enantiomeric excess ranged from excellent in the vinylation reaction (85-89% ee), to modest in the propargyl systems (54% ee) while conjugate addition reactions with esters gave racemic products [174]. Successful application of this strategy will require a balance of substrate and cuprate reactivity, and the use of non-polar solvents to minimize racemization of the organolithium reagents prior to cuprate formation. Transmetalation of diastereomeric N-(α-stannylalkyl) lactams epimeric at the alkylstannane stereocenter affords an epimeric mixture of organolithium reagents that rapidly equilibrates to the more stable epimer (Scheme 3.44). Treatment of the lithium reagent with CuCN (1.0 or 0.5 equivs.) affords enantiopure α-aminoalkylcuprates that give single diastereomers on treatment with acrolein [175]. Conjugate addition to 2-enones gave mixtures of diastereomers epimeric at the β -carbon of the original enone. Diastereoselectivities are poor with acyclic enones (56:44 dr) and modest to excellent with cyclic enones. The poor diasteroselectivity at the β -carbon of cyclic enones arises from poor facial selectivity during cuprate addition. Acyclic enones may also give poor diastereoselectivity at the β -carbon center because of E:Z isomerization arising from an equilibrium between an enone-cuprate $d-\pi^*$ complex and starting materials. Much work remains to be done in the development of asymmetric variations in αaminoalkylcuprate chemistry.

Scheme 3.44. Reactions of enantiopure α-aminoalkylcuprate with 2-enals [175].

Relatively few examples involving a phosphorous atom in the α-heteroatomalkylcuprate have appeared [176]. Such cuprates have been treated with allylic and propargylic substrates, but have not been reported to undergo conjugate addition

145

4

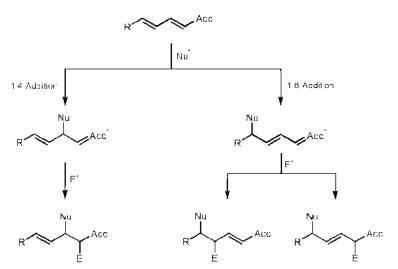
Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems

Norbert Krause and Anja Hoffmann-Röder

4.1 Introduction

Since the pioneering work of Gilman et al., who carried out the first investigations into organocopper compounds RCu [1] and lithium diorganocuprates R2CuLi [2], the latter reagents (still referred to even today as Gilman reagents) have been becoming widespread among organometallic reagents used for carbon-carbon bond formation. In particular, the seminal work of House et al. and Corey et al. has served to establish organocuprates as the reagents of choice not only for substitution reactions of many saturated (haloalkanes, acid chlorides, oxiranes) and unsaturated (allylic and propargylic derivatives) electrophiles, but also for 1,4-addition reactions to α, β -unsaturated carbonyl compounds and, last but not least, for carbocuprations of non-activated alkynes [3]. In these processes, the unique reactivity of organocuprates relies on the interplay of the "soft", nucleophilic copper and the "hard", electrophilic lithium ion, offering control over reactivity and selectivity through "fine-tuning" of the reagent. Most of the tremendous achievements in various fields of organocopper chemistry over the last few decades are highlighted in this book. These include the elucidation of the structures of organocopper compounds [4] and the mechanism of their transformations [5] (Chapts. 1 and 10), new copper-mediated and copper-catalyzed processes [6] (Chapts. 2, 3, and 5), diastereoselective reactions (Chapt. 6), and highly enantioselective substitution and conjugate addition reactions [7] (Chapts. 7 and 8). The high standards attained in these fields are documented in numerous applications of copper-promoted transformations in total synthesis (Chapt. 9).

As far as substrates are concerned, while the usual 1,4-addition and 1,3-substitution (S_N2') reactions of simple unsaturated substrates have so far predominated, analogous transformations of ambident substrates with extended multiple bond systems (i.e., with two or more reactive positions) have come to attention only recently. Here, systematic investigations have shown that such 1,5-substitutions and even 1,6- and 1,8-addition reactions proceed highly regionselectively and stereoselectively, in particular when the substrate contains at least one triple bond besides one or more conjugated double bonds. These unusual reaction types not


only open up novel routes to interesting target molecules, but also provide deeper insights into the mechanism of copper-mediated carbon-carbon bond formation [30, 8].

4.2 Copper-mediated Addition Reactions to Extended Michael Acceptors

4.2.1

Acceptor-substituted Dienes

Thanks to their ambident character, acceptor-substituted dienes can provide several isomeric products in copper-mediated Michael additions, therefore making it particular important to control not only the regioselectivity but also the stereoselectivity of these transformations (Scheme 4.1).

Scheme 4.1. Regioselectivity in conjugate addition reactions to acceptor-substituted dienes.

Besides direct nucleophilic attack onto the acceptor group, an activated diene may also undergo 1,4- or 1,6-addition; in the latter case, capture of the ambident enolate with a soft electrophile can take place at two different positions. Hence, the nucleophilic addition can result in the formation of three regioisomeric alkenes, which may in addition be formed as E/Z isomers. Moreover, depending on the nature of nucleophile and electrophile, the addition products may contain one or two stereogenic centers, and, as a further complication, basic conditions may give rise to the isomerization of the initially formed β , γ -unsaturated carbonyl compounds (and other acceptor-substituted alkenes of this type) to the thermodynamically more stable conjugated isomer (Eq. 4.1).

The first example of a cuprate addition to an acceptor-substituted diene was reported by Näf et al. [9], who used lithium di-(Z)-1-heptenylcuprate in a Michael addition to dienoate 1 (Eq. 4.2). The reaction proceeded highly regionelectively, furnishing a 1:1 mixture of the two isomeric 1,6-adducts 2, which were converted into the Bartlett pear constituent ethyl (2E,6Z)-2,6-dodecadienoate (3) by basic isomerization.

$$CO_2Et$$

$$nH_{11}C_5$$

$$CO_2Et$$

$$nH_{11}C_5$$

$$CO_2Et$$

$$CO_2Et$$

$$CO_2Et$$

$$CO_2Et$$

$$CO_2Et$$

In analogous reactions, several other groups reported the exclusive formation of 1,6-addition products, suggesting that not even the choice of the organocopper reagent affected the regioselectivity of the transformation [10]. Whereas the use of monoorganocopper compounds predominantly resulted in the formation of adducts with E configurations, the corresponding Gilman cuprates R₂CuLi yielded only 1:1 mixtures of the E and Z isomers [10b]. Ultimately, Yamamoto et al. [3f, 11] were able to show in their seminal contributions that even 1,4-additions of organocopper reagents to activated dienes are feasible: while the reaction between methyl sorbate (4) and the reagent formed from n-butylcopper and boron trifluoride mainly gave the 1,4-adduct 5, the corresponding Gilman cuprate nBu₂CuLi again exclusively provided the 1,6-addition product 6 (Eq. 4.3). The organocopper compounds RCu·BF3 are synthetically very useful (in natural product synthesis, for example; cf. Chapt. 9) and so have become commonly referred to as Yamamoto reagents [3f].

Me

4

$$R=M$$
 $R=M$
 $R=M$

Michael additions of organocopper reagents to acceptor-substituted dienes have found widespread application in target-oriented stereoselective synthesis [12]. For

example, the chiral cuprate 8, containing a Schöllkopf bislactim ether moiety, was used in the first total synthesis of the antimycotic dipeptide chlorotetaine (10; Eq. 4.4) [12d]. Although the nucleophilic addition to dienone 7 in this case did not proceed regioselectively, furnishing only a 63:37 mixture of the 1,6- and 1,4-adducts, the former compound was successfully converted over several steps into diastereomerically and enantiomerically pure chlorotetaine (10).

While copper-catalyzed Michael additions to acceptor-substituted dienes using Grignard reagents as nucleophiles were reported even earlier than the corresponding additions of (stoichiometric) organocuprates, the former transformations have largely been restricted to the synthesis of steroid hormones. In this context, in addition to tetrahydro-3H-naphthalen-2-ones, which were used as model substrates for doubly unsaturated steroids [13, 14], estradiol derivatives bearing an alkyl chain in the 7α-position are especially interesting target molecules, due to their high affinity for and specificity towards estrogen receptors [15, 16]. These unsaturated steroids may thus be particularly useful for the treatment of mammary tumors (breast cancer) [15]. As regards preparative aspects, however, the nucleophilic 1,6addition to doubly unsaturated $\Delta^{4,6}$ -steroids should proceed not only with the desired regioselectivity [13, 14, 15b, 16], but also in a diastereoselective manner, since only the 7a isomers are effective enzyme inhibitors [15b]. Although the diastereoselectivity of the copper-catalyzed 1,6-addition of methyl Grignard reagents to $\Delta^{4,6}$ -steroids may be dependent on the substitution pattern of the substrate [13a], general preference for attack from the α side has frequently been observed [13]. Wieland and Auner [13e], for example, reported an α selectivity of 90% in the copper-catalyzed 1,6-addition of MeMgBr to dienone 11 (Eq. 4.5). The product 12 was converted over several steps into 7α-methylestrone (13), a precursor of several highly active steroidal hormones.

In contrast to this, the introduction of longer alkyl chains with the aid of copperpromoted 1,6-addition reactions to $\Delta^{4,6}$ -steroids normally proceeds with unsatisfactory $\alpha:\beta$ ratios [15b, 16]. In some cases, improvement of the diastereoselectivity by "fine tuning" of the reaction conditions has been possible. The ratio of the epimeric products 15 and 16 in the copper-catalyzed 1,6-addition of 4-pentenylmagnesium bromide to dienone 14, for example, was improved from 58:42 to 82:18 by adjustments to the quantity of nucleophile and the solvent composition (Eq. 4.6) [16f].

Eq. Grignard	Ratio THF / diethyl other	15 · 16	
12	1:9	58 : 42	
12	1 : 4	60:40	
12	1:1	78 : 22	
4	1:1	82 : 18	

Aberrant behavior, however, has been observed when using bicyclic tetrahydro-3H-naphthalen-2-ones as Michael acceptors: the 1,6-addition of cyano-Gilman cuprates or Grignard reagents (catalyzed by copper arene thiolate 18) proceeds with high trans selectivity, irrespective of the transferred group (Eq. 4.7) [17]. NMR spectroscopic investigations have found that formation of π -complexes at the double bond adjacent to the carbonyl group, similar to those observed in 1,6-cuprate additions to acceptor-substituted enynes (Sect. 4.2.3), are involved in these transformations. Nevertheless, deeper insight into mechanistic features, which should be highly rewarding for preparative applications, is still awaited.

1 R₂Cull+ulCN
or RMgX/
SCJ NMe₂
17 19 (4.7)
18
$$R = Me, nBu, Ph$$

4.2.2 Acceptor-substituted Enynes

As for conjugate addition reactions of carbon nucleophiles to activated dienes, or ganocopper compounds represent the reagents of choice for regioselective and stereoselective Michael additions to acceptor-substituted enynes. Whereas substrates bearing an acceptor-substituted triple bond in conjugation with one or even more double bonds (such as 20) react with organocuprates exclusively by 1,4-addition (Eq. 4.8) [18], the corresponding additions to enynes bearing acceptor substituents at the double bond can result in the formation of several regioisomeric products [30, 8, 19].

$$\begin{array}{c}
CO_2Me \\
\hline
1. R_2C_JLI \cdot Li \\
\hline
2. I \cdot
\end{array}$$

$$\begin{array}{c}
R \\
21 \\
R = Et, /Bu, Me_3Si
\end{array}$$
(4.8)

Analogously to the acceptor-substituted dienes (Scheme 4.1), the outcome of the reaction depends strongly on the regioselectivity of both the nucleophilic attack of the copper reagent (1,4- or 1,6-addition) and of the electrophilic trapping of the enolate formed (Scheme 4.2). Since the allenyl enolate formed by 1,6-addition can furnish either an allene or a conjugated diene upon reaction with a soft electrophile, and so offers the possibility of creating axial chirality, this transformation is of special interest from the preparative and also the mechanistic points of view. Recent investigations have demonstrated that the regioselectivities and stereoselectivities of both steps can be controlled by the choice of the reactants, in particular by "fine-tuning" of the organocopper reagent and the electrophile.

Scheme 4.2. Regioselectivity in conjugate addition reactions to acceptor-substituted enynes.

The first copper-mediated addition reactions to enynes with an acceptor group at the triple bond were reported by Hulce [19, 20], who found that 3-alkynyl-2-cycloalkenones 22 react regioselectively with cuprates, in a 1,6-addition at the triple bond (Eq. 4.9). The allenyl enolates thus formed are protonated at C-4 to provide conjugated dienones 23 as mixtures of E and Z isomers. Interestingly, substrates of this type can also undergo tandem 1,6- and 5,6-additions, indicating that the allenyl enolate is sufficiently nucleophilic to react with another organometallic reagent in a carbometalation of the allenic double bond distal to the electron-releasing enolate moiety (Eq. 4.10) [20b]. Hence, it is even possible to introduce two different groups at the Michael acceptor, either by successive use of two organocopper reagents or by employing a mixed cuprate.

 $n = 1, 2; R^1 = H, Me; R^2 = H, Ph, Me_3Si; R^3 = Me. Et$

$$\frac{1 \text{ VeFrCu.} \cdot 1 \text{ CN}}{2 \cdot 11'} \qquad \frac{1 \text{ Me Me}}{25}$$
(4.10)

With regard to preparative applications, however, shifting the regioselectivity of the electrophilic quenching reaction towards the formation of allenes would be far more interesting, since the scope of synthetic methods for the preparation of functionalized allenes has hitherto been rather limited [21]. Moreover, a stereoselective reaction of this type would open up a route to these axially chiral compounds in enantiomerically enriched or even pure form. The Gilman cuprate $Me_2CuLi\cdot LiI$ and cyano-Gilman reagents $R_2CuLi\cdot LiCN$ ($R \neq Me$) in diethyl ether did indeed react regioselectively in a 1,6-fashion with various substituted 2-en-4-ynoates 26. After protonation with dilute sulfuric acid, the β -allenic esters 27, with alkyl, alkenyl, aryl, and silyl substituents, were obtained in good chemical yields (Eq. 4.11) [22].

CO₂Et
$$\frac{R^{2} \times CO_{2}Et}{2 \cdot H^{2} \times CO_{2}Et}$$

$$R^{1} = Ph, R^{2} = Me: \qquad 79\%$$

$$R^{1} = Ph, R^{2} = rB_{11} \qquad 81\%$$

$$R^{1} = nB_{11} \quad R^{2} = Ph: \qquad 62\%$$

$$R^{1} = Me_{3}S_{1}, R^{2} = Me: \qquad 57\%$$

$$(4.11)$$

The nature of the acceptor substituent exerts hardly any influence on the regio-selectivity of the cuprate addition to acceptor-substituted enynes. Enynes **28**, variously incorporating thioester, lactone, dioxanone, keto, sulfonyl, sulfinyl, cyano, and oxazolidino groups, all react in a **1**,6-manner to furnish functionalized allenes **29** (Eq. **4.12**). In contrast, though, **1**-nitro-l-en-3-ynes are attacked at the C=C double bond, with formation of the corresponding **1**,4-adducts [22c]. The differences in reactivity can be described qualitatively by the following reactivity scale: Acceptor (Acc) = NO₂ > COR, CO₂R, COSR > CN, SO₃R, oxazolidino > SO₂R > SOR \gg CONR₂. Remarkably, the regioselectivity of the cuprate addition to acceptor-substituted enynes is also insensitive to the steric properties of the substrate. Thus, enynes with *t*-butyl substituents at the triple bond (e.g., **30**) undergo **1**,6-additions even when the cuprate itself is sterically demanding (Eq. **4.13**) [22b]. This method is therefore highly useful for the preparation of sterically encumbered allenes of type **31**.

$$\begin{array}{c|c}
 & \text{iBu} \\
 & \text{iBu} \\
 & \text{CO}_2\text{Me}
\end{array}$$

$$\begin{array}{c|c}
 & \text{iBu}_2\text{Culliv.iCN} \\
\hline
 & \text{iBu}
\end{array}$$

$$\begin{array}{c|c}
 & \text{iBu} \\
\hline
 & \text{CO}_2\text{Me}
\end{array}$$

$$\begin{array}{c|c}
 & \text{iBu} \\
\hline
 & \text{CO}_2\text{Me}
\end{array}$$

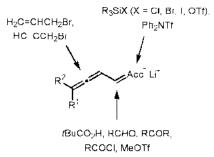
$$\begin{array}{c|c}
 & \text{iBu} \\
\hline
 & \text{iBu}
\end{array}$$

$$\begin{array}{c|c}
 & \text{CO}_2\text{Me}
\end{array}$$

$$\begin{array}{c|c}
 & \text{iBu} \\
\hline
 & \text{iBu}
\end{array}$$

In order to achieve acceptable chemical yields with less reactive Michael acceptors, such as sulfones and sulfoxides, it is often necessary to use more reactive organocopper reagents or to activate the substrate by Lewis acid catalysis. Thus, treatment of enyne sulfone 32 with five equivalents of the Gilman cuprate Me₂CuLi alone gave no trace of the addition product, whereas the analogous reaction with Me₃CuLi₂ provided the desired allene 33 only in a disappointing 16% yield (Eq. 4.14) [22c]. With two equivalents of Me₂CuLi in the presence of one equivalent of Me₃Sil, however, the yield was increased to 45%, although with Me₃SiOTf as additive the allene 33 was isolated in only 29% yield. Unfortunately, enyne amides completely fail to form 1,6 adducts even under these conditions.

Unlike the substrate, the organocuprate component has a pronounced influence on the regiochemical course of the addition to acceptor-substituted enynes. While the Gilman cuprate $Me_2CuLi\cdot LiI$ as well as cyano-Gilman reagents $R_2CuLi\cdot LiCN$ ($R \neq Me$) readily undergo 1,6-additions, the Yamamoto reagents $RCu\cdot BF_3$ [3f] and organocopper compounds RCu activated by Me_3SiI [23] both afford 1,4-adducts [3o]. In some cases, even 1,4- and 1,6-reduction products are observed; these may be the result of electron transfer from the cuprate to the substrate or of hydrolysis of a stable copper(III) intermediate [19, 24]. Lower order cyanocuprates RCu(CN)Li again show a different behavior; although these do not usually react with acceptor-substituted enynes, the cuprate tBuCu(CN)Li nevertheless undergoes anti-Michael additions with 2-en-4-ynoates and nitriles (Eq. 4.15) [25]. A satisfactory interpretation of the capricious behavior of organocuprates in these conjugate addition reactions to acceptor-substituted enynes is unfortunately still awaited, and so identification of the appropriate reaction conditions for each cuprate often has to rely upon a "trial and error" search.


Like the copper-catalyzed 1,4-Michael additions of Grignard reagents to enones and activated dienes, the corresponding 1,6-additions to acceptor-substituted enynes can also be conducted catalytically. However, only very carefully controlled reaction conditions furnish the 1,6-adduct as the major product. Hence, the use of copper (2-dimethylaminomethyl)thiophenolate (18) as catalyst and simultaneous addition of the substrate (e.g., 34) and an organolithium reagent to a suspension of the catalyst 18 in diethyl ether at 0 °C resulted in the formation of various substituted β -allenylcarboxylates 36 (Eq. 4.16) [26]. The yields were comparable to those obtained in analogous stoichiometric procedures, whereas only low yields of the 1,6-addition products were found if other copper(I) salts were employed as catalyst, or other Grignard reagents as nucleophile.

As is implicit in the fact that the products of the (stoichiometric) 1,6-cuprate addition – the lithium allenyl enolate and the organocopper compound – are formed as independent species, it is also possible to conduct the reaction catalytically through in situ regeneration of the cuprate. The reaction can thus be run in a continuous mode, with only catalytic amounts of the preformed cuprate being necessary (with simultaneous addition of the substrate and the organolithium compound) enabling the desired allenes to be prepared even on larger scales (Eq. 4.17) [30].

$$fBu$$
 34 $\frac{1 \text{ RI i}}{R_2 \text{Cu}_- \text{ (cet)}}$ $\frac{1 \text{ RI i}}{R_2 \text{Cu}_- \text{ (cet)}}$ $\frac{1 \text{ RI i}}{R_2 \text{Cu}_- \text{ (cet)}}$ $\frac{1 \text{ RI i}}{R_2 \text{ Cu}_- \text{ (cet)}}$ $\frac{1 \text{ RI i}}{R_2 \text{ CO}_2 \text{Et}}$ $\frac{$

As previously mentioned, allenes can only be obtained by 1,6-addition to acceptorsubstituted envires when the intermediate allenyl enolate reacts regioselectively with an electrophile at C-2 (or at the enolate oxygen atom to give an allenyl ketene acetal; see Scheme 4.2). The regioselectivity of the simplest trapping reaction, the protonation, depends on the steric and electronic properties of the substrate, as well as the proton source. Whereas the allenyl enolates obtained from alkynyl enones 22 always provide conjugated dienones 23 by protonation at C-4 (possibly through allenyl enols; see Eq. 4.9) [19, 20], the corresponding ester enolates are usually protonated at C-2 (Eq. 4.11), especially if sterically demanding groups at C-5 block the attack of a proton at C-4 (Eq. 4.13) [30, 22]. In the presence of a substituent at C-2 of the enolate, however, mixtures of both allenes and conjugated dienes are formed for steric reasons (Eq. 4.18). Nevertheless, this problem can be solved by using weak organic acids as a proton source. In particular, pivalic acid (2,2-dimethylpropionic acid) at low temperatures gives rise to exclusive formation of allenes [22a].

In contrast to the protonation, the regioselectivity of reactions between other electrophiles and allenyl enolates derived from 2-en-4-ynoates is independent of the steric and electronic properties of the reaction partners (Scheme 4.3) [30, 27]. As expected according to the HSAB principle, hard electrophiles such as silyl halides and triflates react at the enolate oxygen atom to form allenyl ketene acetals, while soft electrophiles such as carbonyl compounds attack at C-2. Only allylic and propargylic halides react regioselectively at C-4 of the allenyl enolate to give substituted conjugated dienes. Again, cyclic allenyl enolates obtained through 1,6cuprate addition to 3-alkynyl-2-cycloalkenones 22 show a deviant behavior; treatment with iodomethane gave product mixtures derived from attack of the electrophile at C-2 and C-4, while the reaction with aldehydes and silyl halides took place exclusively at C-4 [19, 28].

Scheme 4.3. Regioselectivity of trapping reactions of acyclic allenyl enolates with different electrophiles.

Several preparative applications of the 1,6-cuprate addition to acceptor-substituted enynes have been described in recent years. In addition to its use in the formation of sterically encumbered allenes (Eq. 4.13) [22b] and simple terpenes such as pseudoionone [22a], this method is also the synthesis of valuable for access to allenic natural products (Eq. 4.19) [3o]. For example, 1,6-addition of lithium di-n-octyl-cuprate to enynoate 40, followed by regioselective protonation with pivalic acid, yielded allene 41, which was then readily convertible into the insect pheromone methyl 2,4,5-tetradecatrienoate (42). Further applications of 1,6-additions in natural product synthesis rely upon vinylallenes as diene components in the Diels-Alder reactions (Eq. 4.20). Hence, the synthesis of the fungal metabolite (\pm)-sterpurene (46) and some oxygenated metabolites started with the 1,6-addition of lithium dimethylcuprate to enynoate 43 and subsequent regioselective enolate trapping with methyl triflate [29]. The vinylallene 44 thus formed underwent an intramolecular [4+2] cycloaddition to give the tricyclic product 45, which was finally converted into the target molecule 46.

CO₂Et
$$\frac{(nC_0 + r_1)_2C + r + r + CN}{2 \cdot (nC_0 + r_1)_2C + r + r + CN}$$

$$10C_0 + r_1$$

$$10C_0 + r_2$$

$$10C_0 +$$

The Diels-Alder reaction outlined above is a typical example of the way in which axially chiral allenes, accessible through 1,6-addition, can be utilized to generate new stereogenic centers in a selective fashion. This transfer of chirality is also possible by means of intermolecular Diels-Alder reactions of vinylallenes [30], aldol reactions of allenyl enolates [31], and Ireland-Claisen rearrangements of silyl allenylketene acetals [32].

Recently, the oxidation of titanium allenyl enolates (formed by deprotonation of β-allenylcarboxylates of type 36 and transmetalation with titanocene dichloride) with dimethyl dioxirane (DMDO) was found to proceed regioselectively at C-2. In this way, depending on the steric demand of the substituents at the allenic moiety, the corresponding 2-hydroxy-3,4-dienoates were obtained diastereoselectively with up to 90% ds (Eq. 4.21) [33], α-Hydroxyallenes of this type are synthetically valuable precursors for 2,5-dihydrofurans, found not only in several natural products but also in biologically active compounds [34]. Thus, the cyclization of allene 47 to heterocycle 48 took place with complete axis-to-center chirality transfer, being easily achieved by treatment with HCl gas in chloroform, acidic ion exchange resins such as Amberlyst 15, or, last but not least, with catalytic amounts of gold(III) chloride (this last method is particularly useful for α-hydroxyallenes containing acid-sensitive groups [33b]).

Allenic amino acid derivatives 50, which are of special interest as selective vitamin B₆ decarboxylase inhibitors [35], are accessible through 1,6-cuprate addition to 2amino-substituted enynes 49 (Eq. 4.22) [36]. Because of the low reactivity of these Michael acceptors, however, the reaction succeeds only with the most reactive cuprate: the t-butyl cyano-Gilman reagent tBu2CuLi·LiCN. Nevertheless, the addition products are obtained with good chemical yields, and selective deprotection of either the ester or the amino functionality under acidic conditions provides the desired target molecules.

R = tBu, Ph Me₃St, 1-cyclohexenyl

By starting with enantiomerically enriched or pure β -allenylcarboxylates, it is possible to carry out several of the transformations mentioned above stereoselectively. With regard to the required substrates, chiral 5-alkynylidene-1,3-dioxan-4-ones of type 51 have proven to be valuable synthetic precursors, since these Michael acceptors adopt a very rigid conformation. Because of the equatorial position of the t-butyl group, the trifluoromethyl residue shields the top face of the enyne moiety, exposing the underside of the molecule to preferential attack by the nucleophile (Eq. 4.23) [30, 37]. Treatment with lithium dimethylcuprate and pivalic acid therefore gave the allene 52 with a diastereoselectivity of 98% ds, and the stereochemical information generated in this step remained intact during the conversion into the chiral vinylallene 53.

In contrast to nucleophilic addition reactions to activated dienes (Sect. 4.2.1), the mechanism of 1,6-cuprate additions to acceptor-substituted enynes is quite well understood, largely thanks to kinetic and NMR spectroscopic investigations [3o]. ¹³C NMR spectroscopic studies have revealed that these transformations proceed through π -complexes, with an interaction between the π -system of the C=C double bond and the nucleophilic copper atom (a soft-soft interaction in terms of the HSAB principle), together with a second interaction between the hard lithium ion of the cuprate and the hard carbonyl oxygen atom (Scheme 4.4) [38]. In particular, the use of ¹³C-labeled substrates has shed light on the structure of the metal-containing part of these π -complexes, indicating, for example, that the cuprate does not interact with the triple bond [38b, c]. Recently determined 13C kinetic isotope effects prove that bond formation between C-5 of the acceptor-substituted enyne and the cuprate occurs in the rate-determining step [39]. Moreover, with the aid of kinetic measurements with a variety of different substrates, even activation parameters for these transformations have been determined experimentally [40]. A mechanistic model in accordance with all these experimental data (Scheme 4.4) involves the formation of σ -copper(III) species, which might be in equilibrium with an allenic copper(III) intermediate. Both intermediates can undergo reductive elimination to produce the 1,4- and 1,6-adduct, respectively. The experimentally observed exclu-

sive formation of the 1,6-addition product, however, may indicate that the latter reductive elimination occurs much more rapidly than that from the first intermediate.

CO2Et
$$\frac{R^2}{R^2}$$
CLL $\frac{R^2}{R^2}$ CLL

Scheme 4.4. Proposed mechanism for the 1,6-addition of organocuprates to acceptorsubstituted enynes.

4.2.3

Acceptor-substituted Polyenynes

In view of the high regioselectivity observed in the addition of organocuprates to acceptor-substituted enynes, it seems interesting to determine whether the preference of these reagents for triple bonds persists even when the distance between the acceptor group and the triple bond is increased by the introduction of further C=C double bonds. Of course, the number of possible regioisomeric products rises with increasing length of the Michael acceptor. The 2,4-dien-6-ynoate 54, for example, can be attacked by an organocopper reagent at C-3, C-5, or C-7, the latter possibility producing a vinylogous allenyl enolate possessing four reactive positions (enolate oxygen, C-2, C-4, C-6). The high regioselectivity of the reaction between 54 and lithium dimethylcuprate was therefore striking; the cuprate attacked the triple bond exclusively and protonation with pivalic acid occurred at C-2 of the enolate, giving the 1,8-addition product 55 as the only isolable regioisomer in 90% yield (Eq. 4.24) [30].

In an analogous manner, the trienynoate 56 reacted in a 1,10-fashion to give the 3,5,7,8-tetraenoate 57 (Eq. 4.25), and it was even possible to obtain the 1,12adduct 59 from the Michael acceptor 58, containing four double bonds between the triple bond and the acceptor substituent (Eq. 4.26). In the latter case, however, the yield was only 26%; this is probably due to the reduced thermal stabilities of the starting material and the addition product (the 1,12-adduct was the only isolable reaction product apart from polymeric compounds) [30, 30].

$$M_{B} = \frac{1 \text{ Me}_{2}\text{Culi+II}}{2 \text{ (HuCO}_{2})} = M_{C} = \frac{\text{CC}_{2}\text{E1}}{\text{Mo}}$$

$$= \frac{\text{CO}_{2}\text{E1}}{\text{Mo}} = \frac{\text{CC}_{2}\text{E1}}{\text{S7}}$$

$$= \frac{\text{CC}_{2}\text{E1}}{\text{Mo}} = \frac{\text{CC}_{2}\text{E1}}{\text{S7}} = \frac{\text{CC}_{2}\text{E1}}{\text{CC}_{2}\text{E1}} = \frac{\text{C$$

These transformations and those summarized in the previous chapter indicate that Michael acceptors containing any combination of double and triple bonds undergo highly regioselective copper-mediated addition reactions. The following rule holds: Michael acceptors with any given arrangement of conjugated double and triple bonds react regioselectively with organocuprates at the triple bond closest to the acceptor substituent. Like the 1,6-cuprate addition to acceptor-substituted enynes (Scheme 4.4), these reactions start with the formation of a cuprate π -complex at the double bond adjacent to the acceptor group [38]. Subsequently, an equilibrating mixture of σ -copper(III) intermediates is probably formed, and the regioselectivity of the reaction may then be governed by the different relative rates of the reductive elimination of these intermediates.

4.3 Copper-mediated Substitution Reactions of Extended Substrates

In contrast to the addition reactions discussed so far, only a few examples of copper-mediated substitutions of extended electrophiles have been reported to date. Investigations into substitution reactions of various dienylic carboxylates with organocuprates (and Grignard reagents in the presence of catalytic amounts of copper salts) indicated that the ratio of the three possible regioisomers (that is, α , γ -, and ϵ -alkylated products) depends strongly on the substrate and reaction conditions [41]. For example, treatment of dienyl acetate 60 with nBuMgBr and stoichiometric quantities of CuI mainly furnished the S_N2' (1,3) substitution product 61 (Eq. 4.27), whereas with catalytic quantities of CuI and THF as solvent the conjugated diene 62 was formed exclusively (or in other words, S_N2'' (1,5) substitution takes place under these conditions) [42]. The dependence of the reaction course on the nBuMgBr:CuI ratio gives again credence to the postulate that different organocopper species are responsible for the formation of the regioisomeric products. With equimolar amounts of Grignard reagent and copper salt, the active species is

probably the monoalkylcopper compound nBuCu·MgBrI, which produces 61. Contrarily, an excess of the Grignard reagent should produce the magnesium cuprate nBu₂CuMgBr as the reactive nucleophile, providing the 1,5-substitution product 62.

Stereoselective substitution reactions of chiral dienyl electrophiles have also been carried out. In analogy to the copper-promoted S_N2' reactions of simple allylic electrophiles [3], the corresponding S_N2' (1,3) substitutions of dienyl carbonates [43] have been reported to proceed with high anti selectivity. Interestingly, treatment of chiral dienyl acetal 63 with the Yamamoto reagent PhCu·BF3 gave rise to the formation of a 1:3 mixture of the anti-S_N2' substitution product 64 and the syn-S_N2" (1,5) substitution product 65 (Eq. 4.28) [44]. A mechanistic explanation of this puzzling result has yet to be put forward, however.

The corresponding copper-mediated $S_N 2''(1,5)$ substitution reactions of conjugated enyne acetates 66 also take place with high regioselectivities, furnishing vinylallenes 67 with variable substitution patterns (Eq. 4.29) [45]. Although the substitution products are usually obtained as mixtures of the E and Z isomers, complete stereoselection with regard to the olefinic double bond of the vinylallene has been achieved in some cases. Analogous 1,5-substitutions can also be carried out with enyne oxiranes, which are transformed into synthetically useful hydroxy-substituted vinylallenes (Eq. 4.30; Sect. 4.2.2) [45]. Moreover, these transformations can be performed under copper catalysis conditions, by simultaneous addition of the organolithium compound and the substrate to catalytic amounts of the cuprate.

62 4 Copper-mediated Addition and Substitution Reactions of Extended Multiple Bond Systems

Highly enantioselective 1,5-substitution reactions of enyne acetates are also possible under carefully controlled conditions (Eq. 4.31) [46]. For example, treatment of enantiomerically pure substrate 70 with the cyano-Gilman reagent tBu_2CuLi -LiCN at -90 °C provided vinylallene 71 as a 1:3 mixture of E and E isomers with 20% and 74% ee, respectively. This mediocre selectivity might be attributable to racemization of the allene by the cuprate or other reactive copper species formed in the reaction mixture. The use of phosphines as additives, however, can effectively prevent such racemizations (which probably occur by one-electron transfer steps) [47]. Indeed, vinylallene 71 was obtained with an ee of 92% for the E isomer and of 93% for the E isomer if the substitution was performed at E0 °C in the presence of 4 eq. of E18 P. Use of this method enabled various substituted vinylallenes (which are interesting substrates for subsequent Diels-Alder reactions; Sect. 4.2.2) to be prepared with E100 ee.

QAc

Me

Me

Me

70

Me

Me

71

E:
$$Z = 25:75$$

Without Additive: 20% ee (F) / 74% ec (Z)

With 4 eq. nBu_3P : 92% ee (E) / 93% ee (Z)

4.4 Conclusion

Over the last 30 years, organocopper reagents have been utilized with great success in organic synthesis. The results presented in this chapter highlight the excellent

performance of these organometallic compounds in regioselective and stereoselective transformations of compounds with extended π -systems, in particular in 1,6-, 1,8-, 1,10-, and 1,12-additions and in 1,5-substitution reactions of acetylenic substrates derivatives. These transformations not only provide new information regarding the mechanisms of copper-mediated carbon-carbon bond formation, but they also open up new opportunities in target-oriented synthesis.

References

- 1 H. GILMAN, J. M. STRALEY, Red. Trav. Chim. Pays-Bas 1936, 55, 821-834.
- 2 H. GILMAN, R. G. JONES, L. A. Woods, J. Org. Chem. 1952, 17, 1630-
- 3 Reviews: a) G. H. Posner, Org. React. 1972, 19, 1-113; b) G. H. Posner, Org. React. 1975, 22, 253-400. c) J. F. NORMANT, A. ALEXAKIS, Synthesis 1981, 841-870; d) E. ERDIK, Tetrahedron 1984, 40, 641-657; e) R. J. K. TAYLOR, Synthesis 1985, 364-392; f) Y. YAMAMOTO, Angew. Chem. 1986, 98, 945-957; Angew. Chem. Int. Ed. Engl. **1986**, 25, 947–959; g) В. Н. Lipshutz, Synthesis 1987, 325-341; h) B. H. LIPSHUTZ, Synlett 1990, 119-128; i) E. NAKAMURA, Synlett 1991, 539-547; j) B. H. LIPSHUTZ, S. SENGUPTA, Org. React. 1992, 41, 135-631; k) P. PERLMUTTER, Conjugate Addition Reactions in Organic Synthesis, Pergamon Press, Oxford, 1992; 1) R. J. K. TAYLOR (Ed.), Organocopper Reagents, Oxford University Press, Oxford, 1994; m) B. H. LIPSHUTZ in Organometallics in Synthesis, Schlosser, M. (ed.), Wiley, Chichester, 1994, pp. 283-382; n) B. H. LIPSHUTZ in Advances in Metal-Organic Chemistry, Vol. 4, L. S. E. LIEBESKIND (Ed.), JAI Press, Greenwich, 1995; pp. 1-64; o) N. Krause, A. Gerold, Angew. Chem. 1997, 109, 194-213; Angew. Chem. Int. Ed. Engl. 1997, 36, 186-204.
- 4 Reviews: a) G. van Koten, J. Organomet. Chem. 1990, 400, 283-301; b) P. P. Power, Prog. Inorg. Chem. 1991, 39, 75-112; c) G. VAN KOTEN, S. L. JAMES, J. T. B. H.

- JASTRZEBSKI, in Comprehensive Organometallic Chemistry II, E. W. ABEL, F. G. A. STONE, G. WILKINSON (Eds.), Pergamon/Elsevier, Oxford, 1995, Vol. 3, pp. 57-133; d) N. Krause, Angew. Chem. 1999, 111, 83-85; Angew. Chem. Int. Ed. 1999, 38, 79-81; Solid-state structures of cyanocuprates: e) C. M. P. KRONENBURG, J. T. B. H. JASTRZEBSKI, A. L. Spek, G. van Koten, J. Am. Chem. Soc. 1998, 120, 9688-9689; f) G. BOCHE, F. BOSOLD, M. MARSCH, K. HARMS, Angew. Chem. 1998, 110, 1779-1781; Angew. Chem. Int. Ed. 1998, 37, 1684-1686; g) C.-S. Hwang, P. P. Power, J. Am. Chem. Soc. 1998, 120, 6409-6410.
- 5 Reviews: a) R. A. J. SMITH, A. S. Vellokoop, in Advances in Detailed Reaction Mechanisms, J. M. Coxon (Ed.), JAI Press, Greenwich, 1994, Vol. 3, pp. 79-130; b) S. Woodward, Chem. Soc. Rev. 2000, 29, 393-401; c) E. NAKAMURA, S. MORI, Angew. Chem. 2000, 112, 3902-3924; Angew. Chem. Int. Ed. 2000, 39, 3750-3771.
- 6 Reviews: a) P. Knochel, M. J. ROZEMA, C. E. TUCKER, C. RETHERFORD, M. FURLONG, S. A. RAO, Pure Appl. Chem. 1992, 64, 361-369; b) P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117-2188; c) P. KNOCHEL, Synlett 1995, 393-403; d) P. Knochel, J. J. Almena Perea, P. JONES, Tetrahedron 1998, 8275-8317; e) A. Boudier, L. O. Bromm, M. LOTZ, P. KNOCHEL, Angew. Chem. 2000, 112, 4584-4606; Angew. Chem. Int. Ed. 2000, 39, 4414-4435. f) P. Wiff, Synthesis 1993, 537-557; g) B.

- H. Lipshutz, A. Bhandari, C. LINDSEY, R. KEIL, M. R. WOOD, Pure Appl. Chem. 1994, 66, 1493-1500; h) B. H. LIPSHUTZ, Acc. Chem. Res. 1997, 30, 277-282.
- 7 Reviews on enantioselective conjugate addition reactions: a) B. E. Rossiter, N. M. SWINGLE, Chem. Rev. 1992, 92, 771-806; b) N. Krause, Kontakte (Darmstadt) 1993, (1), 3-13; c) N. KRAUSE, Angew. Chem. 1998, 110, 295-297; Angew. Chem. Int. Ed. 1998, 37, 283-285; d) J. Leonard, E. Diez-BARRA, S. MERINO, Eur. J. Org. Chem. 1998, 2051-2061; e) B. L. FERINGA, Acc. Chem. Res. 2000, 33, 346-353; f) N. Krause, A. Hoffmann-Röder, Synthesis 2001, 171-196; Enantioselective substitutions: a) M. VAN Klaveren, E. S. M. Persson, A. Del VILLAR, D. M. GROVE, J.-E. BÄCKVALL, G. VAN KOTEN, Tetrahedron Lett. 1995, 36, 3059-3062; b) G. J. MEUZELAAR, A. S. E. Karlström, M. Van Klaveren, E. S. M. Persson, A. Del Villar, G. VAN KOTEN, J.-E. BÄCKVALL, Tetrahedron 2000, 56, 2895-2903; c) F. DÜBNER, P. KNOCHEL, Angew. Chem. 1999, 111, 391-393; Angew. Chem. Int. Ed. 1999, 38, 379-381; d) F. DÜBNER, P. KNOCHEL, Tetrahedron Lett. 2000, 41, 9233-9237.
- 8 Reviews: a) N. Krause, S. Thorand, Inorg. Chim. Acta 1999, 296, 1-11; b) N. Krause, C. Zelder in The Chemistry of Dienes and Polyenes, Vol. 2, Z. Rappoport (Ed.), Wiley, New York, 2000; pp. 645-691.
- 9 F. Näf, P. Degen, G. Ohloff, Helv. Chim. Acta 1972, 55, 82-85.
- 10 a) E. J. COREY, C. U. KIM, R. H. K. CHEN, M. TAKEDA, J. Am. Chem. Soc. 1972, 94, 4395-4396; b) E. J. Corey, R. H. K. CHEN, Tetrahedron Lett. 1973, 1611-1614; c) E. J. Corey, N. W. BOAZ, Tetrahedron Lett. 1985, 26, 6019-6022; d) B. GANEM, Tetrahedron Lett. 1974, 4467-4470; e) S. F. MARTIN, P. J. GARRISON, Synthesis 1982, 394-397; f) F. BARBOT, A. KADIB-ELBAN, P. MIGINIAC, J. Organomet. Chem. 1983, 255, 1-9; g) J. Bigorra, J. Font, C. Jaime, R. M. ORTUNO, F. SANCHEZ-FERRANDO,

- Tetrahedron 1985, 41, 5577-5587; h) J. Bigorra, J. Font, C. Jaime, R. M. ORTUNO, F. SANCHEZ-FERRANDO, F. FLORENCIO, S. MARTINEZ CARRERA, S. GARCIA-BLANCO, Tetrahedron 1985, 41, 5589-5594; i) H. Lru, L. M. Gayo, R. W. Sullivan, A. Y. H. Choi, H. W. Moore, J. Org. Chem. 1994, 59, 3284-3288.
- 11 Y. YAMAMOTO, S. YAMAMOTO, H. Yatagai, Y. Ishihara, K. Maruyama, J. Org. Chem. 1982, 47, 119-126.
- 12 a) L. Novak, J. Rohaly, P. Kolonits, J. Fekete, L. Varjas, C. Szantay, Liebigs Ann. Chem. 1982, 1173-1182; b) F. Näf, R. Decorzant, S. D. ESCHER, Tetrahedron Lett. 1982, 23, 5043-5046; c) U. Schöllkoff, D. Pettig, E. Schuize, M. Klinge, E. EGERT, B. BENECKE, M. NOLTEMEYER, Angew. Chem. 1988, 100, 1238-1239; Angew. Chem. Int. Ed. Engl. 1988, 27, 1194-1195; d) H. WILD, L. BORN, Angew. Chem. 1991, 103, 1729-1731; Angew. Chem. Int. Ed. Engl. 1991, 30, 1685-1687; e) K. Sabbe, C. D'Hallewyn, P. de Clercq, M. Vanderwalle, R. Bouillon, A. Verstuyf, Bioorg. Med. Chem. Lett. 1996, 6, 1697–1702.
- 13 a) J. A. CAMPBELL, J. C. BABCOCK, J. Am. Chem. Soc. 1959, 81, 4069-4074; b) N. W. Atwater, R. H. Bible, E. A. Brown, R. R. Burtner, J. S. Mihina, L. N. NYSTED, P. B. SOLLMAN, J. Org. Chem. 1961, 26, 3077-3083; c) R. Wiechert, U. Kerb, K. Kieslich, Chem. Ber. 1963, 96, 2765-2771; d) U. KERB, R. WIECHERT, Chem. Ber. 1963, 96, 2772-2773; e) P. Wieland, G. Auner, Hew. Chim. Acta 1967, 50, 289-296; f) J.-C. JACQUESY, R. JACQUESY, C. NARBONNE, Bull. Soc. Chim. Fr. 1976, 1240-1242.
- 14 a) J. A. Marshall, H. Roebke, J. Org. Chem. 1966, 31, 3109-3113; b) J. A. Marshall, R. A. Ruden, L. K. HIRSCH, M. PHILIPPE, Tetrahedron Lett. 1971, 3795-3798; c) J. A. Marshall, R. E. Conrow, J. Am. Chem. Soc. 1983, 105, 5679-5688; d) J. A. Marshall, J. E. Audia, B. G. SHEARER, J. Org. Chem. 1986, 51, 1730-1735.

- 15 a) R. BUCOURT, M. VIGNAU, V. TORRELLI, H. RICHARD-FOY, C. GEYNET, C. SECCO-MILLET, G. REDEUILH, E.-E. BAULIEU, J. Biol. Chem. 1978, 253, 8221-8228; b) J. M. O'REILLY, N. LI, W. L. DUAX, R. W. BRUEGGEMEIER, J. Med. Chem. 1995, 38, 2842-2850.
- 16 a) J. F. Grunwell, H. D. Benson, J. O. JOHNSTON, V. PETROW, Steroids 1976, 27, 759-771; b) A. J. Solo, C. CAROLI, M. V. DARBY, T. McKAY, W. D. Slaunwhite, P. Hebborn, Steroids 1982, 40, 603-614; c) B. Mühlen-BRUCH, F. KIRMEIER, H. J. ROTH, Arch. Pharm. (Weinheim) 1986, 319, 177-183; d) J. Bowler, T. J. Lilley, J. D. PITTAM, A. E. WAKELING, Steroids 1989, 54, 71-99; e) S. P. Modi, J. O. Gardner, A. Milowsky, M. Wierzba, L. Forgione, P. Mazur, A. J. Solo, W. L. Duax, Z. Galdecki, P. GROCHULSKI, Z. WAWRZAK, I. Org. Chem. 1989, 54, 2317-2321; f) A. N. French, S. R. Wilson, M. J. Welch, J. A. Katzenellenbogen, Steroids 1993, 58, 157-169.
- 17 M. UERDINGEN, N. KRAUSE, Tetrahedron 2000, 56, 2799-2804.
- 18 a) L. Ernst, H. Hopf, N. Krause, J. Org. Chem. 1987, 52, 398-405; b) H. HOPF, N. KRAUSE, in Chemistry and Biology of Synthetic Retinoids, DAWSON, M. I., OKAMURA, W. H. (eds.), CRC Press, Boca Raton, 1990, pp. 177-199; c) Y. L. BENNANI, J. Org. Chem. 1996, 61, 3542-3544.
- 19 Review: M. A. FREDRICK, M. HULCE, Tetrahedron 1997, 53, 10197-10227.
- 20 a) M. Hulce, Tetrahedron Lett. 1988, 29, 5851-5854; b) S.-H. Lee, M. HULCE, Tetrahedron Lett. 1990, 31, 311-314; c) M. Cheng, M. Hulce, J. Org. Chem. 1990, 55, 964-975.
- 21 a) S. PATAI (Ed.), The Chemistry of Ketenes, Allenes and Related Compounds, Wiley, New York, 1980; b) The Chemistry of the Allenes, S. R. LANDOR, (Ed.), Academic Press, London, 1982; c) H. F. Schuster, G. M. Coppola, Allenes in Organic Synthesis, Wiley, New York, 1984; d) C. J. ELSEVIER, in Methods of Organic Chemistry (Houben-Weyl), Vol. E21a, G.

- HELMCHEN, R. W. HOFFMANN, J. Mulzer, E. Schaumann (Eds.), Thieme, Stuttgart, 1995, pp. 537-566.
- 22 a) N. KRAUSE, Chem. Ber. 1990, 123, 2173-2180; b) N. KRAUSE, Chem. Ber. 1991, 124, 2633-2635; c) M. HOHMANN, N. KRAUSE, Chem. Ber. 1995, 128, 851-860.
- 23 M. BERGDAHL, M. ERIKSSON, M. NILSSON, T. OLSSON, J. Org. Chem. 1993, 58, 7238-7244.
- 24 N. KRAUSE, G. HANDKE, Tetrahedron Lett. 1991, 32, 7229-7232.
- 25 A. GEROLD, N. KRAUSE, Chem. Ber. 1994, 127, 1547-1549.
- 26 A. HAUBRICH, M. VAN KLAVEREN, G. van Koten, G. Handke, N. Krause, J. Org. Chem. 1993, 58, 5849-5852.
- 27 a) S. ARNDT, G. HANDKE, N. KRAUSE, Chem. Ber. 1993, 126, 251-259; b) N. KRAUSE, S. ARNDT, Chem. Ber. 1993, 126, 261-263.
- 28 a) S.-H. LEE, M. SHIH, M. HULCE, Tetrahedron Lett. 1992, 33, 185-188; b) S.-H. LEE, M. HULCE, Synlett 1992, 485-488.
- 29 N. KRAUSE, Liebigs Ann. Chem. 1993, 521-525.
- 30 U. Koop, G. Handke, N. Krause, Liebigs Ann. 1996, 1487-1499.
- 31 M. LAUX, N. KRAUSE, U. KOOP, Synlett 1996, 87-89,
- 32 M. BECKER, N. KRAUSE, Liebigs Ann./ Recueil 1997, 725-728.
- 33 a) N. Krause, M. Laux, A. HOFFMANN-RÖDER, Tetrahedron Lett. 2000, 41, 9613-9616; b) A. HOFFMANN-RÖDER, N. KRAUSE, Org. Lett. 2001, 3, 2537-2538.
- 34 a) M. Ganguli, L. T. Burka, T. M. Harris, J. Org. Chem. 1984, 49, 3762-3766; b) B. Franck, H.-P. Gehrken, Angew. Chem. 1980, 92, 484-486; Angew. Chem. Int. Ed. Engl. 1980, 19, 461-462; c) R. Yamauchi, N. Miyake, K. KATO, Y. UENO, Biosci. Biotechnol. Biochem. 1992, 56, 1529-1532.
- 35 A. L. CASTELHANO, D. H. PLIURA, G. J. Taylor, K. C. Hsieh, A. Krantz, J. Am. Chem. Soc. 1984, 106, 2734-2735.
- 36 N. Krause, A. Hoffmann-Röder, J. Cantstus, in preparation.
- 37 a) G. HANDKE, N. KRAUSE, Tetrahedron Lett. 1993, 34, 6037-6040; b) N.

- KRAUSE, G. HANDKE, U. WECKER, in Stereoselective Reactions of Metal-Activated Molecules, H. WERNER, J. Sundermeyer (Eds.), Vieweg, Braunschweig, 1995, pp. 153-155.
- 38 a) N. Krause, J. Org. Chem. 1992, 57, 3509-3512; b) N. Krause, R. WAGNER, A. GEROLD, J. Am. Chem. Soc. 1994, 116, 381-382; c) J. CANISIUS, T. A. MOBLEY, S. BERGER, N. KRAUSE, Chem. Eur. J. 2001, 7, 2671-2675.
- 39 N. Krause, M. Uerdingen, unpublished results.
- 40 a) J. Canisius, A. Gerold, N. KRAUSE, Angew. Chem. 1999, 111, 1727-1730; Angew. Chem. Int. Ed. 1999, 38, 1644-1646.
- 41 a) T. L. Underiner, H. L. Goering, J. Org. Chem. 1987, 52, 897-900; b) T. L. Underiner, H. L. Goering, J. Org. Chem. 1988, 53, 1140-1146; c) T. L. Underiner, S. D. Paisley, J. SCHMITTER, L. LEHESKI, H. L. GOERING, J. Org. Chem. 1989, 54, 2369-2374; d) T. L. Underiner, H. L.

- GOERING, J. Org. Chem. 1990, 55, 2757-2761; e) T. L. Underiner, H. L. GOERING, J. Org. Chem. 1991, 56, 2563-2572.
- 42 N. Nakanishi, S. Matsubara, K. UTIMOTO, S. KOZIMA, R. YAMAGUCHI, J. Org. Chem. 1991, 56, 3278-3283.
- 43 S.-K. KANG, D.-G. CHO, J.-U. CHUNG, D.-Y. Kim, Tetrahedron: Asymmetry 1994, 5, 21-22.
- 44 H. RAKOTOARISOA, R. G. PEREZ, P. Mangeney, A. Alexakis, Organometallics 1996, 8, 1957-1959.
- 45 M. Purpura, N. Krause, Eur. J. Org. Chem. 1999, 267-275.
- 46 N. Krause, M. Purpura, Angew. Chem. 2000, 112, 4512-4514; Angew. Chem. Int. Ed. 2000, 39, 4355-4356.
- 47 a) A. Alexakis, P. Mangeney, A. GHRIBI, I. MAREK, R. SEDRANI, C. Guir, J. F. Normant, Pure Appl. Chem. 1988, 60, 49-56; b) A. Alexakis, I. Marek, P. Mangeney, J. F. NORMANT, J. Am. Chem. Soc. 1990, 112, 8042-8047.

167

5

Copper(I)-mediated 1,2- and 1,4-Reductions

Bruce H. Lipshutz

5.1 Introduction and Background

Long before Kharasch's seminal paper on copper-catalyzed additions of Grignard reagents to conjugated enones (1941) [1] and Gilman's first report on formation of a lithiocuprate (Me₂CuLi; 1952) [2] appeared, Cu(I) hydride had been characterized by Wurtz as a red-brown solid [3]. Thus, "CuH" is among the oldest metal hydrides to have been properly documented, dating back to 1844. Although studied sporadically for many decades since, including an early X-ray determination [4], most of the initial 'press' on copper hydride was not suggestive of it having potential as a reagent in organic synthesis. In fact, it was Whitesides who demonstrated that this unstable material is often an unfortunate result of a β -elimination, which occurs to varying degrees as a thermal decomposition pathway of alkylcopper species bearing an available β -hydrogen (such as n-BuCu; Eq. 5.1) [5]. Stabilized forms of CuH, most notably Osborn's hexameric [(Ph3P)CuH]6 [6], for which an X-ray structure appeared in 1972, for years saw virtually no usage in organic synthesis even in a stoichiometric sense, let alone a catalytic one. Several groups in the 1970s and early 80s, however, recognized the value of hydride delivery to α, β -unsaturated frameworks with the aid of copper complexes. This interest resulted in several hydrido cuprates of widely varying constitution, each intended for use as a stoichiometric 1,4-reductant.

The mixed hydrido cuprate " $R_rCu(H)Li$ ", designed to contain a nontransferable or 'dummy' group R_r (such as 1-pentynyl, t-butoxide, or thiophenoxide) [7], was found by Boeckman et al. to effect conjugate reductions of enones in good yields [8]. The preferred ligand R_r is the 1-pentynyl group, which is likely to impart a reactivity greater than that of the corresponding heteroatom-based mixed hydrido complex (Eq. 5.2). The reagents are made by initial treatment of CuI with DIBAL in toluene at $-50~{}^{\circ}\text{C}$, to which the lithium salt of the dummy ligand is then added. Similar treatment of CuI with potassium tri-sec-butylborohydride has been suggested by

Negishi to give rise to "KCuH₂", which reduces ketones and other functional groups [9].

$$\frac{C_0H_7 \Longrightarrow Cu(H)Li}{THF, HMPA, -20^{\circ}, 24 \text{ h}}$$
(5.2)

Reduction of "Me₃CuLi₂" with LAH was described by Ashby and co-workers as a means to produce the powerful reducing reagent "Li₂CuH₃" [10], which can be used in either THF or Et₂O at room temperature for conjugate reductions (Eq. 5.3). Strangely, the species analogous to Gilman's reagent, "LiCuH₂", delivers hydride to an enone in THF in a predominantly 1,2-sense.

Semmelhack et al. chose CuBr, together with either Red-Al or LiAl(OMe)₃H in a 1:2 ratio, to afford presumed hydrido cuprates, albeit of unknown composition [11]. In THF, both the former "Na complex" and the latter "Li complex" are heterogeneous (and of differing reactivities), yet each is capable of 1,4-reductions of unsaturated ketones and methyl esters (Eq. 5.4). Commins has used a modified version, prepared from lithium tri-t-butoxy-aluminium hydride and CuBr (in a 3:4.4 ratio), to reduce a 3-substituted-N-acylated pyridine regioselectively at the α-site [12].

5.2 More Recent Developments: Stoichiometric Copper Hydride Reagents

While these and related reagents have seen occasional use, none has been the overwhelming choice over another, perhaps due to questions of functional group tolerance and/or a general lack of structural information. In 1988, however, Stryker et al. described (in communication form) results from a study on the remarkable tendency of the Osborn complex [(Ph₃P)CuH]₆ [6a, b] to effect highly regioselective conjugate reductions of various carbonyl derivatives, including unsaturated ketones, esters, and aldehydes [13]. The properties of this phosphine-stabilized reagent

(mildness of reaction conditions, functional group compatibility, excellent overall efficiencies, etc.) were deemed so impressive that this beautifully crystalline red solid was quickly propelled to the status of "Reagent of the Year" in 1991. It is now commonly referred to, and sold commercially, as "Stryker's Reagent" [14].

Among its salient features, this copper hydride (written for simplicity from now on as the monomer (Ph $_3$ P)CuH) can be prepared in multi-gram quantities from four precursor compounds (CuCl, NaO-t-Bu, PPh3, and H2) that are not only readily available but also very inexpensive (Eq. 5.5) [15]. It is also noteworthy that the byproducts of formation (NaCl and t-BuOH) are especially "environmentally friendly".

CuCl + NaO-#Bu + PPh₃
$$\xrightarrow{\text{H}_{8} \text{ PhH, rt}}$$
 [(Ph₃P)CuH]₆ + NaCl + #BuOH (5.5)

The quality of (Ph₃P)CuH can vary, depending upon the care taken in the crystallization step. An unknown impurity – that shows broad signals at δ 7.78, 7.40, and 7.04 in the 1 H NMR spectrum in dry, degassed, benzene- d_{6} – is usually present in all batches of the reagent, although small amounts are not deleterious to its reduction chemistry. The hydride signal, a broad multiplet, occurs at 3.52 ppm (Fig. 5.1). Proton NMR data reported by Caulton on the related [(tol)3P]CuH include a "broad but structured multiplet centered on $\delta + 3.50$ in C₆D₆" [16].

Either hexane or pentane can replace acetonitrile to induce crystallization without impact on yield or purity. The hexamer can be weighed in air for very short periods of time, but must be stored protected under an inert atmosphere. Curiously, (Ph3P)CuH as originally studied may occasionally be most effective when used in the presence of moist organic solvent(s), the water providing an abundant source of protons, some of which ultimately find their way into the neutral carbonyl adduct (Eq. 5.6). When TMSCl (= 3 equiv.) is present in place of water, in situ trapping of the presumed copper enolates results; on workup these afford carbonyl products directly [13, 16]. More hindered silyl chlorides (such as t-BuMe₂SiCl) produce isolable silyl enol ethers, as is to be expected [13b]. Unlike cuprates, the reagent is of low basicity. Reactions are highly chemoselective, with 1,4-reductions of enones proceeding in the presence of halides and sulfonates, as well as sulfide residues in the y-position [17].

Preparation of [(Ph₃P)CuH]₆ [15]

Triphenylphosphine (100.3 g, 0.3825 mol) and copper(I) chloride (15.14 g, 0.1529 mol) were added to a dry, septum-capped 2 L Schlenk flask and placed under nitrogen. Benzene (distilled and deoxygenated, approximately

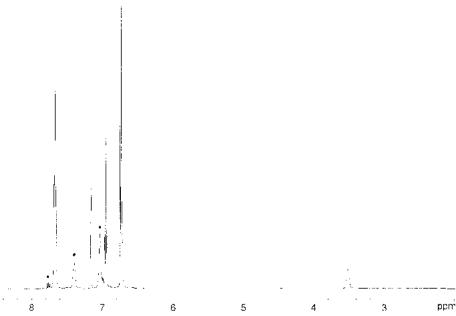


Fig. 5.1. ¹H NMR spectrum of [(Ph₃P)CuH]₆ in C_6D_6 . Chemical shifts: δ 7.67, 6.95, 6.74, and 3.52. Signals marked by - indicate impurities.

800 mL) was added by cannula, and the resultant suspension was stirred. The NaO-t-Bu/toluene suspension was transferred by wide-bore cannula to the reaction flask, washing if necessary with additional toluene or benzene, and the yellow, nearly homogeneous mixture was placed under positive hydrogen pressure (1 atm) and stirred vigorously for 15 24 h. During this period the residual solids dissolved, the solution turned red, typically within one hour, then dark red, and some gray or brown material precipitated. The reaction mixture was transferred under nitrogen pressure through a widebore Teflon cannula to a large Schleuk filter containing several layers of sand and Celite. The reaction flask was rinsed with several portions of benzene, which were then passed through the filter. The very dark red filtrate was concentrated under vacuum to approximately one-third of its original volume, and acetonitrile (dry and deoxygenated, 300 mL) was layered onto the benzene, promoting crystallization of the product. The yellow-brown supernatant was removed by cannula, and the product was washed several times with acetonitrile and dried under high vacuum to give 25.0 32.5 g (50 65%) of bright red to dark-red crystals.

The yields obtained by this procedure are roughly comparable to those obtained starting directly with purified (CuO-t-Bu)₄ and one atmosphere of hydrogen, although higher yields (ca. 80%) have been reported under 1500 psi of hydrogen pressure [16].

Representative procedure for conjugate reduction of an enone [13]

[(Ph3P)CuH]6 (1.16 g, 0.82 mmol), weighed under inert atmosphere, and Wieland Miescher ketone (0.400 g, 2.24 mmol) were added to a 100 mL, two-necked flask under positive nitrogen pressure. Deoxygenated benzene (60 mL) containing 100 μ L of H2O (deoxygenated by nitrogen purge for 10 min) was added by cannula, and the resulting red solution was allowed to stir at room temperature until starting material had been consumed (TLC monitoring; 8 h). The cloudy red-brown reaction mixture was opened to air, and stirring was continued for 1 h, during which time copper-containing decomposition products precipitated. Filtration through Celite and removal of the solvent in vacuo gave crude material which was purified by flash chromatography to afford the product in 85% yield.

Fig. 5.2. Pseudolaric acid A.

An insightful application of Stryker's reagent can be found in efforts by Chiu aimed at the total synthesis of pseudolaric acid A (Fig. 5.2), where a conjugate reduction-intramolecular aldol strategy was invoked [18]. Treatment of precursor enone 1a with (Ph3P)CuH (two equivalents) in toluene at sub-ambient temperatures quickly afforded the annulated aldol products 2 and 3 in a 2.4-3:1 ratio (Scheme 5.1). The same treatment in THF produced a higher percentage (6:1) of the undesired cis-fused isomer 2. Earlier attempts under basic conditions to form the required trans-fused aldol based on the saturated analog of 1b met with failure, the 10-membered skeleton 4 forming from second-stage decomposition of the initially derived mix of 2 and 3. The switch to copper hydride, used at uncharacter-

Scheme 5.1. Intramolecular 1,4-addition-aldol reactions.

istically low temperatures (-23°) , ultimately provided entry to the bicyclic array by virtue both of the directed 1,4-hydride delivery to enone 1a, and also of the relatively non-basic nature of the intermediate copper alkoxide.

Soon after the appearance of the series of papers from the Stryker labs [13, 15, 17, 19a], an alternative method for the presumed generation of stoichiometric halohydrido cuprate "XCu(H)Li" (X = Cl or I) was reported (Scheme 5.2) [20]. It relies on a transmetalation between Bu₃SnH and CuI/LiCl, the inorganic salts combining to form a mixed dihalocuprate (5) [21], which may then undergo a ligand exchange with the tin hydride to afford halohydrido species 6.

Scheme 5.2. In situ generation of hydrido cuprates.

Selective 1,4-reduction of unsaturated aldehydes and ketones by 6 occurs smoothly in THF between -25 °C and room temperature within a few hours (Eq. 5.7). Particularly noteworthy is the realization that phosphines are noticeably absent from the reaction medium. The analogous combination of CuCl/Bu₃SnH in N-methyl-2pyrrolidinone (NMP) or DMF does not behave identically [22], failing to react with the hindered substrate isophorone, whereas a 72% yield of the corresponding reduced ketone is formed with reagents XCu(H)Li/Bu₃SnH. Nonetheless, a form of "CuH" is being generated in this more polar medium, effectively utilized by Tanaka to arrive at 3-norcephalosporin 8 upon reaction with allenic ester 7 (Scheme 5.3).

Scheme 5.3. Conversion of allenyl ester 7 to 3-norcephalosporin 8.

Representative procedure for Bu₃SnH/CuI/LiCl conjugate reduction [20]

(E,E)-8-Acetoxy-2,6-dimethyl-2,6-octadienal (80 mg, 0.391 mmol) was added at -60 °C to a solution of CuI (190.4 mg, 1.00 mmol) and LiCl (100.8 mg, 2.38 mmol) in THF (4.5 mL), followed by Me₃SiCl (0.27 mL, 2.09 mmol). After 10 min, Bu₃SnH (0.30 mL, 1.10 mmol) was added dropwise, producing a cloudy yellow slurry. The reaction mixture was then allowed to warm gradually to 0 °C over 2 h. A concurrent darkening to a reddishbrown color was observed. Quenching was carried out with 10% aq. KF solution (3 mL), resulting in an orange precipitate. The organic layer was filtered through Celite and evaporated, and the residue was rapidly stirred with additional quantities of 10% KF for ca. 30 min before diluting with ether. The organic layer was then washed with saturated aq. NaCl solution and dried over anhydrous Na₂SO₄. The solvent was then removed in vacuo and the material was chromatographed on silica gel. Elution with EtOAc/ hexanes (10:90) gave 82 mg (100%) of (E)-8-acetoxy-2,6-dimethyl-6-octenal as a colorless oil; TLC (15% EtOAc/hexanes) R_f 0.22.

Interestingly, the CuCl/PhMe2SiH reagent pair was reported by Hosomi and coworkers to generate what was presumed to be CuH, also uncomplexed by phosphine [23]. The choice of solvent is critical, with ligand exchange occurring at room temperature in DMF or DMI (1,3-dimethylimidazolidinone), but not in THF, CH3CN, or CH2Cl2, suggesting a stabilizing, Lewis basic role for the solvent in place of phosphine. Neither CuCN nor CuI are acceptable replacements for CuCl. When ratios of 4:2 silane:CuCl are used, along with one equivalent of substrate, excellent yields of 1,4-adducts may be anticipated (Eq. 5.8).

Although unhindered enones and enoates work well, attempted 1,4-reduction of acrylonitrile afforded α -silylated product 9 (Scheme 5.4). Presumably this unexpected product results from a 1,4-reduction/α-anion trapping by the PhMe₂SiCl present in solution. Curiously, there was no mention of any similar quenching of intermediate enolates on either carbon or oxygen when unsaturated ketones or esters were involved.

Scheme 5.4. 1,4-Reduction/ α -silylation of acrylonitrile.

On the basis of the identical O Cu to O Si transmetalation, Mori and Hiyama examined alternative Cu(I) salts in the presence of Michael acceptors [24, 25]. This study produced the finding that PhMe2SiH/CuF(PPh3)3-2EtOH (1.5 equivalents) in DMA (N,N-dimethylacetamide) is effective for conjugate reductions (Eq. 5.9). Triethylsilane could also be employed in place of PhMe2SiH, but other silyl hydrides gave either undesired mixtures of 1,4- and 1,2-products (with Ph2SiH2 and (EtO)₃SiH, for example) or no reaction (with PhCl₂SiH, for example). Hindered enones, such as isophorone and pulegone, were not reduced under these conditions. Most efforts at trapping intermediate enolates were essentially unproductive, aside from modest outcomes when D₂O and allyl bromide were used [25].

The successes described above notwithstanding, synthetic chemistry in the 1990s was in large measure characterized by 'catalysis', which encouraged development of organocopper processes that were in line with the times. The cost associated with the metal was far from the driving force; that was more (and continues to be) a question of transition metal waste. In other words, proper disposal of copper salt by-products is costly, and so precludes industrial applications based on stoichiometric copper hydrides.

5.3 1,4-Reductions Catalytic in Cu(I)

Prior to the advent of triphenylphosphine-stabilized CuH [6a, b, 13], Tsuda and Saegusa described use of five mole percent MeCu/DIBAL in THF/HMPA to effect hydroalumination of conjugated ketones and esters [26]. The likely aluminium enolate intermediate could be quenched with water or TMSCl, or alkylated/acylated with various electrophiles (such as MeI, allyl bromide, etc.; Scheme 5.5). More

Scheme 5.5. Reductive alkylations of enones using catalytic MeCu.

highly conjugated networks, such as in 10, were reduced in a 1,6 fashion, with the enolate being alkylated at the expected α-site.

t-BuCu has been used extensively in place of MeCu en route to synthons (such as 11) of value in the construction of the D vitamins (Eq. 5.10) [27]. Very recently, replacement of t-BuCu by a more stable silyl analogue, PhMe2SiCu, has been reported:

- (1) to minimize the amount of copper required for this reductive bromination (6.5 versus 20 mol%; Eq. 5.11),
- (2) to afford enhanced regioselectivity (> 19:1 ratio for 1,4-reduction versus 1,2addition to the isolated keto group),
- (3) to produce higher overall yields (70 versus 57%), and
- (4) to be readily usable in large scale reactions [28].

Not long after Stryker's initial report on (Ph3P)CuH [13], that group discovered that it was possible to establish a catalytic cycle in which molecular hydrogen serves as the hydride source [19]. Although yields are very good, very high pressures (ca. 500-1000 psi) are unfortunately needed, at which products of overreduction are occasionally noted in varying amounts (Eqs. 5.12, 5.13). Addition of PPh₃ stabilizes the catalyst, although turnover appears to be slowed. The inconveniently high pressures can be avoided by the introduction of t-BuOH (10-20 equiv./copper), which promotes clean hydrogenation at one atmosphere of hydrogen, presumably by protonolysis of the unstable copper(I) enolate intermediate to give the more stable copper t-butoxide complex (vide infra).

The continued search for methods to effect 1,4-reductions using catalytic quantities of CuH produced several reports late in the last decade. The basis for these new developments lies in an appreciation for the facility with which various silyl hydrides undergo transmetalation with copper enolates. Thus, a limited amount of (Ph₃P)CuH (0.5–5 mol%) in the presence of PhSiH₃ (1.5 equivalents relative to substrate) reduces a variety of unsaturated aldehydes and ketones in high yields (Eq. 5.14) [29]. Limitations exist with respect to the extent of steric hindrance in the educt. Similar results can be achieved using Bu₃SnH in place of PhSiH₃, although the latter hydride source is the appropriate (albeit expensive) choice from the environmental perspective.

An alternative, in situ source of (Ph₃P)CuH can be fashioned from CuCl/PPh₃/TBAF and PhMe₂SiH (1.2 equivalents) in DMA, initially made at 0° with the reaction then being run at room temperature [25]. Unhindered acyclic enones require 20 mol% of CuCl, PPh₃, and TBAF for best results (Eq. 5.15). Cyclic examples are more demanding, with substituted cyclohexenones such as carvone undergoing reduction when excess reagents are present (1.6 equivalents). Acetylcyclohexene was unreactive to the catalytic conditions above.

Use of the Stryker protocol (CuCl + NaO-t-Bu under H_2) for generating a copper hydride, but replacing PPh₃ with *p*-tol-BINAP and H_2 with four equivalents of polymethylhydrosiloxane (PMHS) [30], is presumed to produce the corresponding reagent bearing a nonracemic bidentate phosphine ligand, (*p*-tol-BINAP)CuH. This species, derived in situ and first described by Buchwald, is capable of delivering hydride to β , β -disubstituted- α , β -unsaturated esters, with control over the absolute stereochemistry at the resulting β -site (Eq. 5.16) [31]. Likewise, conjugated cyclic enones can be reduced with asymmetric induction by the same technique [32], although either (*S*)-(BINAP)CuH or Roche's [(*S*)-BIPHEMP]CuH can be em-

ployed here as well as (p-tol-BINAP)CuH (Eq. 5.17) [33]. In both methods, PMHS functions as the stoichiometric source of hydride, which participates in a transmetalation step involving the likely copper enolate to regenerate the copper hydride catalyst [34]. Enoates require ambient temperatures, excess PMHS (4 equivalents), and reaction times of the order of a day, while enones react at 0 °C and require only 1.05 equivalents of silyl hydride, to prevent overreduction. The ee values obtained range from 80-92% for the newly formed esters, while those for ketones are generally higher (92-98%).

General procedure for asymmetric conjugate reduction of α, β -unsaturated esters [31]

(S)-p-tol-BINAP (10 mg, 0.162 mmol) was placed in a flame-dried Schlenk flask, and dissolved in toluene (6 mL). The solution was degassed by briefly opening the flask to vacuum, then backfilling with argon (this degassing procedure was repeated 3 more times). The Schlenk flask was transferred into an argon-filled glovebox. NaO-t-Bu (8 mg, 0.083 mmol) and CuCl (8 mg, 0.081 mmol) were placed in a vial, and dissolved in the reaction solution. The resulting mixture was stirred for 10 20 min. The Schlenk flask was removed from the glovebox, and PMHS (0.36 mL, 6 mmol) was added to the reaction solution under an argon purge. The resulting solution turned a reddish-orange color. The α , β -unsaturated ester (1.5 mmol) was added to the reaction solution under argon purging and the resulting solution was stirred until reaction was complete, as monitored by GC. The Schlenk flask was then opened and ethanol (0.3 mL) was added dropwise to the reaction (CAUTION! Rapid addition of ethanol caused extensive bubbling and foaming of the solution). The resulting solution was diluted with ethyl ether, washed once with water and once with brine, and backextracted with ethyl ether. The organic layer was then dried over anhydrous MgSO4 and the solvent removed in vacuo. The product was then purified by silica column chromatography.

General procedure for the asymmetric reduction of α, β -unsaturated ketones [32]

A chiral bis-phosphine $\{(S) - p - \text{tol-BINAP}, (S) - \text{BINAP}, \text{ or } (S) - \text{BIPHEMP}\}$ (0.05 mmol) was placed in a flame-dried Schlenk tube and dissolved in toluene (2 mL). The Schlenk tube was transferred to a nitrogen-filled glovebox. In the glovebox, NaOt-Bu (5 mg, 0.05 mmol) and CuCl (5 mg, 0.05 mmol) were weighed into a vial. The toluene solution of the chiral bisphosphine was added by pipette to the vial to dissolve solids and the resulting solution was then transferred back into the Schlenk tube. The Schlenk tube was removed from the glovebox, the solution was stirred for 10 20 min, and PMHS (0.063 mL, 1.05 mmol) was added to the solution with argon purging. The resulting solution turned reddish orange in color. The solution was then cooled to the specified temperature. The α , β -unsaturated ketone (1.0 mmol) was added to the reaction mixture with argon purging and the resulting solution was stirred at room temperature (18 27 h). Consumption of the α , β -unsaturated ketone was monitored by GC. When the reaction was complete, the Schlenk tube was opened and water (1 mL) was added. The resulting solution was diluted with diethyl ether, washed once with water and once with brine, and back-extracted with diethyl ether. TBAF (1 mmol, 1 M in THF) was added to the combined organic extracts and the resulting solution was stirred for 3 h. The solution was then washed once with water and once with brine, back-extracted with diethyl ether, and the organic layer was dried over anhydrous MgSO4. The solvent was then removed in vacuo and the product was purified by silica column chromatography. In order to determine the ee, the product was converted into the corresponding (R,R)-2,3-dimethylethylene ketal and then analyzed by GC analysis (Chiraldex G-TA) for the diastereomeric ketals.

Intermediate silyl enol ethers can be trapped and isolated from initial conjugate reductions of enones with Stryker's reagent, or they may be used directly in Mukaiyama-type aldol constructions (i.e, in 3-component constructions; 3-CC) [35]. Thus, in a one-pot sequence using toluene as the initial solvent and 1–5 mol% (Ph₃P)CuH relative to enone, any of a number of silyl hydrides (such as PhMe₂SiH, Ph₂MeSiH, tetramethyldisiloxane (TMDS), or PMHS) can be employed to produce the corresponding silyl enol ether. Dilution with CH₂Cl₂ without isolation, followed by cooling to –78 °C and introduction of an aldehyde, followed by a Lewis acid (TiCl₄ or BF₃·OEt₂) results in good yields of aldol adducts (Eq. 5.18). Unfortunately, there is no acyclic stereocontrol (*syn* versus *anti* selectivity) in these 3-CC reactions [34b].

Representative procedure for conjugate reduction-aldol 3-CC: 2-{Hydroxy-[1-{toluene-4-sulfonyl}-1H-indol-3-yl}-methyl}-4,4-dimethylcyclohexanone [35]

Dimethylphenylsilane (0.23 mL, 1.5 mmol, 1.5 equiv.) was added dropwise to a homogeneous, red solution of [CuH(PPh₃)]₆ (16.0 mg, 0.008 mmol, 5 mol% Cu) in toluene (2.0 mL) and the solution was stirred at room temperature for ca. 5 min. 4,4-Dimethylcylohexenone (0.13 mL, 1.0 mmol) was

added dropwise to the resulting red solution, which was stirred at room temperature. After ca. 7 min, the solution had darkened to a heterogeneous brown/black. Monitoring of the reaction by TLC showed that the enone had been consumed after 3 h, forming the corresponding silyl enol ether. The solution was diluted with CH2Cl2 (5.0 mL) and added by cannula to a solution of N-tosyl-indole-3-carboxaldehyde (0.45 g, 1.5 mmol, 1.5 equiv.) and $TiCl_{4}$ (1.5 mL of 1.0 M solution in $CH_{2}Cl_{2}$, 1 equiv.), in $CH_{2}Cl_{2}$ (7.0 mL) at -78 °C. Stirring was continued for 1 h and the reaction was quenched with saturated NaHCO₃ solution (6.0 mL) at -78 °C, and allowed to warm to room temperature. A blue precipitate was filtered using a Buchner funnel, and the aqueous layer was extracted with diethyl ether $(3 \times 25 \text{ mL})$. The combined organic portions were washed with brine $(2 \times 50 \text{ mL})$ and dried over anhydrous Na2SO4, and the solvent was removed in vacuo. Purification by flash chromatography (1:9 EtOAc/PE to 1:4 EtOAc/PE) afforded diastereomers as a yellow oil (combined yield 0.35 g, 82%).

5.4 1,2-Reductions Catalyzed by Copper Hydride

Reductions of non-conjugated aldehydes and ketones based on copper chemistry are relatively rare. Hydrogenations and hydrosilylations of carbonyl groups are usually effected by transition metals such as Ti [36], Rh [37], and Ru [38], and in one case, Cu [39]. An early report using catalytic [(tol)3P]CuH in reactions with formaldehyde, in which disproportionation characteristic of a Tishchenko reaction took place, is indicative of a copper(I) alkoxide intermediate [16]. Almost two decades later, variations in the nature of the triphenylphosphine analogue (Strykers' reagent), principally induced by introduction of alternative phosphine ligands, have resulted in remarkable changes in the chemoselectivity of this family of reducing agents [40, 41]. Although not as yet fully understood, subtle differences even between alkyl substituents on phosphorus can bring about dramatic shifts in reactivity patterns. Changes in the composition of [(Ph3P)CuH]6 caused by ligands such as tripod (1,1,1-tris-(diphenylphosphinomethyl)-ethane), which forms a dinuclear bidentate complex (Fig. 5.3) [42], have been used by Stryker to great advantage to reduce ketones in a 1,2-fashion.

Both conjugated and non-conjugated ketones, as well as conjugated aldehydes, undergo clean 1,2-addition in the presence of CuH modified by Me₂PhP (Eq. 5.19). Ketones react under an atmosphere of hydrogen over a roughly 24 hour period. The presence of t-BuOH (10-20 equiv/copper) is important for increasing catalyst life-

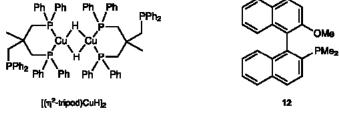


Fig. 5.3. Ligands tested for 1,2-reductions.

time, as in the corresponding cases of 1,4-reductions (vide supra), presumably by conversion of the initially formed copper alkoxide to the alcohol product in exchange for a thermally more stable $[Cu(O\text{-}t\text{-}Bu)]_4$. This complex is then hydrogenolyzed to reform the copper hydride catalyst. In most cases, isolated olefins are untouched, as is true for dienes, esters, epoxides, alkynes, and acetals. Rates are slower in substrates bearing free alkenes, probably a consequence of $d-\pi^*$ interactions with the metal. Acyclic conjugated enones afford a high degree of control for generation of allylic alcohol products, with only small percentages of overreduced material formed when using PhMe₂P-modified reagent. The corresponding PhEt₂P-altered Stryker's reagent, however, does not function as a catalyst for this chemistry (this is also the case with the novel biaryl P,O-ligand 12, the dimethylphosphino analog of MOP) [43], while the mixed dialkylphenyl case Me(Et)PPh is unexpectedly effective (e.g., for β -ionone, 13: >50:1; 95% yield; Eq. 5.20).

With these new levels of appreciation of the nuances associated with CuH-phosphine interactions, considerable fine-tuning of Stryker's reagent is now possible. One case in point involves enone 14, which can be converted predominately into any one of three possible products (Scheme 5.6) [40].

Scheme 5.6. Selective reductions as a function of phosphine.

General procedure for reduction of saturated ketones using [(Ph₃P)CuH]₆ and Me₂PPh [40]

In a glovebox, $[(Ph_3P)CuH]_6$ (1 10 mol% Cu), Me_2PPh (6 equiv./Cu), and t-butanol (10 20 equiv./Cu) were combined in a Schlenk flask and dissolved in benzene. A solution of the substrate (10 100 equiv./Cu) in benzene (0.4 0.8 M in substrate) was added to this solution. The flask was sealed, removed from the drybox and, after one freeze-pump-thaw degassing cycle, placed under a slight positive pressure of hydrogen. The resulting yellow-orange homogeneous solution was allowed to stir until completion, as monitored by TLC. The reaction mixture was exposed to air, diluted with ether, and treated with a small amount of silica gel. This mixture was stirred in air for \geq 0.5 h, filtered, concentrated in vacuo, and purified by flash chromatography. If the polarity of the product was similar to that of the residual phosphine, the crude mixture was treated with sodium hypochlorite (5% aqueous solution) and filtered through silica gel/MgSO₄ prior to chromatography.

General procedure for reduction of saturated ketones using (PhMe₂P)CuH produced in situ [40]

Under an inert atmosphere, a solution of the substrate in benzene was added to a slurry of freshly purified CuCl (5 mol%), Me₂PPh (6 equiv./Cu), and t-butanol (10 equiv./Cu) in benzene (final concentration: 0.4 0.8 M in substrate). After degassing with one freeze-pump-thaw cycle, the suspension was placed under a slight positive pressure of hydrogen and allowed to stir until completion, as monitored by TLC. The product was isolated and purified as described above.

Further alterations in the above reaction conditions, notably the replacement of H₂ with various silanes as the hydride source, results in a net hydrosilylation of non-conjugated aldehydes and ketones [44]. The catalytic (PPh₃)CuH/excess R₃SiH combination is highly effective at converting aldehydes directly into protected primary alcohols, with silanes ranging from PhMe₂SiH – which produces a relatively labile silyl ether – to Hanessian's especially hydrolytically stable *t*-BuPh₂Si derivatives [45], all from the corresponding precursor silanes (Eq. 5.21). Levels of CuH used tend to be in the 1–3 mol% range, although from the few cases studied to date, one tenth as much may be sufficient to drive the reaction to completion. The more reactive PMHS [30] appears to be the ideal choice of silane for catalyst usage in the <1 mol% category, although the use of this polymeric hydride source necessitates workup under basic conditions.

Representative 1,2-reduction/silylation of an aldehyde, giving (2-bromobenzyloxy)-diphenylmethylsilane [44]

A dried 25 mL flask with a rubber septum top was flushed with argon and charged with $[PPh_3(CuH)]_6$ (53 mg, 0.162 mmol), as a red solid. Toluene (5.4 mL) was added, followed by neat diphenylmethylsilane (1.4 mL, 7.0 mmol), resulting in a homogeneous red solution. In a second dry, argonflushed vessel (10 mL), fitted with a rubber septum, 2-bromobenzaldehyde (0.63 mL, 5.4 mmol) and toluene (4 mL) were mixed together, and the solution was transferred by cannula, with stirring, into the solution (at room temperature) of copper reagent and silane. The reaction mixture was monitored by TLC (elution with 5% diethyl ether/hexane, $R_f=0.74$); the aldehyde was consumed after 30 min. The reaction was filtered through a pad of Celite/charcoal, washed with EtOAc (2 × 15 mL), and the filtrate concentrated to an oil in vacuo. Kugelrohr distillation (168 °C, 0.2 0.3 Torr) yielded the title compound as a colorless oil (1.98 g, 95%).

Ketones take considerably longer to reduce than aldehydes (10–24 h), although yields are not compromised. Differences in reactivity toward aldehydes and ketones can be used to advantage, with highly chemoselective reduction occurring at the aldehyde in the presence even of a methyl ketone (Eq. 5.22) [44].

In situ production of phosphine-free CuH from CuCl or CuOAc (0.3–1.0 equivalents), in the presence of an excess of PhMe₂SiH in DMI at room temperature, displays a remarkable preference for reductions of aryl ketones (e.g., 15) over aliphatic ones such as 16 (Eq. 5.23) [46]. Reactions require a day or more to reach completion, concentrations of 0.5 M notwithstanding, but yields have been uniformly good (77–88%) for the few cases examined. Aldehydes, however, show no such selectivity and are reduced to the corresponding primary alcohols, albeit in high yields.

5.5 Heterogeneous CuH-Catalyzed Reductions

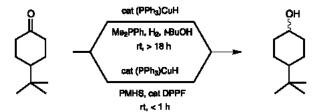
Catalysts such as copper chromite, first prepared and utilized for carbonyl 1,2reductions back in 1931 [47], have given way to more modern reagents for effecting related transformations under heterogeneous conditions. Ravasio first described Cu/Al2O3 in steroid reductions (steroid-4-en-3-ones), examining the regioselectivities, stereoselectivities, and chemoselectivities of this supported reductant at 60 °C under a hydrogen pressure of one atmosphere [48]. A follow-up study by that group, described in 1996, promotes the more generally useful Cu/SiO₂ [48]. Under an atmosphere of H_2 at 90 °C in toluene, this catalyst effects 1,4-reductions of conjugated enones while leaving isolated olefins intact. Although the preparation of the catalyst is fairly involved (cf. the procedure below), the method results in excellent levels of conversion, and high yields of the corresponding ketones. The featured example in this work is that of β -ionone, from which the desired keto product, reflecting reduction of the α, β -site, was provided with high levels of regiocontrol (Eq. 5.24). Removal of the catalyst by filtration, followed by reactivation at 270 °C, essentially did not result in any change in selectivity after four consecutive cycles. These reactions are believed to involve CuH, generated on the surface of pyrogenic silica.

Catalyst preparation [49]

Concentrated NH₄OH was added to a solution of Cu(NO₃)₂·3H₂O (25 mL, 160 g/L) until pH = 9 was reached, the support (silica, 10 g) was then added, and the mixture was slowly diluted to 3 L in order to allow hydrolysis of the Cu[NH₃]₄⁺⁺ complex and deposition of the finely dispersed product to occur. The solid was separated by filtration, washed with water, dried overnight at 120 °C, and calcined in air at 350 °C for 3 hours. In this way, 8% Cu samples, 308 m²/g BET surface area, were obtained. The catalyst was reduced with H2 at 270 °C at atmospheric pressure, the water formed being removed under reduced pressure, before the hydrogenation reaction.

Experimental conditions

The substrates (2 mmol) were dissolved in toluene (12 mL) and the solution was transferred under H2 into a glass reaction vessel in which the catalyst (0.3 g) had been reduced previously. Reactions were carried out at 90 °C and at atmospheric pressure, with magnetic stirring, the final charge of hydrogen being adjusted to 1 atm with a mercury leveling bulb, and monitored by withdrawing 20 μL samples through a viton septum and analyzing them by capillary GLC. After completion, the catalyst was filtered off, the solvent removed, and the reaction mixture analyzed by NMR. Superatmospheric pressure (1.5 5 atm) could conveniently be used to speed up the reaction without loss in selectivity when higher substrate/Cu ratios were used. For the recycling tests, the catalyst was washed with diethyl ether, dried, and reactivated at 270 °C.


A fascinating study on the surface science of copper hydride on SiO₂, as well as on Al₂O₃, ceria (cerium oxide), and ZnO, has appeared [50]. Pure, yet thermally unstable, CuH can be precipitated as a red-brown solid from aqueous cupric sulfate and hypophosphorous acid in the presence of H_2SO_4 , and has been characterized by powder X-ray diffraction (PXRD) (Eq. 5.25). Transmission electron microscopy (TEM) data suggest that it is most stable when deposited on acidic SiO₂.

$$4Cu^{+2} + 6H_2PO_2^- + 6H_2O \xrightarrow{H^+} 4CuH_{ppt} + 6H_2PO_3^- + 8H^+$$
 (5.25)

5.6 Overview and Future Developments

Although many variations on reagents bearing hydride ligated to copper(I) have been developed, it was the advent of Stryker's reagent that provided a well defined, easily handled, and crystalline source of CuH. This hexameric copper hydride, [(Ph₃P)CuH]₆, has been enthusiastically embraced by the synthetic community as a highly reliable means of effecting fundamental conjugate reductions of unsaturated aldehydes, ketones, and esters. Unlike the procedures previously in use, in which presumed ate complexes of CuH required manipulations of multiple reagents and gave rise to highly basic species, (Ph3P)CuH is relatively non-basic and is available commercially, or can be readily prepared in multigram quantities. Moreover, when stored under an inert atmosphere, it can last for months without significant decomposition. That (Ph₃P)CuH derives from readily accessible and inexpensive precursors is a bonus, and as it is regarded as a base metal catalyst, in association with either molecular hydrogen or silanes as sources of stoichiometric hydride, the economics involved in its use are highly favorable. Also not to be overlooked among the virtues of (Ph3P)CuH is its tolerance to moisture, as well as many to functional groups – including isolated, unsaturated carbon-carbon bonds – which otherwise preclude normal modes of catalytic hydrogenation. The noteworthy impact exerted by various achiral monodentate and bidentate phosphine ligands on CuH reactions can be used to tremendous advantage in controlling resulting regioselectivities and chemoselectivities. Replacement of the PPh3 in Stryker's reagent with selected chiral, nonracemic bidentate phosphines has enabled enantioselective 1,4-reductions to be achieved. Still more recently, the 1,2-addition mode of Stryker's reagent has been evolving rapidly. These reactions have similarly proven to be quite effective under conditions catalytic in CuH. Further recognition and greater appreciation of such elements of reactivity and selectivity, associated with both the 1,2- and the 1,4-reduction patterns of (Ph3P)CuH, are likely to give rise to future improvements, new methodologies, and synthetic applications.

An aldimine reduction already "in the pipeline" has been tested using catalytic Stryker's reagent along with various silanes, the preliminary data suggesting that such 1,2-additions do indeed take place, albeit far more slowly that those on the corresponding carbonyl derivatives (Eq. 5.26) [51]. In line with observations made concerning the effects of phosphines on CuH [40, 41], a remarkable rate enhancement has also been noted in ketone hydrosilylations under the influence either of racemic BINAP or DPPF (bis(diphenylphosphino)ferrocene). Thus, while 4-tbutylcyclohexanone takes a day to be reduced when catalytic (PPh3)CuH is used with either H2 [40, 41] or PMHS [44], simple addition of either of these bidentate ligands results in complete conversion in less than one hour at identical concentrations (Scheme 5.7) [44]. This key observation has generated considerable enthusiasm for development of a highly effective method for asymmetric hydrosilylations [52] of aryl ketones using catalytic CuH ligated by a nonracemic bidentate phosphine (Roches' 3.5-xyl-MEO-BIPHEP) [53]. It thus seems reasonable to conclude that the story of reductions by CuH in organic synthesis, whether under homogeneous or heterogeneous conditions, is far from complete.

Scheme 5.7. Effect of DPPF on reductions with Stryker's reagent.

References

- 1 M. S. KHARASCH, P. O. TAWNEY, J. Am. Chem. Soc. 1941, 63, 2308-2315.
- 2 H. Gilman, R. G. Jones, L. A. Woods, J. Org. Chem. 1952, 17, 1630-1634.
- 3 A. WURTZ, Ann. Chim. Phys. 1844, 11, 250-251.
- 4 H. Muller, A. Bradley, J. Chem. Soc. 1926, 1669-1673.
- 5 (a) G. M. Whitesides, E. R. STREDRONSKY, C. P. CASEY, J. SAN FILIPPO, J. Am. Chem. Soc. 1970, 92, 1426-1427. (b) G. M. WHITESIDES, J. San Filippo, E. R. Stredronsky, C. P. CASEY, J. Am. Chem. Soc. 1969, 91, 6542-6544. (c) G. M. WHITESIDES, C. P. CASEY, J. Am. Chem. Soc. 1966, 88, 4541-4543.
- 6 (a) M. R. CHURCHILL, S. A. BEZMAN, J. A. OSBORN, J. WORMALD, Inorg. Chem. 1972, 11, 1818-1825. (b) S. A. BEZMAN, M. R. CHURCHILL, J. A. OSBORN, J. WORMALD, J. Am. Chem. Soc. 1971, 93, 2063-2065. For an early cryoscopic study on CuH-phosphine interactions, see J. A. Dritts, D. F. Shriver, J. Am. Chem. Soc. 1969, 91, 4088-4091.
- 7 For typical uses of these groups as 'dummy ligands' see (a) B. H. LIPSHUTZ, in Organometallics in Synthesis: A Manual, Schlosser, M. (ed.), Wiley, 1994, pp 283-382, (b) B. H. LIPSHUTZ, S. SENGUPTA, Org. React. 1992, 41, 135-631.

- 8 R. K. Boeckman, R. Michalak, J. Am. Chem. Soc. 1974, 96, 1623-1625.
- 9 T. Yoshida, E.-I. Negishi, J. Chem. Soc. Chem. Comm. 1974, 762-763.
- 10 E. C. Ashby, J.-J. Lin, A. B. Goel, J. Org. Chem. 1978, 43, 183-188.
- 11 (a) M. F. SEMMELHACK, R. D. STAUFFER, J. Org. Chem. 1975, 40, 3619-3621. (b) M. F. SEMMELHACK, R. D. Stauffer, A. Yamashita, J. Org. Chem. 1977, 42, 3180-3188. See also M. E. Osborn, J. F. Pegues, L. A. PAQUETTE, J. Org. Chem. 1980, 45, 167-168. M. E. OSBORN, S. KURODA, J. L. MUTHARD, J. D. KRAMER, P. ENGEL, L. A. PAQUETTE, J. Org. Chem. 1981, 46, 3379-3388.
- 12 D. L. Comins, A. H. Abdulia, J. Org. Chem. 1984, 49, 3392-3394.
- 13 W. S. Mahoney, D. M. Brestensky, J. M. STRYKER, J. Am. Chem. Soc. 1988, 110, 291-293.
- 14 Listed as "hydrido {triphenylphosphine)copper(I) hexamer"; Aldrich catalog # 36497-5.
- 15 D. M. Brestensky, D. E. Huseland, C. McGettigan, J. M. Stryker, Tetrahedron Lett. 1988, 29, 3749-3752.
- 16 G. V. GOEDEN, K. G. CAULTON, J. Am. Chem. Soc. 1981, 103, 7354-7355.
- 17 T. M. Koenig, J. F. Daeuble, D. M. Brestensky, J. M. Stryker, Tetrahedron Lett. 1990, 31, 3237-3240.
- 18 P. CHIU, B. CHEN, K. F. CHENG, Tetrahedron Lett. 1998, 39, 9229-9232.
- 19 (a) W. S. Mahoney, J. M. Stryker, J. Am. Chem. Soc. 1989, 111, 8818-8823. (b) W. S. Mahoney, J. M. Stryker, In Catalysis in Organic Synthesis, Pascoe, W. E. (ed.), Marcel Dekker, New York, 1992, pp. 29-44. (c) J. F. Daueble and J. M. STRYKER, "Highly Chemoselective Catalytic Hydrogenation of Polar Unsaturation Using Cu(I) Complexes and Hydrogen," in Catalysis of Organic Reactions, Scaros, M. and Prunier, M. L. (eds.), (Chem. Ind. 62); Marcel Dekker, New York, 1995, 235-248.
- 20 B. H. LIPSHUTZ, C. S. UNG, S. SENGUPTA, Synlett 1989, 63-66.
- 21 (a) B. H. Lipshutz, K. L. Stevens, B. James, J. G. Pavlovich, J. P. Snyder, J. Am Chem. Soc. 1996, 118, 6796-

- 6797, (b) B, H, Lipshutz, J, Kerth, D. J. Buzard, Organometallics 1999, 18, 1571-1574.
- 22 H. Tanaka, Y. Yamaguchi, S.-I. Sumida, M. Kuroboshi, M. MOCHIZUKI, S. TORII, J. Chem. Soc., Perkin Trans. 1 1999, 3463-3468.
- 23 H. Ito, T. Ishizuka, K. Arimoto, K. Miura, A. Hosomi, Tetrahedron Lett. 1997, 38, 8887-8890.
- 24 A. Mori, A. Fujita, H. Kajiro, Y. Nishihara, T. Hiyama, J. Chem. Soc., Chem. Commun. 1997, 2159-2160.
- 25 A. Mori, A. Fujita, H. Kajiro, Y. Nishihara, T. Hiyama, Tetrahedron, 1999, 55, 4573-4582.
- 26 (a) T. TSUDA, H. SATOMI, T. HAYASHI, T. Saegusa, J. Org. Chem. 1987, 52, 439–443. (b) T. Tsuda, T. Hayashi, H. Satomi, T. Kawamoto, T. Saegusa, J. Org. Chem. 1986, 51, 537-540.
- 27 A. R. Daniewski, J. Kiegiel, J. Org. Chem. 1988, 53, 5534-5535. A. R. DANIEWSKI, J. KIEGIEL, J. Org. Chem. 1988, 53, 5535-5538. E. J. COREY, A. X. Huang, J. Am. Chem. Soc. 1999, 121, 710-714,
- 28 A. R. Daniewski, W. Liu, J. Org. Chem. 2001, 66, 626-628.
- 29 B. H. LIPSHUTZ, J. KEITH, P. PAPA, R. VIVIAN, Tetrahedron Lett. 1998, 39, 4627-4630.
- 30 N. J. LAWRENCE, M. D. D. DREW, S. M. Bushell, J. Chem. Soc., Perkin Trans. 1 1999, 3381-3391.
- 31 Y. Moritani, D. H. Appella, V. JURKAUSKAS, S. L. BUCHWALD, J. Am. Chem. Soc. 2000, 122, 6797-6798.
- 32 D. H. Appella, Y. Moritani, R. Shintani, E. M. Ferreira, S. L. BUCHWALD, J. Am. Chem. Soc. 1999, 121, 9473-9474.
- 33 (a) R. Schmid, M. Cereghetti, B. Heiser, P. Schonholzer, H.-J. HANSEN, Helv. Chim. Acta 1988, 71, 897-929. (b) A. Knierzinger, P. Schonholzer, Helv. Chim. Acta **1992**, 75, 1211–1220.
- 34 (a) C. LORENZ, U. SCHUBERT, Chem. Ber. 1995, 128, 1267-1269, (b) B. L. Pagenkopf, J. Krüger, A. Stojanovic, E. M. Carreira, Angew. Chem. 1998, 110, 3312-3314; Angew. Chem. Int. Ed. 1998, 37, 3124-3126.

- (c) H. Ito, T. Ishizuka, T. Okamura, H. Yamanaka, J. Tateiwa, M. SONODA, A. HOSOMI, J. Organomet. Chem. 1999, 574, 102-106.
- 35 B. H. Lipshutz, W. Chrisman, K. Noson, P. Papa, J. A. Sciafani, R. W. VIVIAN, J. KEITH, Tetrahedron 2000, 56, 2779-2788.
- 36 (a) J. Yun, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 5640-5644. (b) S. C. BERK, K. A. KREUTZER, S. L. BUCHWALD, J. Am. Chem. Soc. 1991, 113, 5093-5094.
- 37 (a) I. OJIMA, T. KOGURE, Organometallics 1982, 1, 1390-1399. (b) H. Nishiyama, M. Kondo, T. NAKAMURA, K. ITOH, Organometallics 1991, 10, 500-508. (c) G. Z. Zheng, T. H. CHAN, Organometallics 1995, 14,
- 38 (a) T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749-1751. (b) R. Noyori, T. OHKUMA, Pure Appl. Chem. 1999, 71, 1493-1501. (с) Т. Онкима, R. Noyori, Compr. Asymmetric Catal. I-III 1999, 1, 199-246.
- 39 H. BRUNNER, W. MIEHLING, J. Organomet. Chem. 1984, 275, C17-C21.
- 40 J.-X. CHEN, J. F. DAEUBLE, D. M. Brestensky, J. M. Stryker, Tetrahedron 2000, 56, 2153-2166.
- 41 J.-X. CHEN, J. F. DAEUBLE, J. M. STRYKER, Tetrahedron 2000, 56, 2789-2798.
- 42 G. V. GOEDEN, J. C. HUFFMAN, K. G. CAULTON, Inorg. Chem. 1986, 25, 2484-2485.

- 43 Y. Uozumi, A. Tanahashi, S.-Y. Lee, T. HAYASHI, J. Org. Chem. 1993, 58, 1945-1948.
- 44 B. H. LIPSHUTZ, W. CHRISMAN, K. Noson, J. Organomet. Chem. 2001, 624, 367.
- 45 S. HANESSIAN, P. LAVALLEE, Can I. Chem. 1975, 53, 2975-2977.
- 46 H. Ito, H. Yamanaka, T. Ishizuka, J. TATEIWA, A. HOSOMI, Synlett 2000, 479-482.
- 47 (a) H. Adkins, R. Connor, J. Am. Chem. Soc. 1931, 53, 1091-1095. (b) B. Miya, F. Hoshino, I. Iwasa, J. Catal. 1966, 5, 401-411. (c) R. Hubaut, M. Daage, J. P. Bonnelle, Appl. Catal. 1986, 22, 231-241. (d) R. Hubaut, J. P. Bonnelle, M. Daage, J. Mol. Catal. 1989, 55, 170-183.
- 48 (a) N. RAVASIO, M. ROSSI, J. Org. Chem. 1991, 56, 4329-4333. (b) N. Ravasio, M. Antenori, M. GARGANO, M. ROSSI, J. Mol. Catal. 1992, 74, 267-273.
- 49 N. RAVASIO, M. ANTENORI, M. GARGANO, P. MASTRORILLI, Tetrahedron Lett. 1996, 37, 3529-3532.
- 50 N. P. Fitzsimons, W. Jones, P. J. HERLEY, Catal. Lett. 1992, 15, 83-94.
- 51 B. H. LIPSHUTZ, A. B. REED, K. Noson, unpublished work.
- 52 H. NISHIYAMA, K. ITOH, In Catalytic Asymmetric Synthesis; OJIMA, I. (ed.), VCH, New York, 2000, Chapt. 2 and references therein.
- 53 B. H. Lipshutz, K. Noson, W. CHRISMAN, J. Am. Chem. Soc., in press.

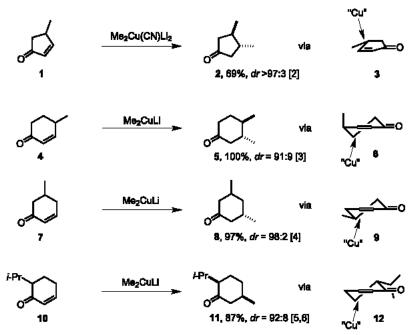
6 Copper-mediated Diastereoselective Conjugate Addition and Allylic Substitution Reactions

Bernhard Breit and Peter Demel

Abstract

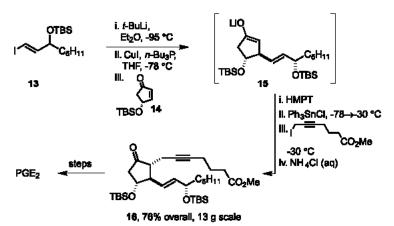
Conjugate additions and allylic substitution reactions of organocopper reagents are synthetically valuable C C bond-forming reactions. New stereogenic centers may be introduced in the course of either reaction. Their selective formation may be controlled either by the reagent or by the substrate, the latter being the focus of this review. The subject has recently been summarized comprehensively [1], and so this chapter focuses on important basic principles and the most recent progress, with emphasis on reactions of potential value in organic synthesis.

6.1 Conjugate Addition


6.1.1

Stereocontrol in Cyclic Derivatives

Cyclic systems usually adopt distinct preferred conformations, which frequently allow them to pass through a single reactive conformation in the course of a chemical reaction; this may result in the formation of a single product. In this context, addition of organocuprates to a number of chiral, cyclic enone systems frequently occurs with high levels of stereoselectivity. Historically, this chemistry has had a major impact on the field of total synthesis of steroids and prostaglandins [1a, k]. In this chapter we would thus like to present an overview of the most general stereochemical trends underlying the addition of organocuprates to chiral cyclic enones.


When organocuprates are added either to 4-substituted cyclopentenones 1, or to 4-substituted or 5-substituted cyclohexenones (4 and 7), the *trans* addition product is generally obtained with good to excellent levels of diastereoselectivity (Scheme 6.1) [2–4]. The 6-substituted cyclohexenone 10, however, predominantly gave the *syn* addition product [5, 6].

A beautiful illustration of the power of diastereoselective cuprate addition to cyclopentenone systems is given in the course of the synthesis of the prostaglandin E_2 (PGE₂) (Scheme 6.2) [7]. Thus, addition of the functionalized organocuprate

Scheme 6.1. Diastereoselectivity in conjugate addition of organocuprates to chiral cyclic enones.

reagent obtained from iodide 13 to the chiral cyclopentenone 14 occurred in trans selective fashion to give enolate 15. Transmetalation to the tin enolate, followed by stereoselective propargylation, furnished a 76% overall yield of cyclopentanone 16, which was transformed into prostaglandin E2 [7c].

Scheme 6.2. Diastereoselective addition of a functionalized cuprate to cyclopentenone 14 in the synthesis of prostaglandin E_2 (PG E_2) (TBS = t-butyldimethylsilyl, HMPT = hexamethylphosphoric triamide).

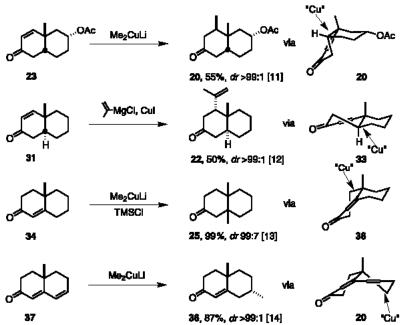
Addition of Lewis acids may not only accelerate the reaction rate of a conjugate addition but may also alter the stereochemical outcome of a cuprate addition. Interestingly, when the 6-t-butyl-substituted cyclohexenone derivative 17 was exposed to dibutylcuprate, followed by silylation of the resulting enolate, the cis enol ether 18 was obtained (Scheme 6.3) [8]. If, however, the cuprate addition was performed in the presence of chlorotrimethylsilane, the stereochemical outcome of the conjugate addition reaction was reversed to give trans enol ether 19.

Scheme 6.3. Influence of added TMSCI on the diastereoselectivity of the conjugate addition of dibutylcuprate to enone 17 (TMS = trimethylsilyl, HMPT = hexamethylphosphoric triamide).

It has recently been shown that the intrinsic substrate-directing capability of 5substituted chiral cyclohexenenones can be overruled by making use of active substrate direction. Proper choice of the cuprate reagent made it possible to switch between standard passive substrate control and an alternative active substrate control, and hence to reverse the stereochemical outcome of the conjugate addition reaction [9]. Thus, treatment of 5-oxygen-substituted cyclohexenones 20 and 21 with a cyano-Gilman reagent gave the expected trans addition products 24 and 25, respectively (entries 1, 4, 6, Tab. 6.1, Scheme 6.4). Conversely, when the corresponding lower order cyanocuprate was employed, diastereoselectivity was reversed and the cis addition products 22 and 23, respectively, were formed with high selectivities (entries 2, 3, 5). A very reasonable explanation for this result is a benzyloxy- or silyloxy-directed cuprate addition through transition state 26 (Scheme 6.5) [9b-e, 10].

Tab. 6.1. Results of conjugate addition of organocopper reagents to enones 20 and 21.

Entry	Substrate	R7	Method ^{a)}	cis:trans	Yield [%]	Ref.
1	20	n-Bu	В	10:90	87	9 b
2	20	n-Bu	A	>98:2	80	9Ь
3	21	n-Bu	A^{bj}	>99:1	92	9Ъ
4	21	n-Bu	В	2:98	92	9a, b
5	21	Me	A	>99:1	83	9Ь
6	21	Me	В	3:97	83	9a, b


Et₂O, -78 °C, 2.4 eq. of cuprate reagent (A: R¹Cu(CN)Li; B: R1CuLi-LiCN).

b) 1.2 eq. of cuprate reagent.

Scheme 6.4. Diastereoselectivity in conjugate addition of organocopper reagents to alkoxy-substituted cyclohexenones **20** and **21** (Bn = benzyl, TBS = t-butyldimethylsilyl).

Scheme 6.5. Rationale for the stereochemical outcome of diastereoselective conjugate addition to cyclohexenones 20 and 21.

The addition of organocuprates to chiral decalin enone systems has been explored in the context of steroid synthesis. For the addition of lithium dimethylcuprate to enones 28, 31, and 34, the major diastereomer obtained can easily be predicted by employment of a qualitative conformational analysis (Scheme 6.6) [11-13]. Thus,

Scheme 6.6. Diastereoselectivity in conjugate additions of organocuprates to chiral bicyclic cyclohexenones (TMS = trimethylsilyl).

attack of the copper nucleophile occurs in all cases through the most stable half-chair conformation to give the corresponding addition products. A similar analysis also accounts for the 1,6-addition to dienone 37 [14].

Rather less information on addition of cuprates to larger cyclic enone systems is available. 4-Substituted cycloheptenones (such as 40) have been shown to give the *trans* addition products preferentially (Scheme 6.7) [15]. Furthermore, interesting selectivities have been noted upon addition of lithium dimethylcuprate to cyclodecanone systems 43 and 46. These systems should adopt the preferred conformations 45 and 48, which on addition of the nucleophile provide either the *trans* adduct 44 or the *cis* product 47, respectively [16]. Similar results have been obtained from conjugate additions of organocopper reagents to medium- and large-ringed α, β -unsaturated lactone systems. This field has been reviewed recently [1i].

Scheme 6.7. Diastereoselectivity in conjugate addition of organocuprates to chiral cyclic enones of medium ring size.

6.1.2

Stereocontrol in Acyclic Derivatives

6.1.2.1 y-Heteroatom-substituted Michael Acceptors

Conjugate addition reactions of acyclic Michael acceptors possessing heteroatom-substituted stereogenic centers in their γ -positions may provide useful levels of diastereoselectivity. A typical example is given with the γ -alkoxy-substituted enoate 49 in Scheme 6.8 [17]. High levels of diastereoselectivity in favor of the *anti* addition product 50 were found in the course of dimethylcuprate addition.

To account for the observed diastereoselectivity, a "modified" Felkin-Anh model has been proposed [18]. In analogy to the classical Felkin-Anh model, originally developed for the addition of organometallic reagents to aldehydes possessing a

OBOM
TBDPSO
CO₂Me

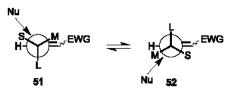
$$CO_2$$
Me

THF

-78 \rightarrow 20 °C
(93%)

OBOM
TBDPSO
CO₂Me

CO₂Me


50, $dr = 98:2$

Scheme 6.8. Diastereoselective addition of lithium dimethylcuprate to acyclic enoate 49 (TBDPS = &-butyldiphenylsilyl, BOM = benzyloxymethyl, TMS = trimethylsilyl).

stereogenic center in the α -position, the largest substituent or, more precisely, the substituent with the lowest lying σ^* -orbital (L in Fig. 6.1), should be orientated so as to allow efficient overlap with the π -system of the Michael acceptor. As a consequence, the LUMO (π^* -C=C) should be lowered in energy, which provides a more reactive conformation. This holds for both rotamers 51 and 52. Rotamer 51, however, suffers to a greater extent from repulsive allylic A1,3 strain [19]. Accordingly, for Z-configured π -systems, $A^{1,3}$ strain should become the decisive factor. Conversely, nucleophile attack is more hindered for rotamer 52. Hence, for E-configured Michael acceptors in particular, a subtle balance of these two repulsive interactions should govern the overall stereochemical outcome of the conjugate addition reaction. Finally, it should be kept in mind that this model relies on the basic assumption that nucleophile attack is the step that determines stereoselectivity. This notion has been challenged, however, both in recent high level calculations and in experimental studies [20-22]. Nevertheless, this simple model provides at least a rough first order analysis for the stereochemical outcome that should be expected in the course of a conjugate addition reaction to y-chiral Michael acceptors.

Stereoselective addition of cuprates to *y*-alkoxy enoates of type **49** [17] (see Schemes 6.8 and 6.9) has been used in the construction of polypropionate-type structures. Thus, a sequence of diastereoselective cuprate addition, enolate formation, and diastereoselective oxygenation with Davis's reagent has been applied iteratively to provide a C₁₉ C₂₈ segment of Rifamycin S (**60**) [17c, d].

Chlorotrimethylsilane-accelerated divinylcuprate addition to enal 61, followed by a Wittig olefination, provided enoate 62 as a single stereoisomer in excellent yield (Scheme 6.10) [23]. The enoate 62 could be transformed in further steps into olivin (63), the aglygon of olivomycin.

Fig. 6.1. "Modified" Felkin-Anh model to account for the observed diastereoselectivity in conjugate addition reactions to y-chiral Michael acceptors.

Scheme 6.9. Construction of the polypropionate segment of Rifarnycin S through iterative diastereoselective cuprate addition to acyclic enoates. a) Me₂CuLi, TMSCl, THF, 78 °C; b) KHMDS, THF, 78 °C; Davis oxaziridine; c) MOMCl, *i*-Pr₂NEt, CH₂Cl₂; d) DIBAL-H; e) Swern oxidation, f) Ph₃P-CHCO₂Me, CH₂Cl₂; g) NaBH₄, THF/H₂O; h) TrCl, DMAP, CH₂Cl₂; i) NaH, Mel, DMF; j) TBAF, THF; k) CuBr-SMe₂, MeLi-LiBr,

TMSCI, THF; I) BOMCI, $i\text{-}\text{Pr}_2\text{NEt}$, CH_2CI_2 ; $R^1 = \text{BOM}$, $R^2 = \text{MOM}$. (TMS = trimethylsilyl, KHMDS = potassium hexamethyldisilazide, MOM = methoxymethyl, DIBAL-H = diisobutylaluminium hydride, Tr = triphenylmethyl, DMAP = 4-N, N-dimethylaminopyridine, TBAF = tetrabutylammonium fluoride, BOM = benzyloxymethyl)

With glyceraldehyde-derived enones and enoates, it has been found that addition of aryl or alkenyl copper reagents is almost independent of the enone geometry [24, 25]. In agreement with the "modified" Felkin–Anh model, Z enoates usually provide high levels of *anti* selectivity (Scheme 6.11). Hence, the Z derivative 64 reacted with complete stereochemical control, whereas the E-enoate 64 gave a lower selectivity of 4:1 in favor of the *anti*-conjugate adduct [25].

A drawback of the Z enoates is usually lower reactivity, reflected in prolonged reaction times and higher reaction temperatures. This may be overcome by switching to more reactive enone systems. Thus, addition of the functionalized cyano-Gilman cuprate system **67** to Z enone **66** proceeded smoothly at low temperatures, with excellent acyclic stereocontrol at the β -stereocenter [26, 27]. Stereocontrol upon

Scheme 6.10. Stereoselective cuprate addition to enal 61 the key step towards the synthesis of olivin. (TBS = t-butyldimethylsilyl, TMS = trimethylsilyl)

Scheme 6.11. Influence of double bond geometry upon addition of diphenylcuprate to enoate 64. enolate protonation, however, was only moderate. Conjugate adduct 68 was further transformed to give iso[7]-levuglandin D₂ (Scheme 6.12) [26].

Scheme 6.12. Diastereoselective cuprate addition to Z enone 61 – key step towards the synthesis of iso[7]-levuglandin D_2 . (TBS = t-butyldimethylsilyl)

The stereochemical trends discussed above are not limited to α, β -unsaturated carbonyl compounds; other Michael acceptors such as nitroalkenes and unsaturated phosphane oxides display similar behavior. A representative example for the nitroalkene class of Michael acceptors is shown with substrate 70 in Scheme 6.13 [28]. The best results were thus obtained for arylcuprates. Other organocuprates were much less selective, which severely restricts their application in organic synthesis.

Scheme 6.13. Diastereoselective cuprate addition to nitroalkene 70.

Similar observations were made in a related series of unsaturated phosphane oxides (such as 73, Scheme 6.14) [29]. Whereas dialkylcuprates mostly reacted non-selectively, the best diastereoselectivities were observed for disilylcuprates (74).

Scheme 6.14. Diastereoselective cuprate addition to $\alpha_i \beta_i$ unsaturated phosphane oxide **73** (TBS = t-butyldimethylsilyl).

Obviously, the nature of the organocopper reagent is an important factor with respect to the stereochemical outcome of the cuprate addition. This is nicely illustrated for the cuprate addition reaction of enoate 75 (Scheme 6.15). Here, lithium di-n-butylcuprate reacted as expected by way of the "modified" Felkin–Anh transition state 77 (compare also 52), which minimizes allylic A^{1,3} strain, to give the *anti* adduct 76 with excellent diastereoselectivity [30]. Conversely, the bulkier lithium bis-(methylallyl)cuprate preferentially yielded the *syn* diastereomer 78 [30, 31]. It can be argued that the bulkier cuprate reagent experiences pronounced repulsive interactions when approaching the enoate system past the alkyl side chain, as shown in transition state 77. Instead, preference is given to transition state 79, in which repulsive interactions to the nucleophile trajectory are minimized.

A similar explanation may also hold for the result of conjugate addition to y-phthalimido enoate **80** (Scheme 6.16). Thus, addition of the bulky cyano-Gilman silyl cuprate gave the syn diastereomer **81** (dr = 96.4) [32, 33]. Preference for the sterically least hindered nucleophile trajectory seems to dictate the overall stereochemical outcome (transition state **82**).

The results for conjugate additions to pseudodipeptides 83 and 86 may be interpreted along similar lines. Thus, addition of the fairly "slim" lithium dimethyl-cuprate nucleophile proceeded non-selectively (84, Scheme 6.17) [34, 35]. Con-

Scheme 6.15. Conjugate addition to enoate 75; influence of the nature of the cuprate reagent on diastereoselectivity.

Scheme 6.16. Diastereoselective cuprate addition to y-phthalimido enoate **80**.

Scheme 6.17. Diastereoselective cuprate addition to pseudopeptides 83 and 86.

versely, the bulky lithium di-t-butylcuprate displayed 4:1 selectivity in favor of the *anti* diastereomer of **85**. Interestingly, the stereogenic center in the 5-position had a significant influence, as the *syn* derivative **86** provided the conjugate adduct **87** with significantly higher diastereoselectivity under otherwise identical reaction conditions (dr > 93:7). Furthermore, investigations with analogous pseudotripeptide derivatives (L,L,L and D,L,L, respectively) found that an unusual remote **1**,8-induction may even be operative in some cases [35].

For a cuprate addition reaction to a diester derivative such as **88**, it might be expected that the *anti* addition product would be favored, since a pronounced allylic A^{1,3} strain in these substrates along "modified" Felkin–Anh lines should favor transition state **52** (see Fig. 6.1). However, experiments produced the opposite result, with the *syn* product **89** being obtained as the major diastereomer (Scheme 6.18) [36, 37].

Scheme 6.18. Diastereoselective cuprate addition to diester 88.

This result clearly marks the difficulties and limitations inherent in the "modified" Felkin–Anh model, which so far is nothing more than a rule of thumb. To account for these results, a switch in mechanism towards a " π -complex" model has been proposed [36b, 37].

6.1.2.2 γ-Alkyl-substituted α,β-Unsaturated Carbonyl Derivatives

Diastereofacial selection on addition of organocoppper reagents to chiral y-alkyl-substituted Michael acceptors has been investigated less extensively, due to the usually low selectivities generally observed for these systems [38, 39]. This is exemplified by the reaction of E and Z enoates 90 (Scheme 6.19). Thus, either syn-91 or anti-93 is formed upon conjugate addition with BF3-modified reagents, as a function of enoate geometry. The stereochemistry of the reaction is in accordance with the "modified" Felkin–Anh model [40].

Better stereoselectivities have been noted for conjugate addition reactions to the steroidal enone 95 (Scheme 6.20, Tab. 6.2). Irrespective of the enone geometry, addition of lithium dimethylcuprate provided the *anti* addition product 96 in high yield and with good diastereoselectivity (Tab. 6.2, entries 1 and 2). Interestingly, addition of chlorotrimethylsilane to the reaction mixture had a dramatic effect. The E isomer of enone 95 still gave the *anti* addition product 96 with perfect stereoselectivity (entry 3). With the Z isomer of the enone, however, the syn addition product 97 was formed in good yield and with high diastereoselectivity (entry 4)

Scheme 6.19. Diastereoselective cuprate addition to y-methyl-substituted enoates 90.

Scheme 6.20. Diastereoselective cuprate addition to steroidal enone 95 (MOM = methoxymethyl).

[41]. This result fits with the notion that addition of chlorotrimethylsilane changes the rate and selectivity-determining step of the conjugate addition reaction [22, **4**2].

Tab. 6.2. Results of diastereoselective cuprate additions to enone 95 (TMS = trimethylsilyl, HMPT = hexamethylphosphoric triamide).

Entry	Substrate	Reagents	96:97	Yield [%]
1	(E)-9 5	Me₂CuLi 0°C, THF	98:2	91
2	(Z)-95	Me₂CuLi 0°C. THF	98:2	78
3	(E)-9 5	Me ₂ CuLi, TMSCl, HMPT 78 °C, THF	100:0	95
4	(Z)-95	Me ₂ CuLi, TMSCl, HMPT 78 °C, THF	3:97	75

6.1.2.3 α, β -Unsaturated Carbonyl Derivatives with Stereogenic Centers in Positions other than the γ -Position

When the chiral α, β -enone enoate 98 was treated with magnesiocuprates in the presence of 1.5–2 equivalents of diethylaluminium chloride, the *anti* addition product 99 was obtained in moderate yield and with good diastereoselectivity (Scheme 6.21) [43, 44]. A reasonable explanation might assume a chelating coordination of the aluminium reagent [45]. Thus, if the enone 98 were to adopt an *s-trans* conformation, as indicated for complex 100, subsequent front side attack of the nucleophile would furnish the major diastereomer *anti-*99.

R= Me, Et, Bu, Ph, p-MeC₆H₄ 47-85%, anti:syn >92:8

Scheme 6.21. Lewis acid-promoted diastereoselective conjugate addition to enone **98** (Bn = benzyl).

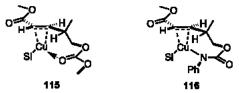
Michael acceptors possessing stereogenic centers in their δ -position or in any position further remote do not exhibit significant levels of stereochemical control if passive substrate control is relied on exclusively. The δ -methyl-substituted epoxyenoate 101, for example, reacted with lithum dibutylcyanocuprate in a chemoselective but stereorandom fashion (Scheme 6.22) [46, 47].

Scheme 6.22. Non-stereoselective conjugate addition to the δ -chiral enoate 102.

6.1.2.4 Directed Conjugate Addition Reactions

As discussed, conjugate addition reactions involving chiral γ -alkyl-substituted α, β -unsaturated carbonyl derivatives usually occur with low levels of diastereoselectivity. In accord with this general trend, the benzyloxy and silyloxy derivatives 103 and 104 (Scheme 6.23) both reacted with a silyl cuprate in non-selective fashion, to give the conjugate adducts 108 and 109, respectively (entries 1 and 2, Tab. 6.3) [39]. Conversely, high levels of diastereoselectivity were found for the corresponding carbamates, and even better results were obtained for carbonates, giving the *anti* esters 110–112 as the major diastereomers (entries 3–5) [39].

Scheme 6.23. Diastereoselective cuprate addition to δ -functionalized enoates 103–107.


Tab. 6.3. Results of diastereoselective cuprate addition to δ -functionalized enoates 103 \pm 107 (TBS = t-butyldimethylsilyl, Bn = benzyl).

Entry	Substrate	R	Product	anti:syn	Yield [%]
1	103	Bn	108	50:50	95
2	104	TBS	109	50:50	45
3	105	CONHPh	110	89:11	77
4	106	COOMe	111	>95:5	80
5	107	COOBn	112	>95:5	85

Interestingly, even derivative 113, with the carbamate-functionalized stereogenic center in the δ -position, exhibited significant levels of diastereoselectivity to give ester 114 (Scheme 6.24). In this case, however, the syn addition product 114 was formed as the major isomer.

Scheme 6.24. Diastereoselective cuprate addition to δ -carbamate-functionalized enoate 113.

It has been proposed that a directed cuprate addition with a carbamate or a carbonate serving as a reagent-directing functional group may account for the stereochemical outcome of these reactions (see models 115 and 116 in Scheme 6.25) [39, **48**].

Scheme 6.25. Proposed explanation for directed cuprate addition to carbonates 106 and 107 and carbamate 105.

A new concept, employing a specifically introduced reagent-directing group [49], allowed more efficient use to be made of substrate direction in conjugate addition of cuprates to acyclic enoates [50]. The ortho-diphenylphosphinobenzoyl (o-DPPB) functionality was identified as an ideal directing group. This group is easily attached to the substrate through esterification of an appropriate alcohol function. The multifunctional character of this group is notable; it can act as an efficient directing group for a number of late transition metal-mediated or -catalyzed reactions. To date, directed hydroformylations [51], rhodium-catalyzed domino-type processes [52, 53], and a palladium-catalyzed atropselective biaryl coupling [54] have been described.

Thus, enoates 127–131 were prepared efficiently by means of a combination of an o-DPPB-directed stereoselective hydroformylation and a Horner–Wadsworth–Emmons (HWE) olefination (Scheme 6.26). In general, chiral δ -methyl-substituted enoates are known to react non-selectively in lithium dimethylcuprate additions [46]. Conjugate addition reactions between enoates 127–131 and lithium dialkyl-cuprates, however, gave the corresponding *anti* 1,4-addition products 132–138 in good yields and with high diastereoselectivities [50]. Thus, the combination of o-DPPB-directed hydroformylation and o-DPPB-directed cuprate addition afforded useful building blocks, with up to four stereogenic centers, for polyketide synthesis (132–138, see Scheme 6.26, Tab. 6.4). Control experiments with a corresponding phosphane oxide suggested that the o-DPPB group controls both reactivity and stereoselectivity in the course of this conjugate addition reaction. However, it has been found that the stereoselectivity of the o-DPPB-directed cuprate addition is a sensitive function of the enoate structure and so is so far limited to the E-enoates of the general structure shown in Scheme 6.26 [50b].

Scheme 6.26. Construction of polyketide building blocks by sequential directed stereoselective hydroformylation and directed cuprate addition with the aid of the reagent-directing o-DPPB group. (o-DPPB = ortho-diphenylbenzoylphosphanyl, DME = dimethoxyethane)

6.1.3

Auxiliary-bound Chiral Michael Acceptors and Auxiliary Chiral Metal Complexes

Diastereoselective conjugate additions to chiral Michael acceptors in which the part initially bearing the chiral information is removable (i.e., a chiral auxiliary) provides a means to synthesize enantiomerically pure conjugate adducts. Chiral auxiliaries should ideally be readily available in both enantiomeric forms. They should

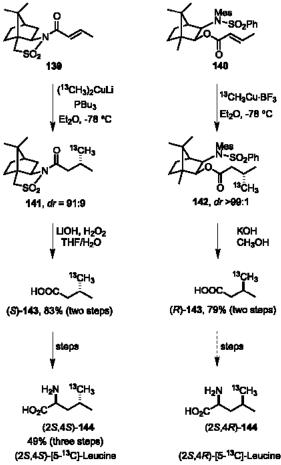
Tab. 6.4. Results of ρ-DPPB-directed cuprate addition to acyclic enoates 127–131 (o-DPPB = ortho-diphenylphosphinobenzoyl, Tr = triphenylmethyl, Piv = pivaloyl).

Entry	Enoate	Product	Yield [%]	anti:syn
1	O(o-DPPB) CO₂EI	O(o-DPPB) CO _z Et	93	95:5
	127	132		
2	127	0(o-DPPB) 	68	95:5
3	127	O(o-DPPB)	61	80:20
4	O(o-DPPB)	134 O(o-DPPB) EIOyC	68	95:5
	128	135		
5	OTT: O(o-DPPB)	OTr O(o-DPPB)	71	86:14
6	129 ОРЫ О(о-ОРРВ) СО ₂ Е1	136 OPIv O(o-DPPB) CO ₂ Et	60	85:15
	130	137		
7	O O (o-DPPB) O O CO ₂ EI	O O(o-DPPB) O N CO ₂ Et	75	95:5
	(-)-131	(-)-138		

furthermore be easily introducible into the substrate and removable from the product. Thus, the most common attachment of an appropriate auxiliary occurs by means of an ester or an amide linkage to the carbonyl group of an α, β -unsaturated carbonyl derivative. A number of auxiliaries have been developed for this purpose and a comprehensive review up to 1992 is available [1g]. A personal selection of useful auxiliaries for achieving high levels of stereoselectivity is given in Tab. 6.5. In each case the assumed reactive conformation is provided, allowing the major stereoisomer to be predicted for each substrate type.

Tab. 6.5. A (TMEDA =	Tab. 6.5. A selection of auxiliary controlled diastereoselective conj (TMEDA = $N_sN_sN'_s$ vetramethylethylenediamine, $Piv = pivaloy!$)	l diastereoselective conjugat diamine, Piv = pivaloyl)	Tab. 6.5. A selection of auxiliary controlled diastereoselective conjugate additions with organocopper reagents. $(TMEDA = N,N,N',N'$ tetramethylethylenediamine, Piv = pivaloyl)	agents.		-
Entry	Auxiliary R*	Reagents	Assumed Reactive Conformation ^{al}	Product	de [%]	Ref.
	Hacosh Ho	EtCu BF3-OEt3	A PACON PAGE 1	ar o≕ &	66<	55c-e
~	HO HO	ErCu BF3 • OFt3	NBO ₂ Ph	o≓ o≕ ui—⟨	66 <	55c-e
m	*	ν-BuCu, TMSI	***************************************	A-Bu O	86	56
4	Ho Konios	(vimyl)Cu P(n·Bu)3 BF3·OFt3	Jan Son	, ***	88	55a, b

55a, b	22	82	88	59	09
26	56	94	86	86	97
\$ • \$0 • \$0	Photogram NR2.	ABU OR.	P.C.H.	NR ₂ .	O NR.
	Section 1	P. J.	O PF. CO.	D D D D D D D D D D D D D D D D D D D	
n-PrCu P(n-Bu) ₃ BF ₃ ·OE ₅	Ph ₂ CuLi P(n-Bu) ₃ BrAlCl ₂	MeCu $P(n\text{-Bu})_3$ B $F_3\cdot \mathrm{OEt}_3$	MeCu P(n·Bu)3 BF ₃ ·OFt ₃	(allyl)Cu TMEDA Bu ₂ BOTf	(allyl)MgCl CuBr·SMe ₂ BF ₃ ·OEt ₂
HO SONONS	BO ₂	5 o) 5	O Z	o⇒ Š Š
Ю	9	r	œ	6	10


Tab. 6.5 (continued)	ontinued)					
Entry	Auxiliary R*	Reagents	Assumed Reactive Conformation ^{al}	Product	[%] ap	Ref.
11	O NH	PhMgCl CuBr·SMe ₂	, To Cochia	0 € - O ⇒ •«NN	56	61a
12	OCPI,	MgBr ₂ (PhMe ₂ Sl) ₂ CuLi	N. C. P. W. C. P.	Philippe O	28	61 b
13	₹,	Ph ₂ Culi	# - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	o⇒ 6—	∞	62
14	→	n-BuCu BF,∙O⊞ ₂	THE POST OF THE PO	A Bu O OR*	66< <	63

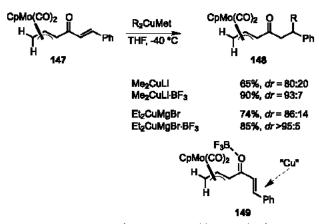
64	9	59
92	86 ^	72
# 0 OR*	, O	O O O O
Part of the state	PHO OBA	**************************************
Ph ₂ CuLi BF ₃ ·OEt ₃	(vinyl)MgBr CuBr·SMe ₂	(vinyl)MgBr CuBr·SMe ₂
HBU HBU	Paro Office of the Parish of t	OF COMP
15	16	17

a) A bold arrow indicates attack from the upper side or the front side, respectively. A dashed arrow indicates attack from the lower or the back side, respectively.

Most of the useful auxiliaries are chiral amine or alcohol derivatives readily available from the chiral pool, and most of them possess rigid cyclic or bicyclic structures to allow efficient differentiation of the two competing diastereomorphic transition states. In some cases, additional rigidity was achieved with the aid of an external chelating Lewis acid (entries 6, 10, 12). In certain cases, however, acyclic auxiliaries may also be useful (see entry 15).

Selective labelling of the two diastereotopic methyl groups of L-leucine (144) has enabled their fates during secondary metabolic reactions to be elucidated [66]. Moreover, in the context of protein interactions, differentiation of the leucine pro-R and pro-S methyl groups in protein NMR spectra allows molecular recognition phenomena to be studied [67]. Recently, efficient routes to both forms of 13 Clabeled leucine, based on application of an auxiliary-controlled stereoselective conjugate addition reaction (Scheme 6.27) have been described [68]. Thus, starting

Scheme 6.27. Auxiliary-controlled stereoselective cuprate addition as the key step for the construction of both diastereomeric forms of [5-13C]-leucine 144.


from either enamide 139 or 140, it was possible to obtain both enantiomers of the [5-13C]-3-methylbutanoic acid 143. An additional three steps transformed the acids 143 into the desired leucines 144.

As well as organic chiral auxiliaries, organometallic fragments have found some application as chiral auxiliaries in conjugate addition reactions. Particularly noteworthy are chiral molybdenum allyl complexes [69], chiral iron complexes [70], and planar chiral arene chromium species [71].

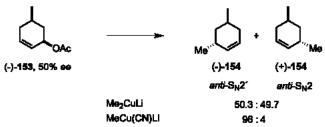
An interesting chromium system example is represented by complex 145. Addition of cyano-Gilman cuprates occurred with complete diastereoselectivity to give conjugate adducts 146 (Scheme 6.28). Interestingly, the opposite diastereomer was accessible by treatment of enone 145 with a titanium tetrachloride/Grignard reagent combination [71c].

Scheme 6.28. Diastereoselective cuprate addition to a planar chiral arylchromium enone complex 145.

When the chiral molybdenum π -allyl-substituted enone 147 was treated with lithium dimethylcuprate, formation of adduct 148 with fair selectivity was observed (Scheme 6.29) [69]. Interestingly, higher selectivities were obtained in the presence of boron trifluoride etherate. It is assumed that Lewis acid coordination induces the s-trans reactive conformation 149 [64]. Consequently, nucleophile attack anti to the molybdenum fragment should afford the major diastereomer 148.

Scheme 6.29. Diastereoselective cuprate addition to chiral molybdenum π -allyl enone complex 147.

6.2 Allylic Substitution


Treatment of allylic substrates 150, possessing suitable leaving groups X in their allylic positions, with organocopper reagents may result either in an S_N2 -type process (α -attack) or alternatively in an S_N2' one (y-attack), giving the substitution products 151 and 152, respectively (Scheme 6.30) [1j].

$$\gamma$$
 β α X Nu γ β α Nu + Nu γ β α Nu + Nu γ β α 150 152 S_{N2} S_{N2}

X = Hal, OH, OCOR, OR, OCONHR, OP(O)(OR)₂, OSO₂R, SO₂R, SR₄, NR₃⁺, O/S-benzothiazol-2-yl, etc.

Scheme 6.30. Potential reaction products from allylic substitution with organocopper reagents (= Nu).

The ratio of α -attack to γ -attack is a subtle function of substrate structure (steric and electronic properties), the leaving group, and also the nature of the organocopper reagent employed. Like the S_N2 process, the S_N2' reaction with organocopper reagents generally occurs with inversion of configuration, resulting from the attack of the organocopper reagent *anti* to the leaving group in the allylic position. An instructive example is offered in the reaction of substrate 153 in Scheme 6.31. Treatment of the enantiomerically enriched cyclohexenyl acetate 153 with lithium dimethylcuprate yielded the racemate 154. Hence, for the sterically unbiased substrate 153, both S_N2 and S_N2' attacks took place, in a ratio of approximately 1:1. Interestingly, when the organocopper reagent was changed to the lower order methylcyanocuprate, a clear preference for the S_N2' pathway was found [72].

Scheme 6.31. Different results of allylic substitution of cyclohexenyl acetate ()-153 with dimethylcuprate and with a lower order cyano cuprate.

To explain the stereochemistry of the allylic substitution reaction, a simple stereoelectronic model based on frontier molecular orbital considerations has been proposed (155, Fig. 6.2). Organocopper reagents, unlike C-nucleophiles, possess filled d-orbitals (d^{10} configuration), which can interact both with the π^* -(C=C) orbital at the γ -carbon and to a minor extent with the σ^* -(C-X) orbital, as depicted

Fig. 6.2. Frontier orbital-based model to explain the stereochemistry of allylic substitution.

in Fig. 6.2 [73]. To achieve optimal orbital overlap, the σ^* -orbital of the C X bond should be aligned coplanar to the alkene π -system.

Interestingly, this intrinsic stereoelectronic control over allylic substitution can be overridden when a reagent-coordinating leaving group is employed. Suitable leaving groups have been found in carbamates [74, 75], (O/S)-benzothiazoles [76, 77] (Scheme 6.32) and, very recently, the ortho-diphenylphosphinobenzoyl (o-DPPB)-group was identified as an efficient reagent-directing leaving group (Scheme 6.44) [91].

Scheme 6.32. Different stereochemical results with mesylate (156) and carbamate (158) leaving groups upon allylic substitution with organocuprates.

When the non-coordinating mesitoate system 156 was treated with lithium dimethylcuprate, formation of the anti-S_N2' substitution product 157 was observed. Notably, the exclusive formation of the γ -substitution product is the result of severe steric hindrance at the a-position, originating from the adjacent isopropyl group [78]. Conversely, the corresponding carbamate 158 was reported, on treatment with a higher order cuprate, to form the syn-S_N2' product 159 exclusively [74]. The lithiated carbamate is assumed to coordinate the cuprate reagent (see 160), which forces the syn attack and gives trans-menthene (159).

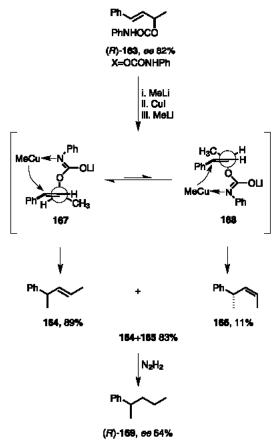
Associated with the propensity to intramolecular delivery of the organocopper reagent is the benefit of high regioselectivity, since an intramolecular trajectory prohibits the alternative α-attack. This is best exemplified by the reaction behavior of the cyclic system 161 (Scheme 6.33). For this substrate, y-attack is sterically hindered. Hence, treatment of the acetate of 161 with a higher order methyl cuprate

Scheme 6.33. Different stereochemical and regiochemical results with acetate (\rightarrow 157) and carbamate (\rightarrow 162) leaving groups on allylic substitution of 161 with a higher order methylcuprate.

exclusively gave the S_N2 -type product 157. Conversely, the carbamate of 161 is able not only to direct the stereochemistry to produce a *syn*-attack but also permits the exclusive formation of the S_N2' product 162 [74]. Similar results were obtained upon treatment of 161 with silylcuprates [79]. The generalization can therefore be made that carbamate leaving groups induce high γ -selectivity in allylic substitution with organocuprates, irrespective of steric hindrance at the γ -position in the allylic framework.

For acyclic allylic substrates the situation is more complex, since a larger number of reactive conformations, and hence corresponding transition states, compete. Thus, methyl cinnamyl derivatives $163~(X={\rm OAc})$, upon treatment with lithium dimethylcuprate, mainly gave the $S_{\rm N}2$ substitution product $166~({\rm entry}~1,{\rm Tab}.~6.6$ and Scheme 6.34)~[80]. The preference for the $S_{\rm N}2$ product is expected, since deconjugation of the alkene system is electronically unfavorable.

Scheme 6.34. Leaving group and reagent dependence of allylic substitution in acyclic derivative 163.


Tab. 6.6. Results of allylic substitution of styrene system 163 with organocopper reagents.

Entry	x	Reaction conditions	164:165:166	Yield [%]	Ref.
1	OAc	Me ₂ CuLi ^{a)}	4:0:96	>99	80
2	OAc	MeCu(CN)Li ^{a)}	39:12:49	e)	81
3	OCONHPh	i. MeLi, ii. CuI, iii. MeLi ^{bj}	89:11:0	^{e)}	75, 80

- a) Et₂O.
- b) THF.
- c) Yields are not given in the original literature.

As already noted, lower order cyanocuprates are more S_N2' -selective reagents. On treatment with acetate 163, however, a mixture of the two regioisomers was obtained (entry 2) [81]. In addition, γ -alkylation had taken place with ca. 25% loss of double bond configuration [82].

Better results were obtained for the carbamate of 163 (entry 3) [75, 80]. Thus, deprotonation of the carbamate 163 with a lithium base, followed by complexation with copper iodide and treatment with one equivalent of an alkyllithium, provided exclusive y-alkylation. Double bond configuration was only partially maintained, however, giving 164 and 165 in a ratio of 89:11. The formation of both alkene isomers is explained in terms of two competing transition states: 167 and 168 (Scheme 6.35). Minimization of allylic A^{1,3} strain should to some extent favor transition state 167. Employing the enantiomerically enriched carbamate (R)-163 (82% ee) as the starting material, the proposed syn-attack of the organocopper nucleophile could then be as shown. Thus, after substitution and subsequent hydrogenation, (R)-2phenylpentane (169) was obtained in 64% ee [75].

Scheme 6.35. Interpretation of the chirality transfer during the course of allylic substitution of acyclic carbamate derivative (R)-163.

As a consequence of this model, it should be foreseeable that increasing allylic $A^{1,3}$ strain – arising from employment of a Z alkene system, for example – should favor transition state 167 even more, giving higher levels of E selectivity for the corresponding allylic substitution product. Accordingly, treatment of the Z allylic carbamate 170 with the mixed silyl cuprate resulted in exclusive formation of the E alkene 171 (Scheme 6.36) [83]. Interestingly, the Z allylic substrates also provide higher E selectivities in the case of non-directed allylic substitutions.

Scheme 6.36. Regioselective allylic substitution of Z carbamate 170 with a silylcuprate reagent.

This knowledge was elegantly exploited in a recent synthesis of prostaglandins (Scheme 6.37). The starting point was a mixture of diastereomeric propargylic alcohols 175, obtained from a non-selective 1,2-addition of an alkynylcerium reagent to aldehyde 174. Subsequent *cis* hydrogenation with a palladium catalyst gave the diastereomeric Z allylic alcohols 176 and 177. The two diastereomers were separated and transformed either into the carbamate 178 or into the benzoate 179. Allylic substitution of both substrates with phosphine-modified silylcuprate reagents converged to the formation of a single allyl silane 180 [84].

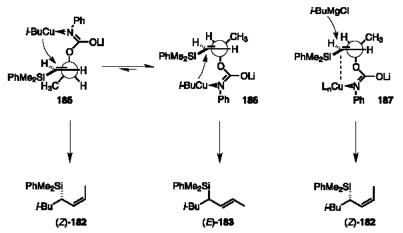
Upon allylic substitution with organocopper reagents, both E and Z allylic carbamates generally furnish E alkene systems, either exclusively or preferentially. In contrast, it was recently found that E allylic carbamates bearing silyl groups in their y-positions provide remarkable Z selectivities under reaction conditions involving mixed organomagnesium/copper reagents (Scheme 6.38) [85].

Thus, enantiomerically pure carbamate (E)-181 furnished the Z allylsilane 182 in high yield and with good Z selectivity. After transformation into the saturated alcohol 184, an enantiomeric excess of 88% was determined, consistent with the E:Z ratio of the allylsilane with respect to the ee of the starting compound (entry 1, Tab. 6.7). On switching to an isobutyl organocopper reagent obtained from the corresponding isobutyllithium, however, the carbamate (E)-181 furnished the E allylsilane 183 (entry 2). Conversely, both reagent types reacted with the Z isomer of 181 to give the E allylsilane 183 (entries 3 and 4). To explain the inverse stereochemical outcome of allylic substitution of the E vinylsilane 181 with the magnesium/copper reagents, two arguments have been put forward (Scheme 6.39).

According to these, reaction takes place either through the sterically less favorable transition state 185 or by a pathway involving an *exo* attack of the Grignard reagent on the copper-complexed carbamate, as shown in 187 [75, 85]. For Z car-

Scheme 6.37. Allylic substitution with silylcuprates in the course of a prostaglandin synthesis.

bamate 181, minimization of allylic A1,3 strain again seems to dictate the stereochemical outcome of the allylic substitution, irrespective of the reagent employed


As well as coordinating leaving groups, a second general solution to the problem of obtaining high S_N2' selectivities makes use of sulfonate leaving groups in combination with Lewis acid-activated organocopper reagents [86-89]. For example, the Z y-mesyloxy enoate 189 reacted with lithium methylcyanocuprate-boron trifluoride

Scheme 6.38. Influence of reagent and alkene geometry on allylic substitution of *y*-silyl-substituted allylic carbamates **181** (Ts = *para*-toluenesulfonyl, NMP = *N*-methylpyrrolidinone).

Tab. 6.7. Results of allylic substitution of y-silyl-substituted allylic carbamates **181** with organocopper reagents.

Entry	Substrate	Base ^{a)}	М	182:183	Yield ^b [%]	ee 184 [%]
1	(E)-181	n-BuLi	MgCl	94:6	90	88
2	(E)-181°)	n-BuLi	Li	9:91	69	_
3	(Z)-181 ^{d)}	MeLi	MgCl	3:97	93	92
4	(Z) -181 $^{d)}$	MeLi	Li	<1:99	93	94

- a) THF, 0 °C.
- b) yield of 182 and 183.
- c) Racemic starting material was employed.
- d) 96% ee, E:Z = 3:97.

Scheme 6.39. Interpretation of the results of allylic substitution of *y*-silyl-substituted allylic carbamates.

to give the 1,4-syn-configured β , y-unsaturated ester 190 in high yield and with good stereoselectivity (Scheme 6.40). Interestingly, the corresponding E enoate 192, under identical conditions, gave the 1,4-anti-configured product 193 [86]. Thus, olefin geometry provides a convenient handle with which to control the configuration of the newly formed stereogenic center [88].

Transition state models that minimize allylic A^{1,3} strain (191 and 194) provide

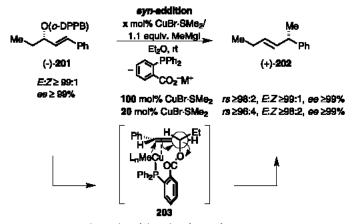
Scheme 6.40. Influence of alkene geometry on stereoselectivity of allylic substitution of mesylates 189 and 192 with boron trifluoride-modified lower order cyanocuprate reagents.

interpretations of the stereochemical outcome of both reactions [86b]. Interestingly, it has been possible to use the method for stereoselective construction of quaternary carbon centers (Scheme 6.41) [87].

Scheme 6.41. Stereoselective construction of a quaternary stereocenter by allylic substitution of mesylate 195 with a boron trifluoride-modified cyano-Gilman cuprate reagent.

More recent investigations have shown that this reaction operates even under catalytic conditions (3-10 mol% of copper(II) salt), with alkylzinc reagents as the stoichiometric organometallic source (Scheme 6.42) [89].

Scheme 6.42. Copper-catalyzed allylic substitution of mesylate 197 with an organozinc reagent.


To achieve diastereoselectivity in the course of allylic substitution, the controlling chiral information may not only reside in the substrate skeleton but may also be part of the allylic leaving group. Thus, a chiral carbamate has been developed as a

chiral reagent-directing leaving group (as in 199), transforming an achiral allylic alcohol into the corresponding chiral allylic substitution product 200 with a high degree of enantioselective stereocontrol (Scheme 6.43) [90].

Scheme 6.43. Control of allylic substitution stereochemistry with the aid of a chiral carbamate leaving group.

Although carbamates and benzothiazoles have proven to be useful reagent-directing leaving groups for allylic substitution with organocopper reagents, the previous discussion has shown that both systems suffer from a number of drawbacks. For instance, control over alkene geometry upon reaction of acyclic derivatives is often unsatisfactory in particular for substrates with *E-configuration* (see Scheme 6.35). As a consequence chirality transfer will be incomplete.

Very recently the *ortho*-diphenylphosphanylbenzoyl (o-DPPB) function (see chapter 6.1.2, Scheme 6.26) has been identified as an alternative reagent-directing leaving group which resolves the above described problems [91]. Thus, cinnamyl derivative (–)-201 gave upon successive treatment with CuBr-SMe₂ and MeMgI the S_N2' substitution product (+)-202. The reaction occured with complete control of chemo-, regio- and stereoselectivity which is easily explained via reactive conformation 203. Interestingly, the amount of copper could be lowered to 20 mol-% without significant loss of selectivity. Noteworthy, to our knowledge this is also the first example of a directed *syn*-selective substitution employing catalytic reaction conditions.

Scheme 6.44. ortho-Diphenylphosphinobenzoyl (o-DPPB)group directed allytic substitution with Grignard reagents.

- General reviews: a) G. H. Posner, Org. React. 1972, 19, 1-61; b) Y. YAMAMOTO, Angew. Chem. 1986, 98, 945-957; Angew. Chem. Int. Ed. Engl. 1986, 25, 947-959; c) B. H. LIPSHUTZ, E. SENGUPTA, Org. React. 1992, 41, 135-631; d) R. J. K. TAYLOR (Ed.), Organocopper Reagents - A Practical Approach, Oxford University Press, New York, 1994; e) N. Krause. A. GEROLD, Angew. Chem. 1997, 109, 194-213; Angew. Chem. Int. Ed. Engl. 1997, 36, 186-204. Conjugate addition: f) J. A. Kozlowski, Comp. Org. Synth. 1991, 4, 169-198; g) B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771-806; h) N. KRAUSE, Kontakte (Darmstadt), 1993, 1, 3-13; i) Y. Yamamoto in Houben-Weyl, Methods for Organic Synthesis, 1995, Volume E21b, 2041-2067. Allylic substitution: j) Y. Yamamoto in Houben-Weyl, Methods for Organic Synthesis, 1995, Volume E21b, 2011-2040; For applications towards total synthesis of prostaglandins: k) R. Noyori, M. Suzuki, Angew. Chem. 1984, 96, 854-882; Angew. Chem. Int. Ed. Engl. 1984, 23, 847-875.
- 2 A. B. SMITH III, N. K. DUNLAP, G. A. Sulikowski, Tetrahedron Lett. 1988, 29, 439-442.
- 3 a) T. L. THI NGOC, H. RIVIÈRE, Compt. Rend. 1968, 267, 776-778; b) H. Rivière, J. Tostain, Bull. Soc. Chim. Fr. 1969, 568-576; c) N.-T. LUONG-THI, H. RIVIÈRE, Tetrahedron Lett. 1970, 11, 1579-1582.
- 4 a) H. O. House, W. F. Fischer, J. Org. Chem. 1968, 33, 949-956; b) N. L. Allinger, C. K. Riew, Tetrahedron Lett. 1966, 7, 1269-1272; c) M. ASAOKA, K. SHIMA, H. TAKEI, J. Chem. Soc., Chem. Commun. 1988, 430-431.
- 5 M. Asami, S. Sato, K. Honda, S. INOUE, Heterocycles 2000, 52, 1029 - 1032.
- 6 Notably, 6-methyl-2-cyclohexenone is reported, upon treatment with lithium dimethylcuprate, to give syn-2,5-

- dimethylcyclohexanone (dr 90:10): D. H. R. BARTON, J. BOIVIN, M. GASTIGER, J. MORZYCKI, R. S. HAY-Motherwell, W. B. Motherwell, N. Ozbalik, K. M. SCHWARTZENTRUBER, J. Chem. Soc., Perkin Trans. I 1986, 947-955.
- 7 a) M. Suzuki, A. Yanagisawa, R. Nojori, J. Am. Chem. Soc. 1985, 107, 3348-3349; b) M. Suzuki, A. Yanagisawa, R. Noyori, J. Am. Chem. Soc. 1988, 110, 4718-4726; c) B. H. LIPSHUTZ, M. R. WOOD, J. Am. Chem. Soc. 1994, 116, 11689-11702.
- 8 Y. Horiguchi, M. Komatsu, I. Kuwajima, Tetrahedron Lett. 1989, 30, 7087-7090.
- 9 a) S. Hikichi, G. Hareau, F. Sato, Tetrahedron Lett. 1997, 38, 8299-8302; b) G. Hareau-Vittini, S. Hikichi, F. SATO, Angew. Chem. 1998, 110, 2221-2223; Angew. Chem. Int. Ed. Engl. 1998, 37, 2099-2101; c) G. HAREAU, M. Korwa, T. Hanazawa, F. Sato, Tetrahedron Lett. 1999, 40, 7493-7496; d) G. Hareau, M. Koiwa, S. Hikichi, F. SATO, J. Am. Chem. Soc. 1999, 121, 3640-3650; e) For studies on the influence of additional substituents in 4 position see: T. HANAZAWA, M. Koiwa, G. Hareau, F. Sato, Tetrahedron Lett. 2000, 41, 2659-2662.
- 10 For related studies on 6-aminocycloheptenones see: M. Korwa, G. P.-J. HAREAU, D. MORIZONO, F. SATO, Tetrahedron Lett. 1999, 40, 4199-
- 11 a) J. A. MARSHALL, G. M. COHEN, Tetrahedron Lett. 1970, 11, 3865-3868; b) J. A. Marshall, G. M. Cohen, J. Org. Chem. 1971, 36, 877-882.
- 12 a) E. Piers, W. De Waal, R. W. BRITTON, J. Chem. Soc., Chem. Commun. 1968, 188-189; b) E. Piers, W. DE WAAL, R. W. BRITTON, Can. J. Chem. 1969, 47, 4299-4306; c) E. Piers, R. W. Britton, W. de Waal, Can. J. Chem. 1969, 47, 4307-4312.
- 13 a) S. H. BERTZ, R. A. J. SMITH, Tetrahedron 1990, 46, 4091-4100; b) S. H. Bertz, R. A. J. Smith, J.

- Am. Chem. Soc. 1989, 111, 8276-8277; c) J. A. Marshall, W. I. Fanta, H. ROEBKE, J. Org. Chem. 1966, 31, 1016-1020; d) C. L. Kingsbury, K. S. SHARP, R. A. J. SMITH, Tetrahedron 1999, 55, 14693-14700.
- 14 b) J. A. Marshall, H. Roebke, J. Org. Chem. 1966, 31, 3109-3113; a) B. J. M. Jansen, J. A. Kreuger, A. de GROOT, Tetrahedron 1989, 45, 1447-1452; c) M. Uerdingen, N. Krause, Tetrahedron 2000, 56, 2799-2804.
- 15 a) C. H. HEATHCOCK, T. C. GERMROTH, S. L. GRAHAM, J. Org. Chem. 1979, 44, 4481-4487; b) T. A. Blumenkopf, C. H. Heathcock, J. Am. Chem. Soc. 1983, 105, 2354-2358.
- 16 W. C. STILL, I. GALYNKER, Tetrahedron 1981, 37, 3981-3996.
- 17 a) S. Hanessian, K. Sumi, Synthesis 1991, 1083-1089; b) S. Hanessian, Y. GAI, W. WANG, Tetrahedron Lett. 1996, 37, 7473-7476; c) S. Hanessian, W. WANG, Y. GAI, E. OLIVER, J. Am. Chem. Soc. 1997, 119, 10034-10041; d) S. Hanessian, J. Ma, W. Wang, Tetrahedron Lett. 1999, 40, 4627-4630.
- 18 a) M. Chérest, H. Felkin, N. PRUDENT, Tetrahedron Lett. 1968, 9, 2199-2204; b) M. Chérest, H. FELKIN, Tetrahedron Lett. 1968, 9, 2205-2208; c) N. T. ANH, O. EISENSTEIN, Nouv. J. Chim. **1977**, *1*, 61–70.
- 19 a) R. W. HOFFMANN, Chem. Rev. 1989, 89, 1841-1860; b) R. W. HOFFMANN, Angew. Chem. 1992, 104, 1147-1157; Angew. Chem. Int. Ed. Engl. 1992, 31, 1124-1134.
- 20 a) E. Nakamura, S. Mori, M. Narakuma, K. Morokuma, J. Am. Chem. Soc. 1997, 119, 4887-4899; b) E. Nakamura, S. Mori, K. Morokuma, J. Am. Chem. Soc. 1997, 119, 4900-4910. c) S. Mori, E. NAKAMURA, Chem. Eur. J. 1999, 5, 1534-1543.
- 21 For a recent review on mechanistic aspects of organocopper chemistry see: E. Nakamura, S. Mori, Angew. Chem. 2000, 112, 3902-3924; Angew. Chem. Int. Ed. 2000, 39, 3750-3771 and references cited therein.

- 22 a) D. E. FRANTZ, D. A. SINGLETON, J. P. SNYDER, J. Am. Chem. Soc. 1997, 119, 3383-3384; b) D. E. FRANTZ, D. A. Singleton, J. Am. Chem. Soc. 2000, 122, 3288-3295.
- 23 a) W. R. ROUSH, M. R. MICHAELIDES, D. F. Tai, B. M. Lesur, W. K. M. CHONG, D. J. HARRIS, J. Am. Chem. Soc. 1989, 111, 2984-2995; b) W. R. ROUSH, M. R. MICHAELIDES, D. F. TAI, B. M. LESUR, W. K. M. CHONG, J. Am. Chem. Soc. 1987, 109, 7575-7577; c) W. R. Roush, B. M. Lesur, Tetrahedron Lett. 1983, 24, 2231-2234.
- 24 a) J. LEONARD, G. RYAN, Tetrahedron Lett. 1987, 28, 2525-2528; b) J. LEONARD, S. MOHIALDIN, D. REED, G. RYAN, P. A. SWAIN, Tetrahedron 1995, 51, 12843-12858.
- 25 K. NILSSON, C. ULLENIUS, Tetrahedron 1994, 50, 13173-13180.
- 26 S. C. Roy, L. Nagarajan, R. G. Salomon, J. Org. Chem. 1999, 64, 1218-1224 and references cited therein.
- 27 For more information on levuglandines see: R. G. SALOMON, Acc. Chem. Res. 1985, 18, 294-301.
- 28 a) M. Ayerbe, I. Morao, A. Arrieta, A. LINDEN, F. P. Cossio, Tetrahedron Lett. 1996, 37, 3055-3058; b) G. Galley, J. Hübner, S. Anklam, P. G. Jones, M. Pätzel, Tetrahedron Lett. 1996, 37, 6307-6310.
- 29 J. Clayden, A. Nelson, S. Warren, Tetrahedron Lett. 1997, 38, 3471-3474.
- 30 F. E. Ziegler, P. J. Gilligan, J. Org. Chem. 1981, 46, 3874-3880.
- 31 a) K. C. NICOLAOU, M. R. PAVIA, S. P. Serrz, J. Am. Chem. Soc. 1981, 103, 1224-1226; b) K. C. NICOLAOU, M. R. PAVIA, S. P. SEITZ, J. Am. Chem. Soc. 1982, 104, 2027-2029.
- 32 K. Burgess, J. Cassidy, I. Henderson, J. Org. Chem. 1991, 56, 2050-2058.
- 33 For further examples see: a) M. Asami, T. Mukaiyama, Chem. Lett. 1979, 569-572; b) H. YODA, T. Shirai, T. Katagiri, K. Takabe, Chem. Lett. 1990, 2037-2038; c) M. T. REETZ, D. RÖHRIG, Angew. Chem. 1989, 101, 1732-1734; Angew. Chem. Int. Ed. Engl. 1989, 28, 1706-1708; d)

- S. Hanessian, W. Wang, Y. Gai, Tetrahedron Lett. 1996, 37, 7477-7480.
- 34 For better visualization, 83-87 are drawn with the amino substituent in the main chain, and are thus synconfigured relative to the amino substituent and the newly formed stereogenic center.
- 35 M. T. REETZ, J. KANAND, N. GRIEBENOW, K. HARMS, Angew. Chem. 1992, 104, 1638-1641; Angew. Chem. Int. Ed. Engl. 1992, 31, 1626-1629.
- 36 a) T. IBUKA, Y. YAMAMOTO, Synlett 1992, 769-777; b) Y. YAMAMOTO, Y. Chounan, S. Nishii, T. Ibuka, H. KITAHARA, J. Am. Chem. Soc. 1992, 114, 7652-7660 and references cited therein.
- 37 For a chemical scale of the electrontransfer capability of organocopper reagents see: a) Y. Chounan, T. IBUKA, Y. YAMAMOTO, J. Chem. Soc., Chem. Commun. 1994, 2003-2004; b) Y. Chounan, H. Horino, T. Ibuka, Y. YAMAMOTO, Bull. Chem. Soc. Jpn. 1997, 70, 1953-1959; for the reduction potential of Michael acceptors see: c) Y. Chounan, Y. Ono, S. Nishii, H. KITAHARA, S. ITO, Y. YAMAMOTO, Tetrahedron 2000, 56, 2821-2831.
- 38 For further examples see: a) Y. HONDA, S. HIRAI, G. TSUCHIHASHI, Chem. Lett. 1989, 255-258; b) P. W. SMITH, W. C. STILL, J. Am. Chem. Soc. 1988, 110, 7917-7919.
- 39 M. R. Hale, A. H. Hoveyda, J. Org. Chem. 1994, 59, 4370-4374.
- 40 a) Y. Yamamoto, S. Nishii, T. Ibuka, J. Chem. Soc., Chem. Commun. 1987, 1572-1573; b) Ү. Үамамото, S. NISHII, T. IBUKA, J. Am. Chem. Soc. 1988, 110, 617-618.
- 41 a) K. Yamamoto, H. Ogura, J. JUKUTA, H. INOUE, K. HAMADA, Y. Sugiyama, S. Yamada, J. Org. Chem. 1998, 63, 4449-4458; b) K. Yamamoto, S. Yamada, K. YAMAGUCHI, Tetrahedron Lett. 1992, 33, 7521-7524; c) K. Yamamoto, J. TAKAHASHI, K. HAMANO, S. YAMADA, K. Yamaguchi, J. Org. Chem. 1993, 58, 2530-2537; d) K. YAMAMOTO, W.-Y. Sun, M. Ohta, K. Hamada,

- H. F. DELICA, S. YAMADA, J. Med. Chem. 1996, 39, 2727-2737.
- 42 a) E. J. COREY, N. W. BOAZ, Tetrahedron Lett. 1985, 26, 6015-6018; b) E. J. Corey, N. W. Boaz, Tetrahedron Lett. 1985, 26, 6019-6022.
- 43 L. F. CAPTAIN, X. XIA, D. C. LIOTTA, Tetrahedron Lett. 1996, 37, 4293-4296.
- 44 Investigations on similar alkoxy-E/Zenones: E. J. Corey, F. J. Hannon, N. W. Boaz, Tetrahedron 1989, 45, 545-555.
- 45 D. A. Evans, B. D. Allison, M. G. YANG, Tetrahedron Lett. 1999, 40, 4457-4460.
- 46 a) B. H. LIPSHUTZ, Tetrahedron Lett, 1983, 24, 127-130; b) B. H. LIPSHUTZ, J. A. Kozlowski, D. A. Parker, S. L. NGUYEN, K. E. McCarthy, J. Organomet. Chem. 1985, 285, 437-444.
- 47 High diastereoselectivity upon conjugate addition to ε-silyl substituted enoates has in some cases been observed: A. Barbero, D. C. Blakemore, I. Fleming, R. N. Wesley, J. Chem. Soc., Perkin Trans. I 1997, 1329-1352.
- 48 For a review on substrate-directable chemical reactions see: A. H. HOVEYDA, D. A. EVANS, G. C. FU, Chem. Rev. 1993, 93, 1307-1370.
- 49 For the concept of catalyst- and reagent-directing o-DPPBfunctionality see: B. Breit, Chem. Eur. J. 2000, 6, 1519-1524.
- 50 a) B. BREIT, Angew. Chem. 1998, 110, 535-538; Angew. Chem. Int. Ed. Engl. 1998, 37, 525-527; b) B. BRETT, P. Demel, Tetrahedron 2000, 56, 2833-2846.
- 51 a) B. BREIT, Angew. Chem. 1996, 108, 3021-3023, Angew. Chem. Int. Ed. Engl. 1996, 35, 2835-2837; b) B. Brett, J. Chem. Soc., Chem. Commun. 1997, 591-592; c) B. Brerr, Liebigs Ann./ Recueil 1997, 1841-1851; d) B. BRETT, Eur. J. Org. Chem. 1998, 1123-1124; e) B. Breit, M. Dauber, K. HARMS, Chem. Eur. J. 1999, 5, 2819-2827.
- 52 For domino hydroformylation/ reductive amination reactions see: B. BREIT, Tetrahedron Lett. 1998, 39, 5163-5166.

- 53 For domino hydroformylation/Wittig olefinations see: a) B. BREIT, S. K. ZAHN, Angew. Chem. 1999, 111, 1022-1024; Angew. Chem. Int. Ed. Engl. 1999, 38, 969-971; b) B. Breit, S. K. ZAHN, Polyhedron, 2000, 19, 513-515.
- 54 B. H. LIPSHUTZ, J. M. KETTH, Angew. Chem. 1999, 111, 3743-3746; Angew. Chem. Int. Ed. 1999, 38, 3530-3533.
- 55 a) W. Oppolzer, R. Moretti, G. BERNARDINELLI, Tetrahedron Lett. 1986, 27, 4713-4716; b) W. Oppolzer, P. Dudfield, T. Stevenson, T. GODEL, Helv. Chim. Acta 1985, 68, 212-215; c) G. Helmchen, G. WEGNER, Tetrahedron Lett. 1985, 26, 6047-6050; d) G. Helmchen, G. WEGNER, Tetrahedron Lett. 1985, 26, 6051-6054; e) E. Urban, G. Knühl, G. Helmchen, Tetrahedron Lett. 1995, 36, 7229-7232.
- 56 a) M. Bergdahl, M. Nilsson, T. Olsson, J. Organomet. Chem. 1990, 391, C19-C22; b) M. Bergdahl, M. Nilsson, T. Olsson, K. Stern, Tetrahedron 1991, 47, 9691-9702.
- 57 a) W. Oppolzer, R. J. Mills, W. PACHINGER, T. STEVENSON, Helv. Chim. Acta 1986, 69, 1542-1545; b) W. Oppolzer, G. Poli, A. J. Kingma, C. STARKEMANN, G. BERNARDINELLI, Helv. Chim. Acta 1987, 70, 2201-2214; c) W. Oppolzer, A. J. Kingma, G. Poli, Tetrahedron 1989, 45, 479-488; d) W. Oppoizer, A. J. Kingma, Helv. Chim. Acta 1989, 72, 1337-1345.
- 58 a) W. Oppolzer, R. Moretti, T. Godel, A. Meunier, H. Löher, Tetrahedron Lett. 1983, 24, 4971-4974; b) W. Oppolzer, T. Stevenson, Tetrahedron Lett. 1986, 27, 1139-1140.
- 59 P. S. VAN HEERDEN, B. C. B. BEZUIDENHOUDT, D. FERREIRA, Tetrahedron Lett. 1997, 38, 1821-1824.
- 60 a) D. R. WILLIAMS, W. S. KISSEL, J. J. Lr, Tetrahedron Let. 1998, 39, 8593-8596; for further examples see: b) G. LI, M. A. JAROSINSKI, V. J. HRUBY, Tetrahedron Lett. 1993, 34, 2561-2564; c) P. Wipf, H. Takahashi, J. Chem. Soc., Chem. Commun. 1996, 2675-
- 61 a) K. Tomioka, T. Suenaga, K. Koga, Tetrahedron Lett. 1986, 27, 369-372;

- b) I. Fleming, N. D. Kindon, L. Chem. Soc., Perkin Trans. I 1995, 303-
- 62 a) C. Fang, H. Suemune, K. Sakai, Tetrahedron Let. 1990, 31, 4751-4754; for further examples see: b) C. FANG, T. OGAWA, H. SUEMUNE, K. SAKAI, Tetrahedron: Asymmetry 1991, 2, 389-398; c) T. Ogawa, C. Fang, H. Suemune, K. Sakai, J. Chem. Soc., Chem. Commun. 1991, 1438-1439; d) F. ORSINI, F. PELIZZONI, Tetrahedron: Asymmetry 1996, 7, 1033-1040; e) K. SAKAI, H. SUEMUNE, Tetrahedron: Asymmetry 1993, 4, 2109-2118.
- 63 a) W. Oppolzer, H. J. Löher, Helv. Chim. Acta 1981, 64, 2808-2811; b) E. J. Corey, H. E. Ensley, J. Am. Chem. Soc. 1975, 97, 6908-2909.
- 64 I. Suzuki, H. Kin, Y. Yamamoto, J. Am. Chem. Soc. 1993, 115, 10139-10146.
- 65 K. Totani, T. Nagatsuka, K. Takao, S. Ohba, K. Tadano, Org. Lett. 1999, 1, 1447-1450.
- 66 a) N. M. Kelly, A. Sutherland, C. L. WILLIS, Nat. Prod. Rep. 1997, 14, 205-219; b) F. J. Winkler, K. Kuehnl, R. Medina, R. Schwarz-Kaske, H. L. SCHMIDT, Isot. Environ. Health Stud. 1995, 31, 161-190; c) D. W. Young, Top. Stereochem. 1994, 21, 381-465; d) N. Sitachitta, J. Rossi, M. A. ROBERTS, W. H. GERWICK, M. D. Fletcher, C. L. Willis, J. Am. Chem. Soc. 1998, 120, 7131-7132; e) R. Cardillo, C. Fuganti, D. GHIRINGHELLI, P. GRASSELLI, G. GATTI, J. Chem. Soc., Chem. Commun. 1977, 474-476; f) C. Fuganti, P. GRASSELLI, G. PEDROCCHI-FANTONI, Tetrahedron Lett. 1979, 20, 2453-2454; g) P. Anastasis, I. Freer, K. H. OVERTON, D. PICKEN, D. S. RYCROFT, S. B. SINGH, J. Chem. Soc., Perkin Trans. I, 1987, 2427-2436.
- 67 a) D. W. Young, Chem. Soc. Rev. 1994, 23, 119-128; b) M. P. GRUMP, J. Crosby, C. E. Dempsey, J. A. Parkinson, M. Murray, D. A. HOPWOOD, T. J. SIMPSON, Biochemistry 1997, 36, 6000-6008.
- 68 M. D. Fletcher, J. R. Harding, R. A. Hughes, N. M. Kelly, H.

- SCHMALZ, A. SUTHERLAND, C. L. WILLIS, J. Chem. Soc., Perkin Trans. I 2000, 43-52.
- 69 S. Lin, W. Cheng, Y. Liao, S. Wang, G. LEE, S. PENG, R. LIU, J. Chem. Soc., Chem. Commun. 1993, 1391-1393.
- 70 a) R. D. A. Hudson, S. A. Osborne, E. Roberts, G. R. Stephenson, Tetrahedron Lett. 1996, 37, 9009-9012; b) D. Enders, S. V. Berg, B. JANDELEIT, Synlett, 1996, 18-20; c) S. G. DAVIES, J. C. WALKER, J. Chem. Soc., Chem. Commun. 1985, 209-210; d) S. G. Davies, I. M. Dordor-HEDGECOCK, K. H. SUTTON, J. C. WALKER, Tetrahedron 1986, 42, 5123-5137.
- 71 a) M. Uemura, H. Oda, T. Minami, Y. HAYASHI, Tetrahedron Lett. 1991, 32, 4565-4568; b) A. Majdalani, H. SCHMALZ, Tetrahedron Lett. 1997, 38, 4545-4548; c) S. Mandal, A. Sarkar, I. Org. Chem. 1999, 64, 2454-2458.
- 72 a) H. L. GOERING, V. D. SINGLETON, J. Am. Chem. Soc. 1976, 98, 7854-7855; b) H. L. Goering, V. D. SINGLETON, J. Org. Chem. 1983, 48, 1531-1533.
- 73 E. J. Corey, N. W. Boaz, Tetrahedron Lett. 1984, 25, 3063-3066.
- 74 C. Gallina, Tetrahedron Lett. 1982, 23, 3093-3096.
- 75 H. L. GOERING, S. S. KANTNER, C. C. Tseng, J. Org. Chem. 1983, 48, 715-
- 76 a) P. Barsanti, V. Calò, L. Lopez, G. MARCHESE, F. NASO, G. PESCE, J. Chem. Soc., Chem. Commun. 1978, 1085-1086; b) V. CALÒ, L. LOPEZ, W. F. Carlucci, J. Chem. Soc., Perkin Trans. I, 1983, 2953-2956.
- 77 S. Valverde, M. Bernabé, S. Garcia-Ochoa, A. M. Gómez, J. Org. Chem. 1990, 55, 2294-2298.
- 78 A. Kreft, Tetrahedron Lett. 1977, 18, 1035-1038.
- 79 K. Tamao, A. Kawachi, Y. Tanaka, H. OHTANI, Y. ITO, Tetrahedron 1996, 52, 5765-5772.

- 80 H. L. GOERING, E. P. SEITZ, C. C. Tseng, J. Org. Chem. 1981, 46, 5304-5308.
- 81 H. L. Goering, C. C. Tseng, J. Org. Chem. 1983, 48, 3986-3990.
- 82 H. L. GOERING, S. S. KANTNER, J. Org. Chem. 1983, 48, 721-724.
- 83 I. Fleming, D. Higgins, N. J. LAWRENCE, A. P. THOMAS, J. Chem. Soc., Perkin Trans. I 1992, 3331-3349.
- 84 a) I. Fleming, S. B. D. Winter, Tetrahedron Lett. 1995, 36, 1733-1734; b) I. Fleming, S. B. D. Winter, J. Chem. Soc., Perkin Trans. I 1998, 2687-2700.
- 85 a) J. H. Smitrovich, K. A. Woerpel, J. Am. Chem. Soc. 1998, 120, 12998-12999; b) J. H. Smitrovich, K. A. Woerpel, J. Org. Chem. 2000, 65, 1601-1614.
- 86 a) T. IBUKA, T. NAKAO, S. NISHII, Y. Yамамото, J. Am. Chem. Soc. 1986, 108, 7420-7422; b) T. IBUKA, M. TANAKA, S. NISHII, Y. YAMAMOTO, I. Am. Chem. Soc. 1989, 111, 4864-4872.
- 87 a) T. Ibuka, M. Tanaka, S. Nishii, Y. YAMAMOTO, J. Chem. Soc., Chem. Commun. 1987, 1596-1598; b) T. IBUKA, N. AKIMOTO, M. TANAKA, S. Nishii, Y. Yamamoto, J. Org. Chem. 1989, 54, 4055-4061.
- 88 However, in some cases the 1,4-syn addition products were obtained in a syn-S_N2' manner from E-y-mesyloxy enoates (compare 192): T. IBUKA, T. Taga, H. Habashita, K. Nakai, H. Tamamura, N. Fujii, Y. CHOUNAN, H. NEMOTO, Y. YAMAMOTO, J. Org. Chem. 1993, 58, 1207-1214.
- 89 N. FUJII, K. NAKAI, H. HABASHITA, H. Yohizawa, T. Ibuka, F. Garrido, A. Mann, Y. Chounan, Y. YAMAMOTO, Tetrahedron Lett. 1993, 34, 4227-4230.
- 90 S. E. Denmark, L. K. Marble, J. Org. Chem. 1990, 55, 1984-1986
- 91 B. Breit, P. Demel, Adv. Synth. Catal. 2001, 343, 429-432.

7 Copper-catalyzed Enantioselective Conjugate Addition Reactions of Organozinc Reagents

Ben L. Feringa, Robert Naasz, Rosalinde Imbos, and Leggy A. Amold

7.1 Introduction

Conjugate addition (1,4-addition) of carbon nucleophiles to α , β -unsaturated compounds is one of the most important carbon–carbon bond-forming strategies in synthetic organic chemistry [1]. The versatility of the conjugate addition is mainly due to the large variety of nucleophiles (organometallic reagents, Michael donors, other carbanions) and acceptors (α , β -unsaturated aldehydes, ketones, nitriles, phosphates, esters, and sulfones, as well as nitroalkenes) that can be used [2]. Recent progress in the development of highly enantioselective Michael additions has been reviewed [3].

The most frequently employed organometallic reagents in conjugate addition reactions are organocuprates derived from organolithium or Grignard reagents [4–12]. A number of other transition metal catalysts (Ni, Co, Pd, Ti) and organometallic reagents (R_2Zn , R_3Al , RBX_2) have been shown to provide valuable alternatives to organocopper chemistry for achieving this transformation [5, 12]. In particular, the exploitation of dialkylzinc reagents has been extremely successful in the development of highly enantioselective catalytic 1,4-additions in recent years [6, 9, 11, 12]. These efforts are summarized in this chapter.

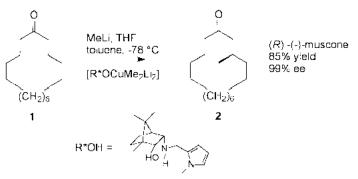
The conjugate addition of organometallic reagents R_nM to an electron-deficient alkene under, for instance, copper catalysis conditions results in a stabilized carbanion that, upon protonation, affords the chiral β -substituted product (Scheme 7.1, path a). Quenching of the anionic intermediate with an electrophile creates a disubstituted product with two new stereocenters (Scheme 1, path b). With a prochiral electrophile, such as an aldehyde, three new stereocenters can be formed in a tandem 1,4-addition-aldol process (Scheme 1, path c).

A number of conjugate additions delivering excellent enantioselectivities through the use of organocuprates in the presence of *stoichiometric* amounts of chiral (nontransferable) ligands are known today [7–9].

A major challenge has been the development of enantioselective 1,4-additions of

Scheme 7.1. Catalytic conjugate addition and tandem conjugate addition.

organometallic reagents in the presence of only catalytic amounts of transition metals and chiral ligands. Only recently have catalytic methods promoting enantioselectivities in 1,4-additions of Grignard, organolithium, and organozinc reagents been found [8-12].


Problems encountered in the rational design of enantioselective catalytic versions of 1,4-additions of organometallic reagents are the frequently observed fast uncatalyzed reaction and the complex nature of the actual catalysts. Factors that can have a strong influence on the 1,4-addition include the nature of the organometallic reagent, the number and nature of the ligands, solvent-dependent aggregation, the presence of salts or halides (distinct differences when using R2M and RMX, for example), coordinating or noncoordinating solvents and Lewis acid activation of the substrate.

A brief discussion of the most notable achievements obtained with Grignard, organolithium, and organoboron reagents follows. Although Lippard [13] used a chiral N,N'-dialkylaminotropone imine copper(I) catalyst in his pioneering work on the asymmetric 1,4-addition of n-BuMgBr to 2-cyclohexenone, nearly all subsequent conjugate additions of Grignard reagents with high enantioselectivities have been performed with copper(I) salts in the presence of chiral sulfur or phosphorus ligands. Chiral ligands and catalysts, with the enantioselectivities achieved to date using Grignard reagents, are summarized in Scheme 7.2 [13-19].

A major problem in the development of catalytic asymmetric 1,4-additions of RLi reagents is the high reactivity usually associated with organolithium species. One solution has been found in the stoichiometric formation of the corresponding chiral cuprates; ee's of up to 99% have been reported [20]. An impressive example of the use of a substoichiometric quantity (33 mol%) of chiral ligand is to be found in

Scheme 7.2. Chiral ligands and catalysts in enantioselective 1,4-additions of Grignard reagents.

the chiral, alkoxycuprate-catalyzed addition of MeLi to (E)-2-cyclopentadecenone (1) to afford (R)-muscone (2) with an ee of 99% (Scheme 7.3) [21].

Scheme 7.3. Asymmetric synthesis of (R)-muscone.

Another successful approach involves the use of chiral donor ligands to affect the aggregation behavior of organolithium species [22]. The oligomeric organolithium reagents are converted by the chiral ligand to more reactive monomeric chiral organolithium species. For instance, the 1,4-addition of n-BuLi to 3, containing a sterically demanding ester moiety, in the presence of a stoichiometric amount of (–)-sparteine (5) as a chiral donor ligand, yields (R)-4 with an e0 of 99% (Scheme 7.4).

on-BuLi
$$5 (0.3 \text{ equiv})$$
toluene, -78 °C

$$5 = \text{N}$$

$$4 95\% \text{ yield}$$
85% ee

Scheme 7.4. 1,4-Addition of n-BuLi, using sparteine as a chiral donor ligand.

Reduction of the quantity of sparteine donor ligand used to only 0.3 equivalents still provides an *ee* of 85% in the addition product 4 [23].

Organoboron reagents are particularly well suited for 1,4-additions of aryl and vinyl groups to enones. Hayashi et al. developed a highly enantioselective Rh(I)/BINAP-catalyzed 1,4-addition of phenylboronic acid to cyclic and acyclic enones [24] (Scheme 7.5) and 1-alkenylphosphonates [25].

Scheme 7.5. Rhodium-catalyzed enantioselective 1,4-addition using phenylboronic acid.

7.2 Organozinc Reagents

Asymmetric carbon–carbon bond-formation using organozinc reagents has developed into one of the most successful areas of synthetic chemistry in recent years [26]. Although dialkylzinc reagents (R_2Zn) usually react extremely sluggishly with carbonyl compounds and enones [27], effective catalysis may be achieved through the use of various ligands and transition metal complexes [28].

Catalysis can be attributed to two effects:

- (1) changes in geometry and bond energy of the zinc reagent [29], and
- (2) transmetallation [28]

The first effect has been exploited in numerous ligand-accelerated [30], enantiose-lective 1,2-additions of R_2Zn reagents to aldehydes [26]. Dimethylzinc, for example, has a linear structure and is not reactive towards aldehydes or ketones. Upon coordination of triazine, however, a tetrahedral configuration is produced at the zinc

atom and an elongated zinc-carbon bond is created, resulting in enhanced reactivity of the dialkylzinc reagent (Scheme 7.6(a)) [29].

1.95Å
$$\frac{1}{180^{\circ}}$$
 Me $\frac{1}{180^{\circ}}$ Me $\frac{1}{145^{\circ}}$ Me $\frac{1}{$

$$R-Zn-Y + X-ML_r \longrightarrow \begin{bmatrix} Y-Zn \\ X \end{bmatrix} ML_n \longrightarrow R ML_n + X Zn Y$$
 (b)

Y = R, halide M = Ti, Pd, Ni, Cu X = halide, QTf L = Ligand

Scheme 7.6. Activation of organozinc reagents.

Organozinc reagents can be converted into more reactive organometallic reagents RMLn [28], as has been demonstrated for Ni, Cu, Pd, and Ti [5, 31]. Transmetalation is therefore most probably the key step in copper-catalyzed 1,4-additions of R2Zn reagents, with alkyl transfer from Zn to Cu generating organocopper reagents in situ (Scheme 7.6(b)) [28]. In view of the complex nature of many organocopper reagents [32, 41], it needs to be emphasized that other formulations, such as bimetallic Zn/Cu reagents, are perhaps more realistic.

Another important feature is the reduced basicity of R2Zn reagents [27, 29]. The tolerance of organozinc reagents for functional groups (esters, nitriles) set them apart from many other organometallic systems, such as organolithium and Grignard reagents [28]. A number of R2Zn reagents are commercially available, but an important practical consideration in the use of organozinc reagents in 1,4addition is the option of starting with an enone and an alkene (Scheme 7.7).

FG - functional group

Scheme 7.7. Alkenes as starting materials in 1,4-additions involving (functionalized) organozinc reagents.

The R₂Zn reagents are readily prepared from the corresponding (functionalized) alkene by hydroboration and subsequent boron-zinc exchange, according to the

procedure of Knochel et al. (Scheme 7.8) [8, 28, 33]. Alternatively, they are accessible from the Grignard reagents by transmetalation, following the method introduced by Seebach et al. [5c, 34], but removal of halide is required since the presence of salts is usually detrimental in the subsequent catalytic asymmetric C. C. bond-formation.

Scheme 7.8. Nickel-catalyzed 1,4-addition, using alkene hydroboration and boron-zinc exchange.

7.3 Copper-catalyzed 1,4-Addition

Phosphoramidite-based Catalysts

The numerous studies prior to 1996 on Cu-catalyzed additions of Grignard reagents to cyclohexenone as a model substrate revealed that, with a few exceptions, enantioselectivity was exclusively found with either cyclic substrates (Grignard reagents) or acyclic substrates (dialkylzinc reagents) (Scheme 7.2).

The first application of a copper-catalyzed conjugate addition of diethylzinc to 2-cyclohexenone, using chiral phosphorous ligand 12, was reported by Alexakis (Fig. 7.1) [35]. An α of 32% was obtained.

It appears from these early studies that modest to rather high yields and enantioselectivities can be achieved with structurally very diverse chiral ligands. Furthermore, both relatively hard (amino alcohols) and soft (thiols, phosphines) ligands

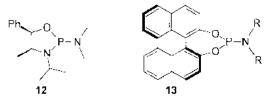


Fig. 7.1. Structures of phosphorus ligands 12 and 13.

produce active catalysts for 1,4-additions of Grignard and R₂Zn reagents. A critical analysis of copper-catalyzed 1,4-additions revealed that several competing catalytically active complexes, including achiral ones, might be present. A question that therefore played a decisive role in our discovery of the first catalytic, enantioselective 1,4-addition of an organometallic reagent with *ees* exceeding 98% was that of how efficient ligand-accelerated catalysis might be achieved [30]. In anticipation that the catalytic activity might be enhanced by fine-tuning of the steric and electronic properties of the ligands, phosphoramidites were introduced as a novel class of chiral ligands for copper [36].

Phosphoramidites 13, derived from 2,2'-binaphthol, proved to be versatile ligands for copper-catalyzed 1,4-additions of Et₂Zn to chalcone and 2-cyclohexenone (Scheme 7.9) [37].

Cu(OTf)₂/15 (3 mol%): 88% yield 90% ee

Scheme 7.9. Copper-catalyzed 1,4-addition to cyclohexenone and chalcone, with phosphoramidites as chiral ligands.

With these catalysts (3 mol%), prepared in situ from CuI or CuOTf and ligand 14, the following observations were made:

(1) high activity; complete conversions were reached in less than 3 h at -35 °C (isolated yields 75–88%),

- (2) excellent chemoselectivities and regioselectivities (>95%) for 1,4-addition,
- (3) significant ees both with cyclic and with acyclic enones; a feature notably absent with previous catalysts.

Use of ligand 15, with a sterically more demanding diisopropylamine moiety, further increased the enantioselectivity.

Another significant improvement, resulting in better catalyst solubility and slightly enhanced ee values, was found when Cu(OTf)2 was used. The ease of handling of Cu(OTf)2, compared to that of CuOTf, is a major advantage for applications of this catalytic system in synthesis. The copper(II) complex is most probably reduced in situ to a copper(I) complex, which functions as the actual catalyst.

The most important findings using the catalytic system based on Cu-ligand 15 are:

- (1) strongly ligand-accelerated catalysis, and
- (2) Et₂Zn addition to 4,4-dimethyl-2-cyclohexenone and chalcone with 81% ee and 90% ee, respectively.

A breakthrough was achieved with chiral phosphoramidite (S, R, R)-18, in which a C2-symmetric (S)-binaphthyl unit and a C2-symmetric (R, R)-bis-(1-phenylethyl)amine unit are present (Scheme 7.10), resulting in the enantioselective catalytic 1,4-addition of Et₂Zn to 2-cyclohexenone (6) with >98% ee [38].

Scheme 7.10. Enantioselective 1,4-addition of Et₂Zn to cyclohexenone with Cu(OTf)2-matched (S, R, R)-18 and Cu(OTf)₂-mismatched (S, S, S)-18 phosphoramidites.

The presence of two chiral units in ligand 18 results in a matched (S, R, R) and a mismatched (S, S, S) combination. The absolute stereochemistry of the product is controlled by the BINOL moiety and the amine component has a distinct effect in

Tab. 7.1. Enantioselective 1,4-addition of R₂Zn reagents to cyclic enones, catalyzed by $Cu(OTf)_2/(S, R, R)-18$.

R	₽³	n	Yield (%)	ee (%)
C ₂ H ₅	Н	1	94	>98
C_2H_5	H	0	75	10
C_2H_5	H	2	95	>98
C_2H_5	H	3	95	97
C_2H_5	CH_3	1	74	>98
C_2H_5	C_6H_5	1	93	>98
CH_3	H	1	72	>98
CH_3	CH_3	1	68	>98
C_7H_{15}	H	1	95	95
i-C ₃ H ₇	H	1	95	94
$(CH_2)_3C_6H_5$	H	1	53	95
(CH2)3CH(OC2H5)2	H	1	91	97

fine-tuning the enantioselectivity. However, even the diastereomeric Cu catalyst derived from (S, S, S)-18 still gave an ee of 91% [39]. The high selectivity and reactivity in this ligand-accelerated catalytic 1,4-addition was retained when the amount of catalyst used was reduced. When 6 was used as a substrate, turnover numbers larger than 3000 (95% ee) were found.

The examples given in Tab. 7.1 illustrate the scope of the $Cu(OTf)_2/(S, R, R)$ -18catalyzed 1,4-addition. With various R2Zn reagents, excellent yields and enantioselectivities are obtained for cyclic enones (except for cyclopentenone, vide infra) [6, 38, 80].

Functionalized alkyl groups are readily introduced through this catalytic procedure, while the level of stereoselectivity is not affected by, for instance, the presence of an ester functionality in the R₂Zn reagent (Scheme 7.11).

Scheme 7.11. Copper-catalyzed enantioselective 1,4-addition of a functionalized zinc reagent.

Catalytic Cycle

We have proposed a pathway, based on mechanistic studies in organocuprate and zincate chemistry [40-42] and the results of several catalytic experiments [37, 38], for the catalytic 1,4-addition (Scheme 7.12). Most probably, in situ reduction of Cu(OTf)₂ takes place prior to the formation of the Cu(I)-phosphoramidite complex L2CuX. Subsequent alkyl transfer from zinc to copper gives L2CuR and RZnX. Complexation of the RZnX to the carbonyl group and formation of the π -complex between L2CuR and the enone results in complex 19. This step is followed by alkyl transfer, and the resulting zinc enolate 20, upon protonation, affords β -substituted cycloalkanone 16. Alternatively, the enolate can be trapped with other electrophiles in tandem procedures (vide infra). The proposed mechanism is in accordance with the significant increases in reaction rates of 1,4-additions of cuprates produced by enone activation using Lewis acids [40–43] and with the well known π -complexation ability of organocopper species [20, 44]. In view of the high selectivities observed and taking into account that dinuclear species are involved in catalytic 1,2-additions of R₂Zn reagents [26], 19 might well be formulated as a bimetallic complex in which the enone is bound in a fixed conformation that affords highly π -face-selective addition.

CuX₂ or CuX

OZnR

$$2L$$
 $2L$
 2

Scheme 7.12. Catalytic cycle for 1,4-additions of R₂Zn reagents.

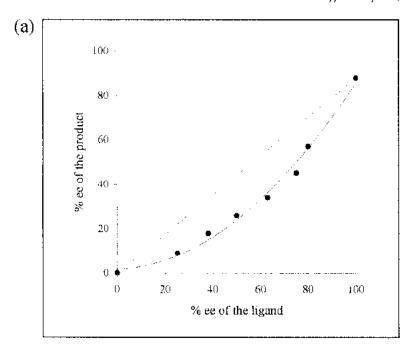
The presence of two ligands in the active catalyst is proposed on the basis of the optimum ligand-to-copper ratio of 2 and the nearly identical selectivities of monodentate and bidentate phosphoramidites in the 1,4-addition of Et₂Zn to 2cyclohexenone [45].

The observation of nonlinear effects, both with chalcone and with cyclohexenone, further supports this catalyst stoichiometry. The nonlinear effects can be explained by the involvement of diastereomeric complexes L2CuR, with two chiral ligands bound to copper (Fig. 7.2) [45].

The X-ray structure of the CuI complex 21 of phosphoramidite 14 provides additional insight into a possible mechanism for stereocontrol (Fig. 7.3). The formation of the L2CuEt-enone complex involves substitution of the iodide in 21 for the alkyl moiety and of one of the ligands for the π -coordinated enone. Coordination of RZnX results in the bimetallic intermediate 19 (Fig. 7.3). The absolute configuration of the two phosphoramidite ligands and the pseudo- C_2 -symmetric arrangement dictate the formation of (S)-3-ethyl-cyclohexanone.

Variation of Ligands

A remarkable number of new BINOL- and TADDOL-based chiral ligands for the copper-catalyzed conjugate addition of R2Zn reagents have recently been introduced, with both monodentate and bidentate ligands having proven capable of inducing high enantioselectivities [6, 11, 12, 46].


Yields and selectivities of BINOL-derived ligands in additions of Et₂Zn and Me₂Zn to 2-cyclohexenone are compiled in Tab. 7.2.

Pfaltz introduced phosphite ligands 22, with BINOL and chiral oxazoline units, which gives excellent enantioselectivities [47]. In phosphoramidites 14 and 15 (Scheme 7.9) the structure of the amine moiety is crucial, but substituents at the 3,3'-positions of the BINOL unit had only minor influences on the enantioselectivity of the 1,4-addition to cyclohexenone. In contrast, the introduction of the two 3,3'-methyl substituents in ligand 22 increased the ee drastically: from 54% to 90%.

Bidentate phosphorus ligands based on BINOL, such as phosphonite 23, phosphites 24 and 25, and phosphoramidite 26 (Tab. 7.2), with various bridging units were introduced by the groups of Reetz, Chan, and Waldmann [48-50]. Excellent enantioselectivities - up to 96% for ligand 23, for instance - were found.

Although the presence of BINOL in the ligands so far discussed has shown itself to be particular effective, modification of the diol moiety provides new classes of ligands for this addition reaction. Alexakis, screening a number of chiral phosphites in the Cu(OTf)2-catalyzed 1,4-addition, showed that an ee of 40% could be obtained for the addition of Et₂Zn to 2-cyclohexenone and of 65% for addition to chalcone, by using cyclic phosphites derived from diethyl tartrate [51].

The use of TADDOL-based ligands offers an important alternative for coppercatalyzed asymmetric 1,4-additions. TADDOLs $(\alpha, \alpha, \alpha', \alpha'$ -tetraaryl-1,3-dioxolane-4,5-dimethanol compounds), introduced by Seebach, are among the most successful currently known ligands in asymmetric catalysis. Seebach also developed the first copper-catalyzed 1,4-addition of a Grignard reagent using a TADDOL derivative as a chiral ligand (see Scheme 7.2) [17]. We have reported TADDOL-based

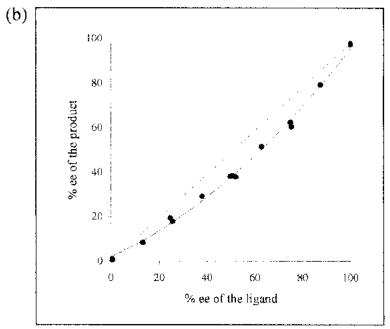


Fig. 7.2. Correlation between the $\varepsilon\varepsilon$ of the ligand and that of the 1,4-addition product: a) chalcone (ligand 15) and b) 2-cyclohexenone (ligand 18).

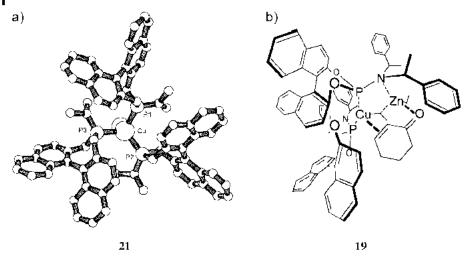


Fig. 7.3. a) X-ray structure of the Cul complex 21 of ligand 14; b) Possible bimetallic intermediate involved 19 in si-face-selective ethyl transfer to 2-cyclohexenone.

phosphoramidite 27 as a chiral ligand for Cu(OTf)₂-catalyzed 1,4-addition of diethylzinc to 2-cyclohexenone, affording an *ee* of 54% (Scheme 7.13) [52].

Scheme 7.13. TADDOL-based phosphoramidite ligands in the catalytic 1,4-addition.

Surprisingly, the enantioselectivity could be increased to 71% when powdered molecular sieves (4Å) were present during the reaction. This effect might be due to traces of water, resulting in the formation of mixed zinc hydroxides and affecting the stereoselectivity, or might be attributable to a catalytic reaction at the surface of the molecular sieves. A remarkable difference between ligand 27 and BINOL phosphoramidite 18 is that with 27 the highest enantioselectivity is found with the

 $\label{eq:Tab.7.2.} \textbf{Tab. 7.2.} \quad \text{Copper-catalyzed enantioselective 1,4-addition of R_2Zn to 2-cyclohexenone using $BINOL$-type ligands.}$

Ligand	Catalyst (mol%)	R	ee (%)	Ref.
22	3	Et	90	47
		Me	96	47
23	1	E t	96	48
24	1	Et	90	49
25	1	Et	90	49
26	1	Me	82	50

smallest amine substituent (Me_2N) at phosphorus, whereas in the case of ligand 18 a bulky amine is essential.

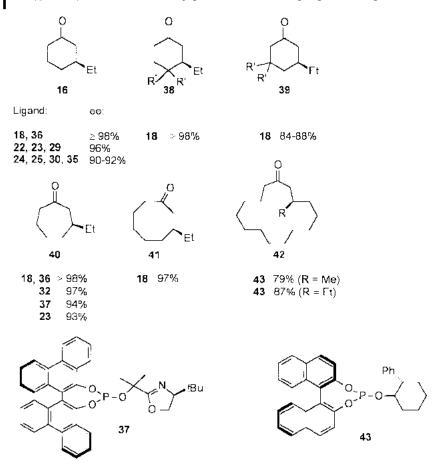
Alexakis et al. synthesized a large variety of TADDOL-based phosphites, phosphoramidites, and phosphonites 28, and screened these ligands in the Et_2Zn addition to 2-cyclohexenone (Scheme 7.13) [53, 54]. While only modest ees were reported for most of these ligands, an excellent yield (95%) and enantioselectivity (96%) was observed with ligand 29. The stereocontrol in these ligands is mainly due to the TADDOL moiety.

Although BINOL- and TADDOL-based ligands have been used most frequently in copper-catalyzed 1,4-additions of R₂Zn reagents (Tab. 7.2, Scheme 7.13), a number of other chiral ligands have been reported (Fig. 7.4). The *ees* obtained in the 1,4-addition of Et₂Zn to 2-cyclohexenone (6) are indicated for each ligand. Zhang et al. described binaphthalene phosphine 30, with an additional pyridine moiety, and an *ee* of 92% was attained with this ligand [55]. Tomioka reported 70% enantioselectivity in the 1,4-addition of Et₂Zn to 4,4-dimethyl-2-cyclohexenone using bisaminophosphine 31 [56], whereas Imamoto obtained an *ee* of 70% with the chiral bisphosphine 32 [57]. Furanose-derived hydroxysulfide 33 was used by Pâmies to obtain an *ee* of 62% [58]. In addition, Buono et al. reported a catalytic system based on the quinoline–phosphorus ligand 34 and CuI [59]. Once again a remarkable

Fig. 7.4. Various chiral ligands used in the copper-catalyzed 1,4-addition of Et_2Zn to 2-cyclohexenone.

enhancement of the stereoselectivity was observed in the presence of H2O, resulting in an ee of 61%.

Gennari et al. have recently used a combinatorial approach to identify new ligands for the catalytic enantioselective 1,4-addition of organozinc reagents [60]. Screening of a library of 100 salicylimine-sulfonamide-type ligands found ligand 35 to be the most selective for 2-cyclohexenone (90% ee). An interesting aspect of this approach is the option of screening the library of ligands in 1,4-additions to different enones, in order to determine optimal combinations of ligand and substrate.


Modular peptide-based phosphine ligands were introduced by Hoveyda, providing excellent stereocontrol in 1,4-additions to cyclic enones [61]. Enantioselectivities of 97-98% were attained in alkylations of six- and seven-membered cyclic enones using ligand 36. A major breakthrough in the 1,4-addition of R₂Zn reagents to 2cyclopentenone was accomplished, achieving an ee of 97% for the first time with this notoriously difficult substrate (see Fig. 7.6, below). The most suitable ligands and catalysts, and the enantioselectivities so far attained, are summarized below for three important subclasses of enones.

7.3.4 Cyclic Enones

In copper-catalyzed 1,4-additions of R2Zn reagents to cyclic enones, the corresponding 3-alkyl-cycloalkanones can be obtained with enantioselectivities exceeding 90% with a number of chiral ligands (Fig. 7.5) [6, 10-12, 38, 47, 48, 53, 61-63, 80]. Using phosphoramidite 18, 3-methyl- and 3-ethylcyclohexanone and 3ethylcycloheptanone are obtained with ees of >98% (same level of ee also with ligand 36) [61]. 3-Ethylcyclooctanone was formed with an & of 97% [80]. Steric effects of reagent and cycloalkenones were small; transfer of an isopropyl group proceeded with an ee of 94% and even the use of 4,4'-disubstituted cyclohexenones gave adducts 38 (R' = alkyl, phenyl) with the same high level of stereocontrol as with the unsubstituted substrates. Only for 5,5'-dimethylcyclohexenone, giving 39, was a slightly lower ee value observed, presumably because of unfavorable 1,3-diaxial interactions.

Excellent enantioselectivities (96% ee) for 2-cyclohexenone were also obtained with the ligands 22, 23, and 29, introduced by the groups of Pfaltz [47], Reetz [48], and Alexakis [63], respectively. Ees in the range of 90-92% were found with ligands 24, 25, 30, and 35 [49, 55, 60].

Optically active 3-ethylcycloheptanone, with ees ranging from 93% to >98%, can now be obtained with five different types of ligands, including phosphoramidites [6], phosphines [57, 61], and phosphites (Fig. 7.5) [47, 48]. It appears that the structural requirements of the chiral ligands are not especially limited. In particular, the formation of 3-methylcycloheptanone in 97% ee with the chiral bisphosphine ligand 32 recently introduced by Imamoto [57] should be emphasized, together with the finding that both monodentate and bidentate ligands give high enantioselectivities.

(for structures of other ligands, see table 7.2)

Fig. 7.5. Conjugate addition products.

The formation of 3-ethylcyclooctanone 41 (97% ee) [6, 80] and muscone 42 (R = Me, 79% ee) [63] are illustrative for our present purposes.

7.3.5

2-Cyclopentenone

Optically active cyclopentanes are among the structural units most frequently encountered in natural products such as steroids, terpenoids, and prostaglandins. Not unexpectedly, the development of a highly enantioselective catalytic 1,4-addition reactions to 2-cyclopentenones has proven to be a challenging goal. In contrast with the high enantioselectivity observed in the copper-phosphoramidite-catalyzed 1,4-

Fig. 7.6. Enantios elective conjugate addition to 2-cyclopentenone.

addition of Et₂Zn to 2-cyclohexenone and larger cyclic enones, an ee of only 10% is found when the same ligand (S,R,R)-18 is applied to 2-cyclopentenone 44 (30% ee for the (S,S,S)-ligand 18) (Fig. 7.6) [38].

Besides the very low stereoselectivities, a major problem encountered with this substrate is the low chemical yield (due to subsequent reaction between the resulting zinc enolate and the starting material) and the high volatility of the product. Using TADDOL-phosphoramidite 27 in a tandem 1,4-addition-aldol condensation to cyclopentenone, we were only able to obtain an ee of 37%, but the enantioselectivity was raised to 62% in the presence of wet powdered molecular sieves (4Å) [52]. This beneficial effect of water and molecular sieves in some catalytic 1,4additions has been observed in other cases recently [52, 59]. Important to note is that the yields in the tandem version are dramatically increased, presumably due to in situ trapping of the reactive enolate (vide infra). Pfaltz et al. reported a 72% α in the addition of Et₂Zn to 44 when using BINOL-oxazoline phosphite ligand 22 [47].

High enantioselectivities (83-89% ee) have been obtained with the bidentate ligands 46 [62] and 25 [49b]. The first catalytic 1,4-addition of diethylzinc to 2cyclopentenone with an ee exceeding 90% was reported by Pfaltz, who employed phosphite 47, bearing biaryl groups at the 3,3'-positions of the BINOL moiety [47]. Hoveyda et al., using ligand 36, have recently had success with highly enantioselective 1,4-additions (97% ee) of dialkyl zinc reagents to 2-cyclopentenones [61]. This is an exciting result as it should allow the catalytic asymmetric synthesis of substituted cyclopentanes (including prostaglandins) with enantioselectivities exceeding 95%.

Fig. 7.7. Enantioselective conjugate addition to acyclic enones.

7.3.6

Acyclic Enones

Aryl-substituted enones (chalcones in particular) have been used as model substrates in studies of catalytic 1,4-additions with organozinc reagents. Fig. 7.7 summarizes typical enantioselectivities achieved with various chiral ligands.

Nearly identical ees (87–89%) were found by Feringa and Pfaltz on employing bulky phorphoramidite [37, 38] and phosphite ligands [47] in 1,4-additions to chalcone and benzalacetone. Alexakis employed TADDOL-based chiral ligand 29 in catalytic 1,4-additions to chalcone and benzalacetone (50% and 35% ee, respectively) [54]. A variety of chiral phosphoramidites based on BINOL were tested by Feringa and co-workers in the same reaction (ees of up to 89% with ligand 15) [45]. The most significant structural features with the phosphoramidite ligands are:

- Sterically demanding substituents at the amine moiety enhance the enantioselectivities,
- (2) The introduction of methyl substituents at the 3,3'-positions of the BINOL moiety produces comparable enantioselectivities, except in the case of small amine groups,
- (3) In contrast to the 1,4-addition to cyclic enones, the presence of a chiral amine is not a prerequisite for high enantioselectivity. The highest enantioselectivities so far observed for the two acyclic adducts 17 and 48 (96% ee and 90% ee, respectively) are with the pyridine-phosphine ligand 30, introduced in 1999 by Zhang [55]. This is the first ligand that gives enantioselectivities of >90%, both for cyclic and for acyclic enones, in copper-catalyzed 1,4-additions of R₂Zn re-

agents. It should be noted that Alexakis attained ees of up to 92% for a number of alkyl-substituted enones using both phosphoramidite and phosphite ligands (18, 43) [63].

With the chiral copper catalysts based on phosphorus ligands, enantioselectivities in excess of 90% are now possible for all three different classes of substrates: 2cyclohexenones and larger rings, 2-cyclopentenones, and acyclic enones. However, it appears that each class requires a specific ligand. The modular structures of the phosphoramidite-, phosphite-, and iminophosphine-type ligands are advantageous in the fine-tuning of the ligands. For phosphoramidites this can be achieved by modifying the amine component, while stereocontrol in the phosphites can be regulated through variation in the 3,3'-positions in the BINOL moiety. In the iminophosphines introduced by Hoveyda [61], peptide modification permits specific ligand optimization.

7.4 Synthetic Applications

7.4.1

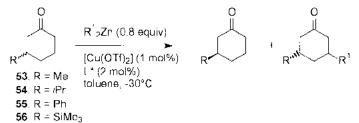
Tandem Conjugate Addition-Aldol Reactions

Tandem 1,4-addition to cycloalkenones constitutes an extremely versatile and elegant methodology for the synthesis of 2,3-disubstituted cycloalkanones, as is evident from its application in areas such as prostaglandin synthesis. Noyori et al. have reported the use of organozinc reagents in copper-catalyzed tandem additions [64]. The zinc enolate resulting from the catalytic enantioselective 1,4-addition of Et₂Zn to cyclohexenone reacts readily with an aldehyde in a subsequent aldol condensation.

The first asymmetric procedure consists of the addition of R2Zn to a mixture of aldehyde and enone in the presence of the chiral copper catalyst (Scheme 7.14) [38, 52]. For instance, the tandem addition of Me2Zn and propanal to 2-cyclohexenone in the presence of 1.2 mol% chiral catalyst (S, R, R)-18 gave, after oxidation of the alcohol 51, the diketone 52 in 81% yield and with an ee of 97%. The formation of erythro and three isomers is due to poor stereocontrol in the aldel step. A variety of trans-2,3-disubstituted cyclohexanones are obtained in this regioselective and enantioselective three-component organozinc reagent coupling.

7.4.2

Kinetic Resolution of 2-Cyclohexenones


We have recently discovered that phosphoramidite 18 is also an excellent ligand for copper-catalyzed kinetic resolution of chiral 2-cyclohexenones (Scheme 7.15). Chiral 2-cyclohexenones are attractive building blocks for a variety of natural products, but their synthesis usually requires multistep routes from chiral starting materials [65]. The development of the new kinetic resolution was the product of two impor-

Scheme 7.14. Enantioselective tandem conjugate addition-aldol reactions.

Tab. 7.3. Kinetic resolution of 5-substituted 2-cyclohexenones **53–56** according to Scheme **7.15** (s: stereoselectivity factor).

Ligand	Enone	R³	t (min)	Convn. (%)	ee (%)	\$	Conf. ^{a)}
(S, R, R)-18	53	Et	15	48	88	120	R
(S, R, R)-18	53	Et	20	53	99		
(S, S, S)-18	53	Et	15	42	62	24	R
(S, R)-57	53	Et	90	49	86	50	R
(S, S)-57	53	Et	45	51	90	42	R
(S, R, R)-58	53	Et	45	46	76	40	R
(S, S, S)-58	53	Et	90	19	12	3	R
(S, R, R)-18	54	Et	10	54	96	39	_
(S, R, R)-18	55	Et	_	55	89	19	R
(S, R, R)-18	56	Et	5	56	86	14	_
(S, R, R)-18	53	i-Pr	60	55	84	14	R
(S, R, R)-18	53	n-Bu	15	49	93	>200	R
(S, R, R)-18	53		30	54	>99		
(S, R, R)-18	54	n-Bu	60	50	93	94	_
(S, R, R)-18	54		90	53	99		
(S, R, R)-18	56	n-Bu	15	44	78	>200	_
(S, R, R)-18	56		45	52	>99		
(S, R, R)-18	53	Me	20	50	93	94	R

a) Configuration of the unreacted enone

Scheme 7.15. Enantioselective kinetic resolution of 5-substituted 2-cyclohexenones.

Fig. 7.8. Ligands used in the kinetic resolution of 5-substituted 2-cyclohexenones.

tant considerations [66, 67]: i) many racemic cyclohexenones are readily available, and ii) high trans diastereoselectivity is found in the addition of organometallic reagents to 5-alkyl-2-cyclohexenones [68].

Results from catalytic kinetic resolutions (1 mol% catalyst) of 5-substituted cyclohexenones 53-56 using a number of phosphoramidite ligands are compiled in Tab. 7.3 [69]. There was a good correlation found between the selectivity of the ligands in the 1,4-addition to 2-cyclohexenone and that in the kinetic resolution of 5methyl-2-cyclohexenone 53. Once again the most selective ligand is (S, R, R)-18, while particularly noteworthy in comparison with all the other phosphoramidite ligands is the high reactivity (48% conversion of 53 at -40 °C in 15 min.) of the copper catalyst based on 18. High selectivity factors (s) up to and over 200 are found, making this kinetic resolution synthetically interesting, as was demonstrated by a resolution of 53 on an 11 g scale [69].

The nature of the R₂¹Zn reagents has a profound influence on the selectivity in this process (Tab. 7.3). Contrary to expectations, the use of the bulkier i-Pr₂Zn reagent in place of Et₂Zn results in a lower selectivity, but with n-Bu₂Zn the selectivity increases, providing unconverted 53 with an ee of >99% at 52-54% conversion (Fig. 7.9). High trans diastereoselectivity had previously been observed for

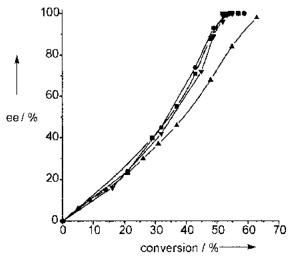


Fig. 7.9. Es against conversion for the kinetic resolution of 53 with (S,R,R)-18, $Cu(OTf)_2$, and Et_2Zn $(- \blacksquare -)$, iPr_2Zn $(- \blacktriangle -)$, $nBu_2Zn (-\bullet-)$, and $Me_2Zn (-\Psi-)$.

the copper-catalyzed Grignard addition to 5-methyl-2-cyclohexenone (Scheme 7.16) [68]. The *trans* diastereoselectivity in these 1,4-additions might be explained by the involvement of preferred conformations and a copper intermediate such as 59, as proposed by Corey [68a] (cf. Chapter 6).

Scheme 7.16. Favored and disfavored copper intermediates as proposed by Corey et al. [68a].

In an ideal kinetic resolution (common in enzyme-catalyzed processes), one enantiomer of a racemic substrate is converted while the other is unreactive [70]. In such a kinetic resolution of 5-methyl-2-cyclohexenone, even with 1 equivalent of Me_2Zn , the reaction should virtually stop after 50% conversion. This near perfect situation is found with ligand 18 (Fig. 7.10) [71]. Kinetic resolutions of 4-methyl-2-cyclohexenone proceed less selectively (s = 10-27), as might be expected from the lower *trans* selectivity in 1,4-additions to 4-substituted 2-cyclohexenones [69].

7.4.3

Sequential 1,4-Additions to 2,5-Cyclohexadienones

2,5-Cyclohexadienones **61** and **64** are readily available from monoprotected hydroquinones or *para*-substituted phenols, respectively. Conjugate additions to these symmetrical dienones result in desymmetrization of the prochiral dienone moieties, providing access to multifunctional chiral synthons in two steps from the aromatic precursors (Scheme 7.17) [72].

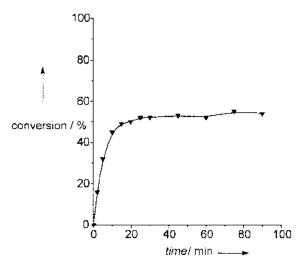
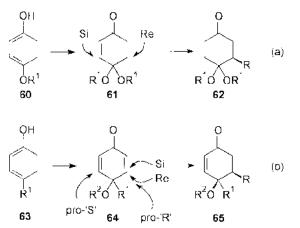
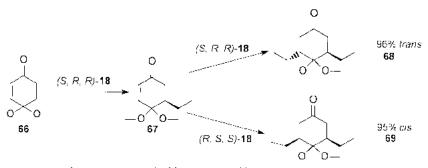



Fig. 7.10. Conversion against time for the kinetic resolution of 53 with 1 equivalent of Me₂Zn under standard conditions.

Scheme 7.17. Possible modes of attack by R2Zn on dienones 61 and 64.

In the case of benzoquinone monoacetals 61, the two substituents at the 4position are equal, and side-selective addition (Re versus Si face) creates a single stereocenter (Scheme 7.17(a)). In the (S, R, R)-18/Cu(OTf)2-catalyzed 1,4-addition, depending on the nature of the R2Zn reagent and the size of the acetal moiety, enantioselectivities ranging from 85-99% were found (Table 7.4). The highest ees are provided by a combination of a small acetal moiety and Me2Zn; 99% ee was obtained with 4,4-dimethoxy-5-methyl-2-cyclohexenone, for example.

When an alkyl and an alkoxy moiety are present at the 4-position of the dienone (Scheme 7.17(b)), desymmetrization during the 1,4-addition produces two stereocenters in a single step. The chiral copper-phosphoramidite catalyst derived from


Tab. 7.4. Conjugate additions to 2,5-cyclohexadienone monoacetals and ethers.

R ₇	R ₂	R	Yield (%)	dr	ee (%)
OMe	OMe	Et	65	_	97
OEt	OEt	E t	59	_	92
OCH ₂ CH ₂ O		Et	68	_	92
OCH ₂ CH ₂ CH ₂ O		Et	62	_	89
OCH ₂ C(Me) ₂ CH ₂ O		Et	75	_	85
OMe	OMe	Me	76	_	99
OMe	Me	Et	60	90/10	97 ^{a)}
OMe	$\mathrm{CH_2Ph}$	Et	53	97/3	93 ^{a)}
CH ₂ CH ₂ CH ₂ O		E t	66	99/1	65 ^{a)}
OMe	OCH_2Ph	E t	58	1/1	98/98

a) The ee for the major diastereoisomer is given

ligand 18 can indeed readily distinguish the *Re* and *Si* faces and the pro-*R* and pro-*S* positions in the dienone. It was found with 64 that the C-5 alkyl group was introduced syn to the alkoxy moiety. The selectivity again depended on the substituents at the 4-position, with *ees* of up to 97% and ratios of up to 99:1 being found for the major diastereoisomer of 65.

The products of this catalytic enantioselective 1,4-addition still contain an enone moiety, prone to subsequent 1,4-addition [73]. An intriguing question regarding stereocontrol was posed; would the stereoselectivity in the second addition step be governed by the catalyst or would there be a major effect from the stereocenters already present? Sequential 1,4-addition to dimethoxy-substituted cyclohexadienone 66 (Scheme 7.18) using the copper catalyst based on (*S*, *R*, *R*)-ligand 18 both in the

Scheme 7.18. Selective cis or trans double conjugate addition of Et_2Zn to cyclohexadienone monoacetal 66.

first step (97% ee) and in the second gave a 96% selectivity for trans-3,5-diethyl-4,4dimethoxycyclohexanone (68). In contrast, use of (S, R, R)-ligand 18 followed by (R, S, S)-18 resulted in (meso)-cis-69 (95% selectivity).

In the case of 2,5-cyclohexadienone 70, with a methoxy and a methyl substituent (Scheme 7.19), the syn monoadduct 71 gave 3,4,4,5-tetrasubstituted cyclohexanones, with three consecutive stereocenters. On employing the (R, S, S)-ligand 18 in the second addition step, cis-72 (98% de) was found, whereas with (S, R, R)-18 in the second step trans-73 (98% de) was obtained [73].

Scheme 7.19. Selective cis or trans double conjugate addition of Et₂Zn to cyclohexadienone ether 70.

The lack of any directing effect from the 4-methoxy and the 5-ethyl substituents at the two stereocenters already present in 71 is a remarkable finding, and points to strong catalyst-dependence in the stereocontrol (Scheme 7.20). On the basis of these findings, various stereoisomers of 3,4,4,5-tetrasubstituted cyclohexanones are now accessible through sequential catalytic 1,4-additions, with control over the relative and absolute configurations possible simply by judicious selection of the appropriate enantiomer of the chiral ligand in each step.

$$R$$
 (SRR) cat R (SRR)-cat R (a) R (b) R (SRR) cat R (B) R (B) R (B) R (C) R

Scheme 7.20. The selectivity of the second conjugate addition depends solely on the configuration of the chiral catalyst used.

7.4.4

Lactones

Unsaturated lactone 74 (Scheme 7.21) can be viewed as an oxygen heterocyclic analogue of 2-cyclohexenone, and it has recently been reported that catalytic 1,4-additions of Et₂Zn to 74 can indeed be accomplished with high enantioselectivity. For adduct 76, Reetz achieved a remarkable 98% *ee* when employing ferrocene-based diphosphonate ligand 23 [48]. Using diphosphite 24, Chan et al. achieved an *ee* of 92% for the six-membered lactone 74 and a 56% *ee* for the five-membered lactone 25 [49c].

Scheme 7.21. Enantioselective conjugate addition to lactones.

7.4.5

Nitroalkenes

Nitroalkenes are excellent Michael acceptors, and asymmetric 1,4-additions to nitroalkenes (Scheme 7.22) provide access to highly versatile synthons, since the nitro group is readily reduced to the corresponding amine [74]. Seebach, employing a

Scheme 7.22. Enantioselective conjugate addition to nitroalkenes.

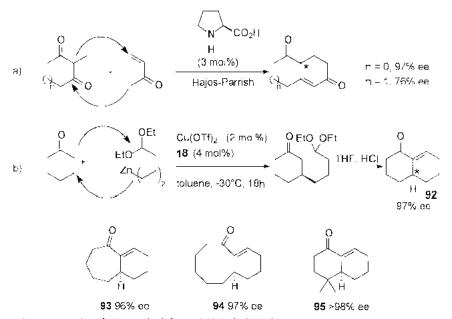
stoichiometric chiral TADDOL-based titanium Lewis acid, reported highly enantioselective 1,4-additions of R_2Zn reagents to nitrostyrenes (90% ee) [75]. The first copper-catalyzed enantioselective 1,4-additions of Et₂Zn to nitroalkenes 78 and 79, with ees of up to 86%, were described by Sewald et al. (Scheme 7.22) [76].

Alexakis, employing various chiral trivalent phosphorus ligands, has recently described Cu(OTf)2-catalyzed 1,4-additions of Et2Zn to a number of nitroalkenes (Scheme 7.22) [77]. TADDOL-based phosphonite 82 gave the highest ees for arylnitroalkenes (up to 86%), whereas phosphoramidite 18 is the ligand of choice for alkylnitroalkenes (ees of up to 94%).

We have studied the Cu(OTf)2-phosphoramidite-catalyzed conjugate addition of Et₂Zn to α , β -unsaturated nitroacetate 87 (Scheme 7.23) [78, 79]. The nitroacetate moiety is a synthetic equivalent of an α -amino acid, and reduction of the nitro group in the 1,4-adduct provides access to α - and β -alkylated amino acids. Although the 1,4-adduct 88 is obtained in high yield, the enantioselectivity has so far been disappointingly low (26% ee) when using a mixture of E and Z isomers of the nitroalkene. With isomerically pure (Z)-87, a complete lack of enantioselectivity was observed, suggesting that a cis orientation of aryl and nitro groups is unfavorable for the selective formation of the catalyst-substrate complex.

Scheme 7.23. Enantioselective conjugate addition to α , β -unsaturated nitroacetates 87.

Correspondingly, the catalytic 1,4-addition of dialkylzinc reagents to 3-nitrocoumarin 89 (Scheme 7.24), with a fixed trans orientation of the aryl and nitro groups, proceeds with excellent yields (90-99%), high diastereoselectivity (d.r. up to 20:1), and enantioselectivities of up to 92%. Hydrolysis of the lactone moiety in 90 was accompanied by decarboxylation, providing an asymmetric synthesis of β -arylnitroalkane 91.


Scheme 7.24. Enantioselective conjugate addition to 3-nitrocoumarin (89).

7.4.6

Annulation Methodology

The construction of carbocyclic compounds by ring-annulation procedures frequently plays a prominent role in total synthesis. The tolerance of various functional groups in the zinc reagents employed in copper-catalyzed asymmetric 1,4-additions forms the basis for three novel catalytic enantioselective annulation methods discussed here.

In the first method, a dialkylzinc reagent bearing an acetal moiety at the δ -position is used (Scheme 7.25(b)). The catalytic 1,4-addition is followed by acetal hydrolysis and aldol cyclization of the 4-substituted cycloalkanone, affording 6,6- (92), 6,7-, (93) and 6,8- (94) annulated ring systems with high enantioselectivities (>96% ees) [80]. In addition, dimethyl-substituted decalone 95, with a structure frequently found in natural products, is readily obtained in enantiomerically pure form.

Scheme 7.25. Annulation methodology: a) Hajosh-Parrish version of the Robinson annulation, b) catalytic enantioselective annulation with functionalised organozinc reagents.

Comparison with the Hajos–Parrish asymmetric version of the Robinson annulation [81] (Scheme 7.25(a)) shows the following distinct differences between the two methods. Firstly, the cycloalkenone in the $Cu(OTf)_2$ /ligand 18-catalyzed procedure is the Michael acceptor, whereas the cycloalkanone is the Michael donor in the proline-mediated annulation. Secondly, the asymmetric induction occurs in the 1,4-addition step in the new method, in contrast to the asymmetric aldol-cyclization in the Hajos–Parrish procedure.

Bicyclo[4.3.0] nonenes, thanks to their frequent appearance in natural products, are other important targets for novel annulation methodology. A six-membered ring-annulation to cyclopentenones has yet to be developed, the main reason for this being that, until very recently, the levels of enantioselectivity in catalytic 1,4additions to 2-cyclopentenone were too low for a synthetically useful procedure. However, a highly enantioselective annulation of a five-membered ring to 2-cyclohexenone has been developed (Scheme 7.26) [80].

Scheme 7.26. Catalytic enantioselective annulations of five-membered rings.

The method involves a regioselective, trans-diastereoselective, and enantioselective three-component coupling, as shown in Scheme 7.26. In this case, the zinc enolate resulting from the 1,4-addition is trapped in a palladium-catalyzed allylation [64] to afford trans-2,3-disubstituted cyclohexanone 96. Subsequent palladiumcatalyzed Wacker oxidation [82] yields the methylketone 97, which in the presence of t-BuOK undergoes an aldol cyclization. This catalytic sequence provides the 5,6-(98) and 5,7- (99) annulated structures with ees of 96%.

The third annulation method is again based on asymmetric tandem 1,4-addition and palladium-catalyzed allylation [83]. The key step is a ring-closing metathesis using Grubbs' catalyst 103 (Scheme 7.27). Advantage is taken of the presence of the ketone moiety in the adduct 101, which permits a subsequent 1,2-addition of a Grignard or organolithium reagent. In this way a second alkene moiety is introduced. Ring-closing metathesis of 102 affords the bicyclic structures 104. A wide

Scheme 7.27. Catalytic enantioselective annulations using RCM (ring-closing metathesis).

variety of annulated ring systems is accessible through this catalytic methodology (Table 7.5).

Tab. 7.5. Enantioselective annulations using RCM.

R	R ⁷	n	m	Product	Ring system	Yield ^{a)} (%)	ee (%)
	**			401			
Et	H	1	1	104a	[6, 6]	49	96
Et	H	2	1	104b	[7, 6]	58	96
Et	H	3	1	104c	[8, 6]	32	97
Et	Me	1	1	104d	[6, 6]	45	97
Me	H	1	1	104e	[6, 6]	34	96
Bu	Н	1	1	104f	[6, 6]	52	93
Et	H	1	0	104g	[6, 5]	<u></u> ы	_
Et	H	1	2	104h	[6, 7]	56	96

- a) Isolated yield over three steps of all-trans isomer.
- b) Only a small amount (< 10%) of α s-fused 104g was detected by GC.

Very recently, a catalytic enantioselective route to prostaglandin E_1 methyl ester was developed based on a tandem 1,4-addition-aldol reaction [84].

7.5 Conclusions

Organozinc reagents have played an important role in the development of efficient catalysts for enantioselective carbon–carbon bond-formation by 1,4-addition to α,β -unsaturated compounds. Important advantages of the use of organozinc reagents are the option of starting with alkenes (through hydroboration-zinc transfer procedures) and the tolerance towards functional groups.

The use of copper catalysts based on chiral phosphorus ligands to assist 1,4-additions of dialkylzinc reagents has in recent years produced major breakthroughs, with excellent enantioselectivities. A number of monodentate and bidentate phosphoramidites, phosphites, phosphonites, and phosphines are now available as chiral ligands for alkyl transfer to a variety of cyclic and acyclic enones. So far,

excellent stereocontrol has proven especially attainable in alkyl transfer to various cyclic enones. The modular structures of most of these chiral phosphorus ligands should be highly beneficial for the future fine-tuning of the catalysts to deliver high enantioselectivities for specific classes of substrates.

A few catalysts display activity and selectivity levels sufficiently high for application in organic synthesis. Their utilization in the synthesis of a number of chiral building blocks and target molecules is emerging as summarized in the second part of this chapter.

For the transfer of aryl and alkenyl groups to enones, Hayashi's procedure, employing the corresponding boronic acids and a rhodium-BINAP catalyst, is the method of choice at present [24, 25]. For the transfer of alkyl groups to cyclic enones the use of dialkylzinc reagents in the presence of copper-phosphoramidite catalysts is superior. Although the first examples of highly enantioselective 1,4-additions of R2Zn reagents to nitroalkenes have been reported, similar catalytic methods for numerous other classes of α , β -unsaturated compounds still need to be developed.

Furthermore, the recent successes with R2Zn reagents should certainly stimulate new investigations into enantioselective 1,4-additions of Grignard and organolithium reagents. The elucidation of the mechanisms and the factors governing stereocontrol in these catalytic systems are other major challenges for the near future.

Acknowledgements

We are grateful to the co-workers who participated in the studies summarized in this chapter; their names are given in the references. We thank Ing. Marc van Gelder for his contributions with numerous HPLC and GC separations and Dr. A. J. Minnaard for suggestions and discussions. Financial support from The Netherlands Foundation for Scientific Research and from the European Community is gratefully acknowledged.

References and Notes

- 1 Comprehensive Organic Synthesis, B. M. Trost, I. Fleming (Eds.), Pergamon, Oxford, 1991, Vol. 4.
- 2 P. PERLMUTTER, Conjugate Addition Reactions in Organic Synthesis, Pergamon Press, Oxford, 1992.
- 3 a) M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109, 1290; Angew. Chem. Int. Ed. 1997, 36, 1236; b) J. LEONARD, Contemp. Org. Synth. 1994, 1, 387.
- 4 a) Organocopper Reagents, A Practical Approach, R. J. K. Taylor (Ed.), Oxford University press, Oxford, 1994; b) B. H. LIPSHUTZ in Organometallics in Synthesis, M. SCHLOSSER (Ed.), Wiley, Chichester, 1994; c) B. H. LIPSHUTZ, Acc. Chem. Res. 1997, 30, 277.
- 5 a) M. Kumada, Pure Appl. Chem. 1980, 52, 669; b) E. NEGISHI, Acc. Chem. Res. 1982, 15, 340; c) D. Seebach, L.

- BEHRENDT, D. FELIX, Angew. Chem. 1991, 103, 991; Angew. Chem. Int., Ed. Engl. 1991, 30, 1008; d) R. O. Duthaler, A. Hafner, Chem. Rev. 1992, 92, 807.
- 6 B. L. FERINGA, Acc. Chem. Res. 2000, 33, 346.
- 7 B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771.
- 8 B. L. FERINGA, A. H. M. DE VRIES in Asymmetric Chemical Transformations, M. D. Doyle (Ed.), Advances in Catalytic Processes 1, Jai Press, Greenwich, CT, 1995, 151.
- 9 K. Tomioka, Y. Nagaoka in Comprehensive Asymmetric Catalysis, E. N. JACOBSEN, A. PFALTZ, H. Yamamoto (Eds.), Springer, Berlin, 1999, pp 1105-1120.
- 10 N. KRAUSE, Angew. Chem. Int. Ed. 1998, 37, 283.
- 11 M. P. Sibi, S. Manyem, Tetrahedron, 2000, 56, 8033.
- 12 N. Krause, A. Hoffmann-Röder, Synthesis, 2001, 171.
- 13 G. M. VILIACORTA, C. P. RAO, S. J. LIPPARD, J. Am. Chem. Soc. 1988, 110, 3175.
- 14 F. Lambert, D. M. Knotter, M. D. Janssen, M. van Klaveren, J. Boersma, G. van Koten, Tetrahedron: Asymmetry 1991, 2, 1097.
- 15 M. SPESCHA, G. RIHS, Helv. Chim. Acta 1993, 76, 1219.
- 16 a) M. KANAI, K. TOMIOKA, Tetrahedron Lett. 1995, 36, 4275; b) Y. NAKAGAWA, M. Kanai, Y. Nagaoka, K. Tomioka, Tetrahedron 1998, 54, 10295; c) M. KANAI, Y. NAGAKAWA, K. TOMIOKA, ibid. 1999, 55, 3843; d) K. Tomioka, Y. NAGAKAWA, Heterocycles 2000, 52, 95; e) Y. Nagakawa, K. Matsumoto, K. Tomioka, Tetrahedron 2000, 56, 2857.
- 17 a) D. Seebach, G. Jaeschke, A. PICHOTA, L. AUDERGON, Helv. Chim. Acta 1997, 80, 2515; b) A. PICHOTA, P. S. Pregosin, M. Valentini, M. Wörle, D. Seebach, Angew. Chem. Int. Ed. 2000, 39, 153.
- 18 a) Q.-L. Zhou, A. Pfaltz, Tetrahedron Lett. 1993, 34, 7725; b) Q.-L. Zhou, A. PFALTZ, Tetrahedron 1994, 50, 4467.
- 19 E. L. Stangeland, T. Sammiaka, Tetrahedron 1997, 53, 16503.

- 20 E. J. Corey, R. Naef, F. Hannon, L. Am. Chem. Soc. 1986, 108, 7114.
- 21 K. Tanaka, J. Matsui, H. Suzuki, J. Chem. Soc., Perkin Trans. 1, 1993,
- 22 a) M. Shindo, K. Koga, K. Tomioka, J. Am. Chem. Soc. 1992, 114, 8732; b) K. Tomioka, M. Shindo, K. Koga, Tetrahedron Lett. 1993, 34, 681.
- 23 a) Y. Asano, A. Iida, K. Tomioka, Tetrahedron Lett. 1997, 38, 8973; b) Y. Asano, A. Iida, K. Tomioka, Chem Pharm. Bull. 1998, 46, 184.
- 24 a) Y. Takaya, M. Ogasawara, T. HAYASHI, M. SAKAI, N. MIYAURA, J. Am. Chem. Soc. 1998, 120, 5579; b) Y. Takaya, M. Ogasawara, T. Hayashi, Tetrahedron Lett. 1999, 40, 6957.
- 25 T. Hayashi, T. Senda, Y. Takaya, M. Ogasawara, J. Am. Chem. Soc. 1999, 121, 11591.
- 26 a) R. Noyori, M. Kitamura, Angew. Chem. 1991, Angew. Chem. Int. Ed. Engl. 1991, 30, 49; b) K. Soar, T. Shibata in Comprehensive Asymmetric Catalysis, E. N. JACOBSEN, A. PFALTZ, H. YAMAMOTO (Eds.), Springer, Berlin, 1999, pp 911-922; c) K. Soar, S. Niwa, Chem. Rev. 1992, 92, 833.
- 27 W. CARRUTHERS in Comprehensive Organometallic Chemistry, G. Wilkinson, F. G. A. Stone, E. W. ABEL (Eds.), Pergamon, Oxford, 1982, Vol. 7, pp 661-729.
- 28 P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117.
- 29 J. BOERSMA in Comprehensive Organometallic Chemistry, G. WILKINSON, F. G. A. STONE, E. W. ABEL (Eds.), Pergamon, Oxford, 1982, Vol. 2, pp 823-862.
- 30 D. J. Berrisford, C. Bolm, K. B. Sharpless, Angew. Chem. 1995, 107, 1159; Angew. Chem. Int. Ed. Engl. 1995, 34, 1059.
- 31 a) A. E. GREENE, J.-P. LANSARD, J.-L. LUCHE, C. PETRIER, J. Org. Chem. 1984, 49, 931; b) P. KNOCHEL, M. C. P. YEH, S. C. BERK, J. TALBERT, J. Org. Chem. 1988, 53, 2390; c) Y. TAMARU, H. Tanigawa, T. Yamamoto, Z. Yoshida, Angew. Chem. 1989, 101, 358; Angew. Chem. Int. Ed. Engl. 1989, 28, 351; d) L. Zhu, R. M. Wehmeyer,

- R. D. RIEKE, J. Org. Chem. 1991, 56, 1445; е) В. Н. Ігрянита, М. R. Wood, R. Tirado, J. Am. Chem. Soc. 1995, 117, 6126; f) M. J. ROZEMA, C. Eisenberg, H. Lütjens, R. Ostwald, K. BELYK, P. KNOCHEL, Tetrahedron Lett. 1993, 34, 3115.
- 32 B. H. LIPSHUTZ, Synthesis 1987, 325.
- 33 F. Langer, A. Devasagayaraj, P.-Y. CHAVANT, P. KNOCHEL, Synlett 1994,
- 34 a) B. Weber, D. Seebach, Angew. Chem. 1992, 104, 961; Angew. Chem. Int. Ed. Engl. 1992, 31, 84; b) J. L. von DEM BUSSCHE-HÜNNEFELD, D. SEEBACH, Tetrahedron 1992, 48, 5719.
- 35 A. Alexakis, J. Frutos, P. MANGENEY, Tetrahedron: Asymmetry 1993, 4, 2427.
- 36 R. HULST, N. K. DE VRIES, B. L. FERINGA, Tetrahedron: Asymmetry 1994, 5, 699.
- 37 A. H. M. DE VRIES, A. MEETSMA, B. L. FERINGA, Angew. Chem. 1996, 108, 2526; Angew. Chem. Int. Ed. Engl. 1996, 35, 2374.
- 38 B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos, A. H. M. de VRIES, Angew. Chem. 1997, 109, 2733; Angew. Chem. Int. Ed. Engl. 1997, 36, 2620.
- 39 For ligand (S, S, S)-18 the ee was incorrectly reported to be 75% (see reference 38)
- 40 N. Krause, A. Gerold, Angew. Chem. 1997, 109, 184; Angew. Chem. Int. Ed. Engl. 1997, 36, 187.
- 41 E. NAKAMURA, S. MORI, Angew. Chem. 2000, 112, 3902; Angew. Chem. Int. Ed. **2000**, 39, 3750.
- 42 M. KITAMURA, T. MIKI, K. NAKANO, R. NOYORI, Bull. Chem. Soc. Jpn. 2000, 73, 999.
- 43 a) Y. Aoki, I. Kuwajima, Tetrahedron Lett. 1990, 31, 7457; b) E. J. COREY, N. W. Boaz, Tetrahedron Lett. 1985, 26, 6015, 6019.
- 44 a) C. Ullenius, B. Christenson, Pure Appl. Chem. 1988, 60, 57; b) N. KRAUSE, R. WAGNER, A. GEROLD, J. Am. Chem. Soc. 1994, 116, 381.
- 45 L. A. Arnold, R. Imbos, A. Mandoli, A. H. M. DE VRIES, R. NAASZ, B. L. FERINGA, Tetrahedron 2000, 56, 2865.

- 46 F.-Y. ZHANG, A. S. C. CHAN, Tetrahedron: Asymmetry 1998, 9, 1179.
- 47 a) A. K. H. Knöbel, I. H. Escher, A. PFALTZ, Synlett 1997, 1429; b) I. H. ESCHER, A. PFALTZ, Tetrahedron 2000, 56, 2879.
- 48 M. T. REETZ, Pure Appl. Chem. 1999, 71, 1503.
- 49 a) M. Yan, L.-W. Yang, K.-Y. Wong, A. S. C. CHAN, Chem. Commun. 1999, 11; b) M. Yan, A. S. C. Chan, Tetrahedron Lett. 1999, 40, 6645; c) M. YAN, Z.-Y. ZHOU, A. S. C. CHAN, Chem. Commun. 2000, 115.
- 50 O. HUTTENLOCH, J. SPIELER, H. WALDMANN, Chem. Eur. J. 2000, 6, 671.
- 51 A. Alexakis, J. Burton, J. Vastra, P. MANGENEY, Tetrahedron: Asymmetry 1997, 8, 3987.
- 52 E. Keller, J. Maurer, R. Naasz, T. Schrader, A. Meetsma, B. L. FERINGA, Tetrahedron: Asymmetry 1998, 9, 2409.
- 53 A. Alexakis, J. Vastra, J. Burton, C. BENHAIM, P. MANGENEY, Tetrahedron Lett. 1998, 39, 7869.
- 54 A. Alexakis, J. Burton, J. Vastra, C. BENHAIM, X. FOURNIOUX, A. VAN DEN HEUVEL, J.-M. LEVÊQUE, F. MAZÉ, S. Rosser, Eur. J. Org. Chem. 2000, 4011.
- 55 X. Hu, H. Chen, X. Zhang, Angew. Chem. 1999, 111, 3720; Angew. Chem. Int. Ed. 1999, 38, 3518.
- 56 T. Mori, K. Kosaka, Y. Nagakawa, Y. NAGAOKA, K. TOMIOKA, Tetrahedron Asymmetry 1998, 9, 3175.
- 57 Y. Yamanoi, T. Imamoto, J. Org. Chem. 1999, 64, 2988.
- 58 a) O. PAMIES, G. NET, A. RUIZ, C. CLAVER, S. WOODWARD, Tetrahedron: Asymmetry 2000, 11, 871; b) O. Pàmies, G. Net, A. Ruiz, C. CLAVER, Tetrahedron: Asymmetry 1999, 10, 2007.
- 59 G. Delapierre, T. Constantieux, J. M. BRUNEL, G. BUONO, Eur. J. Org. Chem. 2000, 2507.
- 60 I. CHATAIGNER, C. GENNARI, U. Piarulli, S. Ceccarelli, Angew. Chem. 2000, 112, 953; Angew. Chem. Int. Ed. 2000, 39, 916.
- 61 S. J. DEGRADO, H. MIZUTANI, A. M. HOVEYDA, J. Am. Chem. Soc. 2001, 123, 755.

- 62 A. MANDOLI, L. A. ARNOLD, A. H. M. DE VRIES, P. SALVADORI, B. L. FERINGA, Tetrahedron: Asymmetry 2001, 12, 1929.
- 63 A. Alexakis, C. Benhaim, X. FOURNIOUX, A. VAN DEN HEUVEL, J.-M. Levêque, S. March, S. Rosset, Synlett 1999, 1811.
- 64 M. KITAMURA, T. MIKI, K. NAKANO, R. Noyori, Tetrahedron Lett. 1996, 37, 5154.
- 65 a) G. Sarakinos, E. J. Corey, Org. Lett. 1999, 1, 811; b) G. P. J. HAREAU, M. Korwa, S. Hikichi, F. Sato, J. Am. Chem. Soc. 1999, 121, 3640; c) T. Hanazawa, M. Koiwa, G. P. J. HAREAU, F. SATO, Tetrahedron Lett. 2000, 41, 2659 and references cited therein.
- 66 Recent non-enzymatic kinetic resolutions, c.f.: a) E. N. JACOBSEN, Acc. Chem. Res. 2000, 33, 421; b) S. Bellemin-Laponnaz, J. Tweddell, G. RUBLE, F. M. BREITLING, G. C. FU. Chem. Commun. 2000, 1009; c) J. Yun, S. L. Buchwald, J. Org. Chem. 2000, 65, 767; d) X. Feng, L. Shu, Y. SHI, J. Am. Chem. Soc. 1999, 121, 11002.
- 67 a) H. B. KAGAN, J. C. FIAUD, Top. Stereochem. 1988, 18, 249; b) A. H. HOVEYDA, M. T. DIDIUK, Curr. Org. Chem. 1998, 2, 489.
- 68 a) E. J. Corey, F. J. Hannon, Tetrahedron Lett. 1990, 31, 1393; b) T. A. Blumenkopf, C. H. Heathcock, J. Am. Chem. Soc. 1983, 105, 2354; c) N. L. ALLINGER, C. K. RIEW, Tetrahedron Lett. 1966, 1269; d) C. H. HEATHCOCK, T. C. Germroth, S. L. Graham, J. Org. Chem. 1979, 44, 4481.
- 69 R. Naasz, L. A. Arnold, A. J. MINNAARD, B. L. FERINGA, Angew. Chem. 2001, 113, 953; Angew. Chem. Int. Ed. 2001, 40, 927.
- 70 a) C. H. Wong, G. M. Whitesides, Enzymes in Synthetic Organic Chemistry, Elsevier, London, 1994; b)

- H. VAN DER DEEN, A. D. CUIPER, R. P. Hof, A. van Oeveren, B. L. FERINGA, R. M. KELLOGG, J. Am. Chem. Soc. 1996, 118, 3801.
- 71 It is not clear why the selectivity factor is not higher in this resolution, as might be expected from Fig. 7.10. One possible explanation is that the kinetics with Me₂Zn might be more complicated than with the other zinc reagents, in which case the formula in Ref. 67a would no longer be valid; see also: D. G. Blackmond, J. Am. Chem. Soc. 2001, 123, 545.
- 72 R. Imbos, M. H. G. Brilman, M. PINESCHI, B. L. FERINGA, Org. Lett. 1999, 1, 623.
- 73 R. Imbos, A. J. Minnaard, B. L. Feringa, Tetrahedron, 2001, 57, 2485.
- 74 P. KNOCHEL, D. SEEBACH, Synthesis, 1982, 1017.
- 75 H. Schäfer, D. Seebach, Tetrahedron 1995, 51, 2305.
- 76 N. SEWALD, V. WENDISCH, Tetrahedron: Asymmetry 1998, 9, 1341.
- 77 A. Alexakis, C. Benhaim, Org. Lett. 2000, 2, 2579.
- 78 J. P. G. VERSLEIJEN, PhD Thesis, University of Groningen, 2001.
- 79 J. P. G. Versleijen, A. M. van LEUSEN, B. L. FERINGA, Tetrahedron Lett. 1999, 40, 5803.
- 80 R. NAASZ, L. A. ARNOLD, M. Pineschi, E. Keiler, B. L. Feringa, J. Am. Chem. Soc. 1999, 121, 1104.
- 81 Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615.
- 82 B. L. FERINGA in Transition Metals for Organic Synthesis, M. Beller, C. Bolm (Eds.), Wiley, Weinheim, 1998, Vol. 2, рр. 307-315.
- 83 R. NAASZ, L. A. ARNOLD, A. J. MINNAARD, B. L. FERINGA, Chem. Commun. 2001, 735.
- 84 L. A. ARNOLD, R. NAASZ, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2001, 123, 5841.

8

Copper-Mediated Enantioselective Substitution Reactions

A. Sofia E. Karlström and Jan-Erling Bäckvall

8.1 Introduction

Copper-mediated substitution reactions constitute an important, and much used, tool for the construction of new carbon–carbon bonds in organic synthesis [1]. Many different types of substitution and addition reactions mediated by organocopper reagents have been established as fundamental reactions in the repertoire available to the synthetic chemist. The first example of a copper-mediated substitution reaction was described by Gilman in 1936 [2], and involved reactions between phenylcopper – PhCu – and acid chlorides and allylic halides. Copper-mediated substitution reactions at saturated carbon were reported in 1952, also by Gilman [3], who found that the copper-catalyzed reaction between methyl iodide and methylmagnesium reagents gave ethane. These copper-catalyzed coupling reactions between alkyl halides and Grignard reagents were later studied in more detail (Eq. 1) [4, 5].

$$2 RMgX + CuX \xrightarrow{-MgX_2} R_2 CuMgX \xrightarrow{R'-X} R-R'$$
 (1)

In the 1952 paper mentioned above [3], Gilman reported on the formation of lithium dimethylcuprate from polymeric methylcopper and methyllithium. These so-called Gilman cuprates were later used for substitution reactions on both saturated [6] and unsaturated [7, 8, 9] substrates. The first example of a cuprate substitution on an allylic acetate (allylic ester) was reported in 1969 [8], while Schlosser reported the corresponding copper-catalyzed reaction between an allylic acetate and a Grignard reagent (Eq. 2) a few years later [10].

$$OAc + MyBr \xrightarrow{\text{Cal.} \\ \text{Li}_2\text{CuCl}_4} (2)$$

Copper-mediated or copper-catalyzed substitution reactions can be performed on a number of different substrates (Scheme 8.1). Stoichiometric organocopper reagents

S_N2-reactions on saturated carbon: R CH₂ X ——➤ RCH₂R'

S_N2- or S_N2'-reactions on allylic substrates:

$$R$$
 X R R' and/or R $S_{N}Z'$ X

 $S_N 2^{-}$, $S_N 2^{\circ}$ or $S_N 2^{\circ\prime}$ -reactions on conjugated allylic substrates:

Substitutions of propargylic derivatives:

$$R = \begin{array}{c} X \\ R \end{array} \longrightarrow \begin{array}{c} R \\ S_{NZ, \alpha} \end{array} \xrightarrow{R'} \begin{array}{c} R \\ \text{and/or} \end{array} \xrightarrow{R} \\ S_{NZ', \gamma} \end{array}$$

Ring opening of epoxides:

Substitution of vinyl and anyl substrates:
$$R \longrightarrow X \longrightarrow R'$$

ArX $\longrightarrow A_1R'$

Substitution of acyl chlorides: RC(O)Cl → RC(O)R'

Scheme 8.1. Copper-mediated substitution reactions. Reagents: "R₂Cu " or "R/Cu".

R'Cu, or lithium or magnesium homocuprates R'2CuM (M = Li, MgX), are frequently used, but a number of catalytic processes have also been developed. These processes normally utilize a catalytic amount of a copper salt CuY and a stoichiometric amount of an organometallic reagent R'M (M = Li, MgX, ZnX, etc.). The leaving groups used include halides, esters, sulfonates, and epoxides, among others.

Copper-catalyzed asymmetric substitution reactions can be classified into three major types:

- (1) diastereoselective reaction of achiral nucleophiles with chiral substrates,
- (2) diastereoselective reaction of chiral nucleophiles with prochiral substrates, and
- (3) enantioselective reaction of achiral nucleophiles with prochiral substrates in the presence of chiral catalysts.

From the data available it is clear that diastereoselective reactions of type (1) are very useful for control over absolute stereochemistry, but they require stoichiometric amounts of the chiral auxiliary. Reactions of type (3), on the other hand, have so far been less used, but they have the advantage that only a small amount of chiral material is required, and that a chiral auxiliary does not have to be cleaved off and recovered after the reaction.

As discussed in Chapt. 6, copper-mediated diastereoselective addition and substitution reactions are well studied methods for the construction of chiral centers in organic molecules. The development of copper-mediated enantioselective substitution reactions, however, is still at an early stage.

The use of chiral catalysts as an approach to enantiomerically enriched products by means of copper-mediated substitution reactions is covered in this chapter. Reactions in which a chiral auxiliary resides in the leaving group of the substrate will also be dealt with, since these reactions provide direct and efficient routes to single enantiomers of the desired products. Most studies so far have been concerned with allylic substrates, with a new chiral center being produced in the course of a selective S_N2' reaction.

8.2 Allylic Substitution

The copper-mediated allylic substitution reaction has been the target of research efforts from many different research groups during the last 30 years. This transformation is fascinating since the substitution reaction of a substrate with a leaving group in the allylic position can occur in two different modes. These two modes are: (i) direct displacement of the leaving group in an S_N2 fashion, often also referred to as α substitution, and (ii) $S_N 2'$ displacement of the leaving group involving an allylic shift of the double bond, also referred to as y substitution (Scheme 8.2). In a more highly conjugated allylic system, such as a 1,3-pentadienol derivative, the substitution can occur even further away from the leaving group.

$$R = alkyl, aryl. vinyl, allyl \\ M = Li, MgX. Ti(OR)_3, ZnX, etc. \\ Y = Gl, Br. OC(O)R". SO2Ph, OR". OP(O)(OR")2, etc.$$

Scheme 8.2. Copper-catalyzed allylic substitution.

Depending on the substrate and the other reaction parameters, very high regioselectivities towards either α or γ substitution can be obtained. In certain cases, the regioselectivity can easily be switched between the two modes by changing the reaction conditions [11]. Compared to, for example, palladium(0)-catalyzed allylic substitution reactions, the possibility of switching between S_N2 and S_N2' selectivity

in copper-mediated reactions is an advantage. A further advantage is that a fairly broad range of organometallic reagents can be used: lithium, magnesium, and zinc reagents, for example. In this way, both nonfunctionalized and functionalized substituents can be introduced.

Mechanistically, these reactions are considered to proceed by way of oxidative addition of the organocopper reagent to yield Cu(III) intermediates [9, 11–13], giving the final substitution products through reductive elimination as presented schematically in Scheme 8.3. The oxidative addition is thought to be highly *y*-selective, which would initially produce the σ -allyl complex **A**. A fast reductive elimination from this complex (that is, when Y is electron-withdrawing) would give the *y* product. Under slow reductive elimination conditions (Y = electron-donating), the σ -allyl complex **A** would have time to rearrange to the more stable σ -allyl complex **B**. Reductive elimination from the latter would give the α product.

R

$$X = \begin{bmatrix} R'CuY \end{bmatrix}$$
 $X = \begin{bmatrix} R'CuY \end{bmatrix}$
 X

Scheme 8.3. Proposed mechanisms of allylic substitution reactions.

 $S_{\rm N}2'$ -selective reactions between primary allylic substrates and organocopper reagents result in the creation of new chirality in previously achiral molecules, and it is tempting to try to take advantage of this for the development of enantioselective allylic substitution reactions.

8.2.1

Allylic Substrates with Chiral Leaving Groups

Most asymmetric induction processes with chiral auxiliaries involve a stereodifferentiating reaction that affords one diastereomer as the primary product. To obtain the desired enantiomer, the chiral auxiliary must be removed. Highly diastereoselective reactions between organocopper reagents and allylic substrates with

chiral auxiliaries attached to the allylic backbone have been developed [14]. If, however, an allylic substrate with a chiral leaving group can be utilized, the enantiomerically pure product can be obtained directly.

The first attempts to develop reactions offering control over the absolute stereochemistry of a chiral center, created by y-selective substitution of an achiral allylic alcohol-derived substrate, involved the use of chiral auxiliaries incorporated in the nucleofuge. The types of stereodirecting groups utilized vary, and have included sulfoximines [15], carbamates [16], and chiral heterocyclic sulfides [17-19].

Denmark and co-workers reported the first example in 1990 [16], using substrates 1, synthesized from achiral allylic alcohols and readily available optically active amine auxiliaries. Substrates 1 were then employed in copper-mediated allylic substitution reactions, as shown in Scheme 8.4.

Scheme 8.4. Employment of allylic carbamates 1 in copper-mediated asymmetric substitution.

Substitution reactions of achiral allylic carbamates have been studied previously, by Gallina and Goering, for example [20]. An intriguing feature of these substrates is the preference for formation of the S_N2' product in which the newly introduced group appears on the same side as the leaving group was previously (syn selectivity). As has been shown in several independent studies, the more commonly used substrates, such as allylic esters and halides, usually react with auti selectivity. The opposite syn stereochemistry observed for carbamates has been explained by coordination of the copper reagent to the leaving group, followed by an intramolecular delivery of the nucleophile. This would be consistent with the fact that a chiral carbamate of type 1, as designed by Denmark et al., can produce significant asymmetric induction in the y-position even though that involves a 1,7-transfer of chirality in this case.

Optimization of the reaction conditions was undertaken in order to find the best $S_N 2'/S_N 2$ ratio and the best substrate conversion. Initial formation of a lithium carbamate salt of 1 on treatment with MeLi, followed by treatment with a stoichiometric amount of MeCu in Et2O at 0 °C, produced clean SN2' selectivity and isolation of the desired alkene in 75% yield. A variety of chiral carbamates 1 were investigated, the substrate with R = 1-naphthyl and X = OMe being chosen as the candidate for further studies. It is noteworthy that substrates in which X = H gave

very low selectivity, and also that incorporation of a coordinating oxygen functionality seems to be necessary for high enantioselectivity. A striking difference between aliphatic and aromatic auxiliaries, in favor of the latter, was also noted. Finetuning of the reaction parameters resulted in high enantiomeric excesses (\geq 88% ee) in reactions with MeCu, n-BuCu, and PhCu (Scheme 8.5). Et₂O had to be used as solvent since the use of THF dramatically reduced the enantiomeric excesses.

Scheme 8.5. Optimized reaction conditions for reactions between allylic carbamate 1 (R = 1-naphthyl, X = OMe) and organocopper reagents R''Cu.

The main disadvantage of this reaction is that it is necessary to use stoichiometric amounts, or more, of the organocopper reagent, together with stoichiometric amounts of the chiral auxiliary. The leaving group chiral auxiliary, however, can be recovered and recycled after the reaction.

Another highly selective system was designed by Gais et al. in the course of the synthesis of isocarbacyclin [15a]. In conjunction with this study it was found that optically pure allylic sulfoximines undergo regioselective and enantioselective allylic substitution reactions with organocopper reagents [15b]. Since the chirality is at the sulfur atom, the chiral center is directly connected to the allylic fragment in sulfoximes 5 and 6, used in this study (Scheme 8.6).

Endocyclic allylic sulfoximines 5 were synthesized from cycloalkanones and lithiated enantiomerically pure (S)-S-methyl-S-phenylsulfoximine, by addition and subsequent elimination and isomerization of the intermediate vinylic sulfoximines.

The allylic sulfoximines 5 were subjected to treatment with organocopper reagents. The regioselectivity could be controlled by variation of the reaction conditions, and a highly α -selective reaction was obtained with homocuprates R₂CuLi/LiI. Organocopper reagents RCu/LiI in the presence of BF₃·OEt₂ (Yamamoto conditions) [14, 21], on the other hand, gave γ -selective reactions producing exocyclic alkene products (Scheme 8.6). Regioselectivity showed no clear dependence on the solvent, since both Et₂O/Me₂S and THF/Me₂S were suitable for highly selective reactions.

For 5b, derived from cyclopentanone, a maximum ee of 90% was achieved with the bulky copper reagent t-BuPh₂SiO(CH₂)₄Cu/LiI. Et₂O had to be used as solvent for optimal results in this case, but THF was the best solvent in others. Low temperature conditions (-100 °C, or from -100 to -78 °C) were used for all the enan-

Scheme 8.6. Reactions between endocyclic sulfoximines 5 and organocopper reagents.

tioselective reactions. Organocopper reagents functionalized with ether groups in the y- or δ -positions gave ees of 63–71%. Simple n-alkylcopper reagents also produced enantioselectivities of around 70%. Further investigation of copper reagents using TMSCH₂Cu and PhCH₂Cu met with little success, since the γ selectivity was lost. The loss of γ selectivity in the case of TMSCH₂Cu/LiI was attributed to an equilibrium process with the corresponding homocuprate, which in parallel experiments was shown to give high α selectivity. For 5c (n=2), ees between 60 and 73% were observed for all Grignard reagents studied (both functionalized and nonfunctionalized), together with high γ selectivities. Further enlargement of the cycloalkene ring, as in 5d, did not produce any improvement, with treatment with BuCu/LiI/BF₃·OEt₂ in Et₂O giving an ee of 60%. A smaller cyclobutene ring in the allylic sulfoximine, as in 5a, gave only a 27% ee with the butylcopper reagent.

It was demonstrated that the chiral auxiliary can be recovered after the reaction as the corresponding sulfinamide Me(H)NS(O)Ph, with virtually complete retention of configuration at the sulfur atom.

To explore the influence of the nitrogen substituent in the sulfonimidoyl group, substrates 6 were synthesized and tested. Sulfoximines bearing a silyl group (6b) or hydrogen (6a) on nitrogen, however, did not react at all; neither with RCu, nor with R₂CuLi. The N-tosyl-substituted (6c) and N-CF₃SO₂-substituted (6d) substrates were less reactive than 5b, but afforded similar regioselectivities under both α -selective and γ -selective conditions. The observed α -selective substrates were lower (around 30%), however.

Gais et al. also investigated the mechanism of the reaction, with respect to the influence of additives. It was concluded, at least for the organocopper reagent TMSCH2Cu, that LiI and BF3·OEt2 are necessary additives for reaction with an allylic sulfoximine. The role of metal halide could be to promote formation of heteroleptic cuprates RCu·MHal or (RCu)_m(MHal)_n. Organocopper reagents prepared in the absence of lithium salts were unreactive. BF3 probably acts through substrate or intermediate activation. NMR experiments in the presence of BF3 showed that BF₃ coordinates to the nitrogen atom in sulfoximines bearing the NMe group, but not in the triflyl- or tosyl-substituted substrates 6d and 6c, in which the electronegative substituent on nitrogen prevents coordination.

Calò et al. have thoroughly investigated the use of allylic electrophiles containing heterocyclic leaving groups in regioselective allylic substitution (Scheme 8.7) [22].

RCu · MgX₂ R¹
$$R^2$$
 R^2
 R^2

Scheme 8.7. Substitution of heterocyclic allylic substrates.

From the data obtained under various conditions it was concluded that the selectivity is governed by preliminary chelation of the leaving group to the organocopper reagent RCu·MgX2. The organocopper reagents RCu·MgX2, prepared from a Grignard reagent and an excess of a copper salt, selectively gave the S_N2' products, while homocuprates R2CuMgX were SN2-selective. The more electrophilic nature of RCu·MgX2 results in better coordinating properties than in the R2CuMgX reagent and it was suggested that the S_N2'-selective reaction is due to intramolecular delivery of the coordinated RCu reagent.

The heterocyclic component in the leaving group offers possibilities for introduction of chirality. Optically active oxazolin-2-yl and thiazolin-2-yl allyl thioethers 7 were thus chosen as substrates (Scheme 8.8) [17].

Scheme 8.8. Enantioselective substitution of oxazolin-2-yl and thiazolin-2-yl allyl thioethers.

The regioselectivity of the reaction was found to be solvent-dependent, with Et₂O favoring S_N2' products, and THF favoring S_N2 products, in accordance with results from studies of similar systems [22]. As expected, a high ratio of CuBr to Grignard reagent favored the S_N2' path. Various chiral heterocyclic sulfides 7 were thus treated with i-PrMgBr or n-BuMgBr in Et₂O in the presence of excess CuBr, yielding the desired y-products with ees ranging from 50 to 98%, depending on the substrate used. From the results obtained, it was concluded that steric hindrance around the leaving group nitrogen atom resulted in higher enantioselectivity. The geometry of the allylic double bond (E or Z) plays a decisive role, as shown by one example in which the two double bond isomers gave opposite enantiomers with comparable enantioselectivities, even though the leaving group was of the same absolute stereochemistry.

Chelate formation between the leaving group and the organocopper reagent can also be used to increase the reactivity of the leaving group so that it reacts chemoselectively, in preference to a different potential leaving group [18]. In this way, an allylic substrate bearing a pivalate and a sulfide of benzothiazole can, through a yselective reaction, yield homoallylic pivalates exclusively. With a chiral allylic sulfide, the reaction could produce optically active homoallylic pivalates in chemoselective, regioselective, and enantioselective fashion. Use of a chiral benzimidazole sulfide as the leaving group, as in 8, resulted in selective replacement of the benzimidazole to give homoallylic pivalates in 32-59% ee (Scheme 8.9) [18].

Scheme 8.9. Enantioselective substitution of allylic sulfide 8.

It was argued that the relatively low ee in this case could be attributed to the large separation between the source of chirality and the reactive center, and so the reaction in Scheme 8.10 was investigated [19]. The chirality in the leaving group in compound 9 is closer to the reaction center than in the first studied substrate 8, since the stereocenter in $\bf 9$ is in the position α to the coordinating nitrogen.

Scheme 8.10. Enantioselective substitution of allylic sulfide 9.

To obtain good S_N2' selectivity, a high ratio of copper to Grignard reagent (4:1) also had to be used in this system. Ees of up to 98% were achieved with n-BuMgBr

Tab. 8.1. Dependence on double bond geometry in 10.

in combination with CuBr for 9 with $R^1=i$ -Pr and Y=O. Although the azomethine group is crucial for the selectivity, group Y can be changed from O to S or CH₂ without any large drop in obtained es. Substrate 9 with $R^1={\rm EtO_2C}$ was not suitable under the reaction conditions studied, with racemization of the heterocyclic stereocenter taking place.

As in the case of the substitution reaction of compound 7, the absolute configuration of the product depends on the double bond geometry of the starting material, as shown by the example in Tab. 8.1.

The selectivity in this process is governed by preliminary chelation of the RCu species by the azomethine group and the allylic double bond. The proposed chelates for the cases of (S)-(Z)- $\mathbf{10}$ and (S)-(E)- $\mathbf{10}$ are shown in Fig. 8.1.

8.2.2 Chiral Auxiliary that is Cleaved off after the Reaction

Reaction between C_2 symmetric diols and α, β -unsaturated aldehydes yield chiral ethylenic acetals that undergo copper-mediated substitution reactions. With aryl or

Fig. 8.1. Proposed chelate structures.

vinylcopper reagents this reaction, as studied by Alexakis et al. (Scheme 8.11), is highly anti S_N2'-selective. With alkyl copper reagents, however, a mixture of S_N2' and $S_N 2$ substitution results [23, 24]. The copper approaches from the face of the double bond that is on the side of the equatorial substituent in the acetal, and the C O bond nearest to the axial substituent is cleaved. The initial S_N2' product is an enol ether, which is hydrolyzed to a chiral β -substituted aldehyde. The reaction sequence starting from an α, β -unsaturated aldehyde can be viewed overall as a conjugate addition of RLi.

ArCu, BF₃ Me O Me CHO

$$A_1$$
 HO Ar

 A_2 Me CHO

 A_3 Me CHO

 A_4 Me CHO

Scheme 8.11. Reactions between an ethylenic acetal and organocopper reagents.

With the reagent PhCu in the presence of the additives BF3 and PBu3, ees of up to 95% were obtained, while values of up to 85% were achievable with a vinyl copper reagent. Chiral dienic acetals have also been studied; three regioisomeric products could be obtained in this case as the result of S_N2 , S_N2' , or S_N2'' attack of the organocopper reagent [25]. Mixtures were indeed obtained with alkyl copper reagents, but PhCu·BF3 resulted in formation of only the S_N2' and S_N2" products, with selectivity for the latter (Scheme 8.12).

Scheme 8.12. Substitution of a dienyl acetal.

Hydrolysis of the enol ethers obtained from the substitution reaction with the organocopper reagent yielded chiral δ-substituted aldehydes with ees of 62 and 73% for the S_N2'' and S_N2' products, respectively.

The S_N2" product was shown to be the result of a syn-selective reaction, the stereochemistry being opposite to that of the S_N2' product, which has the incoming group anti to the leaving group. The reason for the observed syn selectivity is not clear, but the authors proposed the initial formation of the two distinct Cu(III)-σallyl complexes 12 and 13 for the S_N2'' and S_N2' pathways in Scheme 8.12.

The regioselectivity was found to be highly dependent on the substitution pattern of the starting acetal, and the configurations of its double bonds (Scheme 8.13). The best result was obtained with the β -substituted acetal 14, which exclusively yielded the $S_N 2''$ product, in 83% ee. Substitution in the δ -position instead (15) yielded 90% of the S_N2' product, in 61% &. It seems that the regioselectivity is governed by steric factors and that the attack of the organocopper reagent takes place at the less hindered site. The (Z, Z) substrate 16 was highly $S_N 2''$ -selective, with the resulting product being formed in 58% ee. Other substrates investigated were less selective.

Scheme 8.13. Selectivity dependence on the acetal structure.

When the reaction was applied to a chiral cyclic ketal instead, very low selectivities were obtained. Introduction of chelating substituents into the ketal made improvement possible, though (Scheme 8.14) [23, 26].

Scheme 8.14. Substitution of chiral cyclic ketals.

A result equivalent to an allylic substitution reaction with a chiral leaving group can also be achieved by a two-step procedure involving a conjugate addition reaction and a subsequent elimination reaction, as demonstrated by Tamura et al., who studied the reaction shown in Scheme 8.15 [27].

Scheme 8.15. Conjugate addition and elimination sequence, resulting in overall $S_N 2^r$ substitution.

A diastereomerically differentiating addition-elimination sequence involving 1,5-transfer of chirality has been used to effect an overall allylic S_N2' substitution of a chiral amine auxiliary by organocuprates. Several different types of organocopper reagents, including RCu-LiBr, R2CuLi-LiBr, RCu(CN)Li, R2CuLi-LiCN, and R₂CuMgCl·MgCl(Br), were investigated in the presence or absence of Lewis acids such as LiBr and ZnBr2. The optimal reaction conditions were found to be the use of one equivalent of R2CuLi-LiBr and two equivalents of LiBr. Using these conditions, excellent enantioselectivities, of ≥95% ee, were achieved for the introduction of n-butyl, methyl, ethyl, phenyl, and vinyl groups into substrate 17c (n = 2). In the case of a six-membered ring (17b) these high levels of enantioselectivity could be obtained for the introduction of saturated substituents such as n-butyl, methyl, and ethyl. Here it was shown that the use of LiBr as an additive invariably produced higher enantioselectivities than ZnBr2 did (95% ee versus 90% ee). The products with unsaturated substituents (phenyl and vinyl) were too unstable to be isolated in this case. A substrate with a smaller ring (17a) gave generally lower ees. This investigation also included acyclic substrates 18 (Scheme 8.16), but these afforded lower ees, with an ee of 70% being obtained in the best case, using dibutylcuprate.

Scheme 8.16. The use of acyclic substrates 18.

It was concluded that an oxygen functionality in the C(2)-side chain of the pyrrolidinyl chiral auxiliary was of great importance for the achievement of high ees.

Fig. 8.2. Transition state model for the enantioselective substitution of 17.

On the basis of this conclusion and on NMR studies of complexes of 17b with Lewis acids, a transition state model to explain the observed selectivity was proposed. This involved initial complexation of a cuprate lithium ion to the three different heteroatoms in the substrate, followed by formation of a d- π * complexation product from the less hindered si face, the re face being shielded by the pyrrolidine ring (Fig. 8.2).

8.2.3

Catalytic Reactions with Chiral Ligands

Compared to the intensive and successful development of copper catalysts for asymmetric 1,4-addition reactions, discussed in Chapt. 7, catalytic asymmetric allylic substitution reactions have been the subjects of only a few studies. Difficulties arise because, in the asymmetric γ substitution of unsymmetrical allylic electrophiles, the catalyst has to be capable of controlling both regions electivity and enantios electivity.

In 1995, Bäckvall and van Koten reported the first example of a catalytic, enantioselective S_N2' substitution of a primary allylic acetate in the presence of a chiral copper complex [28, 29].

The copper(I) arenethiolate complexes 19 [30], first developed and studied by van Koten's group, can be used as catalysts for a number of copper-mediated reactions such as 1,4-addition reactions to enones [31] and 1,6-addition reactions to enynes [32].

Initial studies on the application of these catalysts to allylic substitution reactions showed that the arenethiolate moiety functions as an excellent nontransferable group, and that the regioselectivity can be completely reversed by suitable changes in the reaction parameters [33]. If the reaction between geranyl acetate and n-BuMgI was carried out in THF at $-30~{\rm ^{\circ}C}$ with fast addition of the Grignard reagent to the reaction mixture, complete α selectivity was obtained. Raising the tempera-

ture to 0 °C and use of Et₂O as solvent, with slow addition of the Grignard reagent, gave 100% of the y product (Scheme 8.17).

(i): Et₂O, 0 °C, 120 min addition time of n BuMgI, 100% y product (ii): THF, -30 °C, 5 min addition time of n-BuMgl, 100% α product

Scheme 8.17. Control of regioselectivity with catalyst 19a.

These catalysts also give a remarkable reversal in leaving group ability. An allylic acetate becomes more reactive than an allylic chloride in the presence of 19a, a fact that can be explained by chelate formation with the catalyst and Grignard reagent, with the acetate group becoming activated by coordination of oxygen to magnesium [33b].

The use of the chiral catalyst 19b for asymmetric allylic substitution of allylic substrates has been studied in some detail (Scheme 8.18) and, under y-selective reaction conditions, asymmetric induction was indeed obtained [28, 34].

R'MgX, Et₂O, 0 °C R'MgX, et₂O, 0 °C R'DOCH₂, a Y = OAc, b ! BuC(O)O, c CF₃C(O)O, d (EtO)₂P(O)O 21 R =
$$c$$
-C₆H₁₁, Y = OAc

22 R = Ph, Y = OAc R'MgX = n-BuMgI, n-BuMgBr, Me_3SiCH_2MgI

Scheme 8.18. Enantioselective substitution with catalyst 19b.

To optimize the enantioselectivity it was necessary to use a rather high catalyst loading (ca. 15 mol%), with reactions being carried out at fairly low substrate concentrations, with slow addition of the Grignard reagent over 2 hrs. The effect of the leaving group was studied using substrates 20, in their reactions with n-BuMgI. Both the acetate 20a and the pivalate 20b underwent highly regionelective reactions, with 34% ee for the acetate and 25% ee for the more bulky pivalate. Trifluoroacetate (20c) or diethylphosphate (20d) as leaving groups resulted in slightly lower regioselectivities (ca. 90:10) and the ees were severely diminished to around 10%. The substituent on the allylic double bond had only a minor influence on the ee; PhOCH₂ (20a) and cyclohexyl (21) gave ees of 34 and 41% respectively. A slightly lower ee of 28% was obtained with cinnamyl acetate (22). The mode of addition was important for the outcome, the best results being obtained when both the Grignard reagent and the substrate were added slowly to the reaction mixture. With this

Fig. 8.3. Proposed chelate structure for the catalytically active intermediate.

technique, the *ee* in the case of the reaction between cyclohexyl-substituted allylic acetate **21** and *n*-BuMgI was **42**%. This implies that a **1**:1 ratio of substrate to Grignard reagent at all times is important for the selectivity. Excess substrate can disrupt the bidentate coordination necessary for the proposed chelate. The difference here, however, was very small in comparison to the situation when the Grignard reagent alone was added over 2 h. A still larger difference was observed when the substrate was added to a mixture of catalyst and *n*-BuMgI, conditions favoring formation of a homocuprate, R₂CuM. In that case only 18% *ee* was achieved. The reaction has to be performed at a rather high temperature if maximum enantioselectivity is to be achieved. Reaction temperatures of 0 °C or 20 °C produced similar *ees*, but an *ee* of only 7% was obtained at a lower temperature (–20 °C). This supports the hypothesis that chelate formation is important for the enantioselectivity.

The results obtained can be explained in terms of a catalytic intermediate made up of a chelate between Grignard reagent, catalyst, and substrate. The allylic substrate anchors in a bidentate fashion, through carbonyl coordination to magnesium and copper-alkene π -interaction, as represented schematically in Fig. 8.3. The chelate constitutes a rigid structure, incorporating a six-membered ring with a chiral magnesium atom. The chelate shown would produce preferential coordination from the face of the olefin indicated in Fig. 8.3, in accord with the observation that R ligands result in R products.

The coordination of the acetate in this fashion should result in enhanced leaving group reactivity, while the effect of changes in the leaving group on enantio-selectivity further supports the idea of chelate formation. The more bulky pivalate should give a less stable chelate, and a lower ee is indeed observed. The electron-withdrawing trifluoromethyl group in the trifluoroacetate moiety would weaken coordination and give a less stable chelate, which would explain the low enantio-selectivity (10% ee) with the allylic trifluoroacetate. (It is also possible that the high reactivity of trifluoroacetate as a leaving group results in reaction before chelate formation takes place.) The same arguments also apply to the phosphate leaving group.

The reaction of cyclohexyl-substituted allylic acetate 21 with different Grignard reagents was investigated [34]. As already mentioned, a 41% ee had been obtained with n-BuMgI. Changing the counter-ion in the Grignard reagent to Br , under otherwise identical reaction conditions, gave an ee of 50%. The sterically hindered Grignard reagent Me₃ SiCH₂MgI underwent only slow reaction, giving a moderate

yield of the y product, but the observed ee, 53%, was the highest so far obtained with catalyst 19b.

To study the effect of conformationally more rigid substrates, some cyclic allylic esters (23 and 24) were employed as substrates. Reaction of these with n-BuMgI, employing 19b as catalyst, produced very low ees, however (Scheme 8.19) [35].

Scheme 8.19. Reactions of cyclic allylic esters 23 and 24, with catalysis by 19b.

To investigate the effect of the substituents in the arenethiolate structure, four differently substituted copper arenethiolates, 25-28, were tested as catalysts, but very low ees were obtained in all cases [34]. The oxazolidine complex 26, developed by Pfaltz et al. [36] and used successfully in asymmetric conjugate addition reactions to cyclic enones, gave a completely racemic product with allylic substrate 20a.

To avoid the difficulties in handling the highly air-sensitive copper arenethiolates, a method for their preparation and utilization in situ has been developed, the arenethiol 29 being deprotonated with n-BuLi and mixed with a copper(I) salt to yield the active catalyst [34].

Use of this technique results in an equivalent of lithium halide being present in the reaction mixture, unlike when the isolated copper arenethiolates are employed. Lithium salts can have very profound effects on copper-mediated reactions, but in this case a similar ee (40%) and complete y selectivity were still obtained for the reaction between 21 and n-BuMgI when the catalyst was prepared from CuI. Neither a change of the Cu:ligand ratio to 1:2 nor an increase in the temperature (cf. the work with the preformed catalyst) affected the outcome of the reaction. The effect of the arenethiolate ligand on the reactivity was confirmed by performing the reaction with only CuI as catalyst, in the absence of the ligand. In this case, the allylic acetate 21 was partly recovered, and formation of the corresponding alcohol was observed, which indicates that the reaction was much slower. The regioselectivity was also no longer complete ($y/\alpha = 95:5$). The source of the copper can also have a dramatic influence on the stereochemical outcome; a change from CuI to CuBr·SMe2 resulted in an ee of only 7%. This can be explained in terms of coordination of the dimethyl sulfide to copper, hampering formation of the catalytic intermediate. CuCl could be employed with the same efficiency as CuI, but Cu(OTf)₂ gave a lower enantioselectivity.

Investigation of different Grignard reagents was also carried out. In contrast to the result obtained with the isolated catalyst 19b, the in situ generation technique here gave a lower ee for BuMgBr (30% ee) than for BuMgI (40% ee). Use of CuBr instead of CuI allowed this ee to be increased somewhat, to 36%. Some bulkier Grignard reagents, such as i-PrMgI, i-PrMgBr, i-BuMgBr, and Me₃SiCH₂MgI, were also investigated, but no ees higher than 40% could be obtained. No allylic substitution at all was observed with PhMgI. Cinnamyl acetate (22) as the substrate gave slightly lower ees than obtained with 21, in line with the results with the preformed catalyst. Variation of the ligand structure (as in 30 and 31) produced lower ees than obtained with 29. Use of ligand 30 resulted in a very low ee of 10% for the reaction between 21 and n-BuMgI, but 31 gave a reasonable ee of 35%. Interestingly, the major enantiomers were of opposite configurations when (e)-29 and (e)-31 were used.

The moderate *ees* obtained with the copper arenethiolate ligands discussed above prompted a search for new chiral ligands for use in asymmetric allylic substitution reactions. The binaphthol-derived phosphoramidite ligand **32**, used successfully by Feringa et al. in copper-catalyzed **1,4**-addition reactions [37], was accordingly tested in the reaction between **21** and *n*-BuMgI.

The presence of ligand 32, however, resulted in much slower allylic substitution [38], as could be seen by the formation of large amounts of the alcohol produced by carbonyl attack of the Grignard reagent on the acetate. S_N2' selectivities were also lower than those obtained with copper arenethiolate catalysts. Optimization of the conditions (10% each of Cu(OTf)2 and 32, slow addition of n-BuMgI in Et2O at -20 °C) made it possible to obtain a 97:3 ratio of S_N2' and S_N2 products with less than 10% attack on the carbonyl, but the S_N2' product was racemic [35]. However, it cannot be ruled out that this class of ligands might be useful for the allylic substitution reaction under reaction conditions different to those tested.

Chiral ferrocenes have received much attention as ligands in metal-catalyzed reactions [39], but their use in copper chemistry has been very limited [40, 41]. The ferrocene moiety offers the possibility of utilizing both central and planar chirality in the ligand. By analogy with the copper arenethiolates described above, ferrocenyl copper complex 33 (Scheme 8.20) is extremely interesting.

$$(R.S_o)-33$$

$$(R.S_o)-33$$

$$Cul$$

$$Me$$

$$NMe_2$$

$$-1. t-BuLi, El_2O$$

$$-2. S_8$$

$$(R.S_o)-35$$

$$(R.S_o)-36$$

Scheme 8.20. Ferrocene thiolates.

The synthesis of the corresponding ferrocene thiol 36 was therefore undertaken (Scheme 8.20) [42]. This thiol proved to be too unstable and could not be isolated, but the precursor lithium thiolate 35 could be isolated and stored under an argon atmosphere. Treatment of 35 with CuI produced a catalytically active species that gave up to 64% ee in the reaction between allylic acetates and n-BuMgI (Scheme 8.21). A rather large ratio of ligand to copper gave better results; it was concluded that this was due to the low stability of the ligand towards oxidation.

Scheme 8.21. Allylic substitution in the presence of ferrocene ligand 35.

The ees obtained in reactions between 21 and different Grignard reagents using copper arenethiolate 19b (isolated complex or prepared in situ from 29 and CuX) were improved in all cases when the ferrocenyl system was used. Thus, MeMgI, EtMgI, n-PrMgI, and i-PrMgBr gave ees of 44, 62, 54, and 52% respectively. The enantiomeric excesses obtained using this ligand are the highest so far reported for copper-catalyzed allylic substitution reactions between allylic esters and Grignard reagents.

The necessity of an anionic thiolate ligand was established by performing reactions with ferrocene thioethers 37 as ligands. Here, essentially racemic products were obtained.

NMe₂

$$SR$$

$$R = Ph. t-Bu$$

$$(R,S_p)-37$$

Alexakis et al. have also recently studied allylic substitution reactions in the presence of chiral ligands [43]. Their experience with phosphorus-based ligands for copper in conjugate addition reactions [44] prompted them to study these systems in substitution reactions as well. Reactions between cinnamyl chloride and Grignard reagents were chosen as a suitable test system. It turned out to be a challenge to obtain a regioselective reaction with this system in the presence of the ligand triethyl phosphite P(OEt)₃. However, it proved possible to obtain a y/α ratio of 97:3 by addition of ethyl magnesium bromide to cinnamyl chloride, CuCN (1 mol%), and P(OEt)₃ (2 mol%) in CH₂Cl₂ at -80 °C. By using EtMgCl, with Cu(OTf)₂ as catalyst, and carrying out inverse addition of the substrate to a mixture of the catalyst, ligand, and Grignard reagent, the regioselectivity could be switched in favor of the α product $(y/\alpha$ 7:93) [45]. Use of other solvents, such as Et₂O, THF, or toluene, produced very low selectivities. Use of cinnamyl acetate (22) as substrate favored the α product.

In total, 29 phosphorus containing chiral ligands of various structures were screened under the optimized y-selective conditions, but most of them gave little or no chiral induction. The four ligands 38a-d, all derived from (-)-TADDOL, depicted in Fig. 8.4 gave ees in excess of 30% in the reaction between ethyl magnesium bromide and cinnamyl chloride.

Ligand 38a, bearing an (-)-N-methylephedrine substituent, was superior, and gave an ee of 51% and a y/α ratio of 91:9. Further fine-tuning of the reaction conditions gave an improvement to 73% ee and a y/α ratio of 94:6. Optimum enantioselectivity was favored here by a CuCN:ligand ratio of 1:1 and the use of only 1 mol% of each. Slower addition of the Grignard reagent (40 min) also produced improvements. It should be noted, however, that with 2.5 mol% of CuCN, 5 mol% of ligand, and addition of the Grignard reagent over only 20 min, the y/α ratio was 100:0, with an only slightly lower ee (67%).

Fig. 8.4. Ligands 38 employed in allylic substitution reactions between cinnamyl chloride and EtMgBr.

With suitable conditions for the test system established, variations in the structures of the substrate and the Grignard reagent were examined (Scheme 8.22).

 $X = Cl. Br. OP(O)(OMe)_2. OAc$

R = Ef. n-Pr. n-Bu, n-C₅H₁₁, Me, p-C₆H₁₁, p-C₅H₈, p-C₆H₁₁CH₂.

i-Pr, i-Bu, Me₃SiCH₂, neopentyl, 4-F C₆H₄, 2 MeO C₆H₄

Scheme 8.22. Investigation of substrate and Grignard reagent structure.

The effect of the leaving group was briefly examined, but cinnamyl bromide gave a substantially lower ee (38%). Cinnamyl dimethyl phosphonate, or acetate, gave very poor results. The cyclohexyl-substituted allylic acetate 21, on the other hand, afforded a completely y-selective reaction, but the product turned out to be racemic. Changing the Grignard reagent halide from bromide to either chloride or iodide resulted in very low ees.

The scope of the reaction with cinnamyl chloride was assessed by testing a number of different Grignard reagents, including n-alkyl, methyl, aryl, cycloalkyl, isopropyl, and isobutyl derivatives, TMSCH2MgBr, and the sterically crowded neopentylMgBr. Increased steric hindrance, however, resulted in lower ees and none of the tested reagents gave ees as high as EtMgBr had. The bulky neopentyl Grignard reagent gave almost racemic S_N2' product. The n-alkyl Grignard reagents n-PrMgBr and n-BuMgBr gave ees of 57 and 52%, respectively. Interestingly, the reaction could also be performed with an aromatic Grignard reagent, but with low ees (21% for 2-MeO C₆H₄MgBr).

The reported results show that the reaction is very sensitive to small changes in the reaction conditions, such as temperature. Just a few degrees difference in the reaction temperature could have a dramatic influence on the outcome of the reaction. No single set of reaction conditions was applicable to all cases, and the dependence of the selectivity on the structure of the Grignard reagent and substrate is hard to interpret.

Organozinc reagents in combination with a catalytic amount of copper catalyst and ligand can be used in place of Grignard reagents. In this case, however, the allylic electrophile has to carry a relatively reactive leaving group, such as a halide; allylic esters do not normally react with organozinc reagents. Knochel et al. discovered that chiral primary amines could function as useful ligands to copper for catalysis of allylic substitution reactions between unsymmetrical allylic chlorides and diorganozinc reagents [41a]. Primary ferrocenyl amines 39 were the most efficient of the ligands studied. These ligands may be obtained easily and with high optical purity from ferrocenyl aryl ketones, by reduction with BH₃·SMe₂ in the presence of a chiral ligand.

The Ar group in the ligand is very important for the enantioselectivity in the S_N2' product. In a screening reaction between cinnamyl chloride and dineopentylzinc, the ligand bearing a 2-naphthyl substituent produced the highest ee (42%). Furthermore, a high ratio of ligand to copper of 10:1 increased the ee to 67% at -50 °C, while a reduction in the reaction temperature to -90 °C resulted in a further increase, to 82% ee. Interestingly, the enantioselectivity showed an almost linear dependence on temperature and only 25% ee was achieved at 25 °C.

The influence of the leaving group in the substrate was also investigated, but changes from the Cl in cinnamyl chloride to Br, carbonate, xanthate, or phosphate all resulted in diminished selectivity. The type of organometallic reagent was also very important, and no reaction at all was observed with organozinc reagents of the type RZnX.

To conclude the study, combinations of differently substituted substrates and diorganozinc reagents were investigated (Scheme 8.23).

$$R^{1} = \frac{1 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% 39 (Ar = 2-naphlhyl)}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{ mol \% CuBr SMe}_{2}}{10 \text{ mol \% CuBr SMe}_{2}} + R^{1} = \frac{10 \text{$$

R¹ = Ph, 4-CF₃-C₆H₄-, 1-naphthyl, 2-naphthyl, c-C₆H $_{-1}$, 3-thienyl, (Z)-(i-Pr $_{-1}$)₃SiOCH₂ R² = r[copentyl, PhMe₂SiCH₂, Me₃SiCH₂, (+)-myrtanyl, (-)-myrtanyl Scheme 8.23. Asymmetric allylic substitution catalyzed by 39 (Ar = 2-naphthyl).

The reactions were regionselective in all cases, with y: α ratios of >90:10. The maximum ee, 87%, was obtained by treatment of a substrate containing the electron-withdrawing R^1 substituent 4-CF₃ C₆H₄ with dineopentylzinc. Changing the

substrate R¹ group to naphthyl, cyclohexyl, or functionalized substituents such as 3-thienyl or silylethers resulted in lower ees being obtained. A change of the R2 group in the diorganozinc reagent from the bulky neopentyl invariably produced lower ees. Bis(trialkylsilylmethyl)zinc gave 42-67% ee. Bis(myrtanyl)zinc reagents of both possible configurations, (+) and (-), were also employed, and afforded diastereomeric substitution products with ees of around 40%. The asymmetric induction seems to be highly influenced by steric hindrance and sterically demanding diorganozines were necessary for obtainment of high ees.

The ferrocenyl amine ligands 39 could be improved further by changing the Ar substituent (Scheme 8.24) [41b].

NH2

Ar = 4-biplienyl, 9-phenanthrenyl, 2-Br-CeH₄, 4-t-Bu-CeH₄, 3,5 diMe CeH₃, 3,5-di-t-Bu-CeH₃

1 mol% CuBr SMe₂

R

1 mol% CuBr SMe₂

THF, 30 °C, 3 h S_V2',
$$\gamma$$
 up to 98% ee

R

R

R

R

R

R

R

R

R

R

R

SN2. α

R

R

SN2. α

Scheme 8.24. Improvements of ligand 39.

Steric hindrance in the ligand 39 proved to be very important, and the best results were obtained by introducing sterically demanding substituents on the phenyl ring; 3,5-di-t-butylphenyl, for example, gave a 92% ee in the reaction between cinnamyl chloride and dineopentylzinc. This ligand also gave the best S_N2' selectivity, at 98:2. Further optimization, including simultaneous addition of R2Zn and the allylic chloride over 3 h, resulted in an improvement to a 96% ee. Under these conditions a higher reaction temperature ($-30~^{\circ}\mathrm{C}$) could also be employed without any decrease in ee. With the 2-naphthyl-substituted ligand, the combination of 4-CF₃-cinnamyl chloride and dineopentylzinc resulted in the highest ee (98%) of all the substrate combinations studied. This optimized ligand system in all cases produced enantioselectivities higher than those obtained with the 2-naphthylsubstituted ligand employed in the first study. It is also noteworthy that, with this ligand, significant ees (44-65%) could be obtained from the di-n-alkylzinc reagents diethylzinc and dipentylzinc. Further improvements were obtained by the use of a mixed reagent, ethylneopentylzinc, which selectively transferred the ethyl group with an ee of 52%, compared to 44% for Et₂Zn.

Functionalized diorganozinc reagents [AcO(CH₂)₄]₂Zn and [EtO₂C(CH₂)₃]₂Zn were also employed, giving complete y selectivity in both cases, with ees of 50%.

Woodward et al. have used the binaphthol-derived ligand 40 in asymmetric conjugate addition reactions of dialkylzinc to enones [46]. Compound 40 has also been studied as a ligand in allylic substitutions with diorganozine reagents [47]. To allow better control over selectivity in y substitution of the allylic electrophiles studied, Woodward et al. investigated the influence of an additional ester substituent in the β -position (Scheme 8.25).

 $X = Br. Cl, OCHO, OSO_2Me$ $Ar = Ph, 4-NO_2-C_6H_{4^-}, 4-Cl-C_6H_{4^-}, 4-Me-C_6H_{4^-}, 1-naphthyl$

Scheme 8.25. Allylic substitution of 41 in the presence of ligand 40.

The reaction between allylic substrates 41 and Et₂Zn, catalyzed by [Cu(MeCN)4]BF4, was indeed very fast, and proceeded with excellent y selectivity. Inclusion of the ligand 40 in the reaction mixture resulted in some enantioselectivity, but rather large quantities of catalyst (10 mol%) and ligand (20 mol%) had to be used to maximize asymmetric induction. The effect of the leaving group was examined; chloride produced higher ees than bromide did, but the yields obtained were significantly lower. With a mesylate the reaction gave a high yield, but an almost racemic product was obtained, while an allylic formate was unreactive under these conditions. With different aryl-substituted allylic chlorides and Et₂Zn a maximum of 64% ee was achieved. Changes in temperature between -20 and -40°C had a minor influence on the enantioselectivity. The highest ee was obtained with $Ar = 4 \cdot O_2NC_6H_4$, and the reaction seems to be controlled more by electronic factors than by steric ones. For the other y-aryl-substituted substrates 41 investigated, the ees varied between 22% and 36%. The asymmetric version of this reaction is unfortunately characterized by low isolated yields.

It may be concluded from the different examples shown here that the enantioselective copper-catalyzed allylic substitution reaction needs further improvement. High enantioselectivities can be obtained if chirality is present in the leaving group of the substrate, but with external chiral ligands, enantioselectivities in excess of 90% ee have only been obtained in one system, limited to the introduction of the sterically hindered neopentyl group.

Fig. 8.5. Binaphthol-derived phosphoramidite ligands developed by Feringa et al.

8.3 **Epoxides and Related Substrates**

Ring-opening of oxiranes with organocopper reagents is a well known process in organocopper chemistry, usually proceeding with high selectivity. For vinyl oxiranes, both S_N2 and S_N2' reaction types are possible and the selectivity can be controlled. Optically active allylic alcohol products can be obtained when starting from nonracemic vinyloxiranes [48].

Asymmetric ring-opening of saturated epoxides by organocuprates has been studied, but only low enantioselectivities (< 15% ee) have so far been obtained [49, 50]. Müller et al., for example, have reported that the reaction between cyclohexene oxide and MeMgBr, catalyzed by 10% of a chiral Schiff base copper complex, gave trans-2-methylcyclohexanol in 50% yield and with 10% ee [50].

The use of vinyl epoxides as substrates in enantioselective copper-catalyzed reactions, on the other hand, has met with more success. An interesting chiral ligand effect on Cu(OTf)2-catalyzed reactions between cyclic vinyloxiranes and dialkylzinc reagents was noted by Feringa et al. [51]. The 2,2'-binaphthyl phosphorus amidite ligands 32 and 43 (Fig. 8.5), which have been successfully used in copper-catalyzed enantioselective conjugate additions to enones [37], allowed kinetic resolution of racemic cyclic vinyloxiranes (Scheme 8.26).

Scheme 8.26. Kinetic resolution of cyclic vinyl oxiranes 44.

The process was S_N2'-selective in the presence of catalytic amounts of ligands (S)-32 or (S, R, R)-43 and Cu(OTf)₂. This is another example of ligand-accelerated catalysis; without the ligand the reaction was much slower and proceeded with low regioselectivity.

When 0.5 equivalents of dialkylzinc were used, ees of more than 90% were obtained, with reasonable isolated yields of up to 38% [52] of the S_N2' -substituted products arising from the 1,3-cyclohexadiene monoepoxide 44b and the 1,3-cycloheptadiene monoepoxide 44c. The substrate 44a, with a five-membered ring, gave much lower asymmetric induction and the maximum *ee* was 54%. Ligand 43 was superior to 32 in all cases studied. The yield and *ee* of the remaining unreacted vinyloxirane was not mentioned.

The vinyloxirane reaction was later extended to methylidene cyclohexene oxide and to related *meso* derivatives [53]. The effects of the diastereomeric ligands 42 and 43 (Fig. 8.5), derived from (S)-binaphthol and (S, S)- or (R, R)-bis-phenylethylamine respectively, were investigated. In the case of kinetic resolution of racemic methylidene cyclohexane epoxide 45 with Et₂Zn, ligand 42 produced better yields, regionselectivity, and enantioselectivity than 43 (Scheme 8.27).

3 mol% 42
1.5 mol% Cu(OTf)₂
toluene, 70 to 0 °C, 3h

$$S_{N2}$$
', γ S_{N2} . α
 γ/α -ratio = 97:3
88% ce

Scheme 8.27. Reaction between epoxide 45 and Et₂Zn, catalyzed by Cu(OTf)₂ and ligand 42.

To avoid the inherent limitations of a kinetic resolution process, the reaction was extended to desymmetrization of prochiral *meso* epoxides. A number of cyclic dimethylidene epoxides were synthesized and subjected to treatment with Et_2Zn in the presence of $Cu(OTf)_2$ and ligands 42 or 43. As in the case mentioned above, ligand 42 was superior in terms of selectivity. Cyclohexane derivative 46 gave the ring-opened product with a 97% *ee* and in a 90% isolated yield, with a y/α ratio of 98:2 (Scheme 8.28). The other substrates investigated produced significantly lower *ees* of between 66% and 85%.

Scheme 8.28. Reaction between 46 and Et₂Zn.

The same authors also studied the alkylation of alkynyl epoxides for formation of optically active α -allenic alcohols under kinetic resolution conditions (Scheme 8.29) [54].

Scheme 8.29. Reactions of alkynyl epoxides 47 with R₂Zn.

With ligand 43 the reaction between 47 and 0.5 equivalent of R₂Zn was highly diastereoselective, proceeding in an anti fashion ($48/49 \ge 97:3$). The regioselectivity depended on the diorganozinc reagent, a low $S_{\rm N}2^{\prime}/S_{\rm N}2$ ratio of 55:45 being obtained with 47a (R = H) and Me₂Zn, but ratios of more than 90:10 with Et₂Zn. Ees of up to 38% were obtained for the anti- S_N2' product 48 (R' = Et). The influence of the ligand was investigated for the reaction between 47a and Et₂Zn. Compound 42 gave a highly anti- and S_N2' -selective reaction (48/49 > 99:1, (48 + 49)/ 50 = 97:3), but 48 was almost racemic. The use of TADDOL-derived ligand 51 resulted in a syn- and S_N2'-selective reaction to give 49 in 36% ee.

Copper-catalyzed desymmetrization of N-tosylaziridine 52 with Grignard reagents has been reported (Scheme 8.30) [50].

5cheme 8.30. Desymmetrisation of *N*-tosylaziridine **52**.

A number of structurally very different copper complexes were employed as catalysts. The copper complex of binaphthol-derived phosphoramidite 32 and the Schiff base complex 53 (derived from salicylaldehyde and phenylglycine) gave promising results in a screening reaction between 52 and MeMgBr, and 53 was chosen as the candidate for optimization. The effect of solvent (THF or Et₂O),

variation of the metal in the organometallic reagent (Mg or Li), and variation of the Grignard reagent counter-ion (Cl., Br., or I.) were studied, but it was difficult to find any systematic trends. The best conditions consisted of a slow addition (10 min.) of MeMgBr to 52 and 30 mol% of complex 53. In this way, an ee of 91% was obtained (Scheme 8.30).

8.4 Concluding Remarks

Copper-mediated enantioselective substitution reactions have undergone an interesting development during the last decade. For allylic substitution, high ees have been obtained for stoichiometric reactions and for the corresponding catalytic reactions with allylic chlorides and sterically hindered carbon nucleophiles. For nonhindered carbon nucleophiles (bearing n-alkyl groups), copper-catalyzed reactions with allylic chlorides give ees in the 50-73% range. With allylic acetate, the highest enantioselectivity obtained in copper-catalyzed allylic substitution is 64%, also obtained with nonhindered carbon nucleophiles. For vinylepoxides and aziridines, high ees have recently been obtained in copper-catalyzed reactions with Et₂Zn and MeMgBr, respectively. In conclusion, the developments made during the last few years look very promising, but there is still a lot more to be done in the field. Further improvement in the copper-catalyzed enantioselective substitution of allylic acetates, for example, would be of great synthetic interest.

References and Notes

- 1 For reviews see: (a) G. H. Posner, Org. React. 1975, 22, 253-400; (b) E. ERDIK, Tetrahedron 1984, 40, 641-657; (c) B. H. Lipshutz, S. Sengupta, Org. React. 1992, 41, 135-631; (d) Organocopper Reagents. A practical approach, R. J. K. TAYLOR (Ed.), Oxford University Press, Oxford, 1994; (e) N. KRAUSE, A. GEROLD, Angew. Chem. 1997, 109, 194-213; Angew. Chem. Int. Ed. Engl. 1997, 36, 186-204.
- 2 H. GILMAN, J. M. STRALEY, Recl. Trav. Chim. Pays-Bas, 1936, 55, 821-834.
- 3 H. GILMAN, R. G. JONES, L. A. WOODS, J. Org. Chem. 1952, 17, 1630-1634.
- 4 (a) V. D. PARKER, L. H. PIETTE, R. M. SALINGER, C. R. NOLLER, J. Am. Chem. Soc. 1964, 86, 1110-1112; (b) V. D. PARKER, C. R. NOLLER, J. Am. Chem. Soc. 1964, 86, 1112-1116.

- 5 J. K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press, New York, 1978, pp. 381-386.
- 6 (a) E. J. Corey, G. H. Posner, J. Am. Chem. Soc. 1967, 89, 3911-3912; (b) E. J. Corey, G. H. Posner, J. Am. Chem. Soc. 1968, 90, 5615-5616.
- 7 G. M. Whitesides, W. F. Fischer, J. SAN FILIPPO, R. W. BASHE, H. O. House, J. Am. Chem. Soc. 1969, 91, 4871-4882.
- 8 P. Rona, L. Tökes, J. Tremble, P. Crabbé, Chem. Commun. 1969, 43-
- 9 (a) H. L. GOERING, V. D. SINGLETON, I. Am. Chem. Soc. 1976, 98, 7854-7855; (b) H. L. GOERING, C. C. Tseng, J. Org. Chem. 1985, 50, 1597-1599; (c) H. L. GOERING, S. S. Kantner, J. Org. Chem. 1984, 49, 422-426.

- 10 M. FOUQUET, M. SCHLOSSER, Angew. Chem. 1974, 86, 50-51; Angew. Chem. Int. Ed. Engl. 1974, 13, 82-83.
- 11 (a) J.-E. BÄCKVALL, M. SELLÉN, J. Chem. Soc., Chem. Commun. 1987, 827-829; (b) J.-E. BÄCKVALL, M. SELLÉN, B. GRANT, J. Am. Chem. Soc. 1990, 112, 6615-6621; (c) E. S. M. Persson, J.-E. Bäckvall, Acta Chem. Scand. 1995, 49, 899-906.
- 12 A. S. E. KARLSTRÖM, J.-E. BÄCKVALL, Chem. Eur. J. 2001, 7, 1981-1989, and references cited therein.
- 13 (a) E. NAKAMURA, S. MORI, Angew. Chem. 2000, 112, 3902-3924; Angew. Chem. Int. Ed. 2000, 39, 3750-3771; (b) S. Mori, E. Nakamura, K. Morokuma, J. Am. Chem. Soc. 2000, 122, 7294-7307.
- 14 T. IBUKA, Y. YAMAMOTO, Synlett 1992, 769-777.
- 15 (a) J. Bund, H.-J. Gais, I. ERDELMEIER, J. Am. Chem. Soc. 1991, 113, 1442-1444; (b) H.-J. Gars, H. Müller, J. Bund, M. Scommoda, J. Brandt, G. Raabe, J. Am. Chem. Soc. 1995, 117, 2453-2466.
- 16 S. E. Denmark, L. K. Marble, J. Org. Chem. 1990, 55, 1984-1986.
- 17 V. Calò, A. Nacci, V. Fiandanese, Tetrahedron 1996, 52, 10799-10810.
- 18 V. CALÒ, C. DE NITTI, L. LOPEZ, A. SCILIMATI, Tetrahedron 1992, 48, 6051-6058.
- 19 V. Calò, V. Fiandanese, A. Nacci, A. Scilimati, Tetrahedron 1994, 50, 7283-7292.
- 20 (a) C. Gallina, P. G. Ciattini, L. Am. Chem. Soc. 1979, 101, 1035-1036; (b) C. GAILINA, Tetrahedron Lett. 1982, 23, 3093-3096; (c) H. L. GOERING, S. S. Kantner, J. Org. Chem. 1983, 48, 715-721; (d) T. L. Underiner, H. L. GOERING, J. Org. Chem. 1989, 54, 3239-3240.
- 21 (a) Y. YAMAMOTO, Angew. Chem. 1986, 98, 945-957, Angew. Chem. Int. Ed. Engl. 1986, 25, 947-959. (b) Y. Үамамото, S. Үамамото, H. YATAGAI, K. MARUYAMA, J. Am. Chem. Soc. 1980, 102, 2318-2325.
- 22 (a) V. Calò, L. Lopez, W. F. Carlucci, I. Chem. Soc., Perkin Trans. 1 1983, 2953-2956; (b) V. CALÒ, L. LOPEZ, G.

- Pesce, J. Chem. Soc., Chem. Commun. 1985, 1357-1359; (c) V. CALÒ, L. LOPEZ, G. PESCE, J. Chem. Soc., Perkin Trans. 11988, 1301-1304; (d) V. CALÒ, V. Fiandanese, A. Nacci, Trends Org. Chem. 1993, 4, 479-491.
- 23 (a) A. Alexakis, P. Mangeney, A. GHRIBI, I. MAREK, R. SEDRANI, C. Guir, J. F. Normant, Pure Appl. Chem. 1988, 60, 49-56; (b) A. ALEXAKIS, P. MANGENEY, Tetrahedron: Asymmetry 1990, 1, 477-511.
- 24 (a) P. Mangeney, A. Alexakis, J. F. NORMANT, Tetrahedron Lett. 1986, 27, 3143-3146; (b) P. Mangeney, A. ALEXAKIS, J. F. NORMANT, Tetrahedron Lett. 1987, 28, 2363-2366.
- 25 H. RAKOTOARISOA, R. G. PEREZ, P. Mangeney, A. Alexakis, Organometallics 1996, 15, 1957-1959.
- 26 A. Ghribi, A. Alexakis, J. F. NORMANT, Tetrahedron Lett. 1984, 25, 3083-3086.
- 27 (a) R. Tamura, K. Watabe, H. KATAYAMA, H. SUZUKI, Y. YAMAMOTO, J. Org. Chem. 1990, 55, 408–410; (b) R. Tamura, K. Watabe, N. Ono, Y. YAMAMOTO, J. Org. Chem. 1992, 57, 4895-4903.
- 28 M. VAN KLAVEREN, E. S. M. PERSSON, A. DEL VILLAR, D. M. GROVE, J.-E. BÄCKVALL, G. VAN KOTEN, Tetrahedron Lett. 1995, 36, 3059-3062.
- 29 J.-E. BÄCKVALL, Acta Chem. Scand. 1996, 50, 661-665.
- 30 (a) D. M. KNOTTER, M. D. JANSSEN, D. M. GROVE, W. J. J. SMEETS, E. HORN, A. L. Spek, G. van Koten, Inorg. Chem. 1991, 30, 4361-4366; (b) D. M. KNOTTER, H. L. VAN MAANEN, D. M. GROVE, A. L. SPEK, G. VAN Koten, Inorg. Chem. 1991, 30, 3309-3317.
- 31 (a) F. Lambert, D. M. Knotter, M. D. Janssen, M. van Klaveren, J. BOERSMA, G. VAN KOTEN, Tetrahedron: Asymmetry 1991, 2, 1097-1100; (b) M. van Klaveren, F. Lambert, D. J. F. M. Eijkelkamp, D. M. Grove, G. van KOTEN, Tetrahedron Lett. 1994, 35, 6135-6138.
- 32 A. HAUBRICH, M. VAN KLAVEREN, G. van Koten, G. Handke, N. Krause, J. Org. Chem. 1993, 58, 5849.

- 33 (a) M. van Klaveren, E. S. M. Persson, D. M. Grove, J.-E. BÄCKVALL, G. VAN KOTEN, Tetrahedron Lett. 1994, 35, 5931-5934; (b) E. S. M. Persson, M. van Klaveren, D. M. GROVE, J.-E. BÄCKVALL, G. VAN KOTEN, Chem. Eur. J. 1995, 1, 351-359.
- 34 G. J. MEUZELAAR, A. S. E. KARLSTRÖM, M. van Klaveren, E. S. M. Persson, A. del Villar, G. van Koten, J.-E. BÄCKVALL, Tetrahedron 2000, 56, 2895-2903.
- 35 A. S. E. KARLSTRÖM, J.-E. BÄCKVALL, unpublished results.
- 36 (a) Q.-L. Zhou, A. Pfaliz, Tetrahedron Lett. 1993, 34, 7725-7728; (b) Q.-L. ZHOU, A. PFALTZ, Tetrahedron 1994, 50 4467-4478
- 37 B. L. FERINGA, Acc. Chem. Res. 2000, 33, 346-353 and references sited therein.
- 38 This class of ligands produces ligandaccelerated catalysis of the 1,4addition of diorganozinc reagents to a variety of substrates, see ref. 37.
- 39 (a) C. J. RICHARDS, A. J. LOCKE, Tetrahedron: Asymmetry 1998, 9, 2377-2407; (b) A. Togni, Angew. Chem. 1996, 108, 1581-1583; Angew. Chem. Int. Ed. Engl. 1996, 35, 1475-1477; (c) Ferrocenes, A. Togni, T. Hayashi (Eds.), VCH, Weinheim, 1995.
- 40 (a) E. L. Stangeland, T. Sammakia, Tetrahedron 1997, 53, 16503-16510; (b) A. Togni, G. Rihs, R. E. Blumer, Organometallics 1992, 11, 613-621.
- 41 (a) F. DÜBNER, P. KNOCHEL, Angew. Chem. 1999, 111, 391-393; Angew. Chem. Int. Ed. 1999, 38, 379-381; (b) F. DÜBNER, P. KNOCHEL, Tetrahedron Lett. 2000, 41, 9233-9237.
- 42 A. S. E. KARLSTRÖM, F. F. HUERTA, G. J. MEUZEIAAR, J.-E. BÄCKVALL, Synlett 2001, 923-926.
- 43 A. Alexakis, C. Maian, L. Lea, C. BENHAIM, X. FOURNIOUX, Synlett 2001, 927-930.
- 44 (a) A. Alexakis, S. Mutti, J. F. NORMANT, J. Am. Chem. Soc. 1991, 113, 6332-6334; (b) A. Alexakis, J. FRUTOS, P. MANGENEY, Tetrahedron: Asymmetry 1993, 4, 2427-2430; (c) A.

- Alexakis, J. Vastra, J. Burton, P. MANGENEY, Tetrahedron: Asymmetry 1997, 8, 3193-3196; (d) A. Alexakis, J. Burton, J. Vastra, P. Mangeney, Tetrahedron: Asymmetry 1997, 8, 3987-3990; (e) A. Alexakis, J. Vastra, J. Burton, C. Benhaim, P. Mangeney, Tetrahedron Lett. 1998, 39, 7869-7872; (f) A. Alexakis, C. Benhaïm, X. Fournioux, A. van den Heuvel, J.-M. Levêque, S. March, S. Rosset, Synlett 1999, 1811-1813; (g) A. Alexakis, C. Benhaim, Org. Lett. 2000, 2, 2579-2581.
- 45 A. Alexakis, private communication.
- 46 S. M. W. BENNETT, S. M. BROWN, A. CUNNINGHAM, M. R. DENNIS, J. P. Muxworthy, M. A. Oakley, S. Woodward, Tetrahedron 2000, 56, 2847-2855.
- 47 C. Börner, J. Gimeno, S. Gladiali, P. J. Goldsmith, D. Ramazzotti, S. Woodward, Chem. Commun. 2000, 2433-2434.
- 48 J. A. Marshall, Chem. Rev. 1989, 89, 1503-1511.
- 49 S. G. DAVIES, S. WOLLOWITZ, Tetrahedron Lett. 1980, 21, 4175-4178.
- 50 P. Müller, P. Nury, Org. Lett. 1999, 1.439-441.
- 51 (a) F. BADALASSI, P. CROTTI, F. MACCHIA, M. PINESCHI, A. ARNOLD, B. L. Feringa, Tetrahedron Lett. 1998, 39, 7795-7798; (b) F. Bertozzi, P. Crotti, B. L. Feringa, F. Machia, M. Pineschi, Synthesis 2001, 483-
- 52 The maximum possible yield of one enantiomer in a kinetic resolution process is 50%.
- 53 (a) F. BERTOZZI, P. CROTTI, F. MACCHIA, M. PINESCHI, A. ARNOLD, B. L. Feringa, Org. Lett. 2000, 2, 933-936; Bertozzi, P. Crotti, F. Macchia, M. Pineschi, B. L. Feringa, Angew. Chem. 2001, 113, 956-958; Angew. Chem. Int. Ed. 2001, 40, 930-932.
- 54 F. Bertozzi, P. Crotti, F. Macchia, M. Pineschi, A. Arnold, B. L. FERINGA, Tetrahedron Lett. 1999, 40, 4893-4896.

289

9

Copper-Mediated Synthesis of Natural and Unnatural Products

Yukiyasu Chounan and Yoshinori Yamamoto

Abstract

The true value of organotransition metal reagents and reactions in organic synthesis is measured by the extent of their usage in the synthesis of complicated natural products. From this point of view, the importance of the organocopper reagents is comparable to that of palladium reagents. This chapter highlights some of the most important advances in this field published from about 1995 onwards, as several excellent reviews [1] already cover papers published before then.

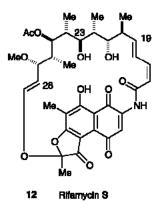
Applications of organocopper reagents and reactions to natural product synthesis are classified by reaction type: conjugate addition, S_N2 substitution, S_N2' substitution, I_12 -metalate rearrangement, and carbocupration.

9.1 Conjugate Addition

Conjugate addition [2] to Michael acceptors is the most important and useful reaction in organocopper chemistry, and the reaction is often used as the key step in the synthesis of numerous natural and unnatural products. Perhaps one of the most efficient methods for the synthesis of quaternary carbon centers is organocopper-mediated conjugate addition to β , β -disubstituted enones.

An example of the construction of quaternary carbon can be seen in a synthetic approach to forskolin (1) [3]. Forskolin, a highly oxygenated labdane diterpene, exhibits a broad range of physiological activities thanks to its ability to activate adenylate cyclase. Hanna's group's synthetic strategy (Scheme 9.1) involved an intramolecular Diels–Alder cyclization of trienone 2, which should have assembled the A and B rings of the tricyclic forskolin skeleton simultaneously. The approach failed to give the desired product, however, owing to the steric bulkiness of the system. In order to overcome this difficulty, the construction of the forskolin framework from tricyclic ketone 4 by 1,4-addition of methyl copper reagent was successfully investigated. Subsequent treatment of 4 with MeCu BF₃ in ether, according to Yamamoto's procedure [4], provided 3 in 62% yield.

One of the advantages of conjugate addition is that it may be used to introduce sp² carbon side chains, for example in the synthesis of (-)-morphine (5) [5]. Opium alkaloids of the (-)-morphine type have long represented challenges for natural products synthesis because of their complex molecular architecture, involving a dense network of three carbocycles and two heterocycles containing five vicinal stereogenic carbons. One of these stereocenters (C13) is a quaternary benzylic carbon atom and therefore difficult to create. The synthetic strategy of Mulzer's group [6] was the first to provide a functionalized phenanthrene derivative of type 7, with a correctly substituted aromatic ring A, and then to employ conjugate addition of an sp2-unit (vinyl group) to establish this quaternary benzylic stereocenter (Scheme 9.2). The conjugate addition of a vinyl cuprate to 7, with activation of the vinyl cuprates by chlorotrimethylsilane (TMSCl) [7], was troubled by low yields of 8 and by a non-polar C_2 symmetrical dimer byproduct. As a subsequent refinement, the simple vinyl magnesiocuprate (CH2=CH)2CuMgCl [8], in the absence of TMSCl, afforded precursor 8 as a single diastereomer in 91% yield without any dimeric byproducts. This chirally economic asymmetric total synthesis is linear


Scheme 9.2.

but very short, with 1,4-addition of the sp² carbon unit with the aid of a vinyl cuprate as the key reaction.

dimer

Another of the merits of organocopper reagents is the high degree of stereocontrol in conjugate addition. The polypropionate pathway is a biosynthetic route to important classes of antibiotics and the basic structures of a number of natural products. In practice, each propionate-derived stereocenter [9] can be constructed individually by adopting the aldol condensation in its numerous asymmetric versions [10]. The alternative method, which consists of the stereocontrolled addition of a cuprate to an enantiopure y-alkoxy- α , β -unsaturated ester followed by hydroxylation of the corresponding enolate, has been reported by Hanessian et al. [11], who applied this method to the construction of the C19-C28 acyclic chain of rifamycin S (12) [12]. This simple strategy, shown in Scheme 9.3, is admirable, with sequential reactions proceeding in a stereocontrolled fashion through iterative cycles of repeat

repeat

Scheme 9.3. Stereocontrolled strategy for iterative assembly of enantiopure polypropionate subunits.

cuprate additions, hydroxylations, Wittig chain extensions, and Mitsunobu reactions. This simple approach can give rise to all the combinations of stereotriads shown as types 9, 10, and 11.

In the case at hand, the y-alkoxy- α , β -unsaturated esters 13, 15, 17, and 19 were treated with lithium dimethylcuprate in the presence of excess TMSCl in THF at -78 °C, producing the adducts 14, 16, 18, and 20 in 95, 85, 83, and 86% yields, respectively (Scheme 9.4). It was thus possible to assemble the acyclic C19-C28 subunit 21 of rifamycin S (12), which represents the longest sequence of contiguous propionate-derived units among the macrolides and ansa antibiotics. The strategy has also successfully been applied to the syntheses of the (all propionate)derived segments of such natural products as bafilomycin A₁ [13], hygrolidin [14], elaiophylin [15], and scytophycin C [16].

Scheme 9.4.

Conjugate addition of organocopper reagents has also been used to introduce multifunctional groups in the final carbon-carbon bond-forming step. The immunosuppressant FK-506 (25) [17] was noteworthy in its activity, which was found to be approximately 100 times higher than that of cyclosporin A, the favored drug at that time [18]. In the total synthesis of 25, by Ireland et al., addition of a vinyl cuprate was a key step [19]. Their strategy was to couple two large building blocks, the "top half" and "bottom half" fragments (Scheme 9.5), and conjugate addition of the bottom half vinyl iodide 23 to the top half spiroenone 22 was investigated in this context. Use variously of lower order cuprates and homo- and mixed-cyano-Gilman cuprates [20] gave the desired adduct 24 in yields no better than 30–40%. An improved methodology involved the use of a dummy group, hexynylcopper, as its bis-HMPT complex [21]. This reaction required only 1.1 equiv. of the vinyl lithium derived from 23, and gave a 70% yield of the ketone 24. High facial selectivity was formed and no diastereomeric conjugate addition products were formed [22]. The success of this coupling procedure provides an ideal solution to the problems of trisubstituted olefin synthesis that had been prominent in previous syntheses [23].

Scheme 9.5.

Another example is found in the total synthesis of iso[7]-levuglandin D_2 (30) by Salomon et al. [24]. The cyanocuprate 27 was prepared by transmetalation of multifunctional vinylstannane 26 with Me₂CuLi-LiCN (Scheme 9.6) [25]. Addition of the enone 28 to the multifunctional vinylcuprate 27 provided the conjugate addition product 29 in 65% yield (based on the enone consumed).

Scheme 9.6.

A typical one-pot, three-component coupling sequence can be found in the preparation of the prostaglandin skeleton [26] in a remarkably rapid fashion by the conjugate addition of an organocopper reagent to a substituted cyclopentanone, followed by enolate trapping. That chemistry is not discussed here though, since there have been many excellent reviews in the past ten years [1, 27]. Yamamoto et al. first accomplished three-component coupling using organocopper compounds in the field of β -lactam synthesis [28], the key steps being addition of nitrogen nucleophiles to enoates with the aid of copper amides and subsequent enolate trapping with an electrophile. Palomo et al. have recently reported an alternative synthetic method [29]. Their strategy was based on an efficient combination of three reactants, in the form of addition of organocuprate reagents to α, β -unsaturated carboxylic acid derivatives and subsequent condensation of the resulting enolates with an imine, as shown in Scheme 9.7. Treatment, for example, of the Gilman reagent Me₂CuLi with N-enoyl-sultam 31, followed by one-pot enolate trapping with the imine, produced a 57% chemical yield of the cis β -lactam adduct 32, with high diastereoselectivity (98:2), and in excellent enantiomeric purity (>99% ee). The stepwise process, by way of metal enolates generated by deprotonation, provided the expected adduct in lower chemical yields and with poorer diastereomeric and enantiomeric ratios than those attained using this method.

lso[7]+LGD₂

$$R^1$$
— $[M]$ + R^2 + R^4 R^4

Scheme 9.7. An asymmetric, three-component synthetic strategy for β -lactam synthesis.

9.2 S_N2 Substitution [30]

As well as conjugate additions, S_N2 substitution reactions with organocopper reagents are frequently used in various synthetic processes. In a total synthesis of brevetoxin B (33), an active principle of the poisonous waters associated with the red tide phenomenon, substitution on an sp2 carbon center by a functional organocopper reagent is employed as one of the key reactions (Scheme 9.8) [31]. To carry out the formation of the D ring, alkyl iodides 35 and 36 were transformed into their lithio derivatives by halogen-metal exchange with t-BuLi and into the cyano-Gilman reagents R(2-thienyl)CuLi-LiCN [32], which coupled easily with the lactone-derived enol triflate 34 to afford desired oxepenes 38 and 39 in 50% and 49% yields, respectively. In view of the lack of stereoselectivity in these substitution reactions, the orthoester iodide 37 was prepared and utilized in order to improve the stereochemical outcome of the process. Its coupling with the enol triflate 34 by way of the cyanocuprate afforded 40 in an 85% total yield and with a diastereoselectivity of ca. 2.4:1 in favor of the desired stereoisomer. The diastereoselectivity is quite superior to that obtained in the two preceding cases. It should be noted here the use of the solvent system Et₂O:THF:HMPA (1:1:1) in this coupling reaction was important for the stereoselectivity observed. Compound 40 was converted to the DEFG lactone segment in several steps.

 $S_N 2$ substitution using organocopper reagents is an efficient method for the synthesis of 3-substituted olefins. In the synthesis of farnesyl diphosphate analogues (43, 45) as potential inhibitors of the enzyme protein-farnesyl transferase, for example, organocopper methodology was compared with the Stille reaction [33] and the Suzuki reaction [34], frequently used in the coupling of vinyl triflates with

Scheme 9.8.

a variety of organotin nucleophiles and boronic acids to introduce functional groups onto sp² carbon atoms [35]. In this case, neither of these palladium-catalyzed coupling reactions was amenable to the introduction of a cyclopropyl or t-butyl nucleophile. On the other hand, treatment of vinyl triflate 41 with 1.5 equiv. of t-BuCu(CN)Li [36] in ether at -78 °C for 1 h produced the desired ester 42 in 68% yield (Scheme 9.9). Coupling of 41 with the lower order cyclopropyl cyanocuprate reagent at -78 °C for 1.5 h also afforded 44, in 71% yield. The double bond geometry was maintained during all these cuprate coupling reactions, and none of the undesired but more stable trans isomers of 42 and 44 were isolated.

Scheme 9.9.

In a total synthesis of cdc25A protein phosphatase inhibitor dysidiolide (46) [37], substitution on an sp3 carbon center by vinyl cuprate was used to accom-

plish elaboration of the side chain (Scheme 9.10) [38]. The C-1 side chain was set in place by means of iodide displacement with the vinyl cuprate derived from 2-lithiopropene (10 equiv. of 2-bromopropene, 21 equiv. of t-BuLi, 5 equiv. of CuI, Et₂O, -30 to 0 °C, then 0 °C for 30 min) to afford 48 in 97% yield.

Several groups have recently accomplished various intramolecular and intermolecular Stille-type reactions [39] with the aid of a copper(I) salt in the absence of palladium catalysts, with transmetalation of organostannanes with the copper(I) salt serving to generate organocopper(I) species [40]. To explore the cephalosporin analogues as β -lactam antibiotics possessing high antibacterial activity, a non-palladium Stille-type reaction was used in the synthesis of C(3)-substituted Δ^3 cephems [41]. Treatment of the 3-halomethyl-Δ3-cephems 49 with tributylvinyltin (1.5 equiv.) and copper chloride (1.0 equiv.) in the presence of terpyridine (1.0 equiv., added for coordinative stabilization of the generated vinylcopper species) in N-methyl-2-pyrrolidinone at room temperature predominantly afforded the 3allyl- Δ^3 -cephem 50 in 68% yield (Scheme 9.11). Copper-promoted reactions with allenyltributyltin, allyltributyltin, and styryltributyltin were also successfully applied to the synthesis of cephem derivatives, giving the desired coupling products in 84%, 61%, and 50% yields, respectively.

7-Aminocephalosporanic Acid (7-ACA)

Scheme 9.11.

 S_N2 Reactions with epoxides and aziridines are also synthetically useful. An example of epoxide cleavage with an organocopper reagent with sp³ carbon moieties is the enantioselective synthesis of (3S, 4S)-4-methyl-3-heptanol (53), an elm bark beetle (*Scolytus multistriatus*) pheromone [42]. The chiral epoxy oxazolidine 51 [43], prepared from (R)-phenylglycinol, reacted with a propylmagnesium bromidederived cuprate at -70 °C to afford the oxazolidine 52 in 74% yield (Scheme 9.12). Compound 52 was converted into the target molecular 53 by conventional procedures.

Epoxide ring-opening with transfer of an sp² carbon moiety was applied in a short synthesis [44] of eicosanoid 56 [45], relevant in marine prostanoid biosynthesis (Scheme 9.13). Homoallyl alcohol 55 was obtained in good yield from 54 by use of a cyano-Gilman alkenylcuprate [46].

Cleavage of aziridines has been employed in the asymmetric total synthesis of pancratistatin 57 [47], a compound that is the object of considerable attention thanks to its broad spectrum of antineoplastic activities [48]. The chemistry of vinylaziridines has for the most part been confined to their use in rearrangement sequences resulting in functionalized pyrrolines. Hence, because of the lack of data concerning the ring-opening of vinylaziridines with carbon nucleophiles,

(38,4\$)-4-methyl-3-heptanol (an elm bark beetle pheromone)

Scheme 9.12.

Scheme 9.13.

there was a need for a preliminary study of the opening of aziridines with different organometallic species. According to this, whereas lithium diphenylcyanocuprate only shows anti-S_N2 substitution, organometallic reagents predominantly react by syn-S_N2' substitution; no explanation for this divergent reactivity is given. Ortholithiation [49] of a dimethylamide species 58, followed by cuprate formation according to Lipshutz et al. [50], provided the required cyano-Gilman reagent 59 (Scheme 9.14). The reaction between 59 and the activated aziridine 60 gave a 75% yield of the product 61. This is the first example of the preparation of cyano-Gilman cuprates by amide group-directed *ortho*-metalation.

9.3 S_N2' Substitution [51]

Organocuprates react rapidly with allylic halides (or acetates), propargyl halides (or acetates), and vinyloxiranes, frequently with S_N2' regioselectivity. The reaction ordinarily takes place with anti (with respect to the leaving group) stereochemistry.

In an alternative synthesis of pancratistatin (57) by Trost et al. [52], (Scheme 9.15) addition of the Grignard reagent 63 [53] to a mixture of the azide 62 and copper cyanide reproducibly gave the desired adduct 64. Because of the difficulties associated with purification of adduct, the overall yield of the two steps (the next being dihydroxylation of the olefin) was 62%.

Scheme 9.15.

When an allylic carbamate is employed as a substrate, on the other hand, syn substitution occurs [54]. For example, two efficient synthetic routes to 1a,25dihydroxy-16-ene-vitamin D_3 (65) and its analogues have been developed (Scheme 9.16) [55]. In route A, the CD side chain fragments 67 and 69 were prepared by S_N2' syn substitution of allylic carbamates 66 and 68 with R₅Cu₃Li₂, and the triene unit was then constructed by coupling with the A ring fragment. In route B, S_N2' syn allylation of the carbamate moiety took place on the intermediates 70 and 72, already possessing the vitamin D triene unit, to afford the precursors 71 and 73. Both routes gave the desired allyl products in high yields.

In syntheses of the potent tetrapeptide mimetic farnesyl transferase inhibitors B956 (80) and B957 (81), the double bond pairs were constructed by application of iterative Nozaki–Hiyama–Kishi (NHK) and cuprate S_N2' reactions (Scheme 9.17) [56]. The preparation of the precursor 75 for the Ibuka-Yamamoto S_N2' replacement reaction [57] was carried out starting from 74, by means of the already mentioned NHK reaction [58]. The construction of the olefinic moiety of the peptide isostere 76 was effected by copper-mediated displacement with alkyl nucleophiles. In practice, anti-S_N2' diastereoselectivity with high E olefin selectivity was observed for the first iteration, on treatment of 75 with the reagent produced by addition of $BF_3 \cdot Et_2O$ to a mixture of i-PrMgCl and CuCN. In the second iteration, the unusual Z olefin 78 – not the E olefinic product 79 expected from the normal anti pathway was obtained as the major isomer from the S_N2' reaction of 77, again prepared through an NHK sequence. Compounds B956 and B957 were prepared in high yields from 78 and 79 by the usual sequence, both with >95% purity. This iterative NHK reaction followed by S_N2' substitution thus demonstrates the widespread utility of organocopper reagents in the preparation of olefinic peptide mimetics of other interesting peptides.

H = Ma (62%) л-Ви (93%) Ph (85%)

Scheme 9.16.

The propargyl structure of PDE IV inhibitor SB 222618 (82) was prepared with the aid of a regioselective S_N2' substitution of the allenic compound 83 (Scheme 9.18) [59]. The most critical step in the synthesis of 82 is the preparation of the intermediate 85. Aryl copper reagent 84 was prepared as the substitution partner, since it is known that Vermeer-type organocopper species [60] of formula RCuMg₂Br₃ LiBr exhibit good regioselectivity in S_N2' reactions [61]. Treatment of 84 with the bromoallene 83 gave the desired propargyl product 85 in 60% yield.

Scheme 9.17.

Aziridine cleavage based on an S_N2' reaction was used for the synthesis of peptides bearing E alkene dipeptide isosteres, a novel class of potent bombesin receptor antagonists [62]. Treatment of the vinylaziridine 86 (Scheme 9.19) with isobutyl and isopentyl magnesiocyanocuprates in THF at -78 °C for 30 min. stereospecifically gave the desired E alkene isosteres 87 in high isolated yields [63].

Scheme 9.19.

9.4 1,2-Metalate Rearrangements

A 1,2-metalate rearrangement of a higher order cuprate, known as a Kocienski rearrangement [64], was used as a key step in the synthesis of the marine antiinflammatory sesterterpenoid manoalide 95 (Scheme 9.20) [65]. Treatment of the alkenyl lithium 89 (prepared from the alkenylstannane 88 with s-BuLi in a diethyl ether-pentane mixture) with the homocuprate 91 (produced from iodoalkane 90) gave the iodoalkene 94 in 72% overall yield from 88. The reaction proceeds as follows. The cuprate reagent 92 is first formed from 89 and 91, and 1,2-metalate rearrangement then takes place as shown by the arrows in 92 to give 93. Iodonolysis of 93 results in 94.

Scheme 9.20.

The "western part" 97 of tylosin aglycon (96), a 16-membered macrolide, has also been synthesized using this Kocienski metalate rearrangement [66]. Treatment of the lithiated dihydrofuran 99 with the stannyl cuprate [67] obtained from Bu₃SnLi and CuCN, followed by MeI alkylation, exclusively gave the E vinyl stannane 100, in 80% yield. In the last stage, stannyl cupration [68] of the deprotected enyne diol 101 afforded the desired (E, E) stannyl diene 97 in 85% yield.

The advantage of this strategy is thus the subsequent trapping of the metalate rearrangement product to provide a clean, efficient, and highly stereoselective route to the trisubstitued alkenes.

101

97

Scheme 9.21.

85%

Scheme 9.22.

9.5 Carbocupration [69]

The carbocupration of alkynes occurs in a cis fashion to afford the synthetically useful cis alkenyl products. Recently, copper-mediated introduction of heteroatoms such as stannyl and silyl groups has become frequently used in place of introduction of carbon units as an efficient strategy to build important precursors in syn-

thesis. The synthesis of stipiamide 102 [70], possessing anti-HIV and antifungal activities, was accomplished with high selectivity in a single operation, using sequential tin-copper syn additions [71] of tributylstannyl cuprate to acetylene, followed by conjugate addition to ethyl propionate. The stannyl cuprate was prepared first, by treatment of hexabutylditin with butyllithium, methyllithium, and copper cyanide in THF at -78 °C [72] (Scheme 9.22). Excess acetylene gas was added directly to the cold solution, and ethyl propionate was then added. After quenching with methanol [73], the diene ester 103, intended as the precursor for a Stille coupling, was obtained in 82% yield based on ethyl propionate, with greater than 25:1 Z,E:Z,Z selectivity. The stipiamide (E,E,Z,E,E) olefin structure was subsequently achieved, using the Stille coupling as the final step.

As described above, many copper-mediated reactions play important roles in the syntheses of natural and unnatural products. To date natural product syntheses using organocopper reagents have been accomplished, and will undoubtedly be increasing greatly from now on.

References

1 J. F. NORMANT, Synthesis 1972, 63-80; G. H. Posner, An Introduction to Synthesis Using Organocopper Reagents, Wiley, New York, 1980; E. Erdik, Tetrahedron 1984, 40, 641-657; R. J. K. TAYLOR, Synthesis 1985, 364-392; Y. YAMAMOTO, Angew. Chem. 1986, 98, 945-957; Angew. Chem. Int. Ed. Engl. 1986, 25, 947-959; B. H. LIPSHUTZ, Synthesis 1987, 325-341; J. P. COLLMAN, L. S. HEGEDUS, J. R. NORTON, R. G. FINKE, Principles and Applications of Organotransition Metal Chemistry, 2nd ed., University Science Books, Mill Valley, CA, 1987, Chap. 14; B. H. LIPSHUTZ, Synlett 1990, 119-128; E. Nakamura, Synlett 1991, 539-547; B. H. LIPSHUTZ, S. SENGUPTA, Org. React. 1992, 41, 135-631; T. IBUKA, Y. YAMAMOTO, Synlett 1992, 769-777; B. H. LIPSHUTZ in Organometallics in Synthesis, M. Schlosser (Ed.), Wiley, Chichester, 1994, 283-382; Organocopper Reagents, R. J. K. TAYLOR (Ed.), Oxford University Press, Oxford, 1994; B. H. LIPSHUTZ in Comprehensive Organometallic Chemistry II, Vol. 12, E. W. ABEL, F. G. A. Stone, G. Wilkinson (Eds.),

- Pergamon, Oxford, 1995, 59-130; K. C. NICOLAOU, E. J. SORENSEN, Classics in Total Synthesis, VCH, Weinheim, 1996; N. Krause, A. Gerold, Angew. Chem. 1997, 109, 194-213; Angew. Chem. Int. Ed. Engl. 1997, 36, 186-
- 2 G. H. Posner, Org. React. 1972, 19, 1-113; J. A. Kozlowski in Comprehensive Organic Synthesis, Vol. 4, B. M. TROST, I. FLEMING (Eds.), Pergamon, Oxford, 1991, 169-198; P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Pergamon, Oxford, 1992.
- 3 I. Hanna, P. Wlodyka, J. Org. Chem. 1997, 62, 6985-6990.
- 4 Y. Yamamoto, K. Maruyama, I. Am. Chem. Soc. 1977, 99, 947-1038; Y. Yamamoto, T. Ibuka in Organocopper Reagents, R. J. K. TAYLOR (Ed.), Oxford University Press, Oxford, 1994, 143-158.
- 5 For reviews see: T. HUDLICKY, G. BUTORA, S. P. FEARNLEY, A. G. Gum, M. R. Stabile in Studies in Natural Products Chemistry, Vol. 18, Atta-ur-Rahman (Ed.), Elsevier, Amsterdam, 1996, 43–154; M. E. MAIER in Organic Synthesis Highlights II, H.

- WALDMANN (Ed.), VCH, Weinheim, 1995, 357-369; G. Szantay, G. DORNYEI in The Alkaloids, Vol. 45, G. A. CORDELL, A. BROSSI (Eds.), Academic Press, New York, 1994, 127-232.
- 6 J. Mulzer, G. Durner, D. Trauner, Angew. Chem. 1996, 108, 3046-3048; Angew. Chem. Int. Ed. Engl. 1997, 35, 2830-2832; J. MULZER, J. W. BATS, B. LIST, T. OPATZ, Synlett 1997, 441-444; D. TRAUNER, J. W. BATS, A. Werner, J. Mulzer, J. Org. Chem. 1998, 63, 5908-5918; J. MULZER, D. Trauner, Chirality, 1999, 11, 475-482.
- E. Nakamura in Organocopper Reagents, R. J. K. TAYLOR (Ed.), Oxford University Press, Oxford, 1994, 129-142; S. Matsuzawa, Y. Horiguchi, E. Nakamura, I. Kuwajima, Tetrahedron 1989, 45, 349-362; E. J. COREY, N. W. BOAZ, Tetrahedron Lett. 1985, 26, 6019-6021.
- 8 P. M. Wege, R. D. Clark, C. H. HEATH COCK, J. Org. Chem. 1976, 41, 3144-3148; K. E. HARDING, B. A. CLEMENT, L. MORENO, J. PETER-KATALINIC, J. Org. Chem. 1981, 46, 940-948.
- 9 R. W. Hoffmann, Angew. Chem. 1987, 99, 503-517; Angew. Chem. Int. Ed. Engl. 1987, 26, 489–503.
- 10 See, for example, T. MUKAIYAMA, Org. React. 1982, 28, 203-331.
- 11 S. Hanessian, K. Sumi, Synthesis 1991, 1083; S. HANESSIAN, Y. GAI, W. WANG, Tetrahedron Lett. 1996, 37, 7473-7476; S. Hanessian, W. Wang, Y. GAI, Tetrahedron Lett. 1996, 37, 7477-7480; S. Hanessian, J. Ma, W. WANG, Tetrahedron Lett. 1999, 40, 4627-4630; S. Hanessian, J. Ma, W. WANG, Tetrahedron Lett. 1999, 40, 4631-4634.
- 12 S. HANESSIAN, W. WANG, Y. GAI, E. OLIVIER, J. Am. Chem. Soc. 1997, 119, 10034-10041.
- 13 W. R. ROUSH, T. D. BANNISTER, Tetrahedron Lett. 1992, 33, 3587-3590; D. A. Evans, M. A. Calter, Tetrahedron Lett. 1993, 34, 6871-6874; W. R. ROUSH, T. D. BANNISTER, M. D. Wendt, Tetrahedron Lett. 1993, 34, 8387-8390; I. PATERSON, S. BOWER,

- M. D. MCLEOD, Tetrahedron Lett. 1995, 36, 175-178; K. Toshima, T. Jyojima, H. YAMAGUCHI, H. MURASE, T. Yoshida, S. Matsumura, M. NAKATA, Tetrahedron Lett. 1996, 37, 1069-1072; К. Тоѕнгма, Н. Yamaguchi, T. Jyojima, Y. Noguchi, M. NAKATA, S. MATSUMURA, Tetrahedron Lett. 1996, 37, 1073-1076; K. Toshima, T. Jyojima, H. YAMAGUCHI, Y. NOGUCHI, T. Yoshida, H. Murase, M. Nakata, S. Matsumura, J. Org. Chem. 1997, 62, 3271-3284; S. Hannessian, J. MA, W. WANG, J. Am. Chem. Soc. 2001, 123, 10200-10206.
- 14 K. Makino, N. Nakajima, S.-i. HASHIMOTO, O. YONEMITSU, Tetrahedron Lett. 1996, 37, 9077-
- 15 D. SEEBACH, H.-F. CHOW, R. F. W. JACKSON, K. LAWSON, M. A. SUTTER, S. Thaisrivongs, J. Zimmermann, I. Am. Chem. Soc. 1985, 107, 5292-5293; K. Toshima, K. Tatsuta, M. Kinoshita, Bull. Chem. Soc. Jpn. 1988, 61, 2369-2381; D. A. Evans, D. M. FITCH, J. Org. Chem. 1997, 62, 454-455.
- 16 I. Paterson, C. Watson, K.-S. YEUNG, P. A. WALLACE, R. A. WARD, J. Org. Chem. 1997, 62, 452-453.
- 17 H. TANAKA, A. KURODA, H. Marusawa, H. Hatanaka, T. Kino, T. Goto, M. Hashimoto, T. Taga, J. Am. Chem. Soc. 1987, 109, 5031-5033.
- 18 T. Kino, H. Hatanaka, M. HASHIMOTO, M. NISHIYAMA, T. Goto, M. Okuhara, M. Kohsaka, H. Aoki, H. Imanaka, J. Antibiot. 1987, 15, 1249-1255; T. Kino, H. HATANAKA, S. MIYATA, N. INAMURA, M. Nishiyama, T. Yajima, T. Goto, M. Okuhara, M. Kohsaka, H. Aoki, T. OCHIAI, J. Antibiot. 1987, 15, 1256-1265.
- 19 R. E. Ireland, J. L. Gleason, L. D. GEGNAS, T. K. HIGHSMITH, J. Org. Chem. 1996, 61, 6856-6872; R. E. IRELAND, L. LIU, T. D. ROPER, Tetrahedron 1997, 53, 13221-13256.
- 20 B. H. LIPSHUTZ, R. S. WILHELM, J. A. Kozlowski, Tetrahedron 1984, 40, 5005-5038.

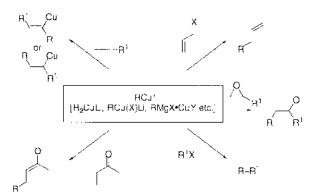
- 21 E. J. Corey, D. J. Beames, J. Am. Chem. Soc. 1972, 94, 7210-7211.
- 22 R. E. IRELAND, P. WIPF, W. MILTZ, B. J. Vanasse, J. Org. Chem. 1990, 55, 1423-1424; R. E. IRELAND, P. WIPF, T. D. ROPER, J. Org. Chem. 1990, 55, 2284-2285.
- 23 T. K. JONES, S. G. MILLS, R. A. REAMER, D. ASKIN, R. DESMOND, R. P. Volante, I. Shinkai, J. Am. Chem. Soc. 1989, 111, 1157-1159; T. K. Jones, R. A. Reamer, R. Desmond, S. G. MILLS, J. Am. Chem. Soc. 1990, 112, 2998-3017; M. Nakatsuka, J. A. RAGAN, T. SAMMAKIA, D. B. SMITH, D. E. UEHLING, S. L. SCHREIBER, J. Am. Chem. Soc. 1990, 112, 5583-5601; A. B. Jones, A. Villalobos, R. G. LINDE, S. J. DANISHEFSKY, J. Org. Chem. 1990, 55, 2786-2797; R. L. Gu, C. J. Sih, Tetrahedron Lett. 1990, 31, 3287-3290; А. В. Ѕмгтн, K. Chen, D. J. Robinson, L. M. LAAKSO, K. J. HALE, Tetrahedron Lett. 1994, 35, 4271-4274.
- 24 S. C. Roy, L. Nagarajan, R. G. SALOMON, J. Org. Chem. 1999, 64, 1218-1224.
- 25 J. R. Behling, K. A. Babiak, J. S. Ng, A. L. Campbell, R. Moretti, M. Koerner, B. H. Lipshutz, J. Am. Chem. Soc. 1988, 110, 2641-2643.
- 26 R. NOYORI, M. SUZUKI, Angew. Chem. 1984, 96, 854-882; Angew. Chem. Int. Ed. Engl. 1984, 23, 847-875.
- 27 See, for example: M. Suzuki, Y. Morita, H. Koyano, M. Koga, R. Noyori, Tetrahedron 1990, 46, 4809-4822.
- 28 Y. Yamamoto, N. Asao, T. Uyehara, J. Am. Chem. Soc. 1992, 114, 5427-5429; N. Asao, N. Tsukada, Y. YAMAMOTO, Bull. Chem. Soc. Jpn. 1995, 68, 2103-2111; N. Asao, T. Shimada, T. Sudo, N. Tsukada, K. YAZAWA, Y. S. GYOUNG, T. UYEHARA, Y. YAMAMOTO, J. Org. Chem. 1997, 62, 6274-6282; Y. Yamamoto, N. Asao, N. TSUKADA in Advances in Asymmetric Synthesis Vol. 3, JAI Press, 1998, 1-37.
- 29 C. Palomo, J. M. Aizpurua, J. J. Gracenea, S. Garcia-Granda, P. Pertierra, Eur. J. Org. Chem. 1998, 2201-2207.

- 30 G. H. Posner, Org. React. 1975, 22, 253-400; J. M. KLUNDER, G. H. Posner in Comprehensive Organic Synthesis, Vol. 3, B. M. TROST, I. FLEMING (Eds.), Pergamon, Oxford, 1991, 207-239.
- 31 K. C. Nicolaou, E. A. Theodorakis, F. P. J. T. RUTJES, M. SATO, J. Tiebes, X.-Y. Xiao, C.-K. Hwang, M. E. Duggan, Z. Yang, E. A. Couladouros, F. Sato, J. Shin, H.-M. He, T. Bleckman, J. Am. Chem. Soc. 1995, 117, 10239-10251.
- 32 B. H. Lipshutz, M. Koerner, D. A. PARKER, Tetrahedron Lett. 1987, 28, 945-948.
- 33 Y.-Q. Mu, R. A. Gibbs, L. M. EUBANKS, C. D. POULTER, J. Org. Chem. 1996, 61, 8010-8015.
- 34 R. A. GIBBS, U. KRISHNAN, J. M. Dolence, C. D. Poulter, J. Org. Chem. 1995, 60, 7821-7829; R. A. GIBBS, U. KRISHNAN, Tetrahedron Lett. 1994, 35, 2509-2512,
- 35 Y.-Q. Mu, R. A. Gibbs, Tetrahedron Lett. 1995, 36, 5669-5672.
- 36 J. P. GORLIER, L. HAMON, J. LEVISALLES, J. WAGNON, J. Chem. Soc., Chem. Commun. 1973, 88; J. P. Marino, H. Abe, J. Org. Chem. 1981, 46, 5379-5383; J. P. Marino, A. de Dios, L. J. Anna, R. Fernandez de LA PRADILLA, J. Organomet. Chem. 1996, 61, 109-117.
- 37 G. P. Gunasekera, P. J. McCarty, M. Kelly-Borges, E. Lobkovsky, J. CLARDY, J. Am. Chem. Soc. 1996, 118, 8759-8760; J. B. A. MILLAR, P. Russell, Cell 1992, 68, 407.
- 38 E. J. Corey, B. E. Roberts, J. Am. Chem. Soc. 1997, 119, 12425-12431.
- 39 H. Tanaka, Y. Kameyama, S. SHIMADA, S. TORII, Tetrahedron Lett. 1992, 33, 7029-7030; H. TANAKA, S. SHIMADA, S. TORII, Tetrahedron Lett. 1996, 37, 5967-5970; S. Ghosal, G. P. Luke, K. S. Kyler, J. Org. Chem. 1987, 52, 4296-4298; E. Piers, T. Wong, J. Org. Chem. 1993, 58, 3609-3610; E. Piers, E. J. McEachern, P. A. Burns, J. Org. Chem. 1995, 60, 2322-2323; E. Piers, E. J. McEachern, M. A. Romero, Tetrahedron Lett. 1996, 37, 1173-1176; E. Piers, M. A.

- Romero, J. Am. Chem. Soc. 1996, 118, 1215-1216; R. L. BEDDOES, T. CHEESERIGHT, J. WANG, P. QUAYLE, Tetrahedron Lett. 1995, 36, 283-286; T. Takeda, K. Matsunaga, Y. Kabasawa, T. FUJIWARA, Chem. Lett. 1995, 771-772; G. D. ALLRED, L. S. LIEBESKIND, J. Am. Chem. Soc. 1996, 118, 2748-2749; K. C. Nicolaou, M. Sato, N. D. MILLER, J. L. GUNZNER, J. RENAUD, E. Untersteller, Angew. Chem. 1996, 108, 952-955; Angew. Chem. Int. Ed. Engl. 1996, 35, 889-891.
- 40 V. FARINA, S. KAPADIA, B. KRISHNAN, C. WANG, L. S. LIEBESKIND, J. Org. Chem. 1994, 59, 5905-5911; J. R. FALCK, R. K. BHATT, J. YE, J. Am. Chem. Soc. 1995, 117, 5973-5982.
- 41 H. Tanaka, S.-i. Sumida, S. Torii, J. Org. Chem. 1997, 62, 3782-3786.
- 42 C. Agami, F. Couty, O. Venier, Synlett 1996, 511-512.
- 43 C. Agami, F. Couty, O. Venier, Synlett 1995, 1027-1028.
- 44 T. Nagasawa, Y. Handa, Y. ONOGUCHI, K. SUZUKI, Bull. Chem. Soc. Jpn. 1996, 69, 31-39.
- 45 S. W. Baertschi, A. R. Brash, T. M. HARRIS, J. Am. Chem. Soc. 1989, 111, 5003-5005; A. R. Brash, *I. Am.* Chem. Soc. 1989, 111, 1891-1892.
- 46 J. A. Marshall, M. J. Coghlan, M. WATANABE, J. Org. Chem. 1984, 49, 747-753.
- 47 X. TIAN, T. HUDLICKY, K. Konigsberger, J. Am. Chem. Soc. 1995, 117, 3643-3644; T. HUDLICKY, X. TIAN, K. KONIGSBERGER, R. Maurya, J. Rouden, B. Fan, J. Am. Chem. Soc. 1996, 118, 10752-10765.
- 48 G. R. Pettit, V. Gaddamidi, D. L. HERALD, S. B. SINGH, G. M. CRAGG, J. M. Schmidt, F. E. Boettner, M. WILLIAMS, Y. SAGAWA, J. Nat. Prod. 1986, 49, 995-1002.
- 49 P. BEAK, V. SNIECKUS, Acc. Chem. Res. 1982, 15, 306-312; V. SNIECKUS, Chem. Rev. 1990, 90, 879-933.
- 50 B. H. Lipshutz, J. A. Kozlowski, R. S. WILHELM, J. Am. Chem. Soc. 1982, 104, 2305-2307.
- 51 J. A. Marshall, Chem. Rev. 1989, 89, 1503-1511.

- 52 B. M. Trost, S. R. Pulley, J. Am. Chem. Soc. 1995, 117, 10143-10144.
- 53 T. Shirasaka, Y. Takuma, N. Imaki, Synth. Commun. 1990, 20, 1213-1221.
- 54 C. Gallina, P. G. Ciattini, J. Am. Chem. Soc. 1979, 101, 1035-1036; H. L. GOERING, S. S. KANTNER, C. C. TSENG, J. Org. Chem. 1983, 48, 715-721.
- 55 M. DE LOS ANGELES REY, J. A. MARTINEZ-PEREZ, A. Fernandez-Gacio, K. Halkes, Y. Fall, J. Granja, A. Mourino, J. Org. Chem. 1999, 64, 3196-3206.
- 56 H. YANG, X. C. SHENG, E. M. HARRINGTON, K. ACKERMANN, A. M. GARCIA, M. D. LEWIS, J. Org. Chem. 1999, 64, 242-251.
- 57 T. IBUKA, M. TANAKA, H. NEMOTO, Y. YAMAMOTO, Tetrahedron 1989, 45, 435-442; T. IBUKA, H. HABASHITA, A. Otaka, N. Fujii, Y. Oguchi, T. UYEHARA, Y. YAMAMOTO, J. Org. Chem. 1991, 56, 4370-4382; T. IBUKA, T. Taga, K. Nakai, H. Tamamura, N. Fujii, Y. Chounan, H. Nemoto, Y. YAMAMOTO, J. Org. Chem. 1993, 58, 1207-1214.
- 58 A. FÜRSTNER, N. SHI, J. Am. Chem. Soc. 1996, 118, 12349-12357.
- 59 J. J. Conde, W. Mendelson, Tetrahedron Lett. 2000, 41, 811-814.
- 60 H. WESTMIJZE, P. VERMEER, Synthesis 1979, 390-392.
- 61 A. Caporusso, C. Polizzi, L. Lardicci, J. Org. Chem. 1987, 52, 3920-3923.
- 62 T. IBUKA, N. MIURA, H. AOYAMA, M. Akaji, H. Ohno, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii, Y. Yamamoto, J. Org. Chem. 1997, 62, 999-1015.
- 63 T. IBUKA, K. NAKAI, H. HABASHITA, Y. HOTTA, N. FUJII, N. MIURA, Y. MIWA, T. TAGA, Y. YAMAMOTO, Angew. Chem. 1994, 106, 693-695; Angew. Chem. Int. Ed. Engl. 1994, 33, 652-654; N. Fujii, K. Nakai, H. Tamamura, A. Otaka, N. Miura, Y. MIWA, T. TAGA, Y. YAMAMOTO, T. IBUKA, J. Chem. Soc., Perkin Trans. 1 1995, 1359-1371.
- 64 P. Kocienski, S. Wadman, K. Cooper, J. Am. Chem. Soc. 1989, 111, 2363-2365; P. Kocienski, C. Barber, Pure

- Appl. Chem. 1990, 62, 1933-1940; P. KOCIENSKI, N. J. DIXON, Synlett 1989, 52-54; A. PIMM, P. KOCIENSKI, S. D. A. STREET, Synlett 1992, 886-888.
- 65 A. Pommier, P. Kocienski, Chem. Commun. 1997, 111, 1139-1140.
- 66 P. L. Menez, V. Fargeas, I. Berque, J. Poisson, J. Ardisson, J.-Y. Lallemand, A. Pancrazi, J. Org. Chem. 1995, 60, 3592-3599; V. FARGEAS, P. L. MENEZ, I. BERQUE, J. Ardisson, A. Pancrazi, Tetrahedron 1996, 52, 6613-6634.
- 67 S. R. GILBERTSON, C. A. CHALLANGER, M. E. Bos, W. D. Wulff, Tetrahedron Lett. 1988, 29, 4795-4798; W. C. STILL, J. Am. Chem. Soc. 1977, 99, 4836-4838.
- 68 R. Aksela, A. C. Oehlschlager, Tetrahedron 1991, 47, 1163-1176; J. A. CABEZAS, A. C. OEHLSCHLAGER, Synthesis 1994, 432-442; F. Yokokawa, Y. Hamada, T. Shioiri, Tetrahedron Lett. 1993, 34, 6559-6562; B. H. LIPSHUTZ, E. L. ELLSWORTH,


- S. H. DIMOCK, D. C. REUTER, Tetrahedron Lett. 1989, 30, 2065-2068.
- 69 J. F. NORMANT, A. ALEXAKIS, Synthesis 1981, 841-870.
- 70 M. B. Andrus, S. D. Lepore, J. Am. Chem. Soc. 1997, 119, 2327-2328; M. B. Andrus, S. D. Lepore, T. M. TURNER J. Am. Chem. Soc. 1997, 119, 12159-12169.
- 71 K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408-7410; J. P. Marino, J. K. Long, J. Am. Chem. Soc. 1988, 110, 7916-7917; E. Piers, J. M. Chong, H. E. Morton, Tetrahedron Lett. 1981, 22, 4905-4908.
- 72. J. P. MARINO, M. V. M. EMONDS, P. J. Stengel, A. R. M. Oliveira, F. Simonelli, J. T. B. Ferreira, Tetrahedron Lett. 1992, 33, 49-52; A. BARBERO, P. CUADRADO, I. Fleming, A. M. Gonzales, F. J. PULIDO, R. RUBIO, J. Chem. Soc., Perkin Trans. 1 1993, 1657-1663.
- 73 E. Piers, H. E. Morton, J. Org. Chem. 1980, 45, 4264-4266.

10 Mechanisms of Copper-mediated Addition and Substitution Reactions

Seiji Mori and Eiichi Nakamura

10.1 Introduction

The use of organocopper chemistry in synthesis dates back to the nineteenth century, when Glaser developed copper-catalyzed coupling of terminal alkynes [1]. Half a century after Kharasch's initial discoveries in the 1940s [2], copper reagents are still the most useful synthetic reagents among the transition metal complexes [3], the key roles of copper having become widely recognized in organic synthesis [4–10]. Conjugate addition [11–14], carbocupration [15], alkylation [16], and allylation [17] represent the reactions that can be achieved readily with organocopper reagents but not with other organometallics. The most important utility of copper in organic chemistry is in the form of nucleophilic organocopper(I) reagents used either in a catalytic or a stoichiometric manner. Generally formulated as [R₂Cu]M, with a variety of metal M and R groups, organocuprate(I) complexes and related species are uniquely effective synthetic reagents for nucleophilic delivery of hard anionic nucleophiles such as alkyl, vinyl, and aryl anions (Scheme 10.1).

Scheme 10.1. Nucleophilic reactivities of organocopper reagents. $R = sp^2$, sp^3 carbon anionic centers; X, Y = halogen, etc.

Gilman reported in 1952 that addition of one equivalent of MeLi to a Cu^I salt results in the formation of yellow precipitates, which then afford colorless solutions upon addition of another equivalent of MeLi (Scheme 10.2) [18]. In 1966, Costa isolated a complex between phenylcopper(I) and magnesium, as well as crystals of a lithium diphenylcuprate(I) complex [19]. Although the organocopper reagents derived from Grignard reagents are widely used and may be described as R2CuMgX, the extent to which to this reflects the reality in solution is still uncertain.

Scheme 10.2. Preparation of organocopper reagents.

The organic chemistry of organocuprates started its rapid development in 1966, when House showed that the reactive species in conjugate addition is the lithium diorganocuprate(I) called a Gilman reagent [20]. The foundations for vigorous subsequent synthetic development were laid by Corey, and important initial developments such as substitution reactions on sp2 carbon atoms or in allylic systems [16, 17, 21-23], and carbocupration of acetylene [24] had been reported by the mid-1970s.

The nature of "Gilman reagents" now needs some careful definition. While numerous reports (older ones in particular) describe Gilman reagents as R₂CuLi, a vast majority of them actually used a LiX complex R2CuLi-LiX, prepared by in situ treatment of RLi with CuX (X = bromide, iodide, or cyanide, sometimes with a ligand such as Me₂S and PR₃). Although R₂CuLi and R₂CuLi-LiX may display largely the same reactivities, Lipshutz [25] showed that they are in fact different species by analysis of reactivities and spectroscopic properties (the case of X = CN(cyano-Gilman cuprate) is discussed in Sect. 10.6.4). Even small solvent differences may affect the composition of the reagent and hence reactivity [26]. Because of this complexity, it is now customary to indicate all ingredients used when describing a reagent (for example, R₂CuLi·LiI·Me₂S/BF₃·Et₂O in THF/hexane). Understanding of the aggregation state is fundamental for discussion of the reaction mechanism (see Chapt. 1) [27, 28]. In diethyl ether, Gilman reagents largely exist as dimers, but in THF solution, they exist as R₂CuLi·LiX or ion-pair species (R₂Cu + Li⁺). These species are in equilibrium with each other [29]. It has been suggested that aggregation of copper species affects enantioselectivities of stoichiometric and catalytic asymmetric conjugate additions [30]. RCu itself is not reactive, and addition of a Lewis acid such as BF3 is necessary to obtain high reactivities [5, 31]. The latter approach is often used in organic synthesis (see Sect. 10.6.1) in which the identification of the true reactive species has yet to be achieved [32].

Organocopper chemistry is still rapidly expanding its synthetic scope. The scope of carbocupration, previously limited to acetylenes, has recently been extended to olefins [33-36]. 1,6-, 1,8-, 1,10-, and 1,12-Addition and 1,5-S_N2" substitution reac-

tions of substrates with extended conjugates have been developed (see Chapt. 4) [14, 37-39]. Enantioselective conjugate addition [40] has become truly useful with the aid of dialkylzinc, cationic copper catalyst, and a chiral ligand (Eq. 1, see also Chapt. 7) [41]. Magnesium-based reagents have found use in quantitative fivefold arylation of C60 (Eq. 10.2) [42] and threefold arylation of C70 [43], paving ways to new classes of cyclopentadienyl and indenyl ligands with unusual chemical properties.

$$= \frac{\text{HMgX/CuBr*Me}_2S}{\text{>95\% yield}}$$

$$= \frac{\text{R}}{\text{R}} = \text{aryl, methyl}$$
(10.2)

Numerous investigations have been made into the reaction mechanisms of organocopper reactions and the design of efficient copper-mediated reactions, resulting in the reporting of many crystallographic and spectroscopic studies of reactants and products (for analysis of organocopper(I) complexes see Chapt. 1.), as well as examination of solvent effects, substituent effects, kinetics, and NMR spectroscopic data of reactive intermediates. Nevertheless, information about the nature of reactive species in solution and their reactivities is fragmentary and incomplete [44]. The most widely accepted "resting state" of lithium organocuprate(I) species in solution is represented by the eight-centered dimer (R2CuLi)2 shown in Eq. 10.3, but there is little consensus on the "reactive conformation of a true reactive species" (see Chapt. 1). Making matters worse, the structures of the final coppercontaining products are generally unknown. Those exploring the frontiers of organocopper chemistry in industry and academia desperately require better mechanistic understanding.

Two sources of mechanistic information, new analytical and new theoretical methods, have surfaced in the past several years. The former class includes new methods in the study of kinetic isotope effects, in NMR spectroscopy, and in X-ray

absorption spectroscopy [EXAFS (extended X-ray absorption fine structure spectroscopy) and XANES (X-ray absorption near edge structure spectroscopy)]. The latter category includes new developments in ab initio and density functional theories. In this chapter, recent progress on mechanisms of copper-mediated addition and substitution reactions is discussed in the context of the following topics:

- (1) conventional mechanistic schemes for copper-mediated reactions,
- (2) reaction pathways of organocopper-organometallic aggregates as analyzed through combination of theoretical and experimental data,
- (3) mechanisms of copper-catalyzed reactions [45, 46].

Three important categories of copper reactions – conjugate addition, carbocupration, and alkylation - are discussed.

10.2 Conjugate Addition Reaction

Copper-mediated conjugate addition of alkyl anions to α , β -unsaturated carbonyl or related compounds (hereafter called enones) has long attracted chemists' interest because of its synthetic importance and its obscure mechanism. The difficulties inherent in the elucidation of the mechanisms of conjugate additions are due to the complexity of cluster structures of organocopper species. In the light of contrasting reports (one reporting conjugate addition to be slower in THF than in ether [47, 48], another reporting faster reaction in toluene, and further additional reports that, in toluene, 1,4-addition can be promoted over 1,2-addition in the presence of Me₂O [49] and Me₂S [50]), solvent effects are a difficult subject to deal with. Nevertheless, there have been extensive experimental studies on the reaction mechanisms of conjugate addition.

10.2.1

Four-centered and Six-centered Mechanisms

Four-centered addition of RCu to an enone was widely discussed in the 1960s (Scheme 10.3a) [51–53], while discussions on six-centered transition states have continued until recent times (Scheme 10.3b) [54]. These mechanisms do not, however, explain the formation of E/Z mixtures of enolate stereoisomers [20, 55] and must now be considered obsolete.

Scheme 10.3. a) 1,2-Addition and b) 1,4-addition proposals.

Single-electron Transfer Theorem

House pioneered synthetic and mechanistic studies of cuprate reactions in the 1970s. His papers proposed a mechanism (Scheme 10.4) that assumes a singleelectron transfer (SET) from the dimer, producing a Cu^{III} intermediate [56, 57]. The SET/Cu^{III} theorem had a strong following for many years. However, most of the experimental facts listed below, once considered to support the SET process, are now no longer accepted as evidence of SET. Only the Cu^{III} hypothesis has survived the test of time.

Scheme 10.4. House's 1,4-addition mechanism.

- (1) E/Z isomerization of the olefinic part of an enone was once taken as evidence for reversible electron transfer. It was later reported, however, that this isomerization takes place even in the presence of LiI, a common component of the Gilman cluster reagent (for example, Me2CuLi-LiI) [58]. Such an isomerization is also possible through reversible generation of an advanced d- π^* copper/ enone complex along the reaction pathway [42, 59], and hence does not represent strong evidence for SET.
- (2) Qualitative correlation of the apparent rate of 1,4-addition with the reduction potential of the enone was later proven to be only superficial, through quantitative kinetic studies by Krauss and Smith [60].
- (3) β -Cyclopropyl α , β -unsaturated ketones such as the one shown below often give ring-opening products, which was taken as strong evidence for radical anion formation by SET. An elegant study by Casey and Cesa, using a deuteriumlabeled substrate, indicated stereospecificity in the cyclopropane ring-opening, which hence refutes the radical mechanism (Eq. 10.4) [61]. On the basis of a series of control experiments, Bertz reinterpreted the results in terms of Cu^{III} intermediates formed by two-electron transfer [62].

$$\begin{array}{c|cccc} Cu_2Me_4Li & Cu_2Me_4Li \\ H & II \\ \hline \\ O & & \\ \hline \\ O &$$

(4) ESR and CIDNP studies intended to detect the radical intermediates failed [63]. Conjugate addition of a vinylcuprate reagent to an enone takes place with retention of the vinyl geometry, indicating that no vinyl radical intermediate is involved [64, 65]. Kinetic isotope effects and substituent effects in cuprate addition to benzophenone indicate that C C bond formation is rate-determining, which is not consistent with the involvement of a radical ion pair intermediate [66].

SET processes do not occur among moderately electrophilic olefinic acceptors, but are likely to be involved in highly electrophilic substrates. Some recent examples are the polyadditions of cuprate to fullerenes (Sect. 10.1.1). Fluorenone ketyl radical has been detected in a cuprate reaction of fluorenone [20]. Doubly activated olefins [67–69] and bromonaphthoquinone [70] also probably react through SET.

10.2.3

Kinetic and Spectroscopic Analysis of Intermediates

Conjugate additions to α , β -unsaturated ketones and esters are the most important cuprate reactions. Kinetic studies by Krauss and Smith on Me₂CuLi and a variety of ketones revealed the following kinetic characteristics (Eq. 10.5), first order both in cuprate dimer and in the enone [60].

$$(\text{Me}_2\text{CuLij}_2 + \text{ enone} \xrightarrow{k_1} \text{ 'intermediate} \xrightarrow{k_2} \text{ product}$$

$$= \frac{d[\text{intermediate}]}{dt} = \frac{kK[(\text{CH}_2)\text{Cu.Li}_2]}{1 + K[(\text{CH}_2)\text{Cu.Li}_2]} \text{ [enone]}$$
(10.5)

This rate expression is consistent with the reaction scheme shown in Eq. 10.6, formulated on the basis of the Krauss-Smith paper. Thus, the initially formed cuprate dimer/enone complex with lithium/carbonyl and copper/olefin coordinations [71, 72] transforms into the product via an intermediate or intermediates. A lithium/carbonyl complex also forms, but this is a dead-end intermediate. Though detailed

structures of the intermediates were unknown for a long time, the essence of this scheme was supported by subsequent NMR and XANES spectroscopic studies and recent theoretical investigation. The key "intermediate" is now considered to be an organocopper(III) species formed by two-electron, inner sphere electron transfer (Eq. 10.6) (see Sect. 10.2.5).

Corey explicitly proposed a Dewar-Chatt-Duncanson (DCD) interaction for such a Cu^{III}/olefin complex [73]. XANES investigation of a complex formed between a trans-cinnamate ester and Me₂CuLi-LiI in THF indicated elongation of the C=C double bond and an increase in the coordination number of the copper atom. NMR studies on the organic component in the complexes indicated loosening of the olefinic bond [72, 74]. Very recently, Krause has determined the kinetic activation energies ($E_a = 17-18 \text{ kcal mol}^{-1}$) of some conjugate addition reactions for the first time [75].

An intermediate formed on 1,6-addition of a cuprate to a dienone has recently been examined by low-temperature NMR spectroscopy. This reaction passes though a Cu/olefin π -complex intermediate A, in which cuprate binds to the α - and the β -carbon. Further 1,3-rearrangement from another intermediate (**B**) to still another (C) is proposed (Eq. 10.7) [76].

Fig. 10.1. Proposed catalytic cycle of copper-catalyzed conjugate addition.

10.2.4

Catalytic Conjugate Addition

There are a large number of reports on copper(I)-catalyzed conjugate additions, yet there is only scant information available about their reaction mechanisms. Recently, the conjugate addition of organozinc compounds to enones was found by Kitamura, Noyori, et al. to be catalyzed by N-benzylbenzenesulfonamide and CuCN, and the mechanism was scrutinized (Fig. 10.1). The kinetic rate was found to be first order in the concentrations of the catalyst that exist in equilibrium with R_2Zn and enone [77].

In the enantioselective copper(I)-catalyzed conjugate addition of a cyclic enone with a chiral ligand, the observed nonlinear effects indicate that Cu(I) aggregates participate in the reaction [78].

10.2.5

Theoretically Based Conjugate Addition Reaction Pathway

The reaction pathways of conjugate addition of Me_2CuLi and Me_2CuLi -LiCl have been studied for acrolein [79] and cyclohexenone [80] with the aid of density functional methods, and fit favorably with the ^{13}C NMR properties of intermediates, kinetic isotope effects [81], and the diastereofacial selectivity. A similar mechanism also operates in this reaction, as summarized in Scheme 10.5. The rate-determining step of the reaction (TScc) is the C C bond formation caused by reductive elimination from $Cu^{\rm III}$ to give $Cu^{\rm I}$.

Scheme 10.5. Plausible pathway of conjugate addition of $(R_2CuLi)_2$ to enones. Solvent molecules are omitted for clarity. The lithium atoms are fully solvated and the R-Li association indicated with a broken line (*) in

CPop and TScc may be extremely small or nonexistent in solution. Here, in Schemes 10.7, 10.9, and 10.10, and in Fig. 10.5, the X group can be RCuR, halogen, etc.

TScc is also the stage at which the enantiofacial selectivity of the reaction is determined [80]. This conflicts with the conventional assumption that the face selectivity is established in the initial π -complexation [40a], which is now shown to represent a preequilibrium state preceding **TScc**. The calculated activation energy taking the solvation of the lithium atoms into account shows reasonable agreement with recently determined experimental data [75].

The central feature of the mechanism is the 3-cuprio(III) enolate **Cpop**, of an open, dimeric nature, as shown by comparison of theory with experimentation involving ¹³C NMR and KIEs [80, 81]. This species serves as the direct precursor to the product (Scheme 10.5, top box). In this critical **CPop** complex, copper/olefin (soft/soft) and a lithium/carbonyl (hard/hard) interactions are present. The open complex may be formed directly, by way of an open cluster (bottom left of Scheme 10.5), or by complexation of a closed cluster with the enone (**CPd**). Experiments have shown that the enone/lithium complex (top left of Scheme 10.11) is a deadend species [60, 74].

The CPop intermediate is the " β -cuprio ketone" intermediate widely debated in mechanistic discussions of conjugate addition (cf. Scheme 10.3). On the basis of recent theoretical analysis, two limiting structures for CPop may now be considered; these are shown in the bottom box in Scheme 10.5. The reason for the exceptional stability of CPop as a trialkylcopper(III) species can be readily understood in terms of the " β -cuprio(III) enolate" structure, with the internal enolate anion acting as a strong stabilizing ligand for the Cu^{III} state [82].

In spite of the apparent difference between conjugate addition and carbocupration reactions (Sect. 10.3.2), the similarities between the key organometallic features of the two reactions are now evident. In both reactions, inner sphere electron-transfer converts the stable C Cu^{II} bond into an unstable C Cu^{III} bond, and the cluster-opening generates a nucleophilic, tetracoordinated alkyl group. The difference is that the product of conjugate addition (**PD**) remains as a lithium enolate complexed with RCu^I (Scheme 10.5), while the initial product of carbocupration

(INT2, Scheme 10.7) undergoes further reaction (Li/Cu transmetalation) and generates a new organocuprate compound. (Note however that this difference could become more subtle since the product of conjugate addition (PD) might behave more like an α -cuprio(I) ketone complexed with a lithium cation [52] than a lithium enolate complexed with copper(I)). In neither reaction was any evidence of radical intermediates (i.e., SET) found by theoretical calculations [79].

Synthetic chemists can now work with three-dimensional pictures of the conjugate addition available on a website [80]. In the absence of steric hindrance (5-methylcyclohexenone, for example), an "axial attack" through a half-chair conformation is favored, while in the cortisone synthesis an "equatorial attack" through a half-boat conformation is favored because of the constraint imposed by the bicyclic rings [83].

Scheme 10.6. Transition states for diastereoselective conjugate additions. In solution, the lithium and M cations must be fully solvated with solvent molecules. The Me Li association (indicated with an asterisk) will be extremely weak or nonexistent in solution.

Carbocupration Reactions of Acetylenes and Olefins

10.3.1

Experimental Facts

The carbocupration of acetylene takes place smoothly in a cis fashion, providing a reliable synthetic route to vinyl copper species (Eq. 10.8) [24]. Magnesium and zinc,

which are more Lewis acidic than lithium, are better counter-cations for this reaction, and strong coordination of a lithium dialkylcuprate(I) with a crown ether dramatically slows down the reaction [84]. This reaction used to be generally considered to proceed through a four-centered mechanism, and hence to be mechanistically different from conjugate addition.

In the addition of Me₂CuLi reagents to electron-deficient acetylenes [85–88], DCDtype complexes have been identified by NMR [84, 89]. As shown below, an ynoate affords a vinylcopper intermediate, while an ynone instead affords an allenolate (Eq. 10.9). The origin of this diversity remains unclear. A related carbocupration mechanism has also been proposed for the reaction with allenylphosphine oxide [53]. Olefin carbocupration of dienes [90] and cyclopropenes [34, 36] is known, but these mechanisms also remain unclear.

$$R = \mathcal{B}u. \ Me_3Si$$

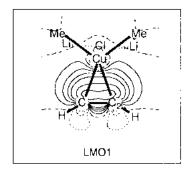
$$X = OMe R COOMe$$

$$Me Cu Me Cu Me Cu Me Me Cu Me Me OLi$$

$$X = Me Me OLi$$

$$X = Me Me OLi$$

10.3.2 Theoretically Based Carbocupration Reaction Pathway


The carbocupration of acetylene has been studied systematically for five model species - MeCu, Me2Cu , Me2CuLi, Me2CuLi·LiCl, and (Me2CuLi)2 [91] - all of which have been invoked once in a while in discussions of cuprate mechanisms. A few general conclusions have been made regarding the reactivities of these reagents with π -acceptors:

- (1) The copper d-orbital being very low-lying (hence no redox chemistry available) [92], MeCu can undergo addition only through a four-centered mechanism (Eq.
- (2) This four-centered pathway requires a large amount of energy, since the covalent Me Cu bond (55 kcal mol 1 [93]) must be cleaved. A neutral RCu species is therefore not a reactive nucleophile.
- (3) Being electron-rich (thus with high-lying d-orbitals), lithium cuprates such as (R2CuLi)2 bind tightly to acetylene through two-electron donation from a copper atom (cf. CP in Scheme 10.7). In such complex formation, a cluster structure certainly larger than the parent species R2CuLi is necessary to achieve cooperation of lithium and copper.

Scheme 10.7. Trap-and-bite pathway of carbocupration.

The reaction pathway may be viewed as a "trap-and-bite" mechanism; the structures involved are shown in Scheme 10.7. The cluster opens up and traps the acetylene (INT1), transfers electrons, and then "bites" the substrate to form a C-C bond (TScc). The important events include formation of a DCD-complex (CP) via a low energy TS (TScp) [94], inner-sphere electron transfer to form a transient intermediate INT1, C-C bond formation through the rate-determining stage TScc, and intra-cluster transmetalation from lithium to copper(I) (INT2). The DCD character of CP is shown by the localized molecular orbitals (LMOs, Fig. 10.2), and has also been found in conjugate addition reactions to enals and enones [79]. Since the C-Cu^{III} bond is very unstable, the activation energy for C-C bond formation via TScc becomes small (<20 kcal mol ¹). In solution, the reaction may go directly to INT1, or to related species through an open cluster.

It should be noted that the depictions of the "organic" arrows and the indications of the valence of the metal as in Scheme 10.7 (and others in the following para-

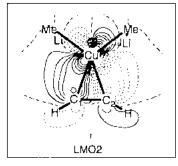


Fig. 10.2. Localized molecular orbitals of the complex (CP) between Me₂CuLi·LiCl and acetylene.

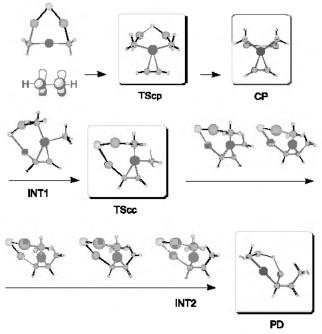


Fig. 10.3. "Snapshots" of intermediates on the potential energy surface of carbocupration of acetylene.

graphs) are necessarily inaccurate from a purely inorganic or theoretical viewpoint. We have nonetheless indicated them, to put the theoretical results into the context of conventional organic chemistry, and to facilitate understanding of the chemistry by organic chemists using the reagents in everyday research.

Figure 10.3 shows "snapshots" of intermediary species on the potential surface of carbocupration to illustrate the transformation of the reacting complex. The formation of the transient carbolithiated intermediate INT2 is the most striking feature, because recognition of this intermediate provides the key to understanding of the kinship of carbocupration, S_N2' allylation (Sect. 10.4.2), and conjugate addition.

10.4 Substitution Reactions on Carbon Atoms

S_N2 Mechanism of Stoichiometric Substitution Reactions

 S_N2 substitution reactions of alkyl halides with hard nucleophiles such as alkyl anions can be achieved most readily with the aid of organocopper chemistry [95]. S_N2 reactions with epoxides and aziridines are also synthetically useful [96]. The accelerating effects of BF₃·Et₂O in the latter reactions indicate the importance of substrate activation (see Sect. 10.6.1) [97].

The alkylation of an alkyl bromide or tosylate, or of an epoxide, with organo-cuprates takes places with 100% inversion of the stereochemistry at the electrophilic carbon, as shown below (Eq. 10.10) [22, 98]. The magnitudes of primary and secondary kinetic isotope effects in the reaction between $Me_2CuIi\cdot LiI\cdot PBu_3$ and CH_3I strongly suggested that the rate-determining step of the reaction is the S_N2 displacement stage [99]. Reactions between R_2CuIi and alkyl halides, aryl halides, and alkyl tosylates have been shown to be first order in the concentration of the R_2CuIi dimer and the alkylating reagent [97, 100, 101]. RCu and RCu(PBu_3) do not react with epoxides [96]. Alkylation reactions of R_2CuIi do not take place in the presence of a crown ether, demonstrating the importance of a Lewis acidic IiX component associated with the cuprate moiety. On the other hand, moderately basic and polar THF is a better solvent than diethylether for alkylation [22].

Two mechanistic possibilities for the substitution reactions have been suggested (Scheme 10.8). The first assumes simple $S_{\rm N}2$ substitution of the R anion group. The second assumes rate-determining displacement of the leaving group with copper bearing a formal negative charge, and subsequent formation of a trialkyl-copper(III) intermediate [82]. This then undergoes reductive elimination to give the cross-coupling product. Though the second mechanism may look pleasing enough to a copper specialist, it leaves a few important questions unanswered; namely the role of the lithium cation, the relative magnitude of k_1 and k_2 , and, among other things, the reason why exclusive production of a cross-coupled product R \mathbb{R}^1 by way of a symmetrical $\mathbb{R}_2(\mathbb{R}^1)$ Cu^{III} intermediate is always observed.

$$R_2$$
 R_3 R_4 R_4 R_5 R_4 R_5 R_6 R_7 R_8 R_8 R_8 R_9 R_9

Scheme 10.8. Two proposed alkylation reaction mechanisms.

The proposed participation of a Cu^{III} intermediate is based on an analogy with the chemistry of lithium diorganoaurate(I), R_2Au^ILi [102, 103]. Recent crystallographic data for Cu^{III} species [104] have further supported the similarity between Au^{III} and Cu^{III} [105].

S_N2' Allylation Reactions

Cuprates react rapidly with allylic halides (or acetates) [17, 23], propargyl halides (or acetates) [106-108], and vinyloxiranes, often with S_N2' regioselectivity (Scheme 10.9) [17]. The reaction takes place with anti stereochemistry (with respect to the leaving group), while syn substitution occurs when an allylic carbamate is employed as the substrate [109].

Scheme 10.9. Anti-S_N 2' Allylation reaction with competing S_N2 reaction pathway. X = halogen, OAc, OP(O) Y_2 .

Reactions of R2CuLi tend to give mixtures of SN2 and SN2' products, which it has been suggested is due to the involvement of regioisomeric σ-allylic Cu^{III} species, shown bracketed in Scheme 10.9 [106, 110]. Studies on substituent effects in competitive reactions suggested that the rate-determining stage might involve a two-electron transfer from copper to the allylic substrate [107]. The S_NZ selectivity of the reaction of $Bu_2Cu(X)(MgBr)_2$ is higher with X = I and OTs than with X = CIand Br, and also higher in ether than in THF [111]. A combination of an organocopper compound and a Lewis acid, such as RCu·BF₃ [5], R₂CuLi·ZnCl₂ [112], R₂CuLi-Ti^{IV} [113], or R₂CuLi-AlCl₃ [114], greatly enhances the S_N2' selectivity. Cu(I)-mediated reactions of organozinc species also afford high S_N2' selectivities [112, 115-117]. NMR studies on R2CuLi·ZnCl2 and R2CuLi·Ti^{IV} reagents showed only rapid transmetalation from Cu to Zn or Ti, giving little information on any putative Cu/Zn or Cu/Ti mixed species. Scant information is available for the transition state. The stereoselectivity of the S_N2' reaction of δ -substituted allylic halide of the S_N2 reaction suggested that the transition state geometry for the delivery of an R group from copper has a four-centered character, as shown below (Eq. 10.11) [112]. This conjecture was supported by theoretical comparison between the TS geometries of olefin carbolithiation and those of acetylene carbocupration (cf. Scheme 10.7) [91].

10.4.3

Radical Substitution Reaction Mechanisms

The SET mechanism has been suggested for the alkylation reaction of secondary alkyl iodides, in which the substitution reaction takes place in stereorandom fashion [22, 118]. The reaction between triphenylmethyl bromide and Me₂CuLi generated an ESR-active triphenylmethyl radical, although this may be regarded as a special case [119]. On the basis of trapping experiments using styrene, it was concluded that dialkylcuprate substitution reactions of primary and secondary alkyl iodides may proceed by an SET mechanism, whereas those of primary and secondary bromides do not [120]. This reaction also produces self-coupling products, which is consistent with radicals being involved (Scheme 10.10). The intramolecular cyclization of an olefinic iodide in the presence of an organocopper reagent has been taken as possible but not conclusive evidence of SET [120].

Scheme 10.10. Radical mechanism in alkylation reactions with alkyl halides.

10.4.4

Catalytic Substitution Reactions

Kinetic experiments have been performed on a copper-catalyzed substitution reaction of an alkyl halide, and the reaction rate was found to be first order in the copper salt, the halide, and the Grignard reagent [121]. This was not the case for a silver-catalyzed substitution reaction with a primary bromide, in which the reaction was found to be zero order in Grignard reagents [122]. A radical mechanism might be operative in the case of the silver-catalyzed reaction, whereas a nucleophilic substitution mechanism is suggested in the copper-catalyzed reaction [122]. The same behavior was also observed in the stoichiometric conjugate addition (Sect. 10.2.1) [30].

10.4.5

Theoretically Based Alkylation Reaction Pathways

Alkylation reactions reveal a mechanistic aspect of the cuprate reactions different from that of addition reactions. Theoretical analyses of reactions of alkyl halides (MeI and MeBr) [123, 124] and epoxides (ethylene oxide and cyclohexene oxide) [124] with lithium cuprate clusters (Me₂CuLi dimer or Me₂CuLi-LiCl, Scheme 10.11) resolved long-standing questions on the mechanism of the alkylation reaction. Density functional calculations showed that the rate-determining step of the

Scheme 10.11. Reaction between R2CuLi·LiX and an alkylating agent RIZ. Solvent coordinated to lithium atoms is omitted.

alkylation reaction (TSsb) is the substitution of the C Br bond with an incoming Me Cu σ-bond. The linear 3d_{z2} orbital of copper acts as the nucleophile here, as shown by the LMO in Fig. 10.4. The computed and experimental kinetic isotope effects for the reaction of methyl iodide showed good agreement with each other, supporting this conclusion. It is notable that it is again possible to identify an open cluster structure in TSsb, with the lithium atom electrophilically activating the leaving group. A trialkylcopper(III) intermediate (INT) may form after the rate-

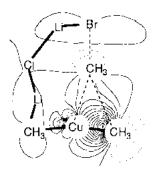


Fig. 10.4. Localized transition structure molecular orbital in the S_N2 reaction between $Me_2CuLi\cdot LiCl$ and MeBr.

determining, halide displacement step but only as an unstable transient species **INT1** or **INT2** (Scheme 10.11). These are trialkylcopper(III) complexes of T-shape geometry, with the fourth ligand (solvent of a halide) making the square planar structure [82]. The *trans* relationship of the two alkyl groups (R) is assured by the linear geometry of the cuprate moiety in the transition state **TSsb**, which guarantees cross-coupling between R and R¹ in **TScc**. Interestingly, this mechanism is a hybrid of the two previous proposals shown in Scheme 10.8.

A similar reaction pathway was found for the S_N2 substitution of an epoxide with a lithium cuprate cluster [124]. In contrast to that in the MeBr reaction, the stereochemistry of the electrophilic carbon center is already inverted in the transition state, providing the reason for the preferred "trans-diaxial epoxide-opening" widely observed in synthetic studies. The TS for the S_N2 reaction of cyclohexene oxide is shown in Eq. 10.12.

10.6 Other Issues

10.6.1

Counter-cation Lewis Acid Effects

For all major categories of lithium cuprate reactions, it has been shown that addition of a crown ether results in significant retardation [79, 94, 125]. In addition to this, sodium cuprates are much inferior to lithium cuprates for conjugate addition [126]. $BF_3 \cdot Et_2O$, on the other hand, accelerates conjugate additions [31] and alkylations of epoxides and aziridines [97, 127]. In allylation chemistry, zinc based [128], titanium-based [113], and aluminum-based [114] organocopper reagents show much higher S_N2' selectivities than lithium cuprate does. The Lewis acidities of cuprate counter-cations are undoubtedly important, but their mechanistic roles still need further investigation (Eq. 10.7).

Recent theoretical studies of reductive elimination from $Me_3Cu \cdot S$ in the presence of BF_3 suggest that reaction rate of the conjugate addition can increase if one of the Me groups is detached from the copper(III) to bind with a boron atom (Scheme 10.12) [129].

The origin of the acceleration produced by BF₃ in epoxide alkylation reactions has been examined theoretically [124]. A plausible pathway for BF₃ participation in the epoxide-opening is shown in Fig. 10.5. An epoxide/BF₃ complex CP1 may encounter the cuprate cluster to form a ternary complex CP2, or such a complex may

$$F_{3}B = F_{3}Cu$$

$$F_{3}B = F_{3}B$$

Scheme 10.12. Proposed mechanism of BF3 activation in the conjugate addition.

Fig. 10.5. Mechanism for the acceleration of an epoxide alkylation reaction by BF₃.

also be formed from a cuprate/BF3 complex and the epoxide. Displacement to TS (TS1), followed by the formation of a Cu(III) intermediate (INT), gives the alkylation product PD. The cooperative interaction of BF3 fluorine and boron atoms with the cuprate and epoxide system is responsible for the acceleration and stabilization of products. The activation energy is reduced by ca. 10 kcal mol 1 compared to the process in the absence of BF₃.

10.6.2

Me₃SiCl Acceleration

Since Nakamura and Kuwajima's initial discovery in 1984 [130], Me₃SiCl has become a standard reagent for acceleration of conjugate additions. The effect was first reported for copper-catalyzed conjugate additions of the zinc homoenolate of propionic acid esters, as shown in Scheme 10.13, and utilized in a total synthesis of cortisone [131]. Application to Grignard-based catalytic reagents and stoichiometric lithium diorganocuprate(I) followed [132]. Acceleration of conjugate additions and modification of their selectivities by means of silylating agents are now well established [132].

Scheme 10.13. Me₃ SiCl- and BF₃-accelerated catalytic conjugate addition and a cortisone synthesis.

Me₃SiCl also affects the stereoselectivity of 1,2-additions to carbonyl compounds [133]. With the aid of suitable activators, these mildly reactive reagents show selectivities unattainable by the conventional reagents, as illustrated below for Me₃SiCl-dependent chemoselectivity (Eq. 10.13) [134].

Considerable mechanistic discussion has appeared in the literature [135]. One argument assumes simple Lewis acid activation of the starting enone with Me₃SiCl [136] (A in Scheme 10.14), although it is supported neither by experiment nor by theory [137]. On the contrary, Me₃SiCl has indeed been shown to be Lewis acidic but rather to act as a base toward the lithium atom in the lithium cuprate cluster [135a] (C in Scheme 10.14). The second proposal, by Corey [73], which takes into account an inner sphere electron-transfer hypothesis, assumes in situ trapping of an enolate-like intermediate by the silylating agents, making the process irreversible (B in Scheme 10.14). The third and most recent proposal assumes theoretical

justification for chloride coordination to copper (D in Scheme 10.14) [135b]. The magnitude of such coordination, however, was recently shown to be very small [129]. While these proposals failed to provide a direct answer to the mechanism of Me₃ SiCl acceleration, the positive correlation between the silylating power of the reagent and the magnitude of rate acceleration [138] strongly suggests that the ratedetermining step of the reaction is the silvlation step rather than the C C bondforming step. Recent studies of kinetic isotope effects by Singleton fully supported this observation [139]. Mechanistic data – such as reaction rate, stereochemistry, and theoretical analysis - are still awaited, however.

Scheme 10.14. Various proposed mechanisms for Me₃SiCl acceleration of conjugate additions to enones $(X = Me_3SiCI)$.

10.6.3 **Dummy Ligands**

A synthetic problem associated with the use of homocuprates R2Cu is that the reagent can transfer only one of the two possibly precious R ligands to the target electrophile (E⁺, for example, to α, β -unsaturated carbonyl compounds), with one R ligand being lost as an unreactive RCu species. The introduction in 1972 of mixed organocuprates [RCu(X)] [140], in which the X group acts as a nontransferable dummy ligand, provided the first general solution to this problem (Eq. 10.14). Typical dummy ligands include alkynyl [141], cyano [142], phenylthio [143], dialkylamino, and phosphino groups (Chapt. 3) [143, 144]. The selectivity of ligand transfer was considered to be a function of the ligand-ligand coupling process in an intermediate bearing three ligands: R, X and E. A widely accepted hypothesis was that an X group forming a stronger Cu X bond acts as a better dummy ligand (resisting transfer). While this hypothesis has successfully been applied to the design of dummy ligands, recent theoretical studies by Nakamura revealed an entirely different controlling factor in dummy ligand chemistry [145].

The recognition of the importance of cluster structure has resulted in a new understanding of the role of a dummy ligand (Y) in the chemistry of mixed cuprates MeCu(Y)Li [145]. As shown in Scheme 10.15 for the case of Y = alkynyl, the

Scheme 10.15. Dummy ligands: selective transfer of the methyl (or alkyl, alkenyl, aryl) group in preference to transfer of the alkynyl group.

transfer of the methyl group is overwhelmingly favored over the transfer of the alkynyl group. This is because the alkynyl group acts as a tight bridge between Cu^{III} and Li⁺ (Fig. 10.6). In other words, the alkynyl dummy group simultaneously binds to Cu and Li atoms (strong electrostatic interaction between the Li and the alkynyl group), and so remains on the copper atom. By default, the much less effective bridging organic ligand is transferred to the enone substrate. This runs

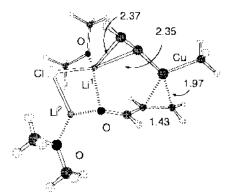


Fig. 10.6. 3D structure of the open complex between acrolein and Me(ethynyl)CuLi-LiCl, with Me₂O coordinated to each lithium atom (B3LYP/631A). Bond lengths are in angstroms.

contrary to the conventional hypothesis that the Y group forming a stronger Cu Y bond acts as a better dummy ligand (resisting transfer), and has provided an further illustration of the critical roles of cluster structures in organocopper chemistry.

The "Higher Order" Cuprate Controversy

Organocopper(I) species bearing three anionic groups, ([R3Cu]2), are termed "higher order" cuprates [146, 147]. For purposes of differentiation, conventional cuprate(I) species (R2Cu) may be referred to as "lower order" cuprates. Whether or not a "higher order cyanocuprate (R2Cu(CN)Li2)", bearing two carbanionic residues and a cyanide anion on copper, exists as a stable species has been the subject of controversy (Eq. 10.15). This controversy has also spawned numerous mechanistic and structural studies on cuprates in general.

$$RCN + 2 RLi \qquad = \frac{R \cdot Cu^{H}}{CN} \int_{-\infty}^{2-\infty} 2Li^{+} \text{ or } \left[R \cdot Cu R\right] Li_{2}CN^{+}$$

$$(10.15)$$

It was reported in the 1970s that a "higher order" cuprate reagent, prepared by the use of more than two equivalents of an alkyllithium reagent with a copper(I) salt, was more reactive [20, 146] and more selective than ordinary cuprates [148]. Using NMR and cryoscopy, Ashby showed that species that could be regarded as higher order cuprates were formed [149]. Bertz demonstrated the presence of a triply coordinated Cu(I) complex ([R₃Cu]²) for the first time, by solution NMR studies [150], while Power demonstrated the existence of a triply coordinated cuprate [Ph₅Cu₂Li₃(SMe₂)₄] in the crystalline state [151, 152].

Lipshutz reported in 1981 that reagents formed by addition of two equivalents of RLi to CuCN give higher yields than the corresponding Gilman cuprates (R2CuLi) or lower order cyanocuprates (RCu(CN)Li), and described them as "R2Cu(CN)Li2" to imply a triply coordinated structure [147]. With the aid of 13 C, 6 Li, and 15 N NMR data [153], Bertz was able to point out that cyanide was not attached to copper(I) in the Lipshutz mix, and started the controversy [154, 155]. Physical measurements by Penner-Hahn [156] and Lipshutz [157], and theoretical studies by Snyder [158], Penner-Hahn, and Frenking [159] contributed much to the discussion. All the crystallographic data for cyanocuprates of "higher-order stoichiometry" recently reported by Boche [160] and van Koten [161] indicated that the cyanide anion is coordinated to lithium and not to copper. Evidence along the same lines was found in sodium and potassium derivatives [162]. The consensus, therefore, after many years of studies, is that triply coordinated [Cu(CN)R2]2 is not a stable structure in ethereal solution [153, 163-165]. Despite this conclusion, the Lipshutz mixed reagent still remains the one of choice in many synthetic transformations, and the presence of a triply coordinated cuprate(I) dianion was recently indicated by 13C 13CN carbon coupling in cyanostannylvinylcuprate(I) dianion in a THF/ HMPA mixture [166]. In addition, the cyanide anion finds its way onto copper at the end of the reaction, forming RCu(CN)Li, while it is not known when the

cyanide/copper coordination starts. The true role of the cyano group in the reactions of "higher order cyanocuprates" remains obscure [164, 167].

10.6.5

Further Issues

While a large number of studies have been reported for conjugate addition and $S_{\rm N}2$ alkylation reactions, the mechanisms of many important organocopper-promoted reactions have not been discussed. These include substitution on sp² carbons, acylation with acyl halides [168], additions to carbonyl compounds, oxidative couplings [169], nucleophilic opening of electrophilic cyclopropanes [170], and the Kocienski reaction [171]. The chemistry of organocopper(II) species has rarely been studied experimentally [172–174], nor theoretically, save for some trapping experiments on the reaction of alkyl radicals with Cu(I) species in aqueous solution [175].

10.7 Orbital Interactions in Copper-mediated Reactions

Recent theoretical analysis has revealed an intriguing difference between the addition reactions and the S_N2 alkylation reactions, in the geometry of the nucleophilic C Cu C moiety. As summarized in Sect. 10.2, the C Cu C bonding in doubly coordinated organocuprate(I) anions found in stable structures is always linear. As the HOMOs of linear R_2 Cu molecules are largely $3d_{z2}$ copper orbitals [92, 94], linear C Cu C groups are suitable for interaction with the σ^* -orbital of MeBr, as illustrated in Fig. 10.7a [94]. Bending of the C Cu C bond to <150° causes mixing of the $3d_{xz}$ copper orbital with the 2p methyl orbital, to make it the HOMO of the cuprate (Fig. 10.7b), which is now suitable for interaction with the π^* -orbitals of enones and acetylenes. The energy gain through back-donation largely compensates for the energy loss associated with the bending (ca. 20 kcal mol 1 to achieve an angle of 120°).

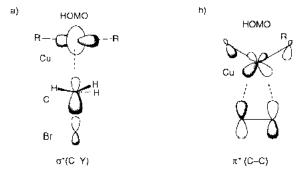


Fig. 10.7. Orbital interactions between R_2Cu_1 and substrates in (a) an early stage of interaction of the cuprate with methyl bromide, and (b) π -complexation to acetylene or olefin.

The above analysis for copper chemistry also applies to the same-class element gold, which, however, forms much more stable C AuI bonds [176] and so is unreactive. On the other hand, the d-orbitals of zinc(II), a main group neighbor, are too low-lying to make organozinc compounds as nucleophilic as organocopper compounds [92].

10.8 The Roles of Cluster Structure in Copper-mediated Reactions

The experimental and theoretical data below indicate several important characteristics of cuprate structures and their reaction mechanisms.

(1) The C Cu C angle in a covalently bound R₂Cu fragment in a stationary state is always close to 180° [94]. In ethereal solution, R2CuLi exists as higher aggregates, the Li R bonds of which are fractional [26, 177-179]. It is invariably possible to identify a neutral fragment, R Cu R Li, in crystals of cyclic oligomers and higher polymers (Scheme 10.16). Depending on the nature of the reacting electrophiles (σ^* or π^*), either linear or bent conformations of the C Cu C moiety become important in nucleophilic reactions (Fig. 10.7) [94].

Scheme 10.16. Various structural possibilities for cuprates. Solid lines indicate (largely) covalent bonds, and dashed lines (largely) electrostatic bonds between a metal cation and an organic or heteroatomic anion. X = RCuR, halogen, CN, etc.

- (2) Because of the fractional R Li bond, clusters and polymers can reversibly form an open cluster, which traps the unsaturated substrate through multiple-point bonding (cf. Schemes 10.5 and 10.7). Lithium cations assist the electron flow from the cuprate to the electrophile and, to achieve such cooperative action, a cluster of a particular size may be necessary. Lewis acid metals other than lithium (Zn II, for example) will also play similar roles.
- (3) A C Cu^I bond is a stable covalent bond, and is difficult to cleave by itself [93]. After charge transfer from cuprate(I) to substrate, however, cleavage of the resulting R CuIII bond becomes easy. The reductive elimination reaction regenerates RCuI, which may take part in further catalytic cycles. Thus, in copper-

- catalyzed reactions, excess R anion will react with RCu to regenerate the necessary cuprate species.
- (4) Although acetylene carbocupration and conjugate addition have previously been considered to be two separate reactions, they have been shown to share essentially the same reaction mechanism. The kinship of carbocupration, conjugate addition, S_N2' allylation, and S_N2 alkylation has now been established, through the theoretical studies of Nakamura, Mori, and Morokuma.
- (5) Demonstration of the critical roles of the open conformations of polymetallic clusters highlights theoretical analysis in cuprate chemistry. Polymetallic clusters in various synthetic reactions are currently attracting the attention of synthetic and mechanistic chemists alike [40, 180-183].

Summary and Outlook

As summarized in the preceding sections, numerous experimental studies have indicated active participation by large organocopper clusters. These typically bear nucleophilic alkyl residues, copper(I) atoms, and counter-cations (typically lithium). The uniqueness of organocopper chemistry stems primarily from the fact that it lies on the border line between main group elements and transition metals. Comparisons may be made for the neighboring elements - Ni⁰, Cu^I, Ag^I, Au^I and Zn II – all of which exist in d10 configurations. The energy levels of the copper(I) 3d orbitals are much higher than those in zinc(II), and become even higher upon mixing with the 2p orbital of the alkyl ligand through R2Cu formation [94]. Redox systems like the Cu^I/Cu^{III} cycle are unavailable for zinc(II). Organonickel and silver species are less stable, and so much less synthetically viable than organocopper(I) reagents, while organogold(I) species are too stable to be synthetically useful. The C Cu C angle is intimately connected with the reactivities of diorganocuprate(I) species, and the Lewis acid (Li+) in cuprate clusters provides pushpull electronic assistance for charge transfer from Cu^I to the electrophile. The diversity of coordination structures revealed by calculations indicates that organocopper chemistry represents the ultimate "supramolecular chemistry", long but unwittingly exploited by chemists. Numerous other aspects of organocopper chemistry await further mechanistic study. The importance of R₃Cu III species is now fully recognized, and needs more careful attention in future studies of mechanistic and synthetic organocopper chemistry.

References

- 1 C. Glaser, Liebigs Ann. Chem., 1870,
- 2 M. S. Kharasch, P. O. Tawney, J. Am. Chem. Soc. 1941, 63, 2308-2315.
- 3 J. P. Collman, L. S. Hegedus, J. R. NORTON, R. G. FINKE, Principles and Applications of Organotransition Metal Chemistry 2nd ed., University

- Sciencebooks, Mill Valey, CA, USA, 1987, Chapter 14.
- 4 J. F. Normant, Synthesis, 1972, 63-80. G. H. Posner, An Introduction to Synthesis Using Organocopper Reagents, Wiley, 1980.
- 5 Y. Yамамото, Angew. Chem. 1986, 98, 945-957; Angew. Chem. Int. Ed. Engl. 1986, 25, 947-959.
- 6 E. NAKAMURA, Synlett, 1991, 539-547.
- 7 B. H. LIPSHUTZ, S. SENGUPTA, Org. React. 1992, 41, 135-631. B. H. LIPSHUTZ, Comprehensive Organometallic Chemistry II, Vol. 12, E. W. ABEL, F. G. A. STONE, G. WILKINSON (Eds.) Pergamon, Oxford, UK, 1995, pp. 59-130.
- 8 T. IBUKA, Y. YAMAMOTO, Synlett, 1992, 769-777.
- 9 N. Krause, A. Gerold, Angew. Chem. 1997, 109, 194-213; Angew. Chem. Int. Ed. Engl. 1997, 36, 186-204.
- 10 Organocopper Reagents R. J. K. TAYLOR (Ed.), Oxford Univ. Press, Oxford, UK, 1994.
- 11 P. PERLMUTTER, Conjugate Addition Reactions in Organic Synthesis, Pergamon, Oxford, UK, 1992.
- 12 P. Wiff, Synthesis, 1993, 537-557.
- 13 a) G. H. Posner, Org. React. 1972, 19, 1-113; b) J. A. Kozlowski, Comprehensive Organic Synthesis, Vol. 4, B. M. Trost, I. Fleming (Eds.) Pergamon, Oxford, UK, 1991, p. 169-198.
- 14 N. KRAUSE, S. THORAND, Inorg. Chim. Acta. 1999, 296, 1-11.
- 15 J. F. NORMANT, A. ALEXAKIS, Synthesis **1981**, 841–870.
- 16 a) G. H. Posner, Org. React. 1975, 22, 253-400; b) J. M. Klunder, G. H. Posner, Comprehensive Organic Synthesis, Vol. 3, B. M. TROST, I. FLEMING (Eds.), Pergamon, Oxford, UK, 1991, pp. 207-239.
- 17 J. A. MARSHALL, Chem. Rev. 1989, 89, 1503-1511.
- 18 H. GILMAN, R. G. JONES, L. A. Woods, J. Org. Chem. 1952, 17, 1630-
- 19 G. Costa, A. Camus, L. Gatti, N. Marsich, J. Organomet. Chem. 1966, 5, 568-572.

- 20 H. O. House, W. L. Respess, G. M. WHITESIDES, J. Org. Chem. 1966, 31, 3128-3141.
- 21 E. J. Corey, G. H. Posner, J. Am. Chem. Soc. 1967, 89, 3911-3912. E. J. COREY, G. H. POSNER, J. Am. Chem. Soc. 1968, 90, 5615-5616.
- 22 G. M. WHITESIDES, W. F. FISCHER JR., J. San Filippo Jr., R. W. Bashe, H. O. House, J. Am. Chem. Soc. 1969, 91, 4871-4882.
- 23 H. L. Goering, S. Kantner, J. Org. Chem. 1981, 46, 2144-2148.
- 24 A. Alexakis, J. Normant, J. Villiéras, Tetrahedron Lett. 1976, 38, 3461-3462.
- 25 B. H. Lipshutz, J. A. Kozlowski, C. M. Breneman, J. Am. Chem. Soc. 1985, 107, 3197-3204.
- 26 H. HUANG, C. H. LIANG, J. E. Penner-Hahn, Angew. Chem. 1998, 110, 1628-1630; Angew. Chem. Int. Ed. 1998, 37, 1564-1566.
- 27 A. E. JUKES, Adv. Organomet. Chem. 1974, 12, 215-322.
- 28 a) G. van Koten, J. G. Noltes in Comprehensive Organometallic Chemistry, Vol. 2, G. WILKINSON, F. G. A. STONE (Eds.), Pergamon, Oxford, UK, 1982, pp. 709-763; b) G. van Koten, S. L. James, J. T. B. H. JASTRZEBSKI in Comprehensive Organometallic Chemistry II, Vol. 3, E. W. ABEL, F. G. A. STONE, G. WILKINSON (Eds.), Pergamon, Oxford, UK, 1995, pp. 57-133; c) P. P. Power, Prog. Inorg. Chem. 1991, 39, 75-112.
- 29 R. M. GSCHWIND, P. R. RAJAMOHANAN, M. JOHN, G. BOCHE, Organometallics, 2000, 19, 2868-2873.
- 30 C. GIRARD, H. B. KAGAN, Angew. Chem. 1998, 110, 3088-3127; Angew. Chem. Int. Ed. 1998, 37, 2922-2959
- 31 A. B. Smith III, P. J. Jerris, J. Am. Chem. Soc. 1981, 103, 194-195.
- 32 B. H. LIPSHUTZ, E. L. ELISWORTH, S. H. DIMOCK, J. Am. Chem. Soc. 1990, 112, 5869-5871.
- 33 A. Alexakis, J. F. Normant, Isr. J. Chem. 1984, 24, 113-117.
- 34 A. T. STOLL, E.-I. NEGISHI, Tetrahedron Lett. 1985, 26, 5671-5674.
- 35 J. Berlan, J. Besace, E. Stephan, P. CRESSON, Tetrahedron Lett. 1985, 26, 5765-5768.

- 36 E. Nakamura, M. Isaka, S. Matsuzawa, J. Am. Chem. Soc. 1988, 110, 1297—1298.
- 37 Review: N. Krause, C. Zelder, in The Chemistry of Dienes and Polyenes, Vol. 2, Z. Rapporort, (Ed.), Wiley, New York, 2000; pp. 645–691.
- 38 F. Näf, P. Degen, G. Ohloff, Helv. Chim. Acta. 1972, 55, 82–85.
- N. NAKANISHI, S. MATSUBARA,
 K. UTIMOTO, S. KOZIMA,
 R. YAMAGUCHI, J. Org. Chem. 1991,
 56, 3278–3283.
- 40 a) B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771–806;
 b) T. Kanai, Y. Nakagawa, K.
 Tomioka, J. Syn. Org. Chem. Jpn.
 1996, 35, 474–480; c) G. van Koten, Pure Appl. Chem. 1994, 66, 1455–
 1462; d) A. Alexakis, in Transition Metal Catalysed Reactions, S.-I.
 Murahashi, S. G. Davies (Eds.), IUPAC Blackwell Science, Oxford, UK, 1999, pp. 303; e) E. K. van den Beuken, B. L. Feringa, Tetrahedron, 1998, 12985–13011.
- 41 a) R. Naasz, L. A. Arnold, M. Pineschi, E. Keller, B. L. Feringa, J. Am. Chem. Soc. 1999, 121, 1104–1105. b) A. K. H. Knöbel, I. H. Escher, A. Pfaltz, Synlett 1997, 1429–1431.
- 42 M. SAWAMURA, H. IIKURA, E. NAKAMURA, J. Am. Chem. Soc. 1996, 118, 12850—12851.
- 43 M. SAWAMURA, H. IIKURA, A. HIRAI, E. NAKAMURA, J. Am. Chem. Soc. 1998, 120, 8285–8286.
- 44 R. A. J. SMITH, A. S. VELLEKOOF in Advances in Detailed Reaction Mechanisms, Vol. 3, J. M. COXON (Ed.), JAI Press, Greenville, CT, USA, 1994, pp. 79–130.
- 45 E. NAKAMURA, S. MORI, Angew. Chem. 2000, 112, 3902—3924. Angew. Chem., Int. Ed. 2000, 39, 3750—3771.
- 46 S. Woodward, Chem. Soc. Rev. 2000, 29, 393-401.
- 47 H. O. House, J. M. Wilkins, J. Org. Chem. 1978, 43, 2443–2454.
- **48** G. Hailnemo, C. Ullenius, *Tetrahedron* **1983**, 39, 1621–1625.
- 49 C. L. KINGSBURY, R. A. J. SMITH, J. Org. Chem. 1997, 62, 4629–4634.

- C. L. KINGSBURY, R. A. J. SMITH, J. Org. Chem. 1997, 62, 7637-7643.
- 50 C. L. KINGSBURY, K. S. SHARP, R. A. J. SMITH, Tetrahedron 1999, 55, 14693— 14700.
- 51 J. Munch-Petersen, C. Bretting, P. M. Jørgensen, S. Reen, V. K. Andersen, Acta. Chem. Scand. 1961, 15, 277–292.
- 52 I. RYU, H. NAKAHIRA, M. IKEBE, N. SONODA, S. YAMATO, M. KOMATSU, J. Am. Chem. Soc. 2000, 122, 1219.
- 53 J. BERLAN, J.-P. BATTIONI, K. KOOSHA, Bull. Chim. Soc. Fr. 1978, II-183—II-190.
- 54 A. E. Dorigo, K. Morokuma, J. Am. Chem. Soc. 1989, 111, 4635–4643. A. E. Dorigo, K. Morokuma, J. Am. Chem. Soc. 1989, 111, 6524–6536.
- 55 K. Yamamoto, H. Ogura, J.-I. Jukuta, H. Inoue, K. Hamada, Y. Sugiyama, S. Yamada, *J. Org. Chem.* 1998, 63, 4449–4458.
- 56 H. O. House, Acc. Chem. Res. 1976, 9, 59-67.
- H. O. House, M. J. Umen, J. Am. Chem. Soc. 1972, 94, 5495-5497.
- 58 E. J. Corey, F. J. Hannon, N. W. Boaz, Tetrahedron 1989, 45, 545–555.
- A. S. Vellekoop, R. A. J. Smith, J. Am. Chem. Soc. 1994, 116, 2902–2913.
- 60 S. R. Krauss, S. G. Smith, J. Am. Chem. Soc. 1981, 103, 141–148.
- C. P. Casey, M. C. Cesa, J. Am. Chem. Soc. 1979, 101, 4236–4244.
- 62 S. H. Bertz, G. Dabbagh, J. M. Cook, V. Honkan, J. Org. Chem. 1984, 49, 1739–1743.
- 63 R. A. J. Smith, D. J. Hannah, Tetrahedron 1979, 35, 1183–1189.
- 64 C. P. CASEY, R. A. Boggs, Tetrahedron Lett. 1971, 27, 2455–2458.
- G. M. Whitesides, P. E. Kendall,
 J. Org. Chem. 1972, 37, 3718–3725.
 F. Näf, P. Degen, Helv. Chim. Acta. 1971, 54, 1939–1949.
- 66 H. Yamataka, N. Fujimura, Y. Kawafuji, T. Hanafusa, J. Am. Chem. Soc. 1987, 109, 4305–4308.
- Y. CHOUNAN, T. IBUKA, Y. YAMAMOTO, J. Chem. Soc. Chem. Commun. 1994, 2003–2004.
- 68 Y. Yamamoto, S. Nishii, T. Ibuka, J. Am. Chem. Soc. 1988, 110, 617–618.

- 69 Y. CHOUNAN, H. HORINO, T. IBUKA, Y. YAMAMOTO, Bull. Chem. Soc. Ipn. 1997, 50, 1953-1959.
- 70 S. J. Anderson, W. T. Hopkins, C. T. Wigal, J. Org. Chem. 1992, 57, 4304-4305.
- 71 See ref. 53.
- 72 C. Ullenius, B. Christenson, Pure Appl. Chem. 1988, 60, 57-64.
- 73 E. J. Corey, N. W. Boaz, Tetrahedron Lett, 1985, 26, 6015-6018 and 6019-
- 74 N. Krause, R. Wagner, A. Gerold, J. Am. Chem. Soc. 1994, 116, 381-382.
- 75 J. Canisius, A. Gerold, N. Krause, Angew. Chem. 1999, 111, 1727-1730; Angew. Chem. Int. Ed. Engl. 1999, 38, 1644-1646.
- 76 M. UERDINGEN, N. KRAUSE, Tetrahedron 2000, 56, 2799-2804.
- 77 M. KITAMURA, T. MIKI, K. NAKANO, R. Noyori, Bull. Chem. Soc. Jpn. 2000, 73, 999-1014.
- 78 A. Pichota, P. S. Pregosin, M. VALENTINI, M. WÖRLE, D. SEEBACH, Angew. Chem. 2000, 112, 157-160; Angew. Chem. Int. Ed. 2000, 39, 153.
- 79 E. Nakamura, S. Mori, K. Morokuma, J. Am. Chem. Soc. 1997, 119, 4900-4910.
- 80 S. Mori, E. Nakamura, Chem. Eur. J. 1999, 5, 1534-1543.
- 81 D. E. Frantz, D. A. Singleton, J. P. SNYDER, J. Am. Chem. Soc. 1997, 119, 3383-3384.
- 82 a) A. E. Dorigo, J. Wanner, P. von R. Schleyer, Angew. Chem. 1995, 107, 492-494; Angew. Chem. Int. Ed. Engl. 1995, 34, 476-478. b) J. P. SNYDER, J. Am. Chem. Soc. 1995, 117, 11025-
- 83 Y. Horiguchi, E. Nakamura, I. Kuwajima, J. Am. Chem. Soc. 1989, 111, 6257-6265.
- 84 K. Nilsson, T. Andersson, C. Ullenius, A. Gerold, N. Krause, Chem. Eur. J. 1998, 4, 2051-2058.
- 85 J. Klein, R. Levene, J. Chem. Soc. Perkin II, 1973, 1971-1979.
- 86 N. Krause, Tetrahedron Lett. 1989, 30, 5219-5222.
- 87 E. J. Corey, J. A. KATZENELLENBOGEN, J. Am. Chem. Soc. 1969, 91, 1851-

- 1852. J. B. Siddall, M. Biskup, J. H. FRIED, J. Am. Chem. Soc. 1969, 91, 1852-1854. J. Klein, R. M. Turckel, J. Am. Chem. Soc. 1969, 91, 6186-6187. J. Klein, N. Aminadav, J. Chem. Soc. C, 1970, 1380-1385.
- 88 Y. YAMAMOTO, H. YATAGAI, K. Maruyama, J. Org. Chem. 1979, 44, 1744-1746. J. P. Marino, R. J. LINDERMAN, J. Org. Chem. 1981, 46, 3696-3702. I. Fleming, D. A. Perry, Tetrahedron, 1981, 37, 4027-4034.
- 89 K. Nilsson, C. Ullenius, N. Krause, J. Am. Chem. Soc. 1996, 118, 4194— 4195.
- 90 J. Normant, G. Cahiez, J. Villieras, J. Organomet. Chem. 1975, 92, C28-C30.
- 91 E. Nakamura, S. Mori, M. Nakamura, K. Morokuma, J. Am. Chem. Soc. 1997, 119, 4887-4899.
- 92 S. Mori, E. Nakamura, J. Mol. Struct (Theochem, Morokuma special issue), 1999, 461-462, 167-175.
- 93 P. B. Armentrout, R. Georgiadis, Polyhedron 1988, 7, 1573-1581.
- 94 S. Mori, E. Nakamura, Tetrahedron Lett. 1999, 40, 5319-5322. S. Morr, A. Hirai, M. Nakamura, E. NAKAMURA, Tetrahedron, 2000, 56, 2805-2809.
- 95 Reviews: J. M. Klunder, G. H. Posner in Comprehensive Organic Synthesis, Vol. 3, B. M. Trost, I. FLEMING (Eds.) Pergamon, Oxford, 1991, pp. 207-239.
- 96 C. R. Johnson, R. W. Herr, D. M. Wieland, J. Org. Chem. 1973, 38, 4263-4268.
- 97 M. J. EIS, B. GANEM, Tetrahedron Lett. 1985, 26, 1153-1156.
- 98 C. R. Johnson, G. A. Dutra, J. Am. Chem. Soc. 1973, 95, 7783-7787.
- 99 C.-Y. Guo, M. L. Brownawell, J. San FILIPPO JR., J. Am. Chem. Soc. 1985, 107, 6028-6030.
- 100 R. G. Pearson, C. D. Gregory, J. Am. Chem. Soc. 1976, 98, 4098-4104.
- 101 W. J. Spanenberg, B. E. Snell, M.-C. Sv, Microchem. J. 1993, 47, 79-
- 102 S. Komiya, T. A. Albright, R. Hoffmann, J. K. Kochi, J. Am. Chem. Soc. 1976, 98, 7255-7265.

- 103 S. Komiya, T. A. Albright, R. Hoffmann, J. K. Kochi, J. Am. Chem. Soc. 1976, 98, 8440-8447.
- 104 a) M. A. WILLERT-PORADA, D. J. Burton, N. C. Baenziger, J. Chem. Soc. Chem. Commun. 1989, 1633-1634. b) D. Naumann, T. Roy, K.-F. Tebbe, W. Crump, Angew. Chem. 1993, 105, 1555-1556; Angew. Chem. Int. Ed. Engl. 1993, 32, 1482-1483. c) R. EUJEN, B. Hoge, D. J. Brauer, J. Organomet. Chem. 1996, 519, 7-20.
- 105 J. Stein, J. P. Fackler Jr., C. PAPARIZOS, H.-W. CHEN, J. Am. Chem. Soc. 1981, 103, 2192-2198.
- 106 H. L. GOERING, C. C. TSENG, J. Org. Chem. 1983, 48, 3986-3990. H. L. Goering, S. S. Kantner, J. Org. Chem. 1984, 49, 422-426. H. L. Goering, S. S. Kantner, E. P. Seitz, J. Org. Chem. 1985, 50, 5495-5499.
- 107 a) M. A. SEVIN, W. CHODKIEWICZ, P. Cadiot, Tetrahedron Lett. 1965, 1953-1959, b) I.-M. DOLLAT, J.-L. Luche, P. Crabbé, J. Chem. Soc. Chem. Commun. 1977, 761-762. c) P. Vermeer, J. Meijer, L. BRANDSMA, Recl. Trav. Chim. Pays-Bas, 1975, 94, 112-114.
- 108 A. Alexakis, I. Marek, P. Mangeney, J. F. NORMANT, J. Am. Chem. Soc. 1990, 112, 8042-8047.
- 109 C. GALLINA, P. G. CIATTINI, J. Am. Chem. Soc. 1979, 101, 1035-1036. H. L. Goering, S. S. Kantner, C. C. Tseng, J. Org. Chem. 1983, 48, 715-
- 110 A. S. E. KARLSTRÖM, J.-E. BÄCKVALL, Chem. Eur. J. 2001, 7, 1981-1989.
- 111 E. S. M. Persson, J.-E. Bäckvall, Acta. Chem. Scand. 1995, 49, 899-906.
- 112 M. Arai, T. Kawasuji, E. Nakamura, J. Org. Chem. 1993, 58, 5121-5129.
- 113 M. Arai, E. Nakamura, B. H. LIPSHUTZ, J. Org. Chem. 1991, 56, 5489-5491.
- 114 S. Flemming, J. Kabbara, K. Nickisch, J. Westermann, J. Mohr, Synlett, 1995, 183-185.
- 115 P. KNOCHEL, R. D. SINGER, Chem. Rev. 1993, 93, 2117-2188.
- 116 Y. Yamamoto, Y. Chounan, M. Tanaka, T. Ibuka, J. Org. Chem. 1992, 57, 1024-1026.

- 117 E. NAKAMURA, Organometallic Chemistry, A Manual, 2nd Ed., M. Schlosser (Ed.), Wiley, in press.
- 118 B. H. Lipshutz, R. S. Wilhelm, J. Am. Chem. Soc. 1982, 104, 4696-4698.
- 119 E. C. ASHBY, R. N. DEPRIEST, A. TUNCAY, S. SRIVASTAVA, Tetrahedron Lett. 1982, 23, 5251-5254.
- 120 E. C. Ashby, D. Coleman, J. Org. Chem. 1987, 52, 4554-4565. S. H. BERTZ, G. DABBAGH, A. M. MUJSCE, J. Am. Chem. Soc. 1991, 113, 631-636.
- 121 M. TAMURA, J. K. KOCHI, J. Organomet. Chem. 1972, 42, 205-228.
- 122 M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1483-1485. M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1485-1487.
- 123 E. Nakamura, S. Mori, K. Morokuma, J. Am. Chem. Soc. 1998, 120, 8273-8274.
- 124 S. Mori, E. Nakamura, K. Morokuma, J. Am. Chem. Soc. 2000, 122, 7294-7307.
- 125 C. Ouannes, G. Dressaire, Y. LANGLOIS, Tetrahedron Lett. 1977, 815-818.
- 126 S. H. BERTZ, C. P. GIBSON, G. Dabbagh, Organometallics 1988, 7, 227-232.
- 127 A. GHRIBI, A. ALEXAKIS, J. F. NORMANT, Tetrahedron Lett. 1984, 25, 3075-3078. A. Alexakis, D. Jachiet, J. F. NORMANT, Tetrahedron, 1986, 42, 5607-5619.
- 128 Reviews: a) E. NAKAMURA, J. Synth. Org. Chem. Jpn. 1989, 47, 931-938; b) Metal Homoenolates, I. Kuwajima, E. NAKAMURA in Comprehensive Organic Synthesis, Vol. 2, B. M. TROST, I. Fleming (Eds.), Pergamon Press, 1991, Chapter 1.14; c) M. Nakamura, E. Nakamura, J. Synth. Org. Chem. Jpn. 1998, 56, 632–644.
- 129 E. Nakamura, M. Yamanaka, S. Mori, J. Am. Chem. Soc. 2000, 122, 1826-1827.
- 130 E. NAKAMURA, I. KUWAJIMA, J. Am. Chem. Soc. 1984, 106, 3368-3370.
- 131 Y. Horiguchi, E. Nakamura, I. Kuwajima, J. Org. Chem. 1986, 51, 4323-4325.
- 132 E. NAKAMURA in Organocopper Reagents, R. J. K. TAYLOR (Ed.), Oxford

- University Press, UK, 1994, Chapter 6, pp. 129-142.
- 133 S. MATSUZAWA, M. ISAKA, E. Nakamura, I. Kuwajima, Tetrahedron Lett. 1989, 30, 1975-1978.
- 134 M. ARAI, B. H. LIPSHUTZ, E. NAKAMURA, Tetrahedron, 1992, 48, 5709-5718.
- 135 For some mechanistic proposals, see: a) B. H. LIPSHUTZ, S. H. DIMOCK, B. JAMES, J. Am. Chem. Soc. 1993, 115, 9283-9284; b) S. H. BERTZ, G. MIAO, B. E. Rossiter, J. P. Snyder, J. Am. Chem. Soc. 1995, 117, 11023-11024; c) S. H. Bertz, A. Chopra, M. Eriksson, C. A. Ogle, P. Seagle, Chem. Eur. J. 1999, 5, 2680-2691.
- 136 Y. Horiguchi, M. Komatsu, I. Kuwajima, Tetrahedron Lett. 1989, 30, 7087-7090.
- 137 B. H. Lipshutz, D. H. Aue, B. James, Tetrahedron Lett. 1996, 37, 8471-8474.
- 138 M. Eriksson, A. Johansson, M. NILSSON, T. OLSSON, J. Am. Chem. Soc. 1996, 118, 10904-10905.
- 139 D. E. FRANTZ, D. A. SINGLETON, J. Am. Chem. Soc. 2000, 122, 3288-3295.
- 140 E. J. Corey, D. J. Beames, J. Am. Chem. Soc. 1972, 94, 7210-7211.
- 141 a) E. J. Corey, D. M. Floyd, B. H. LIPSHUTZ, J. Org. Chem. 1978, 43, 3418-3420; b) W. H. MANDEVILLE, G. M. WHITESIDES, J. Org. Chem. **1974**, 39, 400-405.
- 142 J. P. Gorlier, L. Hamon, J. LEVISALLES, J. WAGNON, J. Chem. Soc. Chem. Comm. 1973, 88.
- 143 S. H. BERTZ, G. DABBAGH, G. M. VILIACORTA, J. Am. Chem. Soc. 1982, 104, 5824-5826. Cf. G. H. Posner, C. E. WHITEN, Tetrahedron Lett. 1973, 1815-1818. G. H. Posner, C. E. WHITEN, J. J. STERLING, J. Am. Chem. Soc. 1973, 95, 7788-7800.
- 144 Magnesium mixed cuprates: J. Drouin, F. Leyendecker, J.-M. CONIA, New J. Chem. 1978, 2, 267-270. F. Leyendecker, J. Drouin, J.-M. CONIA, New J. Chem. 1978, 2, 271-274.
- 145 E. Nakamura, M. Yamanaka, J. Am. Chem. Soc. 1999, 121, 8941-8942.

- 146 a). E. C. ASHBY, J. J. LIN, J. Org. Chem. 1977, 42, 2805-2808; b) H. Westmijze, H. Kleijn, J. Meijer, P. Vermeer, Recl. Trav. Chim. Pays-Bas, 1981, 100, 98-102; c) D. L. J. CLIVE, V. FARINA, P. L. BEAULIEU, J. Org. Chem. 1982, 47, 2572-2582.
- 147 B. H. Lipshutz, R. S. Wilhelm, D. M. FLOYD, J. Am. Chem. Soc., 1981, 103, 7672-7674.
- 148 W. C. STILL, T. L. MACDONALD, Tetrahedron Lett. 1976, 31, 2659-2662.
- 149 E. C. ASHBY, J. J. WATKINS, J. Am. Chem. Soc. 1977, 99, 5312-5317.
- 150 S. H. BERTZ, G. DABBAGH, J. Am. Chem. Soc. 1988, 110, 3668-3670.
- 151 M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1989, 111, 4135-4136.
- 152 F. Olbrich, J. Kopf, E. Weiss, Angew. Chem. 1993, 105, 1136-1138; Angew. Chem. Int. Ed. Engl. 1993, 32, 1077-1079.
- 153 S. H. BERTZ, K. NILSSON, Ö. Davidson, J. P. Snyder, Angew. Chem. 1998, 110, 327-331; Angew. Chem. Int. Ed. Engl. 1998, 37, 314-
- 154 N. Krause, Angew. Chem. 1998, 110, 83-85; Angew. Chem. Int. Ed. 1999, 38, 79-81.
- 155 B. H. LIPSHUTZ, B. JAMES, J. Org. Chem. 1994, 59, 7585-7587.
- 156 a) T. Stemmler, J. E. Penner-Hahn, P. Knochel, J. Am. Chem. Soc. 1993, 115, 348-350; b) T. M. BARNHART, H. Huang, J. E. Penner-Hahn, J. Org. Chem. 1995, 60, 4310-4311.
- 157 B. H. LIPSHUTZ, K. L. STEVENS, B. James, J. G. Pavlovich, J. P. SNYDER, J. Am. Chem. Soc. 1996, 118, 6796-6797. B. H. LIPSHUTZ, J. KETTH, D. J. Buzard, Organometallics, 1999, 18, 1571-1574.
- 158 a) J. P. Snyder, D. P. Spangler, J. R. BEHLING, B. E. ROSSITER, J. Org. Chem. 1994, 59, 2665-2667; b) J. P. SNYDER, S. H. BERTZ, J. Org. Chem. 1995, 60, 4312-4313; c) H. Huang, K. Alvarez, Q. Cui, T. M. Barnhart, J. P. Snyder, J. E. Penner-Hahn, J. Am. Chem. Soc. 1996, 118, 8808-8816, and 1996, 118, 12252 (correction).

- 159 T. L. STEMMLER, T. M. BARNHART, J. E. PENNER-HAHN, C. E. TUCKER, P. KNOCHEL, M. BÖHME, G. FRENKING, J. Am. Chem. Soc. 1995, 117, 12489–12497.
- 160 G. Boche, F. Bosold, M. Marsch, K. Harms, Angew. Chem. 1998, 110, 1779–1781; Angew. Chem. Int. Ed. 1998, 37, 1684–1686.
- 161 C. M. P. Kronenburg, J. T. B. H. Jastrzebski, A. L. Spek, G. van Koten, J. Am. Chem. Soc. 1998, 120, 9688-9689. C. M. P. Kronenburg, J. T. B. H. Jastrzebski, G. van. Koten, Polyhedron, 2000, 19, 553-555.
- 162 C. EABORN, M. S. HILL, P. B. HITCHCOCK, J. D. SMITH, Organometallics, 2000, 19, 5780–5783.
- 163 S. H. Bertz, G. Dabbagh, J. Chem. Soc. Chem. Commun. 1982, 1030– 1032.
- 164 S. H. BERTZ, G. MIAO, M. ERIKSSON, J. Chem. Soc. Chem. Commun. 1996, 815–816.
- 165 T. A. Mobley, F. Müller, S. Berger, J. Am. Chem. Soc. 1998, 120, 1333– 1334.
- 166 J. A. CABEZAS, A. C. OEHLSCHLAGER, J. Am. Chem. Soc. 1997, 119, 3878– 3886.
- 167 G. P.-J. Hareau, M. Koiwa, S. Hikichi, F. Sato, J. Am. Chem. Soc. 1999, 121, 3040-3050.
- 168 W. G. STILL, J. A. SCHNEIDER, Tetrahedron Lett. 1980, 21, 1035–1038.
- 169 G. M. Whitesides, J. San Filippo Jr., C. P. Casey, E. J. Panek, J. Am. Chem. Soc. 1967, 89, 5302–5303.
- 170 G. H. Posner, J.-S. Ting, C. M. Lentz, Tetrahedron 1976, 32, 2281– 2287.
- 171 P. KOCIENSKI, S. WADMAN, K. COOPER, J. Am. Chem. Soc. 1989, 111, 2363– 2365.
- 172 G. V. Buxton, J. C. Green, J. Chem. Soc. Faraday Trans, 1978, 74, 697-714.
- 173 J. K. Kocht, Acc. Chem. Res. 1974, 7, 351–360.
- 174 Metastable dimethylgold(II) species were trapped recently. See. D. Zhu,

- S. V. LINDEMAN, J. K. KOCHI, Organometallics, 1999, 18, 2241–2248.
- 175 S. GOLDSTEIN, G. CZAPSKI, H. COHEN, D. MEYERSTEIN, *Inorg. Chem.* 1988, 27, 4130–4135 and references cited therein.
- 176 I. Antes, G. Frenking, Organometallics 1995, 14, 4263-4268.
- 177 G. FRAENKEL, M. HENRICHS, J. M. HEWITT, B. M. SU, M. J. GECKELE, J. Am. Chem. Soc. 1980, 102, 3345— 3350.
- 178 J. HEINZER, J. F. M. OTH, D. SEEBACH, Helv. Chim. Acta. 1985, 68, 1848– 1862.
- 179 P. I. ARVIDSSON, P. AHLBERG, G. HILMERSSON, Chem. Eur. J. 1999, 5, 1348–1354.
- 180 M. Nakamura, E. Nakamura, N. Koga, K. Morokuma, J. Am. Chem. Soc. 1993, 115, 11016– 11017.
- 181 F. Hæffner, C. Sun, P. G. WILLARD, J. Am. Chom. Soc. 2000, 122, 12542— 12546 and references cited therein.
- 182 M. Schlosser, T. D. An, Angew. Chem. 1981, 93, 1114–1116; Angew. Chem. Int. Ed. Engl. 1981, 20, 1039–1041. M. G. Stanton, G. B. Allen, R. M. Kissling, A. L. Lincoln, M. R. Gagné, J. Am. Chem. Soc. 1998, 120, 5981–5989.
- 183 Cf. I. OJIMA, M. OKABE, K. KATO, H. B. Kwon, I. T. Horváth, J. Am. Chem. Soc. 1988, 110, 150-157. H. Suzuki, H. Omori, D. H. Lee, Y. Yoshida, M. Fukushima, M. Tanaka, Y. Moro-oka, Organometallics, 1994, 13, 1129-1146; M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109, 1290-1310; Angew. Chem. Int. Ed. Engl. 1997, 36, 1236-1256. See also, T. Irda, N. Yamamoto, H. Sasai, M. Shibasaki, J. Am. Chem. Soc. 1997, 119, 4783-4784. H. Steinhagen, G. Helmchen, Angew. Chem. 1996, 108, 2489-2492; Angew. Chem. Int. Ed. Engl. 1996, 35, 2339-2342. S. J. LIPPARD, Science 1995, 268, 996-997.

Author Index

Anderson, B. L. 110 а Aalten, H. L. 23, 109 Anderson, S. J. 320 Abarbri, M. 47-50, 91, 97, 100 Andersson, T. 91, 118, 325 Abdulla, A. H. 168 Andrus, M. B. 310 Abe, H. 298 Anh, N. T. 192 Ackermann, K. 303 Anklam, S. 196 Adam, W. 86, 87 Anna, L. J. 298 Adkins, H. 182 Antenori, M. 183 Agami, C. 300 Antes, I. 339 Ager, D. J. 81, 82, 84, 114 Antilla, J. C. 109 Aoki, H. 294 Ahlberg, P. 339 Aoki, Y. 233 Ahn, K.-H. 129, 130 Aizpurua, J. M. 295 Aoyama, H. 305 Akaji, M. 305 Appella, D. H. 176, 177 Arai, K. 65 Aken, K. V. 118 Arai, M. 70, 329, 332, 334 Akimoto, N. 217 Aksela, R. 80, 81, 87, 95, 97, 98, 307 Arai, T. 224, 340 Alami, M. 70, 71 Ardisson, J. 97, 108, 307 Arimoto, K. 173 Alberti, A. 109 Albright, T. A. 328 Arink, A. M. 3 Alexakis, A. 98, 129, 131-133, 145, 161, Armentrout, P. B. 325, 339 162, 229, 234, 236, 238-240, 242, 243, 251, Arndt, S. 155 269, 270, 278, 309, 315-317, 324, 329, 332, Arnold, L. A. 231-234, 239-243, 245, 246, 340 252-254, 283, 284, 317 Alexander, C. W. 80, 115-117 Arrieta, A. 196 Allain-Barbier, L. 98 Arvidsson, P. I. 127, 339 Asami, M. 188, 196 Allen, C. B. 340 Allinger, N. L. 188, 245, 246 Asano, Y. 227 Asao, N. 295 Allison, B. D. 200 Allred, G. D. 299 Asaoka, M. 188 Almena Perea, J. J. 55, 59, 60, 65, 145 Ashby, E. C. 168, 330, 337 Alvarez, K. 337 Askin, D. 294 Alvarez, R. 100 Atwater, N. W. 148 Alvisi, D. 95 Audergon, L. 131, 225, 226, 234 Amberg, W. 107 Audia, J. E. 148 Aue, D. H. 334 Aminaday, N. 325 An, T. D. 340 Auel, C. 3, 38 Anastasis, P. 208 Auner, G. 148 Andersen, V. K. 318 Auvray, P. 82

Avolio, S. 47, 50	Berlan, J. 316, 318, 320, 325
Ayerbe, M. 196	Bernabé, M. 211
·	Bernardinelli, G. 204, 205
ь	Berque, I. 108, 307
Babcock, J. C. 148	Berriel, J. N. 69
Babiak, K. A. 68, 72, 82, 87, 294	Berrisford, D. J. 227, 230
Bäckvall, JE. 24, 32, 102, 133, 145, 261, 262,	Bertozzi, F. 284
272-275, 277, 329	Bertz, S. H. 35, 36, 39, 81, 122, 124-127,
Badalassi, F. 283	191, 319, 330, 332, 334, 335, 337, 338
Baenziger, N. C. 5, 123, 328	Besace, J. 316
Baertschi, S. W. 300	Besnard, JC. 98
Baeza, J. 86, 87	Betzer, JF. 97, 98
Bailey, T. R. 115, 116	Bezman, S. A. 167, 168, 174
Bannister, T. D. 293	Bezuidenhoudt, B. C. B. 205
Barber, C. 306	Bhamidipati, R. S. 95
Barbero, A. 80-82, 84, 93-95, 97, 99, 100-	Bhandari, A. 145
102, 200, 310	Bhatt, R. K. 68, 113, 299
Barbot, F. 147	Bhinderwala, N. S. 119
Barnhart, T. M. 36, 337	Bible Jr., R. H. 148
Barré, L. 98	Bigorra, J. 147
Barrett, S. D. 62	Biran, C. 82, 107
Barsanti, P. 211	Biskup, M. 325
Bartolotti, L. J. 115	Bitter, J. H. 3
Barton, D. H. R. 188	Blackmond, D. G. 246
Barton, J. C. 51	Blakemore, D. C. 200
Bashe, R. W. 1, 26, 259, 316, 328, 330	Blanco, F. J. 101, 102
Basu, A. 79, 115, 117, 121	Blankenfeldt, W. 63
Bats, J. W. 290	Blart, E. 94, 95, 99
Battioni, JP. 318, 320, 325	Bleckman, T. 296
Bau, R. 26, 30, 32	Blumenkopf, T. A. 192, 245, 246
Baulieu, EE. 148	Blumer, R. E. 277
Beak, P. 79, 109, 115, 117, 121, 302	Boaz, N. W. 147, 199, 200, 211, 233, 290,
Beames, D. J. 294, 335	319, 321, 334
Beauchemin, A. 59	Boazi, M. 98
Beaudet, I. 98	Boche, G. 3, 35–38, 45, 145, 316, 337
Beaulieu, P. L. 337	Boeckman, R. K. 112, 167
Becker, M. 156 Beddoes, R. L. 299	Boehringer, E. M. 87, 88 Boersma, J. 24, 32, 225–228, 272
Behforouz, M. 124	Boettner, F. E. 300
Behling, J. R. 68, 72, 82, 87, 294, 337	Boggs, R. A. 320
Behrendt, L. 224, 228, 229	Böhme, M. 36, 337
Behrens, C. 3, 38	Boivin, J. 188
Bellemin-Laponnaz, S. 245	Bolan, J. L. 123
Belyk, K. 59, 228	Bolm, C. 227, 230
Benecke, B. 115, 116, 147	Bonini, B. F. 82, 91, 95, 107
Benhaim, C. 133, 236, 238-240, 242, 243,	Bonnelle, J. P. 182
251, 278	Booker-Milburn, K. 95
Bennani, Y. L. 150	Borchardt, R. T. 110
Bennett, S. M. W. 129-131, 282	Borcherding, D. R. 110
Benson, H. D. 148, 149	Born, L. 147, 148
Bergdahl, M. 153, 204	Börner, C. 282
Berger, S. 60, 61, 158, 160, 337	Bos, M. E. 82, 307
Bérillon, L. 47–51	Bosold, F. 3, 35, 36, 38, 45, 145, 337
Berk, S. C. 46, 47, 55, 56, 62, 65, 179, 228	Boße, F. 114

Boßhammer, S. 133	Butora, G. 290
Boudier, A. 61, 64, 145	Buxton, G. V. 338
Bouillon, R. 147	Buynak, J. D. 108
Bower, S. 293	Buzard, D. J. 62, 172, 337
Bowler, J. 148, 149	Buzaru, D. J. 62, 172, 337
Boymond, L. 47, 50	Charact A 00 207 227
Bradley, A. 167	Cabezas, J. A. 99, 307, 337
Brancaleoni, D. 109	Cadiot, P. 329
Brandsma, L. 329	Cahiez, G. 47, 50, 51, 64, 65, 70, 71, 325
Brandt, J. 263, 264	Cairneross, A. 2, 11, 15
Brash, A. R. 300	Calas, R. 82, 107
Brauer, D. J. 328	Caló, V. 211, 263, 266, 267
Breedijk, G. A. K. 5	Calter, M. A. 293
Breit, B. 201, 202, 211, 218	Cambell, S. F. 112
Breitling, F. M. 245	Cameron, J. F. 46
Breneman, C. M. 316	Campbell, A. L. 68, 82, 87, 294
Breque, A. 121	Campbell, J. A. 148
Brestensky, D. M. 168, 169, 171, 172, 174,	Camus, A. 2, 9, 11, 14, 18, 316
175, 179–181, 185	Canè, F. 109
Bretting, C. 318	Canisius, J. 157, 158, 160, 321, 323
Brevard, C. 28	Capella, L. 80, 81, 94, 95, 98
Bricard, J. 98	Caporusso, A. 305
Brilman, M. H. G. 246	Capperucci, A. 82, 89, 90, 94, 107
Britton, R. W. 191	Captain, L. F. 200
Bromm, L. O. 145	Caracciolo, M. 94, 98, 99
Brooks, S. H. 95	Cardillo, R. 208
Brown, E. A. 148	Carlucci, W. F. 211, 266, 267
Brown, H. C. 52	Caroli, C. 148, 149
Brown, J. D. 56	Carr, D. B. 71
Brown, S. M. 129–131, 282	Carreira, E. M. 98, 100, 177, 178
Brown, T. L. 27	Carruthers, W. 227, 228
Brownawell, M. L. 328	Casarini, A. 94, 109
Brueggemeier, R. W. 148, 149	Casey, C. P. 167, 319, 320, 338
Brunel, J. M. 238, 241	Cassidy, J. 196
Brunner, H. 179	Castelhano, A. L. 157
Brüntrup, G. 86, 87	Caulton, K. G. 10, 169, 170, 179
Bruza, K. J. 112	Ceccarelli, S. 238, 239
Buchwald, S. L. 109, 176, 177, 179, 245	Cereghetti, M. 177
Buckton, G. 1	Cesa, M. C. 319
Bucourt, R. 148	Chaboche, C. 51
Budries, N. 64	Challenger, C. A. 82, 307
Bund, J. 263, 264	Chalon, S. 98
Buono, G. 238, 241	Chan, A. S. C. 234, 237, 239, 241, 250
Burgess, K. 196	Chan, T. H. 179
Burka, L. T. 157	Chandupatla, K. 121
Burns, P. A. 67, 68, 299	Chang, SC. 114
Burns, T. P. 47	Charette, A. B. 59
Burtner, R. R. 148	Charrier, C. 121
Burton, D. J. 5, 122, 123, 328	Chataigner, I. 238, 239
Burton, J. 133, 234, 236, 238, 239, 242,	Chavant, PY. 61, 62, 70, 229
278	Cheeseright, T. 299
Bushell, S. M. 176, 181	Chen, B. 171
Busi, F. 82, 107	Chen, H. 129, 130, 238, 239
Butler, W. M. 65	Chen, H. G. 62, 65

Ø1 17.16 00 04	O T T 4 (1 (0 B) 40(440 49B 44B
Chen, H. M. 80, 81	Corey, E. J. 1, 64, 68, 79, 106, 110, 127, 147,
Chen, HW. 328	175, 199, 200, 206, 211, 225, 233, 243, 245,
Chen, JX. 179–181, 185	246, 259, 290, 294, 299, 316, 319, 321, 325,
Chen, K. 294	334, 335
Chen, R. H. K. 147	Corsten, M. A. 9, 19
Cheng, K. F. 171	Cossio, F. P. 196
<u>.</u>	
Cheng, M. 151, 155	Costa, G. 11, 316
Cheng, W. 209	Cotton, F. A. 10
Chérest, M. 192	Couladouros, E. A. 296
Chiesi-Villa, A. 10, 11	Couty, F. 300
Chiu, P. 171	Cowley, A. H. 31, 125
Cho, DG. 161	Cox, S. D. 82, 89
Chodkiewicz, W. 329	Crabbé, P. 259, 329
Choi, A. Y. H. 147	Cragg, G. M. 300
Chong, J. M. 68, 80–82, 87, 88, 89, 90, 91,	Craig, D. 100
95, 310	Cran, G. A. 129
Chong, W. K. M. 193	Cresson, P. 316
Chopra, A. 39, 81, 334	Crosby, J. 208
Chou, TS. 114, 115	Crotti, P. 283, 284
Chounan, Y. 198, 217, 303, 320, 329	Crow, R. 68
Chow, HF. 86, 104, 293	Crump, R. A. N. C. 85, 86
Chrisman, W. 178, 181, 182, 185	Crump, W. 328
Christenson, B. 233, 320, 321	Cuadrado, P. 80-82, 94, 95, 97, 99, 100-102,
Chung, JU. 161	310
Churchill, M. R. 167, 168, 174	Cuerva, J. M. 106
Ciattini, P. G. 87, 263, 303, 329	Cui, Q. 337
Citineni, J. R. 56, 114	Cuiper, A. D. 246
Claesson, A. 115, 116	Cunningham, A. 129–131, 282
Clardy, J. 298	Curotto, G. 94
Clark, R. D. 290	Curran, T. T. 124
Claver, C. 129–131, 133, 238	Czapski, G. 338
Clayden, J. 196	
Clement, B. A. 290	d
Clive, D. L. J. 103, 105, 337	Daage, M. 182
Coan, P. S. 10	Dabbagh, G. 124, 125, 127, 319, 330, 332,
Coe, P. L. 123	335, 337
Coghlan, M. J. 300	Daeuble, J. F. 169, 172, 175, 179–181, 185
Cohen, G. M. 191	Daniewski, A. R. 175
Cohen, H. 338	Danishefsky, S. J. 294
	Darby, M. V. 148, 149
Coleman, D. 330	•
Collman, J. P. 289, 295, 315	Darcel, C. 61
Comasseto, J. V. 69	Dauber, M. 202
Comes-Franchini, M. 94, 95, 107	Davidsson, Ö. 36, 127, 337
Comins, D. L. 168	Davies, A. G. 83
Conde, J. J. 305	Davies, G. M. 87
Condon, S. M. 100	Davies, S. G. 209, 283
Conia, JM. 335	De Clercq, P. 147
Connor, R. 182	De Dios, A. 298
Conrow, R. E. 148	De Groot, A. 192
Constantieux, T. 238, 241	De Jong, K. P. 3
Cook, J. M. 319	De Jong, R. P. 3 De Laet, R. C. 82, 107
· ·	·
Cook, K. L. 92, 93	De Lera, A. R. 100
Cooper, K. 306, 338	De los Angeles Rey, M. 303
Coppola, G. M. 152	De Marigorta, E. M. 95, 96

De Nitti, C. 263, 267 Dudfield, P. 204, 205 De Vries, A. H. M. 224, 225, 229-234, 239, Duffaut, N. 82, 107 241-243 Duggan, M. E. 296 De Vries, N. K. 230 Dumont, W. 88, 89 De Waal, W. 191 Dunlap, N. K. 188 Dunn, M. J. 62 Decorzant, R. 147 Degen, P. 147, 317, 320 Dunoguès, J. 82, 107 Durner, G. 290 Degl'Innocenti, A. 80-82, 89, 90, 95, 98, Dussault, P. H. 104 Dussin, G. 58 Degrado, S. J. 238, 239, 241, 243 Dehmel, F. 48, 49, 50 Duthaler, R. O. 224, 228 Del Villar, A. 133, 145, 272-275 Dutra, G. A. 328 Delaloge, F. 97, 98 Dygos, J. H. 72 Delapierre, G. 238, 241 Delica, H. F. 198 Dembech, P. 94, 109 Eaborn, C. 33, 337 Eary, C. T. 104 Demel, P. 201, 211, 218 Dempsey, C. E. 208 East, M. B. 114 Denmark, S. E. 95, 129, 218, 263 Echavarren, A. M. 106 Dennis, M. R. 129-131, 282 Eckhardt, M. 60 Deo, N. 127, 128 Eckrich, T. M. 110 DePriest, R. N. 330 Edwards, P. D. 80, 115, 116 Desmond, R. 294 Edwards, P. G. 26, 30, 32 Egert, E. 115, 116, 147 Devasagayaraj, A. 58, 60-62, 229 D'Hallewyn, C. 147 Eguchi, M. 127, 128 Dhanoa, D. 126 Eijkelkamp, D. J. F. M. 129-131, 272 Didiuk, M. T. 245 Eis, M. J. 328, 332 Dieter, J. W. 119, 127, 128 Eisenberg, C. 59, 228 Dieter, R. K. 80, 115-121, 127, 128 Eisenstein, O. 192 Elissondo, B. 112 Diez-Barra, E. 145 Dilts, J. A. 167, 168, 174 Ellis, K. A. 89 DiMichele, L. 87 Ellsworth, E. L. 2, 68,71, 80-83, 87, 95, 307, Dimock, S. H. 68, 80-83, 87, 95, 307, 316, 334 Elsevier, C. J. 80-82, 152 Dixon, N. J. 306 Elworthy, T. R. 68, 113 Dodd, D. S. 89, 90 Emond, P. 98 Dohle, W. 51 Emonds, M. V. M. 95, 310 Dolence, J. M. 296 Enders, D. 88, 209 Dollat, J.-M. 329 Engel, P. 168 Doppalapudi, V. R. 108 Ensley, H. E. 206 Dordor-Hedgecock, I. M. 209 Erdelmeier, I. 263, 264 Dorigo, A. E. 318, 323, 328, 332 Erdik, E. 145, 161, 259, 289, 295 Dömer, W. 57 Eriksson, H. 25, 33 Domyei, G. 290 Eriksson, J. 127 Doyle, T. J. 99 Eriksson, M. 35, 39, 81, 122, 124, 126, 127, Dressaire, G. 39, 332 153, 334, 335, 337, 338 Drew, M. D. D. 176, 181 Erkamp, C. J. M. 20 Drouin, J. 335 Ernst, L. 150 Drozda, S. E. 82, 102, 103 Escher, I. H. 132, 234, 237, 239, 241, 242, Duan, D.-H. 114 317 Duax, W. L. 148, 149 Escher, S. D. 147 Dübner, F. 62, 133, 145, 277, 280, 281 Eubauks, L. M. 296 Duchêne, A. 91, 97, 100 Eujen, R. 328 Duddu, R. 60 Evans, D. A. 200, 201, 293

352	Author Index	
332	Author Index	
	f	Frangin, Y. 98
	Fackler Jr., J. P. 328	Frankland, E. 54
	Faggi, C. 82, 107	Frantz, D. E. 130, 193, 199, 322, 323, 335
	Falck, J. R. 68, 113, 299	Fréchet, J. M. J. 46
	Fall, Y. 303	Fredrick, M. A. 150, 151, 153, 155
	Falmagne, JB. 112	Freer, I. 208
	Fan, B. 300	French, A. N. 148, 149
	Fang, C. 206	Frenking, G. 36, 337, 339
	Fang, JM. 114	Fried, J. H. 325
	Fanta, W. I. 191	Friesen, R. W. 91, 92
	Fargeas, V. 108, 307	Friour, G. 70
	Farina, V. 67, 299, 337	Frotan, M. 108
	Fatheree, P. 126	Frutos, J. 132, 229, 278
	Fearnley, S. P. 290	Fu, G. C. 201, 245
	Fekete, J. 147	Fuchs, P. L. 92, 110, 111
	Felix, D. 224, 228, 229	Fuganti, C. 208
	Felkin, H. 192	Fuji, K. 129
	Feng, X. 245	Fujii, N. 217, 303, 305
	Feringa, B. L. 129, 131–133, 145, 224, 225,	Fujimura, N. 320
	229-234, 236, 239-243, 245, 246, 248, 249,	Fujita, A. 174, 176
	251-254, 276, 283, 284, 317, 340	Fujiwara, T. 82, 106, 113, 122, 299
	Fernandez de la Pradilla, R. 298	Fukushima, M. 340
	Fernandez-Gacio, A. 303	Furlong, M. T. 56, 60, 64, 66, 145
	Ferreira, D. 205	Fürstner, A. 82, 107, 303
	Ferreira, E. M. 176, 177	Furusato, M. 113
	Ferreira, J. T. B. 95, 310	
	Fiandanese, V. 263, 266, 267	g
	Fiaud, J. C. 245, 246	Gaddamidi, V. 300
	Finke, R. G. 289, 295, 315	Gage, J. L. 62
	Fischer Jr., W. F. 1, 26, 188, 259, 316, 328,	Gagné, M. R. 340
	330	Gai, Y. 192, 193, 196, 291
	Fishpaugh, J. R. 31, 125	Gais, HJ. 133, 263, 264
	Fitch, D. M. 293	Galdecki, Z. 148, 149
	Fitzsimons, N. P. 184	Gallagher, D. J. 79, 115, 117, 121
	Flachsmann, F. 61	Galley, G. 196
	Fleming, I. 79-87, 89, 93-97, 100-106, 200,	Gallina, C. 211, 212, 263, 303, 329
	206, 214, 224, 310, 325	Galynker, I. 192
	Flemming, S. 329, 332	Gamasa, M. P. 7
	Fletcher, M. D. 208	Gambarotta, S. 10, 11
	Florencio, F. 147	Ganem, B. 147, 328, 332
	Floriani, C. 10, 11	Ganguli, M. 157
	Floyd, D. M. 34, 335	Garcia, A. M. 303
	Fluckiger, E. 127, 128	García, C. 80, 81, 99, 100, 102
	Fochi, M. 82, 91, 107	Garcia-Blanco, S. 147
	Folting, K. 10	Garcia-Granda, S. 295
	Font, J. 147	Garcia-Ochoa, S. 211
	Forgione, L. 148, 149	Gardner, J. O. 148, 149
	Foubelo, F. 47	Gargano, M. 183
	Fouquet, M. 259	Garreau, L. 98
	Fournioux, X. 133, 236, 238-240, 242, 243,	Garrido, F. 217
	278	Garrison, P. J. 147
	Fraenkel, G. 339	Gastiger, M. 188
	Franchini, M. C. 82, 91, 107	Gatti, G. 208
	Franck, B. 157	Gatti, L. 11, 316

G 1 1 72 04 02	G . E. 202 204
Gavai, A. V. 91, 92	Goto, T. 293, 294
Gawley, R. E. 79, 115	Goubitz, K. 23
Gawronski, J. 107	Gracenea, J. J. 295
Gayo, L. M. 147	Graham, S. L. 192, 245, 246
Geckele, M. J. 339	Grandini, E. 94
Gegnas, L. D. 294	Granja, J. 303
Gehrken, HP. 157	Grant, B. 261, 262
Gellert, R. W. 26, 32	Grasselli, P. 208
Gennari, C. 238, 239	Green, J. C. 338
Georgiadis, R. 325, 339	Green, N. J. 100
Germroth, T. C. 192, 245, 246	Greene, A. E. 64, 228
Gerold, A. 26, 37, 91, 118, 145, 146, 150,	Gregory, C. D. 27, 328
153-156, 158, 160, 161, 188, 233, 259, 289,	Griebenow, N. 196, 198
295, 315, 321, 323, 325	Griedel, B. D. 111
Gerwick, W. H. 208	Grochulski, P. 148, 149
Geynet, C. 148	Gross, T. 62
Ghilardi, C. A.16, 33	Grove, D. M. 3, 9, 11, 19–21, 24, 31, 32, 109,
Ghiringhelli, D. 208	124, 129–131, 145, 272, 273
Ghosal, S. 299	Grump, M. P. 208
Ghribi, A. 162, 269, 270, 332	Grunwell, J. F. 148, 149
Gibbs, R. A. 296, 297	Gschwind, R. M. 3, 37, 38, 316
Gibson, C. L. 129	Gu, R. L. 294
Gibson, C. P. 332	Guastini, C. 10, 11
Gil, S. 86, 87	Guijarro, A. 47
Gilbert, M. 92, 93	Guilloteau, D. 98
Gilbertson, S. R. 82, 307	Guir, C. 162, 269, 270
Gilligan, P. J. 196	Gulevich, Y. 118
Gilman, H. 1, 26, 79, 145, 167, 259, 316	Gum, A. G. 290
Gimeno, J. 7, 282	Gunasekera, G. P. 298
Giolando, D. M. 31, 125	Gunzner, J. L. 299
Giovannini, R. 58	Guo, CY. 328
Girard, C. 316, 330	Guss, J. M. 2, 8, 17
Gladiali, S. 282	Gutierrez, A. 47
Gladstone, P. L. 87, 100	Gyoung, Y. S. 295
Glaser, C. 315	
Gleason, J. L. 294	h
Godel, T. 204, 205	Haakanson, M. 25, 33
Godfrey, A. 110, 111	Habashita, H. 217, 303, 305
Goeden, G. V. 169, 170, 179	Hæffner, F. 340
Goel, A. B. 168	Hafner, A. 224, 228
Goering, H. L. 160, 210-213, 215, 259, 262,	Hagen, W. 126
263, 303, 316, 329	Hagiwara, T. 87
Goldsmith, P. J. 282	Hajos, Z. G. 252
Goldstein, S. 338	Hajra, S. 107
Gómez, A. M. 211	Hale, K. J. 294
Gomez, C. 47	Hale, M. R. 198, 200, 201
Gómez-Bengoa, E. 106	Halkes, K. 303
González, A. M. 80–82, 94, 95, 97, 100–102,	Hallnemo, G. 318
310	Hamada, K. 198, 318
	Hamada C 53
Gonzalez, B. 80, 81	Hamada, S. 53
González-Nogal, A. M. 82, 100, 102	Hamada, Y. 307
Goodman, B. A. 112	Hamano, K. 198
Goré, J. 122	Hamon, L. 35, 298, 335
Gorlier, JP. 35, 298, 335	Han, X. 68

Hanafusa, T. 320	Herley, P. J. 184
Hanazawa, T. 190, 243	Hernández, A. E. 127, 128
Handa, S. 129	Herr, R. W. 327, 328
Handa, Y. 300	Herrero, M. 100
Handke, G. 124, 125, 129, 153–156, 158–	Hewitt, J. M. 339
160, 272	Hibino, JI. 99, 107
Hanessian, S. 181, 192, 193, 196, 291,	Higashi, Y. 84
293	Higgins, D. 103, 104, 106, 214
Hanna, I. 289	Highsmith, T. K. 294
Hannah, D. J. 320	Hikichi, S. 190, 191, 243, 338
Hannon, F. J. 127, 200, 225, 233, 319, 245,	Hill, J. H. M. 85, 86
246	Hill, M. S. 337
Hansen, HJ. 177	Hilmersson, G. 339
Hanson, M. V. 56, 79	Hirai, A. 317, 326, 332, 338–340
Hansson, A. T. 32	
Hara, R. 72, 73	Hirsch, L. K. 148
Harada, H. 68	Hitchcock, P. B. 33, 337
Harding, J. R. 208	Hiyama, T. 174, 176
Harding, K. E. 290	Hoechstetter, C. 65
Hareau, G. 190, 191, 243, 338	Hof, R. P. 246
Hareau-Vittini, G. 190, 191	Hoffmann, R. 328
Harms, K. 3, 35, 36, 38, 45, 145, 196, 198,	Hoffmann, R. W. 193, 291
202, 337	Hoffmann-Röder, A. 129, 131, 145, 157, 224,
Harnischmacher, W. 4	225, 234, 239
Harrington, E. M. 303	Hoge, B. 328
Harris, B. J. 107	Hohmann, M. 152, 153, 155
Harris, D. J. 193	Hojo, M. 68
Harris, T. M. 157, 300	Holoboski, M. A. 100
Hart, G. C. 115	Holub, D. P. 80
Hartgraves, G. A. 123	Honda, K. 188
Hashimoto, M. 293, 294	Honda, Y. 198
Hashimoto, SI. 293	Hong, C. Y. 106
Hatanaka, H. 293, 294	Honkan, V. 319
Hathaway, B. J. 4, 6	Hope, H. 2, 32, 34, 150
Haubrich, A. 124, 125, 129, 154, 272	Hopkins, W. T. 320
Hayashi, T. 174, 180, 227, 255, 277	Hopper, R. 4
Hayashi, Y. 109, 209	Hopwood, D. A. 208
Hay-Motherwell, R. S. 188	Horiguchi, Y. 46, 190, 290, 324, 333, 334
He, F. 114	Horino, H. 198, 320
He, HM. 296	Horn, E. 272
He, X. 12	Horne, K. 110
Heathcock, C. H. 192, 245, 246, 290	Horváth, I. T. 340
Hebborn, P. 148, 149	Hoshino, F. 182
Hegedus, L. S. 83, 289, 295, 315	Hösl, C. E. 92
Heider, KJ. 88	Hosoi, S. 129
Heijdenrijk, D. 14	Hosomi, A. 68, 81, 173, 177, 182
Heinzer, J. 339	Hotta, Y. 305
Heiser, B. 177	Houpis, I. N. 87
Helal, C. J. 64	House, H. O. 1, 26, 79, 188, 259, 316, 318-
Helmchen, G. 204, 340	320, 328, 330, 337
Henderson, I. 196	Hoveyda, A. H. 198, 200, 201, 238, 239, 241,
Henning, R. 82	243, 245
Henrichs, M. 339	Hruby, V. J. 205
Herald, D. L. 300	Hsieh, K. C. 157
,	,

Hsu, J. 123	Ishizuka, T. 81, 173, 177, 182
Hu, X. 129, 130, 238, 239	Ito, H. 81, 173, 177, 182
Huang, A. X. 175	Ito, S. 198
Huang, H. 36, 316, 337, 339	Ito, Y. 80, 81, 103, 105, 115, 116, 212
Huang, X. 109, 114	Itoh, K. 179, 185
Hubaut, R. 182	Itoh, M. 52
Hübner, J. 196	Iwao, M. 109
Hudlicky, T. 290, 300	Iwasa, I. 182
Hudson, R. D. A. 209	
Huerta, F. F. 47, 277	j
Huffman, J. C. 10, 179	Jachiet, D. 332
Hughes, R. A. 208	Jackson, R. F. W. 62, 293
Hui, R. C. 112	Jacobsen, E. N. 245
Hulce, M. 124, 150, 151, 153, 155	Jacquesy, JC. 148
Hull, K. 106	Jacquesy, R. 148
Hulshof, L. A. 109	Jaeschke, G. 131, 225, 226, 234
Hulst, R. 230	Jagdmann Jr., G. E. 115, 116
Humphrey, J. M. 108	Jaime, C. 147
Hung, M. H. 123	James, B. 35, 172, 334, 337
Hupe, E. 61, 64	James, S. L. 3, 6, 8, 18, 26, 37, 145, 316
Huseland, D. E. 169, 172	Jandeleit, B. 209
Hutchinson, D. K. 110, 111	Janikaram, C. 56
Huttenloch, O. 234, 237	Jansen, B. J. M. 192
Hutzinger, M. W. 80, 81, 82, 87, 95-98	Janssen, M. D. 3, 9, 19, 24, 32, 124, 225, 226,
Hwang, CK. 296	272
Hwang, CS. 35, 145	Jarosinski, M. A. 205
Hwu, CC. 114	Jarvis, J. A. J. 6, 27
-,	Jastrzebski, J. T. B. H. 3, 6, 8, 14–20, 22, 25,
i	26, 28, 29, 36–38, 145, 316, 337
Ibuka, T. 198, 217, 263, 264, 289, 295, 303,	Jeong, N. 56, 109, 114
305, 315, 320, 329	Jerris, P. J. 316, 332
Ichikawa, J. 53, 123	Jesser, F. 127
Iglesias, B. 100	Jézéquel, M. 51
Fida, A. 227	Jin, Z. 92
Fida, T. 340	Johansson, A. 335
Fikura, H. 317, 319	John, M. 3, 37, 38, 316
Ikariya, T. 9	Johnson, C. R. 126, 327, 328
Ikebe, M. 318, 324	Johnston, J. O. 148, 149
Imai, H. 115, 116	Jones, A. B. 294
Imaki, N. 303	Jones, P. 55, 59, 60, 61, 65, 67, 122, 127,
Imamoto, T. 127, 238, 239	145
Imanaka, H. 294	Jones, P. G. 196
Imanieh, H. 87	Jones, R. A. 31, 125
Imbos, R. 231–234, 239, 241–243, 246, 248,	Jones, R. G. 1, 26, 79, 145, 167, 259, 316
249	Jones, T. K. 294
Inamura, N. 294	Jones, W. 184
Ingham, S. 112	Jørgensen, P. M. 318
Inoue, H. 198, 318	Jousseaume, B. 94
Inoue, S. 188	Joußen, R. 116, 121
Ireland, R. E. 53, 54, 294	Jubert, C. 65, 66, 114, 115, 118
Isaka, M. 316, 325, 334	Jukes, A. E. 316
Ishihara, Y. 147	Jukuta, J.I. 198, 318
Ishikawa, M. 82	Jurkauskas, V. 176, 177
Ishikura, M. 115, 116	Jyojima, T. 293
20000000, 1711 225, 220	// -/

-		
	k	Kin, H. 207
	Kabalka, G. W. 113	Kindon, N. D. 82, 206
	Kabasawa, Y. 299	Kingma, A. J. 205
	Kabbara, J. 329, 332	Kingsbury, C. L. 191, 318
	Kadib-Elban, A. 147	Kino, T. 293, 294
	Kado, N. 106	Kinoshita, M. 293
		· · · · · · · · · · · · · · · · · · ·
	Kagan, H. B. 245, 246, 316, 330	Kirmeier, F. 148, 149
	Kajiro, H. 174, 176	Kirova-Snover, M. 63
	Kalish, V. J. 72	Kissel, W. S. 205
	Kameyama, Y. 299	Kissling, R. M. 340
	Kamikubo, T. 84	Kitahara, H. 198
	Kanai, M. 132, 133, 225, 226	Kitamura, M. 65, 126, 243, 227, 233, 322
	Kanai, T. 317, 340	Kitching, W. 102, 103
	Kanand, J. 196, 198	Klapars, A. 109
	Kang, SK. 161	Klassen, R. B. 129, 130
	Kantner, S. S. 211, 213, 215, 259, 262, 263,	Kleijn, H. 337
	303, 316, 329	Klein, J. 325
	Kapadia, S. 67, 299	Klinge, M. 115, 116, 147
	Kapteijn, G. M. 19-21	Klunder, J. M. 296, 315, 316, 327
	Karlström, A. S. E. 102, 133, 145, 262, 273-	Knierzinger, A. 177
	275, 277, 329	Knöbel, A. K. H. 132, 234, 237, 239, 241,
	Katagiri, T. 196	242, 317
	Katayama, H. 271	Knochel, P. 36, 46–51, 53, 55–67, 80, 82,
	Kato, K. 157, 340	109, 114, 115, 118, 122, 127, 133, 145, 227–
	Katzenellenbogen, J. A. 148, 149, 325	229, 250, 277, 280, 281, 329, 337
	Kauffmann, T. 116, 121	Knoess, H. P. 56, 60, 64, 66
	Kawabata, Y. 128	Knotter, D. M. 2, 14, 20, 24, 31, 32, 124, 225,
	Kawachi, A. 80, 81, 103, 105, 212	226, 272 Frankl C 204
	Kawafuji, Y. 320	Knühl, G. 204
	Kawahama, R. 99	Kobayashi, H. 53
	Kawamoto, T. 174	Kobayashi, T. 115
	Kawasuji, T. 329	Kochi, J. K. 259, 328, 330, 338
	Keay, B. A. 87, 89, 90, 91	Kocienski, P. 112, 306, 338
	Keil, R. 145	Koenig, T. M. 169, 172
	Keith, J. 172, 176, 178, 202, 337	Koerner, M. 68, 82, 87, 126, 294, 296
	Keller, E. 232, 236, 239–241, 243, 252, 253,	Koga, K. 132, 206, 226
	317	Koga, M. 295
	Kellogg, R. M. 246	Koga, N. 340
	Kelly, N. M. 208	Kogure, T. 179
	Kelly-Borges, M. 298	Kohsaka, M. 294
	Kendall, P. E. 320	Koiwa, M. 190, 243, 338
	Kennedy, A. R. 129	Koizumi, M. 179
	Kerb, U. 148	Kojima, M. 115
	Khan, S. I. 30, 32	Kolonits, P. 147
	Kharasch, M. S. 1, 79, 167, 315	Komatsu, M. 190, 318, 324, 334
	Kieft, R. L. 27	Komiya, S. 328
	Kiegiel, J. 175	Kondo, M. 179
	Kieslich, K. 148	Konigsberger, K. 300
	Kilburn, J. D. 86	Koningsberger, R. 500 Koningsberger, D. C. 3
	Kim, C. U. 147	Kooijman, H. 19
	Kim, DY. 161	Koop, U. 156, 159, 160
	Kim, K. D. 95, 96, 99	
		Koosha, K. 318, 320, 325
	Kim, S. H. 92	Kopf, J. 337
	Kim, Y. 98, 100	Kosaka, K. 238

Tr 1 1: T 4 5	1 16 00
Koslowski, J. A. 2	Lasne, M. C. 98
Kosugi, H. 71	Lastra, E. 7
Kotora, M. 72–74	Laucher, D. 127, 132
Kotsuki, H. 51	Launay, V. 91, 97, 98
Koyano, H. 295	Laux, M. 156, 157
Kozima, S. 160, 317	Lavallee, P. 181
Kozlowski, J. A. 126, 188, 200, 202, 289, 294,	Lawrence, N. J. 93, 103, 104, 176, 181, 214
302, 315, 316, 337	Lawson, K. 293
Kramer, J. D. 168	Laycock, B. 102, 103
Kramer, S. W. 72	Lazzari, D. 94, 109
Krantz, A. 157	Lea, L. 278
Krause, N. 3, 26, 35, 37, 38, 45, 81, 91, 118,	Leahy, J. W. 100
124, 125, 129, 131, 145, 146, 150, 152–162,	Leazer Jr., J. L. 100
188, 192, 224, 225, 233, 234, 239, 259, 272,	Lee, D. 83, 84
289, 295, 315, 317, 321, 323, 325, 337	Lee, D. H. 340
Krauss, S. R. 319, 320, 323	Lee, G. 209
Kreft, A. 211	Lee, J. I. 68
Kretchmer, R. A. 127	Lee, J. M. 106
Kreuger, J. A. 192	Lee, R. J. 104
Kreutzer, K. A. 179	Lee, S. 112
Krief, A. 88, 89	Lee, SH. 87, 151, 155
Krishnan, B. 67, 299	Lee, SY. 180
Krishnan, U. 296	Leheski, L. 160
Kronenburg, C. M. P. 36, 37, 145, 337	Lehmann, R. 72
Krüger, J. 177, 178	Lemieu, R. M. 92, 93
Kuehnl, K. 208	Lenders, B. 11
Kuilman, T. 109	Lentz, C. M. 338
Kumada, M. 224, 228	Lentz, R. 57
Kumar, R. 108	Leonard, J. 145, 194, 224
Kuroboshi, M. 172	Leoni, P. 16, 33
Kuroda, A. 293	Lepore, S. D. 310
Kuroda, S. 168	Leprêtre, A. 47, 50
Kusuda, S. 87	Lesur, B. M. 193
Kuwajima, I. 46, 190, 233, 290, 324, 332-334	Leusink, A. J. 2, 8, 9, 13, 14, 17, 19, 27
Kwon, H. B. 340	Levene, R. 325
Kyler, G. P. 299	Levêque, JM. 133, 236, 238-240, 242, 243,
	278
1	Levin, D. 121
Laakso, L. M. 294	Levisalles, J. 35, 298, 335
Laaziri, H. 47, 50	Lewis, M. D. 303
Laboroi, F. 107	Leyendecker, F. 127, 132, 335
Lagu, B. 127, 128	Li, G. 205
Lai, ML. 114	Li, J. J. 205
Laine, R. M. 64	Li, N. 148, 149
Lallemand, J. Y. 97, 108, 307	Li, NS. 113
Lambert, F. 24, 32, 129-131, 225, 272	Liang, C. H. 36, 316, 339
Landais, Y. 102	Liao, JW. 63
Landor, S. R. 152	Liao, Y. 209
Landré, P. D. 73	Liebeskind, L. S. 67, 299
Langer, F. 60–62, 229	Liepins, V. 102
Langlois, Y. 39, 332	Lilley, T. J. 148, 149
Lansard, JP. 228	Lim, L. 54
Lappert, M. F. 2, 6, 11, 27	Lin, JJ. 168, 337
Lardicci, L. 305	Lin, S. 209
Laturcu, L. 303	ын, в. 202

ı		
	Lin, SY. 115, 116, 127, 128	Majdalani, A. 209
	Lincoln, A. L. 340	Majetich, G. 106
	Linde, R. G. 294	Majid, T. N. 46, 47, 56, 65
	Lindeman, S. V. 338	Mak, A. N. S. 14
	Linden, A. 196	Makino, K. 293
	Linderman, R. J. 110, 111, 325	Malan, C. 278
	Lindsey, C. 145	Maleczka Jr., R. E. 100
	Liotta, D. C. 200	Malmberg, H. 115, 116, 126
	Lippard, S. J. 129, 130, 225, 226, 340	Malone, J. F. 2
	Lipshutz, B. H. 2, 26, 34, 35, 45, 51, 62, 68,	Mandal, S. 209
	70–72, 80–83, 87, 95, 107, 113, 122, 126,	
	145, 161, 167, 172, 173, 176, 178, 181, 182,	Mandeville, W. H. 335 Mandoli, A. 233, 234, 239, 241, 242
	185, 188, 189, 200, 202, 224, 228, 259, 289,	
	294–296, 302, 307, 315, 316, 329, 330, 332,	Manganiello, S. 89
		Mangeney, P. 132, 133, 161, 162, 229, 234,
	334, 335, 337	236, 238, 239, 269, 270, 278, 329
	List, B. 290	Mann, A. 217
	Liu, D. R. 106	Manyem, S. 224, 225, 234, 239
	Liu, H. 147	Marble, L. K. 129, 218, 263
	Liu, JC. 86, 87	March, S. 133, 239, 240, 243, 278
	Liu, L. 294	Marchese, G. 211
	Liu, R. 209	Marchi, D. 82, 102
	Liu, W. 175	Marcoux, J. F. 59
	Liu, Y. 73	Marek, I. 98, 162, 269, 270, 329
	Lo, LC. 63	Marini, E. 109
	Lobkovsky, E. 298	Marino, J. P. 80, 95, 298, 310, 325
	Locke, A. J. 277	Marks, M. W. 26, 32
	Löher, H. 205, 206	Marquais, S. 64, 70, 71
	Long, J. K. 95, 310	Marsch, M. 3, 35, 36, 38, 45, 145, 337
	Longeau, A. 60	Marshall, J. A. 148, 191, 192, 283, 300, 302,
	Loots, M. J. 71	315, 316, 329
	Lopez, L. 211, 263, 266, 267	Marsich, N. 2, 9, 11, 14, 18, 316
	López, S. 100	Marsman, J. W. 5, 27
	Lorenz, C. 177	Martel, S. 95
	Lorenzen, N. P. 28	Martin, S. F. 31, 108, 125, 147
	Lotz, M. 145	Martinez Carrera, S. 147
	Lu, K. 117, 118, 121	Martinez-Perez, J. A. 303
	Lu, L. 122, 123	Martynova, V. F. 4
	Luche, JL. 228, 329	Maruoka, K. 108
	Luong-Thi, NT. 188	Marusawa, H. 293
	Lütjens, H. 59, 228	Maruyama, K. 82, 147, 264, 289, 325
	Lutz, C. 61, 122, 127	Mason, R. 2, 8, 17
		Masse, C. E. 82
	m	Mastrorilli, P. 183
	Ma, J. 192, 193, 291, 293	Mathey, F. 121
	Ma, S. 92	Matsubara, S. 99, 107, 160, 317
	Macchia, F. 283, 284	Matsui, J. 128, 226
	Macdonald, T. L. 337	Matsumoto, K. 129, 130, 225, 226
	MacLeod, D. 87	Matsumura, S. 293
	Madl, R. 30	Matsunaga, K. 113, 299
	Maeda, M. 115	Matsuura, T. 115, 116
	Maeda, T. 82	Matsuzawa, S. 46, 290, 316, 325, 334
	Magriotis, P. A. 95, 96, 99	Mauclaire, L. 98
	Mahoney, W. S. 168, 169, 171, 172, 174, 175	Maurer, J. 236, 241, 243
	Maier, M. E. 114, 290	Maurya, R. 300

16 / E 20/ 200 212	10 12 4 6 0
Mazé, F. 236, 238, 242	Miyashita, A. 6, 9
Mazur, P. 148, 149	Miyata, S. 294
Mazzanti, G. 82, 91, 95, 107	Miyauchi, Y. 65
McCarthy, K. E. 51, 126, 200, 202	Miyaura, N. 52, 227, 255
McCarty, P. J. 298	Mizuchi, M. 129
McCauley, J. A. 100	Mizutani, H. 238, 239, 241, 243
McDonald, W. S. 2	Mobley, T. A. 61, 158, 160, 337
McEachern, E. J. 67, 68, 87, 100, 299	Mochizuki, M. 172
McGettigan, C. 169, 172	Modi, S. P. 148, 149
McIntosh, D. 4	Mohialdin, S. 194
McKay, T. 148, 149	
· ·	Mohr, J. 329, 332
McKenzie, J. R. 110	Mojet, B. L. 3
McLaughlin, K. T. 72	Molander, G. 52
McLeod, M. D. 293	Molina, A. 87
Medina, R. 208	Montury, M. 122
Meetsma, A. 230, 233, 236, 241–243	Moon, CW. 53, 54
Meijer, J. 80–82, 95, 329, 337	Moore, H. W. 147
Mendelson, W. 305	Morao, I. 196
Méndez, M. 106	Mordini, A. 89, 90, 94, 98, 99
Ménez, P. L. 108, 307	Moreau, B. 98
Merino, S. 145	Moreno, L. 290
Messina, F. 98	Morera, E. 87
Métais, É. 70	Moretti, R. 68, 82, 87, 204, 205, 294
Meunier, A. 205	Mori, A. 174, 176
Meuzelaar, G. J. 133, 145, 273–275, 277	Mori, S. 3, 7, 39, 127, 145, 193, 228, 233,
Meyer, E. M. 11	262, 318, 322–326, 329, 330, 332, 335, 338–
Meyers, A. I. 80, 115, 116	340
Meyerstein, D. 338	Mori, T. 238
Miao, G. 35, 39, 122, 124, 126, 127, 128, 334,	
335, 337, 338	Moritani, Y. 176, 177
Michaelides, M. R. 193	Moriya, M. 84
Michalak, R. 167	Morizawa, Y. 82, 95, 96, 99, 100, 107
Micouin, L. 60	Morizono, D. 190
Miehling, W. 179	Morken, P. A. 123
Miginiac, P. 147	Morokuma, K. 127, 193, 262, 318, 322, 324-
Mihina, J. S. 148	326, 329, 330, 332, 340
Miki, T. 65, 126, 233, 243, 322	Moro-oka, Y. 340
Millar, J. B. A. 298	Morton, H. E. 68, 82, 87-91, 310
Miller, N. D. 299	Morzycki, J. 188
Millot, N. 59	Motherwell, W. B. 188
Mills, R. J. 205	Mourino, A. 303
Mills, S. G. 294	Mu, YQ. 296, 297
Milner, N. E. 123	Mühlenbruch, B. 148, 149
Milowsky, A. 148, 149	Mujsce, A. M. 330
Miltz, W. 294	Mukaiyama, T. 113, 127, 196, 291
Minami, T. 123, 209	Muller, B. 97, 98
Minnaard, A. J. 245, 246, 248, 249, 253, 254	Müller, F. 15, 28, 337
Miura, K. 173	Müller, H. 167, 263, 264
Miura, N. 305	Müller, P. 283, 285
Miwa, M. 115, 116	Mulzer, J. 86, 87, 290
Miwa, Y. 305	Munch-Petersen, J. 318
Miya, B. 182	Murase, H. 293
Miyaji, K. 65	Murray, M. 208
Miyake, N. 157	Muthard, J. L. 168

360	Author Index	
•	Mutti, S. 132, 278	Nilsson, M. 115, 116, 126, 145, 204, 335
	Muxworthy, J. P. 129-131, 282	Nishihara, Y. 72, 73, 174, 176
		Nishii, S. 198, 217, 320
	n	Nishiyama, H. 179, 185
	Naasz, R. 232-234, 236, 239-243, 245, 246,	Nishiyama, M. 294
	252–254, 317	Nitta, K. 310
	Nacci, A. 263, 266, 267	Niu, Q. J. 56
	Naef, R. 127, 225, 233	Niwa, S. 227, 233
	Näf, F. 147, 317, 320	Niwa, S. 55
	Nagakawa, Y. 238	Nobel, D. 12
	Nagaoka, Y. 224–226, 238 Nagarajan, L. 194, 195, 294	Node, M. 129
	Nagasawa, T. 300	Noguchi, Y. 293 Noller, C. R. 259
	Nagatsuka, T. 207	Noltemeyer, M. 115, 116, 147
	Najera, C. 47	Noltes, J. G. 2, 4, 7–9, 11, 13–19, 21–23, 25–
	Nakagawa, Y. 129, 130, 225, 226, 317, 340	29, 37, 38, 316
	Nakahira, H. 318, 324	Normant, J. F. 70, 82, 98, 132, 145, 161, 162,
	Nakai, K. 217, 303, 305	269, 270, 278, 289, 295, 309, 315, 316, 324,
	Nakai, T. 121	325, 329, 332
	Nakajima, N. 74, 293	Norton, J. R. 289, 295, 315
	Nakamura, E. 3, 7, 39, 46, 70, 127, 145, 161,	Noson, K. 178, 181, 182, 185
	193, 228, 233, 262, 289, 290, 295, 315–319,	Novak, L. 147
	322–326, 329, 330, 332–336, 338–340	Noyori, R. 65, 126, 179, 188, 227, 233, 243,
	Nakamura, M. 325, 329, 332, 338, 339, 340	295, 322
	Nakamura, T. 179 Nakanishi, N. 160, 317	Nozaki, H. 82, 83, 95, 96, 99, 100, 107, 112 Nunn, C. M. 31, 125
	Nakano, K. 65, 126, 233, 243, 322	Nury, P. 283, 285
	Nakao, T. 217	Nysted, L. N. 148
	Nakata, M. 293	Nyzam, V. 114
	Nakatsuka, M. 294	,
	Nakayama, M. 129	o
	Narakuma, M. 193	Oakley, M. A. 129–131, 282
	Narasaka, K. 109, 113	Ochiai, T. 294
	Narbonne, C. 148	Oda, H. 82, 100, 209
	Nardin, G. 10, 11, 14	O'Donnell, M. J. 112
	Naruta, Y. 82	Oehlschlager, A. C. 54, 80–82, 87, 89, 90, 93,
	Naso, F. 211	95–99, 102, 307, 337 Oertendahl, M. 25, 33
	Nativi, C. 82 Naumann, D. 328	Oertendahl, M. 25, 33 Ogasawara, K. 84
	Negishi, EI. 45, 55, 168, 224, 228, 316, 325	Ogasawara, M. 227, 255
	Neipp, C. E. 108	Ogawa, S. 82, 106
	Nelson, A. 196	Ogawa, T. 206
	Nemeth, G. A. 106	Ogle, C. A. 39, 81, 334
	Nemoto, H. 217, 303	Oguchi, Y. 303
	Net, G. 129-131, 133, 238	Ogura, H. 198, 318
	Newton, M. G. 106	Ohara, Y. 65
	Newton, T. W. 80-82, 93	Ohba, S. 207
	Ng, J. S. 68, 72, 82, 87, 294	Ohkuma, T. 179
	Nguyen, S. L. 51, 126, 200, 202	Ohloff, G. 147, 317
	Nice, L. E. 115, 117, 119–121	Ohno, H. 305
	Nickisch, K. 329, 332	Ohta, M. 198
	Nicolaou, K. C. 196, 289, 295, 296, 299 Niemann, N. C. 28, 29	Ohta, N. 82, 106 Ohtani, H. 103, 105, 212
	Nilsson, K. 3, 36, 38, 91, 118, 194, 325, 337	Ojima, I. 179, 340
	, 2, 50, 50, 71, 110, 177, 523, 537	- January &

Okabe, M. 340	Parker, D. C. 82
Okamoto, S. 65	Parker, V. D. 259
Okamura, T. 177	Parkinson, J. A. 208
Okuda, Y. 95, 96	Parrain, JL. 91, 97, 98, 100
Okuhara, M. 294	Parrish, D. R. 252
Okura, S. 112	Parsons, P. J. 95
Olbrich, F. 337	Pasquali, M. 16, 33
Oliveira, A. R. M. 95, 310	Passamonti, U. 107
Oliver, J. P. 80, 81	Patai, S. 152
Olivier, E. 192, 193, 291	Patel, S. K. 81, 82, 84
Olmstead, M. M. 11, 12, 29, 30, 34, 337	Paterson, I. 293
Olsson, T. 153, 204, 335	Patterson, R. G. 127, 128
Omori, H. 340	Pätzel, M. 196
Omura, H. 2	Pavia, M. R. 196
Ono, N. 65, 271	Pavlovich, J. G. 172, 337
Ono, Y. 198	Payne, A. H. 100
Onoguchi, Y. 300	Pearce, R. 2, 6, 11, 27
Opatz, T. 290	Pearson, R. G. 27, 328
Oppolzer, W. 204–206	Pecchi, S. 89, 90
Oram, D. 2, 32	Pedrocchi-Fantoni, G. 208
O'Reilly, J. M. 148, 149	Pegues, J. F. 168
Orsini, F. 206	Pelizzoni, F. 206
Ortar, G. 87	Peng, S. 209
Ortuno, R. M. 147	Penner-Hahn, J. E. 36, 316, 337, 339
Osborn, J. A. 167, 168, 174	Pereyre, M. J. 112
Osborn, M. E. 168	Perez, R. G. 161, 269
Osborne, S. A. 209	Perlmutter, P. 145, 161, 224, 289, 315
Oshima, K. 82, 95, 96, 99, 100, 107	Perrio-Huard, C. 98
Ostwald, R. 59, 228	Perry, D. A. 325
Otaka, A. 303, 305	Persson, E. S. M. 24, 32, 133, 145, 261, 262,
Otera, J. 112	272–275, 329 Partiana B 205
Oth, J. F. M. 339	Pertierra, P. 295
Ouannes, C. 39, 332	Pesce, G. 211, 266, 267
Overman, L. E. 106	Peter-Katalinic, J. 290
Overton, K. H. 208	Petraglia, S. P. 82, 102, 103
Ozbalik, N. 188	Petrier, C. 228
Ozin, G. A. 4	Petrow, V. 148, 149
	Pettig, D. 115, 116, 147
<i>p</i>	Pettit, G. R. 300
Pachinger, W. 205	Pfaltz, A. 129–132, 225, 226, 234, 237, 239,
Pageukopf, B. L. 177, 178	241, 242, 275, 317
Paisley, S. D. 160	Philippe, M. 148
Palomo, C. 295	Piarulli, U. 238, 239
Pâmies, O. 129–131, 133, 238	Pichota, A. 131, 225, 226, 234, 322
Pancrazi, A. 97, 98, 108, 307	Picken, D. 208
Panek, E. J. 338	Piekstra, O. G. 109
Panek, J. S. 82	Pierce, H. D. 89, 90
Papa, P. 176, 178	Piers, E. 67, 68, 80-82, 87-93, 95, 100, 191,
Paparizos, C. 328	299, 310
Papasergio, R. I. 14	Piette, L. H. 259
Paquette, L. A. 168	Pimm, A. 306
Park, Y. S. 79, 115, 117, 121	Pineschi, M. 231–233, 239–243, 246, 252,
Parker, D. 85, 86	253, 283, 284, 317
Parker, D. A. 51, 126, 200, 202, 296	Pittam, J. D. 148, 149
	• •

362	Author Index	
•	Plaut, H. E. 82	Reed, J. N. 109
	Plé, N. 47	Reetz, M. T. 196, 198, 234, 237, 239, 250
	Pliura, D. H. 157	Refn, S. 318
	Poisson, J. 108, 307	Reginato, G. 80, 81, 89, 90, 94, 95, 98, 99,
	Poli, G. 89, 98, 205	109
	Polizzi, C. 305	Reich, R. 1, 79
	Pommier, A. 306	Rein, K. 79
	Porciatti, E. 94	Renaud, J. 299
	Posner, G. H. 1, 2, 79, 124, 145, 161, 188, 259, 289, 295, 296, 315, 316, 327, 335, 338	Respess, W. L. 1, 26, 79, 316, 318, 320, 337 Retherford, C. 145
	Poulter, C. D. 296	Rettig, S. J. 91, 92
	Power, J. M. 31, 125	Reuter, D. C. 68, 80-83, 87, 95, 107, 307
	Power, P. P. 2, 11, 12, 26, 29, 30, 32, 34, 35,	Ricci, A. 47, 50, 51, 80-82, 91, 94, 95, 98,
	81, 145, 316, 337	107, 109
	Prasad, A. S. B. 56, 114	Rice, E. M. 82, 102, 103
	Pregosin, P. S. 225, 226, 234, 322	Richard-Foy, H. 148
	Prie, G. 100	Richards, C. J. 277
	Provins, L. 88, 89	Richter, W. 10
	Prudent, N. 192 Prunet, J. 97, 98	Rieke, R. D. 47, 56, 79, 228 Rieker, W. F. 115, 116
	Psaume, B. 122	Rietveld, M. H. P. 19
	Pulido, F. J. 80–82, 93, 94, 95, 97, 99, 100–	Riew, C. K. 188, 245, 246
	102, 310	Rigby, J. H. 63
	Pulley, S. R. 303	Rihs, G. 129–131, 225, 226, 277
	Purpura, M. 161, 162	Rincón, J. A. 80, 81, 99, 100
		Ringold, C. 106
	q	Rivière, H. 188
	Quayle, P. 87, 299	Roberge, J. Y. 80, 81
	Quéguiner, G. 47, 50 Quinn, N. R. 82, 102, 103	Roberts, B. E. 299 Roberts, E. 209
	Quintard, JP. 98, 99, 112	Roberts, M. A. 208
	Quintara, 7, 11 20, 22, 112	Robinson, D. J. 294
	r	Roebke, H. 148, 191, 192
	Raabe, G. 88, 263	Roelofs, J. C. A. A. 3
	Ragan, J. A. 294	Roessler, F. 81, 82, 93
	Rahman, M. T. 32	Rogers, C. 80
	Raithby, P. R. 102	Rohaly, J. 147
	Rajagopal, D. 114, 115	Röhrig, D. 196
	Rajamohanan, P. R. 3, 37, 38, 316	Romero, M. A. 87, 299 Rona, P. 259
	Rakotoarisoa, H. 161, 269 Ramazzotti, D. 282	Roper, T. D. 294
	Ramon, D. J. 47	Rosset, S. 133, 236, 238–240, 242, 243, 278
	Randaccio, L. 10, 11, 14	Rossi, J. 208
	Rao, C. P. 225, 226	Rossi, M. 183
	Rao, S. A. 67, 114, 115, 145	Rossiter, B. E. 39, 79, 127, 128, 145, 188,
	Raston, C. L. 14	203, 224, 317, 323, 334, 335, 337, 340
	Ravasio, N. 183	Roth, H. J. 148, 149
	Reamer, R. A. 294	Rotteveel, M. A. 14
	Reddy, C. K. 61	Rottländer, M. 47, 50 Rouden, J. 300
	Reddy, K. V. 127, 128 Reddy, N. L. 82, 85, 86	Roush, W. R. 193, 293
	Redeuilh, G. 148	Rowley, M. 82, 100, 102
	Reed, A. B. 185	Roy, S. C. 194, 195, 294
	Reed, D. 194	Roy, T. 328

Rozema, M. J. 56, 59, 64, 66, 67, 109, 114,	Schmidlin, T. 86, 87
145, 228	Schmidt, H. L. 208
Rubio, R. 80–82, 95, 97, 310	Schmidt, J. M. 300
Ruble, G. 245	Schmitter, J. 160
Ruden, R. A. 148	Schneider, J. A. 338
Ruitenberg, K. 80–82, 95	Schöllkopf, U. 115, 116, 147
Ruiz, A. 129–131, 133, 238	Schonholzer, P. 177
Russell, P. 298 Rutjes, F. P. J. T. 296	Schoone, J. C. 7, 21, 22 Schrader, T. 236, 241, 243
Rutjes, F. P. J. T. 296 Ryan, G. 194	Schreiber, S. L. 294
Ryan, W. 118, 119	Schubert, U. 177
Rycroft, D. S. 208	Schulze, E. 115, 116, 147
Ryu, I. 318, 324	Schuster, H. F. 152
Nyu, N 310, 321	Schwartz, J. 71
s	Schwartzentruber, K. M. 188
Sabbe, K. 147	Schwarz-Kaske, R. 208
Saegusa, T. 115, 116, 174	Schwink, L. 60, 61, 62
Sagawa, Y. 300	Scilimati, A. 263, 267
Sahlberg, C. 115, 116	Sclafani, J. A. 81, 178
Sakai, K. 206	Scommoda, M. 263, 264
Sakai, M. 227, 255	Scott, M. E. 95, 96
Salinger, R. M. 259	Seagle, P. 39, 81, 334
Salomon, R. G. 194, 195, 294	Secco-Millet, C. 148
Salvadori, P. 239, 241	Seconi, G. 80, 81, 94, 95, 98, 109
Sammakia, T. 132, 133, 225, 226, 277, 294	Sedrani, R. 162, 269, 270
San Filippo Jr., J. 1, 26, 167, 259, 316, 328,	Seebach, D. 107, 131, 224-226, 228, 229,
330, 338	234, 250, 251, 293, 322, 339
Sánchez, A. 94	Seitz Jr., E. P. 212, 213, 329
Sanchez-Ferrando, F. 147	Seitz, D. E. 87
Sandell, J. 34	Seitz, L. M. 30
Sanderson, P. E. 82	Seitz, S. P. 196
Santa, L. E. 66	Sellén, M. 261, 262
Sarakinos, G. 243	Selling, G. W. 109
Sarkar, A. K. 86, 87, 209	Semmelhack, M. F. 168
Sasai, H. 224, 340	Senda, T. 227, 255
Sasaki, N. 52	Sengupta, S. 2, 26, 45, 122, 145, 161, 167,
Sato, F. 65, 190, 191, 243, 296, 338	172, 173, 188, 259, 289, 295, 315
Sato, M. 296, 299	Sevin, M. A. 329
Sato, S. 188	Sewald, N. 126, 130, 251
Sato, T. 112	Seyferth, D. 112
Satomi, H. 174	Sharma, R. R. 118, 119
Savignac, P. 121	Sharma, S. 2, 54, 68, 80–83, 87, 93, 95, 107
Sawabe, K. 122	Sharp, K. S. 191, 318
Sawamura, M. 317, 319	Sharpless, K. B. 227, 230
Schaap, C. A. 16	Shay, J. J. 107
Schabbert, S. 84	Shearer, B. G. 148
Schäfer, H. 251	Sheldon, R. A. 109
Schaumann, E. 84	Shen, B. 73
Schipor, I. 114, 115	Sheng, X. C. 303
Schleger, P. von R. 323, 328, 332	Sheppard, W. A. 2, 11, 15
Schnole H 208 209	Shi, N. 303 Shi, V. 245
Schmalz, H. 208, 209	Shi, Y. 245 Shibagala M. 224 340
Schmid, R. 177	Shibasaki, M. 224, 340 Shibata T. 227, 222
Schmidbauer, H. 10	Shibata, T. 227, 233

-		
	Shih, M. 155	Sonoda, M. 81, 177
	Shima, K. 188	Sonoda, N. 318, 324
	Shimada, S. 299	Sonoda, T. 53
	Shimada, T. 295	Sorensen, E. J. 289, 295
	Shin, J. 296	Sörensen, H. 64
	· ·	
	Shindo, M. 226	Søtofte, I. 2
	Shiner, C. S. 112	Spanenberg, W. J. 328
	Shinhama, K. 112	Spangler, D. P. 337
	Shinkai, I. 294	Spek, A. L. 2, 5, 7, 9, 11, 12, 19–22, 24, 31,
	Shintani, R. 176, 177	36, 124, 145, 272, 337
	Shioiri, T. 307	Spelten, H. 14
	Shirai, T. 196	Spescha, M. 129-131, 225, 226
	Shirasaka, T. 303	Spieler, J. 234, 237
	Shone, R. L. 72	Srivastava, S. 330
	Shriver, D. F. 167, 168, 174	Stabile, M. R. 290
	Shu, L. 245	Stadtmüller, H. 57
	Sibi, M. P. 107, 224, 225, 234, 239	Stam, C. H. 14, 15, 20, 23, 28, 29
	Siddall, J. B. 325	Stangeland, E. L. 132, 133, 225, 226, 277
	Sidduri, A. 59, 64	Stanton, M. G. 340
	Sih, C. J. 294	Starkemann, C. 205
	Simonelli, F. 310	Stauffer, R. D. 168
	Simonelli, J. 95	Stefinovic, M. 95
	Simpson, T. J. 208	Stein, J. 328
	Singer, R. 55, 56, 62, 65	Steinhagen, H. 340
	Singer, R. A. 98, 100	Stemmler, T. 36, 337
	Singer, R. D. 80–82, 95–98, 145, 227–229,	Stengel, P. J. 95, 310
	329	Stephan, E. 316
	Singh, S. B. 208, 300	Stephenson, G. R. 209
	Singh, S. M. 80, 81, 87, 95, 102	Sterling, J. J. 2, 79, 124, 335
	Singleton Jr., V. D. 210, 259, 262	Stern, K. 204
	Singleton, D. A. 130, 193, 199, 322, 323, 335	Stevens, K. L. 126, 172, 337
	Sitachitta, N. 208	Stevenson, T. 204, 205
	Slaunwhite, W. D. 148, 149	Stevenson, T. M. 56, 114
	Smeets, W. J. J. 7, 11, 19, 21, 24, 31, 124, 272	
	Smith III, A. B. 100, 188, 294, 316, 332	Stojanovic, A. 177, 178
	Smith, D. B. 294	Stoll, A. T. 316, 325
	Smith, J. D. 33, 337	Stoltz, B. M. 68
	Smith, J. G. 82, 102, 103	Straley, J. M. 1, 79, 145, 259
	Smith, P. W. 198	Stredronsky, E. R. 167
	Smith, R. A. J. 68, 145, 191, 317–320	Street, S. D. A. 112, 306
	Smith, S. G. 319, 320, 323	Strekowski, L. 118
	Smitrovich, J. H. 53, 54, 71, 72, 126, 130,	Strologo, S. 10
	214–216	Stryker, J. M. 168, 169, 171, 172, 174, 175,
	Snell, B. E. 328	179–181, 185
	Snider, B. B. 114	Stüdemann, T. 57, 58
	Snieckus, V. 109, 302	Su, B. M. 339
	Snyder, J. P. 36, 39, 122, 124, 126, 127, 172,	Su, MC. 328
	193, 199, 322, 323, 328, 332, 334, 335, 337	Sudo, T. 295
	Soai, K. 55, 227, 233	Suemune, H. 206
	Solans, X. 7	Suenaga, T. 206
	Sollman, P. B. 148	Sugiyama, Y. 198, 318
	Solo, A. J. 148, 149	Sulikowski, G. A. 188
	Somemiya, K. 128	Sullivan, A. C. 33
	Song, JS. 106	Sullivan, R. W. 147
	0, /	

	_
Sumi, K. 192, 193, 291	Tanaka, H. 172, 293, 299
Sumida, SI. 172, 299	Tanaka, K. 128, 129, 226
Sun, C. 340	Tanaka, M. 217, 303, 329, 340
Sun, WY. 198	Tanaka, Y. 103, 105, 212
Sundararajan, G. J. 127	Tanigawa, H. 228
Sutherland, A. 208	Tanimoto, S. 68
Sutter, M. A. 293	Tanio, A. 99
Sutton, K. H. 209	Tao, Y. 103, 105
	Tateiwa, J. 81, 177, 182
Suzenet, F. 99	
Suzuki, A. 52	Tatsuta, K. 293
Suzuki, H. 128, 226, 271, 340	Tawney, P. O. 79, 167, 315
Suzuki, I. 207	Taylor, B. S. 82, 102, 103
Suzuki, K. 300	Taylor, G. J. 157
Suzuki, M. 188, 295	Taylor, R. J. K. 145, 161, 188, 224, 259, 289,
Swain, P. A. 194	295, 315
Swingle, N. M. 79, 127, 128, 145, 188, 203,	Tebbe, KF. 328
224, 317, 323, 340	Ten Hoedt, R. W. M. 7, 21, 22, 23
Szantay, C. 147	Terashima, M. 115, 116
Szantay, G. 290	Terrett, N. K. 82, 102, 104, 105
•	Thaisrivongs, S. 293
t	Thayumanavan, S. 79, 115, 117, 121
Taber, D. F. 95	Theodorakis, E. A. 296
Tadano, K. 207	Thi Ngoc, T. L. 188
Taddei, M. 80–82, 95	Thibonnet, J. 48–50, 91, 97, 100
Taga, T. 129, 217, 293, 303, 305	Thomas, A. P. 82, 103, 104, 214
Tai, D. F. 193	Thomas, K. M. 8, 17
Takabe, K. 196	Thorand, S. 146, 150, 315, 317
Takada, T. 106, 107	Thorarensen, A. 95
Takahashi, H. 205	Thuring, J. W. 82, 107
Takahashi, J. 198	Tian, X. 300
Takahashi, T. 72–74	Tiebes, J. 296
Takai, K. 310	Tiedemann, R. 84
Takaki, K. 82	Tillyer, R. D. 87, 89, 91
Takakura, M. 113	Ting, JS. 338
Takanami, T. 81	Tirado, R. 62, 228
Takano, S. 84	Togni, A. 277
Takao, K. 207	Tökes, L. 259
Takats, J. 10	Tokles, M. 127
Takaya, Y. 227, 255	Tomioka, K. 129, 130, 132, 133, 206, 224-
Takeda, A. 112	227, 238, 317, 340
Takeda, M. 147	Tomooka, K. 121
Takeda, T. 82, 106, 113, 122, 299	Tomoyasu, T. 121
Takei, H. 188	Topping, C. M. 119, 121
Takuma, Y. 303	Torii, S. 172, 299
Talbert, J. 46, 47, 55, 56, 62, 65, 228	Torrelli, V. 148
Tam, C. C. 114	Toru, T. 87
Tamada, Y. 106, 107	Toshima, K. 293
Tamamura, H. 217, 303, 305	Tostain, J. 188
Tamao, K. 80, 81, 103, 105, 212	Totani, K. 207
Tamaru, Y. 228	Traumer, D. 290
Tamura, M. 330	Tremble, J. 259
Tamura, R. 271	Tromp, M. 3
Tanahashi, A. 180	Trost, B. M. 224, 303
Tanaka, F. 129	Tse, H. L. 82, 87, 88
initian, i. it.	100, 11, 10, 02, 07, 00

Tseng, C. C. 211-213, 215, 259, 262, 303,	Van Koten, G. 2-9, 11-29, 31, 32, 36-38,
329	109, 124, 125, 129–131, 133, 145, 154, 225,
Tsuboi, S. 112	226, 272–275, 316, 317, 337, 340
Tsuchihashi, G. 198	Van Leusen, A. M. 251
Tsuda, T. 115, 116, 174	Van Maanen, H. L. 272
Tsujiyama, H. 65	Van Oeveren, A. 246
Tsukada, N. 295	Vanasse, B. J. 294
Tsunoda, T. 112	Vanderwalle, M. 147
Tsuruda, T. 65	Varchi, G. 47, 50, 51, 107
Tsutsui, H. 109	Varjas, L. 147
Tsutsui, M. 4	Vastra, J. 133, 234, 236, 238, 239, 242, 278
Tucker, C. E. 36, 46, 47, 55, 57, 63, 65, 67,	Vaupel, A. 57
145, 337	Vellekoop, A. S. 145, 317, 319
Tuncay, A. 330	Velu, S. E. 117, 118, 120
Tunoori, A. R. 114	Venanzi, L. M. 72
Turck, A. 47	Venegas, P. 65
Turckel, R. M. 325	Venier, O. 300
Turner, T. M. 310	Venkatraman, S. 74
Twaney, P.O. 1	Vermeer, P. 80-82, 95, 305, 329, 337
Tweddell, J. 245	Versleijen, J. P. G. 251
	Verstuyf, A. 147
	Vickers, D. 127, 128
U 11-12 D. E. 204	Vignau, M. 148
Uehling, D. E. 294	Villacorta, G. M. 124, 125, 225, 226, 335
Uemura, M. 209	Villalobos, A. 294
Uenishi, J. 99	Villiéras, J. 316, 324, 325
Ueno, Y. 87, 157	Viswanathan, M. 82, 102, 103
Uerdingen, M. 150, 158, 192, 321	Vivian, R. W. 176, 178
Ullenius, C. 3, 32, 38, 91, 118, 126, 194, 233,	Volante, R. P. 294
318, 320, 321, 325	Von Berg, S. 209
Umen, M. J. 319	Von dem Bussche-Hünnefeld, J. L. 229
Underiner, T. L. 160, 263	Vorndam, P. E. 112
Ung, C. S. 172, 173	
Untersteller, E. 299	w
Uozumi, Y. 180	Wadman, S. 306, 338
Urban, E. 204	Wagner, R. 158, 160, 233, 321, 323
Uruga, T. 113	Wagnon, J. 35, 298, 335
Ushio, H. 128	Wai, J. S. M. 91, 92
Utimoto, K. 160, 310, 317	Wakabayashi, S. 99
Uyehara, T. 295, 303	Wakeling, A. E. 148, 149
	Wakita, Y. 115
ν	Waldmann, H. 234, 237
Valacchi, M. 94	Walker, J. C. 209
Valentini, M. 225, 226, 234, 322	Wallace, P. A. 293
Valverde, S. 211	Walter, D. 82, 84
Van Bokhoven, J. A. 3	Wang, C. 67, 299
Van den Beuken, E. K. 317, 340	Wang, J. 299
Van den Heuvel, A. 133, 236, 238-240, 242,	Wang, S. 209
243, 278	Wang, W. 192, 193, 196, 291, 293
Van der Deen, H. 246	Wanner, J. 323, 328, 332
Van der Sluis, P. 11	Wanner, K. T. 92
Van Heerden, P. S. 205	Ward, R. A. 293
Van Klaveren, M. 124, 125, 129-131, 133,	Ware, A. C. 82
145, 154, 225, 226, 272–275	Warner, P. 100

TT. 0 404 404	177 11 P 000
Warren, S. 121, 196	Wlodyka, P. 289
Watabe, K. 271	Woerpel, K. A. 126, 130, 214-216
Watanabe, C. 68	Wolfe, M. S. 110
Watanabe, M. 300	Wollowitz, S. 283
Waterson, D. 85, 86	Wong, C. H. 246
Watkins, J. J. 337	Wong, KY. 234, 237, 239, 241
Watson, C. 293	Wong, T. 68, 89, 299
Wawrzak, Z. 148, 149	Woo, K. 62
Weber, B. 229	Wood, M. R. 72, 145, 188, 189, 228
Wecker, U. 158	Woods, L. A. 1, 26, 79, 145, 167, 259, 316
Wege, P. M. 290	Woodward, S. 129-131, 145, 238, 282,
Wegner, G. 204	318
Wehman, E. 14, 20	Wörle, M. 225, 226, 234, 322
Wehman-Ooyevaar, I. C. M. 19–21	Wormald, J. 167, 168, 174
Wehmeyer, R. M. 228	Wudl, F. 82, 89
Weidmann, H. 82, 107	Wulff, W. D. 82, 307
Weiss, E. 28, 337	Wurtz, A. 167
Welch, M. J. 148, 149	,
Wendisch, V. 126, 130, 251	x
Wendt, M. D. 293	Xi, C. 73, 74
Werner, A. 290	Xi, Z. 72
Wesley, R. N. 200	Xia, X. 200
Westermann, J. 329, 332	Xiao, XY. 296
Westmijze, H. 80–82, 95, 305, 337	Xu, W. 72
Weymeyer, R. M. 56	Xu, X. 34
White, A. H. 14	111, 111
White, J. D. 100	γ
Whiten, C. E. 335	Yajima, T. 294
Whitesides, G. M. 1, 26, 79, 167, 246, 259,	Yamada, S. 198, 318
316, 318, 320, 328, 330, 335, 337, 338	Yamaguchi, H. 293
Whitney, S. E. 51	Yamaguchi, J. 106, 107
Whitten, C. E. 2, 79, 124	Yamaguchi, K.198
Wickham, G. 102, 103	Yamaguchi, R. 160, 317
Wiechert, R. 148	Yamaguchi, Y. 172
Wieland, D. M. 327, 328	Yamamoto, A. 6, 9
Wieland, P. 148	Yamamoto, H. 108
Wiemers, D. M. 122	Yamamoto, K. 198, 318
Wierzba, M. 148, 149	Yamamoto, N. 340
Wigal, C. T. 320	Yamamoto, S. 147, 264
Wild, H. 147, 148	Yamamoto, T. 6, 228
Wilhelm, R. S. 2, 26, 34, 294, 302, 330, 337	Yamamoto, Y. 145, 147, 153, 161, 188, 192,
Wilkins, J. M. 318	198, 207, 210, 217, 263, 264, 271, 289, 295,
Willard, P. G. 340	303, 305, 315, 316, 320, 325, 329
Willert-Porada, M. A. 5, 123, 328	Yamanaka, H. 177, 182
Williams, D. R. 205	Yamanaka, M. 127, 332, 335, 336
Williams, M. 300	Yamanoi, Y. 238, 239
Willis, C. L. 208	Yamashita, A. 168
Wilson, D. W. 118	Yamataka, H. 320
Wilson, S. R. 148, 149	Yamato, S. 318, 324
Wimmer, M. 51	Yamauchi, R. 157
Winkler, F. J. 208	Yan, M. 234, 237, 239, 241, 250
Winter, S. B. D. 80–82, 106, 214	Yanagisawa, A. 188
Wipf, P. 45, 53, 54, 71, 72, 74, 80, 145, 205,	Yang, H. 303
294, 315	Yang, LW. 234, 237, 239, 241
	<i>5,</i> ,,

Yang, M. G. 200	
Yang, Z. 296	
Yang, ZY. 122, 123	
Yatagai, H. 52, 147, 264, 325	
Yazawa, K. 295	
Ye, J. 68, 113, 299	
Yeates, C. 112	
Yee, J. G. K. 87, 88, 100	
Yeh, M. C. P. 46, 47, 55, 56, 6	ć
228	
Yet, L. 95	
Yeung, KS. 293	
Yoda, H. 196	
Yohizawa, H. 217	
Yokokawa, F. 307	
Yonemitsu, O. 293	
Yoshida, M. 179	
Yoshida, T. 168, 293	
Yoshida, Y. 340	
Yoshida, Z. 228	
Yoshifuji, M. 71	
Yoshino, T. 65	
Young, D. W. 208	
Yu, H. 118, 121	

264, 325	Yu, S. 113 Yuan, H. S. H. 30, 32 Yun, J. 179, 245 Yus, M. 47
100 , 55, 56, 62–66, 109, 114,	Z Zahn, S. K. 202 Zangrando, E. 10 Zani, P. 82, 94, 95, 107 Zelder, C. 146, 150, 317 Zhang, G. 103, 105 Zhang, FY. 234 Zhang, X. 122, 129, 130, 238, 239 Zhao, Y. 87 Zheng, G. Z. 179 Zhou, QL. 129–131, 225, 226, 275 Zhou, Y. 103, 105 Zhou, ZY. 234, 237, 239, 250 Zhu, D. 338 Zhu, L. 56, 228 Ziegler, F. E. 114, 196 Zimmermann, J. 293 Zope, U. R. 104 Zwanenburg, B. 82, 107

Subject Index

cyclic enones 239 а acceptor-substituted dienes 2-cyclopentenone 240f 1.4-addition 146ff diastereoselectivity 189ff, 198ff, 202ff, 1,6-addition 146ff 208f, 324 addition, regioselectivity of 145 directed 200ff enantioselectivity 2, 32, 127ff, 224ff, 229ff, acceptor-substituted enynes activation parameters 158 234, 236ff, 239ff, 252ff, 316f, 322 1,4-addition 124, 150, 153 ESR spectroscopy 320 1,6-addition 124f, 150ff, 160, 316, 321 four-centered mechanisms 318 anti-Michael addition 153 functionalized organocopper compounds kinetic measurements 158 46, 51, 54, 65f, 68 mechanism 158f Grignard reagents 1 NMR spectroscopic investigations 158 kinetic measurements 320f kinetic isotope effects 320, 322f, 335 rate-determining step 158 1,4-reduction 153 Lewis acid activation 190, 199f, 332ff 1,6-reduction 153 mechanism 38, 233, 315, 318f, 321, 322f, tandem 1,6- and 5,6-addition 151 Me₃SiCl acceleration 333ff acceptor-substituted polyenynes 1,8-addition 159, 316 nickel-catalyzed 229 1,10-addition 159f, 316 NMR spectroscopy 38, 323 1,12-addition 159f, 316 passive substrate control 190 acetylenic ethers rate-determining step 320, 322, 335 polyfunctional 64 rhodium-catalyzed 227, 255 acridones 109 six-centered mechanisms 318 &-acyloxycuprates 115 solvent effects 318 α-acylthiocuprates 115 transition states 324 1,6-addition 124f, 150ff, 160, 316 1,4-addition 53, 124, 188, 289f, 293f, 310, 315, 330, 338, 340; see also respective diastereoselectivity 158 substrates and reagents kinetic isotope effects 158 activation parameters 321 Lewis acid activation 153 active substrate control 190 mechanism 158f, 321 acyclic enones 242 NMR Spectroscopy 158 aldol reaction 225 rate-determining step 158 auxiliary-controlled 208 1,8-addition 159, 316 BF₃ activation 333f 1,10-addition 159f, 316 catalytic 129, 133 1,12-addition 159f, 316 catalytic cycle 233 alkenylzirconocenes CIDNP 320 cross-coupling 73 copper-catalyzed 130, 224, 228ff, 234, α-alkoxyalkenylcuprates 236ff, 239, 242f, 252, 322 1,4-addition 112

•	
α-alkoxyalkylcuprates 110f, 114f	oxidation 156
1,4-addition 111, 113, 132	protonation 154f
cyclic 111	allenylketene acetals 155f
enantiomerically pure 111	allenylphosphine oxide 325
isomerization 111	allylic substitution see S_N2' substitution
racemization 111	allyl thioethers
α-alkoxyalkyllithium reagents 110	S _N 2' substitution 266
aldol reactions	allylcuprate 102
diastereoselectivity 87	allylic A ^{1,3} strain 85, 193, 196, 198, 213f, 217
alkenyl cuprate 91	allylic carbamates
alkenylcopper compounds	S _N 2' substitution 263f
cyclization 67	allylic sulfides
functionalized 52	S _N 2' substitution 267
alkoxy(alkyl)cuprates	allylic sulfoximines
1,4-addition 127ff, 226	S _N 2′ substitution 264
chiral 127ff, 226	ambident enolate 146
dynamic ligand exchange 129	ambident substrates 145
enantioselectivity 127ff, 226	amido(alkyl)cuprates 108
alkylcopper compounds	1,4-addition 127ff
β -elimination 167	chiral 127ff
7-[(E)-alkylidene]-cephalosporins 108	intramolecular allylic rearrangement 129
alkynes	NMR spectroscopy 127
carbocupration 73, 145	reductive elimination 109
germylcupration 100	theoretical calculations 127
hydrozirconation 71f methylalumination 54	thermal stability 125 (±)-amijitrienol 92
silylcupration 82, 93ff, 96	amino acids
stannylalumination 54	non-protenogenic 107
stannylcupration 82, 91, 93ff, 96ff, 99f	α-amino acids 99
silylmagnesiation 95	functionalized 94
alkynyl epoxides	α-amino alcohols 107
kinetic resolution 284f	β-amino alcohols 107
alkynylcerium reagent 214	α-aminoalkylcuprates 80, 109, 115ff
alkynylcuprate 53f	1,2-addition 117
5-alkynylidene-1,3-dioxan-4-ones 157	1,4-addition 117ff
allenes 150, 153, 155, 172	enantiomerically pure 121
chiral 157f	substitution reactions 118ff
functionalized 152ff	thermal stability 119
regioselectivity 99	α-aminoalkylstannanes
silylcupration 82, 93, 96, 100ff	1,4-addition 115
stannylcupration 82, 93, 99ff	7-aminocephalosporanic acid 300
sterically encumbered 152, 156	anhydroretinols 100
β -allenic esters 152, 154	annulation
allenic amino acids 157	enantioselectivity 252ff
allenic copper(III) intermediate	antiestrogens 148
reductive elimination 158	()-aristermycin 110
allenic natural products 156	arylchromium enone complex
allenolate 325	planar chiral 209
protonation 91	arylcopper compounds
allenyl amines 121	functionalized 2, 16, 46, 49f
allenyl enolate 150, 154 aldol reactions 156	arylcuprates
aldol reactions 156 carbometalation 151	aggregation 28 molecular weight determination 27
electrophilic trapping 155	NMR spectroscopy 27

α-arylselenoalkylcuprates 114	chiral auxiliary 202f, 260, 262f, 268, 271
α-arylthiocuprates 115	chirality transfer 213, 263
aurodox 100	axis-to-center 156f
axial chirality 150, 152, 156	chlorotetaine 148
aziridines 285f, 300, 305, 327	(+)-compactin 84
desymmetrization 285	π-complex 38, 112, 121, 150, 158, 160, 198.
	233, 262, 319f, 321, 323, 336, 338
ь	conjugate addition see 1,4-addition, 1,6-
B956 303, 305	addition etc.
B957 303, 305	conjugate addition and elimination sequence
bafilomycin A1 293	271
Bartlett pear constituent 147	copper
benzoquinone monoacetals	oxidation states 3
1,4-addition 247	copper arenethiolate 9, 23f, 31, 124f, 150,
desymmetrization 247	154
biaryls 22	chiral 2, 131, 272, 276ff
atropselective coupling 202 palladium-catalyzed coupling 202	copper benzoate 23 copper boronate 52
symmetric 4, 16, 25	copper enolate 169, 176f
BINAP 176f, 185, 227, 255	copper hydride 167, 169, 171ff, 176, 179f,
BINOL 230f, 234, 236ff, 241ff, 282ff	181f
BIPHEMP 176f	chiral 177
bis(aryl)copper(II) compounds 4	powder X-ray diffraction 1784
1,2-bis-(diphenylphosphino)ethane (DPPE)	transmission electron microscopy 184
10, 11, 16, 33	copper(I) salts
bis-{diphenylphosphine}ferrocene (DPPF) 185	transmetalation 5
bis-(diphenylphosphino)methane (DPPM)	copper(II) salts
10, 11	oxidizing properties 5
bis(mesityl)copper anions 16	reduction 4
bislactim ether 148	copper(III) intermediate 4ff, 123, 131, 153,
boron-zinc exchange 59f, 228f	262, 270, 319, 323, 328f, 331f, 336
α-borylalkylcuprates 115	reductive elimination 158, 160
brevetoxin B 296f	copper-carbon bond
bromoallene 305	kinetic stability of 7
bromothiophene 50	cortisone 334
_	(±)-crotanecine 95
C \	12-crown-4 34
()-capnellane 84 carbocupration 47, 67, 73, 145, 289, 309,	crown ether 328, 332 (+)-cucurmene 84
315f, 323f, 329, 340	$(+)$ - α -cuparenone 84
four-centered mechanism 325	(+)-β-cuparenone 84
intramolecular 73	β-cuprio(III) enolate 323
mechanism 325, 327	β-cuprio ketone 323
rate-determination step 326	α-cuprio(I) ketone 324
reductive elimination sequence 73	cuprates
trap-and bite-mechanism 326	chiral 127, 148, 225
carbolithiation 329	in situ regeneration 154
carbacyclin analogues 106	cyanocuprates 26
CBS reduction 280	aggregation 36
cephalosporin 108, 299	EXAFS 36
Δ^3 -cephems 299f	higher-order 2, 26, 34ff, 81, 337f
(±)-chiloscyphone 88	lower-order 34ff, 153, 190, 212, 298, 337
chiral amplification see non-linear	molecular weight determinations 36f
enantioselectivity	NMR spectroscopy 35f, 81, 337

372	Subject Index	
	cyanocuprates (cont.) reactivity 35 theoretical studies 337 XANES 36	functionalized 280 preparation 59f dipeptide isosteres 305 ortho-diphenylphosphinobenzoyl (o-DPPB)
	X-ray crystal structure determination 35f, 81, 337	group 201f α-dithioalkylcuprates
	cyano-Gilman cuprates 37, 109f, 150, 152,	1,4 addition 113
	157, 162, 190, 194, 196, 209, 217, 294, 296, 300, 302, 316, 337	dummy ligand 124, 167, 335f dynemicin 114
	η ⁵ -cycloheptadienyliron complexes 63 2,5-cyclohexadienone ethers 1,4-addition 248	dysidiolide 298f
	2,5-cyclohexadienone monoacetals	eicosanoid 300f
	1,4-addition 248	elaiophylin
	2-cyclohexenones 243	electrophiles
	kinetic resolution 243ff cyclosporin A 294	hard 155 soft 155
	cyclosponii II 227	enediynes
	d	stannylcupration 96, 100
	Davis' reagent 193f	()-enterolactone 84
	density functional (DFT) calculations 330f	enyne acetates
	(+)-14-deoxyisoamijiol 106	S _N 2" substitution 161f
	deprotonation	enyne oxiranes
	asymmetric 121 des-epoxy-rosaramycin 108	S _N 2" substitution 161 ephedrine 128f
	Dewar-Chatt-Duncanson (DCD) complex	(±)-10-epi-elemol 106
	321, 325f	epi-widdrol 106
	dialkenylchloroboranes	epoxides see oxiranes, vinyloxiranes
	transmetalation 52	EPR spectroscopy 109
	α-dialkoxyalkylcopper reagents 1,4-addition 112	ethyl (2E,6Z)-2,6-dodecadienoate 147 ethylenic acetals
	4,4'-di-t-butylbiphenyl (DTBB) 47	substitution reactions 269
	3,4-dichlorocyclobutene-1,2-dione 64	EXAFS (extended X-ray absorption fine
	Diels-Alder reactions 162 intramolecular 65, 156, 289	structure spectroscopy) 3, 36, 39, 318
	dienyl acetals	f
	chiral 161	Felkin-Anh model 192ff
	S _N 2' substitution 161, 269	ferrocene thioethers 278
	S _N 2" substitution 160, 269	ferrocene thiolates 277
	dienylic carbonates	ferrocenes
	S _N 2' substitution 161 dienylic carboxylates	chiral 277 ferrocenylamines 280f
	S _N 2' substitution 160f	chiral 62
	S _N 2" substitution 160f	FK-506 293f
	α-dietyopterol 95	α-fluoroalkenylcuprates 122f
	(+)-dihydrocodeinone 106	α-fluoroalkylcuprates 122f
	()-dihydrocodeinone 106, 291	forskolin 289f
	2,5-dihydrofurans 157	()-frontalin 84
	(±)-dihydrojasmone 113	frontier molecular orbitals 210f
	(±)-dihydronepetalactone 104f	fullerenes 317
	dimethyl dioxirane (DMDO) 157 diorganozinc reagents 55	σ
	chiral 60f	g germylcopper reagents
	S _N 2' substitution 62	1,4-addition 92f

germylcuprates	k
1,4-addition 92f	kinetic isotope effects 130, 158, 317, 320,
S _N 2 substitution 106f	322f, 331, 335
S _N 2' substitution 106f	Kocienski rearrangement 306ff
Gilman cuprates 1, 26, 109, 145, 147, 152f,	
167, 259, 295, 316, 337	1
gold(III) chloride 157	β-lactams 295f, 299
Grignard reagents	lactones
functionalized 47ff	1,4-addition 250
Grubb's catalyst 253	(+)-lanostenol 106
	leaving group
h	chiral 218, 262ff
Hajos-Parrish annulation 252	[5- ¹³ C]-leucine 208
halogen-magnesium exchange 47ff, 58	ligand-accelerated catalysis 227, 230ff, 283
Heck reactions 95	localized molecular orbitals (LMOs) 326
α-heteroarylcuprates 112	logarithmic reactivity profiles 126f
α-heteroarylzinc cuprates 114	lower order cuprates 337
heteroatomalkylcuprates	
1,4-addition 127	m
chiral 127	magnesium cuprates
non-transferable ligands 123	X-ray crystal structure determination 30
α-heteroatomalkylcuprates 79f, 109f, 114,	(+)-magydardiendiol 84
121, 123, 134	()-malyngolide 84
non-transferable ligands 123, 126	manoalide 306f
heteroatomcuprates 79f, 102, 134	mesitylcopper 12, 16, 23f, 33
chiral 129	metalate rearrangements 108, 289, 306f
hexamethyldisilazidocuprates 126	()-methylenolactocin 57f
higher order cuprates 30, 81, 153, 211f, 306ff	()-N-methylephedrine 278
cryoscopy 337	methyl epijasmonate 57f
NMR spectroscopy 337	7α-methylestrone 148
Horner-Wadsworth-Emmons (HWE)	(3 <i>S</i> , 4 <i>S</i>) 4-methyl-3-heptanol 300f
olefination 202	methyl 2,4,5-tetradecatrienoate 156
HSAB principle 145, 155, 158, 229	(+)-mevinolin 84
hydrido cuprates 167f	Michael addition see 1,4-addition, 1,6-addition
in situ generation 172	etc.
1,4-reduction 172	Michael acceptors
hydroalumination 53	extended 146ff
hydroboration 228f	misoprostol 72
hydroboration/boron-zinc exchange 62	Mitsunobu reaction 292f
hydroformylation 202 hydrosilylation 181	molybdenum allyl complexes chiral 209
α-hydroxyallenes 157, 284f	(+)-morphine 106
hygrolidin 293	()-morphine 106, 290f
nygronum 255	Mukaiyama aldol reaction 178
i	multiple bond systems
iminophosphines 243	extended 145ff, 160
iodine-zinc exchange 59f	muscone 128, 226, 240
3-iodo-2-indolylcopper 48	110000110 120, 220, 270
iodouracil 47	n
Ireland-Claisen rearrangement 156	natural products 289ff; see individual names
iron complexes	Nazarov cyclization 102
chiral 209	()-neopanocin A 110
iso[7]-levuglandin D2 195, 294f	nitroalkenes
()-Isopinocamphenylboran 61	1,4-addition 196, 224, 250f, 255

3-nitrocoumarins	non-transferable ligands 2, 61, 79f, 108,
1,4-addition 251	123, 126, 134, 167, 224, 272, 335
nonlinear enantioselectivity 128, 131, 234f	oxidation 5
nontransferable ligands 2, 61, 79f, 108, 123,	oxidative decomposition 16
126, 134, 167, 224, 272, 335	protonolysis 23
chiral 224	reaction with amines 108
3-norcephalosporin 172	resting-state species 3
(±)-norruspoline 119	self-assembly 22, 29
Nozaki-Hiyama-Kishi reaction 303	solubility 9, 14, 19
	stability 25
o	stabilization 9f, 13
olivin 193, 195	structure-reactivity relationship 3, 7, 14, 38f
olivomycin 193	thermal decomposition 11, 16, 23
organoaluminium reagents	thermal stability 9, 6, 9, 18
transmetalation 51, 53f	thermodynamic stability 18, 22, 37
organoargentates 27	three-center, two-electron bonding 2, 7, 13,
organoaurates 27, 29, 328	16
organoboron reagents	X-ray crystal structure determination 3ff,
transmetalation 51ff	8f, 11f, 17, 19ff, 37
organocopper(I) compounds	organocopper(II) compounds 5
aggregation 2f, 7ff, 11ff, 16ff, 25, 37, 225,	one-electron reduction process 4
316	oxidizing properties 4f
ate complex 10	two-electron reduction process 4
autocatalytic decomposition 6	organocuprates
bearing acidic hydrogens 61	aggregation 19, 30
bonding 6	anionic 32
bridging groups 17f, 23	bridging groups 29
charge disproportionation 16	chiral 29
chiral 29, 61	contact ion pairs (CIPs) 38f
cluster structure 339	n-coordination 33
coordinating substituents 18, 20, 24	disproportionation 32, 37
coordination geometries 6f, 14, 18 coordination numbers 6	enantiomerically pure 32
	heteroleptic 26f, 31ff
crystallization 3	higher order 30, 81, 153, 211f, 306ff, 337 homoleptic 26f, 32, 37
decomposition 22, 25 degradation 10	
functionalized 45ff	kinetically active species 32
heteroatom-functionalized 25, 79	molecular weight determination 27 neutral 27
heteroleptic 17f, 22f	NMR spectroscopy 2, 27, 32, 38
homoleptic 8, 18	non-transferable ligands 108
β-hydrogen elimination process 6, 11	orbital interactions 338
incorporation of gold 19	solvens-separated ion pairs (SSIPs) 38f
incorporation of silver 19	structure-reactivity relationship 26
in syntheses of organotin halides 16	thermodynamic stability 32
interaggregate exchange 22	X-ray crystal structure determination 2,
intermolecular coordination 14	26, 29ff
intramolecular coordination 6, 13	organolithium reagents
IR spectroscopy 3, 39	functionalized 45ff
kinetically active species 37	transmetalation 45ff
Lewis acid-activation 217	organomagnesium reagents
molecular orbitals 7, 80, 210f, 326	functionalized 45, 47ff
molecular weight determinations 2,	transmetalation 45, 47ff, 58
11	organomanganese reagents
NMR spectroscopy 3, 9, 22, 39	1,4-addition 70f

alkylation 71	phosphane oxides
chemoselectivity 70f	unsaturated 196
transmetalation 70f	phosphido(alkyl)cuprates
organosamarium reagents	thermal stability 125
1,4-addition 74	phosphines 239, 254
transmetalation 71, 74	peptide-based 239
organosulfur reagents	phosphites 234, 238f, 243, 251, 254
transmetalation 67, 69	phosphonites 234, 238, 254
organotellurium reagents	phosphoramidites 230, 233, 234, 236, 239ff,
transmetalation 67, 69	242f, 245, 251, 254, 276, 283, 285, 317
organotin reagents	bidentate 233
transmetalation 67ff	matched 231
organotitanium reagents	mismatched 231
S _N 2′ substitution 70	monodentate 233
transmetalation 70	phthalimidomethylcuprate 114, 118
organozine reagents 224, 239	polyketides 202
activation 228	polymetallic clusters 340
1,2-addition 227	polypropionates 193, 291f
cyclic 57	(+)-pravastatin 84
functionalized 54ff, 228, 232	Prelog-Djerassi lactone 86, 104
preparation 54ff	prostaglandins 68, 72, 188f, 214f, 240f, 243,
radical cyclizations 57f	254, 295
reactivity 55	pseudoephedrine 128f
transmetalation 55ff, 227f	pseudoionone 156
organozirconium reagents	pseudopeptides 196f, 198
1,4-addition 71ff	(+)-ptilocaulin 84
transmetalation 71ff	pulegone 70
Osborn complex 167f	
oxazolidines 275, 300	(1) 1 1
oxazolines 241	(+)-ramulosin 84
chiral 234	()-rapamycin 100
oxidative addition 262, 326	reagent-directing group 201
oxiranes 300, 327f, 330	1,2-reduction 167f, 174, 175, 179, 182, 184f
desymmetrization 284	1,4-reduction 167f, 173ff, 180, 183f; see also
ring-opening 283ff, 300, 332	respective substrates and reagents
	1,4-reduction/α-anion trapping 173
p	1,6-reduction 153, 174
(±)-palouolide 92	reductive bromination 175
pancratistatin 300, 302f	reductive elimination 158f, 262, 322, 326, 328
perfluoralkylcopper reagents 122f	
pentafluoroethylcopper 122	remote stereocontrol 198, 263
pentamethyldiethylenetriamine (PMDTA) 34	rhizoxin 100
	(±)-rhopaloic acid 114 Rieke zinc 56
perfluoro-1-propylencopper 123	
perfluoroalkylcopper reagents 123	Rieke magnesium 47 rifamycin S 193f, 291ff
perillaketone 70f pharmaceuticals see individual names	
	88 ()
phenylglycine 128f	Robinson annulation 252
phenylseleno(alkyl)cuprates	*
substitution reactions 124	SAMP[(S):1-emino-2-
phenylthio(alkyl)cuprates 1,2-addition 124	SAMP [(S)-1-amino-2- methoxymethylpyrrolidine] 88
1,4-addition 124	(±)-sarcodonin G 93
pheromones 100	SB 222618 305f
Piretoniones 100	25 255010 3031

scytophycin C 293	stannylzincates
α-silylalkylcuprates 122	1,4-addition 88f
silyl hydrides 176ff, 181, 184	steroids 148, 183, 188, 191, 198, 240
silyl zincates 83	$\Delta^{4,6}$ -steroids
silylalanines 107	1,6-addition 148f
silylcopper reagents	(±)-sterpurene 156
1,4 addition 82	Stille coupling 68, 83, 296, 298f, 310
S _N 2 substitution 102f	stipiamide 309f
S _N 2' substitution 82, 102f	Stryker's reagent 175f, 178ff, 184f
silylcuprates 79f, 82, 214f	NMR spectrum 169f
1,4-addition 83ff, 92, 95, 196	1,2-reductions 179ff
NMR spectroscopy 81	1,4-reductions 169, 171, 175ff
S _N 2' substitution 82, 104f, 106	sulfur-copper exchange 69
substitution reactions 107	Suzuki reaction 296, 298
silylcupration-cyclization sequence 95	Buzuki reaction 250, 250
	t
silyllithium reagents 80, 82	
1,4-addition 83	TADDOL 130ff, 241f, 250, 278, 285
single-electron transfer (SET) 162, 319f, 330	tandem 1,4-addition-aldol condensation see three-component coupling
S _N 2 substitution 210ff, 260, 267, 269, 289,	tellurium-copper exchange 69
296, 300f, 315, 333, 338, 340	terpenes 156
BF ₃ activation 333	terpenoids 240
kinetic isotope effects 331	tetrachlorothiophene 50
kinetics 27	tetrahydro-3 <i>H</i> -naphthalen-2-ones
mechanism 327	1,6-addition 148, 150
rate-determining step 328	2,2,6,6-tetramethylpiperidinyl-N-oxyl
S _N 2' substitution 188, 215f, 260f, 267, 269f,	(TEMPO) 131
271f, 278, 282, 289, 301ff, 315, 330, 332,	thienylcuprate reagents 126
340; see also respective substrates and	α-thioalkylcuprates 114
reagents	substitution 113
chirality transfer 271	thiolatocopper complexes
	sugar-derived 131
diastereoselectivity 211f, 217f enantioselectivity 213f, 218, 271ff, 279ff,	Thorpe-Ingold effect 95
282	
Lewis acid activation 332	three-component coupling 171, 178, 224f,
	241, 243f, 295f
mechanism 262, 327, 329f	tin-copper exchange 68f, 80ff
rate-determining step 329ff	Tishchenko reaction 179
stereoelectronic control 210f	p-tol-BINAP 176f
S _N 2" substitution 160f, 269	trifluoromethylcopper 122
()-sparteine 121, 127, 226f	(13E)-trifluoromethylretinoates 100
squaric acid 64	trimethylsilyllithium 81
stannylaluminium reagent 97	tripod [1,1,1-tris-(diphenylphosphinomethyl)-
stannylcopper reagents 79	ethane] 179
1,4 addition 82, 89f	tylonolide 307f
protonation 91	(\pm) -tylosin aglycon 108
substitution reactions 82	
stannylcuprates 79ff, 115, 307, 310	u
1,4-addition 87ff, 91f	unnatural products 289ff; see individual name
metalate rearrangement 108	
S _N 2' substitution 106f	ν
substitution reactions 87	β-vetivone 84
stannylcupration-cyclization sequence 95	vinylallenes 158, 161f
stannyllithium reagents 80, 82	Diels-Alder reactions 156, 162
1,4-addition 83, 87f	racemization 162

vinylaziridines 305f vinylcopper compounds 38, 324f XANES (X-ray absorption near edge structure vinylcuprates 88, 93f, 96, 101f, 290, 294 spectroscopy) 36, 318, 321 vinyloxiranes 286, 302, 329 ximoprofen 84 kinetic resolution 283f ring-opening 283f $S_N 2$ substitution 283f Yamamoto reagent 147, 153, 161 $S_N 2'$ substitution 283f vitamin B₆ decarboxylase inhibitors 157 vitamin D 175, 303 Zimmermann-Traxler transition state 86 zinc alcoholates homoallylic 59 zinc enolates 233 Wacker oxidation 253 widdrol 106 zinc-copper exchange 67, 114 Wieland-Miescher ketone 171 zinc homoeneolate 333f Wittig reaction 292f zirconacyclopentadienes

spirometalation 74

Wurtz coupling 56