Preface

This book is the culmination of about ten years of studying sulfuric acid plants. Its objectives are to introduce readers to sulfuric acid manufacture and to show how acid production may be controlled and optimized.

One of the authors (MJK) operated an acid plant while writing this book. His Ph.D. work also centered on analyzing sulfuric acid manufacture. He is now a sulfuric acid and smelter specialist with Hatch.

The other author (WGD) has been interested in sulfuric acid plants since his 1957 student internship at Cominco's lead/zinc smelter in Trail, British Columbia. Cominco was making sulfuric acid from lead and zinc roaster offgases at that time. It was also making ammonium sulfate fertilizer.

In the book, we consider $SO_2(g)$ to be the raw material for sulfuric acid manufacture. Industrially it comes from:

- (a) burning elemental sulfur with air
- (b) smelting and roasting metal sulfide minerals
- (c) decomposing spent acid from organic catalysis.

These sources are detailed in the book, but our main subject is production of sulfuric acid from $SO_2(g)$. Readers interested in smelting and roasting offgases might enjoy our other books *Extractive Metallurgy of Copper* (2002) and *Flash Smelting* (2003).

The book begins with a 9 chapter description of sulfuric acid manufacture. These chapters introduce the reader to industrial acidmaking and give reasons for each process step. They also present considerable industrial acid plant operating data. We thank our industrial colleagues profusely for so graciously providing this information.

The book follows with a mathematical analysis of sulfuric acid manufacture. It concentrates on catalytic $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3$ oxidation. It also examines temperature control and production of $H_2SO_4(\ell)$ from $SO_3(g)$.

We have tried to make our analysis completely transparent so that readers can adapt it to their own purposes. We have used this approach quite successfully in our examinations of several metallurgical processes. We hope that we have also succeeded here. We have used Microsoft Excel for all our calculations. We have found it especially useful for matrix calculations. We also like its Goal Seek, Visual Basic and Chart Wizard features. All the Excel techniques used in this book are detailed in our forthcoming book *Excel for Freshmen*. Please note that, consistent with Excel, we use * for multiply throughout the book.

A note on units – we have used SI-based units throughout. The only controversial choice is the use of K for temperature. We use it because it greatly simplifies thermodynamic calculations. We use bar as our pressure unit for the same reason. Lastly we use Nm^3 as our gas volume unit. It is $1 m^3$ of gas at 273 K and 1 atmosphere (1.01325 bar) pressure. 22.4 Nm^3 contain 1 kg-mole of ideal gas.

We were helped enormously by our industrial colleagues during preparation of this book. We thank them all most deeply.

As with all our publications, Margaret Davenport read every word of our typescript. While she may not be an expert on sulfuric acid, she *is* an expert on logic and the English language. We know that if she gives her approval to a typescript, it is ready for the publisher. We also wish to thank George Davenport for his technical assistance and Vijala Kiruvanayagam of Elsevier Science Ltd. for her unflagging support during our preparation of this and other books.

Lastly, we hope that our book *Sulfuric Acid Manufacture* brings us as much joy and insight as Professor Dr von Igelfeld's masterpiece *Portuguese Irregular Verbs*[#] has brought him.

William G. Davenport Tucson, Arizona Matthew J. King Perth, Western Australia

See, for example, At the Villa of Reduced Circumstances, Anchor Books, a Division of Random House, Inc., New York (2005), p63.

CHAPTER 1

Overview

Sulfuric acid is a dense clear liquid. It is used for making fertilizers, leaching metallic ores, refining petroleum and for manufacturing a myriad of chemicals and materials. Worldwide, about 180 million tonnes of sulfuric acid are consumed per year (Kitto, 2004).

The raw material for sulfuric acid is SO₂ gas. It is obtained by:

- (a) burning elemental sulfur with air
- (b) smelting and roasting metal sulfide minerals
- (c) decomposing contaminated (spent) sulfuric acid catalyst.

Elemental sulfur is far and away the largest source.

Table 1.1 describes three sulfuric acid plant feed gases. It shows that acid plant SO_2 feed is always mixed with other gases.

Table 1.1. Compositions of acid plant feed gases entering SO₂ oxidation 'converters', 2005. The gases may also contain small amounts of CO₂ or SO₃. The data are from the industrial tables in Chapters 3 through 9.

	Sulfur burning furnace	Sulfide mineral smelters and roasters	Spent acid decom- position furnace
Gas		volume %	
SO_2	11	10	9
O ₂	10	11	11
N ₂	79	79	76

Sulfuric acid is made from these gases by:

- (a) catalytically reacting their SO_2 and O_2 to form $SO_3(g)$
- (b) reacting (a)'s product SO₃(g) with the $H_2O(\ell)$ in 98.5 mass% H_2SO_4 , 1.5 mass% H_2O sulfuric acid.

Industrially, both processes are carried out rapidly and continuously, Fig. 1.1.

Fig. 1.1. Schematic of sulfur burning sulfuric acid plant, courtesy Outokumpu OYJ www.outokumpu.com The main components are the catalytic $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ 'converter' (tall, back), twin H_2SO_4 making ('absorption') towers (middle distance) and large molten sulfur storage tank (front). The combustion air filter and air dehydration ('drying') tower are on the right. The sulfur burning furnace is hidden behind. Catalytic converters are typically 12 m diameter.

1.1 Catalytic Oxidation of SO₂ to SO₃

 O_2 does <u>not</u> oxidize SO_2 to SO_3 without a catalyst. All industrial SO_2 oxidation is done by sending SO_2 bearing gas down through 'beds' of catalyst, Fig. 1.2. The reaction is:

$$SO_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow SO_{3}(g)$$

in dry SO₂, O₂, in feed gas catalyst in SO₃, SO₂ (1.1).
N₂ feed gas O₂, N₂ gas (1.1).

It is strongly exothermic ($\Delta H^{\circ} \approx -100$ MJ per kg-mole of SO₃). Its heat of reaction provides considerable energy for operating the acid plant.

Fig. 1.2. Catalyst pieces in a catalytic SO₂ oxidation 'converter'. Converters are ~15 m high and 12 m in diameter. They typically contain four, $\frac{1}{2}$ -1 m thick catalyst beds. SO₂-bearing gas descends the bed at ~3000 Nm³ per minute. Individual pieces of catalyst are shown in Fig. 8.1. They are ~0.01 m in diameter and length.

1.1.1 Catalyst

At its operating temperature, 700-900 K, SO₂ oxidation catalyst consists of a molten film of V, K, Na, (Cs) pyrosulfate salt on a solid porous SiO₂ substrate. The molten film rapidly absorbs SO₂(g) and O₂(g) – and rapidly produces and desorbs SO₃(g), Chapters 7 and 8.

1.1.2 Feed gas drying

Eqn. (1.1) indicates that catalytic oxidation feed gas is always dry[#]. This dryness avoids:

- (a) accidental formation of H₂SO₄ by reaction of H₂O(g) with the SO₃(g) product of catalytic SO₂ oxidation
- (b) condensation of the H_2SO_4 in cool flues and heat exchangers
- (c) corrosion.

The H₂O(g) is removed by cooling/condensation (Chapter 4) and by dehydration with $H_2SO_4(\ell)$, Chapter 6.

[#] A small amount of sulfuric acid is made by wet catalysis. This is discussed in Section 1.9 and Chapter 25.

1.2 H₂SO₄ Production

Catalytic oxidation's $SO_3(g)$ product is made into H_2SO_4 by contacting catalytic oxidation's exit gas with strong sulfuric acid, Fig. 1.3. The reaction is:

	35	50-380	K	
SO ₃ (g) in SO ₃ , SO ₂ , O ₂ , N ₂ gas	+ $H_2O(\ell)$ in 98.5% H_2SO_4 , 1.5% H_2O	→	$H_2SO_4(\ell)$ in strengthened sulfuric acid	(1.2)
	sulfuric acid			

 $\Delta H^{\circ} \approx -130$ MJ per kg mole of SO₃.

Reaction (1.2) produces strengthened sulfuric acid because it consumes $H_2O(\ell)$ and makes $H_2SO_4(\ell)$.

 $H_2SO_4(\ell)$ is <u>not</u> made by reacting $SO_3(g)$ with water. This is because Reaction (1.2) is so exothermic that the product of the $SO_3(g) + H_2O(\ell) \rightarrow H_2SO_4$ reaction would be hot H_2SO_4 vapor – which is difficult and expensive to condense.

The small amount of $H_2O(\ell)$ and the massive amount of $H_2SO_4(\ell)$ in Reaction (1.2)'s input acid avoids this problem. The small amount of $H_2O(\ell)$ limits the extent of the reaction. The large amount of $H_2SO_4(\ell)$ warms only 25 K while it absorbs Eqn. (1.2)'s heat of reaction.

Fig. 1.3. Top of H_2SO_4 -making ('absorption') tower, courtesy Monsanto Enviro-Chem Systems, Inc. www.enviro-chem.com The tower is packed with ceramic saddles. 98.5 mass% H_2SO_4 , 1.5 mass% H_2O sulfuric acid is distributed uniformly across this <u>packed bed</u>. Distributor headers and 'downcomer' pipes are shown. The acid flows through slots in the downcomers down across the bed (see buried downcomers below the right distributor). It descends around the saddles while SO_3 -rich gas ascends, giving excellent gas-liquid contact. The result is efficient H_2SO_4 production by Reaction (1.2). A tower is ~7 m diameter. Its packed bed is ~4 m deep. About 25 m³ of acid descends per minute while 3000 Nm³ of gas ascends per minute.

1.3 Industrial Flowsheet

Fig. 1.4 is a sulfuric acid manufacture flowsheet. It shows:

- (a) the three sources of SO₂ for acid manufacture (metallurgical, sulfur burning and spent acid decomposition gas)
- (b) acid manufacture from SO_2 by Reactions (1.1) and (1.2).

(b) is the same for all three sources of SO_2 . The next three sections describe (a)'s three SO_2 sources.

1.4 Sulfur Burning

About 70% of sulfuric acid is made from elemental sulfur. All the sulfur is obtained as a byproduct from refining natural gas and petroleum.

The sulfur is made into SO₂ acid plant feed by:

melting the sulfur spraying it into a hot furnace burning the droplets with dried air.

The reaction is:

$$S(\ell) + \begin{array}{c} 1400 \text{ K} \\ S(\ell) + O_2(g) \longrightarrow SO_2(g) \\ \text{in air} & \text{in } SO_2, O_2, \\ N_2 \text{ gas} \end{array}$$
(1.3)

 $\Delta H^{\circ} \approx -300 \text{ MJ per kg-mole of } S(\ell).$

Very little SO₃(g) forms at the 1400 K flame temperature of this reaction, Fig. 7.4. This explains Fig. 1.4's two-step oxidation, i.e.:

(a) burning of sulfur to SO_2

then:

(b) catalytic oxidation of SO₂ to SO₃, 700 K.

The product of sulfur burning is hot, dry SO₂, O₂, N₂ gas. After cooling to \sim 700 K, it is ready for catalytic SO₂ oxidation and subsequent H₂SO₄-making.

1.5 Metallurgical Offgas

 SO_2 in smelting and roasting gas accounts for about 20% of sulfuric acid production. The SO_2 is ready for sulfuric acid manufacture, but the gas is dusty. If left in the gas,

Fig. 1.4. Double contact sulfuric acid manufacture flowsheet. The three main SO_2 sources are at the top. Sulfur burning is by far the biggest source. The acid product leaves from two H_2SO_4 making towers at the bottom. Barren tail gas leaves the final H_2SO_4 making tower, right arrow.

the dust would plug the downstream catalyst layers and block gas flow. It must be removed before the gas goes to catalytic SO_2 oxidation.

It is removed by combinations of:

- (a) settling in waste heat boilers
- (b) electrostatic precipitation
- (c) scrubbing with water (which also removes impurity vapors).

After treatment, the gas contains ~ 1 milligram of dust per Nm³ of gas. It is ready for drying, catalytic SO₂ oxidation and H₂SO₄ making.

1.6 Spent Acid Regeneration

A major use of sulfuric acid is as catalyst for petroleum refining and polymer manufacture, Chapter 5. The acid becomes contaminated with water, hydrocarbons and other compounds during this use. It is regenerated by:

- (a) spraying the acid into a hot (~1300 K) furnace where the acid decomposes to SO₂, O₂ and H₂O(g)
- (b) cleaning and drying the furnace offgas
- (c) catalytically oxidizing the offgas's SO_2 to SO_3
- (d) making the resulting SO₃(g) into new $H_2SO_4(\ell)$ by contact with strong sulfuric acid, Fig. 1.4.

About 10% of sulfuric acid is made this way. Virtually all is re-used for petroleum refining and polymer manufacture.

1.7 Sulfuric Acid Product

Most industrial acid plants have three flows of sulfuric acid – one gas-dehydration flow and two H_2SO_4 -making flows. These flows are connected through automatic control valves to:

- (a) maintain proper flows and H₂SO₄ concentrations in the three acid circuits
- (b) draw off newly made acid.

Water is added where necessary to give prescribed acid strengths.

Sulfuric acid is sold in grades of 93 to 99 mass% H_2SO_4 according to market demand. The main product in cold climates is ~94% H_2SO_4 because of its low (238 K) freezing point (Gable *et al.*, 1950). A small amount of oleum (H_2SO_4 with dissolved SO₃) is also made and sold (BASF, 2005).

Sulfuric acid is mainly shipped in stainless steel trucks, steel rail tank cars (DuPont, 2003) and double-hulled steel barges and ships (Barge, 1998; Bulk, 2003). Great care is taken to avoid spillage.

1.8 Recent Developments

The three main recent developments in sulfuric acidmaking have been:

- (a) improved materials of construction, specifically more corrosion resistant materials (Salehi and Hopp, 2001, 2004; Sulphur, 2004)
- (b) improved SO₂(g) + ½O₂(g) → SO₃(g) catalyst, specifically V, <u>Cs</u>, K, Na, S, O, SiO₂ catalyst with low activation temperatures (Hansen, 2004)
- (c) improved techniques for recovering the heat from Reactions (1.1), (1.2) and (1.3) (Puricelli *et al.*, 1998).

All of these improve H_2SO_4 and energy recovery.

1.9 Alternative Process

An alternative to the conventional acidmaking described here is *Wet Sulfuric Acidmaking* (Laursen, 2005; Topsoe, 2005; WSA, 2005).

This process:

- (a) catalytically oxidizes the SO₂ in $H_2O(g)$, SO₂, O₂, N₂ gas
- (b) condenses $H_2SO_4(\ell)$ directly from the gas.

It is described in Chapter 25.

In 2005, it is mainly used for low flow, low% SO₂ gases. It accounts for 1 or 2% of world H_2SO_4 production. Development of a large, rapid-heat-removal condenser will likely widen its use.

1.10 Summary

About 180 million tonnes of sulfuric acid are produced/consumed per year. The acid is used for making fertilizer, leaching metal ores, refining petroleum and for manufacturing a myriad of products.

Sulfuric acid is made from dry SO₂, O₂, N₂ gas. The gas comes from:

burning molten elemental sulfur with dry air, Chapter 3

smelting and roasting metal sulfide minerals, Chapter 4

decomposing contaminated (spent) sulfuric acid catalyst, Chapter 5.

Sulfur burning is far and away the largest source.

The SO₂ in the gas is made into sulfuric acid by:

- (a) catalytically oxidizing it to $SO_3(g)$, Chapters 7 and 8
- (b) reacting this SO₃(g) with the $H_2O(\ell)$ in 98.5 mass% H_2SO_4 , 1.5 mass% H_2O sulfuric acid, Chapter 9.

Suggested Reading

Acid Plants (2005) Acid plants address environmental issues. Sulfur 298, (May-June 2005) 33-38.

Duecker, W.W. and West, J.R. (1966) The Manufacture of Sulfuric Acid, Reinhold Publishing Corporation, New York.

Louie, D. (2005) Resources and information sources for the sulphuric acid industry, preprint of paper presented at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 4, 2005. www.aiche-cf.org Also Sulphuric acid on the web www.sulphuric-acid.com

Sulphur 2004 Conference preprints, Barcelona, October 24-27, 2004 (and previous conferences). www.britishsulphur.com

Sander, U.H.F., Fischer, H., Rothe, U., Kola, R. and More, A.I. (1984) *Sulphur. Sulphur Dioxide and Sulphuric Acid*, The British Sulphur Corporation Ltd., London. www.britishsulphur.com

References

Barge (1998) Double skin tank barges www.bollingershipyards.com/barge.htm

BASF (2005) Oleum www.basf.com (Products & Markets, Our products \rightarrow Sulfur products, Oleum)

Bulk (2003) Acid handling http://bulktransporter.com/mag/transportation_growing_success/

DuPont (2003) Dupont sulfur products, technical data, shipping regulations. www.dupont.com/sulfurproducts/techdata/regulatory.html

Gable, C.M., Betz, H.F. and Maron, S.H. (1950) Phase equilibria of the system sulfur trioxidewater. *Journal of the American Chemical Society*, **72**, 1445 1448. www.acs.org

Hansen, L. (2004) Topsoe's sulphuric acid catalysts VK-series. Paper distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.haldortopsoe.com

10

Kitto, M. (2004) The outlook for smelter acid supply and demand. Paper presented at Sulphur 2004 conference, Barcelona, October 25, 2004. www.britishsulphur.com

Laursen, J.K. (2005) Sulfur removal by the WSA process www.haldortopsoe.com

Puricelli, S.M., Grendel, R.W. and Fries, R.M. (1998) Pollution to power, a case study of the Kennecott sulfuric acid plant. In *Sulfide Smelting '98* ed. Asteljoki, J.A. and Stephens, R.L., TMS, Warrendale, PA, 451 462. www.tms.org

Salehi, M. and Hopp, A. (2001) Corrosion protection in sulphuric acid producing plants. Paper presented at Sulphur 2001, Marrakech, October 14-17, 2001. www.steuler.de

Salehi, M. and Hopp, A. (2004) Corrosion protection using polymers in plants handling and producing sulphuric acid. Paper presented at Sulphur 2004 conference, Barcelona, October 27, 2004. www.steuler.de

Sulphur (2004) Sulphuric acid equipment update. *Sulphur* **292** (May-June 2004) 33 42. www.britishsulphur.com

Topsoe (2005) Dusulphurization plants WSA and SNOX www.haldortopsoe.com

WSA (2005) WSA applications in refineries www.haldortopsoe.com

CHAPTER 2

Production and Consumption

Sulfuric acid was first produced around the 10th century AD (Al Hassan and Hill, 1986; Islam, 2004). It was made by (i) decomposing natural hydrated sulfate minerals and (ii) condensing the resulting gas. Example reactions are:

$$\begin{array}{rcl} & & & & & \\ & & \text{heat} \\ & & \text{CuSO}_4 \cdot 5\text{H}_2\text{O}(s) & \rightarrow & & \text{CuO}(s) + \text{SO}_3(g) + 5\text{H}_2\text{O}(g) \end{array} \tag{2.1}$$

$$5H_2O(g) \rightarrow 5H_2O(\ell)$$
 (2.2)

acidmaking

$$SO_3(g) + 5H_2O(\ell) \rightarrow H_2SO_4(\ell) + 4H_2O(\ell)$$
 (2.3).

The process was carried out in a ceramic retort (inside a furnace) and 'bird-beak' condenser (outside the furnace). Acid composition was adjusted by adding or evaporating water.

The earliest uses for sulfuric and other mineral acids were as solvents for:

- (a) separating gold and silver
- (b) decorative etching of metals, e.g. Damascus Steel

(Killick, 2005).

Thermal decomposition of sulfates was still being used in the 19^{th} century – to make 90+% H₂SO₄ sulfuric acid. The process entailed (Wikipedia, 2005):

(a) making $Fe_2(SO_4)_3$ by oxidizing pyrite (FeS₂) with air

(b) thermally decomposing the $Fe_2(SO_4)_3$ in a retort to make SO₃ and Fe_2O_3 , i.e.

$$Fe_2(SO_4)_3(s) \xrightarrow{750 \text{ K}} Fe_2O_3(s) + 3SO_3(g)$$
(2.4)

(c) bubbling the SO₃ through water to make H_2SO_4 , i.e.

$$SO_3(g) + H_2O(\ell) \rightarrow H_2SO_4(\ell)$$
 (2.5).

The process was slow and costly, but it was the only way to make pure 90+% H₂SO₄ sulfuric acid – until catalytic SO₂ oxidation was invented. Pure, high strength acid was needed for making dyes and other chemicals.

Industrial sulfuric acid production began in the 18^{th} century with the burning of sulfur in the presence of natural niter (KNO₃) and steam. This developed into the lead chamber and tower processes – which used nitrogen oxides to form an aqueous SO₂ oxidation catalyst. The overall acidmaking reaction with this catalyst is:

in aqueous solution

$$SO_2 + \frac{1}{2}O_2 + H_2O \rightarrow H_2SO_4$$
 (2.6)
NOHSO₄ catalyst

(Sander et al., 1984).

The lead chamber and tower processes were used into the 20^{th} century. Unfortunately their H₂SO₄ strength was limited to below about 70 mass% H₂SO₄. Above 70% H₂SO₄, the product acid contained stable nitrosyl hydrogen sulfate which made it unsuitable for many purposes.

The 20th century saw the nitrogen oxide processes gradually but completely replaced by the catalytic SO_2 oxidation/ SO_3 -sulfuric acid contact process, Chapter 1. This process economically produces sulfuric acid of all H_2SO_4 concentrations. Platinum was the dominant catalyst until the 1930's. V, K, Na, (Cs), S, O, SiO₂ catalyst (Chapters 7 and 8) has dominated since.

World production of sulfuric acid since 1950 is shown in Fig. 2.1. Sources of SO_2 for this production are given in *Table* 2.1.

Table 2.1. Sources of sulfur and SO_2 for producing sulfuric acid (interpreted from Kitto, 2004a and Sander *et al.*, 1984). Virtually all sulfur and SO_2 production is involuntary, i.e. it is the byproduct of other processes.

Source	% of total supply
Elemental sulfur from natural gas purification and petroleum refining, Chapter 3	70
SO_2 from smelting and roasting non-ferrous minerals, Chapter 4	20
SO ₂ from decomposing spent petroleum/polymer sulfuric acid catalyst, Chapter 5	10

Fig. 2.1. World sulfuric acid production, 1950-2003, in millions of tonnes of contained H_2SO_4 . The increase in production with time is notable. It is due to the increased use of phosphate and sulfate fertilizers, virtually all of which are made with sulfuric acid. Data sources:

1950-1969 and 1983-1987, Buckingham and Ober, 2002 1970-1982, Sander *et al.*, 1984, p 412 1988-2003, Kitto, 2004a.

2.1 Uses

Sulfuric acid is mostly used for making phosphate fertilizers, Table 2.2. The most common process is:

(a) production of phosphoric acid by reacting phosphate rock with sulfuric acid, i.e.:

phosphate		phosphoric		
rock		acid	gypsum	
$Ca_3(PO_4)_2(s) + 3H_2SO_4(\ell) + 6H_2O(\ell)$	>	$2H_3PO_4(\ell)$	+ 3CaSO ₄ ·2H ₂ O(s)	(2.7)

followed by:

(b) reaction of the phosphoric acid with ammonia to make ammonium phosphates, e.g. NH₄H₂PO₄ and (NH₄)₂H₂PO₄.

Sulfuric acid is also used extensively as a solvent for ores and as catalyst for petroleum refining and polymer manufacture.

Fig. 2.2. World production of sulfuric acid, percent by region (Sulphur, 2004). Total 2003 world production was 180 million tonnes contained H₂SO₄.

Use	% of total consumption
Phosphoric acid production	48
Single superphosphate fertilizer production	8
Ammonium sulfate fertilizer production	7
Petroleum refining catalyst	5
Copper ore leaching	4
Titanium dioxide pigment production	3
Pulp and paper production	2
Methyl methacrylate catalyst	2
Nickel concentrate leaching	1
Other	20

Table 2.2. World uses of sulfuric acid by percentage, 2003. The data are mainly from Kitto, 2004a.

2.2 Acid Plant Locations and Costs

Sulfuric acid plants are located throughout the industrialized world, Fig. 2.2. Most are located near their product acid's point of use, i.e. near phosphate fertilizer plants, nickel ore leach plants and petroleum refineries. This is because elemental sulfur is cheaper to transport than sulfuric acid. Examples of long distance sulfur shipment are from natural gas purification plants in Alberta, Canada to acid plants near phosphate rock based fertilizer plants in Florida and Australia. A new sulfur-burning sulfuric acid plant (4400 tonnes of acid per day) is costing ~75 million U.S. dollars (Sulfuric 2005).

Smelter acid, on the other hand, must be made from byproduct $SO_2(g)$ at the smelter and transported to its point of use. An example of this is production of acid at the Cu-Ni smelters in Sudbury, Canada and rail transport of the product acid to fertilizer plants in Florida. A new metallurgical sulfuric acid plant (3760 tonnes of acid per day) is costing ~59 million U.S. dollars (Sulfuric 2005).

Production of pure sulfuric acid from contaminated 'spent' sulfuric acid catalyst is almost always done near the source of the spent acid – to minimize forward and return acid shipping distance.

2.3 Price

Fig. 2.3 plots sulfuric acid price (actual U.S.\$) as function of calendar year. The most notable features of the graph are:

- (a) the volatility in price year to year
- (b) a slightly downward price trend between 1980 and 2001
- (c) the rapid increase in price from 2001 to 2003.

The volatility of year to year price is due to (i) small imbalances between acid demand and supply and (ii) the difficulty of storing large quantities of acid. The large increase in price after 2001 is due to China's increasing demand for fertilizer, hence sulfuric acid.

Fig. 2.3. Northwest Europe sulfuric acid price trends, 1980-2003. Actual prices are negotiated between buyer and seller. Data sources: 1980-1982 Sander *et al.*, 1984, p 415

1983-1987 Kitto, 2004b 1988-2003 Kitto 2004c.

2.4 Summary

Worldwide, about 180 million tonnes of sulfuric acid are produced per year. 70% comes from burning elemental sulfur. The remainder comes from SO₂ in smelter, roaster and spent acid regeneration furnace offgases.

By far the largest use of sulfuric acid is in the production of phosphate fertilizers, e.g. ammonium phosphate. Other large uses are as solvent for copper and nickel minerals and as catalyst for petroleum refining and polymer manufacture.

Sulfuric acid price averaged about 33 ± 20 U.S.\$ per tonne between 1980 and 2003. It varies widely year to year due to small imbalances between acid demand and supply.

Suggested Reading

Sander, U.H.F., Fischer, H., Rothe, U., Kola, R. and More, A.I. (1984) *Sulphur, Sulphur Dioxide, Sulphuric Acid.* British Sulphur Corporation Ltd., London. www.britishsulphur.com

Kitto, M. (2004) Smelter acid supply and demand. Preprint of paper from Sulphur 2004 conference, Barcelona, October 24-27, 2004; also, The outlook for smelter acid supply and demand. Paper presented at Sulphur 2004 conference, Barcelona, October 25, 2004. www.britishsulphur.com

References

Al Hassan, A.Y. and Hill, D. R. (1986) Islamic Technology, An Illustrated History. Cambridge Univ. Press, Cambridge, England. www.uk.cambridge.org

Buckingham, D.A. and Ober, J.A. (2002) Sulfur Statistics (Open File Report 01 006). http://minerals.usgs.gov/minerals/pubs/of01-006/sulfur.html

Islam (2004) Islam in your life – history and culture. The natural sciences Pt. III, pharmacology and chemistry www.masnet.org/history.asp?id=1033

Killick, D. (2005) Personal communication, Department of Materials Science and Engineering, University of Arizona. www.arizona.edu

Kitto, M (2004a) The outlook for smelter acid supply and demand. Paper presented at Sulphur 2004 conference, Barcelona, October 25, 2004. www.britishsulphur.com

Kitto, M (2004b) Personal communication. www.britishsulphur.com

Kitto, M. (2004c) Smelter acid supply and demand. Preprint of paper from Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.britishsulphur.com

Sander, U.H.F., Fischer, H., Rothe, U., Kola, R. and More, A.I. (1984) Sulphur, Sulphur Dioxide, Sulphuric Acid. British Sulphur Corporation Ltd., London. www.britishsulphur.com

Sulphur (2004) Sulphuric acid 2001-2003. Sulphur, 293 (July-August 2004), p 28.

Sulfuric (2005) Worldwide growth brings boom in acid plant construction. *Sulfuric Acid Today* **11(1)**, (Spring/Summer 2005), p 16. www.H2SO4Today.com

Wikipedia (2005) History of Sulfuric Acid. www.wikipedia.org/wiki/Sulfuric acid

Fig. 3.0. View of spinning cup sulfur burner from inside sulfur burning furnace – burning capacity 870 tonnes of molten sulfur per day. The thermocouple at top and central blue sulfur-rich flame are notable. Photograph courtesy of Outokumpu OYJ. www.outokumpu.com

CHAPTER 3

Sulfur Burning

70% of sulfuric acid is made from elemental sulfur. The elemental sulfur is:

- (a) received molten or melted with pressurized steam (sulfur melting point ~390 K)
- (b) atomized in a hot (1400 K) furnace
- (c) burnt in the furnace with excess dry air to form hot SO_2 , O_2 , N_2 gas.

Sulfuric acid is then made from step (c)'s gas by:

- (d) cooling the gas in a boiler and steam superheater
- (e) catalytically reacting its $SO_2(g)$ and $O_2(g)$ to form $SO_3(g)$
- (f) contacting step (e)'s product gas with strong sulfuric acid to make H_2SO_4 by the reaction $SO_3(g) + H_2O(\ell)_{in \ acid} \rightarrow H_2SO_4(\ell)_{in \ strengthened \ acid}$.

Steps (b) to (f) are continuous.

This chapter describes steps (a) to (d), Fig. 3.1. Steps (e) and (f) are described in Chapters 7, 8 and 9.

3.1 Objectives

The objectives of this chapter are to describe:

- (a) the physical and chemical properties of elemental sulfur
- (b) transportation of elemental sulfur to the sulfur burning plant
- (c) preparation of elemental sulfur for combustion
- (d) sulfur burners and sulfur burning furnaces
- (e) control of sulfur burning offgas composition, temperature and volume.

Fig. 3.1. Sulfur burning flowsheet – molten sulfur to clean dry 700 K SO₂, O₂, N₂ gas. The furnace is supplied with excess air to provide the O₂ needed for subsequent catalytic oxidation of SO₂, to SO₃. Table 3.1 gives industrial sulfur burning data.

3.2 Sulfur

The elemental sulfur used for making sulfuric acid is virtually all a byproduct of natural gas and petroleum refining. It contains 99.9+% S. Its main impurity is carbon from natural gas or petroleum.

Its melting point is 388 – 393 K, depending on its crystal structure. It is easily melted with pressurized steam pipes.

3.2.1 Viscosity

The viscosity of molten sulfur is described in Fig. 3.2. Its key features are a viscosity minimum at 430 K and a ten thousand-fold viscosity increase just above 430 K.

Sulfur burners are fed with \sim 410 K molten sulfur, near the viscosity minimum but safely below the steep viscosity increase. Sulfur temperature is maintained by circulating 420 K steam through sulfur storage tank steam pipes just ahead of sulfur burning. Below ground or insulated above ground storage tanks are used.

Sulfur's huge increase in viscosity just above 430 K is due to a transition from S_8 ring molecules to long interwoven S chain molecules (Dunlavy, 1998).

3.3 Molten Sulfur Delivery

Elemental sulfur is produced molten. It is also burnt molten.

Fig. 3.2. Molten sulfur viscosity as a function of temperature (Tuller, 1954). The viscosity minimum at 430 K and the enormous viscosity increase just above 430 K are notable.

Where possible, therefore, sulfur is transported molten from sulfur *making* to sulfur *burning*. It is mainly shipped in double walled, steam heatable barges and railway tank cars. This gives easy handling at both ends of the journey. Even if the sulfur solidifies during the journey, it is easily melted out with 420 K steam to give a clean, atomizable raw material. Short distance deliveries are sometimes made in single walled tanker trucks.

Sulfur that is shipped this way is ready for burning. Sulfur that is shipped as solidified pellets or flakes picks up dirt during shipping and storage. This sulfur is melted and filtered before being burnt (Sander *et. al.*, 1984, p 174, Sparkler, 2004).

Sulfur is shipped solid when there are several intermediate unloading-loading steps during its journey, e.g. train-ship-train. An example of this is shipment of solid sulfur from interior Canada to interior Australia.

3.3.1 Sulfur pumps and pipes

Molten sulfur has a viscosity (~0.01 kg m⁻¹ s⁻¹, 400-420 K, Fig. 3.2) about ten times that of water (~0.001 kg m⁻¹ s⁻¹, 293 K). Its density is ~1.8 kg/m³. It is easily moved in steam jacketed steel pipes (Jondle and Hornbaker, 2004). Steam heated pumps much like that in Fig. 9.2 are used. Molten sulfur is an excellent lubricant at 410 K. Sulfur pump impellers need no additional lubrication.

Sulfur burning consists of:

- (a) atomizing molten sulfur and spraying the droplets into a hot furnace, Fig. 3.3
- (b) blowing clean, dry 390 K air into the furnace.

The tiny droplets and warm air give:

- (c) rapid vaporization of sulfur in the hot furnace
- (d) rapid and complete oxidation of the sulfur vapor by O_2 in the air.

Representative reactions are:

boiling point,
718 K

$$S(\ell) \rightarrow S(g)$$
 (3.1)

$$\begin{array}{cccc} S(g) &+ & O_2(g) & \longrightarrow & SO_2(g) &+ & heat \\ & & & in \ SO_2, \ O_2, \ N_2 \ gas \end{array} \tag{3.2}.$$

The combined heat of reaction for Reactions (3.1) and (3.2) is ~ -300 MJ per kg-mole of $S(\ell)$.

Fig. 3.3. Burner end of sulfur burning furnace. Atomized molten sulfur droplets are injected into the furnace through steam-cooled lances. Dry combustion air is blown in through the circular openings behind. The sulfur is oxidized to SO_2 by Reactions (3.1) and (3.2). Atomization is done by spiral or right angle flow just inside the burner tip.

3.4.1 Sulfur atomizers

Molten sulfur spraying is done with:

- (a) a stationary spray nozzle at the end of a horizontal lance, Fig. 3.3
- (b) a spinning cup sulfur atomizer, Fig. 3.0 (Outokumpu, 2005)

In both cases, molten sulfur is pumped into the atomizers by steam jacketed pumps.

The stationary spray nozzle has the advantage of simplicity and no moving parts. The spinning cup atomizer has the advantage of lower input pressure, smaller droplets, more flexible downturn and a shorter furnace.

Fig. 3.4. Entrance to fire tube boiler tubes after Fig. 3.3's sulfur burning furnace. 1400 K gas (~11 volume% SO₂, 10 volume% O₂, 79 volume% N₂) leaves the furnace and enters the boiler. It turns 90° in the boiler and flows into the tubes. The tubes are surrounded by water. Heat is transferred from the hot gas to the water – cooling the gas and making (useful) steam. The tubes are typically 0.05 m diameter. Table 3.1 gives industrial furnace data. Sulfur furnace boilers are discussed by Roensch (2005).

3.4.2 Dried air supply

Air for sulfur burning is filtered through fabric and dried. It is then blown into the sulfur burning furnace. It is blown in behind the sulfur spray to maximize droplet-air contact.

The drying is done by contacting the air with strong sulfuric acid, Chapter 6. This removes $H_2O(g)$ down to ~0.05 grams per Nm³ of air. Drying to this level prevents accidental $H_2SO_4(\ell)$ formation and corrosion after catalytic SO₃(g) production.

Plant	S1	
startup date		
acid production, tonnes H ₂ SO ₄ /day	on, tonnes H_2SO_4/day 4400	
1 , 2 4 5		
Sulfur		
source	imported pastel	
impurities parts per million by mass	mit outer broom	
carbon		
inorganic oxides		
ather		
sulfur filtration mathed	three 25 loof pressure	
sultur mitration method	linee 55 lear pressure	
	leach inters, 2 onnie	
Sulfue hugelus formandate		
Sunur burning lurnace data	1	
number of furnaces		
shell length \times diameter, m	18.36 × 6.0	
refractory types	0.23 m HB fire brick &	
	0.115 m insulting brick	
sulfur burners		
spinning cup or spray guns	spray guns	
number of burners per furnace	7	
sulfur burning rate, tonnes/hour	60.1	
temperatures, K		
dry air into furnace	416	
molten sulfur into furnace	405	
gas out of furnace	1445	
Boiler		
type	fire tube	
number	2	
length × diameter, m	7.85 × 3.505 (each)	
number of tubes	1550 each	
tube diameter, m	0.046 ID	
tube material	SA-178-A	
number of superheaters	2	
number of economizers	3	
gas temperatures K	-	
into hoiler	1444	
out of economizer	696	
steam production	3.88	
tennes of steep per tenne of sulfur	5.88	
	62.9	
pressure, bar	03.8 554 (752 after average	
temperature, K	554 (755 after super	
	heaters)	
Broduct goo		
flowrate, thousand Nm ³ /hour	356	
nowrate, mousand win /nour	330	
composition, volume%	0.194	
SU_3	0.184	
SU ₂	11.6	
O_2	9.06	
N ₂	79.1	

M1	<u>S2</u>
1974	1965
270	1800
cluding from molybdenum	
sulfide roaster gas	
B	liquid
	<1000
	<200
none	none
	1
10.4×3.2	18.3×3.3 inside shell
	0.23 m hard (high 1) brick
	0.11 m insulating brick
spray gun	spray guns
1	4
2.0 max	24.7
714	363
408	411
870-1260	1362
070 1200	1502
fire tube	fire tube
1	2
6.4×2.2	5 × 3.5; 2.9 × 2.7
600	1860: 1210
0.05	0.05
carbon steel	carbon steel
0	1
Ő	1
0	•
870-1280	1362
810-950	700
010 200	1 64
	1.01
17	32
	517
	•••
50	210
1756	0 10
4./-3.0	8.38 19.6
140	17.0
4.7-5.6	8.38 12 6

3.4.3 Main blower

The dried air is blown into the sulfur burning furnace by the acid plant's main blower.

The blower is a steam or electricity driven centrifugal blower (Jacoby, 2004). It blows air into the sulfur burning furnace – and the furnace's offgas through the remainder of the acid plant. 0.3 to 0.5 bar pressure is required.

A 2000 tonnes of H_2SO_4 per day sulfur burning acid plant typically requires a 4000 to 4500 kW main blower.

3.4.4 Furnace

Sulfur burning furnaces are 2 cm thick cylindrical steel shells lined internally with 30 to 40 cm of insulating refractory, Fig. 3.3. Air and atomized molten sulfur enter at one end. Hot SO_2 , O_2 , N_2 gas departs the other into a boiler and steam superheater (Fig. 3.4). Some furnaces are provided with internal baffles. The baffles create a tortuous path for the sulfur and air, promoting complete sulfur combustion. Complete sulfur combustion is essential to prevent elemental sulfur condensation in downstream equipment.

3.5 Product Gas

Sulfur burning is operated to produce 1400 K gas containing:

This product has enough SO₂ and a high enough O_2/SO_2 ratio for subsequent catalytic $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation. It is also cool enough for its heat to be recovered as steam in a simple fire-tube boiler (Thermal Ceramics, 2005) and steam superheater.

The gas contains only 0.1 or 0.2 volume% SO₃ despite its high O₂ content. This is because the equilibrium constant for SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ oxidation is small (0.06) at 1400 K, Fig. 7.3.

3.5.1 Gas destination

Product gas departs the sulfur burning furnace/boiler/superheater into:

(a) a catalytic SO₂ oxidation 'converter'

then to:

(b) $SO_3(g) + H_2O(\ell)_{in sulfuric acid} \rightarrow H_2SO_4(\ell)_{in strengthened acid}$ acidmaking.

The boiler and superheater cool the gas to \sim 700 K, the usual temperature for catalytic SO₂ oxidation. They also produce steam for the acid plant main blower and for making electricity.

3.5.2 Composition and temperature control

The composition and temperature of sulfur burning's product gas are controlled by adjusting the sulfur burning furnace's:

input air input sulfur

ratio, Figs. 3.5 and 3.6.

As the figures show, raising a furnace's air/sulfur ratio:

- (a) increases product gas O_2 concentration, Fig. 3.5
- (b) decreases product gas SO₂ concentration, Fig. 3.5
- (c) decreases product gas temperature, Fig. 3.6.

These relationships allow simple automatic control of product gas composition and temperature. Note, however, that composition and temperature are not independent variables.

Replacement of some of the sulfur burner's input air with oxygen can be used to give independent temperature control (Miller and Parekh, 2004). Raising the oxygen/air ratio increases offgas temperature because less N₂ has to be heated by the $S(\ell) + O_2 \rightarrow SO_2$ reaction. Lowering the oxygen/air ratio has the opposite effect.

3.5.3 Target gas composition

The Section 3.5 gas (11 volume% SO₂, 10 volume% O₂, 79 volume% N₂) is chosen to give efficient downstream catalytic SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ oxidation. A requirement for this is a volume% O₂/volume% SO₂ ratio around one.

In recent years there has been a tendency to increase volume% SO_2 in sulfur burning gas by lowering the input air/sulfur ratio, Fig. 3.5. An increase in SO_2 concentration lowers the volume of gas that must be blown through the acid plant per tonne of product H_2SO_4 . It thereby lowers:

- (a) blowing energy cost
- (b) equipment size requirements, hence capital cost.

Fig. 3.5. Volume% SO₂ and O₂ in gas produced by burning S with excess dry air (calculated by means of S, O and N molar balances). N₂ concentration is 79 volume% at all ratios, not shown. This is because consumption of one kg-mole of O₂ produces one kg-mole of SO₂. (# For example, 7 kg of input air for every 1 kg of input sulfur.)

Unfortunately, decreasing the input air/input sulfur ratio also decreases the O_2/SO_2 ratio of the gas (Fig. 3.5), potentially lowering catalytic oxidation efficiency.

An alternative way to increase SO_2 concentration (and decrease furnace exit gas volume) is to feed less N_2 to the sulfur burning furnace – by replacing some air with oxygen (Miller and Parekh, 2004).

3.5.4 Target gas temperature

Decreasing sulfur burning's air/sulfur ratio raises product gas temperature, Fig. 3.6. If carried too far (i.e. to raise % SO₂-in-gas), this may damage the sulfur burning furnace or boiler.

11-12 volume% SO₂, 1400 K sulfur burning gas seems optimum.

3.6 Summary

70% of the world's sulfuric acid is made from elemental sulfur. Virtually all of this sulfur is the byproduct of natural gas and petroleum refining.

Elemental sulfur melts at ~390 K. It is easily melted with pressurized steam pipes and pumped molten around the sulfur burning plant.

Fig. 3.6. Temperature of offgas from burning sulfur with excess air (calculated by means of S, O, N and enthalpy balances). Offgas temperature is *decreased* by raising input air/input sulfur ratio. This is because (i) excess air in offgas increases with an increasing input air/input sulfur ratio and because (ii) this excess air absorbs sulfur oxidation heat. (# For example, 7 kg of input air for every 1 kg of input sulfur.)

Sulfur burning is the first step in making sulfuric acid from elemental sulfur. It entails:

- (a) atomizing molten sulfur in a hot furnace and burning it with excess dried air
- (b) cooling the product gas in a boiler and steam superheater.

The product is ~11 volume% SO₂, 10 volume% O₂, 79 volume% N₂ gas (700 K), perfect for subsequent catalytic SO₂ + $\frac{1}{2}O_2 \rightarrow SO_3(g)$ oxidation and H₂SO₄ manufacture.

Sulfur burning's product gas composition and temperature are readily controlled by adjusting the sulfur furnace's input air/input sulfur ratio. Replacement of some of the input air with oxygen gives the process independent O_2/SO_2 , temperature and volume control.

References

Dunlavy, D. (1998) An animated view of the polymerization of sulfur. www.molecules.org/experiments/Dunlavy/Dunlavy.html 30

Jacoby, K. (2004) Main blowers in acid plants. Preprint of paper presented at Sulphur 2004 conference, Barcelona, October 27, 2004, 249 260. www.agkkk.de

Jondle, J. and Hornbaker, D. (2004) Handling molten sulphur in refineries. *Sulfur*, **292**, May-June, 2004, 43 47. www.britishsulphur.com

Miller, D. and Parekh, U. (2004) Upgrading virgin acid plants using oxygen. *Sulfur*, **290**, January-February, 2004, 43 47. www.britishsulphur.com

Outokumpu (2004) *Sulphuric Acid Plants (Sulphur Combustion Section)*. Brochure distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.outokumpu.com

Outokumpu (2005) Latest Developments in Sulfur Burning Sulfuric Acid Plants. Brochure distributed at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 3 and 4, 2005 (also presented as paper by Bartlett, C. and Rieder, J., Outokumpu Technology GmbH) www.outokumpu.com

Roensch, L. F. (2005) Steam and boiler water treatment for the modern sulfuric acid plant, paper presented at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 3, 2005 www.chemtreat.com Also, Fahrer, N.D. and Roensch, L.F. (2005) Steam and boiler water treatment technologies for the modern sulfuric acid plant, paper distributed at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 3 and 4, 2005. www.chemtreat.com

Sander, U.H.F., Fischer, H., Rothe, U., Kola, R. and More, A.I. (1984) *Sulphur, Sulphur Dioxide, Sulphuric Acid*, British Sulphur Corporation Ltd., London. www.britishsulphur.com

Sparkler (2004) Vertical Plate Filters. Brochure distributed at Sulphur 2004 meeting, Barcelona, October 24-27, 2004. www.sparkler.nl

Thermal Ceramics (2005) Fire tube boiler. www.thermalceramics.com/products/firetubeboiler.asp

Tuller, W.N. (1954) *The Sulphur Data Book*, McGraw-Hill, New York, 5 7. www.mcgraw-hill.com

CHAPTER 4

Metallurgical Offgas Cooling and Cleaning

About 20% of the world's sulfuric acid is made from SO_2 in smelter and roaster offgases. The gases contain 10 to 75 volume% SO_2 , Table 4.1. They are hot and dusty. They may also contain impurity vapors, e.g. chlorine and gaseous arsenic compounds.

The SO₂ is suitable for sulfuric acid manufacture, but the gases must be:

- (a) cooled
- (b) cleaned
- (c) diluted with weak SO₂ process gas and/or air

and:

(d) dried

before they go to acidmaking, Fig. 4.1.

This chapter describes gas cooling, cleaning, dilution and $H_2O(g)$ condensation. Final dehydration by contact with strong sulfuric acid is described in Chapter 6.

4.1 Initial and Final SO₂ Concentrations

Continuous smelting and converting gases contain 20-75 volume% SO₂ as they leave the furnace. This is too strong for downstream catalytic SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ oxidation. The heat of oxidation with this strong gas would overheat the catalyst, Chapters 7 and 8.

For this reason, continuous smelting/converting gas is always diluted with weak process gas (e.g. anode furnace gas) and/or air before it is sent to catalytic SO₂ oxidation.

Table 4.1 shows continuous smelting and converting offgas SO_2 strengths. Tables 7.1 and 7.2 show pre-catalytic oxidation SO_2 strengths.

Fig. 4.1. Flowsheet for cooling, diluting and cleaning metallurgical offgas. Gas temperature is lowered from 1500 to 310 K. SO₂ concentration is lowered from 10-75 volume% SO₂ to 8-13 volume% SO₂. Dust plus vapor concentration is lowered from 10-200 g per Nm³ of gas to 0.001 g per Nm³ of gas. Efficient gas cleaning minimizes plugging of downstream catalyst and equipment. It also minimizes poisoning of the catalyst. It is the key to efficient, continuous long term metallurgical acid plant operation. Mercury-from-gas removal is described in Section 4.5.3.

Table 4.1. Offgas temperatures and SO_2 and dust concentrations *leaving metallurgical furnaces* (Davenport *et al.*, 2002). The high SO_2 concentrations are due to the use of oxygen enriched air for smelting and continuous converting. The furnace offgases are diluted with weak SO_2 process gases and air to obtain the <13 volume% SO_2 gas required by catalytic SO_2 oxidation. SO_2 gases are also made by gold, lead, molybdenum and pyrite roasting (not shown).

Metallurgical Process	Offgas temperature, K	SO ₂ in offgas, volume%	Dust in offgas g per Nm ³
Inco flash smelting	1540-1570	50-75	200-250
Outokumpu flash smelting	1540-1620	30-45	100-250
Outokumpu flash converting	1560	35-40	200
Outokumpu flash direct-to- copper smelting	1590-1670	15-45	200
Mitsubishi smelting	1510-1520	30-35	70
Mitsubishi converting	1500-1520	25-30	100
Submerged-tuyere smelting (Noranda & Teniente)	1470-1510	20-25	15-20
Top-lance smelting (Isasmelt & Ausmelt)	1490-1520	20-25	10
Batch converting (Peirce- Smith & Hoboken)	1470	8-15	3-5
ZnS roasting (fluid bed)	623-673#	10#	2#

[#]After cooling in a waste heat boiler and removing product particulate in a cyclone.

4.2 Initial and Final Dust Concentrations

Metallurgical offgas contains:

10 to 250 grams of dust per Nm³ of gas

as it leaves the furnace, Table 4.1. If not removed, this dust would quickly plug downstream SO_2 oxidation catalyst. The dust is removed by:

- (a) gas cooling and dust settling in a waste heat boiler (occasionally by quenching with water)
- (b) dry electrostatic dust precipitation
- (c) scrubbing and cooling with water
- (d) wet electrostatic 'mist' precipitation.

These steps lower dust-in-gas levels to

~0.001 grams of dust per Nm³ of gas.

Downstream catalyst beds can be operated continuously for several years with dust at this level.

The next five sections discuss these cooling and dust removal steps.

4.3 Offgas Cooling and Heat Recovery

The first step in treating metallurgical offgas is cooling in preparation for electrostatic dust precipitation. Electrostatic precipitators operate at about 600 K. Above this temperature, their steel structure weakens. Below this temperature, sulfuric acid forms from small amounts of SO₃ and H₂O(g) in the furnace offgas – causing corrosion of the precipitator.

Gas cooling is mostly done in waste heat boilers, Fig. 4.2. These boilers cool the gas and recover its heat in useful form – steam (Abeck, 2003; Peippo *et al*, 1999).

Fig. 4.2. Waste heat boiler for a copper smelting flash furnace (Peippo et al, 1999). Note, left to right: (i) flash furnace gas offtake; (ii) boiler radiation section with water tubes in walls; (iii) suspended water tube baffles in radiation section to evenly distribute gas flow; (iv) convection section with hanging water tubes. Steam from the boiler is used to generate electricity, to power the acid plant's main blower and for general heating and drying.

Most offgas dust falls out in the waste heat boiler. It is collected and recycled to smelting. It falls out due to low gas velocities in the large boiler chambers.

An alternative method of cooling metallurgical offgas is to pass it through sprays of water. Spray cooling avoids investment in waste heat recovery equipment but wastes the heat of the gas. It also generates acidic waste liquid that must be neutralized and treated for solids removal/recycle.
4.4 Electrostatic Collection of Dust

Boiler exit gas is passed through electrostatic precipitators for further dust removal, Figs. 4.3 and 4.4.

The dust particles are caught by:

- (a) passing the dusty gas between plate 'dust collection' electrodes and around rod 'corona' electrodes, Fig. 4.3
- (b) applying a large electrical potential (~60 000 V) between the plates and rods.

This arrangement causes:

- (a) formation of an 'avalanche' of electrons in a corona around the negative rod electrodes (Oglesby and Nichols, 1978)
- (b) movement of these electrons towards the positive dust collection plates

Fig. 4.3. Schematic of dry 'rod and plate' electrostatic precipitator (after Oglesby and Nichols, 1978). The rods have sharp horizontal protrusions (nails) which promote corona formation. Dusty gas flows between the plates and around the rods. A large electrical potential ($60\ 000\ V$) is applied between the rods and plates. This negatively charges the dust particles – causing them to approach and adhere to the positive collection plates. The dust is gathered by periodically rapping the plates, causing sheets of dust to fall into dust bins below, Fig. 4.4. Table 4.2 gives industrial precipitation data.

Table 4.2.	Details	of 5	industrial
------------	---------	------	------------

		able 4.2. Details of 5 industrial
Operation	M2	<u>M3</u>
startup date	1998	2003
acid plant builder	Korea Zinc Engineering	Outokumpu-Lurgi
acid production,	1150 (2 roasters, 2 gas	2200 (nominal)
tonnes H ₂ SO ₄ per day	cleaning plants, 1 acid plant)	
gas source	zinc sulfide roaster	Noranda smelting furnace, air dilution and water quenching
total gas through precipitators thousand Nm ³ per hour	102	163
number of precipitators	two 3 field precipitators	2 identical
series or parallel	parallel	parallel
Gas composition before		
precipitation, volume%		
SO_3	0.1	0
SO ₂	10.0	11.5
O ₂	5.0	13.4
H ₂ O	10.4	12.6
CO ₂		2.1
N ₂	remainder	remainder
Precipitator details	each precipitator	each precipitator
height × length × width, m	7.5 × 10.45 × 4.8	$19.2 \times 20.1 \times 8.5$
collection plates	11	57
collection plate area, m^2		1134
'corona' electrode type	Variodyn 15 * 2 mm	stiff rods
number	792	756
rod to plate voltage. V	65 000	110 000
rod to plate current. A	0.8	0.5
gas temperature. K		
before precipitation	623-673	653-673
after precipitation	593-643	643-653
Gas composition after		
precipitation, volume%		
SO ₃	0.1	
SO ₂	9.5	11
O_2	5.5	14
H ₂ O	10.0	12
$\tilde{CO_2}$		2
N ₂	remainder	remainder
Dust-in-gas loading, g/Nm ³		
before precipitation	2.0	12
after precipitation	0.2	0.5

dust precipitator plants.		
M4	Asarco Hayden	Phelps Dodge Miami
1999	1983	1972 to 1998
Mitsubishi-Lurgi	Monsanto	Lurgi Fleck
2100-2400	1630	2400
Mitsubishi continuous copper smelter 148	INCO flash furnace and Peirce-Smith converter gas 197	Isasmelt furnace, Hoboken converters, electric furnace 230
2 identical parallel	8 2 parallel sets of 4	l (3 fields)
		from Isasmelt
0.48	0	0
15.2	9.0	14.1
10.6	11.4	2
$45 \text{ g per dry } \text{Nm}^3$	8.4	28.9
3.59		6
remainder	remainder	49
anch provinitator	as a provinitator	
	each precipitator	100101
15.9 × 18.7 × 7.4	$6.6 \times 5.2 \times 4.4$	19 × 9.1 × 9.1
57		2204
2420 stiff rods	da	7294 staal ribbana
1134	1408	6480
1134	1406	0480
623	305	616
613	308	610
0.48	0	0
15.2	9.0	14.1
10.6	11.4	2
$45 \text{ g per dry } \text{Nm}^3$	5.9	28.9
3.59		6
remainder	remainder	49
<i>(</i>)		4.0
6U		$4.8 \text{ g per wet Nm}^3$
0.5		0.2 g per wet Nm ²

- (c) negative charging (ionization) of gas molecules outside the corona by collision and combination of electrons with gas molecules
- (d) negative charging of dust by collision and attachment of gas ions to dust particles
- (e) electrical attraction of negatively charged dust to the positive collection plates
- (f) adhesion of the dust to the collection plates by electrical, mechanical and molecular forces.

About 70% of the dust-in-offgas is removed in the waste heat boiler and about 30% in electrostatic precipitators. The small remainder (\sim 1%) is removed by water scrubbing, next section.

Fig. 4.4. Wire and plate dry electrostatic precipitator, reprinted from Oglesby and Nichols (1978), p 269 by courtesy of Taylor and Francis Group, LLC. The parallel collector plates and bottom dust bins are notable. In this case, wires are hung between the plates – weights for keeping them vertical are just visible. Structural and operating data for a recent precipitator are:

length \times width \times height, m	$8 \times 7 \times 6$
total dust collection plate area, m ²	2200
gas velocity between plates, m per second	0.5
gas residence time in precipitator, s	15
'corona' electrodes	wires and stiff rods
applied rod to plate voltage, V	60 000
rod to plate current, A	0.4

4.5 Water Scrubbing (Table 4.3)

Gas leaves electrostatic precipitators at \sim 600 K. It still contains 0.1 to 1 g of dust and unwanted vapors per Nm³ of gas. These are now removed by intimately contacting the gas with water sprays. This contact:

- (a) lowers the gas's dust content to ~ 0.001 g per Nm³ of gas
- (b) condenses and absorbs unwanted vapors, e.g. Cl_2 and gaseous metal compounds.

The result is clean, vapor free gas.

Venturi, radial flow, packed bed and Dynawave[®], Fig. 4.5 (Enviro-chem, 2005) scrubbers are used.

Fig. 4.5. Dynawave[®] scrubber for removing particulate and soluble impurities from cooled (600 K), partially cleaned furnace offgas (Puricelli *et al.*, 1998; Enviro-chem, 2005). Note the (i) upward sprays in and (ii) the weir atop the 'downcomer'. The sprays clean the gas. The weir continuously overflows water, which wets and cools the downcomer walls. These scrubbers are used for both metallurgical and spent acid regeneration furnace gases. Large scrubber details are:

downcomer diameter:	1 m (Hastelloy G30)
settler diameter:	4 m (Hastelloy G30)
gas flow	1 000 000 Nm ³ per hour
spray flow (total)	8000 m^3 per hour.

The downcomer often enters through the roof of the settler. Multiple sprays at one level, rather than a single spray at two levels, are also used.

PlantM2M3Serubber data type of scrubberradial flow, 2 setsradial flownumber of scrubbers21height × diameter, m16 × 2.517 × 6Gas data gas sourcedry precipitator exit gasprecipitator exit gasparticulate concentration g/Nm³0.20.5after scrubber0.10.1gas flow through scrubber50175thousand Nm² per hour gas temperature, K623643-653before scrubber623643-653after scrubber339339scrubber338339out of scrubber338339mas% H_2Oa, in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensation methoddirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m15 × 5.217 × 6.8packing or tubespolypropylene spherespolypropylene spherespacking or tubespolypropylene spherespolypropylene spheresgas temperature in, K310339gas temperature in, K310.5308Wet electrostatic precipitator46height × diameter, m10.7 × 3.75.2 × 10.6number of rods and collection126248tube per precipitator126248tube per precipitator, m²44.52.8tube materialpolypropyleneceramicrodslead, 50 mm diameterfom mi diameter <th></th> <th>Table 4</th> <th>1.3. Details of 5 industrial ga</th>		Table 4	1.3. Details of 5 industrial ga
Serubber data type of scrubberradial flow, 2 setsradial flownumber of scrubbers21height × diameter, m 16×2.5 17×6 Gas data gas sourcedry precipitator exit gasprecipitator exit gasparticulate concentration g/Nm ³ 0.2 0.5 after scrubber 0.2 0.5 after scrubber 0.1 gas flow through scrubber 50 175 thousand Nm ³ per hour gas temperature, K 623 $643-653$ before scrubber 329 339 scrubber 339 339 scrubber 338 339 out of scrubber 338 339 into scrubber 338 339 out of scrubber 338 339 mats by cooling/condensationdirect cooling/water con- densation in packed towermethoddirect cooling/water con- densation in packed towernumber of condensers 2 1×6.8 packing beight, m 15×5.2 17×6.8 iquid flow through condenser 10 iuquid temperature in, K 339 <th>Plant</th> <th>M2</th> <th>M3</th>	Plant	M2	M3
type of scrubberradial flow, 2 setsradial flownumber of scrubbers21height × diameter, m16 × 2.517 × 6Gas datgas sourcedry precipitator exit gasprecipitator exit gasgas sourcedry precipitator exit gasprecipitator exit gasparticulate concentration g/Nm³0.20.5after scrubber0.1gasgas flow through scrubber50175thousand Nm³ per hourgas temperature, Kbefore scrubber623643-653after scrubber339339scrubber into scrubber338339out of scrubber338339out of scrubber338339out of scrubber into scrubbe	Scrubber data	· · · · · · · · · · · · · · · · · · ·	
number of scrubbers 2 1 height × diameter, m 16 × 2.5 17 × 6 Gas data gas source dry precipitator exit gas precipitator exit gas particulate concentration g/Nm^3 before scrubber 0.2 0.5 after scrubber 0.1 gas flow through scrubber 50 175 thousand Nm ³ per hour gas temperature, K before scrubber 623 643-653 after scrubber 623 643-653 after scrubber 339 339 scrubber liquid flow, m ³ /hour 350 × 2 sets 528 liquid temperature, K into scrubber 338 339 out of scrubber 338 339 mass% H ₂ SO ₄ in scrubber liquid 1 to 5 1 to 10 Water removal from gas by cooling/condensation method direct cooling/water con- densation in packed tower densation in packed tower number of condensers 2 1 i height × diameter, m 15 × 5.2 17 × 6.8 packing or tubes polypropylene spheres packing height, m liquid flow through condenser liquid temperature in, K 310 gas temperature in, K 310. gas temperature in, K 310. tube length × diameter, m 10.7 × 3.7 5.2 × 10.6 number of precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube area per precipitator tube length × diameter, m 4.5 × 0.25 5.7×0.25 tube area per precipitator tube length × diameter, m 4.5 × 0.25 5.7×0.25 tube area per precipitator tube length × diameter, m 4.5 × 0.25 5.7×0.25 tube area per precipitator tube length × diameter, m 4.5 × 0.25 5.7×0.25 tube area per precipitator tube length × diameter, m 4.5 × 0.25 5.7×0.25 tube area per precipitator tube length × diameter, m 4.5 × 0.25 5.7×0.25 tube area per precipitator $5O_3$ 0 0.1 $5O_3$ 0 0.1 $7O_2$ 6.0 11.7 O_2 6.0 11.7 O_2 6.0 11.7 O_2 6.0 11.7 O_3 76 g per Nm ³ of gas remainder	type of scrubber	radial flow, 2 sets	radial flow
height × diameter, m 16×2.5 17×6 Gas data gas source dry precipitator exit gas precipitator exit gas particulate concentration g/Nm ³ before scrubber 0.2 0.5 after scrubber 0.1 gas flow through scrubber 50 175 thousand Nm ³ per hour gas temperature, K before scrubber 623 643-653 after scrubber 339 339 scrubber liquid flow, m ³ /hour 350 × 2 sets 528 liquid temperature, K into scrubber 338 339 out of scrubber 338 339 out of scrubber 338 339 mass ⁶ /H ₂ SO ₄ in scrubber liquid 1 to 5 1 to 10 Water removal from gas by cooling/condensation method direct cooling/water con- densation in packed tower densation in packed tower height × diameter, m 15 × 5.2 17 × 6.8 packing or tubes polypropylene spheres packing height, m liquid flow through condenser liquid temperature in, K 310 gas temperature in, K 310.5 308 Wet electrostatic precipitator tube length × diameter, m 1.26 × 0.25 5.7 × 0.25 tube are precipitator 4 6 height × diameter, m 1.26 × 2.2 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube are precipitator tube are	number of scrubbers	2	1
Gas datagas sourcedry precipitator exit gasparticulate concentration g/Nm^3 percipitator exit gasbefore scrubber0.20.5after scrubber50175thousand Nm ³ per hourgas temperature, Kbefore scrubber623643-653after scrubber339339scrubber liquid flow, m ³ /hour350 × 2 sets528liquid temperature, Kinto scrubber338into scrubber338339out of scrubber338339out of scrubber338339mas% H ₂ SO ₄ in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensation number of condensers21nethoddirect cooling/water con- densation in packed towerdensation in packed towerliquid flow through condenser152liquid temperature in, K310339gas temperature out, K310.5308Wet electrostatic precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of precipitators46height × diameter, m12.5 × 0.255.7 × 0.25tube materialpolypropyleneceramicrodslead, 50 mm diameter6Goldight × diameter, m4.5 × 0.255.7 × 0.25tube areap er precipitator12.6248tube materialpolypropyleneceramicrodslead, 50 mm diameter6Gas compos	height × diameter, m	16×2.5	17 × 6
gas source dry precipitator exit gas precipitator exit gas particulate concentration g/Nm ³ before scrubber 0.1 gas flow through scrubber 50 175 thousand Nm ³ per hour gas temperature, K before scrubber 623 643-653 after scrubber 339 339 scrubber liquid flow, m ³ /hour 350 × 2 sets 528 liquid temperature, K into scrubber 338 339 out of scrubber 1iquid 1 to 5 1 to 10 Water removal from gas by cooling/condensation method direct cooling/water con- densation in packed tower densation in packed tower number of condensers 2 1 height × diameter, m 15 × 5.2 17 × 6.8 packing or tubes polypropylene spheres packing height, m liquid flow through condenser liquid temperature in, K 310 gas temperature out, K 310.5 308 Wet electrostatic precipitation number of rods and collection 126 248 tube sper precipitators 4 6 height × diameter, m 10.7 × 3.7 5.2 × 10.6 number of rods and collection 126 248 tube scruptor, m ² 445 28 tube material polypropylene ceramic rods lead, 50 mm diameter 6mm diameter Gas composition (volume%) after scrubbing, condensing and electrostatic precipitator SO ₃ 0 0 0.1 SO ₂ 9.0 11.7 O ₂ 6.0 14.2 CO ₂ 1.9 H ₂ O 76 g per Nm ³ of gas N ₂	Gas data		
particulate concentration g/Nm ³ before scrubber 0.1 gas flow through scrubber 50 175 thousand Nm ³ per hour gas temperature, K before scrubber 623 643-653 after scrubber 7 into scrubber 7 into scrubber 7 mass% H ₂ SQ ₄ in scrubber 1 mass% H ₂ SQ ₄ in scrubber 1 method 6 direct cooling/water con- densation in packed tower 6 method 6 direct cooling/water con- densation in packed tower 6 theight × diameter, m 15 × 5.2 17 × 6.8 packing height, m liquid flow through condenser liquid flow through condenser liquid flow through condenser liquid flow through condenser liquid temperature in, K 310 gas temperature in, K 310, gas temperature in, K 310, gas temperature in, K 310, gas temperature in, K 310, gas temperature, m 1.26 248 tubes per precipitators 4 height × diameter, m 10.7 × 3.7, 5.2 × 10.6 number of rods and collection 126 248 tubes per precipitators 4 tubes per precipitator 126 tube scrupter precipitator, m ² 445 28 tube material polypropylene ceramic rods lead, 50 mm diameter 6mm diameter Gas composition (volume%) after scrubbing, condensing and electrostatic precipitation SQ ₃ 0 N ₂ N ₂ N ₂ N ₂ N ₂ N ₂ N ₃ N ₃	gas source	dry precipitator exit gas	precipitator exit gas
before scrubber 0.2 0.5 after scrubber 0.1 gas flow through scrubber 50 thousand Nm ³ per hourgas temperature, Kbefore scrubber 623 after scrubber 339 after scrubber 339 scrubber liquid flow, m ³ /hour 350×2 setsinto scrubber 338 339 out of scrubber 338 339 mass% H ₂ SO ₄ in scrubber liquid1 to 5to scrubber 338 339 out of scrubber 338 cooling/condensationmethoddirect cooling/water con- densation in packed towerdirect cooling/condensers 2 height x diameter, m 15×5.2 packing or tubespolypropylene spherespacking nor tubespolypropylene spherespacking nor tubes 310.5 gas temperature in, K 310.5 gas temperature out, K 310.5 agas temperature out, K 310.5 number of rods and collection 126 248 tube sep receipitatortube length x diameter, m 4.5×0.25 5.7×0.25 5.7×0.25 tube aper precipitator 28 tube aper precipitator 11.7 tube aper precipitator, m ² 445 28 28 tube materialpolypropyleneceramic 60 11.7 0_2 0.0 11.7 0_2 9.0 11.7 0_2	particulate concentration g/Nm ³	•••••	
after scrubber0.1gas flow through scrubber50175thousand Nm³ per hourgas temperature, K623643-653after scrubber339339339scrubber liquid flow, m³/hour350 × 2 sets528liquid temperature, Kinto scrubber338339out of scrubber338339out of scrubber338339mass% H ₂ SQ4 in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationdirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m15 × 5.217 × 6.8packing or tubespolypropylene spherespolypropylene spherespacking or tubespolypropylene spherespolypropylene spheresliquid flow through condenser10.7 × 3.75.2 × 10.6number of precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of rods and collection126248tube sper precipitator128tube sper precipitator, m²44528tube area per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6m diameterfiguid flow3000.1SO29.011.7O26.014.2CO21.914.2CO300.1SO3<	before scrubber	0.2	0.5
gas flow through scrubber50175thousand Nm ² per hourgas temperature, Kbefore scrubber623after scrubber339srubber liquid flow, m ³ /hour350 × 2 setsliquid temperature, Kinto scrubberinto scrubber338ass% H ₂ SO ₄ in scrubber liquid1 to 5nethoddirect cooling/water con- densation in packed towermethoddirect cooling/water con- densation in packed towernumber of condensers2liquid flow through condenserliquid temperature in, K <td>after scrubber</td> <td>0.1</td> <td></td>	after scrubber	0.1	
thousand Nm ³ per hour gas temperature, K before scrubber 623 643-653 after scrubber 339 339 scrubber liquid flow, m ³ /hour 350 × 2 sets 528 liquid temperature, K into scrubber 338 339 out of scrubber 338 339 mass% H ₂ SO ₄ in scrubber liquid 1 to 5 1 to 10 Water removal from gas by cooling/condensation method direct cooling/water con- densation in packed tower densation in packed tower number of condensers 2 1 1 height × diameter, m 15 × 5.2 17 × 6.8 packing or tubes polypropylene spheres polypropylene spheres packing height, m liquid flow through condenser liquid flow through condenser liquid tower and the state of the s	gas flow through scrubber	50	175
gas temperature, \bar{K} before scrubber 623 643-653 after scrubber 339 339 scrubber liquid flow, m ³ /hour 350 × 2 sets 528 liquid temperature, K into scrubber 338 339 out of scrubber 338 339 mass% H ₂ SO ₄ in scrubber liquid 1 to 5 1 to 10 Water removal from gas by cooling/condensation method direct cooling/water con- densation in packed tower densation in packed tow number of condensers 2 1 height × diameter, m 15 × 5.2 17 × 6.8 packing or tubes polypropylene spheres polypropylene spheres packing height, m liquid flow through condenser liquid temperature in, K 310 gas temperature out, K 310.5 308 Wet electrostatic precipitation number of precipitators 4 6 height × diameter, m 10.7 × 3.7 5.2 × 10.6 number of rods and collection 126 248 tubes per precipitator 445 28 tube material polypropylene ceramic fods lead, 50 mm diameter 6mm diameter Gas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO ₃ 0 0 0.1 SO ₂ 9.0 11.7 O ₂ 6.0 14.2 CO ₂ 1.9 H ₂ O 76 g per Nm ³ of g as N ₂ remainder	thousand Nm ³ per hour		
before scrubber623 $643-653$ 339after scrubber339339scrubber liquid flow, m³/hour 350×2 sets 528 liquid temperature, Kinto scrubber 338 339 out of scrubbermost of scrubber 338 339 mass/ H ₂ SO ₄ in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationdirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height x diameter, m 15×5.2 17×6.8 packing or tubespolypropylene spherespolypropylene spherespacking or tubespolypropylene spherespolypropylene spheresgas temperature in, K 310 gas temperature in, Kgas temperature ont, K 310.5 308 Wet electrostatic precipitator126 248 tube sper precipitator126 248 tube area per precipitator, m² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO3 0 0.1 SO29.0 11.7 O2 6.0 14.2 CO2 1.9 19 H ₂ O 76 g per Nm³ of gasN2 0.001 10.7	gas temperature, K		
after scrubber339339scrubber liquid flow, m³/hour350 × 2 sets528liquid temperature, Kinto scrubber338339out of scrubber338339mass% H ₂ SO ₄ in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationmethoddirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m15 × 5.217 × 6.8packing or tubespolypropylene spherespolypropylene spherespacking or tubespolypropylene spheressolpacking or tubesno10.5308Wet electrostatic precipitation339339number of precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of rods and collection126248tubes per precipitator22tube area per precipitator21.7tube area per precipitator, m²44528tubes area per precipitator, m²44528tube sollead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation0SO300.1SO41.701.7O26.014.2CO21.91.9H2O76 g per Nm³ of gas0.001	before scrubber	623	643-653
scrubber liquid flow, m³/hour $350 \times 2 \text{ sets}$ 528 liquid temperature, K into scrubber 338 339 out of scrubber 338 339 out of scrubber 338 339 mass% H ₂ SO ₄ in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationmethoddirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m 15×5.2 17×6.8 packing height, mliquid flow through condenserpolypropylene spheresliquid flow through condenser 310.5 308 Wet electrostatic precipitation 10.7×3.7 5.2×10.6 number of precipitators46height × diameter, m 10.7×3.7 5.2×10.6 number of rocipitators428tubes per precipitator 20 248 tubes per precipitator, m² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation 0.01 SO30 0.1 SO30 0.1 SO30 11.7 O2 6.0 14.2 CO2 1.9 19 H ₂ O 76 g per Nm³ of gasN2 0.001 10.7	after scrubber	339	339
liquid temperature, K into scrubber338339 out of scrubbermass% H2SO4 in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationdirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m15 × 5.217 × 6.8packing or tubespolypropylene spherespolypropylene spherespacking or tubespolypropylene spheressolverliquid flow through condenser10.7 × 3.75.2 × 10.6number of precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of precipitators428tube sper precipitatortube length × diameter, m28tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation so200.1SQ30011.7Q26.014.220R21.91.91.9H2O76 g per Nm³ of gas remainder0.001	scrubber liquid flow, m ³ /hour	350×2 sets	528
into scrubber338339out of scrubber338339mass% H ₂ SO ₄ in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensation methoddirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m15 × 5.217 × 6.8packing or tubespolypropylene spherespolypropylene spherespacking or tubespolypropylene spherespolypropylene spheresgas temperature in, K310gas temperature in, Kgas temperature out, K310.5308Wet electrostatic precipitation number of precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of rods and collection126248tubes per precipitator, m²44528tube material rodspolypropyleneceramicfordslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO300.1SO29.011.702CO21.91.9H ₂ O76 g per Nm³ of gas remainder	liquid temperature, K		
out of scrubber338339mass% H_2SO_4 in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationmethoddirect cooling/water con- densation in packed towernumber of condensers21height x diameter, m15 x 5.217 x 6.8packing or tubespolypropylene spherespolypropylene spherespacking height, m10gas temperature in, Kliquid temperature in, K310339gas temperature out, K310.5308Wet electrostatic precipitation16number of rods and collection126248tubes per precipitators46height x diameter, m10.7 x 3.75.2 x 10.6number of rods and collection126248tubes per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation0SO300.1SO49.011.7O26.014.2CO21.91.9H2O76 g per Nm³ of gasN20.001	into scrubber	338	339
mass% H_2SO_4 in scrubber liquid1 to 51 to 10Water removal from gas by cooling/condensationmethoddirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m15 × 5.217 × 6.8packing or tubespolypropylene spherespolypropylene spherespacking height, m10339liquid flow through condenser310339liquid temperature in, K310308Wet electrostatic precipitation126248number of precipitators46height × diameter, m10.7 × 3.75.2 × 10.6number of rods and collection126248tube length × diameter, m4.5 × 0.25 $5.7 × 0.25$ tube area per precipitatortube materialpolypropyleneceramicceramic6fub materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation0.1SO ₃ 00.1SO ₂ 9.011.7O ₂ 6.014.2CO ₂ 1.9H ₂ O76 g per Nm ³ of gasN ₂ 0.001	out of scrubber	338	339
Water removal from gas by cooling/condensationmethoddirect cooling/water con- densation in packed towerdirect cooling/water con- densation in packed towernumber of condensers21height × diameter, m 15×5.2 17×6.8 packing or tubespolypropylene spherespolypropylene spherespacking height, mliquid flow through condenserjuquid temperature in, K 310 gas temperature in, K 310 339 339 gas temperature out, K 310.5 308 Wet electrostatic precipitationnumber of precipitators46height × diameter, m 10.7×3.7 5.2×10.6 number of rods and collection 126 248 tube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitatortube materialpolypropyleneceramicceramic6Gas composition (volume%) after scrubbing, condensing and electrostatic precipitation 0.1 SO300.1SO49.0 11.7 O26.0 14.2 CO2 1.9 H ₂ O76 g per Nm ³ of gasN2 0.01	mass% H ₂ SO ₄ in scrubber liquid	1 to 5	1 to 10
number of condensers21height × diameter, m 15×5.2 17×6.8 packing or tubespolypropylene spherespolypropylene spherespacking height, mliquid flow through condenserliquid flow through condenserliquid temperature in, Kgas temperature out, K310gas temperature out, K310.5308Wet electrostatic precipitationnumber of precipitators4height × diameter, m 10.7×3.7 5.2×10.6 number of rods and collection 126 248tubes per precipitatortube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitatortube materialpolypropylenerodslead, 50 mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO ₃ 0 O_2 6.0 H_2O 76 g per Nm ³ of gas N_2 0.001	Water removal from gas by cooling/condensation method	direct cooling/water con-	direct cooling/water con
Initiate of conductives217height x diameter, m 15×5.2 17×6.8 packing or tubespolypropylene spherespolypropylene spherespacking height, mliquid flow through condenserliquid flow through condenserliquid temperature in, Kgas temperature in, K310gas temperature out, K310.5308Wet electrostatic precipitationnumber of precipitators4height x diameter, m 10.7×3.7 5.2×10.6 number of rods and collection 126 248 tubes per precipitatortube length x diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m ² 445 28 tube materialpolypropyleneceramiccodslead, 50 mm diameter SO_3 0 O_2 6.0 11.7 O_2 6.0 Pl_2O 76 g per Nm ³ of gas N_2 0.001	number of condensers		
Ineight x diameter, in15 x 5.217 x 0.3packing or tubespolypropylene spherespolypropylene spherespacking height, mliquid flow through condenserliquid flow through condenserliquid temperature in, Kgas temperature in, K310gas temperature out, K310.5308Wet electrostatic precipitationnumber of precipitators4height x diameter, m10.7 x 3.75.2 x 10.6number of rods and collection126248tubes per precipitatortube length x diameter, m4.5 x 0.255.7 x 0.25tube area per precipitator, m ² tube area per precipitator, m ² tube area per precipitator, m ² tube area per precipitator, m ² 44528tube materialpolypropyleneceramiccodslead, 50 mm diameter6mm diameterSO ₃ 000.1SO ₂ 9.011.7O ₂ 6.011.7O ₂ 76 g per Nm ³ of gasN ₂ 0.001	height x diameter m	15 ~ 5 2	17 × 6.8
packing of tabes polypropyiene spheres polypropyiene spheres polypropyiene spheres polypropyiene spheres packing height, m liquid flow through condenser liquid temperature in, K 310 gas temperature out, K 310.5 308 Wet electrostatic precipitation number of precipitators 4 6 height × diameter, m 10.7 × 3.7 5.2 × 10.6 number of rods and collection 126 248 tubes per precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube area per precipitator, m ² 445 28 tube material polypropylene ceramic rods lead, 50 mm diameter 6mm diameter Gas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO ₃ 0 0.1 SO ₂ 9.0 11.7 O ₂ 6.0 14.2 CO ₂ 1.9 H ₂ O 76 g per Nm ³ of gas 0.001	neight × diameter, in	nolymronylene spheres	nolymronylene spheres
packing neight, m liquid flow through condenser liquid temperature in, K 310 gas temperature in, K 339 339 gas temperature out, K 310.5 308 Wet electrostatic precipitation number of precipitators 4 6 height × diameter, m 10.7 × 3.7 5.2 × 10.6 number of rods and collection 126 248 tubes per precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube area per precipitator, m ² 445 28 tube material polypropylene ceramic rods lead, 50 mm diameter 6mm diameter Gas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO ₃ 0 0.1 SO ₂ 9.0 11.7 O ₂ 6.0 14.2 CO ₂ 1.9 H ₂ O 76 g per Nm ³ of gas remainder	packing of tubes	polypropyrene spheres	polypropyrene spheres
liquid now intoligh condenser liquid temperature in, K 310 gas temperature in, K 339 339 gas temperature out, K 310.5 308 Wet electrostatic precipitation number of precipitators 4 6 height × diameter, m 10.7 × 3.7 5.2 × 10.6 number of rods and collection 126 248 tubes per precipitator tube length × diameter, m 4.5 × 0.25 5.7 × 0.25 tube area per precipitator, m ² 445 28 tube material polypropylene ceramic rods lead, 50 mm diameter 6mm diameter Gas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO ₃ 0 0.1 SO ₂ 9.0 11.7 O ₂ 6.0 14.2 CO ₂ 1.9 H ₂ O 76 g per Nm ³ of gas 0.001	backing neight, m		
Induit temperature in, K310gas temperature in, K339339gas temperature out, K310.5308Wet electrostatic precipitation 310.5 308 number of precipitators46height × diameter, m 10.7×3.7 5.2×10.6 number of rods and collection126248tubes per precipitator 126 248tube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO_3 0SO_29.011.7O_26.014.2CO21.91.9H ₂ O76 g per Nm³ of gasN_20.001	liquid flow through condenser	210	
gas temperature in, K339339gas temperature in, K310.5308Wet electrostatic precipitation number of precipitators4number of precipitators46height × diameter, m10.7 × 3.7 $5.2 × 10.6$ number of rods and collection126248tubes per precipitator126248tube length × diameter, m $4.5 × 0.25$ $5.7 × 0.25$ tube area per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO_3 SO_29.011.7O_26.014.2CO21.9H ₂ O76 g per Nm³ of gasN ₂ 0.001	inquid temperature in, K	310	220
gas temperature out, K500Wet electrostatic precipitationnumber of precipitators46height × diameter, m10.7 × 3.7 $5.2 × 10.6$ number of rods and collection126248tubes per precipitator126248tube length × diameter, m $4.5 × 0.25$ $5.7 × 0.25$ tube area per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO_3 0 SO_3 00.1 SO_2 9.011.7 O_2 6.014.2 CO_2 1.9 H_2O 76 g per Nm³ of gas N_2 0.001	gas temperature in, K	339	308
Wet electrostatic precipitation number of precipitators46height × diameter, m 10.7×3.7 5.2×10.6 number of rods and collection 126 248 tubes per precipitatortube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m ² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO30 0.1 SO29.0 11.7 O2 6.0 14.2 CO2 1.9 H ₂ O 76 g per Nm ³ of gasN ₂ 0.01	gas temperature out, K	310.5	508
number of precipitators46height × diameter, m 10.7×3.7 5.2×10.6 number of rods and collection 126 248 tubes per precipitatortube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m ² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO30 0.1 SO29.0 11.7 O2 6.0 14.2 CO2 1.9 H ₂ O 76 g per Nm ³ of gasN ₂ 0.01	Wet electrostatic precipitation		<i>,</i>
height × diameter, m 10.7×3.7 5.2×10.6 number of rods and collection 126 248 tubes per precipitator 126 248 tube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO_3 SO_2 9.0 11.7 O_2 6.0 14.2 CO2 1.9 H ₂ O 76 g per Nm³ of gasN ₂ 0.01	number of precipitators	4	6
number of rods and collection126248tubes per precipitatortubes per precipitatortube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO300.1SO29.011.7O26.014.2CO21.9H2O76 g per Nm³ of gasN20.001	height × diameter, m	10.7×3.7	5.2×10.6
tubes per precipitatortube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO300.1SO29.011.7O26.014.2CO21.9H2O76 g per Nm³ of gasN20.001	number of rods and collection	126	248
tube length × diameter, m 4.5×0.25 5.7×0.25 tube area per precipitator, m² 445 28 tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO300.1SO29.011.7O26.014.2CO21.9H2O76 g per Nm³ of gasN20.001	tubes per precipitator		
tube area per precipitator, m²44528tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO300.1SO29.011.7O26.014.2CO21.9H2O76 g per Nm³ of gas remainder	tube length \times diameter, m	4.5×0.25	5.7 × 0.25
tube materialpolypropyleneceramicrodslead, 50 mm diameter6mm diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation 0 SO300.1SO29.011.7O26.014.2CO21.9H2O76 g per Nm³ of gasN20.001	tube area per precipitator, m ²	445	28
rodsfead, 50 mm diameterform diameterform diameterform diameterGas composition (volume%) after scrubbing, condensing and electrostatic precipitation SO_3 00.1 SO_2 9.011.7 O_2 6.014.2 CO_2 1.9 H_2O 76 g per Nm³ of gas N_2 remainder	tube material	polypropylene	ceramic
Gas composition (volume%) after scrubbing, condensing and electrostatic precipitationSO300.1SO29.011.7O26.014.2CO21.91.9H2O76 g per Nm³ of gasremainderN20.0010.01	rods	lead, 50 mm diameter	6mm diameter
SO ₃ 0 0.1 SO ₂ 9.0 11.7 O_2 6.0 14.2 CO ₂ 1.9 1.9 H ₂ O 76 g per Nm ³ of gas remainder dust concentration g(Nm ³ of gas 0.001	Gas composition (volume%) after	scrubbing, condensing and el	ectrostatic precipitation
SO_2 9.0 11.7 O_2 6.0 14.2 CO_2 1.9 H_2O 76 g per Nm ³ of gas N_2 remainder	SO3	0	0.1
$\begin{array}{cccc} O_2 & & 6.0 & & 14.2 \\ CO_2 & & & 1.9 \\ H_2O & & 76 g per Nm^3 of gas \\ N_2 & & remainder \\ dust concentration g(Nm^3 of gas & 0.001)\end{array}$	SU ₂	9.0	11./
$\begin{array}{c} U_{2} \\ H_{2}O \\ N_{2} \\ dust concentration g/Nm^{3} of gas \\ 0.001 \end{array}$	O_2	0.0	14.2
N_2 remainder dust concentration a/Nm^3 of day 0.001			1.7
n_2 remainder dust concentration a/Nm^3 of $aac 0.001$	п20 N.		remainder
A CONTRACT OF A	dust concentration a/Nm ³ of an	0.001	remainder

40

cleaning and water condensation	on plants.	
M4	Asarco Hayden	Phelps Dodge Miami
Venturi scrubber (VS) + washing tower (WT)	open and packed towers	Venturi scrubbers
l each	5	2
25×1.2-5.4 (VS); 22×8.2 (WT)	9.1 × 6.1	$20 \times (2.4 \text{ inlet}; 1.8 \text{ throat}; 3 \text{ outlet})$
dry precipitator exit gas	precipitator exit gas	dry precipitator exit gas
0.5		0.2
148	197	230
673	469	616
337	299	334
580 (VS), 1130 (WT)	132 to 727	950
355 (VS), 340 (WT)	343	
340	363	
10-15	1	
heat exchanger condenser	direct cooling/water conden- sation in packed tower	Venturi scrubbers, retention cool- ers & heat exchanger star coolers
3 parallel, 2 series	2	
3.1×2.2	9.1 × 6.1	
Pb lined tubes	polypropylene spheres 3.7	649 tubes: 0.076 m dia. ×3 m long
337	343	334
320	363	309
3 parallel, 2 series 13.3×6.6	8	10
424	176	129 or 302
5.4×0.25	3.7×0.25	7.6 × 0.2 or 4.6 × 0.25
60		7200 (total)
PVC carbon steel, lead lining	lead	hexagonal PVC
0	0	
14.63	9.0	9.6
11.02	11.4	9.6
3.47	0.9	0.9
101 g per dry Nm ³ of gas	5.9 (volume%)	8.5 (volume%)
remainder	remainder	71.4
		0.009

4.5.1 Gas temperature after scrubbing

Liquid scrubbing removes dust and vapors. It also cools the gas to \sim 340 K, mainly by evaporating water.

4.5.2 Impure scrubbing liquid

The Fig. 4.5 scrubbing liquid is acidic and impure. Excessive buildup of H_2SO_4 (from $SO_3(g)$ and H_2O) and impurities is avoided by:

- (a) continuously bleeding off a small portion of the liquid
- (b) replacing the bleed with clean water.

The amount of bleed is controlled to keep the scrubber liquid's acid level to below ~ 10 mass% H₂SO₄ – to minimize corrosion. The bleed is neutralized and treated for metal recovery (Newman et al., 1999).

4.5.3 Mercury removal

Mercury vapor is not removed from gas by Fig. 4.1 processing. It can, however, be removed (Hultbom, 2003) by:

- (a) contacting the gas with an aqueous solution of HgCl_2 forming solid calomel, $\mathrm{Hg}_2\mathrm{Cl}_2$
- (b) passing the gas through a bed of porous Se impregnated ceramic pieces forming solid HgSe.

These processes are referred to as the Boliden Norzink Mercury Removal Process (Boliden Norzink, 2004) and the selenium filter process (Selenium Filter, 2004). Combined sequentially, they keep Hg-in-sulfuric acid below 0.25 parts per million.

An alternative is to pass Boliden Norzink exit gas through a column of activated PbS coated pumice (Dowa Process). This precipitates solid HgS and keeps Hg-in-sulfuric acid below 0.05 parts per million (Lossin and Windhager, 1999).

4.6 H₂O(g) Removal from Scrubber Exit Gas (Table 4.3)

Scrubber exit gas is saturated with $H_2O(g)$. This $H_2O(g)$ must be removed prior to catalytic $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation – to avoid accidental downstream $H_2SO_4(\ell)$ formation/corrosion after SO_3 has formed. The $H_2O(g)$ is removed by:

(a) cooling the gas

then:

(b) contacting it with strong sulfuric acid, Chapter 6.

Gas cooling is an inexpensive way to remove most of scrubber exit gas's $H_2O(g)$, Fig. 4.6. It is done by transferring heat to cool water in:

(a) direct contact packed beds

or:

(b) shell and tube heat exchangers.

In a packed bed, the condensing water joins the cool water stream. In a heat exchanger, the condensing water flows down the cool tube walls in a separate stream. In both cases the cooling water is air cooled and recycled to condensation.

The clean, cool, partially dried gas leaves the top of the condenser and passes through electrostatic mist precipitation to final dehydration with strong sulfuric acid, Chapter 6.

Fig. 4.6. Volume% $H_2O(g)$ in saturated gas as a function of saturation temperature (Perry and Green, 1997). A decrease in gas temperature from 340 K to 310 K is seen to lower volume% $H_2O(g)$ -in-gas from ~27 volume% to 6 volume%, equivalent to about 75% $H_2O(g)$ removal.

4.7 Summary

About 20% of the world's sulfuric acid is made from the SO_2 in smelter and roaster offgases. The gases contain 10 to 75 volume% SO_2 . Their SO_2 is suitable for making sulfuric acid but the gases must be:

cooled cleaned of dust and unwanted vapors diluted with weak SO₂ process gas and/or air dried

before they are sent to catalytic SO₂ oxidation.

Cooling is usually done in a waste heat boiler – which cools the gas and recovers its heat as steam. Considerable dust also 'falls out' in the waste heat boilers.

Dust and unwanted vapors are removed from the gas by electrostatic precipitation and aqueous scrubbing.

Finally, $H_2O(g)$ is removed by:

gas cooling and water condensation, Section 4.6

then:

dehydration with strong sulfuric acid, Chapter 6.

The gas is now ready for catalytic SO₂ oxidation and subsequent H₂SO₄ making.

Suggested Reading

Friedman, L.J. and Friedman, S.J. (2004a) The wet gas sulphuric acid plant (part 1). *Sulphur*, **292**, May-June 2004, 27 31. www.britishsulphur.com

Friedman, L.J. and Friedman, S.J. (2004b) The wet gas sulphuric acid plant (part 2). *Sulphur*, **293**, July-August 2004, 29 35. www.britishsulphur.com

Ludtke, P. and Muller, H. (2003) Best available acid technology for copper smelters: a state-ofthe-art review. In Copper 03-Cobre 03, Proceedings of the Fifth International Conference, Vol. IV (Book 1) Pyrometallurgy of Copper, the Hermann Schwarze Symposium on Copper Pyrometallurgy, Smelting Operations, Ancillary Operations and Furnace Integrity, ed. Diaz, C., Kapusta, J. and Newman, C., The Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 543 554. www.metsoc.org

References

Abeck, W. (2003) Debottlenecking pyrometallurgical process lines by ultra-modern waste heat boiler upgrades. In Copper 03-Cobre 03, Proceedings of the Fifth International Conference, Vol. IV (Book 1) Pyrometallurgy of Copper, the Hermann Schwarze Symposium on Copper Pyrometallurgy, Smelting Operations, Ancillary Operations and Furnace Integrity, ed. Diaz, C., Kapusta, J. and Newman, C., The Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 531 541. www.metsoc.org

Boliden Norzink (2004) The Boliden Norzink mercury removal process. Outokumpu Technology AB, Skelleftea, Sweden www.outokumpu.com

Davenport, W.G., King, M., Schlesinger, M. and Biswas, A.K. (2002) *Extractive Metallurgy of Copper, 4th Edition.* Elsevier Science Ltd., Oxford, England, 219. www.elsevier.com

Enviro-chem (2005) Dynawave Reverse Jet Scrubber. www.enviro-chem.com/airpol/common/rjs.html

Hultbom, K.G. (2003) Industrially proven methods for mercury removal from gases. *EPD Congress 2003*, ed. Schlesinger, M., TMS, Warrendale, PA, 147 156 www.tms.org

Lossin, A. and Windhager, H. (1999) Improving the quality of smelter acid: the example of Norddeutsche Affinerie's "premium quality". In Proceedings of Sulphur 99 conference, Calgary, Alberta, October 17-20, 209 220. www.na-ag.com

Newman, C.J., Collins, D.N. and Weddick, A.J. (1999) Recent operation and environmental control in the Kennecott smelter. In *Copper 99-Cobre 99, Proceedings of the Fourth International Conference, Vol. V Smelting Operations and Advances*, ed. George, D.G., Chen, W.J., Mackey, P.J. and Weddick, A.J., TMS, Warrendale, PA, 29 45. www.tms.org

Oglesby, S. and Nichols, G.B. (1978) *Electrostatic Precipitation*, Marcel Dekker Inc., New York. www.dekker.com

Peippo, R., Holopainen, H. and Nokelainen, J. (1999) Copper smelter waste heat boiler technology for the next millennium. In *Copper 99-Cobre 99, Proceedings of the Fourth International Conference, Vol. V Smelting Operations and Advances*, ed. George, D.B., Chen, W.J., Mackey, P.J. and Weddick, A.J., TMS, Warrendale, PA, 71 82. www.tms.org

Perry, R.H. and Green, D.W. (1997) Perry's Chemical Engineers' Handbook – 7th ed. McGraw-Hill, New York. www.mcgraw-hill.com

Puricelli, S.M., Grendel, R.W. and Fries, R.M. (1998) Pollution to power, a case study of the Kennecott sulfuric acid plant. In *Sulfide Smelting '98* ed. Asteljoki, J.A. and Stephens, R.L., TMS, Warrendale, PA, 451 462. www.tms.org

Selenium Filter (2004) Mercury removal from gases with selenium filter. Outokumpu Technology AB, Skelleftea, Sweden www.outokumpu.com

CHAPTER 5

Regeneration of Spent Sulfuric Acid

About 10% of sulfuric acid is used as catalyst in petroleum refining and polymer manufacture. The acid is not consumed during these uses, but its effectiveness is diminished by contamination with water, hydrocarbons and other chemicals.

Excessive contamination is prevented by:

- (a) bleeding contaminated 'spent' acid from the catalyst circuit
- (b) replacing it with new strong $(98 + \text{mass}\% H_2SO_4)$ acid.

The contaminated 'spent' is made into new strong acid by:

- (a) decomposing its $H_2SO_4(\ell)$ to $SO_2(g)$, $O_2(g)$ and $H_2O(g)$ in a hot (1300 K) furnace, Fig. 5.1
- (b) cooling the furnace offgas in a heat recovery system
- (c) cleaning ash and soot particles from the gas
- (d) condensing $H_2O(g)$ from the gas
- (e) dehydrating the gas by contact with strong sulfuric acid
- (f) oxidizing the gas's SO_2 to SO_3
- (g) making $H_2SO_4(\ell)$ by the reaction:

 $SO_3(g) + H_2O(\ell)_{in \text{ strong sulfuric acid}} \rightarrow H_2SO_4(\ell)_{in \text{ strengthened sulfuric acid}}$

The steps are all continuous. This chapter describes steps (a) to (d). Steps (e) to (g) are described in Chapter 6 onwards.

Fig. 5.1. Spent sulfuric acid regeneration flowsheet. $H_2SO_4(\ell)$ in the contaminated spent acid is decomposed to $SO_2(g)$, $O_2(g)$ and $H_2O(g)$ in a mildly oxidizing, 1300 K fuel fired furnace. The furnace offgas (6-14 volume% SO_2 , 2 volume% O_2 , remainder N_2 , H_2O , CO_2) is cooled, cleaned and dried. It is then sent to catalytic $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation and H_2SO_4 making, Eqn. (1.2). Air is added just before dehydration (top right) to provide O_2 for catalytic SO_2 oxidation. Molten sulfur is often burnt as fuel in the decomposition furnace. It provides heat for H_2SO_4 decomposition and SO_2 for additional H_2SO_4 production. Tables 5.2 and 5.3 give details of industrial operations.

5.1 Spent Acid Compositions

Table 5.1 shows the compositions of two spent acids. Both are made into new, strong sulfuric acid as described in Fig. 5.1.

Water rich acids (e.g. methyl methacrylate spent acid) often have part of their water evaporated before they are sent to the H_2SO_4 decomposition furnace (Rohm and Haas, 2003). This decreases:

- (a) the amount of liquid that must be treated in the furnace per tonne of new H_2SO_4
- (b) the decomposition furnace's fuel requirement per tonne of new H_2SO_4 (because less water has to be heated and evaporated in the furnace).

Table 5.1. Compositions (mass%) of spent sulfuric acids from two chemical processes. Both processes use sulfuric acid as catalyst. The acid becomes contaminated with water, hydrocarbons, and other chemicals during use. It is made into new sulfuric acid as described in Fig. 5.1.

Component	Spent sulfuric acid from	
	petroleum alkylation	methyl methacrylate
	catalysis	catalysis
H ₂ SO ₄ , mass%	~90	15
H ₂ O, mass%	3-5	25
dissolved hydrocarbons, mass%	4-7#	5
ammonium bisulfate, mass%		45 ^{###}
acetone disulfonic acid, mass%		5***
low fuel value tars, mass%		5
particulate (mainly iron)	<100 parts per million##	

"H/C atomic ratio ~3 "#occasionally higher "##These components are decomposed to CO2, H2O(g), N2 & SO2.

5.2 Spent Acid Handling

Spent acid is handled very carefully. It is very corrosive. Also, its H_2SO_4 and hydrocarbons may continue to react during storage and transport (Lang, 1998).

The acid is delivered to the spent acid regeneration plant by:

stainless steel pipe (within a chemical complex)

dedicated stainless steel (road) trailers

phenolic lined steel railway cars

double hulled steel barges.

It is stored in isolated corrosion resistant stainless steel tanks. The spent acids from various sources (e.g. alkylation catalyst, jet fuel catalyst) are stored separately. This avoids unanticipated reactions between their different organic components.

5.3 Decomposition

Spent acid is decomposed by spraying fine droplets of the acid into a mildly oxidizing 1300 K furnace, Fig. 5.2. The decomposition reaction is:

$$H_2SO_4(\ell) \rightarrow SO_2(g) + \frac{1}{2}O_2(g) + H_2O(g) \quad \Delta H^\circ = -+380 \text{ MJ/kg-mole } H_2SO_4$$

in spent acid, 300 K in furnace offgas, 1300 K (5.1).

Heat for this reaction is mainly provided by burning molten sulfur and other fuels with preheated air (occasionally oxygen-enriched) and the O_2 from Reaction (5.1). A small amount of heat is obtained from oxidizing the spent acid's hydrocarbons. Sulfur burning has the advantages that it increases SO₂ concentration in decomposition furnace offgas and H₂SO₄ production rate.

5.3.1 Other reactions

Other reactions in the decomposition furnace are:

(a) water evaporation, i.e.: $H_2O(\ell) \rightarrow H_2O(g)$ (5.2)

and:

(b) chemical decomposition, e.g. ammonium bisulfate decomposition:

$$4NH_4HSO_4 + O_2 \rightarrow 2N_2 + 10H_2O(g) + 4SO_2$$
 (5.3)

all of which:

- (a) require heat
- (b) produce $H_2O(g)$.

The heat is provided by burning extra fuel, e.g. molten sulfur or natural gas. The $H_2O(g)$ is removed by condensation (Fig. 5.1) and dehydration (Chapter 6).

5.3.2 Spent acid spraying

Spent acid is sprayed into a decomposition furnace in the form of 500-1000 μ m droplets (Dafft and White, 2002). The droplets present a large acid surface to the hot combustion gas, promoting rapid evaporation and decomposition. The droplets are most commonly produced by forcing the acid into the furnace through fine nozzles (Rohm and Haas, 2003; Bete, 2005). Spinning cup atomizers are also used.

The acid is sprayed into the furnace at two to six locations. This multi spray arrangement avoids localized cooling that occurs when all the acid is sprayed in at one location.

Plant	SP1	composite
acid production, tonnes H ₂ SO ₄ /day	444	
Spent acid	alkylation catalyst	methyl methacrylate
-		catalyst
composition, mass%		
H_2SO_4	88.48	~15
H ₂ O	4.99	~25
hydrocarbons	6.53	~5
ammonium bisulfate		~45
acetone disulfonic acid		~5
tars		~5
Spent acid decomposition furnace data		
number of furnaces	1	
shell length × diameter, m	15.3×4.9	20×4
spent acid injection		
spinning cup or spray guns	spray guns	both
number of sprayers per furnace	6	
spent acid input rate, tonnes/hour	24.6	
combustion details		
fuel, e.g. molten sulfur, natural gas	natural gas	molten S and natural gas
rate, MJ per tonne of spent acid	2200	
air rate, kg per tonne of spent acid	1440	
temperatures, K	(20)	200
air into furnace	678	800
fuel into furnace	ambient	b i f
spent acid into furnace	ambient	ambient
gas out of furnace	1317	1550
Waste heat boiler		
type	fire tube	fire tube
length × diameter, m	5.5 × 2.6	
number of tubes	1000	
tube diameter, m	0.05	
tube material	carbon steel	carbon steel
number of steam superheaters		
gas temperatures, K	1017	1220
into boiler	1317	1330
out of steam super heater	554	620
steam production,		
tonnes of steam per tonne spent acid	22	40
temperature V	52	40
temperature, K	511	
Product gas		
flowrate, thousand Nm ³ /hour	37	
composition, volume%		
SO ₃		
SO ₂	14.2	6-8
O ₂	2.75	2
H ₂ O		
CO ₂	10.2	

Table 5.2. Operating details of 2 industrial spent acid decomposition furnaces.

Fig. 5.2. Spent acid decomposition furnace. It is brick lined steel ~ 4 m diameter and 20 m long. The energy for decomposing H₂SO₄(ℓ) into SO₂(g), O₂(g) and H₂O(g) and for evaporating water is provided by burning molten sulfur and natural gas with hot air. Industrial details are given in Table 5.2.

5.4 Decomposition Furnace Product

Component	Concentration, volume%
SO ₂	6-14
SO3	0.1-0.3
O ₂	2-3
$H_2O(g)$	25-30
CO ₂	10
N_2	50
particulates (mainly ash and soot)	0.1-1 gram per Nm ³

Decomposition furnace exit gas typically contains:

Its H_2O and particulates are removed before it is sent to catalytic SO_2 oxidation. Its O_2 content is increased by adding air just before gas dehydration, Fig. 5.1.

5.5 Optimum Decomposition Furnace Operating Conditions

Decomposition furnaces are operated to efficiently decompose their spent acid into SO_2 , O_2 and $H_2O(g)$. Fig. 5.3 suggests optimum conditions for achieving this goal. They are:

furnace temperature:	1250 to 1350 K
O ₂ in product gas:	1.5 to 2.5 volume%.

Fig. 5.3. Operating window for spent acid decomposition furnace (Outokumpu, 2004; Monsanto Enviro-Chem, 2005; Lang, 1998). Optimum temperature and O_2 -in-furnace-offgas ranges are suggested.

5.5.1 Temperature effects

Decomposition furnace temperatures below ~1250 K give un-decomposed $H_2SO_4(g)$ in the furnace gas. This decreases acid recovery and causes downstream corrosion.

Temperatures above ~1350 K tend to damage the furnace structure.

Furnace temperature is measured with thermocouples. It is controlled to ~ 1300 K by adjusting fuel combustion rate and air preheat temperature. Feed forward control based on scheduled changes in spent acid composition and feed rate is employed to optimize the process (Rohm and Haas, 2003).

5.5.2 O₂ content effects

Low O_2 levels in the decomposition furnace gas give sulfur vapor in the gas. This sulfur sublimes and plugs downstream cooling and cleaning equipment (Monsanto Enviro-Chem, 2005). It is avoided by keeping O_2 -in-decomposition furnace gas at 2 to 2.5 volume% (Lang, 1998).

Excessive O_2 -in-gas levels, on the other hand, give SO_3 in the product gas. This SO_3 is inadvertently absorbed during gas scrubbing and cooling – which:

- (a) decreases acid regeneration efficiency
- (b) increases the amount of acidic scrubbing/cooling liquid that must be neutralized and evaporated.

 O_2 -in-furnace gas concentrations are measured with zirconium oxide sensors (Ametek, 2005; Weiss and Puricelli, 2004). They are controlled by adjusting air input rate.

5.6 Preparation of Offgas for SO₂ Oxidation and H₂SO₄ Making

Decomposition furnace offgas is:

hot (~1300 K) dusty (~1 g particulate/Nm³ of gas) concentrated in $H_2O(g)$ (25+ volume%) too weak in O_2 for catalytic SO₂ oxidation.

It must, therefore, be:

- (a) cooled
- (b) treated for dust and $H_2O(g)$ removal
- (c) strengthened with O₂, by adding air.

The gas is cooled by:

- (a) passing it through a waste heat boiler and steam superheater (or air heater), Fig. 5.1
- (b) scrubbing with cool water.

Its dust is removed by aqueous scrubbing and wet electrostatic precipitation.

Its $H_2O(g)$ is removed by condensation with cool water and dehydration with strong sulfuric acid, Chapter 6.

Its O₂ content is raised by adding air just before dehydration.

Industrial details are given in Table 5.3.

5.6.1 Gas composition

After the above treatments, spent acid regeneration gas typically contains:

Component	Concentration entering catalytic SO ₂ oxidation volume %
SO ₂	8-10
SO ₃	0
O_2	10-12
$H_2O(g)$	0
CO ₂	6-10
N_2	68-76
particulate	< 0.1 grams per Nm ³ of gas

Plant	SP1	composite
Scrubber data		
type of scrubber	spray tower	
number of scrubbers	1	
height × diameter, m	10.6 × 3.96	
Gas data		
gas source	waste heat boiler	waste heat boiler
particulate concentration σ/Nm^3		
before scrubber		
after scrubber		
gas flow through scrubber		
thousand Nm ³ /hour	37	
gas temperature. K	. .	
before scrubber	566	600
after scrubber	340	353
scrubber liquid flow, m ³ /hour		
liquid temperature. K		
into scrubber	338	
out of scrubber		
mass% H ₂ SO ₄ in scrubber liquid		
Water removal from gas		
by appling/appdonsation		
Method	Karbate heat exchanger	
number of condensers		
height x diameter m	4 88 × 1 1	
liquid flow through tower m ³ /hour	1.00	
liquid temperature in. K		
gas temperature in. K	377	
gas temperature out, K	312	308
		11
Wet electrostatic precipitation	2	yes or scrubber
number of precipitators	2	
height × diameter, m	9.2 × 4.8	
number of rods and collection	120	
tubes per precipitator	rour d	
tube diameter, m	round	
tube area per precipitator, m	290 logd	
tude material	Icad star wire	
nous	260-260	
applicu voltage, v	200-300 50-160	
whe-to-tube current, miniamps	50-100	
Gas composition (volume%)		
after scrubbing, condensing		
and precipitation		2
SO ₂	9.9	9
SO ₃		
O ₂	7.9	
H ₂ O	8.2	
CO ₂	8.5	
N ₂	60.5	
mist droplets, g/Nm ² of gas	0.02-0.1	

 Table 5.3 Details of spent acid decomposition furnace offgas cleaning and water condensation.

It is sent to:

- (a) catalytic SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ oxidation, Chapter 7
- (b) H_2SO_4 making from SO₃ by the reaction $SO_3(g) + H_2O_{in strong sulfuric acid} \rightarrow H_2SO_4(\ell)_{in strengthened sulfuric acid}$ (Chapter 9).

The new acid is then returned for further catalyst service - or sold.

5.7 Summary

Sulfuric acid is used as catalyst in petroleum refining and other industrial organic processes. The sulfuric acid catalyst is not consumed, but it becomes ineffective as it absorbs water, hydrocarbons and other chemicals over time. Its catalytic properties are maintained by bleeding off some of the contaminated 'spent' acid and replacing the bleed with new strong acid.

The spent acid bleed is recycled and made into new acid by:

- (a) decomposing its H_2SO_4 into SO_2 , O_2 and $H_2O(g)$ in a hot (1300 K), mildly oxidizing furnace
- (b) removing dust and condensing water from the furnace's offgas
- (c) adding O_2 (in air)
- (d) dehydrating the gas with strong sulfuric acid
- (e) catalytically oxidizing the gas's SO₂ to SO₃
- (f) making new, strong sulfuric acid from (e)'s SO₃.

Suggested Reading

Rhodia (2002) Rhodia regeneration network offers environmental and economic advantages to California refiners facing MTBE phase-out. www.us.rhodia.com/news/pr/SulfuricAcid Ca-4-23-02.htm

Viergutz, M.D. (2004) On-site acid regeneration lowers costs. Sulphur, 294, September-October, 57 59. www.britishsulphur.com

References

Ametek (2005) Model CG1000 Oxygen Analyzer. www.ametekpi.com/products

Bete Fog Nozzle Inc. (2005) Spray Nozzles for Industry, Fire Protection and Pollution Control. www.bete.com

Dafft, C.A. and White, C.R. (2002) United States Patent 6,399,040, *Process for generating recoverable sulfur containing compounds from a spent acid stream* http://patft.uspto.gov/netahtml/srchnum.htm (Query, 6399040, Search)

Lang, E. (1998) Waste acids used in sulfuric acid regeneration. *Sulfuric Acid Today*, part one, spring/summer 1998, 18; part two fall/winter 1998, 16. www.sulfuricacidtoday.com

Monsanto Enviro-Chem (2005) Spent acid regeneration (SAR). www.enviro-chem.com/plant-tech/3rdtier/spentaci.html

Outokumpu (2004) Sulphuric Acid Plants. Brochure distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.outokumpu.com

Rhodia (2002) Rhodia regeneration network offers environmental and economic advantages to California refiners facing MTBE phase-out. www.us.rhodia.com/news/pr/SulfuricAcid_Ca-4-23-02.htm

Rohm and Haas (2003) [Spent] acid plant furnace optimization. www.oit.doe.gov/showcasetexas/pdfs/tourbooks/tb_rohmhaas.pdf *also* www.oit.doe.gov/showcasetexas/pdfs/posters/ps_rohmhaas_acidplant.pdf

Weiss, W. and Puricelli, S. (2004) Case histories from the H_2SO_4 industry (Observe cell temperatures of spent acid oxygen analyzers). *Sulfuric Acid Today*, Spring-Summer, 18. www.sulfuricacidtoday.com

CHAPTER 6

Dehydrating Air and Gases with Strong Sulfuric Acid

Industrial experience has shown that SO_2 bearing gas must be dry before it goes to catalytic:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 (1.1)

oxidation[#]. Otherwise, Reaction (1.1)'s SO₃(g) will react with the gas's H₂O(g) to form corrosive liquid H₂SO₄(ℓ):

(a) in cool flues and heat exchangers during normal operation and:

(b) in flues, heat exchangers and catalyst during plant shutdowns.

The $H_2SO_4(\ell)$ forms by the reaction:

$$SO_3(g) + H_2O(g) \rightarrow H_2SO_4(\ell)$$
 (6.1).

It is avoided by dehydrating:

- (a) sulfur combustion air, Fig. 6.1
- (b) scrubbed metallurgical offgas
- (c) scrubbed spent acid decomposition offgas, Fig. 6.2.

In all three cases the gas is dehydrated by contacting it with strong sulfuric acid.

[#] A small amount of sulfuric acid is made by wet catalysis, Section 1.9.

Fig. 6.1. Dehydration of sulfur combustion air in a sulfur burning acid plant. The dried air contains ~50 milligrams of $H_2O(g)$ per Nm³ of gas.

Fig. 6.2. Dehydration of metallurgical and spent acid decomposition furnace offgas. Dehydration is done after (i) $H_2O(g)$ has been condensed by gas cooling and (ii) aqueous mist has been removed by electrostatic precipitation (not shown). The gas leaving dehydration contains ~50 milligrams of $H_2O(g)$ per Nm³ of gas. The acid plant's main blower is situated immediately after dehydration.

6.1 Objectives

The objectives of this chapter are to describe:

- (a) the $H_2O(g)$ contents of pre-dehydration gases
- (b) the dehydration process
- (c) $H_2O(g)$ contents after dehydration.
- 6.1.1 $H_2O(g)$ before gas dehydration

The $H_2O(g)$ contents of pre-dehydration acid plant gases are shown in Table 6.1. They range from 2 to 10 volume% $H_2O(g)$.

Table 6.1. $H_2O(g)$ contents of pre-dehydration gases. The $H_2O(g)$ content of air in cool, dry climates is lower than that shown in the table.

Gas	Temperature, K	Volume% H ₂ O(g) in gas
air for sulfur burning [#]	305-315	2-4
metallurgical furnace offgas after scrubbing, gas cooling and wet electrostatic mist precipitation	310-315	6-10
spent acid decomposition furnace off- gas after scrubbing, gas cooling and wet electrostatic mist precipitation	310-315	6-10

Often filtered through a cloth pad prior to dehydration.

6.2 Dehydration with Strong Sulfuric Acid (Tables 6.3-6.5)

The industrial method of removing $H_2O(g)$ from sulfur burning air and metallurgical/ spent acid offgas is to pass the air or gas upwards through descending strong sulfuric acid, Fig. 6.3. Dehydration is represented by the reaction:

 $\begin{array}{rcl} H_2O(g) &+& H_2SO_4(\ell) & \rightarrow & H_2SO_4(\ell) + H_2O(\ell) \\ & & \text{in strong} & & \text{slightly weakened acid} \\ & & \text{acid} \end{array} \tag{6.2}$

for which:

 $\Delta H \approx -80 \text{ MJ per kg-mole H}_2O(g).$

Fig. 6.3. Circuit for dehydrating sulfur burning air and scrubbed metallurgical and spent acid furnace offgas. Sulfuric acid descends around ceramic saddles while moist gas ascends. This creates turbulence, a large gas/acid interfacial area and rapid gas dehydration. At the top, small acid droplets are removed from the exit gas by passing it through a Teflon[®]/stainless steel mesh pad (Ziebold, 2000). With metallurgical and spent acid gas, the departing acid (right) is stripped of inadvertently absorbed SO₂ before it is sent to product storage or H₂SO₄ making. This is most often done by passing the SO₂ bearing acid down a small packed bed (like that above) while blowing air upwards. The resulting SO₂ bearing air is sent back to the main gas stream just before dehydration. Industrial dehydration data are given in Tables 6.3-6.5.

6.2.1 $H_2O(g)$ concentration after gas dehydration

 $H_2O(g)$ -in-gas concentrations after dehydration are close to those predicted by equilibrium $H_2O(g)$ pressures over Fig. 6.3's input acid. These pressures are shown in Table 6.2 along with their equivalent volume% $H_2O(g)$ and mg $H_2O(g)$ per Nm³ of gas.

Table 6.2. Equilibrium $H_2O(g)$ pressures over sulfuric acid at temperatures around those of industrial acid plant gas dehydration (Perry and Green, 1997). The pressures are translated into volume% $H_2O(g)$ in gas and milligrams $H_2O(g)$ per Nm³ of gas. An industrial dehydration target of ~50 milligrams $H_2O(g)$ per Nm³ of gas is chosen to avoid downstream corrosion.

Temp	equilibrium $H_2O(g)$	equivalent volume%	equivalent mg H ₂ O(g) per		
ĸ	pressure of feed acid, bar	$H_2O(g)$ in dehydrated gas	Nm ³ of dehydrated gas		
93.5 ma	ss% H ₂ SO ₄ , 6.5 mass% H ₂ O st	ulfuric acid			
320	17.2E-06	16.9E-04	14		
330	38.6E-06	38.1E-04	31		
340	82.6E-06	81.5E-04	66		
350	169 E-06	166 E-04	134		
360	329 E-06	324 E-04	261		
98.5 mass% H ₂ SO ₄ , 1.5 mass% H ₂ O sulfuric acid					
320	0.9E-06	0.8E-04	1		
330	2.0E-06	2.0E-04	2		
340	4.5E-06	4.4E-04	4		
350	9.5E-06	9.5E-04	8		
360	19.7E-06	19.4E-04	16		
370	38.5E-06	38.0E-04	31		
380	72.0E-06	71.9E-04	58		
390	134 E-06	132 E-04	106		

The table indicates that its:

50 mg H₂O(g) per Nm³ of dried gas

target is achievable with:

93.5 mass% H₂SO₄ acid below 340 K

and with:

98.5 mass% H_2SO_4 acid below 380 K.

6.2.2 Choice of dehydration acid strength

Strong acid, ~98.5 mass% H_2SO_4 , is an excellent choice for air and gas dehydration. It has a low equilibrium $H_2O(g)$ vapor pressure. It removes $H_2O(g)$ from air/gas very efficiently.

Also it:

- (a) is less corrosive than lower strength (e.g. 93 mass% H_2SO_4) acid
- (b) minimizes the amount of water that has to be pumped around the dehydration circuit.

It is always used for dehydrating sulfur burning air.

Metallurgical and spent acid regeneration acid plants use 93 to 96 mass% H_2SO_4 acid for dehydrating their gases. The advantage of these low H_2SO_4 acids is that they are easily controlled to their design H_2SO_4 concentrations by:

making small changes to the rate at which 99% H₂SO₄ acid is pumped over from the H₂SO₄ making circuit, Fig. 6.3.

This is important for smelter gas dehydration towers because their $H_2O(g)$ input rates vary considerably over time – due to inadvertent variations in smelting rates.

Spent acid dehydration $H_2O(g)$ input rates also vary – due to changes in feed acid composition.

 H_2SO_4 -in-acid concentrations are most commonly determined by speed-of-sound-through-acid measurements (Mesa Labs, 2005).

6.3 Residence Times

The Table 6.3 to 6.5 data indicate that typical industrial tower diameters, packing heights, and residence times are:

tower diameter	7-9 meters
packed bed thickness	2-4 meters
acid residence time in packing	400-700 seconds
gas residence time in packing	2-4 seconds

These conditions are designed to give 50 mg $H_2O(g)$ per Nm³ of dehydrated gas with low acid droplet entrainment.

6.4 Recent Advances

The main advances in air/gas dehydration have been in the areas of:

- (a) materials of construction
- (b) ceramic packing and packing supports.

The tendency in dehydration construction and acid distribution materials is towards increased use of strongly corrosion resistant:

stainless steels

ductile iron piping.

Both are simplifying initial construction, decreasing maintenance and extending plant life (Sulphur, 2004).

Operation	<u>S1</u>		
Dehydration packed tower data			
number of packed towers	1	1	
materials of construction	SX stainless steel	brick lined carbon steel	
tower height × diameter, m	9.2×9.3	4×7	
packing height, m	2.13		
type of packing	ceramic saddles	ceramic saddles	
acid distributor type	trough and downcomers	trough and spouts	
materials of construction	SX stainless steel	ductile iron	
	Mondi [®] ductile iron header		
	pipes		
acid mist eliminator type	316 stainless steel mesh pads	Monsanto CS impact	
Air			
input filtration method	2 stage dry pads		
input rate thousand Nm ³ /hour	361	230	
$H_2O(g)$ in air, volume%			
before dehydration	1.37	2.9	
after dehydration		$<70 \text{ mg per Nm}^3$	
temperature, K		e ing per time	
into packed tower	313	305	
out of packed tower	347	363	
Sulfuric acid used for drying			
acid flowrate, m ³ /hour	1349		
composition, mass% H_2SO_4			
into packed tower	98.5	98.5	
out of packed tower	98.3	98.3	
temperature, K			
into packed tower	347	333	
out of packed tower	347	341	
outlet acid destination	combination tank	product acid storage tank	
Acid plant main blower			
number of blowers	2	1 (before gas dehydration)	
power rating, each blower kW	4800 each	4300	
steam or electric powered	electric	steam	
gas temperature after blower, K	416	363	

 Table 6.3. Details of two sulfur burning air dehydration plants.

	Table 6.4. Details of 5 copper smelting		
Operation	Cumerio (Bulgaria) 1	M3	
Dehydration packed tower data			
number of packed towers	1	1	
materials of construction	brick lined carbon steel		
tower height × diameter, m	12 × 7.2	11.92 × 8.3 (OD)	
packing height, m	3.8	4	
type of packing	7.6 & 5.1 cm saddles	5.1 to 7.6 cm saddles	
acid distributor type	Lurgi pipes and tubes	Lurgi pipes and tubes	
acid mist eliminator type	Alloy 20 – Teflon [®]	Alloy 20 – Teflon [®]	
Feed gas description [#]			
gas input rate, thousand Nm ³ /hour	160	190	
gas composition, volume%			
SO ₃	0	0	
SO ₂	12.11	11.0	
0 ₂	11.51	14.6	
CO ₂	0.40	1.83	
H ₂ O	5.42	76 g per Nm^3 of gas	
N ₂	70.56	remainder	
gas temperature. K	10.00	Territanider	
into nacked tower	313	310	
out of packed tower	335	328	
	555	020	
Sulfuric acid used for drying			
acid flowrate, m ³ /hour	1053		
composition, mass% H_2SO_4			
into packed tower	96	96	
out of packed tower	95.43		
temperature, K			
into packed tower	335	328	
out of packed tower	354	343	
outlet acid destination	H_2SO_4 making	product acid, contact acid,	
		drying tower, stripper	
is SO ₂ stripped		Ves	
from outlet acid?		yes	
Gas composition after drying			
SO ₂ (volume%)	11.29	11.0	
O ₂	13.23	14.6	
$\overline{CO_2}$	0.38	1.83	
H ₂ O	<0.02		
$\tilde{\mathbf{N}_2}$	75.10	remainder	
Acid plant main blower			
number of blowers	1	1	
power rating, each blower kW	3950 nominal	6400 (nominal)	
steam or electric powered	electric	electric	
gas temperature after blower. K	363	392	

The feed gases come from wet gas electrostatic precipitation.

gas dehydration plants.		
M4	Asarco Hayden	Phelps Dodge Miami
1	l	1
brick lined carbon steel	brick lined steel	steel tower, 316L cone roof, brick lined
20.3 × 8.32 OD	17.8 × 7.6 ID	19.8 × 9.2
0.27	3./ 7.6 and dlag	
submerged distributor pines	7.0 cm sadules	$7.0 \propto 5.1$ cm matox saddles Mechanite [®] CHS nine distributor
Teflon [®]	Teflon [®] mesh	6.7m dia $0.15m$ thick Alloy 20-Teflon [®] nad
i enom	renon mesh	o. man. o. for anov moy 20 forfor pau
208	200	255
0	0	
11.29	9.0	9.6
13.29	11.4	9.6
2.68	0.9	0.9
85 g per Nm ³ of gas	5.9	8.5
remainder	remainder	71.4
317		313
328		323
		525
910	860	1446
96	93	94.5
		93.0
278	205	
328	303	
550	product acid	TRON
	product actu	iccy
no	yes with air	
11.0.12.5	0.0	
11.0-13.3	9.0 10 A	
2.68	12.4	
0	1.0	
remainder	remainder	
i omanicoi	remander	
ĩ	2	
4500	2	
electric	electric	
383	342	

Operation	M2	SP1	
Dehydration packed tower data			
number of packed towers	1	1	
materials of construction	brick lined carbon steel	brick lined steel	
tower height x diameter m	126×72	4×7.6	
nacking height m	43	3.8	
type of ceramic packing	ceramic saddles	7.6 cm Intalox [®]	
acid distributor type	nine distributor, buried	cast iron troughs and spouts	
acid mist eliminator type	hanging fiber bed	candle	
Feed gas [#]			
gas input rate, thousand Nm ³ /hour	101	46	
gas composition volume%			
SO ₂	0		
50, 50,	10.0	8.5	
0.	5.89	11.6	
CO_2	0	5.5	
	$68 \text{ g per Nm}^3 \text{ of gas}$	0.0	
N_	remainder	74.4	
ans temperature V	Temander	/ 1. 1	
into packed tower	311	314	
aut of packed tower	279	319	
out of packed tower	526	519	
Sulfuric acid used for drying		• • /	
acid flowrate, m ³ /hour	870	384	
composition, mass% H ₂ SO ₄			
into packed tower	96	93.5	
out of packed tower	96	93.1	
temperature, K			
into packed tower	328	319	
out of packed tower	347	330	
outlet acid destination	absorption tower		
is SO ₂ stripped	n 0	Ves	
from outlet acid?	110	yes	
Gas composition after drying			
SO ₂ (volume%)	8.5		
O ₂	8.8		
CO ₂			
H ₂ O	0		
N_2	remainder		
Acid plant main blower			
number of blowers	1	1	
power rating, each blower kW	3500	1150	
steam or electric powered	steam & electric steam		
gas temperature after blower, K 373 349			

 Table 6.5. Details of zinc roaster and spent acid regeneration gas dehydration plants.

The feed gases come from wet electrostatic precipitation

The tendency in ceramic packing is towards high surface area, low gas flow resistance perforated saddles. These saddles give rapid dehydration with low resistance to gas flow.

6.5 Summary

 SO_2 bearing gas must be dry before it goes to catalytic $SO_2(g) + \frac{1}{2}O_2 \rightarrow SO_3(g)$ oxidation. Otherwise the $SO_3(g)$ made by catalytic oxidation will react with $H_2O(g)$ -ingas to form corrosive liquid sulfuric acid in cool flues and heat exchangers.

This problem is avoided by dehydrating (i) sulfur burning air and (ii) scrubbed metallurgical/spent acid furnace offgas by contacting these gases with strong sulfuric acid. Dehydration is represented by the reaction:

 $\begin{array}{rcl} H_2O(g) \ + \ H_2SO_4(\ell) \ \rightarrow \ & H_2SO_4(\ell) + H_2O(\ell) \\ & \text{in strong} & \text{slightly weakened acid} \\ & \text{acid} \end{array}$

Industrially, the process is carried out in towers packed with ceramic saddles. Acid descends around the saddles where it meets and reacts with rising $H_2O(g)$ laden gas.

 $H_2O(g)$ -in-gas is lowered to ~50 mg per Nm³ of dehydrated gas.

Suggested Reading

Friedman, L.J. and Friedman, S.J. (2004) The wet gas sulphuric acid plant (part 2). *Sulphur*, **293**, July-August 2004, 29 35. www.britishsulphur.com

References

Mesa Labs (2005) Sulfuric acid analyzer application note. www.mesalabs.com/nusonics

Perry, R.H. and Green, D.W. (1997) Perry's Chemical Engineers' Handbook – 7th Edition, McGraw-Hill, New York, NY, 2-78 2-79. www.mcgraw-hill.com

Sulphur (2004) Sulphuric acid equipment update. Sulphur, 292 (May-June 2004), 33 42. www.britishsulphur.com

Ziebold, S.A. (2000) Demystifying mist eliminator selection. *Chemical Engineering*, **107(5)**, May 2000. www.che.com

CHAPTER 7

Catalytic Oxidation of SO₂ to

Sulfuric acid manufacture from clean, dry, SO2 bearing

(a) catalytically oxidizing the gas's SO₂ to SO₃, i.e.:

 $SO_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow SO_{3}(g)$ in SO₂, O₂, in feed gas catalyst in SO₃, SO₂, (1.1) N₂ feed gas or added to O₂, N₂ gas

 $\Delta H^{\circ} \approx -100 \text{ MJ per kg-mole of SO}_3(g)$

(b) making H_2SO_4 from Eqn. (1.1)'s $SO_3(g)$ by reacting it with the $H_2O(\ell)$ in strong sulfuric acid, i.e.:

			350 K-380	K	
$SO_3(g)$ in SO ₃ , SO ₂ O ₂ , N ₂ gas	+	$H_2O(\ell)$ in 1.5% H_2O , 98.5% H_2SO_4 sulfuric acid	\rightarrow	$H_2SO_4(\ell)$ in strengthened sulfuric acid	(1.2)

 $\Delta H^{\circ} \approx$ -130 MJ per kg-mole of H₂SO₄(ℓ).

This chapter and Chapter 8 describe catalytic SO_2 oxidation. H_2SO_4 making is described in Chapter 9.

7.1 Objectives

The objectives of this chapter are to:

(a) show how industrial SO_2 oxidation is carried out, Figs. 1.2 and 7.7.

- (b) explain why catalyst is necessary for SO₂ oxidation
- (c) show how multi catalyst bed processing maximizes $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation
- (d) describe industrial operating procedures.

7.2 Industrial SO₂ Oxidation

Industrial SO₂ oxidation consists of blowing:

```
warm (~700 K)
clean
dry
```

 $SO_2 + O_2$ bearing gas down through a 'bed' of warm V, K, Na, Cs, S, O, silica catalyst, Fig. 7.1.

Fig. 7.1. 'Bed' of catalyst pieces for oxidizing SO₂ to SO₃. It is circular, 7 to 17 m diameter. Industrial SO₂ oxidation is done in a 'converter' of 3 to 5 such beds, Figs. 7.6 and 7.7. Downward gas flows are ~25 Nm³/minute per m² of top surface. Active catalyst consists of a molten V, K, Na, Cs, S, O phase supported on a solid porous silica substrate, Chapter 8. A top layer of silica rock holds the catalyst in place. A bottom layer prevents the catalyst from sticking to the stainless steel support grid.

 SO_2 oxidation proceeds as the feed gas descends the bed. It:

- (a) produces SO₃
- (b) consumes SO_2 and O_2
- (c) heats the descending gas.

Fig. 7.2 describes these phenomena. It shows that as the gas descends:

- (a) SO₂ oxidation proceeds (left graph)
- (b) gas and catalyst temperatures increase.

Fig. 7.2. Sketch of SO₂ oxidation in Fig. 7.1 catalyst bed. SO₂ and O₂ in the feed gas react to form SO₃ as the gas descends the catalyst bed. The heat of reaction warms the gas (left graph).

7.2.1 Source of O_2

 SO_2 oxidation requires O_2 . Sulfur burning furnace offgas already contains O_2 , Table 7.1. None needs to be added. Metallurgical and waste acid decomposition furnace offgases often contain little O_2 , so some must be added before catalytic SO_2 oxidation. It is added in air or ventilation gas before gas dehydration.

Volume% O_2 /volume% SO_2 ratios in industrial catalytic oxidation feed gas are in the range of 1 to 2, Table 7.2. This is 2 to 4 times the stoichiometric $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ requirement of 0.5 moles O_2 per mole of SO_2 . The excess O_2 promotes rapid SO_2 oxidation.
Table 7.1. Compositions of furnace offgases and catalyst bed feed gases. Sulfur burning gases don't change. Metallurgical and waste acid decomposition furnace offgases lose SO₃ and $H_2O(g)$. The SO₃ is removed during water scrubbing. The $H_2O(g)$ is removed during condensation and dehydration.

Gas source and	Sulfur burning	Metallurgical	Waste acid decom-
composition, volume%	furnace	furnaces [#]	position furnace
Offgas leaving furnace			
SO ₃	0.2	0-0.5	0.2
SO ₂	8-12	8-15	6-14
O ₂	9-12	5-15	2-3
CO ₂	0	0-5	10
$H_2O(g)$	0	5-30	25-30
N ₂	79	50-70	~50

#after electrostatic precipitation, Chapter 4

Acid pla	nt feed gas	entering	catalytic SO ₂	oxidation	'converter'
----------	-------------	----------	---------------------------	-----------	-------------

Prior treatment	usually none, O ₂ is occasionally added in dried air	gas cleaning and cooling; O ₂ addition in air; dehydration	gas cleaning and cooling; O_2 addition in air; dehydration
SO ₃	0.2	0	0
SO ₂	8-12	8-13	8-10
O ₂	9-12	9-14	10-12
CO ₂	0	0-7	6-10
$H_2O(g)$	0	0	0
N ₂	79	~75	~70

7.3 Catalyst Necessity

All industrial SO₂ oxidation is done in beds of catalyst. Sander *et al.* (1984) explain the need for catalyst as follows:

"Gas phase oxidation of sulphur dioxide is kinetically inhibited and virtually impossible without a catalyst at any temperature. At ordinary temperatures the reaction is so slow that, in practical terms, it does not occur at all. Increasing the temperature increases the rate of reaction, but simultaneously the position of the equilibrium shifts unfavourably – away from sulphur trioxide and towards sulfur dioxide and oxygen. Without a catalyst, the temperature needed to make the system react at a practical speed is so high that a very poor conversion [i.e. very little SO₃ production] is obtained."

7.3.1 Temperature effect

The temperature effect described in the above statement is confirmed by Fig. 7.3, which shows that the equilibrium constant for SO_2 oxidation, i.e.:

$$\mathbf{K}_{E} = \frac{\mathbf{P}_{SO_{3}}^{E}}{\mathbf{P}_{SO_{2}}^{E} * \left(\mathbf{P}_{O_{2}}^{E}\right)^{\frac{1}{2}}}$$

 $(P^{E} = equilibrium partial pressure, bar)$

decreases with increasing temperature.

Fig. 7.3. Equilibrium constant for $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation as a function of temperature. It decreases nearly 80 000 times between 600 and 1400 K.

This indicates that:

(a) the equilibrium
$$\frac{P_{SO_3}^E}{P_{SO_2}^E * \left(P_{O_2}^E\right)^{\frac{1}{2}}} \text{ ratio}$$

and

(b) maximum attainable SO₃ production

both decrease significantly with increasing temperature.

(b) is confirmed by Fig. 7.4 – which shows that maximum attainable SO_2 oxidation decreases from:

nearly 100% at 600 K

to

about 2% at 1400 K.

It can be concluded from this that raising reaction temperature to increase reaction rate *decreases* maximum attainable (equilibrium) SO₃ production.

This problem is overcome by using catalyst which promotes:

rapid SO₂ oxidation

at cool temperatures (~700 K) where:

equilibrium SO₃ production is efficient.

Fig. 7.4. Maximum attainable (equilibrium) SO_2 oxidation as a function of reaction temperature. It decreases markedly with increasing temperature. Calculation and plotting of this curve are described in Chapter 10.

The catalyst is described in Chapter 8. It consists of vanadium oxide; K, Na, Cs pyrosulfates and porous silica substrate. It is in the form of 10-20 mm rings and pellets, Fig. 8.1 (most commonly, 10-12 mm). It begins to speed up SO_2 oxidation at 660-690 K when the vanadium oxide and K, Na, Cs pyrosulfates combine to form a molten layer on the substrate. It becomes fully active at 680-700 K.

Feed gas must enter beds of this catalyst at or above the fully active temperature. Otherwise the gas will cool and solidify (deactivate) the catalyst, preventing SO_2 oxidation.

7.4 SO₂ Oxidation 'Heatup' Path (Chapter 11)

Fig. 7.2 indicates that:

SO₂ oxidation

and

gas temperature

increase as SO₂, O₂, N₂ gas descends an active catalyst bed. Fig. 7.5 quantifies this behavior. It confirms that gas temperature rises as % SO₂ oxidized increases (due to heat from SO₂ oxidation).

Fig. 7.5 also shows that SO_2 oxidation and gas heat up end when the heatup path reaches Fig. 7.4's equilibrium % SO_2 oxidized curve.

Fig. 7.5. 'Heatup' path for gas descending the Fig. 7.1 catalyst bed. It begins at the feed gas's input temperature and 0% SO₂ oxidized. Its temperature rises as SO₂ oxidizes. Maximum attainable SO₂ oxidation is predicted by the 'heatup' path-equilibrium curve intercept, 69% oxidized at 893 K in this case. This low % SO₂ oxidized confirms that efficient SO₂ oxidation cannot be obtained in a single catalyst bed. Multiple catalyst beds with gas cooling between must be used.

7.5 Industrial Multi Catalyst Bed SO₂ Oxidation (Table 7.2)

Industrial SO₂ oxidation is done in a sequence of 3 to 5 catalyst beds, Figs. 7.6 and 7.7. This section and Fig. 7.8 describe passage of warm feed gas through three catalyst beds with gas cooling between. The sequence is:

Feed gas (10 volume% SO₂, 11 volume% O₂, 79 volume% N₂, 690 K) enters the 1^{st} catalyst bed, Fig. 7.6. It:

- (a) descends the 1st catalyst bed where its SO₂ and O₂ react to form SO₃, heating the gas
- (b) departs the bed at near-intercept conditions (69% of feed SO₂ oxidized/893 K) into Fig. 7.6's top (1-2) gas cooler where it is cooled to 700 K without composition change
- (c) enters and descends the 2nd catalyst bed, reacting to form more SO₃, re-heating the gas
- (d) departs the 2nd bed at near-intercept conditions (94% SO₂ oxidized/773 K) into Fig. 7.6's bottom (2-3) gas cooler where it is cooled to 710 K without composition change
- (e) enters and descends the 3rd catalyst bed, forming more SO₃, again re-heating the gas
- (f) departs the 3rd catalyst bed at near-intercept conditions (98% SO₂/721 K) and proceeds to cooling and H₂SO₄ making, Chapter 9.

Fig. 7.6. Schematic of SO_2 oxidation 'converter' in which three Fig. 7.1 catalyst beds (with gas cooling between) are used to oxidize ~98% of feed SO_2 to SO_3 . Fig. 1.2 shows the inside of an industrial 'converter' – Fig. 7.7, the outside. [#]Hot gas leaving the catalyst beds is cooled by waste heat boilers, steam superheaters, water heaters, heat exchangers etc.

Fig. 7.7. Photograph of catalyst bed converter, courtesy Outokumpu OYJ www.outokumpu.com Gas inlet and outlet flues are shown. Others are hidden behind. Fig. 7.6's gas coolers are also hidden behind. Converter walls and roofs are designed to be strong enough to withstand their acid plant's main blower 'shutoff ' pressure without damage (Friedman and Friedman, 2004). Catalyst 'tray' supports are also strong enough to withstand the downward force exerted by the descending feed gas (at the converter's operating temperature).

Fig. 7.8. 'Heatup' paths, intercepts and cooldown paths for Fig. 7.6 'converter'. They are described in Section 7.5. Final % SO₂ oxidation after Fig. 7.6's three catalyst beds is \sim 98%.

7.5.1 Overall multi catalyst bed results

Fig. 7.8 describes the benefits of multi catalyst bed SO_2 oxidation. SO_2 oxidation is increased in each succeeding bed. The figure shows, however, that the incremental amount of SO_2 oxidation diminishes in each successive bed.

Addition of a fourth bed would probably not be worthwhile from the SO_3 production (hence H_2SO_4 production) point of view. It might, however, be worthwhile from the point of view of minimizing SO_2 escape to the environment (because SO_2 passes untouched through subsequent H_2SO_4 making). These factors are detailed in Chapters 12 to 22.

7.5.2 Double contact acidmaking

This chapter describes SO₂ oxidation in 'single contact' acid plants. These plants:

(a) oxidize $SO_2(g)$ to $SO_3(g)$ as described here

then:

(b) make H₂SO₄(ℓ) by 'single contact' of the resulting SO₃(g) bearing gas with strong sulfuric acid, Chapter 9.

'Double contact' acidmaking:

(a) oxidizes $SO_2(g)$ to $SO_3(g)$ as described here

- (b) makes $H_2SO_4(\ell)$ from the resulting $SO_3(g)$ by contact with strong sulfuric acid
- (c) oxidizes the $SO_2(g)$ remaining after (a) and (b) to $SO_3(g)$ in 1 (occasionally 2) catalyst beds
- (d) makes H_2SO_4 from the new $SO_3(g)$ by second contact of the gas with strong sulfuric acid.

Its advantage is more efficient SO_2 oxidation and H_2SO_4 production. Its disadvantage is more equipment and more heating and cooling.

(d) is discussed in Chapter 9. (c) is discussed in Chapter 19.

7.6 Industrial Operation (Table 7.2)

7.6.1 Startup

Catalyst must be at its fully active temperature before it is fed with SO_2 bearing feed gas. Otherwise the SO_2 will pass through unreacted. Industrially, the catalyst is heated by passing hot, dry <u>air</u> through the catalyst beds before the SO_2 producing furnace is started (BASF, 2004). The air is heated by heat exchange with hot fossil fuel combustion gas. Metallurgical and spent acid regeneration plants have a dedicated air heater for this purpose. Sulfur burning plants heat the air in their sulfur burning furnace[#].

Once the catalyst beds are hot, the SO_2 production furnace is started and hot, clean, dry SO_2 bearing gas is introduced into the catalytic converter.

Sulfur burning offgas is introduced directly into the hot converter because it leaves the sulfur burning furnace/boiler/superheater at its specified feed gas temperature, ~700 K.

Metallurgical and spent acid decomposition gases are initially passed through their fuelfired startup heat exchanger because they are cool from gas cleaning/dehydration. Once SO_2 oxidation has begun, this gas heating duty is switched to heat exchange from hot catalyst bed exit gas.

7.6.2 Steady operation

Steady 'converter' operation entails:

(a) feeding constant composition, constant temperature SO₂ bearing gas at a constant rate

[#] The furnace is first heated by fossil fuel combustion. Combustion is then stopped and dry air is passed through the furnace into the catalyst beds (repeated several times). Once the catalyst beds are hot enough to avoid $H_2O(g)$ condensation, hot combustion offgas is passed directly through the beds.

(b) continuously monitoring catalyst bed gas input and output temperatures.

7.6.3 Control

The main catalytic converter control objective is maintenance of constant, specified catalyst bed input gas temperatures.

Low input gas temperatures must be avoided because they may cool, solidify and deactivate a bed's catalyst.

High input gas temperatures must be avoided because they:

- (a) raise catalyst bed gas output temperature and consequently lower SO₂ oxidation efficiency, Fig. 12.2
- (b) raise the gas output temperature above the catalyst degradation temperature, Section 8.3
- (c) raise the gas output temperature to the point where it weakens the converter's stainless steel structure.

Catalyst bed input gas temperatures are measured with three thermocouples in the top of each bed. They are controlled by adjusting the amount of gas being bypassed around the catalytic converter's gas cooling devices, Fig. 22.2.

Catalyst bed exit gas temperatures are also measured. They are indicative of each bed's SO_2 oxidation efficiency. First catalyst bed exit gas temperature is especially important. This bed's catalyst may overheat and degrade near the bottom of the bed.

7.6.4 Shutdown

Catalytic SO₂ \rightarrow SO₃ oxidation is stopped by:

- (a) shutting down the SO₂ production unit, e.g. the sulfur burning furnace
- (b) blowing 700 K dehydrated air through the catalyst beds and their gas coolers (BASF, 2004)
- (c) gradually cooling the air flow.

Steps (b) and (c) remove SO_2 and SO_3 from all the catalytic oxidation equipment (avoiding corrosion). They also cool equipment and catalyst slowly (avoiding thermal stress and catalyst fragmentation).

An important strategy during short interruptions of SO_2 supply is to keep the catalyst at its chemically active temperature, 680-700 K. This is accomplished by (i) raising the temperature of the catalyst just before a forecast interruption and by (ii) preventing air leakage into the converter.

Operation	······································	S1	M2
acid production,	, tonnes H ₂ SO ₄ /day	4400	1150
source of SO ₂		sulfur burning	zinc roasting
single or double contact plant		double	double
number of cat	talyst beds	$3 + 1^{\#}$	$3 + 2^{\#}$
converter heig	ght × diameter, m	19.23 × 16.65	15×10
· · · · · · · · · · · · · · · · · · ·		304 SS; passes 1&2 321 SS;	stainless
construction	materials	pass 3&4 304 SS	steel
heat recovery	system	2 × HRS boilers	economizer for boiler
Input gas data			
flowrate, thou	usand Nm³/hour	356	127
temperature,	K	696	718
composition,	volume%		
SO_3		0.184	0
SO_2		11.6	8.5
O_2		9.06	8.84
CO_2			
N_2		79.1	remainder
Catalyst bed da	ata heds.m		
bed 1	ovus, m	0.78	0.615
bed 2		0.90	0.680
bed 2		1.07	0.750
bed 4			
catalyst type((s)		
bed 1		LP120	12 mm daisy ring VK38
bed 2		LP120	12 mm daisy ring VK38
bed 3		LP110	12 mm daisy ring VK48
bed 4			
catalyst bed t	temperatures, K		
bed 1	in	696	718
	out	894	847
bed 2	in	713	723
	out	798	790
bed 3	in	718	727
	out	744	748
bed 4	in		
	out		
Product gas to	H ₂ SO ₄ making		0.40
SO3		11.8	8.49
SO ₂		0.688	0.38
O_2		3.78	4.88
CO_2		92.7	
N2		83.7	

Table 7.2. Details of before- H_2SO_4 making catalytic

3 catalyst beds before intermediate H₂SO₄ making, 1 bed after

Cumerio 1 (Bulgaria)	Cumerio 2 (Bulgaria)	M5
1940	1500	·····
copper smelting	copper smelting	lead zinc smelting/roasting
double	double	single
$3 + 1^{r}$	$3 + 1^{\prime\prime}$	4
19.3 × 11.6	22.3 × 12	$12.83 \times 8.4 \text{ ID}$
stainless steel, gray fron posts	brick lined carbon steel	
none	none	
160	150	85
703	693	698-713
0	0	
11.29	9.5	8.33
13.23	14.9	10.79
0.38	0.3	6.65
75.10	75.3	
0.66	0.70	0.52
0.81	0.60	0.60
0.88	0.80	0.37 combined 0.37 combined
	12	111/20
$10 \times 4 \& 11 \times 4 \text{ mm rings}$	$12 \times 6 \text{ mm rings}$	VK38
11×4 mm rings	$12 \times 6 \text{ mm rings}$	LP110
11 ~ 4 min mgs	12 × 0 min migs	VK38
703	693	698-713
903	868	803-853
723	/41	703-723
708	708	703-713
737	713	105 115
		713-733
11.47	10.08	8.05
0.51	0.42	0.61
7.37	5.67	/.20
0.32	0.28	0.92
80.33	63.33	

 SO_2 oxidation plants. (SS = stainless steel)

acid production, tonnes H_2SO_4/day 290022source of SO_2 nickel copper smeltingcopsingle or double contact plantdoubledoublenumber of catalyst beds $3 + 1^{\#}$ 17.3 × 12.5converter height × diameter, m17.3 × 12.514.51construction materials304H stainless steelAISI PT 1heat recovery systemnoneInput gas dataflowrate, thousand Nm³/hour231 (design)temperature, K671-703composition volume%671-703	00 (nominal) pper smelting single 4 15 × 11.75 (OD) 304H stainless steel 136
single or double contact plant number of catalyst beds 3 + 1 [#] converter height × diameter, m 17.3 × 12.5 14.51 construction materials 304H stainless steel AISI PT : heat recovery system none Input gas data flowrate, thousand Nm ³ /hour 231 (design) temperature, K 671-703 composition volume%	single 4 15 × 11.75 (OD) 304H stainless steel 136
number of catalyst beds number of catalyst beds converter height × diameter, m construction materials heat recovery system Input gas data flowrate, thousand Nm ³ /hour temperature, K composition volume%	4 15 × 11.75 (OD) 304H stainless steel 136
converter height × diameter, m17.3 × 12.514.51construction materials304H stainless steelAISI PTheat recovery systemnoneInput gas data flowrate, thousand Nm³/hour231 (design) 671-703 composition volume%	15 × 11.75 (OD) 304H stainless steel 136
construction materials304H stainless steelAISI PTheat recovery systemnoneInput gas data flowrate, thousand Nm³/hour temperature, K231 (design) 671-703	304H stainless steel 136
heat recovery systemnoneInput gas data flowrate, thousand Nm³/hour231 (design) 671-703temperature, K671-703	136
Input gas dataflowrate, thousand Nm³/hour231 (design)temperature, K671-703composition volume%	136
flowrate, thousand Nm ³ /hour 231 (design) temperature, K 671-703	136
temperature, K 671-703	
composition volume%	
composition, volume/o	
SO ₃	11.0
SO_2 12	11.0
U_2 18.22	14.0
UU ₂ 2.32	1.83
N ₂ remainder	
Catalyst bed data	
bed 1 0.65	0.67
bed 2 0.05	0.867
bed 3 0.78	0.985
bed 4	1.419
catalyst type(s) all 12 mm daisy	
bed 1 VK59 and VK38 E	BASF LP111
bed 2 VK38 E	BASF LP110
bed 3 LP110 and VK48 E	BASF LP110
bed 4 E	3ASF LP110
catalyst bed temperatures, K	
bed 1 in 673	
out 903	897
bed 2 in 709	703
out //l	853
bed 3 in /13	703
out /42	/04
out	699
Deschust ser to U.S.O. making	
SO 12 20	11.44
SO ₃ 12.20 SO ₂ 0.50	0.23
Ω_{2} 0.50 Ω_{2}	9.61
C_2	1.94
Na remainder	

Table 7.2(continued). Details of before-H₂SO₄ making catalytic

3 catalyst beds before intermediate H2SO4 making, 1 bed after

SO_2	oxidation	plants.

M4	Asarco Hayden
2100-2400	1630
continuous copper smelting	copper smelting
double	double
3 + 1#	$3 + 1^{\#}$
22.1×12	16.1×14.0
aluminum coated steel	304 stainless
brick lining	steel
none	
188	201
663	672
11.0-13.5	8.5
13.29	12.6
2.68	1.0
remainder	75.0
0.76	0.46
0.85	0.56
1.00	0.56
VK50 and VK 28 laware	1 01200/1229
VK39 and VK 38 layers	LP120/VK38
VK38	LF120/VK38
VKJO	LF 110/ V K48
663	672
873	894
713	700
813	812
693	711
723	727
10.89-13.3	12.1
0.7-1.1	0.6
7.5-8.6	7.1
2.9	1.0
remainder	79.1

Operation		Phelps Dodge Miami	M1
acid production.	, tonnes H ₂ SO ₄ /day	2400	270
source of SO ₂	, <u>,</u> ,,,	copper smelting	MoS ₂ roasting & S burning
single or double contact plant		double	double
number of ca	talyst beds	$3 + 1^{\#}$	$2 + 2^{\#}$
converter hei	ght × diameter, m	23.3 × 14.76	9.8 × 6.9
		all welded	carbon steel with
construction	materials	stainless steel	cast iron grids
heat recovery	/ system		none
Input gas data			
flowrate, tho	usand Nm³/hour	233	50
temperature,	K		
composition,	volume%		
SO_3		trace	
SO_2		10.5	4.7-5.6
O ₂		10.5	13.7
CO_2		1	
N_2		78	
Catalyst bed d	ata		
thickness of	beds, m	0.40	
bed I		0.49	0.56
bed 2		0.79	0.48
bed 3		0.84	
catalyst type	(s)		a . t t
bed 1		13 mm diameter 13 mm long	daisy ring
bed 2		13 mm diameter 13 mm long	daisy ring
bed 3		13 mm diameter 13 mm long	
bed 4			
catalyst bed	temperatures, K	202	700 727
Ded 1		703	205 830
had 2	out im	071 722	003-039
bed 2	in	723	700-727
h = 1 2	out	790	/08-/30
bed 3	111	725	
h - 1 4	out	/44	
bed 4	in		
	out		
Product gas to	o H ₂ SO ₄ making	10.29	11 2
3U3 SO		0.66	0.2
SU ₂		5 05	0.2
O_2		1.05	
CO_2		1.05	
iN2		82.03	

Table 7.2(continued). Details of before- H_2SO_4 making catalytic

3 catalyst beds before intermediate H2SO4 making, 1 bed after

SO_2	oxidation	plants.
_		

S2	SP1	
1800	444	
sulfur burning	spent acid regeneration	
single	single	
4	4	
13.7×12.8	10.8×7.6	
carbon steel, gray	carbon steel &	
iron posts and grids	meehanite cast iron	
1 0	superheater	
	r r	
210	51	
700		
	0	
8.38	8.5	
12.6	11.6	
	5.5	
79.02	72.5	
0.51	0.78	
0.62	0.86	
0.02	0.80	
0.75	1 20	
0.7	1.27	
daisy ring	10 mm ring	
10 mm ring	10 mm ring	
10 mm ring	10 mm ring	
10 mm ring	10 mm ring	
700	705	
/UU 000	/UJ 870	
070 705	0/9 700	
705	/09	
707 715	800 725	
/13	723	
/33 700 (after air dilution)	744	
	703	
/04		
8.18	9.02	
0.15	0.19	
9.44	7.13	
	7.74	
82.23	75.92	

7.7 Recent Advances (Friedman and Friedman, 2004)

Important recent advances in catalytic SO₂ oxidation have been:

- (a) development of low activation temperature, high reaction rate cesium-based catalyst, Chapter 8
- (b) adoption of low gas flow resistance daisy ring catalyst pieces, Fig. 8.1
- (c) use of strong, corrosion resistant stainless steel in converter construction.

All contribute to efficient, steady, long term SO₃(g) production.

7.8 Summary

Catalytic oxidation of $SO_2(g)$ to $SO_3(g)$ is a key step in sulfuric acid production. It produces the SO_3 required for H_2SO_4 making, Chapter 9.

 $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ oxidation is always done by passing warm SO_2 bearing gas down through horizontal beds of V, K, Na, Cs, S, O, SiO₂ catalyst. The catalyst promotes rapid SO₂ oxidation at temperatures (700-900 K) where SO₂ oxidation is thermodynamically efficient.

Industrially, the oxidation is carried out in a sequence of 3 to 5 catalyst beds with gas cooling between. Removal of heat from the gas between catalyst beds allows it to leave the last bed at a low temperature (\sim 720 K) – where equilibrium SO₂+ $\frac{1}{2}O_2 \rightarrow$ SO₃ oxidation efficiency is high (98+ percent).

Suggested Reading

Friedman, L.J. and Friedman, S.J. (2004b) The wet gas sulphuric acid plant (part 2). *Sulphur*, **293**, July-August 2004, 29 35. www.britishsulphur.com

Sander, U.H.F., Fischer, H., Rothe, U., Kola, R. and More, A.I. (1984) Sulphur, Sulphur Dioxide and Sulphuric Acid: An Introduction to their Industrial Chemistry and Technology. British Sulphur Corp., London, UK. www.britishsulphur.com

References

BASF (2004) BASF catalyst (technical leaflet). www.basf.com

Friedman, L.J. and Friedman, S.J. (2004) The wet gas sulphuric acid plant (part 2). *Sulphur*, **293**, July-August 2004, 29 35. www.britishsulphur.com

Sander, U.H.F., Fischer, H., Rothe, U., Kola, R. and More, A.I. (1984) Sulphur, Sulphur Dioxide and Sulphuric Acid: An Introduction to their Industrial Chemistry and Technology. British Sulphur Corp., London, UK, 283. www.britishsulphur.com

CHAPTER 8

SO₂ Oxidation Catalyst and Catalyst Beds

Chapter 7 shows that $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ oxidation is a key step in sulfuric acid manufacture. The $SO_3(g)$ is essential for H_2SO_4 making, i.e. for the reaction:

SO ₃ (g)	4	$H_2O(\ell)$	\rightarrow	$H_2SO_4(\ell)$	
in SO ₃ , SO ₂		in strong		in strengthened	(1.2).
O ₂ , N ₂ gas		sulfuric acid		sulfuric acid	

Chapter 7 also shows that V, K, Na, Cs, S, O, SiO_2 catalyst is a key ingredient in ensuring rapid, efficient SO_2 oxidation. Without catalyst, SO_2 oxidation is slow at temperatures where the oxidation is thermodynamically efficient.

This chapter describes SO₂ oxidation catalyst. It does so in terms of:

- (a) catalyst physical and chemical characteristics, Fig. 8.1
- (b) catalyst reaction mechanisms
- (c) choice of catalyst chemical compositions for different industrial tasks, e.g. strong SO₂ gas, weak SO₂ gas
- (d) industrial catalyst quantity requirements.

Fig. 8.1. Photograph of catalyst pieces, courtesy Haldor Topsoe A/S www.haldortopsoe.com Rings, daisy (star) rings and pellets are shown. The daisy rings maximize catalyst area and minimize resistance to gas flow. In operation (700-900 K), the catalyst consists of a molten vanadium-alkali metal sulfate/pyrosulfate layer on a porous solid silica substrate. The outside diameter of the largest piece (far left) is 20 mm.

8.1 Catalytic Reactions

Active SO₂ oxidation catalyst consists of molten vanadium-alkali metal pyrosulfate layer on porous solid silica substrate. Catalytic SO₂+ $\frac{1}{2}O_2 \rightarrow$ SO₃ oxidation takes place with dissolved V S O ionic complexes by reactions like:

$$(VO)_2O(SO_4)_4^{4-} + O_2(g) \rightarrow (VO)_2O(SO_4)_4O_2^{4-}$$
 (8.1)

$$(VO)_2O(SO_4)_4O_2^{4-} + SO_2(g) \rightarrow (VO)_2O(SO_4)_4O^{4-} + SO_3(g)$$
 (8.2)

$$(VO)_2O(SO_4)_4O^{4-} + SO_2(g) \rightarrow (VO)_2O(SO_4)_4SO_3^{4-}$$
 (8.3)

$$(VO)_2O(SO_4)_4SO_3^{4} \rightarrow (VO)_2O(SO_4)_4^{4} + SO_3(g)$$
 (8.4)

or, overall:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) \tag{8.5}$$

(Lapina et al., 1999). N₂ and CO₂ don't react during the SO₂ oxidation process.

Reactions (8.1) to (8.4) have smaller activation energies than Reaction (8.5). They give rapid SO₂ oxidation at moderate temperatures.

Rapid reaction between gases and ions requires that the vanadium ion salt be molten (Folkmann *et al.*, 1991; Hatem *et al.*, 2002). Melting at moderate temperatures (~650 K) is obtained by combining high melting point:

vanadium pentoxide (melting point, 943 K)

with low melting point:

potassium (692 K), sodium (675 K), cesium (733 K) pyrosulfates, Fig. 8.2.

The resulting low melting point salt also:

(a) dissolves $SO_2(g)$ and $O_2(g)$

and:

(b) exsolves $SO_3(g)$

as required by Reactions (8.1) through (8.4).

8.1.1 Deactivation and reactivation

Catalyst deactivates when it is cooled below its solidification temperature. This happens when a catalyst bed is fed with cold gas or when the acid plant is shut down.

Fig. 8.2. $Cs_2S_2O_7 - V_2O_5$ phase diagram (after Folkmann *et al.*, 1991). The lowest melting point is 617 K, far below V_2O_5 's 943 K melting point.

Fortunately, catalyst solidification and melting are reversible so that the catalyst reactivates when it is once again heated and remelted.

8.2 Maximum and Minimum Catalyst Operating Temperatures

Tables 7.2 and 19.3 indicate that industrial catalysts operate between:

~680 K (occasionally lower)

and:

~900 K.

Operating <u>above</u> ~690 K ensures that the catalyst is molten and active.

Operating <u>below</u> ~900 K ensures the presence of Reactions 8.1 to 8.4's active ions in the molten catalyst. Above ~900 K, these active ions transform to inactive vanadates (VO_4^3) causing SO₂ oxidation to cease (Rasmussen, 2001). Also, above 900 K, the molten catalyst and solid substrate tend to irreversibly form a viscous inactive liquid.

8.3 Composition and Manufacture

Compositions and methods of manufacturing commercial catalysts are proprietary. Roughly, however, commercial catalysts contain (mass%):

- 4 9% V₂O₅
- 15 20% potassium sulfate/pyrosulfate (SO₄/S₂O₇)
- 2 5% sodium sulfate/pyrosulfate
- 5 15% cesium sulfate/pyrosulfate (when present)
- 55 70% porous silica substrate.

8.3.1 Manufacture

The catalyst is made by:

- (a) mixing vanadium oxide, alkali metal oxides and diatomaceous earth (SiO₂) powders in specified proportions
- (b) forming a paste of these components by mixing them with water and inorganic/organic binding additives
- (c) extruding the paste into ring- or pellet-shaped rods
- (d) chopping the extrudates into rings or pellets
- (e) baking the rings and pellets in an SO_2/SO_3 atmosphere to:

remove water add strength form alkali metal sulfates and pyrosulfates.

(e)'s SO_2/SO_3 atmosphere is adjusted to give the manufacturer's specified sulfate/pyrosulfate (SO_4/S_2O_7) ratio.

8.3.2 Installation and plant startup

Purchased rings and pellets are carefully shipped in sealed barrels or in $1 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$ fiberglass bags. They are carefully loaded onto the acid plant's catalytic converter 'trays'. The catalytic converter is then closed up and SO₂ oxidation is begun as described in Section 7.6.1.

8.3.3 Chemical change and melting

Flow of \sim 700 K SO₂/SO₃ bearing gas around the loaded catalyst causes it to form a vanadium oxide-alkali metal pyrosulfate <u>melt</u> on the surfaces of the catalyst's porous silica substrate.

It is in this melt that catalytic $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ occurs, Reactions (8.1) through (8.4).

The steady state *in situ* composition of the catalyst melt is affected by the composition of the gas that is passing around the melt. It varies down the catalyst beds.

8.4 Choice of Size and Shape

Catalyst pieces are sold in the form of daisy rings, simple rings and cylindrical pellets, Fig. 8.1.

Daisy rings have the largest surface area and lowest resistance to gas flow. Pellets have the smallest surface area and highest resistance to flow. Simple rings are intermediate.

Industrial data (Table 7.2) suggest that daisy rings and rings are equally favored. Pellets are only used to ensure well distributed gas flow through catalyst beds in low gas velocity converters (Topsoe, 2004).

8.5 Choice of Chemical Composition

Manufacturers choose catalyst chemical composition to give:

- (a) a low melting point with a high vanadium ion solubility
- (b) strong catalytic activity
- (c) a high catalyst degradation temperature.

Low melting point and high V_2O_5 solubility are obtained by choosing a low melting point eutectic mixture of V_2O_5 and K, Na, Cs pyrosulfates.

Strong catalytic activity is provided by vanadium, Eqns. (8.1) to (8.4). Catalytic activity increases with increasing vanadium ion concentration. Cs also contributes to strong catalytic activity (Rasmussen, 2001, p72).

High degradation temperature is favored by low vanadium ion concentration (Rasmussen, 2005). The low V concentration minimizes inert $(VO_4)^3$ formation as temperature rises.

Table 8.1 summarizes these effects.

Table 8.1. Descriptions, advantages and uses of Haldor Topsoe's sulfuric acid catalysts (Hansen, 2004; Topsoe, 2004). Industrial <u>input</u> gas temperatures are somewhat higher than those indicated here, Tables 7.2 and 19.3. Other manufacturers make similar catalysts (BASF, 2004; Monsanto, 2004[#]).

Catalyst	VK38	VK48	VK59	VK69
Characteristic alkali metals	K, Na	K, Na	K, Cs , Na	K, Cs, Na
vanadium ion concentration		high		high
special characteristics			manufactured silica substrate with many uniform, high surface area gas accessible pores	manufactured silica substrate with many uniform, high surface area gas accessible pores
continuous operating temperature range, K	670 - 900	670 - 820	640 - 770	640 - 770
advantage	high temperature stability	strong catalytic activity	low continuous gas input temperature	 (i) low con- tinuous gas input temperature (ii) highest catalytic activity
suggested use	all catalyst beds, especially 1 st and 2 nd	last bed before H ₂ SO ₄ making	 (i) ignition layer in any bed (ii) last bed in single contact acid plant 	after H ₂ SO ₄ making oxidation

[#] LP120 (high temperature tolerance); LP110 (high vanadium); Cs120 (low gas input temperature); Cs 110, 210 (final catalyst bed).

8.6 Catalyst Bed Thickness and Diameter

Table 7.2 gives measured industrial:

catalyst bed thicknesses, m

catalyst bed (converter) diameters, m

converter input gas rate, Nm³/hour.

This section discusses these values.

8.6.1 Bed thicknesses

Fig. 8.3 shows industrial catalyst bed thicknesses. Average bed thicknesses are:

1 st (feed gas) catalyst bed	0.62 m
2 nd catalyst bed	0.72 m
3 rd catalyst bed	0.84 m

with a scatter of ± 0.2 m each.

Fig. 8.3. Industrial 1^{st} , 2^{nd} and 3^{rd} catalyst bed thicknesses. They are from Table 7.2. They increase from bed 1 through bed 3.

Bed 2 is thicker than bed 1 to provide a longer gas residence time, Fig. 8.5. This is necessary because bed 2 input gas contains:

less
$$SO_2$$
 and O_2

than bed 1 feed gas. These changes all tend to slow SO_2 oxidation. Bed 2's longer residence time offsets them.

Bed 3 is thicker than bed 2 for the same reason.

8.6.2 Bed diameters

Fig. 8.4 shows industrial catalytic converter (hence catalyst bed) diameters as a function of measured 1^{st} catalyst bed feed gas volumetric flowrates. Bed diameters are between 8 and 16 m. They increase with increasing input gas flowrate. They are quite precisely predicted by the trendline equation on the graph.

Fig. 8.4. Measured industrial catalytic converter diameter as a function of measured converter gas input rate. Diameter increases with increasing flowrate. This keeps catalyst bed residence times roughly constant, Fig. 8.5.

8.7 Gas Residence Times

Nominal residence times of gas in a converter's catalyst beds are calculated from measured bed thickness, converter diameter and converter gas input rate. The equation is:

Fig. 8.5 plots values calculated from Table 7.2's measured data. Residence times are seen to be $1\frac{1}{2}$ or 2 seconds, increasing with bed number.

Fig. 8.5. Industrial 1st, 2nd and 3rd catalyst bed gas nominal residence times. They increase with increasing bed number. This is due to the increase in bed thickness with increasing bed number, Fig. 8.3. The points have been calculated from Table 7.2's industrial catalyst bed thicknesses, converter diameters and converter input gas flowrates.

8.8 Catalyst Bed Maintenance

Over time, catalyst beds (especially bed 1) become clogged with dust. This gradually increases the pressure that must be applied to push gas through the beds. Eventually this pressure becomes too high and the dust must be screened out of the catalyst.

Screening entails removing the catalyst from its converter tray, passing it across vibrating screens and loading the screened catalyst back into the tray with a small amount of new catalyst makeup. It is done every year or two, most frequently for the 1st catalyst bed. It is done as quickly as possible to minimize acid production loss.

8.9 Summary

 $SO_3(g)$ is a key ingredient in making $H_2SO_4(\ell)$. It is produced rapidly and efficiently by oxidizing $SO_2(g)$ to $SO_3(g)$ in molten V, K, Na, Cs, S, O catalyst, 700-900 K. The molten catalyst is supported on solid, porous silica substrate.

 $SO_2(g)$ and $O_2(g)$ dissolve in the molten catalyst. They then react with V, S, O anions to form and exsolve $SO_3(g)$. The reactions are rapid at temperatures (700-900 K) where

 $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation is thermodynamically efficient.

The process is carried out industrially in $\frac{1}{2}$ to 1 m thick beds of 10 to 12 mm catalyst rings or pellets, Fig. 8.1. Reaction times are $\frac{1}{2}$ to 2 seconds.

Suggested Reading

Rasmussen, S.B. (2001) Multidisciplinary Investigation of SO₂ Oxidation Catalyst. Ph.D. Thesis, Technical University of Denmark http://struktur.kemi.dtu.dk/sbr/sbr.pdf

Topsoe (2004) VK series sulphuric acid catalysts for today and for the future, Halder Topsoe A/S brochure, 2004 www.haldortopsoe.com

References

BASF (2004) BASF-Catalyst (technical leaflet). www.basf.com

Folkmann, G.E., Hatem, G., Fehrmann, R., Gaune-Escard, M. and Bjerrum, N.J. (1991) Conductivity, thermal analysis, and phase diagram of the system $Cs_2S_2O_7-V_2O_5$. Inorganic Chemistry, **30**, 4057 4061. www.dtu.dk

Hansen, L. (2004) Topsoe Sulphuric Acid Catalysts VK-Series, brochure distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.haldortopsoe.com

Hatem, G., Eriksen, K.M., Gaune-Escard, M. and Fehrmann, R. (2002) SO_2 oxidation catalyst model systems characterized by thermal methods. *Topics in Catalysis*, **19B (3,4)** 323 331. www.dtu.dk

Lapina, O.B., Bal'zhinimaev, B.S., Boghosian, S., Eriksen, K.M. and Fehrmann, R. (1999) Progress on the mechanistic understanding of SO_2 oxidation catalysts. *Catalysis Today*, **51** 469 479. www.dtu.dk

Monsanto (2004) Sulfuric Acid Catalysts www.enviro-chem/plant-tech/3rdtier/sulfcat.html

Rasmussen, S.B. (2001) Multidisciplinary Investigation of SO₂ Oxidation Catalyst. Ph.D. Thesis, Technical University of Denmark, 64. http://struktur.kemi.dtu.dk/sbr/sbr.pdf

Rasmussen, S.B. (2005) personal communication. sbr@kemi.dtu.dk

Topsoe (2004) VK series sulphuric acid catalysts for today and for the future, Halder Topsoe A/S brochure, 2004 www.haldortopsoe.com

CHAPTER 9

Production of $H_2SO_4(\ell)$ from $SO_3(g)$

The last step in sulfuric acid manufacture is production of liquid H_2SO_4 from SO_3 gas. The H_2SO_4 is produced by reacting:

the SO₃ bearing gas from catalytic SO₂ oxidation

with:

strong sulfuric acid, Fig. 9.1.

The reaction is:

$$\begin{array}{rcl} & 350-380 \text{ K} \\ \mathrm{SO}_3(\mathrm{g}) &+ & \mathrm{H}_2\mathrm{O}(\ell) & \longrightarrow & \mathrm{H}_2\mathrm{SO}_4(\ell) \\ \mathrm{in} \ \mathrm{SO}_3, \ \mathrm{SO}_2 & & \mathrm{in} \ \mathrm{strong} & & \mathrm{in} \ \mathrm{strengthened} \\ \mathrm{O}_2, \ \mathrm{N}_2 \ \mathrm{gas} & & \mathrm{sulfuric} \ \mathrm{acid} & & \mathrm{sulfuric} \ \mathrm{acid} \end{array} \tag{1.2}.$$

Industrially the process is carried out by:

 (a) trickling 98.5 mass% sulfuric acid down through a packed bed of ceramic 'saddles'

while:

(b) blowing SO_3 bearing gas upward through the descending acid, Figs. 6.3 and 9.1.

The product of the process is ~99 to $99.5 \text{ mass}\% \text{ H}_2\text{SO}_4$ sulfuric acid. It is diluted with:

(a) the acid product from air or gas dehydration, Chapter 6

and:

(b) water

to give the acid plant's range of products, mostly 93 to 98 mass% H₂SO₄ acid.

Fig. 9.1. Single contact H_2SO_4 making flowsheet. SO₃ rich gas from catalytic SO₂ oxidation is reacted with strong sulfuric acid, Reaction (1.2). The reaction consumes $H_2O(\ell)$ and makes $H_2SO_4(\ell)$, strengthening the acid. Double contact H_2SO_4 making is described in Fig. 9.6. [#]A few plants lower the SO₂ content of their 'tail' gas by scrubbing the gas with basic solution (Hay *et al.*, 2003).

9.1 Objectives

The objectives of this chapter are to:

- (a) indicate why SO₃ is reacted with strong sulfuric acid rather than water
- (b) describe industrial H₂SO₄ making
- (c) suggest optimum conditions for efficient H_2SO_4 making.

9.2 Sulfuric Acid Rather than Water

Reaction (1.2) is strongly exothermic. It releases ~130 MJ per kg mole of SO₃. Stoichiometric reaction of 350 K SO₃(g) with 350 K water produces 840 K H₂SO₄ <u>vapor</u> (H₂SO₄ boiling point \approx 550 K, Perry and Green, 1997).

Condensation of $H_2SO_4(\ell)$ from this vapor is slow and expensive, so the $SO_3(g)$ water process is never used. Instead, the $SO_3(g)$ is reacted with strong sulfuric acid.

The large amount of H_2SO_4 in the acid reactant absorbs Reaction (1.2)'s heat of reaction while the acid warms only ~30 K, Table 9.3. This ensures that the product acid is liquid and relatively cool.

Pumping acid around the H_2SO_4 making system (Fig. 9.2) requires considerable energy. Nevertheless, reacting $SO_3(g)$ with strong sulfuric acid is the most economic way of producing H_2SO_4 .

Fig. 9.2. Acid pump, courtesy Lewis Pumps www.lewispumps.com A submerged impeller (right) draws acid in through the bottom mouth and pumps it up the up-leg (left). A pipe extension is bolted to the top of the up-leg to get the acid to its destination. The motor and motor-shaft connection are well above the acid. Details:

design flowrate: 20 m³ of acid per minutepumping height: 23 mpump speed: 1775 RPMmotor: 135 kWsuction mouth diameter: 0.3 mup-leg diameter: 0.3 mmaterials: impeller - Lewmet[®]; shaft - Alloy 20; suction head and discharge pipe - L14 iron.

Industrial H_2SO_4 making is similar to the air/gas dehydration process described in Chapter 6. In both cases, gas is passed upwards through descending strong sulfuric acid, Figs. 6.3 and 9.1. The difference is that:

air/gas dehydration reacts $H_2O(g)$ with $H_2SO_4(\ell)$ in descending acid, i.e.:

 $\begin{array}{rcl} H_2O(g) \ + \ H_2SO_4(\ell) & \longrightarrow & H_2SO_4(\ell) + H_2O(\ell) \\ & & \text{in strong} & & \text{slightly weakened acid} \\ & & \text{acid} \end{array} \tag{6.2}$

while:

H₂SO₄ making reacts SO₃(g) with the H₂O(ℓ) in descending acid, i.e.:

SO ₃ (g)	+ $H_2O(\ell)$	\rightarrow	$H_2SO_4(\ell)$	(1.2).
	in strong sulfuric acid	1	in slightly strengthened acid	

Gas dehydration dilutes the input acid while H_2SO_4 making strengthens it. Both reactions are exothermic. Both heat up their circulating acid so that it must be cooled before being recycled or sent to storage.

9.3.1 Residence times

Table 9.3 indicates that typical H_2SO_4 making ('absorption') tower diameters, packing heights, and residence times are:

tower diameter, m	7-9 meters
packing height, m	2-4 meters
gas residence time in packing	2-4 seconds
acid residence time in packing	300-600 seconds.

These residence times give 99+% transformation of SO₃(g) to $H_2SO_4(\ell)$.

9.3.2 Acid mist

Air/gas dehydration (Chapter 6) produces fine spray of 10-250 μ m diameter acid droplets. The droplets are removed from the dehydrated gas to prevent downstream corrosion. They are usually captured in a knitted Teflon[®]/stainless steel pad at the gas exit, Fig. 6.3.

 H_2SO_4 making also produces this spray. In addition, $SO_3(g)$ in ascending gas and H_2O vapor from descending acid react to form very fine (<10µm diameter) acid droplets (mist). This mist must also be prevented from leaving in H_2SO_4 making exit gas.

It is most often removed by 'candle' filters suspended near the gas exit, Fig. 9.3 (Brink, 2005; Friedman and Friedman, 2004). These 'candles' remove 99+ % of spray and mist.

Fig. 9.3. Acid mist removal 'candle' filter being installed atop a stainless steel H_2SO_4 making tower. It is one of many. Exiting gas passes inward through the candle fabric and out the top of the candle – then out of the tower. The acid mist is caught in the candle fabric by impact, diffusion and Brownian forces (Brink, 2005; Friedman and Friedman, 2004; Lee and Byszewski, 2005; Ziebold and Azwell, 2005). The large total area of the candles gives a low gas velocity through the fabric, which allows 99+% capture of the mist. The captured mist trickles down the fabric and drips back into the tower or into collection pipes (Outokumpu 2005).

9.4 Choice of Input and Output Acid Compositions

Industrial input and output acid compositions are typically:

```
input: 98.5 mass% H<sub>2</sub>SO<sub>4</sub>, 1.5 mass% H<sub>2</sub>O
output: 98.8 to 99.6 mass% H<sub>2</sub>SO<sub>4</sub>, remainder H<sub>2</sub>O, Table 9.3.
```

These compositions are chosen to avoid excessive:

- (a) acid mist formation
- (b) $SO_3(g)$ and $H_2SO_4(g)$ evolution.

Acid mist formation is minimized by minimizing H_2O vapor pressure. This is done by using high H_2SO_4 , low H_2O acid, Fig. 9.4.

 $SO_3(g)$ and $H_2SO_4(g)$ evolution is, on the other hand, minimized by using low H_2SO_4 acid, Fig.9.4.

Section 9.4's industrial acid compositions strike a balance between these opposing effects.

Fig. 9.4. Equilibrium vapor pressures of H_2O , H_2SO_4 and SO_3 over sulfuric acid, 353 K (Perry and Green, 1997). H_2O vapor pressure decreases and H_2SO_4 and SO_3 vapor pressures increase with increasing H_2SO_4 -in-acid. All vapor pressures increase with increasing temperature, not shown.

9.5 Acid Temperature

Industrial H₂SO₄ making input and output acid temperatures (Table 9.3) are typically:

input acid temperature = $\sim 350 \text{ K}$ output acid temperature = $\sim 380 \text{ K}$.

They are high enough to give:

rapid H_2SO_4 making, Reaction (1.2)

while avoiding:

excessive $H_2O(g)$, $SO_3(g)$ and $H_2SO_4(g)$ formation (which increases with increasing acid temperature).

9.5.1 Acid temperature control

Input acid temperature is controlled by indirect water cooling in an acid cooler, Figs. 9.5 and 24.6.

Output acid temperature is controlled by adjusting the H₂SO₄ making tower's:

ratio. Increasing the ratio results in cooler output acid and vice versa.

9.6 Gas Temperatures

Gas enters industrial H_2SO_4 making towers at 450-500 K. This is hot enough to avoid $H_2SO_4(\ell)$ condensation in the flues between catalytic SO₂ oxidation and H_2SO_4 making. It is cool enough to avoid excessive acid mist formation.

Gas leaves H_2SO_4 making near the acid input temperature, 350 K. Corrosive $H_2SO_4(\ell)$ may condense from this gas in cool downstream flues. For this reason, the flues are usually made of stainless steel.

9.7 Operation and Control

9.7.1 Startup and shutdown

H₂SO₄ making is started by:

- (a) pumping strong acid around the Fig. 9.1 circuit at its design rate
- (b) initiating SO₃ gas production as described in Section 7.6.1
- (c) blowing the SO₃ bearing gas into Fig. 9.1's packed bed

Fig. 9.5. Acid cooler, courtesy Chemetics www.chemetics.com Cool water flows through 1610 internal 2 cm diameter tubes while warm acid flows counter currently (and turbulently) between the tubes. The tubes are 316L stainless steel. They are resistant to water-side corrosion. They are electrochemically passivated against acid-side corrosion by continuously applying an electrical potential between the tubes and several electrically isolated metal rods. Details: shell diameter 1.65 m; shell material: 304L stainless steel; acid flow: 2000 m³/hour; water flow: 2900 m³/hour; acid temperature drop: 40 K. (Green pipes = water; metallic pipes = acid.) Fig. 24.6 gives an internal view.

- (d) starting acid cooling
- (e) adjusting acid and dilution flows to match H_2SO_4 production rate.

It is stopped by:

- (a) stopping SO₃ gas production, Section 7.6.4
- (b) shutting down (i) acid cooling and (ii) dilution and product acid flows.

Acid circulation through the H_2SO_4 making tower is continued during plant shutdowns. This maintains controlled corrosion conditions in pipes, pumps, coolers and the H_2SO_4 making tower.

9.7.2 Steady Operation and Control

Steady operation of an H₂SO₄ making tower consists of:

- (a) steadily producing SO_3 bearing gas at its prescribed rate, composition and temperature, Section 7.6.2
- (b) blowing this gas steadily into the Fig. $9.1 H_2SO_4$ making tower
- (c) steadily circulating strong acid through the tower at its prescribed rate, composition and temperature
- (d) adjusting acid circulation rate to give the prescribed output 99 to 99.5 mass% $\rm H_2SO_4$ acid
- (e) cooling the circulating acid and product acid to their prescribed temperatures.

Table 9.1 describes measurements and adjustments that are used to control the process.

Table 9.1. Sensors and adjustments for controlling H_2SO_4 making packed tower. All sensors are placed in ceramic shield tubes to prevent corrosion.

Adjustable parameter	On-line sensor	Method of adjustment
input gas temperature	thermocouple	adjust after-catalytic-oxidation gas cooler bypass valve
input acid composition	'speed of sound through acid' meter (Mesa Labs, 2005)	adjust dilution water input rate
input acid temperature	thermocouple	adjust acid cooler bypass valve
output acid composition	'speed of sound through acid' meter (Mesa Labs, 2005)	adjust H ₂ SO ₄ making tower acid circulation rate at constant gas input rate [#]
output acid temperature	thermocouple	adjust H ₂ SO ₄ making tower acid circulation rate at constant gas input rate [#]

Output acid composition and temperature are not independent variables.

9.8 Double Contact H₂SO₄ Making (Tables 19.3, 23.2)

Fig. 9.6 is a flowsheet for double contact H₂SO₄ making. It shows:

 (a) catalytic oxidation of most of the feed gas's SO₂ to SO₃ in 3 catalyst beds, Reaction (1.1)

then:

(b) intermediate H₂SO₄ making by contact of step (a)'s SO₃ bearing product gas with strong sulfuric acid, Reaction (1.2)

then:

(c) catalytic oxidation of the SO_2 not oxidized by step (a)

Fig. 9.6. Double contact H_2SO_4 making flowsheet. The two H_2SO_4 making packed towers are notable. The left half of the flowsheet oxidizes most of the SO_2 -in-feed-gas and makes the product $SO_3(g)$ into strengthened sulfuric acid. It makes about 95% of the plant's new H_2SO_4 . The right half of the flowsheet oxidizes almost all the remaining SO_2 and makes its product $SO_3(g)$ into strengthened sulfuric acid. The final exit gas is very dilute in SO_2 . Industrially, all the catalyst beds are in the same 'converter', Fig. 7.7. Table 23.2 gives industrial final H_2SO_4 making data.

then:

(d) final H₂SO₄ making by contacting step (c)'s SO₃ bearing gas with strong sulfuric acid in a second H₂SO₄ making tower.

9.8.1 Double contact advantages

Double contact acidmaking oxidizes its SO_2 more completely to SO_3 than single contact acidmaking. For this reason it:

- (a) makes H_2SO_4 more efficiently
- (b) emits less SO_2 to the environment.

The more efficient SO_2 oxidation is due not only to Fig. 9.6's extra catalyst bed, but also to the fact that:

virtually all of the SO₃ produced in the first three catalyst beds is removed from the gas in the first H_2SO_4 making tower.

The latter causes $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ oxidation to go almost to completion in the after intermediate H_2SO_4 making catalyst bed, Chapter 19.

9.9 Intermediate vs. Final H₂SO₄ Making

Table 9.2 compares intermediate and final H_2SO_4 making. Notably, final contact input gas contains little SO_3 and produces little new H_2SO_4 . Also final contact's output acid gains little strength. Otherwise the processes are quite similar.

	H ₂ SO ₄ making tower		
Quantities	Intermediate contact, Table 9.3	Final contact, Table 23.2	
tower diameter, m	7-9	7-9	
packed bed height, m	21/2-5	21/2-6	
input gas			
volume% SO ₃	8-12	0.4-0.7	
temperature, K	440-490	410-460	
input acid			
mass% H_2SO_4	98.5	98.5 or slightly less	
temperature, K	340-355	330-355	
output gas			
temperature, K	340-355	330-355	
output acid			
$mass\% H_2SO_4$	0.6% more than input acid	0.1% more than input acid	
temperature, K	~30 K more than input acid	~20 K more than input acid	
gas input rate, thousand Nm ³ /hr	100-250	~10% less than intermediate	
acid input rate, m3/hour	800-1700	500-1100	
H_2SO_4 production	~95%	~5%	

Table 9.2. Comparison of Fig. 9.6's intermediate and final H_2SO_4 making towers. Note that final contact H_2SO_4 making makes only about 5% of the plant's H_2SO_4 .
Plant	S1 (double contact)	M2 (double contact)			
acid production,	4400	1150			
tonnes H_2SO_4/day					
input gas flowrate,	336	121			
thousand Nm ³ /hour					
estimated SO ₃ utilization		99.9			
efficiency					
5					
Packed bed details					
number of packed beds	2	1			
height * diameter m	23 0 × 9 5	185×65			
construction material	310/304 stainless steel	brick lined carbon steel			
ceramic packing	7.5 cm saddles	5.1 & 7.6 cm saddles			
nacking height m	2 125	4			
acid distributor type	trough and downcomer	buried nine distributor			
mist eliminator type	FS mist eliminator candles	hanging fiber bed			
exit gas mist	ES mist eminator candles	hanging noer bed			
concentration g/Nm ³					
acid flowrate m ³ /hour	1340	760			
aciu nowrate, in mour	1549	702			
Temperature data K					
inlet gas	439	484			
outlet gas	344	353			
inlet acid	339	353			
outlet acid	185	381			
acid cooling method	heat recovery system boilers	561			
dend econing method	heat recovery system bollers				
Gas composition in, vol.%					
SO ₃	11.8	8.49			
SO ₂	0.688	0.38			
O_2	3 78	4.88			
\tilde{CO}_2	5.70				
N ₂	83 7				
2	0011				
Gas composition out, vol.%					
SO ₁					
SO ₂	0.78	0.42			
O_2	4.28	5.34			
CO_2					
N ₂	94.9				
2					
Acid comp., mass% H ₂ SO ₄		<u></u>			
into tower	98.5	98.5			
out of tower	99.6				
Acid plant products,	98.5	98 5			
mass% H ₂ SO ₄	70.2	20.5			

Table 9.3. Details of packed bed H₂SO₄-from-SO₃ plants. The data are for

Cumerio 1 (double contact)	Cumerio 2 (double contact)	M5 (single contact)
1940	1500	
160	150	52
99.98	99.98	
1	1	
19.174 × 7	25.13 × 7	13×6.5
brick lined carbon steel	brick lined carbon steel	
7.6 & 5.1 cm saddles	5.1 cm saddles	
3.5	8.5	
Lurgi pipes and tubes	distribution plates	
high efficiency candles	candle type	
1093	950	684
487	473	540
355	343	328
355	343	338
384	373	358
shell and tube	shell and tube	shell and tube
		0.05
11.47	10.08	8.05
0.51	0.42	0.61
7.37	5.67	7.2
0.32	0.28	6.92
80.33	83.55	
0	<u>^</u>	0.12
0	0	0.13
0.57	0.45	0.66
8.33	6.31	7.82
0.36	0.31	7.52
90.74	92.93	
		tail gas scrubbed with ammonia
00.5	00.0	
98.5	98.3	
94-98.5	94-98.5	

	Details of packed bed 112504-11011	1-30 ₃ plants. The data are it		
Plant	M6 (double contact)	M3 (single contact)		
acid production,		2200 (nominal)		
tonnes H ₂ SO ₄ /day				
input gas flowrate,	150-210	184		
thousand Nm ³ /hour				
estimated SO ₃ utilization	96			
efficiency				
Packed bed details				
number of packed beds	1	1		
height * diameter, m	23.3×6.8	12.2 × 7.8 OD		
construction material	brick lined carbon steel	ASTM A 283 Grade C		
ceramic packing	saddles & structured packing	5.1-7.6 cm saddles		
packing height, m	3.7	4		
acid distributor type		Lurgi sprav		
mist eliminator type	high efficiency candles	suspended candles		
exit gas mist				
concentration. g/Nm ³		0.035		
acid flowrate, m ³ /hour	1150 top, 517 bottom	3132		
Temperature data, K				
inlet gas	505	473		
outlet gas	350	335		
inlet acid	350	335		
outlet acid	383	364		
acid cooling method	shell and tube	plate coolers		
Gas composition in, vol.%				
SO3	12.1	11.44		
SO ₂	0.5	0.23		
O ₂	12	9.61		
CO ₂	∫ romain dar	1.94		
N ₂	lemander	remainder		
Gas composition out, vol.%				
SO3		<35mg/Nm ³		
SO ₂	0.56	<0.4		
O ₂	13.6	10.85		
CO2	remainder	2.18		
N ₂	liemander	no tail gas sombhing		
		no tan gas seruboling		
Acid comp., mass% H ₂ SO ₄				
into tower	98.5			
out of tower	99.1			
Acid plant products, mass% H ₂ SO ₄	93, 99, 20% oleum [#]	97-98		

Table 9.3 (cont.). Details of packed bed H₂SO₄-from-SO₃ plants. The data are for

#Liquid H_2SO_4 with dissolved 20 mass% dissolved SO₃, Chapter 19.

M4 (double contact)	Asarco Hayden (double contact)
2100-2400	1630
178	192
- / -	
00 0	00
33.3	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	1
$20.4 \times 7.5 \text{ OD}$	17.8×7.0
brick lined carbon steel	brick lined carbon steel
5.1 and 7.6 cm saddles	7.6 cm ceramic saddles
5 66	2.7
submerged distributor nines	Z core
Allow 66 + Teflon	energy saver condles
Alloy 00 + Telloli	energy saver candles
1000	1206
1280	1295
488	470
343	355
343	355
373	
10 9-13 3	12.1
0.7-1.0	0.6
7596	7.1
7.3-8.0	7.1
2.9	1.0
remainder	/9.1
0.8-1.2	0.69
8.4-9.9	8.0
3.3	1.0
remainder	90.0
98.5	98.5
20.5	08.8
	70.0
98.5	93/98
20.5	25/26

single contact plants or first (intermediate) contact in double contact plants.

Plant	Phelps Dodge (double contact)	M1 (double contact)		
acid production,	2400	270		
tonnes H ₂ SO ₄ /day				
input gas flowrate,	267	46-51		
thousand Nm ³ /hour				
estimated SO ₃ utilization	99.9	99.9		
efficiency				
Packed bed details				
number of packed beds	1	1		
height * diameter, m	22.3×9.5 inside brick	8.5×4.0		
construction material	brick lined carbon steel	brick lined carbon steel		
ceramic packing	5.1 and 7.6 cm saddles	7.6 cm saddles		
packing height, m	4.6	4.0		
acid distributor type	cast iron header and arms	trough and spouts		
mist eliminator type	high efficiency candles	HE candles		
exit gas mist				
concentration, g/Nm ³				
acid flowrate, m ³ /hour	1680	227		
Temperature data, K	100			
inlet gas	483	472-494		
outlet gas	353	339-366		
inlet acid	353	347-358		
outlet acid	389	358-375		
acid cooling method	acid coolers	shell and tube		
Gas composition in, vol.%				
SO ₃	10.38			
SO ₂	0.66			
O ₂	5.85			
CO ₂	1.05			
N ₂	82.05			
~				
Gas composition out, vol.%	0.02			
SO ₃	0.03			
SO_2	0.74			
O_2	6.53			
CO_2	1.17			
IN ₂	91.52			
Acid comp mass % H SO				
into tower	98 5	98.5		
out of tower	99.2	99.2		
Sucortonol	77.43	77.4		
Acid plant products.	A (-	05.5		
mass% H ₂ SO ₄	94.5	93.5		

Table 9.3 (cont.). Details of packed bed H_2SO_4 -from-SO₃ plants. The data are for

S2 (single contact)	SPI (single contact)				
1800	444				
210					
210					
00.0	> 00 00				
99.9	>99.99				
1	1				
• 11 7	76.4				
11 × 7	7.0 × 4				
brick lined carbon steel	brick lined carbon steel				
5.1-7.6 cm saddles	5.1 cm and 7.6 cm intalox				
4	3.8				
	cast iron trough and spouts				
high efficiency candles	candles				
mgn enterency candles	Canales				
	0.0125 g/Nm^3				
	e				
505	405				
358	356				
250	256				
338	330				
389	378				
	shell and tube				
8.18	9.02				
0.15	0.19				
0.15	7.12				
9.44	7.13				
0	7.74				
82.23	75.92				
<0.1					
0.17					
0.17					
10.27					
89.56					
no tail gas scrubbing	no tail gas scrubbing				
08 5	08.20				
90.3	70.27				
99.1	98.75				
00 00 1 [#]	08				
93, 98, 99, oleum"	98				

single contact plants or first (intermediate) contact in double contact plants.
S2 (single contac	t) SP1 (single contact)

#Liquid H₂SO₄ containing dissolved SO₃, Chapter 19.

9.10 Summary

The final step in sulfuric acid manufacture is production of $H_2SO_4(\ell)$ from SO₃ bearing gas.

The H_2SO_4 is made by trickling strong sulfuric acid down between ceramic saddles in a packed bed while blowing SO₃ gas up through the bed.

 $SO_3(g)$ in the ascending gas reacts with $H_2O(\ell)$ in the descending acid to produce strengthened sulfuric acid, i.e.:

			350-38	0 K
SO ₃ (g)	+	$H_2O(\ell)$	\rightarrow	$H_2SO_4(\ell)$
in SO ₃ , SO ₂	i	n 98.5 mass	%	in strengthened
O ₂ , N ₂ gas	H_2	SO ₄ , 1.5 ma	ss%	sulfuric acid
	H_2	O sulfuric a	cid	

The strengthened acid is mostly diluted and sold.

Most sulfuric acid plants are double contact plants, Fig. 9.6, Tables 9.3, 19.3 and 23.2. They efficiently oxidize their feed $SO_2(g)$ to $SO_3(g)$ and efficiently make the resulting $SO_3(g)$ into $H_2SO_4(\ell)$. Single contact plants (Fig. 9.1) are simpler and cheaper – but less efficient.

Suggested Reading

Friedman, L.J. and Friedman, S.J. (2004) The wet gas sulphuric acid plant (part 2). *Sulphur*, **293**, July-August 2004, 29 35. www.britishsulphur.com

Guenkel, A. and Orlando, J. (2004) Review of the performance parameters in acid towers. Paper presented at Sulphur 2004 conference, Barcelona, October 27, 2004. www.britishsulphur.com

Sulphur (2004) Sulphuric acid equipment update. *Sulphur*, **292** (May-June 2004), 33 42. www.britishsulphur.com

Ziebold, S.A. (2000) Demystifying mist eliminator selection. *Chemical Engineering*, **107(5)**, May 2000. www.che.com

References

Brink (2005) Air pollution control. www.genuinebrink.com

Chemetics (2004) Acid coolers, sulphuric acid technology. Brochure distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.chemetics.com Also personal communication, 2005.

Friedman, L.J. and Friedman, S.J. (2004) The wet gas sulphuric acid plant (part 2). Sulphur, 293, July-August 2004, 29 35. www.britishsulphur.com

Hay, S., Porretta, F. and Wiggins, B. (2003) Design and start-up of acid plant tail gas scrubber. In Copper 03-Cobre 03, Proceedings of the Fifth International Conference, Vol. IV (Book 1) Pyrometallurgy of Copper, the Hermann Schwarze Symposium on Copper Pyrometallurgy, Smelting Operations, Ancillary Operations and Furnace Integrity, ed. Diaz, C., Kapusta, J. and Newman, C., The Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 555 566. www.metsoc.org

Lee, M. and Byszewski, C. (2005) Two new innovations in fiber bed technology from CECO Filters that offer improved efficiency, enhanced performance and longevity, preprint of paper presented at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 4, 2005. www.aiche-cf.org www.cecofilters.com

Lewis Pumps (2005) Lewis Pumps sulfuric acid pumps. www.lewispumps.com Also personal communication.

Mesa Labs (2005) Sulfuric acid analyzer application note. www.mesalabs.com/nusonics

Outokumpu (2005) Latest Developments in Sulfur Burning Sulfuric Acid Plants. Brochure distributed at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 3 and 4, 2005 (also presented as paper by Bartlett, C. and Rieder, J., Outokumpu Technology GmbH, June 4, 2005) www.outokumpu.com www.aiche-cf.org

Perry, R.H. and Green, D.W. (1997) Perry's Chemical Engineers' Handbook – 7th Edition, McGraw-Hill, New York, NY, 2-78 to 2-79. www.mcgraw-hill.com

Ziebold, S.A. and Azwell, D.E. (2005) New Brink fiberbed technology, preprint of paper presented at 29th Annual Clearwater Conference (AIChE), Clearwater, Florida, June 4, 2005. www.aiche-cf.org www.outokumpu.com

Break

This page marks the end of the descriptive section of our book - and the beginning of the mathematical section.

Most of the mathematical chapters analyze catalytic $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ oxidation in single and double contact acid plants. The remainder examine temperature control and H_2SO_4 making.

Many of the chapters have problems after their chapter summaries. The problems are not crucial to understanding the concepts in the chapters. They may, however, be useful for learning how our calculations can be extended to control and optimization of industrial acidmaking.

Many of the chapters also refer to appendices, which:

- (a) derive equations
- (b) provide thermodynamic data
- (c) give calculation instructions.

The chapters can be understood without reference to these appendices. The appendices will, however, be useful for readers who wish to derive the book's equations or do its problems.

CHAPTER 10

Oxidation of SO₂ to SO₃ – Equilibrium Curves

Catalytic oxidation of SO₂ to SO₃:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 (1.1)

is a key step in sulfuric acid production. It makes SO₃ for subsequent $H_2SO_4(\ell)$ making.

This chapter describes the equilibrium thermodynamics of Reaction (1.1). Its objectives are to:

- (a) determine the maximum extent to which SO_2 in acid plant feed gas can be oxidized in a catalyst bed
- (b) describe the factors which affect this maximum, specifically catalyst bed feed gas composition and equilibrium temperature and pressure.

The chapter concludes that maximum industrial SO_2 oxidation is achieved when Reaction (1.1):

- (a) proceeds by rapid catalytic oxidation
- (b) approaches equilibrium at a low temperature (but warm enough for rapid catalytic oxidation).

This is the basis of all industrial acid plant designs.

10.1 Catalytic oxidation

All industrial SO₂ oxidation is done in contact with V, alkali metal, S, O, SiO₂ catalyst, Chapters 7 and 8.

Fig. 10.1 shows a catalyst bed and describes SO_2 oxidation in it. SO_2 is oxidized by O_2 as feed gas descends through the catalyst bed. This is indicated by an increasing % SO_2 oxidized on the left graph.

 SO_2 , O_2 and SO_3 approach equilibrium as the gas descends the catalyst bed (left graph). % SO_2 oxidized at equilibrium is the maximum extent to which the feed SO_2 can be oxidized. As will be seen, this maximum depends on:

- (a) equilibrium temperature
- (b) equilibrium pressure
- (c) feed gas composition, volume% SO₂, O₂, N₂

Fig. 10.1. Sketch of SO₂, O₂, N₂ feed gas descending a reactive catalyst bed. It assumes that equilibrium is attained before the gas leaves the bed and that composition and temperature are uniform horizontally at all levels. Rapid catalytic oxidation requires an input gas temperature \sim 690 K, Table 7.2.

$10.1.1 \% SO_2$ oxidized defined

% SO₂ oxidized anywhere in a catalyst bed is defined as:

% SO₂ oxidized =
$$\Phi = \frac{\text{kg-mole SO}_2}{\text{kg-mole SO}_2} \frac{\text{kg-mole SO}_2}{\text{in oxidized gas}} *100$$
(10.1)

where all the quantities are per kg-mole of feed gas.

A special case of this definition is:

Equilibrium

$$\% SO_2 \text{ oxidized} = \Phi^{E} = \frac{\text{kg-mole SO}_2}{\text{m feed gas}} - \frac{\text{kg-mole SO}_2 \text{ in oxidized gas}}{\text{where equilibrium has been attained}} *100$$

 $\text{kg-mole SO}_2 \text{ in feed gas}$ (10.2).

The Eqn. (10.2) definition is used in all our 1st catalyst bed equilibrium curve calculations.

Fig. 10.2 shows a typical equilibrium % SO_2 oxidized vs. temperature curve for the Fig. 10.1 catalyst bed. This chapter and Appendix D show how it is prepared.

Fig. 10.2. Percentage of SO_2 -in-feed-gas that is oxidized when equilibrium is attained in the Fig. 10.1 catalyst bed. The percentage increases with <u>decreasing</u> equilibrium temperature. The curve has been plotted from Eqn. (10.13) as described in Appendix D. It applies only to the specified conditions.

10.2 Equilibrium Equation

Fig. 10.1 indicates that maximum SO_2 oxidation is achieved when Reaction (1.1) comes to equilibrium. The next few sections show how this maximum is predicted.

The equilibrium equation for $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation is:

$$K_{E} = \frac{P_{SO_{3}}^{E}}{P_{SO_{2}}^{E} * (P_{O_{2}}^{E})^{\frac{1}{2}}}$$
(10.3)

where:

 K_E = equilibrium constant, dependent only on temperature (Gaskell, 1981), bar $\frac{1}{2}$ $P_{SO_2}^E$, $P_{O_2}^E$, $P_{SO_3}^E$ = equilibrium partial pressures of SO₂, O₂ and SO₃, bar.

 $P^{E}_{SO_2}$, $P^{E}_{O_2}$ and $P^{E}_{SO_3}$ in Eqn. (10.3) are related to gas composition by:

$$P_{SO_2}^{E} = X_{SO_2}^{E} * P_t$$
(10.4)

$$P_{O_2}^E = X_{O_2}^E * P_t$$
(10.5)

$$P_{SO_3}^E = X_{SO_3}^E * P_t$$
(10.6)

where X^E is equilibrium mole fraction of each gas and P_t is total equilibrium gas pressure. Eqns. (10.4) to (10.6) assume ideal gas behavior (based on the low pressure, \sim 1 bar, of industrial SO₂ oxidation).

Eqns. (10.3) to (10.6) combine to give:

$$K_{E} = \frac{X_{SO_{3}}^{E}}{X_{SO_{2}}^{E} * (X_{O_{2}}^{E})^{\frac{1}{2}}} * P_{t}^{-\frac{1}{2}}$$
(10.7)

which indicates that equilibrium SO_2 oxidation (i.e. SO_3 production) increases with increasing K_E and P_t .

10.3 K_E as a Function of Temperature

 K_E in Eqn. (10.7) is related to equilibrium temperature by:

$$\ln(K_{\rm E}) = \frac{-\Delta G_{\rm T}^{\circ}}{(R^*T_{\rm E})}$$
(10.8)

where ΔG_T° is the standard free energy change (MJ/kg-mole SO₂) for SO₂ oxidation at equilibrium temperature T_E .

Appendix C gives published ΔG_T° vs. temperature data. It shows that ΔG_T° may be related to temperature by:

$$\Delta G_{T}^{\circ} = A * T + B \tag{10.9}$$

where A and B are empirical constants.

Eqns. (10.8) and (10.9) combine to give:

$$\ln(K_{\rm E}) = \frac{-(A^*T_{\rm E} + B)}{(R^*T_{\rm E})}$$
(10.10)

where:

$$K_E$$
 = equilibrium constant for Reaction (1.1), bar⁻¹/₂

A and B = empirical constants for calculating
$$\Delta G_{T}^{\circ}$$
 from T, Eqn. (10.9) and
Appendix C
A = 0.09357 MJ kg-mole SO₂⁻¹ K⁻¹
B = -98.41 MJ/kg-mole SO₂
R = gas constant, 0.008314 MJ kg-mole SO₂⁻¹ K⁻¹
T_E = equilibrium temperature, K

Eqn. (10.10) rearranges to:

$$R*T_E*ln(K_E) = -A*T_E - B$$

or:

$$A*T_E + R*\ln(K_E)*T_E = -B$$

or:

$$T_{\rm E} = \frac{-B}{A + R^* \ln(K_{\rm E})}$$
(10.11).

10.4 K_E in Terms of % SO₂ Oxidized

Rewritten in terms of:

- (a) Fig. 10.1 feed gas composition
- (b) equilibrium % SO₂ oxidized, Φ^{E}

Eqn. 10.7 becomes (Appendix B):

$$K_{E} = \frac{\Phi^{E}}{100 - \Phi^{E}} * \left(\frac{100 - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}} \right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(10.12)

where:

 $K_{E} = \text{equilibrium constant for Reaction (1.1), bar}^{\frac{1}{2}} \Phi^{E} = \text{equilibrium } \% SO_{2} \text{ oxidized, Section 10.1.1}$ $e = \text{volume} \% SO_{2} \text{ in feed gas} \\f = \text{volume} \% O_{2} \text{ in feed gas} \\f = \text{total equilibrium gas pressure, bar.}$

[#]The effect of SO₃ in feed gas is described in Appendix P and Chapter 17.

This equation permits equilibrium % SO_2 oxidized (Φ^E) to be calculated from equilibrium constant (K_E), input gas composition and equilibrium pressure. It combines (i) equilibrium thermodynamics and (ii) S and O mass balances. It is derived in Appendix B.

10.5 Equilibrium % SO₂ Oxidized as a Function of Temperature

Equilibrium % SO₂ oxidized (Φ^{E}) is related to equilibrium temperature by combining Eqns. (10.11) and (10.12), which gives:

$$T_{E} = \frac{-B}{A + R * \ln\left(\frac{\Phi^{E}}{100 - \Phi^{E}}\right) * \left(\frac{100 - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}}\right)$$
(10.13)

where:

 T_E = equilibrium temperature

A and B = empirical constants for calculating ΔG_T° from T, Eqn. 10.9

$$A = 0.09357$$
; $B = -98.41$, Appendix C

R = gas constant, 0.008314 MJ kg-mole $SO_2^{-1} K^{-1}$

- $\Phi^{\rm E}$ = equilibrium % SO₂ oxidized, Section 10.1.1
- $e = volume\% SO_2$ in feed gas
- $f = volume\% O_2$ in feed gas
- P_t = total equilibrium gas pressure, bar.

Fig. 10.2 plots this equation as described in Appendix D. The figure emphasizes that equilibrium $\% SO_2$ oxidized increases with <u>decreasing</u> equilibrium temperature.

10.5.1 Equilibrium pressure effect

Fig. 10.3 shows the effect of equilibrium pressure on equilibrium % SO_2 oxidized. Equilibrium % SO_2 oxidized increases slightly with increasing equilibrium pressure.

10.5.2 O2-in-feed-gas effect

Fig. 10.4 shows the effect of volume% O₂ in feed gas on equilibrium % SO₂ oxidized.

The curves are for:

- (a) constant 10 volume% SO₂-in-feed-gas
- (b) 8, 11 and 14 volume% O₂-in-feed-gas
- (c) constant equilibrium pressure, $P_t = 1.2$ bar.

Equilibrium % SO_2 oxidized increases slightly with increasing volume% O_2 in feed gas. This is because a high volume% O_2 *volume% SO_2 product pushes SO_2 oxidation to the right, Eqn. 10.7.

Fig. 10.3. Equilibrium % SO₂ oxidized as affected by equilibrium pressure, P_1 . Equilibrium % SO₂ oxidized is seen to increase slightly with increasing pressure, Eqn. (10.7). Industrial catalyst bed pressures are typically 1 to 1.4 bar.

Fig. 10.4. Effect of feed gas O_2 concentration on equilibrium % SO₂ oxidized. High O_2 concentration gives high equilibrium % SO₂ oxidized and vice versa.

10.5.3 SO2-in-feed-gas effect

Fig. 10.5 shows the effect of volume% SO_2 in feed gas on equilibrium % SO_2 oxidized. The curves are for:

- (a) 7, 10 and 13 volume% SO₂-in-feed-gas
- (b) constant 1.1 volume% O₂/volume% SO₂ ratio in feed gas
- (c) constant equilibrium pressure, $P_t = 1.2$ bar.

Equilibrium % SO_2 oxidized is seen to increase slightly with increasing volume% SO_2 in feed gas. This is because a high volume% O_2 *volume% SO_2 product pushes SO_2 oxidation to the right, Eqn. 10.7.

Fig. 10.5. Effect of feed gas $\underline{SO_2}$ concentration on equilibrium % SO_2 oxidized. High SO_2 concentration gives high % SO_2 oxidized.

10.6 Discussion

The curves in Figs. 10.2 to 10.5 combine:

- (a) equilibrium thermodynamics
- (b) catalyst bed feed gas compositions
- (c) S and O balances.

They are not exactly equilibrium curves because their position and shape depend on feed gas composition and equilibrium pressure. Their value is that they show the maximum extent to which SO_2 can be oxidized in a catalyst bed. They provide a visual picture of how catalytic SO_2 oxidation can be optimized.

This value becomes apparent when the equilibrium curves of this chapter are combined with the approach-to-equilibrium heatup paths of Chapters 11 and 12.

10.7 Summary

Catalytic $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation is a key step in sulfuric acid manufacture. It makes SO_3 for subsequent H_2SO_4 production, Reaction (1.2). Efficient SO_2 oxidation contributes to efficient acid production and small emission of SO_2 .

Maximum SO_3 production is attained when SO_2 oxidation comes to equilibrium. Nearattainment of equilibrium is favored by sufficient gas residence time in highly reactive catalyst.

Maximum equilibrium SO_3 production is favored by a cool equilibrium temperature (but warm enough for rapid catalytic oxidation). Temperature exerts a much greater influence on this maximum than pressure or catalyst bed feed gas composition.

Reference

Gaskell, D.R. (1981) Introduction to Metallurgical Thermodynamics. McGraw-Hill Book Company, New York, NY, 212 222 and 237 259; K_E independent of pressure 239. www.mcgraw-hill.com

Problems

10.1 Feed gas containing:

10 volume% SO₂

11 volume% O₂

79 volume% N₂

is fed into the Fig. 10.1 catalyst bed. Its SO_2 reacts with its O_2 to produce SO_3 . The SO_2 , O_2 and SO_3 come to equilibrium at 1.2 bar total pressure as they leave the catalyst bed.

Chemical analysis of the catalyst bed's exit gas shows that 80% of the feed gas's SO_2 has been oxidized to SO_3 .

At what temperature (K) has the feed gas come to equilibrium? Use Eqn. (10.13).

- 10.2 Re-do Problem 10.1 by means of an Excel calculation. Use Appendix D. Eqn. (10.13) is used for many calculations in this book. Once it is successfully entered into Excel, it is easily copied into future spreadsheets.
- 10.3 Problem 10.1's feed gas is fed to the Fig. 10.1 catalyst bed at a slightly cooler temperature. It comes to equilibrium at 840 K.

What percentage of the Problem 10.1 feed SO_2 will have been oxidized when equilibrium has been attained at 840 K?

Use the Goal Seek method described in Appendix D, Section D.1. If you wish, check your answer manually by putting your calculated % SO_2 oxidized in Eqn (10.13) to back-calculate equilibrium temperature.

10.4 Prepare a table of:

equilibrium % SO2 oxidized vs. equilibrium temperature

points for 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂ catalyst bed feed gas (1.2 bar equilibrium pressure).

Use the techniques in Appendix D.

Use Excel's Chart Wizard function to plot these points, as in Fig. 10.2.

CHAPTER 11

SO₂ Oxidation Heatup Paths

Chapter 10 describes equilibrium:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 (1.1)

oxidation in a catalyst bed. It shows that maximum SO₂ oxidation is achieved by:

- (a) rapid SO₂ oxidation in active V, alkali metal, S, O, SiO₂ catalyst
- (b) a cool equilibrium temperature.

It does <u>not</u>, however, show where a feed gas's equilibrium point lies on its equilibrium curve. That is the task of this chapter and Chapter 12.

11.1 Heatup Paths

This chapter discusses catalytic SO₂ oxidation in terms of heatup paths.

Fig. 11.1 presents one such path. It shows the following.

- (a) 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ is fed to a catalyst bed at 690 K. Zero % of its SO₂ is oxidized at this point.
- (b) This gas passes down through the catalyst bed where its $SO_2(g)$ is oxidized by its $O_2(g)$ to give $SO_3(g)$ + heat, Reaction (1.1). The heat from the SO_2 oxidation heats the gas above its 690 K input temperature.
- (c) This SO₂ oxidation/temperature rise behavior is described by a heatup path, which is a plot of gas temperature vs % of feed SO₂ oxidized.
- (d) Eventually, in a deep catalyst bed, the heatup path will meet Chapter 10's equilibrium curve, at which point no more SO_2 oxidation can take place, Chapter 12.

Fig. 11.1. Heatup path for SO₂, O₂, N₂ gas descending a catalyst bed. The SO₂ and O₂ in feed gas react to form SO₃, Eqn. (1.1). The gas is heated by the exothermic heat of reaction. The result is a path with increasing % SO₂ oxidized and increasing gas temperature. Notice how the feed gas's heatup path approaches its Chapter 10 equilibrium curve.

11.2 Objectives

The objectives of the chapter are to:

- (a) show how % SO₂ oxidized/gas temperature heatup paths are prepared
- (b) describe the factors affecting heatup path positions and slopes
- (c) indicate how heatup paths predict maximum (equilibrium) SO₂ oxidation.

11.3 Preparing a Heatup Path - the First Point

A point on Fig. 11.1's heatup path is determined by:

- (a) specifying feed gas composition and temperature, Fig. 11.2
- (b) specifying a measured gas temperature part way down the catalyst bed (after some feed SO₂ has been oxidized and some heating has occurred), Fig. 11.2
- (c) calculating the extent of SO₂ oxidation which corresponds to this measured temperature.

Fig. 11.2. Sketch of catalyst bed showing compositions and temperatures for Section 11.5 example problem.

11.4 Assumptions

Our heatup path calculations assume that there is no transfer of heat between gas and reactor walls or between gas and catalyst. The result is, therefore, an *adiabatic* heatup path.

Specification that there is no heat transfer between gas and reactor walls assumes that the reactor is perfectly insulated.

Specification that there is no transfer of heat between gas and catalyst assumes that the process is proceeding at steady state, i.e. that compositions and temperatures at every position in the catalyst bed are constant with time.

11.5 A Specific Example

The following example problem shows how a heatup path point is determined. The problem is:

"10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ gas (690 K) is being fed to the Fig. 11.2 catalyst bed.

A thermocouple at level L in the catalyst bed indicates that the gas temperature there is 820 K.

What percent oxidation of Fig. 11.2's feed SO_2 gives 820 K gas in the catalyst bed?"

The following six sections show how this problem is solved.

Fig. 11.3. Vertical segment of Fig. 11.2 catalyst bed over which the Section 11.8 and 11.9 mass and enthalpy balances are applied. Compositions and temperatures are assumed to be uniform horizontally at all levels.

11.6 Calculation Strategy

Fig. 11.3 shows the catalyst bed segment from top to level L. Our strategy for solving the Section 11.5 problem is to specify that 1 kg-mole of gas is fed into the top of this segment – and to calculate:

- (a) the quantities of SO_2 , O_2 and N_2 in this kg-mole of feed gas
- (b) the quantities of SO₃, SO₂ and O₂ which correspond to level L's measured 820 K gas temperature
- (c) % SO_2 oxidized at 820 K, where:

$$%SO_2 \text{ oxidized} = \Phi = \frac{\underset{\text{in feed gas}}{\text{in feed gas}} \underset{\text{kg-mole SO}_2}{\text{kg-mole SO}_2 \text{ in feed gas}} \underset{\text{kg-mole SO}_2}{\text{kg-mole SO}_2 \text{ in feed gas}} *100$$
(10.1).

Sulfur, oxygen, nitrogen and enthalpy balances are used. A matrix calculation is employed.

11.7 Input SO₂, O₂ and N₂ Quantities

The calculations of this chapter are all based on feeding 1 kg-mole of dry gas into the acid plant's first catalyst bed. The kg-mole of each component (e.g. SO_2) in this feed gas are calculated by equations like:

kg-mole SO₂ in =
$$\frac{\text{mole}\% \text{ SO}_2}{100} * 1$$
 kg-mole of feed gas

kg-mole SO₂ in
$$=$$
 $\frac{\text{volume% SO}_2}{100} * 1$ kg-mole of feed gas.

Equations describing input kg-moles for the Section 11.5 problem (10 volume% SO_2 , 11 volume% O_2 , 79 volume% N_2 feed gas) are, therefore:

kg-mole SO₂ in
$$=$$
 $\frac{10 \text{ volume% SO}_2}{100} * 1 \text{ kg-mole of feed gas} = 0.10$ (11.1)

kg-mole O₂ in
$$= \frac{11 \text{ volume% O}_2}{100} * 1 \text{ kg-mole of feed gas} = 0.11$$

kg-mole N₂ in
$$=$$
 $\frac{79 \text{ volume% N}_2}{100} * 1 \text{ kg-mole of feed gas} = 0.79$ (11.2)
(11.2)

11.8 Sulfur, Oxygen and Nitrogen Molar Balances

The next step in calculating a heatup path point is to develop steady state molar S, O and N balances for Fig. 11.3's feed and level L gases.

11.8.1 Sulfur balance

The steady state sulfur molar balance for Fig. 11.3 is:

kg-mole S in
$$=$$
 kg-mole S out.

Each mole of SO_2 and SO_3 contains 1 mole of S, so this expands to:

1*kg-mole SO₂ in = 1*kg-mole SO₃ out + 1*kg-mole SO₂ out

or subtracting '1*kg-mole SO₂ in' from both sides:

$$0 = -1 * \text{kg-mole SO}_2 \text{ in } + 1 * \text{kg-mole SO}_3 \text{ out } + 1 * \text{kg-mole SO}_2 \text{ out}$$
(11.4)

where in means into the top of the Fig. 11.3 segment and out means out of the segment at level L.

11.8.2 Oxygen molar balance

The steady state molar oxygen balance for the segment is:

kg-mole
$$O$$
 in = kg-mole O out.

Each mole of SO_2 and O_2 contains 2 moles of O while each mole of SO_3 contains 3 moles of O, so this equation expands to:

$$2*kg$$
-mole SO₂ in + $2*kg$ -mole O₂ in = $3*kg$ -mole SO₃ out + $2*kg$ -mole SO₂ out
+ $2*kg$ -mole O₂ out

or, subtracting '2*kg-mole SO₂ in + 2*kg-mole O₂ in' from both sides:

$$0 = -2*kg\text{-mole SO}_2 \text{ in } -2*kg\text{-mole O}_2 \text{ in}$$

+ 3*kg-mole SO₃ out + 2*kg-mole SO₂ out + 2*kg-mole O₂ out (11.5).

11.8.3 Nitrogen molar balance

The segment's steady state molar nitrogen balance is:

kg-mole N in
$$=$$
 kg-mole N out.

Each mole of N₂ contains 2 moles of N, so this balance becomes:

$$2*kg$$
-mole N₂ in = $2*kg$ -mole N₂ out

or, subtracting '2*kg-mole N_2 in' from both sides:

$$0 = -2 * kg - mole N_2 in + 2 * kg - mole N_2 out$$
 (11.6).

11.9 Enthalpy balance

The steady state enthalpy balance for the Fig. 11.3 catalyst bed segment is:

Enthalpy in for the segment is:

kg-mole SO₂ in *
$$H_{690}^{\circ}$$

+
kg-mole O₂ in * H_{690}°
+
kg-mole N₂ in * H_{690}°
N₂

where $H_{\frac{690}{SO_2}}^{\circ}$ is the enthalpy of SO₂ (MJ/kg-mole) at the segment's 690 K feed gas temperature (likewise for O₂ and N₂).

Likewise, enthalpy out for the segment is:

kg-mole SO₃ out *
$$H_{820}^{\circ}_{820}$$

+
kg-mole SO₂ out * $H_{820}^{\circ}_{820}$
+
kg-mole O₂ out * $H_{820}^{\circ}_{02}$
+
kg-mole N₂ out * $H_{820}^{\circ}_{02}$

where 820 K is the measured gas temperature at level L.

The final term in Eqn. (11.6A) is conductive, convective plus radiative heat loss from the gas. As discussed in section 11.3, it is assumed here to be zero, i.e.:

conductive, convective plus radiative heat = 0. loss from gas

This assumption is discussed further in Section 18.12.

With these three enthalpy components, the segment's enthalpy balance:

```
enthalpy in = enthalpy out + conductive, convective
plus radiative heat
loss from the gas
```

becomes:

$$\begin{cases} kg-mole SO_{2} in * H_{690}^{\circ} \\ + \\ kg-mole O_{2} in * H_{690}^{\circ} \\ O_{2} \\ + \\ kg-mole N_{2} in * H_{690}^{\circ} \\ N_{2} \\ \end{pmatrix} = \begin{cases} kg-mole SO_{3} out * H_{820}^{\circ} \\ + \\ kg-mole SO_{2} out * H_{820}^{\circ} \\ O_{2} \\ + \\ kg-mole O_{2} out * H_{820}^{\circ} \\ O_{2} \\ + \\ kg-mole N_{2} out * H_{820}^{\circ} \\ N_{2} \\ \end{pmatrix} + 0$$
(11.6B).

11.9.1 Numerical enthalpy values

690 and 820 K SO₂, O₂, N₂ and SO₃ enthalpies are shown in Table 11.1.

Compound and temperature	Enthalpy numerical value, MJ per kg-mole
$\mathrm{H}^{\circ}_{\mathrm{690}}_{\mathrm{SO}_{2}}$	-278.7
H ^o ₆₉₀ 02	12.21
H ^o ₆₉₀ N ₂	11.66
H ^o ₈₂₀ SO ₃	-362.0
$\mathrm{H}^{\circ}_{\substack{\mathrm{820}\\\mathrm{SO}_2}}$	-272.0
$\mathrm{H}^{\circ}_{\substack{820\\\mathrm{C}_{2}}}$	16.54
$\mathrm{H}^{\mathrm{o}}_{\substack{820\\\mathrm{N}_{2}}}$	15.71

Table 11.1. SO_2 , O_2 , N_2 and SO_3 enthalpy values (MJ/kg-mole) at 690 and 820 K. They have been calculated with the enthalpy equations in Appendix G.

With the Table 11.1 enthalpies, the Fig. 11.3 segment enthalpy balance becomes:

 $\begin{cases} \text{kg-mole SO}_2 \text{ in } \ast \text{ -278.7} \\ + \\ \text{kg-mole } O_2 \text{ in } \ast \text{ 12.21} \\ + \\ \text{kg-mole } N_2 \text{ in } \ast \text{ 11.66} \end{cases} = \begin{cases} \text{kg-mole SO}_3 \text{ out } \ast \text{ -362.0} \\ + \\ \text{kg-mole SO}_2 \text{ out } \ast \text{ -272.0} \\ + \\ \text{kg-mole } O_2 \text{ out } \ast \text{ -272.0} \\ + \\ \text{kg-mole } O_2 \text{ out } \ast \text{ -16.54} \\ + \\ \text{kg-mole } N_2 \text{ out } \ast \text{ -15.71} \end{cases}$

or:

$$0 = - \text{ kg-mole SO}_2 \text{ in } * -278.7$$

- kg-mole O₂ in * 12.21
- kg-mole N₂ in * 11.66
+ kg-mole SO₃ out * -362.0
+ kg-mole SO₂ out * -272.0
+ kg-mole O₂ out * 16.54
+ kg-mole N₂ out * 15.71 (11.7)

11.10 Calculating Level L Quantities

The Section 11.5 problem has 7 variables:

kg-mole SO₂ in kg-mole O₂ in kg-mole N₂ in kg-mole SO₃ out kg-mole SO₂ out kg-mole O₂ out

Sections 11.7-11.9 provide 7 linear equations (11.1-11.7), which must be satisfied by the values of these 7 variables. Each variable has, therefore, a unique value and the question:

'What percentage of Fig. 11.3's feed SO_2 has been oxidized to SO_3 when the gas has reached 820 K?'

has a unique solution, next section.

11.11 Matrix Calculation

The above question is answered by:

- (a) entering Eqns. (11.1) to (11.7) in matrix form into an Excel worksheet, Table 11.2
- (b) solving for the seven variables
- (c) calculating % SO_2 oxidized in Table 11.2's cell H17.

Matrix calculation instructions are given in Appendix H.

Table 11.2. Excel worksheet and matrix for determining Fig. 11.3's 820 K (level L) gas quantities. 'In' refers to feed, 'out' refers to level L. The results are the only quantities that satisfy all the equations in the matrix. Cell H17 contains the equation above and beside it. The matrix has been solved as described in Appendix H. After an initial solving, a change in any matrix cell value causes automatic calculation of a new matrix result.

	A	В	С	D	E	F	G	Н	1	J
	Equation	Description	numerical term	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
1				in	in	in	out	out	out	out
2	11.1	feed SO ₂ kg-mole	0.10	1	0	0	0	0	0	0
3	11.2	feed O2 kg-mole	0.11	0	1	0	0	0	0	0
4	11.3	feed N ₂ kg-mole	0.79	0	0	1	0	0	0	0
5	11.4	S balance	0	-1	0	0	1	1	0	0
6	11.5	O balance	0	-2	-2	0	3	2	2	0
7	11.6	N balance	0	0	0	-2	0	0	0	2
8	11.7	enthalpy balance	0	278.7	-12.21	-11.66	-362.0	-272.0	16.54	15.71
9				·		·			· · · · · · · · · · · · · · · · · · ·	
10					690 K, feed [#]			820 K,	level L	
11										
12	Matrix results per	kg-mole of feed ga	S							
13	kg-mole SO ₂ in	0.1000								
14	kg-mole O ₂ in	0.1100								
15	kg-mole N ₂ in	0.7900								
16	kg-mole SO3 out	0.0442		% SO ₂ c	xidized at level L =	((kg-mole SO ₂ i	n - kg-mole SO2	out)/kg-mole S	O ₂ in)*100	(Eqn. 10.1)
17	kg-mole SO ₂ out	0.0558			=	(B13-B17)/B13*	100 =	44.2		
18	kg-mole O2 out	0.0879								
19	kg-mole N ₂ out	0.7900								

*Notice that cells D8, E8 and F8 contain - H_{690}° , - H_{690}° and - H_{690}° (Section 11.9.1).

Table 11.2 gives the result. It indicates that an 820 K gas temperature is uniquely produced by 44.2% oxidation of Fig. 11.3's feed SO₂.

11.12 Preparing a Heatup Path

The heatup path for the Section 11.5 feed gas is prepared by re-doing the above calculation for many different levels and temperatures in the catalyst bed, Fig. 11.4. Only cells G8 to J8 in Table 11.2 are changed.

Fig. 11.4. Segment of catalyst bed showing level L' for calculating $\% SO_2$ oxidized equivalent to 850 K.

The	850	Κ	gas	temperature	at	level	Ľ'	is,	for	example,	represented	by	the	enthalp	y
term	s:														

Cell	Contents	Numerical value, MJ/kg-mole [#]
G8	$H^{\circ}_{\substack{850\\SO_{3}}}$	-359.9
H8	$H^{\circ}_{\substack{850\\SO_2}}$	-270.4
18	H_{02}°	17.54
J8	$\mathrm{H}^{\circ}_{_{^{850}}}$	16.64

[#]Calculated with Appendix G's enthalpy equations.

Inserted into Matrix Table 11.2, these values automatically give the result that 850 K gas is produced by 54.4% SO₂ oxidation.

11.12.1 Enthalpy equations in cells

An efficient method of calculating heatup path points is to put enthalpy equations directly into cells D8 - J8 of Table 11.2. This is detailed in Appendix I.

11.12.2 The heatup path

Table 11.3 summarizes % SO₂ oxidized vs gas temperature as calculated by the above described method. The points are equivalent to the heatup path in Fig. 11.1. As expected, high gas temperatures are equivalent to extensive $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ oxidation and vice versa.

Table 11.3.	Heatup path	points for	10 volume%	SO ₂ , 11	volume%	O ₂ , 79	volume%	N ₂ ,	690 I	K
feed gas. T	he values are 1	represented	graphically i	n Fig. 11	.1.					

Temperature, K	Equivalent % SO ₂ oxidized
690	0
710	6.8
730	13.5
750	20.3
770	27.1
790	33.9
810	40.8
830	47.6
850	54.4

The next two sections describe the effects of:

(a) feed gas composition

and:

(b) feed gas temperature

on heatup paths. The importance of heatup path position and slope is then discussed.

11.13 Feed Gas SO₂ Strength Effect

The effect of feed gas SO₂ strength on heatup path is determined by inserting different values of:

```
volume% SO<sub>2</sub>
volume% O<sub>2</sub>
volume% N<sub>2</sub>
```

into Equations (11.1), (11.2) and (11.3). With 13 volume% SO₂, 14.3 volume% O₂ and 72.7 volume% N₂ (for example), the equations become:

kg-mole SO₂ in =
$$\frac{13 \text{ volume% SO}_2}{100} * 1 \text{ kg-mole of feed gas} = 0.13$$
(11.1')

kg-mole O₂ in =
$$\frac{14.3 \text{ volume% O}_2}{\frac{\text{in feed gas}}{100}} * 1 \text{ kg-mole of feed gas} = 0.143$$

kg-mole N₂ in =
$$\frac{\frac{72.7 \text{ volume% N}_2}{\text{in feed gas}} * 1 \text{ kg-mole of feed gas} = 0.727$$
(11.3').

These new equations are put into matrix Table 11.2 by placing new values into cells C2 to C4. The new values are:

cell C2	0.13
cell C3	0.143
cell C4	0.727.

With an 820 K measured level L temperature, these values automatically give:

34.7% SO2 oxidized.

11.13.1 SO₂ strength summary

Fig. 11.5 summarizes the effects of SO₂ feed gas strength on heatup paths. It shows that each % SO₂ oxidized gives a larger temperature increase with:

	13 volume% SO ₂ in feed gas
than with:	

7 volume% SO_2 in feed gas.

This is mainly because, per % SO₂ oxidized:

more SO_2 is oxidized per kg-mole of strong SO_2 feed gas than per kg-mole of weak SO_2 feed gas,

giving more heat evolution and larger temperature increase.

142

Fig. 11.5. Heatup paths for 7, 10 and 13 volume% SO₂ (volume% O₂/volume% SO₂ = 1.1) feed gas. Per % SO₂ oxidized, strong SO₂ gas heats up more than weak SO₂ gas.

11.14 Feed Gas Temperature Effect

The effect of feed gas temperature on heatup path is determined by inserting new enthalpy values into Eqn. (11.7). With 660 K feed gas (for example), enthalpy Eqn. (11.7) becomes:

$$0 = - \text{ kg-mole } SO_2 \text{ in } * -280.2 \\ - \text{ kg-mole } O_2 \text{ in } * 11.21 \\ - \text{ kg-mole } N_2 \text{ in } * 10.73 \end{cases} 660 \text{ K} \\ + \text{ kg-mole } SO_3 \text{ out } * -362.0 \\ + \text{ kg-mole } SO_2 \text{ out } * -272.0 \\ + \text{ kg-mole } O_2 \text{ out } * 16.54 \\ + \text{ kg-mole } N_2 \text{ out } * 15.71 \end{cases} 820 \text{ K}$$
(11.7')
$$-280.2 = H_{660}^{\circ}_{SO_2} \\ 11.21 = H_{020}^{\circ}$$

 H_{660}°

N₂

~

10.73

where:

D8	-(-280.2)
E8	-11.21
F8	-10.73

(because of the negative signs on the first three rows of Eqn. 11.7').

A new heatup path is then calculated as described in Section 11.11. The result is a path nearly parallel to the 690 K path \sim 30 K cooler at all % SO₂ oxidized values, Fig. 11.6.

Fig. 11.6. 660 K and 690 K feed gas heatup paths with 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ feed gas. The two paths are ~30 K apart throughout their length. They are not exactly straight because: $d H_{SO_3}^{\circ} / dT > (d H_{SO_2}^{\circ} / dT + \frac{1}{2} d H_{O_2}^{\circ}) / dT$, Appendix G.

11.15 Significance of Heatup Path Position and Slope

Fig. 11.7 superimposes the Fig. 10.2 % SO_2 oxidized equilibrium curve on Fig. 11.6. It shows that the:

660 K feed gas heatup path

will reach the equilibrium % SO₂ oxidized curve:

at a higher % SO2 oxidized value

than the 690 K feed gas heatup path.

This predicts high SO_2 oxidation efficiency with low feed gas temperature. This prediction is discussed extensively in Chapter 12 onwards.

Fig. 11.7. Heatup paths and equilibrium curve for 10 volume% SO_2 , 11 volume% O_2 , 79 volume% N_2 feed gas. Notably, the 660 K heatup path will reach the equilibrium curve at a higher % *SO*₂ oxidized value than the 690 K heatup path. 660 K is about the lowest feed gas temperature that will keep V, alkali metal, S, O, SiO₂ catalyst active and SO₂ oxidation rapid, Table 8.1.

11.16 Summary

 SO_2 oxidizes and gas temperature increases as SO_2 , O_2 , N_2 gas descends through active V, alkali metal, S, O, SiO_2 catalyst. This behavior is shown by the heatup paths of this chapter.

Chapters 12 onwards combine these heatup paths with Chapter 10's % SO_2 oxidized equilibrium curves to show how:

- (a) $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation may be maximized
- (b) SO_2 emission to the environment may be minimized.

They indicate that cool feed gas (but warm enough for rapid catalytic oxidation) gives efficient SO_2 oxidation and small SO_2 emission.

Problems

11.1 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂, 690 K gas is fed continuously to the top of a catalyst bed.

A thermocouple is inserted into the catalyst bed part way down the bed. It
indicates that the temperature there is 820 K.

What percentage of the input SO_2 has been oxidized at the thermocouple's location?

Use matrix Table 11.2. Only cells C2, C3 and C4 need to be changed (as discussed in Section 11.13).

- 11.2 Repeat Problem 11.1 with an 850 K thermocouple reading further down the bed. Use your Problem 11.1 matrix with 850 K enthalpy values in cells G8 to J8.
- 11.3 Repeat Problem 11.2 with 675 K feed gas (and an 850 K thermocouple reading). Use your Problem 11.2 matrix with 675 K enthalpy values in cells D8 to F8.

Remember that these cells contain - H° .

11.4 Prepare a heatup path for 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂, <u>675</u> K feed gas – as described in Appendix I. Plot the path with Excel's Chart Wizard function.

CHAPTER 12

Maximum SO₂ Oxidation: Heatup Path-Equilibrium Curve Intercepts

Chapters 10 and 11 discuss oxidation of SO_2 when warm SO_2 , O_2 , N_2 feed gas descends a catalyst bed. They do so in terms of:

- (a) % SO₂ oxidized-temperature equilibrium curves, Chapter 10
- (b) % SO₂ oxidized-temperature heatup paths, Chapter 11.

Together, they indicate that maximum oxidation in a catalyst bed is obtained where a feed gas's:

heatup path

intercepts its:

equilibrium curve, Fig. 11.7.

This chapter:

- (a) calculates heatup path-equilibrium curve intercept points
- (b) shows how these points are affected by feed gas temperature, feed gas composition and equilibrium pressure
- (c) discusses the influence of these points on industrial acid plant practice.

12.1 Initial Specifications

For an intercept calculation to be valid, its heatup path and equilibrium curve must be for the same feed gas. Each intercept calculation must, therefore, specify a feed gas

composition, volume% SO₂, O₂, N₂ etc.

It must also specify:

- (a) feed gas temperature, i.e. the temperature at which the heatup path starts
- (b) catalyst bed pressure, i.e. the pressure at which SO_2 oxidation Reaction (1.1) comes to equilibrium.

A calculated intercept is valid only for these specified values.

12.2 % SO₂ Oxidized-Temperature Points Near an Intercept

Table 12.1 shows heatup path and equilibrium curve % SO_2 oxidized-temperature points near a heatup path-equilibrium curve intercept. They are for:

690 K, 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ feed gas and 1.2 bar equilibrium pressure.

Temperature, K	Heatup path $\% SO_2 \text{ oxidized}, \Phi$	Equilibrium % SO2 oxidized, Φ ^E
898	70.84	67.85
897	70.49	68.15
896	70.15	68.45
895	69.81	68.75
894	69.47	69.05
893	69.12	69.34
892	68.78	69.64
891	68.44	69.94
890	68.09	70.23

Table 12.1 % SO₂ oxidized-temperature points near heatup path-equilibrium curve intercept. They have been calculated as described in Appendices I and D. They are plotted in Fig. 12.1. Φ and Φ^{E} are defined by Eqns. (10.1) and (10.2).

The table shows that at 893 K and below:

heatup path % SO₂ oxidized is less than equilibrium curve % SO₂ oxidized.

This indicates that at 893 K and below, $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation can proceed further up the heatup path towards equilibrium, Fig. 12.1.

At 894 K and above, however, heatup path % SO_2 oxidized is greater than equilibrium % SO_2 oxidized. This is, of course, impossible because equilibrium % SO_2 oxidized cannot be exceeded up a heatup path.

Fig. 12.1. Plot of Table 12.1 heatup path points and equilibrium curve, expanded from Fig. 11.7. Below the equilibrium curve, SO_2 is being oxidized, gas temperature is increasing and equilibrium is being approached up the heatup path. Maximum (equilibrium) oxidation is attained where the heatup path meets the equilibrium curve.

Maximum (equilibrium) % SO_2 oxidized occurs, therefore, between 893 K and 894 K. Interpolation shows that it occurs at:

893.3 K 69.2 % SO₂ oxidized.

This is confirmed by the Excel Goal Seek calculation in Appendix Table J.2.

The Table J.2 Goal Seek calculation also shows that the intercept gas contains:

0.0692 kg-mole SO₃ 0.0308 kg-mole SO₂ 0.0754 kg-mole O₂ 0.7900 kg-mole N₂

per kg-mole of feed gas. These quantities are used in Chapter 14 and 15's 2^{nd} catalyst bed heatup path and intercept calculations.

12.3 Discussion

The above calculations assume that:

(a) the acid plant's 1st catalyst bed is thick enough

and its:

(b) catalytic SO₂ oxidation is rapid enough

for equilibrium to be attained.

Industrial 1st catalyst beds are $\frac{1}{2}$ to 1 m thick, Fig. 8.3. This thickness gives near equilibrium oxidation under the (i) warm and (ii) strong SO₂ + O₂ conditions in the 1st catalyst bed. More catalyst could be added but this isn't often necessary. Non-attainment of equilibrium is discussed further in Section 18.12.

12.4 Effect of Feed Gas Temperature on Intercept

Fig. 12.2 shows the effect of *feed gas temperature* on intercept temperature and % SO_2 oxidized. It indicates that cool feed gas gives:

- (a) a low intercept temperature
- (b) a high intercept (equilibrium) % SO₂ oxidized.

The high intercept % SO_2 oxidized gives efficient SO₃ and H₂SO₄ production. It also minimizes SO₂ emission.

Fig. 12.2. Near-intercept heatup paths with 660 and 690 K feed gas (same composition). They are expanded from Fig. 11.7. Cool feed gas gives a low intercept temperature and a high intercept $\% SO_2$ oxidized. 660 K is about the lowest temperature at which V, alkali metal, S, O, SiO₂ catalyst is fully active, Table 8.1.

12.5 Inadequate % SO₂ Oxidized in 1st Catalyst Bed

 $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation efficiency in a 1st catalyst bed is always below ~ 80%. This is totally inadequate for efficient, low SO₂ emission H₂SO₄ production.

This limitation is overcome industrially by passing 1^{st} catalyst bed <u>exit</u> gas through two or more **gas cooling/catalytic oxidation steps** – bringing SO₂ oxidation efficiency up to 98+ %.

Multi-catalyst bed processing is discussed in Chapter 13 onwards.

12.6 Effect of Feed Gas SO₂ Strength on Intercept

Fig. 12.3 shows the effect of feed gas SO_2 strength on intercept temperature and % SO_2 oxidized. Increased SO_2 strength is seen to:

- (a) increase intercept temperature
- (b) decrease intercept % SO_2 oxidized.

The industrial impact of these effects is discussed in Section 12.10.

Fig. 12.3. Heatup paths, equilibrium curves and intercepts for 7, 10, and 13 volume% SO₂ feed gas. Volume% O₂/volume% SO₂ ratio = 1.1. Intercept temperature <u>increases</u> with increasing SO₂ strength. Intercept % SO₂ oxidized <u>decreases</u> with increasing SO₂ strength. The intercepts have been calculated as described in Appendix J.

12.7 Minor Influence – Equilibrium Gas Pressure

Industrial catalyst bed gas pressure varies slightly between acid plants depending on altitude. It also tends to increase slightly over time as catalyst beds become clogged with dust and catalyst fragments.

These pressure differences have no effect on heatup paths, Fig. 12.4 – and little effect on equilibrium curves and intercepts. Intercept temperature and % SO_2 oxidized both increase slightly with increasing pressure.

Fig. 12.4. Effect of pressure on equilibrium curves and heatup path-equilibrium curve intercepts. Equilibrium curves and intercepts are affected by pressure. Heatup paths are not. Intercept temperature and $\% SO_2$ oxidized both increase slightly with increasing pressure. The intercepts have been calculated as described in Appendix J.

12.8 Minor Influence - O2 Strength in Feed Gas

Industrial 1st catalyst bed feed gas typically contains O₂ and SO₂ in the ratio:

volume% O_2 /volume% $SO_2 \approx 1$ to 2, Table 7.2.

This is 2 to 4 times the SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ stoichiometric $O_2/SO_2 = 0.5$ requirement. It gives rapid oxidation.

Fig. 12.5 shows that O_2 strength has a negligible effect on heatup paths and a small effect on equilibrium curves and intercepts. Intercept temperature and % SO₂ oxidized both increase slightly with increasing O_2 strength.

Fig. 12.5. Effect of feed gas O_2 strength on constant SO_2 strength heatup paths, equilibrium curves and intercepts. Intercept temperature and % SO_2 oxidized increase slightly with increasing O_2 -in-feed-gas. Heatup path is barely affected by O_2 strength – 3 paths are superimposed on this graph. The effect is small because:

- (a) O_2 and N_2 substitute for each other at constant SO_2 strength
- (b) the heat capacities of O_2 and N_2 are almost the same, Appendix G.

12.9 Minor Influence – CO₂ in Feed Gas[#]

Metallurgical and spent acid regeneration gases contain CO_2 from fossil fuel and spent acid impurities. CO_2 concentrations in 1st catalyst bed feed gas are typically:

metallurgical	0 to 7 volume% CO_2
acid regeneration	6 to 10 volume% CO ₂ .

 CO_2 has no effect on $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ equilibrium curves, Appendix F. It does, however, have a small effect on heatup paths and intercepts, Fig. 12.6.

Intercept temperature <u>decreases</u> slightly with increasing CO_2 -in-feed-gas. Intercept % SO_2 oxidized increases slightly.

[#]Effects of SO₃ in feed gas are described in Chapter 17 and Appendices P and Q.

Fig. 12.6. Effect of CO₂ on intercept temperature and % SO₂ oxidized. Heatup path slope increases slightly with increasing CO₂ in gas – because CO₂ heat capacity is greater than N₂ heat capacity, Appendix G. This <u>decreases</u> intercept temperature and <u>increases</u> % SO₂ oxidized. CO₂ calculations are described in Chapter 17.

12.10 Catalyst Degradation, SO₂ Strength, Feed Gas Temperature

V, alkali metal, S, O, SiO₂ catalyst begins to degrade when continuously operated above \sim 900 K, Table 8.1. This can be a problem with high SO₂ strength feed gas.

Fig. 12.7 shows, for example, that the intercept temperature with:

12 volume% SO₂, 690 K feed gas

is 915 K, which may cause catalyst degradation.

Fig. 12.7 also shows, however, that this problem can be overcome by feeding the gas at 660 K. This explains industrial use of low gas input temperature <u>cesium-enhanced</u> catalyst in 1^{st} catalyst beds, Table 8.1. This catalyst can be fed with ~660 K gas without falling below its de-activation temperature.

12.10.1 Two catalyst layers

A number of acid plants use two layers of catalyst in their 1st catalyst beds:

(a) V, <u>Cs</u>, K, Na, S, O, SiO₂ catalyst at the gas input surface for SO₂ oxidation with cool feed gas

Fig. 12.7. Equilibrium curves, heatup paths and intercepts for 12 volume% SO_2 feed gas. 690 K feed gas gives a 915 K intercept temperature, in the catalyst degradation range. 660 K feed gas gives a 900 K intercept temperature, avoiding degradation.

(b) V, K, Na, S, O, SiO₂ catalyst at the gas exit surface to prevent high temperature catalyst degradation.

About 1/3 of the bed is Cs enhanced catalyst; 2/3 is K, Na catalyst.

12.11 Maximum Feed Gas SO₂ Strength

Fig. 12.8 shows that 13 volume% SO_2 gas gives an intercept temperature of ~910 K even when fed at 660 K. This may cause catalyst degradation.

Gases stronger than 13 volume% SO_2 will always give intercept temperatures in the catalyst degradation range. They must be diluted with air before they are catalytically oxidized.

Dilution is not a problem, but it requires more equipment and gas blowing power.

12.12 Exit Gas Composition = Intercept Gas Composition

This chapter assumes that equilibrium is attained in an acid plant's 1st catalyst bed, i.e. that a feed gas's heatup path always intercepts its equilibrium curve.

Fig. 12.8. Heatup path, equilibrium curve and intercept for 660 K, 13 volume% SO_2 feed gas. With 13 volume% SO_2 and higher, catalyst degradation is likely even with 660 K feed gas. 660 K is about the lowest temperature at which V, alkali metal, S, O, SiO₂ catalyst is fully active.

We now add the specification that there is no oxidation or reduction once equilibrium is attained, i.e. that:

catalyst bed exit gas composition

is the same as:

catalyst bed intercept gas composition, Fig. 12.9.

This exit gas composition \equiv intercept gas assumption is important because it links catalyst beds in multi-bed SO₂ oxidation calculations, Chapter 14 onwards.

12.13 Summary

Catalyst bed $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation is represented by heatup paths and equilibrium curves. Maximum SO_2 oxidation occurs where a feed gas's heatup path intercepts its equilibrium curve.

High intercept % SO_2 oxidized values are equivalent to efficient SO_3 production. They give efficient H_2SO_4 production and low SO_2 emission. They are obtained by using cool feed gas – but warm enough (>660 K) for rapid catalytic oxidation.

Fig. 12.9. Sketch of catalyst bed indicating that <u>exit</u> gas composition and temperature \equiv <u>intercept</u> gas composition and temperature. It assumes that there is no transfer of heat from gas to surroundings, Section 11.3. So once equilibrium is attained, temperature remains constant and the gas remains at its intercept composition. This is discussed further in Section 18.12.

Strong SO_2 feed gas gives high intercept temperatures. Above about 12 volume% SO_2 , intercept temperatures begin to exceed V, alkali metal, S, O, SiO₂ catalyst's 900 K degradation temperature.

Gas stronger than ~ 13 volume% SO₂ must be diluted with air before catalytic oxidation. This is not a problem, but it increases cost.

Problems

12.1 In Problem 10.4, you prepared an equilibrium curve for 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂ gas (1.2 bar equilibrium pressure).

In Problem 11.4 you prepared a heatup path for the same gas (fed into the catalyst bed at 675 K).

Now determine the $\%SO_2$ oxidized - temperature point at which the Problem 11.4 heatup path intercepts the Problem 10.4 equilibrium curve.

Use the technique described in Table 12.1 as follows.

- (a) You can see from Fig. 12.7 that the intercept temperature will be ~908 K. This suggests that you should calculate your equilibrium curve and heatup path points at ~904, 905......911 K.
- (b) Use the technique you used in Problem 10.3 to calculate your equilibrium curve points. This gives integer temperatures and simplifies interpolation, Table 12.1.
- (c) Use the technique you used in Problem 11.4 to calculate the heatup path points.
- 12.2 Plot your Problem 12.1 points as in Fig. 12.1. Use Excel's Chart Wizard.
- 12.3 Repeat Problem 12.1 using the technique described in Appendix J. Familiarity with this technique is essential for later multi-catalyst bed calculations.

Include in your answer:

- (a) intercept temperature and $\% SO_2$ oxidized
- (b) kg-mole SO₃, SO₂, O₂ and N₂ in intercept gas, per kg-mole of 1st catalyst bed feed gas.

The problem in Chapter 13 requires the answer to (a).

The problems in Chapters 14 and 15 require the answer to (b).

CHAPTER 13

Cooling 1st Catalyst Bed Exit Gas

Chapter 12 shows that a 1^{st} catalyst bed oxidizes less than 80% of its input SO₂. It also indicates that this SO₂ oxidation efficiency is increased to 98+% by passing 1^{st} catalyst bed exit gas through a series of gas cooling/catalytic oxidation steps.

This chapter describes gas cooling between 1^{st} and 2^{nd} catalyst beds, Fig. 13.1. It sets the stage for Chapter 14's examination of 2^{nd} catalyst bed SO₂ oxidation.

Fig. 13.1. Schematic of 1^{st} and 2^{nd} catalyst beds with gas cooling between. The cooling system cools 1^{st} catalyst bed exit gas in preparation for more catalytic SO₂ oxidation in a 2^{nd} catalyst bed. Industrial catalyst bed arrangements are discussed in Chapters 7 and 8. Gas cooling is discussed in Chapter 21.

The objectives of this chapter are to:

- (a) show how gas cooling is represented on % SO₂ oxidized/temperature graphs
- (b) indicate how gas cooling makes more SO₂ oxidation possible.

13.1 1st Catalyst Bed Summary

Fig. 13.2 summarizes 1st catalyst bed SO₂ oxidation. It is for:

```
10 volume% SO<sub>2</sub>
11 volume% O<sub>2</sub>
79 volume% N<sub>2</sub>
690 K
```

feed gas and 1.2 bar bed pressure.

It confirms that intercept temperature and % SO₂ oxidized under these conditions are:

Fig. 13.2. 1st catalyst bed heatup path, equilibrium curve and intercept point, from Fig. 12.1. The 1^{st} catalyst bed's exit gas is its intercept gas, Section 12.12. It is cooled and fed to a 2^{nd} catalyst bed for more SO₂ oxidation.

13.1.1 Inefficient SO₂ oxidation explained

Fig. 13.2's SO_2 oxidation efficiency is less than 70%. This low efficiency arises because:

- (a) feed gas enters the 1st catalyst bed at 690 K, warm enough for rapid catalytic oxidation
- (b) heat from $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation raises gas temperature even further
- (c) the resulting heatup path reaches the equilibrium curve at a high temperature where equilibrium SO_2 oxidation is inefficient.

13.2 Cooldown Path

This section adds a cooldown path to Fig. 13.2. It does so by preparing a data table which specifies that:

- (a) a 1st catalyst bed's exit gas is its intercept gas, Section 12.12
- (b) exit gas composition doesn't change during gas cooling because the cooling equipment doesn't contain catalyst
- (c) the cooldown target temperature is 700 K.

These specifications give the following two cooldown path points. They are plotted in Fig. 13.3 with a straight cooldown path between.

Description	gas temperature, K	% SO ₂ oxidized
1^{st} catalyst bed exit gas $\equiv 1^{st}$ catalyst	893.3	69.2
bed intercept gas	(Fig. 13.2)	(Fig. 13.2)
Cooldown target temperature ≡	700	69.2
specified 2 nd catalyst bed gas input		(unchanged during
temperature		catalyst free cooling)

Fig. 13.3. Cooldown path added to Fig. 13.2. It is a horizontal line at the 1^{st} catalyst bed intercept % SO₂ oxidized level – between the 1^{st} catalyst bed intercept temperature and the specified 2^{nd} catalyst bed gas input temperature. Gas composition and % SO₂ oxidized don't change in the gas cooling equipment.

13.2.1 2nd catalyst bed gas input temperature

 SO_2 and O_2 concentrations in 2nd catalyst bed input gas are lower than in 1st catalyst bed feed gas, Section 12.2. SO₃ concentration is higher. Both of these tend to slow SO₂ oxidation in the 2nd catalyst bed.

This slowing effect is offset industrially by using slightly warmer input gas in the 2^{nd} catalyst bed, Fig. 13.1. ~700 K is quite common, Table 7.2.

13.2.2 Industrial gas cooling (Chapter 21)

Catalyst bed exit gas is cooled by:

- (a) making steam from water in a boiler
- (b) superheating this steam
- (c) heating water for the boiler in an economizer
- (d) transferring heat to another gas in a gas-to-gas heat exchanger.

The steam is mainly used to make electricity.

The transferred heat is usually used to heat 1st catalyst bed feed gas to its specified input temperature (in metallurgical and waste acid regeneration plants).

13.3 Gas Composition Below Equilibrium Curve

Fig. 13.3 shows that gas cooling without composition change:

moves % SO_2 oxidized from its 893.3 K position on the equilibrium curve

to:

a position <u>below</u> the equilibrium curve, i.e. to a position where more SO_2 oxidation is possible.

It prepares the gas for more SO₂ oxidation.

13.4 Summary

A 1^{st} catalyst bed oxidizes less than 80% of its feed SO₂ to SO₃. This percentage is increased by passing its exit gas through a series of gas cooling/catalytic oxidation steps.

Gas cooling between catalyst beds is done in water-to-steam boilers, superheaters, economizers and gas-to-gas heat exchangers. Gas composition doesn't change in these cooling devices because they don't contain catalyst.

Gas cooling between 1st and 2nd catalyst beds is represented graphically by a horizontal line at:

the 1st catalyst bed intercept % SO₂ oxidized level

between:

(a) the 1st catalyst bed intercept temperature

and:

(b) the specified 2^{nd} catalyst bed gas input temperature.

Problem

13.1 Prepare a graph like Fig. 13.3 for:

675 K, 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂ 1st catalyst bed feed gas.

Assume that this gas:

- (a) attains equilibrium (1.2 bar) in a 1^{st} catalyst bed at Problem 12.3's intercept temperature and % SO₂ oxidized
- (b) is cooled to 685 K without any reaction in preparation for input to a 2^{nd} catalyst bed.

Hints:

- (a) You calculated the equilibrium curve for this gas in Problem 10.4.
- (b) You calculated most of this gas's 1st catalyst bed heatup path in Problem 11.4. Now add your Problem 12.3 intercept point to the heatup path. This will join it to the equilibrium curve.
- (c) Add a cooldown path to 685 K as described in Section 13.2.

CHAPTER 14

2nd Catalyst Bed Heatup Path

Chapter 12 indicates that a 1^{st} catalyst bed oxidizes less than 80% of its feed gas's SO₂. Most of the remaining SO₂ is oxidized to SO₃ in a sequence of gas cooling/catalytic oxidation steps. The oxidant is unused O₂ in 1^{st} catalyst bed exit gas. The reaction is:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

This chapter examines oxidation of the SO_2 in cooled 1^{st} catalyst bed exit gas – in a 2^{nd} catalyst bed.

14.1 Objectives

The objectives of the chapter are to:

- (a) define $\% SO_2$ oxidized as it applies to a 2nd catalyst bed
- (b) prepare a 2nd catalyst bed heatup path starting with cooled 1st catalyst bed exit gas
- (c) show how 2^{nd} catalyst bed oxidation increases overall SO₂ oxidation efficiency.

14.2 % SO₂ Oxidized Re-defined

Chapter 10 defines catalyst bed % SO_2 oxidized anywhere in a 1st catalyst bed as:

$$\% SO_2 \text{ oxidized} = \Phi = \frac{\underset{\text{in feed gas}}{\text{kg-mole SO}_2} - \underset{\text{in oxidized gas}}{\text{kg-mole SO}_2} *100}{\text{kg-mole SO}_2 \text{ in feed gas}} *100$$

where all quantities are per kg-mole of 1st catalyst bed feed gas.

(10.1)

This chapter expands that definition to cover all acid plant catalyst beds. The expanded definition is:

 $\% SO_2 \text{ oxidized } = \Phi = \frac{\text{kg-mole SO}_2 \text{ in 1st}}{\text{kg-mole SO}_2 \text{ in 1st catalyst bed feed gas}} \frac{\text{kg-mole SO}_2 \text{ in 1st catalyst bed feed gas}}{\text{kg-mole SO}_2 \text{ in 1st catalyst bed feed gas}} *100$ (14.1)

where all quantities are per kg-mole of 1st catalyst bed feed gas.

This definition is used throughout the rest of this book.

14.3 2nd Catalyst Bed Heatup Path

Fig. 14.3 shows a 2^{nd} catalyst bed heatup path. It is similar to a 1^{st} catalyst bed heatup path but it starts at Fig. 13.3's:

- (a) 1^{st} catalyst bed intercept % SO₂ oxidized
- (b) specified 2nd catalyst bed input gas temperature.

14.3.1 A heatup path point

 2^{nd} catalyst bed heatup path points are calculated much like 1^{st} catalyst bed heatup points. The steps are:

- (a) 2nd catalyst bed input temperature and input gas kg-mole are specified
- (b) a gas temperature partway down the 2^{nd} bed (after some SO₂ oxidation has occurred) is specified
- (c) % SO_2 oxidized equivalent to (b)'s gas temperature is calculated.

Figs. 14.1 and 14.2 are used.

14.3.2 2nd catalyst bed difference

A significant difference between 2^{nd} catalyst bed input gas and 1^{st} catalyst bed feed gas is that:

 2^{nd} catalyst bed input gas always contains SO₃ as well as SO₂, O₂ and N₂.

This adds:

(a) a new variable (kg-mole SO₃ in)

and an equivalent:

(b) new equation (SO₃ input quantity)

to our calculations, Table 14.2.

It also alters our heatup path S, O and enthalpy balances, Sections 14.6 and 14.7.

Fig. 14.1. Sketch of 2^{nd} catalyst bed showing a temperature measured part way down the bed. Compositions and temperatures are assumed to be uniform horizontally at all levels.

14.4 A Specific Heatup Path Question

The problem solved in this chapter is:

"Fig. 13.3's cooled 1st catalyst bed exit gas is fed to a 2nd catalyst bed, Fig. 14.1.

A thermocouple at level L in the bed indicates that the temperature there is 760 K.

What percentage of 1^{st} catalyst bed feed SO₂ has been oxidized to SO₃ where the 2^{nd} catalyst bed gas is 760 K?"

Fig. 14.2 defines the problem and specifies 2^{nd} catalyst bed gas input temperature and input SO₃, SO₂, O₂ and N₂ kg-mole.

Fig. 14.2. Sketch defining Section 14.4's 2nd catalyst bed heatup path problem.

14.5 2nd Catalyst Bed Input Gas Quantities

2nd catalyst bed input gas quantities are specified to be:

1st catalyst bed intercept gas quantities.

This specification is based on the assumptions that:

- (a) equilibrium is attained in the 1st catalyst bed, Fig. 12.1
- (b) 1^{st} catalyst bed exit gas composition = 1^{st} catalyst bed intercept (equilibrium) gas composition, Section 12.12

(c) 2^{nd} catalyst bed input gas composition = 1^{st} catalyst bed exit gas composition, Section 13.2.

These assumptions link the two catalyst beds.

14.5.1 Input SO₃, SO₂, O_2 and N_2 equations

Fig. 14.2's 2nd catalyst bed input gas quantities are represented by the equations:

kg-mole SO ₃ in $=$	0.0692	(14.2	!)
--------------------------------	--------	-------	----

kg-mole
$$SO_2$$
 in = 0.0308 (14.3)

- kg-mole O_2 in = 0.0754 (14.4)
- kg-mole N_2 in = 0.7900 (14.5)

where the numerical values are those in Fig. 14.2.

These equations will, of course, be different for different 2nd catalyst bed input gases.

14.6 S, O and N Molar Balances

 SO_3 in 2nd catalyst bed input gas alters molar balance Eqns. (11.4) to (11.6) as follows.

(a) Sulfur balance Eqn. (11.4) becomes:

$$0 = \underline{-kg\text{-mole } SO_3 \text{ in}} - kg\text{-mole } SO_2 \text{ in} + kg\text{-mole } SO_3 \text{ out} + kg\text{-mole } SO_2 \text{ out}$$

(14.6)

(14.7).

where in means into the top of Fig. 14.2's 2^{nd} catalyst bed segment and **out** means out of the segment at level L.

(b) Oxygen balance Eqn. (11.5) becomes:

$$0 = -3 * kg - mole SO_3 in - 2 * kg - mole SO_2 in - 2 * kg - mole O_2 in$$

+ 3 * kg - mole SO_3 out + 2 * kg - mole SO_2 out + 2 * kg - mole O_2 out

(c) Nitrogen balance Eqn. (11.6) is unchanged:

$$0 = -2 * \text{kg-mole } N_2 \text{ in } + 2 * \text{kg-mole } N_2 \text{ out}$$
(14.8).

14.7 Enthalpy Balance

 SO_3 in 2nd catalyst bed feed gas changes Section 11.9's enthalpy balance to:

$$0 = -kg - mole SO_{3} in * H_{700}^{\circ} \\ so_{3} \\ -kg - mole SO_{2} in * H_{700}^{\circ} \\ so_{2} \\ -kg - mole O_{2} in * H_{700}^{\circ} \\ O_{2} \\ -kg - mole N_{2} in * H_{700}^{\circ} \\ N_{2} \\ +kg - mole SO_{3} out * H_{760}^{\circ} \\ So_{3} \\ +kg - mole SO_{2} out * H_{760}^{\circ} \\ So_{2} \\ +kg - mole O_{2} out * H_{760}^{\circ} \\ O_{2} \\ +kg - mole N_{2} out * H_{760}^{\circ} \\ O_{2} \\ +kg - mole N_{2} out * H_{760}^{\circ} \\ N_{2} \\ \end{pmatrix}$$

where 700 K and 760 K are Fig. 14.2's 2nd catalyst bed input and level L temperatures. With the enthalpy values in Table 14.1, this enthalpy balance is:

$$0 = - \text{kg-mole SO}_{3} \text{ in } * (-370.6)$$

$$- \text{kg-mole SO}_{2} \text{ in } * (-278.2)$$

$$- \text{kg-mole } O_{2} \text{ in } * 12.54$$

$$- \text{kg-mole } N_{2} \text{ in } * 11.97$$

$$+ \text{kg-mole SO}_{3} \text{ out } * (-366.3)$$

$$+ \text{kg-mole } SO_{2} \text{ out } * (-275.1)$$

$$+ \text{kg-mole } O_{2} \text{ out } * 14.54$$

$$+ \text{kg-mole } N_{2} \text{ out } * 13.84$$
(14.9).

(14.8A)

Compound and temperature	enthalpy numerical value, MJ/kg-mole				
$\mathrm{H}^{\circ}_{\mathrm{700}}$ so ₃	-370.6				
H°_{700} so ₂	-278.2				
H ^o ₇₀₀ 02	12.54				
H [°] ₇₀₀ N2	11.97				
$\mathrm{H}^{\circ}_{\mathrm{760}}$ so ₃	-366.3				
$\operatorname{H^{\circ}_{760}}_{\operatorname{SO_2}}$	-275.1				
$\mathrm{H}^{\circ}_{_{760}}_{_{O_2}}$	14.54				
H ^o ₇₆₀ N ₂	13.84				

Table 14.1. 700 K and 760 K enthalpies for Section 14.4 problem. They have been calculated with the enthalpy equations in Appendix G.

14.8 Calculating 760 K (level L) Quantities

The Section 14.4 problem has 8 variables:

kg-mole SO₃ in kg-mole SO₂ in kg-mole O₂ in kg-mole SO₃ out kg-mole SO₂ out kg-mole O₂ out kg-mole N₂ out It also has 8 linear equations (14.2 to 14.9) which must be satisfied by the values of the above 8 variables. Each variable has, therefore, a unique value and the question:

"What percentage of 1^{st} catalyst bed feed SO₂ has been oxidized to SO₃ where the 2^{nd} catalyst bed input gas has reached 760 K?"

has a unique answer.

14.9 Matrix Calculation and Result

The answer is obtained by:

- (a) entering Eqns. (14.2) to (14.9) in matrix form into an Excel worksheet, Table 14.2
- (b) solving for the 8 variables
- (c) entering 1^{st} catalyst bed feed kg-mole SO₂ in cell D2 (0.1 kg-mole from Fig. 14.2)
- (d) calculating % SO_2 oxidized in cell H25 by Eqn. (14.1).

The results are shown in Table 14.2. They indicate that a 2^{nd} bed temperature increase from 700 K to 760 K is equivalent to raising % SO₂ oxidized from 69.2% after the 1^{st} catalyst bed to 89.7% at level L in the 2^{nd} catalyst bed.

14.10 Preparing a Heatup Path

The 2^{nd} catalyst bed heatup path is prepared by re-doing Section 14.9's calculation for many different temperatures in the bed. Only cells H15 to K15 are changed (most easily with enthalpy equations in cells, Appendix K). The results are tabulated in Table 14.3 and plotted in Fig. 14.3.

Table 14.3. Heatup path points for Fig. 14.2's 2^{nd} catalyst bed. The points are shown graphically in Fig. 14.3. They have been calculated using matrix Table 14.2 with enthalpy equations in cells H15-K15, Appendix K. An increase in gas temperature from 700 K to 760 K in the 2^{nd} catalyst bed is seen to be equivalent to an <u>increase in % SO₂ oxidized</u> from 69.2% to 89.7%.

Gas temperature, K	Equivalent % SO ₂ oxidized
700	69.2
710	72.6
720	76.0
730	79.4
740	82.8
750	86.3
760	89.7

Table 14.2. Worksheet for calculating % SO₂ oxidized value equivalent to 760 K gas in a 2nd catalyst bed[#]. The 2nd bed input gas temperature and SO₃, SO₂, O₂ and N₂ quantities are from Fig. 14.2. The 1st catalyst bed feed kg-mole SO₂ (cell D2) is 0.1, also from Fig. 14.2. It is required for Eqn. (14.1) as shown. An increase in gas temperature from 700 to 760 K is seen to be equivalent to an increase from 69.2% SO₂ oxidized after the 1st catalyst bed. The matrix has been solved as described in Appendix H.

<u> </u>	A	В	C I	D	E	F	G	Н	1	J	K
1	All calculations	are based on 1 kg-	mole of 1 st cata	lyst bed feed g	as.						
2	kg-mole SO ₂ in 1	kg-mole of 1 st cataly	st bed feed gas	0.1		1					
3		1									
4											
5											
6	2" catalyst bed	matrix	I			· · · · · · · · · · · · · · · · · · ·					
1	Equation	description	numerical term	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
7		· · · · · · · · · · · · · · · · · · ·		in	in	in	In	out	out	out	out
8	14.2	input SO ₃ kg-mole	0.0692	1	0	0	U	U	0	U	U
9	14.3	input SO ₂ kg-mole	0.0308	0	1	0	0	0	0	0	0
10	14.4	input O2 kg-mole	0.0754	0	0	1	0	0	0	0	0
11	14.5	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0
12	14.6	S balance	0	-1	-1	0	0	1	1	0	0
13	14.7	O balance	0	3	-2	-2	0	3	2	2	0
14	14.8	N balance	0	0	0	0	-2	0	0	0	2
15	14.9	enthalpy balance	0	370.6	278.2	-12.54	-11.97	-366.3	-275.1	14.54	13.84
16					700 1	<u> </u>			700 /		
1/					700 M				760 K,	level L	
10	Matrix results per	ka mole of 1 st catab	et had feed gas			· · ·					
20	ka-mole SO- in	0.0692	St Deu leeu gas								
21	kg-mole SO ₂ in	0.0308					+				
22	ka-mole Q ₂ in	0.0754			% SO ₂ 0	kidized ko-i	mole SO ₂ in 1 st	ka-mole SO-	at level L		
23	ka-mole N ₂ in	0.7900			at level I	in = cata	lyst bed feed ga	- in 2 nd catalys	t bed + 100	(14.1)	
20	kg-mole SQ. out	0.0897			2 nd catal	et hed k	a-mole SO- in 1 ^s	catalyst bed for			
24	ling main SO out	0.0097			~ cataly		B15/02*100 -	00 7	V SO ovidized		
25	rkg-mole SO ₂ out	0.0103				=(02	-623/02 100 =	09.7	76 302 UXIUIZED		
26	kg-mole O2 out	0.0652					<u> </u>				
27	kg-mole N2 out	0.7900					1				

*Cells D15 to G15 contain $+H_{700}^{\circ}$ values, Section 14.7. Cells H15 to K15 contain $+H_{760}^{\circ}$ values.

Fig. 14.3. Fig. 13.3 with the addition of Table 14.3's heatup path (upper left). The heatup path starts at 1^{st} catalyst bed intercept % SO₂ oxidized and 2^{nd} catalyst bed gas input temperature.

14.11 Discussion

Table 14.3 and Fig. 14.3 show that:

(a) cooling of 1st catalyst bed exit gas

and

(b) passing of this cooled gas through a 2^{nd} catalyst bed

increases SO_2 oxidation efficiency from ~70% to ~90%.

This explains the success of industrial multi-catalyst bed SO₂ oxidation.

14.12 Summary

Cooling 1st catalyst bed exit gas to 700 K and passing the cooled gas through a 2^{nd} catalyst bed raises SO₂ oxidation efficiency from ~70% to ~90%, Fig. 14.3.

The next chapter shows that attainment of equilibrium in the 2^{nd} catalyst bed increases SO₂ oxidation efficiency even further – to almost 95%

Problem

14.1 Prepare a graph like Fig. 14.3 for the following.

- (a) 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂ 1st catalyst bed feed gas.
- (b) This gas enters the 1st catalyst bed at 675 K and reacts to equilibrium (1.2 bar) at the gas's heatup path-equilibrium curve intercept.
- (c) The intercept gas exits the catalyst bed and is cooled to 685 K with no chemical reaction during cooling.
- (d) The cooled exit gas is fed into a 2^{nd} catalyst bed where SO₂ oxidation (by O₂ in the gas) and gas warming occur.

Hints:

- (a) Your answer to Problem 13.1 already contains most of the required graph.
- (b) Calculate the 2nd catalyst bed heatup path as described in Sections 14.4 to 14.10. Use 770 K as your top temperature. The 2nd bed's input gas quantities are those in your Problem 12.3(b) answer.
- (c) Prepare a matrix like Table K.1 for this purpose. Note the new input SO₃ column and row. Note also the changed S, O and enthalpy balance equations.
- (d) Remember that the 2nd catalyst bed input gas temperature is 685 K. Your input enthalpies must be for that temperature.
- (e) Note that cell D2 must contain 0.12. This is because 1 kg-mole of 12 volume% SO₂ 1st catalyst bed feed gas contains 0.12 kg-mole of SO₂. This value is needed for Eqn. (14.1)'s % SO₂ oxidized calculation.

CHAPTER 15

Maximum SO₂ Oxidation in a 2nd Catalyst Bed

Chapter 14 describes 2^{nd} catalyst bed heatup paths. This chapter describes 2^{nd} catalyst bed:

equilibrium curves

and:

heatup path-equilibrium curve intercepts.

The objectives of the chapter are to:

- (a) show that equilibrium curve Eqn. (10.13) applies to 2nd catalyst beds as well as to 1st catalyst beds
- (b) determine a 2nd catalyst bed heatup path-equilibrium curve intercept
- (c) quantify two bed SO₂ oxidation efficiency.

15.1 2nd Catalyst Bed Equilibrium Curve Equation

Fig. 14.3's 1st catalyst bed equilibrium curve is described by Equation (10.13), i.e.:

$$T_{E} = \frac{-B}{A + R * \ln\left(\left(\frac{\Phi^{E}}{100 - \Phi^{E}}\right) * \left(\frac{100 - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}\right)}$$
(10.13)

where:

 T_E = equilibrium temperature

A and B = empirical constants relating ΔG_T° for SO₂(g) + $\frac{1}{2}O_2(g) \rightarrow$ SO₃(g) oxidation to temperature, Eqn. (10.9) and Appendix C

A = $0.09357 \text{ MJ kg-mole SO}_2^{-1} \text{ K}^{-1}$ B = $-98.41 \text{ MJ/kg-mole SO}_2$

 $R = gas constant, 0.008314 MJ kg-mole SO_2^{-1} K^{-1}$

 $\Phi^{E} = 1^{st}$ catalyst bed equilibrium % SO₂ oxidized, Eqn. (10.2)

- e = volume% SO₂ in 1^{st} catalyst bed feed gas, 10% in Fig. 14.3
- $f = volume % O_2 in 1^{st}$ catalyst bed feed gas, 11% in Fig. 14.3
- $P_t = 1^{st}$ catalyst bed pressure, 1.2 bar in Fig. 14.3.

Re-written with the above numerical e, f and P_t values, Eqn. (10.13) becomes:

$$T_{E} = \frac{-B}{A + R * \ln\left(\frac{\Phi^{E}}{100 - \Phi^{E}} * \left(\frac{100 - \frac{1}{2} * \mathbf{10} * \frac{\Phi^{E}}{100}}{\mathbf{11} - \frac{1}{2} * \mathbf{10} * \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * \mathbf{1.2}^{\frac{1}{2}}\right)}$$
(15.1).

So far, this equation has been shown to apply to Fig. 14.3's 1^{st} catalyst bed. This section indicates that it also applies to Fig. 14.3's 2^{nd} catalyst bed – with, however, a slightly different definition of equilibrium % SO₂ oxidized.

The new, more general, definition of equilibrium % SO₂ oxidized is:

Equilibrium %*SO*₂ oxidized = Φ^{E}

 $= \frac{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}}{\text{kg-mole SO}_2 \text{ in oxidized gas in any catalyst}} \frac{\text{kg-mole SO}_2 \text{ in oxidized gas in any catalyst}}{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}} \text{ catalyst bed feed gas}} *100$ (15.2)

where all quantities are per kg-mole of 1st catalyst bed feed gas.

15.1.1 Proof of 2nd catalyst bed applicability

All equations used in deriving Eqn. (15.1) for Fig. 14.2's 1^{st} catalyst bed also apply to Fig. 14.2's 2^{nd} catalyst bed, Appendix L. So Eqn. (15.1) is also applicable to both beds.

In fact, equilibrium Eqn. (15.1) applies to all before-H₂SO₄-making catalyst beds where:

- (a) the feed to the 1st catalyst bed contains 10 volume% SO₂, 11 volume% O₂ and 79 volume% N₂
- (b) bed pressure is 1.2 bar pressure.

Industrial bed pressures are discussed in Section 18.7.

15.2 2nd Catalyst Bed Intercept Calculation

Table 15.1 presents:

heatup path

and

equilibrium curve

% SO₂ oxidized/temperature points near Fig. 14.3's expected 2^{nd} catalyst bed intercept point.

The points are for the conditions in Fig. 14.2, i.e.:

- (a) 690 K, 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ 1st catalyst bed feed gas
- (b) attainment of intercept (equilibrium) conditions in the 1st catalyst bed at 1.2 bar pressure
- (c) assumption that 1^{st} catalyst bed exit gas $\equiv 1^{st}$ catalyst bed intercept gas, Section 12.12
- (d) cooldown of 1st catalyst bed exit gas to 700 K with no change in gas composition

(e) feeding of this cooled gas to the 2nd catalyst bed

(f) 1.2 bar pressure in the 2^{nd} catalyst bed.

Temperature, K	Heatup path $\% SO_2 \text{ oxidized}, \Phi$	Equilibrium % SO ₂ oxidized, Φ^{E} from Eqn. (15.1)			
777	95.49	93.78			
776	95.15	93.89			
775	94.81	94.00			
774	94.47	94.11			
773	94.12	94.21			
772	93.78	94.32			
771	93.44	94.42			
770	93.10	94.53			

Table 15.1. 2^{nd} catalyst bed % SO₂ oxidized/temperature points near heatup path-equilibrium curve intercept. They have been calculated as described in Appendices K and D.

15.2.1 Intercept

Table 15.1 shows that at 773 K and below:

heatup path % SO₂ oxidized is below equilibrium % SO₂ oxidized.

This indicates that $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation can proceed further up the heatup path towards equilibrium.

At 774 K and above, however:

heatup path % SO₂ oxidized is greater than equilibrium % SO₂ oxidized

which is impossible because equilibrium % SO_2 oxidized cannot be exceeded up a heatup path.

Interpolation suggests that Table 15.1's heatup path intercepts its equilibrium curve at:

773.2 K 94.2 % SO₂ oxidized, Fig. 15.1.

This is confirmed by a Goal Seek calculation in Table M.2.

15.2.2 Intercept gas composition

Intercept gas quantities are needed for Chapter 16's 3rd catalyst bed calculations. They are obtained from the intercept results in Table M.2. They are:

0.0942 kg-mole SO₃ 0.0058 kg-mole SO₂ 0.0629 kg-mole O₂ 0.7900 kg-mole N₂

per kg-mole of 1st catalyst bed feed gas.

15.3 Two Bed SO₂ Oxidation Efficiency

Fig. 15.1 extends Fig. 14.3's 2nd catalyst bed heatup path to the Section 15.2.1 intercept.

It shows that:

to:

- (a) cooling Fig. 14.2's 1st catalyst bed exit gas to 700 K
- (b) passing the cooled gas through a 2^{nd} catalyst bed

increases SO₂ oxidation efficiency from:

69.2% after the 1st catalyst bed

94.2% after the 2nd catalyst bed.

This confirms the efficacy of multi-bed catalytic oxidation with gas cooling between beds.

Fig. 15.1. SO₂ oxidation efficiency in two catalyst beds with gas cooling between beds. The 1st bed oxidizes 69.2% of 1st catalyst bed feed SO₂ – the 2nd bed an additional 25%. Note that the equilibrium curve is exactly the same for both catalyst beds, Section 15.1.1.

15.4 Summary

Cooling 1^{st} catalyst bed exit gas and passing the cooled gas through a 2^{nd} catalyst bed increases SO₂ oxidation efficiency from:

SO₂ oxidation efficiency can be increased even further by:

- (a) cooling the 2^{nd} catalyst bed exit gas
- (b) passing the cooled gas through a 3rd catalyst bed, next chapter.

Problems

- 15.1 Prepare a graph like Fig. 15.1 for the following.
 - (a) 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂ 1st catalyst bed feed gas
 - (b) This gas enters the 1st catalyst bed at 675 K and reacts to equilibrium (1.2 bar) at the gas's heatup path-equilibrium curve intercept.
 - (c) The intercept gas exits the catalyst bed and is cooled to 685 K with no chemical reaction during cooling.
 - (d) The cooled gas is fed into a 2^{nd} catalyst bed where SO₂ oxidation (by O₂ in the gas) and gas warming occur.
 - (e) The gas in (d) reacts until its heatup path intercepts its equilibrium curve.

Hints:

- (a) Your answer to Problem 14.1 already contains most of the required graph. You only need to calculate the intercept point.
- (b) The equilibrium equation for catalyst bed 2 is the same as for catalyst bed 1 because no gas has been added or removed between beds and because 1st and 2nd bed equilibrium pressures are the same (1.2 bar).
- (c) Calculate the 2nd catalyst bed intercept point as described in Appendix M. Make sure that you use 685 K for the 2nd catalyst bed gas input temperature.
- (d) The 2nd catalyst bed gas input quantities are those in your Problem 12.3(b) answer.
- (e) Add your intercept point to Problem 14.1's heatup path and re-plot the path. This completes your graph.
- 15.2 Tabulate Problem 15.1's intercept kg-mole SO₃, SO₂, O₂ and N₂. They are needed for Problem 16.1.
CHAPTER 16

3rd Catalyst Bed SO₂ Oxidation

Simplest industrial sulfuric acidmaking consists of:

SO₂ oxidation in three catalyst beds with gas cooling between beds

then:

 H_2SO_4 making by contact of cooled 3rd catalyst bed exit gas with strong sulfuric acid, Fig. 16.1.

Fig. 16.1. Schematic of single contact, 3 catalyst bed sulfuric acid plant. It is a single contact plant because it has only one H_2SO_4 making step. Note gas cooling between catalyst beds. It permits additional SO_2 oxidation in the next catalyst bed.

The SO₂ oxidation reaction is:

 $\underbrace{SO_2(g) + \frac{1}{2}O_2(g)}_{\text{in catalyst bed input gas}} \xrightarrow{\text{catalyst}} SO_3(g)$

The H₂SO₄ making reaction is:

			350-380 K	
SO ₃ (g)	+	$H_2O(\ell)$	\rightarrow	$H_2SO_4(\ell)$
in cooled 3 rd catalyst bed exit gas		in strong sulfuric acid		in strengthened sulfuric acid

This chapter describes cooling of 2^{nd} catalyst bed exit gas and oxidation of the cooled gas's SO₂ in a 3^{rd} catalyst bed. Its objectives are to:

- (a) prepare a 2-3 cooldown path
- (b) prepare a 3rd catalyst bed heatup path
- (c) calculate a 3rd bed heatup path-equilibrium curve intercept.

Specifications for the calculations are shown in Fig. 16.2. Calculation results are summarized in Figs. 16.3 and 16.4.

16.1 2-3 Cooldown Path

This chapter's 2-3 cooldown path is prepared like Fig. 13.3's 1-2 cooldown path. It is a horizontal line at:

94.2% SO₂ oxidized (2nd catalyst bed intercept % SO₂ oxidized)

between:

773.2 K (2nd catalyst bed intercept temperature)

and:

710 K (specified 3rd catalyst bed input gas temperature).

It is shown in Figs. 16.3 and 16.4.

16.2 Heatup Path

This chapter's 3rd catalyst bed heatup path is calculated much like Chapter 14's 2nd catalyst bed heatup path. Differences are:

Fig. 16.2. Specifications for (i) 2-3 cooldown and (ii) 3^{rd} catalyst bed heatup path and intercept calculations. The 1^{st} and 2^{nd} catalyst bed exit gas quantities are equivalent to: 69.2% SO₂ oxidized after the 1^{st} catalyst bed 94.2% SO₂ oxidized after the 2^{nd} catalyst bed, Fig. 15.1.

- (a) the input gas temperature is 710 K rather than 700 K
- (b) the input gas quantities are different, Fig. 16.2.

The latter are represented by the equations:

kg-mole SO ₃ in $=$	0.0942	(16.1)
--------------------------------	--------	--------

kg-mole
$$SO_2$$
 in = 0.0058 (16.2)

kg-mole
$$O_2$$
 in = 0.0629 (16.3)

kg-mole
$$N_2$$
 in = 0.7900 (16.4).

Appendix N shows a 3rd catalyst bed heatup path matrix with these equations. It also shows several heatup path points. Figs. 16.3 and 16.4 show the entire heatup path.

16.3 Heatup Path-Equilibrium Curve Intercept

Appendix O describes a 3^{rd} catalyst bed intercept calculation – with the Fig. 16.2 specifications. The 3^{rd} bed intercept with these specifications is:

721.1 K

98.0 % SO_2 oxidized.

Its gas quantities are:

0.098 kg-mole SO₃ 0.002 kg-mole SO₂ 0.061 kg-mole O₂ 0.790 kg-mole N₂

per kg-mole of 1^{st} catalyst bed feed gas. These quantities go forward to the next acidmaking step – almost always to H_2SO_4 making but occasionally to a 4^{th} catalyst bed.

16.4 Graphical Representation

Figs. 16.3 and 16.4 describe 3-bed SO_2 oxidation with Fig. 16.2's specifications. They indicate that the percentages of SO_2 oxidized in each bed are:

69.2% in the 1^{st} catalyst bed 25.0% in the 2^{nd} catalyst bed 3.8% in the 3^{rd} catalyst bed

for a total of 98.0%

Fig. 16.3. 3 catalyst bed SO_2 oxidation with gas cooling between beds. The equilibrium curve is the same for all beds (Section 15.1.1) because:

- (a) no component gas (e.g. SO₃) is selectively removed from the Fig. 16.2 gas stream (Appendix L)
- (b) no air is added to the Fig. 16.2 gas stream
- (c) all beds are at the same pressure.

Fig. 16.4. Blowup of top portion of Fig. 16.3. Overall SO_2 oxidation efficiency increases with each bed but the gain diminishes.

16.5 Summary

2nd and 3rd catalyst bed heatup path and intercept calculations are very similar.

Their differences are:

- (a) different SO₃, SO₂, O₂ and N₂ input quantities
- (b) different gas input temperatures.

3 catalyst bed SO₂ oxidation efficiency is about ~98%. Beds 1, 2 and 3 contribute ~69%, 25% and 4%.

Chapter 17 examines the effects of SO_3 and CO_2 in feed gas on these catalytic oxidation efficiencies.

Problems

- 16.1 Prepare a graph like Fig. 16.3 for:
 - (a) 12 volume% SO₂, 13.2 volume% O₂, 74.8 volume% N₂ 1st catalyst bed feed gas
 - (b) the following gas input temperatures

1^{st}	catalyst bed	675 K
2 nd	catalyst bed	685 K
3 rd	catalyst bed	695 K.

- (c) 1.2 bar gas pressure in all beds.
- (d) attainment of intercept % SO₂ oxidized in all beds.

Hints:

- (a) Your answer to Problem 15.1 contains most of the required graph. You only need to prepare:
 - (i) a 2-3 cooldown path
 - (ii) a 3rd catalyst bed heatup path
 - (iii) a 3rd catalyst bed intercept point (which you can join to the heatup path).
- (b) The 3rd catalyst bed's input gas quantities are those in your Problem 15.2 answer.
- 16.2 Tabulate the intercept kg-mole of SO₃, SO₂, O₂ and N₂ equivalent to Prob. 16.1's 3rd catalyst bed intercept point (all per kg-mole of 1st catalyst bed feed gas).

CHAPTER 17

SO₃ and CO₂ in Feed Gas

Industrial sulfur-burning exit gas contains ~ 0.2 volume% SO₃ when it reaches an acid plant's 1st catalyst bed, Chapter 3. The SO₃ slightly affects catalyst bed:

equilibrium curves

heatup paths

heatup path-equilibrium curve intercepts.

Industrial **metallurgical and waste acid regeneration gases** don't contain SO₃ when they reach an acid plant's 1st catalyst bed. SO₃ is water scrubbed from these gases during gas cooling and cleaning, Chapters 4 and 5. They do, however, contain up to 8 volume% CO₂ when they reach the acid plant's 1st catalyst bed. The CO₂ comes from fossil fuel and waste acid hydrocarbons. The CO₂ slightly affects:

heatup paths

heatup path-equilibrium curve intercepts.

This chapter describes 1^{st} catalyst bed calculations with SO₃ and CO₂ in feed gas. Its objectives are to show how:

- (a) feed gas SO_3 and CO_2 are included in our 1st catalyst bed equilibrium curve, heatup path and intercept calculations
- (b) these gases affect 1^{st} catalyst bed SO₂ oxidation efficiency.

The effects are shown to be quite small.

17.1 SO₃

17.1.1 SO₃ effect on equilibrium curve equation

SO₃-in-feed-gas changes SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ equilibrium curve Eqn. (10.13) to:

$$T_{E} = \frac{-B}{A + R * \ln\left(\left(\frac{d + e^{*}\frac{\Phi^{E}}{100}}{e^{*}\left(1 - \frac{\Phi^{E}}{100}\right)}\right) * \left(\frac{100 - \frac{1}{2} * e^{*}\frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e^{*}\frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}\right)}$$
(17.1)

where:

 T_E = equilibrium temperature, K

A and B = empirical constants for calculating $\Delta G_T^{\circ} SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ from temperature, Eqn. (10.9) and Appendix C $A = 0.09357 \text{ MJ kg-mole } SO_2^{-1} \text{K}^{-1}$ $B = -98.41 \text{ MJ/kg-mole } SO_2$ R = gas constant, 0.008314 MJ kg-mole $SO_2^{-1} \text{K}^{-1}$

 $\begin{array}{l} \mathsf{K} = \mathsf{gas} \mathsf{ constant, or output } \mathsf{SO}_3 \mathsf{ in } 1^{\mathsf{st}} \mathsf{ catalyst bed feed gas} \\ \mathsf{e} = \mathsf{volume} \% \mathsf{SO}_2 \qquad " \qquad " \\ \mathsf{f} = \mathsf{volume} \% \mathsf{ O}_2 \qquad " \qquad " \\ \end{array} \right\} \mathsf{remainder } \mathsf{N}_2 \mathsf{ and } \mathsf{CO}_2$

 Φ^{E} = equilibrium % SO₂ oxidized, Section 15.1

 P_t = total gas pressure, bar.

Eqn. (17.1) is developed in Appendix P. Notice that a zero value of 'd' reduces it to Eqn. (10.13).

17.1.2 Effect of SO₃ on heatup path matrix

SO₃-in-feed-gas changes Chapter 11's heatup path matrix by introducing a new input variable:

kg-mole SO₃ in

and a new SO₃ input equation:

kg-mole SO₃ in =
$$\frac{\text{mole% SO}_3}{100}$$

which, for 0.2 volume% SO₃, is:

kg-mole SO₃ in =
$$\frac{0.2\% \text{ SO}_3}{100}$$
 = 0.002 (17.2)

per kg-mole of 1st catalyst bed feed gas.

(14.6)

(14.7)

17.1.3 SO_2 input equation changed by SO_3

Assuming a 0.2 volume% SO₃, 9.8 volume% SO₂, 11 volume% O₂, 79 volume% N₂ feed gas, 0.2% SO₃ changes SO₂ input Equation (11.7) to:

kg-mole SO₂ in =
$$9.8\% SO_2 = 0.098$$
 (17.3).

17.1.4 Balances changed by SO₃

SO₃-in-feed-gas changes 1st catalyst bed:

(a) S balance Eqn. (11.4) to:

$$0 = \underline{-kg-mole SO_3 in} - kg-mole SO_2 in + kg-mole SO_3 out + kg-mole SO_2 out$$

(b) O balance Eqn. (11.5) to:

$$0 = -3 * kg - mole SO_3 in - 2 * kg - mole SO_2 in - 2 * kg - mole O_2 in$$

+ 3 * kg - mole SO_3 out + 2 * kg - mole SO_2 out + 2 * kg - mole O_2 out

(c) enthalpy balance Eqn. (11.6B) to:

0

$$= - kg - mole SO_{3} in * H_{T feed}^{\circ} So_{3}^{\circ}$$

$$- kg - mole SO_{2} in * H_{T feed}^{\circ} So_{2}^{\circ}$$

$$- kg - mole O_{2} in * H_{T feed}^{\circ} O_{2}^{\circ}$$

$$- kg - mole N_{2} in * H_{T feed}^{\circ} N_{2}^{\circ}$$

$$+ kg - mole SO_{3} out * H_{T bed}^{\circ} So_{3}^{\circ}$$

$$+ kg - mole SO_{2} out * H_{T bed}^{\circ} So_{2}^{\circ}$$

$$+ kg - mole O_{2} out * H_{T bed}^{\circ} So_{2}^{\circ}$$

$$+ kg - mole N_{2} out * H_{T bed}^{\circ} So_{2}^{\circ}$$

(14.8A)

where:

 $H_{T feed}^{\circ}$ = enthalpy at the 1st catalyst bed feed gas temperature $H_{T bed}^{\circ}$ = enthalpy at a temperature part way down the catalyst bed. The result of the Section 17.1.2-17.1.4 changes is heatup path matrix Table 17.1.

Table 17.1. 1st catalyst bed heatup path worksheet with 0.2 volume% SO₃ and 9.8 volume% SO₂ in feed gas[#]. It is similar to Table 14.2's 2nd catalyst bed worksheet. Cells D15 to G15 contain $-H^{\circ}_{690K}$ values. Cells H15 to K15 contain H°_{820K} values. All are calculated with Appendix G's enthalpy equations. 820 K part way down the catalyst bed is shown to be equivalent to oxidation of 45.2% of the feed gas's SO₂.

È		в	С	D	E	F	G	Н		J	ĸ
1	All calculations a	are based on 1 kg-	mole of 1 st cata	lyst bed feed g	as.						
2	volume% SO2 in 1	st catalyst bed feed	gas =	9.8							
3	ka-mole SO ₂ in 1	kg-mole of 1st cataly	st bed feed gas	= volume% SO2	/100% =	0.098	=D2/100	(11.1)			
4											
5								L			
6	1 st catalyst bed n	natrix						l		L	
	Equation	description	numerical term	kg-mole SO₃	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
7		_ <u> </u>	L	in	in	in	in	out	out	out	out
8	17.2	input SO3 kg-mole	0.0020	1	0	0	0	0	0	U	0
9	17.3	input SO2 kg-mole	0.0980	0	1	0	0	0	0	0	0
10	11.2	input O2 kg-mole	0.1100	0	0	1	0	0	0	0	0
11	11.3	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0
12	14.6	S balance	0	-1	-1	0	0	1	1	0	0
13	14.7	O balance	0	-3	-2	-2	0	3	2	2	0
14	14.8	N balance	0	0	0	0	-2	0	0	0	2
15		enthalpy balance	0	371.3	278.7	-12.21	-11.66	362.0	-272.0	16.54	15./1
16					000.4				P20 K part v	ray down bod	
17			·		690 K	Teea			OZU K part v	ay down bed	
18		ka mala of 1 st cotab	et had food gas		··						
19	Mainx results per		st beo reeu gas								
20	kg-mole GO ₃ in	0.0020	i {				·				
21	kg-mole SU ₂ In	0.0900							·		
22	kg-mole O ₂ in	0.1100						l		h	
23	kg-mole N ₂ in	0.7900			L					L	
24	kg-mole SO3 out	0.0463	% SO	2 oxidized equiv	alent to 820 K =	(kg-mole SO ₂ ir	n - kg-mole SO ₂	out)/kg-mole SC	D ₂ in*100	(Eqn. 10.1)	
25	kg-mole SO ₂ out	0.0537	1		=	(F3-B25)/F3*10	0 =	45.2	% SO ₂ oxidized	ļ	
26	kg-mole O2 out	0.0879]		Ĺ	
27	ka-mole N ₂ out	0.7900									

#Feed gas: 0.2 volume% SO₃, 9.8 volume% SO₂, 11 volume% O₂, 79 volume% N₂; 690 K.

17.1.5 Effect of SO₃ on heatup path-equilibrium curve intercepts

Appendix Q shows how:

```
new equilibrium Eqn. (17.1)
```

and:

new matrix Table 17.1

are combined to calculate an SO₃-in-feed gas heatup path-equilibrium curve intercept.

The results are given in the next section.

17.2 SO₃ Effects

Table 17.2 shows 1^{st} catalyst bed intercept temperature-% SO_2 oxidized points with and without 0.2 volume% SO₃ in feed gas. The presence of 0.2% SO₃ is shown to have little effect on intercept % SO_2 oxidized.

Table 17.2. Comparison of 1st catalyst bed intercept temperature and % SO₂ oxidized values with 0 and 0.2 volume% SO₃ in feed gas. Intercept % SO₂ oxidized is slightly smaller with SO₃ than without SO₃. This is because the pre-existing SO₃ prevents $SO_2+\frac{1}{2}O_2 \rightarrow SO_3$ oxidation from going quite as far to the right.

0.0 volume% SO ₃	0.2 volume% SO3
9.8 volume% SO_2	9.8 volume% SO ₂
metallurgical or spent acid regeneration feed gas [#]	sulfur-burning feed gas [#]
temperature, K; %	SO_2 oxidized
690; <i>0</i>	690; <i>0</i>
891 4. 69 9	890 3. 69 7
	0.0 volume% SO ₃ 9.8 volume% SO ₂ metallurgical or spent acid regeneration feed gas [#] temperature, K; % 690; 0 891.4:69.9

"11 volume% O₂, remainder N₂; 1.2 bar

17.3 CO₂

 CO_2 -in-feed-gas affects catalyst bed heatup paths and intercepts (but not equilibrium curves, Appendix F). The remainder of this chapter indicates how CO_2 -in-feed-gas affects:

- (a) the Table 17.1 heatup path matrix
- (b) 1st catalyst bed intercepts.

It considers 10 volume% CO_2 in feed gas (plus 0 volume% SO_3 , 10 volume% SO_2 , 11 volume% O_2 , 69 volume% N_2).

17.3.1 CO₂ effect on heatup path matrix

 CO_2 in feed gas introduces two new variables into the Table 17.1 heatup path matrix:

kg-mole CO₂ in

kg-mole CO₂ out.

Of course, their numerical values are the same because CO_2 doesn't react during SO_2 oxidation or H_2SO_4 making.

It also provides two new equations:

(a) a CO_2 input quantity equation:

kg-mole CO₂ in
$$=$$
 $\frac{\text{mole}\% \text{ CO}_2}{\text{in feed gas}}$

or, with 10 volume% CO₂ in feed gas:

kg-mole CO₂ in
$$=$$
 $\frac{10\% \text{ CO}_2}{\frac{\text{in feed gas}}{100}} = 0.1$ (17.4)

(b) a carbon balance equation:

kg-mole C in
$$=$$
 kg-mole C out.

or:

$$1*kg-mole CO_2$$
 in = $1*kg-mole CO_2$ out

or:

$$0 = -1 * \text{kg-mole CO}_2 \text{ in } + 1 * \text{kg-mole CO}_2 \text{ out}$$
(17.5).

Changed equations

CO2-in-feed-gas also changes:

(a) oxygen balance Eqn. (14.7) to:

 $0 = -3*kg\text{-mole SO}_3 \text{ in } - 2*kg\text{-mole SO}_2 \text{ in } - 2*kg\text{-mole O}_2 \text{ in } - \underline{2*kg\text{-mole CO}_2 \text{ in}} + 3*kg\text{-mole SO}_3 \text{ out } + 2*kg\text{-mole SO}_2 \text{ out } + 2*kg\text{-mole O}_2 \text{ out } + \underline{2*kg\text{-mole CO}_2 \text{ out }}$ (17.6)

(b) enthalpy balance Eqn. (14.8A) to:

$$0 = -kg \text{-mole SO}_{3} \text{ in } * H_{T_{freed}}^{\circ} \\ -kg \text{-mole SO}_{2} \text{ in } * H_{T_{freed}}^{\circ} \\ -kg \text{-mole } O_{2} \text{ in } * H_{T_{freed}}^{\circ} \\ -kg \text{-mole } N_{2} \text{ in } * H_{T_{freed}}^{\circ} \\ -kg \text{-mole } N_{2} \text{ in } * H_{T_{freed}}^{\circ} \\ -kg \text{-mole } CO_{2} \text{ in } * H_{T_{freed}}^{\circ} \\ -kg \text{-mole } CO_{2} \text{ in } * H_{T_{freed}}^{\circ} \\ +kg \text{-mole } SO_{3} \text{ out } * H_{T_{freed}}^{\circ} \\ +kg \text{-mole } SO_{2} \text{ out } * H_{T_{freed}}^{\circ} \\ +kg \text{-mole } O_{2} \text{ out } * H_{T_{freed}}^{\circ} \\ +kg \text{-mole } N_{2} \text{ out } * H_{T_{freed}}^{\circ} \\ +kg \text{-mole } N_{2} \text{ out } * H_{T_{freed}}^{\circ} \\ +kg \text{-mole } N_{2} \text{ out } * H_{T_{freed}}^{\circ} \\ \end{array}$$

$$(17.7)$$

where:

 $H^{\circ}_{T\,\text{feed}}$ = enthalpy at the 1^{st} catalyst bed feed gas temperature

 $H^{\circ}_{T \text{ bed}}$ = enthalpy at a temperature part way down the catalyst bed.

(c) nitrogen input quantity equation Eqn. (11.3) to:

kg-mole N₂ in
$$=$$
 $\frac{\text{in feed gas}}{100} = \frac{69 \text{ volume\% N}_2}{100} = 0.69$ (17.8)

because the feed gas contains 69 volume% N_2 rather than the 79 volume% N_2 in matrix Table 17.1.

All of these changes are summarized in heatup path matrix Table 17.3.

ĸ М D E F. G н в All calculations are based on 1 kg-mole of 1st catalyst bed feed gas. 1 volume% SO2 in 1st catalyst bed feed gas = 10 2 kg-mole SO₂ in 1 kg-mole of 1st catalyst bed feed gas = volume% SO₂/100% = 0.1 =D2/100 (11.1)3 4 kg-mole N₂ kg-mole CO₂ kg-mole SO₃ kg-mole SO₂ kg-mole O₂ numerical kg-mole SO3 kg-mole SO2 kg-mole O2 kg-mole N₂ kg-mole CO₂ description Equation out out in out out out in m in ĬN 5 term 0 0 0 0 0 0 0 0 0 feed SO3 kg-mole 1 6 0 0 0 0 0 0 0 0 7 feed SO₂ kg-mole 0.10 0 1 0 11.1 0 0 0 0 1 0 0 0 feed O2 kg-mole 0 0 8 11.2 0.11 0 0 0 0 1 0 0 0 0 0 9 feed N₂ kg-mole 0.69 17.8 0 0 0 0 0 0 0 0 0 1 feed CO2 kg-mole 0.10 10 17.4 1 0 0 0 0 1 11 14.6 S balance 0 -1 -1 0 0 -2 3 2 2 0 2 12 17.6 O balance 0 -3 -2 -2 0 2 0 0 -2 0 0 0 0 13 N balance 0 0 0 14.8 0 -1 0 0 0 0 1 14 C balance 0 0 0 0 17.5 -369.7 -362.0 -272.0 16.54 15.71 15 enthalpy balance 0 371.3 278.7 -12.21 -11.66 376.2 16 690 K feed* 820 K part way down catalyst bed 17 18 Matrix results per kg-mole of 1st catalyst bed feed gas 19 kg-mole SO3 in 0.0000 20 kg-mole SO2 in 0.1000 21 kg-mole O2 in 0.1100 22 kg-mole N2 in 0.6900 23 kg-mole CO2 in 0.1000 % SO2 oxidized equivalent to 820 K = (kg-mole SO2 in - kg-mole SO2 out)/kg-mole SO2 in*100 (Egn. 10.1) 24 kg-mole SO3 out 0.0467 % SO2 oxidized = (F3-B25)/F3*100 46.7 25 kg-mole SO2 out 0.0533 26 kg-mole O₂ out 0.0866 27 kg-mole N2 out 0.6900 28 kg-mole CO2 out 0.1000

Table 17.3. 1st catalyst bed heatup path matrix with SO₃ and CO₂ in feed gas[#]. Cells D15 to H15 contain $-H^{\circ}_{690K}$ values. Cells I15 to M15 contain H°_{820K} values. All are calculated with Appendix G's enthalpy equations. 820 K part way down the catalyst bed is shown to be equivalent to oxidation of 46.7% of the feed gas's SO₂.

Feed gas: 0 volume% SO3, 10 volume% SO2, 11 volume% O2, 69 volume% N2, 10 volume% CO2; 690 K

17.4 CO₂ Effects

Fig. 17.1 shows the effect of CO_2 on a 1st catalyst bed heatup path and intercept. CO_2 has no effect on equilibrium curves, Appendix F.

The heatup path is slightly steeper with CO₂. This is because:

- (a) CO_2 replaces N_2 in Fig. 17.1
- (b) CO_2 heat capacity > N_2 heat capacity, Appendix G.

The overall result is a slightly:

lower temperature higher % SO₂ oxidized

intercept, Fig. 17.1.

Fig. 17.1. Effect of CO_2 -in-feed-gas on 1st catalyst bed heatup path and heatup path-equilibrium curve intercept. CO_2 increases heatup path slope and slightly increases intercept (equilibrium) % SO_2 oxidized, Section 17.4. Appendix Table R.1 describes the 10 volume% CO_2 intercept calculation.

17.5 Summary

Feed gas SO₃ and CO₂ are readily included in our catalyst bed calculations. SO₃ and CO₂ affect catalyst bed:

heatup paths

heatup-path/equilibrium curve intercepts.

SO₃ also affects SO₂ + $\frac{1}{2}O_2 \rightarrow$ SO₃ equilibrium curves.

All the effects are quite small.

Problems

17.1 A sulfur burning 1st catalyst bed feed gas contains:

0.2	volume%	SO_3
10.8	н	SO_2
9.9		O ₂
79.1	11	N_2

It enters a 1st catalyst bed at 695 K and 1.2 bar bed pressure.

Calculate:

- (a) the percentage of the input SO₂ that will be oxidized when the gas's 1st catalyst bed intercept is attained
- (b) the total kg-mole of SO_3 in the 1st catalyst bed's exit gas under these conditions (per kg-mole of 1st catalyst bed feed gas).

Use the technique described in Appendix Q.

17.2 A spent acid regeneration 1st catalyst bed feed gas contains:

10.5	volume%	SO_2
10.5	11	O_2
9.0	91	CO_2
70.0	11	N_2

It enters the 1st catalyst bed at 705 K. The bed is at 1.2 bar pressure.

Calculate the percentage of this gas's SO_2 that will be oxidized to SO_3 when the 1^{st} catalyst bed intercept is attained. Use the technique described in Appendix R.

Compare this result to that of a:

10.5 volume% SO₂ 10.5 " O₂ 79.0 " N₂

1st catalyst bed feed gas under the same conditions.

CHAPTER 18

3 Catalyst Bed Acid Plant

Chapters 10 through 17 do separate 1^{st} , 2^{nd} and 3^{rd} catalyst bed calculations. This chapter joins these calculations. Its objectives are to:

- (a) combine Chapter 12 to 17's 1st, 2nd and 3rd catalyst bed intercept calculations in one Excel worksheet
- (b) calculate 1st, 2nd and 3rd catalyst bed intercept SO₂ oxidation efficiencies for various feed gas compositions, gas input temperatures and bed pressures
- (c) use (b)'s calculations to show how 3 catalyst bed SO_2 oxidation can be maximized.

18.1 Calculation Specifications

Chapter 12 through 17's intercept calculations are combined by specifying:

- 1. a 1st catalyst bed feed gas composition
- 2. 1st, 2nd and 3rd catalyst bed input gas temperatures
- 3. 1st, 2nd and 3rd catalyst bed equilibrium pressures
- 4. that equilibrium is attained in each catalyst bed
- 5. that a catalyst bed's exit gas composition is its intercept (equilibrium) gas composition
- 6. that gas composition doesn't change during gas cooldown.

Specifications 4 to 6 link the 1^{st} , 2^{nd} and 3^{rd} catalyst bed calculations.

18.2 Example Calculation

Table 18.1 gives numerical specifications for an example 3 catalyst bed calculation. The calculation itself is described in Appendix S. The objective of the calculation is to determine intercept % SO_2 oxidized and temperature values for each of the 3 catalyst beds.

Description	Value
1 st catalyst bed:	
feed gas composition	
volume% SO ₃	0
volume% SO ₂	10
volume% O ₂	11
volume% N ₂	79
volume% CO ₂	0
feed gas temperature, K	690
bed pressure, bar	1.2
kg-mole SO ₂ per kg-mole of feed gas	calculated
2 nd catalyst bed	
input gas temperature, K	700
bed pressure, bar	1.2
3 rd catalyst bed	
input gas temperature, K	710
bed pressure, bar	1.2

Table 18.1. Numerical specifications for Section 18.3 and 18.4 three catalyst bed calculations.

18.3 Calculation Results

The results of a 3 catalyst bed calculation with the above specifications are given in Table 18.2. They are plotted in Figs. 18.1 and 18.2. They show that 98% of 1^{st} catalyst bed feed SO₂ is oxidized to SO₃ after 3 catalyst beds.

Table 18.2. Results of 3 catalyst bed calculation with Table 18.1 specifications. They are calculated in Appendix S. They are plotted in Fig. 18.1.

Description	Intercept temperature, K	Intercept % SO ₂ oxidized
1 st catalyst bed		
feed	690	0
intercept	893.3	69.2
2 nd catalyst bed		
input	700	69.2
intercept	773.1#	94.2
3 rd catalyst bed		
input	710	94.2
intercept	721.0*	98.0

These temperatures are 0.1 K lower than those calculated in Sections 15.2 and 16.3. The differences are due to different roundings.

18.4 3 Catalyst Bed Graphs

Fig. 18.1 shows Table 18.2's results as temperature % SO_2 oxidized points. Fig. 18.2 shows the results as:

- (a) an equilibrium curve with 1.2 bar pressure in all beds
- (b) heatup and cooldown paths.

Fig. 18.1. Plot of Table 18.2 catalyst bed input and intercept points. The intercepts are the same as those in Sections 12.2, 15.2.1 and 16.4.

Fig. 18.2. Equilibrium curve and straight lines between Fig. 18.1's calculated points. The straight line heatup paths closely approximate the 'real' heatup paths in Chapters 11 through 17.

18.4.1 Straight heatup paths

Previous chapters indicate that heatup paths are slightly curved, Fig. 11.6. This and subsequent chapters represent heatup paths as straight lines between:

input and intercept points, Figs. 18.1 and 18.2.

This:

- (a) simplifies graphing
- (b) closely represents the previous chapters' 'real' heatup paths
- (c) has no effect on intercept calculations, Fig. 18.1.

18.4.2 SO₂ oxidation efficiency

The following sections describe the effects of six industrial variables on 3-bed SO_2 oxidation efficiency. Except where gas input temperature is variable, input gas temperature is 690 K, all beds.

18.5 Minor Effect - SO₃ in Feed Gas

Industrial sulfur burning gas contains ~ 0.2 volume% SO₃ when it reaches an acid plant's 1st catalyst bed, Chapter 3. This SO₃ slightly affects:

equilibrium curves heatup paths equilibrium curve-heatup path intercepts,

Chapter 17 and Appendix P.

18.5.1 Effect of SO3 on intercept % SO2 oxidized

0.2 volume% SO₃ in acid plant feed gas has little effect on intercept % SO₂ oxidized, Table 18.3. The effect is noticeable after 1 and 2 beds – but not after 3 beds.

Nevertheless, feed SO₃ is included in our calculations, whenever specified.

18.6 Minor Effect – CO₂ in Feed Gas

Metallurgical and waste acid regeneration gases contain up to 8 volume% CO_2 – from fuels and waste acid hydrocarbons. This CO_2 has no effect on $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ equilibrium curves but it does affect:

heatup path slope intercept temperature and % SO_2 oxidized.

The effect is quite small, especially after 3 beds, Fig. 18.3.

	0.0 volume% SO ₃ 9.8 volume% SO ₂ metallurgical or acid- regeneration feed gas	0.2 volume% SO ₃ 9.8 volume% SO ₂ sulfur-burning feed gas
	% SO ₂ o	xidized
1 st catalyst bed		
feed	0	0
intercept	69.9	69.7
2 nd catalyst bed		
input	69.9	69.7
intercept	95.2	95.1
3 rd catalyst bed		
input	95.2	95.1
intercept	98.76	98.72

Table 18.3. Comparison of intercept % SO_2 oxidized values for feed gas containing 0 and 0.2 volume% SO₃. The difference after 3 beds is very small. The 1st catalyst bed feed gas contains 9.8 volume% SO₂, 11 volume% O₂, the specified amount of SO₃, remainder N₂. Gas pressure is 1.2 bar in all beds. Gas input temperature is 690 K, all beds.

Fig. 18.3. Heatup paths and intercepts for 0 and 10 volume% CO₂ 1st catalyst bed feed gas. CO₂ heatup paths are steeper than non CO₂ heatup paths because CO₂ heat capacity > N₂ heat capacity, Appendix G. The steeper paths give higher intercept % SO₂ oxidized values in each catalyst bed.

18.7 Minor Effect – Bed Pressure

Industrial catalyst bed pressures are typically 1.1 to 1.4 bar. They are highest in 1^{st} catalyst beds and lowest in last beds – due to dissipation of mechanical energy as gas passes through the beds.

The effect of bed pressure on intercept % SO_2 oxidized is shown in Fig. 18.4. It is small, especially after 3 catalyst beds.

Fig. 18.4. Effect of gas pressure on intercept SO₂ oxidation efficiency. The lines show that % SO₂ oxidized increases with increasing pressure, all beds. After 3 catalyst beds the effect is small.

18.7.1 Validity of constant pressure specification

Figs. 18.1 through 18.4 specify the same pressure in all 3 catalyst beds. This specification is not necessary – the Appendix S worksheet can specify individual bed pressures. It is, however, convenient for graphing.

Fig. 18.5 compares intercept % SO₂ oxidized results for:

- (a) 1.2 bar pressure in all beds
- (b) 1.3, 1.2 and 1.1 bar pressure in beds 1, 2 and 3.

The difference between the results is tiny, especially after 3 beds.

Fig. 18.5. Comparison of intercept SO_2 oxidation efficiency with (i) 1.2 bar pressure in all beds and (ii) 1.3, 1.2 and 1.1 bar pressure in beds 1, 2 and 3. After 3 beds, the predicted efficiencies are virtually identical.

18.8 Minor Effect - SO₂ Strength in Feed Gas

 SO_2 strength in industrial catalytic oxidation feed gas varies from ~8 volume% to ~12 volume%, Table 7.2. The strength depends mainly on the preceding SO_2 production process.

Fig. 18.6 describes the effect of SO_2 concentration on intercept SO_2 oxidation efficiency. It indicates that:

- (a) 1st and 2nd bed SO₂ oxidation efficiency decreases significantly with increasing volume% SO₂ in feed gas
- (b) 3^{rd} bed SO₂ oxidation efficiency is only slightly affected by feed SO₂ concentration.

Industrial plants could send higher SO_2 strength gas to their acid plant – by enriching their combustion air with oxygen (Miller and Parekh, 2004). This strong SO_2 would:

- (a) give a large production of sulfuric acid per Nm³ of gas passed through the acid plant
- (b) only slightly lower SO₂ oxidation efficiency.

It would, however, tend to give catalyst overheating and degradation in the 1^{st} catalyst bed, Section 12.11. For this reason, 12 volume% SO₂ is about the maximum strength used in industrial acid plants.

Fig. 18.6. Effect of 1^{st} catalyst bed feed gas SO₂ strength on intercept SO₂ oxidation efficiency. The effect is significant after beds 1 and 2 but not after bed 3. The lower SO₂ oxidation efficiency with higher SO₂ strength is explained in Section 11.13.1 and Fig. 12.3.

18.9. Minor Effect – O₂ Strength in Feed Gas

Fig. 18.7 shows the effect of feed gas O₂ strength on intercept SO₂ oxidation efficiency.

Fig. 18.7. Effect of volume% O_2 in feed gas on intercept SO₂ oxidation efficiency. % SO₂ oxidized increases with increasing O_2 strength – but the effect is small, especially after 3 catalyst beds.

% SO_2 oxidized increases with increasing O_2 strength. However, the effect is quite small, especially after 3 catalyst beds.

8 to 16 volume% O₂ in Fig. 18.8 are equivalent to volume% O₂/volume% SO₂ ratios of:

0.8 and 1.6.

These are typical industrial O_2/SO_2 ratios, Table 7.2.

18.10 Summary of Minor Effects

Sections 18.5 through 18.9 indicate that:

volume% SO₃ in feed gas " CO_2 " " SO_2 " " O_2 "

catalyst bed pressure

have little effect on 3 bed catalytic SO_2 oxidation efficiency. Also, these variables are often not readily adjusted – because they are either:

- (a) the result of their preceding SO_2 production process
- or:
 - (b) the consequence of atmospheric pressure and the pressure required to move gas through catalyst beds and other equipment.

In fact, the only truly adjustable parameters in industrial SO_2 oxidation are catalyst bed input gas temperatures, next section.

18.11 Major Effect – Catalyst Bed Input Gas Temperatures

Catalyst bed input gas temperatures are readily adjusted by heating and cooling the gas in boilers, economizers, heat exchangers etc. Industrial input temperatures vary from \sim 660 K to 720 K, Table 7.2.

Figs. 18.8 and 18.9 show how catalyst bed input gas temperature affects intercept SO_2 oxidation efficiency. Efficiency increases significantly with <u>decreasing</u> input gas temperature.

This is because:

- (a) low gas input temperatures give low intercept temperatures, Fig. 18.8.
- (b) low intercept temperatures give high SO₂ oxidation efficiencies.

This result suggests that industrial catalyst bed input gases should always be as cool as possible – consistent with steady, well controlled, long term catalyst bed operation.

Fig. 18.8. Three catalyst bed oxidation with 660 and 720 K input gas, <u>all beds</u>. 660 K input gas gives significantly more SO_2 oxidation. Notice that <u>two</u> catalyst beds with 660 K input gas give more SO_2 oxidation than <u>three</u> catalyst beds with 720 K input gas. The graph is the top portion of a graph like Fig. 18.3.

Fig. 18.9. Intercept % SO_2 oxidized values as a function of catalyst bed gas input temperature. SO_2 oxidation efficiency is seen to increase with <u>decreasing</u> input gas temperature.

18.12 Discussion of Book's Assumptions

This book makes three assumptions:

- (a) that all processes are proceeding under steady state conditions, i.e. that temperatures and compositions are not changing with time anywhere in the system
- (b) that there are no conductive, convective plus radiative heat losses from the system's catalyst beds
- (c) that intercept (equilibrium) SO₂ oxidation is achieved in all catalyst beds.

This section discusses these three assumptions.

18.12.1 Steady state assumption

Sulfur burning acid plants operate steadily almost all the time. The main significance of this is that temperature is constant at every point in the plant's catalyst beds. It means that none of the gas's heat is being used to heat catalyst.

Metallurgical and spent acid regeneration plants are not quite so steady, but the steady state assumption is still reasonable.

18.12.2 No heat loss assumption

The assumption of no conductive, convective plus radiative heat loss from catalytic SO_2 oxidation converters is not perfectly correct. There is always some heat loss. Nevertheless:

- (a) gas-in-catalyst bed residence times are short (~2 seconds per bed, Fig. 8.4)
- (b) catalyst converters are well insulated

so that heat loss per kg-mole of gas is probably quite small.

Fig. 18.10 demonstrates the effect that heat loss would have on our SO_2 oxidation calculations.

18.12.3 Intercept attainment assumption

It is not easy to know how close industrial catalytic SO_2 oxidation comes to equilibrium. Our opinion is that it comes quite close, especially if the beds are run somewhat above their catalyst activation temperature. The effect of non-attainment is demonstrated in Fig. 18.10.

Fig. 18.10. Effect of:

conductive, convective plus radiative heat loss non-attainment of equilibrium

on a 1st catalyst bed's final % SO₂ oxidized. The two effects are seen to offset each other. (The heat loss heatup path is steeper because less heat is available to warm the gas.)

18.13 Summary

This chapter combines Chapter 12 to 17's intercept calculations in a single worksheet. It then shows how:

 $\begin{array}{cccccccc} SO_3 \text{ concentration in feed gas} \\ CO_2 & " & " \\ SO_2 & " & " \\ O_2 & " & " \\ catalyst bed pressure \\ catalyst bed input gas temperature \\ \end{array}$

affect intercept (equilibrium) catalytic SO₂ oxidation efficiency.

Only input gas temperature has a significant effect. Cool input gas (but warm enough for rapid SO_2 oxidation) gives highly efficient SO_2 oxidation. Warmer input gas gives less efficient oxidation.

Reference

Miller, D. and Parekh, U. (2004) Upgrading virgin acid plants using oxygen. Sulfur, 290, January-February, 2004, 43-47. www.britishsulphur.com

CHAPTER 19

After-H₂SO₄-Making SO₂ Oxidation

Many acid plants:

(a) catalytically oxidize most of their input SO_2 to SO_3 in 3 (occasionally 2 or 4) catalyst beds, Fig. 19.1

then:

(b) make $H_2SO_4(\ell)$ from the resulting $SO_3(g)$

then:

(c) catalytically oxidize the SO₂ remaining in step (b)'s exit gas - in 1 (occasionally 2) additional catalyst beds

then:

(d) make $H_2SO_4(\ell)$ from (c)'s new SO₃.

The process is called double contact acidmaking because gas and sulfuric acid are contacted twice, steps (b) and (d).

The (a) and (c) reaction is:

$$\begin{array}{rcl} \mathrm{SO}_2(\mathrm{g}) &+& \frac{1}{2} \, \mathrm{O}_2(\mathrm{g}) & \stackrel{700-900 \text{ K}}{\rightarrow} & \mathrm{SO}_3(\mathrm{g}) \\ \mathrm{in \ feed \ gas} & & & \mathrm{catalyst} \end{array} \tag{1.1}.$$

The (b) and (d) reaction is:

$$\begin{array}{rcl} & 350\text{-}380 \text{ K} \\ & \text{SO}_3(g) &+ & \text{H}_2\text{O}(\ell) & \rightarrow & \text{H}_2\text{SO}_4(\ell) \\ & \text{in Eqn.(1.1)} & \text{in strong} & \text{in strengthened} \\ & \text{product gas} & \text{sulfuric acid} & \text{sulfuric acid} \end{array}$$
(1.2).

Fig. 19.1. Schematic of 3-1 double contact sulfuric acid plant. The plant consists of:
3 catalyst beds before intermediate H₂SO₄ making intermediate H₂SO₄ making, Eqn. (1.2)
1 catalyst bed after intermediate H₂SO₄ making[#] final H₂SO₄ making (not shown).

The increase in % SO₂ oxidized after each bed is notable. Other industrial versions of double contact acid plants are:

2 catalyst beds before H₂SO₄ making, 2 beds after

4 catalyst beds before H₂SO₄ making, 1 bed after, Chapter 20.

[#]See Table 19.3 (end of this chapter) for industrial after H₂SO₄ making catalyst bed data.

19.1 Double Contact Advantage

Double contact acidmaking always gives more efficient $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation than single contact acidmaking. This leads to:

- (a) more efficient SO₃ (hence H₂SO₄) production
- (b) less SO_2 emission to the environment or a smaller SO_2 -from-gas scrubbing plant.

The reason for double contact's high SO_2 oxidation efficiency is given in Figs. 19.6 and 19.7.

19.2 Objectives

The objectives of this chapter are to:

```
    (a) show how after-intermediate-H<sub>2</sub>SO<sub>4</sub>-making SO<sub>2</sub> oxidation:
equilibrium curves
heatup paths
heatup path-equilibrium curve intercepts
are calculated
```

and to:

- (b) calculate the SO_2 oxidation efficiency of Fig. 19.1's 3-1 double contact acid plant
- (c) compare (b)'s SO₂ oxidation efficiency with that of a 4 catalyst bed single contact acid plant
- (d) identify the extra costs of double contact acidmaking.

19.3 After-H₂SO₄-Making Calculations

The starting point for this chapter's calculations is the product gas from a specific:

3 catalyst bed + intermediate H₂SO₄ making

sequence, Fig. 19.2.

The exit gas from the 3 catalyst beds is specified to be that in Section 16.4. It contains:

0.098 kg-mole SO₃ (Fig. 19.2) 0.002 kg-mole SO₂ 0.061 kg-mole O₂ 0.790 kg-mole N₂

per kg-mole of 1st catalyst bed feed gas.

This gas goes to intermediate H_2SO_4 making where 100% of its SO₃ is specified as being removed as $H_2SO_4(\ell)$. The gas departing this step contains:

0.000 kg-mole SO₃ (Fig. 19.2) 0.002 kg-mole SO₂ 0.061 kg-mole O₂ <u>0.790 kg-mole N₂</u> 0.853 total kg-mole

per kg-mole of 1^{st} catalyst bed feed gas. It is sent to further catalytic SO₂ oxidation in Fig. 19.2's 4^{th} catalyst bed.

Appendix U examines the case where less than 100% of H_2SO_4 making's input SO₃ is made into H_2SO_4 .

19.4 Equilibrium Curve Calculation

This chapter treats after- H_2SO_4 -making SO_2 oxidation as a completely new problem. This is necessary because selective SO_3 removal from gas during $H_2SO_4(\ell)$ making invalidates Appendix B's before- H_2SO_4 -making equations.

The after intermediate H₂SO₄ making equilibrium curve equation is:

$$T_{E} = \frac{-B}{A + R * \ln \left(\frac{\Phi^{E after}}{100 - \Phi^{E after}} \right) * \left(\frac{100 - \frac{1}{2} * e^{t} * \frac{\Phi^{E after}}{100}}{f^{t} - \frac{1}{2} * e^{t} * \frac{\Phi^{E after}}{100}} \right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}}$$
(19.1)

where T_E , A, B, R and P_t are the same as in Eqn (10.13), Section 15.1,

and where:

e' and f' are volume% SO₂ and O₂ in 1^{st} after-intermediate-H₂SO₄-making catalyst bed input gas

 $\Phi^{E \text{ after}}$ = equilibrium percentage of <u>after-H₂SO₄-making input SO₂</u> that is oxidized in an after-H₂SO₄-making catalyst bed.

Eqn. (19.1) is similar to before- H_2SO_4 -making equilibrium Eqn. (10.13), Section 15.1. It is derived the same way.

Fig. 19.2. Double contact acidmaking flowsheet with numerical values used in this chapter's calculations. The plant consists of 3 catalyst beds followed by intermediate H_2SO_4 making and a 4th catalyst bed. The gas from the last catalyst bed goes to cooling and final H_2SO_4 making (not shown). All kg-mole values are per kg-mole of 1st catalyst bed feed gas. Gas pressure = 1.2 bar, all beds.

19.4.1 e' and f'

e' and f ' are volume% SO₂ and O₂ in 1^{st} after-H₂SO₄-making catalyst bed input gas. They are calculated from Fig. 19.2's intermediate H₂SO₄ making exit gas quantities, as follows:

e' = volume% SO₂ = mole% SO₂ =
$$\frac{\text{kg-mole SO}_2}{\text{total kg-mole}} *100\%$$

= $\frac{0.002}{0.853} *100\%$ = 0.234%

and:

$$f' = volume % O_2 = mole % O_2 = \frac{kg-mole O_2}{total kg-mole} *100\%$$

$$= \frac{0.061}{0.853} * 100\% = 7.15\%$$

19.4.2 After-H₂SO₄-making % SO₂ oxidized defined

After-intermediate-H₂SO₄-making % SO₂ oxidized is defined as:

 $%SO_{2} \text{ oxidized in} \\ \text{after-}H_{2}SO_{4}\text{-making} \\ \text{catalyst beds} = \Phi^{\text{after}} = \frac{\text{kg-mole }SO_{2} \text{ in } 1^{\text{st}} \\ \text{after-}H_{2}SO_{4}\text{-making} \\ \text{catalyst bed input gas} \\ \text{kg-mole }SO_{2} \text{ in } 1^{\text{st}} \text{ after-}H_{2}SO_{4}\text{-making} \\ \text{kg-mole }SO_{2} \text{ in } 1^{\text{st}} \text{ after-}H_{2}SO_{4} \\ \text{-making catalyst bed input gas} \\ *100$

(19.2)

(all quantities per kg-mole of 1st before-H₂SO₄-making catalyst bed feed gas).

When equilibrium is attained in an after-H₂SO₄-making catalyst bed, Φ^{after} becomes:

Equilibrium %SO₂ oxidized in after-H₂SO₄ = $\Phi^{E \text{ after}}$ = -making catalyst beds

> kg-mole SO₂ in 1st after-H₂SO₄-making catalyst bed input gas kg-mole SO₂ in oxidized gas in any after-H₂SO₄-making catalyst bed where equilibrium has been attained *100

kg-mole SO₂ in 1st after-H₂SO₄-making catalyst bed input gas

19.4.3 Preparation of equilibrium curve

After-intermediate- H_2SO_4 -making equilibrium curves are prepared from Eqn. (19.1) as described in Appendix D. e', f' and P_t are specified and equilibrium temperatures are calculated for a series of $\Phi^{E \text{ after}}$ values (or vice versa). Fig. 19.3 shows the after- H_2SO_4 -making equilibrium curve with this chapter's specifications.

Fig. 19.3. Equilibrium curve for <u>after-H₂SO₄-making catalyst beds</u>. It is quite similar to Chapter 10.1's before-H₂SO₄-making curves. Input gas composition and equilibrium pressure specifications are shown. The curve is only valid for these specifications. $\Phi^{E \text{ after}}$ is defined by Eqn. (19.3).

19.5 Heatup Path Calculation

After-intermediate- H_2SO_4 -making heatup paths are calculated exactly as before- H_2SO_4 -making heatup paths, Chapter 11 and Appendix I. Table 19.1 shows the matrix for this chapter's after- H_2SO_4 -making input gas. Fig. 19.4 shows an equivalent partial heatup path.

19.6 Heatup Path Equilibrium Curve Intercept Calculation

Maximum SO₂ oxidation in a catalyst bed is obtained where its:

heatup path

intercepts its:

equilibrium curve.

Table 19.1. Heatup path matrix for <u>after-intermediate-H₂SO₄-making</u> catalyst bed. The 1st three rows represent the equations:

n _{so2} in	= 0.002 kg-mole, Fig. 19.2	(19.4)
n_{O_2} in	= 0.061 kg-mole	(19.5)
n _{N2} in	= 0.790 kg-mole.	(19.6)

All values are per kg-mole of 1^{st} before-H₂SO₄ making catalyst bed feed gas. The matrix shows that a 695 K gas temperature is equivalent to oxidation of 69.3% of the after-H₂SO₄-making catalyst bed's input SO₂. Cells D8 to F8 contain -H° values, Eqn. (11.7). Cells G8 to J8 contain H° values.

	<u>A</u>	В	С	D	ΕΕ	F	G	н	I	J
	Equation	Description	numerical	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
1			term	in	in	in	out	out	out	out
2	19.4	input SO ₂ kg-mole	0.0020	1	0	0	0	0	0	0
3	19.5	input O2 kg-mole	0.0610	0	1	0	0	0	0	0
4	19.6	input N ₂ kg-mole	0.7900	0	0	1	0	0	0	0
5	11.4	S balance	0	-1	0	0	1	1	0	0
6	11.5	O balance	0	-2	-2	0	3	2	2	0
7	11.6	N balance	0	0	0	-2	0	0	0	2
8		enthalpy balance	0	278.7	-12.21	-11.66	-370.9	-278.4	12.37	11.82
9				~						
10					690 K, input			69	5 K	
11										
12	Matrix results per	kg-mole of 1 st befor	e-H₂SO₄-makin	g feed gas						
13	kg-mole SO ₂ in	0.0020								
14	kg-mole O ₂ in	0.0610								
15	kg-mole N ₂ in	0.7900				-				
16	kg-mole SO3 out	0.0014		% S	O_2 oxidized = Φ^{after} =	(kg-mole SO ₂ in	n - kg-mole SO ₂	out)/kg-mole S	O ₂ in*100	(Eqn. 19.2)
17	kg-mole SO2 out	0.0006			=	(B13-B17)/B13*	100 =	69.3	%	
18	kg-mole O2 out	0.0603								
19	kg-mole N ₂ out	0.7900								

Fig. 19.4. Equilibrium curve and partial heatup path for <u>after-intermediate-H₂SO₄-making</u> catalyst bed. The heatup path has been calculated with matrix Table 19.1 as in Appendix I. The steepness of the heatup path is due to the small amount of SO₂ 'fuel' in the input gas. The equilibrium curve and heatup path are only valid for the specified inputs. The SO₂ and O₂ inputs are equivalent to 0.234 volume% SO₂ and 7.15 volume% O₂.

This chapter's after- H_2SO_4 -making SO₂ oxidation intercept is shown in Table 19.2 and Figs. 19.5/19.6. It occurs at 697.3 K with 98.9% of the after- H_2SO_4 -making catalyst bed input SO₂ oxidized to SO₃.

Table 19.2.	After-intermediate-H	<u>SO₄-making</u>	% SO ₂ oxidiz	ed-temperat	ture points	near 1	heatup
path-equilibri	um curve intercept [#] .	The intercept	temperature i	is shown to	be between	697.3	30 and
697.31 K. Th 19.5.	e points are calculate	d as described	l in Appendice	es D and I.	They are pl	otted	in Fig.

Temperature, K	Heatup path $\% SO_2 \text{ oxidized}, \Phi^{after}$	Equilibrium % SO2 oxidized, Φ ^{E after}
697.26		98.886
697.27	98.354	98.886
697.28	98.490	98.885
697.29	98.635	98.885
697.30	98.760	98.885
697.31	98.896	98.885
697.32	99.031	98.884
697.33	99.166	98.884
697.34	99.302	98.884
697.35		98.884

#Input gas: 690 K; 0.002 kg-mole SO₂, 0.061 kg-mole O₂, 0.790 kg-mole N₂ (0.234 volume% SO₂, 7.15 volume% O₂); 1.2 bar equilibrium pressure.

Fig. 19.5. Equilibrium curve, heatup path and heatup path-equilibrium curve intercept for <u>after-intermediate-H₂SO₄-making</u> catalyst bed. Attainment of equilibrium in the catalyst bed gives 98.9% oxidation of the bed's input SO₂. The lines apply only to the graph's specified inputs and bed pressure. This graph is a blowup of Fig. 19.6. Its intercept is confirmed by a Goal Seek calculation in Appendix T. The SO₂ and O₂ inputs are equivalent to 0.234 volume% SO₂ and 7.15 volume% O₂.

Fig. 19.6. Overall view of <u>after-intermediate-H₂SO₄-making</u> SO₂ oxidation. The high intercept % SO₂ oxidized is notable. It is due to the low intercept temperature. The SO₂ and O₂ inputs are equivalent to 0.234 volume% SO₂ and 7.15 volume% O₂.

This 98.9% efficiency is equivalent to:

0.001978 kg-mole SO₃ 0.000022 kg-mole SO₂ 0.060011 kg-mole O₂ 0.790000 kg-mole N₂

in after-H₂SO₄-making catalyst bed exit gas, Appendix T.

19.7 Overall SO₂ Oxidation Efficiency

So far, this chapter has examined <u>after-intermediate-H₂SO₄-making SO₂ oxidation</u> <u>efficiency</u>. However, Section 19.6 also provides the information needed to calculate total % SO₂ oxidized after SO₂ oxidation in all of Fig. 19.2's catalyst beds. The values are:

from Fig. 19.2: kg-mole SO₂ in
$$1^{st}$$
 catalyst bed feed gas = 0.1

(both per kg-mole of 1st catalyst bed feed gas).

Total SO₂ oxidation efficiency is calculated by the equation:

total % SO₂ oxidized =
$$\Phi^{\text{total}} = \frac{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}}{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}} \frac{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}}{\text{catalyst bed feed gas}} *100$$
(19.7)

where all quantities are per kg-mole of 1st catalyst bed feed gas.

The above numerical values give:

Total %SO₂ oxidized after 3 before-H₂SO₄-making beds and 1 after-H₂SO₄-making catalyst bed $= \frac{(0.1 - 0.000022)}{0.1} * 100\% = 99.98\%$

This is somewhat above industrial total SO_2 oxidation (99.5-99.9%: Hansen, 2004), but it confirms the high SO_2 oxidation and H_2SO_4 making efficiencies of double contact acid plants.

19.7.1 Effect of incomplete SO₃-from-gas removal during intermediate H₂SO₄ making

Chapter 9 indicates that SO₃-from-gas removal during H_2SO_4 making may be 99.9% rather than 100%. This would mean that 0.1% of Fig. 19.2's H_2SO_4 making input SO₃ (0.0001 kg-mole) would get through to after- H_2SO_4 -making SO₂ oxidation.

Appendix U examines this situation. It shows that this small amount of SO_3 has little effect on double contact's overall SO_2 oxidation efficiency.

19.8 Double/Single Contact Comparison

Section 19.7 shows that 3 - 1 double contact acidmaking has oxidized:

99.98% of its feed gas SO₂ to SO₃

after all its catalyst beds. Fig. 19.7, on the other hand, shows that 4 bed single contact acidmaking has oxidized only:

98.9% of its feed gas SO₂ to SO₃.

This confirms double contact's SO₂ oxidation advantage.

Fig. 19.7. 4 catalyst bed single contact acid plant. The 3rd catalyst bed heatup path and intercept are the same as in Figs. 16.3 and 16.4. The 4th bed is new, Table S.4. Note that:

(a) the 4^{th} bed oxidizes less than half of the 3^{rd} bed exit SO₂, while:

(b) Fig. 19.6's after- H_2SO_4 -making bed oxidizes 98.9% of the 3rd bed exit SO₂, Section 19.6. This explains the greater efficiency of double contact acidmaking.

19.8.1 Double contact's extra costs

Double contact acidmaking is more efficient than single contact acidmaking. However, this extra efficiency comes with extra costs. They are for:

- (a) a second H₂SO₄ making system with its associated acid handling equipment
- (b) 2 additional heat exchangers (1 for cooling before-intermediate-H₂SO₄-making gas and 1 for heating after-intermediate-H₂SO₄-making gas)
- (c) additional energy for moving gas and acid through the second $\mathrm{H}_2\mathrm{SO}_4$ making system.

Widespread industrial adoption of double contact acidmaking indicates, however, that the high efficiency of the process more than offsets these extra costs.

19.9 Summary

Many sulfuric acid plants:

- (a) oxidize most of their feed SO₂ to SO₃ in 3 (occasionally 2 or 4) catalyst beds
- (b) make $H_2SO_4(\ell)$ from (a)'s product $SO_3(g)$, Eqn. (1.2)
- (c) oxidize the SO₂ remaining in (b)'s exit gas to SO₃ in 1 (occasionally 2) after- H_2SO_4 -making catalyst beds
- (d) make $H_2SO_4(\ell)$ from (c)'s new SO₃(g).

This is called double contact acidmaking because it contacts gas and acid twice, steps (b) and (d). The advantage of double contact acidmaking is that it makes SO₃ and $H_2SO_4(\ell)$ more efficiently than single contact acidmaking.

The calculations of this chapter confirm this high efficiency.

Table 19.3 (after this chapter's problems) gives industrial after- H_2SO_4 -making catalyst bed operating data.

References

Hansen, L. (2004) Topsoe Sulphuric Acid Catalysts VK-Series, paper distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. Also - VK series sulphuric acid catalysts for today and for the future, Halder Topsoe A/S brochure, 2004 www.haldortopsoe.com

Problems

19.1 Calculate Fig. 19.2's overall SO₂ oxidation efficiency when:

Operation	S1	M2
number of catalyst beds	$3 + 1^{\#}$	3 + 2#
converter height × diameter, m	19.23 × 16.65	10.4×9.4
construction materials	304 stainless steel	carbon steel
heat recovery system		none
Input gas data		
flowrate, thousand Nm ³ /hour	297	102
temperature, K	693	685
composition, volume%		
SO_3	0.005	
SO ₂	0.780	0.42
O ₂	4.29	5.34
CO ₂	0	
N ₂	94.9	
Catalyst bed data		
thickness of beds, m		
bed 4	1.34	0.64
bed 5		0.78
catalyst type(s)		
bed 4	LP110	12 mm daisy ring, VK38
bed 5		9 mm daisy ring, VK69
catalyst bed temperatures, K		
bed 4 in	693	687
out	716	704
bed 5 in		698
out		698
Product gas to H ₂ SO₄ making		
SO3	0.745	0.42
SO ₂	0.04	0.01
O ₂	3.94	5.14
CO ₂	0	
N ₂	95.3	
Design % SO ₂ oxidation after all catalyst beds	99.7	99.9

 Table 19.3.
 Details of after-intermediate H₂SO₄-making catalytic SO₂ oxidation plants.

Catalyst beds before intermediate H₂SO₄ making + beds after intermediate H₂SO₄ making.

Cumerio 1 (Bulgaria)	Cumerio 2 (Bulgaria)	M6
$3 + 1^{\#}$	3 + 1#	$3 + 1^{\#}$
19.3 × 11.6	22.3 × 12	17.3×12.5
304 stainless steel, gray	brick lined	304H stainless
iron posts and grids	carbon steel	steel
	none	none
160	150	191
683	688	694
0	0	
0.57	0.45	0.56
8 33	6 3 1	13.6
0.36	0.31	15.0
90.74	92 93	
20.74	72.75	
1.28	1.00	0.78
$11 \times 4 \text{ mm ring}$	$12 \times 6 \text{ mm ring}$	12 mm daisy
		VK48 + LP110
(92	(99)	(04
083	088	094 714
701	093	/14
0.56	0.45	0.51
0.01	0.014	0.05
8.06	6.12	13.4
0.36	0.31	
91.01	93.11	
99.70	99.80	99.7

Their equivalent before-intermediate-H₂SO₄-making details are given in Table 7.2.

.

Operation		M4	Asarco Hayden	
number of catalyst b	eds	3 + 1#	$3 + 1^{\#}$	
converter height × diameter, m		22.1×12	16.9×7.0	
construction materia	ls	carbon steel, aluminum coating, brick lining	brick lined steel	
heat recovery system		none		
Input gas data				
flowrate, thousand N	Mm ³ /hour	188	192	
temperature, K		663	666	
composition, volum	e%		000	
SÔ ₃		0	0	
SO ₂		0.8-1.2	0.69	
O_2		8.4-9.9	8.0	
CO ₂		3.3	1.0	
N ₂		remainder	90.0	
2			2010	
Catalyst bed data				
hed 4		1 29	0.71	
bed 5		1.20	0.71	
catalyst type(s)				
bed 4		VK69	LP110/VK48	
bed 5				
catalyst bed tempera	itures. K			
bed 4 in	,	663	666	
ou	t	683	700	
bed 5 in			,	
ou	t			
Des durat and the ULGO				
Froduct gas to H ₂ SO	making	1.1		
SO3		1.1	0.6	
30_2		0.025	0.05	
		8.7	1.77	
CO_2		5.3	1.2	
12		remainder	90.9	
Design % SO ₂ oxidat	ion			

Table 19.3 (cont.) Details of after-intermediate H₂SO₄-making catalytic SO₂ oxidation plants.

after all catalyst beds #Catalyst beds before intermediate H₂SO₄ making + beds after intermediate H₂SO₄ making.

Phelps Dodge Miami	MI
$3 + 1^{\#}$	$2+2^{\#}$
23.3×14.76	9.8×6.9
all welded stainless	carbon steel, cast iron grids
steel	mild steel division plates
	none
100	50
703	50
100	
0.3	
0.6	0.21
6.4	12.2
1.2	
91.5	
1.24	0.22
1.24	0.33
	0.55
0.28 m of VK69 (top)	daisy ring, V_2O_5
0.96 m of VK38/48 mix	
	daisy ring, V_2O_5
702	
703	700-727
720	/08-/30
	700-714
	700-710
0.9	
0.03	0.008
6.2	12.2
1.2	
91.7	
	99.8

Their equivalent before-intermediate-H₂SO₄-making details are given in Table 7.2.

(a) its 1st catalyst bed feed gas contains:

12.0	volume%	SO_2
13.2		O2
74.8		N_2

(b) its catalyst bed input gas temperatures are:

1 st catalyst bed	675 K
2 nd	685 K
3 rd	695 K
4 th	695 K.

- (c) its catalyst bed pressures are all 1.2 bar
- (d) 100% of the SO₃(g) in Fig. 19.2's 3^{rd} catalyst bed exit reacts to form $H_2SO_4(\ell)$ during intermediate H_2SO_4 making.

Hints:

(a) The composition of Fig. 19.2's intermediate H_2SO_4 making input gas under the above conditions is given in your answer to Prob. 16.2. It is:

0.1183	kg-mole	SO_3
0.0017	- 11	SO_2
0.0728	н	O ₂
0.7480		N ₂ .

- (b) All the above SO_3 is removed from this gas during intermediate H_2SO_4 making.
- 19.2 Calculate the equivalent SO_2 oxidation efficiency with 4 catalyst beds but <u>no</u> intermediate H_2SO_4 making. Use the technique described in Appendix S with all of Prob. 19.1's temperatures and pressures.

CHAPTER 20

Optimum Double Contact Acidmaking

Chapter 19 examines after- H_2SO_4 -making catalytic SO_2 oxidation. It shows how after- H_2SO_4 -making catalyst bed:

equilibrium curves heatup paths heatup path-equilibrium curve intercepts

are calculated. It also shows how:

total SO_2 oxidation after SO_2 oxidation in all before and after intermediate- H_2SO_4 -making catalyst beds

is calculated.

This chapter uses the latter calculation to analyze double-contact acidmaking. Its objectives are to:

(a) compare the SO₂ oxidation efficiencies of different double-contact catalyst bed arrangements, e.g.:

3 beds before intermediate H₂SO₄ making, 1 bed after 2 " 2 beds after

- (b) show which bed arrangement gives maximum SO₂ oxidation efficiency
- (c) indicate the catalyst bed where low activation temperature (Cs) catalyst will most enhance total oxidation efficiency.

The calculations are based on the following specifications and Eqn. 19.7.

Table 20.1. Specifications for this chapter's calculations.			
Specification	Value		
1 st catalyst bed feed gas	10 volume% SO_2 11 volume% O_2		
	79 volume% N ₂		
Input gas temperature, all beds	690 K		
Bed pressure, all beds	1.2 bar		
Intercept specification	equilibrium is achieved in all beds		
SO ₃ -from-gas removal during H ₂ SO ₄ making 100%			

All of this chapter's efficiency comparisons are based on total % SO_2 oxidized after all catalyst beds, defined as:

total % SO₂ oxidized =
$$\Phi_{\text{total}} = \frac{\underset{\text{catalyst bed feed gas}}{\text{catalyst bed feed gas}} \underset{\text{catalyst bed exit gas}}{\text{kg-mole SO}_2 \text{ in last}} * 100$$

catalyst bed feed gas (19.7)

(all quantities per kg-mole of 1st catalyst bed feed gas).

20.2 Four Catalyst Beds

Most industrial acid plants have 4 catalyst beds. The arrangements of these beds in order of decreasing industrial use are:

3 catalys	st beds l	before intermediate	e H ₂ SO ₄ m	naking; 1 cataly	st bed after
2	11	**	"	2	**
4		**		0	"

Fig. 20.1 compares the total SO_2 oxidation efficiencies of these arrangements. The theoretical 1 - 3 arrangement is also shown.

Fig. 20.1. Total SO₂ oxidation efficiencies of 4 four-catalyst-bed arrangements. The 3 - 1 bed arrangement is seen to be the most efficient.

The figure indicates that:

- (a) double contact acidmaking is always more efficient than single contact acidmaking.
- (b) the 3 1 bed arrangement gives maximum SO_2 oxidation.

These results explain the widespread industrial use of the 3 - 1 process.

20.3 Improved Efficiency with 5 Catalyst Beds

Fig. 20.2 shows the efficiencies of 5 five-catalyst-bed SO_2 oxidation systems. It confirms that:

- (a) double contact acid plants are always more efficient than single contact plants
- (b) the single after-intermediate-H₂SO₄-making bed arrangement is the most efficient.

Fig. 20.2. SO₂ oxidation efficiency of 5 five-catalyst bed arrangements. The 4 - 1 arrangement is the most efficient. It is, however, only slightly more efficient that the 3 - 2 arrangement.

20.3.1 Benefit from each additional bed

Figs. 20.1 and 20.2 indicate that the single after-intermediate- H_2SO_4 -making bed arrangement gives maximum SO_2 oxidation efficiency. Fig 20.3 examines this further by comparing SO_2 oxidation efficiency with 1 to 4 beds before H_2SO_4 making - 1 bed after. As expected, overall efficiency with this arrangement increases with each additional before- H_2SO_4 -making bed.

Fig. 20.3. SO₂ oxidation efficiency of acid plants with 1 catalyst bed after intermediate H_2SO_4 making. Oxidation efficiency increases with increasing number of before-intermediate- H_2SO_4 -making beds. However, the difference between 3 - 1 and 4 - 1 plants is very small.

Fig. 20.4. Effect of catalyst bed gas input temperature on double contact SO_2 oxidation efficiency. Efficiency falls slightly with increasing gas input temperature.

20.4 Input Gas Temperature Effect

Fig 20.4 shows the effect of gas input temperature on:

3 - 1 acid plant SO_2 oxidation efficiency.

It indicates that total % SO₂ oxidized:

- (a) is always high
- (b) increases with decreasing input gas temperature.

20.5 Best Bed for Cs Catalyst

Cs-enhanced catalyst is useful in permitting cool input gas – because it deactivates at a relatively cool temperature, Chapter 8.

However, Cs catalyst is costly, so many acid plants use it in only 1 catalyst bed. Fig. 20.5 indicates that the best location for the Cs catalyst bed is after H_2SO_4 making – where it gives maximum total SO_2 oxidation.

Prevention of catalyst overheating may, however, lead it to be used in the 1^{st} catalyst bed (Fig. 12.7) – even though this is not the best SO₂ oxidation efficiency location.

Bed with 660 K gas input, i.e. with Cs catalyst

Fig. 20.5. 3 - 1 acid plant with one Cs catalyst bed (660 K gas input) and three K, Na catalyst beds (690 and 720 K). Maximum SO₂ oxidation is obtained with the Cs catalyst in bed 4, i.e. after H_2SO_4 making. Bed 3 (just before H_2SO_4 making) is nearly as good. The calculations are all based on Table 20.1's values – except for gas input temperature.

20.6 Triple Contact Acid Plant

At the time of writing, there are no industrial triple contact acid plants. These plants would be more complex than their double contact counterparts, so they would have to give a significant SO_2 oxidation advantage.

As the following values show, 1 - 1 - 1 acid plants would be slightly less efficient than this chapter's 3 - 1 plants.

3-1 double contact	99.99 % SO ₂ o	xidation of	efficiency
1 - 1 - 1 triple contact	99.97 %		11

(all calculations based on Table 20.1 specifications).

This and the complexity of triple contact plants explain why none has been built.

20.7 Summary

Double contact acidmaking is more efficient than single contact acidmaking. This has made it the most used industrial process. The reason for its high efficiency is its efficient oxidation of SO_2 in its after-H₂SO₄-making catalyst bed(s), Chapter 19.

The most efficient double contact plants have one catalyst bed <u>after</u> H_2SO_4 making, remainder <u>before</u>. 3 – 1 plants are more efficient than 2 – 2 plants. 4 – 1 plants are more efficient than 2 – 3 and 3 – 2 plants.

Cool catalyst bed input gas gives high SO_2 oxidation efficiency in single and double contact acid plants. Low deactivation temperature Cs catalyst is beneficial in this respect, Chapters 8 and 12.

Cs catalyst is costly so many acid plants use it in only one catalyst bed. From the SO_2 oxidation efficiency point of view, it is best used after intermediate H_2SO_4 making.

Industrial SO_2 oxidation efficiencies are slightly lower than those in this chapter – because equilibrium is not quite attained in industrial processes. However, the trends in the chapter are instructive as to best double contact practice.

CHAPTER 21

Enthalpies and Enthalpy Transfers

Chapters 10 through 20 indicate that rapid, efficient multi catalyst bed $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ oxidation requires:

- (a) warm 1st catalyst bed feed gas (~690 K)
- (b) cooling of gas between beds and before H_2SO_4 making.

Fig. 21.1 indicates how these requirements are achieved for a single contact sulfurburning acid plant with 3 catalyst beds. It shows that:

- (a) 690 K 1st catalyst bed feed gas is obtained by cooling sulfur burning exit gas in a boiler and steam superheater
- (b) 700 K 2nd catalyst bed input gas is obtained by cooling ~890 K 1st catalyst bed exit gas in a second boiler
- (c) 710 K 3rd catalyst bed input gas is obtained by cooling ~770 K 2nd catalyst bed exit gas in a steam superheater
- (d) 470 K H_2SO_4 making input gas is obtained by cooling ~720 K 3rd catalyst bed exit gas in an economizer (boiler feed water heater).

The final products of the flowsheet are (i) cool SO_3 rich gas ready for H_2SO_4 making and (ii) superheated steam.

Steps (a) to (d) all require transfer of heat to water or steam.

This chapter examines these heat transfers. Its objectives are to calculate:

- (a) the enthalpies of (i) catalyst bed input and output gases and (ii) H_2SO_4 making input gas
- (b) heat transfers that will give these enthalpies.

These values pave the way for Chapter 22's examination of catalyst bed and H_2SO_4 making temperature control.

H₂SO₄ making

Fig. 21.1. Heat transfer flowsheet for single contact, sulfur burning sulfuric acid plant. It is simpler than industrial plants, which nearly always have 4 catalyst beds rather than 3. The gaseous product is cool, SO₃ rich gas, ready for H_2SO_4 making. The heat transfer product is superheated steam. All calculations in this chapter are based on this figure's feed gas composition and catalyst bed input gas temperatures. All bed pressures are 1.2 bar. The catalyst bed output gas temperatures are the intercept temperatures calculated in Sections 12.2, 15.2 and 16.3.

21.1 Input and Output Gas Enthalpies

Fig. 21.1's catalyst bed input and output gas enthalpies can be calculated directly on our heatup path-equilibrium curve worksheets, Table 21.1. Table 21.1's 3rd catalyst bed input gas enthalpy is, for example:

$$H_{input gas} = kg-mole SO_3 in * H_{710}^{\circ}$$

$$+ kg-mole SO_2 in * H_{710}^{\circ}$$

$$+ kg-mole O_2 in * H_{710}^{\circ}$$

$$+ kg-mole O_2 in * H_{710}^{\circ}$$

$$+ kg-mole N_2 in * H_{710}^{\circ}$$

$$= B34 * -D28 + B35 * -E28 + B36 * -F28 + B37 * -G28 (21.1)$$

where B34 etc. are Table 21.1 cell references.

Cells D28-G28 each contain -H°, Eqn. (11.7). This explains their negative signs in Eqn. (21.1).

Table 21.1's cell H43 contains Eqn. (21.1) exactly as shown in the cell beside it. It shows that Fig. 21.1's 3^{rd} catalyst bed input gas enthalpy is:

-25.94 MJ

per kg-mole of 1st catalyst bed feed gas.

21.1.1 Output gas enthalpy

Table 21.1's 3^{rd} catalyst bed output gas enthalpy is calculated the same way. It is described by the equation:

 $H_{output gas} = kg-mole SO_3 \text{ out } * H_{\frac{721.1}{SO_3}}^{\circ}$ $+ kg-mole SO_2 \text{ out } * H_{\frac{721.1}{SO_2}}^{\circ}$ $+ kg-mole O_2 \text{ out } * H_{\frac{721.1}{SO_2}}^{\circ}$ $+ kg-mole N_2 \text{ out } * H_{\frac{721.1}{N_2}}^{\circ}$ = B38 * H28 + B39 * I28 + B40 * J28 $+ B41 * K28 \qquad (21.2)$

where 721.1 K is the 3rd catalyst bed intercept temperature.

Table 21.1's cell H44 contains Eqn. (21.2) exactly as shown beside it. It shows that Fig. 21.1's 3^{rd} catalyst bed output gas enthalpy is:

per kg-mole of 1st catalyst bed feed gas.

Table 21.1. Bottom half of Table O.1's 3^{rd} catalyst bed heatup path-equilibrium curve intercept worksheet. Input and output gas enthalpies are shown in rows 43 and 44. Note that they are the same. This is because our heatup path calculations assume no convective, conductive or radiative heat loss during catalytic SO₂+1/₂O₂ \rightarrow SO₃ oxidation, Section 11.9. 1^{st} and 2^{nd} catalyst bed enthalpies are calculated similarly – using Tables J.2 and M.2.

	A	В	С	D	E	F	G	н	1	J	К
19	19 3 rd catalyst bed heatup path matrix. Eqns. 14.6 to 14.8 are from Section 14.6. Eqn. 14.9" is from Appendix K. Eqns. 16.1 to 16.4 are from Section 16.3.										
Γ	Equation	description	numerical term	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
20		debenpaion	≐E8 etc.	in	in	<u>in</u>	inin	out	out	out	out
21	16.1	input SO3 kg-mole	0.0942	1	0	0	0	0	0	0	0
22	16.2	input SO ₂ kg-mole	0.0058	0	1	0	0	0	0	0	0
23	16.3	input O2 kg-mole	0.0629	0	0	1	0	0	0	0	0
24	16.4	input N ₂ kg-mole	0.7900	0	0	0	11	0	0	0	0
25	14.6	S balance	0	-1	-1	0	0	11	1	0	00
26	14.7	O balance	0	-3	-2	-2	0	3	2	2	00
27	14.8	N balance	0	0	0	0	-2	0	0	0	2
28	14.9"	enthalpy balance	0	369.9	277.7	-12.87	-12.28	-369.1	-277.1	13.24	12.63
29	l								\sim		
30			3 ^{ro} cata	lyst bed input gas	stemperature =	710	\\	intercept tempera	ature, cell A14 =	721.1	
31						=K5	<u> </u>			=A14	
32			Ll								
33	Matrix results equ	valent to suggested	intercept tempe	rature in cell J30	(and A14)		=-{0.0311*F30-	9.797)			
34	kg-mole SO ₃ in	0.0942									
35	kg-mole SO ₂ in	0.0058							ļ		
36	kg-mole O2 in	0.0629									
37	kg-mole N ₂ In	0.7900									
38	kg-mole SO3 out	0.0980	heat	up path % SO ₂ ox	idized (Φ) equiv	alent to 3 rd catalyst b	ed intercept tem	perature in cell J	30 =		
39	kg-mole SO2 out	0.0020	= (1	" catalyst bed fee	d gas kg-mole S	O2 - 3rd catalyst bed	kg-moie SO ₂ oL	<u>t) * 100 = </u>	98.0	= (G5-B39)/G5*	100 (14.1)
40	kg-mole O2 out	0.0610		1 ^s	catalyst bed fee	d gas kg-mole SO ₂					
41	kg-mole N2 out	0.7900									
42	42 all per kg-mole of 1st catalyst bed feed gas										
43						Inpu	t gas enthalpy =	-25.94	=B34*-D28+B3	5*-E28+B36*-F2	8+B37*-G28
44						Outpu	t gas enthalpy =	-25.94	=B38*H28+B39	*128+B40*J28+E	41*K28
45		,									
46	Goal Seek calculation										
47	47 Equilibrium curve % SO2 oxidized - heatup path % SO2 oxidized =				0.0	=F11-I39					

21.1.2 First and second bed enthalpies

1st and 2nd catalyst bed input and output gas enthalpies are calculated from Tables J.2 and M.2 exactly as described above. They are summarized in Table 21.2.

21.2 H₂SO₄ Making Input Gas Enthalpy

Fig. 21.1's H_2SO_4 -making input SO₃, SO₂, O₂ and N₂ quantities are shown in Table 21.1. They are the 3rd catalyst bed exit (intercept) quantities.

However, their 470 K enthalpies are not shown in the table. They are accounted for by the equation:

$$H_{H_2SO_4 \text{ making input gas}} = \text{kg-mole SO}_3 \text{ out } * (0.07144 * 470 - 420.6) \\ + \text{kg-mole SO}_2 \text{ out } * (0.05161 * 470 - 314.3) \\ + \text{kg-mole O}_2 \text{ out } * (0.03333 * 470 - 10.79) \\ + \text{kg-mole N}_2 \text{ out } * (0.03110 * 470 - 9.797)$$
(21.3)
$$= 0.098 * -387.0 \\ + 0.002 * -290.0 \\ + 0.061 * 4.88 \\ + 0.790 * 4.82$$

= -34.40 MJ per kg-mole of 1^{st} catalyst bed feed gas.

where:

'kg-mole SO₃ out' is kg-mole SO₃ out of the 3^{rd} catalyst bed and into H₂SO₄ making and:

(0.07144 * 470 - 420.6) is H_{470}°

and so on.

21.3 Heat Transfers

21.3.1 Heat transfer from 3rd bed exit gas to economizer water

This section calculates how much heat must be removed from Fig. 21.1's:

721.1 K 3rd catalyst bed exit gas

470 K H₂SO₄ making input gas temperature.

This heat removal is calculated by the equation:

$$Q = |\Delta H| = |H_{H_2SO_4 \text{ making input gas}} - H_{3^{rd} \text{ bed exit gas}}| \qquad (21.4).$$

The enthalpies in this equation are those calculated in Sections 21.1.1 and 21.2, giving:

$$Q = |\Delta H| = |-34.40 - (-25.94)|$$

= 8.46 MJ per kg-mole of 1^{st} catalyst bed feed gas.

So, per kg-mole of 1st catalyst bed feed gas, 8.46 MJ must be removed from 721.1 K 3rd catalyst bed exit gas to cool it to the specified 470 K H₂SO₄ making input gas temperature. The heat is, of course, transferred to water in Fig. 21.1's economizer.

21.3.2 1-2 and 2-3 heat transfers

Heat transfers from gas between beds 1 and 2 and 2 and 3 are calculated exactly as described above. They are tabulated in Table 21.2.

Table 21.2. Summary of Fig. 21.1's temperatures, enthalpies and heat transfers. Note the continuing decrease in the gas's enthalpy as heat is transferred from gas to water and steam in Fig. 21.1's boiler, superheater and economizer. All temperatures but the last are from Tables J.2, M.2 and 21.1. Note that a catalyst bed's input enthalpy is always the same as its output enthalpy. This is due to our assumption that there is no conductive, convective or radiative heat loss from the gas.

Gas	Temp. K	Enthalpy [#]	
1 st catalyst bed feed gas	690	-17.31	
1 st catalyst bed exit (intercept) gas	893.3	-17.31	
		heat transfer to 1-2 boiler water \rightarrow	6.50#
2 nd catalyst bed input gas	700	-23.81	
2 nd catalyst bed exit (intercept) gas	773.2	-23.81	
		heat transfer to superheater steam $ ightarrow$	2.13#
3 rd catalyst bed input gas	710	-25.94	
3 rd catalyst bed exit (intercept) gas	721.1	-25.94	
		heat transfer to economizer water $ ightarrow$	8.46#
H ₂ SO ₄ making input gas	470	-34.40	
[#] MI per kg-mole of 1 st catalyst hed	feed gas		

'MJ per kg-mole of 1st catalyst bed feed gas.

21.4 Heat Transfer Rate

The rate at which heat is transferred from Fig. 21.1's 3^{rd} catalyst bed exit gas to its economizer water is calculated from:

Section 21.3.1's heat transfer amount, MJ per kg-mole of 1st catalyst bed feed gas

and:

a specified 1st catalyst bed feed gas input rate, Nm³ per hour, e.g. 100 000 Nm³/hour.

Heat transfer rate is given by the equation:

heat transfer rate = Q *
$$\frac{1^{\text{st}} \text{ catalyst bed feed gas input rate, Nm}^3/\text{hr}}{22.4 \text{ Nm}^3 \text{ of feed gas per kg-mole of feed gas}}$$
 (21.5).

With Table 21.2's 8.46 MJ economizer heat transfer (Q), it is:

3rd catalyst bed exit gas to economizer = heat transfer rate

$$= 8.46 \text{ of } 1^{\text{st}} \text{ catalyst} \qquad * \frac{100\ 000\ \text{Nm}^3 \text{ of } 1^{\text{st}} \text{ catalyst bed feed gas per hour}}{22.4\ \text{Nm}^3 \text{ of feed gas per kg-mole of feed gas}}$$

$$= 38\ 000\ \text{MJ per hour.}$$
(21.6)

21.4.1 Extension

This chapter has examined a very simple acid plant. Its techniques are, however, readily extended to complex industrial acidmaking situations.

21.5 Summary

Catalyst bed gas enthalpies are readily calculated on our heatup path-equilibrium curve intercept worksheets.

These enthalpies are conveniently used to calculate the amount of heat that must be removed to cool a catalyst bed's output gas to a specified temperature.

The enthalpies and heat removal quantities are all calculated per kg-mole of 1st catalyst bed feed gas.

The heat removal quantities (plus 1st catalyst bed feed gas input rate) are readily used to determine the cooling requirements (MJ/hour) of each of Fig. 21.1's gas cooling devices.

The next chapter builds on this information to show how catalyst bed and $\rm H_2SO_4$ making input gas temperatures are controlled by bypassing gas around the cooling devices.

Problems

21.1 Prepare a table like Table 21.2 for:

12.0 volume% SO ₂						
13.2	"	O_2				
74.8	"	N_2				

1st catalyst bed feed gas and the following catalyst bed gas input temperatures:

1 st ca	talyst bed	675 K		
2 nd	"	685 K		
3 rd	"	695 K.		

Assume that:

- (a) the pressure in all catalyst beds is 1.2 bar
- (b) heatup path-equilibrium curve intercepts are attained in all beds
- (c) the 3^{rd} catalyst bed exit gas enters H_2SO_4 making at 470 K.

Hints

- 1. Use your Problem 12.3, 15.1 and 16.1 spreadsheets to calculate input and output gas enthalpies (as described in Section 21.1).
- 2. Use your Prob. 16.1 3^{rd} catalyst bed output quantities and Eqn. (21.3) to calculate H₂SO₄ making's input gas enthalpy.
- 21.2 Calculate the rate, MJ/hour, at which heat must be transferred from 3^{rd} catalyst bed exit gas to economizer water to obtain the above specified 470 K H₂SO₄ making gas. 100 000 Nm³ per hour of 1^{st} catalyst bed feed gas is entering the 1^{st} catalyst bed.

CHAPTER 22

Control of Gas Temperature by Bypassing

This chapter describes how:

catalyst bed and H₂SO₄ making input gas temperatures

are controlled by bypassing gas around Fig. 21.1's heat transfer equipment.

22.1 Bypassing Principle

The principle of bypassing is that when a portion of a hot gas stream is bypassed around a gas cooling device (e.g. Fig. 21.1's economizer):

the bypassed portion is not cooled.

Then, when the bypassed portion and the cooled portion are recombined (Fig. 22.1), the product gas stream is:

warmer

than when all the gas is being passed through the cooling device.

Most acid plant heat transfer devices are provided with bypass capability, Fig. 22.2.

22.2 Objective

The objective of this chapter is to show how bypassing can be used to adjust the temperatures of acid plant gases. It examines:

- (a) how bypassing gas around Fig. 21.1's economizer can be used to adjust the temperature of the economizer's output gas
- (b) how bypassing can be used to maintain a constant economizer output gas temperature while the economizer's input gas temperature is varying.

Both calculations also estimate the fraction of economizer input gas that must be bypassed around the economizer to achieve a specified output gas temperature.

Fig. 22.1. Blowup of Chapter 21's economizer. Bypassing of input gas around the economizer (dotted line) is shown. Bypassing results in a warmer recombined **output gas** stream.

Fig. 22.2. Photograph of gas bypass flue around cross flow gas-to-gas heat exchanger. In this case, the amount of bypass is controlled by manually adjusting a butterfly valve in the bypass flue (note chain below the valve). In most cases, the valve is controlled automatically by a thermocouple placed just beyond the heat exchanger exit gas/bypass gas re-combination point.

22.3 Gas to Economizer Heat Transfer

Fig. 21.1's economizer cools Table 21.1's 3rd catalyst bed exit (intercept) gas from:

721.1 K

to:

470 K (its design output gas temperature).

The gas's enthalpies at 721.1 and 470 K are, Sections 21.1.1 and 21.2:

-25.94 MJ

and

-34.40 MJ

which means that:

8.46 MJ

of heat must be transferred from the 721.1 K economizer input gas to give 470 K output gas, Section 21.3.1.

All enthalpies and heats are per kg-mole of 1st catalyst bed feed gas.

22.3.1 Design heat transfer rate

The Fig. 22.1 economizer's design heat transfer rate with:

(a) the above 8.46 MJ heat transfer per kg-mole of 1st catalyst bed feed gas

and:

(b) 100 000 Nm³ per hour of 1st catalyst bed feed gas (the flowrate used throughout this chapter)

is:

 3^{rd} catalyst bed MJ per kg-mole economizer heat = 8.46 of 1^{st} catalyst bed feed gas transfer rate bed feed gas $* \frac{100\ 000\ Nm^3\ 1^{st}}{22.4\ Nm^3}$ of feed gas per kg-mole of feed gas

$$= 38\ 000\ \text{MJ}\ \text{per hour}$$
 (21.6).

This value is referred to later in the chapter.

22.4 Heat Transfer Requirement for 480 K Economizer Output Gas

The temperature of Fig. 22.1's economizer output gas can be changed by:

bypassing a portion of the economizer input gas

around the economizer.

This section shows how 480 K output gas is obtained. It calculates:

- (a) the enthalpy of 480 K economizer output gas, per kg-mole of 1st catalyst bed feed gas
- (b) the amount of heat that must be transferred from 721.1 K 3rd catalyst bed exit gas to give (a)'s enthalpy
- (c) the percentage of 3rd catalyst bed exit gas that must be bypassed around the economizer to give (b)'s heat transfer.

22.4.1 Enthalpies and heat transfer

The enthalpy of 721.1 K 3rd catalyst bed exit (intercept) gas is:

-25.94 MJ (Section 21.1.1).

The enthalpy of this gas at 480K is:

-34.07 MJ

(calculated by Eqn. (21.3) with 480 K in place of 470 K).

This means that:

8.13 MJ

must be transferred from 721.1 K economizer input gas to give 480 K **output gas**, Fig. 22.1.

22.5 Changing Heat Transfer by Bypassing

Section 22.3.1 indicates that the Fig. 22.1 economizer has been designed to transfer:

38 000 MJ/hour

which is equivalent to:

```
8.46 MJ per kg-mole of 1<sup>st</sup> catalyst bed feed gas.
```

However, achievement of Section 22.4's specified 480 K economizer output gas requires a transfer of only:

8.13 MJ per kg-mole of 1st catalyst bed feed gas.

22.5.1 Percent bypass

The 8.13 MJ heat transfer required for 480 K output gas is:

(8.13/8.46)*100% = 96%

of the economizer's 8.46 MJ design heat transfer.

Production of 480 K economizer output gas requires, therefore, that:

96% of the 3rd catalyst bed exit gas must be cooled in the economizer

and:

4% must be bypassed around it.

22.6 460 K Economizer Output Gas

This section:

- (a) calculates how much heat must be transferred from Fig. 22.1's 721.1 K economizer input gas to give 460 K economizer output gas
- (b) indicates how this heat transfer may be obtained.

22.6.1 Enthalpies and heat transfer

The enthalpy of 721.1 K 3rd catalyst bed exit gas is:

-25.94 MJ.

The enthalpy of this gas at 460 K is:

-34.74 MJ (from Eqn. (21.3) with 460 K in place of 470 K).

This means that:

8.80 MJ

of heat must be transferred from 721.1 K gas to cool it to 460 K.

This requirement is greater than the cooling capacity (8.46 MJ) of the Section 22.3.1 economizer. Bypassing of gas around the economizer won't help because bypassing only <u>decreases</u> heat transfer.

This shows that if the temperature of the economizer output gas must be 460 K, the Section 22.3.1 economizer must be enlarged to transfer:

8.80 MJ per kg-mole of 1st catalyst bed feed gas

or more. This 8.80 MJ and 100 000 Nm^3 per hour of 1st catalyst bed feed gas is equivalent to 39 000 MJ/hour, Eqn. (21.6).

22.7 Bypassing for 460, 470 and 480 Economizer Output Gas

Production of 460 K, 470 K and 480 K economizer gas from 721.1 K 3rd catalyst bed exit gas requires transfer of:

8.80 MJ 8.46 MJ 8.13 MJ

all per kg-mole of 1st catalyst bed feed gas. These are equivalent to:

100.0% 95.6% 91.3%

of Section 22.6.1's 39 000 MJ per hour economizer capacity and to bypassing:

0%				
4.4%				
8.7%				

of the gas stream around the economizer.

22.8 Bypassing for 470 K Economizer Output Gas While Input Gas Temperature is Varying

This section shows how Section 22.6.1's 39 000 MJ/hour economizer is used to obtain:

470 K economizer output gas

while its input gas is varying from:

715 to 725 K.

The enthalpies of Table 21.2's 3rd catalyst bed exit gas at 725, 715 and 470 K are:

725 K	-25.81 MJ
715 K	-26.15 MJ
470 K	-34.40 MJ

per kg-mole of Fig 21.1 1st catalyst bed feed gas (calculated with Eqn. (21.3) and the appropriate temperatures).

They indicate that:

(a) cooling 725 K economizer input gas to 470 K requires transfer of:

8.59 MJ

from the gas.

(b) cooling 715 K economizer input gas to 470 K requires transfer of:

8.25 MJ

from the gas.

These are equivalent to 97.6 and 93.8 % of Section 22.6.1's:

```
8.80 MJ (39 000 MJ/hour)
```

economizer.

So, operating the economizer to cool its input gas from 725 K to 470 K requires bypassing 2.4% of the gas. Cooling it from 715 K to 470 K requires opening the bypass valve to 6.2%.

Notably, gas is being passed through the bypass flue in both cases. This allows up and down temperature control.

22.9 Industrial Bypassing

This chapter's calculations assume that bypassing is:

100% effective

i.e. that by passing 10% of a gas stream around a cooling device decreases heat transfer by 10%. Acid plant designers suggest, however, that industrial bypass efficiency is more closely represented by an equation like:

industrial bypass =
$$(\text{theoretical bypass})^n$$
 (22.1)

where $n = \sim 1.1$.

This means that the industrial bypass required to give Section 22.8's 6.2% theoretical bypass is:

industrial bypass =
$$(6.2\%)^{1.1}$$
 (22.2)
= 7.4%

22.9.1 Inefficiency explained

Bypassing gas around a cooling device inadvertently:

(a) increases the residence time of the remaining gas in the cooling device

which in turn:

(b) <u>increases</u> heat transfer from this gas to economizer water.

This partially offsets bypassing's heat transfer decrease - lowering its effectiveness.

22.10 Summary

Bypassing various fractions of a gas stream around a cooling device provides control over the device's output gas (Fig. 22.1) temperature.

Operating with gas always flowing in the bypass flue allows the cooling device's exit gas temperature to be adjusted upwards and downwards – by increasing or decreasing the amount the bypass valve is open.

A cooling device should be designed for its maximum anticipated cooling duty, i.e. for:

maximum expected gas flow

and:

maximum expected gas temperature drop.

This permits all lesser cooling duties to be obtained by bypassing.

Also, the bypass flue and control valve should be large enough to give sufficient bypassing for the smallest anticipated cooling duty.

Problems

All heat transfer rates in these problems are based on 100 000 Nm³ of 1st catalyst bed feed gas per hour.

22.1 Problem 21.2 shows that cooling Prob. 21.1's 710.4 K 3rd catalyst bed exit gas to 470 K requires transfer of:

8.23 MJ per kg of 1st catalyst bed feed gas.

It also shows that with 100 000 Nm^3 per hour of 1^{st} catalyst bed feed gas, this is equivalent to a:

36 740 MJ per hour

economizer.

Determine:

- (a) the percentage of economizer input gas that will have to be bypassed around the economizer to give 480 K H₂SO₄ making input gas
- (b) the size (MJ per hour) of economizer that will be required to give 460 K H_2SO_4 making input gas (with 100 000 Nm³ per hour 1st catalyst bed feed gas).
- 22.2 Industrial practice indicates that Prob. 22.1's 3rd catalyst bed exit gas varies between 705 K to 715 K.

What fraction of Prob. 22.1's 3^{rd} catalyst bed exit gas will have to be bypassed around Prob. 22.1 (b)'s economizer to give 470 K H₂SO₄ making input gas when the economizer input gas is:

(a) 715 K

(b) 710.5 K

(c) 705 K?

Is gas always flowing through the bypass flue?

22.3 What would the industrial (a), (b) and (c) bypasses be if Eqn. (22.2) is obeyed with n = 1.1?

CHAPTER 23

H₂SO₄ Making

Sulfuric acid is made by:

- (a) catalytically oxidizing an acid plant's feed $SO_2(g)$ to $SO_3(g)$
- (b) making $H_2SO_4(\ell)$ from the resulting $SO_3(g)$.

The reactions are:

$$\begin{array}{ccc} & & & & & \\ \text{SO}_2(g) \ + \ \frac{1}{2}O_2(g) & \longrightarrow & \text{SO}_3(g) \\ & & & \text{in dry feed gas} & & & \text{catalyst} \end{array}$$
(1.1).

$$\begin{array}{rcl} 350\text{-}380 \text{ K} \\ \mathrm{SO}_3(\mathrm{g}) \ + \ \mathrm{H}_2\mathrm{O}(\ell) & \longrightarrow & \mathrm{H}_2\mathrm{SO}_4(\ell) \\ & & \text{in strong} & & \text{in strengthened} \\ & & \text{sulfuric acid} & & \text{sulfuric acid} \end{array} \tag{1.2}.$$

Reaction (1.2) produces strengthened sulfuric acid because it consumes $H_2O(\ell)$ and makes $H_2SO_4(\ell)$.

Chapters 10 to 22 examine SO_2 oxidation. This chapter and Chapter 24 examine H_2SO_4 making. They do so from the points of view of:

(a) mass flows, this chapter

and:

(b) acid temperature control, next chapter.

Industrial final-H₂SO₄-making ('absorption') data are also provided, Table 23.2.

Fig. 23.1 is a simplified sulfuric acidmaking flowsheet. Its inputs are:

- (a) moist 5 volume% H₂O(g), SO₂, O₂, N₂ gas from gas cleaning and cooling
- (b) water.

Its outputs are:

- (a) 98 mass% H₂SO₄, 2 mass% H₂O sulfuric acid
- (b) dilute SO_2 , O_2 , N_2 gas.

All other flows are internal.

Fig. 23.1. Simplified single contact sulfuric acid production flowsheet. Its inputs are moist feed gas and water. Its outputs are 98 mass% H_2SO_4 , 2 mass% H_2O sulfuric acid and dilute SO_2 , O_2 , N_2 gas. The acid output combines gas dehydration tower acid, H_2SO_4 making tower acid and liquid water. The equivalent sulfur burning acid plant sends moist air (rather than moist feed gas) to dehydration. Appendix V gives an example sulfur burning calculation.

23.1 Objectives

The objectives of this chapter are to calculate:

- (a) the mass of 98 mass% H₂SO₄, 2 mass% H₂O sulfuric acid that is produced from Fig. 23.1's inputs
- (b) the mass of water needed to make this acid

both per kg-mole of dry 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ 1^{st} catalyst bed feed gas.

Molar and mass balances are used.

Acid compositions are given in mass%. It is easier, therefore, to base acid flow calculations on kg rather than kg-mole. This requires, however, that connections be made between the:

molar (gas) calculations of Chapters 10 to 22

and the:

mass (liquid) calculations of this chapter.

The connective calculations are:

conversion of kg-mole SO₃ in H₂SO₄ making tower input gas to kg SO₃.

conversion of kg-mole $H_2O(g)$ in moist acid plant input gas to kg $H_2O(g)$.

Once these conversions are made, the remainder of the calculations can be based on mass.

23.3 SO₃ Input Mass

The gas entering Fig. 23.1's H_2SO_4 making ('absorption') tower is specified to be Section 16.3's 3rd catalyst bed exit gas. It contains:

0.098 k	g-mol	e SO ₃
0.002	"	SO_2
0.061	"	O_2
0.790	"	N_2

per kg-mole of dry 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ 1^{st} catalyst bed feed gas.

Only the SO₃ participates in H_2SO_4 making. It is specified that it all ends up as $H_2SO_4(\ell)$, Reaction (1.2).

The mass of SO₃ equivalent to 0.098 kg-mole is given by the equation:

mass $SO_3 = kg$ -mole $SO_3 * 80 kg SO_3 per kg$ -mole SO_3

= 0.098 * 80

=
$$7.84$$
 kg per kg-mole of dry 1st catalyst bed feed gas (23.1).

(80 is the molecular weight of SO₃.)
23.4 H₂O(g) Input from Moist Acid Plant Input Gas

Fig. 23.1 shows that its moist acid plant input gas contains 5 volume% $H_2O(g)$. The remaining 95 volume% is dry 1st catalyst bed feed gas. These are equivalent to 5 and 95 mole% respectively.

This gas is dehydrated in Fig. 23.1's dehydration tower. Its H₂O(g) reacts with strong sulfuric acid in the tower to form:

slightly weakened sulfuric acid.

The reaction is:

$$\begin{array}{rcl} H_2O(g) \ + \ H_2SO_4(\ell) & \longrightarrow & H_2SO_4(\ell) + H_2O(\ell) \\ & & \text{in strong} & & \text{slightly weakened acid} \\ & & \text{acid} \end{array} \tag{6.2}.$$

This section calculates the mass of $H_2O(g)$ in 5 mole% $H_2O(g)$ input gas. It is specified that all of this $H_2O(g)$ ends up in Reaction (6.2)'s slightly weakened acid.

23.4.1 $H_2O(g)$ in moist input gas

The amount of $H_2O(g)$ in Fig. 23.1's moist input gas is given by the equation:

kg-mole $H_2O(g)$ in	=	5 mole% H ₂ O(g) in	* kg-mole moist input gas	
moist input gas		moist input gas/100%		
			(23.2)	

Similarly, the quantity of dry 1st catalyst bed feed gas in the moist acid plant input gas is:

kg-mole of dry 1^{st} catalyst bed = 95 mole% dry 1^{st} catalyst bed * kg-mole moist input gas feed gas in moist input gas feed gas in moist input gas/100% (23.3).

The amount of input $H_2O(g)$ per kg-mole of dry 1st catalyst bed feed gas is obtained by dividing Eqn. (23.2) by Eqn. (23.3), i.e.:

<u>kg-mole H₂O(g) in moist input gas</u> kg-mole of dry 1st catalyst bed feed gas = $\frac{5}{95}$ = $\frac{0.0526}{\text{kg-mole H}_2O(g)}$ per kg-mole of dry 1st catalyst in moist input gas bed feed gas

(23.4).

Mass $H_2O(g)$ in the above moist gas is given by the equation:

 $\begin{array}{ll} \mbox{mass } H_2O(g) \\ \mbox{in moist acid} \\ \mbox{plant input gas} \end{array} = & \begin{array}{ll} 0.0526 \mbox{ kg-mole of } H_2O(g) \mbox{ per kg-mole} \\ \mbox{ of dry 1}^{st} \mbox{ catalyst bed feed gas} \end{array} + \begin{array}{ll} 18 \mbox{ kg } H_2O(g) \\ \mbox{ per kg-mole} \\ \mbox{ of } H_2O(g) \end{array}$

= $0.947 \text{ kg H}_2O(g)$ per kg-mole of dry 1st catalyst bed feed gas

(23.5).

(18 is the molecular weight of H_2O .)

The above sections determine:

- (a) mass SO₃(g) entering Fig. 23.1's H₂SO₄ making tower acid
- (b) mass $H_2O(g)$ entering Fig. 23.1's dehydration tower acid.

These masses plus mass input liquid water form Fig. 23.1's acid product.

The next sections calculate:

- (a) the mass of output 98 mass% H_2SO_4 , 2 mass% H_2O sulfuric acid produced by these inputs
- (b) the mass of liquid water needed to make this acid product.

23.5 Water for Product Acid

The water entering the Fig. 23.1 acid plant is adjusted to give the plant's specified product, in this case:

```
98 mass% H<sub>2</sub>SO<sub>4</sub>
2 mass% H<sub>2</sub>O
```

sulfuric acid.

This water and the $H_2O(g)$ in moist input gas provide all the H_2O for this acid. The H_2O is used for:

(a) the reaction:

$$SO_3(g) + H_2O \rightarrow H_2SO_4(\ell)$$

and:

(b) the 2 mass% H_2O in the product acid.

23.6 Calculation of Mass Water In and Mass Acid Out

This section calculates:

- (a) the mass of H_2SO_4 produced from Section 23.3's $SO_3(g)$
- (b) the mass of liquid water required to make this H₂SO₄ plus the specified 2 mass% H₂O in the plant's product acid
- (c) the total mass of product acid

all per kg-mole of dry 1st catalyst bed feed gas.

The calculations use:

- (a) $SO_3(g)$ and $H_2O(g)$ input Eqns. (23.1) and (23.5)
- (b) sulfur and total mass balances
- (c) a 98 mass% H_2SO_4 , 2 mass% H_2O acid composition specification.

The H_2SO_4 making tower's input SO_2 , O_2 and N_2 are ignored -- because they pass unreacted through the acid plant and into the environment.

23.6.1 S balance

The S mass balance for Fig. 23.1's H₂SO₄ making tower (excluding SO₂) is:

mass S in SO₃ into = mass S in product H₂SO₄ H₂SO₄ making tower

Since SO_3 and H_2SO_4 contain 40 mass% and 32.7 mass% S respectively, this equation becomes:

mass SO₃ into $40\%/100\% * H_2SO_4$ making = 32.7%/100% * mass output H₂SO₄ tower

or:

mass SO₃ into

$$0 = -0.4 * H_2SO_4 \text{ making} + 0.327 * \text{ mass output } H_2SO_4$$
(23.6).
tower

23.6.2 Total mass balance

The total mass balance for Fig. 23.1 (excluding SO_2 , O_2 and N_2 in H_2SO_4 making tower input and output gas) is:

mass SO₃ into H_2SO_4 making tower + mass $H_2O(g)$ in + mass water in

or:

$$0 = -mass SO_3$$
 into H_2SO_4 making tower - mass $H_2O(g)$ in - mass water in

+ mass H_2SO_4 out + mass H_2O out

23.6.3 Output acid composition specification

The output acid composition is put into equation form by combining the equations:

mass
$$H_2SO_4$$
 in output acid = $\frac{98 \text{ mass}\% H_2SO_4 \text{ in output acid}}{100\%}$ * mass output acid

mass H₂O in output acid =
$$\frac{2 \text{ mass}\% \text{ H}_2\text{O in output acid }* \text{ mass output acid}}{100\%}$$

to give:

$$\frac{\text{mass } H_2 \text{SO}_4 \text{ in output acid}}{\text{mass } H_2 \text{O in output acid}} = \frac{98}{2}$$

or:

$$2 * \text{mass } H_2 SO_4 \text{ in output acid} = 98 * \text{mass } H_2 O \text{ in output acid}$$

or:

$$0 = -2 * \text{mass } H_2 SO_4 \text{ in output acid } + 98 * \text{mass } H_2 O \text{ in output acid}$$
 (23.8).

23.6.4 Solving for mass H_2SO_4 out and mass water in

The above four sections contain 5 variables:

mass SO₃ into H_2SO_4 making tower mass $H_2O(g)$ in mass water in mass H_2SO_4 out mass H_2O out.

They also contain 5 equations, (23.1) and (23.5-23.8). The solutions to all these equations are obtained by solving matrix Table 23.1, as described in Appendix H.

	A	В	С	D	E	F	G	Н
1	Description	equation	numerical term	mass SO ₃ Into H ₂ SO ₄ making tower	mass H ₂ O in moist Input gas	mass Input water	mass H ₂ SO ₄ in out put acid	mass H ₂ O in out put acid
2	mass SO ₃ into H ₂ SO ₄ making tower	23.1	7.840	1	0	0	0	0
3	mass H ₂ O in moist feed gas	23.5	0.947	0	1	0	0	0
4	S balance [#]	23.6	0	-0.4	o	0	0.327	0
5	total mass balance [#]	23.7	0	-1	-1	-1	1	1
6	output acid composition specification	23.8	0	0	0	0	-2	98

Table 23.1. Matrix for determining the mass of H_2SO_4 produced by the Fig. 23.1 acid plant. The water requirement is also determined. All numerical values are per kg-mole of dry 1st catalyst bed feed gas. The solution to the matrix is given below it.

Excluding SO₂, O₂ and N₂ entering and leaving Fig. 23.1's H₂SO₄ making tower.

The solution to the matrix, with all values kg per kg-mole of dry 1st catalyst bed feed gas, is:

7.840
0.947
0.999
9.590
0.196

These are the only values that satisfy all the equations in the matrix.

23.6.5 Mass output sulfuric acid

Total output acid mass is given by the equation:

mass output acid = mass H_2SO_4 in output acid + mass H_2O in output acid (23.9).

With the above values, it is:

mass output acid = 9.590 + 0.196 = 9.8 kg per kg-mole of dry 1st catalyst bed feed gas.

23.6.6 Flows with 100 000 Nm³ per hour dry 1st catalyst bed feed gas

The above masses are all per kg-mole of dry 1^{st} catalyst bed feed gas. With 100 000 Nm³ per hour (4464 kg-mole per hour) of dry 1^{st} catalyst bed feed gas, these masses are equivalent to:

Flow	kg/hour
SO_3 in H_2SO_4 making tower input gas	35 000
H ₂ O in moist input gas	4 200
water in	4 500
H_2SO_4 in output acid	42 800
H ₂ O in output acid	900
output acid	43 700.

Of course, these flows will double if the 1st catalyst bed feed gas input rate is doubled, etc.

23.7 Interpretations

23.7.1 H_2SO_4 production vs. SO_3 in H_2SO_4 making tower input gas

Fig. 23.2 shows mass H_2SO_4 out of Fig. 23.1's H_2SO_4 making tower as a function of the tower's input SO₃ quantity. H_2SO_4 production (kg) increases linearly with increasing SO₃ input mass (kg).

This is because each kg-mole of SO_3 into the H_2SO_4 making tower produces a kg-mole of H_2SO_4 , i.e.:

$$SO_3 + H_2O \longrightarrow H_2SO_4$$
 (23.10).

In terms of mass, each 80 kg of input SO₃ gives 98 kg of output H_2SO_4 . This is equivalent to:

$$98/80 = 1.225$$

kg H_2SO_4 out per kg of input SO₃. This is confirmed by the slope of Fig. 23.2's H_2SO_4 making line.

Fig. 23.2. Mass H_2SO_4 out of H_2SO_4 making tower as a function of mass SO_3 into H_2SO_4 making tower. The line is straight with a slope of 1.225 (Section 23.7.1).

23.7.2 Water requirement vs. $H_2O(g)$ in moist input gas

Fig. 23.3 shows Fig. 23.1's acid plant water requirement as a function of volume% $H_2O(g)$ in its moist input gas. As expected, water requirement falls with increasing $H_2O(g)$ in moist feed gas.

Fig. 23.3. Fig. 23.1 acid plant water requirement as a function of volume% $H_2O(g)$ in acid plant input gas. Water input requirement decreases with increasing volume% $H_2O(g)$. The graph applies only to its specified input SO₃ mass and product acid composition.

Fig. 23.3 also shows that no liquid water is required when the moist input gas contains 9.8 volume% $H_2O(g)$ (under the specific conditions of the Table 23.1 matrix). At this point, all the output acid's H_2O requirement is provided by $H_2O(g)$ in Fig. 23.1's feed gas.

Finally, the figure indicates that moist input gas containing more than 9.8 volume% $H_2O(g)$ cannot produce the specified 98 mass% H_2SO_4 acid – because it brings too much H_2O into the system. 10 volume% $H_2O(g)$ moist input gas would produce, for example, ~97½ mass% H_2SO_4 acid.

23.7.3 Water requirement vs. acid strength

Fig. 23.4 shows the Fig. 21.1 acid plant's water requirement as a function of specified mass% H_2SO_4 in product acid (constant volume% $H_2O(g)$ in moist acid plant input gas).

Water requirement <u>increases</u> with decreasing mass% H_2SO_4 in acid (i.e. <u>with increasing</u> <u>specified mass% H_2O in acid</u>).

Note that liquid water is needed even when the acid plant's product is 100% H₂SO₄. It is needed for the:

$$H_2O + SO_3 \rightarrow H_2SO_4$$

H₂SO₄ making reaction.

Fig. 23.4. Fig. 23.1 acid plant water requirement as a function of mass% H_2SO_4 in acid plant product acid. Water requirement <u>increases</u> with decreasing specified mass% H_2SO_4 (i.e. with <u>increasing specified mass% H_2O) in acid.</u>

23.7.4 Water requirement vs. mass SO₃ into H₂SO₄ making tower

Fig. 23.5 shows the effect of:

mass SO₃ into H₂SO₄ making tower

on:

acid plant liquid water requirement.

both per kg-mole of dry 1st catalyst bed feed gas. Water requirement increases with increasing mass SO₃.

The increased requirement is made up of:

- (a) water needed for Fig. 23.2's increasing H_2SO_4 production, Reaction (23.10)
- (b) water for the 2 mass% H_2O in product acid that goes with this increased H_2SO_4 production.

Fig. 23.5. Acid plant water requirement as a function of mass SO₃ into H_2SO_4 making tower. The water requirement increases with increasing SO₃ input mass, Section 23.7.4. With a 100% H_2SO_4 product, the slope is 0.225 (Fig. 23.2). With 2 mass% H_2O , 98 mass% H_2SO_4 product acid, it is 0.25 (as shown). It varies, therefore, with product acid composition.

23.8 Summary

Sulfuric acid compositions are expressed in mass%. For this reason, acidmaking calculations are more easily done with mass (rather than molar) balances. This chapter uses mass balances to calculate an acid plant's:

- (a) H_2SO_4 production
- (b) water requirement

(kg per kg-mole of dry 1st catalyst bed feed gas and kg per hour).

 H_2SO_4 production increases with increasing SO₃ mass in H_2SO_4 making tower input gas, both per kg-mole of dry 1st catalyst bed feed gas. Acid plant water requirement increases commensurately.

264

Water requirement also increases with:

(a) decreasing $H_2O(g)$ concentration in moist acid plant feed gas

and

(b) increasing specified mass% H_2O in product acid.

Problem

23.1 The moist gas entering a Fig. 23.1 acid plant contains 6 volume% H₂O(g) and 94 volume% dry 1st catalyst bed feed gas.

The dry portion of input gas contains 12 volume% SO₂, 13.2 volume% O₂ and 74.8 volume% N₂.

This gas is:

- (a) dehydrated with strong sulfuric acid
- (b) oxidized in 3 catalyst beds
- (c) sent to H_2SO_4 making.

The H₂SO₄ making tower input gas (i.e. cooled 3rd catalyst bed exit gas) contains:

per kg-mole of dry 1st catalyst bed feed gas (Problem 16.1).

The plant is producing 98.5 mass% H₂SO₄, 1.5 mass% H₂O sulfuric acid.

All the input $H_2O(g)$ and all the SO₃ entering the H_2SO_4 making tower end up in the plant's acid product.

Calculate:

- (a) the mass of H_2SO_4 produced
- (b) the mass of sulfuric acid produced
- (c) the mass of input water needed to make this sulfuric acid

all per kg-mole of dry 1st catalyst bed feed gas.

Calculate also the flows of these materials, kg per hour, when 100 000 Nm³ per hour of dry 1st catalyst bed feed gas are entering the acid plant.

Plant	S1	M2
input gas flowrate,	296	110
thousand Nm ³ /hour		
estimated SO ₃ utilization		99.9
efficiency		
Packed bed details		
number of packed beds	1	1
height * diameter, m	9.85×8.3	18.5×6.5
construction material	310/304 stainless steel	brick lined carbon steel
ceramic nacking	7.5 cm saddles	51 & 7.6 cm saddles
packing height, m	2.44	4
acid distributor type	trough and downcomer	buried nine distributor
mist eliminator type	candles	hanging fiber bed
exit gas mist	cuntrics	hanging noor ood
concentration, g/Nm ³		
acid flowrate, m ³ /hour	1060	762
Temperature data, K		
inlet gas	408	463
outlet gas	355	345
inlet acid	355	345
outlet acid	365	356
acid cooling method		plate heat exchanger
Gas composition in, vol.%		
SO3	0.745	0.42
SO ₂	0.04	0.01
O ₂	3.9	5.14
CO ₂	0	
N ₂	95.3	
Gas composition out, vol.%		0
503 SO-	0.04	
0.	2.07	5.16
	5.97	5.10
N.	96.0	
1*2	po tail gas sombhing	NaOH scrubbing
	no tan gas scrubbing	NaOH scrubbing
Acid comp., mass% H ₂ SO ₄		
into tower	98.4	98.5
out of tower	98.5	98.5
		20 -
Acid plant products,	98.5	98.5
mass% H ₂ SO ₄		

 Table 23.2. Details of packed bed H₂SO₄-from-SO₃ plants.

The uata are for FINAL R2504	a making in double contact plants.	
Cumerio 1 (Bulgaria)	Cumerio 2 (Bulgaria)	M6
160	150	191
99,98	99.98	99.9
1	1	1
10.2 ~ 7	21.02×7	20.5×7.1
hrigh lined earbon steel	21.02×7	brick lined carbon steel
		7 Com anddlar
$7.6 \approx 5.1$ cm saddles	5.1 cm saddles	
3.5	8.5	3./
Lurgi pipes and tubes	distribution plates	troughs and downcomers
high efficiency candles	candle type	high efficiency candles
750	700	707
453	433	505
355	353	350
355	333	350
384	353	372
shell and tube	shell and tube	shell and tube
0.56	0.45	0.51
0.01	0.014	0.05
8.06	6.12	13.40
0.36	0.31	
91.01	93.11	remainder (inerts)
0.0022	0.0018	
0.027	0.017	0.05
81	612	13.4
0.36	0.31	
91 51	93.55	
no scrubbing	no serubbing	no scrubbing
no scrubbing	no scrubbing	no serubbing
08 5	08.2	08 5
90.5	90.5	98.6
20.22	70.31	20.0
04.08.5	04.09.5	03, 00, 01, 00, 00, 00, 00, 00, 00, 00, 00
94-98.5	94-98.3	93, 99 Oleum (20%)

Plant	M4	Asarco Hayden
input gas flowrate,	158	170
thousand Nm ³ /hour		
estimated SO ₃ utilization	99.9	99.9
efficiency		
Packed bed details		
number of packed beds	1	1
height * diameter, m	20.4 × 7.5 (OD)	17.8×6.7
construction material	brick lined carbon steel	brick lined carbon steel
ceramic packing	5.1 & 7.6 cm saddles	7.6 cm saddles
packing height, m	5.9	3.66
acid distributor type	submerged distributor pipe	SX troughs
mist eliminator type	Brink mist eliminator (C fiber)	candles
exit gas mist concentration, g/Nm ³	<0.05	
acid flowrate, m ³ /hour	940	450
Townsertung Jota V		
inlet gas	453	155
outlet gas	455	455
inlet acid	350	355
outlet acid	350	277
acid cooling method	500	577
Gas composition in, vol.%		
SO ₃	1.1	0.6
SO ₂	0.025	0.05
O ₂	8.7	7.77
CO ₂	3.3	1.2
N ₂	remainder	90.4
Cas composition out vol %		
SO ₂		
SO ₂	0.026	0.05
O_2	8.8	0.03
CO_{2}	3 3	1.2
N2	remainder	90.9
- 12	no scrubbing	no scrubbing
	no solubbilig	no seraboling
Acid comp., mass% H ₂ SO ₄		
into tower	98.5	98.0
out of tower		98.5
Acid plant products, mass% H₂SO₄	98.5	93/98

Table 23.2 (cont.). Details of packed bed H₂SO₄-from-SO₃ plants.

Phelps Dodge Miami	M1
204	50
204	50
00.0	00.0
99.9	99.9
1	1
21.5×8.5	8.5 × 4
carbon steel shell	brick lined carbon steel
5.1 cm saddles and intalox saddles	7.6 cm saddles
5.3	4
nine and nerforated arms	nine
high efficiency candles	mesh pads (tent and flat)
lingit efficiency candles	mesh pads (tent and nat)
050	227
930	227
516	472-494
348	339-366
348	347-358
375	358-375
	shell and tube
3	
0.15	0.008-0.012
7 25	10.2-12.2
1 1	
28 5	
88.5	
0	
U 0.155	0.008.0.012
0.155	0.008-0.012
7.475	10.2-12.2
1.134	1.0
91.236	
scrubbing available, if needed	no scrubbing
-	
98.5	98.5
98.8	98.8
94.5	93.5
21.0	22.0

The data are for FINAL H₂SO₄ making in double contact plants.

Chapter 24

Acid Temperature Control and Heat Recovery

 H_2SO_4 is made by the reaction of $SO_3(g)$ with $H_2O(\ell)$ in strong sulfuric acid, i.e.:

		350-38	0 K	
$SO_3(g)$	+ $H_2O(\ell)$	\rightarrow	$H_2SO_4(\ell)$	(1.2).
in catalytic	in strong		in strengthened	
oxidation	sulfuric acid		sulfuric acid	
exit gas				

.

The reaction is exothermic. It releases about 130 MJ of heat per kg-mole of $SO_3(g)$.

A result of this is that H_2SO_4 making's output acid is ~25 K warmer than its inlet acid. Fig. 24.1 describes the process.

24.1 Objectives

The objectives of this chapter are to:

- (a) show how Fig. 24.1's output acid temperature is calculated
- (b) describe the factors which affect this temperature
- (c) indicate how output acid is cooled for recycling and shipping
- (d) describe how heat-in-acid is recovered as steam.

24.2 Calculation of Output Acid Temperature

This section shows how Fig. 24.1's output acid temperature is calculated. It uses:

(a) Fig. 24.1's temperatures and acid compositions

to cooling, dilution and recycle or market

Fig. 24.1. Fig. 23.1's single contact H_2SO_4 making tower. Its temperatures and gas compositions are used in Section 24.1 and 24.2's calculations. The calculations assume that all input $SO_3(g)$ reacts to form $H_2SO_4(\ell)$. Note that <u>output gas</u> temperature = <u>input acid</u> temperature. (#Hay *et al.*, 2003).

- (b) Fig. 24.1's input and output gas quantities
- (c) mass and enthalpy balances
- (d) Appendix G's enthalpy vs. temperature equations
- (e) $H_2SO_4(\ell)-H_2O(\ell)$ enthalpy of mixing Eqn. (24.2).

Appendix W calculates Fig. 24.1's input and output H_2SO_4 and H_2O masses. They are listed in Table 24.1.

24.2.1 $H_2SO_4(\ell)$ - $H_2O(\ell)$ enthalpy-of-mixing

Mixing of $H_2SO_4(\ell)$ and $H_2O(\ell)$ releases heat. This means that the enthalpy of sulfuric acid is lower than the combined enthalpies of its components.

Calorimetric measurements indicate that the enthalpy of mixing $H_2SO_4(\ell)$ and $H_2O(\ell)$ is given by the equation:

 $\Delta H_{\underset{H_2SO_4}{\text{mix}}} = -1.82 * \underset{\text{sulfuric acid}}{\text{mass\% H}_2O \text{ in}}$ (24.1) MJ per kg-mole of H_2SO_4

(for acid containing up to ~10 mass% H₂O [Duecker and West, 1966]).

Table 24.1. Fig. 24.1's inputs and outputs. Input and output kg-mole of SO₃, SO₂, O₂ and N₂ are from Fig. 24.1. Input and output H₂SO₄ and H₂O masses are calculated in Appendix W. They are all used to calculate Fig. 24.1's output acid temperature. The H^{*} values have been calculated by the equations in Appendix G. (kg-mole H₂SO₄ = kg H₂SO₄/98. kg-mole H₂O = kg H₂O/18)

Substance	mass, kg [#]	kg-mole [#]	specified temperature, K Fig. 24.1	H [•] , MJ per kg-mole of substance
SO ₃ (g) in		0.098	480	-386.31
$SO_2(g)$ in		0.002	480	-289.53
$O_2(g)$ in		0.061	480	5.208
$N_2(g)$ in		0.790	480	5.131
$H_2SO_4(\ell)$ in	360.237	3.676	350	-806.06##
$H_2O(\ell)$ in	5.486	0.305	350	-281.91
SO ₂ (g) out		0.002	350	-296.24
O ₂ (g) out		0.061	350	0.876
$N_2(g)$ out		0.790	350	1.088
$H_2SO_4(\ell)$ out	369.827	3.774	?	? ***
$H_2O(\ell)$ out	3.736	0.208	?	?

[#]per kg-mole of 1st catalyst bed feed gas. ^{##}H, as described by Eqn. (24.2) with <u>1.5 mass% H₂O</u> in <u>input</u> acid. ^{###}H, as described by Eqn. (24.2) with <u>1.0 mass% H₂O</u> in <u>output</u> acid.

The enthalpy of H₂SO₄-in-acid may, therefore, be represented by:

$$H_{T} = H_{T}^{\circ} -1.82 * \text{mass\%} H_{2}\text{O in}$$
(24.2)
$$H_{2}\text{SO}_{4}(\ell) \qquad \text{sulfuric acid}$$

(MJ per kg-mole of H_2SO_4).

This equation gives all the heat of mixing to H_2SO_4 rather than to $(H_2SO_4 + H_2O)$. It allows H_T° to be used without change in our acid temperature calculations. $H_2O(\ell)$

24.2.2 H_2SO_4 making enthalpy balance

The H₂SO₄ making tower enthalpy balance may be written:

It is simplified by assuming that:

conductive, convective = 0 and radiative heat loss

This gives the final enthalpy equation:

$$\begin{array}{l} \text{output acid} \\ \text{enthalpy} \end{array} = \left\{ \begin{array}{l} \text{input gas} \\ \text{enthalpy} \end{array} + \begin{array}{l} \begin{array}{l} \text{input acid} \\ \text{enthalpy} \end{array} \right\} \quad - \begin{array}{l} \text{output gas} \\ \text{enthalpy} \end{array}$$
(24.4).

24.2.3 Output acid enthalpy

Eqn (24.4) may be expanded to:

output acid enthalpy = kg-mole SO₃(g) in *
$$H_{480 K}^{\circ}_{SO_3(g)}$$

+ kg-mole SO₂(g) in * $H_{480 K}^{\circ}_{SO_2(g)}$
+ kg-mole O₂(g) in * $H_{480 K}^{\circ}_{SO_2(g)}$
+ kg-mole N₂(g) in * $H_{480 K}^{\circ}_{N_2(g)}$
+ kg-mole H₂SO₄(ℓ) in * $H_{350 K}^{\circ}_{H_2SO_4(\ell)}$
+ kg-mole H₂O(ℓ) in * $H_{350 K}^{\circ}_{H_2O(\ell)}$
- kg-mole SO₂(g) out * $H_{350 K}^{\circ}_{SO_2(g)}$
- kg-mole O₂(g) out * $H_{350 K}^{\circ}_{O_2(g)}$
- kg-mole N₂(g) out * $H_{350 K}^{\circ}_{N_2(g)}$
(24.5)

where the quantities and enthalpies are those listed in Table 24.1.

With Table 24.1's numerical values:

output acid enthalpy =
$$-3094.5 \frac{\text{MJ per kg-mole of}}{1^{\text{st}} \text{ catalyst bed feed gas}}$$
 (24.6).

24.2.4 Output acid temperature

Output acid enthalpy is related to the output quantities and enthalpies of $H_2SO_4(\ell)$ and $H_2O(\ell)$ by the equation:

Output acid
enthalpy = kg-mole output H₂SO₄ * H_{T out}<sub>H₂SO₄ (
$$\ell$$
)
+ kg-mole output H₂O * H^o_{T out}_{H₂O(ℓ)} (24.7).</sub>

This equation is combined with Table G.1 and Eqn. (24.2) to give:

Output acid
enthalpy =
$$\begin{array}{l} \text{kg-mole} \\ \text{utput} \\ \text{H}_2\text{SO}_4 \end{array} * \left(\begin{array}{c} 0.1485 * T_{out} - 858.3 - 1.82 * \begin{array}{c} \text{mass}\% \ \text{H}_2\text{O} \\ \text{in output} \\ \text{acid} \end{array} \right) \\ \text{kg-mole} \\ + \begin{array}{c} \text{output} \\ \text{H}_2\text{O} \end{array} * \left(\begin{array}{c} 0.07568 * \ T_{out} - 308.4 \end{array} \right) \\ \text{Kg-mole} \end{array} \right)$$

$$(24.8)$$

where:

 $(0.1485 * T_{out} - 858.3 - 1.82 * mass\% H_2O$ in output acid)

is the enthalpy (H) of $H_2SO_4(\ell)$ in acid at temperature T_{out} , Appendix G and Eqn. (24.2) and where:

0.07568 * T_{out} - 308.4

is the enthalpy (H°) of $H_2O(\ell)$ at temperature T_{out} , Appendix G (both MJ/kg-mole).

24.2.5 Final enthalpy equation

Substitution of Table 24.1's values of:

kg-mole output $H_2SO_4 = 3.774$

kg-mole output $H_2O = 0.208$

(per kg-mole of 1st catalyst bed feed gas)

and:

mass% H_2O in output acid = 1.0

gives:

$$-3094.5 = 3.774 \frac{\text{kg-mole}}{\text{H}_2\text{SO}_4(\ell)} * \left(0.1485 * \text{T}_{out} - 858.3 - 1.82 * 1.0 \frac{\text{mass}\% \text{H}_2\text{O}}{\text{in output}} \right) \\ + 0.208 \frac{\text{kg-mole}}{\text{H}_2\text{O}(\ell)} * (0.07568 * \text{T}_{out} - 308.4)$$
(24.9)

from which:

 $T_{out} = T_{outlet acid} = 374 \text{ K}$

(as is readily confirmed by inserting 374 K in the right side of Eqn. (24.9).

Perhaps the simplest way to solve Eqn. (24.9) is by the following small Excel Goal Seek calculation.

	A	В	С	D	E	F
1	kg-mole $H_2SO_4(\ell)$ out =	3.774				
2	kg-mole $H_2O(\ell)$ out =	0.208				
3						
4	T _{out} =	374				
5	Output acid enthalpy =	-3094.5	=B1*(0.1485*B4	4 - 858.3 - 1.82*	1) + B2*(0.0756	8*B4 - 308.4)

ToolsGoal SeekSet cell:B5To value:-3094.5By changing cell:B4OK, OK.

24.2.6 Result

The resulting 374 K output acid temperature is 24 K higher than Table 24.1's 350 K input acid temperature. The next few sections examine the factors that affect this output acid temperature.

24.3 Effect of Input Acid Temperature

Fig. 24.2 shows the effect of H₂SO₄ making's input acid temperature on its output acid

temperature.

Output acid temperature increases with increasing input acid temperature, but the increase is less than 1:1. This is because:

- (a) output acid mass > input acid mass, Table 24.1
- (b) output gas temperature (hence output gas enthalpy) increases with increasing input acid temperature (Fig. 24.1) leaving less enthalpy for the output acid.

Fig. 24.2. Effect of Fig. 24.1's input acid temperature on its output acid temperature (with Table 24.1's input and output masses). A straight line relationship is shown. Note that the slope is less than 1, as explained in Section 24.3.

24.4. Effect of Input Gas Temperature

Fig. 24.3 shows the effect of H_2SO_4 making's input <u>gas</u> temperature on its <u>output acid</u> temperature. Output acid temperature increases slightly with increasing input gas temperature.

This is because hotter input gas brings slightly more enthalpy to H_2SO_4 making, giving slightly more enthalpy and a slightly higher temperature to the output acid.

Fig. 24.3. Effect of input gas temperature on Fig. 24.1's output acid temperature (with Table 24.1's input and output masses). Output <u>acid</u> temperature increases slightly with increasing input gas temperature. Output <u>gas</u> temperature remains unaltered at the 350 K input acid temperature.

24.5 Effect of Output Acid Composition on Output Acid Temperature

Fig. 24.4 shows the effect of output acid composition on output acid temperature. Output acid temperature increases with increased mass% H_2SO_4 in output acid. This is because:

 (a) the amount of circulating acid decreases with increasing mass% H₂SO₄ in output acid, Fig. W.1

while:

(b) heat release by Reaction (1.2) remains constant

(both per kg-mole of 1st catalyst bed feed gas).

24.6 Effect of Input Gas SO₃ Concentration on Output Acid Temperature

Fig. 24.5 shows the effect of Fig. 24.1's input gas SO_3 concentration on its output acid temperature. Output acid temperature <u>decreases</u> slightly with increasing SO_3 -in-inputgas concentration. The smallness of the decrease shows why H_2SO_4 making can accept varying input SO_3 concentrations with an almost constant output acid temperature.

Of course, output acid temperature will increase if mass% H_2SO_4 in output acid is allowed to increase with increasing volume% SO_3 in H_2SO_4 making tower input gas, Fig. 24.4. This is the case when input acid flowrate and mass% H_2SO_4 are kept constant while volume% SO_3 in input gas increases. This is usual industrial practice.

Fig. 24.4. Effect of specified output acid mass% H_2SO_4 on Fig. 24.1's output acid temperature. Output acid temperature increases with increasing output acid % H_2SO_4 as explained in Section 24.6. $\frac{9}{H_2SO_4}$ in output acid is increased by slowing the rate at which acid is cycling through the H_2SO_4 making tower (and vice versa).

Fig. 24.5. Effect of $SO_3(g)$ -in-input-gas concentration on H_2SO_4 making output acid temperature. Output acid temperature decreases slightly with increasing $SO_3(g)$ concentration. The volume% SO_3 values have been calculated as described in Chapter 16 starting with 8, 9, 10, 11 and 12 volume% SO_2 in 1st catalyst bed feed gas.

24.7 Acid Cooling

The above discussion indicates that acid is heated by Reaction (1.2) as it cycles through the H_2SO_4 making tower. It is evident from this that the recycling acid must be cooled to prevent the system from overheating.

This is done by passing the acid through water cooled:

(a) shell and tube (Figs. 9.5 and 24.6) (Chemetics, 2004)

and

(b) plate and frame (Haslego, 2005)

heat exchangers. Both involve counter current, indirect heat exchange between:

cool water

and:

warm acid.

Fig. 24.6. Inside an acid cooler. Fig. 9.5 gives an external view. Tubes start through the tube 'sheet', shown here. They extend almost to the far end of the cooler where there is another tube 'sheet'. Cool water enters at this end and flows through the tubes to the far end. Between the tube 'sheets', the tubes are surrounded by warm acid moving turbulently around them. Heat transfers from the warm acid to the cool water (through the tube walls). The tube entering from the right contains a thermocouple. The polymer tubes in the foreground surround metal rods. The rods are between the tube 'sheets'. An electrical potential applied between them and the water tubes anodically protects the tubes against acid side corrosion.

The cooled acid is recycled to the H_2SO_4 making tower or sent to product storage. The warmed water is cooled with atmospheric air and recycled to the acid coolers.

Dehydration tower acid is cooled the same way.

24.8 Target Acid Temperatures

Sulfuric acid:

- (a) corrosivity
- (b) H_2SO_4 , SO_3 and H_2O vapor pressures

increase with increasing acid temperature. It is important, therefore, that acid temperature be kept relatively cool.

Conversely, the rate of H_2SO_4 making Reaction (1.2) decreases with decreasing acid temperature – which means that input acid temperature must not be too cool. 380 K is a typical output acid temperature (~100 K warmer in acid heat to steam recovery plants, next section).

24.9 Recovery of Acid Heat as Steam

The acid cooling described in Section 24.7 is straightforward and efficient but it doesn't make use of hot acid's energy.

Recent acid plants rectify this by recovering much of the acid's heat as steam (for electricity production etc.). All major acid plant designers are working on this technology (Friedman and Friedman, 2004).

Fig. 24.7 describes one version of the process. It is for double contact (Fig. 9.6) acidmaking.

Its core feature is passage of:

hot (~485 K) intermediate H₂SO₄ making tower exit acid

through the tubes of a:

shell and tube water to steam boiler.

The products of the process are:

(a) cool new acid

Fig. 24.7. Schematic of acid heat to steam energy recovery system, after Puricelli *et al.*, 1998. It is for intermediate H_2SO_4 making, Fig. 9.6. Note (i) the double packed bed H_2SO_4 making tower and (ii) boiler. Industrial acid heat recovery H_2SO_4 making towers are ~25m high and 10 m diameter. They produce 2000 to 4000 tonnes of H_2SO_4 per day. For photographs see Sulfur, 2004. large flows small flows.

(b) 10 bar (gage) steam.

24.9.1 Double packed bed H_2SO_4 making tower

A second key feature of Fig. 24.7's version of the process is its double packed bed H_2SO_4 making tower – through which:

strong SO3 gas ascends

strong sulfuric acid descends

around ceramic packing.

Bottom packed bed

The bottom packed bed is fed with slightly diluted return acid from the heat-from-acid boiler. H_2O in the acid reacts with ascending SO₃ gas to form H_2SO_4 by Reaction (1.2). Input acid composition and flowrate are controlled to give hot (~485 K) acid boiler feed, Fig. 24.7.

Top packed bed

The top packed bed is fed with cool acid from the final H_2SO_4 making tower. Its principal purpose is to absorb $H_2SO_4(g)$, $H_2O(g)$ and $SO_3(g)$ rising from the bottom bed's hot acid.

24.9.2 Materials of construction

Passage of hot, strong sulfuric acid though tubes surrounded by hot water and steam requires strongly corrosion resistant materials. Accidental mixing of water and strong acid causes rapid corrosion throughout the H_2SO_4 making system.

Acid flowrates also have to be kept at carefully prescribed velocities.

Alloys currently used in heat-from-acid energy recovery systems are:

anodically protected Saramet® (Aker Kvaerner, www.chemetics.ca)

310 stainless steel (Monsanto Enviro-Chem, www.enviro-chem.com)

(Friedman and Friedman, 2004).

Outokumpu builds a similar heat-from-acid recovery system. It uses a Venturi absorber in place of Fig. 24.7's bottom packed bed (Outokumpu, 2005).

24.10 Summary

 $H_2SO_4(\ell)$ is made by the reaction of $SO_3(g)$ with the $H_2O(\ell)$ in strong sulfuric acid.

Heat is released by the reaction, so that H_2SO_4 making's output sulfuric acid is ~25 K warmer than its input acid.

Output acid temperature increases markedly with increasing input acid temperature and decreasing acid circulation rate. Corrosion rates increase with increasing temperature so that excessive temperatures must be avoided.

They are avoided by cooling the recycle acid in water cooled 'shell and tube' or 'plate and frame' heat exchangers.

Acid plants (especially sulfur burning plants) are now often built with 'acid heat to steam' energy recovery systems. These significantly increase acidmaking energy efficiency.

References

Chemetics (2004) Acid coolers, sulphuric acid technology. Brochure distributed at Sulphur 2004 conference, Barcelona, October 24-27, 2004. www.chemetics.com Also personal communication, 2005.

Duecker, W.W. and West, J.R. (1966) *The Manufacture of Sulfuric Acid*, Reinhold Publishing Corporation, New York, 10 11.

Friedman, L.J. and Friedman, S.J. (2004) The wet gas sulphuric acid plant (part 2). *Sulphur*, **293**, July-August 2004, 29 35. www.britishsulphur.com

Haslego, C. (2005) Compact heat exchangers in the phosphate industry, preprint of paper presented at 29th Annual Clearwater Conference (AIChE), Clearwater Florida, June 4, 2005. www.aiche-cf.org www.alfalaval.com

Hay, S., Porretta, F. and Wiggins, B. (2003) Design and start-up of acid plant tail gas scrubber. In Copper 03-Cobre 03, Proceedings of the Fifth International Conference, Vol. IV (Book 1) Pyrometallurgy of Copper, the Hermann Schwarze Symposium on Copper Pyrometallurgy, Smelting Operations, Ancillary Operations and Furnace Integrity, ed. Diaz, C., Kapusta, J. and Newman, C., The Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 555 566. www.metsoc.org

Puricelli, S.M., Grendel, R.W. and Fries, R.M. (1998) Pollution to power, a case study of the Kennecott sulfuric acid plant. In *Sulfide Smelting '98* ed. Asteljoki, J.A. and Stephens, R.L. TMS, Warrendale, PA 451 462. www.tms.org

Outokumpu (2005) HEROS, the Outokumpu Technology Heat Recovery System in Sulfuric Acid Plants, brochure distributed at 29th Annual Clearwater Conference, Clearwater, Florida, June 3 and 4, 2005. www.outokumpu.com

Sulphur (2004) Sulphuric acid equipment update. *Sulphur* **292** (May-June 2004) 33 42. www.britishsulphur.com

Problems

- 24.1 The inputs to an H_2SO_4 making tower are:
 - (a) last catalyst bed exit gas (480 K) containing:

0.1183	kg-mole	SO_3
0.0017	н	SO_2
0.0728	11	O_2
0.7480	"	N_2

per kg-mole of 1st catalyst bed feed gas

(b) 98.6 mass% H_2SO_4 , 1.4 mass% H_2O sulfuric acid, 350 K.

The outputs are:

(c) exit gas (350 K) containing:

0.0000 kg	g-mol	le SO ₃
0.0017	**	SO_2
0.0728	н	O_2
0.7480		N_2

per kg-mole of 1st catalyst bed feed gas.

(d) 99.2 mass% H_2SO_4 , 0.8 mass% H_2O sulfuric acid.

Calculate the tower's:

- 1. H_2SO_4 and H_2O input masses, kg
- 2. H_2SO_4 and H_2O output masses, kg
- 3. total enthalpy of the inputs, MJ
- 4. enthalpy of the output gas

(all per kg-mole of 1st catalyst bed feed gas).

Calculate also:

5. the temperature of the tower's output acid (assume that there are no convective, conductive plus radiative heat losses from the tower).

Hints:

Use:

- (a) matrix Table W.1 (with appropriate changes) to calculate the $\rm H_2SO_4$ and $\rm H_2O$ masses
- (b) Table 24.1 (with appropriate changes) to calculate the total input enthalpy and gas output enthalpy
- (c) Section 24.2 to calculate the output acid temperature.

286

Sulfuric Acid Properties

A.1 Sulfuric Acid Specific Gravity at Constant Temperature

Fig. A.1. Specific gravity of sulfuric acid between 0 and 100 mass% H₂SO₄. Source: *International Critical Tables, Vol. III* (1928) McGraw-Hill Book Co., Inc., New York, 56 57. www.mcgraw-hill.com

303 K	313 K	323 K	333 K	353 K	373 K
1.8205	1.8107	1.8013	1.7922	-	-
1.8242	1.8145	1.8050	1.7958	-	-
1.8261	1.8163	1.8068	1.7976	-	-
1.8264	1.8166	1.8071	1.7977	-	-
1.8255	1.8157	1.8060	1.7965	-	-
1.8236	1.8137	1.8040	1.7944	-	-
1.8210	1.8109	1.8011	1.7914	-	-
1.8176	1.8074	1.7974	1.7876	1.7681	1.7485
1.8136	1.8033	1.7932	1.7832	1.7633	1.7439
1.8090	1.7986	1.7883	1.7783	1.7581	1.7388
1.8038	1.7933	1.7829	1.7729	1.7525	1.7331
1.7979	1.7874	1.7770	1.7669	1.7464	1.7269
1.7914	1.7809	1.7705	1.7602	1.7397	1.7202
1.7842	1.7736	1.7632	1.7529	1.7324	1.7129
1.7763	1.7657	1.7552	1.7449	1.7245	1.7050
1.7678	1.7571	1.7466	1.7364	1.7161	1.6966
1.7585	1.7479	1.7375	1.7274	1.7072	1.6878
1.7487	1.7382	1.7279	1.7179	1.6979	1.6787
	303 K 1.8205 1.8242 1.8261 1.8264 1.8255 1.8236 1.8210 1.8176 1.8136 1.8090 1.8038 1.7979 1.7914 1.7842 1.7763 1.7678 1.7585 1.7487	303 K 313 K 1.8205 1.8107 1.8242 1.8145 1.8261 1.8163 1.8264 1.8166 1.8255 1.8157 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.8137 1.8236 1.809 1.8176 1.8074 1.8136 1.8033 1.8090 1.7986 1.8038 1.7933 1.7979 1.7874 1.7914 1.7809 1.7842 1.7736 1.7678 1.7571 1.7678 1.7571 1.7585 1.7479 1.7487 1.7382	303 K 313 K 323 K 1.8205 1.8107 1.8013 1.8242 1.8145 1.8050 1.8261 1.8163 1.8068 1.8264 1.8166 1.8071 1.8255 1.8157 1.8060 1.8236 1.8137 1.8060 1.8236 1.8137 1.8040 1.8236 1.8137 1.8040 1.8210 1.8109 1.8011 1.8176 1.8074 1.7974 1.8136 1.8033 1.7932 1.8090 1.7986 1.7883 1.8038 1.7933 1.7829 1.7979 1.7874 1.7770 1.7914 1.7809 1.7055 1.763 1.7657 1.7632 1.7678 1.7571 1.7466 1.7585 1.7479 1.7375 1.7487 1.7382 1.7279	303 K 313 K 323 K 333 K 1.8205 1.8107 1.8013 1.7922 1.8242 1.8145 1.8050 1.7958 1.8261 1.8163 1.8068 1.7976 1.8264 1.8166 1.8071 1.7977 1.8255 1.8157 1.8060 1.7965 1.8236 1.8137 1.8040 1.7944 1.8210 1.8109 1.8011 1.7914 1.8176 1.8074 1.7974 1.7876 1.8136 1.8033 1.7932 1.7832 1.8090 1.7986 1.7883 1.7783 1.8038 1.7933 1.7829 1.7729 1.7979 1.7874 1.7770 1.7669 1.7914 1.7809 1.7705 1.7602 1.7842 1.7736 1.7632 1.7529 1.7678 1.7571 1.7466 1.7364 1.7585 1.7479 1.7375 1.7274 1.7487 1.7382 1.7279	303 K 313 K 323 K 333 K 353 K 1.8205 1.8107 1.8013 1.7922 - 1.8242 1.8145 1.8050 1.7958 - 1.8261 1.8163 1.8068 1.7976 - 1.8264 1.8163 1.8068 1.7977 - 1.8255 1.8157 1.8060 1.7965 - 1.8236 1.8137 1.8040 1.7944 - 1.8210 1.8109 1.8011 1.7914 - 1.8176 1.8074 1.7974 1.7876 1.7681 1.8136 1.8033 1.7932 1.7832 1.7633 1.8090 1.7986 1.7883 1.7783 1.7581 1.8038 1.7933 1.7829 1.7729 1.7525 1.7979 1.7874 1.7770 1.7669 1.7464 1.7914 1.7809 1.7755 1.7602 1.7397 1.7678 1.7657 1.7552 1.7449 1.7245

Table A.1. Specific Gravity of sulfuric acid at various temperatures. Source: InternationalCritical Tables, Vol. III (1928) McGraw-Hill Book Co., Inc., New York, 56 57.www.mcgraw-hill.com

A.2 Specific Gravity of Sulfuric Acid at Elevated Temperatures

Fig. A.2. Sulfuric acid freezing point temperature versus mass % H_2SO_4 in acid. The dashed lines show metastable phases. Source: Gable, C.M., Betz, H.F. and Maron, S.H. (1950) Phase equilibria of the system sulfur trioxide-water, *Journal of the American Chemical Society*, Vol. 72, 1445 1448. www.chemistry.org

Fig. A.3. Sulfuric acid freezing point temperature versus mass % H_2SO_4 in acid (90-100%). Source: Gable, C.M., Betz, H.F. and Maron, S.H. (1950) Phase equilibria of the system sulfur trioxide-water, *Journal of the American Chemical Society*, Vol. 72, 1445 1448. www.chemistry.org

Table A.2. Sulfuric Acid Freezing Point Data. Sulfuric acid freezing point temperature versus mass % H_2SO_4 in acid. Source: Gable, C.M., Betz, H.F. and Maron, S.H. (1950) Phase equilibria of the system sulfur trioxide-water, *Journal of the American Chemical Society*, Vol. 72, 1445 1448. www.chemistry.org

H ₂ SO ₄	Temperature	H ₂ SO ₄	Temperature	H ₂ SO ₄	Temperature
(mass%)	(K)	(mass%)	(K)	(mass%)	(K)
1.81	272.41	54.16	243.11	84.27	281.16
2.41	271.94	55.37	243.90	84.32	281.57
5.37	270.73	56.36	244.38	84.37	281.38
8.42	269.16	57.64	244.64	84.90	281.28
10.71	267.86	58.09	244.59	85.32	281.10
13.30	265.99	60.04	243.63	86.69	278.24
16.95	262.71	60.76	243.14	86.85	278.27
20.48	258.52	62.78	240.34	87.94	275.40
23.91	253.05	64.46	236.40	88.63	273.00
26.23	248.34	64.69	236.44	89.00	271.64
27.89	244.19	65.68	236.02	89.83	268.36
29.79	238.66	67.47	234.62	90.63	263.82
31.83	231.82	68.98	231.78	91.64	257.68
32.62	228.02	69.70	230.30	92.38	252.28
33.53	223.56	69.74	230.24	92.57	249.83
34.46	218.38	71.18	232.55	93.12	244.76
35.28	213.77	72.32	233.28	93.63	239.16
35.70	211.09	73.13	233.49	93.77	238.14
35.77	211.02	73.68	233.13	93.81	238.39
36.20	211.67	74.33	238.43	94.21	244.06
37.79	214.33	75.08	244.11	94.77	248.54
38.73	215.88	75.91	250.19	95.24	253.37
40.50	217.26	76.59	254.79	96.03	258.09
42.41	219.27	77.04	257.88	96.46	263.05
42.64	219.52	77.95	263.18	97.23	267.57
43.49	222.05	79.33	269.79	97.79	271.02
44.41	224.53	79.71	271.60	98.40	273.46
46.19	229.35	80.34	274.24	98.69	275.80
47.21	231.51	81.40	277.41	99.07	277.97
47.75	233.14	81.69	277.44	99.85	282.17
49.47	236.37	82.72	280.13	99.98	283.37
50.81	238.80	83.61	281.21	100.00	283.35
53.08	242.03	83.90	281.40		

Table A.3. Metastable Sulfuric Acid Freezing Point Data. Metastable sulfuric acid freezingpoint temperature versus mass% H_2SO_4 in acid. Source: Gable, C.M., Betz, H.F. and Maron, S.H.(1950) Phase equilibria of the system sulfur trioxide-water, Journal of the American ChemicalSociety, Vol. 72, 1445 1448.www.chemistry.org

H ₂ SO ₄ (mass%)	Temperature (K)	H ₂ SO ₄ (mass%)	Temperature (K)	H ₂ SO ₄ (mass%)	Temperature (K)
35.77	211.02	64.46	236.40	69.74	230.24
36.31	207.69	66.27	231.34	70.01	229.50
36.86	203.78	67.45	226.86	70.89	226.71
37.12	201.79	67.80	225.54	71.70	223.65
37.55	199.90	67.91	225.99	72.40	220.15
38.31	201.61	68.56	221.20	72.42	220.85
38.58	203.09	68.71	228.82	72.78	223.92
38.88	204.59	69.74	230.24	73.36	228.85
40.08	209.73			73.68	233.13
39.56	207.71				
41.18	214.41				
41.69	216.28				
42.64	219.52				

A.4. Oleum Specific Gravity

Fig. A.4. Specific Gravity of oleum versus mass% equivalent H_2SO_4 . Source: *Chemical Plant Control Data*, 8th Ed. 1963, Chemical Construction Corporation, New York, 43-44.

Fig. A.5. Electrical conductivity versus mass% H_2SO_4 in sulfuric acid. Source: Roughton, J.E. (1951) The electrical conductivity of aqueous solutions of sulphuric acid from 25°C to 155°C, J. Appl. Chem., I, Supplementary Issue, No. 2., 141 144.

A.6 Absolute Viscosity of Sulfuric Acid

Fig. A.6. Absolute viscosity of sulfuric acid versus mass% H_2SO_4 in sulfuric acid. For viscosity in kg m⁻¹ s⁻¹, multiply cP by 0.001. Source: Bright, N.F., Hutchinson, H. and Smith, D., (1946) The viscosity and density of sulfuric acid and oleum, J. Soc. Chem. Ind. 65, 385 388.

A.5 Electrical Conductivity of Sulfuric Acid
Appendix B

Derivation of Equilibrium Equation (10.12)

This appendix examines catalytic oxidation of SO_2 in SO_2 , O_2 , N_2 feed gas by the reaction:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 (1.1).
in feed in feed
gas gas

It derives equilibrium Eqn. (10.12):

$$K_{E} = \left(\frac{\Phi^{E}}{100 - \Phi^{E}}\right) * \left(\frac{100 - \frac{1}{2} * e * \frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e * \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(10.12)

from Reaction (1.1)'s equilibrium equation:

$$K_{E} = \frac{P_{SO_{3}}^{E}}{P_{SO_{2}}^{E} * (P_{O_{2}}^{E})^{\frac{1}{2}}}$$
(10.3)

where:

 K_E = equilibrium constant, dependent only on temperature, bar $\frac{1}{2}$ $P_{SO_2}^E$, $P_{O_2}^E$, $P_{SO_3}^E$ = equilibrium partial pressures of SO₂, O₂ and SO₃, bar Φ^E = equilibrium % SO₂ oxidized, Section 10.1.1

 $e = volume\% SO_2 \text{ in Fig. 10.1 feed gas}$ remainder N₂* f = volume% O₂ in Fig. 10.1 feed gas }

 P_t = total equilibrium gas pressure, bar.

*CO2 and Ar behave like N2, Appendix F. The effects of SO3-in-feed-gas are examined in Appendix P.

B.1 Modified Equilibrium Equation

 $P_{SO_2}^E$, $P_{O_2}^E$ and $P_{SO_3}^E$ in Eqn. (10.3) are related to gas composition by the equations:

$$P_{SO_{2}}^{E} = X_{SO_{2}}^{E} * P_{t}$$
(B.1)

$$P_{0_2}^{E} = X_{0_2}^{E} * P_t$$
(B.2)

$$P_{SO_3}^{E} = X_{SO_3}^{E} * P_t$$
(B.3)

where X^E is equilibrium mole fraction of each gas and P_t is total equilibrium gas pressure. These three equations assume ideal gas behavior (based on the low pressure, ~ 1 bar, of industrial SO₂ oxidation).

Eqns. (10.3) and (B.1) to (B.3) combine to give:

$$K_{E} = \frac{X_{SO_{3}}^{E}}{X_{SO_{2}}^{E} * (X_{O_{2}}^{E})^{\frac{1}{2}}} * P_{t}^{-\frac{1}{2}}$$
(B.4).

B.2 Mole Fractions Defined

Mole fraction of SO₃ in SO₃, SO₂, O₂, N₂ gas is defined as:

$$X_{SO_3} = \frac{n_{SO_3}}{n_t} = \frac{n_{SO_3}}{n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2}}$$
(B.5)

where n_t is total kg-mole of gas and n_{SO_3} , n_{SO_2} , n_{O_2} and n_{N_2} and are kg-mole of SO₃, SO₂, O₂ and N₂ in the gas.

Likewise:

$$X_{SO_2} = \frac{n_{SO_2}}{n_t} = \frac{n_{SO_2}}{n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2}}$$
(B.6)

$$X_{O_2} = \frac{n_{O_2}}{n_1} = \frac{n_{O_2}}{n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2}}$$
(B.7).

The next six sub-sections use these equations to derive Eqn. (10.12) from Eqn. (B.4). Sulfur, oxygen and nitrogen balances are used.

B.3 Feed and Oxidized Gas Molar Quantities

The derivation is begun by:

(a) specifying that the Fig. 10.1 feed gas contains:

e	volume% SO ₂
f	volume% O_2
100 - e - f	volume% N ₂

(b) assuming 1 kg-mole of Fig. 10.1 feed gas.

B.3.1 Feed gas molar quantities

The molar quantity of SO_2 in 1 kg-mole of Fig. 10.1 feed gas is given by the equation:

kg-mole of SO_2 in 1 kg-	mole% SO_2 in feed gas	* 1 kg-mole of feed gas
mole of Fig. 10.1 feed gas	100%	T Kg-mole of feed gas.

Also, because mole% = volume% (Appendix E):

kg-mole of SO₂ in 1 kgmole of Fig. 10.1 feed gas = $\frac{\text{volume}\% \text{ SO}_2 \text{ in feed gas}}{100\%} * 1 \text{ kg-mole of feed gas}$ = $\frac{e}{100} * 1$ = $\frac{e}{100}$ (B.8). Likewise: kg-mole of O₂ in 1 kgmole of Fig. 10.1 feed gas = $\frac{f}{100}$ (B.9)

kg-mole of N₂ in 1 kg-
mole of Fig. 10.1 feed gas =
$$\frac{100 - e - f}{100} = 1 - \frac{e}{100} - \frac{f}{100}$$
 (B.10).

B.3.2 Oxidized gas molar quantities

Oxidized gas in the Fig. 10.1 catalyst bed contains:

n _{so3}	kg-mole SO_3
n _{so2}	kg-mole SO_2
n ₀₂	kg-mole O_2
n _{N2}	kg-mole N ₂

per kg-mole of Fig. 10.1 feed gas. n_{SO_3} , n_{SO_2} and n_{O_2} vary down the catalyst bed as $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation proceeds.

B.3.3 Molar balances

S, O and N molar balances are now used to relate Fig. 10.1's feed gas composition to oxidized gas molar quantities. The balances are all based on 1 kg-mole of feed gas.

S balance

The sulfur balance is:

$$\begin{array}{ll} \text{kg-mole S} \\ \text{in feed gas} \end{array} = \begin{array}{l} \text{kg-mole S in} \\ \text{oxidized gas} \end{array} \tag{B.11}.$$

1 mole of SO_3 and SO_2 each contain 1 mole of S, so Eqns. (B.11) and (B.8) may be combined to give:

$$1*\frac{e}{100} = 1*n_{SO_3} + 1*n_{SO_2}$$
(B.12)

or:

$$\frac{e}{100} = n_{SO_3} + n_{SO_2}$$
(B.13)

or:

$$n_{SO_2} = \frac{e}{100} - n_{SO_3}$$
(B.14)

where:

 $\frac{e}{100} = kg\text{-mole of feed SO}_2 \text{ in Fig. 10.1 feed gas}$ $n_{SO_3} \text{ and } n_{SO_2} = kg\text{-mole of SO}_3 \text{ and SO}_2 \text{ in oxidized gas}$ (all per kg-mole of Fig. 10.1 feed gas).

The oxygen balance is:

$$\begin{array}{ll} \text{kg-mole O} \\ \text{in feed gas} \end{array} = \begin{array}{l} \text{kg-mole O in} \\ \text{oxidized gas} \end{array} \tag{B.15}.$$

1 mole of SO₃ contains 3 moles of O while 1 mole of SO₂ and O_2 each contain 2 moles of O - so Eqns. (B.15), (B.8) and (B.9) become:

$$2*\frac{e}{100} + 2*\frac{f}{100} = 3*n_{so_3} + 2*n_{so_2} + 2*n_{o_2}$$
(B.16)

where $\frac{f}{100}$ = kg-mole of feed O₂ per kg-mole of Fig. 10.1 feed gas.

Dividing both sides of Eqn. (B.16) by 2 gives:

$$\frac{e}{100} + \frac{f}{100} = \frac{3}{2} * n_{SO_3} + n_{SO_2} + n_{O_2}$$
(B.17)

or:

$$n_{o_2} = \frac{e}{100} + \frac{f}{100} - \frac{3}{2} n_{SO_3} - n_{SO_2}$$
 (B.18).

Further, because
$$n_{SO_2} = \frac{e}{100} - n_{SO_3}$$
 (Eqn. B.14)

$$n_{0_2} = \frac{e}{100} + \frac{f}{100} - \frac{3}{2} n_{SO_3} - \left(\frac{e}{100} - n_{SO_3}\right)$$
 (B.19)

$$= \frac{f}{100} - \frac{1}{2} * n_{SO_3}$$
(B.20)

where $n_{SO_3} = kg$ -mole SO₃ in oxidized catalyst bed gas.

298

N balance

The nitrogen balance is:

$$\begin{array}{ll} \text{kg-mole N} \\ \text{in feed gas} \end{array} = \begin{array}{ll} \text{kg-mole N in} \\ \text{oxidized gas} \end{array} (B.21).$$

Of course, nitrogen doesn't react during SO_2 oxidation so that it enters and leaves the catalyst as N_2 (only). Each mole of N_2 contains 2 moles of N so that Eqns. (B.21) and (B.10) become:

$$2*\left(1-\frac{e}{100}-\frac{f}{100}\right) = 2*n_{N_2}$$
(B.22)

or:

$$n_{N_2} = 1 - \frac{e}{100} - \frac{f}{100}$$
(B.23)

where: $1 - \frac{e}{100} - \frac{f}{100} = kg$ -mole of feed N₂ per kg-mole of Fig. 10.1 feed gas.

Total kg-moles of oxidized gas

Total kg-mole of Fig. 10.1 oxidized gas (per kg-mole of Fig. 10.1 feed gas) is:

$$n_{T} = n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2}$$
 (B.24).

Combining this with Eqns. (B.14), (B.20) and (B.23) gives:

$$n_{T} = n_{SO_{3}} + \left(\frac{e}{100} - n_{SO_{3}}\right) + \left(\frac{f}{100} - \frac{1}{2} * n_{SO_{3}}\right) + \left(1 - \frac{e}{100} - \frac{f}{100}\right)$$
 (B.25)

$$= 1 - \frac{1}{2} * n_{SO_3}$$
(B.26)

Note that the($-\frac{1}{2}*n_{SO_3}$) term represents kg-mole of O₂ consumed in oxidizing n_{SO_3} kg-mole of SO₂ to SO₃.

B.4 Mole fractions in oxidized gas

The mole fractions of SO₃, SO₂ and O₂ in Fig. 10.1's oxidized gas are:

$$X_{SO_3} = \frac{n_{SO_3}}{n_t} = \frac{n_{SO_3}}{\left(1 - \frac{1}{2} * n_{SO_3}\right)} \quad \text{from Eqn. (B.26)}$$
(B.27)

$$X_{SO_2} = \frac{n_{SO_2}}{n_1} = \frac{\left(\frac{e}{100} - n_{SO_3}\right)}{\left(1 - \frac{1}{2} * n_{SO_3}\right)} \text{ from Eqn. (B.14) and (B.26)}$$
(B.28)

$$X_{O_2} = \frac{n_{O_2}}{n_t} = \frac{\left(\frac{f}{100} - \frac{1}{2} * n_{SO_3}\right)}{\left(1 - \frac{1}{2} * n_{SO_3}\right)} \text{ from Eqn. (B.20) and (B.26)}$$
(B.29).

B.5 Equation Applicability

Eqns. (B.5) to (B.29) apply everywhere in the Fig. 10.1 catalyst bed. Of course:

- (a) n_{SO_3} increases as feed gas descends the catalyst bed and oxidation proceeds
- (b) n_{SO_2} and n_{O_2} decrease as feed gas descends the catalyst bed and oxidation proceeds
- (c) n_{N_2} doesn't change in the catalyst bed because N_2 doesn't take part in SO₂ oxidation.

B.6 Equilibrium Equation

Fig. 10.1 describes a catalyst bed in which $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation comes to equilibrium near the bottom of the bed. Eqn. (B.4) describes this equilibrium in terms of SO₃, SO₂ and O₂ mole fractions, $X_{SO_3}^E$, $X_{SO_2}^E$ and $X_{O_2}^E$

This section shows how the equilibrium values of n_{SO_3} , n_{SO_2} and n_{O_2} , i.e.:

$$n_{SO_3}^E$$

 $n_{SO_2}^E$
 $n_{O_2}^E$

are represented in equilibrium Eqn. (B.4) (where E = equilibrium).

At equilibrium, oxidized gas SO_3 , SO_2 and O_2 mole fractions are:

(from Eqn. B.27)

$$X_{SO_{3}}^{E} = \frac{n_{SO_{3}}^{E}}{n_{t}^{E}} = \frac{n_{SO_{3}}^{E}}{\left(1 - \frac{1}{2} * n_{SO_{3}}^{E}\right)}$$
(B.30)

(from Eqn. B.28)

$$X_{SO_{2}}^{E} = \frac{n_{SO_{2}}^{E}}{n_{t}^{E}} = \frac{\left(\frac{e}{100} - n_{SO_{3}}^{E}\right)}{\left(1 - \frac{1}{2} * n_{SO_{3}}^{E}\right)}$$
(B.31)

(from Eqn. B.29)

$$X_{O_{2}}^{E} = \frac{n_{O_{2}}^{E}}{n_{t}^{E}} = \frac{\left(\frac{f}{100} - \frac{1}{2}*n_{SO_{3}}^{E}\right)}{\left(1 - \frac{1}{2}*n_{SO_{3}}^{E}\right)}$$
(B.32).

These equilibrium equations are now combined with Eqn. (B.4) to relate $n^{\rm E}_{{\rm SO}_3}$ to equilibrium constant K_E.

B.7 Equilibrium Constant and Molar Quantities

With the Eqn. (B.30)-(B.32) expressions for mole fractions, equilibrium Eqn. (B.4):

$$K_{E} = \frac{X_{SO_{3}}^{E}}{X_{SO_{2}}^{E} * (X_{O_{2}}^{E})^{\frac{1}{2}}} * P_{t}^{\frac{1}{2}}$$

becomes:

$$K_{E} = \frac{\left(\frac{n_{SO_{3}}^{E}}{1 - \frac{1}{2} * n_{SO_{3}}^{E}}\right)}{\left(\frac{\frac{e}{100} - n_{SO_{3}}^{E}}{1 - \frac{1}{2} * n_{SO_{3}}^{E}}\right) * \left(\frac{\frac{f}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}{1 - \frac{1}{2} * n_{SO_{3}}^{E}}\right)^{\frac{1}{2}}} * P_{t}^{-\frac{1}{2}}$$
(B.33)

or, multiplying top and bottom by $\left(1 - \frac{1}{2} * n_{SO_3}^E\right)$

$$K_{E} = \frac{n_{SO_{3}}^{E}}{\left(\frac{e}{100} - n_{SO_{3}}^{E}\right)^{*} \left(\frac{\frac{f}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}{1 - \frac{1}{2} * n_{SO_{3}}^{E}}\right)^{\frac{1}{2}}} * P_{t}^{-\frac{1}{2}}$$
(B.34)

or, multiplying top and bottom by $\left(1 - \frac{1}{2} * n_{SO_3}^E\right)^{\frac{1}{2}}$

$$K_{E} = \frac{n_{SO_{3}}^{E} * \left(1 - \frac{1}{2} * n_{SO_{3}}^{E}\right)^{\frac{1}{2}}}{\left(\frac{e}{100} - n_{SO_{3}}^{E}\right) * \left(\frac{f}{100} - \frac{1}{2} * n_{SO_{3}}^{E}\right)^{\frac{1}{2}}} * P_{t}^{-\frac{1}{2}}$$

or:

$$K_{E} = \frac{n_{SO_{3}}^{E}}{\left(\frac{e}{100} - n_{SO_{3}}^{E}\right)} * \left(\frac{1 - \frac{1}{2} * n_{SO_{3}}^{E}}{\frac{f}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(B.35)

where $n_{SO_3}^{E}$ is kg-moles of SO₃ in the Fig. 10.1 equilibrium gas, per kg-mole of feed gas.

This equation is used to calculate $n_{SO_3}^E$ for any given equilibrium constant. $n_{SO_2}^E$ and $n_{O_2}^E$ are then calculated with Eqns. (B.14) and (B.20).

Eqn. (B.35) is written in terms of $n_{SO_3}^E$ (kg-moles SO₃ in equilibrium gas) rather than equilibrium % SO₂ oxidized (Φ^E) in Eqn. (10.12). The next section shows how Eqn. (10.12) is derived from Eqn. (B.35).

B.8 Equilibrium $n_{so_3}^{\scriptscriptstyle E}$ and $\Phi^{\scriptscriptstyle E}$

Eqn. (10.2) defines equilibrium % SO₂ oxidized (Φ^{E}) as:

Equilibrium
% SO₂ oxidized =
$$\Phi^{E} = \frac{\text{kg-mole SO}_{2}}{\text{kg-mole SO}_{2}} \frac{\text{kg-mole SO}_{2} \text{ in oxidized gas}}{\text{where equilibrium has been attained}} *100$$

(10.2)

or:

$$\Phi^{\rm E} = \left(\frac{\frac{\rm e}{100} - n_{\rm SO_2}^{\rm E}}{\frac{\rm e}{100}}\right) * 100$$
(B.36)

where:

e = volume% SO₂ in Fig. 10.1 feed gas

 $n_{SO_2}^E = kg$ -mole SO₂ in equilibrium gas per kg-mole of feed gas.

Eqn. (B.36) is expressed in terms of $n_{SO_3}^E$ by combining it with the equilibrium form of Eqn. (B.14), i.e.:

$$n_{SO_2}^{E} = \frac{e}{100} - n_{SO_3}^{E}$$
(B.14')

to give:

$$\Phi^{\rm E} = \left(\frac{\frac{\rm e}{100} - \left(\frac{\rm e}{100} - {\rm n}_{\rm SO_3}^{\rm E}\right)}{\frac{\rm e}{100}}\right) * 100$$

or:

$$\Phi^{\rm E} = \frac{n_{\rm SO_3}^{\rm E}}{\left(\frac{\rm e}{100}\right)} *100 \tag{B.37}$$

or:

$$\mathbf{n}_{\mathrm{SO}_{3}}^{\mathrm{E}} = \left(\frac{\mathbf{e}}{100}\right) * \frac{\boldsymbol{\Phi}^{\mathrm{E}}}{100} \tag{B.38}$$

where:

 $n_{SO_3}^E$ = kg-mole SO₃ in equilibrium gas per kg-mole of Fig. 10.1 feed gas

 Φ^{E} = equilibrium % SO₂ oxidized, Section 10.1.1

e = volume% SO_2 in Fig. 10.1 feed gas.

302

B.8.1 Substituting Φ^{E} for $n_{SO_{3}}^{E}$

Substituting
$$\left(\frac{e}{100}\right)^* \frac{\Phi^E}{100}$$
 for $n_{SO_3}^E$ in Eqn. (B.35) gives:

$$K_E = \left(\frac{\left(\frac{e}{100}\right)^* \frac{\Phi^E}{100}}{\frac{e}{100} - \left(\frac{e}{100}\right)^* \frac{\Phi^E}{100}}\right)^* \left(\frac{1 - \frac{1}{2}^* \left(\frac{e}{100}\right)^* \frac{\Phi^E}{100}}{\frac{f}{100} - \frac{1}{2}^* \left(\frac{e}{100}\right)^* \frac{\Phi^E}{100}}\right)^{\frac{1}{2}} * P_t^{-\frac{1}{2}}$$
(B.39)

or:

$$K_{E} = \left(\frac{\left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}{\frac{e}{100}^{*} \left(1 - \frac{\Phi^{E}}{100}\right)}\right)^{*} \left(\frac{1 - \frac{1}{2}^{*} \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}{\frac{f}{100}^{*} - \frac{1}{2}^{*} \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(B.40)

or, dividing top and bottom by $\frac{e}{100}$:

$$K_{E} = \left(\frac{\frac{\Phi^{E}}{100}}{\left(1 - \frac{\Phi^{E}}{100}\right)}\right) * \left(\frac{1 - \frac{1}{2} * \left(\frac{e}{100}\right) * \frac{\Phi^{E}}{100}}{\frac{f}{100} - \frac{1}{2} * \left(\frac{e}{100}\right) * \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(B.41)

or, multiplying top and bottom by 100:

$$K_{E} = \left(\frac{\Phi^{E}}{\left(100 - \Phi^{E}\right)}\right) * \left(\frac{1 - \frac{1}{2} * \left(\frac{e}{100}\right) * \frac{\Phi^{E}}{100}}{\frac{f}{100} - \frac{1}{2} * \left(\frac{e}{100}\right) * \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(B.42)

or, multiplying top and bottom by $100^{\frac{1}{2}}$

$$K_{E} = \left(\frac{\Phi^{E}}{100 - \Phi^{E}}\right) * \left(\frac{100 - \frac{1}{2} * e * \frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e * \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(10.12).

Applications of this equation are described in Sections 10.4 and 10.5.

Appendix C

Free Energy Equations for Equilibrium Curve Calculations

Industrial catalytic $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation approaches equilibrium at 700 to 900 K. This book's equilibrium calculations require standard free energies over this temperature range. This appendix:

- (a) provides the required standard free energies from published data
- (b) develops a linear equation which represents standard free energy of reaction as a function of temperature.

The free energy data are from:

Chase, M.W. (1998) NIST-JANAF Thermochemical Tables, 4th Edition, American Chemical Society and American Institute of Physics, Woodbury, New York.

Chase provides standard free energies of formation for the reactions:

$$S + \frac{3}{2}O_2(g) \rightarrow SO_3(g) \qquad \Delta_f G_{SO_3}^{\circ}$$
 (C.1)

$$S + O_2(g) \rightarrow SO_2(g) \qquad \Delta_f G_{SO_2}^{\circ}$$
 (C.2).

 $\Delta G^{\circ}_{SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)}$ is determined by subtracting Eqn. (C.2) from Eqn. (C.1),

which gives:

$$\frac{1}{2}O_2(g) \rightarrow SO_3(g) - SO_2(g)$$

or:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

for which:

$$\Delta G^{\circ}_{SO_{2}(g) + \frac{1}{2}O_{2}(g) \to SO_{3}(g)} = \Delta_{f} G^{\circ}_{SO_{3}} - \Delta_{f} G^{\circ}_{SO_{2}}$$
(C.3).

Temperature T, K	$\Delta_{\rm f} {\rm G}^{\circ}_{{ m SO}_3}$	$\Delta_{\rm f} {\rm G}^\circ_{{ m SO}_2}$	$\Delta G^{\circ}_{SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)}$ $= \Delta_f G^{\circ}_{SO_3} - \Delta_f G^{\circ}_{SO_3}$
700	-332.365	-299.444 -298.370	-32.921 -23.542
900	-310.258	-296.051	-14.207

Chase's 700 to 900 K $\Delta_f G^{\circ}$ values (MJ per kg-mole) for Eqns. (C.1) to (C.3) are:

Application of Excel's 'Slope' and 'Intercept' functions to the left and right columns gives the linear equation:

$$\Delta G^{\circ}_{SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)} = 0.09357 * T - 98.41 \text{ MJ per kg-mole of SO}_3 \qquad (C.4).$$

This equation is used for all of this book's equilibrium calculations.

Appendix D

Preparation of Fig. 10.2 Equilibrium Curve

This appendix uses Eqn. (10.13) to calculate points on the Fig. 10.2 equilibrium curve. The equation is:

$$T_{E} = \frac{-B}{A + R^{*} ln \left(\frac{\Phi^{E}}{100 - \Phi^{E}} \right)^{*} \left(\frac{100 - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e^{*} \frac{\Phi^{E}}{100}} \right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}}$$
(10.13)

where:

 T_E = equilibrium temperature, K

A and B = empirical constants relating ΔG_T° for the reaction $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ to temperature, i.e.: $\Delta G_T^{\circ} = A * T + B$

 $A = 0.09357 \text{ MJ kg-mole SO}_2^{-1} \text{ K}^{-1}$ (Appendix C)

$$B = -98.41$$
 MJ/kg-mole SO₂

 $R = gas constant = 0.008314 \text{ MJ kg-mole SO}_2^{-1} \text{ K}^{-1}$

 $\Phi^{\rm E}$ = equilibrium % SO₂ oxidized

e = volume% SO₂ in Fig. 10.1 feed gas f = volume% O₂ in Fig. 10.1 feed gas } remainder inert

 $P_t =$ equilibrium total pressure, bar.

The calculations are done in Excel worksheet Table D.1. The calculation sequence is:

- (a) e, f and P_t are entered into cells B2, D2 and D4
- (b) a value of Φ^{E} is entered into cell D6, say 60% SO₂ oxidized
- (c) Equation (10.13) is placed in cell A9, exactly as shown beside it
- (d) the equivalent value of T_E is automatically calculated in cell A9.

(b) and (d) are repeated as desired. Cells A14 to B26 show example results.

Table D.1. Excel spreadsheet for calculating Fig. 10.2 equilibrium points from Eqn. (10.13). The calculation method is described on the previous page. Equilibrium % SO_2 oxidized is seen to increase with decreasing equilibrium temperature.

	A	в	С	D	E	F	G	Н	I
1	Specified feed gas c	omposition							
2	e, volume% SO ₂ =	10	f, volume% O ₂ =	11	remainder = ine	rt			
3					1				5
4	P., specified equilibri	ium pressure, ba	ar =	1.2				1	
5			1			· · · · ·			
6	Φ ^E equilibrium % S() D. oxidized =		60					
7	- , - quinting in the st						+		<u>†</u>
6	T- equilibrium temp	erature (K) equiv	valent to Cell D6's e	quilibrium % S	O ₂ oxidized =				
	023.6	= (-98.41)/(0.09)	357+0 008314*I N	(D6/(100-D6)*(100-0 5*B2*D6/1(D0)/(D2-0.5*B2*f	26/100))^0 5*D4	<u>^-0.5)</u>)	Ean. (10.13)
10	323.0	(-30.41)/(0.0.							
11								-	
12	Example results for I	Fig. 10.2							
	Equilibrium	Equilibrium							
	% SO ₂	temperature,							
13	oxidized	к							
14	30	1030.6							
15	40	990.4							
16	50	955.9							
17	60	923.6				1			
18	70	890.8							
19	80	854.1							
20	90	805.0							
21	95	765.1		· · · · · · · · · · · · · · · · · · ·					
22	97.5	730.7							
23	99	690.8							
24	99.5	663.6					-		
25	99.9	608.5			+				
126	99.95	587.6						L	1

D.1 Integer Temperature Calculations

Table 12.1 is most easily interpolated when the equilibrium curve points have integer temperature values. These points are determined with Table D.1 by means of Excel's Goal Seek tool, next page.

Equilibrium % SO₂ oxidized at 895 K is determined, for example, by the sequence:

ToolsGoal SeekSet cell:A9To value:895Changing cell:D6OKOK.

The result is equilibrium $\% SO_2$ oxidized = 68.75 % (cell D6) at 895 K (cell A9). A table of equilibrium points may be prepared by repeating these steps at different temperatures, i.e.:

	A	В
12	Results for Table 12.	1 and Fig. 12.1
	Equilibrium	Equilibrium
	temperature,	% SO₂
13	к	oxidized
14	890	70.23
15	891	69.94
16	892	69.64
17	893	69.34

D.2 2nd and 3rd Catalyst Bed Equilibrium Curves

This appendix's techniques are also used to calculate 2^{nd} and 3^{rd} catalyst bed equilibrium curves, Table 15.1. The calculations require specification of:

(a) the equivalent 1^{st} catalyst feed gas composition, e and f in Eqn. (10.13)

and:

(b) the 2^{nd} or 3^{rd} catalyst bed gas pressure, P_t in Eqn. (10.13).

The applicability of Eqn. (10.13) to 2^{nd} and 3^{rd} catalyst beds is discussed in Section 15.1.

Proof that Volume% = Mole% (for Ideal Gases)

E.1 Definitions

Consider a gas which contains ideal gas A and ideal gas B. Volume% A and volume% B in the gas are defined as:

volume% A =
$$\left\{\frac{V_A}{V_A + V_B}\right\}$$
*100% (E.1)

volume% B =
$$\left\{\frac{V_A}{V_A + V_B}\right\}$$
*100% (E.2)

where V_A and V_B are the partial volumes of A and B in the gas, Section E.2. Likewise, mole% A and mole% B are defined for all gases as:

mole% A =
$$\left\{\frac{n_A}{n_A + n_B}\right\}$$
*100% (E.3)

mole% B =
$$\left\{\frac{n_A}{n_A + n_B}\right\}$$
*100% (E.4)

where n_A and n_B are moles of A and B in the gas.

E.2 Characterization of Partial Volumes

Consider n_A moles of ideal gas A in a freely expanding/contracting box at constant temperature T^o and constant pressure P^o. The volume occupied by A is described by the ideal gas law:

$$V_{A} = \frac{n_{A} * R * T^{\circ}}{P^{\circ}}$$
(E.5).

Consider also n_B moles of ideal gas B in a freely expanding/contracting box at constant temperature T^o and constant pressure P^o. The volume occupied by B is:

$$V_{\rm B} = \frac{n_{\rm B} * \mathbf{R} * \mathbf{T}^{\circ}}{\mathbf{P}^{\circ}} \tag{E.6}.$$

Remove a wall between the two boxes and join them. Allow the gases to mix. For ideal gases, there is no change in gas volume when the gases mix so that:

$$V_t = V_A + V_B \tag{E.7}.$$

where:

 V_t = total volume of gas V_A = partial volume of ideal gas A V_B = partial volume of ideal gas B.

Eqns. (E.5) - (E.7) combine to give:

$$V_t = V_A + V_B = \frac{(n_A + n_B)^* R^* T^\circ}{P^\circ}$$
 (E.8).

E.3 Equality of Volume% and Mole%

Volume% A and mole% A are obtained by dividing Eqn. (E.5) by Eqn. (E.8):

to give:

$$\frac{V_{A}}{V_{A} + V_{B}} = \frac{n_{A}}{n_{A} + n_{B}}$$
(E.9).

Both sides of Eqn. (E.9) are then multiplied by 100 to give:

$$\left\{\frac{V_{A}}{V_{A}+V_{B}}\right\}*100 = \left\{\frac{n_{A}}{n_{A}+n_{B}}\right\}*100$$
(E.10).

The left side of Eqn. (E.10) is volume% A (Eqn. (E.1)) while the right side is mole% A (Eqn. (E.3)) so that the equation becomes:

volume%
$$A = mole% A$$
 (E.11)

proving that, for ideal gases, volume% = mole%.

Proof that:

volume%
$$B = mole$$
% B (E.12)

is obtained by dividing Eqn. (E.6) by Eqn. (E.8) and so on.

Appendix F

Effect of CO₂ and Ar on Equilibrium Equations (None)

 CO_2 is usually present in spent acid decomposition and metallurgical furnace offgases. Most of it passes through gas cooling/cleaning/dehydration and into the Fig. 10.1 catalyst bed. It doesn't take part in catalyst bed oxidation.

This appendix shows that CO_2 has no affect on equilibrium % SO_2 oxidized equations, e.g. Eqn. (10.12).

A small amount of Ar is also present in catalytic SO₂ oxidation feed gases. Like CO₂, it has no effect on equilibrium % SO₂ oxidized equations.

F.1 CO₂

Proof that CO_2 has no effect on Eqn. (10.12) begins by specifying that Fig. 10.1's feed gas contains:

e	volume% SO ₂		
f	"	"	O_2
c	"	"	CO_2
1 - e - f - c	"	"	N ₂ .

Per kg-mole of Fig. 10.1 feed gas, the molar quantities entering the Fig. 10.1 catalyst bed are:

$\frac{e}{100}$	kg-mole SO ₂ (Section B.3.1)		
$\frac{f}{100}$	" " O ₂		
$\frac{c}{100}$	" " CO ₂		
$1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100}$	" " N ₂ .		

Molar balances

Feed gas CO₂ doesn't change the Appendix B's sulfur molar balance. It remains as:

$$n_{SO_2} = \frac{e}{100} - n_{SO_3}$$
 (B.14) unchanged.

 CO_2 does, however introduce a carbon molar balance into Appendix B's derivation. It is:

$$\begin{array}{l} \text{kg-mole C} \\ \text{in feed gas} \end{array} = \begin{array}{l} \text{kg-mole C} \\ \text{in exit gas} \end{array} (F.1).$$

Each mole of CO₂ contains 1 mole of C so Eqn. (F.1) becomes:

$$1*\frac{c}{100} = 1*n_{CO_2}$$

or:

$$n_{CO_2} = \frac{c}{100}$$
 (F.2)

where $n_{CO_2} = kg$ -mole CO₂ in Fig. 10.1 exit gas.

CO₂ changes oxygen molar balance Eqn. (B.16). It becomes:

$$2*\frac{\mathbf{e}}{100} + 2*\frac{\mathbf{f}}{100} + 2*\frac{\mathbf{c}}{100} = 3*\mathbf{n}_{SO_3} + 2*\mathbf{n}_{SO_2} + 2*\mathbf{n}_{O_2} + 2*\mathbf{n}_{CO_2}$$

or:

$$n_{O_2} = \frac{e}{100} + \frac{f}{100} + \frac{c}{100} - \frac{3}{2} n_{SO_3} - n_{SO_2} - n_{CO_2}$$

Combining this equation with Eqns. (B14) and F(2), i.e. with:

$$n_{SO_2} = \frac{e}{100} - n_{SO_3}$$
 (B.14)

and:

$$n_{CO_2} = \frac{c}{100}$$
 (F.2)

gives:

$$n_{O_2} = \frac{e}{100} + \frac{f}{100} + \frac{c}{100} - \frac{3}{2}n_{SO_3} - \left(\frac{e}{100} - n_{SO_3}\right) - \frac{c}{100}$$

or:

$$= \frac{f}{100} - \frac{1}{2}n_{so_3}$$
 (B.20) unchanged.

N balance Eqn. (B.22) is slightly changed by CO_2 to:

$$2 * \left(1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100} \right) = 2 * n_{N_2}$$

or:

$$n_{N_2} = 1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100}$$
 (F.3).

Total kg-mole of exit gas

Including CO₂, the total kg-mole of Fig. 10.1 exit gas is given by:

$$n_t = n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2} + n_{CO_2}$$
 (F.4).

Combining this equation with Eqns. (B.14), (B.20), (F.2) and (F.3) gives:

$$n_{t} = n_{SO_{3}} + \left(\frac{e}{100} - n_{SO_{3}}\right) + \left(\frac{f}{100} - \frac{1}{2}*n_{SO_{3}}\right) + \left(1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100}\right) + \frac{c}{100}$$
$$= 1 - \frac{1}{2}*n_{SO_{3}} \qquad (B.26) unchanged.$$

Discussion

Eqns. (B.14), (B.20) and (B.26) are unchanged by CO_2 in Fig. 10.1 feed gas. Consequently, Eqns. (B.27), (B.28), (B.29) and all further developments in Appendix B are also unchanged. So:

Eqn. (10.12) is unaffected by the presence of
$$CO_2$$
 in feed gas.

F.2 Ar

All Fig. 10.1 feed gases contain a small amount of argon. With this Ar, the Section F.1 feed gas may be specified as containing:

e	volu	me%	δ SO ₂
f	"	"	O2
c	"	"	CO_2
а	"	"	Ar
1 - e - f - c - a	"	"	N ₂ .

Per kg-mole of Fig. 10.1 feed gas, the input molar quantities are:

$$\frac{e}{100}$$
kg-mole SO₂ (Section B.3.1)
$$\frac{f}{100}$$
"" O₂

$$\frac{c}{100}$$
"" CO₂

$$\frac{a}{100}$$
"" Ar
$$1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100} - \frac{a}{100}$$
"" N₂.

Molar balances

Section F.1's sulfur and oxygen balances (i.e. Eqns. (B14) and (B20)) are not affected by the presence of Ar in Fig. 10.1's feed gas. Ar does, however, introduce a new molar balance, i.e.:

$$\begin{array}{l} \text{kg-mole Ar} \\ \text{in feed gas} \end{array} = \begin{array}{l} \text{kg-mole Ar} \\ \text{in exit gas} \end{array} (F.5).$$

or:

$$\frac{a}{100} = n_{Ar} \tag{F.6}$$

where $n_{Ar} = kg$ -mole Ar in Fig. 10.1 exit gas.

It also changes N balance Eqn. (B.19) to:

$$2^* \left(1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100} - \frac{a}{100} \right) = 2^* n_{N_2}$$

or:

$$n_{N_2} = 1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100} - \frac{a}{100}$$
 (F.7).

Total kg-mole of exit gas

Including CO₂ and Ar, total kg-mole of Fig. 10.1 exit gas is given by:

$$n_t = n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2} + n_{CO_2} + n_{Ar}$$
 (F.8).

$$n_{t} = n_{SO_{3}} + \left(\frac{e}{100} - n_{SO_{3}}\right) + \left(\frac{f}{100} - \frac{1}{2}*n_{SO_{3}}\right) + \left(1 - \frac{e}{100} - \frac{f}{100} - \frac{c}{100} - \frac{a}{100}\right) + \frac{c}{100} + \frac{a}{100}$$
$$= 1 - \frac{1}{2}*n_{SO_{3}} \qquad (B.26) unchanged.$$

As with CO₂, Eqns. (B.14), (B.20) and B.26) are unchanged by Ar. Consequently, Eqns. (B.27), (B.28), B29) and all further developments in Appendix B are also unchanged. So Eqn. (10.12) is unaffected by the presence of Ar in Fig. 10.1 feed gas.

F.3 Conclusions

Eqn. (10.12) is unaffected by the presence of N_2 , CO_2 and Ar in catalyst bed feed gas. By extension, it is unaffected by all non-reactive gases ('inerts').

Appendix G

Enthalpy Equations for Heatup Path Calculations

Catalytic $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ heatup paths range between about 660 K and 900 K. Preparation of these heatup paths requires SO₃, SO₂, O₂, N₂ and CO₂ enthalpy values and equations over this temperature range. This appendix:

- (a) calculates the enthalpies of SO₃, SO₂, O₂, N₂ and CO₂ over this range from the data in Chase, 1998[#]
- (b) relates these enthalpies to temperature with equations of the form $H^{\circ}_{T} = A * T + B.$

Chase, 1998:

(a) specifies that the enthalpies of elements in their most common state (e.g. $S_{rhombic}$, $O_2(g)$) are zero at 298.15 (the conventional reference temperature, T_r)

and:

(b) gives values for:

 $\Delta_{\rm f} {\rm H}^{\circ}_{\rm 298.15}$, the standard enthalpy of compound formation at 298.15 K

 $(H_T^{\circ} - H_{298.15}^{\circ})$ for elements and compounds, listed as $H^{\circ} - H^{\circ}(T_r)$.

The enthalpies of elements and compounds at temperature T are calculated by the equation:

$$H_{T}^{\circ} = H_{298.15}^{\circ} + (H_{T}^{\circ} - H_{298.15}^{\circ})$$
 (G.1).

Element enthalpies

 $H^{\circ}_{298,15}$ for elements is zero (see above) so that their enthalpies at temperature T are simply:

$$H_{T_{element}}^{\circ} = \left(H_{T}^{\circ} - H_{298.15}^{\circ}\right)_{element}$$
(G.2)

where Chase, 1998 provides the right hand side values, listed as H° - $H^{\circ}(T_r)$.

[#]Chase, M.W. (1998) *NIST-JANAF Thermochemical Tables, 4th Edition*, American Chemical Society and American Institute of Physics, Woodbury, New York.

 $H_{298,15}^{\circ}$ for compounds is not zero. For SO₃ it is calculated by the equation:

$$H_{298.15}^{\circ} = \Delta_{f} H_{298.15}^{\circ} + H_{298.15}^{\circ} + \frac{3}{2} H_{298.15}^{\circ}$$
(G.3).

where $\Delta_{f} H_{298.15}^{\circ}$ is the enthalpy of formation (298.15 K) of SO₃ from its elements at SO₃(g) 298.15 K, i.e.:

$$S_{(rhom bic)} + \frac{3}{2} * O_2(g)_{298.15} \rightarrow SO_3(g)_{298.15}$$

Chase, 1998 provides $\Delta_f H^{\circ}_{_{298,15}}$ values for each compound to which we add the compound designation, e.g. $\Delta_f H^{\circ}_{_{298,15}}$. SO_{3(g)}

Further:

$$H_{298.15}^{\circ}$$
 and $H_{298.15}^{\circ}$
S(rhombic) $O_{2}(g)$

are both zero (because they are elements), so that Eqn. (G.3) reduces to:

$$H_{298.15}^{\circ} = \Delta_{f} H_{298.15}^{\circ}$$

$$SO_{3}(g) SO_{3}(g) SO_{3}(g) SO_{3}(g)$$
(G.4).

Lastly,

$$H_{T}^{\circ}_{SO_{3}(g)} = H_{298.15}^{\circ} + \left(H_{T}^{\circ} - H_{298.15}^{\circ}\right)_{SO_{3}(g)}$$
from (G.1)

which combined with Eqn. (G.4) becomes:

$$H_{T}^{\circ}_{SO_{3}(g)} = \Delta_{f} H_{298.15}^{\circ} + \left(H_{T}^{\circ} - H_{298.15}^{\circ} \right)_{SO_{3}(g)}$$
(G.5).

where both of the right hand terms are provided by Chase (the latter as $H^{\circ} - H^{\circ}(T_{r})$).

The enthalpy units in Chase, 1998 are kJ per g-mole. This unit converts one-to-one to MJ per kg-mole, the unit used in this book.

Interestingly, Barin, 1995^{##} provides H_T° values directly. None of the above calculations is necessary when his data are used.

^{##}Barin, I. (1995) Thermochemical Data of Pure Substances, 3rd Edition, VCH Publishers Inc., New York.

G.2 An Example – Enthalpy of SO₃(g) at 600 K

Chase, 1998 lists:

$$\Delta_{f} H_{298,15}^{\circ} = -395.765 \text{ MJ/kg-mole SO}_{3}$$

$$\left(H_{600}^{\circ} - H_{298,15}^{\circ}\right)_{SO_{3}(g)} = 18.107 \text{ MJ/kg-mole SO}_{3}.$$

The enthalpy of $SO_3(g)$ at 600 K is, therefore:

$$H_{600}^{\circ} = \Delta_{f} H_{298,15}^{\circ} + \left(H_{600}^{\circ} - H_{298,15}^{\circ} \right)_{SO_{3}(g)}$$
(from Eqn. G.5)
= -395.765 + 18.107
= -377.658 MJ/kg-mole SO_{3}

as shown in Cell D5 of Table G.1.

G.2 Preparation of Equations

Table G.1 uses Eqn. (G.2), Eqn. (G.5) and Chase, 1998 data to calculate the enthalpies of SO₃, SO₂, O₂, N₂ and CO₂ at 600, 700, 800 and 900 K (and H₂SO₄(ℓ) and H₂O(ℓ) at 300 to 400 K). It then prepares linear equations (in cells A9, A18, A27, A36, A45, A52 and A63) which relate these enthalpies to temperature over these ranges. Excel's 'Slope' and 'Intercept' functions are used.

Table	G.1.	Enthalpy data from Chase, 1998 [#] and H°_{T} vs temperature equations developed from
them.	H_T° is	the enthalpy of a pure substance at temperature T.

	A	В	С	D
1	Units in all enthalpy columns: MJ per kg-mole			Eqn. (G.5)
2	SO ₃ (g)			
3	Temperature, K	Δ _f H ^o _{298.15}	H ^o _T - H ^o _{298.15}	$H^{o}_{T} = \Delta_{f} H^{o}_{298.15} + (H^{o}_{T} - H^{o}_{298.15})$
4	298.15	-395.765		
5	600		18.107	-377.658
6	700		24.997	-370.768
7	800		32.160	-363.605
8	900		39.531	-356.234
9	H ^o _{SO3T} = 0.07144	I*T - 420.6		
10				
11	SO ₂ (g)			
12	Temperature, K	Δ _f H ^o _{298.15}	H ^o _T - H ^o _{298.15}	$H^{o}_{T} = \Delta_{f} H^{o}_{298.15} + (H^{o}_{T} - H^{o}_{298.15})$
13	298.15	-296.842		
14	600		13.544	-283.298
15	700		18.548	-278.294
16	800		23.721	-273.121
17	900		29.023	-267.819
18	$H^{o}_{SO2T} = 0.0516^{\circ}$	1*T - 314.3		

	<u> </u>	<u> </u>		D		
19	Units in all enthal	py columns: MJ per l	kg-mole	Eqn. (G.5)		
20	O ₂ (g)					
21	Temperature, K	Δ _f H ^o _{298.15}	H ^o _T - H ^o _{298.15}	$H^{o}_{T} = \Delta_{f} H^{o}_{298.15} + (H^{o}_{T} - H^{o}_{298.15})$		
22	298.15	0				
23	600		9.244	9.244		
24	700		12.499	12.499		
25	800		15.835	15.835		
26	900		19.241	19.241		
27	H° _{O2T} = 0.03333*	T - 10.79				
28						
29	$N_2(q)$		ļ			
30	Temperature K	Add occur	H ^o r - H ^o rra	$H^{\circ}_{\tau} = \Lambda_{\tau} H^{\circ}_{200, 45} + (H^{\circ}_{\tau} - H^{\circ}_{200, 45})$		
21	208 15	298.15 	1 1 - + 1 298.15	298.15 (··· i ·· 298.15)		
22	600	V	8 804	8 804		
32	700		0.094	11 037		
34	800		11.937	15 0/6		
25	900		10.040	18.040		
20	H ⁰ - 0.02110*	T 0 707	10.223	10.223		
130	N2T - 0.03110	- 3.131				
31						
38	CO ₂ (g)					
39	Temperature, K	$\Delta_{\rm f} {\rm H}^{\rm o}{}_{298.15}$	H ^o _T - H ^o _{298.15}	$H^{o}_{T} = \Delta_{f} H^{o}_{298.15} + (H^{o}_{T} - H^{o}_{298.15})$		
40	298.15	-393.522				
41	600		12.907	-380.615		
42	700		17.754	-375.768		
43	800		22.806	-370.716		
44	900		28.030	-365.492		
45	$H^{o}_{CO2T} = 0.05042$	*T - 411.0				
46	1					
47	H₂SO₄(I)					
48	Temperature, K	Δ _f H ⁰ 208 15	$H^{0}_{T} - H^{0}_{208.45}$	$H_{T}^{0} = \Delta_{t} H_{298,15}^{0} + (H_{T}^{0} - H_{298,15}^{0})$		
49	298.15	-813 989	230.15	230.13 (1 230.13/		
50	300	-010,000	0 257	-813 732		
51	400		15 112	-798 877		
52	$H^{0}_{1000} = 0.141$	85*T - 858 3				
52	H2SU4(I)T - 0.14					
53						
104		4.1.10	1.0 1.0			
55	Temperature, K	Δ _f H ⁻ 298.15	H [*] _T - H [*] _{298.15}	$H^{-}_{T} = \Delta_{f} H^{-}_{298.15} + (H^{-}_{T} - H^{-}_{298.15})$		
56	298.15	-285.830	_			
57	300		0.139	-285.691		
58	320		1.646	-284.184		
59	340		3.153	-282.677		
60	360		4.664	-281.166		
61	380		6.182	-279.648		
62	400		7.711	-278.119		
63	$H^{\circ}_{H2O(I)T} = 0.0756$	58*T - 308.4		1		

Table G.1 continued.

Appendix H

Matrix Solving Using Tables 11.2 and 14.2 as Examples

- 1. Put Table 11.2 into an Excel spreadsheet with the top of the numerical term column (0.10) in cell C2. The matrix covers cells C2 to J8. Label as shown in Table 11.2.
- 2. Select cells B13 to B19 (by, for example, selecting cell B13, holding down the Shift key and arrowing down to cell B19).
- 3. Leave these cells selected then type =mmult(minverse(D2:J8),C2:C8) then simultaneously press Ctrl Shift Enter.
- 4. Cells B13-B19 contain the solution to the matrix. Label as shown in Table 11.2.

Subsequent problems can be solved without repeating the above steps. The Section 11.13 example problem is solved, for example, by putting 0.130, 0.143 and 0.727 into cells C2, C3 and C4 respectively. The solution appears automatically in cells B13-B19.

Table 14.2's matrix has 1 more column than Table 11.2 – and 1 more row. This means that instruction 2 (above) must select 8 cells instead of 7, say B20 to B27 in Table 14.2.

Table 14.2's solving instruction is:

Leave cells B20 through B27 selected then type =mmult(minverse(D8:K15),C8:C15) then simultaneously press Ctrl Shift Enter.

Appendix I

Enthalpy Equations in Heatup Path Matrix Cells

Heatup path calculations are simplified by putting enthalpy-as-a-function-of-temperature equations in cells D8-J8 of matrix Table 11.2. The equations are listed in Appendix G. They change Eqn. (11.7) to:

 $0 = -\text{kg-mole SO}_2 \text{ in } * (0.05161 * T_{\text{feed}} - 314.3)$ - kg-mole O₂ in * (0.03333 * T_{\text{feed}} - 10.79) - kg-mole N₂ in * (0.03110 * T_{\text{feed}} - 9.797) + kg-mole SO₃ out * (0.07144 * T_L - 420.6) + kg-mole SO₂ out * (0.05161 * T_L - 314.3) + kg-mole O₂ out * (0.03333 * T_L - 10.79) + kg-mole N₂ out * (0.03110 * T_L - 9.797)

(11.7")

where:

 $(0.05161 * T - 314.3) = H^{\circ}_{T SO_2}$ etc. T_{feed} = Fig. 11.3 feed gas temperature, K T_L = Fig. 11.3 level L gas temperature, K.

As shown in Table I.1, Eqn. (11.7") is put into matrix Table 11.2 by:

(a) inserting numerical values of T_{feed} and T_L into cells F10 and J10 (b) putting the Eqn (11.7") enthalpy terms into cells D8-J8 so that:

cell	D8	cont	ains	-	-(0.05161*F10 - 314.3)
"	E8	"	"	=	-(0.03333*F10 - 10.79) > note the - signs
"	F8	"	"	<u></u>	-(0.03110*F10 - 9.797)
"	G8	"	"	=	(0.07144*J10 - 420.6)
"	H8	"	"	=	(0.05161*J10 - 314.3)
"	18	"	"	=	(0.03333*J10 - 10.79)
"	J8	"	"	=	(0.03110*J10 - 9.797).

Insertion of these equations into Table 11.2 (with 690 K and 820 K in cells F10 and J10) automatically gives the Table 11.2 result, as shown below. The temperatures in cells F10 and J10 can then be changed at will – and new heatup path points automatically calculated. Example results are shown after Table I.1. Matrix solving is described in Appendix H.

	A	В	С	D	E	F	G	<u>н</u>		
<u> </u>	Equation	description	numerical term	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
1	·			in	in	in	out	out	out	out
2	11.1	feed SO ₂ kg-mole	0.10	1	0	0	0	0	0	0
3	11.2	feed O ₂ kg-mole	0.11	0	1	0	0	0	0	0
4	11.3	feed N ₂ kg-mole	0.79	0	0	1	0	0	0	0
5	11.4	S balance	0	-1	0	0	1	1	0	0
Ť	11.5	O balance	0	-2	-2	0	3	2	2	0
7	11.6	N balance	0	0	0	-2	0	0	0	2
8	11.7"	enthalpy balance	0	278.7	-12.21	-11.66	-362.0	-272.0	16.54	15.71
9								ļ		
10		i		Fig. 11.3 feed gas	temperature, K =	690		Fig. 11.3 level I	_ gas temp, K =	820
11							/	L		
12	Matrix results per	kg-mole of feed ga	IS			contains =0.0	07144*J10-420.	6		
13	kg-mole SO ₂ in	0.1000								j
14	kg-mole O2 in	0.1100					ļ		Ì	
15	kg-mole N ₂ in	0.7900							L.,	L
16	kg-mole SO3 out	0.0442		% SO ₂ o	xidized at level L =	((kg-mole SO ₂	in - kg-mole SO	2 out)/kg-mole S	O ₂ in)*100	(Eqn. 10.1)
17	kg-mole SO2 out	0.0558			=	(B13-B17)/B13	*100 =	44.2	L	ļ
18	kg-mole O2 out	0.0879					L	Ĺ	L	
19	kg-mole N2 out	0.7900				l		<u> </u>	L	L

Table I.1. Matrix Table 11.2 with Eqn. (11.7") enthalpy equations in cells D8-J8, see above. The in-cell equations refer to T_{feed} in cell F10 and T_L in cell J10. Feed gas quantities in cells C2-C4 can also be changed at will as described in Section 11.13. Refer to Table 11.2 for other details.

I.1 Example Results

Table I.1 automatically shows that:

an 820 K heatup path temperature

is equivalent to:

with:

10 volume% SO₂, 11 volume% O₂, 79 volume% N₂, 690 K feed gas 44.2 % oxidation of the feed gas's SO₂

in the Fig. 11.3 catalyst bed. This is one point on the feed gas's heatup path.

Other points may be calculated by:

- (a) incrementally changing the cell J10 temperature
- (b) tabulating these temperatures and their equivalent cell H17 % SO₂ oxidized values.

Table 11.3/Fig. 11.1 points have been calculated this way. A few of them are:

	A	В	C		
		Fig. 11 3 level l	% SO ₂		
		temperature K	oxidized at		
21		temperature, re	level L		
22		690	0.0		
23		710	6.8		
24		730	13.5		

Table 12.1/Fig. 12.1	heatup path	points have al	so been ca	lculated this way.	A few are:
----------------------	-------------	----------------	------------	--------------------	------------

	Α	В	С		
		Fig. 11 3 lovel I	% SO ₂		
		temperature K	oxidized at		
21		temperature, re	level L		
22		890	68.09		
23		891	68.44		
24		892	68.78		

Appendix J

Heatup Path-Equilibrium Curve Intercept Calculations

Figs. 11.7 and 12.1 indicate that maximum SO_2 oxidation in a catalyst bed occurs where a feed gas's:

heatup path

intercepts its:

equilibrium curve.

The point of interception may be determined:

- (a) by re-doing Table 12.1's calculations every 0.1 K
- (b) iteratively, using Excel's Goal Seek tool.

This appendix describes (b).

J.1 Calculation Strategy

Our iterative intercept strategy is to find the temperature at which a feed gas's:

heatup path % SO_2 oxidized, Φ .

equals its:

```
equilibrium curve % SO<sub>2</sub> oxidized, \Phi^{E}.
```

This temperature and its equivalent % SO_2 oxidized define the intercept point. The next several pages provide an intercept calculation worksheet and instructions. The worksheet is for the specific case of:

10 volume% SO₂ 11 volume% O₂ 79 volume% N₂ 690 K

feed gas and 1.2 bar gas pressure. It is easily altered for different pressures and gas compositions and temperatures. All calculations are based on 1 kg-mole of 1^{st} catalyst bed feed gas.

326

J.2 Worksheet

The top of worksheet Table J.1 is similar to equilibrium curve worksheet Table D.1. Its main components are:

- (a) an equilibrium curve % SO_2 oxidized value in cell F11
- (b) Eqn. (10.13) in cell A14 (as shown to the right of that cell)
- (c) equilibrium pressure P_t specified in cell K6.

The middle of the worksheet is similar to heatup path Table I.1. Its main components are:

- (a) a matrix which contains Eqns. (11.1) to (11.6) and Eqn. (11.7") with enthalpy equations in cells D28-J28
- (b) feed gas temperature in cell F30 (copied from cell K5)
- (c) intercept gas temperature in cell J30 (copied from cell A14)
- (d) a matrix results column like that in Table I.1
- (e) a heatup path % SO_2 oxidized value calculated in cell I39 from the matrix results.

The bottom of Table J.1 is the iterative part of the worksheet. It:

(a) subtracts:

heatup path % SO₂ oxidized (cell I39)

from

equilibrium curve % SO₂ oxidized (cell F11)

in cell G47

then:

(b) uses Excel's Goal Seek tool to determine the value of:

equilibrium curve % SO2 oxidized in cell F11

which gives a zero value to cell G47.

The Goal Seek procedure is described in Section J.4.

J.3 Intercept Worksheet Preparation Instructions

- 1. Feed gas volume% SO₂, O₂ and N₂ are entered into cells G3, I3 and K3. Feed gas temperature is entered into cell K5. Total gas pressure is entered into cell K6.
- 2. Feed kg-mole SO₂, O₂ and N₂ are calculated in cells G8, I8 and K8 as shown. They are all per kg-mole of feed gas. Feed kg-mole SO₂ is repeated in cell G5 (for later 2^{nd} catalyst bed calculations).
- 3. A suggested equilibrium curve intercept % SO₂ oxidized value is entered in cell F11 (perhaps 69% from Table 12.1).
- 4. Eqn. (10.13) is entered in Cell A14 as shown.
- 5. Steps 3 and 4 automatically calculate the equilibrium curve temperature (cell A14) equivalent to the % SO_2 oxidized value in cell F11. The cell A14 temperature is automatically copied into cell J30. This links the equilibrium curve and heatup path calculations.
- 6. A heatup path matrix is entered as described in Tables 11.2 and I.1. Cells D28 to J28 contain enthalpy-as-a-function-of-temperature equations, Table I.1. Cells C22 to C24 contain input kg-mole SO₂, O₂ and N₂, Section 11.13.
- 7. The matrix is solved as described in Appendix H. The procedure is: select cell B35, shift-arrow down to cell B41, type *mmult(minverse(D22:J28),C22:C28)* then simultaneously press Ctrl Shift Enter. This is the only time the matrix must be solved.
- 8. Eqn. (10.1) is entered in cell I39. This automatically uses the step 7 results to calculate the heatup path % SO_2 oxidized value equivalent to:

cell J30's (hence cell A14's) intercept temperature.

9. At his point, equilibrium curve temperature = heatup path temperature. But equilibrium curve % SO₂ oxidized (cell F11) \neq heatup path % SO₂ oxidized (cell I39). So this is not the intercept.

The 'actual' intercept value is determined by the Goal Seek calculation in Section J.4.

Table J.1. Worksheet for calculating 1st catalyst bed heatup path-equilibrium curve intercept. Preparation instructions are given in Section J.3. Operating instructions are given in Section J.4. Notice that equilibrium curve % SO_2 oxidized (cell F11) \neq heatup path % SO_2 oxidized (cell I39). So 894.2 K in cells A14 and J30 is not the intercept temperature. The intercept value is calculated in Table J.2.

	1		C	<u> </u>	F	F	G	н	1	J	ĸ
	1ST CATAL VST B					• • • • • • • • • • • • • • • • • • •		All quantities ar	e per kg-mole o	1st catalyst bed	feed gas
H	TIST CATALIST D							1		-	
3	1st catalyst bed fee	ad gas composition fro	m Fig. 11.2		<u> </u>	e, volume% SO ₂ =	10	f, volume% O ₂ =	11	volume% N ₂ =	79
4	1st catalyst bed fee	ed kg-mole SO ₂ (for E	qn. (10.1) = e/100 =	= G3/100 (Eqn.	11.1)		0.1		feed ga	s temperature, K =	690
6									catalyst bed	pressure P _t , bar =	1.2
7			1		1	1					
8	1st catalyst bed fee	d kg-mole from abov	e feed gas compos	ition, Eqn. (11.1)	etc.	SO ₂ =	0.1	0 ₂ =	0.11	N ₂ =	0.79
9							= e/100 =G3/100		=f/100 =i3/100		=K3/100
10											
11	Suggested equilibr	ium curve intercept %	SO2 oxidized, Φ^E =			69.0					
12			T								
13	Equilibrium curve to	emperature equivalen	to cell F11's sugge	sted % SO, oxid	ized, Eqn. (10.13)					
14	894.2	=-(-98.41)/(0.09357+	0.008314*LN(F11/(100-F11)*((100-	0.5*G3*F11/100V	13-0.5°G3°F11/100))^0.5*K6^-0.5))	(10.13)			
15			1	, , n , ,							
16											
17	1										
18											
19					·						
20	Heatup path matrix	(In means 'in feed	gas', out means 'in	intercept gas")						Lun mate M	
	Equation	description	numerical term	kg-mole SO ₂	kg-mole O2	kg-mole N ₂	kg-mole SO3	Kg-mole SO ₂	kg-mole O ₂	Kg-mole N ₂	
21			=G8 etc.	ln	in	in	out	out	out	out	nue 21
22	11.1	feed SO ₂ kg-mole	0.10	1	0	0	0	0	0	0	
23	11.2	feed O ₂ kg-mole	0.11	0	1	0	0	0	0	0	
24	11.3	feed N ₂ kg-mole	0.79	0	0	1	0	0	0	0	
25	11.4	S balance	0	-1	0	0	1	1	0	0	
26	11.5	O balance	0	-2	-2	0	3	2	2	0	
27	11.6	N balance	0	0	0	-2	0	0	0	2	
28	11.7"	enthalpy balance	0	278.7	-12.21	-11.66	-356.7	-268.2	19.01	18.01	
29											
30	· · · · · · · · · · · · · · · · · · ·			feed g	as temperature =	690	inte	arcept temperatur	e from cell A14 =	894.2	
31	· · · · · ·				<u> </u>	±K5				-// 14	
32						<u> </u>	-0.07144* 130-420		div G		
33		alast to suggested int	accent temperature	in call 130 (and	A1A\		-0.01144 050420				
34	Maute results equin			In con 550 (and	1						
30	ko-mole O in	0.1000	·{ · · · · · · ·			• · -					
17	kg mole N in	0.7900			+		1				
31		0.7500			beatur nath % S	Ω oxidized (Φ) equ	ivalent to intercent	temperature in ce	alls J30 and A14		
30	kg-mole SO3 out	0.0095	· · · ·	+ -	$(k_{0}, m_{0}) = SO_{0} [n - k_{0}, m_{0}] = SO_{0} [n^{*}100 = 69.5 = (G5-B39)(G5^{*}100)$						(10.1)
39	kg-mole SU ₂ out	0.0305		[()=	
10		0.0752		├ ─────	+						
41						<u> </u>	· · · · · · · · · · · · · · · · · · ·				
42	42 Jali per kg-mole of feed gas					···					
43	+ - <u></u>		+	<u> </u>	<u>+</u>						
44											
45	Goal Seek calculat	ion			1	1					
47	Equilibrium curve 9	% SO, oxidized - heat	p path % SO, oxid	zed =	1		-0.5	=F11-l39			
1 **	Indampron conto 1	0 0 0 2 0			1		, <u>, , , , , , , , , , , , , , , , , , </u>				

J.4 Goal Seek Instructions

Table J.1 is set up so that equilibrium curve temperature always = heatup path temperature. The only remaining question is at what temperature does:

heatup path $\% SO_2 \text{ oxidized} =$ equilibrium curve $\% SO_2 \text{ oxidized}$?

This is determined by:

- 1. Putting 'equilibrium curve '% SO₂ oxidized heatup path % SO₂ oxidized' in cell G47, as shown.
- 2. Using Goal Seek to adjust:

```
equilibrium curve % SO2 oxidized (cell F11)
```

until cell G47 = zero, i.e. until:

```
heatup path \% SO_2 \text{ oxidized} = equilibrium curve \% SO_2 \text{ oxidized}.
```

The Goal Seek procedure is:

```
Tools
Goal Seek
```

```
Set cell: G47
To value: 0
Changing cell: F11
OK
```

OK.

The results are shown in worksheet Table J.2. The intercept point is $69.2 \% SO_2$ oxidized (in cells F11 and I39), 893.3 K (in cells A14 and J30) – as is readily checked by comparison with Table 12.1.

Intercept kg-mole SO₃, SO₂, O₂ and N₂ (per kg-mole of feed gas) are also provided in cells B38 to B41. They are used in Chapter 14 and 15's multi-catalyst bed calculations.

J.5 Another Example

Table J.3 is a worksheet for 13 volume% SO_2 , 14.3 volume% O_2 and 72.7 volume% N_2 , 690 K feed gas and a 1.2 bar equilibrium pressure. The heatup path-equilibrium curve intercept for this new gas is determined by:

- (a) entering these new specifications in cells G3, I3, K3, K5 and K6
- (b) repeating Section J.4's Goal Seek instructions.
| [| A | В | C | D | E | F | G | н | 1 | j | ĸ |
|-----|----------------------------|---|--|-------------------------|-----------------------------|---------------------------------|---------------------|-----------------------------|------------------------|---------------------------------|----------|
| h | 1ST CATALYST B | ED | | | | | _ | All quantities an | e per kg-mole o | f 1st catalyst bed | feed gas |
| 2 | | | | | | | | | | | |
| 3 | 1st catalyst bed fee | d gas composition fro | m Fig. 11.2 | | | e, volume% SO ₂ = | 10 | f, volume% O ₂ = | 11 | volume% N ₂ = | 79 |
| 4 | 1st catalyst bed fee | d ka-mole SO ₂ (for E | gn. (10.1) = e/100 = | G3/100 (Eqn. | 11.1) | | 0.1 | | feed ga | s temperature, K = | 690 |
| 1 | | - | | | | | | | catalyst bed | pressure P _t , bar = | 1.2 |
| 1 | · | | | | - | | | | - | | |
| H'A | 1st catalyst hed fee | d ka-mole from above | e feed oas composi | tion, Ean. (11.1) | etc. | SO ₂ = | 0.1 | O ₂ = | 0.11 | N ₂ = | 0.79 |
| ١Ť | 131 Calaryst Ded red | | | | 1 | | = e/100 =G3/100 | | =f/100 =l3/100 | | =K3/100 |
| 10 | | | | | | | | | | | |
| 11 | Suggested equilibri | um curve intercept % | SO ₂ oxidized, $\Phi^{E} =$ | | | 69.2 | | | | | |
| 12 | | | | | 1 | | | | | | |
| 12 | Equilibrium curve te | mperature equivalent | to cell F11's sugge | sted % SO2 oxid | ized, Eqn. (10.13) | ··· | | | | | |
| 14 | 803 3 | =-/-98 41 //0 09357+0 | 008314*I N/F11/ | 100-F11)*/(100-C | 5*G3*F11/100V | 13-0.5*G3*F11/100) | ^0.5*K6^-0.5)) | (10.13) | 1 | | |
| 15 | 030.0 | - (50.41)(0.05007.1 | | | | | | | | | |
| 16 | | | | | | | | | | | |
| 17 | | | | | | | | | | | |
| 18 | | | | | | | | | | | |
| 19 | | | | | | | | | | | |
| 20 | Heatup path matrix | (in means in feed g | as', out means 'in | intercept gas') | | | | | | | |
| | Equation | | numerical term | kg-mole SO ₂ | kg-mole O ₂ | kg-mole N ₂ | kg-mole SO3 | kg-mole SO₂ | kg-mole O ₂ | kg-mole N ₂ |] |
| 21 | | | =G8 etc. | in | in | in | out | out | out | out | |
| 22 | 11.1 | feed SO ₂ kg-mole | 0.10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 23 | 11.2 | feed O ₂ kg-mole | 0.11 | 0 | 1 | 0 | 0 | U | 0 | 0 | |
| 24 | 11.3 | feed N ₂ kg-mole | 0.79 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
| 25 | 11.4 | S balance | 0 | -1 | 0 | 0 | 1 | 1 | 0 | 0 | |
| 26 | 11.5 | O balance | 0 | -2 | -2 | 0 | 3 | 2 | 2 | 0 | |
| 27 | 11.6 | N balance | 0 | 0 | 0 | -2 | 0 | 0 | 10.00 | 2 | |
| 28 | 11.7 | enthalpy balance | 0 | 278.7 | -12.21 | -11.66 | -356.8 | -208.2 | 10.99 | 17.99 | |
| 29 | | | | (| | 600 | inte | rcent temperatur | e from cell A14 = | 893.3 | |
| 30 | | | - | ieed g | as temperature - | =K5 | | sicept temperatur | | =A14 | |
| 31 | | | | | | | _/ | | | | |
| 132 | | | | | | | =0.07144*J30-420 | .6 from Apper | ndix G | | |
| 34 | Matrix results equiv | alent to succested inte | ercept temperature | in cell J30 (and | Á14) | | | | | | |
| 35 | ka-mole SO ₂ in | 0.1000 | | · | | | | | | | |
| 36 | kg-mole O ₂ in | 0.1100 | | | | | | | | | |
| 37 | kg-mole N ₂ in | 0.7900 | | | | | | | | | |
| 38 | kg-mole SO3 out | 0.0692 | | | heatup path % S | O ₂ oxidized (Φ) equ | valent to intercept | temperature in ce | ells J30 and A14 | | |
| 39 | kg-mole SO2 out | 0.0308 | | | (kg-mole SO ₂ in | - kg-mole SO ₂ out)/ | kg-mole SO₂ in*10 | 0 = | 69.2 | =(G5-B39)/G5*100 |) (10.1) |
| 40 | kg-mole Oz out | 0.0754 | | | | | | | | | |
| 41 | kg-mole N ₂ out | 0.7900 | | | | | | | | | |
| 42 | all per kg-mole of fe | ed gas | | | | | | | | | |
| 43 | | | | | | | | | | | |
| 44 | | | | | | | | | | | |
| 45 | | | | | | | | | | | |
| 46 | Goal Seek calculati | on | | | | | | -544 100 | <u> </u> | | |
| 47 | Equilibrium curve % | SO ₂ oxidized - heatu | p path % SO ₂ oxidi | zed = | <u> </u> | | 0.0 | ===11-139 | | | |

Table J.2. Table J.1 worksheet after Goal Seek has found the heatup path-equilibrium curve intercept: 893.3 K, 69.2% SO₂ oxidized.

-						-				· · · · · · · · · · · · · · · · · · ·	,
	Α	В	с	D	E	F	G	н	1	J	<u>K</u>
1	1ST CATALYST E	BED						All quantities a	re per kg-mole o	f 1st catalyst bed	feed gas
2						L					
3	1st catalyst bed fe	ed gas specification				e, volume% SO ₂ =	13.0	f, volume% O ₂ =	14.3	volume% N ₂ =	72.7
4											
5	1st catalyst bed fe	ed kg-mole SO2 = e/1	00 = G3/100 =	Eqn. (11.1)			0.13	1	feed gas temper	ature, K =	690
6	I							1	gas pressure in	bed P,, bar =	1.2
7								<u> </u>			
8	1st catalyst bed fe	ed kg-mole from feed	gas composition			kg-mole SO ₂ =	0.13	kg-mole O ₂ =	0.143	kg-mole N ₂ =	0.727
9							= e/100 =G3/100	1	=f/100 =(3/100		=K3/100
10											
11	Equilibrium curve i	ntercept % SO ₂ oxidiz	ed =	1		62.7					
12					1						
13	Equilibrium curve t	emperature equivalen	t to cell F11's sugge	ested % SO ₂ oxid	ized, from Eqn. (1	10.13)					
14	924.5	=-(-98.41)/(0.09357+	0.008314*LN(F11/(100-F11)*((100-0	.5*G3*F11/100)/	13-0.5*G3*F11/100))^0.5*K6^-0.5))	(10.13)			
15											
16						L					
17											
18								·			
19			L						-		
20	Heatup path matrix	(in means in feed	gas', out means in	intercept gas)					h	to male M	
	Equation	description	numerical term	kg-mole SO2	kg-mole O ₂	kg-mole N ₂	kg-mole SO ₃	kg-mole SO2	kg-mole U ₂	Kg-mole N ₂	
21			-66 810.	in	in	in	out	out	out	ουτ	
22		feed SO ₂ kg-mole	0.130	1	0	0	0	0	0	0	· · ·
23		feed O2 kg-mole	0.143	0	1	0	0	0	0	0	
24		feed N ₂ kg-mole	0.727	0	0	1	0	0	0	0	
25	11.4	S balance	0	-1	0	0	1	1	0	0	
26	11.5	O balance	0	-2	-2	0	3	2	2	0	
27	11.6	N balance	0	0	0	-2	0	0	0	2	
28	11.7*	enthalpy balance	0	278.7	-12.21	-11.66	-354.6	-266.6	20.02	18.95	
29											
30				feed g	as temperature =	690	/ int	ercept temperatur	e from cell A10 =	924.5	
31						=K5				=A14	
32					-		-0.07144*120.42				
33		alast to suspended int		in coll 130 (and (14)		-0.07144 330-42				
1 34	Mainx results equin		ercept terriperature	In Cell 330 (and P	14)						
35	kg-mole 302 m	0.1300	······					+			
36	kg-mole O2 in	0.1430									
37	kg-mole N ₂ in	0.7270				l					
38	kg-mole SO3 out	0.0816			% SC	2 oxidized equivaler	nt to intercept temp	perature in cells J	30 and A14 =		
39	kg-mole SO ₂ out	0.0484			(kg	-mole SO2 in - kg-m	ole SO2 out)/kg-m	ole SO2 in*100 =	62.7	=(G5-B39)/G5*10	0 (10.2)
40	ko-mole O ₂ out	0 1022	1								
11	ko-mole N. out	0.7270									
11		0.7270									
42	an per kg-mole of t										
44	f · · · · · ·		+					+·			
45		+					†				
46	Goal Seek calculat	ion									
47	Equilibrium curve 9	6 SO2 oxidized - heatu	p path % SO2 oxid	zed =			0.0	=F11-I39			

Table J.3. Worksheet for 13 volume% SO₂, 14.3 volume% O₂, 72.7 volume% N₂, 690 K feed gas (1.2 bar) after Goal Seek has found the intercept.

Appendix K

2nd Catalyst Bed Heatup Path Calculations

Table K.1 shows a 2^{nd} catalyst bed heatup path matrix with enthalpy-as-a-function-of-temperature equations in cells D15 to K15. The only difference between this matrix and the Table 14.2 matrix is that Eqn. 14.9 in row 15 has been changed to:

 $0 = -\text{kg-mole SO}_{3} \text{ in } * (0.07144 * T_{\text{input}} - 420.6)$ $-\text{kg-mole SO}_{2} \text{ in } * (0.05161 * T_{\text{input}} - 314.3)$ $-\text{kg-mole O}_{2} \text{ in } * (0.03333 * T_{\text{input}} - 10.79)$ $-\text{kg-mole N}_{2} \text{ in } * (0.03110 * T_{\text{input}} - 9.797)$ $+\text{kg-mole SO}_{3} \text{ out } * (0.07144 * T_{L} - 420.6)$ $+\text{kg-mole SO}_{2} \text{ out } * (0.05161 * T_{L} - 314.3)$ $+\text{kg-mole O}_{2} \text{ out } * (0.03333 * T_{L} - 10.79)$ $+\text{kg-mole N}_{2} \text{ out } * (0.03110 * T_{L} - 9.797) \qquad (14.9")$

where:

 $\begin{array}{l} (0.07144 * T - 420.6) = H^{\circ}_{T \ SO_3} \ etc. \\ T_{input} = Fig. \ 14.2's \ 2^{nd} \ catalyst \ bed \ input \ gas \ temperature, \ K \\ T_L = Fig. \ 14.2's \ 2^{nd} \ catalyst \ bed \ level \ L \ gas \ temperature, \ K. \\ Eqn. \ (14.9'') \ is \ put \ into \ Table \ 14.2's \ \underline{solved} \ matrix \ by: \end{array}$

(a) inserting numerical values of T_{input} and T_L into cells F17 and J17

(b) putting the Eqn (14.9") enthalpy terms into cells D15 to K15 so that:

cell D15 contains =
$$-(0.07144 * F17 - 420.6)$$

" E15 " " = $-(0.05161 * F17 - 314.3)$
" F15 " " = $-(0.03333 * F17 - 10.79)$
" G15 " " = $-(0.03110 * F17 - 9.797)$
" H15 " " = $(0.07144 * J17 - 420.6)$
" H15 " " = $(0.05161 * J17 - 314.3)$
" J15 " " = $(0.03333 * J17 - 10.79)$
" K15 " " = $(0.03110 * J17 - 9.797)$.

Insertion of these terms (with 700 K and 760 K in cells F17 and J17) automatically gives the same result as in Table 14.2. The temperatures in cells F17 and J17 can now be changed at will – and heatup path points automatically calculated. Example results are shown below the worksheet.

Table K.1 Table 14.2 with (i) input and level L temperatures in cells F17 and J17 and (ii) enthalpy equations in cells D15 to K15.	A change in either
temperature automatically gives a new % SO_2 oxidized result.	

	A	В	С	D	E	F	G	н		J	к
1	All calculations	are based on 1 kg-	mole of 1 st cata	lyst bed feed g	jas.						
2	kg-mole SO ₂ in 1	kg-mole of 1 st cataly	st bed feed gas	0.1							
3											
4											
5		{				-					
6	2 nd catalyst bed	matrix									
	Equation	description	numerical term	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO ₃	kg-mole SO ₂	kg-mole O₂	kg-mole N ₂
7				in	in	in	in	out	out	out	out
8	14.2	input SO ₃ kg-mole	0.0692	1	0	0	0	0	0	0	0
9	14.3	input SO ₂ kg-mole	0.0308	0	1	0	0	0	0	0	0
10	14.4	input O2 kg-mole	0.0754	0	0	1	0	0	0	0	0
11	14.5	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0
12	14.6	S balance	0	-1	-1	0	0	1	1	0	0
13	14.7	O balance	0	-3	-2	-2	0	3	2	2	0
14	14.8	N balance	0	0	0	0	-2	0	0	0	2
15	14.9"	enthaloy balance	0	370.6	278.2	-12.54	-11.97	-366.3	-275.1	14.54	13.84
16							/				
17			Fi	g, 14.2 input ga	s temperature =	700	/	heatup pa	ath temperature =	760	
18							- (0.0244454	7 0 707)			
19	Heatup path resul	t per kg-mole of 1	catalyst bed feed	gas		contains		(-9.797)			
20	kg-mole SU ₃ in	0.0692									
21	kg-mole SO ₂ in	0.0308									
22	kg-mole O₂ in	0.0754		% SO₂ oxidi	zed at cell J17	kg-mole SO	¦₂in 1 st kg-r	nole SO ₂ at hea	up path		
23	kg-mole N ₂ in	0.7900		heatup path	temper-	= catalyst bed	feed gas - tem	perature in 2 nd c	atalyst bed + 100		
24	kg-mole SO3 out	0.0897		ature in 2 nd d	atalyst bed	kg-m	ole SO ₂ in 1 st c	atalyst bed feed	gas		
25	kg-mole SO2 out	0.0103				=(D2	-B25)/D2*100 =	89.7	% SO2 oxidized		
26	kg-mole O2 out	0.0652									
27	kg-mole N ₂ out	0.7900									

Several Table 14.3/Fig. 14.3 heatup path points calculated with the above worksheet are:

	Α	8	C
		Fig. 14.2 level L	% SO ₂
		temperature, K	oxidized at
30			level L
31		700	69.2
32		705	70.9
33		710	72.6

Appendix L

Equilibrium Equation for Multi-Catalyst Bed SO₂ Oxidation

This appendix shows that the equilibrium equation developed for the 1st catalyst bed of a multi-catalyst bed 'converter' (Eqn. 10.13) also applies to the converter's:

2nd, 3rd (and 4th) pre-H₂SO₄-making catalyst beds.

It also indicates that the 1st catalyst bed equation does not apply to beds which follow:

(a) selective removal of $SO_3(g)$ during H_2SO_4 making, Reaction (1.2)

or:

(b) addition of air between beds (as is occasionally done industrially).

L.1 Proof

Examination of Appendix B and Chapter 10 shows that if the:

inputs to a 2nd catalyst bed are the same as those entering the preceding 1st catalyst bed (per kg-mole of 1st catalyst bed feed gas), then:

equilibrium Eqn. (10.13) applies to both beds.

These 1^{st} and 2^{nd} bed inputs are, of course, the same if nothing is added to or removed from the gas as it passes between the beds. Industrially this is almost always the case so that Eqn. (10.13) almost always applies to both beds.

The following empirical calculation serves to emphasize this point.

Table J.2 shows that 1 kg-mole of its 1st catalyst bed feed gas contains:

0.10 kg-mole SO₂ =
$$\frac{e}{100}$$

0.11 kg-mole O₂ = $\frac{f}{100}$
0.79 kg-mole N₂ = $1 - \frac{e}{100} - \frac{f}{100}$

where e and f are volume% SO_2 and O_2 in the 1st catalyst bed feed gas.

kg-mole S, O and N equivalent to the above quantities are (Section B.3.1):

kg-mole S = $1 * \frac{e}{100}$ = 0.10

kg-mole O =
$$2*\frac{e}{100} + 2*\frac{f}{100} = 0.42$$

kg-mole N =
$$2*\left(1 - \frac{e}{100} - \frac{f}{100}\right) = 1.58$$

Table J.2 also shows that the 1st catalyst bed exit (intercept) gas contains:

which are equivalent to:

kg-mole S = 1*0.0692 kg-mole SO₃ + 1*0.0308 kg-mole SO₂ = 0.10kg-mole O = 3*0.0692 kg-mole SO₃ + 2*0.0308 kg-mole SO₂ + 2*0.0754 kg-mole O₂ = 0.42

kg-mole N =
$$2*0.79$$
 kg-mole N₂ = 1.58

(all per kg-mole of 1st catalyst bed feed gas).

This exit gas flows without addition or removal through its gas cooler and into the 2^{nd} catalyst bed – which leads to the conclusions that:

(a) kg-mole S into = kg-mole S into 1^{st} catalyst bed = $0.10 = 1*\frac{e}{100}$ (L.1)

kg-mole O into

$$1^{\text{st}}$$
 catalyst bed = kg-mole O into
 2^{nd} catalyst bed = 0.42 = $2*\frac{e}{100} + 2*\frac{f}{100}$ (L.2)

kg-mole N into 1st catalyst bed = kg-mole N into 2nd catalyst bed = 1.58 = 2* $\left(1 - \frac{e}{100} - \frac{f}{100}\right)$. (L.3)

(b) Eqn. (10.13) therefore applies to both catalyst beds.

Item (b) arises because Eqns. (B14), (B20), (B23) (B26) (and all subsequent Appendix B equations) are the same for both catalyst beds.

The above calculation can be generalized to a series of catalyst beds as long as nothing is added to or removed from the gas stream between beds.

L.2 Inapplicability

1st catalyst bed equilibrium Eqn. (10.13) does <u>not</u>, however, apply to beds which follow:

- (a) selective removal of SO₃ during H₂SO₄-making
- (b) addition of air between beds.

This is because Eqns. (L.1), (L.2) and (L.3), hence Eqns. (B.14), (B.20), (B23) and (B.26) would not apply to bed 2 (and subsequent beds) if SO_3 were removed or air were added between beds 1 and 2.

Appendix M

2nd Catalyst Bed Intercept Calculations

Chapter 15 indicates that maximum SO_2 oxidation in a 2^{nd} catalyst bed occurs where the bed's:

heatup path

intercepts its

equilibrium curve.

The point of interception may be determined:

- (a) by interpolation, Table 15.1
- (b) iteratively with Excel's Goal Seek tool, described here.

M.1 Calculation Strategy

Our iteration strategy here is much like that in Appendix J. It consists of finding the temperature at which a 2^{nd} catalyst bed's:

equilibrium curve % SO₂ oxidized, Φ^{E}

is the same as its

heatup path % SO_2 oxidized, Φ .

This temperature and its equivalent % SO_2 oxidized define the 2nd catalyst bed intercept point.

All calculations in this appendix are based on the gas composition, temperature and pressure specifications in Fig. 14.2. The calculations are all per kg-mole of 1^{st} catalyst bed feed gas.

M.2 Specifications (Fig. 14.2)

This appendix's specifications are:

1st catalyst bed feed gas composition:

10 volume% SO₂, 11 volume% O₂, 79 volume% N₂

2nd catalyst bed input gas quantities:

```
0.0692 kg-mole SO<sub>3</sub>
0.0308 kg-mole SO<sub>2</sub>
0.0754 kg-mole O<sub>2</sub>
0.7900 kg-mole N<sub>2</sub>
```

per kg-mole of 1st catalyst bed feed gas.

2nd catalyst bed gas input temperature and bed pressure:

700 K

1.2 bar

M.3 Worksheet

All quantities are per kg-mole of 1st catalyst bed feed gas.

The 2nd catalyst bed intercept worksheet (below) is prepared as follows:

- 1. I^{st} catalyst bed feed gas volume % SO₂ and volume% O₂ are entered in cells G3 and I3. 1^{st} catalyst bed input kg-mole SO₂ is calculated in cell G5.
- 2. 2nd catalyst bed input gas quantities are entered in cells E8, G8, I8 and K8. They are Fig. 14.2's 1st catalyst bed <u>intercept</u> quantities. They are automatically copied into cells C21-C24.
- 3. 2nd catalyst bed gas input temperature and catalyst bed pressure are entered in cells K5 and K6.
- 4. An equilibrium curve intercept % SO₂ oxidized is suggested in cell F11 (perhaps 94% from Table 15.1).
- 5. Eqn. (10.13) is entered in cell A14 as shown beside the cell.
- 6. Steps 4 and 5 automatically calculate the cell A14 equilibrium curve temperature that is equivalent to cell F11's % SO_2 oxidized. The cell A14 temperature is then automatically copied into cell J30, as shown. This links the 2nd bed equilibrium curve and heatup path calculations.
- The Appendix K heatup path matrix is entered into cells C21 to K28. Cells D28 to K28 contain enthalpy-as-a-function-oftemperature equations, Appendix K (-H^o_T in cells D28 to G28). Cells C21 to C24 contain Fig. 14.2's 2nd catalyst bed input kg-mole SO₃, SO₂, O₂ and N₂.
- 8. The matrix is solved as described in Appendix H. The procedure is: select cell B34, shift-arrow down to cell B41. With these cells still selected, type *mmult(minverse(D21:K28),C21:C28)* then simultaneously press Ctrl Shift Enter
- 9. Eqn. (14.1) is entered in cell I39 as shown beside it. This automatically uses step 8's results to calculate the heatup path % SO₂ oxidized equivalent to cell J30's (hence cell A14's) intercept temperature.
- 10. At this point, equilibrium curve temperature = heatup path temperature. But equilibrium curve % SO₂ oxidized (cell F11) \neq heatup path % SO₂ oxidized (cell I39). So this is <u>not</u> the intercept.

The actual 2nd catalyst bed intercept value is determined by the Goal Seek calculation in Section M.4.

Table M.1. Worksheet for determining 2^{nd} catalyst bed heatup path-equilibrium curve intercept. The non-zero 'equilibrium curve % SO_2 oxidized - heatup path % SO_2 oxidized' value in cell G47 indicates that cell F11's suggested 94% SO_2 oxidized is not the intercept value. The actual intercept value is calculated in Table M.2.

	A	В	C C	D	E	F	G	Н		J	ĸ
1	2nd CATAL YST B	ED.						All quantities ar	e per kg-mole d	of 1 st catalyst b	ed feed gas
2											
3	1 ^{#1} catalyst bed fe	ed gas specification	s from Fig. 14.2			e, volume% SO ₂ =	10	f, volume% O ₂ =	11		
4											
5	1 ^{#1} catalyst bed fe	ed kg-mole SO2 (fo	r Eqn. (14.1) = e	/100 = G3/100	Eqn. (11.1))	0.1	2nd catalyst	bed input gas te	mperature, K =	700
6	-			-		I		2nc	catalyst bed pr	essure Pt, bar =	1.2
7		-									
R	2 nd catalyst herd in	out karmole from F	ia 14.2	SO3 =	0.0692	SO ₂ =	0.0308	O2 =	0.0754	N ₂ =	0.79
9	2 couly st bee in		3	_							
10		-									
11	Suggested 2 nd cat	alyst bed equilibriur	n curve intercept	% SO2 oxidized,	Φ ^E =	94.0	5				
12											
13	2 nd catalyst bed e	quilibrium curve tem	perature equival	ent to cell F11's 9	6 SO ₂ oxidized,	from Eqn. (10.13)					
14	775.0	=-(-98.41)/(0.09357	7+0.008314*LN(11/(100-F11)*((1	00-0.5*G3*F11/	100)/(I3-0.5*G3*F11/	100))^0.5*K6^-	0.5))	(10.13)		
15											
16								1			
17											
18		antin anth matrix	Enns 14 3 to 14	R am from Sactiv	or 14 5 and 14	6 Ean 14 9" from A	nnendix K	-			
19	2 catalyst bed r	вашр расп талх.	numerical term	ko-mole SOs	ka-mole SO	ka-mole O ₂	kg-mole N ₂	kg-mole SO ₃	kg-mole SO ₂	kg-mole O2	kg-mole N ₂
20	Equation	description	=E8 etc.	in in	In	In	in	out	out	out	out
21	14.2	input SO- ka-mole	0.0692	1	0	0	0	0	0	0	0
22	14.2	input SO- kg-mole	0.0308	0	1	0	0	0	0	0	Q
22	14.3	input C ka mole	0.0366	0	0	1	0	0	0	0	0
23	14,4	input O ₂ kg-mole	0.0734		0	,	1	0	0	0	0
24	14.5	Input N ₂ kg-mole	0.7900	0		0	, ,	1	1	0	0
25	14.6	S balance	0	-1	-2	-2	0	3	2	2	0
20	14.7	N halance	0	0	0	0	-2	0	0	0	2
28	14.9"	enthalpy balance	0	370.6	278.2	-12.54	-11,97	-365.2	-274.3	15.04	14.31
29				<u>~</u>		~	-+-		- · · · · · · · · · · · · · · · · · · ·		
30			2nd cata	lyst bed input gas	temperature =	700	$ \rightarrow $	intercept tempera	ture, cell A14 =	775.0	
31			·			=K5				=A14	
32			d internet to	rature in call 120	(and A14)		=-(0 0311*E30	9 797) (Anne	ndix AHUP)		
33	Matrix results equ	ivalent to suggested	T intercept tempe	rature in cell J30	(and Atra)		-10.0311 -30				
34	kg-mole SO ₃ In	0.0692	<u> </u>				}	·			
35	kg-mole SU ₂ In	0.0308				<u> </u>					
36	kg-mole O ₂ in	0.0754									
37	kg-mole N ₂ In	0.7900									
38	kg-mole SO3 out	0.0948	hea	tup path % SO₂ c	xidized (Ф) equi	valent to intercept te	mperature in ce	J30 =		·	
39	kg-mole SO2 out	0.0052	= (1 st catalyst bed fe	ed gas ko-mole	SO2 - 2 nd catalyst be	d kg-mole SO2	out) * 100 =	94.8	= (G5-B39)/G5*	100 (14.1)
40	kg-mole O2 out	0.0626		1	* catalyst bed fe	ed gas kg-mole SO					
41	kg-mole N2 out	0.7900									
42	all per kg-mole of	1st catalyst bed fee	d gas								
43											
44											
45								-			
46	Goal Seek calcula	ition					0.8	-511 130			
47	Equilibrium curve	% SO ₂ oxidized - he	eatup path % SO	2 oxidized =	L		-0.8	=======================================			

M.4 Goal Seek Instructions

Table M.1 is set up so that equilibrium curve temperature always = heatup path temperature. The only remaining question is at what temperature does:

heatup path $\% SO_2$ oxidized = equilibrium curve $\% SO_2$ oxidized?

This is determined by:

- 1. Putting 'equilibrium curve % SO₂ oxidized heatup path % SO₂ oxidized' in cell G47, as shown in Table M.1.
- 2. Using Goal Seek to adjust:

equilibrium curve % SO₂ oxidized (cell F11)

until cell G47 = zero, i.e. until:

heatup path % SO_2 oxidized = equilibrium curve % SO_2 oxidized.

The Goal Seek procedure is:

```
Tools
Goal Seek
Set Cell G47
To Value 0
Changing Cell F11
OK
OK.
```

The results are shown in Table M.2. The intercept point is 94.2% SO₂ oxidized (in cells F11 and I39), 773.2 K (in cells A14 and J30) – as is readily checked with Table 15.1.

r	A	B	C	D	F	F	G	н		.I	к
1	2 rd CATALYST B	FD			i — —	· · · · · · · · · · · · · · · · · · ·		All quantities as	e ner kalmole i	of 1 st catalyst b	ed feed cas
2					1						
1	1 st catablet bed fe	⊢ ed ass specification	s from Fig. 14.2			e. volume% SO ₂ =	10	f volume% O ₂ =	11		
1	1 Catalyst Ded le	eu gas specification	5 10/11 (19. 14.2				10	1, Volume /0 O2 =			
1	1 st catalyst hed fe	ed ka-mole SO. (fo	r Fon (14.1) = e	(100 = G3/100	Eap (11.1)	L	0.1	2nd cotobert	had input one to	mooratura K -	700
F	1 Gatalyst Ded to			100 - 00/100	() () () ()		0.1		beu input gas it	sinperature, r	100
₽ <u>₽</u>								200	i catalyst bed pr	essure P, bar =	1.2
⊬		l	1								
8	2" catalyst bed in	put kg-mole from F	ig. 14.2	SO3 =	0.0692	SO ₂ =	0.0308	O2 =	0.0754	N ₂ =	0.79
9											
10					[
11	Suggested 2" cal	alyst bed equilibriur	n curve intercept	% SO2 oxidized,	Φ" =	94.2					
12			l i								
13	2 ^m catalyst bed e	quilibrium curve tem	perature equival	ent to cell F11's 9	6 SO ₂ oxidized,	from Eqn. (10.13)					
14	773.2	=-(-98.41)/(0.09357	+0.008314*LN(F11/(100-F11)*((1	00-0.5*G3*F11/	100)/(13-0.5*G3*F11/	/100))^0.5*K6^-	0.5))	(10.13)		
15											
16											
17			<u>ا</u>					<u> </u>			
18	ad		1								
19	2"" catalyst bed f	eatup path matrix.	Eqns. 14.2 to 14	.8 are from Section	ons 14.5 and 14.	6. Eqn. 14.9" is fror	n Appendix K.				
	Equation	description	numerical term	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO ₃	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
20			≂E8 etc.	<u>(n</u>	in	in	in	out	out	out	out
21	14.2	input SO3 kg-mole	0.0692	1	0	0	0	0	0	0	0
22	14.3	input SO ₂ kg-mole	0.0308	0	1	0	0	0	0	0	0
23	14.4	input O ₂ kg-mole	0.0754	0	0	1	0	0	0	0	0
24	14.5	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0
25	14.6	S balance	0	-1		0	0	1	1	0	0
26	14.7	O balance	0	-3	-2	-2	0	3	2	2	0
27	14.8	N balance	0	0	0	0	-2	ō	0	0	2
28	14.9"	enthalpy balance	0	370.6	278.2	-12.54	-11.97	-365.4	-274.4	14.98	14.25
29				~					~	-	
30			2nd cata	lyst bed input gas	temperature =	700		intercept tempera	ture, cell A14 =	773.2	
31						=K5				=A14	
32											
33	Matrix results equ	valent to suggested	intercept tempe	rature in cell J30	(and A14)		=-(0.0311*F30-	9.797) (Apper	ndix AHUP)		
34	kg-mole SO3 in	0.0692									
35	kg-mole SO ₂ in	0.0308									
36	kg-mole O2 in	0.0754									
37	ka-mole N ₂ in	0 7900									
20		0.0042			(d)			100 -			
38	kg-mole SU3 out	0.0942	hea	tup path% SO ₂ of	kidized (Φ) equiv	alent to intercept ten	nperature in cel	J30 =			
39	kg-mole SO ₂ out	0.0058	= (1 " cataiyst bed fe	ed gas ko-mole	SO2 - 2" catalyst be	d kg-mole SO2	<u>out)</u> * 100 =	94.2	= (G5-B39)/G5*	100 (14.1)
40	kg-mole O2 out	0.0629		1	" catalyst bed fe	ed gas kg-mole SO ₂					
41	kg-mole N ₂ out	0.7900									
42	all per kg-mole of	1st catalyst bed fee	d gas								
43											
44											
45											
46	Goal Seek calcula	tion									
47	Equilibrium curve	% SO2 oxidized - he	atup path % SO	oxidized =			0.0	=F11-I39			

Table M.2. Table M.1 after Goal Seek has found the intercept. It is 773.2 K (cells A14 and J30), 94.2% SO₂ oxidized (cells F11 and I39). This result is the same as that obtained by interpolating Table 15.1's temperature-% SO₂ oxidized values.

Appendix N

3rd Catalyst Bed Heatup Path Worksheet

Table N.1 is a 3rd catalyst bed heatup path worksheet. It is a copy of worksheet Table K.1[#] with:

- (a) Eqns. (16.1) to (16.4) in place of Eqns. (14.2) to (14.5), rows 8 to 11
- (b) Chapter 16's 710 K 3rd catalyst bed input gas temperature in cell F17
- (c) a 715 K 3rd bed heatup path temperature in cell J17
- (d) 3^{rd} instead of 2^{nd} in all captions.

With these changes, the worksheet automatically gives the result that 715 K in the 3^{rd} catalyst bed is generated by a total of 95.9% SO₂ oxidation (including oxidation in the preceding 1^{st} and 2^{nd} beds), cell H25.

The table's matrix doesn't have to be re-solved for this or any other calculation. A few other heatup path points are:

	M	N
31	Fig. 16.2 level L temperature, K	% SO ₂ oxidized at level L
32	710	94.20
33	712	94.89
34	714	95.57
35	716	96.25

[#]Steps for copying the worksheet are: Edit Move or Copy Sheet To book: (*new book*) <u>Create a copy ✓</u> OK.

Changes (a) – (d) are then made. Finally, the worksheet is saved in the Chapter 16 file with an appropriate name, e.g. Table N.1.

	A	В	С	D	E	F	G	<u>н</u>	I	J	<u> </u>
1	All calculations a	are based on 1 kg-	mole of 1" cata	lyst bed feed g	as.						
2	kg-mole SO ₂ in 1	kg-mole of 1 st cataly	st bed feed gas	0.1							
3											
4											
5											
6	3 ^{ro} catalyst bed r	natrix					ton make bl	he male SO	ka mala SO	ka mala O	ka-mole N-
	Equation	description	numerical term	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SU3	kg-mole 30 ₂	kg-mole O ₂	
7				In	in	in		out	out	001	
8	16.1	input SO ₃ kg-mole	0.0942	1	0	0		0	U		
9	16.2	input SO ₂ kg-mole	0.0058	0	1	0	0	0	0	0	0
10	16.3	input O ₂ kg-mole	0.0629	0	0	1	0	0	0	0	0
11	16.4	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0
12	14.6	S balance	0	-1	-1	0	0	1	1	0	0
13	14.7	O balance	0	-3	-2	-2	0	3	2	2	0
14	14.8	N balance	0	0	0	0	-2	0	0	0	2
15	14.9"	enthalpy balance	0	369.9	277.7	-12.87	-12.28	-369.5	-277.4	13.04	12.44
16	í								IŤ		
17	1		Fi	g. 16.2 input ga	s temperature =	710	/	heatup pa	th temperature =	715	
18						/					
19	Heatup path resul	t per kg-mole of 1 st	catalyst bed feed	gas		contains	=-(0.0311*F1	7-9.797)			
20	kg-mole SO3 in	0.0942									
21	kg-mole SO ₂ in	0.0058									
22	kg-mole O2 in	0.0629		% SO ₂ oxidi	zed at cell J17	kg-mole SC	₂in 1 st kg-⊓	nole SO ₂ at hea	up path		
23	kg-mole N ₂ in	0.7900		heatup path	temper-	= catalyst bed	feed gas - tem	perature in 3 rd ca	atalyst bed * 100	(14.1)	
24	kg-mole SO3 out	0.0959		ature in 3 rd c	atalyst bed	kg-m	ole SO ₂ in 1 st ca	talyst bed feed	gas		
25	kg-mole SO2 out	0.0041				=(D2	-B25)/D2*100 =	95.9	% SO ₂ oxidized		
26	kg-mole O2 out	0.0620									
27	kg-mole N2 out	0.7900									

Table N.1. 3rd catalyst bed heatup path matrix with enthalpy equations in cells D15-K15. The numerical quantities in cells C8-C11 are Table M.2's 2nd catalyst bed intercept quantities.

345

Appendix O

3rd Catalyst Bed Intercept Worksheet

Table O.1 is a 3rd catalyst bed heatup path-equilibrium curve intercept worksheet. It is a copy of Table M.2[#] with:

- (a) Fig. 16.2's 3rd catalyst bed input gas quantities in cells E8, G8, I8 and K8
- (b) Eqns. (16.1) to (16.4) in place of Eqns. (14.2) to (14.5), rows 21 to 24
- (c) Fig. 16.2's specified 710 K 3rd catalyst bed input gas temperature in cell K5 and its specified 1.2 bar 3rd bed pressure in cell K6
- (d) 3^{rd} instead of 2^{nd} in all captions.

The worksheet is operated exactly like worksheet Table M.2. The result is shown in Table O.1. It indicates that the 3^{rd} catalyst bed intercept point under Fig. 16.2's specified conditions is:

721.1 K, 98.0% SO2 oxidized (after 3 beds).

[#]Copied as described in Appendix N.

 Table O.1. 3rd catalyst bed intercept worksheet after Appendix M's Goal Seek instructions have been carried out.

 The intercept is shown to be 721.1 K, 98.0% SO₂ oxidized – which gives a zero value in cell G47.

_	· · · · ·		1			r	¥				
	<u>A</u>	В	C	D	E	F	G	нн			ĸ
1	3RD CATALYST E	ED						All quantities ar	e per kg-mole (of 1" catalyst b	ed feed gas
2											
3	1 st catalyst bed fe	ed gas composition	from Fig. 11.2			e, volume% SO ₂ =	10	f, volume% O ₂ =	11		
4		L			1						ļ
5	1 st catalyst bed fe	ed kg-mole SO2 (fo	r Eqn. (14.1) = e	/100 = G3/100	(Eqn. (11.1)		0.1	3 rd catalyst bed input gas temperature, K =		710	
6							1	3"	¹ catalyst bed pr	essure P _t , bar = ¹	1.2
7											
8	3rd catalyst bed in	put kg-mole from S	ection 15.2.4	SO3 =	0.0942	SO ₂ =	0.0058	O ₂ =	0.0629	N ₂ =	0.79
9			-								
10											
11	Suggested 3rd cat	alvst bed equilibriun	n curve intercept	% SO ₂ oxidized.	Φ [€] =	98.0					
12		· · · · ·	· · · · · ·		[· · ·						
13	3 rd catalyst bed ec	uilibrium curve tem	perature equivale	ent to cell F11's 9	SO- oxidized.	Ean. (10.13)					
14	721.1	=-(-98.41)/(0.09357	+0.008314*I N/F	11/(100-F11)*((1	00-0 5*G3*F11/	100V(I3-0.5*G3*F11	100100.5*864-0	15))	(10.13)		
15		(00000000000000000000000000000000000000					1				
16											
17											
18											
19	3" catalyst bed h	eatup path matrix.	Eqns. 14.6 to 14	8 are from Sectio	n 14.6. Eqn. 14	.9" is from Appendix	K. Eqns. 16.1 to	16.4 are from Se	ction 16.2.		
	Fauntina		numerical term	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
20	Equation	description	=E8 etc.	in	In	In	In	out	out	out	out
21	16.1	input SO ₃ kg-mole	0.0942	1	0	0	0	0	0	0	0
22	16.2	input SO ₂ kg-mole	0.0058	0	1	0	0	0	0	0	0
23	16.3	input O ₂ kg-mole	0.0629	0	0	1	0	0	0	0	0
24	16.4	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0
25	14.6	S balance	0	-1	-1	0	0	1	1	0	0
26	14.7	O balance	0	-3	-2	-2	0	3	2	2	0
27	14.8	N balance	0	0	0	0	-2	0	0	0	2
28	14.9"	enthalpy balance	0	369.9	277.7	-12.87	-12,28	-369.1	-277.1	13.24	12.63
29									~		
30			3 rd cata	iyst bed input gas	temperature =	710		intercept tempera	ture, cell A14 =	721.1	
31						=K5				=A14	
32		L					10 00110				
33	Matrix results equi	valent to suggested	intercept tempe	rature in cell J30	(and A14)		=-(0.0311**30-	9./9/) (Apper	HOIX (G)		
34	kg-mole SU ₃ in	0.0942									
35	Ing-mole 302 III	0.0000									
36	kg-mole U ₂ in	0.0629									
37	kg-mole N ₂ In	0.7900									
38	kg-mole SO ₃ out	0.0980	heat	µp path % SO₂ ox	idized (Φ) equiv	alent to 3 rd catalyst b	ed intercept terr	perature in cell J3	i0 =	-	
39	kg-mole SO ₂ out	0.0020	= (_1	* catalyst bed fee	d gas kg-mole S	O2 - 3rd catalyst bed	ka-mole SO ₂ ou	<u>t)</u> * 100 =	98.0	= (G5-B39)/G5*	100 (14.1)
40	kg-mole O ₂ out	0.0610			catalyst bed fee	ed gas kg-mole SO₂					
41	kg-mole N ₂ out	0.7900									
42	all per kg-mole of	1st catalyst bed fee	d gas								
43											
44											
45											
46	Goal Seek calcula			and dimend				E			
47	Equilibrium curve '	% SU ₂ oxidized - he	atup path % SO	2 oxidized =			0.0	≠F11-I39			

Appendix P

Effect of SO₃ in Fig. 10.1 Feed Gas on Equilibrium Equations

About 2% of $(SO_2 + SO_3)$ in sulfur-burning furnace/waste heat boiler offgas is SO_3 . Sulfur burning offgas isn't water quenched/cleaned so its SO_3 isn't absorbed. It enters the Fig. 10.1 catalyst bed.

This appendix describes how SO_3 -in-feed-gas affects equilibrium Equations (10.12) and (10.13).

Including SO₃, Fig. 10.1's feed gas contains:

d	volu	me%	6 SO3
e	11	11	SO_2
f	"	"	O_2
100 - d - e - f	"	"	N ₂ .

Per kg-mole of Fig. 10.1 feed gas, the input molar quantities are:

$$\frac{d}{100}$$
 kg-mole SO₃ (Section B.3.1)

$$\frac{e}{100}$$
 " " SO₂

$$\frac{f}{100}$$
 " " O₂
1 - $\frac{d}{100}$ - $\frac{e}{100}$ - $\frac{f}{100}$ " " N₂.

P.1 Molar balances

Sulfur

SO₃ in Fig. 10.1 feed gas changes Appendix B's sulfur balance:

kg-mole S
$$\pm$$
 kg-mole S (B.11)
in feed gas

to:

$$1*\frac{d}{100} + 1*\frac{e}{100} = 1*n_{SO_3} + 1*n_{SO_2}$$

or:

$$\frac{\mathbf{d}}{\mathbf{100}} + \frac{\mathbf{e}}{100} = \mathbf{n}_{SO_3} + \mathbf{n}_{SO_2}$$

or:

$$n_{SO_2} = \frac{d}{100} + \frac{e}{100} - n_{SO_3}$$
 (P.1)

Oxygen

SO₃ in Fig. 10.1 feed gas changes its oxygen balance:

$$\begin{array}{l} \text{kg-mole O} \\ \text{in feed gas} \end{array} = \begin{array}{l} \text{kg-mole O} \\ \text{in oxidized gas} \end{array} \tag{B.15}.$$

to:

$$3*\frac{d}{100} + 2*\frac{e}{100} + 2*\frac{f}{100} = 3*n_{SO_3} + 2*n_{SO_2} + 2*n_{O_2}$$

or:

$$\frac{3}{2} \star \left(\frac{d}{100}\right) + \frac{e}{100} + \frac{f}{100} = \frac{3}{2} \star n_{SO_3} + n_{SO_2} + n_{O_2}$$

or:

$$n_{o_2} = \frac{3}{2} * \left(\frac{d}{100}\right) + \frac{e}{100} + \frac{f}{100} - \frac{3}{2} * n_{SO_3} - n_{SO_2}$$

Further, because $n_{SO_2} = \frac{d}{100} + \frac{e}{100} - n_{SO_3}$ (Eqn. [P.1])

$$n_{O_2} = \frac{3}{2} * \left(\frac{d}{100}\right) + \frac{e}{100} + \frac{f}{100} - \frac{3}{2} * n_{SO_3} - \left(\frac{d}{100} + \frac{e}{100} - n_{SO_3}\right)$$

or:

$$= \frac{f}{100} + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}$$
(P.2)

Nitrogen

SO3 in feed gas changes N balance Eqn.(B.22) slightly to:

$$2*\left(1 - \frac{d}{100} - \frac{e}{100} - \frac{f}{100}\right) = 2*n_{N_2}$$

or:

$$n_{N_2} = 1 - \frac{d}{100} - \frac{e}{100} - \frac{f}{100}$$
 (P.3).

Total kg-mole of oxidized gas is still given by Eqn. (B.24), i.e.:

$$n_t = n_{SO_3} + n_{SO_2} + n_{O_2} + n_{N_2}$$

Combining this with Eqns. (P.1), (P.2) and (P.3) gives:

$$n_{t} = n_{SO_{3}} + \left(\frac{d}{100} + \frac{e}{100} - n_{SO_{3}}\right) + \left(\frac{f}{100} + \frac{1}{2}*\frac{d}{100} - \frac{1}{2}*n_{SO_{3}}\right) + \left(1 - \frac{d}{100} - \frac{e}{100} - \frac{f}{100}\right)$$
$$= 1 + \frac{1}{2}*\frac{d}{100} - \frac{1}{2}*n_{SO_{3}}$$
(P.4).

P.3 Mole fractions in oxidized gas

With SO_3 -in-feed gas, the mole fractions of SO_3 , SO_2 and O_2 in Fig. 10.1 oxidized gas are:

$$X_{SO_3} = \frac{n_{SO_3}}{n_t} = \frac{n_{SO_3}}{\left(1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}\right)} \text{ from Eqn. (P.4)}$$
(P.5)

$$X_{SO_2} = \frac{n_{SO_2}}{n_t} = \frac{\frac{d}{100} + \frac{e}{100} - n_{SO_3}}{\left(1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}\right)} \text{ from Eqns. (P.1) and (P.4)}$$
(P.6)

$$X_{O_2} = \frac{n_{O_2}}{n_t} = \frac{\frac{f}{100} + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}}{\left(1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}\right)}$$
 from Eqns. (P.2) and (P.4) (P.7).

P.4 New equilibrium equation

With the Eqns. (P.5) to (P.7) expressions for mole fraction, equilibrium Eqn. (B.4)

$$K_{E} = \frac{X_{SO_{3}}^{E}}{X_{SO_{2}}^{E} * \left(X_{O_{2}}^{E}\right)^{\frac{1}{2}}} * P_{t}^{\frac{1}{2}}$$
(B.4).

becomes:

$$K_{E} = \frac{\left(\frac{n_{SO_{3}}^{E}}{1 + \frac{1}{2}*\frac{d}{100} - \frac{1}{2}*n_{SO_{3}}^{E}}\right)}{\left(\frac{\frac{d}{100} + \frac{e}{100} - n_{SO_{3}}^{E}}{1 + \frac{1}{2}*\frac{d}{100} - \frac{1}{2}*n_{SO_{3}}^{E}}\right)^{2}} * P_{t}^{-\frac{1}{2}} \qquad (P.8)$$

or, multiplying top and bottom by $1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}^E$

$$K_{E} = \frac{n_{SO_{3}}^{E}}{\left(\frac{d}{100} + \frac{e}{100} - n_{SO_{3}}^{E}\right) * \left(\frac{\frac{f}{100} + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}{1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(P.9)

or, multiplying top and bottom by: $\left(1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_3}^E\right)^{\frac{1}{2}}$

$$K_{E} = \frac{n_{SO_{3}}^{E} * \left(1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_{3}}^{E}\right)^{\frac{1}{2}}}{\left(\frac{d}{100} + \frac{e}{100} - n_{SO_{3}}^{E}\right) * \left(\frac{f}{100} + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_{3}}^{E}\right)^{\frac{1}{2}}} * P_{t}^{-\frac{1}{2}}$$

or:

$$K_{E} = \left(\frac{n_{SO_{3}}^{E}}{\frac{d}{100} + \frac{e}{100} - n_{SO_{3}}^{E}}\right) * \left(\frac{1 + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}{\frac{f}{100} + \frac{1}{2} * \frac{d}{100} - \frac{1}{2} * n_{SO_{3}}^{E}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(P.10).

Eqn. (P.10) is written in terms of $n_{SO_3}^E$. The next few sections show how it is expressed in terms of % SO₂ oxidized.

P.5 %SO2 oxidized in Equilibrium Equation

Equilibrium % SO_2 oxidized with SO_3 in feed gas is defined exactly as in Section B.8 and Chapter 10. The definition is:

Equilibrium

$$%SO_2 \text{ oxidized} = \Phi^E = \frac{\text{kg-mole } SO_2}{\text{in feed gas}} - \frac{\text{kg-mole } SO_2 \text{ in oxidized gas}}{\text{where equilibrium has been attained}} *100$$

kg-mole $SO_2 \text{ in feed gas}$ (10.2)

or:

$$\Phi^{\rm E} = \left(\frac{\frac{\rm e}{100} - n_{\rm SO_2}^{\rm E}}{\frac{\rm e}{100}}\right) *100$$
(B.36)

Eqn. (B.36) is expressed in terms of $n_{SO_3}^E$ by combining it with the equilibrium form of Eqn. (P.1), i.e.:

$$n_{SO_2}^E = \frac{d}{100} + \frac{e}{100} - n_{SO_3}^E$$

to give:

Equilibrium %SO₂ oxidized =
$$\Phi^{E} = \left(\frac{\frac{e}{100} - \left(\frac{d}{100} + \frac{e}{100} - n_{SO_3}^{E}\right)}{\frac{e}{100}}\right) * 100$$
(P.11)

or:

$$\Phi^{\rm E} = \left(\frac{n_{\rm SO_3}^{\rm E} - \frac{\rm d}{100}}{\frac{\rm e}{100}}\right) * 100$$
(P.12)

or:

$$\left(\frac{e}{100}\right)^* \frac{\Phi^E}{100} = n_{SO_3}^E - \frac{d}{100}$$
 (P.13)

or:

$$n_{SO_3}^E = \frac{d}{100} + \left(\frac{e}{100}\right) * \frac{\Phi^E}{100}$$
 (P.14)

Substituting the right side of Eqn. (P.14) for $n_{SO_3}^E$ in Eqn. (P.10) gives:

$$K_{E} = \left(\frac{\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}{\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}\right)^{*} \left(\frac{1 + \frac{1}{2} \frac{d}{100} - \frac{1}{2} \left(\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}\right)}{\frac{f}{100} + \frac{1}{2} \frac{d}{100} - \frac{1}{2} \left(\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}\right)}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(P.15)

or, rearranging the bottom left term:

$$K_{E} = \left(\frac{\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}{\frac{e}{100} - \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}\right)^{*} \left(\frac{1 + \frac{1}{2}^{*} \frac{d}{100} - \frac{1}{2}^{*} \left(\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}\right)}{\frac{f}{100} + \frac{1}{2}^{*} \frac{d}{100} - \frac{1}{2}^{*} \left(\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}\right)}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(P.16)

or:

$$K_{E} = \left(\frac{\frac{d}{100} + \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}{\left(\frac{e}{100}\right)^{*} \left(1 - \frac{\Phi^{E}}{100}\right)}\right)^{*} \left(\frac{1 - \frac{1}{2}^{*} \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}{\frac{f}{100} - \frac{1}{2}^{*} \left(\frac{e}{100}\right)^{*} \frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{\frac{1}{2}}$$
(P.17)

and, multiplying top and bottom by 100:

$$K_{E} = \left(\frac{d + e^{*}\frac{\Phi^{E}}{100}}{e^{*}\left(1 - \frac{\Phi^{E}}{100}\right)}\right)^{*}\left(\frac{1 - \frac{1}{2}*\left(\frac{e}{100}\right)*\frac{\Phi^{E}}{100}}{\frac{f}{100} - \frac{1}{2}*\left(\frac{e}{100}\right)*\frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}}*P_{1}^{-\frac{1}{2}}$$
(P.18).

or, multiplying top and bottom by $100^{\frac{1}{2}}$

$$K_{E} = \left(\frac{d + e^{*}\frac{\Phi^{E}}{100}}{e^{*}\left(1 - \frac{\Phi^{E}}{100}\right)}\right)^{*}\left(\frac{100 - \frac{1}{2} * e^{*}\frac{\Phi^{E}}{100}}{f - \frac{1}{2} * e^{*}\frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}}$$
(P.19).

Comparison of Eqn. (P.19) with Eqns. (B41) and (10.12) shows that the only difference between the two is the presence of d (volume% SO₃ in feed gas) in the top left term.

The meanings of the terms are also clear:

$e * \frac{\Phi^{E}}{100}$	represents the equilibrium amount of SO_2 oxidized to SO_3 in the
	catalyst bed
upper left term	represents equilibrium production of SO_3 in the catalyst bed + the amount of SO_3 in the original feed gas
lower left term	represents amount of SO_2 remaining after equilibrium oxidation of SO_2 to SO_3 in the catalyst bed
upper right term	represents the total amount of gas remaining after equilibrium oxidation of SO_2 to SO_3 because each mole of SO_2 oxidized consumes 0.5 mole of O_2
lower right term	represents the amount of O_2 remaining after equilibrium oxidation of SO_2 to SO_3 because each mole of SO_2 oxidized consumes 0.5 mole of O_2 .

P.6 Equilibrium % SO₂ Oxidized as a Function of Temperature

The effect of temperature on equilibrium % SO_2 oxidized is determined by combining Eqns. (P.19) and (10.11), i.e.:

$$T_{\rm E} = \frac{-B}{A + R^* \ln(K_{\rm E})}$$

(as described in Section 10.3)

where:

 T_E = equilibrium temperature

A and B = empirical constants for relating $\Delta_f G^{\circ}_{SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)}$ to temperature,

Section 10.3 and Appendix C: $A = 0.09357 \text{ MJ kg-mole SO}_2^{-1} \text{ K}^{-1}$ $B = -98.41 \text{ MJ/kg-mole SO}_2.$

The result is:

$$T_{E} = \frac{-B}{A + R*ln\left(\left(\frac{d + e^{*}\frac{\Phi^{E}}{100}}{e^{*}\left(1 - \frac{\Phi^{E}}{100}\right)}\right)^{*}\left(\frac{100 - \frac{1}{2}*e^{*}\frac{\Phi^{E}}{100}}{f - \frac{1}{2}*e^{*}\frac{\Phi^{E}}{100}}\right)^{\frac{1}{2}}*P_{t}^{-\frac{1}{2}}\right)}$$
(17.1).

Appendix Q

SO₃-in-Feed-Gas Intercept Worksheet

Table Q.1 is a 1^{st} catalyst bed worksheet for calculating heatup path-equilibrium curve intercepts with SO₃-in-feed-gas. The worksheet is similar to those in Appendices M and O.

Preparation instructions

- 1. Enter the data, equations and matrix as shown. This might be done by (i) copying Table O.1 and (ii) making appropriate changes to the copy. Copying instructions are given in Appendix N.
- 2. Suggest an equilibrium curve % SO₂ oxidized value in cell F11, say 65%.
- 3. Enter equilibrium curve Eqn. (17.1) into cell A14 as shown, not Eqn. (10.13).
- 4. Solve the matrix as described in Appendix M. Once solved, the matrix doesn't need re-solving.

Operating instructions

1. Find the intercept by means of Section M.4's Goal Seek instructions.

Result

The result is as shown in the worksheet - the intercept is 890.3 K, 69.7% SO₂ oxidized.

Other calculations

Catalyst bed pressure, feed gas composition and feed gas input temperature can now be changed at will. Only the Goal Seek procedure needs to be repeated to find the new intercept.

Comment

SO₃, SO₂, O₂ and N₂ input quantities are represented in Table Q.1's matrix by Eqns. (17.2), (17.3), (11.2) and (11.3). A more general representation is:

kg-mole SO₃ in = E8 kg-mole SO₂ in = G8 kg-mole O₂ in = I8 kg-mole N₂ in = K8 where E8 etc. are cell designations

This causes any change in feed gas composition (Cells E2, G2, I2, K2) to be reflected in the matrix. It allows new intercepts to be calculated at will (using only Goal Seek).

G н C D F F A 1 1ST CATALYST BED All quantities are per kg-mole of 1st catalyst bed feed gas 2 d, volume% SO₁ = e, volume% SO₂ = 9.8 f, volume% O₂ = 11 volume% N₂ = 79 3 1" bed feed gas specification, Section 17.1.2 0.2 5 1st catalyst bed feed kg-mole SO₂ (for Eqn. (14.1) = e/100 = G3/100 0.098 690 (Ean. 17.2) 1st catalyst bed input gas temperature, K = 1" catalyst bed pressure P, bar = 1.2 7 1st catalyst bed input kg-mole from above feed gas specification, Eqn. (17.2) etc. 0.098 O2 = N₂ = 0.79 8 SO3 = 0.002 SO₂ ≈ 0.11 =e/100=G3/100 =f/100=l3/100 =K3/100 9 10 =d/100=E3/100 11 Suggested equilibrium curve intercept % SO₂ oxidized, Φ^E = 69.7 12 13 Equilibrium curve temperature equivalent to cell F11's % SO2 oxidized, from Eqn. (17.1) =-(-98.41)/(0.09357+0.008314*LN((E3+G3*F11/100)/(G3*(1-F11/100))*((100-0.5*G3*F11/100)/(3-0.5*G3*F11/100)/*0.5*K8*-0.5)) (17.1) 14 890.3 15 16 17 18 19 1 " catalyst bed heatup path matrix (in means 'in input gas', out means 'in intercept gas'). kg-mole SO, kg-mole SO3 kg-mole SO₂ kg-mole O₂ kg-mole N₂ kg-mole SO₂ kg-mole O₂ ka-mole N₂ numerical term Equation description out out out ≓E8 etc. In In in in out 20 21 22 23 0 0 input SO3 kg-mole 0.0020 1 0 0 0 ٥ 0 17.2 input SO₂ kg-mole 0.0980 0 0 0 0 0 0 17.3 1 0 0 0 0 0 0 0 11.2 input O2 kg-mole 0.1100 1 0 0 0 0 24 25 26 27 28 29 30 31 32 11.3 input N₂ kg-mole 0.7900 0 0 0 1 0 S balance -1 -1 0 0 1 1 0 0 14.6 0 O balance -3 -2 -2 0 3 2 2 0 14.7 0 0 -2 0 0 0 2 11.6 N balance 0 0 O 371.3 enthalpy balance 278.7 -12.21 -11.66 -357.0 -268.4 18.88 17.89 0 intercept temperature, cell A14 = 890.3 feed gas temperature 690 =A14 =K5 33 Matrix results equivalent to suggested intercept temperature in cell J30 (and A14) =-(0.0311*F30-9.797) 34 kg-mole SO3 In 0.0020 35 kg-mole SO2 in 0.0980 36 kg-mole O2 In 0.1100 37 kg-mole N, In 0.7900 38 kg-mole SO3 out heatup path % SO2 oxidized (Φ) equivalent to intercept temperature in cells J30 and A14 = 0.0703 39 kg-mole SO2 out = (kg-mole SO₂ In - kg-mole SO₂ out)/kg-mole SO₂ In*100 = =(G5-B39)/G5*100 0.0297 69.7 (14.1) 40 kg-mole O2 out 0.0759 41 kg-mole N₂ out 0.7900 42 all per kg-mole of 1st catalyst bed feed gas 43 44 45 46 Goal Seek calculation 47 Equilibrium curve % SO2 oxidized - heatup path % SO2 oxidized = 0.0 =F11-i39

Table Q.1. 1st catalyst bed intercept calculation worksheet with SO₃ in feed gas. The use of Eqn. (17.1) in cell A14 is notable. Cells D28 to G28 contain - H° values. Cells H28 to K28 contain H° values.

Appendix **R**

CO₂- and SO₃-in-Feed-Gas Intercept Worksheet

Table R.1 is a worksheet for calculating 1^{st} catalyst bed heatup path-equilibrium curve intercepts with CO₂ and SO₃ in feed gas. It is similar to that in Appendix Q.

This is the final form of our 1st catalyst bed worksheets. It can be used for all of the book's 1st catalyst bed calculations.

Preparation instructions

- 1. Enter the data, equations and matrix as shown. This might be done by (i) copying Table Q.1 and by (ii) making appropriate changes to the copy. CO₂ enlarges the matrix so that it has to be re-solved (once) as described in Appendix H.
- 2. Suggest an equilibrium curve % SO₂ oxidized value in cell F11, say 65%.
- 3. Enter Eqn. (17.1) into cell A14, as shown.
- 4. Solve the matrix as described in Appendix H.

The worksheet is now ready to operate.

Operating instructions

1. Find the intercept using Section M.4's Goal Seek instructions.

Result

As shown, the intercept with 10% CO₂ in feed gas is:

887.2 K, 71.0% SO₂ oxidized.

Other Calculations

The worksheet is readily used for other specified bed pressures and input gas compositions and temperatures. Once the new data are entered, only Goal Seek is required.

Table R.1.	1 st catalyst bed in	ntercept calculation	ons with <u>SO₃ and CO</u>	<u>D</u> ₂ in feed gas. Note t	the 2 new CO	O ₂ columns, new	input CO2 and C b	alance rows and 2 r	iew CO ₂
result rows.	The use of Eqn ((17.1) in cell A14	is notable. Cells D	28-H28 contain –H°	values. Cell	ls I28-M28 conta	in H° values.		

	A	В	C	D	E	F	G	Гн	1	3	к	L	M
1	1 ⁵¹ CATALYST E	ED						Ali quantities	are per kg-m	ole of 1 st catal	yst bed feed g	as	
2													
3	1* bed feed gas s	pecification, Section	n 17.3	d,vol% SO3 =	0	e,vol% SO ₂ =	10	f,voi% O2 =	11	vol% N2 =	69	vol% CO2=	10
4													
5	1 [#] catalyst bed fe	ed kg-mole SO ₂ (fo	or Eqn. (14.1) = e	100 = G3/100	(Eqn. 1	1.1)	0.1		feed gas ter	nperature, K =	690		
6				-	1				bed gas a	pressure, bar =	1.2		
7	1 [#] catalyst bed fe	ed ass karmole fro	m feed cas specif	ication Ean (1	1 1) etc			1		1			
+	, catalyst bed ic	Co gos kg more no	lineco guo opeon	SO =	0	SO =	0.1	0 =	0.11	N =	0.60	= 00	0.1
0					- d/100 -E3/10	0 -	e/100 -G3/10	no ~2	- #100 =13/10	0	-K3/100		-M3/100
10				<u></u>			- 67100 - 65710		- 1/100 -13/10	1	-100/100		-1415/100
14	Successfed equilit	rium cunve intercen	1 % SO ovidized	Φ ^E =		71.0							
12	Ouggeated equilit		1 76 002 UXIOL200			11.0						+	
12	Fouilibrium cuove	temperature equiva	lent to cell E11's	% SO, ovidizer	from Ean (1)	1	f	1			<u> </u>	· · · · ·	
14	887.2	=-(-98 41 V/0 0935	7+0 008314*I N//	F3+G3*E11/10	0)/(G3*(1-E11/	100))*//100-0 5	*G3*E11/100	1	(100)M0 5*K6/	1			(17 1)
15	001.2		10.000314 EN	1			<u>651 Hiridoj</u>	10-0.0 00 1 11	1100/ 0.5 10	-0.5))			(1.1)
16	1	· ·						1					t
17	1 " catalyst bed h	eatuo oath matrix (in means 'in innı	taas'. out me	ans 'in intercer	t aas')							
<u> </u>	1		numerical	kg-mole SO.	kg-mole SO.	kg-mole O.	kg-mole N ₄	kg-mole CO.	kg-mole SO.	kg-mole SO.	kg-mole O _n	kg-mole N.	kg-mole CO.
18	Equation	Description	term	in	in	In	In	in	out	out	out	out	out
19		input SO ₃ kg-mole	0	1	0	0	0	0	0	0	0	0	0
20	11 1	innut SO, ka-mole	0 1000	0	1	0	0	0	0	0	0	0	0
20	11.2	input O ka-mole	0.1100	0	0	1	0	0	0	0	0	0	0
21	47.0	input 0 ₂ kg-mole	0.1100				0	0	-	0	0		0
22	17.8	input N2 kg-mole	0.6900	0	U	0	1	U	0	U	U	0	0
23	17.4	input CO2 kg-mole	0.1000	0	0	0	0	1	0	0	0	0	0
24	14.6	S balance	0		-1	0	0	0	1	1	0	0	0
25	17.0	U balance	0	-3		-2	0	-2	3	2	2	0	2
27	17.5	C balance	0	0	0	0	-2	-1	0	0	0	2	1
28	17.7	enthaipy balance	0	371.3	278.7	-12.21	-11.66	376.2	-357.2	-268.5	18.78	17.80	-366.3
29							/						
30				feed gas	temperature =	690	inte	ercept temperat	ure, cell A14 =	887.2			
31						=K5	/			=A14			
32	Matrix results equ	ivalent to intercept t	emperature in cel	I J30 (and A14)		/						
33	kg-mole SO3 in	0.0000				=-(0.0311*F30	-9.797)						
34	kg-mole SO ₂ In	0.1000											1
35	kg-mole O ₂ In	0.1100											
36	kg-mole N ₂ In	0.6900											
37	ka-mole CO., in	0 1000											
31	ka-mole SO out	0.0710		bestup asth %	SO ovidized	(d) equivalent	to intercent ter	noerature in ce	N1A boe 081 4	=			
30	kg-mole DO3 out	0.0710		nearup paul A	The atup path $\frac{1}{10}$ SU ₂ oxidized ($\frac{1}{10}$) equivalent to intercept temperature in cell J3U and A14 =							(4.4.4)	
39	kg-mole SO2 out	0.0290		= $(\text{kg-mole } SO_2 \text{ in - kg-mole } SO_2 \text{ out }/\text{kg-mole } SO_2 \text{ in - 100 = } 71.0 = (G5-B39)/G5^4$						5-100	(14.1)	l	
40	kg-mole O ₂ out	0.0745									ļ	ļ	l
41	kg-mole N ₂ out	0.6900						1					
42	kg-mole CO2 out	0.1000						1			I		l
43	43 all per kg-mole of 1* catalyst bed feed gas												í
44								1					(
45													
46	Goal Seek calcula	tion											
47	Equilibrium curve	% SO ₂ oxidized - he	atup path % SO ₂	oxidized =			0.0	=F11-I39					1

Appendix S

3-Catalyst-Bed 'Converter' Calculations[#]

All calculations in this appendix are per kg-mole of 1^{st} catalyst bed feed gas. They are based on the specifications in Table 18.1 This appendix shows how 3-catalyst-bed 'converter' calculations are done. Three areas in the same Excel worksheet are used, Tables S.1, S.2 and S.3. The 3 beds are linked by kg-mole SO₃, SO₂, O₂, N₂ and CO₂ passing between beds 1 and 2 and beds 2 and 3.

Each area is arranged so that the same cells in all three areas have the same meaning. For example, cells K6, AK6 and BK6 all contain catalyst bed pressure.

The objectives of the 3-bed calculations are to determine, for any set of Table 18.1 specifications:

- (a) the percentage of feed SO₂ that is oxidized to SO₃ after the feed gas has passed through 3 catalyst beds
- (b) kg-mole of SO₃, SO₂, O₂, N₂ and CO₂ departing the 3rd catalyst bed. These kg-mole values are used for Chapter 19's double contact acid plant calculations.

S.1 1st Catalyst Bed Calculations (Cells A1 through M47)

The objectives of the 1st catalyst bed worksheet area are to calculate:

- (a) 1^{st} bed heatup path-equilibrium curve intercept temperature and % SO₂ oxidized
- (b) kg-mole of SO₃, SO₂, O₂, N₂ and CO₂ in the 1st bed intercept gas, per kg-mole of feed gas. These kg-mole pass between the 1st and 2nd catalyst beds.

Setup and Operation

The 1st catalyst bed worksheet area is set up exactly like Table R.1. It may be copied from that table as described in Appendix N. Only the <u>feed gas composition specification is different</u>, Table 18.1. The intercept is found by Section M.4's Goal Seek procedure (Appendix M). The results are 893.3 K, $69.2 \% SO_2$ oxidized and:

 $\begin{array}{cccc} 0.0692 \text{ kg-mole SO}_3 & 0.0308 \text{ kg-mole SO}_2 & 0.0754 \text{ kg-mole O}_2 & 0.79 \text{ kg-mole N}_2 & 0 \text{ kg-mole CO}_2 \\ \text{in the intercept gas (as confirmed by Section 12.2).} \end{array}$

These intercept quantities are automatically copied into the 2^{nd} catalyst bed worksheet area as described in the next section.

[#] A 4th catalyst bed worksheet is added at the end of this appendix. It is used to prepare Fig. 19.7.

	A	В	С	D	E	F	G	н	1	J	ĸ	L	M
1	TABLES 1 18T	ATAL YST BED		1		1		All quantities	are per ko-m	ole of 1 st catal	vst bed feed o	as	
2	14022 0.1, 1 0			t		1		•					
3	1 st bed feed cas s	pecification Table 1	8.1	d,vol% SO3 =	0	e,vol% SO2=	10	f,vol% O2 =	11	vol% N ₂ =	79	vol% CO2=	0
4			1	1	1	1							
5	1 st catalyst bed fe	ed karmole SO ₂ (fo	r Egn. (14.1) =	e/100 = G3/10	00 (Egn	. 11.1)	0.1		feed gas ten	nperature, K =	690		
6	, , , , , , , , , , , , , , , , , , , ,			[1	[ca	alyst bed gas p	ressure, bar =	1.2		
F	1 st antolymt had fo	ad one ka mala fro	n food ose ene	cification Enn	(11.1) etc				<u> </u>	T			
۲÷		Cu gas kg mole no	li loca gua apr	SO. =	0	SO. =	01	O ₂ =	0.11	N2 =	0.79	CO ₂ =	0
⊫					= d/100 =E3/10	0 =	e/100 =G3/10	X0	= f/100 =13/100)	=K3/100		=M3/100
10				1			<u>u, ou</u>						-
11	Sunnested equilib	rium curve intercept	% SO- oxidiz	ed. op ^E =		69.2		1					
17	Cuggootto Cquile		1	1									
112	Equilibrium curve	temperature equival	ent to cell F11	's % SO ₂ oxidia	ed. Egn. (17.1)								
14	893.3	=-(-98.41)/(0.09357	+0.008314*LN	((E3+G3*F11/	100)(G3*(1-F1	1/100))*((100-0	.5*G3*F11/10	0)/(I3-0.5*G3*F	11/100))^0.5*K	(6^-0.5))			(17.1)
15													
16													
17	1 " catalyst bed h	eatup path matrix (in means 'in ir	put gas', out	means 'in interc	ept gas")							
		deseriation	number	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole CO ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N₂	kg-mole CO ₂
18	Equation	description	= E8 etc.	in	in	in	in	in	out	out	out	out	out
19		input SO3 kg-mole	0	1	0	0	0	0	0	0	0	0	0
20	11.1	input SO ₂ kg-mole	0,1000	0	1	0	0	0	0	0	0	0	0
2.	11.2	input O ₂ kg-mole	0 1100	0	0	1	0	0	0	0	0	0	0
	11.3	input N- ka-mole	0.7900	0	0	0	1	0	0	0	0	0	0
22	11.5	input CO, ka mola	0.0000		0	ů.		1	0	0	0	0	0
23	14.6	S balance	0.0000	1	1	0		0		1	<u> </u>	0	0
24	14.0	O balance	0	-1	-1	-2	0	-2	3	2	2	0	2
26	11.6	N halance	ő	0	0	0	-2	ō	0	ō	0	2	0
27	17.5	C balance	ō	0	0	0	0	-1	0	0	0	0	1
28	17.7	enthalpy balance	0	371.3	278.7	-12.21	-11.66	376.2	-356.8	-268.2	18.99	17.99	-366.0
29								1					
30				feed gas	temperature =	690	inte	rcept temperat	ure, cell A14 =	893.3			
31		L				=K5				=A14			
32	Matrix results equ	ivalent to intercept to	emperature in	cell J30 (and A	14)	- 10 00000500	0.707			-			
33	kg-mole SU ₃ In	0.0000		-			-9.(9()						
34	kg-mole SO ₂ in	0.1000											
35	kg-mole O ₂ in	0.1100			ļ								
36	kg-mole N _z in	0.7900											
37	kg-mole CO ₂ in	0.0000											
38	kg-mole SO3 out	0.0692											
39	kg-mole SO ₂ out	0.0308			Heatup path %	SO ₂ oxidized	(Ф) equivalent	to =	69.2	= (G5-B39)/G5	5*100	(14.1)	
40	ka-mole O ₂ out	0.0754			Intercept temp	erature in cells	J30 and A14			=% SO ₂ oxidiz	ed after 1 st cat	alyst bed	
41	ka-mole N ₂ out	0 7900								7			
1	ka-mole CO- out	0.0000											
42	Ng-India CO2 DUI												
43	all per kg-mole of	1 catalyst bed feed	gas										
44													
46	Goal Seek calcula	tion											
47	Equilibrium curve	% SO, oxidized - he	atuo path % S	O- oxidized =			0.0	=F11-I39					
141					1		0.0						

S.2 2nd Catalyst Bed Calculations (Cells AA1 through AM47)

The objectives of the 2^{nd} catalyst bed worksheet area are to:

(a) automatically copy 1st catalyst bed exit (intercept) gas quantities into the 2nd catalyst bed worksheet area

and to determine 2nd catalyst bed:

(b) heatup path-equilibrium curve intercept temperature and % SO₂ oxidized

(c) kg-mole SO₃, SO₂, O₂, N₂ and CO₂ in intercept gas

with 1^{st} catalyst bed exit gas as 2^{nd} catalyst bed feed gas.

Setup and Operation

The 2^{nd} catalyst bed worksheet area is set up much like the 1^{st} (with a different input gas temperature, Table 18.1). The distinctive difference is that the input quantities in row 8 are 1^{st} catalyst bed exit (intercept) gas quantities from Table S.1 cells B38 through B42. The latter are automatically copied into the 2^{nd} catalyst bed area by the instructions:

=B38	in cell AE8
=B39	in cell AG8
=B40	in cell AI8
=B41	in cell AK8
=B42	in cell AM8.

The 2nd bed intercept is then found by Section M.4's Goal Seek procedure. The intercept results are 773.1 K, 94.2% SO₂ oxidized and:

0.0942 kg-mole SO₃ 0.0058 kg-mole SO₂ 0.0629 kg-mole O₂ 0.7900 kg-mole N₂ 0.0000 kg-mole CO₂

in 2nd catalyst bed intercept gas (as confirmed by Section 15.2.2).

These gas quantities are automatically copied into the 3rd catalyst bed area as described in the next section.

	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM
1	TABLES 2 2ND C	ATAL YST BED						All quantities	are per kg-me	ole of 1 st catal	yst bed feed g	85	
2													
3	1 [#] bed feed gas s	oecification. Table 1	8.1	d,vol% SO3 =	0	e,vol% SO2 =	10	f.vol% O ₂ =	11				
4	<u>,</u>		r -										
5	1 st catalyst bed fe	ed ka-mole SO ₂ (fa	r Egn. (14.1) =	e/100 = AG3/1	100 (Ec	(n. 11.1)	0.1		input gas ten	nperature, K =	700		
6								cal	alyst bed gas p	oressure, bar =	1.2		
7	and establish had fo	ad one ke-mole fro	m cell B38 B4	2 1et cetalvet be	d intercent dat	a							
H÷.	2 Catalyat Decite			SO ₂ =	0.0692	SO ₂ =	0.0308	0, =	0.0754	N ₂ =	0.7900	CO ₂ =	0.0000
8					=838		=B39		=840		=B41		=B42
10				1				1					
11	Suggested equilib	rium curve intercent	% SO- oxidiz	ed. O ^E =		94.2							
12	daggestes squal		1	1									
13	2nd catalyst bed e	quilibrium curve ten	nperature equi	valent to cell Af	F11's % SO2 02	idized, Eqn. (1	7.1)						
14	773 1	=-(-98 41)/(0.09357	+0.008314"LN	((AE3+AG3*A	F11/100V(AG3	(1-AF11/100))	*((100-0.5*AG	3*AF11/100)/(A	13-0.5*AG3*AF	11/100))^0.5*/	K6^-0.5))		(17.1)
15			· · · · · · · · · · · · · · · · · · ·									···	
16													
17	2 nd catalyst bed h	eatup path matrix (In means 'in i	nput gas', out	means in inter	cept gas")		1					
	Equation	description	number	kg-mole SO3	kg-mole SO ₂	kg-moie O₂	kg-mole N ₂	kg-mole CO ₂	kg-mole SO ₃	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole CO ₂
18	Equation	description	= AE8 etc.	in	- in	in	in	in	out	out	out	out	out
19	14.2	input SO3 kg-mole	0.0692	1	0	0	0	0	0	0	0	0	0
20	14.3	input SO ₂ kg-mole	0.0308	0	1	0	0	0	0	0	0	0	0
21	14,4	input O2 kg-mole	0.0754	0	0	1	D	0	0	0	0	0	0
22	14.5	input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0	0	0
23		input CO ₂ kg-mole	0.0000	0	0	0	0	1	0	0	0	0	0
24	14.6	S balance	0	-1	-1	0	0	0	1	1	0	0	0
25	17.6	O balance	0	-3	-2	-2	0	-2	3	2	2	0	2
26	11.6	N balance	0	0	0	0	-2	0	0	0	0	2	0
27	17.5	C balance	0	0	0	0	0	-1	0	0	0	14.25	372.0
28	17.7	enthalpy balance	0	370.6	278.2	-12.54	-11.9/	3/5./	-305.4	-214.4	14.90	14.20	-312.0
29	·····		<u> </u>	ioput gas	temperature z	700	-/ inter	cept temperatu	e cell AA14 =	773.1			
30			<u> </u>	input gea	temperature -	=AK5	/			=AA14			
32	Matrix results equ	ivalent to intercept to	emperature in	cell AJ30 (and	AA14)	/							
33	ka-mole SO ₃ In	0.0692	_		_	=-{0.0311*AF3	90-9.797)	T					
34	kg-mole SO ₂ In	0.0308						1					
35	ka-mole O ₂ in	0.0754	+					t					
35	ka-mole N ₂ in	0 7900											
30		0.0000											
3/	ka-mole SO, aut	0.0000						<u> </u>					
38	Ng-mole SO3 OUT	0.0072			Heatup path 9	SO ₂ oxidized	(Φ) equivalen	t to =	94.2	= (AG5-AB39)	AG5*100	(14.1)	
39	Ng-inule SU2 OUT	0.0000			intercept temp	erature in cells	s AJ30 and AA	.14		= total % SO	ovidized after '	and 2 nd cata	vst beds
40	kg-mole O2 out	0.0629					r	1		- 10121 76 302	UNNIEGU AILEI		
41	kg-mole N ₂ out	0.7900						ł					t t
42	kg-mole CO ₂ out	0.0000			L								
43	all per kg-mole of	1 st catalyst bed feed	gas					ļ	L			·	
44											+		
45		L		ļ						h		<u>↓</u> .,	
46	Goal Seek calcula	ition		O evidized =			0.0	-4511-4130					1
47	Equilibrium curve	% SU2 oxidized - he	satup patri % S	$\sigma_2 \text{ oxidized} =$			0.0					L	L

S.3 3rd Catalyst Bed Calculations (cells BA1 through BM47)

The objectives of the 3rd catalyst bed area are to:

(a) automatically copy 2nd catalyst bed exit (intercept) gas quantities into the 3rd catalyst bed worksheet area

and to determine 3rd catalyst bed:

- (b) heatup path-equilibrium curve intercept temperature and % SO₂ oxidized
- (c) kg-mole of SO₃, SO₂, O₂, N₂ and CO₂ in intercept gas (for Chapter 19's calculations)

with 2nd catalyst bed exit gas as 3rd catalyst bed input gas.

Setup and Operation

The 3^{rd} catalyst bed worksheet area is set up like the 2^{nd} (with a different input gas temperature, Table 18.1). The row 8 quantities are automatically copied from the 2^{nd} bed area by the instructions:

=AB38	in cell BE8
=AB39	in cell BG8
=AB40	in cell BI8
=AB41	in cell BK8
=AB42	in cell BM8.

The 3rd catalyst bed intercept is found by means of Section M.4's Goal Seek procedure. The results are 721.0 K, 98.0% SO₂ oxidized and:

0.098 kg-mole SO₃ 0.002 kg-mole SO₂ 0.061 kg-mole O₂ 0.79 kg-mole N₂ 0 kg-mole CO₂

in 3rd catalyst bed intercept gas (as confirmed by Section 16.3). This gas now goes to cooling and H₂SO₄-making, Chapter 19.

	BA	BB	BC	BD	BE	BF	BG	BH	B(BJ	BK	BL	BM
1	TABLES 3 3RD	ATAL VST RED				1		All quantities	ane per ka-m	ole of 1 st catal	vst bed feed (185	
2						1	-	Put quantities					
-	1 st bed feed das s	necification Table	18 1	d.vol% SO1 =	0	e.vol% SO,=	10	f,voi% O2 =	11			1	
1 A			1					+ ···· • • • • •	1	<u> </u>		1	
5	1 st catalyst bed fe	ed ka-mole SO- (fo	r Ean. (14.1) =	e/100 = BG3/1	00 (Ea	n. 11.1)	0.1		input gas ten	nperature, K =	710		
L.	,,			1	1		-		taivst bed cas r	pressure bar =	1.2		
Ļ,	2 rd estaluat had fo			A2 2nd entries	1	L			Τ				
H	Jo Catalyst Dou le	ou yas ky more nu	III CON AGGO-A	SO. =	0.0942	SO. =	0.0058	0. =	0.0629	N- =	0 7900	CO. =	0.0000
					=4838	00,-	=4839		=4840		=4841		=4842
10					-//030		-1033						
11	Suggested equilib	rium curve intercen	t % SO, oxidize	ed op ^E ≃		98.0							
12				1				1					1
112	3rd catalyst bed e	auilibrium curve terr	perature equiv	alent to cell BF	11's % SO. ox	idized, Ean. (1	7,1)		1			1	1
14	721.0	=-(-98 41V(0.09357	7+0.008314*LN	((BE3+BG3*B	F11/100V(BG3	(1-BF11/100))	*((100-0.5*BG	3*BF11/1001/(E	3-0.5*BG3*BF	11/10010.5*	3K6^-0.5))		(17.1)
15		<u>, , , , , , , , , , , , , , , , , , , </u>	1		1000	<i></i>		1.	[_	
16													
17	3 rd catalyst bed h	eatup path matrix (in means 'in ir	put gas', out	means 'in inter	cept gas')		L				I	
	Equation	description	number	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N _z	kg-mole CO ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole CO2
18	Equation	oescription	= BE8 etc.	in in	in	in	in	in	out	out	out	out	out
19	16.1	input SO3 kg-mole	0.0942	1	0	0	0	0	0	0	0	0	0
20	16.2	input SO ₂ kg-mole	0.0058	0	1	0	0	0	0	0	0	0	0
21	16.3	input O ₂ kg-mole	0.0629	0	0	1	0	0	0	0	0	0	0
22	16.4	input N. ka-male	0,7900	0	0	0	1	0	0	0	0	0	0
22		input CO- ka-mole	0.0000	0	0	0	n	1	0	0	0	o ·	0
23	14.6	S balance	0.0000	-1	-1	0	0	0	1	1	0	0	0
25	17.6	O balance	0	-3	-2	-2	0	-2	3	2	2	0	2
26	11.6	N balance	0	0	0	0	-2	0	0	0	0	2	0
27	17.5	C balance	0	0	0	0	Ó	-1	0	0	0	0	1
28	17.7	enthalpy balance	0	369.9	277.7	-12.87	-12.28	375.2	-369.1	-277.1	13.24	12.63	-374.6
29								L					
30				input gas	temperature =	710	interr	cept temperatu	ne, cell BA14 =	721.0			
31	Matrix moults agu	valent to intercent to	emoerature in a	ell B I30 (and I	BA14)	-050	/			-DA 14			
22	ka mole SO. in	0.0042	emperatore mu	Len Door (and i		=_/0.0311*BE3	0.0 707)						
33	ka mole SO in	0.0059				(0.0011 010				• • • • •			
34	kg-mole 302 m	0.0038											
35	kg-mole O ₂ m	0.0629	ļ										•
36	Kg-mole N ₂ In	0.7900	· · · · · · · · · · · · · · · · · · ·					ļ			·		
37	kg-mole CO ₂ in	0.0000	ļ										
38	kg-mole SO3 out	0.0980											l
39	kg-mole SO ₂ out	0.0020			Heatup path %	6 SU ₂ oxidized	(W) equivalent	10 =	98.0	= (BG5-BB39)	/BG5*100	(14.1)	
40	kg-mole O2 out	0.0610			Intercept temp	erature in cells	BJ30 and BA	14		= total % SO ₂	oxidized after 1	1 st , 2 nd and 3 rd (catalyst beds
41	kg-mole N2 out	0.7900											
42	kg-mole CO2 out	0.0000											
42	all per kg-mole of	1 st catalyst bed feed	oas										
44	an por ng-mole of		<u> </u>					ļi					
45													
46	Goal Seek calcula	tion											
47	Equilibrium curve	% SO2 oxidized - he	atup path % S	O ₂ oxidized =			0.0	=BF11-BI39					
	· · · · · · · · · · · · · · · · · · ·												

	CA.	CB	CC C	CD	CE	L CE	CG	Сн	CI	្រា	СК	I CL	СМ
	1 TABLES & ATH CATALYST BED							All quantities	are ner ka-m	oie of 1 st catal	vet hed feed c		
5	INDLE S.4, 4 C							All quantities	are per kgrin		at bed leed g]	
3	1 st bed feed gas s	pecification, Table 1	8.1	d, vol% SO3 =	0	e,vol% SO2 =	10	f, vol% O ₂ =	11				
4	*		1					1					
5	1 st catalyst bed fe	ed kg-mole SO ₂ = (e/100 = CG3/1	00 (Eqr	n. 11.1)		0.1		input gas ter	nperature, K =	690		
6					Γ			cal	alyst bed gas j	oressure, bar =	1.2		
7	4th catalyst bed fe	ed gas kg-mole from	n cell BB38-B	342 2nd catalys	t bed intercept	data							
8	1 1			SO ₃ =	0.0980	SO ₂ =	0.0020	O ₂ =	0.0610	N ₂ =	0.7900	CO2 =	0.0000
9				-	=BB38		=BB39		=8B40		=BB41		=BB42
10													
11	Suggested equilib	rium curve intercept	% SO2 oxidize	ed, Φ ⁸ =		98.9							1
12													1
13	4th catalyst bed e	quilibrium curve tem	perature equiv	alent to cell CF	11's % SO ₂ ox	idized, Eqn. (1	7.1)						1
14	692.8	=-(-98.41)/(0.09357	+0.008314*LN	I((CE3+CG3*C	F11/100)/(CG3	*(1-CF11/100))*((100-0.5*CG	3*CF11/100)/(CI3-0.5*CG3*C	F11/100))^0.5	CK6^-0.5})		(17.1)
15													
16		l		l	I	l							
17	4" catalyst bed h	eatup path matrix (In means 'in ir	nputgas', out i	means 'in inter	æpt gas')							
	Equation	description	number	kg-mole SO ₃	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole CO ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole CO ₂
18			= CE8 etc.	in	in	in	in	in	out	out	out	out	out
19		input SO3 kg-mole	0.0980	1	0	0	0	0	0	0	0	0	0
20		input SO ₂ kg-mole	0.0020	0	1	0	0	0	0	0	0	0	0
21		input O ₂ kg-mole	0.0610	0	0	1	0	0	0	0	0	0	0
22		input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0	0	0
23		input CO ₂ kg-mole	0.0000	0	0	0	0	1	0	0	0	0	0
24	14.6	S balance	0	-1	-1	0	0	0	1	1	0	0	0
25	17.6	O baiance	0	-3	-2	-2	0	-2	3	2	2	0	2
26	11.6	N balance	0	0	0	0	-2	0	0	0	0	2	0
27	17.5	C balance	0	0 974.9	170.7	12.21	11.66	-1	271.1	- 278.5	12.20	11.75	276.1
20	17.7	enthalpy balance	· · · · ·	3/1.3	2/0./	-12.21	-11.00	3/0.2	-3/1.1	-210.5	12.30	11.75	-376.1
30				input das	temperature =	690	interd	cept temperatu	e. cell CA14 =	692.8			
31						=CK5	/			=CA14			
32	Matrix results equi	ivalent to intercept to	emperature in	cell CJ30 (and	CA14)								
33	kg-mole SO3 in	0.0980				=-(0.0311*CF3	30-9.797)						
34	kg-mole SO ₂ in	0.0020											
35	kg-mole O ₂ in	0.0610											
36	kg-mole N ₂ in	0.7900											
37	kg-mole CO ₂ in	0.0000											
38	kg-mole SO3 out	0.0989											
39	kg-mole SO ₂ out	0.0011			Heatup path %	SO2 oxidized	(Φ) equivalent	to =	98.9	= (CG5-CB39)	/CG5*100	(10.2)	
40	ka-mole O. out	0.0605			intercept temp	erature in cells	CJ30 and CA	14		= total % SO	oxidized after 1	1 st 2 nd 3 rd & 4 th	catalyst beds
41	ka-mole N ₂ out	0.7900											
42	kg-mole CO ₂ out	0.0000						·					· · · · ·
12	42 hymnes co2 out 0.0000							<u> </u>		i			
44		i catalyst det 1880	yas	· · · · · · · · · · · · · · · · · · ·								· · · · ·	
45													
46	Goal Seek calcula	tion											
47	Equilibrium curve	% SO ₂ oxidized - he	atup path % S	O2 oxidized =			0.0	=CF11-Cl39					

Appendix T

Worksheet for Calculating After-Intermediate-H₂SO₄-Making Heatup Path Equilibrium Curve Intercepts

A worksheet for calculating after-intermediate- H_2SO_4 -making heatup path-equilibrium curve intercepts is shown on the following page. It uses Fig. 19.2's after-intermediate- H_2SO_4 -making catalyst bed input gas composition, quantities and temperature ($P_t = 1.2$ bar). It calculates the percentage of <u>after H_2SO_4 making catalyst bed input SO_2 that is oxidized to SO_3 when the intercept is attained, Eqn. 19.3. Operating instructions are given in Appendix J.</u>
	A	В	C	D	E	F	G	Н	1	J	к
1	1ST AFTER-H-SO	MAKING CATALYS	T BED				All quantities a	re per ka-mole of 1	before-H-SO	-making catalyst	bed feed gas
2	1		1				1				
3	1 ^{∎t} after-H ₂ SO ₄ -ma	aking catalyst bed inpu	It gas composition	Section 19.4.1		e', volume% SO ₂ =	0.234	f', volume% O ₂ =	7.15		
4										1	
5	1 st after-H ₂ SO ₄ -ma	aking catalyst bed inpu	t kg-mole SO ₂ , S	ection 19.3			0.002		feed ga	s temperature, K =	690
6							-		gas press	ure in bed P _t , bar =	1.2
7	1										
8	1" after-H2SO4-ma	king catalyst bed inpu	t kg-mole, Section	n 19.3		SO ₂ =	0.002	O ₂ =	0.061	N ₂ =	0.79
9	1		T	T							
10											
11	Suggested after-H	SO4-making equilibriu	um curve intercep	t % SO ₂ oxidized	, Φ ^{Eafter} =	98.9					
12				T	T						
13	Equilibrium curve	emperature equivaler	t to cell F11's sug	pested % SO2 ox	idized, Ean. (19.1)				1	
14	697.3	=-(-98 41)(0 09357+	0 008314"LN/F11/	(100-F11)*((100-	5*G3*F11/100V	(13-0 5*G3*F11/100	1)^0 5*K6^-0 5))	(19.1)		†	
15		(00.00000000000						+			
16											
17										<u> </u>	
18	·····										
19					1						
20	Heatup path matrix	(In means 'in feed	gas', out means '	n intercept gas')							
	Eti	d	numerical term	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	
21	Equation	description	=G8 etc.	in	in '	in	out	out	out	out	
22	19.4	feed SO ₂ kg-mole	0.0020	1	0	0	0	0	0	0	
23	19.5	feed O ₂ kg-mole	0.0610	0	1	0	0	0	0	0	
24	19.6	feed N ₂ kg-mole	0.7900	0	0	1	0	0	0	0	
25	11.4	S balance	0	-1	0	0	1	1	0	0	
26	11.5	O balance	0	-2	-2	0	3	2	2	0	
27	11.6	N balance	0	0	0	-2	0	0	0	2	
28		enthalpy balance	0	278.7	-12.21	-11.66	-370.8	-278.3	12.45	11.89	
29		<u></u>					\rightarrow				
30				input ga	as temperature =	690	in	tercept temperature	from cell A14 =	697.3	
31						=K5	_/			=A14	
32											
33							=0.07144*J30-42	0.6			
34	Matrix results equiv	alent to suggested int	ercept temperatur	e in cell J30 (and	A14)			<u>↓ </u>		<u>}</u> }	
35	kg-mole SO ₂ in	0.0020		· · · · · · · · · · · · · · · · · · ·				ll		L	
36	kg-mole O ₂ In	0.0610									
37	kg-mole N ₂ in	0.7900									
38	kg-mole SO3 out	0.001978	heatup pa	ath % SO ₂ oxidize	ed (o ^{after}) equival	ent to intercept tem	perature in cell J3	0 and A14 =			
39	kg-mole SO ₂ out	0.000022	= <u>(kg-mo</u>	le SO ₂ in 1 st after	-H ₂ SO ₄ -making c	atalyst bed input ga	s - kg-mole SO2	<u>out)</u> *100 =	98.9	≖(G5-B39)/G5*100	(19.2)
40	kg-mole O ₂ out	0.060011		kg-mole SO ₂	in 1 st after-H ₂ SO,	making catalyst be	ed input gas			= % of 1" after-H2	SO4-making
41	kg-mole N ₂ out	0.790000			- 1					catalyst input SO2	that is
42	all per kg-mole of 1	st before-H₂SO₄-maki	ng feed gas							oxidized in this cat	alyst bed
43								1			
44											
45								1			
46	Goal Seek calculati	ion									
47	Equilibrium curve 9	6 SO2 oxidized - heatu	p path % SO2 oxid	dized =			0.0	=F11-I39			

Appendix U

After-H₂SO₄-Making SO₂ Oxidation with SO₃ and CO₂ in Input Gas

All quantities in this appendix are per kg-mole of 1st before-H₂SO₄-making catalyst bed feed gas.

Chapter 19's SO₂ oxidation calculations assume that 100% of the SO₃ entering H_2SO_4 making reacts to form $H_2SO_4(\ell)$. This appendix's calculations remove that restriction. They also consider CO₂ in feed gas.

The objectives of the calculations are to determine a 1^{st} after-H₂SO₄-making catalyst bed's:

- (a) intercept temperature and % SO₂ oxidized, Φ^{Eafter}
- (b) intercept SO₃, SO₂, O₂, N₂ and CO₂ quantities

with SO₃ and CO₂ in after-H₂SO₄-making input gas.

Total % SO2 oxidized after:

3 before- H_2SO_4 -making catalyst beds 1 after- H_2SO_4 -making catalyst bed

is also calculated, Section U.6.

U.1 Equilibrium equation with SO₃ in after-H₂SO₄-making input gas

The after-H₂SO₄-making SO₂(g) + $\frac{1}{2}$ O₂(g) \rightarrow SO₃(g) equilibrium equation is: $T_{E} = \frac{-B}{A + R*ln} \left(\frac{d' + e' * \frac{\Phi^{Eafter}}{100}}{e' * \left(1 - \frac{\Phi^{Eafter}}{100}\right)} \right) * \left(\frac{100 - \frac{1}{2} * e' * \frac{\Phi^{Eafter}}{100}}{f' - \frac{1}{2} * e' * \frac{\Phi^{Eafter}}{100}} \right)^{\frac{1}{2}} * P_{t}^{-\frac{1}{2}} \right)$ (U.1)

where:

 T_E = equilibrium temperature, K

A and B = empirical constants for calculating $\Delta G^{\circ}_{SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)}$ from temperature,

Eqn. (10.9) and Appendix C $A = 0.09357 \text{ MJ kg-mole SO}_2^{-1} \text{K}^{-1}$ $B = -98.41 \text{ MJ/kg-mole SO}_2$

R = gas constant, 0.008314 MJ/kg-mole SO₂.

d'	= volume% SO ₃ in 1^{st}	after H	2SO4-mak	ing cataly	st bed fee	d gas ך	remainder
e'	= volume% SO ₂	11	U	11	11	" }	CO and N
f'	= volume% O ₂	н	11	11	11	ل"	CO_2 and N_2

 $\Phi^{\text{Eafter}} = \text{equilibrium } \% SO_2 \text{ oxidized}, \text{ Section 19.4.2}$ $P_t = \text{total gas pressure, bar}$

It is exactly analogous to Eqn. (17.1) and is derived the same way.

U.2 H₂SO₄-Making Input Gas Quantity Specification

H₂SO₄-making input gas is specified to be the same as in Fig. 19.2, i.e.:

0.098 kg-mole SO₃ 0.002 kg-mole SO₂ 0.061 kg-mole O₂ 0.790 kg-mole N₂ 0.000 kg-mole CO₂

U.3 H₂SO₄-Making Exit Gas Quantity Calculation

Chapter 19 assumes that 100% of H₂SO₄-making input SO₃ is made into H₂SO₄(ℓ). This appendix assumes that <u>99.9% of the SO₃ is made into H₂SO₄(ℓ), i.e. that 0.1% remains in H₂SO₄-making exit gas. The exit gas contains, therefore:</u>

 $\frac{0.1\%}{100\%} * 0.098 \text{ kg-mole SO}_3 \text{ into } \text{H}_2\text{SO}_4 \text{ making} = 0.0001 \text{ kg-mole SO}_3$ $\frac{0.002 \quad \text{"" SO}_2}{0.061 \quad \text{"" " O}_2}$

plus:

0.061	"	11	O_2
0.790	11	11	N_2
0.000	11	11	CO_2
0.8531	total	kg	-mole.

This gas is goes forward to further SO_2 oxidation in a 1st after-H₂SO₄-making catalyst bed.

U.4 Calculation of H₂SO₄-Making Exit Gas Volume Percents

The composition of the H_2SO_4 -making exit gas is calculated as described in Section 19.4.1, e.g.:

volume% SO₃ = mole% SO₃ = $\underline{\text{kg-mole SO}_3}$ * 100% total kg-mole gas

$$= \frac{0.0001}{0.8531} * 100 = 0.012 \text{ volume}\% \text{ SO}_3 = d'$$

Volume% SO₂ and O₂ are calculated similarly to be:

The above after- H_2SO_4 -making kg-mole and volume % values are the starting points for this appendix's after- H_2SO_4 -making intercept calculations. The calculations are described in the next two sections.

U.5 Worksheet Construction and Operation

Table U.1 shows an after- H_2SO_4 -making intercept calculation worksheet. It is much like Table R.1. It includes SO_3 and CO_2 in catalyst bed input gas. Preparation and use instructions are:

 In Excel, make a copy of Table R.1 by: Edit Move or Copy Sheet <u>Create a copy √</u> To book: (new book) OK.

- 2. Enter Section U4's 1st after-H₂SO₄-making catalyst bed input volume% SO₃, SO₂ and O₂ into cells E3, G3 and I3 (empty cells J3 through M3)
- 3. Enter Section U.3's 1st after-H₂SO₄-making catalyst bed input kg-mole SO₃, SO₂, O₂, N₂ and CO₂ into cells E8, G8, I8, K8 & M8.
- 4 Re-enter Section U.3's 1^{st} after-H₂SO₄-making catalyst bed input kg-mole SO₂ into cell G5 (for possible 2^{nd} after-H₂SO₄-making catalyst bed calculations).
- 5. Enter gas input temperature and bed pressure in cells K5 and K6. Label all cells as shown.
- 6. Estimate an intercept % SO₂ oxidized (Φ^{Eafter}) value in cell F11 (perhaps 99% from Table 19.2).
- 7. Enter Eqn. U.1 into cell A14, exactly as shown in cell B14.

```
8. Use Goal Seek to find the actual intercept % SO<sub>2</sub> oxidized (\Phi^{\text{Eafter}}) – by the instructions:
```

Tools

Goal Seek

Set cell: G47 To value: 0

Changing cell: F11

OK

OK.

The results are shown in worksheet Table U.1. The intercept point is 98.8 % SO₂ oxidized (Φ^{Eafter} in cells F11 and I39), 697.3 K (in cells A14 and J30).

			······································			·	· · · · · · · · · · · · · · · · · · ·		· ·····	<u> </u>		
	<u>A</u>	В	<u> </u>	D	E	F	G	<u>н</u>	I	I J	<u>к</u>	Land Land
1	15' AFTER-H2SO	-MAKING CATALYST	BED	<u> </u>			All quantitie	s are per kg-m	ole of 1" befo	re-H ₂ SO ₄ -maki	ng catalyst be	d feed gas
2	1st after-H ₂ SO ₄ -m	aking catalyst bed inpu	t gas compositio	on from Section	U.4							
3				d', vol% SO3≖	0.012	e', vol% SO2=	0.234	f', vol% O ₂ =	7.15			
4		L	1	1		1		l		1		-
5	1st after-H ₂ SO ₄ -m	aking catalyst bed inpu	t kg-mole SO ₂ fr	om Section U.3	, for 2nd bed o	calculations	0.0020		input gas le	mperature, K =	690	
6		L						cataly	st bed gas pre	ssure P _t , bar =	1.2	
7	1st after-H ₂ SO ₄ -ma	aking catalyst bed inpu	t gas kg-mole fr	om Section U.3								
8				SO3 =	0.0001	SO ₂ =	0.0020	O ₂ =	0.0610	N ₂ =	0.7900	CO2 =
9												
10												
11	Suggested after-H	SO4-making equilibriu	m curve intercep	ot % SO ₂ oxidiz	ed=Φ ^{Eafler} =	98.8						
12		·	l									
13	After H ₂ SO ₄ -makin	g equilibrium curve ter	nperature equiva	alent to cell F11	's % SQ ₂ oxidi	zed, Eqn. (U.1)					
14	697.3	=-(-98.41)/(0.09357+	0.008314*LN((E	3+G3*F11/100)	(G3*(1-F11/1	00))*((100-0.5*	G3*F11/100)/(13-0.5*G3*F11/	100))^0.5*K6^-	0.5))		(U.1)
15												
10	1ª after H SO	l	triv (In moone	Se issue and	and managers No.	interment as all						
11/	1 aner-H2504-	naking neatup patn ma	tinx (in means	in inputgas, e	out means in i	intercept gas)						<u> </u>
1	Equation	description	= E8 etc	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂	kg-mole CO2	kg-mole SO3	kg-mole SO ₂	kg-mole O ₂	kg-mole N ₂
18	Equation	description		in	In	in	In	in	out	out	out	out
19		input SO, kg-mole	0.0001	1	0	0	0	0	0	0	0	0
20		input SO ₂ kg-mole	0.0020	0	1	0	0	0	0	0	0	0
21		input O2 kg-mole	0.0610	0	0	1	0	0	0	0	0	0
22		input N ₂ kg-mole	0.7900	0	0	0	1	0	0	0	0	0
23		input CO ₂ kg-mole	0	0	0	0	0	1	0	0	0	0
24	14.6	S balance	0	-1	-1	0	0	0	1	1	0	0
25	17.6	O balance	0	-3	-2	-2	0	-2	3	2	2	0
26	11.6	N balance	0	0	0	0	-2	0	0	0	0	2
21	17.5	C balance	0	971.2	0	12.21	11.00	-1	270.0	0 270 2	12.45	11.00
29		entralpy datance	U	3/1.3	210.1	-12.21	-11.00	370.2	-370.8	-210.3	12.45	11.09
30				input gas	temperature =	690	inte	rcent temperat	ure cell A14 =	697.3		
31						=K5	/	T		=A14		
32	Matrix results equiv	alent to intercept temp	perature in cell J	30 (and A14)		7						
33	kg-mole SO ₃ In	0.0001				=-(0.0311*F30)-9.797) (Appendix G)				
34	kg-mole SO ₂ In	0.0020		<u> </u>				1				
35	kg-mole O ₂ In	0.0610										
36	kg-mole N ₂ In	0.7900										
37	kg-mole CO ₂ in	0.0000										
38	kg-mole SO3 out	0.002077					المراجعة المحادث					
39	kg-mole SO2 out	0.000023			neau to tor	path %SU ₂	oxidized equiva		98.8	=(G5-B39)/G5	*100	(19.2)
40	kg-mole O2 out	0.060012				iiperature iis ce	1 S J S U ARU A I			= % of 1st afte	r-H ₂ SO ₄ -makin	ig catalyst inpu
41	kg-mole N ₂ out	0.790000								SO ₂ which is o	xidized in this	catalyst bed
42	kg-mole CO2 out	0.000000										
43	all per kg-mole of 1	st before-H2SO4-makin	ng catalyst bed f	eed gas								
44												
45									•			
46	Goal Seek calculat	ion										
47	Equilibrium curve %	6 SO ₂ oxidized - heatu	p path % SO, o	<pre>didized =</pre>			0.0	=F11-I39				

Table U.1. Excel worksheet for calculating after-H₂SO₄-making heatup path/equilibrium curve intercept with SO₃ and CO₂ in input gas.^{5.}

U.6 Calculation of % SO₂ Oxidized After All Catalyst Beds

Section 19.7 describes calculation of after-all-catalyst-bed SO₂ oxidation efficiency. The equation is:

$$%SO_2 \text{ oxidized} = \Phi^{\text{total}} = \frac{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}}{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}} - \frac{\text{kg-mole SO}_2 \text{ in } 1^{\text{st}}}{\text{catalyst bed exit gas}} *100$$
(19.7)

This appendix repeats this calculation. Its data are:

from Fig. 19.2: kg-mole SO₂ in 1^{st} catalyst bed feed gas = 0.1

from Table U.1: kg-mole SO₂ in after-H₂SO₄-making catalyst bed exit gas = 0.000023

so that:

total % SO₂ oxidized after 3 before-H₂SO₄-making = (0.1 - 0.000023) * 100% = 99.98%. beds and 1 after-H₂SO₄making catalyst bed

This result is virtually the same as with no SO₃ in 1st after-H₂SO₄-making input gas, Section 19.7.

Appendix V

Moist Air in H₂SO₄ Making Calculations

Chapter 23 examines the input of moist metallurgical and spent acid regeneration gases into Fig. 23.1's dehydration tower. It quantifies the amount of $H_2O(g)$ that enters dehydration tower acid:

per kg-mole of dry 1st catalyst bed feed gas.

This appendix examines $H_2O(g)$ in sulfur burning acid plants. It:

- (a) shows that sulfur burning plants dehydrate sulfur burning air rather than cleaned furnace offgas
- (b) quantifies the amount of $H_2O(g)$ that enters dehydration tower acid

per kg-mole of dry air

and:

per kg-mole of dry 1st catalyst bed feed gas.

Fig. V.1 depicts the feed end of a sulfur burning sulfuric acid plant.

Fig. V.1. Front end of sulfur burning acid plant showing that kg-mole dry 1st catalyst bed feed gas = kg-mole dry sulfur combustion air.

It shows that:

(a) kg-mole sulfur burning exit gas (i.e. kg-mole dry 1^{st} catalyst bed feed gas) = kg-mole dry input sulfur combustion air

and therefore that:

(b) kg-mole $H_2O(g)$ entering dehydration tower acid

per kg-mole of dry 1st catalyst bed feed gas

has the same numerical value as kg-mole $H_2O(g)$ entering dehydration tower acid

```
per kg-mole of dry sulfur combustion air.
```

This greatly simplifies our sulfur burning $H_2O(g)$ calculations, next section.

V.1 Calculation

This section duplicates Section 23.4.1's calculation of kg-mole $H_2O(g)$ into dehydration tower acid per kg-mole of dry 1st catalyst bed feed gas.

The moist air being fed to the Fig. V.1 sulfur burning dehydration tower is specified to contain:

3 volume% $H_2O(g)$ and 97 volume% dry air.

These are equivalent to 3 and 97 mole% $H_2O(g)$ and dry air respectively.

From Eqns. (23.2) to (23.4):

$$kg\text{-mole } H_2O(g) = \frac{3 \text{ mole}\% H_2O(g)}{100\%} * kg\text{-mole moist}$$
(V.1)

$$kg\text{-mole } dry \operatorname{air} = \frac{97 \text{ mole}\% dry \operatorname{air}}{100\%} * kg\text{-mole moist}$$
(V.2).
Dividing Eqn. (V.1) by Eqn. (V.2):

$$\frac{kg\text{-mole } H_2O(g) \text{ in moist input air}}{kg\text{-mole } dry \operatorname{air} \text{ in moist input air}} = \frac{3}{97}$$

$$= 0.031 \text{ kg\text{-mole } H_2O(g) \text{ per kg\text{-mole of } dry air}.$$
Further, because:

$$kg\text{-mole } dry 1^{st} \text{ catalyst bed feed gas} = kg\text{-mole } dry air$$

$$kg\text{-mole } H_2O(g) \text{ per kg\text{-mole}} = 0.031$$

This value can be used in the remainder of Chapter 23's calculations, starting with Section 23.4.2.

It will be slightly wrong if the sulfur burning exit gas contains a small amount of SO_3 .

Appendix W

Calculation of H₂SO₄ Making Tower Mass Flows

The Fig. 24.1 H₂SO₄ making tower's mass flows are calculated by specifying:

input mass SO₃(g) per kg-mole of 1^{st} catalyst bed feed gas input acid composition, mass% H₂SO₄ and mass% H₂O output acid composition, mass% H₂SO₄ and mass% H₂O.

These specification plus total and sulfur mass balances permit calculation of the tower's

- (a) input SO₃, H_2SO_4 and H_2O flows
- (b) H_2SO_4 and H_2O output flows.

W.1 Input and Output Gas Specifications

Fig. 24.1's H_2SO_4 making tower input gas is specified to be Section 16.4's 3rd catalyst bed exit gas. It contains:

0.098	kg-mole	SO_3
0.002	"	SO_2
0.061	"	O_2
0.790	"	N_2

per kg-mole of 10 volume% SO₂, 11 volume% O₂, 79 volume% N₂ 1^{st} catalyst bed feed gas.

It is specified that all of the SO₃ in this gas reacts with $H_2O(\ell)$ in the tower's input acid to form $H_2SO_4(\ell)$. The other gases pass unreacted out of the tower.

With this specification, the tower's output gas contains:

0.000 k	g-mol	le SO3
0.002	"	SO ₂
0.061	"	O ₂
0.790	"	N_2

per kg-mole of 1st catalyst bed feed gas, Table 24.1.

W.2 Input SO₃(g) Equation

The mass of input $SO_3(g)$ equivalent to the above 0.098 kg-mole is given by the equation:

mass SO_3 = kg-mole $SO_3 * 80 \text{ kg } SO_3 \text{ per kg-mole } SO_3$

= 0.098 * 80

=
$$7.84$$
 kg per kg-mole of 1st catalyst bed feed gas. (W.1).

(80 is the molecular weight of SO₃.)

W.3 Input and Output Acid Composition Equations

Fig. 24.1's input acid is specified to contain 98.5 mass% H_2SO_4 , 1.5 mass% H_2O . As Section 23.6.3 shows, this composition is described by the equation:

 $0 = -1.5 * \text{mass H}_2\text{SO}_4 \text{ in input acid } + 98.5 * \text{mass H}_2\text{O in input acid}$ (W.2).

The output acid is specified to contain 99.0 mass% H_2SO_4 and 1.0 mass% H_2O . It is described by:

 $0 = -1.0 * \text{mass } H_2 SO_4 \text{ in input acid } + 99.0 * \text{mass } H_2 O \text{ in input acid}$ (W.3).

W.4 Total Mass Balance Equation

Excluding SO₂, O₂ and N₂ (which pass unreacted through the tower), Fig. 24.1's total mass balance is:

mass SO₃ in + mass H₂SO₄ in input acid + mass H₂O in input acid

= mass H_2SO_4 in output acid + mass H_2O in output acid

or:

 $0 = -mass SO_3$ in $-mass H_2SO_4$ in input acid $-mass H_2O$ in input acid

+ mass H_2SO_4 in output acid + mass H_2O in output acid (W.4).

W.5 Sulfur Balance Equation

Excluding SO_2 (which passes unreacted through the H_2SO_4 making tower), Fig. 24.1's S mass balance is:

mass S in input SO₃ + mass S in input H_2SO_4 = mass S in output H_2SO_4

or, because SO₃ and H₂SO₄ contain 40 and 32.7 mass% S respectively:

$$\frac{40}{100}$$
*mass input SO₃ + $\frac{32.7}{100}$ *mass input H₂SO₄ = $\frac{32.7}{100}$ *mass output H₂SO₄

or

 $0 = -0.4 * mass input SO_3 - 0.327 * mass input H_2SO_4 + 0.327 * mass output H_2SO_4$ (W.5).

W.6 Solving for Flows

The Fig. 24.1 H₂SO₄ making tower has five flows:

mass SO₃(g) in mass H₂SO₄(ℓ) in mass H₂O(ℓ) in mass H₂SO₄(ℓ) out mass H₂O(ℓ) out.

They are described by five equations, (W.1) to (W.5).

The numerical values of the above five flows are obtained by solving matrix Table W.1, as described in Appendix H.

The results are listed in Tables W.1 and 24.1.

	Α	В	С	D	E	F	i <u>c</u> i	H
	Description	equation	numerical	mass SO3	mass H ₂ SO ₄	mass H ₂ O	mass H ₂ SO ₄	mass H ₂ O
1			term	in	in	in	out	out
2	mass SO ₃ in, per kg-mole of 1st catalyst bed feed gas	W1	7.84	1	0	0	0	0
3	total mass balance	W4	0	-1	-1	-1	1	1
4	S mass balance	W5	0	-0.4	-0.327	0	0.327	0
5	input acid composition specification	W2	0	0	-1.5	98.5	0	0
6	output acid composition specification	W3	0	0	0	0	-1	99
7				<u> </u>				
누르	Solution (All masses are per k	g-mole of 1st ca	talyst bed feed	gas.)			_	
9	mass SO ₃ in	7.840			i i			
10	mass H₂SO₄ in	360.237					Ţ	
11	mass H ₂ O in	5.486					1	
12	mass H ₂ SO ₄ out	369.827						
13	mass H ₂ O out	3.736	[1			

Table W.1. Matrix for determining Fig. 24.1 mass flows using Eqns. (W.1) to (W.5).

W.7 Effect of Output Acid Mass% H₂SO₄ on Input and Output Acid Flows

Fig. W.1 shows the effect of specified output acid composition on input and output acid masses, per kg-mole of 1^{st} catalyst bed feed gas. Both <u>decrease</u> markedly with increasing mass% H₂SO₄ in output acid.

This is because each kg of specified composition input acid can accept more SO_3 when it goes (for example) from:

than when it goes from:

so less acid has to be circulated when 99.2 mass% H₂SO₄ is being produced.

Fig. W.1. Effect of specified output acid mass% H_2SO_4 on H_2SO_4 making tower input and output acid requirements. Input acid composition is constant at 98.5 mass% H_2SO_4 , 1.5 mass% H_2O . #per kg-mole of 1st catalyst bed feed gas.

Answers to Numerical Problems

Answers within \pm 1% of those listed here indicate correct methods of calculation.

Chapter 10

- 10.1 854 K
- 10.2 854 K
- 10.3 83.3% SO₂ oxidized
- 10.4

	А	В
12	Answer to Problem 1	0.4
	Equilibrium	Equilibrium
	% SO₂	temperature,
13	oxidized	к
14	40	998.2
15	50	963.2
16	60	930.4
17	70	897.2
18	80	860.0
19	90	810.3
20	95	769.9
21	97.5	735.1
22	99	694.7
23	99.5	667.3
24	99.9	611.6
25	99.95	590.4

11.1 37.4% SO₂ oxidized

- 11.2 46.0% SO₂ oxidized
- 11.3 50.3% SO₂ oxidized

11.4

	A	8				
21	Answer to Problem	Answer to Problem 11.4				
	Measured	Equivalent				
22	temperature, K	% SO 2 oxidized				
23	675	0				
24	700	7.2				
25	750	21.5				
26	800	35.9				
27	850	50.3				

12.1 and 12.2

	A	В	С
	Equilibrium	Heatup path	Equilibrium
22	temperature	% SO 2 oxidized	% SO 2 oxidized
23	904	65.9	68.0
24	905	66.2	67.7
25	906	66.5	67.4
26	907	66.8	67.1
27	908	67.1	66.8
28	909	67.4	66.5
29	910	67.6	66.2
30	911	67.9	65.9

12.3 (a) 1st catalyst bed intercept point: 907.6 K, 66.9% SO₂ oxidized

(b) intercept (exit gas) quantities (per	kg-mole of 1 st	catalyst bed	feed gas)
-------------------------	-------------------	----------------------------	--------------	-----------

	Α	В
38	kg-mole SO3 out	0.0803
39	kg-mole SO ₂ out	0.0397
40	kg-mole O ₂ out	0.0918
41	kg-mole N ₂ out	0.7480

	A	В	С		
21	Problem 13.1 heatup path with intercept point				
	Measured				
22	temperature, K	% SO ₂ oxidized			
23	675	0			
24	700	7.2			
25	750	21.5			
26	800	35.9			
27	850	50.3			
28	907.6	66.9			

13.1 Chapter 11 heatup path plus Chapter 12 intercept point.

Problem 13.1 graph

Gas temperature, K

Chapter 14

14.1

	A	В			
30	Problem 14.1 heatup path data table				
	2 nd catalyst bed % SO ₂ oxidized at				
31	level L	level L			
32	685	66.9			
33	710	74.1			
34	730	79.9			
35	750	85.7			
36	770	91.5			

Chapter 15

15.1

15.2 2nd catalyst bed intercept (exit gas) quantities (per kg-mole of 1st catalyst bed feed gas

	В	C
37	kg-mole SO3 out	0.1129
38	kg-mole SO ₂ out	0.0071
39	kg-mole O2 out	0.0755
40	kg-mole N ₂ out	0.7480

16.2 3rd catalyst bed intercept (exit gas) quantities (per kg-mole of 1st catalyst bed feed gas)

	В	С
37	kg-mole SO3 out	0.1183
38	kg-mole SO ₂ out	0.0017
39	kg-mole O ₂ out	0.0728
40	kg-mole N ₂ out	0.7480

Chapter 17

17.1

(a) 1st catalyst bed intercept: 64.9% SO₂ oxidized at 899.3 K

	A	В
38	kg-mole SO3 out	0.07205
39	kg-mole SO ₂ out	0.0379
40	kg-mole O ₂ out	0.0640
41	kg-mole N ₂ out	0.7910

17.2 With 10.5, 10.5, 9.0, and 70.0 volume% SO₂, O₂, CO₂ and N₂ the 1st catalyst bed intercept % SO₂ oxidized is 66.5% at 899.4 K.

With 10.5, 10.5, 0, and 79.0 volume% SO₂, O₂, CO₂, and N₂ the 1st catalyst bed intercept % SO₂ oxidized is 64.9% at 904.6 K.

Chapter 19

- 19.1 99.98% SO_2 oxidized after all 4 beds (with intermediate H₂SO₄ making after the 3^{rd} catalyst bed).
- 19.2 99.0% SO_2 oxidized after all 4 beds (no intermediate H₂SO₄ making).

Chapter 21

21.1

Gas	Temp. K	Enthalpy [#]	
1 st catalyst bed feed gas	675	-23.62	
1 st catalyst bed exit (intercept) gas	907.6	-23.62	
		heat transfer to 1-2 boiler water \rightarrow	7.59#
2 nd catalyst bed input gas	685	-31.21	
2 nd catalyst bed exit (intercept) gas	779.1	-31.21	
		heat transfer to superheater steam \rightarrow	2.87 [#]
3 rd catalyst bed input gas	695	-34.08	
3 rd catalyst bed exit (intercept) gas	710.5	-34.08	
		heat transfer to economizer water $ ightarrow$	8.23#
H ₂ SO ₄ -making input gas	470	-42.31	
# man log male of 1st antalust had food on			

per kg-mole of 1st catalyst bed feed gas

21.2 36740 MJ per hour. This is the design capacity of this problem's economizer.

Chapter 22 In all Chapter 22 problems, the 1st catalyst bed feed gas flowrate is 100 000 Nm³ per hour.

22.1

3rd catalyst bed exit gas enthalpies

Temperature, K	Enthalpy, MJ per kg-mole of 1 st catalyst bed feed gas		
710.5 (Problem 21.1)	-34.08		
480	-41.97		
470 (Problem 21.1)	-42.31		
460	-42.66		

Economizer enthalpy transfers

Cooling temperatures, K	Enthalpy transfer, MJ per kg- mole of 1 st catalyst bed feed gas
710.5 to 480	7.89
710.5 to 470 (Problem 21.1)	8.23
710.5 to 460	8.58

(a) 8.23 MJ heat transfer requires 100% of Problem 21.1's economizer capacity

7.89 MJ heat transfer (cooling from 710.5 to 480 K) requires:

$$\frac{7.89}{8.23} * 100\% = 95.9\%$$

of Problem 21.1's economizer capacity.

This is equivalent to a theoretical bypass of:

$$100\% - 95.9\% = 4.1\%$$

- (b) Industrial bypass = $(4.1\%)^{1.1}$ = 4.7%
- (c) 38 300 MJ per hour, Eqn. (21.6)

Temperature K	Enthalpy, MJ per kg-mole of 1 st		
	catalyst bed leed gas		
715	-33.93		
710.5 (Problem 21.1)	-34.08		
705	-34.27		
470 (Problem 21.1)	-42.31		

Economizer enthalpy transfers

Cooling temperatures, K	Enthalpy transfer, MJ per kg- mole of 1 st catalyst bed feed gas		
715 to 470	8.38		
710.5 to 470 (Problem 21.1)	8.23		
705 to 470	8.04		

Problem 22.1 (b)'s economizer has the heat transfer capacity of:

8.58 MJ per kg-mole of 1^{st} catalyst bed feed gas (@ 100 000 Nm³ of 1^{st} catalyst bed feed gas per hour)

(a) Cooling of 715 K 3rd catalyst bed exit gas to 470 K requires 8.38 MJ per kgmole of 1st catalyst bed feed gas. This is:

$$\frac{8.38}{8.58}$$
 *100% = 97.7%

of the Problem 22.1(b)'s economizer's capacity. It is equivalent to:

of gas around the economizer.

(b) Cooling of 710.5 K 3rd catalyst bed exit gas to 470 K requires 8.23 MJ per kg-mole of 1st catalyst bed feed gas. This is:

$$\frac{8.23}{8.58}$$
 *100% = 95.9%

of the Problem 22.1(b)'s economizer's capacity. It is equivalent to:

4.1% bypass

of gas around the economizer.

(c) Cooling of 705 K 3rd catalyst bed exit gas to 470 K requires 8.04 MJ per kgmole of 1st catalyst bed feed gas. This is:

$$\frac{8.04}{8.58}$$
 *100% = 93.7%

of the Problem 22.1(b)'s economizer's capacity. It is equivalent to:

6.3% bypass

of gas around the economizer.

22.3

Prob. 22.2's (a), (b) and (c) bypasses are equivalent to:

	Theoretical bypass, %	Industrial bypass
(a)	2.3	$= 2.3^{1.1} = 2.5\%$
(b)	4.1	$=4.1^{1.1}=4.7\%$
(c)	6.3	$=6.3^{1.1} = 7.6\%$

Chapter 23

23.1 Mass SO₃ entering H_2SO_4 making tower =

= $0.1183 \frac{\text{kg-mole SO}_3 \text{ per kg-mole of}}{\text{dry 1}^{\text{st}} \text{ catalyst bed feed gas}} * 80 \text{ kg SO}_3 \text{ per kg-mole of SO}_3$

kg SO₃ per kg-mole of dry = $9.464 1^{st}$ catalyst bed feed gas

From Eqn. (23.4):

kg-mole H₂O(g) in moist input gas per kg-mole of dry 1st catalyst bed = $\frac{6\%}{94\%}$ = 0.0638 feed gas in moist input gas

Mass input $H_2O(g) = 0.638$ kg-mole SO₃ per kg-mole of dry 1st catalyst bed feed gas * 18 kg H₂O per kg-mole of H₂O

= $1.149 \text{ kg H}_2O(g)$ per kg-mole of dry 1^{st} catalyst bed feed gas

From Table 23.1 (for 98.5 mass% H₂SO₄, 1.5 mass% H₂O output acid):

	A	В	С	D	E	F	G	Н
1	Description	equation	numerical term	mass SO ₃ into H ₂ SO ₄ making tower	mass H ₂ O in moist input gas	mass H ₂ O in input water	mass H₂SO₄ in output acid	mass H ₂ O in out put acid
2	mass SO ₃ into H ₂ SO ₄ making tower	23.1	9.464	1	0	0	0	٥
3	mass H ₂ O in moist feed gas	23.5	1.149	0	1	0	0	0
4	S balance	23.6	0	-0.4	0	0	0.327	0
5	total mass balance	23.7	0	-1	-1	-1	1	1
6	output acid composition specification	23.8	0	0	0	0	-1.5	98.5
7								
9	Matrix solution	mass*		Kg per 100 000) Nm ³ (4464 kg-i	⊥ mole) dry 1 st cata	alyst bed feed ga	as per hour
10	mass SO ₃ in	9.464			1	42247	=B10*4464	
11	mass H ₂ O(g) in	1.149		······		5129	1	-
12	mass water in	1.140				5089	(all kg per hour)
13	mass H ₂ SO ₄ out	11.577				51679		
14	mass H ₂ O out	0.176				787		1
15	(mass acid out)	11.753	=B13+B14			52466		
16	16 *kg per kg-mole of dry 1st catalyst bed feed gas							

- 24.1 The H₂SO₄ making tower matrix with:
 - (a) 9.464 kg SO₃ per kg-mole of dry 1^{st} catalyst bed feed gas (Problem 23.1)
 - (b) 98.6 mass% H_2SO_4 , 1.4 mass% H_2O input sulfuric acid
 - (c) 99.2 mass% H₂SO₄, 0.8 mass% H₂O output sulfuric acid
 - is:

	Α	В	С	D	E	F	G	н
1	Description	equation	numerical	mass SO ₃	mass H ₂ SO ₄	mass H ₂ O	mass H _z SO ₄	mass H ₂ O
1			term	ln	in	in	out	out
2	mass SO ₃ in, per kg-mole of 1st catalyst bed feed gas	W1	9.464	1	0	0	0	0
3	total mass balance	W4	0	-1	-1	-1	1	1
4	S mass balance	W5	0	-0.4	-0.327	0	0.327	0
5	input acid composition specification	W2	0	0	-1.4	98.6	0	0
6	output acid composition specification	W3	0	0	0	0	-0.8	99.2
7								
8	Solution (All masses are per kg-mole of dry 1st catalyst bed feed gas.)							
9	mass SO ₃ in	9.464					ļ	
10	mass H ₂ SO ₄ in	359.639						
11	mass H ₂ O in	5.106						
12	mass H ₂ SO ₄ out	371.215						
13	mass H ₂ O out	2.994						

The acid temperature calculation table with:

- (a) the appropriate input and output gas compositions
- (b) the H_2SO_4 and H_2O input and output masses from the above table
- (c) the mass% H_2SO_4 and H_2O in acid values from the above table
- is:

	A	В	С	D	E	F			
1	The enthalpy equation for	or H₂SO₄ =	=0.1485*T-858.3 -1.82*(mass% H ₂ O in sulfuric acid)						
2									
					enthalpy, MJ				
3	Substance	kg	kg-mole	temperature, K	per kg-mole	enthalpy, MJ			
4	kg-mole SO ₃ (g) in		0.1183	480	-386.31	-45.700			
5	kg-mole SO₂(g) in		0.0017	480	-289.53	-0.492			
6	kg-mole O ₂ (g) in		0.0728	480	5.208	0.379			
7	kg-mole N ₂ (g) in		0.7480	480	5.131	3.838			
8	kg-mole H ₂ SO ₄ (I) in	359.639	3.670	350	-808.87	-2968.391			
9	kg-mole H ₂ O(I) in	5.106	0.284	350	-281.91	-79.969			
10									
11	kg-mole SO ₃ (g) out		0.0000	350	-395.596	0.000			
12	kg-mole SO ₂ (g) out		0.0017	350	-296.237	-0.504			
13	kg-mole O ₂ (g) out		0.0728	350	0.876	0.064			
14	kg-mole N2(g) out		0.7480	350	1.088	0.814			
15									
16	Output acid enthalpy =		-3090.709 =F4+F5+F6+F7+F8+F9-F11-F12-F13-F						
17									
18	kg-mole H ₂ SO ₄ (i) out	371.215	3.788						
19	kg-mole H ₂ O(I) out	2.994	0.166						
20									
21									
22	Tacid out	378	= output acid temperature						
23	Enthalpy acid out	-3090.709	=C18*(0.1485*B22-858.3 - 1.82*0.8)+C19*(0.07568*B22-308.4)						

which shows the output acid temperature to be 378 K.

Author Index

Abeck, W. 34, 44 Al Hassen, A.Y. 11, 17 Azwell, D.E. 103, 117 Bal'zhinimaev, B.S. 98 Barin, I. 317 Bartlett, C. 30, 117 Betz, H.F. 9, 289, 290, 291 Biswas, A.K. 45 Bjerrum, N.J. 98 Boghosian, S. 98 Bright, N.F. 292 Byszewski, C. 103, 117 Buckingham, D.A. 13, 17 Chase, M.W. 304, 316 Collins, D.N. 45 Dafft, C.A. 50, 57 Davenport, 33, 45 Dunlavy, D. 20, 29 Dueker, W.W. 9, 272, 284 Eriksen, K.M. 98 Fahrer, N.S. 30 Fehrmann, R. 98 Fischer, H. 9, 16, 30, 88 Folkmann, G.E. 90, 91, 98 Friedman, L.J. 44, 69, 78, 88, 102, 103, 116, 117, 281, 283, 284 Friedman, S.J. 44, 69, 78, 88, 102, 103, 116, 117, 281, 283, 284 Fries, R.M. 9, 45, 284 Gable, C.M. 8, 9, 289, 290, 291 Gaune-Escard, M. 98 Baskell, D.R. 122, 127 Green, D.W.III 43, 45, 63, 69, 100, 104, 117 Grendel, R.W. 9, 45, 284 Guenkel, A. 116 Hansen, L. 8, 9, 94, 98, 221, 223 Haslego, C. 20, 280, 284 Hatem, G. 90, 98 Hay, S. 100, 117, 272, 284 Hill, D.R. 11, 17 Holopainen, H. 45 Hopp, A. 8, 9 Hornbaker, D. 21, 30

Hultbom, K.G. 42, 45 Hutchison, H. 292 Jacoby, K. 26, 30 Jondle, J. 21 30 King, M. 45 Killick, D. 11, 17 Kitto, M. 1, 9, 12, 13, 15, 16, 17 Kola, R 9, 16, 17, 30, 88 Lang, E. 49, 53, 57 Lapina, O.G. 90, 98 Laursen, J.K. 8,9 Lee, M. 103, 117 Lossin, A. 42, 45 Louie, D. 9 Ludtke, P. 44 Maron, S.H. 9, 289, 290, 291 Miller, D. 27, 28, 30, 205, 210 More, A.I. 9, 16, 17, 30, 88 Muller, H. 44 Newman, C.J. 42, 45 Nichols, G.G. 35, 45 Nokelainen, J. 45 Ober, J.A. 13, 17 Oglesby, S. 35, 45 Orlando, J. 116 Parekh, U. 27, 30, 205, 210 Peippo, R. 34, 45 Perry, R. H. 43, 45, 63, 69, 100, 104, 117 Poretta, F. 117, 284 Puricelli, S.M. 8, 9, 39, 45, 54, 57, 282, 284 Rasmussen, S.G. 91, 93, 98 Rieder, J. 29, 117 Roensch, L.F. 23, 29 Rothe, U. 9, 16, 17, 30 Roughton, J.E. 292 Sander, U.H.F. 9, 12, 13, 16, 17, 21, 30, 74, 88 Salehi, M. 8, 9 Schlesinger, M. 45 Smith, D. 292 Tuller, W.N. 21, 30 Viergutz, M.D. 57

Weddick, A.J. 45 Weiss, W. 54, 57 West, J.R. 9, 272, 284 White, C.R. 50, 57 Windhager, H. 42, 45 Wiggins, B. 117, 284

Ziebold, S.A. 62, 69, 103, 116, 117

Index

Absorption, SO₃(g) 99-117, 253-269 (see also H₂SO₄ making) Acidmaking (see H₂SO₄ making) Acid (see Sulfuric acid) Acid coolers anodic protection in 106, 280 industrial details 106 materials of construction 106 photographs exterior 106 interior 280 Acid (sulfuric) plant locations acid plant cost 15 map 14 reasons 15 Acid, heat recovery from 281-283 flowsheet 282 Acid pump 101 (photo) Acid temperature control 276-281 input acid temperature 280 output acid temperature affected by input acid temperature 277 affected by input gas temperature 278 affected by specified mass% H₂SO₄ in output acid 279 affected by volume% SO₃(g) in input gas 279 calculation 271-276 Goal Seek 276 $H_2O(\ell)-H_2SO_4(\ell)$ enthalpy of mixing in 272 matrix 380 coolers for input acid temperature control by bypassing 107 photographs exterior 106 interior 280 water cooling 280 cooler bypass for input acid temperature control 107 industrial acid temperatures final acidmaking 266-269 intermediate acidmaking 110-115 recovery of acid heat as steam 281-283 target acid temperatures 281 Activation, catalyst melting of catalyst 90, 91 temperature 91 lowered by Cs in catalyst 93-94, 233

Air (sulfur burning) dehydration with strong sulfuric acid 59 flowsheet 60 $H_2O(g)$ content before 61 after 63, 65 industrial data 65 reason for 59 sulfuric acid composition, choice of 63 Anodic protection of acid coolers 106, 280 Argon, effect on SO₂ oxidation equilibrium (none) 311 Assumptions in SO₂ oxidation calculations attainment of equilibrium in all catalyst beds 209 discussion 209 no conductive, convective or radiative heat loss 131, 136, 209, 273 steady state operation no heat transfer to catalyst 209 100% SO₃ utilization during H₂SO₄ making 214, 255, 378 elimination of this assumption 370 Assumption in H₂SO₄ making calculations 100% SO₃ utilization during H₂SO₄ making 214, 255, 378 assumption elimination 370 Blower, acid plant main 26 location in flowsheet metallurgical acid plants 60 spent sulfuric acid regeneration plants 60 sulfur burning plants 26 power, industrial 65-68 pressure 26 Boilers gas cooling device 236 fire tube 23 (photo) makes steam 23 metallurgical offgas waste heat boiler 34 drawing 34 dust removed in 34 temperatures 33-34 preheating boiler water in economizer 236 superheating steam from 236 sulfur burning boiler 23 Boliden Norzink mercury from gas removal process 42 Bypassing around heat transfer devices, temperature controlled by acid 107

gas 243-251 calculations 245-250 flowsheet 244 percent bypass 246-247 industrial vs. theoretical 249-250 inefficiency explained 250 photograph of bypass 244 principle 243 up and down (continuous flow through bypass flue) 248-249 Candles, acid mist removal 102 efficiency 102 photograph 103 Carbon, molar balances in derivation of SO₂ oxidation equilibrium equation 312 in heatup path preparation 193-197 Carbon dioxide (see CO_2) Catalytic SO₂(g) + $\frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation 71-98 catalytic reaction mechanisms 90 temperature increases rate 162 catalyst photograph 89 catalyst beds 3, 77-79, 94 (see also Catalyst, SO₂ oxidation, beds) converter for (3 to 5 catalyst beds) photographs exterior 78 interior 3 in double contact acid plants 229-234 equilibrium curves for 119-128 equilibrium equation for after intermediate H_2SO_4 making 214 with SO₃ in input gas 370 before intermediate H₂SO₄ making 119-128, 293-303 with SO_3 in feed gas 190 feed gas composition industrial after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 flowsheets double contact acid plant 6, 108 single contact acid plant 100 heat release from 71 heatup paths represent 77, 129, 143-145 industrial data after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄

making 82-87 industrial operation 80-81 startup 80 steady operation 80 control 81, 243-251 bypass 244 (photo) shut down 81 heatup path-equilibrium curve intercepts for 147-158 maximum SO₂ oxidation (equilibrium, intercept) 147-158 multi catalyst bed converter photographs 3, 78 cooling between beds maximizes SO₂ oxidation 151 drawing 78 flowsheets double contact acidmaking 6, 108 single contact acidmaking 100 oxygen source, feed gas O_2/SO_2 ratio 73 industrial after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 theoretical 73 purpose 119 in single contact acid plants 199-210 Catalyst, SO₂ oxidation 89-98 activation mechanism 90 activation temperature 91 cesium affects (table) 94 temperature (table) 94 beds diameter 96 industrial data after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 maintenance (screening) 97 number 229-234 photograph 3 pressures assumed 204-205 industrial 26, 125 thickness increases with bed number 95 explanation 95 gas residence time in increases with bed number 96 explanation 97

catalytic reaction mechanism 90 224-227 re-activation (catalyst layer gives low activation temperature 233 lowers catalyst melting point 233 optimum placement of cesium for various uses (table) 94 'converter', multicatalyst bed bed thicknesses 82-87, 95, 224-227 diameter 82-87, 96, 224-227 industrial data 82-87, 224-227 after intermediate H₂SO₄ before intermediate H₂SO₄ materials of construction 82-87. strength requirements 78 number of beds 82-87, 224-227

photograph 78 gas residence time various beds 97 gas velocity 72 deactivation, low temperature 90 re-activation 91 solidification of catalyst layer 90 degradation, high temperature 154 affected by feed gas temperature 155 affected by SO₂ concentration in feed gas 151, 155 avoidance (graph) 155 mechanism 91 temperature 91 activation mechanism 90 temperature 94 manufacture 91 sulfation 92 operating temperature industrial 82-87, 224-227 maximum to avoid degradation 91, 94 minimum to avoid deactivation 94 catalyst composition affects 94 phase diagram, Cs₂S₂O₇-V₂O₅ 91 pieces (photograph) 89 shapes and sizes 93

quantity needed, industrial 82-87,

cesium in catalyst

catalyst 233

phase diagram 91

changes during use 92

height 82-87, 224-227

making 224-227

making 82-87

224-227

choice of (table) 94

sulfation of 92

cost 233

composition 92

remelting 90 supported liquid phase 89-91 vanadium pentoxide 71-98 Catalyst beds diameter 82-87, 95-96, 224-227 gas residence time in 96 increases with bed number 97 explanation 95 industrial data after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 maintenance (screening) 97 temperature increases with bed number 162 industrial data after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 thickness increases with bed number 82-87, 95 224-227 explanation 95 industrial data after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 Cesium in catalyst concentration 92 lowers catalyst activation temperature 233 improves SO₂ oxidation efficiency 154-155, 233 phase diagram 91 prevents 1st catalyst bed high temperature degradation 154-156 use avoids high temperature degradation in 1st catalyst bed 154-156 best bed for maximum SO₂ SO₂ oxidation efficiency 233 Cleaning, gas metallurgical offgas 32-44 dust concentration after cleaning 40-41 dust concentration before cleaning 40-41

settles in waste heat boiler 34

electrostatic precipitation 35-38 flowsheet 32 industrial data 36-37, 40-41 scrubbing, aqueous 39 spent sulfuric acid decomposition furnace gas 48, 54 dust concentration after cleaning 54 concentration before cleaning 54 electrostatic precipitation, wet 54-55 flowsheet 48 industrial data 55 scrubbing, aqueous 54 CO₂ catalytic SO₂ oxidation efficiency affected by 154, 197 concentrations in: metallurgical offgas 36-37 spent acid decomposition furnace offgas 51, 52 scrubbing, not removed by 36, 40 equilibrium SO₂ oxidation equation (not affected by) 311 heatup paths, affected by 193-197 calculations 193-197 matrix 196 graphs 197 heat capacity effect 197 industrial CO2 in gas concentrations 74 in catalytic SO₂ oxidation gas after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 intercept (equilibrium curve-heatup path) affected by 197, 203 calculations 193-196 graphs 154, 197 enthalpy 319 vs. temperature equation 319 H₂SO₄ making, no reaction during 194 SO₂ oxidation, no reaction during 194 sulfur burning gas, none in 24-25 Condensation of $H_2O(g)$ from gas direct (open or packed bed) 43 flowsheets metallurgical offgas 32 spent acid regeneration offgas 48 H₂O concentrations after condensation 40-41, 43 before condensation 43 H₂O(g) equilibrium vapor pressure over water 43

indirect (heat exchanger) 43 industrial data metallurgical offgas 40-41 spent acid decomposition furnace offgas 55 purpose decreases H₂O(g) into acidmaking 43 Consumption of sulfuric acid, worldwide graph, by year 13 uses, table 15 Control gas dehydration, optimum sulfuric acid composition 64 H₂SO₄ making adjustments 107 measurements 107 table 107 SO₂ oxidation, catalytic based on temperature 81 gas temperature controlled by bypassing gas around heat transfer devices 243-251 Cooldown paths (multicatalyst bed SO₂ oxidation) 159-164 calculation data table 161 flowsheet 159 graph 162 industrial gas cooling control of 162, 243-251 no reaction during 161 permits more SO₂ oxidation 163 Coolers, acid anodic protection from corrosion 280 bypass temperature control 107 industrial data 106 materials of construction 106 photographs exterior 106 interior 280 Corrosion high acid velocities increase 283 anodic protection from 280 increases with increasing acid velocities 283 increases with increasing acid temperature 281 prevention of by dehydrating gas 59 stainless steel minimizes 283 Cost, acid plant 15 Degradation (high temperature) of catalyst 91

avoidance

catalyst composition choice 154 feed gas composition choice 156 feed gas temperature choice 155 indicated by pressure 97 mainly in 1st catalyst bed 155-156 mechanisms 91, 93 temperature 91 Dehydration of air and gas with strong sulfuric acid 59-69 acid compositions for 63, 65-68 acid droplet formation 62 removal from gas by mesh screen 62 drawing 62 air (sulfur burning) dehydration flowsheet 60 industrial data 65 purpose 59 cooling of dehydration acid 281 dehydration reaction 61 heat evolution 61 dehydration tower acid residence time 64 diameter 64-67 drawing 62 gas residence time 64 height 65-67 industrial data 65-67 materials of construction 64 packed bed bed thickness 64, 65-67 materials 62 flowsheets air dehydration 60 gas (metallurgical and spent acid) dehydration 60 $H_2O(g)$ in gas concentrations before dehydration air 65 gas 66-67 after dehydration air 65 target 63 gas 66-67 target 63 equilibrium above sulfuric acid 63, 104 industrial dehydration data air 65 gas 66-67 materials of construction, dehydration tower 64 Density oleum 291

sulfur 21 sulfuric acid 287-288 Double contact (double absorption) acidmaking 229-234 advantage efficient SO₂ oxidation and H₂SO₄ making 109 cesium catalyst placement optimum 233 four catalyst beds 233 comparison with single contact acidmaking 109, 222, 230 costs, extra 223 flowsheets 6, 108 heat from acid recovery flowsheet 282 industrial data catalytic SO₂ oxidation after H₂SO₄ making 224-227 before H₂SO₄ making 82-87 H₂SO₄ making (absorption) final 266-269 intermediate 110-115 Dowa mercury from gas removal process 42 Drying of gas condensation 42, 43, 54 (see also Condensation of $H_2O(g)$ from gas) industrial data metallurgical gas 40-41 flowsheet 32 spent acid regeneration gas 55 flowsheet 48 dehydration 59-69 (see also Dehydration of air and gas with strong sulfuric acid) industrial data air 65 flowsheet 60, 62 gas 66-68 flowsheet 60, 62 Dust adversely affects catalyst 33 in metallurgical offgas 33 concentrations before and after removal 33, 36-37, 40-41 removal electrostatic precipitation 35-38 industrial data 36-37 mechanism of removal 35, 38 flowsheet for 32 scrubbing (aqueous) 39 industrial data 40-41 in waste heat boiler 34

in spent acid regeneration offgas 52 after removal 54 before removal 52 removal flowsheet 48 industrial data 55 Dynawave scrubber 39 Economizer (heats boiler feed water) 236, 244, 282 bypass for gas temperature control 243-251 Electrical conductance of sulfuric acid 292 Electrostatic precipitation, dry 35-38 collection plate area 36-37, 38 corona wire, number of 36-37 current 36-37, 38 drawings 35, 38 dust removal mechanism 35, 38 dust concentration before and after 36-37 gas residence time in 38 gas velocity in 38 industrial data 36-37 mechanism of dust removal 35, 38 temperature of operation 34, 36-37 voltage 36-37, 38 Electrostatic precipitation, wet 40-41, 43 Enthalpy balance, H₂SO₄ making tower 273 calculation of product acid temperature with 271-276 no heat loss assumption 273 balances, SO₂ oxidation after intermediate H₂SO₄ making 218 before intermediate H₂SO₄ making 135, 170 no heat loss assumption 136, 209 with CO₂ in gas 195 with SO₃ in feed gas 191 data 318-319 enthalpy vs. temperature equations 318-319 of mixing $H_2O(\ell)$ and $H_2SO_4(\ell)$ 272 Enthalpy (heat) transfers after catalyst beds 235-242 calculation of gas enthalpies 236 Excel worksheet 238 enthalpy drop, gas 240 enthalpy (heat) transfer devices boiler 23 industrial data 24-25 economizer 236-242

steam superheater 236 enthalpy (heat) transfers assumption of no heat loss 240 calculation 239-240 table 240 used in bypass calculations 243-251 enthalpy (heat) transfer rate calculation 241 enthalpy into catalyst bed = enthalpy out of catalyst bed 240 flowsheet 236 Equilibrium, $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ (see also SO₂ oxidation) curves 119-128 effect of argon on (none) 313-315 CO₂ on (none) 311-313 O_2 in gas on 125 11 SO₂ in gas on 126 ... pressure on 125 11 temperature on 121 after intermediate H₂SO₄ making 217 preparation of after intermediate H₂SO₄ making 217 before intermediate H₂SO₄ making 306-308 equation after intermediate H₂SO₄ making 214 argon doesn't affect 313-315 before intermediate H₂SO₄ making 124 CO₂ doesn't affect 311-313 derivation after intermediate H₂SO₄ making 370 before intermediate H₂SO₄ making 119-128, 293-303 with SO_3 in gas 348-354 free energy data for 305 free energy vs. T equation 304-305 function of temperature 124 SO₃ in gas affects 190 Excel worksheets equilibrium curve preparation after intermediate H₂SO₄ making 367-368 before intermediate H₂SO₄ making 306-308 gas enthalpy calculations 238 heatup path preparation 1st catalyst bed 139, 322-324 2nd catalyst bed 173, 333-335

3rd catalyst bed 344-345 with CO₂ in gas 196 enthalpy equations in cells 322-324 after intermediate H₂SO₄ making 218 with SO3 in gas 192 intercept (heatup path-equilibrium curve preparation) 1st catalyst bed 326-332 2nd catalyst bed 339-343 3rd catalyst bed 346-347 4th catalyst bed 366 with CO₂ in gas 358-359 after intermediate H₂SO₄ making 367-368 before intermediate H₂SO₄ making 360-366 with SO₃ in feed gas 356-357 Filter, air 2, 23 Flowsheets acidmaking 6 simplified 254 air dehydration with strong sulfuric acid 60 bypass temperature control after 3rd catalyst bed 236-244 catalytic SO₂ oxidation 1 catalyst bed 120, 181 equilibrium 157 2 catalyst beds with gas cooling between 159, 168 3 catalyst beds with gas cooling between 183, 185 3-1 double contact acidmaking 212, 215 after intermediate H₂SO₄ making 212 double contact acid plant 6, 108 economizer bypass 244 photograph of bypass 244 gas cooldown between catalyst beds 159 gas dehydration with strong sulfuric acid 60 H₂SO₄ making double contact 6, 108 intermediate 100 H₂SO₄ making tower 272 heat recovery from acid (as steam) 282 heat transfers after catalyst beds 236 metallurgical offgas cooling, cleaning and $H_2O(g)$ condensation 32 multi catalyst bed SO₂ oxidation 212

spent sulfuric acid decomposition furnace offgas cooling, cleaning and $H_2O(g)$ condensation 48 single contact acid plant 100 heat transfers 236 simplified 254 sulfur burning 20 Flowrates, industrial air dehydration 65 catalytic SO₂ oxidation (conversion) after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 gas dehydration 66-68 H₂SO₄ making (absorption) final 266-269 intermediate 110-115 metallurgical offgas treatment electrostatic precipitation 36-37 scrubbing 40-41 waste heat boiler 36-37 spent acid regeneration 51, 55 sulfur burning 24-25 Free energy (Gibbs) for $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow$ $SO_3(g)$ reaction data 305 free energy vs. temperature equation 304-305 Freezing points, sulfuric acid 289-291 Gas compositions, industrial SO₂ oxidation (conversion) gases after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making making 82-87 gas dehydration gases 66-68 final H₂SO₄ making (absorption) gas 266-269 intermediate H₂SO₄ making

(absorption) gas 110-115

spent sulfuric acid regeneration

furnace offgas 51, 52, 55 sulfur burning offgas 24-25, 27-28

before catalytic SO₂ oxidation 27

industrial method 162

between SO₂ oxidation catalyst beds

enthalpy (heat) transfers 235-242 graphical representation 161-162

metallurgical offgas 33

control of 27-28

Gas cooling

403

purpose 163 for $H_2O(g)$ condensation 42, 54 before electrostatic precipitation 34 purpose 34 before H₂SO₄ making enthalpy transfer 239-240 purpose 105 Gas drying (H₂O(g) removal before SO₂ oxidation) condensation by cooling metallurgical gas 42 spent acid decomposition furnace offgas 54 dehydration with strong sulfuric acid 59-69 air 65 flowsheets, air and gas dehydration 60 H₂O ends up in acid plant's product acid 254, 257, 262 metallurgical gas, industrial data 66-68 spent acid decomposition furnace gas data 68 prevents accidental downstream $H_2SO_4(1)$ formation 59 sulfur burning air dehydration 60, 65 Gas temperature control 243-251 (see also Temperature control, gas) by bypassing gas around heat exchange devices 243-251 (see also Bypassing) Goal Seek calculations equilibrium curve 308 heatup path-equilibrium curve intercept 326-332 product acid temperature 276 $H_2O(g)$ vapor pressure over water graph 43 importance in $H_2O(g)$ condensation 42 H₂O(g) vapor pressure over sulfuric acid graph 104 importance in air and gas dehydration 62-64 H2SO4 making (SO3(g)+H2Oin strong sulfuric acid \rightarrow H₂SO₄(ℓ)_{in strengthened sulfuric acid} acid used rather than water 100 optimum H₂SO₄ concentrations 104 optimum acid temperatures 105 acid cooling for 105 cooler photographs 106, 280

heat from acid

recovery (as steam) 281-283 materials of construction 283 acid mist produced during 102 removal from exit gas 102-103 candles for 103 (photo) acid pumping photograph and data 101 acid (product) temperature affected by input acid temperature 277 affected by input gas temperature 278 affected by input and output acid compositions 279 affected by SO₃ concentration in input gas 279 calculation of 271-276 Goal Seek 276 target 281 calculation of acid production 253-261 graph 261 calculation of water requirement 253-261 graphs 262-264 candle acid mist removers photograph 103 choice of input and output acid compositions 104 double contact 229-234 advantage 109 extra costs 223 flowsheets 6, 108 final H₂SO₄ making vs. intermediate H₂SO₄ making 109 flowsheets double contact 6, 108 H₂SO₄ making tower 272 heat from acid recovery 282 single contact 100 simplified 254 heat recovery from acid (as steam) 281-283 acid temperatures higher for 281 description 281 flowsheet 282 materials of construction 283 industrial data final H₂SO₄ making 266-269 intermediate H₂SO₄ making 110-115 mass balances for 258 operation 105-107 control 107 adjustments 107 sensors 107 startup and shut down 105

steady operation 107 product acid temperature calculation of 271-276 affected by input acid temperature 277 affected by input gas temperature 278 affected by mass% H₂SO₄ in acid 279 affected by SO3 in gas concentration 279 production distribution, intermediate vs., final 109 reaction 4 heat release 4 residence times (acid and gas) in H₂SO₄ making tower packing 102 single contact calculations 253-286 acid production rate vs. input SO₃(g) rate 261 (graph) dilution water requirement vs. H₂O(g) in input gas 262 vs. %H₂O in product acid 263 mass balances for 258-260, 378-381 matrix for 260 flowsheet (simplified) 254 SO₃ utilization efficiency 110-115, 266-269 sulfuric acid reactant industrial H₂SO₄ concentrations 110-115, 266-269 optimum H₂SO₄ concentrations 104 temperatures, acid and gas choice of 105 industrial 110-115, 266-269 control of input acid temperature 105 output acid temperature 105 input gas temperature 243-251 temperatures, industrial final H₂SO₄ making 266-269 intermediate H₂SO₄ making 110-115 with heat in acid recovery as steam 281-282 tower, packed bed, for 62 industrial data 110-115, 266-269 materials of construction 110-115, 266-269 packed bed materials 110-115, 266-269 photograph 4 packed bed thickness 102 residence times in acid 102 gas 102

water not used for 100-101 water (dilution) requirement calculation of 253-261 H₂SO₄ vapor pressure over sulfuric acid 104 causes downstream corrosion 105 graph 104 temperature effect 104 Heat exchange (see Heat transfer) Heatup paths (catalytic SO₂ oxidation) 1st catalyst bed 129-146 2nd catalyst bed 165-175 3rd catalyst bed 187, 344-345 after intermediate H2SO4 making 217 affected by CO₂ in feed gas 154, 197 affected by SO₂ in feed gas 143 affected by SO₃ in feed gas 192 affected by feed gas temperature 144 balances for calculating C 194 enthalpy 135, 170, 191, 195 no heat loss assumption 136 N 134.169 O 134, 169 S 133, 169 not straight 144 preparation of 140-141 enthalpy equations in cells 322-324 matrices for 139, 323 straight line approximation 202 no effect on heatup path-equilibrium curve intercepts 202 Heat transfers during catalytic SO₂ oxidation 235-242 cooldown path represents 159-164 gas enthalpy contents calculation of 236 worksheet for 238 heat transfer amounts calculation of 239-240 heat transfer rates calculation of 241 purpose 151, 159-164 History of sulfuric acid manufacture 11-12 Industrial data air dehydration with strong sulfuric acid 65 catalytic SO₂(g) + $\frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87
electrostatic precipitation 36-37 gas dehydration with strong sulfuric acid 66-68 H₂SO₄ making, final 266-269 H₂SO₄ making, intermediate 110-115 metallurgical offgas treatment cooling and electrostatic precipitation 36-37 scrubbing and $H_2O(g)$ condensation 40-41 pump, acid 101 spent sulfuric acid regeneration decomposition furnace 51 gas cleaning, cooling and $H_2O(g)$ condensation 55 sulfur burning 24-25 Intercepts, heatup path-equilibrium curve, maximum SO₂ oxidation efficiency predicted by 147-158 affected by CO₂ in feed gas 154, 197 affected by O2 concentration in feed gas 153 affected by gas pressure 152 affected by SO₂ concentration 151 maximum industrial SO₂ concentration 156 affected by SO₃ in feed gas 193 affected by catalyst bed input gas temperatures 155 calculation of 147-150 assumptions 131, 150, 209 Goal Seek 326-332 graphical 148-149 initial specifications 1st catalyst bed 147-148 2nd catalyst bed 168 3rd catalyst bed 185 4th catalyst bed 366 after intermediate H₂SO₄ making 213-215 meaning 150 catalyst degradation predicted by 155-156 Map of sulfuric acid production worldwide 14 Mass balances sulfur 258, 379 total 258, 379 Materials of construction acid coolers 106 acid pumps 101 catalytic SO₂ oxidation converters 82-87, 224-227

photograph 78 critical strengths 78 dehydration towers 64-68 H₂SO₄ making towers 110-115, 266-269 heat from acid recovery systems 283 Matrices for $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation heatup paths 1st catalyst bed 139, 322-324 2nd catalyst bed 173, 333-335 after intermediate H₂SO₄ making catalyst bed 218 with CO_2 in feed gas 196 with SO₃ in feed gas 192 Matrices, H₂SO₄ making H₂SO₄ making tower 378-381 simplified single contact acid plant 260 Mercury removal from metallurgical offgas 42 Boliden Norzink process 42 Dowa process 42 Metallurgical offgas acidmaking from 31-45 flowsheets 6, 32 condensation of $H_2O(g)$ 42 cooling 32, 34 drying condensation 42 dehydration with strong sulfuric acid 59-69 dust contents after all gas treatment 33 after electrostatic precipitation 36-37 before electrostatic precipitation 36-37 electrostatic precipitation drawings 35, 38 precipitation mechanism 35, 38 wet 40-41 $H_2O(g)$ condensation from 42 industrial data 40-41 heat recovery from 34 in waste heat boiler 34 industrial data cooling and electrostatic precipitation 36-37 scrubbing and $H_2O(g)$ condensation 40-41 mercury removal from 42 Boliden-Norzink process 42 Dowa process 42 gas compositions 33, 74 scrubbing (aqueous) of dust from gas 39-42 waste acid product from 42

sources 33 Mixing enthalpy, $H_2O(\ell) + H_2SO_4(\ell)$ 272 Multicatalyst bed SO₂ oxidation calculations 199-210, 229-234 after intermediate H₂SO₄ making 229-234 assumptions in calculations for 209 discussion 209 cooldown paths 159-164 heatup paths 129-146 intercepts 199-210, 229-234 maximizes SO₂ oxidation efficiency 159 Nitrogen equilibrium curve, no effect on 315 equilibrium equation, no effect on 315 derivation with 293-303 H₂SO₄ making, no reaction during 255 molar balance equilibrium curve 298 heatup path 134 SO₂ oxidation, no reaction during 298 Oleum 8 specific gravity 291 Oxygen added (in air) to acid plant gas before catalytic SO₂ oxidation 74 metallurgical offgas 32, 74 spent sulfuric acid regeneration gas 48, 54, 74 sulfur burning exit gas 28 before last catalyst bed 87 concentrations in acidmaking gases industrial data in catalytic SO₂ oxidation gases after intermediate H₂SO₄ making 274-227 before intermediate H_2SO_4 making 82-87 in gas dehydration gases 66-67 in H₂SO₄ making gases final H₂SO₄ making 266-269 intermediate H₂SO₄ making 110-115 in metallurgical gases electrostatic precipitation gases 36-37 in scrubbing gases 40-41 in spent acid decomposition furnace gases 55 control of 54 in sulfur burning gases 28 control of 27

industrial data 24-25 enrichment of combustion air smelting 33 spent acid regeneration 50 sulfur burning 28 enthalpy 319 vs. temperature equation 316-319 in equilibrium curve equation derivation 297 O2 concentration effects on catalytic SO₂ oxidation equilibrium curves 125 heatup paths 153 intercepts 153 SO₂ oxidation rate 95 shown in reaction mechanism 90 molar balance, catalytic SO₂ oxidation equilibrium curve equation 297 with CO₂ in feed gas 312 with SO₃ in feed gas 349 heatup path 134 with CO₂ in feed gas 194 with SO₃ in feed gas 169 O₂/SO₂ ratio in catalytic SO₂ oxidation feed gas 73 industrial 82-87 after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 minimum 73 stoichiometric 73

Packed bed scrubber 48 Percent SO₂ oxidized (Φ) defined 120 equilibrium (Φ^{E}) 121 1st catalyst bed 120, 121 2nd catalyst bed 166 in after H₂SO₄ making catalyst beds 216 total after SO₂ oxidation in all catalyst beds 221 Phase diagram Cs₂S₂O₇-V₂O₅ 91 eutectic 91 Photographs acid cooler exterior 280 interior 106 acid mist removal 'candle' 103 acid plant 2 acid pump 101 boiler, fire tube 23

bypass flue (around heat exchanger) 244 candle, acid mist remover 103 catalyst bed 3 catalyst pieces 89 fire tube boiler 23 H₂SO₄ making (absorption) tower 4 SO₂ oxidation 'converter' exterior 78 interior 3 spent acid decomposition furnace 52 spinning cup sulfur burning flame 18 sulfur burning furnace boiler 23 burner end 22 sulfuric acid plant 2 Precipitation, electrostatic 35-38 drawings of precipitators 35, 38 dust concentrations before & after 36-37 electrical current through 38 dry, industrial data 36-37 gas velocity through 38 gas residence time in 38 industrial data dry electrostatic precipitators 36-37 wet electrostatic precipitators 40-41 precipitation mechanism 35, 38 principle of operation 35 potential, volts 36-37 spent acid decomposition furnace offgas cleaning 55 temperature of operation maximum 34 minimum 34 explanation 34 wet, industrial data 40-41, 55 Pressure, catalytic SO₂ oxidation beds catalyst degradation indicated by 97 effect on equilibrium curves 125 curve equation derivation 124, 293-303 effect on heatup paths (none) 152 effect on heatup path-equilibrium curve intercepts 152 constant pressure assumption 204-205 compared to actual pressures 205 Price, sulfuric acid 15 graph 16 Pumps acid, photo and details 101 sulfur (steam heated) 21 R, gas constant 124

in equilibrium curve equation 124

Regeneration of spent sulfuric acid 47-57 (see also Spent sulfuric acid regeneration) decomposition furnace industrial data 55 photograph 52 flowsheet 48 Residence times catalyst beds 97 increases with bed number 97 explanation 95 dehydration packed beds acid 64 gas 64 electrostatic precipitators 38 H₂SO₄ making packed beds final H₂SO₄ making 109 intermediate H₂SO₄ making acid 102 gas 102 Scrubbing acid plant exit gas lowers SO₂(g) 100, 272 Scrubbing metallurgical gas dust and impurity removal 39-42 industrial data 40, 41

value 124

Radial flow scrubber 39

offset by:

reasons 95 temperature effect 90-91

→ H₂SO_{4 in strengthened acid}

industrial data

temperature effect 105

SO₃ utilization

rapid 105

reaction mechanism 90

Reaction rate, catalytic SO₂ oxidation 90

increasing gas input

temperature 162

using higher vanadium

Reaction rate, SO₃(g)+H₂O(l)_{in strong sulfuric acid}

100% assumption 214, 255, 378

final H₂SO₄ making 266-269

assumption removed 370

intermediate H₂SO₄ making 110-115

catalyst 93, 94

slows in 2nd, 3rd and 4th catalyst beds 95

increasing bed thickness 95

Scrubbing spent acid regeneration gas for dust removal 54 dust concentrations before and after 52, 54 Shipping and handling product sulfuric acid 8 spent sulfuric acid 79 sulfur 20-21 Single contact acidmaking cesium catalyst avoids catalyst degradation155-156 comparison with double contact acidmaking 109, 222-223 less equipment and energy use 223 lower SO₂ oxidation efficiency 222 flowsheets 100 H₂SO₄ making tower 272 simplified 254 H₂SO₄ making calculations mass flows and flowrates 253-269, 375-381 product acid temperatures 271-286 heat transfers between catalyst beds 235-242 industrial data catalytic SO₂ oxidation (conversion) 82-87 H₂SO₄ making (absorption) 109-115 temperature control gas (by passing) 243-251 input acid acid coolers 280 bypass of 107 product acid 277-279 SO₂ concentrations in industrial acidmaking gases 74 in catalytic SO₂ oxidation gases after intermediate H₂SO₄ making 224-227 before intermediate H_2SO_4 making 82-87 in gas dehydration gases 66-68 in H₂SO₄ making gases final H₂SO₄ making 266-269 intermediate H2SO4 making 110-115 in metallurgical gases 33 electrostatic precipitation gases 36-37 in spent acid decomposition furnace gases 54-55 control of 53 in sulfur burning gases 26-28 control of 27 produced by: smelting and roasting of sulfide minerals 33

spent acid decomposition 47-57 sulfur burning 18-30 $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ oxidation, catalytic 71-98 (see also SO₂ oxidation efficiency) after intermediate H₂SO₄ making 214 catalyst for 89-98 reaction mechanism 90 double contact vs. single contact 222-223 equilibrium equation for 124 graphical representation as equilibrium curve 121, 125-126 derivation of 119-128, 293-303 with Ar in feed gas 313-315 with CO₂ in feed gas 311-313 with SO₃ in feed gas 348-354 heat release 2 heatup path representation of SO₂ oxidation - calculations 1st catalyst bed 129-146 2nd catalyst bed 165-175 with CO₂ in feed gas 194-196 with SO₃ in feed gas 189-193 after intermediate H₂SO₄ making 217-218 matrices for 1st catalyst bed 139 2nd catalyst bed 173 3rd catalyst bed 344-345 with CO₂ in feed gas 196 with SO₃ in feed gas 192, 356-359 after intermediate H₂SO₄ making 218 intercept representation of maximum (equilibrium) SO₂ oxidation calculations 1st catalyst bed 147 Goal Seek 326 graphical 148-149 2nd catalyst bed 177 Goal Seek 339 graphical 180 3rd catalyst bed 346-347 4th catalyst bed 366 after intermediate H₂SO₄ making 217 Goal Seek 367 graphical 219-221 with CO2 and SO3 in feed gas 370-374 key step in sulfuric acid production 119 kinetics 89

catalyst for 71-98 faster with increasing temperature 90 industrial significance 162 slower with: decreasing O_2 in gas 95 decreasing SO₂ in gas 95 increasing SO₃ in gas 95 offset by: higher gas temperatures 162 thicker catalyst beds 95 maximum SO₂ oxidation equilibrium 120 heatup path-equilibrium curve intercept 147 SO₂ oxidation efficiency 1st catalyst bed 147-158 2nd catalyst bed 181 3rd catalyst bed 187 4th catalyst bed 366 after intermediate H2SO4 making catalyst beds 219-221 cesium catalyst effect on double contact acid plants 233 single contact acid plants 154-155 double contact-single contact comparison 230-231 3-1 vs. 4-0 comparison 222 gas temperature effect on double contact acid plant 233 single contact acid plant 208 O₂ in gas concentration effect on 206 percent SO₂ oxidized defined 120 equilibrium 121 1st catalyst bed 120 2nd catalyst bed 166 after intermediate H₂SO₄ making catalyst bed 216 total 221 pressure effect on 204-205 SO₂ in gas concentration affects 151, 154-156 SO₃ in gas concentration affects 193 total after SO₂ oxidation in all catalyst beds including after H₂SO₄ making beds 221 1-0 acid plant 147-158 2-0181 " 3-0 187 4-0 11 222, 230 н 5-0 231 .. 1-1 232

2-1	11	232
3-1	11	230, 232
4-1	н	231, 232
2-2	"	230
3-2	11	231
1-3	11	230
2-3	"	231
1-4	11	231
1-1-1		234

SO₃ concentrations in industrial gases 1st catalyst bed feed gas 82-87 H₂SO₄ making input gases final H₂SO₄ making 109, 224-227 intermediate H₂SO₄ making 109, 110-115 metallurgical furnace offgas 74 precipitator input and output gas 36-37 spent sulfuric acid regeneration furnace offgases 51-52, 74 in sulfur burning offgas 24-25 enthalpy 318 enthalpy vs. temperature equation 316-318 produced during sulfur burning 74 enters 1st SO2 oxidation catalyst bed 74, 189 production from SO₂ catalytic oxidation 2 heat release 2 reacts with H₂O in sulfuric acid to make new H₂SO₄ 4 heat release 4 removed from gas during gas cleaning (aqueous scrubbing) 74 none in metallurgical 1st catalyst bed feed gas 74 none in spent acid regeneration 1st catalyst bed feed gas 74 removed from gas during subsequent H₂SO₄ making 110-115, 224-227 in SO₂ oxidation equilibrium equations 190, 348 in SO₂ oxidation heatup path calculations 190-192 in SO₂ oxidation intercept calculations 193, 356, 358 vapor pressure over sulfuric acid 104 SO₂ oxidation efficiency affected by 193 Specific gravity (see Density) Spent sulfuric acid regeneration 47-57 acid (spent) atomization in 50 decomposition furnace 48, 52 (photo)

air (hot) for 48 lance sprayers 48 nozzles 50 spinning cup 50 acid (spent) source 49 byproduct from organic catalysis 47 compositions (table) 49 evaporation of water from 49 handling and transportation 49 acid (spent) decomposition reactions 50 decomposition gas composition 51, 52 heat requirement 50 acid (new) production 6 description of process 47 flowsheets 6, 48 percentage of world acid production 12 atomization of spent acid 50 lance sprayers 48 nozzles 50 spinning cup 50 control 53 decomposition reactions 50 flowsheets acidmaking 6 decomposition, cooling, cleaning, $H_2O(g)$ condensation 48 furnace 48, 52 (photo) acid sprayers 48, 50 composition of gas from 52 description 48 hot air for 48 photograph 52 gas composition leaving decomposition furnace 51, 52 catalytic SO₂ oxidation feed gas 74 gas cooling, cleaning and drying 51 dust-in-gas concentration after cleaning 54 before cleaning 52 flowsheet 48 industrial data 55 H₂SO₄ production from 6 heat recovery from furnace gases 48 hot air for spent acid decomposition 50 industrial data 55 optimum decomposition 52-54 furnace operating conditions 53 diagram 53 oxygen used for 50 O2-in-gas concentration affects 53 diagram 53 photograph of decomposition furnace 52

product from 52 destination 52 SO₃ formation 53 minimization 53 reason for avoiding 53 sources of spent acid methyl methacrylate manufacture 49 petroleum refining (alkylation) 49 spent acid handling and transportation 49 sprayers, acid lance 50 number 50 spinning cup 50 undecomposed H₂SO₄ 53 Steam superheater 20 superheats boiler steam 236 Sulfur (see also Sulfur burning) density 20-21 filtering of 21 largest source of sulfuric acid 12 mass balances acidmaking 258 H₂SO₄ making tower 379 melting 21 melting point 20 molar balances catalytic SO₂ oxidation equilibrium curve 296 with SO₃ in feed gas 348 heatup path 133 with SO₃ in feed gas 269, 191 production of 20 pumping of 20 steam heated pumps 21 solid 21 melting and filtering of 20 sources of elemental sulfur 20 sources of sulfur (all forms) 12 elemental 12, 19 smelting and roasting offgas 12, 31 spent acid regeneration 12, 47 transportation of 20 liquid 20 steam heated vehicles 21 solid 21 onloading and offloading 21 viscosity 20 vs. temperature graph 21 Sulfur burning to SO2, O2, N2 gas for sulfuric acid manufacture 19-30 flowsheets 6, 20 atomization of sulfur for 22 lance sprayers 22

photograph 22 nozzles 22, 23 spinning cup 23 photograph (flame) 18 70% of world's acid produced from 12 air dehydration for 59-69 flowsheet 60 industrial data 65 boiler cools gas and recovers heat 20, 23 boiler photograph 23 burners lance sprayers photograph 22 nozzles 22 spinning cup 23 photograph (flame) 18 control of product gas composition 27 target composition 28 control of product gas temperature 27 method 27-28 target temperature 28 dehydrated air supply 20 dehydrated with strong sulfuric acid 59-69 excess dry air used by 19 flowsheets acidmaking 6 air dehydration 60 sulfur burning and gas cooling 20 furnace 22-26 photograph 22 gas composition control 27 target gas composition 27 gas temperature control 28 target temperature 28 heat release 22 industrial data air dehydration 65 sulfur burning 24-25 process description 19 product gas N₂-in-gas concentration 28 O₂-in-gas concentration 28 raising and lowering 27 SO₂-in-gas concentration 28 raising and lowering 27 SO₃-in-gas concentration 26, 74 reaction 22 temperature of gas product 29 control 27-28 independent with oxygen 27 industrial data 24-25 cooling of product gas

in fire tube boiler 20 photograph 23 in steam superheater 20 sulfur (molten) delivery to furnace by steam heated pump 21 filtering 21 melting 21 melting temperature 20 pumps 21 temperature (industrial) 24-25 through steam heated pipes 21 viscosity 20-21 Sulfur dioxide (see SO_2) Sulfur trioxide (see SO_3) Sulfuric acid (see also H2SO4 making) air dehydration with 59-69 compositions for 63-64 industrial 65 color 1 compositions 7 measurement of sonic 107 consumption, world 13 uses 15 density 287-288 electrical conductivity 292 freezing points 289-291 metastable 289, 291 gas dehydration with 59-69 industrial data 66-68 history 11-12 manufacture flowsheet 6 double contact acid plant 6, 108 single contact acid plant 100 from metallurgical offgas 6, 32 from spent sulfuric acid decomposition offgas 6,48 from sulfur burning gas 6, 20 oleum 8 specific gravity 291 plant 2 (photo) photograph price 15 by year (graph) 16 production history 11-12 locations (map) 14 shipping and handling 8 spent sulfuric acid 49 sources (table) 12 smelting and roasting gas 74 spent acid regeneration gas 74 sulfur burning gas 74

spent 49 (see also Spent sulfuric acid regeneration) reactions air and gas dehydration 61 H₂SO₄ making 4 historical processes 11-12 phosphate fertilizer 13 SO₃ making 2 spent acid decomposition 50 sulfur burning 5 transportation 8 spent sulfuric acid 49 sulfur 20-21 uses 15 viscosity 292 worldwide production 13 Supported liquid phase catalyst 89-91 (see also Catalyst, SO₂ oxidation) phase diagram 91 SO₂ oxidation mechanism 90 Temperatures, industrial air dehydration 65 boiler 24-25, 33-34 catalyst bed input gas 82-87, 224-227 increases with bed number 162 explanation 162 electrostatic precipitation 36-37 gas dehydration 66-68 $H_2O(g)$ condensation metallurgical gas 40-43 spent acid decomposition gas 55 H₂SO₄ making (absorption) final 266-269 heat from acid recovery system 281, 282 intermediate 105, 110-115 metallurgical offgas 33 SO₂ oxidation catalyst bed input and output gas temperatures after intermediate H₂SO₄ making 224-227 before intermediate H₂SO₄ making 82-87 spent acid decomposition furnace 51, 53 optimum 53 sulfur burning furnace, 24-25 Temperature control, acid 276-281 acid cooling 105, 280 cooler bypass 107 dehydration and H₂SO₄ making output acid 105 graphs 277-279

Temperature control, gas 243-251 by bypassing gas around heat transfer devices 243 calculations 245-250 flowsheet 244 photograph 244 principle 243 percent bypass industrial 249 inefficiency explained 250 theoretical 247 up and down 249 gas always moving through bypass 249 Times, residence (see Residence times) Triple contact acidmaking (theoretical) 234 Uses, sulfuric acid (table) 13-15 Vanadium (V2O5) catalyst 89-98 (see also Catalyst, SO₂ oxidation) Venturi scrubber 60 Viscosity sulfur (graph) 21 sulfuric acid 292 Waste acid 47 (see also Spent sulfuric acid regeneration) Waste heat boiler (drawing) 34 dust settling in 34 temperatures in and out 33, 34 Waste heat recovery 34 Wet sulfuric acid (WSA) process 8 World sulfuric acid production by year (graph) 13

locations (map) 14