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Preface

This book describes the bond valence model, an increasingly popular descrip-
tion of acid-base bonding, particularly in fields such as materials science and
mineralogy where solid state inorganic chemistry is important. The text is aimed
at two groups of readers, those who are teaching chemical bonding in acid-base
systems, and those who are researching in fields, ranging from physics to
molecular biology, in which such bonding is involved. The model derives from
Pauling’s concept of electrostatic valence which, in recent years, has evolved
into a simple but highly predictive model. It is essentially empirical. Its theorems
have not yet been derived from quantum mechanics, but its presentation of
chemical bonding is complementary to the quantum mechanical approaches.
The essential simplicity of the model makes it useful in situations that are too
complex to be adequately treated by more fundamental theories.

The reader is advised to avoid bringing too many preconceptions about the
nature of chemical bonding to a reading of this work. While there are rather too
many models of chemical bonding in existence, the bond valence model
represents their common features reduced to their simplest mathematical form.
The model should be judged on its own terms: how well does it predict acid—base
chemistry and how effective are the insights it provides? Attempts to formulate
the model in terms of the traditional concepts of chemistry, covalent versus ionic
bonding, resonance Lewis structures, or electronic orbitals (except as discussed
in Chapter 8), only make it more complex and less predictive. The model works
best when it is kept simple. I have, therefore, only introduced concepts where
they are needed to account for the observed phenomena, and the concepts are
all precisely defined. The result is a simple but quantitatively rigorous model
that describes many of the phenomena of inorganic and other acid-base bonding.
It requires a minimum of computing (a pocket calculator, pencil, and paper
usually suffice) and the basic concepts can readily be grasped by secondary
school students.

The model itself is developed in Part I and its applications to inorganic
chemistry are described in Part I1. Part I11 is devoted to an analysis of inorganic
solids, showing how the unique character of solid state chemistry derives from
the conflict between the constraints of chemistry and those of three-dimensional
space. Part IV surveys the wide range of problems to which the model has been
applied, from condensed matter physics, through mineralogy and soil science,
to catalysis and molecular biology. The book ends with a comparison between
the bond valence model and other descriptions of chemical bonding, and
includes a discussion of why such a simple model works so well.



vi PREFACE

This book started as a series of lectures which Prof. Schenk invited me to give
to the Chemistry Department of the University of Amsterdam in 1994. Many
people have helped in developing the ideas presented in this book, often in lively
discussions over midmorning cups of coffee. These people are too numerous to
list here, but I thank them all for their contributions which are referred to at the
appropriate places in the text. I would particularly like to acknowledge three
people whose influence was instrumental in introducing me to the important
ideas described in these pages. They are my research supervisor, Jack Dunitz,
whose unconventional, but always correct, approach to research has inspired
many besides myself, Bob Shannon, who introduced me to Pauling’s electro-
static valence principle, and Hans Burzlaff, who convinced me of the impor-
tance of symmetry and spatial restrictions in understanding the chemistry of
solids. To these three I wish to dedicate this work.

11 April 2001 I.D.B
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1

Historical introduction

1.1 Introduction

Of all the concepts used in chemistry, that of the chemical bond is one of the
most useful and, at the same time, one of the most difficult. It is useful because it
helps us to understand the structures of compounds and their properties, and it
is difficult because it is not easy to relate it to the physical theories, such as
quantum mechanics, that underlie chemistry. This is not to say that people have
not attempted to find a connection between the chemical bond and quantum
mechanics. The Lewis (1923) electron pair model and the orbital overlap model
(Coulson 1961) are, perhaps, among the better known attempts, but all are a
posteriori rationalizations, trying to explain the properties of the empirical
nineteenth-century chemical bond in terms of twentieth-century physical con-
cepts. It is unlikely that, left to themselves, theoretical chemists in the twentieth
century would have ever created the idea of a chemical bond had not the con-
cept already been central to the language of structural chemistry. To this day the
chemical bond remains largely an empirical concept.

As an empirical concept, the chemical bond was fully developed by the end of
the nineteenth century (Partington 1964, chapter 17). Even though the discovery
of the electron at the turn of the century changed the way we think about bonds,
it has added little to the model’s predictive power. The only significant addition
made during the twentieth century has been a knowledge of the actual lengths of
the bonds and angles between them.

Partly because, in the twentieth century, we have insisted on interpreting the
chemical bond in terms of the quantum mechanical properties of electrons, we
have failed to exploit the essential simplicity of the traditional bond model.
According to this model, an atom has a certain bonding power, called its valence.
The atom shares its valence among the bonds that it forms, the portion received
by a particular bond being regarded as a measure of the bond’s strength. The
relation between the strength of a bond and the valence of the atom lies at the
heart of all chemical bond models such as the bond model widely used in organic
chemistry and the bond valence model described in these pages.

1.2 Chemical bonds

Although the idea of an attractive interaction that holds the various particles of
matter together can be traced back to Greek times, it was not until the early
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Cl——|=-Na—
Cl Na

Na:

Fig. 1.1. A portion of the infinite structure of NaCl (18189).

nineteenth century that the concept became usefully predictive. It derived from
Dalton’s atomic hypothesis (Thompson 1807), in which a limited number of
types of atom were assumed to associate together to form the compounds
familiar to chemists. While it soon became clear that electricity was involved in
the forces by which atoms were attracted to each other, no model of chemical
bonding based on Coulomb’s law was possible at that time, and it was some
decades before the chemical bond model as we now know it was developed
(Partington 1964, chapter 16). The model treated compounds as composed of
atoms connected by a network of bonds. Neither the nature of the atoms nor the
nature of the bonds was known at the time, but the model proved so remarkably
effective in organizing the enormous variety of known organic compounds, that
by the end of the century the model could even account for stereoisomerism.
This was sufficient to convince most chemists of the reality of both atoms
and bonds.

In the early twentieth century, advances in atomic physics confirmed the
existence of atoms, and the discovery of X-ray diffraction revealed the precise
arrangements of these atoms, confirming in a striking manner the geometric
predictions of the bond model in organic chemistry. However, there were a
number of problems. Neither X-ray diffraction, nor any other of the techniques
developed at the time were able to demonstrate the physical existence of bonds.
While the theoretical developments of the twentieth century have revealed much
about the nature of chemical bonding, they have been much less successful in
describing this bonding in terms of the localized interactions that we call bonds.
Further problems arose when the structures of inorganic crystals were examined
since these did not follow the rules that worked for organic chemistry. Instead of
NaCl (18189") forming a diatomic molecule as the bond model predicted, each
atom was found to be part of an infinite array of atoms lying on a cubic lattice,
each atom being surrounded at equal distances by six neighbours of the
opposite kind (Fig. 1.1). There was no indication of the diatomic molecule

! Each compound mentioned in this book is followed by its collection code (number) in the
Inorganic Crystal Structure Database (Bergerhoff er al. 1983) or its refcode (letters) in the
Cambridge Crystallographic Database (Allen et al. 1979). A reference to the original paper
describing the structure of the compound is listed under this code in the literature references in
Appendix 5.
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predicted by the bond model. Similar results were found for other inorganic
solids. The failure of the bond model that worked so well for organic chemistry
to provide useful structural predictions in these cases led to its abandonment in
inorganic chemistry.

1.3 The ionic model

There were several attempts to develop alternative bonding models for inor-
ganic solids but none of these met with the same success as the bond model for
organic compounds. Born and his colleagues (Born and Landé 1918; Madelung
1918; Born and Mayer 1932) took a physicist’s approach when they proposed
the ionic model in which the atoms were considered to be charged spheres,
cations carrying positive charge and anions carrying negative charge, held
together to form a solid by the electrostatic attractions between them. The
potential energy, U, between any pair of atoms was expressed as the sum of two
terms: an attractive Coulomb potential generated from the charges on the
atoms, and a short-range, generally repulsive, potential that became important
only when atoms came into contact (eqn (1.1)):

U= Uelectrostatic + Urepulsive- (1 1)

The correct arrangement of the atoms in the solid was assumed to be the one
that minimized this potential energy summed over all pairs of atoms in the
crystal. The particular virtue of this model is that the long-range attractive part
of the potential can be calculated exactly using classical electrostatic theory
while the unknown short-range repulsive part can be modelled empirically.
Born and Landé (1918) proposed an inverse power law for Uepuisives but later
Born and Mayer (1932) suggested that an exponential expression was more in
keeping with the predictions of the newly developed quantum mechanics.

The ionic model was able to account for many of the properties of simple salts
such as the alkali metal halides, but ran into difficulties with more complex
structures, partly because of the difficulty of determining the correct form of the
repulsive potential, and partly because of the difficulty of summing the slowly
converging electrostatic potential. The latter problem was solved for NaCl by
Madelung (1918) with more general methods being subsequently developed by
Ewald (1921) and Bertaut (1952). In recent years the introduction of computers
has allowed both these difficulties to be overcome, and it is now possible to use
the ionic model to make quantitative predictions of the properties of most
inorganic compounds (Catlow 1997). However, the procedures require care in
selecting the correct form for Ulepuisive and involve extensive computer resour-
ces. While the model gives good numerical predictions, it lacks the intuitive
insights that are the strength of the traditional chemical bond model.
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1.4 Quantum mechanics

The ultimate description of chemical bonding lies in quantum mechanics and
the solution of the Schrédinger equation for the crystal. Although this equation
can be exactly solved only for two particles, increasingly sophisticated approx-
imate methods have been developed which provide excellent values for both the
energy and the electron density distributions in crystals. However, such calcul-
ations are cumbersome for analysing and predicting complex chemical struc-
tures. The computing requirements are even more demanding than those of the
ionic model, and quantum mechanics also lacks the essential simplicity of the
traditional chemical bond model.

A promising simplification has been proposed by Bader (1990) who has
shown that the electron density in a molecule can be uniquely partitioned into
atomic fragments that behave as open quantum systems. Using a topological
analysis of the electron density, he has been able to trace the paths of chemical
bonds. This approach has recently been applied to the electron density in
inorganic crystals by Pendas ez al. (1997, 1998) and Luafia et al. (1997). While
this analysis holds great promise, the bond paths of the electron density in
inorganic solids are not the same as the more traditional chemical bonds and,
for reasons discussed in Section 14.8, the electron density model is difficult to
compare with the traditional chemical bond models.

Other simplified quantum treatments, such as the Lewis electron pair and
orbital overlap models, have proved useful in teaching and they give qualitative
predictions of the structures of molecular compounds, but they become unwieldy
when applied to solids. They have not proved to be particularly helpful in the
description of the complex structures found in inorganic chemistry and have
therefore not been widely used in this field.

1.5 The symmetry model

In the early years of the twentieth century, an alternative approach to under-
standing inorganic structure was proposed by Niggli (1918) and Shubnikov
(1922), who advocated using the recently developed theory of space group
symmetry. They recognized that most inorganic compounds do not form finite
molecules but exist only as crystals. The translational symmetry that generates a
three-dimensional crystal from a basic building block requires that every crystal
must belong to one of only 230 possible space groups. Such a requirement places
considerable restrictions on the arrangements of atoms that can be present in
the building block.

For example, if two atoms that are related by a plane of mirror symmetry
move onto that plane, they fuse to become a single atom. Thus atoms that lie on
elements of symmetry (special positions) will occur less frequently in the
building block than ones that lie on positions with no symmetry. The higher the
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site symmetry of the atom, the smaller its multiplicity, i.e. atoms occupying sites
of high symmetry appear less frequently in the building block than atoms
occupying sites of low symmetry. The composition is thus determined by the
multiplicities of the special positions available to the atoms. Niggli and
Shubnikov argued that it should be possible to determine the structure of a
compound by finding which of the 230 space groups have special positions with
multiplicities that correspond to the known composition of the compound. The
power of this approach was demonstrated by Niggli who used it to show that,
based strictly on geometric arguments, there are only four possible cubic
structures having the chemical formula AB, thus accounting for the large
number of different binary compounds that adopt the NaCl (18189), CsCl
(22173), sphalerite (60378) or NaTl structures. However, as in the case of the
ionic model, this initial success could not be repeated with more complex
structures.

Subsequent workers have explored other ways in which symmetry can be used
to restrict, or at least to describe, inorganic crystal structures. Lima de Faria and
Figueiredo (1975) have arranged the space groups in hierarchical order
according to their symmetry and have classified inorganic structures according
to where they occur in this hierarchy. Parthé (1996) and Bergerhoff ez al. (1999)
have used space group symmetry as a way of identifying isostructural com-
pounds. While these approaches are useful in exploring the restrictions that the
three-dimensional world places on possible structures, they can never provide a
complete description since they are based solely on the geometric properties of
space and ignore the chemistry that gives each element its distinctive properties.

1.6 Topological models

The mathematical theory of topology is the basis of other approaches to
understanding inorganic structure. As mentioned in Section 1.4 above, a
topological analysis of the electron density in a crystal allows one to define both
atoms and the paths that link them, and any description of structure that links
pairs of atoms by bonds or bond paths gives rise to a network which can
profitably be studied using graph theory.

Graph theory has been used to explore structures, such as organic molecules
and alumino-silicate minerals, in which the bonds are all of similar strength.
Many minerals are built around frameworks composed of SiO4 and AlO,
tetrahedra sharing corners. The ways in which such tetrahedra can be connected
has led to attempts to enumerate and classify all possible alumino-silicate
minerals. It is not difficult to show that the number of possible structures that
can be made out of even a limited number of tetrahedra is extremely large, but it
is the aim of this type of analysis to discover which topologies are most likely to
correspond to stable structures. While such an approach is useful in rationa-
lizing the large number of known silicate structures (Liebau 1985; Smith 1988),
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it becomes awkward when different types of coordination polyhedra are
present, or when the bonds differ greatly in strength.

1.7 Pauling’s electrostatic valence model

In 1929 Pauling brought a chemist’s intuitive perspective to the problem of
describing the structures of inorganic compounds. In a seminal paper, Pauling
(1929) lists five principles that determine the structures of complex ionic crys-
tals. These principles are qualitative, but they summarize in a concise way much
of the empirical information that was available to him about the structures of
inorganic solids, particularly minerals. Because these principles have been
widely used in the analysis of complex inorganic structures and since they form
the starting point for the development of the bond valence model, they are
worth quoting here in full:

I. A coordinated polyhedron of anions is formed about each cation, the
cation—anion distance being determined by the radius sum and the
coordination number of the cation by the radius ratio.

II. In a stable coordination structure the electric charge of each anion tends
to compensate the strength of the electrostatic valence bonds reaching to it
from the cations at the centers of the polyhedra of which it forms a corner;
that is, for each anion

¢ = Zzi/"i = Zsi

[(=anion charge, z=cation charge, v=cation coordination number,
s = (Pauling) bond strength.]

III. The presence of shared edges, and particularly shared faces, in a
coordinated structure tends to decrease its stability; this effect is large
for cations with large valence and small coordination number, and is
especially large in case the radius ratio approaches the lower limit of
stability of the polyhedron.

IV. Ina crystal containing different cations those with large valence and small
coordination number tend not to share polyhedron elements with each
other.

V. The rule of parsimony. The number of essentially different kinds of
constituents in a crystal tends to be small.

These principles are phrased in the language of the ionic model, but they
provide a simpler and more explicit description of stable structures than that
given by the ionic model’s energy minimization principle. Among the important
ideas captured by Pauling’s rules are those of local charge neutrality, the defi-
nition of electrostatic bond strength, and the rule of parsimony which is closely
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related to the principle of maximum symmetry introduced in Chapter 3. The
year following the publication of Pauling’s rules, Bragg (1930) showed that they
could be represented pictorially by Faraday’s lines of electrostatic field which
link the cations to their neighbouring anions. Because the energy of an elec-
trostatic field is lowest when the lines of field are shortest, it follows that the
equilibrium structure will be one which places cations and anions in intimate
contact with each other.

As more accurate information became available on the structures of inor-
ganic solids, a correlation was noticed between the length of a bond and its
strength (Pauling 1947; Bystrém and Wilhelmi 1951; Zachariasen 1954).
Donnay and Allmann (1970) showed that Pauling’s second rule becomes
quantitatively exact around both the cations and the anions if the electrostatic
bond strengths are calculated from the bond lengths rather than from the charge
and coordination number, an idea that was subsequently expanded by Brown
and Shannon (1973). Donnay and Allmann coined the term bond valence to
differentiate this new quantity from Pauling’s bond strength, and since then
bond valences have been extensively used in modelling and analysing crystal
structures. The properties of bond valences have been summarized in a number
of simple quantitative rules generally known as the bond valence model described
in detail in Section 3.3. Recent reviews of the model have been given by Brown
(1981, 2000), O’Keeffe (1989), Tromel (1992), and Urusov and Orlov (1999).

Theoretical aspects of the bond valence model have been discussed by Jansen
and Block (1991), Jansen et al. (1992), Burdett and Hawthorne (1993), and
Urusov (1995). Recently Preiser ez al. (1999) have shown that the rules of the
bond valence model can be derived theoretically using the same assumptions as
those made for the ionic model. The Coulomb field of an ionic crystal naturally
partitions itself into localized chemical bonds whose valence is equal to the flux
linking the cation to the anion (Chapter 2). The bond valence model is thus an
alternative representation of the ionic model, one based on the electrostatic field
rather than energy. The two descriptions are thus equivalent and complemen-
tary but, as shown in Section 2.3 and discussed further in Section 14.1.1, both
apply equally well to all types of acid—base bonds, covalent as well as ionic.

This book is divided into four parts. Part I provides a theoretical derivation of
the bond valence model. The concept of a localized ionic bond appears naturally
in this development which can be used to derive many of its properties. The
remaining properties, those dependent on quantum mechanics, are, as in the
traditional ionic model, fitted empirically. Part II describes how the model
provides a natural approach to understanding inorganic chemistry while Part
111 shows how the limitations of three-dimensional space lead to new and
unexpected properties appearing in the inorganic chemistry of solids. Finally,
Part IV explores applications of the model in disciplines as different as con-
densed matter physics and biology. The final chapter examines the relationship
between the bond valence model and other models of chemical bonding.
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The ionic bond

2.1 Introduction

The particular virtue of the ionic model is that it divides the potential energy of a
crystal into two components, a long-range Coulomb potential that is respon-
sible for the attraction that holds the crystal together, and a short-range
potential which contains all the remaining forces, principally the repulsion that
prevents the atoms from collapsing into each other (eqn (1.1)). The Coulomb
potential can be calculated using classical electrostatic theory and the short-
range potential is generally treated empirically by defining a classical potential
that reproduces the experimental measurements, or that best represents the
quantum mechanical potential between two isolated atoms. In this way, the
model can be used without the need to solve the Schrédinger equation for
the complex system under study, considerably simplifying the calculations.
Catlow (1997) surveys the many ways in which this traditional semi-classical
ionic model has been used.

One aspect of the ionic model that often causes conceptual problems is its
apparently improbable assumption that a crystal can be treated as an array of
formal ionic point charges. As is shown in Section 2.3, this assumption is not
nearly as restrictive as it appears. It is valid for a surprisingly wide variety of
inorganic salts, ceramics, and minerals, even those such as silicates, whose Si-O
bond clearly has a strong covalent character. The model does, however, have its
limitations since this assumption excludes those systems, such as metals and
organic molecules, in which the atoms formally remain electrically neutral.
While the model does not cover all types of chemical bonding, it can be used to
provide a quantitative description of the structure and properties of a
remarkably large group of materials.

In the traditional approach to the ionic model, the potential energy, U in
eqn (1.1), is calculated for a given configuration of atoms and the equilibrium
structure sought by adjusting the atomic positions to minimize this energy.
There are, however, alternative ways to develop the model and one of these,
presented in this chapter, uses the electrostatic field rather than the electrostatic
energy. Bragg (1930) first pointed out that the electrostatic interaction between
cations and anions can be represented by Faraday’s lines of field, but this idea
has only recently been fully explored (Preiser et al. 1999). In Section 2.4, the
electrostatic field is shown to partition itself naturally into localized bond-like
fragments whose properties are explored both theoretically and, in Chapter 3,
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experimentally. This leads to a chemical bond model which is complementary to
the traditional energy description of the ionic model, and which provides a more
intuitive way of understanding and modelling the structures and properties of
inorganic compounds.

2.2 Crystal energy and the Coulomb field

In the ionic model, the energy of an inorganic solid is assumed to be the sum of
all the potentials, Uy, between atoms 7 and j. These consists of two terms, a
classical electrostatic potential, U electrostatic» determined by the charges on the
atoms, and a quantum mechanical term, Uj permi, that includes the repulsion
that prevents individual atoms from collapsing into each other as well as any

residual contributions from covalent bonding (eqn (2.1)):
Uij = Uij,electrostatic + Uij,Fermi- (21)

Ujjelectrostatic €an be derived from the electrostatic fields, E;, generated by the
individual atoms, 7, and these fields can in turn be represented as the sum of the
three terms shown in eqn (2.2):

Ei - Ei,mono + Ei,mult + Ei,local- (22)

In this equation E; mono, given by eqn (2.3), is the field generated by the point
ionic charge, Q;, which is assumed to reside at the centre of the atom:

Ei,mono - Qi/47r€0r2- (23)

Here r is the distance from the atom centre. In this book the units are chosen so
that @, is measured in electron charges (= valence units) and ¢ is set equal to
1.0. According to Gauss’ theorem, if the electron density of the atom is
spherically symmetric, E;mono gives a fully correct description of the field gen-
erated by the atom in the region outside the atom itself, i.e. in the region where
the electron density of the atom has fallen to zero.

If the electron density is not spherically symmetric, the field outside the atom
can again be correctly reproduced by adding as many point multipoles as
necessary to the original point charge, Q; These contribute the term E;
which can be exactly calculated if the sizes and orientations of the multipoles are
known. The multipoles give rise to a field that drops off rapidly with distance
and is, in any case, small relative to the field produced by Q;. Even though they
may make a significant contribution to the field in the immediate neighbour-
hood of the atom, the multipoles make a negligible contribution at distances of
more than a few hundred pm from the centre of the atom (Bouhmaida ez al.
1997). In this book, the multipole terms are ignored except where explicitly
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mentioned, e.g. in Chapter 8 which describes the structural chemistry of atoms
with non-spherical electron density.

E; ono and E; .,y thus reproduce the exact electric field outside the atom as
determined by the distribution of electrons within the atom. To obtain the
correct field inside the atom requires the addition of the term E; ., Which can
be calculated if the electron density distribution is known. For present purposes
it is sufficient to note that E;jocq is, by definition, zero outside the atom and
therefore can have no long-range effect on the structure. All the long-range
influences are therefore carried by E; nmono and, to a much lesser extent, E; .

The total electric field in the crystal is obtained by adding together the elec-
trostatic fields produced by all the individual atoms in the crystal. At any
particular point, it will have contributions from the E; ;;,on, of all the atoms, , in
the crystal, but only the immediately neighbouring atoms will contribute E; ¢
and E; .. terms. The energy associated with these last two terms can therefore
be combined with Ugermy into a short-range potential, leaving only E;mono to
describe the long-range effects. The total energy of the crystal is thus given by
Uiotal In eqn (2.4):

Utotal - UMadelung + Ulocala (24)

where  Uppadelne 18 the Madelung energy related to the Madelung field,
EMadelung, giVen by eqn (25)

EMadelung - Z Ei,mono (25)

and Ujeea is the energy associated with the fields > E; joca and > :E; muy as well
as the potential Y ;U rermi- In the traditional ionic approach, Ulecal is calcu-
lated by summing short-range interatomic potentials represented by an
empirical analytical function with parameters fitted to the properties of the
system. Since all the long-range interactions are included in the Madelung term,
Umadelungs they are correctly represented by the field Enjaderang Which in turn
depends only on the magnitudes and positions of the monopole charges, Q;.

The ionic theory thus has the advantage of isolating the quantum and other
effects that are difficult to calculate into the potential Uj,e, which is treated
empirically (Section 3.1). The long-range effects which are important for crystal
chemistry are then given by the Madelung term which can be readily calculated
using classical electrostatic theory.

2.3 How are the atom fragments chosen?

Before examining the properties of the Madelung field, it is necessary to show
that it is possible to partition the electron density of the crystal into atoms that
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obey the assumptions of the model.! The point charges, Q,, are assumed to be at
the positions of the nuclei of the atoms they represent, but it is less clear what
value should be assigned to Q; because the atoms are extended and their electron
densities overlap. It is therefore necessary to find some way of partitioning the
electron density between the different atoms. There are many ways of doing this,
and each will result in a different set of values for Q,.

Whatever method is chosen, the resulting atoms must satisfy the following
criteria if the ionic model is to be used:

1. Every part of the electron density of the crystal must belong to at least one
atom. The definition of atoms must ensure a complete coverage of the space
occupied by the crystal in order to ensure electroneutrality. However, atoms
may overlap, since the electron density in an overlap region can be
partitioned in any convenient way between the overlapping atoms.

2. The partitioning must ensure an appropriate assignment of charges, Q,. As
shown in Section 9.2, the ionic model works for a wide variety of different
choices of Q;, the only constraint being that the charges contributing to each
type of bond are treated consistently. It is therefore only a matter of
convenience that Q; is set equal to the formal charge, V..

3. Consistent with the above constraints, the partitioning should be chosen so as
to minimize E . This specifies how the electron density in overlap regions
is to be partitioned and supports the assumption that E,,; can usually be
reduced to the level at which it can be ignored.

These conditions allow considerable flexibility in the way the electron density
of an atom is chosen. The most physically plausible partitioning is the ‘Atoms
in Molecules’ partitioning based on the topology of the electron density
(Section 14.7, Bader 1990; Pendas et al. 1997). This is a unique partitioning of
space into polyhedral atomic fragments that behave as open quantum systems.
Although multipoles are needed to describe the fields produced by the poly-
hedral fragments, the orders of the multipoles are generally no smaller than the
number of faces on the polyhedron and their contributions are therefore small.
Although this partitioning gives physically meaningful charges, they can only be
calculated by solving the Schrédinger equation for the whole system which
removes any practical advantage this particular partitioning may offer.
Spherical atoms can be selected with radii sufficient to enclose the required
charge. In this partitioning, most cations, being small and comprising only the
nucleus and core electrons, have a spherical electron density. The anions, which
must be large enough to include all the valence electrons, will overlap and the
partitioning of charge in the overlap region can be used to minimize the size of
E - Again, if multipole terms are needed, their order will normally be com-
parable to the coordination number and their influence can be neglected. It
should therefore be possible in all cases to find a partitioning of the electron

! This section may be omitted on first reading.
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density into atoms that satisfies the above criteria and at the same time allows
the atomic charges to be set equal to the formal ionic charges.”

Because it is not necessary to know the exact atomic charges, we set them
equal to the formal ionic charges, V;. These are determined by assuming that all
anions have a closed shell configuration. Although many cations also have
closed shells, electroneutrality sometimes requires cations to have partially filled
valence shells. It is beyond the scope of this book to discuss in detail how formal
charges (atomic valences) are assigned since this is treated in most general
chemistry texts.

2.4 The Madelung field of a crystal

Consider the electrostatic field, Enfageiung = 2 Eimono (€qn (2.5)), created by an
infinite array of positive and negative point charges placed at the positions of
each of the atoms in a crystal. As has been pointed out by Bragg (1930), the lines
of field that represent Enjadetung Will not extend far in space because at an energy
minimum the lines of field will be as short as possible. Looked at from another
point of view, the lines of field must remain short since their paths are not
allowed to cross. All the lines of field starting at a positive point charge will
therefore terminate on the nearest shell of negative point charges and vice versa.
The collection of all the lines joining the two charges i and j defines a region in
space that represents the electrostatic link between them. Further, the bound-
aries that separate the links are necessarily boundaries that are not crossed by
electric flux. Thus Enjaderung directly partitions space into a collection of loca-
lized link regions separated by zero-flux boundaries. An exact picture of the
lines of the Madelung field in the (110) section of rutile (TiO,, 202240) that
contains the Ti*" and O~ ions is shown in Fig. 2.1 with the zero-flux bound-
aries shown as thick lines (Preiser et al. 1999).

These link regions, which we can identify with chemical bonds, are char-
acterized by the electrostatic flux, ¢, defined by eqn (2.6), that links the two ions
i and j:

®; = /EMadelung.dA, (2.6)

where the integration is taken over any cross-sectional area of the bond. These
fluxes must obey Gauss’ law (eqn (2.7)) around each ion:

Z (I)ij - %EMadelung- dd = 0, (27)
J

where the sum is taken over all bonds connected to Q; and the integration is
taken over any closed surface surrounding Q,.

2 Section 14.1 gives an alternative view of why the choice of the atomic charge is not critical.
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Surprisingly, the localization of the Madelung field into bonds as shown in
Fig. 2.1 is quite compatible with the long-range nature of the electrostatic force.
The mechanism for the long-range interaction is through the application of
Gauss’ law around each intermediate atom. As shown in Fig. 2.2, the removal of
an O~ ion from the top right-hand part of the perfect lattice shown in Fig. 2.1
results in a redistribution of the flux. The flux that originally terminated on
the missing O”~ ion now terminates on charges in the second neighbour shell
but, in order to accommodate this new flux, the charges of the second neigh-
bour shell must shed flux to the fourth neighbour shell and so on. Thus a ripple
of flux relaxation spreads out from any change made in the lattice, the

Fig. 2.1. A representation of the Madelung field of rutile (TiO,, 202240) in the (110)
plane {(x,y,z);x + y = 1}. The light lines represent the field lines, the heavy lines show
the zero-flux boundary that partitions space into bonds (from Preiser et al. 1999).

Fig. 2.2. The Madelung field of the same projections as Fig. 2.1 with one O*~ ion
removed from the top right showing the rearrangement of the flux lines (from Preiser
et al. 1999).
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long-range effects being mediated through a redistribution of the flux around
the intervening atoms in accordance with Gauss’ theorem. Thus the partition-
ing of the Madelung field into localized bonds is quite compatible with its
long-range influence.

The law of conservation of energy, which states that the sum of the potential
differences around any closed loop is zero, can also be applied to this system if
the potential differences between the ions can be calculated. To determine these,
it is convenient to recognize that each bond acts as a capacitor, Cy, with the
atoms acting as the plates that carry the charges and the bond providing the field
linking them. This capacitor then supports the potential difference, P
according to the capacitor eqn (2.8):

ij»

qi
Py = aj, (2.8)

where ¢; is the charge that terminates the flux lines. According to Gauss’
theorem,

Combining eqns (2.8) and (2.9) gives eqn (2.10):

oy
Py = Fj (2.10)

Since the law of conservation of energy requires that the sum of the potentials,
P, around any closed loop be zero,

O:ZP,,:Z%, (2.11)

loop loop 7

ij»

where each loop is composed of a number of bonds and the flux of each bond is
taken as positive or negative according to the direction in which it is traversed. It
is positive if the bond is traversed from anion to cation and negative if traversed
in the opposite direction.

Calculating the values of the bond capacitances presents a number of pro-
blems. Firstly, since the electric potential is singular at a point charge, the
potential difference between a point positive and a point negative charge is
infinite and C; is zero for all links. This singularity can be avoided by replacing
each point charge by a small closed equipotential shell and distributing the
charge Q, over its surface in such a way as to leave the external field unchanged.
The bonds are now bounded at their ends by that portion of the charged
equipotential surface on which their field lines start or terminate. These portions
of the equipotential surfaces therefore act as the plates of the capacitor and
carry the charge ¢;. For this arrangement, C; and P are finite and, in principle,
calculable.
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The values of Cy, of course, depend on which equipotential surface is used to
represent the ion. Since these surfaces can be arbitrarily chosen, it might be
supposed that all the values of Cj; can also be arbitrarily chosen. However, the
number of ions is always less than the number of bonds. If there are N, ions in
the array, it is only possible to assign arbitrary values of C; to N, —1 bonds,
those in the spanning tree described in Section 2.5 below. For the remaining
bonds, those that close the loops in the network, a knowledge of the bond
topology alone is insufficient to determine Cj. To find these values of Cy, the
geometry of the array, i.e. the positions of the ions, must also be known.

If all values of C;; are known, the distribution of flux between the bonds can
be calculated by solving eqns (2.7) and (2.11) since they contain only the
parameters Q; and Cj;. Unfortunately, the values of C; cannot be determined
a priori, since they depend on a knowledge of the interatomic distances which
are determined by the mutual repulsion of the ions and hence by the electron
density distribution. This problem is taken up in Chapter 3 where it is shown
that, for a large number of equilibrium structures, the values of C; can all be set
equal. As C;;is common to all the terms in (2.11), it can be cancelled, allowing
eqns (2.7) and (2.11) to be solved.

ij»

2.5 Bond networks and bond graphs

The fact that all the long-range Coulomb forces in a crystal are correctly
described by the electrostatic bond fluxes, @, means that it is possible to
represent the Madelung field of a molecule or a crystal as a network of bonds
(Beevers and Schwarz 1935). In mathematical language a network consists of an
array of nodes which are connected by links. Translated into chemical terms a
bond network consists of an array of atoms which are connected by bonds. The
important properties of this network are the valences of the atoms and the fluxes
of the bonds.” These, combined with a knowledge of the topology of the net-
work (the description of the way the atoms are connected), provide a complete
representation of the properties of the Madelung field, hence of the long-range
bonding forces in the crystal.*

The topology of such a network can be represented in several different ways.
An algebraic representation is the N, x N, connectivity or adjacency matrix,

* In the mathematical theory of networks ‘valence’ is defined as the number of links terminating
at a node, and it was in this sense that the term was introduced into chemistry. However, chemists
were later forced to distinguish between a chemical valence (bonding power) and a coordinative
valence (number of bonds). They chose to keep the term ‘valence’ for the chemical valence and
introduced the term ‘coordination number’ for the coordinative valence. This book follows the
chemical convention. The term ‘valence’ is always used in the sense of bonding power unless
otherwise stated, and ‘coordination number’ is used to indicate the number of bonds.

4 The reader’s attention is drawn to the discussion in Sections 14.3 and 14.4 which shows that all
chemical bond models are equivalent because they all reduce to this same topological description.
The derivation here is based on the ionic model because it is the simplest and most convincing.
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where NV, is the number of atoms in the network. The elements of this matrix all
have the value of zero except where a bond exists between the column atom and
the row atom. An example of a connectivity matrix is given for the molecule
B,Hg (1312) in Table 2.1. An alternative representation of the topology is the
bond graph, a diagram in which the bonds are represented by lines and the
atoms by the nodes, as shown for B,Hg in Fig. 2.3.

Bond graphs are familiar in organic chemistry where they are called mole-
cular diagrams. The network of an organic molecule contains a finite number of
atoms and bonds, and, because bonded atoms are always neighbours in three-
dimensional space, such a bond graph can easily be drawn as a two-dimensional
projection of the three-dimensional molecular structure.

It is impossible to draw bond graphs in this way for the majority of inorganic
compounds which exist only as crystals, because the bond network is effectively
infinite and contains around 10?* atoms. However, because a crystal contains
translational symmetry, the nearest neighbour topological properties of the
bond network are all contained in the small repeating unit from which the
crystal is generated. It is possible to extract this unit from the network in order
to represent the network by a finite bond graph. This is done by removing the
atoms of one formula unit from the network. In the NaCl (18189) network
shown in Fig. 1.1, the formula unit contains just one Na* ion and one CI~ ion
Removing this unit from the network requires the breaking of five bonds
around each ion, but the broken bonds occur in symmetry related pairs which
can be reconnected within the formula unit to form a closed, finite bond graph
which correctly reproduces the nearest neighbour topology of the original

Table 2.1 Connectivity table for B,Hg

B1 B2 H1 H2

T
)
T
~
T
w
T
SN

B1 0 0 1 1 1 0 1 0
B2 0 0 1 1 0 1 0 1
H1 1 1 0 0 0 0 0 0
H2 1 1 0 0 0 0 0 0
H3 1 0 0 0 0 0 0 0
H4 0 1 0 0 0 0 0 0
H5 1 0 0 0 0 0 0 0
H6 0 1 0 0 0 0 0 0

\/\/
/\/\

H5

Fig. 2.3. The bond graph of B,Hg (1312).
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network (Fig. 2.4). Such a finite bond graph provides sufficient information
about the connectivity of the network to allow eqns (2.7) and (2.11) to be solved.

The finite bond graph of an inorganic crystal differs in a second important
respect from the familiar bond graph of organic chemistry. In the latter, the
presence of two lines connecting the same pair of atoms indicates a double
bond. There is only one bond between the two atoms but that bond has double
the strength of a bond represented by a single line. For inorganic compounds,
each line in the finite bond graph represents a separate connection between two
different atoms. For example, the six lines connecting the Na* and CI~ ions in
the finite bond graph of NaCl shown in Fig. 2.4 do not represent a sextuple
bond, but rather six separate bonds between one Na* ion and six different but
symmetry related Cl™ ions. A less trivial example is the finite bond graph of
CaCrFs (10286) shown in Fig. 2.5. In this example the Cr*" ion is six coordi-
nate, the Ca®* ion seven coordinate, and the fluorine ions F1~, F2~, and F3~
each have a different coordination environment.

As mentioned in Section 2.4, in the ionic model the chemical bond is an
electrical capacitor. It is therefore possible to replace the bond network by an
equivalent electric circuit consisting of links which contain capacitors as shown
in Fig. 2.6. The appropriate Kirchhoff equations for this electrical network are
eqns (2.7) and (2.11). It is thus possible in principle to determine the bond fluxes
for a bond network in exactly the same way as one solves for the charges on the
capacitors of an electrical network. While solving these equations is simple in
principle providing the capacitances are known, the calculation itself can be

Na* cr

Fig. 2.4. The bond graph of NaCl (18189). The heavy line represents the spanning tree
(Appendix 3). Compare this graph with the infinite three-dimensional network shown in
Fig. 1.1.

Fig. 2.5. The bond graph of CaCrFs (10286). The heavy lines indicate one of many
possible choices of the spanning tree (Appendix 3). The numbers are the experimental
bond fluxes (vu) taken from Table 3.1.
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Fig. 2.6. The equivalent circuit for the section of rutile (TiO,) shown in Fig. 2.1. The
filled circles are Ti'", the open circles are O%~.

somewhat involved if done by hand. Various approaches taken to solving these
equations are described in Appendix 3.

2.6 Coordination number

The concept of coordination number, i.e. the number of bonds formed by an
ion, is important in structural chemistry, but it is a concept that has defied
precise definition. Most chemists would agree on the coordination number to be
assigned for the majority of cation environments, but none of the attempts to
provide a rigorous definition has been particularly successful in cases where the
coordination number is ambiguous. The more rigorous the definition, the less
well it corresponds to chemical intuition. However, the Madelung field provides
a definition that is based on the electrostatic linkages between atoms and
therefore directly reflects the contribution of each bond to the cohesion energy
of the crystal.

Definition of coordination number. The coordination number of an ion is the
number of ions to which it is linked by electrostatic flux.

There is generally good agreement between the conventional coordination
numbers and those derived from the Madelung field, because both correspond
to the number of neighbouring ions that are in direct contact (Preiser et al.
1999). However, the Madelung field sometimes contains bonds to second
nearest neighbours that would not normally be considered chemically bonded.
Most of these long bonds, here called rertiary bonds,” have small fluxes
(<0.05vu®) and therefore make only a minor contribution to the chemical
bonding.

3 The term secondary bond was used by Alcock (1972) to describe the longer bonds that occur in
the electronically distorted cation environments described in Chapter 8, particularly those around
atoms with stereoactive lone pairs. The term tertiary bond has been used here to avoid confusion
with Alcock’s secondary bonds.

© yu=valence unit. One valence unit is equal to the charge of one electron or the flux generated
by the charge of one electron.
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a b

Fig. 2.7. Comparison of the primary and tertiary bonding around Zn*" (small circle) in
(a) the sphalerite structure and (b) the wurtzite structure. In (b) the distances (in pm)
are those found in ZnO (67454).

Many of the tertiary bonds reported by Preiser et al. (1999) are likely artefacts
of their calculations since these were based on the use of formal ionic charges.
Substituting a more physically reasonable value for the formal ionic charge will
reduce the total flux starting at the cation and eliminate many of the tertiary
bonds around the highly charged cations where most tertiary bonds were found.
However, there are some cases where tertiary bonds undoubtedly do occur and
these can provide important information about the crystal chemistry.

One example is the tertiary bond found in the wurtzite structure of ZnO
(67454). All members of the Zn chalcogenide series crystallize with structures
based on the close packing’ of the chalcogenide ions, with Zn*" occupying half
the tetrahedral cavities. The higher members, ZnSe and ZnTe (31840), crys-
tallize with the cubic sphalerite structure while ZnO crystallizes with the
hexagonal wurtzite structure. ZnS (60378, 67453) is known in both forms.

In the sphalerite structure the anions form a cubic close packed array. The
structure has a single adjustable parameter, the cubic cell edge. The O*~ ions are
too small for them to be in contact in this structure (see Fig. 6.4) so ZnO adopts
the lower symmetry hexagonal wurtzite structure which has three adjustable
parameters, the a and ¢ unit cell lengths and the z coordinate of the O*~ ion,
allowing the environment around the Zn** ion to deviate from perfect tetra-
hedral symmetry. In the sphalerite structure the ZnX, tetrahedron shares each
of its faces with a vacant octahedral cavity (one is shown in Fig. 2.6(a)), while in
the wurtzite structure one of these faces is shared with an empty tetrahedral
cavity which places an anion directly over the shared face as seen in Fig. 2.6(b).
The primary coordination number of Zn>" in sphalerite is 4 and there are
no tertiary bonds, but in wurtzite, which has the same primary coordination
number, there is an additional tertiary bond with a flux of 0.02 vu through the
face shared with the vacant tetrahedron.

7 For a discussion of close packing, see Section 11.2.1.2.
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Crystallographic symmetry requires the primary coordination around Zn**
in the sphalerite structure to be exactly tetrahedral. In the wurtzite structure this
restriction is removed. The Zn®' coordination in ZnO is distorted slightly
towards a five-coordinate trigonal bipyramid as shown by the bond lengths in
Fig. 2.7(b), the opening up of the shared face being made possible by the smaller
size of the O~ ions. The distortion is quite small, so it is still appropriate in all
these compounds to consider Zn?" as having a primary coordination number of
4 (average flux =0.50 vu) with the wurtzite structure being stabilized in the case
of ZnO by the formation of an additional tertiary bond of flux 0.02 vu.

A fuller discussion of the factors that determine the coordination number of
the cation (including Zn**) can be found in Chapter 6.

2.7 Conclusions

This chapter shows that the ionic model can not only be presented in terms of
chemical bonds characterized by their electrostatic flux, but also that the
improbable assumptions of the model are satisfied by the wide range of com-
pounds that conform to the following two conditions:

1. The chemical bonding can be completely described in terms of localized bonds
between neighbouring atoms. This condition excludes only metals and
aromatic compounds where the bonding is provided by delocalized
electrons.

2. The bonds have a cation at one end and an anion at the other. This excludes
the majority of organic compounds but does not exclude the polar bonds
that many organic compounds form. The model thus covers the bonds
found in inorganic compounds, their solutions, and melts, but it also extends
to acid-base bonds found in other systems, particularly the important
aqueous chemistry of living organisms.
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The bond valence model

3.1 Experimental bond valences and bond lengths

The ionic model divides the forces acting on atoms into an electrostatic com-
ponent that can be calculated using classical electrostatic theory and a short-
range component that is determined empirically. The previous chapter explored
the properties of the classical electrostatic field. This chapter explores the
properties of the empirically determined short-range force which is represen-
ted in the electrostatic model by the bond capacitance, Cy;, defined in eqn (2.8).
Rather than try to determine the values of C; directly, it is better to step
back and look at the way in which the bond valence model developed histori-
cally. Its connection with the electrostatic model of Chapter 2 will then become
apparent.

The concept of bond valence, which, as will be shown below, is the same as
the bond flux derived in Chapter 2, grew out of attempts to refine Pauling’s
‘principles determining the structures of complex ionic crystals’ (Section 1.7). In
this empirical evolution of Pauling’s model, both the electrostatic and short-
range components were developed simultaneously. Only later did it become
apparent that it was also possible to derive the properties of the electrostatic
component independently using the ionic theory.

When Pauling published his ‘Principles’ in 1929, the absence of computers
and the rudimentary knowledge of bonding geometry made the calculation of
bond fluxes impossible except in trivial cases. The best that could be done for
complex structures was to approximate the bond flux by a bond strength, defined
as the ratio of the cation’s valence to its coordination number. In effect all the
bonds formed by a cation were assumed to have the same flux. Pauling’s second
law (Section 1.7), which can be paraphrased as ‘the sum of the bond strengths
around each anion is equal to the anion’s valence’, is therefore only an approxi-
mation to Gauss’ law (eqn (2.7)). Deviations as large as 1.0 valence unit (vu)
sometimes occurred (Baur 1970).

As improvements in X-ray diffraction techniques led to a better knowledge of
bonding geometry, it became clear that there was a relationship between the
length of a bond and its strength. This led Pauling (1947), followed by Bystrém
and Willhelmi (1951), Zachariasen (1954), Donnay and Allmann (1970),
Pyatenko (1973), and Brown and Shannon (1973), to show that assigning bond
strengths on the basis of bond lengths resulted in a more exact fulfilment of
Pauling’s second law. To avoid confusion with Pauling’s definition of bond
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Fig. 3.1. The line shows correlation between bond valence and bond length for Ca-O
bonds given by eqn (3.1). The circles represent bond fluxes calculated from the Madelung
field (Preiser et al. 1999).

strength, the quantity determined from the bond length is called the experimental
bond valence, represented in this book by the upper case letter S.

The correlation found empirically between the valence and length of a bond is
shown by the line in Fig. 3.1 for Ca—O bonds. Similar correlations are found for
other bond types. For most bonds this correlation can be approximated by a
simple two-parameter expression such as eqn (3.1) or (3.2):

Ry — R;
Sijexp(%), (3.1)

R\ N
S](R#;) : (3.2)

where R;; is the length of the bond between atoms i and j, and S is its experi-
mental valence. Ry, B, and N are parameters that are chosen to ensure that the
sums of the bond valences around all the ions (cations as well as anions) in a
large number of well-determined structures are the same as their atomic
valences or formal charges. The parameters B and N determine the slope of the
curve shown in Fig. 3.1, and Ry, which varies with the nature of the two ions
forming the bond, is the length of a bond of unit valence. For many bonds in
oxides, B is found to be close to 37 pm with somewhat larger values expected for
more polarizable ions. N tends to increase from around 4 to 6 with increasing
atomic number. Although both equations describe the correlation equally well,
eqn (3.1) is preferred because the exponential function has useful mathematical
properties and best reflects the repulsive potential between atoms. The relative
constancy of Bis also an advantage. Appendix 1 discusses the practical problem
of determining the bond valence parameters and describes some of the other
functions that have been proposed to represent this correlation. This appendix
also gives a partial list of bond valence parameters for eqn (3.1). A more
comprehensive list is available on the web site http://www.ccpl4.ac.uk/ccp/
web-mirrors/i_d brown/bond valence parm/
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Equations (3.1) and (3.2) are, however, only approximations. In practice the
bond valence falls to zero at a finite distance somewhere between 300 and
400 pm depending on the bond type, and at short distances the curve becomes
very steep as can be seen for H-O bonds in Fig. 7.1. As a result, eqns (3.1) and
(3.2) both overestimate the valences of very weak bonds and underestimate the
valences of very strong bonds.

The experimental uncertainties in the measured bond lengths ensure that the
sum of experimental bond valences around any particular ion will never exactly
equal the atomic valence and, as shown in later chapters, there are cases where
this discrepancy gives important information about the crystal chemistry, but
the valence sum rule, which states that the sum of experimental bond valences
around each atom is equal to the atomic valence (¥;1in eqn (3.3)), is much better
obeyed than Pauling’s second rule.

V= Z Sy. (3.3)
J

The similarity between eqns (2.7) and (3.3) (given the equality of Q;and V) is
a necessary but not sufficient condition that bond fluxes, ®,, and bond valences,
Sy, are the same. A theoretical proof of their equality is not possible, but it can
be demonstrated by comparing the bond valences calculated using eqn (3.1) (the
line in Fig. 3.1) with bond fluxes calculated from the Madelung fields in parti-
cular compounds (the points in Fig. 3.1). This figure shows that the flux and
bond valence are essentially the same for Ca—O bonds and similar agreement is
found for other types of bond provided that electronic anisotropies of the kind
discussed in Chapter 8 are not present (Preiser ez al. 1999).

Equations (3.1) and (3.2) therefore give information about the short-range
repulsive forces that prevent the ions from collapsing into each other. They give
an indication of how close two ions can approach when linked by a given flux:
the larger the flux, the closer the ions are pulled together. Fitting the parameters
Ry, B, and N empirically has several advantages. It provides a simple correla-
tion, it avoids the need for quantum mechanical calculations, and it auto-
matically compensates for a number of other systematic effects as discussed in
Section 14.1.2.

3.2 Empirical network equations
A second empirical observation related to the short-range forces of the ionic

model is the observation that in many crystals the experimental bond valences
also obey eqn (3.4) (Brown 1987b):

0=>_8y (3.4)

loop
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where the summation is over the bond valences around any closed loop in the
bond network having regard for the direction in which the loop is traversed, S
being taken as positive if the bond is traversed from the anion to the cation and
negative otherwise.

Equations (3.3) and (3.4) have become known respectively as the valence sum
rule and the loop, or equal valence, rule, and are known collectively as the
network equations. Equation (3.4) represents the condition that each atom
distributes its valence equally among its bonds subject to the constraints of
eqn (3.3) as shown in the appendix to Brown (19924). The two network equa-
tions provide sufficient constraints to determine all the bond valences, given a
knowledge of the bond graph and the valences of the atoms. The solutions of the
network equations are called the theoretical bond valences and are designated by
the lower case letter s. Methods for solving the network equations are described
in Appendix 3.!

In many compounds, the experimental bond valences, S, and the theoretical
bond valences, s, are both found to be equal to the bond fluxes, ¢, within the
limits of experimental uncertainty. This is an empirical observation that is not
required by any theory. For this reason, and because there are occasions when
the differences between them are significant and contain important information
about the crystal chemistry, it is convenient to retain a different name for each
of these three quantities to indicate the ways in which they have been deter-
mined. The bond flux is determined from the calculation of the Madelung field,
the theoretical bond valence is calculated from the network equations (3.3) and
(3.4), and the experimental bond valence is determined from the observed bond
lengths using eqn (3.1) or (3.2).

It is observed that the experimental and theoretical bond valences have
similar values in compounds in which there are no perturbing factors such as
the anisotropic electron density associated with lone electron pairs (Chapter 8)
or steric strains of the kind found in most perovskite-related compounds
(Chapter 12). Structures in which the experimental and theoretical bond
valences differ by an average of less than 0.05 vu are therefore called unstrained
structures, the value of 0.05 vu being chosen to accommodate the experimental
uncertainties typically present in .S. Compounds that do not satisfy this con-
dition are generically referred to as strained structures and are discussed in
Chapters 8 and 12. For the present, the discussion will be restricted to unstrained
structures unless otherwise specified. Typical of these are CaCOj; (both calcite
(100676) and aragonite (15198)), TiO, (both rutile (202240) and anatase (9852)),
ZnS (both sphalerite (60378) and wurtzite (67453) forms), NaClO,4 (200405), 3-
Ga,05 (34243), CaS0O, (16382), and CaCrFs (10286). As an example, Table 3.1
compares the bond fluxes with the experimental and theoretical bond valences

! Rutherford (1998) and Rao and Brown (1998) have proposed other ways of applying the
principle of maximum symmetry (rule 3.1) to the problem of calculating the theoretical valences as
mentioned in Appendix 3.
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Table 3.1 A comparison of the bond fluxes, ®, theoretical bond valences, s, and

experimental bond valences, S, and the corresponding bond lengths, R, in
CaCrF5(10286)

Bond ¢ (Vll) s (Vll) S (Vll) Rtheor (pm) Rexper (Pm) s—S (Vll) AR (pm)

Cr-F3 041 0.41 0.41 199 194 —0.05 5
Cr-F1 047 0.48 0.47 193 192 —0.01 1
Cr-F2  0.58 0.61 0.58 184 185 0.01 —1
Ca-F3 0.17 0.18 0.17 248 250 0.01 -2
Ca-F1 0.26 0.26 0.29 234 229 —0.04 5
Ca-F1 0.23 0.26 0.23 234 239 0.03 -5
Ca-F2 0.39 0.39 0.39 219 221 0.02 -2

The differences in the two observed bond lengths for Ca—F1 bonds can be attributed to steric effects
discussed in Section 12.3.5.

and bond lengths in CaCrFs, the compound whose bond graph is shown in
Fig. 2.5.

The network equations (3.3) and (3.4) invite comparison with the Kirchhoff
equations (2.7) and (2.11). By choosing the ionic charge, Q;, in eqn (2.7) to be
the same as the atomic valence, V;, in eqn (3.3), and recognizing that in
unstrained structures @ is equal to sy, it follows from eqn (2.11) that } jo0p 85/
C;= 0 which, when compared with eqn (3.4), means that the capacitances in
eqn (2.11) must cancel, i.e. they must all be equal. This greatly simplifies the
model, since it means that

for unstrained structures at equilibrium all bonds have the same bond capacitance.”

For unstrained compounds the quantum mechanical component of the ionic
model is described entirely by the empirical bond valence parameters, Ry and B,
and an explicit knowledge of the bond capacitances is not needed.

In cases where the experimental and theoretical bond valences are different,
the bond capacitances do not cancel, but the experimental bond valences con-
tinue to give a good estimate of the bond flux (Preiser ez al. 1999). In these cases,
discussed in Chapters 8 and 12, the theoretical bond valences can be used to
determine a reference bond length against which the sizes of the strains in the
observed bond lengths can be measured.

Although the empirical eqns (3.3) and (3.4) can be justified by their similarity
with eqns (2.7) and (2.11) which have been derived using the ionic model, they
are not restricted to ionic bonds. The formation of a chemical compound results
in the pairing of the unpaired valence electrons drawn from the two bonded

2 Tertiary bonds (Section 2.6) are excluded. Where they are real, they have very small
capacitances and therefore should not be included in the bond network used to solve the network
equations. Tertiary bonds are not found among the traditionally assigned chemical bonds.



THE BOND VALENCE MODEL 31

0 :@: 0

Fig. 3.2. A conceptual view of two monovalent cations (small circle with + sign)
bonding a single divalent anion (small circle with + sign surrounded by large circle with
pairs of — signs). (a) an ionic view in which the bonding electrons reside on the anion.
(b) a covalent view in which the bonding electron pairs are located in the bonds. Note
that the bond flux does not depend on whether the electrons pairs reside on the anion or
are located in the bond.

atoms. In an ionic bond, these pairs all reside on the anions and the flux of a
bond is equal to the number of the electron pairs associated with it. The electron
pairs do not, however, have to reside on the anions, which is where they are
assumed to be in the ionic limit. They can just as readily reside in the middle of
the bond since, as shown in Fig. 3.2, the position of the electron pairs makes no
difference to the flux linking the two atoms. Equation (3.3) is therefore obeyed
in covalent as well as ionic compounds, provided one interprets V; as the
number of unpaired electrons in the valence shell of atom 7, and s;; as the number
of electron pairs associated with the bond between atoms 7 and j.

Surprisingly, therefore, the same topological equations (3.3) and (3.4), pro-
vide a description of both ionic and covalent bonding. It does not therefore
matter whether a bond is considered to be ionic or covalent in character since
both have the same bond valence description. This leads to the important
corollary: the bond valence model cannot distinguish between ionic and covalent
bonding. Within the model, the terms ‘ionic bond” and ‘covalent bond’ are
without any formal significance.

3.3 The bond valence model

In Chapter 2 it was shown that the Madelung field of a crystal is equivalent to a
capacitive electric circuit which can be solved using a set of Kirchhoff equations.
In Sections 3.1 and 3.2 it was shown that for unstrained structures the capaci-
tances are all equal and that there is a simple relationship between the bond flux
(or experimental bond valence) and the bond length. These ideas are brought
together here in a summary of the three basic rules of the bond valence model,
Rules 3.3, 3.4, and 3.5.

First, however, it is appropriate to introduce the Principle of maximum
symmetry, an important heuristic that underlies the bond valence model and
its application.
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Rule 3.1 (Principle of maximum symmetry.) 4s far as allowed by the chemical
and geometric constraints, all atoms and all bonds in a compound will be
chemically and geometrically indistinguishable.

In NaCl (18189), this principle would require all atoms to be identical. Clearly
this symmetry is already broken by the constraint imposed by the chemical
formula which requires half the atoms to be Na* and half C1~. However, all the
Na' ions are indistinguishable from each other, and the same is true for the C1~
ions. The bonds likewise, six for each formula unit, are also equivalent in the
bond graph (Fig. 2.4). The crystal structure (Fig. 1.1) is then determined by
applying the principle of maximum symmetry to the constraints imposed by
three-dimensional space as described in Section 11.2.2.4. The crystal structure is
thus uniquely determined by the principle of maximum symmetry and the
chemical and spatial constraints.

In more complex compounds, particularly ternary and quaternary com-
pounds, it is often not possible to maintain the equivalence of all atoms of the
same element because they are required to form different numbers of bonds. For
example, in the bond graph of CaCrFs (10286) shown in Fig. 2.5, Cr*" can only
have its expected coordination number of six if one of the five F~ ions forms two
bonds to Cr*". The equivalence of the remaining four F ~ ions is broken by the
spatial constraints (Section 12.3.5).

The principle of maximum symmetry can be justified by recognizing that the
free energy of any symmetric system must necessarily be either a maximum or a
minimum with respect to small shifts that break that symmetry, since shifts in
opposite directions will produce identical changes in the energy. Thus equili-
brium structures will tend to adopt the most symmetric configuration that
corresponds to a minimum in the free energy.

The principle of maximum symmetry has a useful corollary:

Rule 3.2 (Corollary). The breaking of symmetry is always the consequence of an
identifiable chemical or spatial constraint.

Any time the symmetry is lower than expected, a search for the cause
of the broken symmetry will reveal the constraints that are at work in the
system.

While the principle of maximum symmetry is a heuristic with wide scientific
application, Rules 3.3 to 3.5 define the bond valence model. They have each
been discussed before but are brought together here for convenience.

Rule 3.3 (Valence sum rule (eqn (3.3)). The sum of the valences of all the bonds
Jformed by an ion is equal to the valence of the ion.

Since the bond valence is the same as the bond flux, this is the same as Gauss’
law given by eqn (2.7). In every bond network the atomic valences can always be
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distributed between the bonds in at least one way that obeys this rule providing
the compound satisfies two conditions:

Condition 3.1. The stoichiometry must obey the electroneutrality principle, namely
that the sum of all the atomic valences (formal ionic charges), having regard to
their sign, is zero.

Condition 3.2. The bond graph must be bipartite as described in Section 3.5, i.e. all
of the bonds must connect a cation, e.g. Na', to an anion, e.g. CI~.

The valence sum rule is not, in general, sufficient to determine the distribution
of the valence among the various bonds, but the principle of maximum sym-
metry suggests that the distribution will be the most symmetric one that is
consistent with the valence sum rule. The condition that makes the bond
valences most nearly equal is the loop, or equal valence rule.

Rule 3.4 (Equal valence rule (eqn (3.4)). The sum of bond valences around any
loop in the bond network, having regard to the direction of the bond, is zero.

This rule is obeyed by unstrained structures and is equivalent to eqn (2.11), the
law of conservation of energy, if the capacitances are all set equal.

Rules 3.3 and 3.4, through the corresponding network equations (3.3) and
(3.4), can be solved (see Appendix 3) to give theoretical bond valences which, for
unstrained structures, are equal to the bond fluxes and experimental bond
valences. Taken together, Rules 3.3 and 3.4 are equivalent to the statement:

The valence of each atom is distributed as uniformly as possible among the bonds
that it forms.

The correlation between bond length and bond valence corresponds to the
third rule of the bond valence model.

Rule 3.5 (Bond length—bond valence correlation (eqns (3.1) or (3.2)). Increasing
the bond valence between two ions reduces the distance between them as shown
in Fig. 3.1.

This empirical correlation has been discussed in Section 3.1.

3.4 The distortion theorem

There is a useful theorem relating to coordination spheres that derives from the
shape of the bond valence—bond length correlation shown in Fig. 3.1.

Rule 3.6 (Distortion theorem). For any ion, lengthening some of its bonds and
shortening others, keeping the bond valence sum the same, will always increase the
average bond length.

The proof of this theorem based on eqn (3.1) is given by Allmann (1975)
who shows that the increase in average bond length, AR, in the distorted
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environment of an ion is given by
AR = B{In(S) — (In(S))}, (3.5)

where the angle brackets indicate averages over all the bonds formed by the ion.
Since the first term in the curly brackets is the logarithm of the arithmetic mean of
the bond valences, and the second term is the logarithm of the geometric mean,
and since the arithmetic mean is always equal to or larger than the geometric
mean, AR must be positive or, when all the bonds are the same length, zero.

The theorem can also be understood by referring to Fig. 3.1. If a Ca** ion is
at the centre of an octahedron of O*~ ions, it forms six bonds of 0.33 vu and,
according to Fig. 3.1, each Ca—O bond has a length of 237 pm. If the Ca*" ion is
displaced, so as to increase the valence of three bonds to 0.53 vu and decrease
the valence of the other three to 0.13 vu, the valence sum remains unchanged,
but three bonds have been shortened to 220 pm and the other three lengthened
to 272 pm, the average bond length being increased from 237 to 246 pm. By
distorting the environment of Ca®*, the average bond length has been increased
by 9 pm, but the bond valence sum remains unchanged.

The distortion theorem can be expressed in an alternative form:

Rule 3.6a (An alternative statement of the Distortion theorem). For any ion,
lengthening some of its bonds and shortening others, keeping the average bond
length the same, will always increase the valence sum.

This statement of the distortion theorem can be demonstrated in the same way
as the previous statement, but it leads to an interesting corollary:

Rule 3.7 (Corollary). If an ion is placed in an environment in which the average
bond length is too long, i.e. in a cavity which is too large for the ion, the
environment will distort in such a way as to increase the lengths of some bonds and
decrease the lengths of others in order to raise the bond valence sum to the
expected value.

Typically, the ion will move off-centre in its coordination sphere (see
Chapter 12), but distortions which preserve a centre of symmetry, such as the
Jahn-Teller distortion discussed in Section §.3.1, are also possible.

3.5 Bond networks with non-bipartite graphs

Hitherto it has been assumed that the bond graph is bipartite, i.e. bonds only
occur between a cation and an anion with no cation—cation or anion—anion bonds
present. While the majority of inorganic compounds have bipartite bond graphs,
there are a few, such as mercurous and peroxy compounds, that contain homo-
ionic bonds. Itis easy to see that there can be no electric flux linking two cations or
two anions, so the ionic model predicts that no bond will exist between them.
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Fig. 3.3. (a) Expected bond valences in NH,-NH;". No chemically reasonable
assignment of bond valences will give equal integer valence sums at both nitrogen
atoms. (b) An alternative treatment of the N-N bond that ignores the N-N bonding
electron pair but gives correct valence sums (of —2) on the two nitrogen atoms.

The practical problem created by homoionic bonds is illustrated by the
hydrazinium ion, N,H{, shown in Fig. 3.3(a). If the H" atoms are treated as
cations carrying a formal charge of +1, the N atoms must each have a formal
charge of — 2 if the hydrazinium ion is to have a net charge of + 1. This leaves
each N atom with an unpaired electron which is used to form an N-N electron
pair bond. Whether one ignores the N-N bond or whether one counts it as
having a bond of valence 1.0, it is mathematically impossible for the valence
sums around both N atoms to be equal, nor is it possible for both sums to be
integers. Assuming that each H* ion forms a hydrogen bond as described in
Chapter 7, so that the five N-H bonds each have a valence of 0.75 vu, and that
N1 accepts a hydrogen bond of 0.25 vu as shown in Fig. 3.3(a), the sum of the N—
H bond valences around N1 is 1.75vu and around N2 is 2.25 vu. There is no
reasonable chemical way of adjusting these valence sums, either by strength-
ening or weakening the N-H bonds, or by assigning a valence to the N-N
bond, that will make these sums equal, let alone allow them to be equal to the
integer 2 or 3.

However, we do not need to abandon the bond valence model for those few
inorganic compounds which contain homoionic bonds since there are a number
of ways of adapting the model depending on the nature of the structure. If the
two cations or two anions that form the bond are equivalent by symmetry, as
the two Hg” " cations are, for example, in the tetragonal crystals of Hg,Cl,
(65441, Fig. 3.4), the normal rules still apply. In this compound the two Hg**
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Fig. 3.4. The environment of the Hg%+ cation as observed in Hg,Cl, (65441). Bond
valences are shown in the lower part of each figure and bond lengths (in pm) in the
upper part.

ions are equivalent by crystallographic symmetry and both Hg?" ions have an
observed valence sum of 1.84 vu which is close to the expected value of 2.00 vu.
The symmetry ensures that both Hg® " ions contribute the same number of
valence electrons to the Hg-Hg bond, a condition which lies at the heart of the
ionic model.

However, if the atoms are not related by symmetry, the normal rules break
down. The homoionic N-N bond in the hydrazinium ion is an electron pair
bond, but one in which N1 contributes 1.25 and N2 0.75 electrons. How can we
apply the bond valence model in such cases where no solution to the network
equations is possible? One approach is to isolate the non-bipartite portion of the
graph into a complex pseudo-atom. Thus in the hydrazinium ion the homoionic
bond and its two terminating N atoms are treated as a single N3~ pseudo-anion
which forms six bonds with a valence sum equal to the formal charge of —4.

The trifluoroacetate ion CF3CO, (Fig. 3.5(a)) is similar (Brown 19800). F~
and O~ are both anions so the two C atoms are both formally cations, each
with a valence of +4. As before, we treat the C—C unit as a single pseudo-
cation, Cg+ reserving one electron pair for the C—C bond. It is instructive to
compare this with the closely related acetate ion, [H} C*"— C**O37]", whose
graph is bipartite (Fig. 3.5(b)). In the acetate ion the valence of the C—C bond is
determined by the valences of the C-H and C-O bonds, hence ultimately by the
strengths of the external bonds that the H' and O®~ atoms form as discussed in
Section 9.2. In most acetates the C—C distance is 151 pm corresponding to a
valence of 1.10 vu. Where the external bonds are strong, the C-O and C-H
bonds are weaker, thus strengthening the C—C bond and shortening it in some
compounds to as little as 144 pm. Where the external bonds are weak, the
opposite effect is seen and the C—C bond increases in length to 154 pm. In
contrast, the C—C bond in the trifluoroacetate ion is insensitive to its environ-
ment and never varies significantly from the single bond length of 154 pm. The
contributions of the two C atoms to the electron pair bond may be vary, but the
total number of electrons in the bond is fixed (Section 14.1.1).

A homoionic bond that needs a different treatment is the cation—cation bond
formed by a cation with a stereoactive lone electron pair, a situation modelled in
more detail in Section 8.2. An example of this kind of bond is the Cu—-N bond
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Fig. 3.5. Typical experimental bond valences in (a) the trifluoroacetate anion and (b) the
acetate ion (Brown 1980b). Bond valences are shown in the lower part of each figure and
bond lengths (in pm) in the upper part.
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Fig. 3.6. Expected structure and bond valences of the Cu(NO,)¢ ™ ion

found in Cu(NO,);  (Fig. 3.6). Both Cu** and N** are nominally cations, but
N** has a lone electron pair occupying one of its sp> orbitals. In this case, N**
acts through its lone pair as an anion towards Cu®" while acting as a cation
towards O>~. If the net formal charge of —4 on the complex anion is divided
equally between the 12 peripheral O?~ ions, each will carry a formal charge of
4/12=0.33 vu with which to form external bonds. The remaining 1.67 vu of
negative valence on each O~ ion is used to form a bond to N** . Since N** forms
two such bonds, it will be overbonded, with the bond valence sum equal to
2 x 1.67=3.33 vu. However, the overbonding can be reduced if N** acts as an
anion through its lone electron pair to form a bond of 0.33 vu to Cu”". Taking
account of the direction of the bonds (from anion to cation), the valence sum at
N** becomes 2 x 1.67 — 0.33 = 3.00 vu as required by the valence sum rule.

A slightly different example is the metal-ligand bond formed by the S** atom
of the bipartite molecule dimethylsulphoxide, dmso=(CH3),SO, shown in
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Fig. 3.7. Structures of dmso complexes: (a) PdCl,dmso, (PDDMSX), (b)
[Ru(NH3)sdmso]’ ™ (DMSARU). Bond valences are shown in the lower part of each
figure and bond lengths (in pm) in the upper part.

Fig. 3.7 (Brown 1987a). Dmso normally coordinates to transition-metal cations
through O?~, but with some of the later transition metals it coordinates thro-
ugh the lone pair of electrons on S** (Section 8.2). However, there is an
important difference between this and the previous case. The N—Cu bond is a
o donor bond from N** to Cu?*, but S** has vacant d orbitals that can also
accept a m bond from the filled non-bonding d orbitals found in the late tran-
sition metals. The metal-S bond is strictly represented by two bonds, a & bond
directed from S*' to the metal, and a 7 bond directed from the metal to S**.
The fluxes in these two bonds almost cancel, so the net flux of the bond is small,
typically less than 0.2 vu, even though the bond itself may be quite strong.
Although the net valence of the metal-S bond does not therefore correlate with
the bond length, it can be found by ensuring correct bond valence sums around
both $** and the metal. The two examples shown in Fig. 3.7, PdCl,(dmso),
(PDDMSX) and Ru(NH;),dmso’" (DMSARU), represent two opposite
extremes. The direction of the arrow on the metal-S bond indicates the direction
of the net electron transfer (opposite to the directions of the electrostatic flux
lines). The bond transmits the influence of the electron donating or withdrawing
character of the transition-metal complex to dmso resulting in an observable
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Fig. 3.8. Correlation between bond valence and bond length for Hg-Hg bonds. The
circles represent observed values (Brown et al. 1984).

difference in the geometry of the dmso molecule and the strengths of the bonds
formed by its hydrogen and oxygen atoms.

The bonding in the hydrazinium and trifluoroacetate ions can also be
described in a similar way. Since each atom of the N-N or C-C bond
contributes a different number of electrons (valence) to the bond, one can show
the net valence transfer by means of an arrow as shown in Fig. 3.3(b). The
valence sum rule is obeyed by this graph but at the expense of ignoring the
electron pairs that provide the primary bond between the two N atoms. As in
the case of dmso, the bond valence of the N-N bond in Fig. 3.3(b) shows only
the net electron transfer, not the total number of electron pairs that contribute
to the bond. The bond valence does not, therefore, correlate with the bond length.

In most of these cases the homoionic bond can be assigned a valence, but this
does not always correlate with bond length as the examples of the trifluo-
roacetate ion and S-bonded dmso show. However, a correlation is expected for
Cu(NOz)gf and has been found for Hg-Hg bonds. In addition to the well-
known mercurous ion (Hg; "), cations such as Heg3 ", Hei ", (Hg"*")_ (infinite
chains), and (Hgo'33+)OO (infinite sheets) are also known. The Hg-Hg bonds in
these cations show a considerable variation in length which correlates well with
the bond valence, as shown in Fig. 3.8 (Brown et al. 1984).
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4

Anion and cation bonding strengths

4.1 Bond graphs and coordination number

In applying the rules developed in Chapter 3 to understand and predict the
properties of inorganic compounds, it is necessary to know which particular
atoms are connected by bonds, i.e. one must know the bond graph. In simple
cases it is possible to predict the bond graph from first principles using the
procedure described in Section 11.2.2.1, but in other cases, one must be content
to work with something less than a full knowledge of the graph.

Even if the connectivity is not known, one can predict many properties if one
can make a reasonable estimate of the coordination number. Chapter 6
describes the different factors that determine the coordination number, but at
this point in the discussion it is sufficient, and simpler, to work with coord-
ination numbers that are determined experimentally.

The coordination number of a cation is defined as the number of bonds that it
forms. Although it was shown in Section 2.6 that the number of bonds is
uniquely defined by the partitioning of the Madelung field, extensive calculation
is needed to extract this information. It is, therefore, convenient to use a simpler,
if more arbitrary, definition.

There have been many attempts to define coordination number using a simple
criterion to decide when two atoms are bonded (Brunner and Laves 1970).
Rules have been proposed based on bond lengths, ionic radii, and topological
properties such as the Voronoi partitioning of space, but none has proved
entirely satisfactory. In this book the coordination number is determined by
setting an arbitrary, though reasonable, lower threshold for the experimental
bond valence (Altermatt and Brown 1985).

Rule 4.1 (An operational definition of a bond). 4 bond exists between a cation
and an anion if its experimental bond valence is larger than 0.04 X the cation
valence.

While this definition is arbitrary it is appropriate because it is based on chemical
as well as geometric considerations and, like other definitions, it agrees with the
conventional assignment in cases where there is no dispute. The definition can
be justified for use with the bond valence model since any true bond that is
excluded by this definition contributes at most only 4 per cent to the cation bond
valence sum, and generally much less given that eqn (3.1) tends to overestimate
the valence of weak bonds.
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Cation coordination numbers using Rule 4.1 as a criterion have been deter-
mined for some 14 000 cation environments (Brown 1988a4). Some cations, such
as S°*, are known with only one coordination number (4 in this case), but
others, such as Cs™, can be found with every coordination number between 3
and 12. Whatever the total range, the frequency distribution of the coordination
number for a given cation usually peaks close to the average. It is therefore
convenient to take the average observed coordination number as a character-
istic chemical property of the cation.

Average cation coordination numbers vary slightly depending on the anion.
Most cations have similar coordination numbers when bonded to O*~ and F~
and generally smaller coordination numbers when bonded to larger anions, but
monovalent cations have similar coordination numbers with all monovalent
anions (halogens) and smaller coordination numbers with divalent anions
(chalcogens). The average observed coordination numbers used in this book are
those to 0%~ unless otherwise stated. They are referred to as ideal coordination
numbers and are listed in Appendix 4.

Ideal coordination numbers for anions can, in principle, be determined in a
similar way but it is difficult to find many examples of an anion surrounded by
only one kind of cation. In the alkali halides, Cl™ is six coordinated by each of
the smaller alkali metal atoms, but is eight coordinated by Cs™. An ideal
coordination number of 7 can therefore be chosen. The coordination numbers
around O®~ in stable compounds range between 2 and 6 with an average close to
4 and similar values are found for F~.

With a knowledge of the ideal coordination numbers expected for each of the
ions, one can explore the crystal chemistry of a compound without prior
knowledge of its structure or even its bond graph. It is not even necessary that
the compound exist in order to explore its chemistry and to discover whether it
is likely to be stable, and if so, what its properties might be.

The coordination numbers observed in a crystal are expected to be close to
the ideal value. Both Na' and Cl~ have ideal coordination numbers close to 6,
so it i8 not surprising to find that in crystals of NaCl both ions are six coordi-
nate. The situation is different for CsCl since the ideal coordination number of
Cs" surrounded by CI™ is 10.4 (Brown 19884). A compromise is needed since
both atoms are required to have the same coordination number. The observed
value for CsCl is 8, which is close to the average of the ideal coordination
numbers (10 and 7) of the two ions. The mismatch is more severe for Na,O since
the two Na' ions would be expected to form a total of 2 x 6= 12 bonds but the
single O*~ ion would normally form only four bonds. The coordination number
of Na' must be greatly decreased and that of O~ increased. The average of 12
and 4 is 8, suggesting that 0>~ should be eight coordinate which requires that
Na™ be only four coordinate. These are the coordination numbers found in the
antifluorite structure adopted by Na,O (60435). With both ions adopting
coordination numbers far from the ideal, Na,O is unstable with respect to the
formation of other compounds in which both ions can adopt a more normal
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Fig. 4.1. Anion bonding strengths of (a) PO?[, (b) SO2~, and (¢) ClO; .

coordination. Both the Na* and O®~ ions in Na,O therefore tend to react with
molecules such as water or carbon dioxide that can provide them with coord-
ination numbers closer to the ideal.

4.2 Anion bonding strength

P>*, §°" and CI’* all have ideal coordination numbers of 4 resulting in the
formation of the oxyanions PO3~, SO, and ClO, (Fig. 4.1). The valence of the
P-O bonds is 5/4 = 1.25 vu leaving each O~ ion with a valence of 0.75 vu for
forming external bonds.! Similarly, the valence of the S-O bonds is 1.50 vu
leaving only 0.50 vu for forming external bonds. The valence expected for each
of the external bonds formed by these complex anions can be calculated if the
coordination numbers of the O~ ions are known. If in PO}~ the O~ ions are
six coordinate, each would form one O-P bond of 1.25vu and five external
bonds 0f 0.75/5=10.15 vu. This is the weakest bond that PO?[ is expected to form.
The strongest, formed when the O~ ions are only two coordinate, is 0.75 vu. If
nothing is known about the compound in which the phosphate group occurs,
the best guess would be that the O%~ ions have their ideal coordination number
of 4 (Fig. 4.1(a)). The three external bonds would then each have a valence of
0.75/3=0.25vu. A similar exercise applied to the SO%’ ion (Fig. 4.1(b)) shows
that it will form bonds with valences between 0.10 and 0.50 vu with a most
probable value of 0.50/3 =0.17 vu. Similarly ClO, will form bonds with a most
probable valence of 0.08 vu (Fig. 4.1(c)).

The most probable valence for the external bonds of an anion is called the
anion bonding strength, s,, and is defined by eqn (4.1):

Sa=Va/va (Va<0), (4.1)

! The number, 0.75 vu, is sometimes called the formal charge on the O atoms, but it should not
be confused with either the formal ionic charge (=—2 for all O°~ ions) or the charges on the O
atoms calculated by quantum mechanics. Quantum mechanical charges are usually larger than
—0.75 (depending on how the calculation is performed) since they include ionic contributions to the
P-O bonds as well as to the external bonds. Quantum mechanics does not allow one to separate the
internal and external bond contributions.
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where v, is the ideal anion coordination number. The extreme values are
referred to as the maximum and minimum anion bonding strengths.

Bonding strengths can be calculated for other anions in the same way, namely
by dividing the valence available for external bonds by the number of external
bonds formed. This can be done either atom by atom as done above, or for the
anion as a whole. For example, SO?[ has a formal charge (valence available for
external bonds) of —2.0 and it is expected to form 4 x 3 =12 external bonds. Its
anion bonding strength is therefore 2/12=0.17 vu, the same value as calculated
above. A listing of anion bonding strengths is given in Appendix 4 and some
typical values are shown on the right-hand side of Fig. 4.2. Maximum and
minimum anion bonding strengths can be calculated in the same way by
assuming O?~ coordination numbers of 2 and 6 respectively.

When calculating the bonding strengths of oxyanions, it is normal to assume
that each oxygen atom will form a total of four bonds, but there are
some occasions when this is clearly inappropriate. If the oxygen atom is brid-
ging between two strongly bonding cations as, for example, in SZO%*
(= 035—0—503), the two S—O bridging bonds cannot have valences as large as
1.50 vu as found in SO?{. Since the valence sum around the oxygen cannot be
greater than 2.0 vu, the bridging S—O bonds must have valences of 1.0 vu or less,
leaving the bridging oxygen little or no valence for forming external bonds. In
this case the coordination number of O~ is unlikely to be greater than 2. If one
of the terminal O”~ ions is protonated, as in HSO,, it forms two relatively
strong bonds, one to the H' ion and one to $°™. In this case it is usually better to
assume a smaller coordination number such as 2 or 3 for the oxygen. The
method of calculating the bonding strengths of protonated anions is described
in more detail in Section 5.4.

Cation bonding Anion bonding
strength strength
Mg?*— — Siog
0.30
Ca2+_
—F PO;~
2+ |
Sr - HPOZCOZ
Ba?*Li* 0.20
H,0(aq) — H20 (aq)
Nat— —H,PO;HCO5S0%~
—CI~
K —
Rb* =7 —NO3
Cs™— 0.10 8 g~
(CHg)yN*—1 '~ —CIOz
0.00

Fig. 4.2. Comparison of cation and anion bonding strengths for selected ions.
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Anions with larger bonding strengths are better able to bind H" so it is no
surprise that there is a correlation between bonding strength and pK,, the
equilibrium constant that measures the ability of an anion A~ to attach an H*
ion in the reaction:

A”+H'" > AH.

Anions like PO?{ that have a relatively large anion bonding strength (0.25 vu)
are able to form stronger bonds to H" and therefore will have a correspondingly
large pK,. Those like CIO,, which have a small anion bonding strength
(0.08 vu), can only bond H" ions with extreme difficulty and so have a low pK,
(Fig. 4.3). Since Lewis bases are ions that donate electrons to the bonds they
form, anions with a large bonding strength are also strong Lewis bases. The
bonding strength is therefore a direct measure of an anion’s Lewis base strength.
Anions are referred to in this book as strong or weak anions according to
whether they have large or small bonding strengths.

4.3 Cation bonding strength

One can calculate cation bonding strengths, s., in the same way as anion bonding
strengths by dividing the valence (or formal ionic charge) of a cation by its ideal
coordination number, v, (eqn (4.2)):

Se = Vofve (Ve>0), (4.2)

Si** has a valence of + 4 and is normally four coordinate so that its bonds have
a valence of 4/4=1.0vu. AI** has a valence of 3 and occurs in both four- and
six-coordination. It can form bonds of either 3/4 =0.75 vu (as in AIPOy, 201773)

)
=
w

0.25
0.2

0.15
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Anion bonding strength (vu
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Fig. 4.3. Anion bonding strength plotted as a function of pK,.
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or 3/6 =0.50 vu (as in Al,O3, 75559), but since A" is more often surrounded
by six than by four oxygen atoms, its ideal coordination number is 5.27 and its
cation bonding strength is 3/5.27=0.57 va. Mg?" is usually found in six coor-
dination giving it a cation bonding strength of 2/6 =0.33 vu. Cation bonding
strengths are listed in Appendix 4 and a selection is shown on the left-hand side
of Fig. 4.2. As with anions, the terms strong and weak cation refer to cations
with large or small bonding strengths respectively.

Just as the bonding strength of an anion is a measure of its Lewis base
strength, so the bonding strength of a cation is a measure of its Lewis acid
strength. For this reason, cation bonding strengths correlate with electro-
negativity, increasing as one moves upwards and to the right in the periodic
table. Many different scales of electronegativity have been proposed based on a
wide variety of different properties. Figure 4.4 shows the correlation between
the cation bonding strength and Pauling’s (1960, p. 93) scale of electronegativity
based on the dipole moments of diatomic molecules, while Fig. 4.5 shows the
correlation with a more recent scale proposed by Allen (1989) based on the
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Pauling electronegativity
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Cation bonding strength (vu)

Fig. 4.4. Pauling electronegativity versus cation bonding strength.
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Fig. 4.5. Allen spectroscopic electronegativity versus cation bonding strength.
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spectroscopic properties of free atoms. Given the widely differing bases for these
three scales, the surprise is not so much that they differ in detail as that their
overall agreement is so good. Although they show differences for the transition-
metal atoms, the three scales agree on the relative ordering of the main group
elements, particularly when allowance is made for non-bonding valence elec-
trons (Brown and Skowron 1989). These similarity arises because each of these
scales ultimately derives from the ratio of the charge of the atomic core to its
radius, this ratio being a measure of the electric potential at the surfaces of the
core, the place where all the chemistry occurs.

4.4 The valence matching principle

The cation bonding strength is an estimate of the valence of the bonds formed
by a cation, and the anion bonding strength is an estimate of the valence of the
bonds formed by an anion. The most stable bond between the two will occur
when the bonding strength of the cation is equal to the bonding strength of the
anion. This result is summarized by the Valence matching principle, which states:

Rule 4.2 ( Valence matching principle). The most stable compounds are formed
between cations and anions that have the same bonding strength.”

The bonding strengths of several cations and anions are compared in Fig. 4.2
which shows which cations and anions have similar bonding strengths and thus
form stable compounds. For example, Mg*" and SiOif both form bonds with
valences 0f0.33 vuand so readily bond to each other to form Mg,S10,4(26374), the
mineral forsterite believed to form a large portion of the earth’s mantle. Similarly,
PO;™ (s, =0.25vu) is well matched with Ca®" (s.=0.27 vu) to form the mineral
whitlockite (23598), but it is poorly matched with K™* (s, =0.13 vu). Even though
K;3PO4hasastoichiometrically correct formula, it is relatively unstable because of
its poor valence match. K;POyis, in fact, deliquescent. It reacts with water to form
the H,PO, ion and hydroxyl, a result that can readily be deduced using the bond
valence model as shown in Chapter 5. Similarly Si;(POy),, while stoichiome-
trically correct, is not stable because of the poor match between the cation and
anion bonding strengths (s.=1.00, s,=0.25vu). An alternative but equivalent
way of demonstrating the instability of this compound is to note that evenif all the
0O”~ atoms were only two coordinate, which is the lowest coordination number
found for O~ in solids, there would still be 16 Si—O bonds in the formula unit.
Since there are only three Si*" ions, the average Si** coordination number would

2 Stability is a relative term. Almost all chemical compounds are at best metastable, there being
other chemical combinations (usually with other elements) that have lower free energies. A
chemical compound is therefore only stable if there is no mechanism for it to proceed to a more
stable configuration. For example some compounds that are stable when dry, react with water
when moist to form a system of lower free energy as discussed in Chapter 5.
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be 16/3 = 5.33, forcing two of the three Si** ions to be six coordinate, a coord-
ination adopted by Si** only under extreme conditions.

Although the most stable compounds are found when the bonding strengths
of the cation and anion are exactly equal, a certain degree of mismatch is
allowed. As a general rule, compounds can exist if the ratio of the two bonding
strengths does not exceed 2.0. While it may be possible to prepare materials
that are more poorly matched, it requires heroic methods and the resulting
compounds are generally unstable.

4.5 Hard and soft acids and bases

Pearson (1973) divided Lewis acids (cations) and Lewis bases (anions) into two
classes which he called hard and soft, reflecting the ease with which they can be
polarized. He pointed out that hard acids tend to form compounds with hard
bases, and soft acids with soft bases. The hard cations and anions are those from
the top of the periodic table in which the excited states that are required to
polarize the electron density lie well above the ground state and are thus inac-
cessible. Hard cations behave as relatively hard spheres and have a simple
crystal chemistry with a limited range of coordination numbers. On the other
hand, soft ions are those that occur lower in the periodic table, with cations
centred around Groups 11 and 12 (Au®", Hg?") and anions centred around
Group 17 (I7). These ions have many low-lying excited levels that can be sta-
bilized by suitable changes in their environment. Soft ions are characterized by
having a more variable structural chemistry and can be found with different
coordination numbers and geometries, sometimes with strongly directed bonds
as discussed in Chapter 8. Although a number of different scales of hardness
and softness have been proposed, the concept has been difficult to quantify and
is most useful when it is used qualitatively.

Soft ions can adopt a number of different coordination environments, and
which one is adopted depends sensitively on the available low-lying excited
states and the chemical environment. TI for example, which has a pair of
valence electrons not used in bonding, behaves like a normal hard cation in its
binary halides, falling neatly between K* and Rb* in the alkali metal sequence,
but in T13BO; (10196) it behaves quite differently, forming three strong T1-O
bonds arranged along three of the sides of a triangular pyramid. According to
the valence matching principle, K;BO3 should be quite unstable since the
bonding strengths of K* (0.13 vu) and BO? (0.33 vu) are very poorly matched.
If TI' always behaved like a hard alkali metal, TI;BO; should be equally
unstable but this is not the case. Unlike K*, TI" is a soft cation and can rear-
range its electron density so as to match the bonding strength of the anion as
discussed in Section 8.2. Thus the characteristic of soft ions is that they display a
much wider range of bonding strengths than hard ions. For this reason the soft
cations are shown with a range of bonding strengths in Appendix 4.
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It is instructive, for example, to compare the structural chemistry of Mg*"
and Zn?* which have identical charges and similar sizes. Mg*" is hard and
rarely occurs in other than six coordination (bonding strength of 0.33 vu), but,
because Zn?* has a filled d shell which can readily mix with the electrons of the
valence shell, it is soft and is found equally often in four- and six-coordination
(bonding strength between 0.33 and 0.50, average 0.40 vu, see Section 6.5). A
more complete discussion of the behaviour of soft cations is given in Chapter 8.

4.6 Applications of the valence matching principle

Many examples of the valence matching principle will be found in the following
chapters, but a couple of examples are given here to illustrate its power.

We often ask the question “Why does such and such a compound exist?” but
more rarely do we ask the question “Why does such and such a compound not
exist?’, yet the answer to the second question may be more revealing than the
answer to the first. A number of years ago, Dent-Glasser (1979) published a
paper entitled ‘Non-existent silicates’ in which she noted that there were many
stoichiometrically allowed silicate structures that had never been observed. In
particular she pointed out that the alkali metals rarely formed orthosilicates
such as Na,SiOy, and transition metals rarely formed highly condensed silicates
such as NiSiyOg. Dent-Glasser’s list of known silicates is shown in Fig. 4.6
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Fig. 4.6. Known silicates plotted as a function of anion and cation bonding strengths.
The lines correspond to the s./s, ratios of 2.0, 1.0, and 0.5.
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plotted as a function of their anion and cation bonding strengths. The known
silicates all cluster around the line that represents the best valence match. Those
silicates with an s./s, ratio greater than 2.0 or less than 0.5 are the ones that do
not exist because the poor valence matching would require that the ions adopt
coordination numbers far from their ideal values.

Hawthorne (1994) has expanded on this idea to suggest that the silicate
mineral that forms as a particular magma solidifies is determined by which
cations are present. It is easy to see from Fig. 4.6 that a rock containing strongly
bonding transition-metal cations will crystallize with equally strongly bonding
meta- or orthosilicate anions, while one containing only weakly bonding alkali
metals will crystallize with equally weakly bonding condensed silicate anions.

An example from a quite different field is the observation by Plenio (Plenio
1998; Plenio and Hermann 1998) that fluorinated macrocyclic molecules are
much better chelating agents for Cs™ than the more common macrocycles that
use O and N as their coordinating atoms, even though organic O and N are
much stronger bases than organic F. This unexpected result is readily under-
stood in terms of the valence matching principle which predicts that a weak
cation like Cs* will form better bonds with a weak base like —CF than with the
stronger bases that are used to chelate stronger cations like K* and Na*.



Liquids

5.1 Introduction

It is now time to show how the ideas developed in the previous chapters can be
applied to real chemical systems. Apart from a few simple gases, the materials
we come across in everyday life are either solids or liquids. A proper under-
standing of the chemistry of the solid state requires some appreciation of the
role of symmetry in crystals and is therefore deferred to Part III. This chapter
explores the use of bond valences to understand the simpler chemistry of liquids.
Most of this chapter is devoted to the chemistry of aqueous solutions because
water is not only the solvent of choice for polar systems but also the most
common solvent in our environment.

5.2 The cation and anion bonding strength of water

The process by which a solid is dissolved in water is a chemical reaction of which
eqn (5.1) is a typical example:

MgSO, + 6H,0 — Mg(H,0)2" + SO2~. (5.1)

In order to understand why this reaction occurs, it is first necessary to determine
the cation and anion bonding strengths of water. To calculate these requires, in
turn, an understanding of the unique properties of the hydrogen ion. A full
discussion of hydrogen bonding is deferred to Chapter 7, but for the present it is
sufficient to know that H* ions bond asymmetrically between two anions, here
assumed to be O®~ unless otherwise specified. Typically H" forms a bond of
0.8 vu with one oxygen atom and a bond of 0.2 vu with the other, though the
degree of asymmetry varies somewhat with the chemical context.

An isolated water molecule does not form any hydrogen bonds since there are
no nearby anions to act as acceptors. Therefore the bond between 0%~ and H*
has a valence of 1.0 vu (Fig. 5.1(a)). However, in condensed phases each water
molecule forms hydrogen bonds with four neighbouring molecules (Fig. 5.1(b)).
The valence of the bond between O?~ and H* within the molecule is reduced
from 1.0 to 0.8vu and a new weak bond of 0.2vu is formed between the
hydrogen of one molecule and the oxygen of a neighbour. Each water molecule
bonds to two neighbours through H* (as the hydrogen bond donor) and to two
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Fig. 5.1. The structure of water showing the expected bond valences: (a) an isolated
water molecule, (b) water in the liquid or solid state.

other neighbours through 0>~ (as the hydrogen bond acceptor). The water
molecule therefore behaves as both a cation and an anion: the hydrogen acting
as a cation with a bonding strength of 0.2 vu and the oxygen acting as an anion
with a bonding strength also of 0.2 vu. In liquid water the hydrogen bonds are
labile, they tend to be bent and consequently a little weaker than in the solid as
discussed in Section 7.5. Therefore the effective bonding strengths of water
molecules in the liquid phase are a little smaller and can be taken as 0.17 vu.
According to the valence matching rule, water molecules will readily bond to
each other since their cation and anion bonding strengths are equal, but they
can also bond to other anions and cations that have appropriate bonding
strengths.! Although the ideal valence of the weak side of the hydrogen bond in
water is around 0.17 vu, some variation is possible. In practice water forms
donor hydrogen bonds with valences anywhere in the range from 0.10 to 0.25 vu
by suitable adjustment of the strengths of the bonds formed by the oxygen. Any
anion with a bonding strength between 0.10 and 0.25 vu can therefore accept a
hydrogen bond from water, and any cation with a bonding strength between 0.1
and 0.5vu can bond to the oxygen, the maximum bonding strength of 0.5 vu
corresponding to a three-coordinate oxygen atom and the formation of strong
hydrogen bonds (Fig. 5.2(c)). Compounds whose ions have bonding strengths
lying in these ranges can dissolve in water as discussed in Section 5.5 below.

! Tt is interesting to compare H,O with HF, NH; and CH,. If HF forms one donor hydrogen
bond of 0.2vu and F is taken as four coordinate, HF has an anion bonding strength of 0.2/3 =
0.07 vu. Similarly, if NH; forms three donor hydrogen bonds of 0.2 vu, it can form only one bond
to a cation and thus has an anion bonding strength of 3 x 0.2/1 =0.6 vu. These molecules can form
bonds to both anions and cations but they are poorly matched to themselves. With s./s, =0.33, HF
has a boiling point of 293 K, lower than the boiling point of water, 373 K, where the ratio is 1.0 and
the match is perfect. For NHj, s./s, 1s 3.0 and the boiling point is again lower, 240 K. The ratios of
s¢/s, for HF and NHj; both lie outside the normal limits for stability (Section 4.4) and, unlike H,O,
both are unstable in the presence of water. Finally, CH4 has no possibility of bonding to cations, so
it is unable to form hydrogen bonds. Its boiling point is only 109 K. The high anion bonding strength
of NH; makes it an excellent ligand for coordinating to the three-valent six-coordinate cations
(5.=0.5vu) found in the transition-metal series.
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5.3 Reactions of cations with water

Any cation in liquid water will be surrounded by water molecules oriented with
the oxygen atom facing the cation (Fig. 5.2). The number of water molecules in
the coordination sphere will normally be close to the ideal coordination number
expected for the cation (Appendix 4) but if the hydrated complex is to be stable,
the bonding strength of the cation must match that of the water molecule. This
is best illustrated by examples.

First consider the cation Na' whose ideal coordination number is 6.4 and
whose bonding strength (0.16 vu) closely matches that of liquid water. In this
case we expect the complex Na(H,0); to be formed. However, this is not the
whole story. Since the Na—O bonds have valences comparable to the hydrogen
bonds found in the bulk water, they are, like the hydrogen bonds of water, labile
at room temperature. We therefore expect the complex to be fluxional, with
additional water molecules attaching themselves to Na' and other water
molecules breaking away on a timescale comparable to the fluctuations in the
bonds between the water molecules themselves. In addition, to satisfy the
valence sum rule, each of the coordinated oxygen atoms must either form a
bond to a second Na' ion or act as the acceptor of a hydrogen bond with the
surrounding water. Clearly there are many possible configurations, including, at
high Na* concentrations, the formation of Na"~H,O clusters similar to the

Fig. 5.2. Hydration spheres around cations showing the expected bond valences:
(a) NaGF(HQO)f; cluster, (b) Mg(HQO)?, (©) Cr(HQO)?. Note the strong hydrogen
bonds to the second coordination sphere in (c).
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[NagF(I,0),5]°" cluster (Fig. 5.2(a)) found in [NagF(H,0),5]Na(PO,), - H,O
(2156). In solution, therefore, Na* forms a hydrated complex that is labile and
not well characterized.

Mg also surrounds itself with six water molecules (Fig. 5.2(b)) but, since the
Mg—0O bonds must have valences of 2/6=0.33vu, the oxygen atoms of the
coordinated water molecules will be only three coordinate, forming one bond to
Mg of 0.33 vu and two bonds to H', each of 0.83 vu. The coordinated water
molecules will therefore form donor hydrogen bonds of 1 —0.83=0.17vu to
other water molecules or anions. Because the Mg—O bonds have a valence of
0.33 vu, twice that of the hydrogen bonds between water molecules, they are less
labile and, even in solution, the Mg(HZO)g+ ion is a stable, well-characterized
species forming donor hydrogen bonds with a cation bonding strength of
0.17 vu to anions and other water molecules.

Consider now the trivalent cation Cr*" (Fig. 5.2(c)). This too is six coordi-
nated by water, giving the Cr—O bonds a valence of 3/6 =0.50 vu leaving only
0.75vu each for the two O—H bonds. Consequently the coordinated water
forms donor hydrogen bonds with a valence of 0.25 vu to water molecules in the
second hydration sphere. These hydrogen bonds are considerably stronger than
those found in the surrounding water and consequently the Cr(HZO)gf complex
has a bound second coordination sphere containing a further 12 water mole-
cules (Caminiti ez al. 1978; Blenzen et al. 1997).

Cations with charges of +4 would, if six coordinate, form cation—O bonds of
0.67vu resulting in the first hydrated coordination sphere forming donor
hydrogen bonds with valences of 0.33 vu. Such strong hydrogen bonds are only
known when they are stabilized by an acceptor that is a strongly bonding anion.
In the weakly bonding environment of water they are not stable. In such cases it
is more favourable for at least one of the H" ions to detach from the coordi-
nated water molecule, leaving a complex with the generic formula M(H,O), ,
(OH)?;". Clearly a variety of arrangements is possible, depending on the value
of n, the number of H* ions lost. This number will, in turn, depend on the pH of
the solution, since the higher the pH, the higher the value of n. In all cases the
MO core will be stable and remain an identifiable species in solution.

Cations with still larger charges or lower coordination numbers lose pro-
gressively more and more H" jons until with P°* typically only one or two are
left, (PO,(OH),)~ or (PO;0H)*~, and with S®" none are left (SO%’, Fig. 4.1(b)).
At this stage these are no longer thought of as deprotonated hydrated cations
but as oxyanions or protonated oxyanions.

With very weakly bonding cations such as Cs' (s.=0.11vu), the water
molecules are only loosely bound and hence are labile. Such cations cannot form
bonds strong enough to satisfy the anion bonding strength of water, with the
result that the water molecules in contact with Cs™ form weaker hydrogen bonds
than those in the bulk. The Cs™ ion therefore disrupts the organized structure of
the water molecules, a feature that causes Cs* to be called a ‘structure breaking’
cation. By contrast, strong cations bind water molecules and create a strongly



REACTIONS OF ANIONS WITH WATER 57

Structure breaking
200 —
Cs
g Rb
5 100 — ﬁ—lQO.
TE ________ NaB ________________
L a
= 0 H Li
c Sr Cd
_% Ca Mn
3 -100 — FgeZ"CU
5 Ni
g —200 |-
= Structure making
w
300 Fesr
| | | | |

0.1 0.2 0.3 0.4 0.5
Cation bonding strength (vu)

Fig. 5.3. Standard molar entropy of solution as a function of cation bonding strength.
By convention the entropy of H' is taken as zero but H,O would be a more natural
choice in this figure.

ordered structure in the adjacent water which can extend from the first to the
second coordination sphere as the bonding strength of the cation increases
(Fig. 5.2(c)). These cations are referred to as ‘structure making’ cations. The
terms ‘structure making’ and ‘structure breaking’ are assigned on the basis of the
entropy of solution of the cation, a quantity which correlates well with cation
bonding strength as shown in Fig. 5.3. The entropy of the H* ion is con-
ventionally taken to be zero on these scales, but as shown in Section 7.6, H" is a
relatively strong cation that causes an ordering of the adjacent water molecules.
A better choice for the zero of entropy would be the water molecule itself whose
entropy of solution is similar to that of Na™, the least disruptive of the cations.

5.4 Reactions of anions with water

Anions bind to water through the hydrogen atom. For example, SO?[ has an
anion bonding strength of 0.17 vu which is the same as the cation bonding
strength of water (Fig. 4.2). We therefore expect the sulphate ion to accept 12
hydrogen bonds of 0.17vu and to be surrounded by a coordination sphere
containing 10—12 water molecules, allowing that some of the water molecules
may form two hydrogen bonds to the anion (Fig. 5.4(a)). As in the case of Na™,
this coordination sphere will be labile.
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Fig. 5.4. Possible hydration spheres around anions showing the expected bond valences:
(a) around SO?[, (b) around (PO3OH)27 (the predicted P—O bond lengths in pm are also
shown to the left of the bond).

Anions that are stronger bases, such as PO?[, are expected to form stronger
hydrogen bonds (0.25 vu), but they can also reduce their anion bonding strength
by protonation, i.e. by binding an H* ion. Calculating the anion bonding
strength of a protonated ion is more complex than calculating it for an
unprotonated ion. While the coordination number of most O*~ ions in an
oxyanion can be taken as 4, the large valences of the O—P and O-H bonds
nearly saturate the valence of O?~, leaving only enough valence for one extra
weak bond. Thus (PO;OH)*™, for example, can accept three hydrogen bonds at
each of the three terminal oxygen atoms but only one at the hydroxyl group for
a total of 10 bonds as shown in Fig. 5.4(b). The calculation is further compli-
cated because the hydrogen of the OH™ group carries a formal charge of +0.17
electrons with which it forms a donor hydrogen bond of 0.17vu. In order to
maintain the net charge of —2 on the complex anion, the oxygen atoms must
carry between them an effective charge of 2.17 electrons. The anion bonding
strength of the oxygen atoms in (PO;OH)?~ is therefore 2.17/10=0.22vu.
Consequently (PO;OH)?™ accepts hydrogen bonds that are weaker than those
formed by PO?[ (0.25 vu) but still stronger than those in the surrounding water
(0.17 vu).

Adding a second hydrogen atom to give (PO,(OH);)™ results in even weaker
hydrogen bonds. Using the same procedure, the bonding strength of this anion
is (1.00+2 x0.17)/8 =0.17 vu, which is the same as that of water. This is
therefore the species expected in neutral aqueous solution. PO?[ ions, when
dissolved in water, extract H" ions from the water until they form a protonated
anion with the same bonding strength as the surrounding water molecules.
Consequently the solvent is enriched in OH™ explaining why solutions of tri-
basic phosphates such as K;PO, are alkaline.

Changing the pH of the water affects the equilibrium between the various
protonated forms. In solutions with a high pH, the PO;~ ion (s,=0.25vu) is
stabilized because the excess OH™ ions (s, = (1+0.17)/3=0.39 vu) are a better
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match for any available H" ions (s. = 0.8 vu). In solutions with a low pH, there
are excess H* ions (more correctly H(H,0); ions, Section 7.6) which favour the
formation of phosphoric acid, PO(OH);. At low pH it is also possible to pro-
tonate the sulphate ion to form SO3;(OH)™ with an anion bonding strength of
1.17/10 =0.12 vu. As shown in Fig. 4.3, the anion bonding strength correlates
with pK,, the pH at which an anion protonates.

Protonating an anion changes its internal structure as illustrated in Fig. 5.4(b)
which shows the bond valences and P—O bond lengths expected in (PO;OH)*~ if
all the acceptor hydrogen bonds have the same valence. The P—Oeimina bonds
have valences of 1.36 vu corresponding to a length of 151 pm but the P-OH
bond has a valence of only 0.95 vu corresponding to a length of 164 pm. This
example shows how the bond valence model readily predicts the distortion from
tetrahedral geometry that occurs when a phosphate ion is protonated, a topic
discussed further in Section 9.2.

Anions with a small anion bonding strength such as ClO, (s, =0.083 vu,
Fig. 4.1(c)) can only be protonated under extreme acid conditions. Because of its
small bonding strength, ClO, can only form hydrogen bonds that are much
weaker than those in the surrounding water. As shown in Section 7.5, such
bonds are generally bent, allowing the formation of further very weak hydrogen
bonds with O ... H distances ranging from 260 to 320 pm. Weakly basic anions
in aqueous solution are therefore expected to form a range of very weak
hydrogen bonds, an effect seen in the shift of the OH stretching vibrations to
higher frequencies in aqueous perchlorate solutions (Brink and Falk 1970).

5.5 Aqueous solubility

The previous sections showed what happens to particular cations and anions
when dissolved in water. These ideas are now brought together to show what
happens when an inorganic solid is brought into contact with water.

Dissolving a solid in water is a chemical reaction typically represented by eqn
(5.2):

AB + (n+1)H,0 = A(H,0) + HB + OH . (5.2)

We can identify four different situations depending on the relative bonding
strengths of A™ and B™. The first occurs if the cation and anion are well matched
and both have large bonding strengths, e.g. Mg”" and SiOif (s, =15.=0.33vu,
Fig. 4.2). In this case there is no reaction with water, since the match between
the two ions is better than the match between either of them individually and
water. The solid is insoluble and, if the ions find themselves in solution together,
they precipitate out as Mg,Si0, (26374), the insoluble mineral, forsterite, which
is a major constituent of the earth’s mantle. Such compounds have positive free
energies of solution.
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A second situation occurs when the two ions are well matched but have
bonding strengths that are relatively small so that each ion is also well matched
with water, e.g. Na™ and Cl1~ (s,=0.16 vu, 5, =0.14 vu). In this case both the
solution and the solid will be equally stable. The solid, in this case common salt,
readily dissolves in water, but as readily recrystallizes when the water is
removed. Its free energy of solution is close to zero.

More interesting are the cases where the two ions are poorly matched, since
they may both be able to form better bonds with water than they can with each
other. Such compounds have negative free energies of solution meaning that
they are readily soluble. In cases where the mismatch is large, the compound
can even be deliquescent, able to pull water out of the atmosphere. Consider
first the case where a weak anion, e.g. SO?[, is bonded to a strong cation, e.g.
Mg MgSOy lies at the limit of stability with the bonding strength of Mg**
(0.33 vu) twice that of the sulphate ion (0.17 vu). As discussed above, water can
bond to Mg?* to give the hydrated cation Mg(H,O )6 , which, like 8O3, has
the right bonding strength (0.17vu) to bond to solvent water molecules.
Anhydrous MgS0O, (16759) is therefore hygroscopic and readily dissolves in
water. Further, both Mg(H,0 ) and SO; " are stable entities in solution and,
since both have the same bonding strength the solid that recrystallizes from
neutral aqueous solution is the hydrate. Although the hexahydrate is known,
the most stable hydrate is the heptahydrate, epsomite, whose formula can be
written Mg(H,0)sS0,-H,0O (29384), with the seventh water molecule occu-
pying an otherwise empty cavity between the ions. Similar arguments apply to
other compounds formed between a strongly bonding cation and a weakly
bonding anion. All tend to form hydrates and their anhydrous salts are hygro-
scopic or deliquescent depending on how poor the match is.

Compounds in which a weakly bonding cation, e.g. Na* (s.=0.16 vu), is
bonded to a strongly bonding anion, e.g. CO%f (s,=0.22vu), are also soluble
for the same reason, though the reaction with water is different. In this case the
cation has the right bonding strength to bond to water, but the anion must
extract H* from the water in order to lower its anion bonding strength. Fol-
lowing the arguments given in Section 5.4, protonation of CO%f reduces its
anion bonding strength from 2/9 =0.22 vu to 1.17/7=10.17 vu, the value needed
to form well-matched bonds with water. Because of the poor valence match
between cation and anion, Na,COj; reacts with water converting CO%f + H,0
to HCO; + OH . The model therefore explains why Na,CO; (60311, washing
soda) readily dissolves in water to give an alkaline solution, and why NaHCO;
(18183, baking soda) is the solid that crystallizes from neutral solution.

Figure 5.5 shows the variation of the free energies of solution of several
halides as a function of the bonding strength of the cation. Positive free energies
correspond to insoluble compounds and negative free energies to either soluble,
hygroscopic, or deliquescent compounds. Among the halide anions, only F~,
with its relatively large anion bonding strength (0.25 vu), forms insoluble salts,
the most insoluble being formed with Ca*" (s,=0.27 vu) with which it is well
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Fig.5.5. Free energies of solution (Johnson 1968, p. 70) of alkali metal and alkaline earth

halides as a function of cation bonding strength. F=fluorides, C=chlorides, B=
bromides, and I =iodides. The lines represent eqn (5.3), the solid line is for F~, the

broken line for CI7, the dense dotted line for Br™, and the light dotted line for ™.

matched. Both MgF, and BaF,, being less well matched, are more soluble than
CaF,, a periodic anomaly that the bond valence model nicely predicts. The
relationship between the free energy of solvation (AG) and the difference in the
bonding strengths (s. — s,) can be expressed as a power series:

AG = AGy + A(se — s3)* + -+ (5.3)

where 4= — 5585kJmol™!vu™>, and AGy= + 50kJmol™" for F~, 0kJmol™!
for C17, Br~, and + 8kJ mol™" for I". The first two terms of eqn (5.3) (shown by
the lines in Fig. 5.5) reproduce the observed free energies of solvation reason-
ably well providing the mismatch is not too large. CI™, Br~, and I, whose anion
bonding strengths lie close to the range of possible hydrogen bond strengths,
form only soluble salts with alkali metals and alkaline earths, but the iodides
of even weaker cations such as N(CHj3); (s.=0.08 va) should be much less
soluble.
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5.6 Aqueous solutions of soft ions

Soft ions as defined in Section 4.5 behave somewhat differently in aqueous
solutions. MgBr, contains the hard cation Mg?", but the ions are poorly
matched (s, =0.33 vu, 5, =0.10 vu, Fig. 5.5). It is therefore deliquescent, picking
up moisture from the atmosphere with the formation of a hydrated Mg*"
ion as discussed in Section 5.3. The salt that crystallizes from this solution is
Mg(H,0)¢Br,. The soft cation Zn>" has the same size and charge as Mg®* and a
similar bonding strength (s.=0.40vu) but, according to Pearson (1973), it
should show a preference for bonding to the soft anion, Br~. One might
therefore expect ZnBrj; to precipitate out of solution. However, in this case there
is a competition between the Zn—Br bonds stabilized by the softness of the two
ions and the Zn—O bonds whose ions form a better match. In solution Zn**
bonds to both H,O and Br~, in the latter case forming polymeric complexes
such as the dimer Zn,Br~. Thus the compound that crystallizes from aqueous
ZnBr, solutions is Zn(H,0)s(Zn,Brg). A saturated solution of ZnBr,, whose
composition is not very different from that of the solid, contains polymeric
strings of (ZnBr,),, which make the solution highly viscous, a behaviour quite
different from that of MgBrs.

5.7 Non-aqueous solutions and melts

The ideas presented above can also be applied to non-aqueous liquids such as
NH; and (CH3),SO (dimethylsulphoxide = dmso), high temperature fluxes, and
melts. All these materials have both cationic and anionic character but in some
cases, e.g. NH3 and dmso, the cation and anion bond strengths are not well
matched, a difference that can often be exploited. For example, dmso has an
anion bonding strength (through O) of 0.20 vu and a cation bonding strength
(through —CHj3) of 0.07 vu (Brown 19874). It can bind to moderately strong
cations, such as Cd*" or Zn?*, to form complexes with very weak external
bonds (s.=0.06 vu, Fig. 5.6). It is therefore possible to dissolve a strong cation
in a weakly polar or non-polar solvent in which it would normally be insoluble,
by complexing it with dmso which, like the coordinated water in aqueous
solution, acts as a transformer, matching the bonding strength of the cation to
that of the solvent. Dmso is the agent of choice when it is necessary to dissolve
strong cations in non-polar solvents.

Although we tend to think of liquid solvents as something found only at room
temperature, they are also found at higher temperatures, though here they are
usually called fluxes and are often binary salts such as CaF,. Solids can be
prepared from these fluxes, as they can from the melts themselves, by cooling.
The valence matching principle can be used to predict what might happen.
At a high enough temperature a flux or melt has a low viscosity because all
bonds are labile. As the temperature approaches the freezing point of one of the
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Fig. 5.6. Part of the structure of the Zn(dmso)é+ complex showing the expected bond
valences.

components, the stronger well-matched ions start to form stable bonds and
complex ions appear. If these complexes remain discrete, the viscosity of the
solution remains low, but if they show a tendency to polymerize, the solution
becomes viscous. Further cooling results in further bonds becoming stable and a
solid phase appears.

This effect is illustrated by silicate magmas discussed in Section 4.6. Those
that contain strong cations such as Ca?" or Mg>" will induce the formation of
strong silicate anions such as SiOff (s.=10.33 vu) leading to the eventual crys-
tallization of compounds like Mg,SiO,4, but those magmas that contain only
weak cations such as the alkali metals will encourage the formation of weak
silicate anions such as Sizog’ (s, =0.17vu) where the SiOif units polymerize,
leading to the eventual crystallization of compounds such as Na,Si,Os as shown
in Fig. 4.6. Before this happens, the presence of polymeric silicate ions in the
melt will cause the magma to become viscous. Consequently alkaline silicate
magmas are more viscous than those containing alkaline earths or transition
metals.
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Cation coordination number

6.1 Introduction

The cation coordination number was defined in Section 2.6 as the number of
anions to which the cation is linked by electrostatic flux. This number can be
approximated using the operational definition of a bond given by Rule 4.1, buta
prior knowledge of the structure is needed in order to determine the coordi-
nation number by either of these two methods. For a proper understanding
of crystal chemistry, and particularly for modelling a structure ab initio
(Chapter 11), one needs to be able to predict in advance what coordination
number any given cation will adopt. This in turn requires a review of the various
factors that determine just how many bonds a cation will form in a particular
compound. Among these factors are the repulsion between the ligands (the
anions to which the cation is bonded), the bonding strength of the anions, the
hardness or softness of the cation, spatial constraints, and symmetry (O’Keeffe
and Hyde 1984; Brown 19884, 1995).

This chapter focuses primarily on the influence of anion—anion repulsion
and on the anion bonding strength. The other factors are described briefly in
Section 6.4 but are developed in more detail in later chapters. The special case of
H™ is discussed in Chapter 7 and effects that depend on details of the electronic
structure of the cation are treated in Chapter 8. The influence of space and
symmetry are discussed in Part IT1. For simplicity, unless otherwise stated, the
discussionis confined to compounds in which the anion is oxygen or an oxyanion.
Any conclusions will be applicable, mutatis mutandis, to other kinds of anion.

Cations are found with a range of coordination numbers. For some, such as
N°*, the range is narrow, essentially only one coordination number being known
(Fig. 6.1(a)). For others, such as Cs*, the range is broad covering coordination
numbers from 3 to 14 (Fig. 6.1(c)). Most cations, for example Zn** whose dis-
tribution is shown in Fig. 6.1(b), lie between these two extremes, but in each case
there is a tendency for the distribution to peak near the middle. Any theory of
crystal chemistry must be able to explain this variation and provide a reliable
estimate for the coordination number found in a particular compound.

6.2 Anion—anion repulsion

The occurrence of different coordination numbers is traditionally explained by
amodel in which atoms are treated as hard spheres. Each cation is then assumed
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Fig. 6.1. Coordination number distributions around (a) N°¥, (b) Zn>", and (c) Cs™.

Fig. 6.2. A diagram showing the definitions of anion and cation radii and the angle o.

to be surrounded by the maximum possible number of anions in order to form
the most densely packed structure. The factor that determines the coordination
number in this picture is the ratio of the radius of the cation to that of the anion
as expressed by Pauling’s first rule (Section 1.7, Fig. 6.2). In an ideal tetra-
hedron, for example, the ratio of the O—O to cation—O distance is 1.63 which
occurs when the cation:anion radius ratio is 0.224 (Table 6.1). For an ideal
octahedron the ratio of O—0 to cation—O distance is 1.42, corresponding to a
cation:anion radius ratio of 0.414. The cation:anion radius ratio therefore
determines how many anions can be placed around a given cation. If this ratio
lies between 0.224 and 0.414, only tetrahedral coordination is possible. For
octahedral coordination the ratio must be at least as large as 0.414.

There are several problems with this simplistic model, not the least being
the difficulty of determining good values for the radii. Typically the radii are



66 CATION COORDINATION NUMBER

Table 6.1 Radius ratios for regular coordination (see Fig. 6.2)

Coordination number Radius ratio r¢/r, Roo/Rmo cos «
2 (line) 0 2.00 1.00
3 (triangle) 0.134 1.73 0.87
4 (tetrahedron) 0.224 1.63 0.81
6 (octahedron) 0.414 1.42 0.71
8 (cube) 0.732 1.15 0.58
12 (cuboctahedron) 1.000 1.00 0.50

determined from observed bond distances, but which distance is to be used?
Different bond lengths are often found between the same pair of atomsevenin the
same coordination sphere, and the average bond length varies systematically with
the coordination number (Shannon and Prewitt 1969; Shannon 1976). How then
can one use radii to determine the coordination number if the radii themselves
depend on the coordination number? Further, bond distances cannot give
absolute radii, only the differences between the radii. For example, the difference
between the K—0O and Na—O bond distances is equal to the difference between the
radii of K* and Na* ions, but an absolute value of either radius can only be found
if the absolute value of oneion is arbitrarily assumed. By convention the radius of
the O®~ ion is taken as 140 pm since this corresponds to the O—O distance of
280 pm frequently found in crystals. A more serious problem with the hard-sphere
model is that it predicts a single coordination number for each ion pair and is
therefore unable to account for the behaviour of cations such as Cs* which are
observed with a wide range of coordination numbers.

Given these problems, the surprise is that the hard-sphere model works so
well. Figure 6.3 shows that the agreement between the ideal coordination
number and the coordination numbers predicted using the six-coordinate radii
of Pauling (1960) is much better than might be expected, though there are a
significant number of cations with ideal coordination numbers smaller than
predicted and a few cases where the coordination number is larger.

One reason for the failure of the radius ratio rules is that ions do not behave
like hard spheres. Even those that are hard in the Pearson (1973) sense can still
be compressed. This is clearly seen in the way the bond length varies with the
bond valence. If cation—anion bonds can be compressed, so can the distance
between the O~ ions in the first coordination sphere. The stronger the cation—
anion bonds, therefore, the closer the anions in the first coordination sphere can
be pulled together (Shannon et al. 1975).

1t is possible to explore how closely the oxygen atoms can be brought together
by comparing the O—O distances in observed coordination spheres with the
O-0 distances expected in coordination spheres that are not observed because
they bring the ligands too close together. For example, the O—O distance in the
known NOj ion can be compared to the O—O distance that would be expected
in the unknown NO?{ ion. It is easy to calculate this distance using the bond
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number for various cations. The predicted coordination numbers are calculated using the
ratios of the Pauling (1960) six-coordinate radii by interpolating coordination numbers
between the values given in Table 6.1. Most cations are represented by points, selected
cations are shown by their chemical symbol and, where necessary, oxidation state.

valence model even for unknown cation environments. It is first necessary to
calculate the N—O distance from its expected bond valence. In NO}~ the N-O
bond would have a valence of 5/4 = 1.25 vu which corresponds to a bond length
of 135pm (eqn (3.1)). If the ion is tetrahedral as expected, the O—O distance is
readily calculated to be 218 pm. A similar calculation shows that the O-O
distance in NOj is 215 pm. It may seem surprising that the O—O distance should
be larger in the unknown NO;~ ion than in the observed NOj ion, but the
bonds in NO5 are much stronger (1.67 vu compared to 1.25 vu) and are able to
pull the O atoms much closer together than is possible in the more weakly
bonded four-coordinate complex.

A further factor tending to stabilize NOj is the smaller angle, «, between the
N-0 bond and the O—O vector, resulting in the attractive bonding force having
a larger component along the O—0O direction (Fig. 6.2). The factor therefore
that determines how close the two oxygen atoms can brought is the effective
valence, s', defined by eqn (6.1):

s' =scos a, (6.1)

where s is the valence of the two cation—O bonds. Values of cosa for the regular
coordination polyhedra are given in Table 6.1.

Figure 6.4 shows the effective valence as a function of O—O distance for a
variety of known and unknown cation environments, the unknown environ-
ments being shown in italics. The observed environments, shown in bold type,
mostly lie to the right of the solid line which is given by eqn (6.2). This line can
therefore be taken as the closest distance that two oxygen atoms can approach
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each other for a given effective valence.
s" = exp(Ry — Ruin)/b- (6.2)

Ineqn (6.2) Rg=220pm, b =34 pm, and R, is the smallest O—O distance that
can be achieved with an effective valence of s'. The maximum coordination
number that can be observed must therefore satisfy the inequality (6.3) obtained
from eqns (6.1) and (6.2):

Roo > Rpin = Ry — bln(scos ). (6.3)

Here Rgo is the O—O distance expected in the given coordination polyhedron.

There are some anomalies in Fig. 6.4, particularly for cations with s/ < 0.2 vu,
and it is instructive to ask why these occur. There are several possible reasons. If
a given pair of oxygen atoms is bonded to more than one cation, the effective
valence is the sum of the effective valences of each of the cation—O bonds,
reducing the minimum length of the O—O contact, an effect that has not been
taken into account in preparing Fig. 6.4. For example, a weak cation may be
chelated by NOj5 ions so that the shared O—O edges are only 215 pm long rather
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not known. The solid line represents the observed R,;, given by eqn (6.3). The broken line
represents Rynstrained, the distance at which the anion—anion repulsion becomes negligible.
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than the 290 pm that might otherwise be expected. With some O—-O distances
being much shorter than expected, more O®~ jons can be included in the
coordination sphere around the weak cation. This effect accounts, for example,
for the presence of eight-coordinated Sc* " in Se(NOs)surea, (20201). Figure 6.4
is calculated for regular coordination, but some weak cations have irregular
coordination environments and, according to the distortion theorem (Rule 3.6),
any distortion from regular coordination results in an increase in the average
bond length which leads to the possibility of a higher coordination number.
Finally, materials prepared at high pressure, such as MgSiO; (200139) with
eight-coordinated Mg>", may have higher than expected coordination numbers
since pressure can force the ligands closer together. In a number of cases more
than one of these effects is present. The eight coordination around Mg*" in the
garnet MgAlLSi30,; (71892) is stabilized both by sharing faces with AlOg
octahedra and by Mg>" being displaced from the centre of its polyhedron.

Not all the anomalies occur around the weaker cations. For instance, on the
basis of size alone, one would expect to find Cr®" in six coordination but it is
only ever found tetrahedrally coordinated. The absence of any observed
examples of octahedral coordination around Cr®* is the result of an electronic
instability discussed in Section 8.3.2.

Anion—anion repulsion places an upper limit on the coordination number
that a cation can adopt but, since the O?~ ions do not behave like hard spheres,
the size of the limiting O—O distance depends on the effective valence of the
bonds. Either Fig. 6.4 or eqn (6.3) can be used to decide whether or not a
particular coordination number is physically possible.

6.3 The strength of the anions

The relative sizes of the cation and anion are not the only determinant of the
coordination number; the bonding strength of the anion also plays an important
role and explains how the same cation can display different coordination
numbers in different compounds.

Since all the bonds in an inorganic compound with a bipartite graph start ata
cation and end at an anion, they must obey the Coordination number rule.

Rule 6.1 (Coordination number rule). The total number of bonds formed by all the
cations in a compound equals the total number of bonds formed by all the anions.

Although this rule is self-evident and has been known for some time (see, for
example, O’Keeffe and Hyde (1984) and references therein), its importance
is still not widely appreciated. According to the coordination number rule,
compounds that are anion rich, or in which the anions have large coordination
numbers, will favour the adoption of high coordination numbers by the cation.
Consider the two compounds Cs,Cr;01q (22030) and Cs,Sn,03 (24392). The
first contains the trichromate ion consisting of a chain of three corner-sharing
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CrO, tetrahedra. The two bridging O~ ions are fully saturated and cannot form
bonds to Cs*, but the remaining eight terminal O~ ions can each form three
external bonds (assuming a coordination number of 4 for oxygen). The anion
thus forms 3 x § =24 external bonds requiring that both Cs* ions be 12 coor-
dinate as observed. In the second compound, each of the O*~ ions form two of
their four bonds with Sn** leaving them only two bonds for Cs™. The Sn, 03~
anion therefore forms 2 x 3 =6 bonds, and since these are shared between two
Cs™* ions, each will be only three coordinate. The coordination of oxygen can be
increased to a maximum of 6, but this only increases the Cs™ coordination from
3 to 6. A higher coordination number is not possible. In the observed structure
one Cs* is three coordinate, the other six coordinate.

The coordination number rule is closely related to the valence matching
principle (Rule 4.1) since the bonding strength of an ion varies inversely with its
coordination number. The two rules can, therefore, be used interchangeably to
explore the variations in coordination number. In the above example the
bonding strength of the Cr30%a ion is given by the ratio of the charge to the
expected number of bonds, 2/24 =0.08 vu. It requires 12 bonds of this strength
to give the correct valence sum around Cs* again leading to the prediction of
12 coordination. The bonding strength of Snzog’ is 2/6 =0.33 vu. Only three
bonds of this strength are needed to satisfy the valence of Cs™. The trichromate
ion is weak and well matched to Cs* so Cs,Cr;0, is a stable compound, but
Cs,51n,05 is poorly matched and is hygroscopic. From this example one can see
how weakly bonding anions lead to high cation coordination numbers and
strongly bonding anions lead to low cation coordination numbers.

The alkali halides provide another interesting example. Na* has a bonding
strength of 0.16 vu and CI™ 0.14 vu. The average of 0.15vu corresponds to a
coordination number close to 6 which is the maximum number of CI™ ions that
can be packed around Na™.! The larger Cs* ion has a bonding strength 0of 0.11 vu
giving an average for CsClI (22173) of 0.125 vu corresponding to a coordination
number of 8, but the high anion bonding strength of F~ (0.25 vu) in CsF leads to
an average bonding strength of 0.18 vu, clearly favouring the six-coordinate NaCl
structure over the eight-coordinate CsCl structure found for the other caesium
halides. If one used size arguments alone, one would expect that Cs* should
display its highest coordination number in CsF because Cs* is the largest alkali
metal and F~ is the smallest halogen. The smaller coordination number that is
observed is a consequence of the larger anion bonding strength of F~.

6.4 Other factors
There are at least three other factors that have a smaller but important effect on
the final choice of coordination number: symmetry, the softness of the ions, and

spatial constraints.

! The reason why the coordination number is 6 and not 7 is discussed in Section 6.4 below.
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The principle of maximum symmetry (Rule 3.1) results in most simple
compounds adopting high symmetry crystal structures. In these cases the
available coordination numbers are restricted by crystallographic symmetry. In
Section 11.2.2.4 it is shown that the ions in compounds with the formula AB are
restricted to the coordination numbers 4, 6, or 8 unless constraints are present
that destroy the cubic symmetry. For lower symmetry structures the restrictions
are less severe, but the geometries associated with the coordination numbers
5,7,9, 10, and 11 require that there be at least two different angles between
adjacent bonds and that at least two of the bonds not be related by symmetry.
Only in cation environments with coordination numbers 2, 3, 4, 6, 8, and 12 is
there a point group that permits all the bonds, and the angles between adjacent
bonds, to be equivalent. According to the principle of maximum symmetry, the
latter coordination numbers are favoured, as can be seen in the distributions
plotted in Fig. 6.1. The frequency with which the coordination numbers 4 and 6
are found around spherically symmetric ions is therefore a direct consequence of
the principle of maximum symmetry.?

In Section 4.5 it was shown that the bonding strengths of soft cations are less
well defined than those of hard cations since they are able to form stable com-
pounds with anions having a wider range of anion bonding strengths. Conse-
quently they also display a wider range of coordination numbers. Thus the soft
Zn>" cation is found in four and six coordination in contrast to the similar, but
hard, Mg?* cation which is usually found only in 6-coordination. Most hard
cations either display only a single coordination number or their coordination
numbers lie in a narrow range, but there are some important exceptions. The
broken line in Fig. 6.4 lies 0.08 vu above the solid line and the space between them
defines a region in which the Rgg distances are only marginally stable. The
broken line can be referred to as Ryrainea Since O—O distances to the right of this
line do not influence the choice of coordination number. O—0 distances between
Runstrained and Ryin are found, but their coordination environments tend to be
destabilized by OO repulsion. While four-coordinate B**, six-coordinate Si*",
and six-coordinate Al1°*, which lie between these lines, are all known, these three
cations are also frequently found with a smaller coordination number even
though they are all hard. For example, AI’* has a repulsion-limited bonding
strength of 0.57 vu which corresponds to the unfavourable coordination number
of 5. For this reason, AI*" is more usually found in four rather than five coor-
dination, but six coordination can be stabilized, e.g. in Al,O3 (75559) where the

2 The one-electron s, p, and d orbitals frequently used to explain observed stereochemistries are a
convenient but arbitrary means of decomposing the electron density into spherical harmonics. They
represent nothing more than a suitable basis set for a quantum mechanical calculation. When
assigned solely on the basis of the observed geometry, they convey no very profound information
about the bonding processes at work. It is much simpler and more informative to say that an atom
is tetrahedrally coordinated than to say that it is sp> hybridized, just as it is easier to say that it
forms three equatorial or two axial bonds than to say it is sp” or sp hybridized, respectively. Only in
the case of the electronically distorted ions discussed in Chapter 8 does an orbital description
provide a meaningful rationale for the observed stereochemistry.



72 CATION COORDINATION NUMBER

six-coordinate corundum structure has a higher symmetry than is possible for a
four-coordinate structure (Section 11.2.2.4).

Spatial constraints can also influence the coordination number and can often
explain, for example, why the same cation can occur with more than one
coordination number in the same crystal. However, a full treatment of spatial
constraints requires an understanding of crystallographic symmetry, so further
discussion is deferred to Part IIT which deals with the chemistry of extended
three-dimensional solids.

6.5 Applying the different effects

The primary constraint on the coordination number is the anion—anion
repulsion. Clearly this determines the maximum possible coordination number
and, for hard cations, this is normally the coordination number that is observed.
However, if the cation is soft or if the maximum possible coordination number
gives rise to very small bonding strengths, other coordination numbers may be
found as discussed in Section 6.3. A number of examples will illustrate how
these various factors work together.

Cs™ has such a small bonding strength that Fig. 6.4 does not provide a reli-
able indication of its maximum coordination number, though a value of 14 is
probably not far wrong. With a coordination number this large, the Cs—O
bonds would have a valence of 0.07 vu, smaller than the bonding strength of any
of the anions shown in Fig. 4.2. The primary determinant of the coordination
number of Cs* is therefore not the anion—anion repulsion but the anion
bonding strength. As indicated in the example discussed in Section 6.3, Cs™ is
well matched to weak anions with which it forms stable compounds having large
Cs" coordination numbers, but it can also form compounds with stronger
anions giving rise to smaller Cs* coordination numbers, though the larger the
anion bonding strength, the more ill-matched and unstable the compound
becomes. Poorly matched compounds such as Cs,;Sn,O3 can be prepared only
under stringently anhydrous conditions.

Figure 6.1(c) shows that the distribution of coordination numbers observed
around Cs™ largely reflects the distribution of anion bonding strengths weighted
towards the weaker anions (higher coordination numbers). The average
observed (ideal) coordination number of 9.2 corresponds to a bonding strength
of 0.11 vu, though one could argue that, since there are very few anions weaker
than Cs*, these observations are heavily biased towards smaller coordination
numbers and hence larger bonding strengths. According to this argument the
true bonding strength of Cs* should be closer to 0.07 vu. However, it is more
useful to determine the bonding strength on the basis of what is actually
observed rather than what might be observed if a wide range of very weak
anions were available. It is interesting to note that the average observed coor-
dination number for Ba®* (10.2) is larger than that of Cs* (9.2) even though
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Ba* itself is considerably smaller.” The reason for this anomaly lies in the
higher charge on Ba?* which gives it a bonding strength (0.20 vu) that ensures
that its coordination number distribution is not skewed by the distribution of
the bonding strengths of the available anions.

At the other end of the scale from Cs* are the strongly bonding cations such
as N°* whose size-limited coordination number of 3 ensures a minimum cation
bonding strength of 1.67 vu, a value which greatly exceeds the bonding strength
of the strongest anion, 0%~ (s, = 0.50 vu). Because the cation bonding strength
of N°* is always greater than any possible anion bonding strength, the cation
coordination number is determined only by anion—anion repulsion. The only
possible complex that can be formed with oxygen is NOj5 since all the complex
oxyanions have even smaller bonding strengths. Even then the O®~ ion must
make all the adjustments. Instead of all its bonds having the same valence, as
would be expected from the principle of maximum symmetry, O*~ must form
one very strong bond (1.67 vu) to N°* and several very weak bonds (0.11 vu)
to other cations. Such a large mismatch between the bonding strengths of N°*
and 0%~ suggests that the nitrate ion should be highly unstable, but there is
no easy mechanism by which the stress caused by the mismatch can be relieved.
The reaction with water which, for weaker cations, leads to a better valence
match clearly will not work here. The stress can be relieved only by a major
rearrangement of the bonding around N°* (e.g. the formation of N») which is
why NOy7, and similar strongly bonded complex anions such as ClO,, are good
oxidizing agents and why, in the presence of suitable materials, they can
decompose explosively into compounds that provide better valence matches.

Most cations lie between the extremes represented by N°* and Cs*. Typical
of these is Zn®*, a moderately soft cation which has an ideal coordination
number of 4.98 and a corresponding cation bonding strength of 0.40 vu. The
maximum regular coordination number allowed by anion—anion repulsion is 6
(Fig. 6.4) corresponding to a bond valence of 0.33 vu. This suggests that Zn*"
will not form stable compounds with anions having a bonding strength less than
0.33/2=0.17 vu (cf. Fig. 4.6). The poor match with the weak perchlorate anion
(0.083 vu), for example, means that anhydrous Zn(ClO,), is deliquescent,
picking up water from the atmosphere to form the more stable hydrate,
Zn(H,0)(Cl0y), (100218) in which Zn** has its maximum coordination of 6
and each H* ion forms two weak hydrogen bonds (Section 7.5) ensuring a
well-matched and stable structure.

For the best match to the bonding strength of 0%~ (s, = 0.50 vu), Zn** should
display a coordination number of 4 as is found in ZnO (67454). Although Mg*"
is similar in size and charge to Zn?**, the same argument does not apply since
Mg®" is hard and is normally found only with its maximum coordination

3 Shannon and Prewitt (1969) give the 10-coordinate radius of Ba®' as 152 pm compared to
181pm for Cs™.
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Fig. 6.5. Coordination number versus anion bonding strength for Zn>*. The areas of the
circles are proportional to the number of known Zn>" environments. The solid lines
represent the predictions of the model, the broken line shows the coordination number
Zn*>" would have to adopt for a perfect valence match.

number of 6. The consequence is that while ZnO adopts the four-coordinate
wurtzite structure (see Section 2.6), MgO (9863) adopts the six-coordinate NaCl
structure.

Figure 6.5 shows how the coordination number of Zn?>" varies with the
bonding strength of the anion. The areas of the circles in this figure are pro-
portional to the number of known environments and the solid lines show
the coordination numbers expected (six coordination between 0.17 and 0.40 vu
and four coordination between 0.40 and 0.50 vu, five coordination being rarely
found because of its low symmetry). Since 6 is the size-limited coordination
number, lowering the anion bonding strength below 0.33 vu does not increase
the coordination number. Instead, the compounds become increasingly
mismatched and unstable, and the number of known compounds decreases.
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Hydrogen bonds

7.1 Introduction

Since water is a constituent in a great many inorganic solids, and is involved in
all chemical reactions performed in aqueous solutions, H* is the most widely
distributed of all cations. When present, it usually plays a pivotal role in the
chemistry, whether in the solid or the liquid state (Chapter 5). It is therefore
important that its behaviour and the origin of its unusual properties be properly
understood.

The crystal chemistry of the H" ion is so anomalous that it is usually con-
sidered to be qualitatively different from other cations, yet its anomalous
properties can be derived in a perfectly rational way by assuming that H* is, in
principle, no different from other cations except for its small size. H* is the only
cation where the anion—anion repulsion predicts a maximum regular coordi-
nation number of less than 2, as can be seen in Fig. 6.4, where the point for regular
two-coordinate H (s’ = 0.5 vu) lies well to the left of the R,;, line. However, as
shown in Section 7.2 below, it is impossible for a cation to be only one coordinate
in a condensed phase because there will always be nearby ions capable of forming
bonds. H* must be at least two coordinate and, since H* is too small for regular
two coordination, it must, according to the corollary of the distortion theorem
(Rule 3.7), adopt a distorted environment. Asymmetric two coordination is
therefore the typical environment expected and found around H*.

The combination of an H* cation asymmetrically bonded to its two ligands is
called a hydrogen bond. The hydrogen bond is often represented by the bonding
scheme X'-H ... X (X, X'=0>", N°~, C*", F~, CI, Br—, I, etc.) where the
strongly bonded X’ anion is called the hydrogen bond donor and the weakly
bonded X anion is called the hydrogen bond acceptor. In this description of a
hydrogen bond, the H* ion is seen as the glue that holds the two anions together.
Since it is the strength of the weaker side of the hydrogen bond that determines
how strongly X’ and X are bound to each other, a hydrogen bond that is
described as ‘strong’ is one in which the H...X bond is stronger than normal.
Strengthening the H ... X bond, however, requires weakening the X'—H bond.
Similarly a weak hydrogen bond is one in which the H . . . X bond is weaker than
normal, and the X’—H bond correspondingly stronger. As in previous chapters,
the discussion in this chapter will focus on the hydrogen bonds formed by 0>~
ions, but hydrogen bonds involving other anions behave in a qualitatively
similar way. Some of the differences are discussed in Section 7.7.
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Because of its importance in many fields of chemistry and biology, the
hydrogen bond has been the subject of many studies, both theoretical and
experimental. In order to simplify the problem, the theoretical studies often
focus on isolated molecules or pairs of molecules, but such systems are not
always good models for the hydrogen bonds found in solids and liquids where
cooperative effects can be important. For example, if an —OH group acts as a
hydrogen bond donor, the O—H bond is weakened and the oxygen atom is then
able to act as the acceptor of a second hydrogen bond. Hydrogen bonds
therefore often form chains in which the strength of one bond is enhanced by the
presence of the next hydrogen bond along the chain. Any break in the chain will
result in a weakening of all the remaining bonds.

Kroon et al. (1975) combined the results of a careful theoretical study with an
analysis of the geometries of the hydrogen bonds in a large number of organic
crystals, concluding that the principal contribution to the energy was electro-
static. The geometry of hydrogen bonds in organic crystals has been surveyed by
Taylor and Kennard (1984). More recently several elegant statistical analyses of
different varieties of hydrogen bond, again mostly in organic crystals, have been
published by Steiner (Steiner and Saenger, 1992, 1994; Steiner, 19954,b, 1997,
1998a,b; Desiraju and Steiner 1999). The emphasis on organic crystals results in
part from the importance of hydrogen bonding in biological processes, and in
part from the simpler crystal chemistry of organic molecules where the hydro-
gen bonds are more likely to be ordered. However, the character of a hydrogen
bond is the same whether it appears in an organic or an inorganic compound.

An examination of the stereochemistry of the H" ion is complicated by a
number of factors. Because it has no electron core, hydrogen is difficult to locate
using X-rays which are scattered by electrons. In earlier structure determina-
tions its presence was often ignored because it made no contribution to the
X-ray diffraction pattern and could not therefore be located. Even when H™ is
included in the model, its position can rarely be accurately determined and in
any case the centre of its electron density is usually displaced from the nucleus
towards the donor anion by around 20 pm. Accurate positions of the H* nuclei
can be found using neutron diffraction which has provided sufficient infor-
mation to reveal the essential characteristics of hydrogen bond geometries, but
in many of the structures determined by X-ray diffraction the positions of the
H™ cations have had to be inferred from the positions of their neighbouring
anions.

7.2 The role of anion—anion repulsion

Large uncertainties in our knowledge of the lengths of H-X bonds means that
there are bound to be uncertainties in the determination of experimental bond
valences, a problem that is made worse by the inability of eqns (3.1) and (3.2) to
give a good description of the bond valence—bond length correlation over the
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extended range of bond lengths observed around H'. The best way of deter-
mining the true correlation is to calculate the bond fluxes (Section 2.4) for
structures determined by neutron diffraction. These are shown by the points in
Fig. 7.1. The heavy line, which is drawn so as to represent this correlation,
differs from the exponential function of eqn (3.1) in three important ways.
Firstly, it reaches zero at a finite distance (310 pm), secondly, it is much steeper
at short distances (the slope is almost infinite), and thirdly, it displays an
unusual bulge in the middle of its range. One expects the valence to drop to zero
at a finite distance, since it is a weakness of both eqns (3.1) and (3.2) that they
predict finite (even if small) valences for all distances, not just for those distances
that represent bonds. It is also not surprising that at very short distances the
repulsion will increase much faster than either eqn (3.1) or (3.2) would predict
since neither equation properly takes into account the strong core repulsion at
short distances. These are features that are shown by all bond valence—bond
length correlations. Equations (3.1) and (3.2) are approximations that are only
valid over the relatively short range of bond lengths normally observed.

The bulge in the centre of the bond flux—bond length correlation in Fig. 7.1 is,
however, unexpected and is quite unlike the behaviour shown by any other
cation (cf. Fig. 3.1). As pointed out below, the reason for this bulge is the
repulsion between the donor and acceptor O~ ions. The bulge is an artefact of
anion—anion repulsion and is not intrinsic to the H-O bond itself. The thin line
in Fig. 7.1 represents a reasonable interpolation between the two ends of the
bond flux—bond length curve and indicates the correlation that might be
expected if there were no anion—anion repulsion.

Figure 7.2 shows the relationship between the effective valence, s’ (eqn (6.1)),
of an O—H...O hydrogen bond and its O... O distance in a way that can be

1.0
0.9
0.8
07 H
0.6 X
05
0.4
0.3
0.2
0.1

Bond flux (vu)

| | | I o PSR
100 150 200 250 300 350
H-O Bond length (pm)

Fig. 7.1. Bond flux—bond length correlation for H-O bonds. The points correspond to
fluxes calculated from structures determined by neutron diffraction. The heavy line is
drawn through these points. The thin line is a smooth interpolation between the two ends
of the heavy line and represents the correlation that would be expected in the absence of
O-0 repulsion.
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Fig. 7.2. The effective valence, s’, as a function of O—O distance (Roo). AB is Ry, and
A'B’ is Rupstrainea from Fig. 6.4; ED shows the distance expected for a linear hydrogen
bond uncorrected for O—O repulsion (based on the thin line of Fig. 7.1); CD shows the
distance expected for a linear hydrogen bond corrected for O—O repulsion (based on the
heavy line of Fig. 7.1); CF is the minimum value of Roo observed for maximally bent
hydrogen bonds (based on the broken line in Fig. 7.4).

compared with Fig. 6.4, the solid and open dotted lines being the same in both
figures. For a linear O—H ... O bond, the effective valence, s’, is the same as the
valence, Sy, of the weaker H...O bond since this is the bond responsible for
keeping the two O~ ions in contact. The point E on the left-hand side of Fig. 7.2
marks the O ... O separation expected for a symmetrically two-coordinate H*
ion if the anion—anion repulsion is ignored, i.e. it is calculated from the thin line
in Fig. 7.1. This distance is considerably shorter than the value of Ry, (point C)
calculated for s'=0.5 using eqn (6.3), indicating that the highest possible reg-
ular coordination number of H* must be less than 2. However, while a coor-
dination number of one may be possible in the gas phase, it is not possible in a
condensed phase as the following argument shows. Suppose the H* ion is
bonded to just one O*~ ion, the combination would create a local dipole which
will attract other anions. The H" ion would therefore have a number of addi-
tional anion neighbours (perhaps at longer distances), but since these non-
bonded neighbours are attracted to the H" ion by the electrostatic field, they
must be connected to it by electrostatic flux. Thus, according to the definition of
a bond given in Section 2.6, they will, in fact, be bonded. Any attempt to create a
singly bonded cation will result in at least one, and possibly more, additional
bonded neighbours even if the additional bonds are weak. Since the distortion
theorem (Rule 3.6) predicts that displacing the H ion away from the centre of a
symmetrical hydrogen bond will increase the average H-O bond length, thereby
allowing the O?~ ions to move further apart, the only bonding environment
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available to an H" ion is one that is distorted and has a coordination number of
at least 2.

It is possible to treat this distortion quantitatively. If Sy, is the valence of the
weak H...O bond formed by two-coordinated H*, the valence of the strong
O-H bond must be 1 — S}, if the bond valence sum at H' is to be 1.0 vu. The
valences of both the O—H and the H ... O bonds, and hence their lengths, thus
depend only on the parameter, Sy.

If the hydrogen bond is also linear, i.e. the O—H...O angle is 180°, then
the O ... O distance is equal to the sum of the two H—O distances. In this case,
the O...O distance is also a function of Sy, which, for a linear hydrogen bond, is
the same as the effective valence, s/, that pulls the O*~ ions together (Section 6.2).
In the absence of anion—anion repulsion, one would expect the O—O distance in
a linear hydrogen bond to follow the line ED in Fig. 7.2 calculated using the thin
interpolated line of Fig. 7.1. For s’ >0.25vu, this lies to the left of the Ry,
suggesting that hydrogen bonds with s’ > 0.25 vu should not exist.

However, under appropriately constrained conditions, symmetric hydrogen
bonds are known (Section 7.4), but not with the predicted O—-O distance of
220 pm (point E). Since the shortest O—O distance allowed by the anion—anion
repulsion is 244 pm (point C), the O—H bonds are stretched from 110 to 122 pm
and, because they are stretched, the valence sums at H" are less than 1.0 vu and
the bonds are constrained to be linear.

According to the corollary to the distortion theorem (Rule 3.7), the valence
sum at H' can be increased by displacing H' towards one of the O®~ jons.
However, moving the H* ion off-centre also decreases Sy, and, hence, s'. Con-
sequently as the bond becomes more asymmetric, R.;, also increases.
For 0.5> s’ > 0.4 vu, the strains' are reduced but are still large and the observed
0O-0 distance (line CD calculated from the heavy line in Fig. 7.1) lies close to
Roin. Once Sy, falls below 0.4 vu, the stresses in the bond start to diminish as CD
moves to the right of Ry;,. The bonds are still strained because the O—O distance
still lies to the left of Ry.grainea 80, although some variation in the O-H...O
geometry is allowed, the O—O distance is constrained to lie between the line CD
(linear bonds) and the line CF which shows the shortest O—O distance observed in
maximally bent hydrogen bonds (taken from the broken line in Fig. 7.4). As
expected, CF closely follows Rpin. Once CD joins the unstrained line ED
(s'=0.2vu), the repulsion between the two O~ ions disappears. This point
defines the geometry of the most symmetric unconstrained hydrogen bond.

Figure 7.3 displays these same results in a different way by plotting Sy, rather
than s’, against the O—O distance. Although Sy, is the same as s’ for linear
hydrogen bonds, it is not the same if the bonds are bent. Since the O—O distance

! The term ‘strain’ is used in this chapter in a different sense from its use in the rest of the
book where it refers to the difference between the theoretical and experimental bond lengths
(Section 3.2). In this chapter it refers to the difference between the observed bond distance and the
distance that would be expected in the absence of O—O repulsion.
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Fig. 7.3. The hydrogen bond valence, Sy, as a function of O—O distance. The heavy line
shows the most probable distance, the light lines indicate the range of permitted values
depending on the O—H ... O angle. The straight broken line is calculated from eqn (7.1)
and is a linear fit to the heavy line for S, < 0.4 vu.

depends on the O—H...O angle as well as on Sy, Fig. 7.3 shows three
possibilities. The light lines represent the limits found when the bond is linear
(upper), and when the bond is maximally bent (lower), while the heavy line
shows the most likely value of Rgg based on the frequencies shown in Fig. 7.4.
The bonds are linear for S}, > 0.4 vu, but bonds weaker than this can be bent.
However, the most likely bond remains linear as long as Sy, > 0.2 vu, the point
where the line CD in Fig. 7.2 meets the line ED. The linear hydrogen bond with
Sp=0.2vu is the most symmetrical arrangement for which the bond is not
strained by anion—anion repulsion. This is the configuration that is expected for
a normal hydrogen bond.

Surprisingly, Fig. 6.4 shows that tetrahedral four-coordinate H* should be
less strained than linear two-coordinate H* because its H . . . O bonds are much
weaker and longer. Although neither regular three- nor four-coordinated H*
has been reported, distorted three- and four-coordinated H' environments are
frequently found with weakly bonding anions as discussed in Section 7.5.

7.3 The normal hydrogen bond

A normal hydrogen bond is defined as one in which the distortion is just enough
to remove the strain caused by anion—anion repulsion. A normal hydrogen
bond therefore comprises a strong O—H bond with a valence of 0.8 vu and
length 97 pm, and a weak H...O bond with a valence of 0.2vu and length
190 pm. The bond is linear with an O—H ... O bond angle of 180° giving an
O...0 distance of 287pm. This is the bonding geometry expected for a
hydrogen bond if no other constraints are present.
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Fig. 7.4. The frequency of observed O—H...O geometries projected onto the plane of
the three atoms. The O—H bonds lie on the horizontal axis. The contours show the
probability of finding the acceptor O>~ ion, each contour representing a doubling of the
probability relative to the contour below. The broken line shows the closest approach
observed for acceptor O atoms (adapted from Brown 1976a).

Figure 7.4 shows the observed geometries of O-H...O hydrogen bonds
expressed as their frequency of occurrence projected onto the plane of the three
atoms. The contour intervals are on a logarithmic scale with each contour
representing double the frequency of the contour below. The highest frequency
is found at the geometry of the normal hydrogen bond.?

The normal hydrogen bond is formed between a strong anion with a max-
imum bonding strength close to 0.8 vu and a weak anion with a bonding
strength of 0.2 vu. Therefore, unlike other cations, the H" ion has two cation
bonding strengths, one of 0.8 vu (to the donor anion) and one of 0.2 vu (to the
acceptor anion).

7.4 Strong hydrogen bonds

The normal hydrogen bond is assumed to be the conformation with the lowest
energy, but other conformations are possible if the additional energy required to
produce them can be recovered elsewhere in the structure. Strong hydrogen
bonds are more symmetric, shorter and, as discussed above, involve significant
stretching of the H-O bonds since the O . .. O distance cannot be less than R ;.
The stronger the bond, the more closely the observed O...O distance
approaches R ,.

Strong hydrogen bonds can be divided into two classes, the very strong
hydrogen bonds with 0.5> S, > 0.4 vu which are necessarily linear, and those

2 The apparent shift of the maximum away from the linear O—H ... O geometry is an artefact of
projecting around the cylindrical axis. If this graph were plotted in the three dimensions of real
space, the maximum would be seen to lie on the horizontal axis.
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with 0.4 > S, >0.2vu which are normally linear but may be bent as long as
Roo > Ryin- However, any bending of a strong hydrogen bond costs energy as
long as Rpg < Runsirained and only occurs if this energy can be recovered by
other changes in the structure.

Strong hydrogen bonds tend to be found between anions that have bonding
strengths lying in the range between 0.2 and 0.8 vu since such anions favour
forming H-O bonds that lie in the strained region. The phosphate ion
(s,=0.25vu, s,(max)=0.75vu) is one example. In KH,PO, (68696, 201373)
hydrogen bonds link phosphate ions that are chemically equivalent. The
observed geometry of the hydrogen bond lies between two extremes. At one
extreme is the symmetric structure shown in Fig. 7.5(a) in which both the
phosphate ions and the hydrogen ions have regular coordination. This
arrangement is destabilized by the highly strained hydrogen bond. At the other
extreme is the structure with a normal hydrogen bond shown in Fig. 7.5(c). This
structure is destabilized by the large asymmetry induced in the PO?[ ion. The
observed structure, shown in Fig. 7.5(b), is a compromise between these two
extremes, the energy required to form the strong hydrogen bond being balanced
against the energy needed to distort the phosphate ion.
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Fig. 7.5. Bond valences and lengths expected for KH,PO, (68696, 201373) (a) assuming
the principle of maximum symmetry, (b) observed structure, (c) assuming normal
hydrogen bonds. Note that in addition to the bonds shown, each O®~ ion receives a
valence of 0.25 vu from K*.
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Fig. 7.6. The bond graph of oxalic acid dihydrate (OXACDHO04) showing the observed
bond valences. This graph shows the correct connectivity, but is not a three-dimensional
molecular diagram.

Oxalic acid dihydrate (OXACDHO04) is an example in which the presence of a
strong hydrogen bond is required by the bond graph shown in Fig. 7.6. There
are three hydrogen ions in the half-formula unit, all of which bond to the water
oxygen, Oy,. Either all three hydrogen atoms are attached to O,,, in which case
O,, forms an H3;O" ion and three strong hydrogen bonds (S, = 0.33 vu), or, as
observed, two hydrogen atoms are attached to O, and the third to the oxalic
acid molecule. Since the water molecule acts as an acceptor to one hydrogen
bond but as a donor to the other two, the acceptor bond must be twice as strong
as the donor bonds. The compromise is that the donor hydrogen bonds are
slightly weaker (S,=0.17vu), and the acceptor bond considerably stronger
(Sp=0.34 vu), than normal.

In a few cases, particularly when the two anions are chemically equivalent or
when steric constraints force the two anions close together as in certain organic
molecules, the hydrogen bond can be symmetric. The hydrated H* ion, HsO;,
discussed in Section 7.6, is one example, but such cases are rare since they
involve considerable strain in the H-O bonds.

7.5 Weak hydrogen bonds

Weaker (more asymmetric) hydrogen bonds are formed with anions having a
bonding strength significantly less than 0.2 vu, for example, the perchlorate ion,
ClO, , with a bonding strength of 0.08 vu. The anion’s small bonding strength
ensures that it can only form weak hydrogen bonds. Because the H" ion is
displaced even further from the centre of the bond than normal, such bonds are
no longer constrained to be linear and the internal pressure in the crystal usually
keeps the O?~ ions in contact. Typically the O—O distance is equal to Runstraineds
and in any case it is longer than R, leading to O—H.... O angles in the range
130°-160° (Fig. 7.4).

Decreasing the O—H...O angle exposes the H* ion to other neighbouring
anions with which it can form one or more additional very weak bonds
(Sp<0.05vu, H...O0>250 pm with O—H ... O angles < 130°). While such very
weak bonds individually make only a small contribution to the valence sums, in
compounds such as the perchloric acid hydrates they are so numerous that
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Fig. 7.7. The hydrogen ion environment in Li(H,0);ClO,4 (1914). The distances are in
pm, the angles in degrees.

proper bond valence sums can only be obtained if these very weak bonds are
included (Brown 1976b).

Li(H,0)3CIO4 (1914) contains a typical weak hydrogen bond. Its geometry is
shown in Fig. 7.7. The Li* ion is coordinated by six water molecules whose H*
ions form one weak hydrogen bond (S, =0.13 vu) with one of the three basal
oxygen atoms of the perchlorate ion and a second very weak hydrogen bond
(Sp=0.04 vu) with the apical oxygen. The weak H...O bond has a length
205 pm, significantly longer that found in a normal hydrogen bond, and the
observed O—H ...O angle of 164° is close to the angle of 159° that would
be expected from Fig. 7.4. The very weak bond has a length of 262 pm with an
O-H...O angle of only 107°. Since the three basal oxygen atoms of the ClO,
ion each form two H . .. O bonds of valence 0.13 vu and the apical oxygen forms
six H... O bonds of valence 0.04 vu, each perchlorate oxygen receives 0.25vu
from the hydrogen bonds allowing the ClO, ion to retain its regular tetrahedral
geometry. If the very weak bonds are ignored, the bond valence sum at the
apical O~ is only 1.75 vu, much smaller than expected.

Weak hydrogen bonds are also found in places where the O—H ... O angle is
constrained to be less than 180°, since bending the bond causes Rpo to be
lengthened. The hydrogen bonds in liquid water are therefore weaker than those
in ice since in ice all the bonds are straight, but in the liquid, the disorder and
mobility of the water molecules ensures that the hydrogen bonds are all more or
less bent and therefore weaker. For this reason it was assumed in Chapter 5 that
the bonding strength of liquid water is only 0.17 vu.

7.6 The structural chemistry of the hydrogen ion

A consequence of the asymmetry of the hydrogen bond is that the H" ion
behaves both as a strong cation to the donor anion and as a weak cation to the
acceptor anion. Unlike most other cations, H" is able to form a link between
anions of very different bonding strength. It thus plays a unique role in chem-
istry, particularly in the chemistry of aqueous solutions. Compounds that con-
tain hydrogen bonds often form bond graphs that exploit this intrinsic
asymmetry. The six Ni—O bonds in Ni(H,0)sS0,4 (69127, Fig. 7.8), for example,
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Fig. 7.8. Bond graph of Ni(H,0)s30, (69127) showing the bond valences.

have a valence of 0.33 vu which gives the NiOéO* group a bonding strength of
0.56 vu making it a strong anion. The sulphate group, with a bonding strength of
0.17 vu, is a relatively weak anion. H* provides a uniquely suitable link between
these two very disparate anions, using the strong anion as its hydrogen bond
donor and the weak anion as its acceptor. If, as would be expected from the
principle of maximum symmetry, hydrogen bonds were always symmetric, H
would have a bonding strength of 0.5 vu and Ni(H,0)sSO, would be unstable
because of the poor valence match. The constraint of anion—anion repulsion,
which breaks the symmetry of the hydrogen bond, has therefore important
consequences for the chemistry of H", allowing the formation of compounds
that would otherwise be impossible. Conversely, compounds that would be
predicted to be stable by the principle of maximum symmetry are destabilized by
the anion—anion repulsion. If it were not for the repulsion between the O®~ ions,
water would be a hard quartz-like mineral in which all the O—H bonds had a
valence of 0.5 vu. It is the asymmetry of the hydrogen bond that causes the H*
ions to bond more strongly to one O*~ than the other, thus causing solid water to
break into the weakly linked H,O molecules of the liquid water we know.

A particularlyinteresting question is what happens to free H" ions when placed
in water. The large cation bonding strength (0.8 vu) of H" is not well matched to
water whose anion bonding strength is only 0.2 vu. If stronger bases, such as
PO?[, are present in solution, H" will preferentially bond to them as discussed in
Section 5.4, but in the absence of stronger bases, H will attach itself to a water
molecule to form the H;OV ion. This forms three donor hydrogen bonds with
Sk =10.33 vu, making them stronger (and shorter) than normal (Fig. 7.9(a)). If one
of the hydrogen atoms in H;0" forms a symmetric bond with another water
molecule, the HsO; (= HOHOH} ) ion is formed (Fig. 7.9(b)). This ion has a
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Fig. 7.9. Structure of the hydrated H' ion: (a) H(H,0)s, (b) H(H,0),.

bonding strength (0.25 vu) which is more closely matched to water, but this
reduction in bonding strength is only obtained at the cost of forming an internal
symmetric hydrogen bond. Other configurations are possible, but any hydrated
proton complex must have at least six terminal hydrogen atoms (e.g. H;07, Fig.
7.9(a)) if it is to have a bonding strength matching that of water. Within the water
complex surrounding the H* ion, the bonds will all be stronger than normal. The
ways in which the strains are shared between these internal bonds may fluctuate
and at any particular time will be determined by the environment in which the
hydrated H* ion finds itself. The H" ion thus generates its own structured hyd-
rationsphereand is properly represented by H{(H,O) 3+ Itthus hasalowerentropy
of solution than H,O (see Fig. 5.3) and is classified as a structure forming ion.

7.7 Other types of hydrogen bond

The discussion has so far focused on O—H. ... O hydrogen bonds because these
are the most common and best understood, but the same principles apply to the
other X'—H ... X hydrogen bonds where X’ and X can be C*~, N*~, 0*", F~,
Cl, Br—,and I” or even a transition metal (Brammer ez al. 1995). Changing the
anion does not change the nature of the hydrogen bond but does change the
numerical values. Unfortunately, detailed graphs comparable to Figs 7.1-7.3
are not available for anions other than O®~, but within the series F~, 0°~, N°~,
and C*~ the size of the anion increases by about & pm between one element and
the next. F~ is the smallest and the symmetric F—H-F bond (length 227 pm) is
found in the stable FHF™ ion because the F ... F repulsion is smaller than the
O ... Orepulsion. Consequently the normal F—H ... F bond is more symmetric
and shorter (251 pm in solid HF) than the normal O—H ... O bond. Conversely,
the symmetrical N—H-N bond is not known and the normal N-H ... N bond is
more asymmetric and longer (around 300 pm). The normal C-H ... X hydrogen
bonds are highly asymmetric and even longer (C...O around 310 pm) with Sy
less than 0.06 vu. Interestingly, the —CH group does not form a single weak
H...X bond but generally two, three, or more very weak bonds because at
a distance of 310 pm it is possible to surround the —CH group with several
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O”~ ions. For many years it was believed that C—H ... X bonds did not exist,
but recently Steiner (19955, 1997) has convincingly demonstrated their reality
by showing that there is a significant (if small) increase in the length of the C-H
bond as the length of the H...O bond decreases. The differences in the struc-
ture and basicity (pK,) of the CH;COO™ and CF;COO™ ions discussed in
Section 9.2 can be attributed in part to the acidic character of the methyl group
measured by its ability to form hydrogen bonds.

The chemistry of the ammonium ion, NH;, provides another important
example of hydrogen bonding. Because of its tetrahedral symmetry, NH;,
sometimes behaves like a spherically symmetrical monovalent cation such as K+
or Rb*. Thus, at high temperatures, NH4Br (60679) crystallizes with the NaCl
structure adopted by both KBr and RbBr. The ammonium ion is rotating so the
hydrogen atoms have no fixed positions and NHj is surrounded by six Br~ ions
at a distance of 345pm. At room temperature, NH,Br (24916), unlike either
KBr or RbBr, transforms to the CsCl structure which places eight Br™ ions
around the ammonium ion at the corners of a cube. The ammonium ion is now
able to orient itself so that its four H* ions point directly at four of its eight Br™
neighbours. However, the ammonium ion is still disordered, because there are
two equivalent ways of orienting the tetrahedral NH; ion and both of these
arrangements are found with equal frequency. As expected for a larger coor-
dination number, the bond distance is slightly longer (352 pm) than in the high
temperature phase. Below room temperature the structure transforms to
NH,Br(IIT) (26579) with the ammonium ion freezing out in one of the two
orientations. Four N—H ... Br bonds are now shortened to 350 pm, while the
four N..Br distance that are not hydrogen bonded are lengthened to 365 pm.
NH,F (9872) takes the formation of hydrogen bonds a stage further and adopts
a structure in which each NH; ion has only four close neighbour F~ ions with
which it forms strong, and therefore strained, hydrogen bonds.

The unique character of NHJ allows it to behave at times like an alkali metal
similar in size to K+ or Rb* having coordination numbers in the range 610, and
at other times to express its hydrogen bond character by forming four bonds at the
corners of a tetrahedron. Which of these occurs depends on the bonding strength
of the anion. Stronger anions such as F~ (s, =0.25vu) favour a lower coordi-
nation number which results in an ordering of the hydrogen bonds, but weaker
anions such as Br™ (s, =0.10 vu) favour a larger coordination number and hence
disordered H* ions. Garcia-Rodriguez et al. (2000) have analysed the bonds
formed by the ammonium ion and have proposed a set of bond valence para-
meters that can be used if the ammonium cation is treated as an alkali metal.

7.8 Assigning experimental bond valences to hydrogen bonds

For the reasons discussed in Section 7.1, there are a number of factors that make
the assignment of experimental bond valences to hydrogen bonds particularly



88 HYDROGEN BONDS

difficult. These include the inability of X-ray diffraction to locate the position of
the H" ion accurately, the systematic displacement of the electron density of
hydrogen towards the donor anion, the extended range of observed H-O bond
lengths which precludes the use of an analytical expression such as eqn (3.1) or
(3.2), and the effects of anion—anion repulsion.’

If an accurate position for the H" ion has been determined by neutron dif-
fraction, Fig. 7.1 can be used to find the experimental bond valence of the
H...O bond but it cannot be used to calculate the valence of the donor bond
since the O—H bond length is insensitive to bond valence. The valence of the
O-H bond is best assigned by subtracting the valences of the acceptor bonds
from the atomic valence, 1.0 vu, of H* (see Table 13.2 for an example).

If the observed structure has been determined by X-ray diffraction, one has a
choice of two methods, one that is useful if approximate H" positions are
known and the other when the H* positions are not known. If approximate
positions of the H* ions have been determined by X-ray diffraction, the
X'(donor)-H distance not only has a large standard uncertainty but is sys-
tematically too short. Better H* positions can be calculated for normal or weak
hydrogen bonds by increasing the O—H distance to around 97 pm (100 pm for
N-H and longer still for C—H bonds) since the X’'(donor)-H distance is
insensitive to its valence. Distances for the H ... O(acceptor) bonds can then be
calculated and Fig. 7.1 used to determine their valences. This calculation cor-
rects for the shortening of the O—H bond and gives a better estimate of the
position of the H* nucleus than is possible from X-ray diffraction measure-
ments. The remaining uncertainty in the position of the H" ion is not a problem
since even a large uncertainty in the length of the weak H ... O bonds will result
in only a small uncertainty in the bond valence. The valence of the donor X'-H
bond is then determined as before by differences.

If the positions of the H' ions are not known, one can make use of the
observed distances between the donor and acceptor anions to search for
potential hydrogen bonds. Donnay and Allmann (1970) have shown that it is
possible to identify which atoms are donors and which are acceptors by con-
sidering the deficiency in the bond valence sums when the contributions of the
hydrogen bonds are ignored. Donor anions will have a deficiency of around
0.8 vu while those with a smaller deficiency are likely acceptors. Identifying
neighbouring donor and acceptor anions usually allows the hydrogen bond

3 The curves shown in Fig. 7.1 can be approximated by more complex analytical expressions.
The sum of two exponentials gives a reasonable (though not perfect) fit to the thin line but this does
not take account of the anion—anion repulsion. Alig ef al. (1994) obtained good valence sums
around H in O—H. .. O hydrogen bonds using eqn (3.1) with Ry=91.4pm and B=40.4pm, but
they did not check whether this also gave good sums around the O®~ ions. Steiner and Saenger
(1994) found that using R;=92.8pm and B=39.3pm reproduces the geometry of O-H...O
hydrogen bonds reasonably well except for very strong and very weak bonds, but they do not
recommend using these parameters for quantitative work. It is also possible to fit the heavy line in
Fig. 7.1 by three different sets of parameters, one for each of the three distinct regions of the curve
as discussed in Appendix 1.
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scheme to be reconstructed. Baur (1972) has proposed an electrostatic method
of calculating where the H* ions are located in such crystals, but it is not
necessary to go to these lengths since reasonably accurate bond valences can be
found from a knowledge of just the O ... O distances using the heavy line in Fig.
7.3. This provides a good approximation to the most probable value of Sy, and,
for valences less than 0.4 vu, the heavy line follows the simple linear eqn (7.1):

Sh = 330 — Roo,/200. (7.1)

However, since S}, also depends on the O—H ... O angle, eqn (7.1) must be used
with care, particularly for the weaker bonds where the angles are more variable.
As in the previous method, the valence of the donor bond is assigned by dif-
ferences.

In assigning valences to hydrogen bonds, care needs to be taken to include all
the interactions formed by the H* ion. Even though there may be one relatively
strong H...X(acceptor) bond, there can be several additional interactions
which, although individually very weak (S < 0.05 vu), when taken together may
account for a significant contribution to the total valence. Multiple acceptors
are frequently found among the weak bases, e.g. ClO, and Br~, and around
weak acids, e.g. ~C-H*. Any H...O distance less than 310 pm should be
considered as bonding provided that the O—H ... O angle is greater than 90°.

It is unfortunate that the process of assigning bond valences to hydrogen
bonds cannot be easily programmed into a computer, but the extra time needed
for the manual assignment of these valences is usually worth the effort because
of the critical role hydrogen bonds play in the cohesion and properties of many
inorganic solids. A knowledge of their valences sheds valuable light on their role
in the crystal chemistry.
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FElectronically distorted structures

8.1 The origins of electronic distortions

While it is appropriate to treat most ions as spherically symmetric as was done
in Chapter 2, there are a few ions, such as those with stereoactive non-bonding
electron pairs, whose electronic ground state in a crystal is far from symmetric.
Such ions must be modelled by adding either point dipoles or point quadrupoles
to the point charges. The electrostatic field calculated using only the point
charges is referred to here as the Madelung field. The corresponding field
calculated using both point charges and point multipoles is referred to as the
Coulomb field." This chapter shows how the electronic asymmetries arise, how
they can be modelled and what effect they have on the structure.

The hard ions described in Section 4.5 are found mostly near the top of the
periodic table. They are characterized by having a large energy gap between
their spherically symmetric ground states and their first excited state. This
makes it difficult for the electrons to polarize and results in the atoms having a
rigid spherically symmetric electron density. On the other hand, the soft ions,
found towards the bottom and right of the periodic table, have excited states
close enough to the ground state that they can be stabilized by small changes
in the environment. Such ions are easily polarized, and their low-energy
asymmetric states are often stabilized by, and in turn can stabilize, a suitably
distorted arrangement of the ligands.

Soft cations that display electronically induced distortions are conveniently
grouped into classes according to the origin of their asymmetry. Best known of
these are the main group cations in low oxidation states, the so-called lone-pair
cations, in which one or more pairs of electrons in the valence shell are not
directly involved in bonding. Transition-metal cations also undergo a variety of
distortions, the Jahn—Teller distortion shown by Cu®* and Mn*" being the best
known, and the distortion observed around octahedral V> being the most
dramatic. Other electronically driven distortions are found around Hg*" and
around I in its various low oxidation states.

The asymmetry found in the electron density of these soft ions can be
modelled by adding one or more point multipoles to the point charge used to

! The Coulomb field defined here is not to be confused with the physical Coulomb field calculated
using the full electron density. The Coulomb field used here is based on point charges and point
multipoles, not on extended electron densities.
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Fig. 8.1. The Coulomb field ofamonopoleanda dipole. The starindicates the point of zero
field. The heavy lines represent the surface that divides the flux into two equal portions.

represent the ion. The field produced by the multipoles is relatively short
ranged, contributing mostly to the flux linking the ion to its immediate neigh-
bours. The Coulomb field thus consists of the Madelung field determined by
the point charges, and a multipole field determined by the point multipoles.
The order of the multipole is determined by the nature of the electronic states
involved, a state without a centre of symmetry, for example, possessing an electric
dipole. The orientation of the multipole is determined by any pre-existing
tendency of the coordination polyhedron to distort, since it is energetically
favourable for different distortion mechanisms to reinforce each other. The size
of the multipole depends on the extent of the asymmetry in the electron density.

No flux calculations involving multipoles have yet been performed so a quan-
titative discussion is not possible, but the effects can be explored in a qualitative
way. As an example, consider the effects of adding a point dipole, the lowest order
multipole, to the point charge of a cation. The resultant field is shown in Fig. 8.1.
Because the dipole is electrically neutral the net flux leaving the cation is deter-
mined entirely by the size of the point charge, but the dipole changes the way in
which this flux is distributed. It increases the flux density around the positive pole
and decreases it around the negative pole, generating stronger, and therefore
shorter, bonds on the side facing the positive pole, and weaker, longer bonds on
the side facing the negative pole. This is equivalent to shifting the ion within its
coordination sphere in the direction of the positive pole asillustrated in Fig. 8.2(b).

Although the field of the dipole itself does not extend much beyond its
immediate neighbourhood, the displacement of the ion relative to its ligands will
alter the Madelung field, and so indirectly contribute to long-range effects. The
Madelung field, which is correctly calculated if the distorted geometry is known,
still gives a good approximation to the Coulomb field everywhere in the crystal
except in the immediate neighbourhood of the non-spherical ion.

Before one can calculate the bond flux directly, both the magnitude and the
orientation of the multipole must be determined, and these are generally not
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Fig. 8.2. Projection of the O°~ environment of TI™ when (a) undistorted and (b) at
maximum distortion. Bond valences are shown in the top half of each diagram and bond
lengths in pm below.

known. However, the experimental bond valence, which in other compounds is
known to be equal to the flux, is expected to give a good approximation to the
flux even in cases where an electronic distortion is present. The influence of the
dipole can be seen by comparing the fluxes calculated using only the Madelung
field in the lone-pair molecule 1,05 (78387), shown by the circles in Fig. 8.3, with
the empirically determined bond valence—bond length correlation for I’ -0
bonds, shown by the line. The Madelung fluxes of the strong bonds are lower,
and of the weak bonds higher, than the experimental bond valences, but if the
flux had been calculated using the Coulomb field rather than the Madelung
field, i.e. if the dipole field had been included in the calculation of the flux, the
points would have been shifted closer to the line since the dipole would have
strengthened the field in the region where the bonds are short and weakened it in
the region where the bonds are long.

The theoretical bond valence, which is calculated using the equal valence rule
(3.4), clearly gives a very poor estimate of both the flux and the experimental
bond valence since in these compounds the valence is not equally distributed
between the bonds. Nevertheless, it provides a useful reference against which to
measure the strain introduced by the electronic asymmetry.?

2 The bond strain in this chapter, as in most other places in this book, is defined as the difference
between the observed bond lengths and the bond lengths calculated from the theoretical bond
valences. A bond strain index that measures this strain is defined in eqn (12.1).
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Fig. 8.3. Bond flux versus bond length in I,0s. The points are the Madelung fluxes
(calculated without the dipole by Preiser et al. 1999). The line represents the empirical
bond valence—bond length correlation which is expected to be close to the true flux.

There is an alternative way of calculating the bond flux using the Kirchhoff
equations ((2.7) and (2.11)) in place of the network equations ((3.3) and (3.4)),
the problem in this case being to determine the appropriate bond capacitances
which are not now all equal. Where the multipole produces a shorter bond, a
larger capacitance is needed, and conversely where the multipole produces a
longer bond, a smaller capacitance is needed. Transferable bond capacitances
have been successfully used to model the asymmetries in d° transition metal
environments as discussed in Section 8.3.2 below.

The remaining sections of this chapter examine particular classes of cations
that show electronically induced distortions. Section 8.2 explores the distortions
caused by lone pairs and Section 8.3 explores the distortions found in transition
metals.

8.2 Non-bonding valence-shell electrons

One of the best known examples of electronically induced distortion is the steric
effect of the non-bonding valence-shell electrons found in main group cations
in low oxidation states, cations such as S**, N°*, and Sn®", in which one or
more pairs of valence electrons are not involved in chemical bonding. Such non-
bonding electrons are popularly known as lone pairs because they occur as
localized spin-paired electrons.

The distortion produced by the lone pairs is traditionally described using the
Valence Shell Electron Pair Repulsion Model (VSEPR model) (Gillespie and
Hargittai 1991), which assumes that each pair of electrons in the valence shell is
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localized in a way that minimizes the repulsion between them. Bonding electron
pairs point towards the ligands they bond, but the non-bonding lone pairs point
to a region in which there is no ligand. In this model the environment of the
cation is described in terms of a regular coordination polyhedron (tetrahedron,
trigonal bipyramid, or octahedron) in which the lone pair points to an apex
which is not occupied by a ligand. Thus the geometry around a TI* cation that
forms three bonds is described as a tetrahedron with one site occupied by the
lone pair (cf. Fig. 8.4(a)). The geometry around an Sn** cation that forms four
bonds is described by a trigonal bipyramid with the lone pair occupying an
equatorial position, while that around an Xe®" cation that forms five bonds is
described by an octahedron, again with one apex occupied by a lone pair. This
model gives a remarkably simple and accurate description of the geometry of
isolated MX,, complexes, so much so that Galy et al. (1975) were able to show
that the lone pair occupies a well-defined volume whose centre is displaced
about 100 pm from the cation nucleus.

In crystals the bonding around main group cations containing lone pairs is
more complex because the short bonds described by the VSEPR model are
frequently accompanied by a series of longer bonds close to the region occupied
by the lone pair (Fig. 8.4(b)). These weaker bonds are conventionally called
secondary bonds in contrast to the short bonds which are referred to as primary
(Alcock 1972). The environments of lone-pair ions in the solid are more con-
veniently treated by considering them as octahedra which are distorted by
having the cation displaced towards a face, edge, or apex (Brown 1974). For
cations near the top of the periodic table the displacements may be so large that
the secondary bonds make no significant contribution to the bonding, which is
the case shown in Fig. 8.4(a). Atoms lower in the periodic table show smaller
displacements (Fig. 8.4(b)) or even no displacement at all (Fig. 8.4(c)), i.e. they
have perfectly regular environments in which the lone pair is described as ste-
reoinactive and is considered to occupy an unhybridized s orbital.

Displacement of the cation towards a face gives three primary and three
secondary bonds and is favoured by low-valence cations such as TI*. Cations
with intermediate valence, e.g. Sn*", tend to move towards an edge giving four
primary and two secondary bonds while high-valence cations such as Xe®"
favour displacement towards a corner to give five primary bonds (one strong
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Fig. 8.4. Environments of cations with non-bonding valence electrons: (a) SO3,
(b) SbO; as found in solids, (c) PbSe in PbS (38293). Primary bonds are shown with
solid lines, secondary bonds with broken lines.
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apical and four medium strength equatorial bonds). Since secondary bonds
avoid lying directly over the lone pair, the bonding around Xe®" usually involves
two or three secondary bonds arranged around the lone-pair direction. In each
of these cases the primary bonding corresponds to the VSEPR description and
the secondary bonds fill the area around the lone pair.

A simple orbital picture can be used to describe these distortions. The lone
pair can occupy either an sp> hybridized orbital or an unhybridized s orbital.
Around cations from the upper half of the periodic table it usually occupies an
sp° orbital where the four valence-shell electron pairs (three bonding and one
lone pair) are arranged at the corners of a tetrahedron giving rise to three
primary bonds as described by the VSEPR model. Cations from lower in the table
can also show this configuration but are sometimes found with the lone pair
occupying a pure s orbital which can then be treated as part of the core, giving a
spherically symmetric electron density. Intermediate states of hybridization are
also possible and frequently found.

In the ionic model, the bonding electrons are all assigned to the anions, but
the lone pair remains on the cation in accordance with the assumptions made
in Section 2.3. The asymmetry caused by a lone pair occupying an sp> hybrid
orbital can be represented by a dipole whose magnitude depends on the degree
of hybridization. This in turn is determined by the bonding strength of the
ligands as discussed below. For weak ligands the dipole may even be zero,
corresponding to the lone pair occupying a symmetric s orbital.

The dipole will orient itself in such a way as to enhance any pre-existing
distortion arising, e.g. from asymmetries in the bond graph or steric strains, an
arrangement that minimizes the strain energy. If there is no pre-existing dis-
tortion the lone pair will, if sufficiently stereoactive, result in a spontaneous
breaking of the symmetry, in which case the dipole may be oriented along any of
the directions that were equivalent under the symmetry that has been broken.

No quantitative treatment of the lone pair using an electric dipole has yet
been reported, but a semiquantitative treatment is possible. Figure 8.1 shows
the Coulomb field around a positive point charge, ¥, and point dipole, D. The
positive direction of the axis is taken along the positive pole of the dipole. At
large distances the point charge dominates the field, but at short distances the
field is strongly perturbed by the dipole. As shown in the figure the near-field
flux lines are shifted towards the positive axis while along the negative axis there
is a region in which the field is reversed. The point at which the field changes sign
is marked by an asterisk in Fig. 8.1. The distance, rq (given by eqn (8.1)),
between this point and the nucleus is a characteristic scaling distance of the field:

ro=2D/V. (8.1)

Consider the maximum distortions observed in the MO, and MOj groups
listed in Table 8.1 (M = a cation from Group 15 or 16). If there were no dipole,
the ions would be planar with an O—M—0 angle of 120° (180° in the case of
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Table 8.1 Typical geometries of selected lone-pair cations in their most distorted form

Bond lengths Bond lengths Angle Bond valences S, Bond valences

(pm) M-O (pm) M-S-O O-M-O (vu) primary Ss (vu)
primary secondary (degrees) secondary
NO; 126 115 1.50
PO~ 165 318 99 1.00 0.02
AsO} 179 305 9 1.00 0.03
SbOT~ 198 292 96 0.98 0.08
BiO3~ 220 255 84 0.75 0.29
SO~ 155 343 104 1.36 0.01
Se0I™ 173 282 96 1.24 0.06
TeO3™ 200 290 94 0.94 0.08

NO5). When the dipole is present the flux lines, hence the ligands, are shifted
towards the positive axis, leading to a reduction in the O—M-0O angle. This
reduction in NO; is limited by the repulsion between the 0”~ ions whose
separation cannot be less than R ;,. This, taken from Fig. 6.4, is 213 pm and
corresponds to the observed O—M -0 angle of 115°. In this case the non-exis-
tence of NO?, as well as the geometry of NO; , are both determined by anion—
anion repulsion. For all the other ions, the O—O distance exceeds R, so the
geometry is primarily determined by other factors.

Because of the shift in the flux lines, one might expect the ligands to lie in the
plane represented in Fig. 8.1 by the heavy line which divides the flux into two
equal portions. This plane is given (in polar coordinates r, §) by eqn (8.2):

cos = —r/ro + ((r/ro P +1)"/% (8.2)

If the ligands lie in this plane, the values of 6 and r are their coordinates. Since
these can be determined from the observed geometry, eqn (8.2) can be solved for
ro which, using eqn (8.1), can be used to determine the dipole moment, D.
However, this calculation ignores two effects, namely, the anion—anion repul-
sion which will tend to increase @, and the presence of secondary bonds which
use a portion of the flux from the negative side of the dipole and so tend to
decrease 6. Both these effects can be seen in Table 8.1. The large angle in NO5
is determined by anion—anion repulsion as described above, the small angle
in BiO;f is determined by the presence of significant secondary bonding.
After allowing for these effects the ideal O—M-0O angle is seen to be about
100° corresponding to rq~200pm. For Group 15 cations this gives D ~ 300
electron pm, equivalent to a 150 pm separation between the nucleus and a lone-
pair charge of two electrons, a distance comparable to the 100 pm found by
Galy et al. (1975). For Group 16, the results are more variable but are consistent
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with a similar g and a larger dipole moment, in agreement with the observation
of Galy et al. (1975) that the distance between the nucleus and lone pair in these
complexes is increased to 125 pm.

The presence of the reversed field along the negative axis permits cations with
stereoactive lone pairs to bond to other cations using the lone pair as an electron
donor, but only if the bond to the second cation is shorter than rq. This accounts
for the ability of cations near the top of the periodic table to bond to other
cations through their lone pairs as discussed in Section 3.5, e.g. N** bonding to
Cu®" in Cu(NO,); , $* in NH,4Co(SO3),(NHs), - 3H,0 (36406) and dimethyl-
sulphoxide, and P*" in Pt(PO3)42f. Copper also forms complexes with ASO?
and possibly also very weak complexes with Se** and Ge*™.

Table 8.1 lists the most highly distorted geometries found around lone-pair
cations of Groups 15 and 16, but compounds with smaller distortions, or with no
distortion at all, are also known. For example, the cation environments in TICI
(29107), PbS (38293), and K,TeClg (26127) all have cubic symmetry and there-
fore the dipole has zero moment. The size of the moment in any particular
compound is determined by the bonding strength of the counterion. This is
illustrated by the crystal chemistry of T1* which, in different compounds, can
show either no displacement, a displacement leading to three primary and no
secondary bonds, or to any configuration in between (Brown and Faggiani 1980).
In TINOj; (75253, anion bonding strength 0.11vu) and TICI (29107, anion
bonding strength 0.14 vu), the environment of TI* is fully symmetric and the
cation behaves like an alkali metal similar in size to Rb™ (bonding strength
0.12 vu), but in T13BO; (10196, anion bonding strength 0.33 vu) the non-bonding
pairis fully stereoactive and T1* forms the pyramidal arrangement of three bonds
of valence 0.33 vu predicted by the VSEPR model and shown in Fig. 8.4(a).

Figure 8.5 shows the correlation between the dipole moment, as indicated by
the coordination number, and the counterion bonding strength. Where T1"
adopts its maximum coordination number, i.e. where its coordination number is
limited only by anion—anion repulsion, TI* has a bonding strength of 0.11 vu,
similar to Rb*, and can bond to relatively weak anions such as NO3 or C1™. In
this case, the ligands are in contact and fill the surface of the coordination sphere
so the bonding is necessarily symmetric, the cation is at the centre of the sphere
and the dipole has zero moment (Fig. 8.4(c)). Where TI" bonds to anions with a
larger bonding strength, it will form fewer and stronger bonds. It can accom-
plish this by shifting its lone pair away from the nucleus to create a dipole which
forces the flux lines towards the positive axis. This decreases the number
of primary bonds and increases their flux (Fig. 8.4(b)). By forming only three
primary bonds, T1* can match the bonding strength of anions as strong as BO%f
(Fig. 8.4(a)). Any anions, therefore, with bonding strengths lying between 0.11
and 0.33 vu can bond to TI*, the size of the dipole moment adjusting to ensure a
good bonding strength match with the anion. This can also be seen in Fig. 8.5
which shows the way the observed coordination numbers cluster around the line
that represents a perfect match with the bonding strength of the counterion.
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Fig. 8.5. TI" coordination number versus anion bonding strength. The curved line
represents the coordination number expected if the valence of the TI-O bonds is equal to
the anion bonding strength. The circles are observed coordination numbers. The vertical
lines mark the primary coordination number (bottom arrows) and the total coordination
number (top arrow) for environments that contain both primary and secondary bonds.

One consequence of the ability of TI" to vary its electronic configuration in
response to its environment is that it can adopt a cation bonding strength
anywhere in the range from 0.11 to 0.33 vu. Unlike the similar sized but hard
Rb* ion, which only forms stable bonds with weak anions, TI1* is soft and can
form stable compounds with both strong and weak anions (Section 4.5).

The ligands of a lone-pair cation lie on the surface of a sphere. When TI* is
surrounded by weakly bonding oxyanions, it lies at the centre of the sphere,
forming nine bonds of 297pm each (0.11vu, Fig. 8.2(a)). When it bonds to
strongly bonding anions, as in TI;BOs, TI* moves about 70 pm away from its
centre to form three primary bonds of 266 pm (0.33 vu), and six secondary
bonds of 324-372 pm (Fig. 8.2(b)). In the process the radius of the coordination
sphere increases from 297 to 322 pm in accordance with the distortion theorem
(Rule 3.6).

8.3 Transition metals

In transition metals the electrons in the d shell are not directly involved in
bonding and therefore should be considered part of the cation core. If the d shell
is completely full, it will be spherically symmetric and no distortion is expected.
For partial fillings the core may or may not be symmetric, but even if it is not
symmetric, the asymmetry may not be large enough to cause any distortion in
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the environment since the d shell is somewhat shielded from the environment by
the valence shell. There are two important ways in which the d shell can lead to
distortions, either if the d electrons are in a degenerate energy level where the
degeneracy can be removed by a distortion of the environment of the transition
metal, or if empty d orbitals can mix with filled orbitals on either the transition
metal or its ligands. These two cases will be discussed separately.

8.3.1 Jahn—Teller distorted cations

The best known transition-metal cation distortions are those found around
Cu”" and Mn*", systems that have partially filled d shells with a degenerate
ground state. According to the Jahn—Teller theorem, any degenerate electronic
system will spontaneously distort in such a way as to remove the degeneracy
(Dunitz and Orgel 1960). The distortions around Cu®" have been extensively
studied and may play a role in the superconductivity found in some copper
oxides (Section 13.3.2), while the distortions around Mn** play an impor-
tant role in the potentially useful magnetoresistive properties of LaMnO;
(Section 13.3.3).

When a transition-metal cation is surrounded by an octahedral arrangement
of ligands, the five d-shell orbitals split into a triplet, t,,, and a doublet, e,, state
(Fig. 8.6(a) and (b), i and ii). The electrons in the triplet state are localized in the
region between the ligands and have little effect on the stereochemistry but those
in the doublet state point directly at the ligands and thus lie higher in energy
than the t,, electrons. The presence of electrons in the e, orbitals tends to
destabilize the octahedral bonding. If the doublet is only partially filled, the

dxz_yz
dy?
Mn* (d4)

dy
Cu2*(d

Fig. 8.6. Energy levels showing the Jahn-Teller splitting in octahedrally coordinated
transition metal cations: (a) d* (Mn3"), (b) d'° (Cu?"). The energy levels are shown (i) in
a spherical field, (ii) in a regular octahedral field, and (iii) in a tetragonally distorted
octahedral field.
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Fig. 8.7. Perspective views of the e, orbitals: (a) d,» orbital and (b) d,»_;» orbital.

state will be degenerate since the odd electron or hole can occupy either of the
two orbitals that form the doublet. One of these orbitals is the d,»_,» orbital
(Fig. 8.7(b)) which points at the four ligands in the equatorial plane, the other is
the d, orbital (Fig. 8.7(a)) which points to the two axial ligands. The degeneracy
is removed by lengthening the bonds opposite the filled orbital and shortening
the bonds opposite the empty orbital. In practice, the distortion is always found
to shorten the four equatorial bonds and to lengthen the two axial bonds,
i.e. the electrons preferentially fill the d,. orbital for reasons discussed by
Burdett (1980).

Since the d orbitals have quadrupolar character, this distortion must be
modelled using a point electric quadrupole with the shape of the d,» orbital
oriented with a negative pole along the z axis and the positive pole in the x—y
equatorial plane (Fig. 8.7(a)). No fluxes have been calculated for Jahn—Teller
distorted cations, either with or without the quadrupolar contribution but, as in
the other cases, the experimental bond valences are expected to provide a good
approximation to the bond fluxes.

The distortions shown by Mn?* ions with four d electrons (Fig. 8.6(a)) and
Cu?* ions with nine d electrons (Fig. 8.6(b)) do not vary greatly from compound
to compound, suggesting that the quadrupole moment is the same in all the
compounds of a given cation. As in other cases, the orientation of the quad-
rupole is determined by any predisposition of the Cu®" or Mn® " environment to
distort as a result of other influences (e.g. the connectivity of the bond graph or
steric strains as found, for example, in La,CuQO, discussed in Section 12.3.3).
This suggests that it might be possible to model the distortion using the
Kirchhoff equations ((2.7) and (2.11)) with a set of standard capacitances as has
been done for the d” systems as described in Section 8.3.2.

8.3.2 Transition-metal cations with empty or near-empty d shells

According to conventional wisdom transition metals with empty d shells should
have spherically symmetric electron densities since there are no d electrons
available to cause a distortion. They should therefore have regular coordination
environments but, surprisingly, the largest electronic distortions are shown by
six-coordinate d° or d' cations. Transition-metal cations with empty d shells
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include S¢, Ti*t, V>, Nb”, Cr®", and Mo®". The observed distortions arise
because, under suitable conditions, the empty d orbitals can mix with both the
filled p orbitals of the ligands and the filled core orbitals of the transition metal.
When the oxidation state of the transition metal is small (e.g. Sc**), the empty
d orbitals are high in energy, there is little mixing and no electronic asymmetries
are observed. As the oxidation state increases and the d orbitals are less screened
from the nucleus, their energy is lowered to the point where it becomes com-
parable to the energy of the filled orbitals, allowing the orbitals to mix and the
electron density to polarize.

Unlike the simple electronic structures of Mn** and Cu?" in which the
d orbitals are influenced only by the crystal field, the electronic states of d” and
d! transition-metal cations involve the mixing of the d orbitals with those of the
core and the ligands. A simple analysis similar to that presented for the Jahn—
Teller distortion is not possible. However, it appears that where mixing occurs,
the formation of a bond between the transition metal and one of its ligands
polarizes the core electrons of the transition metal away from the bond, tending
to destabilize any bond trans to the primary bond (Gillespie and Robinson 1996).
Thus, the effect of the distortion in all cases can be described as an attempt to
remove any centre of symmetry that may be present. Tetrahedral coordination,
having no centre of symmetry, remains regular, but regular octahedral coor-
dination is destabilized. The centre of symmetry is removed by the transition
metal being displaced towards a face, edge, or corner of the octahedron.

The polarization of the core electrons of the transition metal induces a par-
allel polarization of the electrons on the ligands as shown in Fig. 8.8, both
polarizations being allowed by mixing filled orbitals on the metal and ligand
with the empty d orbitals. This type of distortion lends itself to the formation of
metal-ligand chains with alternating long and short bonds, -M=0-M=0-,
an arrangement that is sometimes described as a Peierls distortion, or a second
order Jahn—Teller distortion, arising from levels that are only accidentally
degenerate, rather than degenerate by symmetry (Burdett 1980). Canadell and
Whangbo (1991) have provided a detailed discussion of the distortions in
molybdenum bronzes with near-empty d shells in terms of their electronic
structure.

On the basis of size alone, all first row transition metals would be expected to
have regular octahedral coordination. This is found to be the case for the early

Fig. 8.8. Schematic view of the flux lines induced by the dipole on the d° transition metal
(the central atom) in the —O—M—-O- system (M = transition metal).
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d° transition metals where the d electron levels are much higher in energy than
the filled orbitals, but as one progresses along the period, the energy of the d
orbitals is lowered producing an increase in both the distortion and destabili-
zation of octahedral coordination. The latter effect can be seen in the decrease in
the ideal (average observed) coordination numbers given in Appendix 4 for the
first row d° transition-metal cations, dropping from 6.2 for Sc¢** through 6.0 for
Ti**, 4.6 for V> to 4.0 for Cr®". The latter cation is never found octahedrally
coordinated even though this is easily permitted on the basis of size as can be
seen in Fig. 6.4.

Although Ti*" is almost always octahedrally coordinated, it is often found
displaced from the centre of its coordination sphere, as for example in BaTiO;
(23759, Fig. 10.4), where, even though the distortion is driven by the lattice
strains discussed in Chapter 12, it is stabilized by a favourable electronic state.
Even when Ti** possesses a crystallographic centre of symmetry as in SrTiO;
(201256), it is probable that it is dynamically distorted (Abramov et al. 1995).
By contrast, Sn*", which is similar in size to Ti*', is found in octahedral
environments that are rarely distorted. Tetrahedral Ti** is known in Ba,TiO,
(2625) but in very few other compounds.

In V', the element next to Ti*" in the periodic table, the mixing has increased
to the point where regular tetrahedral coordination is the preferred geometry
but highly distorted octahedral environments are also common (Schindler ez al.
2000). According to the principle of maximum symmetry, one might expect
ZnV,04 (30880) to adopt the same symmetric structure as the isoelectronic
ZnSby04 (30409) which crystallizes with the trirutile structure whose bond
graph is shown in Fig. 8.9(a), but by adopting the less symmetric graph shown in
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Fig. 8.9. Bond graphs of (a) ZnSb,O4 (30409) and (b) ZnV,04 (30880) showing the
theoretical bond valences.
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Fig. 8.9(b), ZnV,04 is able to crystallize with the brannerite structure whose
theoretical bond valences, calculated from the network equations ((3.3) and
(3.4)) and shown in Fig. 8.9(b), already predict an out-of-centre distortion for
the V°* ion. ZnV,0g thus adopts a bond graph that supports the electronically
induced distortion. In this case the adoption of a lower symmetry bond graph is
favoured because it is able to reduce the bond strain.

The distortion around six-coordinated Cr®", the next cation in the periodic
table, is so much larger than that around V>* that the two weakest cation—
ligand bonds have effectively disappeared, reducing the coordination number
to 4. The coordination around Cr®" is always tetrahedral, though one can
sometimes observe two residual weak bonds in compounds such as CrO; (16031)
which crystallizes with chains of corner-linked CrOy tetrahedra packed in such a
way that two very long octahedral bonds (lengths 322 and 334 pm) can still be
identified (Fig. 8.10).

The stereochemistry of d° transition-metal cations has been modelled using
the Kirchhoff equations ((2.7) and (2.11)) of the equivalent electrical network in
place of the network equations ((3.3) and (3.4)). This requires the assignment of
capacitances to each bond to reflect the expected distortion. Two quantities
define this distortion, the orientation and the magnitude of the dipoles. Kunz
and Brown (1995) modelled these by using large capacitances for bonds that
were expected to be strong and small capacitances for bonds that were expected
to be weak. They showed that the electronic distortion orients itself so as to
enhance the intrinsic distortion arising from asymmetries in the bond graph and
the repulsions between neighbouring cations. They assigned a capacitance Cyax
to any bond lying within 65° of the intrinsic distortion vector. Bonds trans to
these were assigned a capacitance Cp,;, and all other bonds a capacitance of 1.0.
With the values given in Table 8.2, Kunz and Brown could reproduce the
experimental bond valences in a variety of compounds using just two trans-
ferable capacitances.
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Fig. 8.10. The arrangement of chains in CrO; (16031) showing the residual octahedral
coordination around Cr®'.
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Table 8.2 Capacitances assigned to d° transition-metal cations
by Kunz and Brown (1995) in arbitrary units

Cmax Cmid Cmin
Ti*" 1.3 1.0 0.7
Ta>" 1.3 1.0 0.7
Nb>*+ 1.4 1.0 0.6
vt 1.6 1.0 0.7, 0.1

“For V3% two different values of Cyy, were needed. The smaller value is
used for the bond trans to the bond making the smallest angle with the
distortion vector.

8.4 Conclusions

A cation that shows an electronically driven distortion falls into the category of
soft cations capable of showing a range of bonding strengths, but the nature
of the distortion depends on the electronic structure of the ion. Bond valences in
these systems can be modelled by the addition of a point dipole or quadrupole to
the ion or its neighbours, or by the choice of appropriate bond capacitances
in the Kirchhoff equations of the equivalent electrical circuit. The multipoles (or
capacitances) must be oriented so as to reinforce any pre-existing distortion.
For transition metals, the magnitude of the multipole does not depend on the
local environment, but this is not true of the magnitudes of the dipoles repre-
senting lone pairs which can vary over a wide range depending on the bonding
strength of the counterion.

The equal valence Rule 3.4 is clearly violated in these compounds so that the
theoretical bond valence does not give a good prediction of the experimental
bond valence. It can, however, be used to calculate a bond strain, i.e. the
amount by which the electronic effects change the bond lengths. Even though
the equal valence rule is not obeyed, the valence sum rule (3.3) still applies since
the multipoles contribute no net charge to the ion. Compounds that show
electronic strain typically have a large bond strain index (BSI defined in
eqn (12.1)) which measures the failure of the equal valence rule and a small
global instability index (GII defined in eqn (12.2)) which measures the failure of
the valence sum rule. On the other hand, the lattice induced strains discussed in
Chapter 12 tend to give a large GII and a small BSI.
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Physical properties of bonds

9.1 Introduction

The concept of a chemical bond has proven so powerful that many properties
have been ascribed to it, often in the absence of any experimental evidence. If
the concept of a bond could be rigorously derived from theory, it would then
also be possible to derive the properties associated with it, but in the absence of
such a theoretical justification, it is necessary to rely on empirical evidence to
discover what properties, if any, can be reliably associated with a chemical bond.

Chapter 2 provides a semi-theoretical derivation of the concept of a bond
based on the ionic model and suggests that the key property of a bond is its flux
or valence. Any other property that legitimately belongs to a bond should
therefore be expressible in terms of the bond flux. The difficulty is that the flux is
not the same for all bonds between the same pair of ions, but depends on three
distinct features of the bond’s environment. Firstly, it depends on the formal
charges or valences of the two atoms that define the bond since increasing the
formal charge increases the flux. Secondly, it depends on the relative positions
of the terminal atoms, since bringing the atoms closer together increases the
flux. Thirdly, it depends on the way in which all the atoms in the compound are
bonded to each other (the graph of the bond network) since the fluxes must
satisfy the Kirchhoff equations (2.7) and (2.11). The consequence is that every
bond that is not related by crystallographic symmetry is unique and displays a
unique set of properties. This can be seen by the fact that, even though bond
length is a measurable bond property, not all Na—O bonds, for example, have
the same length. The length depends on the bond flux (or bond valence) which
has its own unique value for every Na—O bond. However, since the bond
valence can be predicted given the bond graph, the properties of each individual
bond should also be predictable.

Energy is often treated as if it were a bond property on the assumption that
the total stabilizing energy of a compound can be divided into energies asso-
ciated with each bond (see, for example, eqn (13.5)). Even if this is true, it is
almost impossible to establish the relationship between the energy and the
valence of a bond as the following thought experiment shows. Supposing one
adds an atom to an existing collection of bonded atoms in, say, a molecule or a
small crystallite. New bonds will be formed and, if energy is a bond property,
the change in the energy of the molecule or crystallite should be equal to the sum
of the energies of the new bonds. But the creation of these new bonds draws flux
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from the existing bonds and thus changes their energy. Therefore, when an atom
is added to an existing collection of bonded atoms, it is not just the energies of
the newly formed bonds that need to be taken into account, but also the changes
in the energies of all the other bonds. Even if energy is a good bond property, its
relationship to the bond valence is difficult to determine since the only mea-
surement one can make, namely the change in the total energy, involves changes
in the energies of all the bonds in the sample. Until a clear relationship between
valence and energy has been demonstrated, it is safer to assume that energy is
not a good bond property.

There are, fortunately, several properties that do correlate well with the bond
valence as discussed below. They include the bond length and its thermal
expansion as well as a bond force constant that can be used for a semi-
quantitative analysis of the Raman and infrared spectra of crystals.

9.2 Bond lengths and bond angles

Asshown in the earlier chapters of this book, there is a good correlation between
the valence and the length of a bond as given specifically by eqn (3.1). This is an
empirical equation with two fitted parameters, Ry, which depends on the sizes of
the two bonded atoms, and B which gives an indication of the softness of the
bond, larger values corresponding to a softer repulsion between the terminal
atoms.

These parameters are found by fitting the bond valence to experimentally
observed bond lengths. It is this empirical fitting that gives the model its
robustness, since the fitted parameters automatically compensate for a number
of systematic effects. As an example, suppose that the true charge, g, of a cation
differs from the formal charge, V, by a factor k as given by eqn (9.1):

g=KkV. 9.1)

Then the true fluxes, ¢, of the bonds formed by the cation will differ from the
bond valences, S, in the same proportion (eqn (9.2)):

¢ =kS. (9.2)

Hence eqn (3.1) can be written as
¢ =kS =k exp((Ry — R)/B) =exp(((Ro + Bln k) — R)/B). (9.3)
This shows that the only effect of using the wrong set of charges is to increase the
value of Ry by Bln(k). Fitting the value of Ry empirically therefore automatically

compensates for an inappropriate choice of ionic charge. The value of k does not
even have to be the same for all bonds, only for the bonds that use the same value
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of Ry.! The charges on the anions are determined by the fluxes they receive, so
whatever value of k is used, the crystal remains electrically neutral. There is
therefore no necessity for the assumed charges to be close to the actual charges,
since any reasonable values can be used providing they are used consistently,
that is to say the same value of k should apply to all the bonds between a given
cation and anion (say, 0.95 for Na—O bonds and 0.25 for $S°*—0 bonds). It
follows therefore that the bond valence model does not depend on a knowledge
of the actual bond charges since any error in the choice of the charge is auto-
matically compensated by the empirically fitted value of Rg, a fact which justifies
the convenient use of formal ionic charges and, incidentally, shows that the bond
valence model cannot directly be used to determine the true ionic charges.

In addition to containing information about the size of the electron core, Rq
therefore also includes hidden information about the formal charges on the
atoms as well as other systematic effects such as 7 bonding and the effects of
thermal motion on the apparent bond length (Section 9.4). The only informa-
tion that the user needs to know is that Ry applies to all the bonds between the
same pair of ions (see also the discussion in Section 14.1.2).

The transferability of Ry between the bonds of a given pair of ions has been
demonstrated for most bonds but there is at least one exception which illustrates
what happens in the few cases where the character of the bond depends on
factors other than the bond valence itself. The exception is found for the bonds
between transition metals and ligands bonding through N. Here the length of
the bond depends not only on the bond valence but also on the ability of N to
form 7 bonds. The N atom in the isothiocyanate ligand (—NCS) forms two
orthogonal sets of m bonds which can interact with d orbitals on the metal. This
results in a stronger bond than is formed when, for example, N is part of an
ammonium group (—-NH3) where such 7 bonding is not possible. Even when the
metal-N bond has the same bond valence, the ability of N to take part in 7
bonding is an additional factor in determining the bond length. Different values
of Ry are therefore needed according to the coordination number of N. The
more 7 bonds the N atom can form, the smaller the value of R, (See et al. 1998;
Shields ez al. 2000).

As pointed out above, the bond flux depends on the connectivity of the
compound, that is, on the bond graph. This means that the length of a bond
depends not only on its immediate environment, but also on the structure of the
whole crystal or molecule of which the bond is part. Thus anions such as POi’,
which ideally are perfect tetrahedra, will often be distorted when they appear in
crystals. However, this distortion can normally be predicted via the network
equations provided the graph of the bond network is known.

U If very different values of k are used for different cations, there will be some small changes in
the distribution of flux. In particular, choosing a small k for highly charged ions such as $°+ or CI'*
will reduce the number of tertiary bonds that are found during flux calculations (Section 2.6). For
this reason, and for the reason that tertiary bonds play a negligible role in bonding, they are
conveniently treated as artefacts of the calculation and ignored.
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Even if the full network is not known, it is possible to estimate the distortion if
some of the neighbours of the bond are known. Ideally the phosphate ion,
POi’, has the four O*~ ions arranged at the corners of a regular tetrahedron.
Each bond has a valence of 1.25vu and a length of 153 pm, and all the angles
between the bonds are 109°. In a liquid or solid, the O*~ ions form a number of
external bonds in addition to the bond to phosphorous. If one of the O~ ions
forms a large number of external bonds, or if one of these bonds is intrinsically
strong, the corresponding P—O bond will be weakened. For example, if the
phosphate group is protonated and the hydrogen ion forms an O—H bond of
0.8 vu, the P-OH bond cannot have a valence larger than 1.2 vu, meaning that
the protonated P—O bond is lengthened from 153 pm to at least 155 pm. The
lengthening will be even greater if the oxygen also bonds to other cations as is
frequently observed (see Sections 5.3 and 7.4).

In most tetrahedral complexes, the change in the bond length is accompanied
by changes in the bond angles (Murray-Rust er al. 1975). Because stronger
bonds have larger fluxes they form larger angles at the cation, causing the
strongly bonded ligands to move away from each other and weakly bonded
ligands to move closer together. The angles between the bonds in a tetrahedral
complex are given by eqn (9.4) (Brown 1980a):

0 = 109.5 + 180x — 652x7. (9.4)

In this equation x =[(S; + S2)/2¥]— 0.25 and measures the extent to which the
valences, S; and S,, of the two bonds that define the angle § deviate from the
ideal value of V/4, where V' is the cation valence. Equation (9.4) is the simplest
function that gives a regular tetrahedron when all four bonds are equal and a
regular planar triangle when one of the bonds is removed (S =0). When eqn (9.4)
is applied to the observed dihydrogen phosphate ion, H>PO, shown in
Fig. 7.5(b), it predicts that the OH-P—-OH angle is reduced from 109° to 107
(107)° and the O—P—-0 angle increased to 112 (113)°, the values in parenthesis
being those observed in KH,PO, (68696, 201373).

An alternative way of viewing this distortion is to imagine the cation moving
off-centre in a rigid ligand environment though, according to the distortion
theorem, the radius of the ligand sphere will increase slightly, particularly when
the displacement is large. This description is similar to that given for the elec-
tronically driven distortion around T1* shown in Fig. 8.2. The origin of the dis-
tortion in these two cases is different, but the effect on the geometry is the same.

The acetate ion, CH3;COO7, is an example of a more complex anion whose
geometry is affected by its environment (Brown 19805). Although organic, the
acetate ion has a bipartite graph and so can be analysed using the bond valence
model. According to the principle of maximum symmetry (Rule 3.1), the single
ionic charge is shared equally between the two O?~ ions, giving each oxygen a
bonding strength (for external bonds) of 0.5/3=0.17 vu. To ensure the correct
valence sums around O”~, the C—O bonds must each have a valence of 1.50 vu
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as shown in Fig. 9.1(a). The carboxylate C is then treated as a cation with a
valence of +4vu and the methyl C is treated as an anion with a valence of
—4vu. The C—-C and C-H bonds each have a valence of 1.0vu, i.e. they are
single bonds in the terminology of organic chemistry.

In crystals and polar solutions, the methyl group is surrounded by anions
with which it forms significant, if weak, hydrogen bonds. Each methyl H* ion
forms several of these bonds, contributing a total valence of about 0.03 vu to
each H* atom. The valence of the C—H bonds is therefore reduced to 0.97 vu
and the valence of the C—C bond increased to about 1.10 vu, corresponding
to the observed C—C bond length of 151 pm, a distance which is significantly
shorter than the C—C single bond length of 154 pm. The C-O bonds are cor-
respondingly weakened from 1.50 vu (124 pm) to 1.45vu (125 pm), enhancing
the bonding strength of each O*~ atom to 0.55/3=0.18 vu. The effect of the
weakly acidic methyl H* atoms is thus to increase the basicity (anion bonding
strength) of O~ from 0.17 to 0.18 vu, to shorten the C~C bond and lengthen the
C—-0 bonds as shown in Fig. 9.1(b). Corresponding changes are seen in the bond
angles as described above.

With an anion bonding strength of 0.18 vu, the acetate ion is well matched to
water, hence acetates are soluble. However in the presence of a strong cation,
both oxygen atoms can form a single external bond as strong as 0.55 vu. Still
stronger cations, such as Si*" with a bonding strength of 1.00 vu, can be bonded
by redistributing the bond flux between the two C—O bonds, making one of
them longer and the other shorter as shown in Fig. 9.1(c). In extreme cases such
as the acetonium ion, CH3;C(OH);, the effect of bonding a strong cation (H")
to both the oxygen atoms is to strengthen (and shorten) the C—C bond and
make the methyl hydrogens even more acidic as shown in Fig. 9.1(d). Since the
acetonium ion will only form in strongly acid solutions, the consequences of
lowering the pH of an acetate solution are readily seen to be the formation of
stronger O—H ...O hydrogen bonds, the shortening of the C-C bond, and
increasing the methyl group acidity.

It is interesting to compare the acetate ion with the non-bipartite trifluoro-
acetate ion discussed in Section 3.5. Here the methyl hydrogen, which is a Lewis
acid, is replaced with the Lewis base, fluorine. Because the F~ ions are treated as
anions, both carbon atoms are cationic and the graph is no longer bipartite.
However, about 0.10 vu of the total trifluoroacetate ionic charge of — 1.00 is
carried by the three fluorines, lowering the charge on the oxygen atoms and
reducing their bonding strength to 0.45/3 =0.15 vu (Fig. 9.1(e)). As a result, the
trifluoroacetate ion has a lower pK, and the C—O bonds are stronger (1.55 vu)
and shorter (123 pm) than in the acetate ion. Because the bond graph is not
bipartite, it is impossible to assign a valence to the C—C bond that satisfies the
valence sum around both C atoms, but a valence of 1.00vu gives valence
sums whose mean is 4.00 vu. The C—-C bond is observed to have a length of
154 pm, exactly equal to the length of a single C—C bond, a distance which,
unlike the C-C distance in the acetate ion, does not change as the external
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environment of the ion is altered. The nature of this C—C bond is further
discussed in Section 14.1.1.

9.3 Bond force constants and thermal vibrations

The dynamical behaviour of the atoms in a crystal is described by the phonon
(sound) spectrum which can be measured by inelastic neutron spectroscopy,
though in practice this is only possible for relatively simple materials. Infrared
and Raman spectra provide images of the phonon spectrum in the long wave-
length limit but, because they contain relatively few lines, these spectra can only
be used to fit a force model that is too simple to reproduce the full phonon
spectrum of the crystal. Nevertheless a useful description of the bond dynamics
can be obtained from such force constants using the methods described by
Turrell (1972).

In the simple Urey—Bradley force field which is commonly used to interpret
vibrational spectra, each bond is assumed to behave like a harmonic spring and
is assigned a spring force constant. Additional force constants are needed for the
bond angles, or, alternatively, for the distances between the non-bonded atoms
that define the bond angles. Because the bond stretching force constants are an
order of magnitude larger than the angle force constants, the latter can some-
times be ignored.

02 150 109H 0.55 09t
o0 O 0o
151
A241%4 Ny —o-T25 7 N\,
a b
0.06 0.65 J. 1L
sil®ogo0  094H™  n=oss, 099
1147 L 0.2
0.8 148 144
0.17%%, \H_ H—0~128 \H_
(] d
0.03
045, 155 09 F—
N 100~
154
— 023 g

Fig. 9.1. Structures of the acetate ion showing bond valences (above the bond) and bond
lengths (in pm below the bond); (a) the ideal structure of the isolated ion; (b) the structure
normally observed in the solid state; (c) the structure observed when bonded to a strong
cation (Si); (d) the structure observed for the diprotonated acetate ion; (e) the structure of
the trifluoroacetate ion normally observed in the solid state.
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A selection of bond stretching force constants, G, taken from the literature is
plotted in Fig. 9.2 as a function of the bond valence, .S. What is surprising is not
that there is some scatter (this is expected from the crudeness of the Urey—
Bradley force field) but that an expression such as eqn (9.5) gives such a good fit:

G = aS — b(l —exp(—aS/bh)). (9.5)

Equation (9.5) is designed to give a quadratic fit at S=0 and a linear fit for
S > 1vu. The constants a and b, which correspond to the solid line in Fig. 9.2,
are 450 Nm ™~ 'vu~!and 140 Nm ~ ! respectively. To make explicit the extent of
the uncertainty introduced by the scatter, two limiting broken lines are also
shown, the upper having a=505Nm~'va~! and »=100Nm ™', and the
lower having a=405Nm ™~ 'vu~'and b=200Nm ~".

The amplitude, 4, of the thermal motion of a bond is a property directly
related to the stretching force constant, G, since the vibrational energy of a
harmonic bond is given by eqn (9.6):

Energy — GA*/2. (9.6)

In the classical approximation, which is sufficiently accurate at room tem-
perature and above, the mean square amplitude of vibration of a bond, (4?), at
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Fig. 9.2. Force constants determined from infrared and Raman spectroscopy as a
function of bond valence. The bonds are between the cation shown and (mostly) O°.
The lines represent the fit given by eqn (9.5).
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a temperature, 7, is related to the energy by the Boltzmann equation (9.7):
(4% = /(A2 exp(—GA?/2kT)dA // exp(—GA?/2kTYdA = kT/G, (9.7)

where k is the Boltzmann constant and the integration is taken over all
values of A.

(A%) cannot be measured directly, but the mean square amplitudes of
vibration of the individual atoms, U, can be found using X-ray or neutron
diffraction. (4%) can be determined from U only if we know both the amplitudes
of the atomic vibrations along the direction of the bond and how they are
correlated. While the amplitudes are readily measured, the correlations between
their motions are unknown. There are, however, two limiting cases, the first
when the bond connecting the two atoms is strong and rigid so the atoms always
move in phase, and the second when bond is weak so that the atomic motions
are uncorrelated.

In the rigid bond limit (42) is, by definition, identically zero regardless of the
amplitude of the atomic motion since the bond length never changes. Rosenfield
et al. (1978) have used this property to identify rigidly bonded groups of atoms
by looking for pairs of atoms whose atomic displacements are identical along
the bond vector. Rigid bonds are typically found in strongly bonded complexes
such as SOF~, PO}~ and SiO; .

Uncorrelated motion is most likely to be found when the bonds are weak, for
example, when the cation is a large alkali metal. In this case the mean square
amplitude, (4?), is given by the sum of the components of the atomic dis-
placement parameters, U, of the two atoms along the bond direction, that is,

(Ucation + Uanion) -r = Uuncor» (98)

where r is a unit vector in the direction of the bond (Busing and Levy 1964).
Because the absolute value of Uyy.o measured in a crystal depends on the
amplitude of the zero point motion and includes contributions from static
disorder, it is more appropriate to compare how <A2> and Uy,eor vary with
temperature. Differentiating eqn (9.7) with respect to temperature gives eqn (9.9):

d(4%)/dT = k/G. (9.9)

Figure 9.3 compares d(A4)/dT calculated from eqns (9.9) and (9.5) (shown by
the solid line), with dUyeo,/dT obtained from X-ray diffraction experiments
using eqn (9.8) (shown by the circles). Both are plotted against bond valence, the
broken lines corresponding to the limits shown in Fig. 9.2. As expected, for
weak bonds the values of dU,,co,/d T closely follow the theory given by eqn (9.9)
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Fig. 9.3. Rate of increase of the mean square amplitude of thermal vibration with tem-
perature plotted as a function of bond valence. The circles represent the sum of uncorre-
lated atomic displacements along the bond direction, the lines represent the expected
bond vibrational amplitudes calculated from eqn (9.9).

but for strong and rigid bonds dUuncor/dT 18, as expected, a poor estimate of
d(4%)/dT which tends to zero in the rigid bond limit.

9.4 Thermal expansion

The expansion that occurs when a solid is heated is the net result of two effects,
the expansion of bonds caused by the anharmonic potential between bonded
atoms, and the contraction (or expansion) in the distance between second
nearest neighbours caused by the increased bending of the bond angles. Both
effects are related to the increase in the amplitude of the atomic vibrations:
vibrations along the direction of the bond causing bond expansion and vibra-
tions perpendicular to the bonds causing bond bending. The relationship
between the thermal expansion of bonds and bond valences has been examined
by Megaw (1939), Hazen and Finger (1982), and Brown et al. (1995, 1997).

The distortion theorem (Rule 3.6) can be used to predict the thermal expan-
sion of a bond since the theorem is based on the curvature in the bond valence—
bond length graph which, in turn, reflects the anharmonic potential between the
atoms. Suppose an atom is at the centre of a regular coordination sphere, i.e. all
of its bonds have the same length, R.. As the temperature is raised, the atom will
vibrate around its equilibrium position with an increasingly large amplitude. At
any instant the atom will be displaced from the centre of its coordination sphere
and, according to the distortion theorem, the average of its bond lengths is
increased.
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To make the model quantitative, imagine that at a particular time a given
bond has the length R’ given by eqn (9.10):

R = (R) + 6R, (9.10)

where (R) is the time-averaged bond length. (R) is, in general, different from R,
since the average bond length is expected to increase with temperature. R will
fluctuate, at some times being positive and at others negative, but with an
average value of zero.

The instantaneous bond valence, S’, is given by eqn (9.11):

S' = exp((Ro — R')/B) = exp(Ro — (R)/B))exp(—6R/B).  (9.11)

The last term can be expanded as a Taylor series in §R/B providing that §R/B is
small. Ignoring higher-order terms and taking the time average gives eqn (9.12),
recognizing that the time average of 6R is zero and that the valence sum is
independent of temperature so that the time average of S’ is the same as S
calculated from the length R..

S = exp((Ry — (R))/B)(1 + (5R*)/2B?). (9.12)
Substituting for S from eqn (3.1) and combining the exponents gives eqn (9.13):
exp(((R) — Re)/B) = 1 + (6R*)/2B>. (9.13)

Here (R) — R.= AR is the thermal expansion of the bond and, by expanding the
left-hand side of eqn (9.13) as a power series in AR and ignoring higher-order
terms, one gets eqn (9.14):

AR = (§R*)/2B. (9.14)

As the temperature increases, the mean square amplitude of vibration, (§R?),
increases, and with it the average bond length. Recognizing that (SR?) in
eqn (9.14) is the same as (A7) in eqn (9.7), the two equations can be combined to
give the expression for the thermal expansion of a bond shown in eqn (9.15):

dR/dT = k/(2BG) = (0.186/G) pm K ! (9.15)

for B=37pm and G (in Nm™") given by eqn (9.5). This expression is shown by
the solid line in Fig. 9.4 and, with a few exceptions discussed below, the
observed bond expansions averaged over each coordination sphere (shown by
the circles) lie between the broken lines that correspond to the uncertainties in
the determination of the force constants.
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Fig. 9.4. The thermal expansion of bonds averaged over each coordination sphere as a
function of bond valence. The circles are measured values, the lines represent eqn (9.15).
The filled circles are for grossular (24944) discussed in the text.

Equation (9.15) can be written in terms of «, the coefficient of linear thermal
expansion (eqn (9.16)):

o= (1/R)(dR/dT) = (0.186 x 10712)/Rp S °K !, (9.16)

where GG has been written as pS, p being a quantity which increases with S as
can be seen from Fig. 9.2. However, R decreases with S at almost the same
rate so that the product Rp remains constant at around 4.6 x 10 ™% in the SI
units of eqn (9.15). Thus, the coefficient of thermal expansion of a bond can be
written as

a=(40x107%)/S°K1, (9.17)

which is identical to the empirical expression by which Hazen and Finger (1982,
p- 136) were able to fit a large number of observed average thermal expansions
of cation polyhedra to their Pauling bond strength.

In structures containing bonds constrained by the lattice as described in
Chapter 12, the lattice stresses may also affect the expansion of individual bonds,
though the average expansion of the bonds in a given coordination sphere is
usually correctly given by eqn (9.15) or (9.17) (Brown ef al. 1997). One example
will serve to show the effect of the lattice on thermal expansion. The mineral
grossular, Ca;Al,Si30,, (24944), adopts the garnet structure in which AlOg
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octahedra share corners with SiQy tetrahedra to form a complex three-dimen-
sional framework. Within this framework are cavities occupied by the Ca®"
ions. The thermal expansion of the crystal is determined entirely by the
expansion of the framework since the Ca—O bonds cannot expand any faster
than the cavity in which the Ca?" ions are located. The framework expansion is
in turn determined by the expansion of the Al-O bonds since the Si—O bonds
are essentially rigid. The thermal expansion of the bonds in grossular, shown
as filled circles in Fig. 9.4, is therefore constrained to be no larger than the
expansion of the Al-O bonds (S=0.5vu). The expansion of Ca—O bond
(S=10.25vu) is the same as that of the Al-O bond and only about one-third of
the value that would otherwise be expected.

While it is possible to derive a simple expression for the thermal expansion of
a bond, it is much more difficult to use this result to determine the thermal
expansion of a solid. For a simple solid such as NaCl (18189), the macroscopic
thermal expansion of the crystal is closely related to the thermal expansion of
the bonds, but for more complex structures the motion of the atoms transverse
to the bond is also important. Although these transverse vibrations generally
give rise to a thermal contraction, their influence is more complex than the
thermal expansion of the bonds. Consider the simple system in which an O?~
ion forms two collinear bonds to Si** as shown in Fig. 9.5(a). Because the Si—O
bonds are strong, they have negligible thermal expansion and can be treated as
rigid. However, the O*~ ion will undergo a transverse vibration causing it to be
displaced from the linear position. This will pull the Si** ions closer together
and cause a shortening of the Si. .. Si distance as shown in Fig. 9.5(b). In most
crystals, the mean square transverse amplitude, (42), of such bridging oxygen
atoms is larger than the corresponding amplitude parallel to the bond because
the transverse motion is much less restricted than motion along the bond.
Figure 9.5(b) shows that if the true length of the Si—O bond is R, the apparent
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Fig. 9.5. (a) Transverse vibration of the O~ ion in linear Si-O-Si; (b) the average
displaced structure of a linear Si—O—-Si bond showing how the displacement leads to an
apparent bond shortening.
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length, R’, at a particular temperature is given by
R?*=R> —(4}). (9.18)

For small displacements, the bond shrinkage is (42)/2R. From eqn (9.9) this
leads to a thermal contraction of

dR/dT = —k/2RG,, (9.19)

where G, is the force constant for transverse vibrations. The apparent negative
thermal expansion shown by some of the strong bonds in Fig. 9.4 can be
attributed to the contraction caused by transverse vibrations.

If the Si—O-Si bond is already bent, the transverse motion will cause both
expansion and contraction of the apparent bond length depending on the
direction in which the O~ ion is displaced (Fig. 9.6(a)), but on average there
will be a net contraction. What is more important from a structural point of
view is the possibility that the 0%~ ion will be able to flip to the symmetrically
related position on the opposite side of the Si—Si vector as shown in Fig. 9.6(b).
This leads to a disorder of the O*~ ion around the Si—Si vector which, since it
increases the entropy, will be favoured at high temperatures. The result may be a
phase change to a structure with higher crystallographic symmetry and a much
larger apparent contraction of the Si—O bonds.

From these examples, it is clear that the amplitude of the thermal motion
transverse to the bonds will affect the thermal properties of the solid, but in
ways that depend on details of the particular structure. It is therefore impossible
to provide a universal model for the effects of the transverse thermal motion, the
combinations of thermal expansion and thermal contraction must be considered
individually for each structure. For most materials the combination results in a
net thermal expansion, but there are a few compounds that show a net thermal
contraction in one or more directions (Evans 1999).
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Fig. 9.6. (a) Transverse vibration of the O*~ ion in bent Si—O-S8i; (b) the disordered bent
Si—O-Si bond found at high temperatures.
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9.5 The variation of R, with temperature

The above analysis of thermal expansion can be used to derive an expression for
the variation in the bond valence parameter, Ry, with temperature. The tabu-
lated values given in Appendix 1 have been obtained from structures measured
at relatively low temperatures (200—300 K) and are clearly inappropriate for use
when analysing structures determined at much higher temperatures. The bond
valence parameters can, however, easily be corrected for temperature by noting
that at a higher temperature the bond valence will not change even though the
bond has expanded by an amount AR. Consequently at higher temperatures
eqn (3.1) can be written as

S = exp(((Ry - AR) — (R + AR))/B), (9.20)

where R+ AR is the bond length measured at the higher temperature. Thus R,
the value of Ry to be used at temperature 7, is given by (9.21):

RI =Ry + AR= Ry + (dR/dT)AT. (9.21)

Here AT=T— Trt, Trt being room temperature (~300 K). Values of dR/dT
as a function of S can be calculated using eqn (9.15) or read from the solid line
shown in Fig. 9.4.
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Space and space groups

10.1 Introduction

Parts T and II of this book focused on the chemistry of inorganic compounds
but only briefly considered how the atoms might arrange themselves in space to
form a solid. The spatial constraints imposed by anion—anion repulsions were
discussed in Section 6.2, but in Part III of this book we look at the much more
stringent constraints that appear when atoms come together to form a crystal.
As will become apparent, these constraints play an extremely important role in
the chemistry of inorganic solids.

One of the principal differences between the chemistry of inorganic and
organic compounds is that organic compounds generally form discrete mole-
cules whose bonding network is finite in extent. Organic compounds are
defined by the structures of their molecules which are stable and remain intact
even when the solid is melted or dissolved. A solution of sugar contains the
same sugar molecules that were present before the solid was dissolved, and the
same molecules will be present when the sugar is recrystallized. On the other
hand, when an inorganic compound is melted or dissolved, the bonds are
broken and the individual atoms dispersed. NaCl dissolved in water no longer
contains Na—Cl bonds, only hydrated Na* and Cl~ ions separated by inter-
vening water molecules. When the solid is recrystallized, each atom has a dif-
ferent set of neighbours than it had before dissolution. Consequently it makes
no sense to define an inorganic compound in terms of a molecular structure as
no molecules are present. The only way they can be characterized is by the
structures of their crystalline solids. Without a crystal there is no compound.
It is meaningless to ask if a solution containing Na*, Ca®*, CI~, and CO%f ions
is a solution of NaCl and CaCOj; or a solution of Na,CO; and CaCl,. Only
when the crystals have been formed can one refer to an inorganic compound by
its chemical formula.

For a crystal to be formed, both the laws of chemistry and the laws of crys-
tallography must be simultaneously satisfied. The chemistry of inorganic
compounds cannot therefore be understood without some understanding of
crystallography which is the science of how atoms can be arranged in space.’

! Not all solids are crystalline but the majority of inorganic compounds form crystals. Although
the ideas developed in the next few chapters refer to crystals, many of them can also be applied to
amorphous solids.
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The laws of crystallography describe the constraints that restrict the number
of ways in which atoms can be bonded to each other in three-dimensional space,
particularly, but not exclusively, when they are arranged in an infinite ordered
array as found in crystals. Where the laws of crystallography and the laws of
chemistry lead to incompatible predictions, a compound cannot be formed,
though if the incompatibility is small enough the differences may be accom-
modated by small violations, particularly of the laws of chemistry. These vio-
lations often lead to instabilities, and the instabilities in turn may result in the
crystal having unusual properties. It is the conflict between the chemical and
crystallographic laws that makes the physics and chemistry of inorganic solids
an unexpectedly fertile field for study. Properties such as superconductivity,
ferroelectricity, non-stoichiometry, ionic conduction, and the stabilization of
unusual oxidation states all have their origin in the conflicting requirements of
chemistry and space.

The laws of crystallography are formalized in space group theory which is
concisely summarized in the various volumes of International Tables for
Crystallography, particularly Vol. A (1996). The basic elements of this theory
are covered in most texts on crystallography. This chapter introduces only those
aspects of the theory that are essential for understanding the subsequent
chapters of this book. Those familiar with space group theory will find some
familiar material here, but they will also find some important results that are not
discussed in the standard texts (Brown 1997).

10.2 The crystal lattice and translational symmetry

An ideal crystal consists of a group of atoms repeated throughout space at the
points of an infinite regular three-dimensional lattice, R(/, m, n), generated from
a set of three non-coplanar vectors, 4, b, and ¢ (known as the lattice parameters),
according to eqn (10.1):

R = la+ mb+ ne, (10.1)

where ([, m, n) is a set of any three integers. A two-dimensional example of such
a lattice is illustrated by the wallpaper pattern shown in Fig. 10.1 where the
points of the lattice occur at the intersections of the horizontal and vertical lines.
The vectors a, b and ¢ in a crystal define a parallelepiped, known as the unit cell
(outlined in bold in Fig. 10.1), which contains all the information about the
arrangement of atoms in the crystal since the unit cells are all identical and pack
together like building blocks to fill space. The set of vectors R(/, m, n) represents
the translational symmetry elements of the crystal, since translating the crystal
by any of the possible vectors R(l,m,n) leaves the crystal unchanged. The
presence of the crystal lattice greatly simplifies the description of a solid, since
only the structure of one unit cell needs to be described.
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Fig. 10.1. Iustration of a two-dimensional repeating pattern. The repeating unit cell,
outlined with heavy lines, contains four symmetry-related flowers. The thin lines outline

the lattice of translational symmetry. X marks the intersection of a two-fold axis with the
plane of the page.

Fig. 10.2. Wallpaper design with a three-fold axis perpendicular to the plane of the page
(shown by triangles). The unit cell is outlined. All the flowers are related by symmetry.

The presence of the crystal lattice, however, imposes severe constraints on the
arrangement of the atoms within the unit cell. This will be familiar to anyone
who has hung a patterned wallpaper such as one of those shown in Figs 10.1 or
10.2. Once the first piece of wallpaper has been hung, the position of the next
piece must be chosen so that the pattern flows seamlessly from one piece to the
next. This can be seen in Fig. 10.1 where the vertical lines mark the edges of the
sheet of wallpaper. Such matching is only possible if the wallpaper pattern has
been properly designed. If a flower is divided so that one-half appears on the
left-hand side of the sheet, the matching half must appear on the right and must
be designed so that the seam is not visible once two adjacent pieces of wallpaper
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are in place. This puts a severe constraint on the designer who must ensure that
the design flows without a break across the edges of the paper. The correspond-
ing three-dimensional problem of matching the six faces of the unit cell in a
crystal is clearly even more restrictive. Each cell shares faces with six neigh-
bouring unit cells, and since the bonding between the atoms is continuous
throughout the crystal, opposite faces of the unit cell must exactly match.

An example of how such restrictions work in three dimensions is provided
by the perovskite structure shown in Figs 10.3 and 10.4. Crystals of BaTiO;
(23759) are composed of an alternation of the BaO and TiO, layers shown
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T—O0—Ti—O—Ti

Fig. 10.3. The BaO and TiO, layers that compose BaTiO;. The ideal bond lengths and
the corresponding cell lengths are shown in pm.

Fig. 10.4. The structure of BaTiO; (23759) is composed of an alternation of the layers of
BaO and TiO, shown in Fig. 10.3.
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in Fig. 10.3. If the layers are to form a crystal, the size of the repeating pattern in
both layers must be the same, i.e. each layer must have the same lattice param-
eters. But the repeat distances are determined by the lengths of the Ba—O and
Ti—O bonds respectively. These can be calculated from chemical considerations
using the network equations, (3.3) and (3.4). Since Ba®" is 12 coordinate, the
Ba—O bonds are expected to have valences of 2/12=0.17 vu and lengths (from
eqn (3.1)) of 295 pm giving a repeat distance of 417 pm for the BaO layer, while
the Ti—O bonds formed by the six-coordinate Ti*" atom are expected to have
valences of 4/6 = 0.67 vu and lengths of 196 pm, giving a repeat of 392 pm for the
TiO, layer. The two layers are therefore predicted on chemical grounds to have
different sizes as shown in Fig. 10.3. Clearly, the only way in which these layers
can exist in the same crystal (see Fig. 10.4) is for the Ti—O bonds to be stretched
and the Ba—O bonds to be compressed. In the case of BaTiO; the strains required
to bring the layers to a common repeat distance are sufficient to destabilize the
structure. According to the corollary to the distortion theorem (Rule 3.7), the
tension in the TiO, layer can be relieved by Ti*" moving away from the centre of
its octahedron. Since all the Ti*" ions move in the same direction, this distortion
results in BaTiO; having an electric dipole moment which can be reversed by an
applied electric field, a phenomenon known as ferroelectricity. The resultant
large dielectric constant (~10¥) makes BaTiOs an ideal material for use in capa-
citors as discussed in Section 13.3.2. This is an example of an unusual physical
property which is directly attributable to the constraints of three-dimensional
space. The perovskite structure is discussed further in Section 13.3.1.

10.3 Space groups

Space groups describe the different symmetries that a crystal can adopt. To
understand the influence of these symmetries on structure, it is useful to pursue
the analogy of the wallpaper a little further. The basic repeating design corre-
sponds to the unit cell of the crystal. It is repeated down the length of the
wallpaper and, when the wallpaper is hung, it is also repeated across the wall.
In some wallpapers, particularly those with geometric designs, the unit cell
may have internal symmetry. This is seen in the pattern shown in Fig. 10.1
where the flower is shown both reflected and rotated to create four symmetry-
related flowers within the unit cell. It can also be seen in Fig. 10.2 where the
three flowers are related by a three-fold rotation symmetry around the points
marked with a triangle in one of the unit cells. When internal symmetry is
present, the contents of the crystal are completely specified by a portion of
the unit cell known as the asymmerric unit (the flower in Figs 10.1 and 10.2) since
the rest of the unit cell, hence the crystal, can be generated by applying the
appropriate symmetry operations.

The complete set of these operations constitutes a mathematical group, G,
which, in three dimensions, is known as a space group. The symmetry operations
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consist of inversions and rotations. Inversion symmetry means that the struc-
ture is unchanged if every atom at x, y, z is replaced by an atom at —x, —y, —z.
An n-fold rotation axis means that rotating the crystal by 360/n° around this axis
brings the structure into coincidence with itself. In Fig. 10.1 the intersections of
the two-fold rotation axes with the plane of the paper are marked by an X within
the outlined unit cell. It is easy to see that rotating this pattern by 360/2 = 180°
around any of the X’s, or rotating the pattern in Fig. 10.2 by 360/3 =120°
around any of the triangles, leaves the pattern unchanged. The presence of
symmetry restricts the possible arrangements of atoms in a crystal because the
symmetry applies to the lattice as well as to the contents of the unit cell.

Only certain symmetry operations are possible in crystals composed of
identical unit cells. In three dimensions these are one-, two-, three-, four- and
six-fold rotations and each of these axes combined with inversion through a
centre to give 1, 2 (=m, mirror plane), 3, 4, and 6 operations. Five-fold rota-
tions and rotations of order 7 and higher, while possible in a finite molecule, are
not compatible with a three-dimensional lattice.

In addition, some of the above operations can be combined with translations
to give glide planes and screw axes. These symmetry elements are not used in
this book, except for a brief mention in Section 11.2.2.5, but are included here
for completeness. Screw axes (#1,) are created by combining each of the n-fold
rotations with a p/n translation (where p is an integer less than n) along the
rotation axis. Glide planes are created by combining the mirror plane (2 = m)
with translations of one-half a lattice translation in the plane. In Fig. 10.1 the
different flowers in the unit cell are related by glides.

Only 230 different arrangements of these symmetry operations are possible
in three-dimensional space and the properties of the corresponding 230 space
groups are listed in International Tables for Crystallography, Vol. A (1996)
supplemented by the information given in Appendix 2. Every crystalline solid
must necessarily satisfy the constraints imposed by one of these space groups
even if it is only P1, the space group that has no internal symmetry.

The symmetry operations, G, of the space group acting on an atom placed at
an arbitrary point in space will generate a set of mg equivalent atoms in the unit
cell. Operation of the lattice translations, R, acting on this set generates an
infinite array of such atoms, with the finite set of mg atoms being repeated at
each point on the lattice. This is illustrated in Fig. 10.1 in which mg =4 and each
of the rectangles defined by the horizontal and vertical lines represents a unit cell
that is identical with the one outlined with heavy lines.

10.4 Special positions

An atom that is repeated mg times in the unit cell is said to occupy a general
position in the crystal, but an atom that lies on a symmetry element such as a
mirror plane will be repeated less frequently because the symmetry operation of
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Fig. 10.5. A CO; group lying on a mirror plane perpendicular to the page (shown by the
vertical line). The two atoms O1 are related by the mirror plane. C and O2 lie on the
mirror plane and have site symmetry m (Cy).

this element (in this case the mirror) merely transforms the atom into itself. This
is shown for a CO3™ ion in Fig. 10.5, where the C and O2 atoms lie on a mirror
plane perpendicular to the page. These two atoms occur only once while O1
occurs twice, the second O1 atom being related to the first by the mirror plane.
Atoms such as C and O2 are said to occupy special positions which are char-
acterized by their point symmetry (in this case m or Cg)* and by their multi-
plicity, i.e. the number of times an atom placed at that position appears in the
unit cell. The two atoms labelled O1 are in general positions related by the
mirror plane. They have multiplicity, mg=2 and no symmetry in their envi-
ronment (site symmetry = 1 (C,)). The atoms labelled C and O2 lie on the mirror
plane and have a multiplicity of ms/2 = 1 and a site symmetry of m (C;) since the
environment to the right of C and O2 is the mirror image of the environment to
the left. The properties of both the general and special positions for all space
groups are listed in International Tables for Crystallography Vol. A (1996),
where each general or special position is designated by a letter, known as the
Wyckoff letter. The general and special positions are therefore collectively
referred to as Wyckoff positions.

Not all symmetry operations generate special positions, only those, such as
rotations and inversions, that contain no translational element. We will there-
fore ignore glide planes and screw axes in the following discussion. The
remaining (non-translational) symmetry elements generate a portion of the unit
cell, in general larger than the asymmetric unit but smaller than the unit cell,
called here the non-transilational unit. The multiplicities, my, used in this chapter
and Appendix 2 refer to this unit, whereas the multiplicities, mg, given in

2 The Hermann—Mauguin symmetry symbols widely used by crystallographers are used here
to describe point groups as well as space groups as they are easier to interpret than the Schonflies
symbols used in spectroscopy. For point groups, the equivalent Schonflies symbol is given in
parenthesis.
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Fig. 10.6. Examples of site symmetries. In (a) the central atom (shown by the square) has
site symmetry mm2 (Cyy, ms=38, my=1). The two unique ligands (shown by filled and
open circles respectively) that form a tetrahedron must lie on the mirror planes (ms=2,
my-=2). In (b) the central atom has site symmetry 6 = 3/m (Cay,, mgs= 6, my= 1). It may
have two ligands that lie on the three-fold axis (shown by triangles, ms=3, mp=2),
three that lie on the mirror plane (shown by open circles, ms=2, my-=3) and six that lie
in general positions (shown by filled circles, mg=1, mp=6).

International Tables for Crystallography Vol. A (1996) refer to the full unit cell
and are integral multiples of my.

The symmetry elements that intersect at a Wyckoff position determine its
site symmetry. For example, a Wyckoff position that lies on the intersection of
two mirror planes has mm2 (C,,) symmetry (Fig. 10.6(a)) while one that lies
at the intersection of a mirror plane and a three-fold rotation axis along its
normal has 3/m (Csy) symmetry” (Fig. 10.6(b)). An atom lying on a general
position has no symmetry other than a one-fold axis which is represented by
the symbol 1 (C)).

The symmetry operations of the non-translational unit form a group N which,
when applied to an atom in a general position, will generate the my equivalent
atoms of the non-translational unit. The group of operations N acting on an
atom occupying any Wyckoff position can be factored into two subgroups, §
and W, where the group S transforms the atom into itself and is thus the point
group that describes the site symmetry of the Wyckoff position, and the group
W generates my equivalent atoms, where my-is the multiplicity of the Wyckoff
position in the non-translational unit. The order of S, myg, is the number of times
that the operations of § transform the atom into itself. Since W*S=N,

my X mg — My (102)
an immediate corollary of which is:

Rule 10.1. In a given space group, all the Wyckoff positions with the same multi-
plicity, myy, have site symmetries of the same order, mg.

* The symbol 3/m is used here because it is descriptive of the two operations that are being
discussed. Conventionally this point group is designated by the equivalent Hermann—-Mauguin
symbol 6.
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Fig. 10.7. The crystallographic point groups arranged according to their order, mg,
shown on the left, and linked to show sub- and supergroup relations (adapted from
International Tables for Crystallography Vol. A, (1996) Table 10.3.2).

A second corollary is:

Rule 10.2. The order of the site symmetry of any Wyckoff position is in inverse
proportion to its multiplicity.

International Tables for Crystallography, Vol. A (1996) gives the site sym-
metries, .S, of all the Wyckoff positions. It does not give their multiplicities in
the non-translational unit, my, so these are given for each space group in
Appendix 2. The 32 site symmetries compatible with crystallographic symmetry
are shown in Fig. 10.7 together with lines linking sub- and supergroups.

10.5 Matching the special positions to the chemistry

In 1922 Shubnikov proposed his fundamental law of crystal chemistry which
drew attention to the relationship between the frequencies with which atoms
appear in the chemical formula and the multiplicities of the Wyckoff positions
they occupy. A similar relationship had been pointed out earlier by Niggli
(1918). A more powerful version of Shubnikov’s law that reflects the role of
symmetry as well as multiplicity can be stated as:

Rule 10.3. Since all the atoms in the chemical formula must exist on one or other
of the Wyckoff positions of a crystal, the multiplicity of an occupied Wyckoff
position must correspond to the frequency with which the corresponding atom
appears in the chemical formula, and the site symmetry of the Wyckoff position
must correspond to a possible symmetry of the atom’s bonded environment.
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In order to simplify the search for a space group that matches the chemical
formula, Galiulin and Khachaturov (1994) proposed to use the spectrum of a
space group, a number consisting of 10 digits, each digit being the maxi-
mum number of atoms that can be placed in Wyckoff positions that have non-
translational multiplicities of 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48 respectively.
Thus the spectrum of the space group Pm3m is (2020%#*0**) (see Appendix 2),
meaning that the space group allows two different atoms to be placed in
Wyckoff positions of multiplicity 1 and another two to be placed in Wyckoff
positions of multiplicity 3 but none in positions of multiplicity 2, 4, or 16. The *
indicates that an indeterminate number of atoms can be placed on Wyckoff
positions having multiplicities of 6, 8, 12, 24, and 48 because these positions
lie on mirror planes or rotation axes which can accommodate more than
one atom on the same special position. The Wyckoff positions of multiplicity
24, for example, all lie on mirror planes, each of which can accommodate
several atoms depending on the size of the unit cell. The general position is
always the position with the highest multiplicity; in Pm3 m it is the position with
multiplicity 48.

The spectra of all 230 space groups are given in Appendix 2. They are
listed in order of decreasing symmetry, grouped together according to the
non-translational multiplicities of the general positions, my, which represents
the order of the non-translational unit of the space group. Within each
group, the space groups are listed in the reverse order to that found in Inter-
national Tables for Crystallography, Vol. A (1996). This arrangement, which
gives a different ordering from that found in International Tables, is chosen
because it is particularly convenient to use when searching for the match-
ing space group that has the highest symmetry (Rule 3.1) as discussed in
Section 11.2.2.4.

10.6 The symmetry of bonded neighbours

In Chapter 6 it was shown that the coordination number adopted by a given
cation is determined inter alia by the repulsion between its ligands. The
arrangement that minimizes this repulsion is normally the one with the highest
symmetry. For six coordination it is the octahedron which has the highest
possible crystallographic site symmetry, m3m (O} with mg=48, Fig. 10.7).
For four coordination it is the tetrahedron which has the site symmetry
43m (T4 with mg=24). Other high-symmetry arrangements are the 12-coor-
dinate cuboctahedron (m3m), the three-coordinate triangle (62m (Dsp) with
mg= 12), and the eight-coordinate cube (m3m). Although the cube is the eight-
coordination environment with the highest symmetry, the square antiprism
(4mm (Cg,), ms=_8) minimizes the repulsion between ligands but at the cost
of lowering the symmetry. Other coordination numbers such as 5, 7, and 9
are encountered less frequently since they can only be accommodated by
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low-symmetry environments in which the ligands cannot all be crystallo-
graphically equivalent.

When a cation occupies a Wyckoff position of particularly high symmetry,
its bonded neighbours may also be required to lie on special positions. For
example, a cation that occupies a site of m3 m symmetry for which mg—48
would have 48 neighbours if the neighbours occupied a general position.
This is clearly impossible since, as shown in Chapter 6, few cations have
coordination numbers higher than 12. If the cation is octahedrally coordinated,
it has only six neighbours and each neighbour must therefore have a site
symmetry of order at least 48/6 =8. This requires that they be placed on the
three four-fold axes which pass through the cation and that they have a site
symmetry of at least 4 mm (Cy,). Their site symmetry may be higher than this
if, for example, they also lie on a mirror plane that does not pass through the
cation site, but it cannot be lower than 4mm. Figure 10.6(b) illustrates
the simpler case of a triangle of neighbours (open circles) around a cation
(rectangle) at a site of 6 (Csp,) symmetry which has mg=6. Since there are
only three open circle ligands, they must have site symmetry of order 6/3 =2.
The only possibility is that they lie on the mirror planes as shown in Fig. 10.6(b).
The symmetry relations implied by these constraints for cations with triangular,
tetrahedral, and octahedral coordination are summarized in Tables 10.1-10.3
which list the minimum site symmetries and multiplicities that the neighbours
of a cation can have when the cation occupies a site of given crystallographic
symmetry.

Table 10.1 Subgroups for trigonal planar coordination

Central atom Ligand site symmetry and
; multiplicity

Order Site symmetry
12 62m mm?2’

6 32 2

6 6(=3/m) m?

6 3m m’

4 2/m 2412

4 mm2 mm2 +m?

3 3 r

2 2 2417

2 m m+ 17

1 1 1+1+1

Column 1 gives the order of the site symmetry of the central 3-coordinate atom. Column 2 gives the
site symmetry of the central atom. Column 3 gives the minimum site symmetry of the ligands, the
superscript giving the number of symmetry related ligands with this site symmetry. The ligand
symmetry may be higher than that shown if the ligand also lies on symmetry elements that do not
intersect the position of the central atom.



Table 10.2 Subgroups for tetrahedral coordination

Central atom Ligand site symmetry and
- multiplicity

Order Site symmetry
24 43m 3m?
12 23 34

8 42m m?

6 3m 3m+m?

4 4 1

4 222 1

4 mm?2 m?+m?

3 3 341°

2 2 17412

2 m m+m+1?

1 1 1+1+1+1

See Table 10.1.

Table 10.3 Subgroups for octahedral coordination

Central atom Ligand site symmetry and
Order Site symmetry multiplicity
48 m3m Amm®
24 432 4¢
24 m3 mm2°
16 4/mmm 4mm? + mm2*
12 32m m®
12 23 26
8 42m mm2% +24
8 42m mm2° 4+ m*
8 422 42 4 2°
8 4mm 42 4+ m*
8 4/m 4 +m*
8 mmm mm2° 4+ m*
8 mmm mm2% + mm2? + mm?2?
6 32 1°
6 3 16
4 4 22414
4 4 4+441°
4 222 221!
4 222 22422422
4 mm2 mm2 +mm2 + 1*
4 mm2 m?+ m?+m?
4 2/m m2414
4 2/m m>+m?+2°
3 3 13413
2 2 242417412
2 m m+m+m+m+ 12
2 m m+m+ 12+ 12
1 1 1+1+14+1+14+1

See Table 10.1.
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10.7 Summary

The principle of maximum symmetry requires that the crystal structure
adopted by a given compound be the most symmetric that can satisfy the
chemical constraints. We therefore expect to find high-symmetry environments
around atoms wherever possible, but such environments are subject to con-
straints such as the relationship between site symmetry and multiplicity
(eqn (10.2)) and the constraint that each atom will inherit certain symmetries
from its bonded neighbours. The problems that arise when we try to match the
symmetry that is inherent in the bond graph with the symmetry allowed by the
different space groups are discussed in Section 11.2.2.4.
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Modelling inorganic structures

11.1 The problem of a priori modelling

The problem of modelling the structure of an inorganic crystal is first to
determine which chemically possible structures are compatible with three-
dimensional space and then to determine which of these has the lowest free
energy. With all our extensive knowledge of crystal structure and interatomic
forces, it is surprising that our ability to predict crystal structures from first
principles is still so limited, but the large number of compounds that are known
to exist with more than one structure (polymorphic compounds) indicates that
many structures must have similar energies and that it will be difficult to
determine which is the most stable under a given set of conditions. If we had a
quick way of calculating the energy of any given configuration of atoms, we
could, in principle, calculate the energy for all possible configurations, but the
number of such configurations that we would need to examine, even for rela-
tively simple structures, is prohibitively large. We must therefore look for ways
that take us directly to the most likely candidate structures.

There are three distinct steps in modelling a crystal. The first step is to
determine the ropology or structure, that is the approximate arrangement of
the atoms in space as indicated by the way atoms are bonded to each other.
The second is to refine the geometry, i.e. to determine the exact positions
of the atoms and the distances between them. The third step is to compare
different structures with the same composition to determine their relative
stability.

In certain favourable cases it is possible to determine the topology of the
crystal from first principles, but no general solution has been found. In practice
trial topologies are assumed because they are known or thought to exist. Only
the second step, refining the geometry, can be performed with any reliability and
several methods are available. These include minimization of the energy cal-
culated using quantum mechanics or semi-classical two-body potentials, or the
minimization of the difference between the modelled and predicted bond
valences. The third step, comparing the relative stabilities of competing struc-
tures, is difficult because the energy differences between different structures are
frequently smaller than the accuracy with which the energies can be calculated
(see, for example, Woodward 19975).
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This chapter reviews some of the different approaches that can be taken to
modelling. The subject is large enough to deserve a book of its own, so the
treatment here is necessarily brief. Emphasis is given to those methods that make
use of bond valences. Other techniques are described briefly with references
given to more comprehensive treatments.

11.2 Determining the topology

Although there is no single way in which the topology, or structure, of an
inorganic crystal can be determined, there are a few principles that underlie
many of the methods that are used (O’Keeffe and Hyde 1982). Some of these
may seem self-evident but, since they can easily be overlooked, there is an
advantage in making them explicit.

The first rule is the Principle of electroneutrality (Rule 11.1) which restricts the
chemical composition of inorganic compounds to those in which the net charge
is zero. In the context of the bond valence model this rule can be stated as:

Rule 11.1 (Principle of electroneutrality). Since the sum of all atomic valences is
zero, the sum of the atomic valences of the cations is equal to the sum of the atomic
valences of the anions.

The second principle is a rule that is derived from the properties of the bond
graph and is known as the Coordination number rule (Rule 6.1). An alternative
statement of the rule from that given in Section 6.3 is:

Rule 6.1 (Coordination number rule). Since each bond starts on a cation and ends
on an anion, the sum of the coordination numbers of the cations equals the sum of
the coordination numbers of the anions, and both are equal to the total number of
bonds in the formula unit.

For a compound with the generic formula A X, this leads to the corollary:

Rule 11.2 (Corollary 1). The ratio of the average coordination number of the
cations, {N,), to the average coordination number of the anions, (N,), is the same
as the ratio of the number of anions, x, to the number of cations, a.

This is expressed algebraically by eqn (11.1):
<Na>/<Nx>:x/a' (111)

This result can be used to see whether an assumed cation coordination number
leads to an acceptable anion coordination number. For example, if A" in
AL O; is six coordinate, the O>~ ions will be four coordinate but if AI** is four
coordinate, the O~ ions will be only 2.67 coordinate on average. The principle
of maximum symmetry favours the first choice as the second requires at least
two different types of O®~ ion.
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A second corollary can be stated (cf. O’Keeffe and Hyde 1984):

Rule 11.3 (Corollary 2). Compounds that have a high anion content will stabilize
high cation coordination numbers.

The third principle is the Principle of maximum symmetry that plays a major
role in deciding between different possible structures as the example given under
Rule 11.2 shows. This principle has been previously given as Rule 3.1:

Rule 3.1 (Principle of maximum symmetry). As far as allowed by chemical and
geometric constraints, all atoms and all bonds in a compound will be chemically
and geometrically indistinguishable.

The fourth principle is the Principle of close packing (Rule 11.4) which relates
to the distribution of cations and anions:

Rule 11.4 (Principle of close packing). Like ions tend to lie on close packed
lattices, since this arrangement minimizes their repulsive energy when they are
confined to a fixed volume.

Close packing, which is described in more detail in Section 11.2.1.2, gives not
only the densest packing of spheres but also represents the arrangement of
lowest energy when an array of like charges is confined to a fixed volume. This
rule not only applies separately to the cations and the anions in ceramics, it also
applies to the arrangement of the atoms in a metal. One consequence is that the
same cation lattices are found in both metals and in ceramic materials (O’Keeffe
and Hyde 1985).

A final principle is Shubnikov’s fundamental law of crystal chemistry
(Rule 10.3) paraphrased as:

Rule 10.3 (Shubnikov’s fundamental law). Aroms will occupy Wyckoff positions
in the crystal that are compatible in both multiplicity and symmetry with the
bond graph.

This rule is the basis of the space group method discussed in Section 11.2.2.4.
The derivation of the topology is the first and most important step in mod-
elling, since once we know the topology we know also the bond network, the
unit cell size, and the space group (or at least one of its supergroups). The
following sections explore some of the ways crystal topologies have been
modelled. They are discussed under two broad classes, depending on whether
they start by specifying the spatial constraints or the chemical constraints.

11.2.1 Space-based approaches

The ultimate space-based approach is to explore systematically every possible
spatial arrangement of the atoms in the formula unit and to determine which
has the lowest energy. The energy may be calculated using quantum mechanics,
but it is more usual in complex solids to use two-body potentials where the
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calculation is classical and much simpler (Catlow 1997). It is, however,
impractical to examine every possible configuration that the atoms might adopt
so a strategy is needed to find a route that leads directly to the energy minimum.

Two possible space-based schemes are the random structure approach and
the lattice method. In the first, the atoms are placed in random positions to form
an initial structure containing no chemical information. The configuration of
the atoms is then altered in such a way as to better match a pre-selected set of
chemical or physical constraints. In the second approach the cations and anions
are separately arranged on lattices that minimize the electrostatic repulsions
between the (like) ions. The lattices are then merged by placing the anion lattice
in the cavities of the cation lattice and vice versa.

11.2.1.1  Random structure approaches

In these methods, the desired target structure is characterized by one or more
desirable properties such as a low potential energy. A number of random trial
structures are proposed and a cost function is calculated. The cost function
measures how far the current configuration is from having the desired prop-
erties. The goal in all these methods is therefore to lower the cost function by
changing the configuration of atoms until the global minimum is reached. The
energy is an obvious choice for the cost function but involves extensive com-
putation since the summation has to include every atom pair in the (infinite)
crystal. An alternative is to use an empirical cost function that involves only
nearest neighbours. Such a function might be designed, for example, to prevent
atoms from overlapping, to favour the expected coordination number, or to
minimize the difference between the bond valence sum and the atomic valence.
Empirical cost functions are particularly useful in the early stages when a large
number of configurations must be examined.

The difficulty with this procedure is that simple refinement routines, such as
simplex or least squares, lead only to the nearest minimum in the cost function
which is unlikely to be the global minimum. The refinement procedure therefore
has to be one that randomly samples different parts of configuration space so as
to be able to reach different minima, ultimately selecting the global minimum.
Two refinement methods have been proposed, simulated annealing and the
genetic algorithm.

In simulated annealing the atoms are made to simulate the random motions
they would undergo during a period of annealing at high temperature. This is
followed by lowering the notional temperature through the freezing point. In
practice small random changes are made to the atomic positions at each step in
the calculation. Any configuration that lowers the cost function is accepted but
those that raise it are generally rejected. In order to explore a wide range of
configurations, changes which increase the cost function are not automatically
rejected but, with a certain probability, are accepted. The process is then iter-
ated to convergence with the probability of the rejection of an increased cost
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function being steadily raised in order to simulate a gradual reduction in tem-
perature. Pannetier et al. (1990) have described simulated annealing using a cost
function based on the deviations of the bond valence sums from the atomic
valence, with an additional term to represent the repulsion experienced by like
ions when they get too close together. They found that they could reproduce the
observed structures of a number of moderately complex compounds. In some
cases, they found that different structures could be obtained for the same
compound by varying the cooling conditions, but even so they were not always
able to reproduce the observed structure, presumably because, in these cases, a
more sophisticated cost function or annealing procedure is needed.

Woodley er al. (1999) have described an alternative approach to finding the
global minimum using a genetic algorithm. A number of arbitrary trial struc-
tures constitute the first (parent) population and these are combined in pairs to
form a new generation of child structures, each child inheriting characteristics
from both its parents. The children are then allowed to breed a third generation,
with breeding preference being given to the fittest children, i.e. those having the
lowest cost function. The procedure maintains genetic diversity in the popula-
tion by cross-breeding as well as by creating occasional mutations designed to
reach configurations not contained in the original parent population. Because of
the bias given toward the fitter structures, the population gradually converges
towards the most fit structure, i.e. the structure with the lowest cost function.
This method has been used to successfully derive a number of simple structures.

Even though these methods have shown some success, they require that the
box containing the trial structure have cyclic boundary conditions to keep the
calculations to a manageable size. This imposes an artificial translational sym-
metry on the structure. If the results are to converge to the observed structure,
the box should either have the size and shape of the observed unit cell or else it
should be sufficiently large that a small crystal can spontaneously form within it.

Random structure methods have proved useful in solving structures from
X-ray powder diffraction patterns. The unit cell can usually be found from these
patterns, but the normal single-crystal techniques for solving the structure
cannot be used. A variation on this technique, the reverse Monte Carlo method,
includes in the cost function the difference between the observed powder dif-
fraction pattern and the powder pattern calculated from the model (McGreevy
1997). It is, however, always necessary to include some chemical information if
the correct structure is to be found. Various constraints can be added to the cost
function, such as target coordination numbers or the deviation between the
bond valence sum and atomic valence (Adams and Swenson 2000b; Swenson
and Adams 2001).

11.2.1.2 Lattice models

These methods start with models that already contain some physical informa-
tion. The cations and anions are separately arranged on two lattices having
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Fig. 11.1. A close packed layer of atoms. A indicates the position of the atoms in this
layer, B and C are possible positions for atoms in adjacent layers.

translational repeat distances that correspond to the unit cell of the crystal. For
hard ions, the arrangement that minimizes the electrostatic energy of each lat-
tice (given a fixed volume) is one that is close packed. There are two basic
arrangements of close packed lattices, face centred cubic (FCC) and hexagonal
close packed (HCP) as described below. Each of these lattices has cavities (cages
in topological notation) which provide ideal sites for the counterion.! The aim is
to find mutually compatible cation and anion lattices such that the ions in one
lattice map onto the cage points of the other and vice versa. The difficulties arise
in trying to match the stoichiometry and to ensure that the cages of one lattice
provide the correct coordination number for the ions on the other lattice.

Close packed structures are generated by stacking two-dimensional hex-
agonal (honeycomb) nets of atoms over each other so that the atoms of one net
lie over the centre of a triangle of atoms on the net below (points B and C in
Fig. 11.1). Since there are two such triangles for each atom in the net, there are
two possible positions in which the next net can be placed. If the position of the
first net is labelled A, then the next net can occupy either the position labelled B
or the position labelled C in Fig. 11.1. Any stacking sequence of these layers is
allowed providing that no two adjacent nets share the same letter. An infinity of
different sequences is thus possible but the principle of maximum symmetry
predicts that only those of high symmetry, e.g. with short repeat sequences, will
normally be observed. The HCP lattice has the shortest possible sequence
containing only two layers (ABABAB) but it can only be mapped into a space
group of relatively low symmetry (P63/mmc) requiring three variable para-
meters. The FCC lattice has a slightly longer sequence of three layers
(ABCABCABC) but can be mapped into a high-symmetry cubic space group
(Fm3m) with only one variable parameter (the unit cell length). Thus both FCC
and HCP lattices are expected to be found under appropriate circumstances and
both are examined here.

The FCC lattice has three cage points, one surrounded by an octahedron of
ions, the other two surrounded by tetrahedra. An FCC lattice of counterions
can be placed so as to occupy any one of these three cages. Placing an FCC anion

! As has been pointed out by O’Keeffe and Hyde (1985), the cation lattices of many of these
structures are found in the structures of metal crystals, the delocalized conduction electrons, which
provide the cohesive force, concentrating in the cages where their potential energy is lowest (Zuo
et al. 1999). These low potential cages therefore also provide good sites for anions.
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lattice at the octahedral cage points of an FCC cation lattice gives the NaCl
(18189) structure with six-coordinate Na* and C1~ (Fig. 1.1). Placing it at one of
the tetrahedral cage points gives the sphalerite (ZnS, 60378) structure with four-
coordinate Zn?* and S$?~. Placing FCC anion lattices on both the tetrahedral
cage points of an FCC cation lattice gives the fluorite structure (CakF,, 29008)
with four-coordinate F~ and eight-coordinate Ca”". Since the tetrahedral and
octahedral cage points share faces, it is generally not possible to place anion
lattices simultaneously at both octahedral and tetrahedral cage points.

The HCP lattice has two tetrahedral cage points and two octahedral cage
points. The octahedral cage points share faces in columns along the hexagonal
axis so only half of them can usually be occupied. Similarly, the two tetrahedral
cages also share faces and cannot both be occupied. Placing an anion HCP
lattice at one tetrahedral cage point of the cation HCP lattice gives the wurtzite
(Zn0, 67454) structure (see Section 2.6 and Fig. 2.7).

Compounds of stoichiometry AX, with six-coordinated A require (according
toeqn (11.1)) that X be three coordinate. Since none of the close packed lattices
have cage points with three coordination, these structures are less simple. The
rutile (202240) and anatase (202242) forms of TiO; are based on HCP and FCC
lattices of Ti*" respectively, but fitting the O®~ ions into positions of three
coordination results in distortions that lower the symmetry. An alternative
derivation of these structures is described in Section 11.2.2.4 below.

Not all structures are based on close packed lattices. Ions that are large and
soft often adopt structures based on a primitive or body centred cubic lattice as
found in CsCl (22173) and «-Agl (200108). Others, such as perovskite, ABO;
(Fig. 10.4), are based on close packed lattices that comprise both anions and
large cations. The larger and softer the ions, the more variations appear, but the
lattice packing principle can still be used. Santoro et a/. (1999, 2000) have shown
how close-packing considerations combined with the use of bond valences can
give a quantitative prediction of the structure of BaRuOj; (10253).

The ions do not have to be simple ions. The same principles apply to the
packing of complex ions though identification of the atoms that make up the
complexes requires prior chemical knowledge and so properly belongs under
the heading of chemical-based methods. A discussion of lattices of complex ions
is deferred to Section 11.2.2.2.

The lattice approach has also been used for the systematic description of
inorganic crystal structures (Wells 1975, pp. 119-55; Hyde and Andersson 1989,
pp- 6—49), but the method is not just geometric and descriptive. It has a sound
physical basis and can therefore be used for structure modelling.

11.2.2 Chemistry-based approaches

Chemistry-based approaches start by postulating a structure that satisfies the
rules of chemistry and then look for ways in which this structure can be mapped
into three-dimensional space. The chemical constraints are the ones that
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determine which atoms are nearest neighbours and therefore determine the
short-range order. The long-range order is determined primarily by spatial
constraints. The question that needs to be answered is how can the bond graph
be expanded to form an extended bond network in three-dimensional space?
In the space-based approaches described in Section 11.2.1, both long- and short-
range orderings are developed simultaneously, but in the chemistry-based
approaches the short-range order is developed first through the construction of
a bond graph of the kind introduced in Section 2.5. This is then expanded into
an infinite network in three-dimensional space if such an expansion is possible.
If there is more than one such expansion, the principle of maximum symmetry
will determine which network will be observed. If there is no such expansion, the
compound does not exist.

Central to the chemistry-based approaches is the Hierarchical principle
(Hawthorne 1985) which states:

Rule 11.5 (Hierarchical principle). When generating a chemical structure, the
strongest bonds are formed first, followed by the others in decreasing order of their
valence.

This principle is appropriate for modelling because it follows the chemical
process by which solids are formed in nature. The process can be divided into
three stages. The pre-crystallization stage occurs while the compound is still in
the form of a liquid melt or solution. As the liquid cools, the first species to
appear are strongly bonded finite complexes or molecules. At this stage the
weaker bonds are still labile so the complexes and molecules, while retaining
their integrity, remain free to move through the liquid.

The second stage occurs when the complexes and ions are connected by
weaker bonds into a rigid infinite network. This is the stage that determines the
long-range order in the solid, and hence determines its space group and lattice
parameters. This step may, in some cases, occur in two or three steps if the
network is initially infinitely connected only in one or two dimensions, requiring
further cooling to generate the full three-dimensional network. Linking the
complexes in only one or two dimensions gives rise to viscous liquids as
discussed in Sections 5.6 and 5.7.

The third stage is the post-crystallization stage when the weakest bonds are
formed. Since the solid has already crystallized at this stage, these weak bonds
must accommodate themselves to the existing bond network. This stage is not
independent of the second stage, since the structure formed when the compound
solidifies must have cavities capable of accommodating the weakly bonding
ions. Thus the weak ions may influence the choice of the long-range structure,
but ultimately they find themselves in cavities which do not necessarily provide
ideal bonding conditions.

A good example of these three stages is provided by garnet which has the
generic formula A3;B,(X0y4); and which crystallizes in a high-symmetry cubic
structure. Typical examples are MgzAL(Si04); (71892) and Caz;Aly(SiOy4);
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(24944). The Si—O bonds (1.00 vu) form at stage 1, the long-range order (stage 2)
occurs when the Al-O bonds (0.50 vu) form since these link the SiO4 groups
into a three-dimensional network. The resulting structure contains eight-
coordinate cavities whose size is fixed by the Al-O and Si—O bonds. The cav-
ities are too small for Ca*" which must be compressed to fit in the available
space (its bond valence sum is 2.51 vu), but they are too large for Mg** (its bond
valence sum is 1.72 vu). In accordance with the predictions of the distortion
theorem, Mg>" moves away from the centre of the cavity and is found dis-
ordered over a number of possible sites surrounding the cavity centre.

The weak cations therefore may determine some of the characteristics of the
network, as was pointed out for silicate minerals in Section 4.6, but their local
environments, specifically the connections they form in the bond graph, are
determined by the anions that form the surface of the cavity. While those parts
of the bond graph that correspond to the first two stages of crystallization are
primarily driven by chemistry and may reasonably be predicted a priori from
chemical considerations alone, the bonds formed at the third stage cannot be
predicted without a knowledge of the three-dimensional topology generated
during crystallization.

The three stages of bond formation are not present in all compounds. Binary
compounds like NaCl (18189) only show the second stage, the stage which all
materials must undergo when they solidify. Since inorganic compounds can
only be characterized by the structures of their crystalline solids, the second
stage determines which compounds can exist.

11.2.2.1 Creating the bond graph

The first step in any chemical approach to crystalline structure is to determine
the short-range order, i.e. which atoms are bonded. The most convenient way of
doing this is by means of the bond graph described in Section 2.5. In many cases
all or most of the bond graph can be determined from first principles, since,
except for the weakest bonds created in the post-crystallization stage, the bond
graph is determined by the rules of chemistry, particularly the hierarchical
principle (Rule 11.5), the valence matching principle (Rule 4.2), and the principle
of maximum symmetry (Rule 3.1).

To construct a bond graph, the atoms of the formula unit are listed and their
bonding strengths determined using the methods described in Sections 4.2 and
4.3. According to the hierarchical principle bonds are then drawn between the
cations and anions that have the largest bonding strengths, the bonding
strengths serving as targets for the valences of the bonds while at the same time
maintaining the highest symmetry. The first set of bonds drawn will link some of
the atoms into complexes, frequently anionic complexes such as SO?[ or
molecules such as H,O. The atoms forming the complex are then replaced by the
complex itself which is inserted at the appropriate place in the list according to
its bonding strength. The process is then repeated until all the bonds have been
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Fig. 11.2. Bond graphs of (a) NaCl (18189), (b) CsClI (22173), and (¢) ZnO (67454). In
this and other bond graphs in the chapter, the spectrum and the highest possible crys-
tallographic site symmetry allowed by the graph is shown but these site symmetries may
not be mutually compatible.

assigned, or at least those bonds necessary to define the three-dimensional
framework formed at stage 2.”

A simple example is given by the construction of the bond graph of NaCl
(18189) described in Chapter 3. Creating the bond graph in this case is
straightforward since there is only one cation and one anion (Fig. 11.2(a)). The
only question is, how many bonds should be drawn between them? Na* has a
cation bonding strength of 0.16 vu and CI™ has an anion bonding strength
of 0.14 vu (Appendix 4). The two ions are well matched and will form either 6
(=1/0.16) or 7 (=1/0.14) bonds with each other. The principle of maximum
symmetry favours six coordination since, as shown in Section 10.5, it is not
possible for seven bonds to be symmetrically equivalent in a crystal. NaCl is
therefore predicted to have the bond graph in which each Na* cation forms
bonds to six Cl™ anions and vice versa. The bond graphs for CsCl (22173,
Fig. 11.2(b)) and ZnO (67454, Fig. 11.2(c)) can be drawn in the same way,
taking into account the different bonding strengths of Cs and Zn (Section 6.5).
Bond graphs of binary compounds with coordination numbers greater than 8
cannot be mapped into three-dimensional space and therefore such compounds
cannot exist, coordination numbers of 5 and 7 are unlikely according to the
principle of maximum symmetry and coordination numbers of 2 and 3 do not
give infinitely connected three-dimensional structures.

2 It may not always be possible to assign the weak bonds formed, e.g. by alkali metals both
because they are numerous and because their connections are determined more by the constraints
of three-dimensional space than by the principle of maximum symmetry.
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The perovskite SrTiO; (210256) contains two kinds of cation. The cation
bonding strengths of Sr** (0.23 vu) and Ti*" (0.67 vu), taken from Appendix 4,
indicate that the strongest bonds will be formed by Ti**, which is well matched
to O?~ with an anion bonding strength of 0.5 vu. According to the hierarchical
principle, the Ti—O bonds will be formed first. The cation bonding strength of
Ti** suggests a coordination number of 6 while the O*~ bonding strength
suggests a coordination number of 8. A coordination number of 6 can resultin a
higher-symmetry environment since it maintains the equivalence of the three
0%~ atoms, so two bonds are drawn between Ti** and each of the three 0>~
ions, giving each bond a valence of 0.67 vu (Fig. 11.3 where Sr** is represented
by A and Ti*" by B). At this point the Ti** and O?~ ions are linked to form the
TiO%f complex anion whose bonding strength can be calculated by dividing its
charge (—2) by the number of bonds the O*~ ions are expected to form with
Sr**. Assuming that each O~ ion forms four bonds, two to Ti*' and two to
Sr**, the bonding strength of the complex is 2/(3 x 2) =0.33 vu since there are
three atoms, each of which can form two external bonds of 0.33 vu. Although
not related to the construction of the bond graph, it is worth noting that each of
the three O*~ ions bonds to two different Ti*" ions suggesting even at this stage
that the TiO3 complex is connected into a three-dimensional network of corner
shared octahedra. Other arrangements, such as a chain of face-sharing octa-
hedra, are also consistent with the graph and are found in some barium titanates
where they are favoured by spatial constraints.

Z°N Z°N
A<O 7 B /\< 0 7 B
(mgm\) 0 ﬁgm) (6/m)" O (4/mmm)
{201} (32}
a b
Z°N\ 27
A 507 B A\ O==8B
(4/mmr} O@mmm) (4/mmh O@mmm)
{32 {32
c d
Z7N\ Z 7N
Afo 7 B A< 0 ; B
(Gr} 07 (m3m) (M3m)> 07 (m3m)

Fig. 11.3. Possible bond graphs of ABO; with 6-coordinate B, (a) 6-coordinate A,
(b) 8-coordinate A, (c) a second graph for 8-coordinate A, (d) a third graph for
8-coordinate A, (e) 9-coordinate A, (f) 12-coordinate A.
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The bonding strength of TiO%f thus favours six coordination around Sr** but
the bonding strength of Sr** favours nine coordination so the correct choice of
coordination number is not obvious. A selection of possible bond graphs is
shown in Fig. 11.3. Eight coordination is not favoured since it destroys the
equivalence of the three O atoms (Figs 11.3(b), (¢), and (d)). Six, 9 and 12
coordination retain this equivalence, but 9 coordination (Fig. 11.3(e)), which is
close to the expected coordination number for Sr*", does not allow the Sr—O
bonds to be crystallographically equivalent since a site symmetry of order 9 is
not possible in crystals (Fig. 10.7). Six and 12 coordination (Figs 11.3(a) and (f))
both correspond to possible high crystallographic symmetries but, as shown
below, only for 12 coordination is it possible to find a space group in which all
Sr—0O bonds remain equivalent. On the other hand, neither 6 nor 12 coordi-
nation is favoured by the bonding strengths. The choice is not obvious and all
six of the graphs shown in Fig. 11.3 can be found among the ABX3 compounds
depending on the relative sizes of the different ions.

Chemical considerations favour eight coordination for Sr**, but which of the
graphs, Figs 11.3(b), (c), or (d), is the most symmetric? Rao and Brown (1998)
proposed that the entropy, defined by eqn (11.2), can be used as a measure of the
degree of symmetry in these cases:

Entropy = — Zsif In(sy). (11.2)

In this equation s; is the ideal bond valence calculated using the network
equations, (3.3) and (3.4), and the summation is over all the bonds in the graph.
Interestingly the entropy of a particular graph depends not only on its topology
but also on the atomic valences of the ions, since the values of s;; are sensitive to
the ionic charges. Rao and Brown found that the entropy of the graph in
Fig. 11.3(b) is marginally larger than that of Fig. 11.3(c) for ATB*> " 05 (2.988
and 2.981 respectively) and A*"B**0; compounds (4.384 and 4.354 respec-
tively), but that for A**B**0; compounds the highest entropy graph is the
one shown in Fig. 11.3(d) (5.021 against 4.997 and 4.932 for Figs 11.3(b) and
(c) respectively). These values are sufficiently similar that none of the graphs can
be summarily ruled out. Consequently all three are further developed in the
Section 11.2.2.4 which discusses how to find the space group that can best
accommodate these graphs.

11.2.2.2  Fundamental building blocks

The fundamental building block approach is similar to the lattice model described
in Section 11.2.1.2 but uses the chemical information derived from the bond
graph to define complex ions. The crystal structure is assumed to be composed of
building blocks constructed of the strongly bonded groups of atoms formed
during stage 1 of crystallization (or possibly stage 2 if the blocks are composed of
infinite chains or sheets). They usually carry a positive or negative charge and
pack together in a way that brings cationic and anionic blocks into contact.
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Fig. 11.4. (a) The bond graph of [Mg(H,0)s,CdClg (26368) in which the H .. . Cl bonds
have not been assigned, (b) close packed layers. The open circles are cations, the filled
circles are anions.

A simple example is provided by the structures of [Mg(H,0)¢,CdXs where
X =Cl(26368) and Br (49915) (Brown and Duhlev 1991). The bond graph can
easily be completed to the end of stage 1 as shown for the chloride in Fig. 11.4(a).
Completing the graph to show the hydrogen bonds between H and CI is not
possible because there are too many similar ways in which these connections can
be made and the observed structure will depend on the packing of the three
fundamental building blocks, two blocks of [Mg(H,0)]** and one of CdClgf.
Both types of block have approximately the same size and can therefore be
expected to form a close packed array in which each ion has 12 neighbouring
ions. In order to provide the largest number of contacts between cations and
anions, the complex anion should be surrounded only by complex cations.
From eqn (11.1) it is clear that if each anion has 12 cation neighbours, each
cation will have, on average, six anion neighbours. The remaining six neigh-
bours must therefore be cations. With this information it is easy to see that the
close packed layers must have the structure shown in Fig. 11.4(b).

The two most likely stackings of these layers would appear to be HCP and
FCC as discussed in Section 11.2.1.2. Unfortunately the two-layer HCP
stacking does not preserve the crystallographic three-fold axis and necessarily
leads to an orthorhombic or monoclinic structure. The three-layer FCC stacking
permits the space group to be R3 which gives site symmetries of 3 to Cd** and



DETERMINING THE TOPOLOGY 147

Mg?* respectively. It is however possible to maintain the three-fold symmetry of
the hexagonal layer with the sequence AA. While this does not give a close
packed array, it is permitted when the ions are large and may be favoured if it
leads to a high-symmetry structure. In this stacking, each ion has eight neigh-
bours. However, to ensure the maximum contact between anions and cations
alternate layers must be shifted. By placing the anions of one layer over the
cations of the layer below an AA’ stacking is achieved in the space group P31c,
preserving the three-fold axis and giving each cation, on average, four anion and
four cation neighbours. It is not obvious whether the AA’ or FCC structure has
the highest symmetry and in practice both are observed. The AA’ stacking is
found when X =ClI and the FCC stacking when X = Br.

In this example the two complexes have high internal symmetry and this
symmetry allows a high-symmetry space group to be adopted. Complexes of
lower symmetry necessarily crystallize in a space group of lower symmetry even
though the underlying lattice may still be the same.

Cation-centred complexes as found in the example above are those most often
encountered, but anion-centred building blocks also exist in, for example,
H,0 and Obeﬁ. The latter complex is stabilized by its stereoactive lone pair
(Section 8.2) which allows a strong Pb—O bond of 0.50 vu to form with the central
O*~ anion. The remaining bonds formed by Pb*>" are weaker and serve to link
the Obel+ complex with neighbouring anions (Krivovichev and Filatov 1999).

The building blocks need not be discrete complexes but may be infinitely
connected in either one or two dimensions. In their study of the crystal chem-
istry of lead—antimony sulphides, Skowron and Brown (1994) showed that the
allowed packings of infinitely long NaCl-type ribbons of (Pb,Sb)S correctly
accounted for eight of the nine observed phases and qualitatively indicated their
relative stability. They also predicted a further four phases that might exist with
a limited stability range.

In addition to modelling, fundamental building blocks are frequently used to
analyse classes of crystal structures in cases where it is possible to recognize a
strongly bonded complex whose surfaces give rise to characteristic modes of
inter-block bonding (Hawthorne 1985; Ferraris et al. 1997; Leonyuk et al
1999). The method can, however, only be applied to systems in which the
bonding within the blocks is significantly stronger than the bonding between
blocks. In this sense, the method has limited applicability. Nevertheless, the
placing of fundamental building blocks on simple lattices in order to generate
trial structures is a powerful and well-tried technique in modelling that has been
successfully used even in the modelling of organic crystals (Williams 1996).

11.2.2.3  Polyhedral linkage

An alternative approach is to use the bond graph to propose a coordina-
tion polyhedron for each of the cations and to generate the full structure by
examining the different ways in which these polyhedra can link together to form
an infinite framework.
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One of the simplest cases is that of silica, SiO, whose bond graph is shown in
Fig. 11.5. Si** is almost invariably found at the centre of a tetrahedron of 0%~
ions and, according to eqn (11.1), the O~ ion must therefore be two coordinate.
This means that the structure of silica is most probably composed of corner
linked SiO, tetrahedra, given that the tetrahedra are unlikely to share edges and
faces. Because of the importance of silica and the minerals derived from it, much
work has been focused on the different ways in which tetrahedra can be corner
linked to form infinite networks in three dimensions. The problem is not a trivial
one, because the networks of highest symmetry have linear Si—O—Si bonds
leading to three-dimensional networks with large cavities and very low densities.
The energy of such a network can be reduced if the density is increased by
collapsing the network. The question is, what are the possible three-dimensional
networks and how can one select the network most likely to be observed?

It is possible to simplify the description of three-dimensional networks
derived from silica by replacing each SiO, tetrahedron by a node. The result is a
network in which each node forms four links (through the four shared corner
O’ ions) to adjacent nodes (Fig. 11.6). Such a network is called a four-
connected net. The goal is then to determine all possible arrangements of these
four-connected nets that can be mapped into three-dimensional space. Sato and
Uehara (1997) have shown that although there is only one graph for the nearest
neighbour nodes around a given Si atom, there are many thousands of graphs
generated when the second-nearest neighbours are added. The total number of
possible graphs is thus impossibly large. Fortunately, only a few hundred of
these are observed in nature. The object is to discover the principles nature uses
to select them.

Many of the four-connected three-dimensional networks have been tabulated
by Smith (1988) and can be used to describe the materials based on silica. These
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Fig. 11.5. Bond graph of SiO,.

Fig. 11.6. Silicate networks. (a) silicate tetrahedra linked to form a framework, (b) a
simplified four-connected network representing the silicate framework.
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include a wide range of minerals in which some of the Si** is replaced by Al**
and the charge compensated for by inserting weakly bonding cations, such as
alkali metals or alkaline earths, into the cavities of the network. In this network
approach, the weaker cations are initially ignored and attention is focused on
the strongly bonded alumino-silicate four-connected framework.

Not all alumino-silicate networks are fully four coordinated. Some contain
additional O*~ ions resulting in some of the O®~ ions forming only one bond to
the network. Such networks are necessarily anionic (they have an excess of
0?7), even more so if some of the Si** is replaced by AI**. Figure 4.6 shows that
there is a correlation between the anion bonding strength of a silicate network,
which depends on the amount of excess O™, and the bonding strength of the
additional weak cations. The valence matching principle thus plays a role in
determining which of the three-dimensional networks should be considered for
a particular composition (Hawthorne 1985).

Even so, the attempts to enumerate all possible four-connected three-
dimensional nets shows that the expansion of even such a simple bond graph
as that of SiO, is far from trivial. A more profitable approach has been to list
and describe those networks that are commonly found, or seem likely to be
found, in nature (O’Keeffe et al. 2000). Thus the more pragmatic terminology
introduced by Liebau (1985, pp. 76ff.) is frequently used to describe the
structures of minerals.

In this network description of minerals, the alumino-silicate four-connected
network is seen as the framework that supports the structure. Any other cations
that are needed to balance the charge are found in cavities within the network.
But cations are not the only species that can occupy these cavities. Large cavities
can be stabilized by the inclusion of neutral species such as water or other
molecule of crystallization. If the cavities are linked into channels, it becomes
possible to diffuse molecules into or out of the cavities without destroying the
framework. Materials with this property are called zeolites and have important
technological applications as water softeners (Ca®* in the water exchanges for
Na™ in the zeolite), as molecular sieves used for selectively absorbing hydro-
carbons according to their size, or as catalysts (because of their high specific
internal surface). Because of the large number of possible networks that the
alumino-silicates can adopt, many different zeolite frameworks have been found
or synthesized (Meier and Olson 1992). The enumeration of four-connected
three-dimensional networks has made an important contribution to the study of
these technologically important materials.

In spite of the importance of four-connected nets, there are many inorganic
materials that contain higher coordination polyhedra linked through shared
corners, edges, or sometimes faces. In general it is not profitable to enume-
rate all the possible topologies. The bond graph gives exact information
about the coordination number of each of the polyhedra and some informa-
tion about the ways in which they are linked. Face sharing is generally not
favoured as it brings the central atoms too close together, particularly for
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polyhedra of low coordination number, but corner and edge sharing are both
frequently found.

Schlegel diagrams are a useful way to explore how these polyhedra can be
linked (Hoppe and Kéhler 1988). They consist of the outline of the coordination
polyhedron projected onto a flat surface in a way that avoids any overlapping
lines. The lines in Figs 11.7(b) and (c) represent the edges of an octahedron
viewed down a three-fold axis but with the nearest face expanded in a way that
allows one to view all the other faces of the octahedron from the inside. Like an
animal skin that is opened up, the three-dimensional shell of the octahedron is
forced to lie in a two-dimensional plane. The open circles represent the corners
of the octahedron and the lines represent the edges. The bond graph of TiO, in
Fig. 11.7(a) shows that Ti*" is six coordinated and an octahedral coordination
polyhedron is assumed. Figures 11.7(b) and (c) shows the Schlegel diagrams for
the rutile and anatase forms of TiO,. Both show the projected outline of the
octahedron around Ti** but they also give information about the way in which
the octahedra are linked. This is done by placing the central atom of a connected
octahedron (shown by the filled circles) over a face (when the octahedra
share faces), an edge (when they share edges), or attached to a corner (when they
share corners).

These diagrams make it possible to examine systematically the different ways
in which the polyhedra can link in three dimensions. The bond graph shows that
all the O~ ions are three coordinate which means that each vertex of the
Schlegel diagram must be connected to two other octahedra, through either
face, edge, or corner sharing. Ignoring the possibility of face sharing, there are
three kinds of vertex, those that share corners with two other octahedra, those
that share a corner and an edge, and those that share two edges. The number of
possible Schlegel diagrams is thus restricted. Vertices with three shared edges,
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Fig. 11.7. Schlegel diagrams for TiO,: (a) bond graph, (b) Schlegel diagram for rutile, (c)
Schlegel diagram for anatase. See the text for an explanation.
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for example, are not allowed. The various possibilities can be systematically
explored. There are only seven ways to combine edges and corners that satisfy
the constraints, and for each of these there is a strictly limited number of
topologies—only one if all the octahedra are corner linked, or two if all the
octahedra are linked by shared edges. The number of possible Schlegel diagrams
for TiO, is thus limited to around 12 and, keeping in mind that the principle of
maximum symmetry implies that all the polyhedra in a structure will, if possible,
have the same diagram, one can explore the three-dimensional networks in a
systematic way. Figure 11.7(b) shows that the Schlegel diagram for rutile has
two opposite shared edges indicating that the octahedra are linked into edge-
shared columns, while Fig. 11.7(c) shows that in anatase it is adjacent edges that
are shared. The Schlegel diagram can then be used to explore how the edge-
shared columns might be linked together. Schlegel diagrams can prove a valu-
able tool in restricting the number of configurations that need to be examined.

11.2.2.4 The space group method

Another approach to expanding the bond graph into a three-dimensional net-
work is to find the highest symmetry space group into which the bond graph can
be mapped, a procedure which will generally find the correct structure if a high-
symmetry structure is possible (Brown 1997). If no high-symmetry structure can
exist, as is frequently the case, the method is instructive in indicating the nature
of the restrictions that three-dimensional space places on possible expansions of
the bond graph.

This approach is based on Shubnikov’s fundamental law of crystal chemistry
(Rule 10.3) which states that the space group must be one in which the atoms in
the bond graph can be mapped onto Wyckoff positions having matching
multiplicities and site symmetries. Implicit in this mapping is that the symmetry
of the space group cannot be higher than that of the bond graph.

The first step is to identify the symmetry inherent in the bond graph. The graph
gives information only about nearest neighbours, so the search for symmetry
needs to focus on the symmetry of the three-dimensional coordination environ-
ments of each of the atoms in the graph. A site symmetry is assigned to each ion
assuming that each ion adopts the highest possible crystallographic symmetry.
However, there are three important spatial restrictions that these site symme-
tries must obey if they are to be mapped into a three-dimensional space group:

1. The site symmetry of each atom must be one of the 32 crystallographic
point groups shown in Fig. 10.7, since these are the only point groups
compatible with three-dimensional space groups.

2. The product of the multiplicity and the order of the site symmetry of an
atom must be the same for all atoms in the structure (eqn (10.2)).

3. If the number of bonds formed by an atom is less than the order of its site
symmetry, the ligands must share some symmetry elements with the central
atom as shown in Tables 10.1-10.3.
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Any 6- or 12-coordinate ion in the graph is initially assumed to have the site
symmetry m3m (Oy) if all the ligands are equivalent in the bond graph. If they
are not all equivalent, then one must choose a lower site symmetry that is
compatible with this inequivalence. Similarly an ion with four equivalent
ligands is assumed to be tetrahedrally coordinated with site symmetry 43m (Ty).
The constraints 1-3 above are then examined to ensure that all have been
satisfied. If they are, then one can look in Appendix 2 to find a matching space
group using the procedure described below. If they are not, the symmetry of one
or more atoms must be lowered until all the constraints are satisfied.

The identification of a space group that matches the multiplicity and
symmetry is only the first step in finding a space group that can accommodate
the bond graph. There are then three further conditions that must then be
satisfied:

4. Tt must be possible to place the atoms on the selected special positions of
the space group so that their bonds match those in the bond graph.

5. The resulting structure must be one that is chemically plausible. For
example, coordination polyhedra that share faces usually bring the cations
too close together, and arrangements that are connected in only one or two
dimensions need to be carefully examined since the columns or layers will
be held together only by Van der Waals bonds. Such bonding can be found
between softer ions such as CI™ or Br™ but is generally rare between hard
ions such as F~ or O*".

6. It must be possible to choose parameters for the unit cell and atomic
coordinates that reproduce as closely as possible the ideal bond lengths
calculated using the network equations (3.3) and (3.4), without bringing
any atoms into too close contact.

If a matching space group is found, there may be a choice of Wyckoff posi-
tions with the correct multiplicity and site symmetry. If sites of lower symmetry
are occupied, there will be positional coordinates that need to be chosen. It may
be necessary to test several different atomic arrangements to determine whether
or not an embedding of the graph with reasonable bond lengths is possible. Any
of these constraints may make it impossible for a structure to exist in a given
space group, but a systematic check of all the possibilities is difficult in low-
symmetry structures. If no satisfactory space group can be found at a given
symmetry level, either a lower symmetry space group must be sought, a different
bond graph must be constructed or, if neither of these work, the compound is
not able to exist.

So that the method can be fully understood, the rest of this section works
through a number of examples in some detail. Readers who are not interested in
these details may skip to the next section.

The structure of NaCl (18189) can readily be obtained by noting that
both ions are six coordinate and are expected to have octahedral environments
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with m3m symmetry (Fig. 11.2(a)). The spectrum® of the bond graph is
{2000000000}, or more simply {2}, since there are two atoms with multiplicity of
1 in the formula unit. From Appendix 2 it is easily seen that two space groups,
Fm3m and Pm3m, have the right site symmetries and match this spectrum, but
only Fm3m, which is the observed space group of NaCl, allows the mapping of
a six-coordinate graph. Pm3m can accommodate the eight-coordinated graph
of Fig. 11.2(b) and is the space group of CsCl (22173).

For ZnO (67454, Fig. 11.2(c)) both atoms can be tetrahedrally coordinated
and have site symmetry 42m (Ty4). The spectrum is again {2} and the first match
found in Appendix 2 is Fd3m, but this structure can be eliminated on chemical
grounds (constraint 5) since it gives Zn—Zn and O—O distances that are the
same as the Zn—O distances. The next match is F43m which is the space group
of sphalerite, ZnS (60378). For reasons discussed in Section 2.6, ZnO adopts the
lower-symmetry wurtzite structure. It is left as an exercise to show that wurtzite
(67454) with space group P6;mc, is the next most symmetric structure after
F43m that can accommodate the graph of Fig. 11.2(c) and satisfy the six
constraints listed above.

Less trivial examples are the various bond graphs of ABOj; shown in
Fig. 11.3. The six-coordinate B cation is assumed to have site symmetry m3m
(Oy, my=48), but this site symmetry is only possible in the bond graphs shown
in Figs 11.3(a), (e), and () where all the bonds are equivalent. Because the
ligands are not all equivalent in Figs 11.3(b), (c) and (d), the highest symmetry
possible around B is 4/mmm (Dyy, m,=16). On the other hand, the site sym-
metries of the cation A are different for each of the graphs shown. In Fig. 11.3(a),
where A is six coordinate, in Fig. 11.3(d) where it is eight coordinate and in
Fig. 11.3(f) where it is 12 coordinate, site symmetry m3m (Oy, mg — 48) is the-
oretically possible. In Fig. 11.3(b), A is eight coordinate, but not all the ligands
are equivalent. They fall into two groups of six and two (three bonds are formed
to each of two equivalent 0%~ ions, so all six bonds, which in three dimensions
will be to six different ligands, may be equivalent). The highest possible sym-
metry environment is the hexagonal bipyramid with site symmetry 6/m (Cgp,
mg=12). In Fig. 11.3(c) the coordination number of A is also 8 and the ligands
also break into two groups, but in this case there are four bonds in each group.
The highest symmetry environment is a tetracapped tetrahedron with site sym-
metry 43m (Tgy, ms=24). In Fig. 11.3(e) where A is nine coordinate, the ligands
are equivalent but the highest symmetry environment in a crystal corresponds to
a tricapped trigonal prism with site symmetry 62m (Dsp,, mg = 12). In this case,
even though the ligands are equivalent in the bond graph, there is no crystal-
lographic site symmetry that allows all the bonds to be equivalent. In 62m the

3 The spectrum of a bond graph is constructed in the same way as the spectrum of a space group
described in Section 10.5. It indicates the number of atoms in the bond graph that have the
corresponding multiplicities. Trailing zeros are usually omitted. For a space group to be compatible
with a given bond graph, each term in the spectrum of the space group should be at least as large as
the corresponding term in the spectrum of the bond graph.
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bonds are broken into two symmetry distinct groups of six and three, the latter
lying either on mirror planes or two-fold axes that pass through the A site.

However, within each of the bond graphs, the site symmetries discussed
above are not always mutually compatible. Equation 10.2 shows that there is a
relationship between the order of the site symmetry and the multiplicity. Since
both A and B have the same multiplicity (they each appear just once in the
formula unit), they must have site symmetries of the same order (see Fig. 10.7).
This condition is satisfied only for Figs 11.3(a) and (f) whose cations can both be
assigned the site symmetry m3m (O, m, = 48) as discussed above. The spectrum
in both cases is {201} (A and B have multiplicity of 1 while O~ has multiplicity
of 3) and the only space group that matches these conditions is Pm3m
(Appendix 2). There are two ways of distributing the atoms over the different
sites, but both lead to the same structure, that shown in Fig. 10.4, in which B is
six coordinate and A is 12 coordinate. This structure corresponds to the bond
graph of Fig. 11.3(f) and meets all the conditions except number 6. It has only
one free parameter (the unit cell edge) and requires that the length of the A-O
bond be v/2 times the length of the B—O bond. Only for a particular choice of
cations will the chemical lengths predicted using the network equations (3.3)
and (3.4), satisfy this condition, so this structure, while having the highest
symmetry, is expected to occur only for a small number of compounds. SrTiO;
(201256) is one of these, but the condition is not satisfied for either BaTiO;
(23759) or CaTiO; (62149) which adopt different, though related, structures as
described for BaTiOs in Section 10.2.

Finding the space group for the graph of Fig. 11.3(a) is more difficult. There
are quite a number of matches to be found in Appendix 2, but all the cubic
structures can be discounted as they give six coordination around only one of
the cations. In space groups of non-translational order 12 the three hexagonal
and three trigonal matches require one of the sites to be only three coordinate.
There are no matches for a space group with a non-translational order of § or 4.
There are several promising possibilities in space groups of order of 6, but these
give columns of face-sharing octahedra which are chemically unlikely. It is not
until one reaches an order of 3 that one can find a plausible structure in R3, the
ilmenite structure (FeTiO3, 67046) which is found for a number of compounds
where both A and B are six coordinate, but even this requires the A and B
octahedra to share one face. What looked like an excellent candidate for a high-
symmetry structure turns out to be unable to crystallize in a space group that
can provide the cations with a site symmetry higher than 3, and even in this case
the face sharing of octahedra results in strains in the bonds, the three bonds to
the shared face being longer than the other three, even though the O~ jons are
crystallographically equivalent and the bond graph predicts regular octahedral
coordination.

In the nine-coordinate graph of Fig. 11.3(e) all the O*~ ions are chemically
equivalent but the A—O bonds cannot all be crystallographically equivalent as
there is no crystallographic site symmetry of order 9. The highest possible
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symmetry, the tricapped trigonal prism, has site symmetry 62m (Ds,), but this
requires six of the A—O bonds to be crystallographically distinct from the other
three.* The order of 62m is 12, therefore the order of the site symmetry of B
must also be 12 which gives candidate site symmetries of 3m (Dsg4) and 23 (T)
(Table 10.3). Since all the O®~ ions are equivalent in the bond graph, the
spectrum is {201}. Appendix 2 is thus searched for space groups listed under
order 12, spectrum {201} and site symmetries of 62m (for A) and either 3m or 23
(for B). There are two hits, P6;/mmc and P6;/mcm, but both allow only three
coordination around A. No space group has a spectrum of {201} in the space
groups of order 8. In order 6, B must have site symmetry 32 (D3) or 3 (Cs;) and
A must have site symmetry 3m (Cs,), 32 (D3) or 6 (Csp), the latter two sym-
metries permitting a tricapped trigonal prism. Since A has site symmetries of
order 6, 0>~ will have a site symmetry with m, =2, i.e. it must have 2 (C,), or m
(Cy) site symmetry since it must share these symmetry elements with the face-
capping ligands. If the site symmetry of A is 3m, these three of the ligands will lie
on one of the three mirror planes that include the three-fold axis passing
through A, if it is 32 they must lie on the two-fold axes but if it is 6 they must lie
on the mirror plane perpendicular to the three-fold axis (Table 10.1). There are
10 space groups in Appendix 2 that match. A close examination of these shows
that the first four, P4,23, P6c2, P62c, and P6522, cannot accommodate the bond
graph, the latter, for example, can have octahedral coordination around B but
A can then only be placed on a site of three or 12 coordination. Only with the
fourth matching group, R3c, is it possible to find an embedding for the bond
graph. This is the space group found for many perovskites in which A is smaller
than the cubic cavity into which it is placed. The cavity distorts so that 6 of the
12 A-O distances become shorter and three become so long that they no longer
contribute to the bonding, leaving A nine coordinate.

Finally we consider the eight-coordinate graphs. Figure 11.3(b) shows the
graph with the highest entropy for structures with mono- and divalent A
(Section 11.2.2.1). The spectrum of this graph is {31} since there are now two
chemically distinct O*~ ions, one with a multiplicity of 1, the other of 2. The
highest possible symmetry for A is the rather unlikely hexagonal bipyramid of
order 12. The order of the site symmetry of B cannot therefore be greater than
12, but the only two compatible site symmetries of this order for an octahedron
are, from Table 10.3, 3m (Dsq) and 23 (T), neither of which permit two of the
ligands to be different from the other four. Going to lower symmetry, site
symmetries of order 8 are not possible as 8 is not a submultiple of 12, and site
symmetries of order 6 again require all ligands to be equivalent as can again be
seen from ‘l'able 10.3. T'he highest site symmetries from ‘l'able 10.3 which allow
the six ligands to be split into a group of two and a group of four are found in

4 Even though the A—O bonds are not all equivalent, it is still possible for all three O*~ atoms to
be crystallographically equivalent. For example, each O?~ atom may form two A—O bonds of one
kind and one of a second kind. This would satisfy the requirements of the A site symmetry of 62m
and still leave all the O®~ atoms equivalent.
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order 4 (4(S4), 4 (Cy), 222 (V), mm2 (Cyy), 2/m (C,y)) and the last three are also
compatible with an eight-coordination split into 2+ 2 + 4 groups. This split is
compatible with the bond graph since not all the bonds between symmetry-
related atoms need themselves be related by symmetry. The number of space
groups in Appendix 2 that meet these conditions is quite large and their sym-
metry is low. It is not profitable to examine each of these to find which allow a
suitable mapping of the bond graph, but it is clear that any perovskite with an
eight-coordinate A cation having the bond graph of Fig. 11.3(b) will have a
structure of low symmetry, probably not higher than orthorhombic. This graph
is found in a large number of distorted perovskites with the orthorhombic space
group Pnma (Woodward 1997a).

A second eight-coordinate bond graph is shown in Fig. 11.3(c). Although this
graph has a lower entropy, it can be mapped into a space group of higher
symmetry and for this reason may be preferred. It is left as an exercise for the
reader to show that this space group is I4/mcm. A number of compounds are
known with this structure but none in which A and B are trivalent cations, since
for these cations, the graph of Fig. 11.3(c) has a significantly smaller entropy
than that of Fig. 11.3(b).

The highest entropy graph for eight-coordinate A" cations is that shown in
Fig. 11.3(d). This can be mapped into the space group P4/mmm but only if the
B cations share four edges in the equatorial plane, an arrangement that brings
the B cations rather too close. This structure is not known for any of the A**
perovskites but it is known for NH,HgCl; (15962) where it is stabilized by
two chemical properties of the compound: the electronic polarizability of Hg**
helps to stabilize the large tetragonal distortion needed to keep the Hg”" ions
well separated, and the tetrahedral arrangement of H' ions around N°~ helps to
stabilize the cubic eight coordination of the ammonium ion (Section 7.7).

11.2.2.5 Weakly bonded structures

The approaches described in the previous sections work well in cases where a
good match is possible between the chemical and crystallographic symmetry,
where the strongly bonded coordination polyhedra are linked into strongly
bonding frameworks, or where the fundamental building blocks have high
symmetry so that the lattice model can be used, but in many other cases a
different strategy is needed.

The problem becomes particularly acute for organic molecules which are
irregular in shape and are held together by weaker interactions such as Van der
Waals forces and hydrogen bonds. A method that shows some promise is the
use of packing groups proposed by Gao and Williams (1999). As shown in
Chapter 10, the symmetry operations of the space group can be split into two
subgroups: those that give the site symmetry of a special position and those that
generate the set of equivalent special positions in the unit cell. An alternative
way of splitting the symmetry operations of the space group is to split them into
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a subgroup that contains the operations of the point group of the formula unit
(molecule) and those that generate the other formula units in the crystal-
lographic unit cell. The latter group of operations constitute the packing group
since they describe the way in which the formula units pack.

According to the principle of maximum symmetry one would expect to find
only one formula unit in the unit cell, but the shape of the formula unit does not
often lend itself to efficient packing by simple translation. Better packing can
usually be achieved if adjacent formula units have different orientations. Such
freedom is allowed by screw axes and particularly by glide planes. The two most
frequently found space groups in inorganic crystals are the monoclinic P2,/c
and the orthorhombic Pnma, both of which have glide planes. For the same
reason, P2,/c is also the most frequently found space group among organic
crystals (Brock and Dunitz 1994). The use of packing groups has still to be
developed into a workable model, but they hold considerable promise for use in
modelling, particularly if it becomes possible to determine a priori which
translational symmetry elements allow formula units to pack efficiently.

11.2.3  Valence maps

The valence map is a device that is useful for exploring the space available to an
ion when most of the structure is known. It can be used to find diffusion paths or
to locate the most favourable sites for those atoms that form bonds in the post-
crystallization phase after the three-dimensional bonding network has been
established. The method was first proposed by Waltersson (1978) who used it to
find the sites of the Li* ions in various Li,WO, phases where the relatively weak
scattering of the Li* ions made them difficult to locate by X-ray diffraction. He
placed an Li* ion at an arbitrary point in the unit cell and calculated the lengths
of the bonds it would form to the neighbouring O®~ ions. From these distances
he calculated the bond valence sum around the Li* ion using eqn (3.1) or (3.2).
The Li* ion was then moved to other positions in the cell and the calculation
repeated to generate a map of the bond valence sum that an Li* ion would have
if placed at any given point in the crystal.’

The valence map for F~ in the (110) plane through fluorite, CaF, (29008), is
shown in Fig. 11.8 to illustrate the technique. In this map all the F~ ions have
been removed leaving only Ca®* ions in place. An F~ ion is then moved sys-
tematically through the crystal along the points of a grid, at each point its
valence sum being calculated. Places where the valence sum is equal to 1.00 vu
are places that can accommodate F~ ions. Such places are found at the regular

5 In practice it is necessary to block the sites of those cations such as W, whose positions are
already known, by ensuring that the valence sums become large if the Li™ ion gets too close. This
can be done by using eqn (3.1) to assign a fictitious valence to distances between the cation whose
position is being sought, Li* in this case, and those such as W whose positions are already
known. The bond valence parameters should be designed to give large valences for short distances
but negligible values beyond about 150 pm.
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Fig. 11.8. The valence map of a (110) section through CaF, showing possible locations
for F~ ions. The 1.0 vu contour is shown with a dot and dash line. Contours less than
1.0 vu are shown with a broken line, those larger than 1.0 vu with a solid line. The contour
interval is 0.2 vu. Contours above 1.8 vu have been omitted for clarity. Atomic positions
are shown by the element symbol (one F has been omitted to show the contours at this
site). X, Y, and Y’ are proposed sites for an interstitial F~ ion as discussed in the text.

site of the F~ ions (indicated by the letters F in Fig. 11.8 where one letter F has
been omitted to reveal details of the valence map at this point), but there is also
a contour of 1.00 vu (dash-dot line) surrounding the cavity between the Ca®"
ions. Originally it was proposed that an interstitial F~ ion might occasionally be
found at the centre of one of these cavities (at the point marked X), but such
interstitials have been found to be displaced from the centre of the cavity at the
sites labelled Y and Y’ which lie on the 1.00 vu contour. The valence sum at X is
less than 0.6vu and the distortion theorem (Rule 3.6) would predict an off-
centre displacement from this site. The valence map provides a visual display of
the predictions of the theorem. Once the position of the interstitial atom has
been identified, the bonds it forms can be found and the network equations can
be used to find the relaxation that occurs in the bonds that surround the defect
(Brown 1988b).

Valence maps may alternatively be presented in a way which gives a direct
impression of the atom’s probability density function, a function which indi-
cates the probability of finding the atoms at a particular point in space. This is
calculated by inverting the valence function using eqn (11.3):

-N
pi— (Zsy/vj) - (113)
J

Raising ) s, to an inverse power has the effect of converting minima into
maxima, and the division by the atomic valence gives p; a value of 1.0 at an ideal
location. If N is set equal to 16, the maxima become quite sharp and the
resultant p; map contains peaks that, under suitable conditions, resemble the
probability density function for the atom at room temperature as shown for
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Fig. 11.9. The valence map of Mg,SiO4 transformed to simulate the probability
distribution function of Mg?™ at (a) room temperature, (b) high temperature. The
shaded areas have values larger than 1.0.

the Mg " ions in olivine, Mg,Si0, (26374), in Fig. 11.9(a). Three different peaks
are seen in this figure. Two, marked with a cross, are occupied by Mg*", the
third is vacant. The smaller peaks that lie on the ¢ axis have maxima of 1.0 and
represent quite faithfully the probability density function of Mgl at room
temperature. The other two peaks have maxima larger than 1.0 and represent
holes that are too large to comfortably accommodate an Mg”>" ion. The larger
of the two peaks represents a vacant hole, but the smaller is occupied by Mg2.
However, Mg2 is not found at the centre of the hole, indicated by the maximum
in p;, but is displaced to one side where the value of p; is close to 1.0. As in the
example of the interstitial site in CaF,, this valence map provides a visual
representation of the distortion theorem.

Figure 11.9(b) shows that when p; is calculated with N=S8§, it resembles a
high-temperature probability density function. The peaks are broader and two
of them are linked by bridges along the ¢ direction, the direction of easy Mg*"
diffusion. Figure 11.9(b) suggests a diffusion mechanism in which Mgl, but not
Mg2, moves between its regular sites via the vacant hole in the structure.

A different method of displaying diffusion paths has been used by Adams
(1996) who has plotted a three-dimensional view of the structure showing the
lowest contour surface that provides a continuous path through the crystal.
Figure 11.10 shows these paths for the mobile Ag" ions in the ionic conductor
a-Agl (200108). In examining the diffusion paths of Ag™ in various crystalline
and glassy oxygen complexes of silver iodides, Adams and Swenson (20004a) find
a direct correlation between the volume enclosed by this contour, the ionic
conductivity and the activation energy for diffusion.

Valence maps are not restricted to inorganic materials but can be used in any
situation where acid—base bonding is involved. For example, Nayal and Di
Cera (1994) have used valence maps to locate the sites of Ca?* ions on the
surfaces of Ca-binding proteins as described in Section 13.6.2.

A program for calculating bond valence maps has been published by
Gonzales-Platas et al. (1999).
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Fig. 11.10. The lowest isovalent contour in «-Agl that permits diffusion through the
crystal. I~ ions (not shown) occur at the cell corners and cell centre. Reproduced with
permission from Adams and Swenson (20000).

11.3 Refining the geometry

If the topology of a structure is known, there are various ways in which the
geometry can be refined. The generally accepted method is to refine the coor-
dinates by minimizing the energy. The energy may be calculated by solving the
Schrédinger equation, a method used mostly for isolated molecules but recently
extended for use with crystals. It gives geometries close to those observed
particularly for light atoms. Heavy atoms, where relativistic effects are impor-
tant, still present computational problems. While the calculations require
considerable computing power, they provide details of the electron density
distribution and the properties that depend on it. The method has only recently
been applied to inorganic crystals and has not yet been sufficiently explored to
discover all its advantages and limitations. These methods lie beyond the scope
of this book, and the reader is referred to Payne e al. (1992) for further details.

A simpler method of finding the geometry minimizes the energy calculated
using effective two-body potentials. This is a classical or semi-classical approach
depending on how the potentials are determined. Using appropriately deter-
mined potentials the method gives refined atomic positions that also lie within a
few pm of the observed values. It has been used to explore the structures of
surfaces and defects which are not easy to measure. Since it is not as computer
intensive as the quantum mechanical methods, it has been widely used in
materials science for exploring inorganic structures and the properties that
depend on structure. Further accounts of this approach are given by Burnham
(1990) and Catlow (1997).

The bond valence model may also be used to refine the structure since it is based
on the same assumptions as the two-body potential method. The network equa-
tions (3.3) and (3.4), can be used to predict the theoretical bond valences as soon
as the bond graph is known. From these one can determine the expected bond
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lengths using eqn (3.1) or (3.2). It is not necessary at this stage to know the three-
dimensional structure since, as the example of Table 3.1 shows, the bond lengths
predicted using the network equations can be quite close to the observed bond
lengths providing there is no spontaneous electronic distortion of the kind dis-
cussed in Chapter 8 or lattice induced strain of the kind discussed in Chapter 12.

These expected bond lengths can be used as targets in a distance-least-squares
(DLS) program (Villiger 1969) which finds the set of atomic coordinates that
best reproduces the target bond lengths. Alternatively, one can refine against the
theoretical bond valences or one can minimize the deviations from the network
equations. In distance-valence-least-squares (DVLS, Sato 1982; Kroll er al
1992), the sums of ionic radii are used as target distances, but the distortions
that are introduced by the bond connectivity are satisfied by requiring that the
bond valence sums around each atom be equal to the atomic valence.

While there are several ways in which targets for the bonds lengths can be set,
setting targets for the bond angles, or equivalently the non-bonded distances, is
more difficult. Unfortunately, these are needed in any refinement to prevent two
anions or two cations from occupying the same space. For tetrahedra, target
angles given by eqn (9.4) can be used. Non-bonding constraints are incorpo-
rated in DVLS as target bond angles, but anion—anion and cation—cation
distances could be used instead, giving them zero weight if the calculated dis-
tance exceeds the target. Pannetier ez al. (1990), in their simulated annealing,
used a Coulomb potential and O’Keeffe (19914) used an exponential repulsive
function to keep like ions apart. The form of the non-bonded term is not critical,
providing it is sufficient to prevent adjacent non-bonded atoms from occurring
in the same space. If the structures are not subject to the strains described in
Chapters 8 and 12, these techniques give atomic positions that lie within a few
pm of the observed positions.

Bond valences can be used in conjunction with other techniques, particularly
powder diffraction where, for example, light atoms are difficult to refine in the
presence of heavy atoms. Adding the chemical constraints of the bond valence
model can stabilize the refinement, particularly in the case of superstructures
that have high pseudo-symmetry (Thompson et al. 1999).

The refinement of geometries using bond valences has the advantage of
computational simplicity. The network equations allow rapid calculation of the
ideal bond lengths. Its principal disadvantages are that it does not give a direct
measure of the energy, and the network equations only describe equilibrium
geometries. Only qualitative estimates of the relative stabilities of different
structures are possible.

11.4 Modelling defect structures

Many inorganic compounds are not stoichiometric, but have atoms missing or
additional atoms occupying interstitial sites or substituting for other atoms.
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Such defects can give rise to unusual physical and chemical properties as dis-
cussed more fully in the following chapters. Here it is worth pointing out that
bond valences can be used to explore the local environments around defects
which are difficult to observe using the standard techniques of X-ray and
neutron diffraction.

The bond valence model does not necessarily give an unambiguous descrip-
tion of the environment of a defect but it can be used to test whether a proposed
model is chemically plausible by checking that the bond valence sums around all
the atoms are reasonable. Figure 11.8 shows how a valence map can be used to
find possible positions for interstitial F~ in CaF, (Frenkel defect) but it cannot
say which of the positions on the 1.0 vu contour will be occupied. Once a
position has been chosen, standard refinement techniques can be used to
determine how the neighbouring atoms relax (Brown 19885). Hughes ez al.
(1997) have used the bond valence model to show how substituting a rare earth
ion for calcium in the mineral titanite promotes the creation of antiphase
boundaries where the direction of displacement of the Ti*" ions in their octa-
hedra is reversed. Hawthorne (1997) has used the model to discuss possible
local arrangements of impurities in amphiboles in relation to the distribution of
APP* ions in the alumino-silicate framework. Brese et al. (1999) have used
Monte Carlo methods with a cost function based on the network equations to
model diffusion in Cu doped ZnS. Further examples of the modelling of defects
are given in Chapters 12 and 13.

11.5 Modelling glasses

Glasses are solids that lack crystalline order and their structures are therefore
much harder to determine and model. Individual atoms are found with a wide
range of environments, but the valence sum rule is still expected to be obeyed,
giving promise that modelling of glass structure is possible. Swenson and
Adams (2001) have used the bond valence model in conjunction with the reverse
Monte Carlo simulation of glass diffraction patterns to produce plausible
models for glassy mixtures of Agl and Ag oxysalts. Brown ez al. (1995, pp. 382ff.)
have combined bond valence methods with X-ray absorption spectroscopy to
examine the structures of silicate glasses and melts. In these complex structures,
the experimental techniques need to be supplemented by a simple model of
crystal chemistry to ensure a realistic picture of the structure is obtained. The
bond valence model is ideal for this purpose.

11.6 Summary

No single method can predict all crystal structures and many crystal structures
cannot be predicted by any technique currently available. Structure modelling
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remains more of an art than a science, but a variety of methods have been
mentioned in this chapter, ranging from the brute force methods that use the
power of computers to explore a wide range of possible structures to those in
which all prior chemical and physical knowledge is used to finesse a structure.
Much more work is needed before we can replace experimental methods of
structure determination with simple theory.
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Lattice-induced strain

12.1 The origins of lattice-induced strain

The unit cell of a particular compound is often composed of chemically distinct
units, the fundamental building blocks described in Section 11.2.2.2. If these
blocks are infinitely extended in one or two dimensions, they will possess a tran-
slational symmetry whose repeat distance will be determined by the lengths of the
strong bonds within the blocks. Since the length of these bonds can be calculated
using the network equations ((3.3) and (3.4)), the ideal translational repeat of the
block can also be calculated. For example, La;NiO4 (65917) shown in Fig. 12.1 is
composed of a stack of alternating NiO; and (LaO); layers similar to the TiO; and
BaO layers shown in Fig. 10.3. The double layer (LaO), has the NaCl structure
with translation distances within the layer equal to 365pm (v/2 times the ideal
La—O bond length calculated to be 258 pm using the methods described in
Chapter 3). Similarly the single NiO; layer has an ideal translation distance of
412 pm (twice the calculated Ni—-O bond length of 206 pm). In this example, the

NiO,
LaO

LaO

NiO,

LaO

LaO

NiO,

Fig. 12.1. The structure of La,NiO,4 (65917) showing how the structure is composed of
(LaO), and NiO, layers. The + sign marks the position of the interstitial O*~ ion. The
large open circles represent O°~, the small open circles Ni** and the filled circles La®*™.
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(La0), and NiO, layers, which constitute the two fundamental building blocks,
have different ideal translations, and without some adjustment they cannot be
stacked to form a crystalin which all components have the same lattice spacing. If
the two blocks are to coexist in a single crystal, this incommensuration must be
resolved.

There are two essentially different ways in which this can be done. If the
bonding between the blocks is weak compared to the bonding within the blocks,
each block may retain its own characteristic translation. The resulting crystal is
then a composite of two finely interleaved crystals, each with a different lattice
spacing. Such crystals are not common, but are by no means unknown as shown
by the example of (EuS); 75sNbS, illustrated in Fig. 12.2. If the ratio of the
lattice spacings of the two blocks is close to a rational fraction, the crystal will
form a supercell whose length is equal to the lowest common multiple of the
individual block translations, i.e. if one block has a lattice spacing of 300 pm
and the other a lattice spacing of 400 pm, the crystal will have a supercell with a
spacing of 1200 pm. More generally, the ratio of the translation vectors of
the two blocks will not be a rational number, in which case the crystal is
incommensurate as discussed in Section 12.4.

On the other hand, if the blocks are strongly bonded to each other as they are
in La,NiQy, the atoms in one block will be forced to remain in register with their

8.0 0. & @ N 0. K _ 0. N~ 9

® @ o & ®

Fig. 12.2. Packing of the (EuS)] and (NbS); layers in (EuS); 75sNbS, viewed parallel to
the layers and perpendicular to the incommensurate direction. Black circles are Eu, grey
circlesare Nb, and open circles are S. Reproduced with permission from Cario ez al. (1999).
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neighbours in the adjacent block. The two blocks will be constrained to have the
same lattice spacing, requiring that one block, (LaO),, be stretched while the
other, NiO,, is compressed. Necessarily this results in some bonds being stret-
ched and others being compressed. The crystal acts like a Procrustean bed,
forcing its building blocks to share a common lattice spacing. The strains that
result from such mismatched blocks are called lattice-induced strains
(Wegner and O’Keeffe 1988).

12.2 Structures with lattice-induced strain

Lattice-induced strains clearly cause the bonds to violate the network equations
and their presence may be indicated by a large value of the bond strain index
(BSI) defined in eqn (12.1) (Preiser ez al. 1999, o5 in table 1):

BSI = ((S — s))'/2, (12.1)

where S is the experimental bond valence calculated from the observed bond
length and s is the theoretical bond valence calculated from the network
equations. The angle brackets ( ) indicate an average taken over all bonds in
the formula unit. If the value of the BSI for a particular crystal is greater than
0.05 vu, the structure can be regarded as strained. However, lattice mismatch
is not the only, or even the principal, cause of bond strain. The electronic
instabilities discussed in Chapter 8, or the anion—anion repulsions discussed in
Sections 6.2 and 7.2, also lead to large values of the BSI. Since the lowest energy
will be achieved when all sources of strain work together, it is not uncommon
for a particular strain to have several causes. For example, the tendency of an
ion to show electronic distortion will make it easier for the environment of that
ion to distort in response to a lattice-induced strain as was noted for BaTiO; in
Section 10.2.

A second and complimentary measure of lattice strain is the global instability
index (GII) defined by Salinas-Sanchez et al. (1992) using eqn (12.2):

1/2

2
GII = <<Z Sy — V,) > , (12.2)
J

where the average here is over all the atoms in the formula unit. This measures
the extent to which the valence sum rule is violated. Values of the GII less than
0.05 vu suggest that little or no strain is present while values greater than about
0.20 vu indicate a structure that is so strained as to be unstable. Such large
values of the GII are rarely found in properly determined crystal structures.
Where a crystal structure has a GII much larger than 0.20 vu, there is reason to
suppose that the reported crystal symmetry is too high and that the real crystal
has relaxed in one of the ways discussed below.

An interesting example of the use of the GII is provided by compounds with
the formula Ln,BaCuOs (72165, Ln=rare earth) studied by Salinas-Sanchez
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et al. (1992). These have a complex structure that involves the packing of Ln*",
Ba”", and CuO¥" ions. Only for Ln** = Tm’" do all the pieces have the right
size to fit together without strain. Replacement of Tm*" with other rare earth
ions causes the structure to become strained as indicated by the GII shown in
Fig. 12.3 where it is plotted against the rare earth ionic radius. For these
compounds the GII is closely approximated by eqn (12.3):

GII = 0.058 + 10 Ar?, (12.3)

where Ar is the amount (in pm) by which the radius of the rare earth differs
from that of Tm*". For ions larger than Sm*", the GII is predicted to exceed the
stability limit of 0.20 vu and it is significant that the Nd** and La*" compounds
both crystallize with a different structure. Similar results have been found for
Ln,Cu,05 (69328) compounds (Garcia-Mufioz and Rodriguez-Carvajal 1995).

Typically lattice-induced strain results in the bonds around one cation being
stretched and the bonds around another cation being compressed as found in
BaRuOj; (10253) by Santoro et al. (1999, 2000). When this happens, the valence
sum rule will be violated around the cations in question but the valence still
distributes itself as uniformly as possible among the bonds, so that the experi-
mental bond valences determined from the bond lengths remain as close as
possible to the theoretical bond valences. For this reason the BSI is typically
smaller than the GII for lattice-induced strains, though the opposite is true for
compounds with electronically induced strain where the valence sum rule
remains well obeyed.

If possible, the lattice-induced strain will relax in such a way as to minimize
both strain indices as illustrated in the following sections by the structure of

(Nd)

01—

Global instability index (vu)

| | |
90 95 100 105
Cation radius (pm)

Fig. 12.3. The variation of the observed GII versus rare earth ionic radius in Ln,BaCuQOs
(Ln=rare earth). The line corresponds to eqn (12.3). Nd,BaCuOs has a different
structure, the value shown is calculated from eqn 12.3.
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Fig. 12.4. Bond graph of La,NiO,,

La,;NiOy4 (Brown 19924). Its bond graph, shown in Fig. 12.4, indicates that all
the bonds have theoretical bond valences of 0.33 vu. As described above, this
means that the natural lattice spacing of the (LaO), layer is 365 pm, while the
natural lattice spacing of the NiO; layer is 412 pm. Since the layers are strongly
bonded to each other, they remain in register and are therefore strained.
Assuming that they adopt a common spacing close to the mean (388 pm), the
NiO; layer must be compressed until the Ni—O bonds are only 194 pm instead
of 206 pm and the (LaO), layers must be stretched until the La—O bonds are
277pm long instead of 258 pm. For this structure the GII=0.47 and the
BSI=0.07. The large value of GII clearly indicates an unstable structure which
relaxes in one or more of the ways described in the following section.

12.3 Relaxation of lattice-induced strain

Any crystal, in which some bonds are stretched and others compressed as a result
of lattice induced strain, will relax so as to ensure that the network equations are
as well satisfied as possible under the given geometric constraints. There are a
large number of ways in which this relaxation can occur. The lattice-induced
lengthening (or shortening) of some bonds around a given ion will be compen-
sated by the shortening (or lengthening) of the unstrained bonds so as to preserve
the valence sum rule. Where the bonds formed by an ion are stretched, the ion
may move off-centre in its coordination sphere in accordance with the distortion
theorem (Rule 3.6). Compressed layers may buckle while interstitial ions or
vacancies may be introduced into a stretched layer. If there are atoms that can
adopt different oxidation states, electrons may be transferred from a cation that
is being compressed (so as to raise its oxidation state, hence shorten its bonds) to
a cation that is being stretched (so as to lower its oxidation state and lengthen its
bonds). Finally, it may be necessary for the structure to adopt a bond graph of
lower symmetry. The particular modes of relaxation adopted will depend on the
nature of the structure and, for a given structure, can often be predicted.

12.3.1 Relaxation of the geometry

In many structures, it is possible to change the lengths of unstrained bonds in
order to compensate for the stretching and compression required to make the
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structure commensurate. In La,NiOy this is achieved by changing the lengths of
the interlayer bonds to compensate for the changes that must occur within the
layers. Ni** has four compressed equatorial bonds in the NiO, layer. These
must be shortened from 206 pm (S=0.33 vu) to 194 pm (S =0.46 vu) to keep the
layers commensurate. To compensate and ensure the correct valence sum at
Ni*", the two axial bonds perpendicular to the layers should have valences of
only 0.08 vu corresponding to lengthening the bonds to 259 pm. This axial 0>~
ion forms five bonds to La** in addition to the weak Ni-O bond. Four of these
must be stretched to 277 pm (S=0.20 vu) to make the layers commensurate.
This leaves a valence of 1.12 vu (1.29 vu if the buckling of the LaO layer is taken
into account) for the single remaining La—O bond directed perpendicular to the
layer. The length of this bond is therefore predicted to be reduced to 207 pm.
This (hypothetical) structure is constrained to satisfy the valence sum rule
(GII=0) and it can be geometrically fitted into three-dimensional space, but its
BSI of 0.29 indicates that the distortions, especially around La**, are too large
to be stable. Further relaxation is required.

12.3.2 Relaxation by defects

A second mode of relaxation is the incorporation of defects into the stretched
layer. Interestingly, insertion of extra O®~ ions on interstitial sites, or the for-
mation of La** vacancies, both help to relax the stretched layers as shown in
Fig. 12.5. An interstitial anion will form additional bonds to the cation thus
increasing its bond valence sum, while removing a cation allows the anions to
which it was bonded to relax towards the neighbouring cations, shortening the
bonds, and increasing their bond valence sums. Both kinds of defects are found
in La,NiO, which, if prepared in air, will automatically incorporate extra
O~ to give the composition of La,NiO, 15, adding just enough oxygen to ensure
the correct valence sums around La®*. The interstitial O*~ is located between
the two LaO layers in a place where it can bond to four different La** ions

O—La—0—1L1a—0 O—La—0—1La—0
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Fig. 12.5. Relaxation of the LaO layer of La,NiO, by (a) an O?™ interstitial or (b) an
La*" vacancy.
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(marked by 4 on Fig. 12.1), but it is necessary to occupy only a small fraction of
these sites. The interstitial O?~ ions can easily move between these sites and can
adopt many different ordered arrangements giving rise to interesting super-
structures (Otero-Diaz er al. 1992).

12.3.3  Electronic relaxation

Strains can also be relieved by changing the oxidation states of cations that can
adopt more than one oxidation state. Cations in stretched layers can accom-
modate themselves to longer bonds by reducing their oxidation state, since this
will lower the valences of their bonds. Similarly cations that are in compressed
layers will tend to increase their oxidation state so as to increase the bond
valence and shorten the bonds. This is a mechanism that can be used to stabilize
unusual oxidation states.

The addition of 0.18 interstitial O>~ ions to the formula unit of La,NiO,
requires that the oxidation state of Ni** be increased to +2.36. Given that the
equatorial Ni—O bonds have a length of 194 pm and therefore a bond valence of
0.46 vu, this increase in the oxidation state of Ni allows the axial bond valences
to be increased from 0.08 to 0.26 vu reducing the length of the Ni—O 4, bonds
from 259 pm to the more acceptable value of 215 pm. This in turn reduces the
valence required for the axial La—O bond by 0.18 vu which, together with the
extra valence contributed by the interstitial O>~, reduces the distortion around
La*" to an acceptable level. It is difficult to calculate the BSI and GII for this
compound since one needs to know how the interstitial O*~ ions are ordered
within the LaO double layer, but clearly the BSI will be considerably reduced
from the value 0.29 vu that it had before the introduction of the defect and
subsequent electronic relaxation. This form of the structure is stable and is the
form normally found when the material is prepared in air.

The relaxation of La;NiOy4 to LasNiOy g illustrates a couple of important
points. Firstly, the defect and electronic modes of relaxation necessarily work
together since the change in oxidation state of Ni** is directly related to the
amount of interstitial O~ present. This simultaneous relaxation of both the
stretched and the compressed layers is a feature found in many, if not all, of
the observed mechanisms for relaxing lattice-induced strain. Secondly, the
lattice-induced strain is directly responsible for the crystallization of a stable
compound with a fixed, but irrational, composition, involving a fixed, but non-
integral, oxidation state for nickel.

La,CuOy4 has a structure and crystal chemistry virtually identical to that
of La,NiO, with a couple of important exceptions. Firstly, all octahedrally
coordinated Cu®* compounds show a spontaneous electronic distortion (the
Jahn—Teller distortion described in Section 8.3.1) by which the two axial bonds
become longer and the four equatorial bonds become shorter. The distortion
observed in La,CuQy is usually attributed to this effect, but the observation of
the same distortion in La,NiO,4 shows that the driving force in both compounds
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is the lattice-induced strain. The only difference is that the lattice-induced
distortion in La;CuQy is further stabilized by the Jahn—Teller effect.

The second difference between the nickel and copper compounds is that
La,CuOy is a superconductor, being the first of the CuO, layer compounds in
which superconductivity was observed. The lattice-induced strain is a necessary
condition for superconductivity since it stabilizes the higher oxidation state
needed to provide the superconducting carriers as discussed in Section 13.3.2.

The electronic relaxation of lattice strain is an important factor in many other
superconducting copper oxides. In the most famous compound in the series,
Ba,YCu304 5 there are two layers containing copper. One is the super-
conducting CuO, layer, the other is a similar layer which is heavily depleted in
oxygen, CuQy. The strains that arise between these and the BaO layer result in
the transfer of electrons between the two different types of copper atom,
depending on the value of 6. By annealing the material in atmospheres con-
taining different amounts of oxygen, it is possible to tune the oxidation states of
the copper ions and hence to tune the superconducting properties of the
material (Brown 19915).

12.3.4 Relaxation of symmetry—displacive phase transitions

The geometric relaxation described in Section 12.3.1 occurs by redistributing the
bond valence between the bonds until GII and BSI both have acceptable values,
but in some cases this relaxation is restricted by symmetry. In the case of per-
ovskite, the cubic symmetry of the archetypal ABO; structure (Fig. 10.4) does
not allow any of the bonds to relax unless the symmetry is lowered. Thus true
cubic perovskites are rare since they can only exist if the A and B ions are exactly
the right size. Most perovskites have a reduced symmetry that allows the bonds
to relax. For compounds in which the A—O bonds are stretched, the relaxation
takes the form of a rotation of the BOg octahedra and results in a reduction of
the coordination number of A. The various relaxed structures based on different
expected coordination numbers were modelled in Section 11.2.2.4.

Relaxation by loss of symmetry can also be seen in the structures adopted by
La,NiO4 when it is prepared in the absence of oxygen, thus preventing the
absorption of interstitial O®~ jons. At high temperatures, the crystal has
tetragonal symmetry, i.e. the two in-plane axes are identical by symmetry and
the La, Ni, and oxygen atoms all lie on a four-fold axis (the oxygen atoms are
those in the (LaO), layer). As the temperature is reduced, the four-fold sym-
metry is lost and the compressed NiO, layers buckle. This has the effect relaxing
both the compressed NiO, layer and the stretched (LaO), layer. The buckling
of the NiO, layer allows the equatorial Ni-O bonds to be longer without
changing the size of the lattice translation, and at the same time it displaces the
axial oxygen atoms from the four-fold axis, thus distorting the environment
around La**. This, according to the distortion theorem (Rule 3.6), increases the
valence sum at La®" without changing the average bond length.
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Buckling of the NiO, layers occurs by the rotation of the NiOg octahedra,
either around an equatorial Ni—O bond or about the bisector of two equatorial
bonds, giving rise to two different structures (with space groups P4,/ncm and
Bmab respectively). The structure found at room temperature (Bmab) has GIT =
0.23 and BSI=0.15, that found at low temperature (P4,/ncm) has GII =0.21
and BSI=0.15. In both cases the rotation of the octahedra proceeds only far
enough to produce a stable structure, but not far enough to fully relax all the
strains, an interesting example of the principle of maximum symmetry which
requires the symmetry to be broken only to the extent that the constraints can
be satisfied.

Although these structures all have different space groups from the parent
tetragonal structure (I4/mmm) shown in Fig. 12.1, the differences between them
are small, the atoms are only slightly displaced from the positions they would
occupy in the high-symmetry archetype. The transitions between these different
structures are called displacive phase transitions and are frequently observed in
strained structures as the temperature is changed. At high temperatures, crystals
of La,NiOy4 have the higher symmetry of the archetype (I4/mmm) but they also
have a high GII (0.28) and BSI (0.20). However, 14/mmm is only the macro-
scopic symmetry of the crystal. The local symmetry around individual atoms is
lower. The NiO, layers are still buckled, but the rotations of the NiOg octahedra
are dynamic, with different rotations occurring at different times and in dif-
ferent parts of the crystal. The higher symmetry only appears when the dis-
placements are averaged over the whole crystal. As the temperature is reduced,
the rotations freeze out and the crystal goes through a phase transition to a
lower-symmetry structure. The topology (bond graph) generally remains
unaltered during a displacive phase transition, only the bond lengths changing,
though if the changes in bond length are large enough, some bonds may be
broken and new ones formed.

12.3.5 Changing the bond graph—reconstructive phase transitions

Reconstructive phase transitions occur when major changes are made in the
topology, i.e. when the bond graph is reorganized. The transitions usually
observed in structures with lattice-induced strain are displacive and often
second order (no latent heat). Reconstructive transitions arise when two quite
different structures with the same composition have similar free energies. Unlike
the displacive transitions they involve the dissolution of one structure and the
recrystallization of a quite different structure. These phase transitions possess a
latent heat and often display hysteresis.

Conceptual reconstructive transitions can be valuable in modelling in cases
where a proposed high-symmetry structure is so excessively strained that a
drastic rearrangement of the bonds is needed. As an example consider the high-
symmetry bond graph of CaCrFs (10286, Fig. 12.6(a)) drawn by connecting
Cr** to each of the five F~ ions, with one bond doubled to give the expected six
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Fig. 12.6. Bond graph of CaCrF; (a) tetragonal archetype, (b) observed monoclinic
structure.

coordination around Cr*". This makes one of the F~ ions unique but the
remaining four are still symmetrically equivalent. Ca”" is then expected to form
two bonds to each of these four F~ ions to match the ideal coordination number
of 8. This graph can be easily mapped into the high-symmetry tetragonal space
group P4/mmm using the method described in Section 11.2.2.4 (Fig. 12.7(a)).
In this structure, chains of corner-linked CrF¢ octahedra run along the unique
axis with Ca”" ions occupying the channels between the chains. The problem
with this structure is that, given the predicted Ca—F bond length (236 pm), the
F~ ions from different chains are brought much too close to each other (194 pm),
while the F~ ions in adjacent octahedra of the same chain are too far apart
(383 pm). The relaxation conceptually occurs in two stages. First, the chains
buckle by rotating the octahedra in alternate directions until the F~ ions in
adjacent octahedra are just touching (Fig. 12.7(b)), then planes of chains shear
so that the octahedra of one chain fit into spaces between the octahedra of the
adjacent chain to give the monoclinic structure (C2/c) shown in Fig.12.7(c). In the
process, several Ca—F bonds are broken and new ones formed, so the structure
adopts the lower-symmetry bond graph shown in Fig. 12.6(b) (Brown 19925). In
the real structure the two Ca—F2 bonds are not related by crystallographic
symmetry and have slightly different distances as a result of lattice-induced
strain. Details of the predicted and observed geometries are given in Table 3.1.

In this compound the tetragonal structure is not known. It is introduced into
the modelling process as the archetype that corresponds to the bond graph
predicted using the methods of Section 11.2.2.1. However, the stretching of the
Ca—F bonds and compressing of the Cr—F bonds needed to form this structure
is so large that it can be relaxed only by a reorganization of the bond graph
itself. Even though the observed symmetry is low, the principle of maximum
symmetry is not violated because the constraints acting on the system do not
permit the formation of a structure with higher symmetry.
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a b c

Fig. 12.7. (a) Tetragonal structure of the CaCrFs archetype, (b) buckled CrOs chain,
(c) observed monoclinic structure viewed perpendicular to the projection shown in (b).
The octahedra represent the CrFg groups, the circles represent Ca®*.

12.4 Incommensurate structures

Where the individual blocks that compose the crystal are only weakly bonded to
each other, the result may be an incommensurate composite structure such as
(EuS); 725(NbS,) shown in Fig. 12.2 (Cario et al. 1999). Crystals of this com-
pound consist of alternating cationic (EuS); and anionic (NbS), layers. The
(EuS); layer has the NaCl structure with an ideal cubic lattice parameter of
576 pm, calculated for a six-coordinate mixture of Eu'" 4+ 2Eu”*. The NbS,
layer is composed of two hexagonal close packed sheets of S*~ ions with
Nb**** filling the octahedral holes between them (Section 11.2.1.2). This layer
can be described by a centred cell having the ideal dimensions 576 x 332 pm
(assuming Rg=214pm in eqn (3.1)). The 576 pm cell dimension of the NbS,
layer matches 576 pm cell dimension of the (EuS); layer. In the other direction
however, the two layers have different and incommensurate translation vectors,
576 and 332 pm for (EuS); and NbS, respectively. In this direction each layer
maintains its own periodicity, with the result that the compound has a fixed but
non-integral stoichiometry.

This has a number of interesting consequences. One is that the oxidation state
of Nb is lowered from the ideal value of +3.5 to +3.425. A second consequence
is that each Eu®" ion at the surface of the (EuS); layer has a different envir-
onment since each sees a different part of the NbS, layer. Some Eu® " ions lie
directly over an S*~ ion and form a very short Eu-S bond, while others lie
between the S*~ ions and form two or more longer bonds. Not surprisingly, the
bond valence sums around the Eu”" ions, as well as around the S*~ ions of the
NbS,; layer, show considerable variation depending on the relative positions of
the layers at any given point in the crystal.
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This variation can be reduced if each layer relaxes so as to ensure that the
valence sums around all ions deviate as little as possible from the expected
atomic valence. This is achieved by displacing the ions from their ideal positions
in a way that follows the positions of the atoms in the adjacent layer. Such
displacements can be described by a displacement wave with a wave vector
directed along the incommensurate axis, the wavelength in the (EuS); layer
being equal to the lattice translation of the NbS, layer, and the wavelength in
the NbS; layer being equal to the lattice translation of the (EuS); layer. When
account is taken of these displacements, the bond valence sums around Eu are
close to their expected value as shown in Fig. 12.8 which plots the valence sum
experienced by the Eu’" and Eu”" ions as the (EuS); and NbS, layers slide past
each other.

A second example of an incommensurate composite structure is given by
Hgs 5,AsF¢ (6029). In this compound, shown in Fig. 12.9, the octahedral AsF,
ions form a compact array which contains two mutually perpendicular sets of
channels through which are threaded chains of metallically bonded Hg atoms.
The chains act as cations in which each Hg atom carries a formal charge of
+ 0.35vu (to balance the charge on the anions) leaving 1.65 electrons with which
it forms metallic bonds of length 267 pm to its two Hg neighbours in the chain
(see Fig. 3.8). The composition of this compound is determined by a balance
between structural chemistries of the two independent components. On the one
hand is the charge (—1) and spacing (754 pm) of the AsF, framework, on the
other the relationship between the charge and spacing of the atoms in the Hg
metallic chain. As in (EuS); 755(NbS,) the two components are incommensurate
because the interaction between them is weak relative to the interactions within
each component itself and, also as in (EuS); 7»5(NbS,), each component is
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Fig. 12.8. The bond valence sums calculated around Eu®" (Eu2) on the surface of the Eu$
layer and Eu®" (Eul) inside the layer as a function of the position along the incommen-
surate wave (phase t). Reproduced with permission from Cario et al. (1999).
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Fig. 12.9. The structure of Hg;_sAsFq. The octahedra represent the AsF, ions, the rows
of circles represent the chains of Hg atoms.

modulated with a displacement wave having a wavelength equal to the lattice
translation of the other component.

Hg, 3, AsF¢ has a number of interesting properties. The metallic character of
the mercury chains ensures that Hg, g2AsFg is an electron conductor and, close
to absolute zero, it becomes superconducting. The incommensuration between
the chains and the AsF lattice also ensures that the Hg atoms can diffuse easily
through the crystal. All possible environments of AsF, ions around Hg are
found at some point or another along the chain, so the average bonding of the
Hg atoms does not change as the chain slides though the channel. For every
Hg atom whose bonding energy increases there is another Hg further down the
chain whose bond energy decreases by the same amount. Thus there is no
activation barrier to diffusion which makes it easy to grow large crystals.
Crystals nucleate on the surface of a drop of mercury placed in a liquid SO,
solution of AsFs, and mercury diffuses through the channels to the growing
surface which reaches out into the solution. The result is the appearance of
large, flat golden metallic crystals extended along the two directions of the
Hg channels. On cooling, the AsF lattice contracts faster than the Hg chains,
with the result that small droplets of mercury are squeezed out onto the surface
of the crystal. Hg, 3,AsFyg is, however, exceedingly sensitive to moisture which
limits the extent to which its unusual properties can be exploited (Gillespie ez al.
1985; Datars et al. 1985).

Not all incommensurate structures are composite. It is possible to have
incommensurate modulations in a structure composed of a single infinite
building block, particularly if a weak cation fits rather loosely into a hole in a
flexible framework. The polyhedra that compose the framework tend to twist to
give the cation a distorted environment. These twists can often be described by a
wave with a wavelength that may or may not be commensurate with the lattice
translation of the crystal. If it is commensurate, the twisting is described as
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producing a superstructure, if it is not, it is described as producing an incom-
mensurate modulated structure. The mellilite family of structures, which have
the generic formula A,MN,O-, consist of a framework of linked MO, and NO4
tetrahedra (M = Si, Ge; N = Zn, Co) with holes that contain A =Ca®" or Sr*".
The holes are rather too large for Ca** ions but are about right for Sr**. The
compounds containing Sr*" therefore have relatively small GIIs (eqn (12.2))
(0.17 vu for Sr,ZnGe,0; (39159)) but those containing Ca®* have GIIs that
are much greater (0.29 vu for Ca,ZnGe,05 (69387)). Thus it is not surprising to
find that the Sr** compounds adopt the high-symmetry tetragonal archetype
structure while the Ca?* compounds adopt an incommensurately modulated
structure of lower symmetry (Armbruster et a/l. 1990; Bagautdinov et al. 2000).

These examples illustrate how fundamental building blocks that are only
weakly bonded to each other can give rise to incommensurate structures, and
how such structures relax by generating waves of small displacements that
ensure conformance to the valence sum rule around all atoms. An excellent and
full account of modulated structures has recently been published by Withers
et al. (1998) where many further details of these fascinating materials can
be found.

12.5 Summary

The examples discussed in this chapter show that there are many different ways
in which lattice-induced strain can be relaxed or accommodated, the particular
mode depending on the properties of the elements and the structures involved.
Many of these compounds have unusual properties resulting from non-integral
stoichiometry, the presence of non-integral oxidation states, or the spontaneous
breaking of symmetry, all of which are the direct consequence of lattice-induced
strain.

Lattice-induced strains are characterized by large values of the GII because
the environments around some atoms are stretched and around other atoms are
compressed but, since the valence is still distributed as uniformly as possible
among the bonds, the BSI remains small. This contrast with the electronically
driven distortions discussed in Chapter § where the GII is small (the valence sum
rule is obeyed) but the BSI is necessarily large.

There are, obviously, no compounds to illustrate lattice-induced strains with
GII > 0.2 vu. Such structures are unstable and cannot exist, but if it is possible
to model structures of any arbitrary composition using the methods described in
Chapter 11, it is possible to determine which compositions give rise to stable
structures and which ones do not. A systematic exploration of different com-
positions occurring between a group of elements would then lead to an
understanding of the phase diagram. For example, on the basis of a few simple
rules, Skowron and Brown (1994) were able to predict most of the structures in
the Pb—Sb—S phase diagram and their relative stabilities (Section 11.2.2.2).
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The set of all observed structures is necessarily a highly biased selection of all
conceivable structures, but any proper model of chemical bonding in inorganic
solids should be able to account for the structures that do not exist as well as for

those that do.
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Applications

13.1 Introduction

The previous chapters have described the bond valence model and shown how it
can be used to understand many aspects of the crystal chemistry of inorganic
compounds, but the model has found application in many other fields ranging
from metals to proteins. This chapter does not pretend to be a comprehensive
review of the uses to which bond valences have been put. Rather it is intended to
give a flavour of the wide range of problems that can be treated using the model,
presented from the point of view of the scientific issues that need to be addressed
rather than from the point of view of the model itself. It is apparent that these
applications extend well beyond the inorganic systems within which the model
was developed, but the common feature is that all involve some form of acid—
base bonding.

The applications have been organized according to the scientific disciplines
to which they most closely relate, but many are interdisciplinary and could
equally well appear under more than one heading. Cross references are given to
places where a particular theme can also be found discussed under another
discipline heading.

13.2 Crystallography

Applications discussed in this section are those that have traditionally been
considered fields of crystallography, namely the determination and analysis of
crystal structures.

13.2.1 Structure solution

As described in Chapter 11, bond valences can play a role in modelling but,
since most crystal structures can still not be predicted ab initio, diffraction
methods remain the most common and reliable technique for determining the
structures of those compounds that can be prepared as single crystals large
enough for study by X-ray or neutron diffraction.

Where a material can only be prepared as a fine crystalline powder, powder
diffraction methods are needed, and for these the determination of the phases of
the diffraction peaks is more problematic. Often a good model structure is
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needed to allow a comparison between the measured and calculated diffraction
pattern. As mentioned in Section 11.2.1.1, there have been a number of attempts
to produce model structures ab initio using simulated annealing (Pannetier ez al.
1990) and genetic algorithms (Woodley et al. 1999). These methods often make
use of lattice parameters obtained from the powder diffraction pattern, though
in principle this is not necessary. A more powerful technique is to combine the
chemical information supplied by the bond valence model with the observed
diffraction pattern using reverse Monte Carlo methods. In this approach the
cost function contains the discrepancy between the observed and calculated
powder pattern as well as the differences between the atomic valences and the
corresponding bond valence sums (Swenson and Adams 2001).

Once the basic structure has been determined, bond valences can be used to
resolve a number of problems of interpretation. Diffraction experiments can
identify the location of each atom, but cannot identify its oxidation state. In
most structures the oxidation state is determined by the requirements of electro-
neutrality (Rule 11.1), but in some structures more than one assignment is
possible. Bond valence sums can usually resolve this ambiguity.

A classic and particularly interesting example is the distribution of Fe** and
Fe** between the octahedral and tetrahedral sites in the spinel, magnetite,
Fe;04 (65340). The average oxidation state of iron in spinel is 2.67 but the ions
can be arranged with either Fe*" on the tetrahedral site and 2Fe" on the two
octahedral sites (normal spinel), Fe*" on an octahedral site and 2Fe*" split
between the tetrahedral and octahedral sites (inverse spinel), or some mixture of
these characterized by an inversion parameter which measures the proportion of
the inverse structure present. The relative amounts (p; and p,) of each cation on
a given site can be determined using eqns (13.1) and (13.2) which are readily
derived by setting the weighted bond valence sum equal to the average charge
and solving for p;:

= (Zsz Vz)/[(Vl V) — (Zsl Zsz)] (13.1)

and

p2=1-py, (13.2)

where 77 and V> are the atomic valences, and XS; and XS, are the corre-
sponding bond valence sums at the cation site calculated from the observed
bond lengths. 3.5, is calculated assuming that the site is fully occupied by the
cation with valence ¥, (Fe*") and ¥.S, by assuming that the site is fully occupied
by the cation with valence ¥, (Fe’"). The results for Fe;0, are shown in
Table 13.1. The observed bond lengths (column 2) are used to calculate the
valences, S, of the bonds in the tetrahedral and octahedral sites assuming the
cation is all Fe*" (column 3) or all Fe" (column 4). These are substituted into
eqns (13.1) and (13.2) to determine the proportions, p; and p,, of Fe?* and Fe**
on each site (columns 5 and 6) from which the degree of inversion, i (column 7),
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Table 13.1 Fe?" and Fe*" distribution in Fe;04 (65340)

Site  Length (pm)  S(Fe*N) (vu)  SF*T) (vu)  p(Fe*™)  p(Fe*Ty i

T 188.9 0.658 0.704 0.227 0.773 0.77
O 206.0 0.414 0.443 0.412 0.588 0.81

T =tetrahedral site, O = octahedral site. p gives the proportion of the ion on the site. The last
column gives the inversion parameter, i.

can be determined. The independent values of the inversion parameters calcu-
lated for the two sites are in good agreement with each other, giving confidence
that the true inversion parameter is close to 0.79. Kubayashi ez a/. (1998) have
confirmed the presence of Fe’' on the tetrahedral site using XANES. The
method can be used to explore the contents of any site that contains a cation
in two different oxidation states and has been used to determine the charge
distribution in vanadium oxides (Asbrink 1980; Brown 1978) and copper oxide
superconductors, though in the latter case allowance has also been made for the
lattice-induced strain discussed in Chapter 12 (Brown 19915).

A number of crystals undergo a charge ordering (charge disproportionation)
transition as the temperature is lowered, often associated with transition to an
insulating or ordered magnetic state. The bond valence sums can be used to
determine the distribution of cation valence states below the transition as shown,
for example, in NaV,0s by van Smallen and Liidecke (2000), in rare earth
nickelates by Alonso et al. (2000), and in CaFeO3; by Woodward ez al. (2000).

Equations (13.1) and (13.2) can also be used to explore the disorder that
occurs when two different ions occupy the same crystallographic site since there
is nothing in the above analysis that requires both cations to belong to the same
chemical element. In this case, it is the effective occupation numbers of the two
ions rather than the oxidation states that are calculated, p; measuring the
probability of finding an atom of element 1, and p, measuring the probability of
finding an atom of element 2, on the given site.

Occupation numbers can also be determined using X-ray diffraction since the
observed electron density is the average electron density of the different ions
occupying the site. If the scattering powers (atomic numbers) of the ions are
very different, it is easy to determine the occupation number using diffraction
methods, but if the two ions have a similar number of electrons, for example if
they are adjacent in the periodic table, such as AI** and Si** or Pb*" and Bi**,
X-ray diffraction is unable to distinguish between them. However, the bond
lengths will be different, because atoms adjacent in the periodic table usually
have different oxidation states and so can be distinguished by their bond valence
sums. Skowron and Brown (1990) used this method to determine the distribution
of Sn?" and Sb** over the various cation sites in SnySbeS13 (26332).

Equations (13.1) and (13.2) can be used when only two species occupy a given
site but sometimes several different species are found to occupy the same site,
particularly in minerals. In this case it is necessary to use all available evidence
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to determine the site occupations. Wright ez al. (2000) have written the program
OccQP which optimizes the occupation numbers using a weighted combination
of electron density, chemical composition, and bond valence sums. They have
shown that it is possible to determine the distribution of as many as 12 cation
species over the 5 crystallographic sites in dravite tourmaline.

Hydrogen bonding plays a vital role in the cohesion and properties of many
crystals but the geometry of hydrogen bonds is poorly determined using X-ray
diffraction for the reasons discussed in Section 7.8. Donnay and Allmann (1970)
have shown how a knowledge of the valences of the remaining bonds in the crystal
can be used to reconstruct the hydrogen bonding scheme and a recent example of
the technique can be found in the paper by Adams ez al. (1993). Details of this
technique are given in Section 7.8 and will not be repeated here except to point out
that the bond valence model treats hydrogen just like any other cation providing
that the repulsion between the donor and acceptor anions is taken into account.

Particularly interesting is the application of bond valences to the determi-
nation of superstructures. Crystals with lattice-induced strain frequently relax
by displacing the atoms in a way that leads to the breakdown of the transla-
tional symmetry and the formation of a superstructure (Section 12.4). While the
substructure can generally be determined unambiguously using standard X-ray
diffraction methods, there are usually several modes of distortion that are
compatible with the observed superstructure peaks and it is not easy to deter-
mine which is correct. Withers et al. (1991) systematically explored the possible
relaxations of BiyTi30;, (16488) and used the bond valence sums around each of
the atoms to deduce the proper relaxation. The correct structure has a global
instability index (GII, eqn (12.2)) of 0.19 vu compared with 0.26 vu for the
incorrect structure previously reported.

Diffraction methods are not the only way of determining structure. Other
techniques that sometimes make use of bond valences include NMR discussed
in Section 13.5.1 and EXAFS discussed in Section 13.6.1.

13.2.2  Analysis of crystal structures

Once a crystal structure has been determined, it is customary to analyse the
results from a chemical perspective. For inorganic compounds, one of the best
ways is to calculate the valences of the bonds using eqn (3.1) or (3.2) to convert
the rather precise information available in the bond lengths into bond valences.
Although length and valence both measure the strength of a bond, the valences
are independent of atomic size and can distinguish between the strong and weak
bonds in a crystal. They thus identify which bonds are important in determining
the structure. This is well illustrated by ZnSb,Og (30409, Fig. 8.9). Zn”*" and
Sb>* ions both form bonds to O?~ with lengths of around 210 pm, but the ions
themselves are very different in size. Calculation of the bond valences quickly
draws attention to the greater strength of the Sb—O bonds (0.83 vu) relative to
Zn—0 (0.33vu), indicating that they play a much more important role in
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determining the structure. Bond valences also give a quantitative explanation of
the loss of tetrahedral symmetry of oxyanions such as PO~ when placed in an
environment of lower symmetry as described in Section 9.2.

The most common application of bond valences has been to test whether a
proposed structure complies with the normal rules of crystal chemistry by
comparing the bond valence sums with the atomic valence. Many reports of
structure determinations routinely include a listing of the bond valences since
bond valence sums that agree with the atomic valences can be taken as primae
Jacie evidence of a correct structure. An example of such an analysis is shown in
Table 13.2. The valence sum will immediately identify an incorrectly assigned
oxidation state (see Section 13.7 for its use in detecting errors in structural
databases) but, even if the oxidation state is correct, a valence sum that is too
small may indicate that some bonds or atoms, such as water of crystallization,
have been overlooked. Low valence sums around some cations and high valence
sums around others is the signature of lattice-induced strain (Chapter 12) which
should be confirmed by a careful analysis of the bond strains and their modes of
relaxation. The GII (eqn (12.2)) and the bond strain index (BSI, eqn (12.1)) can
be used to test whether the strain is large enough to cause the compound to relax
to a lower symmetry or to a modulated structure. If either of these values are
greater than 0.2 vu, the diffraction pattern should be examined for evidence of
superstructures. A large GII is an indication of lattice-induced strain (Chapter 8)
while a large BSI is an indicator of electronic strain (Chapter 8). Hunter et al.
(1999) used bond valences to show how the expansion or contraction of the unit
cell of yttrium stabilized zirconia was a natural consequence of the changes in
bond length on substitution for Zr*". In particular they were able to show why
substitution by the smaller cation Sn*" leads to expansion of the unit cell.

Table 13.2 Observed bond lengths (pm), bond valences (vu) and bond valence sums (vu)
for Li,SOy4 - H>O (62089)

Lil Li2 S HI H2 Sum
01 191 146 203
0.30 1.54 0.15 1.99
02 194, 195 148 282
0.28,0.27 148 0.04 207
03 196, 198 148
0.26, 0.25 1.49 2.00
04 200 195 148 278 290
0.24 0.27 1.49 0.05 0.03 2.08
05 190 93 91, 216
0.31 (0.76) (0.82), 0.15 2.04
Sum 1.05 112 6.00 (1.00) (1.00)

Valences in parentheses were determined by assuming that the valence sum around H is 1.00
(see Section 7.8).
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13.3 Physics

Condensed matter physicists are interested in the electrical, magnetic, and
mechanical properties of solids. Many of the electrical and all of the magnetic
properties depend on the behaviour of electrons whose properties are not
explicitly described by the bond valence model. Normal metallic conduction is a
property of delocalized electrons which do not satisfy the bond valence model
requirement that the bond graph be bipartite (condition 3.2). Similarly, mag-
netic properties depend on the magnetic coupling between the unpaired spins of
electrons, a property which also lies beyond the scope of the model. However,
both are influenced by the underlying chemical structure which can be usefully
analysed using bond valences. The model has a more direct application to
physical properties such as ferroelectricity and ionic conduction, which depend
only on the motions of ions, and on mechanical properties which depend on
defects in the crystal structure.

Physicists prefer to test their theories against observations made on simple
crystals such as those with structures of the NaCl (18189, Fig. 1.1) and per-
ovskite (ABOj, Fig. 10.4) type. Although these two structure-types are adopted
by many different compositions, both have cubic symmetry and a single free
crystallographic parameter, the unit cell edge, which simplifies the theory. The
properties of compounds with the NaCl structure are straightforward, but the
perovskite structure turns out to be anything but simple because the single free
parameter must be consistent with the lengths of both the A—O and the B-O
bonds. In general, one free parameter cannot be made to satisfy two constrains
at the same time, so compounds belonging to the perovskite family always show
some degree of lattice-induced strain and most of them relax to structures
having lower symmetry and therefore more degrees of freedom. Further com-
plexities can be found among the perovskite-related layer structures in which
layers of perovskite-like structure alternate with layers of NaCl-like structure as
in La;NiO4 (65917, Fig. 12.1). As a result, the perovskite family of structures
possesses a rich and complex crystallography which, because of the need to relax
the lattice-induced strain, gives rise to a variety of interesting physical proper-
ties. Not surprisingly, many of the applications of bond valences in physics are
directed to understanding the physical properties of the perovskite family of
compounds. For this reason, Section 13.3.1 provides an introduction to the
perovskite structures. Later sections focus on particular properties, many of
them also found in the perovskite system.

13.3.1 Perovskite-related solids

In Chapter 12 the layered perovskite, La,NiO,4 (65917), was used as an example
of a structure which displays lattice-induced strain. This compound is typical of
the large class of perovskite-related structures. All show some degree of lattice-
induced strain and, because the mechanism of relaxation depends on the details
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of the composition and structure, the perovskites as a class show many unusual
physical and chemical properties that can be conveniently analysed using bond
valences.

The parent perovskite structure shown in Fig. 10.4 consists of alternating
layers of composition AO and BO,, as for example in BaTiO; (23759) and
CaTiO; (62149). It is also possible to have several AO layers between each BO,
layer providing each AO layer is sheared by half a unit cell from the adjacent
AOQO layers, as shown for La,NiOy, in Fig. 12.1. This permits a wide range of
structures with an even wider range of compositions to be prepared. Which
compositions are possible depend on how well the structure can accommodate
the bonding requirements of the atoms A and B.

In a perovskite! in which all the anion (O?7) sites are occupied, the coordi-
nation number of the cation depends on the layer in which the cation is found
and its adjacent layers. The B cation is always six coordinate because only AO
layers can neighbour a BO, layer. In the triple sequence AO-AO-AO, the
central A cation is also six coordinate (as in NaCl), but in the sequence AO—
AO-BO; it is 9 coordinate while in the sequence BO,—AO-BO, it is 12 coor-
dinate. However, many perovskites have systematically missing ions, which
extends the range of possible coordination numbers from a low of 2 to a high of
12, providing a coordination number to match the requirements of almost any
cation in the periodic table (Brown 1991a). The effective coordination number
of an A cation can also be reduced by rotating the BOg octahedra, giving rise to
the low-symmetry perovskites that were modelled in Sections 11.2.2.1 and
11.2.2.4 (see also Woodward 1997a,b).

However, selecting a layer sequence that gives the correct coordination
number is only one of the conditions that needs to be met. In general, two other
conditions must also be satisfied. The composition must be electroneutral and
the bond lengths calculated from theoretical bond valences must lead to a set of
layers that are commensurate or nearly so, that is, all the layers must have the
same lattice spacings. Figure 13.1 shows the lattice spacing expected for a
number of cations as a function of their typical coordination number. Using this
figure it is possible to design different compounds by choosing AO and BO,
layers with similar lattice spacings together with layer sequences that provide
the appropriate coordination numbers.

Whatever composition and structure is chosen, a perfect match between
the lattice spacings of the different layers is virtually impossible to achieve. Thus
all perovskites show some evidence of lattice-induced strain. Section 13.3
describes some of the ways in which these strains can be relaxed, and the
more effective the method of relaxation, the greater the amount of mismatch
that can be accommodated. Since many relaxation mechanisms have already

! The term ‘perovskite’ is used here loosely to comprise all the structures based on sequences of
AO and BO; layers.
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Fig. 13.1. The lattice parameter of a perovskite layer as a function of its cation
coordination number. Cations in the BO; layers are shown on the left, those in the AO
layers are shown on the right.

been illustrated in Chapter 12 using the example of La;NiQOy, only one further
example will be given here.

Appendix 4 shows that TI*" favours a coordination number of 6 suggesting
that it would be found in the layer sequence AO—TIO—-AO.? However, the lattice
spacing of a T1O layer is much smaller than any of the other AO or BO; layers
shown in Fig. 13.1, so the T1-O bonds within the layer must be stretched. This
stress is relaxed in part by reducing the oxidation state of some of the TI** ions
to TI*, and in part by shortening the two interlayer (axial) T1-O bonds. The
first relaxation results in an increase in the oxidation state of other cations in the
structure (typically Cu" increased to Cu’*). The second gives rise to a flat-
tening of the octahedral environment of TI** which, since TI>" is a relatively
hard cation, is not easily stabilized by an electronic rearrangement as would, for
example, be possible around Bi*". Hg?*, on the other hand, is soft and often
spontaneously adopts a flattened octahedral environment. Mercury analogues
of the thallium layer compounds such as HgBa,Ca,Cu;0g (75896) are therefore
well known and relatively stable.

13.3.2 Electrical properties

By analogy with ferromagnetism, ferroelectricity is the property by which a
crystal has a permanent electric dipole moment which can be reversed by the
application of an electric field. The perovskite BaTiOj3, in which the BaO layers
are compressed and the TiO, layers stretched (see Fig. 13.1), is a ferroelectric

2 If TI** were to occur in a BO, layer which also provides six coordination, the lattice spacing
within the layer would be 452 pm, much too large to match to any available A cations.
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because the Ti*" ions move off-centre in accordance with the predictions of the
distortion theorem (Rule 3.6). This displacement is favoured by the electronic
instability of Ti*" in an octahedral environment (Section 8.3.2) as discussed in
Section 10.2. The high crystallographic symmetry of the Ti** site in the unre-
laxed structure means that the off-centre shift must break the symmetry and
therefore can occur in one of several different directions. Whichever way it
shifts, neighbouring Ti*" ions must shift in the same direction in order to keep
the bond valence sums constant around O”~. As a result, the crystal acquires a
net electric dipole. An external electric field can then be used to reverse the
directions in which the Ti*" ions are shifted, reversing the direction of polar-
ization. BaTiOj is thus a ferroelectric, a property shared by several other per-
ovskites with large A cations (Thomas 1989). Ferroelectrics are used in electric
capacitors (because of their large effective dielectric constant) and in electric
memory chips (because their polarization can be switched).

Ferroelectric perovskites with Pb>" substituted for Ba®", and Nb>" or Ta>"
plus a divalent cation substituted for Ti*", are known as relaxors because the
high degree of disorder results in a softening of the sharp dielectric anomalies
found in BaTiOj, making relaxors suitable for a number of important appli-
cations in the electronics industry. A typical relaxor has the composition
Pb(B1,,3B2,3)03 with Bl = Mg** or Zn*" and B2=Ta’* or Nb*. Because of
the small size of the Zn”" ions, the zinc niobate compound lies just below the
limit of stability and can only be prepared if larger ions are included as impu-
rities. Bond valences can be used to determine how much impurity is needed to
reach stability. In principle, one could use the GII (eqn (12.2)) to answer this
question, but the real structure is disordered and it is therefore impossible to
calculate accurate bond valences. However, the conditions for stability can be
explored by examining the bond valence sums in a notional cubic structure
having the same composition and unit cell volume. The valence sums calculated
in this way will be different from those calculated for the real structure and will
therefore give an unrealistic measure of the oxidation states, but they allow the
different compositions to be ordered according to the degree of mismatch and
they are easy to calculate. In the above example, the valence sums around all the
atoms in the notional cubic structure are too low since in the real crystal both
the A and B cations lie off-centre in their coordination spheres which, according
to the distortion theorem, increases their valence sum. In the notional cubic
structure the stability limit is found to occur when the valence sum around 0>~
is 1.74vu as shown in Fig. 13.2. Wakiya et al. (1997) have shown that the
addition of just enough of the larger cation to bring the O*~ valence sum up to
this value is sufficient to stabilize the compound.

Many layer-perovskites with Cu as the B cation are superconductors at
relatively high temperatures (~100K). Although the mechanism of super-
conductivity is not well understood, a necessary condition is that the oxidation
state of the copper ion be around +2.2. In many compounds, such as the well-
known YBa,Cu;07 (63324) this is achieved naturally through the relaxation of
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Fig. 13.2. Bond valence sum V(A) versus V(B) for A(B1,3B2;/3)O3 compounds using an
idealized cubic perovskite model. The line {O)=1.74 vu represents the stability limit.
P=Pb, S=Sr, B=Ba, N=Nb, T=Ta, M=Mg, Z="7n.

the lattice strain as discussed for La,CuQOy in Section 12.3.3. More usually the
oxidation state of copper is tuned by the inclusion of impurity cations having a
different oxidation number, or by adjusting the oxygen content by annealing the
material in atmospheres with different oxygen partial pressure. A bond valence
analysis provides information on both the extent of the lattice-induced strain
and the effective oxidation state of the Cu ions (Tallon 1990; Tanaka et al. 1990;
Brown 19915; Karppinen and Yamauchi 1999).

Electrical conduction occurs by the movement of charged particles. The best-
known carriers are the free electrons found in metals, but currents can also
be carried by charged ions under appropriate conditions. This is the normal
mode of conduction in polar liquids where the mobility of all the atoms allows
the ions to move with little resistance under the influence of an electric field.
However, in most ionic solids the ions are fixed which makes them good insu-
lators, but the structures of some solids contain channels in which the ions can
move relatively freely. Such materials, known as solid electrolytes or ionic
conductors, have important applications in batteries and fuel cells where the
conducting electrodes need to be separated by electronic insulators through
which ions can flow under the influence of a chemical potential. This flow
generates an electric current which is then used to drive electrical devices.
The condition for ionic conduction is that the structure contains channels in
which the conducting ions are weakly bound. For example, Hg, 3sAsF¢ (6029,
Fig. 12.9) described in Section 12.4 is both an ionic conductor and an electronic
conductor since the Hg cations are free to move through the channels under the
influence of an external field.

An ideal tool to study the mechanism of ionic conduction is the valence
map described in Section 11.2.3 since this locates all the points in the crystal at
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which the migrating ion has a valence sum equal to its formal charge. The
valence map for an ionic conductor has shallow saddle points between the sites
occupied by the conducting ions, the values of the valence sum along the con-
ducting pathways always remaining close to the atomic valence of the con-
ducting species (Fig. 11.9).

One important system of ionic conductors is based on a-Agl (200108), often
combined with varying amounts of other silver compounds such as Ag,P,0O; or
Ag,Mo0, to provide glassy or crystalline solid electrolytes. The conduction
paths in the parent a-Agl found using the valence map closely follow the Ag*
probability density function found by neutron diffraction (Garrett et al. 1982),
and similar paths have been traced in the 4:1 divanadate complex (Adams
1996). The lowest valence that gives an infinitely connected isovalent surface in
a crystal defines a conduction pathway whose enclosed volume is a direct
measure of the activation energy for conduction (Adams and Maier 199§;
Adams and Swenson 2000a). Such a surface is shown for a-Agl in Fig. 11.10.
The same approach can be used to explore the nature of the conduction paths in
glassy structures using models of the structure obtained by a reverse Monte
Carlo fitting of the structure to its diffraction pattern (Swenson and Adams
2001). Since ionic conduction is a special case of ionic diffusion, these techni-
ques can also be used to explore diffusion as described in Section 11.2.3.

13.3.3 Magnetic properties

The perovskite AMnOs, where A is La*" with an admixture of divalent cations
(6148), displays unusually large magnetoresistance and could become an
important material in the heads used for reading magnetic memories. Manga-
nese occurs in a mixture of Mn** and Mn** oxidation states, the former
showing a tetragonal Jahn—Teller distortion (Section 8.3.1) because it has a
single electron in the e, level (Fig. 8.6(a)). This electron can hop between Mn
atoms but, because its spin is coupled to the spin of the remaining 3d electrons,
it can only move between manganese atoms that have parallel spins. Thus the
mobility of the electron, and hence the electrical conductivity, depends on the
material being ferromagnetic. In turn, the presence of conduction helps to
stabilize the ferromagnetic ordering. According to the distortion theorem, when
the cation A is small, the MnOjg octahedra rotate to provide a distorted envir-
onment for A, but this rotation weakens the ferromagnetic coupling and nar-
rows the electron conduction band. When A becomes small enough, both the
ferromagnetism and the electronic conduction simultaneously collapse, but
both can be restored by application of a strong enough magnetic field. Com-
pounds at this critical composition show extremely large variations in magneto-
resistance (change of electrical resistivity with applied magnetic field) as the
temperature and magnetic field are changed, an effect known as ‘colossal
magnetoresistance’ (CMR). This behaviour is also influenced by two other
factors, the inhomogeneities introduced by the random occupation of A sites by
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Fig. 13.3. The phase diagram of Ag 33/ ¢ s;MnQO3 (A = divalent cation, A =rare earth) as
a function of temperature and the global instability index of the idealized perovskite
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insulator (from Rao et al. 1998).

divalent and trivalent cations of different sizes, and by the tendency of the
Jahn—Teller distortions around the Mn>" ions to order at higher Mn** con-
centrations. As in the case of the Pb>" perovskites discussed in Section 13.3.2,
the disorder makes it difficult to calculate the bond valence sums for the real
structure, but they can be calculated for the notional cubic structure of the same
composition. Rao ez al. (1998, 1999) used the GII (eqn (12.2)) of a notional
cubic structure, in which the Mn—O bonds were given their ideal length, as
an order parameter for normalizing the phase diagrams of a wide range of
CMR-related compounds (Fig. 13.3).

13.3.4 Grain boundaries

Most materials consist of small randomly oriented crystallites (grains) and,
since the bonding in the boundaries between these grains is weaker than in the
crystallites, it is the grain boundaries that determine mechanical properties.
Browning, Pennycook, and their colleagues have recently explored the nature of
these boundaries in a number of simple oxides using high-resolution Z-contrast
scanning electron microscopy to locate the positions of atoms, combined with
electron energy loss spectroscopy (EELS) to identify the chemical species pre-
sent in the interface. They used bond valences to construct plausible grain
boundary models that are consistent with their observations. They show that
the 24° [001] tilt—grain interface in MgO (9863) consists of a string of disloca-
tions which use Ca®" impurity atoms to reduce the strain caused by the failure
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of the valence sum rule in the boundary region (Yan e al. 1998; Browning ez al.
1999). Similar interfaces in SrTiO5 (201256) consist of a series of simple dis-
locations which saturate the interface at a tilt angle of 10° after which the
dislocations become more complex and broader (McGibbon et al. 1994, 1996;
Browning and Pennycook 1996; Browning et al. 1998b). The same behaviour is
seen in the structurally related superconductor, YBa,Cu307.5 (63324), where a
bond valence modelling of the interface shows that the valences of the Cu atoms
drop from +2.3 vu in the bulk to as low as +1 vu at the centre of the interface, a
condition which quenches the superconductivity (Section 13.3.2). As the
interfacial angle is increased, the region containing Cu™ becomes wider and the
distance through which the superconducting electrons need to tunnel becomes
larger. In this way Browning ez al. (1998a) were able to account for the expo-
nential decrease in the critical current observed as the interface angle of a grain
boundary is increased.

O’Keeffe (19915) has used bond valences to model the coherent interface that
occurs between the semiconductors Si and MSi, with M =Ni or Co (27139).
Although these systems contain Si—Si bonds and therefore do not obey the
assumptions of the bond valence model (condition 3.2), the mathematical
formalism of the model still works because of the high symmetry. As both Si—Si
and Si—Ni bonds are found in NiSi,, the cubic structure is strained (cf. BaTiO;
in Section 13.3.2) and this strain affects the structure of the interface. Of the
six possible interfacial structures examined, the two with the lowest BSI
eqn (12.1) are those that are believed to occur in NiSi, and CoSi, respectively,
and in both cases the strain introduced at the interface is correctly predicted.

13.4 Mineralogy

In the traditional topological approach to aluminosilicate minerals, the AlOy
and SiO, tetrahedra are treated as forming covalently bonded frameworks, with
the remaining atoms ionically bonded in the cavities (Liebau 1985, pp. 52ff.).
Since all bonds are divided into the strong bonds that form the framework and
the weak bonds formed by the interstitial ions, this approach runs into diffi-
culties when relatively strongly bonded interstitial ions (such as octahedrally
bonded AI*") are present. The hierarchical approach recognizes that such a
simple division into strong and weak bonds is not always appropriate and that
in many minerals there is a continuum of bond strengths ranging from the
strong Si—O bonds (1.0 vu) to the weak bonds formed by large alkali cations
(~0.1 vu). The process of constructing a mineral starts with the formation of the
strong bonds and continues with the formation of increasingly weaker bonds
until the whole structure has been formed as discussed in Section 11.2.2.

The systematics of mineral structure have been explored using bond valences
in a number of papers by Hawthorne (1985, 19925 (review), 1994, 1997) and Eby
and Hawthorne (1993) who have applied the hierarchical principle (Rule 11.5)
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to the description of mineral structures. There are many ways in which
the strongly bonded aluminosilicate framework can be arranged to form
either finite or infinite complexes and the one that is found in a particular
mineral is the one that provides the correct bonding strength to match the other
cations that are present. According to the valence matching rule (Rule 4.2),
the presence of strongly bonding cations such as transition metals (bonding
strength ~0.33 vu) results in the formation of strongly bonding SiOif com-
plexes, while the presence of weakly bonding alkali metals results in the for-
mation of weakly bonding condensed framework silicates as illustrated in
Fig. 4.6. In later papers Hawthorne has extended these ideas to phosphate
minerals (Hawthorne 1998) and to an examination of the role of water in
mineral structures (Hawthorne 1992a).

Wu and Farges (1999) have made use of eqn (9.17) relating bond valence
to the coefficient of thermal expansion to confirm that it is possible to resolve
the different thermal expansions of the long and short Th—O bonds in thorite
(a-ThSi104) from XAFS spectra measured between room temperature and
1700 K. They also use this relation to estimate the anharmonic corrections
needed for the bond lengths determined from XAFS (Brown ez al. 1995,
pp- 358-9).

13.4.1 Soil chemistry

Soils are composed of finely ground mineral crystals, typically minerals with
structures that are strongly bonded in two dimensions and consequently offer
easy planes along which the crystals can cleave. Weather and water grind these
crystals to a fine powder consisting of thin plates with large exposed surfaces,
allowing the crystals to bind to each other, to water or to other chemical species
depending on which atoms are exposed on the surface. When such minerals are
a major constituent in the soil, they form clays which are plastic when water can
bond to the surfaces and hard when the surfaces bond directly to each other. A
knowledge of the surface properties of soil minerals is therefore needed in order
to understand the properties of soils that are important in agriculture, engi-
neering, and waste management, including the problems of soil remediation,
and the ability of soils to hold water or to bind nutrients or toxins.

The surfaces of minerals are created either during crystal growth or subse-
quently through cleavage of the crystals. Determining the crystal habit and
surface properties of a face prepared during growth is difficult since it depends
on the growth condition and is largely kinetically controlled, but the process by
which crystals break along cleavage planes can be predicted by looking for those
planes that break the weakest set of bonds or that leave surfaces with the
smallest residual charge. In most cases the same set of planes will satisfy both
these criteria. As a practical criterion, cleavage planes are assumed to be those
that break the smallest total bond valence per unit area. The valence of the
broken bonds then represents the bonding strength of the surface, and the
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difference between the bonding strengths of the surface cations and anions gives
a measure of the residual charge on the surface (Koretsky er al. 1998).

To fully understand the properties of a surface, one needs to know both
the bonding strength of each potential binding site as well as its surface density
and depth below the surface. In an aqueous environment such as is usually
found in soils, water will bond to all surfaces, with oxygen bonding to the
surface cations and hydrogen bonding to the surface anions. Either way, the
exposed surface contains a mixture of O, OH, and OH, groups. The number of
bound H ions depends on the pH of the soil, and the degree of protonation at a
given site determines its ability to bond to other cations (Bleam 1993 and
references therein).

The proton affinity of different sites in soil minerals can be determined from
the degree of over- or underbonding of the surface oxygen ions as measured by
their valence sum. A surface O”~ ion bonded internally to three octahedrally
coordinated AI** ions has a bond valence sum of 1.5 vu assuming all the A1-O
bonds have equal valences. This degree of underbonding suggests that the
oxygen will accept two or three hydrogen bonds from adjacent water molecules
or that it will bind a cation with a bonding strength of 0.5 vu or less. If this 0>~
is protonated (i.e. is an OH™ group), it has a valence sum of 2.3 vu and is
overbonded. In such a configuration the O®~ ion is unable to bind any cations
but the high degree of overbonding suggests that this species will only be found
at low pH and will form strong hydrogen bonds (Section 7.4). Similar argu-
ments suggest that an O?~ bound to a single A" will be doubly protonated
(i.e. will be a water molecule) and, with a valence sum of 2.1 vu, will form
moderately strong hydrogen bonds. The best site for binding a weak cation is an
0O”~ ion bonded to two AI** ions and one proton since this will have a valence
sum of 1.8 vu, giving it a bonding strength of 0.2 vu.

Hiemstra et al. (1996) have used valence sums of this kind to explore the
proton affinities of the different surface sites in various oxides and hydroxides of
Si, Ti, Fe, and Al. In some crystals, particularly of the hydroxides, the bonding
around the cation is irregular so that the bonding strength of the surface atoms
depends on the particular strengths of the metal-O bonds. An analysis of the
surface of the goethite form of FeOOH (28247) shows that each crystal-
lographically distinct O~ site on the surface has a different bonding strength
and therefore a different proton affinity. As expected, O>~ ions bonded to a
single Fe'* ion are generally protonated and those bonding to three Fe'* ions
are generally unprotonated. Over the pH range normally encountered, only one
of the five crystallographically distinct O*~ sites is able to adsorb or desorb H*
(Venema ez al. 1998). Bond valence modelling of the Fe** clay mineral, ferri-
hydrite, combined with the measurements of the X-ray absorption near-edge
structure (XANES), reveals differences in the surface hydration depending on
whether the clay is wet or dry (Manceau and Gates 1997).

Bargar et al. (1997a,b,c) have explored the affinity of the surface oxygen
atoms in aluminum and iron oxides and hydroxides for Pb(II) and Co(II) using
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bond-valence modelled structures to interpret the results of surface X-ray
absorption fine structure (XAFS) measurements which give information about
the distances to atoms neighbouring the Pb or Co adatom. They are able to
show that Pb(II), which can form relatively strong bonds of 0.50 vu, and Co(I1),
which forms weaker bonds of 0.33 vu (Appendix 4), tend to bind to different
sites and that, for a given cation, some crystallographic faces have better
bonding sites than others.

Rohrer and Rohrer (1994) used Monte Carlo simulation with a bond valence
cost function to show that AI** dissolved in MgO migrates to the surface of the
crystal where it helps to passivate the active surface base sites.

Xia et al. (1997a,b) have used bond valences to model the coordination
environment of transition metals and Pb(II) complexed to humic, fulvic, and
other soil acids that consist of a mix of oxygen-containing organic species
capable of coordinating metal atoms. They compared the XAFS spectra cal-
culated for a model complex with the spectra measured from real samples and
conclude that the metal atoms form inner-shell complexes, i.e. they bond
directly to the organic acids rather than indirectly through the formation of a
hydrated metal complex. Other examples of the use of bond valences to model
surfaces are given below in Section 13.5.3.

The fine size of soil particles makes the determination of their bulk structure
difficult since it is generally impossible to obtain crystals large enough for single
crystal measurements. Thus X-ray absorption spectroscopy (XAS) provides
information not generally available by other means even for the bulk materials.
Manceau ez al. (1998) have made use of the sheet-like character of clay minerals
to prepare oriented films of Garfield nontronite on which they made oriented
extended X-ray absorption fine structure (EXAFS) measurements with polar-
ized X-rays. In order to compare these results with theory, they needed a good
model structure which they obtained using the Distance Valence Least Squares
(DVLS) program of Kroll ez al. (1992) described in Section 11.3. In this way
they were able to model the distortions in the archetype structure of smectic clay
minerals caused by incommensurations between the ideal structures of the
octahedral and tetrahedral layers.

13.4.2 Zeolites

The bond valence model can be applied to the structure of zeolites, though the
many different structures adopted by the aluminosilicate framework are better
described using simple topological models, since all the links between AlO,4 and
Si0O, tetrahedra that make up these frameworks can be treated as equivalent and
the bond valence model adds little to this description. However, it is possible to
use bond valences to look for potential binding sites for the interstitial cations
and water molecules that occupy the channels in the framework. The surfaces of
the channels can be analysed in the same way as the exterior surfaces of mineral
crystals (Section 13.4.1) by assigning varying bonding strengths to the O®~ ions
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that line the surface, and this, combined with valence maps (Section 11.2.3),
provides fairly severe restrictions on possible cations and cation sites.

13.4.3 Glasses

Bond valences can be used to study the structure of glasses as well as crystals,
though since glasses possess no long-range order, they present a different set
of problems. Swenson and Adams (2001) have used bond valences in conjunction
with a reverse Monte Carlo method to derive possible models of glass structures
from X-ray diffraction patterns. X-ray absorption spectroscopy (XANES,
XAFS, EXAFS) has been used to study cation environments in glasses and
melts as well as on surfaces (Section 13.4) and in enzymes (Section 13.6.1). In
these applications bond valences are used to generate structural models that are
consistent with the observed spectra. The solubilities of different impurities in
the glass can be examined by seeing which impurities have the best valence
match with the model structure (Brown et al. 1995 and references therein).

13.5 Chemistry

Bond valences can be used as part of the systematic examination of a series of
related structures or compounds as has been done by Efremov (1990) for lan-
thanum molybdates and tungstates. They can also be used for the systematic
modelling of a sequence of structures. Duhlev ez al. (1991) used bond valences
and hard-soft relations to show which compounds can be expected in the
system MX,-M'X,—H,0O where M and M’ are divalent cations and X is a
halogen, while Skowron and Brown (1994) used bond valence arguments to
show which compounds are possible in the phase diagram of the PbS—Sb,S;
system. Bond valences have also been used in more specialized applications as
described in the following sections.

13.5.1 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) measures the resonant frequencies of
nuclei in an externally applied magnetic field. Since the field at the nucleus also
contains a contribution from the internal field provided by the crystal, the
frequency of each nucleus is shifted by an amount that depends on the local
environment of the resonating atom. Measurement of this chemical shift has
long proved a powerful tool for analysing the structure of liquids and, with the
recent development of the magic angle spinning (MAS), chemical shifts can now
be measured with comparable accuracy in solids.

Since atoms in different environments experience different chemical shifts,
measuring the chemical shift can give information about the local environments
of the atoms. The measurements can be interpreted empirically but in many
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cases the chemical shift can be calculated directly from a knowledge of the
positions of the neighbouring atoms. The chemical shift of *°Si depends on how
many corners the SiO4 group shares with other SiO, groups and provides
information on the nature of the silicate complexes present. Sherriff and
Grundy (1988) showed that the chemical shift can be calculated from the dis-
tance and orientation of the bonds between the ligand O*~ ions and the second
neighbour cations, provided the influence of each bond is weighted by its bond
valence, i.e. the number of valence electrons associated with the bond.
Labouriau ez al. (1998) have applied this method to understanding the *Si
chemical shifts observed in titanosilicates.

Koller e al. (1994) have shown that the chemical shift of **Na is related to the
sum of the bond valence sums around each O®~ ligand divided by the cube of
the Na—O distance. They also modelled the quadrupole coupling constant by
calculating the electric field gradient at the Na™ nucleus in various minerals and
inorganic crystals and found good agreement using an ionic charge calculated
with the aid of eqn (13.3):

a— (23 h), (13.3)

where f; is the covalency of a bond related to the bond valence by eqn (13.4)
(Brown and Shannon 1973):

fy=ASy. (13.4)

In this equation 4 and M are fitted constants that are the same for all ions
having the same electron core. Skibsted ez a/. (1996, 1998) have used this method
for calculating the quadrupole coupling constants of **Cs and °'V.

Griindemann et al. (1999) have analysed the structures of transition-
metal hydrides and show that the H-H bond can be assigned a valence that
obeys the valence sum rule and is directly proportional to the NMR coupling
constant between the H atoms. Klein et al. (1999) have used NMR to study
the cooperative transfer of H atoms around the triple hydrogen bond ring in
4-nitropyrazole using bond valences to explore the shortening of the N... N
distances as the hydrogen bonds move through the symmetric transition state
(Section 7.4).

13.5.2 Transition-metal complexes

Most transition-metal cations can adopt several different oxidation states
depending on the method of preparation and the compound in which they find
themselves, but which oxidation state they adopt in a particular compound is
not always clear from the chemical formula or from the nature of the bonding
environment. Providing that the oxidation state is not zero, the bond valence
model can help because the metal-ligand bond can usually be described as an
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acid—base bond even when the organic components of the ligand do not lend
themselves to treatment by bond valences.

There are several reasons why transition-metal complexes are less amenable
than inorganic compounds to the application of the bond valence model. Firstly,
the ligands that surround the metal atoms frequently do not have bipartite
graphs. They may, for example, contain rings with odd numbers of atoms. This
means that the network equations ((3.3) and (3.4)) cannot be applied. The
bipartite condition is, however, usually satisfied around the transition metal
itself (except when the metal is in a very low oxidation state) and it is also
satisfied by a number of common ligands, e.g. NH;, C1I7, CH3;COO™. When
only bipartite ligands are present, the full bond valence model can be used, but
for ligands with non-bipartite graphs, e.g. CF;COO™, aromatic systems and
systems with odd-membered rings, the bond valence model will not, in general,
work unless the whole ligand is treated as a pseudo-atom capable of forming
both acid and base bonds as discussed in Section 3.5.

A second problem is the widespread occurrence of compounds in which
several different anionic elements bond to the metal (heteroleptic compounds).
Most inorganic compounds have homoleptic coordination, i.e. the cation is
bonded to only one kind of anion, making the determination of the bond
valence parameters relatively simple (Appendix 1). Homoleptic coordination
is much less common among the transition-metal complexes. As described
in Appendix 1, bond valence parameters for a variety of transition metals to
O, N, C, Cl, S, and P have been determined using heteroleptic systems
although the values obtained are often less reliable than those obtained from
homoleptic systems.

A third problem is the existence of high- and low-spin states for some tran-
sition metals. This is not a problem in inorganic oxides which are almost
invariably high spin, but for other ligands it is necessary to use different bond
valence parameters for the different spin states. Recent work (See ez al. 1998;
Shields ez al. 2000) also suggests that different bond valence parameters may be
needed for the same ligand atom in different environments. For example, the
bonds between a metal and N are shorter if N forms only one bond within its
ligand (e.g. N=C) than if it forms two or three bonds (e.g. NH;) even when the
formal bond valence is the same. As shown in Section 9.2, this is a consequence
of differences in 7 bonding that are not reflected in the bond valence.

In spite of these difficulties, there have been a number of determinations of
bond valence parameters for use in transition-metal complexes. In most cases
the bond valence parameters determined for oxides work well with transition-
metal complexes, but care is needed when the metal can be found in different
spin states or the ligand allows different degrees of m bonding.

In spite of these difficulties the bond valence model has been used to check
the oxidation state assignments of transition-metal complexes in the Cambridge
Crystallographic Database (Allen ez al. 1979; Palenik 19975; Shields ez al. 2000).
Even though each structure determination undergoes rigorous checking before
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being entered into the database, the calculation of bond valence sums has
revealed a number of errors, including the discovery of hydrogen atoms whose
presence had not previously been suspected. The method has also been used to
show, for example, that the copper atoms in [(LCu),(u—07)]X; complexes have
an oxidation state of +3 rather than the more usual +2 (Mahapatra ez al. 1996).

13.5.3 Heterogeneous catalysis

Transition metals play an important role in heterogeneous catalysis where
reactions occur on the surfaces of metal or oxide crystals. Typical of these
metals are V or Mo which exist in oxides with tetrahedral, tetragonal pyramidal,
or octahedral coordination and which can change their oxidation states with
minimal changes in their coordination environment. As in the case of soil
minerals (Section 13.4.1), bond valences can be used to determine the bonding
strength of the anions on the surface, by noting how far the valence sums
around the surface O?~ ions fall short of 2.00 vu.

Andersson (1982) has given a qualitative, though detailed, discussion of the
catalytic activity of various vanadium oxides, recognizing the tendency of the
adsorbed O®~ ions to increase the surface concentration of oxygen and thus to
oxidize the surface vanadium atoms to V>*. Zidtkowski (1983a) has proposed a
quantitative model for the oxygenation of propylene on the (201) and (202)
surfaces of Mn(V,Mo0),0¢ brannerite (24418), assuming that the bonding
strengths of the surface atoms are inversely proportional to their bond valence
sum. He has also explored the oxygenation and deoxygenation as well as
hydrogenation and dehydrogenation of various organic species on the surfaces
of MoQj; (35076) by assuming that the final products are the ones which give the
best agreement between the bond valence sums and the atomic valence
(Zidtkkowski 1983h; Zidtkowski and Wiltowski 1984). In later work Zidtkowski
and Dzienbaj (1985) have proposed a linear relationship between bond valence,
s, and bond energy, E:

E=1Is, (13.5)

where J is a constant (typically around 100 kCalmol™ vu™?) that depends on
the atoms forming the bonds.® Using this result, he has presented his earlier
studies in terms of bond energies (Zidtkowski 1986) and calculated surface
enthalpies. Although these are in qualitative agreement with the few experi-
mental results available, the predictions suffer from the difficulty of correcting
for surface relaxation (Ziotkowski 1988).

A somewhat different kind of catalytic surface, a monolayer of vanadium
grown on both the rutile and anatase forms of TiO, (202240, 202242), has been
modelled by Depero (1993) who uses bond valences to show which sites will be

3 But see the discussion in Section 9.1.
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favoured by vanadium and how V can bind a chemisorbed oxygen in such a way
as to allow for easy electron transfer.

Bond valences have been applied to the examination of layers of oxygen,
sulphur, or halogen adsorbed onto a pure metal substrate, either to analyse the
observed structures or to assist in the building of models needed for the inter-
pretation of low energy electron diffraction (LEED) measurements (Mitchell
et al. 1986). When two monolayers of oxygen are adsorbed onto the (0001)
surface of Zr, half the oxygen atoms lie on the surface and half lie in tetrahedral
sites below the first Zr layer. The different layers, starting at the surface, follow
the sequence (O1-Zr1-02-Zr2—Zr3-7r4-) in which the first three or four
layers represent a surface oxide film which can be modelled using bond valences.
The bond valence sums around O1 and O2 are 2.07 and 1.82 vu respectively,
while Zrl has a valence sum of 3.43 vu, reasonably close to the value of 4
expected for an oxide film. The valence sum around Zr2 is only 0.45vu,
consistent with its transitional character between oxide and metal (Wang
et al. 1997).

13.5.4 Esterification and hydrolysis

An ester is a compound formed between an acid RO,H and an alcohol or
oxyanion R'OH by the elimination of water according to the reaction:

RO,H + R'OH — > RO,R’ + H,O. (13.6)

The ester RO,R’ can be thought of as the compound formed from the Lewis
base, RO, and the Lewis acid, R'*, and its stability will be determined by the
similarity of their cation and anion bonding strengths.

The bonding strengths of the two components can be calculated in the fol-
lowing way. For both components the hydrogen atom is removed and valences
are assigned to the bonds within each complex based on the assumption that the
net (negative) charge is distributed equally among all the terminal O atoms
present as shown for adenosine diphosphate (ADP, ADENDP) in Fig. 13.4.
This charge is taken as the anion bonding strength of the species RO™ and the
valence of the R—O bond is taken as the cation bonding strength for the species
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Fig. 13.4. Assignment of bonding strengths in adenosine diphosphate (ADP).
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R™* (Table 13.3). Note that the base strength and acid strength for a given
species R add up to 2.0, the valence of O>~. Small corrections need to be made
to allow for the Lewis acidity of carbon-bonded H atoms which have the effect
of increasing the negative total charge by 0.03 for each H atom bonded to an
a-carbon and 0.02 for each H atom bonded to a f-carbon. The corrected
bonding strengths are shown in parentheses in Table 13.3.

The water is assumed to be eliminated by breaking the weakest O—H and
R-O bonds in the two reacting species. The stability of the resulting ester is
given by the ratio of the cation bonding strength to the anion bonding strength.
The most stable esters are formed when this ratio is close to 1.0 and, using the
observation from Fig. 4.6 that silicates with a bonding strength ratio greater
than 2 are unstable, compounds with ratios larger than 2 are expected to be
readily hydrolysed. Figure 13.5 shows that the bonding strength ratios for esters
correlate with the free energy of hydrolysis. Of particular interest is the biolo-
gically important conversion of ADP to adenosine triphosphate (ATP,
ADENTP) by reaction with HOPO?. The bonding strength ratio is 2 indi-
cating that ATP is on the edge of stability. As is observed in many biological

Table 13.3 Bonding strengths of organic acids and bases

R R* bonding strength RO™ bonding strength
CH;- 1.0 (0.91) 1.0 (1.09)

C,Hs— 1.0 (0.88) 1.0 (1.12)

Ph- 1.0 (0.96) 1.0 (1.04)
AdenosineO(PO,)O(PO,)— 1.4 0.6

CH;CO- 1.5 (1.45) 0.5 (0.55)

O;P- 1.25 0.75

Values in parentheses are corrected for the influence of carbon-bonded H.
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Fig. 13.5. Free energy of hydrolysis versus the raiton of cation to anion bonding
strength. Ac=acetyl, acetate, Ph = phenyl, Et =ethyl, ATP = adenosine triphosphate.
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systems, nature has selected a system that is on the verge of instability,
thus allowing it to be controlled by small changes in the ambient conditions
(see Section 13.6.1).

13.6 Biology

Biological chemistry takes place in the aqueous environment of the body of an
animal or plant. Therefore, in spite of the fact that the molecules involved are
largely organic in nature, the chemistry is essential acid—base chemistry and
therefore a good candidate for the application of the bond valence model, as
the example of adenosine triphosphate discussed in the previous section
(Section 13.5.4) shows. This section illustrates a number of other ways in which
the model has been used in biological systems.

13.6.1 Enzymes

Enzymes are proteins designed to catalyse particular biochemical reactions
by binding the reacting molecule (the substrate) and deforming it such a way as
to lower the activation energy for the reaction. In many enzymes a transition-
metal atom is involved in this process because such a metal can readily bind the
N or O atoms of the substrate and, by changing its oxidation state or the lengths
of its bonds, the metal can act as a reservoir for the exchange of electrons with
the substrate.

While X-ray diffraction is now routinely used to determine the structures of
proteins, the geometries obtained are not yet sufficiently accurate for a quan-
titative application of the bond valence model and in any case the transition
state for the enzymic reaction is, by definition, difficult to stabilize and examine.
Other techniques, such as EXAFS and infrared spectroscopy, applied to sub-
strates that are designed to mimic the geometry of the transition state, are used
to give information about the local environment of the metal. Although these
techniques can give more precise information about the bond lengths and
sometimes the oxidation state, they do not give accurate information about the
number and arrangement of the ligands. The bond valence model can play an
important role in complementing the experimental information to provide a
reliable description of the geometry before, during and after the reaction.

The EXAFS spectrum of a metal atom in a protein gives the lengths of the
bonds between the metal and its ligand atoms with sufficient accuracy to cal-
culate their bond valences. In principle it can also determine the number of each
type of bond that the metal forms, but the results are much less reliable.
However, calculation of the bond valences sum for the possible environments
allows one to determine not only the coordination number but also the
oxidation state of the metal atom (Thorp 1992; Hati and Datta 1995; Scarrow
et al. 1996; Bell et al. 1997; Clark-Baldwin ez al. 1998; Dooley et al. 1998).
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Garner et al. (1996) used bond valences to help find good binding sites for metal
atoms and Thorp (1998) has proposed a method of predicting the changes in
bond length that can be expected with a change in oxidation state, based on
minimization of the reorganization energy, a method that is closely related to
the principle of maximum symmetry (Rule 3.1).

Bond valences can also be used to model the structural changes that occur
during the enzyme reaction. Xiang ez al. (1996) postulate a mechanism for the
reaction of cytidine deaminase based on the conservation of the bond valence
sum around the Zn?* atom. The lengthening of a Zn-S bond by a small change
in conformation of the protein increases the valence of the Zn—O(H) bond,
facilitating the transfer of the H" ion to a neighbouring carboxylate group
which, in turn, releases its own H* to the nitrogen of the cytidine substrate.
Simultaneously the (Zn)O atom, having lost its H" ion and therefore having a
large unsatisfied bonding strength, removes the NH, group from the cytidine,
thereby completing the substitution of —H for —NH,. The key step in this
mechanism is the change in the protein conformation which lengthens the Zn—S
bond allowing the Zn>* to act as a valence (or electron) buffer. This is another
example of a system close to an instability where a small change in the ambient
conditions triggers a reaction (see Section 13.5.4).

Deng et al. (1993, 1998) and Ray ez al. (1993) have used V°* as an analogue of
P°* in an attempt to model the transition state of the hydrolysis of phospho-
diesters by ribonuclease A since V' is assumed to adopt the expected five
coordination more readily than P>". Examination of the vibrational spectrum
of the vanadate analogue indicates that the terminal V-O bonds are only
slightly weakened when bonded to the protein. A quantitative bond valence
analysis effectively rules out two proposed mechanisms that involve the pro-
tonation of the terminal O atoms.

13.6.2 Calcium and sodium binding by proteins

While transition metals are usually incorporated close to the active site of an
enzyme in order to support the catalytic activity, alkali metals and alkaline earth
ions are usually bound close to the protein surface. Glusker (1991) has reviewed
the structural aspects of cations bonding to proteins. Most cations can be
readily seen in crystal structure determinations using X-ray diffraction because
they have an electron density that is significantly different from that of the
carbon, nitrogen, and oxygen atoms that compose the protein and the sur-
rounding water. Sodium is an exception, since the Na' ion contains the same
number of electrons as a water molecule, and forms bonds to oxygen that are
similar in length to the hydrogen bonds between the water molecules them-
selves. It is not easy to decide whether a particular atom revealed by X-ray
diffraction is a water molecule or a sodium atom. Nayal and Di Cera (1996)
used bond valence sums to distinguish between these two possibilities. They
checked over 300000 water molecules that had been reported in 2742 protein
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crystal structures by calculating the valence sums for each on the assumption
that the atom was sodium. Because water molecules form fewer bonds (typically
four) than sodium (typically six or seven), they give a lower bond valence sum
than an Na‘ ion when the valences are calculated in this way. Most of the
atoms had valence sums less than 0.6 vu, but 64 had sums greater than 1.0 vu
and these were presumed to be Na™. There is no independent way of checking
whether this is correct but all were found to be bonded to one or more O atoms
in the protein, to have coordination environments typical of Na* and to occur
in the same place in multiple determinations of the same protein. In one case,
the Na™ could be replaced by Rb* at the same site. The circumstantial evidence
is strong that this is a reliable method of distinguishing between Na™ cations
and water molecules and the method has subsequently been adopted by others
(Shui ez al. 1998).

In an earlier paper, Nayal and Di Cera (1994) used valence maps (Section
11.2.3) to find suitable sites for bonded Ca®" ions. Ca?" valence maps were
calculated for 32 known calcium-binding proteins in regions close to at least
three protein oxygen atoms. In a traditional valence map, one would expect to
find a minimum with a valence of 2.0vu at a cation site, but since the water
molecules were not included in the calculation, these valence maps are inter-
preted in a different way. The site of a Ca®" ion far from the surface of the
protein has a valence sum of zero on this map because all its bonds are to water
molecules. Potential binding sites, on the other hand, will have several appro-
priately arranged neighbouring protein O atoms. Typical valence sums that
Nayal and Di Cera found in this map were around 0.4 vu except close to known
Ca”" sites where, in over 90 per cent of the cases, the valence map had a value
greater than 1.4 vu. Further, 87 per cent of the grid points with valences of this
size were found to lie within 100 pm of a Ca”* atom. This use of valence maps is
thus an elegant way of locating potential binding sites for Ca®" or any other
cation. The program VALE written by Nayal and Di Cera has been used by
Lu et al. (1998) to locate the site of the Ca®" ion that controls the behaviour of
the muscle protein titin. As mentioned in Section 13.6.1, a similar method was
used by Garner ez al. (1996) to find potential metal atom sites in enzymes.

Not all biological problems involve macromolecules. Cisplatine (cis-
dichlorodiaminoplatinum(II)) is an effective anticancer drug, but ensuring its
delivery to the active site in a patient involves knowing what chemical trans-
formations it might undergo along the way. This requires a good understanding
of its aqueous chemistry (Lock 1980). Cisplatine was known to form a variety
of aquo and bridged hydroxy species in silver nitrate solution, but these
species could never be isolated as solids. The valence matching rule was used to
show that water coordinated to Pt** would necessarily form relatively strong
hydrogen bonds and, since no suitable acceptors existed in the solid, the aquo
ligands would not be stable on crystallization. Similarly Lock argued that
the large anion bonding strength of the hydroxy group could only be satisfied
by bonding to two Pt>" ions, accounting for the high degree of polymerization
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in solution. This understanding of the aqueous chemistry of coordinated pla-
tinum was important in the design of drugs targeted to reach the active site in
the patient.

13.7 Databases

A bond valence analysis of entries taken from structural databases can be used
to check their quality. Palenik (1997b) and Shields et al. (2000) have used them
to check the assigned oxidation states and to detect errors that were missed by
more traditional checking methods in the Cambridge Structural Database
(Allen ez al. 1979) but, surprisingly, bond valences have been little used for
quality control in the Inorganic Crystal Structure Database (Bergerhoff ez al.
1983) though some accessing software now routinely calculates bond valences
as well as bond lengths.

Many users would like to search the Inorganic Crystal Structure Database for
sets of ‘similar’ structures. However, the term ‘similar’ is usually not well
enough defined to be useful as a search query. Some series of high-symmetry
compounds have identical structures (e.g. compounds with the NaCl structure)
and these are easy to retrieve by a variety of search strategies, but where the
structures are not identical, it is difficult to specify the nature of the similarity.
Most of the strategies so far developed rely on similar compounds having
either the same stoichiometry or crystallizing in the same space group
(Bergerhoff et al. 1999; Burzlaff and Malinovsky 1997; Parthe 1996), but neither
of these restrictions is a necessary condition for similarity. The perovskite family
of structures discussed in Section 13.3.1 provides a good example of similar
structures that crystallize in different space groups according to the mode of
relaxation (Woodward 1997a) and these often have compositions involving
more than one chemical species on either the A or B sites. An alternative
strategy based on the comparison of bond graphs might not pick up all similar
structures, though it should prove more flexible than requiring either identical
stoichiometry or identical space groups. A bond valence approach to this
problem has yet to be developed.
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Chemical implications of the bond valence model

14.1 Why is the bond valence model so robust?

It is appropriate to ask why an empirical model with such a poor theoretical
foundation is able to give such a good account of chemical structure. The
answer lies in the way the attractive and the repulsive forces between the atoms
are described, as discussed in the next two sections.

14.1.1 The attractive force

The attractive force arises from the valence electrons. Depending on the nature
of the bond, these are found either in the region between the bonded atoms (for
covalent bonds) or localized on the anions (for ionic bonds). The development
of the model described in Chapter 2 was based on the ionic model in which the
valence electrons were assumed to be located on the anions. The bonding in this
case arises from the electrostatic attraction between cations and anions, which is
represented by the electrostatic flux, or bond valence, linking them as shown
schematically for an anion and two cations in Fig. 3.2(a). The flux lines ter-
minate on the electrons that give the anion its charge but, since each of these
electrons is paired with one of the valence electrons of the anion, the total
number of electrons involved in the bond is twice the number of electrons that
have been transferred from the cation, both ions contributing equal numbers of
electrons to the bond. The bond flux is therefore also equal to the number of
valence electron pairs that form the bond. This number is not, of course,
necessarily an integer, since each bonding electron pair is spread over a finite
volume and may contribute to more than one bond.

Suppose that the electron pairs associated with a bond are now moved from
the anion into the middle of the bond so that they are shared equally between
the anion and cation, forming a covalent bond as shown in Fig. 3.2(b). The
number of electron pairs in the middle of each bond is still equal to the bond flux
as can be seen in the figure. The anion now carries a net positive charge equal in
magnitude to its original negative charge, since it has contributed one valence
electron to the bond for every valence electron contributed by the cation. The
electrostatic flux now connects both the cation and the anion with the bonding
electron pairs but the number of flux lines linking the two atoms remains
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unchanged; it is exactly the same as it was when the electrons were located on
the anion. Moving the bonding electrons from the anion into the bond does not
therefore change the bond flux or the bond valence. The location of the elec-
trons in the bond therefore makes no difference to the value of the bond valence.
Whether the bond is covalent or ionic, the degree of covalency or ionicity has no
direct effect on the bond valence.

One can even go a further step and transfer all the bonding electrons to
the cation but even this does not change the bond valence. Thus the bond
valence model works just as well when the cation and anion charges are reversed,
indicating that the model is perfectly symmetric with respect to the interchange
of positive and negative charge, a point taken up again in Section 14.5.

From this argument one can deduce that the model works equally well for
covalent and ionic bonds, which means that one does not have to worry about
which model, ionic or covalent, is the appropriate one to use in a particular
situation. But the argument leads to a more surprising conclusion, namely, that
the bond valence model cannot, in principle, distinguish between ionic and
covalent bonds. In the framework of the bond valence model the terms ‘ionic’
and ‘covalent” have no significance. They are only meaningful in models that
depend on how the valence electrons are distributed within the bond and, as
shown above, the bond valence depends only on the number of bonding elec-
trons, not their distribution. However, even though the bond valence model
gives no direct information about the degree of covalency, there is reason to
believe that weak bonds are more ionic and strong bonds more covalent, so that
the bond valence can be used as an indirect measure of covalency as given by
eqn (13.4) (Brown and Shannon 1973).

Instead of developing the bond valence model from the ionic extreme, it could
in principle have been developed assuming covalent bonds in which a certain
(non-integral) number of electron pairs reside within the bond itself and attract
the positively charged ionic cores of the two terminal atoms. This development
of the model is not as straightforward as the one given in Chapter 2, because
there is no easy way of determining the number of electron pairs associated with
each bond. However, this approach is the basis for the bond model in organic
chemistry where all the bonds are assumed to involve an integral number of
electron pairs, and it can be used to understand how bonds are formed between
two anions or two cations as discussed in Section 3.5. Unless these two bonded
atoms are related by symmetry, they do not necessarily contribute the same
number of electrons to the bond. Thus in the trifluoroacetate ion CF3CO;
discussed in Section 9.2, the central C—C bond receives different contributions
from the two C atoms, because the —CF; group carries part of the negative
charge of the ion and therefore contributes more electrons to the C—-C bond
than the carbon of the —CO, group. The pair of electrons forming the bond will
receive different fluxes from the two carbon atoms so that predicting the
properties of the bond becomes more difficult. However, the average flux (of
1.0 vu) agrees well with the observed bond length, and both the average flux and
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the bond length remain unchanged as charge is transferred from the oxygen to
the fluorine atoms (Brown 19800). The only thing that changes is the con-
tribution each C atom makes to the bond. In cases where the two atoms are
equivalent by symmetry, the bond valence model works because the symmetry
requires that each atom make equal contributions to the bond even though the
bond graph is not bipartite.

14.1.2  The repulsive force

The second force that is important in the model is the repulsion between atoms
in contact. This force determines the length of the bond for a given bond valence
according to eqn (3.1). The robustness of this equation lies in the fitting of the
parameters Ry and Bto observed distances, thereby compensating for a number
of systematic effects that affect the lengths of all the bonds. The example of an
inappropriate choice of atomic valence was discussed in Section 9.2. The
apparent shortening of the bonds by the thermal vibrations of the ions per-
pendicular to the bond (Section 9.4) is also taken into account because all
the bonds of a given type are subject to a similar shortening, so fitting the
bond valence parameters to the experimental measurements automatically
compensates for this effect.

The same is true of the influence of the repulsion between non-bonded
ligands. In Section 6.2 it was shown that the strong N-O bonds in the NO; ion
bring the ligand O?~ ions much closer together than would be possible if the
N-O bonds were weaker. In turn, the strong repulsion between the O®~ ions
causes the N—O bonds to be stretched and therefore longer than they would be
if the ligand repulsion were not present. However, all N-O bonds are subject to
a similar strain, and any variation in this strain will be a function of the bond
valence. The effects of ligand repulsion are thus also compensated by the use of
fitted bond valence parameters.

Another systematic effect is the influence of 7 bonding which might be
expected to shorten the bonds formed by certain transition-metal cations, since
the electrons involved in 7 bonding to the d shell are not included among the
valence electrons measured by the bond valence, but again, since all the bonds
between the same pair of ions will normally be affected in the same way, they will
all be subject to a similar shortening which, if it varies at all, will vary with the
bond valence. The important exception, which serves to show that this short-
ening is significant and cannot always be ignored, was discussed in Section 9.2.
Where the same pair of bonded atoms have n-bond character that is different in
kind, different values of Ry may be needed. For example -N=C=S can form =
bonds to transition metals, but —NH; cannot. The two types of metal-N bond
do not have the same w-bond character and therefore different fitted bond
valence parameters are needed (see, for example, the values given for Co—N
bonds in Appendix 1).
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The robustness of the bond valence model derives, therefore, from two
factors: the independence of the bond valences from the location of the bonding
electrons, and the use of fitted values for the bond valence parameters which
automatically compensates for systematic changes in the bond length produced
by other effects.

14.2 Two-body potential models

As pointed out in Chapter 2, the bond valence model is an accurate repre-
sentation of the ionic model developed in terms of the electrostatic field. Tra-
ditionally the ionic model has been developed in terms of the electrostatic
energy. The energy is calculated using a two-body potential composed of two
terms, one representing the Coulomb potential and the other representing the
effects of interatomic repulsions and van der Waals forces. The second potential
is short range and is only important between nearest neighbours, but the
Coulomb potential is long range and must be summed over all pairwise inter-
actions in the crystal. This form of the ionic model has had considerable success
in calculating the structures and properties of inorganic compounds (Catlow
1997) but it is based on precisely the same assumptions as the bond valence
model. The two models are therefore exactly equivalent, differing only in the
form of the empirical short-range potential, which in the bond valence model is
assumed to have the simple form of eqn (3.1) or (3.2). Each model has its
advantages and disadvantages. The two-body potential model can be used to
calculate the energy and properties of a solid for any configuration, but it is
computer intensive since calculation of the Coulomb energy requires summa-
tion over all the ion pairs. The bond valence model is intuitive and requires only
simple calculations, but does not yield the energy-related properties.

14.3 The properties of the bond graph

The way in which the bond valence model takes into account the long-
range Coulomb interactions is through the bond network and its solution
using the network equations (3.3) and (3.4). By means of these two equations,
which correspond to the law of charge conservation and the principle of
maximum symmetry, both the short-range and long-range interactions are
described in terms of localized bonds. The fact that the Coulomb field, which
provides the stabilizing energy in these systems, can be expressed in terms of
a local bond model means that at equilibrium the atoms arrange themselves
so that each atom is screened by its neighbours from the influence of more
distant atoms.

The graph of the bond network is simple and contains all the necessary
chemistry. It is fully defined by the atomic valences and the connections between
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nearest neighbours. The latter are essentially determined by the coordination
number which is limited by the relative sizes of the atoms. Thus the chemistry of
acid—base bonding can be reduced to two properties, the number of valence
electrons and the relative sizes of the ions. These are the only concepts normally
needed to account for the chemical structure and many of the properties of
acid—base compounds. It is no surprise that many other quantities used in
chemistry, such as electronegativity, are directly or indirectly related to size and
valence (see, for example, Figs 4.3—4.5), or that ultimately all chemical models
can be reduced to the same simple topological description as demonstrated in
the following sections.

14.4 The Lewis electron-pair model

The electron-pair model proposed by Lewis (1923) has proved popular with
generations of chemistry teachers since it expresses the charge conserving
electron counting rules in a simple graphical form. All bonds in this model are
assumed to be formed by electron pairs, with the two bonded atoms each
normally contributing one electron. A Lewis structure is represented by a graph
in which each electron pair is indicated by a line connecting the two bonded
atoms (Fig. 14.1). Where two or more electron pairs connect the same two
atoms, the bond is represented by two or more lines (double or multiple bonds).
Thus the total number of lines on the graph is equal to the total number of
electron pairs shared between the atoms. In order to avoid partially filled
valence shells, it is sometimes necessary to leave atoms with a net charge
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Fig. 14.1. Lewis structures of the carboxylate ion. (a) and (b) Two equivalent symmetry
breaking structures. (¢c) An alternative Lewis structure. (d) The average of (a) and (b)
which preserves the inherent symmetry of the ion.
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indicated by the appropriate number of + or — signs attached to the atoms.
The bond created by a shared electron pair is often described as a covalent
bond while bonding that results from the net atomic charges is considered to be
ionic and not directly treated by the model. The result is that all chemical bonds
are classified as being either covalent or ionic, a concept which has had the
unfortunate consequence of implying that covalent and ionic bonds must be
treated using two different and incompatible bonding models.

In spite of the strength of the Lewis model as a teaching tool, it runs into
several difficulties when applied to anything but the simplest systems. The first is
that most Lewis structures violate the principle of maximum symmetry. For
example, in the carboxylate ion, the simplest Lewis structure of RCOO™, shown
in Fig. 14.1(a), destroys the equivalence of the two O atoms, since the carbon
atom forms a double bond with one and a single bond with the other. To
complete the valence electron shell, the latter has to carry a full negative charge
as shown in Figs 14.1(a) or (b). Such asymmetry is observed when the car-
boxylate ion is bonded to a strong counterion such as Si*" as in (CH;C00),Si
(SIACET), but in most compounds both the C—O bonds are the same length as
expected from the principle of maximum symmetry (Brown 19805). Only by
enumerating and averaging all the equivalent Lewis structures can a graph be
obtained that maintains the equivalence of the two O atoms, a process which
has been given the unfortunate name of resonance, suggesting that the different
Lewis structures are in some form of dynamic equilibrium. In the case of the
carboxylate ion, averaging the two equivalent structures shown in Figs 14.1(a)
and (b) gives the structure shown in Fig. 14.1(d) in which the number of elec-
tron-pair bonds (the resonant bond number) is 1.5 for both C—O bonds leaving
a formal charge of —0.5 electrons on each O atom. This is exactly the bond
valence and residual atomic valence predicted by the bond valence model for
an isolated carboxylate ion (Section 9.2), but the bond valence model achieves
this description directly without invoking covalency, ionicity, or resonance.
When Lewis proposed his model, the electron was considered indivisible and
resonance was the only mechanism by which an electron-pair bond could be
shared between more than one pair of atoms. The later introduction of wave
mechanics removed this difficulty since each electron is now known to occupy
a finite volume which may be shared between more than one bond. If this
had been realized earlier, the Lewis model might have developed in a different
and simpler way.

A second problem presented by the Lewis model is the question of which
Lewis structures to include in the average. One can draw other Lewis structures,
such as that shown in Fig. 14.1(c), in addition to the two obvious structures
shown in Figs 14.1(a) and (b). In fact there are an infinite number of possible
Lewis structures, though only a few represent reasonable bonding models. How
far should one go in dreaming up possible (though physically implausible)
structures? Should the average be a weighted average and if so, how does
one determine the weights? Two criteria can be used to limit the number of
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structures considered. One criterion is to reject all structures that contain
atoms with residual charge (strictly only applicable for neutral molecules), the
other is to reject all structures containing atoms with partially filled valence
shells. Unfortunately, these criteria are often mutually exclusive. The problem is
further complicated in inorganic compounds by the infinite nature of the bond
network which requires, in principle, a doubly infinite set of Lewis structures,
explaining why the Lewis model is rarely used in analysing real, complex
structures, whatever its virtues may be in introducing the concept of a chemical
bond to neophyte chemists. Nevertheless Boisen ez a/. (1988) have made the
effort to average all possible Lewis structures in a number of minerals by
making a few reasonable assumptions to restrict the size of the calculation. They
enumerated the Lewis structures by restricting the search to a finite cluster of
uncharged atoms, the atoms on the outside of the cluster being given properties
that approximate their bonding to the extended crystal beyond. After a lengthy
calculation they showed that the resonance bond numbers correlate with bond
length in exactly the same way as the bond valence, i.e. the resonance bond
number and the bond valence are precisely the same.

The reason for this equality is not far to seek. Each Lewis structure that
contains no residual atomic charge is a bond network that obeys the valence
sum rule providing that the Lewis structure has a bipartite graph. However, in
general individual Lewis structures violate the principle of maximum symmetry.
This symmetry can be reincorporated by averaging over the full set of equiva-
lent Lewis structures. The result is a bond graph with a set of resonance bond
numbers that obey both the valence sum rule and the principle of maximum
symmetry. Since the resulting Lewis bond graph is the same as that of the bond
valence model, the resonant bond numbers satisfy the same network equations
as the bond valences. The underlying topology of both models is therefore the
same and it is only a matter of personal preference which model one uses. The
bond valence model has the advantage of simplicity, both conceptual and
computational, but the Lewis model is a convenient way of illustrating the
principles of shared electron bonds and can, with some effort, be used to derive
bond valences (Tytko 1999).

14.5 Why are cations different from anions?

The bond graph used in the bond valence model is a bipartite graph, meaning
that all the atoms are either cations or anions and that bonds are found only
between a cation and an anion. There is nothing in the bond valence model that
suggests that the properties of cations are in any way different from those of
anions apart from the difference in the sign of the charge. The model is com-
pletely symmetric with respect to the interchange of positive and negative
charge: changing positive charge into negative charge and vice versa does not
change any of the predictions of the model. Yet every chemist knows that
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Fig. 14.2. Bond graph of RbClO, (63363) showing the bond valences.

cations and anions behave quite differently. While the equal valence rule pre-
dicts that coordination environments will be equally regular around both
cations and anions, in practice the coordination around cations is found to be
much more regular than that around anions. This is illustrated by the structure
of RbClO, (63363) whose bond graph is shown in Fig. 14.2. The bonds around
CI’* are all similar having valences close to 1.75 vu. Those around Rb™ are
again similar with bond valences close to 0.15 vu, but the bonds around O~ are
very different, ranging from 0.1 to 1.8 vu. This is an extreme case but many
other examples can be found where the bonding around the cations is more
symmetric than that around the anions. There are very few cases where the
anion has a more symmetric environment than the cation.

This asymmetry is not inherent in the bond valence model, which treats
cations and anions entirely equivalently. It lies in the chemical nature of the
anions and cations themselves. In the case of RbClO, the asymmetry is driven
by the large valence of the C1”* cation, but anions rarely have valences greater
than —2 or —3, because the looseness with which each additional valence
electron is bound makes highly charged anions unstable. By contrast, the
removal of electrons to form cations results in a shrinkage of the ion as its
charge increases making the ion more compact.

Because the valence electrons of highly charged anions are spread over a large
volume, they readily overlap with the valence electrons of neighbouring anions,
resulting in the formation of band structures with semiconducting or metallic
properties. In such compounds one can no longer identify localized bonds and
the bond valence model can no longer be used.

The symmetry between cations and anions in the bond valence model can best
be seen in the compounds of the alkali metals and alkaline earths where the
cation valences are similar to those of the anions. Binary compounds such as
NacCl (18189), CsCl (22173), and ZnO (67454) are invariant under the inter-
change of the cations and anions since both kinds of ions occupy equivalent
sites. For compounds such as CaF, (29008) which crystallizes with the fluorite
structure, changing the signs of ions gives the antifluorite structure adopted
by the alkali metal oxides such as Na,O (60435). Although the antifluorite
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structures are less stable because of poor valence matching, there is a perfect
charge inversion symmetry between the structure and its anti-structure.

Asymmetry only arises when cations with larger valences are present. The
cation with the largest valence forms the strongest bonds and dominates the
structure as illustrated by the example of RbCl0O,. The Cl-O bonds take the
valence they need to create a symmetrical ClIO, complex ion, leaving only a
small residual valence available to the Rb* ion which, however, still manages to
adopt a relatively symmetric environment. The oxygen ion also adopts the most
symmetrical environment available to it given the large difference in the
bonding strengths of the Rb™ and CI’* ions.

14.6 Orbital models

In the bond valence model quantum effects are treated classically by including
them in the interatomic repulsion described by eqn (3.1) or (3.2). There are,
however, a number of cases where quantum effects are directly responsible for
deviations from the higher symmetry that would otherwise be expected. Such
electronically distorted structures were discussed in Chapter 8.

Electronic distortions are seen in two situations: when there are valence
electrons that are not involved in bonding, and when there are unfilled core
orbitals (specifically d orbitals) that have energies similar to the valence elec-
trons. These situations cannot properly be treated using a classical model and a
full treatment requires the solution of the quantum mechanical equations.
However, simplified orbital models can often give a good indication of when
such distortions will occur and what form they will take. The bond valence
model, being classical in character, does not include an explicit orbital descrip-
tion but treats electronic distortions in an ad hoc manner by adding point dipoles
and quadrupoles to the ionic point charge as needed. However, an orbital
description is helpful in determining what kind of multipoles should be
included.

When non-bonding valence electrons are present, the VSEPR model
(Gillespie and Hargittai 1991) provides a simple explanation which correctly
predicts the geometries of isolated molecules, but it is less effective in describing
the behaviour in solids where secondary bonds are present. Both VSEPR and
the bond valence model give only a semi-quantitative treatment, but the bond
valence model is able to explain under what conditions the stereoactivity of the
lone electron pair will be suppressed.

The situation for atoms with unfilled d shells is more complex. The orbital
models are able to indicate where distortions induced by degenerate or near-
degenerate states are likely to occur and what kind of distortion might be
expected, but a quantitative treatment requires a knowledge not only of the first
neighbours of the transition metal, but also of the full chemical context in which
the metal finds itself. The bond valence model can help to provide this context,
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though the only bond valence treatment worked out in any detail is for d°
transition metals (Kunz and Brown 1994).

In cases where there are no electronically driven distortions, the orbital
description provides no better account of the chemistry than the bond valence
model. Rather it tends to make an essentially simple situation more complex.
For example, consider the phosphate and nitrate anions, PO;~ and NOj. In
orbital models the P atom is described as sp® hybridized and the N atom as sp>
hybridized, but these descriptions are just representations of the spherical and
cylindrical harmonics appropriate to the observed geometries. They provide no
explanation for why P is four but not three coordinate, or why N is three but not
four coordinate. The bond valence account given in Chapter 6 is simpler, more
physical, and more predictive. The orbital description is merely a rather com-
plicated way of saying that the ions obey the principle of maximum symmetry
but implying that the constraints are related in some unspecified way to the
properties of one-electron orbitals rather than to the ionic sizes.

14.7 Electron density models

An approach to chemical bonding that is currently attracting attention is that
based on an analysis of electron densities calculated from quantum mechanics
or measured using X-ray diffraction. Since the electron density shows how the
electrons are distributed, it gives a better physical picture of the nature of
chemical bonding than other models. It has been admirably described by Bader
(1990) and, for inorganic solids, by Pendas e al. (1997, 1998) and Luana et al.
(1997), but it is only necessary here to give a brief account of the approach to
show why it is difficult to relate its concepts to those of the bond valence model.

The electron density is a continuous function that is experimentally obser-
vable, hence uniquely defined, at all points in space. Its topology can be
described in terms of the distribution of its critical points, i.e. the points at which
the electron density has a zero gradient in all directions. There are four kinds of
critical point which include maxima (A) usually found near the centres of atoms,
and minima (D) found in the cavities or cages that lie between the atoms. In
addition there are two types of saddle point. The first (B) represents a saddle
point that is a maximum in two directions and a minimum in the third, the
second (C) represents a saddle point that is a minimum in two direction and a
maximum in the third. One can draw lines of steepest descent connecting the
maxima (A) to the minima (D), lines whose direction indicates the direction in
which the electron density falls off most rapidly. Of the infinite number of lines
of steepest descent that can be drawn there exists a unique set that has the
property that, in passing from the maximum to the minimum, each line passes
successively through a B and a C critical point. This set forms a network whose
nodes are the critical points and whose links are the lines of steepest descent
connecting them.
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In an infinite solid this set of critical points obeys a number of theorems, the
chief being the Euler equation (eqn (14.1)):

a—b+c—d=0, (14.1)

where a, b, ¢ and d are the numbers of A, B, C, and D critical points respectively
in any infinite three-dimensional network. The topology of the critical point
network of the electron density is, in general, insensitive to small changes in the
electron density and hence it is insensitive to small changes in the bonding
geometry. However, if a large change is made in the position of an atom, a point
is reached where the topology changes discontinuously. At such a catastrophe
point, critical points are destroyed or created, corresponding to the breaking or
making of network links, but the number of critical points in the new topology,
like that in the old, still obeys Euler’s equation (eqn (14.1)).

One consequence of the insensitivity of the topology to the details of the
electron density is that one does not need to know the exact electron density in
order to determine its topology. It is sufficient, for example, to use the proatom
density, namely the electron density obtained by placing free atoms or free ions
at the observed atomic positions in the crystal. The topology is therefore not
sensitive to the relaxation of the electrons that occurs on compound formation.

The topology of the critical point network of the electron density can be
analysed in at least two different ways, each representing a particular chemical
viewpoint. One way is to use the critical point network to partition space into
atomic fragments. This description is based on a subset of the original network
that contains only the links between the D and C critical points. These define the
edges of a set of space filling polyhedra that have a D critical point at each vertex
and a C critical point at the position of maximum electron density along each
edge as shown in Fig. 14.3. Each polyhedron contains one A critical point,

Fig. 14.3. Atomic fragments in LiF. The A points (not marked) lie at the centres of the
two polyhedra, Lit in the cube and F~ in the larger polyhedron. For clarity, some C
points are omitted. The angled faces are the surfaces between F ™ ions.
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corresponding to an atomic centre, and each of the polyhedral faces contains
one B critical point at its electron density maximum. Each polyhedron thus
represents an atom and the whole space of the crystal is divided into atomic
fragments that share faces with a finite number of neighbouring atomic frag-
ments. The surfaces that separate them are zero-flux surfaces, i.e. they represent
surfaces at which the electron density is a minimum along any line connecting
the two atomic centres.

Since the electron density is a continuous function across the interatomic
surface, the two atoms that form the surface must have the same distribution of
electrons over this face. The most stable structures will be those which require
the least amount of redistribution of electron density when the free atoms come
together, that is, they will be formed between atoms that have similar surface
electron densities. This idea is related to the valence matching principle
(Rule 4.2) which states that the most stable bonds are formed between ions that
have similar bonding strengths. The bonding strength is thus related to the
surface electron density of the ion.

An alternative way of describing the critical point network is to consider only
the links connecting the A and B critical points. Since each B critical point is
linked to only two A points (a consequence of it being a minimum along only
one direction), the resulting network can be described as a network having
nodes only at the atoms, A, with the B critical points at the electron density
minimum on the lines connecting them. The links in this network are often
described as bond paths and the point B as a bond critical point, but the word
‘bond’ in this context is used in its topological sense of a link between two nodes
rather than in the sense of a chemical bond. Although this network may be
similar to the bond network defined in Section 2.5, the two are not the same and,
in order to avoid confusion, the electron density ‘bond’ network is here referred
to as a ‘B network’ and the links between the A nodes are referred to as ‘B paths’.
The term ‘bond’ will continue to be used to describe the electrostatic links
between atoms derived in Chapter 2.

These two topological descriptions of the electron density, one in terms of
atomic fragments, the other in terms of the B network, are equivalent but
complementary since every face of the polyhedral atomic fragment has a B path
passing through it at the B critical point. One may use whichever of these
topological descriptions is the most convenient for a particular purpose. In real
space the B path is not necessarily a straight line since it follows the line of
steepest descent in the electron density from A to B. Similarly the surface
between the atomic fragments is not necessarily planar. If the electron density
changes, the shape of the B paths and interatomic surfaces may change, even
though the topology (the network connectivity) remains the same. By definition,
a stable structure lies far from the catastrophe points where critical points are
destroyed or created.

The B network derived from the electron density topology links all atoms that
share faces. Although the B links are all topologically equivalent, only those
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between cations and anions correspond to the bonds of the bond network
described in Section 2.5. The remainder, those between two anions or between
two cations, correspond to what are traditionally referred to as non-bonding
contacts. While the distinction between bonds and non-bonding contacts is
irrelevant in the electron density model, it is essential in the bond valence model,
since the valence electrons are assumed to be associated only with the cation—
anion links, that is, with the bonds. In a bipartite bond graph there are no
valence electrons associated with the cation—cation and anion—anion contacts.
When solving the network equations ((3.3) and (3.4)), it is only the bond links
that are used.

In the electron density model it is common to use the electron density or
its Laplacian at the B critical point as an indicator of the type of B path that
is formed. A large electron density or negative Laplacian at this point indi-
cates a concentration of electrons in the middle of the B path, corresponding
to a covalent bond. A small electron density or positive Laplacian, on the
other hand, suggests that few electrons are concentrated in the middle of the
B path. Bader (1990) refers to these as closed shell interactions. Such interac-
tions are indicative of either an ionic bond or a van der Waals bond (non-
bonding contact), but the properties of the B critical points do not distinguish
between these chemically distinct interactions. Thus, although both the
electron density and the bond valence models can be represented by a network
of links between atoms in contact, the bond valence model distinguishes
between bonds (either ionic or covalent) on the one hand and non-bonding
contacts (van der Waals) on the other, while the electron density model dis-
tinguishes between covalent bonds on the one hand, and ionic and van der Waals
bonds on the other. If, however, one allows that the bond valence is a measure
of the degree of covalency as suggested in Section 14.1.1, then one would expect
the electron density at the B point to correlate with the bond valence, as has
been observed in theoretical calculations by Gibbs ez al. (1998) in minerals and
by Alkorta ez al. (2000) in bonds to carbon. It is hardly surprising that the
electron density at the B critical point would increase as the atoms are brought
closer together, since the shorter the interatomic distance the closer the B point
is to the electron density maximum of each of the atoms. One therefore needs
to be careful in assigning special significance to the electron density at the B
critical point.

A closer comparison of bond valence and electron density models is not
possible because of the different underlying assumptions of the models. The
forces in the bond valence model act between structureless point atoms, but the
forces in the electron density model are exerted by electrons on nuclei and vice
versa. This basic difference makes it difficult to compare the two models in
greater detail. They are best seen as complementary, the electron density model
providing important information about the nature of the bonding between the
atoms, the bond valence model providing a simple tool for predicting structure
and properties, particularly in cases where the structure is complex.
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14.8 The topology of the Madelung field

The topology of the Madelung field of the ionic model can also be described in
terms of critical points, but these points do not occur at the same places as those
of the electron density. The lines of electrostatic field (flux lines) described in
Chapter 2 are the lines of steepest descent in the electric potential field."! The
maxima (A critical points) in the Madelung potential field occur at the positions
of the cations and the minima (D critical points) at the positions of the anions.
The topology is thus different from that derived from the electron density where
all atoms are found at A critical points. However, the mathematical theorems
are the same. Space can be divided into polyhedra using the same constructions
as were used for the electron density. If the D critical points (anions) are chosen
as the vertices, one gets a partitioning of space into cation-centred fragments,
but if instead the A critical points (cations) are chosen as the vertices one gets a
partitioning into anion-centred fragments. These partitionings lead to the
cation and anion lattices discussed in Section 11.2.1.2 and help to show the
complementarity of these lattices.

Alternatively if all four kinds of critical point are chosen as vertices, one gets a
partitioning into fragments which each contain the flux lines of a single bond.
The surfaces of the bond fragment are zero flux surfaces, i.e. no field lines cross
into or out of the bond fragment. In this interpretation, each bond occupies a
finite space and every point in space belongs to one and only one bond.

14.9 Conclusions

There have been a number of attempts to provide a physical justification for the
bond valence model. Jansen and Block (1991) and Jansen et al. (1992) have
given a critical derivation starting from the Born-Meyer (1932) equation. Preiser
et al. (1999) have developed the model in terms of the Madelung field. Burdett
and Hawthorne (1993) have produced a justification based on an orbital
description, while Urusov (1995) has provided a semi-empirical groundwork
based on an eclectic selection of physical models. Whatever kind of theoretical
justification one wishes to use, the bond valence model provides a simple and
robust account of chemical bonding. The full quantum mechanical calculations,
while they describe accurately the distribution of electrons, and so give infor-
mation about the nature of chemical bonding, involve extensive computation
and do not easily yield the insights that are needed to understand the complex
interactions found in most crystals or large molecules. The bond valence
and quantum mechanical approaches are thus complementary. They provide
different kinds of information and are most useful in different situations.

! This field is not the physical electrostatic field observed in the crystal because the ionic model
takes no account of the distribution of electrons within the atom. The distributed charge of the
atom is replaced by a single point charge at its centre.
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There are simple underlying principles that govern structural chemistry, of
which the principle of maximum symmetry is one. Another is the notion that
the chemical properties of an atom are determined by the potential at the sur-
face of its electron core, the potential that the valence electrons experience. This
potential is proportional to the ratio of the atom’s charge to size, and it is no
surprise that this ratio determines such varied atomic quantities as bonding
strength, acid and base strength, and electronegativity.

When atoms are brought together to form a compound, it is the electrostatic
field that provides the cohesion whether the bonds are ionic or covalent.
Although this field is long range and results in a significant force being exerted
between well-separated atoms, it is fully described by the localized bond flux
linking neighbouring atoms, the long-range effects being automatically taken
into account by the network equations. It is therefore possible to describe
chemistry in terms of localized chemical bonds whose properties can be
predicted from the topology of the bond network.

Finally, a chemical compound must satisfy the constraints of three-dimen-
sional space. The physical and chemical properties of a solid or liquid are
determined by the interplay between the constraints of chemistry described, for
example, by the bond valence model, and the constraints of space. Ultimately it
is the ability of a chemical structure to be mapped into three-dimensional space
that determines whether or not it exists.

While more physically based models provide a picture of the underlying
forces that lead to chemical bonding, the bond valence model reduces the
rules of chemistry to their simplest mathematical form. In this form it is able
to provide insights into the behaviour of the many complex systems found in
acid—base chemistry.
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Appendix 1

Bond valence parameters

Al.1 Introduction

Pauling (1947) first suggested using eqn (3.1) to associate bond valences (bond
numbers or bond strengths) to interatomic distances in metals and alloys.
Bystrém and Wilhelmi (1951) then applied the same relation to oxides. Sub-
sequently Zachariasen (1954) and Zachariasen and Plettinger (1959) published
graphical correlations for U-O bonds. Clark et al. (1969) determined bond
valences for Si—O bonds by expressing the bond distance as a third degree
power series in S with four fitted parameters, though Perloff (1970) found a
simple linear relation worked for Cr—O and Mo—O bonds. Donnay and Allman
(1970) used eqn (3.2) with a linear extrapolation to S=0 at a finite value of R to
locate hydrogen bonds in minerals. Equation (3.2) was also adopted by Brown
and Shannon (1973) to produce a systematic listing of bond valence parameters.
Since then there have been many determinations of bond valence parameters
for both eqns (3.1) and (3.2) (Brown 1981) as well as more limited listings
of parameters for some of the other relations discussed in Section A1.3 below.
A listing of published parameters for use in eqn (3.1) can be found at
http://www.ccpl4.ac.uk/ccp/web-mirrors/i_d brown/bond valence parm/ and
a shorter selected list of bond valence parameters is given in Table Al.1.

The bond length—bond valence relationship is a measure of the repulsion
between ions. Equation (3.1) is based on the exponential Born-Meyer (1932)
repulsion potential and eqn (3.2) on the earlier power law of Born and Landé
(1918). Both equations contain two fitted parameters which is the minimum
number needed to give a reasonable fit over the limited ranges of bond lengths
normally found. Both give equally good fits, though eqn (3.1) is generally
preferred because of its more robust mathematical properties and the
approximate constancy of the parameter B. Neither equation describes the
relationship particularly well over an extended range of bond lengths, but
these are encountered in only a few cases such as the O—H bonds discussed in
Chapter 7.

Al1.2 Determination of bond valence parameters

This section discusses the determination of the bond valence parameters used in
eqns (3.1) and (3.2) though the principles can be applied to the other expressions
discussed in Section Al.3. Since there is no exact theoretical derivation of
the correlation between bond valence and bond length, the bond valence
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Table Al.1 Selected bond valence parameters for eqn (3.1)

Cation Anion Ry (pm) B (pm)
Agt I 238 37
Af;* 0% 162 37
G F- 162 37
B3+ 0 137.1 37
Ba?" oj 228.5 37
cH 0~ 139 37
Ca** F~ 184.2 37
Cat 0% 196.7 37
ca* Br- 249 37
Ccd? Cl™ 237 37
cr+ 0% 163.2 37
Co*" N*~ (two coordinate) 170 37
Co*" N*~ (three coordinate) 177 37
cr3t F~ 165.7 37
cr3t 0% 172.4 37
Crét 0 179.4 37
Cs*t Cl- 279.1 37
Cs" oj 241.7 37
Cu* o> 161 37
Cu?* 0% 167.9 37
cu’t 022* 174 37
Er’t s 246 37
Eut 0% 207.4 37
Fe?t 0% 173.4 37
Fe’t 0 175.9 37
Ga’* o0 173.0 37
Ge*t 0% 174.8 37
Hg?* Cc1- 228 37
Heg*t F- 217 37
| Chs 0% 200.3 37
K+ clr 251.9 37
K* 0% 213.7 37
La3*" 0% 217.2 37
Mg*t o 169.3 37
Mn3* 0% 176.0 37
Mo’ 0% 190.7 37
N5+ 0 136.1 37
NH, " 0% 222.6 37
NH,* F 212.9 37
NH,* clr- 261.9 37
Na* cr- 215 37
Na® F 167.7 37
Na*t 02~ 180.3 37

Nb>* 02~ 191.1 37
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Table Al.1 (Continued)

Cation Anion Ry (pm) B (pm)
Ni2* 0%~ 165.4 37
Pt 02~ 161.7 37
Pb**" §2- 254.1 37
pPd*+ Cl™ 253 37
Rb" 02~ 226.3 37
Ru’t 02~ 190 37
s+ 0%~ 164.4 37
§o+ 0%~ 162.4 37
Sp>+ 02~ 194.7 37
Sct 0%~ 184.9 37
Sitt 02~ 162.4 37
Sn?t 02~ 194 37
Sr* 0%~ 211.8 37
Te*t Ccl- 237 37
Ti*" 02~ 181.5 37
TI* 0%~ 212.4 37
Tm3* 02~ 200.0 37
V3t 02~ 180.3 37
Y3 0%~ 201.9 37
Ybi* 02~ 196.5 37
Zn?t 02~ 170.4 37
Zn%t S~ 209 37
Zn?t Te?~ 245 37

Mostly taken from Brown and Altermatt (1985) and Brese and O’Keeffe (1991). (A complete set is
available at http://www.ccpl4.ac.uk/cep/web-mirrors/i_d_brown/bond_valence parm/)

parameters, Rg, and B or N, must be determined empirically using experimen-
tally determined bond lengths.

In principle the bond valence parameters could be obtained by comparing the
experimental bond valences, S, determined using an initial set of bond valence
parameters, against the theoretical bond valences, s, calculated using the net-
work eqns (3.3) and (3.4). These initial values could then be refined to minimize
the differences given by the expression (Al.1):

> sy — Sy) (A1.1)

l

This method has not so far been used but should work well providing that only
structures with unstrained bonds are used.

The normal procedure is to refine the bond valence parameters by minimizing
the difference between the atomic valence and the sum of the bond valences
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around cations with only one kind of ligand (expression (A1.2)):

Z(ViZSi]) : (A12)

i

Since there are two bond valence parameters to be determined, at least two
cation environments are needed. In practice it is best to use at least 20—30
environments if these are available. Even so, there are a number of hazards. If
all the cations in the sample have the same coordination number and an average
bond valence of 1.0 vu, B necessarily refines to infinity (N refines to 0), but even
when different coordination numbers are present there is a strong correlation
between B (or N) and R,. The ambiguities caused by this correlation can be
resolved by calculating the valence sums around the anions as well as the
cations, but this is difficult to do in a systematic way since the anions usually
bond to more than one type of cation. A further uncertainty is introduced by the
choice of the maximum bonding distance since including longer distances in the
coordination sphere systematically increases B and decreases Ry (Adams 2001).
In the list prepared by Brown and Altermatt (1985), and by inference the list
based on it prepared by Brese and O’Keeffe (1991), all the bonds were assumed
to have valences greater than 0.04 times the cation valence.

While Ry can be determined with much greater precision than B (or ), the
correlation between the parameters means that making changes in B (or N),
even changes that lie well within the range of experimental uncertainty, requires
a corresponding, but significant, change in Ry. One must be careful, therefore,
to make sure that the value of Ry used is the one appropriate to the value of B
(or N) chosen.

B (or N)can only be determined with a precision of around 10 per cent even if
care is taken (Tytko 1999), but the observation that B lies between 32 and 42 pm
for many bonds means that it is convenient to fix its value at 37 pm for all bond
types (Brown and Altermatt 1985)." Any error that this assumption introduces
is usually negligible for most bonds to O®~ provided that the appropriate value
of Ry is used. Using the same value of B for all bond types makes the deter-
mination of Ry simpler since only one parameter now needs to be fitted.
Combining eqn (3.1) with the valence sum rule and rearranging yields
eqn (A1.3):

Ry = Bln{V/[%;exp(—Ry/B)]}, (A1.3)

where the summation is over all the bonds in a single coordination sphere, i.
Since all the terms on the right-hand side of this equation are known, it is easy to
calculate Ry, the value of R, that will give a valence sum exactly equal to V for

! Recent work suggests that B may be significantly larger than 37 pm for bonds between soft and
hard ions (Adams 2001).



228 APPENDIX 1

the ith coordination sphere. This procedure gives separate values of Ry; for each
coordination sphere examined but, if the valence sum rule and the value of B
chosen are valid, the values of Ry; should all be similar. Some variation is
expected as a result of experimental uncertainty and the presence of cation
environments that suffer from lattice-induced strain (Chapter 12), but it is easy
to check whether Rg; varies systematically with coordination number which
would be an indicator that the wrong value of B has been assumed. If the
variations in the individual values of Ry; are acceptable, the best value for Ry is
taken as the average (eqn (A1.4)):

Ry = (Roy). (A1.4)

The advantage of this method is that it can be easily used with any number of
cation coordination spheres whose bond distances are available. Even one
coordination sphere is sufficient to give a trial value though the more that are
used the more confidence one can have in the value of Ry. One needs to exercise
a little care if only a few coordination spheres are known, since the oxidation
state may be unstable except in the presence of strained bonds which could lead
to a false value of Ry. There are a number of potential pitfalls in determining
bond valence parameters. For example, the inclusion of poorly determined
structures in the sample tends to increase the value (and uncertainty) of Bwith a
corresponding decrease in Ry. A critique of these problems has been given by
Tytko (1999).

The above procedure was used by Brown and Altermatt (1985) to produce an
extensive table of bond valence parameters, mostly of bonds to O®~. They based
their refinement on cation environments in ordered structures with crystal-
lographic agreement indices (R) of less than 0.1 reported in the Inorganic
Crystal Structure Database (Bergerhoff ez al. 1983). A routine for calculating
Ry;1s available in the program VALENCE (Brown 1996) which can also be used
for calculating bond valences from bond lengths and vice versa. In this book,
the bond valence parameters of Brown and Altermatt (1985) are used where
available.

Brese and O’Keeffe (1991) extended the table of Brown and Altermatt to
many other anions by showing that R, for a bond between any cation and an
anion X (Ryx) is related to the value for the bond between the same cation and
0%~ (Rgo) by eqn (A1.5):

Rox = a+ bRyo, (AL.5)

where a and b are constants which they tabulate for each of the 11 anions (X)
they examined. Using eqn (A1.5), they were able to calculate values of R, for
969 different bond types. While these values are not as accurate as those found
by direct fitting, they are satisfactory for most purposes. In some cases Brese
and O’Keeffe ignore the variation of Rq with oxidation state but for many
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cations this does not introduce a large error, though for some of the softer ions
like Cu, Ry is quite sensitive to oxidation state. For the best results, the influence
of the oxidation state on Ry should not be ignored.

In a second paper O’Keeffe and Brese (1991) showed that R, could be
approximately determined from atomic parameters using eqn (A1.6):

Ro=ri+r— {"i"j(\@ — V&) /e + Cj"j)}, (A1.6)

where r; and r; are the atomic radii and ¢; and ¢; are the electronegativities of the
terminal atoms 7 and j respectively. While eqn (A1.6) extends the range of bond
valence parameters to cover virtually all bond types, the parameters it gives are
not accurate enough for most of the uses described in this book. These para-
meters should be used with caution in quantitative work.

More recently Liu and Thorp (1993) and others have addressed the problem
of determining the values of Rqin cases where the ligand is only present in mixed
ligand environments, so that it is impossible to determine Ry; in the manner
described above. Most of these studies have been made on transition-metal
complexes extracted from the Cambridge Structural Database (Allen er al
1979). Since these complexes usually have a mixture of ligating atoms (typically
O, N, or S), Liu and Thorp refined the values of Ryg, Ron, and Ryg simulta-
neously against the available bond lengths, the sample varying in size from 13
(for Ni*") to 116 (for Fe*"). Because the values for O~ and N°~ are very
similar, there is a strong correlation between the values of Ryg and Ryy. On the
other hand, Liu and Thorp derive different values for cations with different
atomic valences and even list different parameters for the vanadyl bond
(V**=0) and normal V**—0 bonds. Where comparison is possible the values of
Rq obtained by Liu and Thorp generally differ by less than 3 pm from those of
Brown and Altermatt (1985).

In a series of papers Palenik and his coworkers (Palenik 1997a.,b,c;
Kanowitz and Palenik 1998; Wood and Palenik 1998, 19994,b; Wood et al.
2000) have determined bond valence parameters for transition metals. Some of
these have been chosen to be independent of oxidation state in an attempt to
provide values of Ry that can be used when the oxidation state of the cation is
not known. While these parameters are not as accurate as those that take the
oxidation state into account, they can be used to make an approximate
determination of the oxidation state, after which the correct value of Ry can be
substituted.

In recent studies See er al. (1998) and Shields ez al. (2000) suggest that Ry
sometimes depends on factors other than the oxidation states of the cation and
anion. To obtain correct bond valence sums around transition metals with
nitrogen ligands, it is necessary to use different values of Ry depending on the
coordination number of N*~ as discussed in Section 9.2.

As the temperature of a crystal increases, it expands and the length of its
bonds also increases though the bond valences do not change. In order to
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calculate the correct bond valence for structures determined at high tempera-
tures, one needs to correct the value of Ry for temperature using eqn (9.21)
(Brown et al. 1997).

The bonds formed by H* need special treatment as described in Section 7.8.
No satisfactory analytical expression has been found that relates bond valence
to bond length though some suggested expressions are given in Section Al.3.
Using eqn (3.1) Alig et al. (1994) fitted H-O bonds with the parameters
Ry=91.4pm and B=40.4 pm determined from the bond valence sums around
H™*. Although these values give good valence sums around the H* ion, the
valence sums around O®~ were not checked and Alig et al’s parameters
do not agree with the curve shown in Fig. 7.1. The table given at
http://www.ccpl4.ac.uk/ccp/web-mirrors/i_d_brown/bond valence parm/ works
around the problem by providing three sets of values for Ry and B, respectively
90.7 and 28 pm for H-O distances less than 105 pm, 56.9, and 94 pm for H-O
distances between 105 and 170 pm, and 99 and 59 pm for H-O distances greater
than 170 pm. In general, it is best to assign valences to H-O bonds using the
graphical methods discussed in Section 7.8.

Al1.3 Other bond valence expressions

While eqns (3.1) and (3.2) have proved satisfactory for most purposes, several
other expressions have been proposed. Most do not address the failure of
eqns (3.1) and (3.2) to give correct valences at extreme distances but are moti-
vated by an attempt to use atom-based parameters or to provide some physical
justification for the relationship. As a result they are often more complex,
sometimes involving more than two parameters per bond. Some make direct use
of ionic radii which, however, come in many flavours. In general, it is not clear
that these other formulations provide significantly better fits to the valence sum
rule than the eqns (3.1) and (3.2), even though they may give more insight into
the underlying physics.

Ziolkowski (1985) derived an equation (A1.7) for the bond valence based on
notional free ionic radii, r, and r., extrapolated to zero coordination:

S=V(a—bV—cre—dVr)/R— (re + ra). (A1.7)

Here a, b, ¢, and d are universal constants which, however, depend on the way in
which the radii are defined. Since the true free ion radii are often negative (which
is unphysical), Ziotkowski defines a second set in which hydrogen is assumed to
have zero radius.

Ziotkowski’s equation can be simplified to the form given in eqn (A1.8),

S=ce/(R—f), (AL.8)

since, for a given bond type, e and f are constants which can be treated as
empirical parameters and fitted to observed bond lengths. This curve is steeper


http://www.ccp14.ac.uk/ccp/web-mirrors/i_d_brown/bond_valence_parm/

BOND VALENCE PARAMETERS 231

than eqn (3.1) for short bonds, f representing the bond distance at which S
becomes infinite. Subtracting a third constant, g, from the left-hand side of
eqn (A1.8) gives eqn (A1.9),

S=e¢/(R—f)—g, (A1.9)

and ensures that S =0 when R =f+ ¢/c. The length of a bond of 1.00 vu is then
R=f+e/(1+g). Brown (1987b) proposed that the H-O bond valence given by
the thin line in Fig. 7.1 could be approximated using eqn (A1.9) with e =41 pm,
f=60pm and g=0.16 pm. Bargar et al. (1997¢) recommend eqn (A1.8) with
e=24.1pm and f=67.7pm. Both these sets of parameters are better than
eqns (3.1) and (3.2) for O—H bonds, though neither is perfect. Brown’s para-
meters give a marginally better fit, but at the expense of a third fitted parameter.

Naskar et al. (1997) were interested in using bond valences to determine
oxidation states around transition-metal cations, particularly those with nega-
tive or zero formal oxidation states. Since these numbers cannot, in principle, be
reached by the standard equations, they proposed to create a fictional positive
oxidation state by arbitrarily adding 4.0 to the actual oxidation state. They
proposed to write the valence sum rule in the form of eqn (A1.10):

Vi+4=~1+a/m)d (Ri/Ry), (A1.10)

=ln

where 7; is the coordination number and a (=20) and R, are fitted parameters.
One may question the underlying assumptions of this equation, and the bond
valences determined in this way are different in kind from those determined by
the more traditional methods since different values are obtained depending on
whether one uses the cation or the anion as the central atom. However, the
expression, being empirical, must be judged on how well it discriminates
between the oxidation states and this still needs to be demonstrated.

Valach (1999) has proposed the use of the five-parameter eqn (A1.11) based
on a Taylor expansion of the quantum stabilization energy:

S= (/). (AL1.11)

v=1,5

The values of «, are not determined from the theory but, like other bond
valence parameters, are fitted to observed bond lengths in the manner described
in Section Al.2. The parameters that Valach reports for Cu—O and Cu—N
bonds give zero valence at finite bond lengths, but the valences calculated for
very short bonds are probably too low.

Mohri (2000) has proposed eqn (A1.12) based qualitatively on the notion that
the electron density in the interatomic region will be roughly uniform.

S:So((RO f)\)3/(Rf)\)3), (A1.12)
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where R’ is the bond length observed at a valence of Sy, and ) is the sum of the
core radii (Pauling’s cationic radii) of the two atoms. The parameters of
eqn (A1.12) can be directly related to the softness parameters of eqns (3.1) and
(3.2) by using the value of R for S;=1.

B=(R"—)\)/3, (A1.13)
N =3RY/(R" —\). (A1.14)

Using the parameters of eqn (A1.12) Mohri finds that 75 per cent of the values of
B lie within 5pm of 37 pm and that the values of N lie within about 10 per cent
of the values reported by Brown and Shannon (1973).



Appendix 2

Space group spectra

For a definition of space group spectra see Section 10.5. Spectra for all space
groups are arranged below (Tables A2.1-A2.10) in order of decreasing sym-
metry. The multiplicities of the Wyckoff positions, m,,, are given across the top
of each table. The symmetries of sites with multiplicity 1 are given at the end of
each line followed by structure types that crystallize in that space group (site
symmetries in parentheses refer to positions of multiplicity 2).

Table A2.1 Space groups of non-translational order 48

1 2 3 4 6 8 12 16 24 48 Site symmetry Example
229 Im3m 1 0 1 1 * % * 0 * * m3m
225 Fm3m 2 1 = % ox 0 = *  m3m NaCl, CaF,
221 Pm3m 2 0 2 0 % % % 0 % + m3m CsCl, SrTiO;

Table A2.2 Space groups of non-translational order 24

1 2 3 4 6 8 12 16 24 Site symmetry Example
227 Fd3m 22 0 = x 0 = 0 = 43m NaTl, spinel
226  Fm3c 2.0 2 0 % = = 0 ® 432, m3
224 Pn3m 1 2 1 = = 0 = 0 * 43m
223 Pm3n 1 0 1 1 = %= % 0 =+ m3
222  Pn3n 1 0 1 1 = = = 0 * 432
217 143m 1 01 %= = 0 %= 0 =+ 43m
216 F43m 4 0 0 = 8 0 = 0 * 43m ZnS
215 P43m 2 0 2 % = 0 %= 0 % 43m
211 1432 1 0 1 1 = = = 0 * 43
209 F432 21 0 0 = = = 0 * 43
207 P432 2 0 2 0 = = = 0 * 43
204 Im3 1 0 1 1 = %= % 0 =+ m3
202 Fm3 21 0 0 % % % 0 % m3
200 Pm3 2 0 2 0 % = = 0 = m3
191 P6/mmm 2 =* 2 % = 0 == 0 % 6/mmm

Table A2.3 Space groups of non-translational order 16

1 2 3 4 6 8 12 16 Site symmetry

139 T4/mmm 2 * 0 * 0 * 0 * 4/mmm
123 P4/mmm 4 * 0 * 0 * 0 * 4/mmm
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Table A2.4 Space groups of non-translational order 12

1 2 3 4 6 8 12 Site symmetry  Example
230  Tla3d 0 2 2 = = 0 = (3, 32) Garnet
228  Fd3c 1 2 1 * * 0 = 23
219  F43c 20 2 = * 0 = 23
218 P43n 1 0 3 = = 0 % 23
210 F4432 2 2 0 = = 0 % 23
208 P4,32 1 2 3 =« * 0 = 23
203  Fd3 2 2 0 = x 0 = 23
201 Pn3 1 2 1 * * 0 = 23
197 123 r 0 0 = 0 % 23
196  F23 4 0 0 = x 0 = 23
195 P23 20 2 = * 0 = 23
194  P6symmec 4 = = 0 & 0 = 3m, 62m
193 Pésymem 2 =  x  x & 0 = 3m, 62m
192 P6jmec 2 0« 2 x  ox 0 = 62, 6/m
189  P62m 20 s oxox w0 % 62m
187  P6m2 6 = = 0 = 0 = 62m
183 P6rmm * ® * 0 ® 0 ® 6mm
177 P622 2 % 2 % * 0 = 622
175 P6/m 2 * 2 * * 0 * 6/m
166  R3m 2 = 2 0 = 0 = 3m CdCl,
164 P3ml 2 0% 2 0 % 0 3m Cdl,
162 P3Im 2 % 2 x % 0 = 3m
Table A2.5 Space groups of non-translational order 8

1 2 3 4 6 8 Site symmetry Examples

141 I4;/amd 2 = 0 = 0 = 42m Anatase
140  I4/mem 4 % 0 % 0 = 422,42m, 4/m, mmm 8-CN perovskite
137 Pdynmc 2 = 0 = 0 = 42m
136 Pdpymnm 2 = 0 =* 0 = mmm Rutile
134 Pdyynnm 2 = 0 = 0 = 42m
132 Pdyymem 4 = 0 = 0 = 42m
131 P4yymmec 6 = 0 = 0 = 42m, mmm
129 P4nmm = = 0 == 0 = 42m, 4mm
128 P4/mnc 2 = 0 = 0 = 4/m
127 P4/mbm 4 =+ 0 == 0 = 4/m, mmm 8-CN perovskite
126  P4/nnc 2 x 0 = 0 = 42
125 P4/nbm 4 = 0 = 0 = 42m
124 P4/mcc 2 = 0 = 0 = 4/m, 42
121  142m 2 %« 0 % 0 = 42m
119  I4m2 4 = 0 = 0 = 42m
115  Pdm2 4 = 0 = 0 = 42m
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Table A2.5 (Continued)

1 2 3 4 6 8 Site symmetry Examples
111 P42m 4 * 0 * 0 * 42m
107 I4mm * * 0 * 0 * 4mm
99 P4mm * * 0 * 0 * 4mm
97 1422 2 * 0 * 0 * 42
89 P422 4 * 0 * 0 * 42
87 I4/m 2 * 0 * 0 s 4/m
83 P4/m 4 8 0 * 0 * 4/m
71 Immm 4 * 0 * 0 * mmm
69 Fmmm 2 * 0 * 0 * mmm
65 Cmmm 4 * 0 * 0 * mmm
47 Pmmm 8 * 0 * 0 * mmm
Table A2.6 Space groups of non-translational order 6

1 2 3 4 6 Site symmetry Examples

213 P432 2 o« o+ 0 % 32
206 Ia3 2 0« &= 0 = 3 Bixbyite
205 Pa3 2 0« 0 0 = 3
199 1243 0 = 8 0 = (3
190  P62c 4 o+ = 0 * 32,6
188  P6c2 6 = = 0 = 326
186 Pésmec = 0 = 0 = 3m Wurtzite
185 Pézem = % %= 0+ 3m
184  Pécc = o+ ox 0 = 6
182 P6322 4 = = 0 = 32
176 P63ym 2 = = 0 = 3,6
174 P6 6 = = 0 = 6
168 P6 # * = 0 % 6
167 R3c 2 0« o+ 0 % 32 Corundum, 9-CN perovskite
165 Pc31 2 %= o+ 0 = 32
163  P3lc 4 o+ = 0 % 3,32
160  R3m *= 0 = 0 = 3m
157  P3lm * % % 0 % 3m
156  P3ml *= 0 = 0 = 3m
155 R32 2 %= o+ 0 = 32
150  P321 2 %= o+ 0 = 32
149  P312 6 = = 0 = 32
148 R3 2 % 2 0 % 3
147 P3 2 0« 2 0 = 3
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Table A2.7 Space groups of non-translational order 4
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Table A2.7 (Continued)
1 2 3 4 Site symmetry
59 Pmmn * * 0 * mm2
58 Pnnm 4 * 0 * 2/m CaCl,
55 Pbam 4 * 0 * 2/m
53 Pmna 4 * 0 * 2/m
51 Pmma * * 0 % 2/m, mm2
50 Pban 4 * 0 2 222
49 Pcem 8 * 0 * 2/m
48 Pnnn 4 * 0 * 222
44 Imm2 * * 0 * mm2
42 Fmm?2 * * 0 * mm2
38 Amm?2 * * 0 * mm2
35 Cmm?2 * * 0 * mm2
25 Pmm2 * * 0 * mm2
23 1222 4 * 0 ® 222
22 F222 4 * 0 * 222
21 C222 4 * 0 * 222
16 P222 8 * 0 * 222
12 C2/m 4 * 0 * 2/m
10 P2/m 4 * 0 % 2/m
Table A2.8 Space groups of non-translational order 3
1 2 3 Site symmetry
198 P23 * 0 * 3
173 P6; % 0 * 3
161 R3c % 0 * 3
159 P31c * 0 * 3
158 P3cl * 0 * 3
146 R3 * 0 * 3
143 P3 * 0 * 3

Table A2.9 Space groups of non-translational order 2

1 2 Site symmetry Example
179 P6522 & * 2
178 P6,22 * 2 2
172 P6, * 2 2
171 P6, * s 2
154 P3,21 * 2 2
153 P3,12 * 2 2
152 P3,21 & * 2
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Table A2.9 (Continued)

1 2 Site symmetry Example
151 P3,12 * * 2
110 I4,cd % % 2
106 P4,bc % % 2
96 P4;2,2 * * 2
95 P4;22 * * 2
92 P4,2,2 * * 2
91 P4,22 * * 2
80 144 * ® 2
77 P4, % * 2
73 Ibca * * 2,1
62 Pnma * * m, 1
61 Pbca 2 * 1 Brookite
60 Pben * * 2,1
57 Pbcm * * 2,1
56 Pcen * * 2,1
54 Pcca * * 2,1
52 Pnna * * 2,1
46 Ima?2 ® ® m, 2
45 Iba2 * * 2
43 Fdd2 * * 2
41 Aba2 * * 2
40 Ama2 % * m, 2
39 Abm?2 % % m, 2
37 Cee2 * * 2
36 Cmc2, % % m
34 Pnn2 * ® 2
32 Pba2 * * 2
31 Pmn2, % % m
30 Pnc2 * * 2
28 Pma2 ® ® m, 2
27 Pce2 % % 2
26 Pmc2, ® ® m
24 1212121 * * 2
20 C222 % % 2
18 P2,2,2 % % 2
17 P222, % % 2
15 C2/c * * 2,1
14 P2, /c 4 % 1
13 P2/c * * 2,1
11 P2,/m * * m, 1
8 Cm * * m
6 Pm ® ® m
5 C2 * * 2
3 P2 ® ® 2
2 P1 8 % 1
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Appendix 3

Solution of the network equations

The network equations constitute a set of N, — 1 valence sum rule equations
(eqn (3.3)) and N, — N,+1 loop equations (eqn (3.4)) where the network
contains N, atoms and Ny bonds. Alternatively one can use the equivalent
Kirchhoff equations (2.7) and (2.11). One can readily write down N, equations
of type 3.3 but one of these is redundant since the sum of all atomic valences in
the crystal must be zero. There are many more than N, — N, + 1 possible loops
in most bond graphs, but only N, — N, + 1 are independent. Equations (3.3)
and (3.4) thus constitute a set of », equations which is exactly the number
needed to solve for the Ny, unknown bond valences, s.
These equations can be written using the connectivity matrix M:

M-s=V, (A3.1)

where s is the vector containing the Ny bond valences and ¥V is the vector
containing N, — 1 atomic valences and N, — N, + 1 zeros representing the sum
of the bond valences around the loops. The solution to this equation is

s=M"'.V, (A3.2)

which can be evaluated using standard matrix inversion methods, providing M
is known.

The N, — 1 equations of the type 3.3 can be easily written down, but selecting
the correct set of loop equations is more difficult since the inclusion of even one
loop that can be derived from other loops in the matrix makes the matrix
singular. The best procedure for selecting the correct loops is to construct a
spanning tree, i.e. a graph which contains no loops but in which all the atoms
are connected to the tree (Figs. 2.4, 2.5). This leaves Ny, — N, + 1 bonds from the
bond graph unselected. Each time one of these unselected bonds is added to the
tree, a loop is closed. An independent set of N, — N, + 1 loops can be chosen by
ensuring that each loop contains a different loop-closing bond.

A program to solve these equations has been described by Orlov et al. (1998).
O’Keeffe (1989) has described an alternative method that is suitable for per-
forming the calculation by hand. Rutherford (1990) has presented a way of
inverting the matrix that retains the symmetry of the equations by including all
N, of the equations of type 3.3. Brown (1977) has described a robust iterative
technique for solving the equations based on recognizing that eqn (3.4) is an
expression of the principle of maximum symmetry (Rule 3.1). In this procedure
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an initial set of bond valences is chosen by taking the average of V'/v for the two
terminal atoms, where V7 is the atomic valence and v the coordination number.
These initial values do not obey the valence sum rule, so the valences of the
bonds around each atom are, in turn, either increased or decreased by equal
amounts until the valence sum rule around that atom is satisfied. After carrying
out this procedure around each atom in the bond graph, each bond has been
adjusted twice, once to give the correct valence sum around the cation and once
to give the correct valence sum around the anion. The procedure is iterated to
convergence which usually requires a number of cycles equal to the number of
bond valences to be determined.

Alternatively the network equations can be solved by the method of simul-
taneous equations which is illustrated here for the case of CaCrFs whose bond
graph is shown in Fig. A3.1.

The symmetry of the bond graph shown in Fig. A3.1 can be used to simplify
the calculation by recognizing that two bonds joining the same pair of atoms,
and symmetry equivalent bonds, must have the same valences. This reduces the
number of independent bonds to six, whose valences are given symbolic values
a,b,c,d, e, and f. The valence sum equations (eqn (3.3)) around Ca, Cr, F1, and
F2 are then respectively:

2a+4b+c=2, (A3.3)
2d+2e+2f =3, (A3.4)
atd=1, (A3.5)
2b+e=1. (A3.6)

The sum equation around F3 is redundant since it is determined by the con-
dition of charge neutrality.

Wi
N

\\//

A3.1. The bond graph of CaCrFs showing the assignment of symbolic valences
(see Fig. 2.5).
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Two loop equations (eqn (3.4)) are needed to solve for six unknowns. One
possible choice is

a—b+te—d=0, (A3.7)
a—ctf—d=0. (A3.8)

One then proceeds to eliminate the variables one at a time. From (A3.5) and
(A3.6) one gets

d=1—a,
e=1-—2b.

Substituting these into the remaining four equations gives

2a+4b+c=2 (unchanged), (A3.39)
2a+4b—2f =1, (A3.47)
2a —3b=0, (A3.7")
2a—c+f=1. (A3.8")
From (A3.7') one gets
2a = 3b.

Substituting this into the remaining three equations gives
Tb+c=2, (A3.3"
Tb—2f=1, (A3.4")
3b—c+f=1 (A3.8")

From (A3.3") and (A3.4") one gets
c=2-—71b,
f=07b-1)/2.
Substituting this into (A3.8") gives
b=7/27=0.26vu,

hence substituting back one finds

c=5/27=0.18 vu,

f=11/27=041vu,
a=21/54=0.39vu,
e=13/27 =048 vu,
d=133/54=0.61vu.
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These values can be compared with the observed bond fluxes and valences
given in Table 3.1.

One problem with the network equations is that they can, on occasion, give
rise to negative bond valences which have no physical significance (expect to
indicate that, from a chemical point of view, the bond should not exist).
Rutherford (1998) has explored the resonance bond model as an alternative to
the use of the loop equation (Section 14.4) while Rao and Brown (1998) have
suggested using the method of maximum entropy (Section 11.2.2.1).
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Cation and anion bonding strengths

Table Ad4.1 Bonding strengths for cations

Element Atomic valence Bonding strength (vu) Ideal coordination number
H 14 0.82, 0.18

Li 14 0.205 4.9
Na 14 0.156 6.4
K 14 0.126 7.9
RDb 14 0.124 8.0
Cs 14 0.109 9.2
Be 2+ 0.501 3.99
Mg 2+ 0.334 5.98
Ca 2+ 0.274 7.31
Sr 2+ 0.233 8.57
Ba 2+ 0.195 10.24
Sc 3+ 0.49 6.2
Y 3+ 0.43 7.0
La 3+ 0.35 8.5
Ti 4+ 0.67 6.0
Zr 4+ 0.60 6.7
v S5+ 1.08 (average) 4.6
A% 4+ 0.71 5.6
A% 3+ 0.50 6.0
Nb 5+ 0.82 6.1
Ta 5+ 0.82 6.1
Cr 6+ 1.50 4.0
Cr 3+ 0.50 6.0
Mo 6+ 1.23 4.9
Y 6+ 1.07 5.6
Mn 4+ 0.67 6.0
Mn 3+ 0.52 5.8
Mn 2+ 0.34 5.9
Re 7+ 1.51 4.6
Re 5+ 0.83 6.0
Fe 3+ 0.53 5.7
Fe 2+ 0.34 5.9
Ru 5+ 0.83 6.0
Co 3+ 0.51 5.9
Co 2+ 0.35 5.7
Rh 3+ 0.50 6.0
Ni 2+ 0.34 5.9

Pd 2+ 0.46 4.4
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Table Ad.1 (Continued)

Element Atomic valence Bonding strength (vu) Ideal coordination number
Pt 4+ 0.67 6.0
Cu 2+ 0.45, 0.20 5.1
Cu 1+ 0.45 2.2
Ag 1+ 0.12—-0.50 5.1
Zn 2+ 0.33-0.50 5.0
Cd 2+ 0.25-0.40 6.1
Hg 2+ 0.25-0.50 5.5
B 3+ 0.87 3.46
Al 3+ 0.57 5.27
Ga 3+ 0.65 4.62
In 3+ 0.50 5.98
Tl 3+ 0.49 6.1
Tl 1+ 0.11-0.33 6.9
C 4+ 1.35 2.96
Si 4+ 1.00 4.02
Ge 4+ 0.89 4.51
Sn 4+ 0.68 5.86
Sn 2+ 04-0.7 4.4
Pb 4+ 0.70 5.73
Pb 2+ 02-0.5 6.9
N 54 1.67 3.00
P 54 1.25 4.01
As 54 1.13 4.41
As 3+ 0.98 3.07
Sb 54 0.83 6.05
Sb 3+ 0.43-0.75 4.8
Bi 3+ 0.37—-0.75 6.2
S 6+ 1.5 4.0
S 4+ 1.0—1.3 3.4
Se 6+ 1.5 4.0
Se 4+ 1.2 3.3
Te 6+ 1.0 6.0
Te 4+ 0.8—-1.3 4.1
Cl 7+ 1.75 4.0
I 7+ 1.2 5.6
I 54 1.3 3.8
NH, 1+ 0.12—-0.25

N(CH3)4 1+ 0.083

The bonding strengths and ideal coordination numbers (average coordination numbers observed
for O ligands) are mostly taken from Brown (19884). For soft cations a range of bonding strengths
is given. The cations are ordered by group, then by period, and then by oxidation state. Complex
cations are given at the end. A range of bonding strengths is given for soft cations.
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Table A4.2 Bonding strengths for mixed anions and cations

Complex Cation bonding strength (vu) Anion bonding strength (vu)
H,0 (liquid) 0.17 0.17
H,O0 (solid) 0.20 0.20
HF 0.17 0.06
NH; 0.17 0.50
(CH3),S0 (dmso) 0.07 0.25

Table A4.3 Bonding strengths for anions

Anion Formal charge Bonding strength
I 1— 0.083*
ClO, 1— 0.083
Br 1— 0.100*
NO; 1— 0.111
Cl 1— 0.142%
H,PO, 1— 0.167
HCO; 1— 0.167
SOy 2— 0.167
HPO, 2— 0.22
CO; 2— 0.22
F 1— 0.25
PO, 3— 0.25
BO; 3— 0.33
Si0Oy4 4— 0.33
OH 1— 0.39
O 2— 0.50

The anions are arranged in order of increasing bonding strength. These values are calculated by
assuming that O is four coordinate. The method of calculating bonding strengths of protonated
anions is described in Section 5.4. Anions marked with an asterisk (*) are soft and can adopt a
range of bonding strengths. Only the lower limit is shown.
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References to the ICSD and the CSD

Table A5.1 References to the Inorganic Crystal Structure Database (ICSD, Bergerhoff

et al. (1983).

Collection  Formula Reference

code

1312 B>Hg Mullen, D. J. E. and Hellner, E. (1977).
Acta Cryst. B33, 3816-22.

1914 Li(H,0);ClO, Sequiera, A., Bernal, 1., Brown, . D., and
Faggiani, R. (1975). Acta Cryst. B31, 1735-9.

2156 [Na,F(H,0);5] Baur, W. H. and Tillmans, E. (1974). Acta

Na(PO,), - H,O Cryst. B30, 2216-24.

2625 Ba,TiO4 Wu, K. K. and Brown, I. D. (1973). Acta
Cryst. B29, 2009-12.

6029 Hg, 36AsFq Brown, I. D., Cutforth, B. D., Davies, D. G.,
Gillespie, R. J., and Ireland, P. R. (1974).
Can. J. Chem. 52, 791-3.

6148 LaMnO; Tofield, B. C. and Scott, W. R. (1974).
J. Solid State Chem. 10, 183-94.

9852 TiO; (anatase) Horn, M., Schwerdtfeger, C. F., and
Meager, E. P. (1972). Zeit. Kristallogr.
136, 273-81.

9863 MgO Sasaki, S., Fujino, K., and Takeuchi, Y.
(1979). Proc. Japan. Acad. 55, 43-8.

9872 NH,F Adrian, H. W. W. and Feil, D. (1969).
Acta Cryst. 25, 438—44.

10196 T1;BO3 Marchand, R., Piffard, Y., and Tournoux, M.
(1973). C. R. Acad. Sci. €276, 177-9.

10253 BaRuO; Donahue, P. C., Katz, L., and Ward, R.
(1965). Inorg. Chem. 4, 306—10.

10286 CaCrF5 Wu, K. K. and Brown, I. D. (1973).
Mater. Res. Bull. 8, 593-8.

15198 CaCOs; (aragonite) dal Negro, A. and Ungaretti, L. (1971).
Amer. Miner. 56, 768—72.

15962 NH,HgCl;, Harmsen, E. J. (1938). Zeit. Kristallogr.
100, 208-11.

16031 CrOs Stephens, J. S. and Cruickshank, D. W. J.
(1970). Acta Cryst. B26, 222—6.

16382 CaSO, Kirfel, A. and Will, G. (1980).
Acta Cryst. B36, 2881-90.

16488 Bi4Ti;0,» Dorran, J. F., Newnham, R. E., and

Smith, D. K. (1971) Ferroelectrics 3, 17-27.
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Collection  Formula Reference

code

16759 MgSO, Rentzerperis, P. J. and Soldatas, D. T.
(1958). Acta Cryst. 11, 686-8.

18183 NaHCO; Sharma, B. D. (1965). Acta Cryst. 18, 818-9.

18189 NacCl Abrahams, S. C. and Bernstein, J. L. (1965).
Acta Cryst. 18, 926-32.

20201 Sc(NOs)zureay Kuskov, V. 1., Treushnikov, E. N.,
Sobolov, L. E., llyukhin, V. V., and
Belov, N. V. (1978). Dokl. Akad. Nauk
SSSR 239, 1097-1100.

22030 Cs,Cr30q9 Mattes, R. and Meschade, W. (1973).
Zeit. Anorg. Allgem. Chem. 395, 216-22.

22173 CsCl Ahtee, M. (1969). Ann. Acad. Sci. Fenn. Ser.
A6 Physica 313, 1-11.

23598 Ca;3(POy)2 Gopal, R. and Calvo, C. (1972). Nature
237, 30-2.

23759 BaTiO; Harada, J., Petersen, T., and Barnea, Z.
(1970). Acta Cryst. 26, 336—44.

24392 Cs,Sn,03 Braun, R. M. and Hoppe, R. (1981).
Zeit. Anorg. Allgem. Chem. 480, 81-9.

24418 Mo(Mo,V); 406 Koslowski, R. and Stadnicka, K. (1981).
J. Solid State Chem. 39, 271-6.

24916 NH4Br (CsCl) Seymour, R. S. and Pryor, A. W. (1970).
Acta Cryst. B26, 1487-91.

24944 CazAlSi3045 Meagher, E. P. (1975). Amer. Miner.
60, 218-28.

26127 K,TeClg Engel, G. (1935). Zeit. Kristallogr.
90, 341-73.

26332 SnySbeS3 Jumas, J. C., Olivier-Fourcade, J.,
Philippot, E., and Maurin, M. (1980).
Acta Cryst. B36, 2940-5.

26368 (Mg(H50)),CdClg Ledesert, M. and Monier, J. C. (1981).
Acta Cryst. B37, 652—4.

26374 Mg,Si0, Fujino, K., Sasaki, S., Takeuchi, Y.,
and Sadanaga, R. (1981). Acta Cryst.
B37, 513-8.

26579 NH,4Br (III) Levy, H. A. and Peterson, S. W. (1953).
J. Amer. Chem. Soc. 75, 1536-42.

27139 CoSi, Bertaut, F. and Blum, P. (1950).
C. R. Acad. Sci. 231, 626-8.

28247 FeOOH Szytula, A., Busewicz, A., Dimitrijewic, Z.,

Krasnicki, S., Rzany, H., Dodorovic, T.,
et al. (1968). Physica Statu Solidi
226, 429-34.
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Table A5.1 (Continued)

Collection  Formula Reference
code
29008 CaF, Willis, B. T. M. (1965). Acta Cryst.
18, 75-6.
29107 TICI Moéller, K. (1933). Naturwissenschaften
21, 223.
29384 MgSO,4(H,0), Calleri, M., Gavetti, A., Ivaldi, G., and
Rubbo, M. (1984). Acta Cryst. B40, 218-22.
30409 ZnSb>Og¢ Bystrém, A., Hék, B., and Mason, B. (1942).
Ark. Kemi. 15, 1-8.
30880 ZnV,0g Andreetti, G. D., Calestani, G., Montenero, A.,
and Bettinelli, M. (1984). Zeit. Kristallogr.
168, 53-8.
31840 ZnTe Zachariesen, W. H. (1926). Norsk Geol.
Tijdskr. 8, 302-6.
34243 3-Ga,04 Geller, S. (1960). J. Chem. Phys.
33, 676-84.
35076 MoO; Kihlborg, L. (1963). Ark. Kemi. 21, 357—-64.
36406 NH,4Co(NH3z), Raston, C. L., White, A. H., and
(803);-3H,0 Yandell, J. K. (1978). Australian
J. Chem. 31, 999—-1004.
38293 PbS Noda, Y., Ohba, S., Sato, S., and
Saito, Y. (1983). Acta Cryst. B39, 312-7.
39159 Sr>,ZnGe>05 Ochi, Y., Tanaka, K., Morikawa, H.,

and Marumo, F. (1982). Kobutsugaku
Zasshi 15, 331-41.

49915 (Mg(H,0)¢),CdBrg Dubhlev, R., Faggiani, R., and Brown, 1. D.
(1987). Acta Cryst. C43, 2044-6.
60311 Na,CO; van Aalst, W., den Hollander, J.,

Peterse, W. J. A. M., and de Wolff, P. M.
(1976). Acta Cryst. B32, 47-58.

60378 ZnS (sphalerite) Jumpertz, E. A. (1955). Zeit.
Electrochem. 59, 419-25.

60435 Na,O Zintl, E., Harder, A., and Douth, B.
(1934). Zeit. Electrochem. 40, 588—93.

60679 NH,4Br (NaCl) Callanan, J. E. and Smith, N. O. (1966).
Adv. X-ray Anal. 9, 159-69.

62089 Li,SO,-H,O Karppinen, M., Liminga, R. M., and
Lundgren, J.-O. (1986). J. Chem. Phys.
85, 5221-7.

62149 CaTiO; Sasaki, S., Prewitt, C. T., and Bass, J. D.
(1987). Acta Cryst. C43, 1668-74.

63363 RbCIO, Granzin, J. (1988). Zeit. Kristallogr.

184, 157-9.
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Collection

code

Formula

Reference

63324

65340

65441

65917

67046

67453

67454

68696

69127

69328

69387

71892

72165

72810

75253

75559

BazYCU306 +x

FC304

Hg,Cl,

LazNiO4

FeTiO;

ZnS (wurtzite)

ZnO

KH,PO,

Ni(H,0)6804

szClle 5

CazznG6207

MgAIZSi3012

EI'Z BaCuO 5

TINO;

Greedan, J. E., O’Reilly, A. H., and
Stager, C. V. (1987). Phys Rev. B
35, 8770-3.

Fleet, M. E. (1986). J. Solid State
Chem. 62, 75-82.

Calos, N. J., Kennard, C. H. L., and
Davis, R. L. (1989). Zeit. Kristallogr.
187, 305-17.

Jorgensen, J. D., Dabrowski, B., Pei, S.,
Richards, D. K., and Hinks, D. G. (1989).
Phys. Rev. B 40, 2187-99.

Ohgaki, K., Ohgaki, M., Tanaka, K.,
Marumo, F., and Takei, H. (1989).
Miner. J. (Japan) 14, 179-90.

Kisi, E. H. and Elcombe, M. M. (1989).
Acta Cryst. C45, 1867-70.

Fukiami, T. (1990). Phys. Stat. Solidi
Al117, K93-6. (see also 201373).

Mclntyre, G. J., Plasiewicz-Bak, H.,
and Olovsson, 1. (1990). Acta
Cryst. B46, 26-39.

Murasik, A., Fischer, P., Troc, R., and
Bukowski, Z. (1990). Solid State
Comm. 75, 785-8.

Armbruster, T., Rothlisberger, F., and
Seifert, F. (1990). Amer. Miner. 75,
847-58.

Armbruster, T., Geiger, C. A., and
Leger, G. A. (1992). Amer.Miner.

77, 512-21.

Salines-Sanchez, A., Garcia-Muiioz, J. L.,
Rodriguez-Carvajal, J., Saez-Puche, R.
and Martinez, J. L. (1992). J. Solid State Chem.
100, 201-11.

Jouauneaux, A., Joubert, O., Evain, M.,
and Ganne, M. (1992). Powder Diffraction
7, 206—11.

Sastry, P. U. M., Rajagopal, H., and
Sesquiera, A. (1994). Acta Cryst.

C50, 1854-7.

Sawada, H. (1994). Mat. Res. Bull.

29, 127-33.
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Collection  Formula Reference

code

75892 La,CuQy, Izumi, F., Kim, Y-I., Takayama-Muramichi, E.,
and Kamiyama, T.
(1994). Physica C 234, 841-2.

75896 HgBa,Ca,Cuz0g Bertinotti, A., Colson, D., Hamman, J.,
Marucco, J.-F., and Pinatel, A. (1994).
Physica C 235, §91-2.

78387 1,05 Fjellvag, H. and Kjekshus, A. (1994).
Acta Chem. Scand. 148, 815-22.

100218 Zn(Cl04),(H,0)s Gosh, M. and Ray, S. (1977).
Zeit. Kristallogr. 145, 146—54.

100676 CaCOs; (calcite) Effenberger, H., Mereiter, K., and
Zemann, J. (1981). Zeit. Kristallogr.
156, 233-43.

200108 a-Agl Cava, R. J., Reidinger, F., and
Wuensch, B. J. (1977). Solid State
Comm. 24, 411-6.

200139 M¢gSiO; Yagi, T., Mao, H. K., and Bell, P. M.
(1977). Carnegie Inst. (Washington)
Yearbook 76, 516-9.

200405 NaClO,4 Wartchow, R. and Berthold, H. J.
(1978). Zeit. Kristallogr. 147, 307-17.

201256 SrTiOs Hutton, J. and Nelmes, R. J. (1981).
J. Phys. C 14, 1713-36.

201373 KH,PO, Nelmes, R. J., Meyer, G. M., and
Tibballs, J. E. (1982). J. Phys.
C 15, 59-75 (see also 68696).

201773 AlIPO, Goiffron, A., Jumas, J.-C., Maurin, M.,
and Philippot, E. (1986). J. Solid
State Chem. 61, 384-96.

202240 TiO; (rutile)

202242 TiO; (anatase) Burdett, J. K., Hughbanks, J., Miller,

G. ., Richardson, J. W., and Smith, J. V.
(1987). J. Amer. Chem. Soc. 109, 3639—-46.
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Table A5.2 References to the Cambridge Structural Database (CSD, Allen et al. 1979)

Ref code Formula Reference

ADENDP Adenosine P,O, Hosur, M. V. and Viswamitra, M. A.
(1979). Curr. Sci. 48, 627-8.

ADENTP Na Adenosine P304 Kennard, O., Isaacs, N. W.,

Motherwell, W. D. S., Coppola, J. C.,
Wampler, D. L., Larson, A. C., and
Watson, D. G. (1971). Proc. Roy. Soc.
Lond. A325, 401-36.

DMSARU Ru(NH3)sDMSO(PFg), March, F. C. and Ferguson, G. (1977).
Can. J. Chem. 49, 3590-5.
OXACDHO04 (COOH)»(H,0), Sabine, T. M., Cox, G. W., and

Craven, B. M. (1969). Acta
Cryst. B25, 2437-41.

PDDMSX PdCl,(DMSO), Bennett, M. J., Cotton, F. A.,
Weaver, D. L., Williams, R. S., and
Watson, W. H. (1967). Acta
Cryst. 23, 788-96.

SIACET (CH;CO;,)4Si1 Kamenar, B. and Bruvo, M. (1975).
Zeit. Kristallogr. 141, 97—-103.
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List of symbols

bond valence parameter (pm) in eqn (3.1)

bond valence exponent in eqn (3.2)

number of atoms

number of bonds

bond length (pm)

bond valence parameter (pm) in eqns (3.1) and (3.2)

(length of a bond of unit valence)

ionic radius (pm)

theoretical bond valence (vu') defined by eqns (3.3) and (3.4)
anion bonding strength (vu) defined by eqn (4.1)

cation bonding strength (vu) defined by eqn (4.2)

effective valence (vu) defined by eqn (6.1)

experimental bond valence (vu) defined by eqn (3.1) or (3.2)
valence of the weak side of a hydrogen bond (vu)

atomic valence (formal ionic charge) (vu)

bond flux (vu) (Section 2.4)

ideal coordination number (Rule 4.1)

vu valence unit corresponding to one electron unit of charge.
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acetate ion 36, 87, 108-9
acceptor
electron, see acid; cation
hydrogen bond 184
acid
hard 50
soft 50, 62, 71, 104
strength 48
adenosine diphosphate 201-3
adjacency matrix, see connectivity
adsorption 201
Agl 159-60, 191
alkali halides 44, 61, 70
alkaline earth halides 61
AlLO; 48,71
AIPO, 47
ammonia (NH3) 54n, 62, 246
ammonium ion (NHJ) 87, 245
amorphous materials, see glasses
anatase, see TiO;
angle, see bond, angle
anion
bonding strength 45-6, 72—4
difference from cations 213
fragments centred on 147, 220
hard 50
minimum distance between 68
reaction with water 57
repulsion between 64-9, 76—80
soft 50
strong 47
weak 47, 52
asymmetric unit, see symmetry, asymmetric
unit
atom
charge
actual 16-17,106-7
dipole 91, 95-7, 101
formal 16-17, 19, 45n
multipole 15, 90-1, 93
quadrupole 100
definition 15-17
fragment, space filling 16—17, 217-18
thermal vibration of 112, 209
valence 3, 210
determination of 182-3
non-integral 1701, 174

Ba?t 68, 72-3, 244
base

Index

hard 50
soft 50
strength 47
weak 52
BaTiOs3 102, 124, 154, 187, 188-9
B>Hs 21
biology, applications in 203-6
bond
angle 108
capacitance 19-20, 26, 30, 93, 1034
covalent 31, 207-9, 219
critical point (B critical point) 218
definition
in the ionic model 17
operational 43
flux 9, 17-19, 23, 29, 93; see also bond
valence
force constant 110-12, 114
fragment, space filling 220
history of 3-5
ionic 31, 207-9, 219
length 27,33, 39, 77, 93, 106—10; see also
bond valence, bond length, correlation
with
network 20
path (B paths) 218
primary 23
properties 105-118
secondary 23n, 94-5
strain in 78-80, 92, 104, 16478
tertiary 23, 30n
thermal expansion 113-16
thermal vibration 112—13
Van der Waals 219
see also bond valence model; hydrogen

bonds; ionic model; Lewis electron-pair

model; orbital overlap model;
electrostatic valence model;
quantum mechanics; topology
bond graph 20-23, 102, 168, 210-11, 219
creation of 142-5
spectrum of 155n
see also circuit, equivalent

bond strain index (BSI) 104, 166, 172,177, 185

bond valence
bond length, correlation with 27-8, 33, 39,
92-3,225-6
expressions 27, 230-2
hydrogen bonds 77-80, 87-9
energy, correlation with 105-6, 200
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bond valence (cont.):
effective 67-8, 77-80
experimental 27, 92-3, 185
force constant, correlation with 111
sums 185, 189; see also valence sum rule
theoretical 29, 92
see also bond flux
bond valence model 9, 26-34, 207-10
physical justification 220
bond valence parameters 27, 1067, 209,
224-30
determination of 226-30
for hydrogen bonds 230
list of 225-6
relations between 228-9
thermal correction 118, 229
of transition metals 229
bonding strength
anion 45-6, 72—4
cation 46, 47, 57
maximum 46
minimum 46
tables of 2446
of water 53-4
brannerite 102, 200
BSI, see bond strain index
building blocks, fundamental 145-7

Ca’* 49, 601, 68, 244
CaCrFs 22,29-30, 32, 172-174, 241-3
CaF, 61, 157-8, 162, 214
Cambridge Structural Database, see
databases
Ca3 (PO4)2 49
catalysis
heterogeneous 200—1
CaTiOs 154, 187
cations
bonding strength 46, 47-9, 57
difference from anions 213
entropy of solution 57
fragments centred on 220
hard 50
hydrated 55-6
reaction with water 55-7
soft 50, 62, 71, 90, 104
strong 48
weak 48
Cd** 62, 68
CH,4 54n
charge
formal 45n
formal ionic 16, 19, 45n
ordering of 183
surface 195
see also atom, charge
chelation 52
chemical shift 198

INDEX

chemistry
applications to 197-203
crystal
the fundamental law of 129, 136
of hydrogen 84-6
circuit, equivalent 22, 104
cisplatine 205
cleavage 194
ClO; 45, 59, 834, 246
close packing 136
complexes
anion centred 147, 220
cation centred 147, 220
composite structures 165, 174-6
compounds
inorganic, being different from organic 4,
121
computer programs
bond valence (VALENCE) 228
bond valence maps 159
distance least squares (DLS) 161
distance valence least squares (DVLS) 161
occupation numbers (OccQP) 184
conductivity
ionic 190-1
superconductivity 189-90
connectivity 20—22
constraints
electronic 90-104
spatial 72, 76-80, 123-5, 164—178
coordination number 211
definition 23, 43
distribution of 65
ideal (average observed) 44, 67, 244-5
prediction of 64-74
rule 69, 135
symmetry, relation to 71, 131-2
Coulomb, see electrostatic field, Coulomb
covalency 198, 207
covalent bond 207, 211
Cr 68, 103, 245
Cr(H,O)3+ 55-6
crystal
lattice 122-5
thermal expansion 116-17
crystal chemistry, see chemistry, crystal
crystal structure
analysis of 184-5
composite 165, 174—-6
modulated 165, 174-7
non-stoichiometric 169-70, 174—6
similar 206
solution of 181-4
strained 29, 90-104, 164-78
superstructure, determination of 184
unstrained 29
validation of 185
see also modelling; space group; symmetry



INDEX 275

crystallization 141-2
Cs* 52,56, 64-5, 72, 244
CsCl 7, 44,70, 143,214
CSzCI‘3010 69-70

CSD, see database
CSzSn203 69-70

Cu?t 99, 245

database
Cambridge Structural (CSD) 199-200, 206
references from 252
Inorganic Crystal Structure (ICSD) 206
references from 247-51
defects
caused by lattice induced strain 169
modelling 161
see also grain boundaries
dimethylsulphoxide (dmso) 38, 62-3, 246
diffraction
electron 201
neutron 77, 88, 181, 191
powder 4, 76, 88, 181-2
x-ray 181
diffusion 159, 178
disorder, occupational, determination of
183-4
disproportionation 183
distortion
electronic 90-104, 191, 215
theorem 33-34, 189
see also strain
donor
electron, see base; anion
hydrogen bond 184

EELS 192
electrolyte, ionic 190
electron

core 221

density 6, 16, 216—19

Laplacian of 219
topological description 216-19

diffraction, see diffraction, electron

lone pair 93—8
electronegativity 211

Allen 48-9

Pauling 48
electroneutrality principle 16, 33, 135
electronic distortion, see distortion, electronic
electrostatic valence model 8-9
electrostatic field

Coulomb 14-15,90-1, 95-6

Madelung 15, 17-19, 90-3, 220
electrostatic flux, see bond flux
electrostatic force 207
electrostatic potential 7,9, 13, 14
energy

bond valence, correlation with 105-6, 200

conservation, law of 19
electrostatic 14
free, of solution 61
in ionic model 210
of thermal vibration 111
entropy, see solution, entropy of; symmetry,
entropy as a measure of
enzyme 203-6
epsomite (MgSO4(H,0)7) 60
equal valence rule 29, 33, 104
esterification 201
(EuS); 725(NbS;) 165, 174-5
EXAFS 196, 197, 203
expansion, thermal, see bond, thermal
expansion; crystal, thermal expansion

FCC packing 139-40

ferroelectricity 188-9

FeTiOs 154

fluorite (CaF,) 61, 157-8, 162, 214
force constant, see bond, force constant
forsterite (Mg, SiOy4) 49, 59, 63, 159

garnet (43 B2(X0y4)3) 69, 115-6, 141
Gauss’ law 17-18, 26
genetic algorithm 138, 182
GII, see global instability index
glasses 162, 191, 197
global instability index (GII) 104, 166-7, 168,
172,177, 184, 185
goethite 195
grain boundaries 1923
graph
bipartite 33, 34
non-bipartite 34-9
theory 7, 20-23
see also bond graphs

H* 75, 68, 75-80, 244
hydrated 59, 83, 85-6

hard sphere model 64-66

HCP 139-40

HF 54n, 246

Hgl* 35,39

ng_ngSF6 175*6, 190

ngclz 35-6

hierarchical principle 141, 193

hydrazinium ion (N;H¥) 35

hydrofluoric acid (HF) 54n

hydrogen bond 75-89
anion-anion repulsion in 76—80
bond valence, assignment of 87-9, 184, 230
bonding scheme 184
chemistry, structural 84—6
correlation between length and valence 77-8
non-oxygen donor or acceptor 86—7
normal 80-1
strong 81-3
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hydrogen bond (cont.):
in water 53—4
weak 83-4
hydrogen ion, see H"
hydrolysis 201

I+ 68, 92-3, 245

ICSD, see database

ilmenite (FeTiOs) 154

incommensurate structures 165, 174-7

Inorganic Crystal Structure Database, see

database

interatomic repulsion 64-9, 209-10

interfaces 192-3

1,05 92-3

ionic bond 207, 212

ionic charge, formal 16, 19, 45n

ionic conductivity 190-1

ionic model 5, 13-20, 160, 210
assumptions 13, 15-17, 25

ionicity 207

Jahn-Teller distortion 34, 99-100, 191

KH,PO, 108
Kirchhoff equations 22, 30, 93, 100, 103

La,Cu0Oy4 170-1, 190

La;NiO, 164, 168-72, 186—7

lattice, see crystal lattice

lattice induced strain, see strain, lattice induced

lattice models 138—-40

LEED 201

Lewis acid and base strength, see acid strength;
base strength

Lewis electron-pair model 3, 6, 211-13

liquids 53-63

Li(H,0):ClO4 84

Li;S04.H,O 185

Ln,BaCuOs 166-7

lone pair electrons 93—8

loop rule, see equal valence rule

macrocycles 52

Madelung, see electrostatic field, Madelung

magnetoresistance 191-2

maximum symmetry, see symmetry, maximum,
principle of

melilite (AzMN207) 177

melts 62-3

mercurous ion (HgZt) 35, 39

metals (metallic compounds) 13, 25, 214

methane (CHy) 54n

Mgt 46, 51, 53, 68, 74, 244

MgBr; 62

Mg(H,0)% 55-7, 60, 146

Mg(H,0)¢CdCds 146-7

MgO 73-4,192

MgSiO; 69
Mg,Si0, 49, 59, 63, 159
MgSO4 60
MgSO4 (H20)7 60
minerals 7, 51-2, 149, 193-7
Mn+ 99, 191-2, 244
modelling
a priori 134
of amorphous structures 162
bond graph, creation of 141-5
chemistry-based methods 140-57
of defect structures 161-2
of glasses 162
of inorganic structures 134—163
lattice models 13840
random structure methods 137-8
refinement of structure 1601
space based methods 136-40
space group method 6, 151-7
topology 135-57
of weakly bonded structures 156—7
see also genetic algorithm; Monte Carlo
methods; simulated annealing
modulated structure 165, 174-7
Monte Carlo method 138, 182, 191
multiplicity, see symmetry, multiplicity

N3+ 64-5, 68, 73
Nat 63, 68, 244
NaCl 4, 21-2, 32,44, 60-1, 70, 142, 143,
152-3,214
N32CO3 60
NazHCO3 60
Na,O 44,214
N(CHs)} 61
network equations 28—29, 93
solution of 240-3
see also valence sum rule, equal valence rule,
Kirchhoff equations
network
bond 20
in electron density (B network) 218—19
four-connected three-dimensional 148—9
neutron, see diffraction, neutron
NH; 54n, 62, 246
NH; 67, 245
NH,4Br 87
NHHgCl; 156
Ni(H,0)SO,4 84-5
NMR 197-8
NO; 37,96
NO3 66,216
non-bonding repulsion 209
non-stoichiometry 169-70, 174—6

orbital 71n, 215-6
orbital overlap model 3, 6
oxalic acid dihydrate 83



packing groups 156-7
Pauling
principles of crystal chemistry 8, 26
see also electronegativity; electrostatic
valence model, radii
Pb?+ 94,147, 189, 245
PbS 94,97
Pearson hard-soft acid-base, see acid; base
perchlorate ion (ClO4-) 45, 59, 83—4
perovskites 124-5,
bond graph, creation of 144-143
crystal chemistry 186-8
properties, physical 188—92, 193
space group, selection of 153-6
pH 58-9
phase transformation
displacive 171-2
reconstructive 172—4
phosphate, see PO~
physics, applications in 18693
pi-bonding 199, 209
pKa 47, 87, 109
PO~ 45, 47, 58, 107-8, 216, 246
protonated 58-9, 82, 202
polyhedra
coordination 64—74
linking of 147-51
probability density function 158—9
protein
Ca-binding 159, 205
Na-binding 204
see also enzyme
proton affinity 195

quadrupole coupling constant 198
quantum mechanics 6, 160, 216-19

radii
ionic 65-6
Pauling 667
radius ratio rule 65-6
RbBr 87
RbClO, 214
refinement of model structure 160—1
relaxation 168—172
relaxors 189
repulsion
interatomic 28, 64-9, 209-10
0-0 67-9, 71, 76-80
resonance 212
rutile, see TiO,

SbO; 94, 96
Schlegel diagrams 1501
silicates
enumeration of 148
formation 52
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magmas 52, 63
non-existent 51-2
thermal contraction in 116—7
simulated annealing 137-8, 182
Si0, 148-9
Sn?* 94, 245
SO%~ 45-6, 57
soils 194-6
solubility
aqueous 59-62
of soft cations 62
solution
aqueous 59-62
entropy of, cations 57
non-aqueous 62-3
space 121-2
constraints imposed by 32, 72, 164-78
space group 121-33
used in modelling 151-7
space group spectrum
defined 130
tables of 233-9
spanning tree 22
spectroscopy
infra-red 110, 203
Raman 110
see also EELS; EXAFS; XAFS; XANES;
XAS
sphalerite (ZnS) 24, 153, 162, 214
StTiO; 144-5, 153-4, 193
stability 49n
steric effects, see strain, lattice induced,
hydrogen bond, anion-anion repulsion in
stoichiometry
lack of in inorganic crystals 169, 174-6
strain
electronic 90-104, 185, 189
lattice induced 124, 164-8, 185, 187
effect on thermal expansion 115
relaxation of 168—74
see also bond, strain; crystal structure,
strained
stress, see strain
structure making and breaking 57
structure, see crystal structure
sulphate ion (SO37) 45-6
protonated 58-9
superconductivity 171, 189-90
surface 195-6, 2001
adsorption on 201
charge 195
proton affinity of 195
symmetry
asymmetric unit 125
of bonded neighbours 130-2, 151
crystallographic point groups 129
entropy as a measure of 145, 155-6
glide plane 126
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symmetry (cont.):
Hermann-Mauguin symbols 127n
inversion 126
maximum, principle of 29n, 31-3, 71, 133,
136, 213
mirror plane 126
non-translational unit 127-9
packing group 156-7
rotation 126
screw axis 126
site multiplicity 128-9, 151
site symmetry 127-9, 151
special positions 1269
in structure modelling 6
translational 122
Wyckoff positions 127-32, 151-2
thermal expansion 113-7, 194
Ti*+ 101-4, 244
TiO, 17-18, 23, 29, 150—1, 200-1
TIT™ 50, 92, 94, 97-8, 245
T3BO; 97
TINO3 97
topology 7, 20-3
of the electron density 216—19
of the Madelung field 220
modelling 135-57
transition metal 38, 198—104
bond valence parameters for 199, 225-6,
229-30
bonding strength 244-5
complexes 198-200
electronic distortions in 98—104
pi-bonding in 199
trifluoroacetate ion 36, 87, 10910, 208-9
two-body potential model, see ionic model

Urey-Bradley force field 110-12

V3 1024, 200, 244
valence, atomic 3, 33, 210

determination of 182-3

non-integral 170-1

see also bond valence
valence map 157-60, 1901, 205
valence matching principle 49, 70

applications 51-52, 194

in aqueous solutions 60—61

in melts 62-3

in modelling 1424
valence sum rule 28, 32, 213
valence unit, defined 23n
VSEPR (valence shell electron pair repulsion)

model 93-4, 97, 215

water 85

bonding strength 53—4, 246

reaction with anions 57-9

reaction with cations 55-7

see also hydrogen bonds; solubility, aqueous
whitlockite (Caz;(PO4),) 49
wurtzite (ZnO) 24-5, 29, 73—4, 143, 153,

214

XAFS 194, 196, 197
XANES 183,197

XAS 196

Xebt 94

x-ray, see diffraction, x-ray

YBCO (YBa,CusOsyy) 171, 189, 193

zeolites 149, 1967

Zn**t 24,51, 62, 64-5, 68, 734, 245
ZnBr, 62

ZnO see sphalerite, wurtzite
ZnSbyOg 102

ZnV,04 102



