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Preface

It has been 4 years since the publication of the previous
edition of the “White Book.” As the field of clinical labo-
ratory medicine continues to evolve, so has this book.
With the release of the fourth edition of the
Contemporary Practice in Clinical Chemistry, we have
made some important changes. Notably, the book has
moved from being published by our professional organi-
zation (AACC Press) to a major international publishing
house (Elsevier), and we have added a Co-Editor to the
book in Mark Marzinke. Both of these changes have been
beneficial to the publication of this edition, and we are
confident that these new collaborations will facilitate con-
tinued growth in future iterations of the “White Book.”

Often times, when a major professional (or personal)
task is accomplished, one tends to be satisfied with the
result; however, it is also natural to think about improve-
ment strategies or what could have been done differently.
Our approach to this book has been no different.
Consequently, in the fourth edition, we have tried to
address any shortcomings or omissions from previous itera-
tions, and we have augmented our exemplary roster of
existing contributor authors with some of the newest and
brightest in our field. We sincerely hope these changes
have enhanced the content and communication of the mate-
rial. This edition also includes new sections on Testing in
Alternative Matrices, Applications of Mass Spectrometry,
Clinical Hematology, and Clinical Microbiology.

This book is intended to be a supplement for the many
other excellent training resources available in Clinical
Chemistry. Therefore, the “White Book™ aims to provide
a clear and concise summary of a wide variety of topics
to serve as a starting point for study and discussion. It is
both our hope and goal that this resource will continue to
be used by a wide variety of people in our field, from stu-
dents to postdoctoral trainees to more experienced profes-
sionals and clinical laboratory scientists and directors.

A project like this does not happen without many
experts willing to donate their time and share their knowl-
edge on the written page—we are very grateful for each
author who was willing to participate in the fourth edition
of the “White Book.” Thanks to you all! We also express
our gratitude to our AACC colleagues and external sub-
ject matter experts within the field of Clinical Laboratory
Medicine for the helpful feedback and suggestions, and
for targeted criticism when needed. Last, we must thank
our colleagues at Elsevier for their help in compiling all
the chapters, reviewing of all the material, and keeping us
moving toward completion—a transition between publish-
ers is a big undertaking, and we appreciate their patience
and support during the process.

March 2020

Bill Clarke and Mark Marzinke
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Chapter 1

Preanalytical variation

Zahra Shajani-Yi and James H. Nichols

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States

Learning objectives

After reviewing this chapter, the reader will be able to:

e Understand why preanalytical variation is a significant con-
tributor to laboratory errors.
Identify the common sources of preanalytical variation.
Discuss the potential effects of phlebotomy, tube additives,
and order of draw.

e Discuss ways to detect and reduce preanalytical errors.

Laboratory testing comprises the majority of information
in the electronic medical record [1,2]. Laboratory services
accounted for 2.3% of health care expenditures in the
United States with over 6.8 billion laboratory tests per-
formed, with clinical pathology, anatomic pathology/
cytology, and molecular/esoteric tests accounting for
66%, 23%, and 8% of performed tests respectively [3].
Hospital test volumes also grew by an average of 6%
annually [3]. As the number of laboratory tests increases,
the opportunity for errors that adversely affect patient
care also increases. These errors can occur in any of the
three phases of the total testing process: the preanalytic,
analytic, or postanalytic phase (Fig. 1.1). An understand-
ing of the sequence of events required for laboratory test-
ing provides a foundation for assessing the likelihood of
errors occurring at each step of the testing process.

This process begins as the clinician examines a patient
and determines the need for a laboratory test. The correct
test must be ordered, the patient must be prepared, and an
appropriate sample must be collected. The sample is then
transported to a laboratory, received, and processed for
analysis. During analysis, the sample may be aliquoted,
diluted, or subjected to subsequent testing before the final
result can be verified for release. The clinician must then
receive and interpret the result and decide on the appro-
priate treatment or follow-up and place the follow-up
orders and instructions, and staff must schedule and carry
out these orders for the patient.

Historically, quality initiatives have focused on the
analytical phase of testing, and over the years, the number

of errors attributed to this phase has decreased [4].
Interestingly, the majority of laboratory-related errors
occur outside of the actual laboratory, either in the prea-
nalytical or postanalytical phase. Recent studies report
that approximately 46%—68% of all laboratory errors
occur in the preanalytical phase [5,6].

Errors can occur during: (a) the ordering process,
either through the clinician laboratory test order entry or
when the order is manually transcribed; and (b) sample
collection if a patient is not properly prepared or the
sample is incorrectly labeled. Additional errors include:
(c) specimen collection where specimens are either col-
lected in the wrong type of tube with potentially interfer-
ing additives or if the tubes are collected in the wrong
order; and (d) delays and/or inappropriate storage or han-
dling during delivery of specimens to the laboratory.
Finally, upon reaching the laboratory, testing accuracy is
compromised if (e) samples are not adequately processed
and stored for analysis.

Accurate laboratory test results demand high-quality
specimens. Unfortunately, in most systems, the resources
allocated for the pre- and postanalytical processes are not
sufficient, as the importance of preanalytics is often over-
looked. Many of the mistakes that are referred to as “lab-
oratory errors” arise due to poor communication and
action by others involved in the testing process or poorly
designed processes that are outside of the laboratory’s
control. This chapter will focus on the most common
sources of preanalytical variation and discuss some qual-
ity system processes for reducing the preanalytical errors.
Understanding the causes of preanalytical errors coupled
with proactive ongoing monitoring allows the laboratory
to develop preventive measures to mitigate the risk of
releasing inaccurate results.

Order entry

Errors in laboratory orders commonly occur due to the
similarity of test names, improper use of synonyms,
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failure to enter orders correctly into the hospital electronic
computer system, lack of knowledge about tests, and tran-
scription errors (Table 1.1). Tests that are commonly mis-
ordered due to similar names are: (1) C-reactive protein
for inflammation versus high-sensitivity C-reactive pro-
tein for cardiovascular risk assessment; (2) lipoprotein
versus lipoprotein panel; (3) calculated versus direct low-
density lipoprotein; and (4) 1,25-vitamin D (calcitriol)
versus 25-vitamin D (calcidiol). Tests that also require
supplementary clinical information often have high rates
of errors. At our institution, in order to calculate a second
trimester prenatal quad screen report, information such as
the patient’s date of birth, estimated due date, ethnicity,
weight, diabetics, and smoking status must be provided
by the clinician. Inaccurate reporting of such clinical data
can lead to improper risk factors being calculated and
subsequently reported.

Differences in methodology can also have implications
for clinicians when they are trying to order a test. For
example, testosterone can be measured accurately for
most men by immunoassay, whereas women, children,
and men with hypogonadism have lower testosterone con-
centrations and should therefore have testosterone mea-
sured by mass spectrometry. Ideally, a test name and
description should be able to convey to the ordering pro-
vider if the test is appropriate for their patient. Further
adding to these issues are the cases where orders are man-
ually transcribed from written notes or requisitions, such
as outpatient locations. These transcriptions are often per-
formed in the specimen receiving section, where staff try

FIGURE 1.1
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to decode and/or determine what the clinician intended to
order.

Redesigning the requisition and computer entry
screens can greatly facilitate the order entry accuracy. In
general, grouping common tests and liberal use of foot-
notes on written requisitions or pop-up screens for com-
puter entry can enhance appropriate test selection by staff,
but physicians begin to ignore these reminders due to
information or alert fatigue. Expert systems and rules can
check for duplicate orders and prevent common errors,
like the addition of tests to an inappropriate tube type or
collection of a specimen at an inappropriate time.

The key to improving the accuracy of test ordering is
to implement a computer order entry system that requires
physician ordering. This ensures that the correct physician
and medical necessity are linked to each order for billing
compliance. A physician order entry system also reduces
the errors associated with verbal orders and manual tran-
scription. Physicians often verbally dictate their test
orders to residents and nursing staff who transcribe the
tests onto written requisitions or computerized order entry
systems. Staff may not be aware of the differences
between specific tests or the effects of test methodology
on results. Misunderstanding of a physician’s request
can also occur in the midst of a trauma or critical patient
situation. A College of American Pathologists (CAP)
Q-Probes study estimated that nearly 5% of physician
requests were associated with one or more data entry
errors [7]. At least 10% of the institutions surveyed had
errors with one in five requisitions [7]. The study



TABLE 1.1 Sources of preanalytical variation.
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Source of variation

Potential solution

Order entry

Similar test names
Duplicate orders
Transcription entry errors

Set up computer order entry screens with explanatory notes or pop-up screens
Construct expert systems and rules to detect duplicate orders
Verify computer entry against written orders

Patient preparation

Diet/supplements

Time of collection

Fast or restrict diet if necessary before testing

Ask patients about supplements (e.g., biotin)

Proper collection for TDM and hormones

Document drug administration accurately with respect to specimen collection

Specimen collection

Patient identification

Needle size

Tube selection/order of draw
Prolonged use of tourniquet

Fist clenching during phlebotomy
Inadequate tube filling

Specimen clotting

Urine stability

Verify the use of two identifiers

Prevent hemolysis by routine smaller gauge needles
Sign posted and smart laboratory labels

Limit tourniquet use to 1 min

Encourage patients to rest arm during phlebotomy
Use vacuum collection tubes

Ensure tubes are more than 3/4 full during collection
Mix tubes by gentle inversion immediately

Provide preservatives in collection container

Processing, transportation, and storage

Outpatient clinic delayed processing
Exposure of tubes to environment
Add-on testing

Provide equipment to process specimens on site
Protect and insulate specimens during transportation
Validate and optimize storage stability for each analyte

3

concluded that verbal orders, high bed occupancy, and a
failure to monitor the accuracy of order entry/having a
policy to confirm correct order entry led to higher institu-
tional error rates [7]. Accurate physician orders for labo-
ratory testing are the first step in quality laboratory
testing. Errors at the start of the laboratory test process
can escalate to inappropriate specimen collection and the
need to redraw a patient, leading to a delay in reporting
test results and reaching a diagnosis, and subsequently
delays implementing treatment.

Patient preparation

Once a correct order is placed, the patient must be pre-
pared so that the results can be properly interpreted.
Factors such as diet, exercise, medications, and time of
collection (morning vs evening) can affect many labora-
tory tests. For some analytes, these effects are well-
known—for example, ingestion of a meal will cause an
increase in glucose and triglycerides, yielding values that
are outside the fasting reference interval. For other ana-
lytes, the effects may not be recognized by physicians as
significant contributors to result in variation, such as pos-
ture and exercise. A set of books by Donald Young is

available that cites the basic scientific literature for gen-
eral effects of drugs, disease, and preanalytical variables
on clinical laboratory tests [8]. The manufacturer’s pack-
age insert also describes the conditions and limitations for
interpreting the result.

Catecholamines, epinephrine, and norepinephrine rise
in response to smoking, exercise, stress, and ingestion of
caffeine. In addition, cocoa is known to contain catechols
that stimulate increases in catecholamines. Dietary restric-
tion of chocolate- and caffeine-containing sodas, coffee,
and tea is recommended for several days before the col-
lection of 24-hour urine or plasma catecholamine speci-
mens. Exercise can affect laboratory tests stimulating the
release of catecholamines and other hormones, including
B-endorphin, cortisol, glucagon, growth hormone (GH),
and prolactin. Strenuous exercise works in muscles and
can lead to increased levels of muscle enzymes, including
creatinine kinase, creatinine, and aspartate aminotransfer-
ase (AST). Posture and moving from a recumbent to
standing position cause shifts in fluid to the lower extrem-
ities and decrease plasma volume by ~ 14% after 30 min-
utes. These fluid shifts concentrate on protein and lead to
increases in serum osmolality, albumin, o,-macroglobu-
lin, transferrin, and total protein after 30 minutes of
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standing. Protein-bound analytes, like calcium, also
increase in proportion to the hemoconcentration produced
by an upright position.

Timing of specimen collection is a further consider-
ation and is particularly essential for therapeutic drug
monitoring (TDM). Most therapeutic drug reference inter-
vals or normal values are standardized to trough (predose)
concentration for patients on an intermittent dosage regi-
men at steady state. The trough level is the lowest concen-
tration of drug before the next dose. After consumption,
drug levels will rise to a peak concentration and then
slowly decrease as the drug is eliminated. The next dose
repeats the rise and fall of drug concentration, as the drug
is absorbed and eliminated. Collection of TDM specimens
just before a dose will guarantee the trough concentration.
Collection at other times will generate higher than
expected levels that could be misinterpreted as too high or
a possible overdose. Aminoglycoside antibiotics with con-
cerns for both toxic side effects and minimal inhibitory
concentrations to provide effective bacteriostatic and bac-
tericidal activity may require both peak and trough levels
for patient management. The peak concentration is gener-
ally considered to occur 30—60 minutes after completion
of an intravenous (IV) dose of aminoglycoside antibiotics.
Timing of peak specimens is therefore as critical as with
trough specimens. Effective communication is required
between the staff administering the medication and the
phlebotomists collecting the specimen to ensure that an
appropriate specimen is collected. Errors often occur when
specimen collections are made with respect to when the
drug is scheduled to be given rather than when the drug is
actually administered. Good documentation, procedures,
and communication can prevent such misunderstandings.

Most hormones have concentrations that vary through-
out the day or month, and the reference ranges established
for interpretation assume that the samples are collected at
the proper time. Some hormones are released in a pulsatile
manner and exhibit diurnal variation, with values that are
higher in the morning and lower in the evening and over-
night. In normal healthy patients, adrenocorticotropic hor-
mone (ACTH) and cortisol concentrations are higher in
the morning (between 04:00 and 12:00 hours) and have
lower concentrations in the late evening and overnight.
Iron also demonstrates diurnal variation with peaks
between 08:00 and 16:00 hours and a nadir between 18:00
and 04:00 hours. Conversely, GH demonstrates a maxi-
mum peak 2 hours after the commencement of sleep.
Follicle-stimulating hormone and luteinizing hormone
have daytime peaks that are 15%—18% higher than noctur-
nal lows in women during the early follicular phase. These
daily fluctuations are in addition to the wider variations
seen during the follicular, midcycle, and luteal phases of
the monthly menstrual cycle. Interpretation of the fertility
hormone levels must be made with respect to the phase of

the menstrual cycle and time of the day that the specimen
is collected. Stress from illness and bed confinement can
lead to increased cortisol, glucose, and insulin and
decreased GH and thyroid-stimulating hormone. The col-
lection of some laboratory tests, like glucose tolerance
testing for the diagnosis of diabetes mellitus, should wait
until the patient is discharged from the hospital. Patient
preparation is an important consideration for guaranteeing
a quality specimen and interpretable laboratory results.

Supplements can also affect laboratory results; in par-
ticular, biotin (also known as vitamin B7) supplement use
has been increased, as biotin has recently been promoted
for thickening hair, strengthening nails, and improving
skin. Previously, high-dose biotin therapy was confined to
patients with biotinidase deficiency, certain forms of alo-
pecia, or multiple sclerosis. Many immunoassay manufac-
turers rely on biotin—streptavidin capture in their assays,
and patients taking biotin may have a falsely increased
result in competitive assays and a falsely low result in
sandwich assays. The popularity of biotin supplementa-
tion has led to an increase in the reported cases of biotin
interferences, increasing the potential for misdiagnoses
[9]. Clinicians and patients should be aware that biotin
can interfere with their test results and refrain from biotin
supplements for approximately 1 week before obtaining
laboratory testing on a platform that uses biotin—strepta-
vidin capture. At the minimum, specimens should be col-
lected at least 8 hours after the last dose of biotin, with
the realization that residual biotin can affect some
immunoassays.

Urine specimens can be affected by other factors. The
concentration of analytes in urine is subject to renal func-
tion (ability of the body to eliminate the analyte) and the
amount of water in the sample. Urine concentration is
subject to hydration status, and urine is most concentrated
in the morning and less concentrated as the subject is eat-
ing, drinking, and moving throughout the day. The con-
centration of an analyte like a drug may be less
concentrated in the afternoon compared with the morning
simply due to changes in urine water and the subject’s
hydration state. For this reason, many tests results are
reported as ratios with respect to the concentration of cre-
atinine that is eliminated relatively constantly based on
the subject’s renal function. Urine tests are also averaged
over a 24-hour collection period to minimize further the
effects of differences in a patient’s hydration over the
day. Collection of samples less than or greater than a 24-
hour period of time can affect the daily average elimina-
tion estimates for urine tests.

Specimen collection

Once a physician order has been placed and the patient is
appropriately prepared for the test, a proper specimen



must be collected at a suitable time. Patient identification
is mandatory before any medical procedure including
phlebotomy and laboratory testing. The Joint Commission
has made patient identification one of its top patient
safety goals, mandating the use of two unique identifiers
to confirm positively the identity of a patient, such as the
patient name in addition to the medical record number or
another unique identifier [10]. Although it may appear to
be easier to preprint labels before the time of collection,
this practice is strongly discouraged. Preprinting labels
will lead to samples with improper collection times and
could lead to mislabeled samples, when one patient’s
label is applied to another patient’s specimen. The former
can lead to specimen rejection or result misinterpretation,
whereas mislabeled samples can lead to a misdiagnosis.
Given the severity of consequences from mixing up or
mislabeling a laboratory specimen, the need to identify
positively the patient cannot be overemphasized. Newer
portable barcode systems are being deployed in hospitals,
allowing the phlebotomist to scan a patient’s wristband
and print barcode labels at the bedside on demand. These
systems are connected to the laboratory and hospital
information systems and can stamp actual collection times
and track specimens during transport and analysis in the
laboratory.

Tube type and order of draw

A number of tubes are available for specimen collection.
Red-stopper tubes contain no additives or a clot activator,
whereas other types of colored stoppers indicate the type
of blood preservative or anticoagulant. Tubes are also
available with a gel barrier that helps separate red blood
cells from serum and plasma during centrifugation. Gel-
barrier tubes provide the advantage of saving labor by
allowing analysis directly from the collection tube. The
primary tube can be centrifuged, analyzed, and stored
without the need to aliquot the serum and plasma away
from the cells. Chemistry analytes can be collected in
red-top serum tubes, gold-top serum tubes (also known as
serum-separator tubes), or green-top heparin preservative
tubes for plasma analysis. Hematology specimens for cell
counts require purple-top ethylenediaminetetraacetic acid
(EDTA) preservative tubes, and coagulation specimens
require blue-top citrate preservative tubes. Light-green,
lithium heparin tubes are utilized for chemistry and elec-
trolyte panels, while dark-green, sodium heparin tubes are
utilized for drug analysis. The sodium content in the dark-
green tubes will interfere with sodium analysis on chemis-
try and electrolyte panels of tests, while the lithium in the
light-green tubes will interfere with lithium analysis.
There are also special tubes for trace metals and toxicol-
ogy (royal-blue top; manufactured to limit sample con-
tamination with metals), blood culture (manufactured for
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sterility and microbiologic analysis), and glucose toler-
ance testing (gray top; manufactured with fluoride to
inhibit glycolysis after sample collection). Drugs, pro-
teins, lipids, and other analytes can bind to the gel barrier
and may require red-top no-additive tubes without gel.
Newer collection tubes contain plastic (ring-based) bar-
riers and provide a physical separation of cells upon cen-
trifugation, and use of plastic prevents drug and protein
binding, unlike the gel-barrier tubes. A variety of different
tube additives each pose specific test limitations, and this
is one of the reasons why a universal anticoagulant tube
has not been developed that is applicable to all tests.
Whenever contemplating a change in the tube type or
manufacturer, the laboratory should perform a thorough
validation to determine the suitability of specimens
received or stored in the laboratory before analysis.

The tube collection order used during phlebotomy can
lead to further preanalytical errors. Phlebotomists are
trained to collect blood culture and citrate tubes for coag-
ulation measurements (light-blue top) first, followed by
nonadditive serum (red-top) tubes. Heparin tubes (green),
EDTA tubes (lavender), and other additive tubes are col-
lected last (Fig. 1.2). Tubes should be collected in this
order so that preservatives from the previous tube do not
carry over to contaminate the next tube, as additive carry-
over can affect some laboratory tests [11]. For example,
potassium EDTA binds divalent cations and alters coagu-
lation results and analytes that require calcium and mag-
nesium, such as potassium, calcium, and analytes such as
AST, alanine aminotransferase, and alkaline phosphatase.
Heparin can further carry over and impact coagulation
testing if a heparin sample is collected prior to a sodium
citrate tube. Correct order of draw can become a problem
when blood draws are decentralized to nursing and clini-
cal staff who may not be as familiar with the potential for
laboratory interference from the tube-additive carryover.

Needle size, tourniquet use, and line collection

Appropriate selection of equipment is essential to the col-
lection of a good specimen, specifically the size of the
needle. Phlebotomy needles range from 18- to 23-gauge,
with 25-gauge needles attached to butterfly-winged col-
lection sets; smaller numbers indicate larger diameter nee-
dles. In general, the larger diameter 18-gauge needles are
used for blood donor collection, and smaller 21- and 23-
gauge needles are used for routine laboratory specimen
collections. The smaller 25-gauge butterfly collection sets
are reserved for difficult sticks from geriatric, cancer, and
pediatric patients. Newer needles are manufactured with
sheaths that cover or retract the needle after use to prevent
accidental needlesticks. Needles also come in a variety of
lengths depending on the depth of the vein to be punc-
tured. Although smaller needles are less painful for the
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First

Color Tube Used for

Color varies Blood cultures Microorganisms
- Sodium citrate Coagulation, PT, and PTT
- No additive or clot activator

Serology, drugs, SPEP, and CHEM
[:] No additive or clot activator + gel
- Special tube and stopper with clot activator Trace and some toxicology
- Lithium heparin (gel or no gel)

Most CHEM, and cytogenetics
- Sodium heparin (gel or no gel)
. HEME, PCR, quants, virus, DNA
- Potassium EDTA ammonia, and ACTH
[:] Sodium fluoride or oxalate Glucose, volatiles, lactate, and autopsies
[:] Acid citrate dextrose Molecular diagnostics and cytology
Last

FIGURE 1.2 Order of draw.

patient, they also increase the risk of sample hemolysis
and the lysis of red blood cells in the sample, which could
interfere with laboratory analysis. Smaller bore needles
exert more shear stress on cells, leading to increased
hemolysis. Phlebotomists must be alert during specimen
collection, because small needles, difficult sticks, and a
slow flow of blood can cause specimen hemolysis, which
can lead to test interference depending on the analyte and
may require recollection.

The prolonged use of a tourniquet can lead to hemo-
concentration and pooling of blood. Use of a tourniquet
for over 1—3 minutes can cause elevations in protein and
albumin, calcium, potassium, and hemoglobin. It is
recommended that phlebotomists should have everything
in place prior to placing the tourniquet in order to mini-
mize the time that the tourniquet is in place. Fist clench-
ing during phlebotomy with a tourniquet in place can
further lead to increases of 1.0—1.4 mmol/L in potassium
levels.

Using collection tubes with a vacuum in the tube
allows for the appropriate amount of blood to be col-
lected, and manufacturers have designed collection sys-
tems to facilitate the collection of multiple tubes. Use of a
syringe to collect blood that is then injected through the
stoppers of multiple tubes can lead to specimen hemoly-
sis, filling errors, cross-contamination, and loose stoppers
that can leak during transportation to the laboratory. The
use of a needle and a syringe to puncture the stopper
should be strongly discouraged, as this practice is danger-
ous and poses a risk of needlestick injury. In addition,
tubes containing additives must be thoroughly mixed after

collection for the additive to be distributed; undermixing
can lead to specimen clotting, whereas overmixing can
induce hemolysis. Phlebotomists are encouraged to invert
gently each tube 5—10 times after collection.

Additional problems can be encountered when collect-
ing specimens through lines or catheters. The presence of
an IV, arterial, or catheter line does offer staff easy access
to the patient, but the practice of collecting specimens
through lines and catheters should also be strongly dis-
couraged due to the potential for contamination and dilu-
tion [12]. IV lines contain fluids that are being given to
the patient and pose a risk of diluting a specimen that is
being collected through a line or increasing the concentra-
tion if the analyte to be tested is contained in the IV fluid,
such as sodium or glucose. Lines are meant to administer
fluids to a patient and are not intended for specimen col-
lection. Some newer catheters are made of a plastic mate-
rial that is rigid for insertion but becomes pliable when
the catheter reaches body temperature. This type of line is
particularly problematic, because it is directional.
Although fluids can be administered and the line stays
open, drawing backward causes the line to collapse, mak-
ing specimen collection difficult and increasing the risk
of hemolysis. Heparin is used to flush and keep the access
open on some catheters, particularly heparin locks with
arterial access lines; however, heparin can interfere with
other laboratory tests. It is understandable why clinical
staff are hesitant to stick a patient with a line already
inserted; however, discarding a small amount of blood as
a line flush before collecting a specimen should be dis-
couraged, as it does not guarantee that a proper sample



can be obtained. D25W (25 g of dextrose per 100 mL of
solution), vancomycin, and several other large drugs and
antibiotics tend to stick to lines and cannot be adequately
flushed. Carryover of line fluid requires the laboratory to
cancel the specimen and request for a recollection of the
test, which both inconveniences the patient and delays the
turnaround time for test results [13].

Staff training and periodic competency evaluation is
suggested to ensure consistent specimen quality from all
staff involved in specimen collection. Unfortunately, even
with standardized training and periodic competency
assessments, staff can continue to make errors during
specimen collection. Our laboratory, for instance, has
experienced several cases where staff collected one tube
and, after phlebotomy, realized that they needed a differ-
ent tube, resulting in one tube being poured into a tube
with another additive. In another instance, a microtainer
was inadvertently collected in a purple-top EDTA addi-
tive tube. When the staff realized they needed a
gel-barrier tube, they opened the cap and inserted the
purple-top EDTA microtainer into a gel-barrier serum
tube and sent it to the laboratory. These staff did not real-
ize that the tubes contained different additives that could
affect the test results (Fig. 1.3). We even had two recent
cases where a specimen was received and centrifuged,
and the red blood cells were delivered to the technologist
instead of plasma. Even with adequate training, staff
should have regular retraining and constant reminders of
the proper procedure to follow.

There are some technologies available to ensure staff
collect the correct tube from the correct patient in the
proper order and thus reduce phlebotomy-associated
errors. Several companies now distribute portable per-
sonal data-assistant devices that can upload a list of
patients requiring phlebotomy. The devices contain a bar-
code scanner, so staff can scan their identifications to
access the software and access the lists of patients to col-
lect. Each phlebotomist’s identification is then linked to

FIGURE 1.3 Inadvertent specimen collection: a purple-top EDTA
microcontainer was collected from a patient. After phlebotomy, staff
realized they needed to collect a gel-barrier tube instead; therefore they
pushed the purple-top microcontainer into the large gel-barrier tube and
sent it to the laboratory. The staff did not understand when they were
called to cancel the specimen, claiming that the specimen was in a gel
tube.
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the specimen collection event and tubes collected at that
time. This provides a tracking mechanism required for
laboratory accreditation and troubleshooting phlebotomy
errors. After staff positively identifies the patient with
two unique identifiers, the device can scan a patient wrist-
band, and the patient’s name will appear (as additional
verification of identification) with a list of laboratory tests
pending, tubes to be collected, and proper order of draw.
As each tube is collected, staff can scan the tube and a
label is printed at the bedside, reducing the possibility of
mislabeling and capturing the exact time of specimen col-
lection. After the tubes for a patient have been collected,
the device can be downloaded to a laboratory information
system, which captures the collection information and
acts as a tracking mechanism for the transportation of the
specimens to the laboratory. Manufacturers even offer wire-
less versions of these collection devices. Implementation of
these systems has reduced phlebotomy and labeling errors
and has the potential to reduce specimen recollections and
delays in result turnaround time.

Processing and transportation

After collection, specimens should be transported to a lab-
oratory, processed, and analyzed as soon as possible as
delays can compromise the results. Glucose, for instance,
decreases at a rate of 5%—7% per hour in whole blood at
room temperature [14]. Glycolysis will continue until the
specimen is processed by centrifugation, and serum and
plasma are separated from the cellular components of
blood. Patients with increased white blood cell counts
have a higher number of cells and greater metabolic
demand, so glycolysis in their whole blood will be faster
than that in specimens from normal patients.

Other analytes are unstable in unprocessed blood or
when stored at room temperature instead of refrigerator or
freezer temperatures. Specimens need to be processed by
centrifugation as soon as possible after collection (for
plasma) or specimen clotting (for serum). For most chem-
istry analytes, laboratories should seek to process blood
by centrifugation within 30—60 minutes of collection,
with serum and plasma aliquoted (for tubes without gel
barriers) and stored refrigerated until analysis. Ammonia,
however, is an unstable analyte, and increases beyond the
total allowable error limit can be seen after just 30 min-
utes at room temperature. Samples are recommended to
be chilled, transported on ice, centrifuged within 15 min-
utes of collection, aliquoted off the cells, and plasma ana-
lyzed within 90 minutes to 2hours when stored
refrigerated. Care must be taken to centrifuge specimens
only once, as recentrifugation can release cellular compo-
nents like potassium and lactate dehydrogenase, and the
plasma sample should remain undisturbed and vertical
after centrifugation. Remixing plasma gel samples after



8 Contemporary Practice in Clinical Chemistry

centrifugation has been recently shown to cause falsely
increased values of 25-vitamin D on some assays due to
resuspension of cells and platelets [15]. For this reason, a
proper technique when processing plasma samples is
essential; all samples should be aliquoted and not poured
over so that cell debris and particulate matter do not enter
the sample and compromise the results. This can be an
issue with pediatric samples collected in microcontainers,
where well-meaning staff members are so concerned
that a sample will be canceled for insufficient volume
that they will invert the tube and tap to ensure that every
last drop is aliquoted, carrying debris and particulates that
float above the separator after centrifugation. This cellular
debris can interfere with chemistries as well as immu-
noassays on automated instrumentation.

Many hospitals rely on automated processes to trans-
port samples to the laboratory, such as pneumatic tube
systems that connect the laboratory processing areas
directly to the inpatient medical units. For outpatient test-
ing, clinics and phlebotomy stations should be provided
with centrifuges and equipment to process the specimens
on site before transportation to the core laboratory by cou-
rier in order to minimize sample instability. For example,
if glucose is not appropriately processed at an outpatient
collection facility, glucose values will continue to
decrease and the result reported may be (falsely) critically
low.

There are other laboratory tests that require special
handling, processing, and storage. Hematology testing is
performed on whole blood samples and thus these do not
require centrifugation, but must be well mixed before
analysis by automated cell counting systems. Hematology
samples also must be protected from freezing that could
result in hemolysis. Samples for metanephrines, on the
other hand, require prompt centrifugation and freezing of
serum and plasma to maintain stability. Additional atten-
tion may be needed to protect samples for bilirubin analy-
sis from light during transportation, processing, and
storage. Ammonia and hormones such as ACTH, gastrin,
and calcitonin are unstable and must either be tested or
frozen immediately. For urine specimens, there are a vari-
ety of preservatives available, depending on the stability
of the analyte. Some urine preservatives are acceptable to
add to the sample within 2 hours of the completion of a
24-hour or random urine collection, whereas other preser-
vatives must be added before sample collection to prevent
microorganism growth, prevent ion precipitation, or to
preserve the sample for urine culture. The optimal preser-
vative will depend on the laboratory’s analytical method-
ology and recommendations for one laboratory may not
be acceptable to another laboratory due to differences in
analysis.

Special consideration and equipment may need to be
made for collection, processing, and transportation of

laboratory samples at outpatient locations. Clinics may
need to have centrifuges, freezer capabilities, refrigera-
tors, and storage space for preservatives, collection con-
tainers, and phlebotomy supplies. In the summer, samples
may need to be transported in coolers with ice packs to
maintain constant temperature and protect from overheat-
ing, whereas in the winter, samples may need to be trans-
ported in coolers (without ice or cold packs) to protect
samples from freezing temperatures. Delays in processing
or transportation can also further compromise the speci-
men and analyte stability [16].

Laboratories must also arrange for appropriate storage
of specimens after analysis. Clinicians frequently add - on
tests after the initial orders have been completed. Most
chemistry samples can be stored for 7 days when refriger-
ated, allowing for specimen retrieval when additional test-
ing is ordered; however, adequate storage space is
necessary. Stored specimens are also useful to trouble-
shoot questionable results and for legal documentation, as
the samples can be retrieved and analysis repeated when
necessary.

Detecting preanalytical errors

Although phlebotomist training, prompt processing, and
transportation to the laboratory are the first line of defense
for preventing preanalytical errors, the laboratory must
also create quality systems to inspect routinely specimens
for common preanalytical errors. One obvious error is col-
lecting a specimen in the wrong type of tube. If a potas-
sium ethylenediaminetetraacetic acid (K,EDTA) (purple-
top) hematology specimen is sent to chemistry for an
electrolyte or potassium order, the laboratory can recog-
nize that the wrong type of tube was collected and can
contact the ordering physician, cancel the specimen, and
request a recollection in the correct tube type. An issue
that cannot be detected prior to analysis is the scenario
where a clinic mistakenly collects the K,EDTA specimen,
processes the specimen, and sends a plasma aliquot for
electrolyte analysis but labels it as a serum specimen.
This type of error will be detected only after analysis, and
only if upon review of the results, a technologist realizes
that the potassium level has increased into the critical and
nonphysiologic range. Fortunately, laboratory information
system rules can also be set up to flag erroneous results,
such as test results that are nonphysiologic or unable to
support life, results that are in a life-threatening critical
range either high or low (critical error flags), or results
that differ significantly from previous results (delta
checks). Erroneous and critical result flags should call
attention to potential preanalytical issues with sample
contamination from inappropriate tube additives, dilution
with IV fluid, and specimen clots or other sources of prea-
nalytic error. The delta check flag calls attention to test



results that differ from a previous result by more than a
predetermined limit. Delta checks help in the detection of
preanalytical errors, such as mislabeled specimens, but
are limited to patients who have a history of previous
results for comparison.

The presence of specimen interference is another com-
mon source of error. Some interferences may be meta-
bolic (increased wurea) or disease-related (increased
bilirubin), whereas other interferences may be the conse-
quence of failing to prepare the patient (lipemia and non-
fasting samples), a difficult phlebotomy (hemolyzed red
blood cells), or administration of certain therapies (drugs
or monoclonal antibodies) or supplements (vitamin B7 or
biotin). Serum indices are a spectrophotometric estimate
of specimen interference from icterus (presence of biliru-
bin), lipemia (lipids and chylomicrons), or hemolysis
(hemoglobin in serum). The presence of significant inter-
ference used to be handled by the visual inspection of the
sample, and technologists traditionally handled each spec-
imen and appended a note to those results that might be
affected by apparent interference, yet this method is
highly subjective. Today, although fewer specimens are
handled directly, a quantitative estimate of icterus, lipe-
mia, and hemolysis can be measured with every patient
specimen on high-volume automated chemistry analyzers.
This measurement is based on the ratio of sample absor-
bance at various wavelengths multiplied by a correction
factor (Fig. 1.4). Manufacturers publish acceptance
thresholds for icterus, lipemia, and hemolysis that will
cause clinically significant interference for tests in the

method’s package insert; however, it is strongly
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recommended that laboratories verify the manufacturer’s
recommendations by constructing their own interference
curves or matrices.

Serum interference curves can be constructed by per-
forming an experiment outlined in the Clinical Laboratory
Standards Institute (CLSI) EPO7 protocol for dose
response testing [17]. A series of test samples, systemati-
cally varying only in the concentration of interferent, is
prepared by making quantitative mixtures of two pools,
one at the highest concentration of the interferent to be
tested, and the other at the lowest [17]. Alternatively,
varying amounts of interferent can be spiked into a sam-
ple pool to create a set of samples with the same analyte
concentration but varying amounts of interferent. Creation
of a sample set requires that each sample be spiked with
the same volume of the interferent, so there is no dilu-
tional difference between the individual samples, and the
total volume added is only a small proportion (ideally
<10%) of the sample so that the sample matrix is not
significantly altered. All samples are analyzed in one ana-
Iytical run, and the results are graphed to determine the
level of interferent required to cause significant bias or
shifts in the true test results. If there is no interference, all
samples will generate the same test result within assay
precision. Interference is characterized by a difference in
results from baseline (zero interferent sample) with sam-
ples containing increasingly higher concentrations of
interferent. Interferences can be positively or negatively
biased, generating higher or lower results in proportion to
the amount of interferent (Fig. 1.5). Tables can then be
constructed to summarize the interference cutoffs or limits

FIGURE 1.4 Serum indices. Interference in a
serum or plasma specimen can be determined
spectrophotometrically by a ratio of wave-
lengths and a correction factor that links absor-
bance to the intensity of interference.
Reproduced with permission from Clinical
Chemistry Learning Guide Series, Abbott
Diagnostics (2017).
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for each analyte (Table 1.2). For patient specimens, the
serum indices can be compared with the predefined inter-
ference limits to determine whether the level of interfer-
ence is clinically significant. The ability to conduct
quantitative serum indices on every sample has removed
the historical subjectivity from technologists visually esti-
mating specimen quality. Serum indices add to critical
values, delta checks, and other flags that can detect poten-
tial specimen issues.

Unfortunately, there are few ways to detect reliably
the metabolic or drug interferences unless the interferent

is colored or the interference generates an error during
analysis. Sometimes, these errors can be detected by delta
checks if the drug or the metabolite changed, since a
recent test was conducted and the interference is signifi-
cant. In other instances, a clinician may call the labora-
tory and indicate that the test result does not match the
patient’s clinical symptoms. Establishing and maintaining
a good relationship with clinicians are important factors
to establishing a quality laboratory service. The laboratory
relies on clinicians to raise issues and provide feedback
and is best served when clinicians question unusual



TABLE 1.2 Serum interference tables.
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Icterus interference

Test Limit I index Laboratory tolerance (%) Direction Manufacturer index limit CAP limit (%)
Urea 29 <5 l 60 *9%
Potassium 53 <5 > Not significant *0.5
Cholesterol 15 <3 ! 25 +10%
Glucose 15 <5 ! 60 +10%
Lipemia interference
Test Limit L index Laboratory tolerance (%) Direction Manufacturer index limit CAP limit (%)
Urea 1119 <5 - 1000 *9%
Potassium 1119 <5 > Not significant *0.5
Cholesterol 1119 <3 - 1250 +10%
Glucose 1119 <5 - 1000 *10%
Hemolysis interference

Test Limit H index Laboratory tolerance (%) Direction Manufacturer index limit CAP limit (%)
Urea 1337 <5 e 1000 * 9%
Potassium 175 <5 1 At all levels +0.5
Cholesterol 670 <3 > 700 *10%
Glucose 670 <5 ! 1000 +10%

Index limits (icterus, lipemia, and hemolysis) for the selected analytes indicate our laboratory’s tolerance for clinical significance (percentage of bias from a
sample with no interferent). Manufacturer limits (from package insert) and CAP proficiency survey tolerance recommendations are shown for comparison.
Interferences noted are only an example and not a representative of a specific manufacturer or instrument model. Direction of interference is included: <,
no change; 1, positive interference and high bias; |, negative interference and low bias. CAP, College of American Pathologist.

results, discuss them with the laboratory, and work
together to resolve the source of the problem.
Manufacturer’s package inserts are vital sources of infor-
mation when results are questioned, and most package
inserts indicate the levels of drugs, metabolites, icterus,
lipemia, or hemolysis that can cause significant interfer-
ence. Stored specimens are an additional resource when
investigating potential interferences, since stored speci-
mens can be retested by the same methodology or sent to
another laboratory for analysis by a different methodology
if necessary.

Summary

Preanalytical variation is an important source of labora-
tory errors. The laboratory is responsible not only for the
analysis of a specimen but also for ensuring control over
preanalytical, analytical, and postanalytical processes to
guarantee quality results for patient care. Understanding
the sources of preanalytical variation and taking steps to
minimize potential for errors before the specimen arrives

in the laboratory are efforts that can reduce the need for
specimen recollections, minimize delays in the turnaround
time of test results, eliminate unnecessary medical follow-
ups, and facilitate improved patient outcomes. Some
preanalytical interferences such as icterus, lipemia, or
hemolysis can be detected by the laboratory, preventing
results from being released and warning clinicians of the
potential for interference; unfortunately, other errors and
interferences may not be easily detected. Too often, not
enough attention is placed on minimizing the causes of
preanalytical errors. Preanalytical errors can be decreased
by having trained phlebotomists conduct blood draws,
assuring that samples are transported to the laboratory in
a timely fashion, having a well-trained specimen proces-
sing and receiving staff, and by maintaining a close work-
ing relationship between the laboratory and the
information technology staff. The laboratory is an integral
part of the health care team, and teamwork is required to
ensure the integrity of specimen results from patient order
through specimen collection, analysis, interpretation, and
implementation of patient treatment. Preanalytical variation
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is a significant component of the laboratory testing pro-
cess and everyone, from clinicians to medical directors to
nurses to laboratory staff, must be aware of the potential
for error and work together to guarantee quality results.
As the volume and complexity of testing increases, the
laboratory and clinicians should foster a solid partnership
to ensure appropriate test selection, interpretation, and use
of the laboratory.
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Self-assessment questions

1.

Which of the following contribute to preanalytical
variation?

a. biologic variation

b. sample collection errors

c. delays in processing

d. all of the above

. When do most errors in laboratory testing occur?

a. while ordering the correct test

b. before the sample arrives in the lab

c. during specimen analysis

d. during physician interpretation

CAP estimates what percentage of physician requests
are associated with errors in data entry?

a. 5%

b. 10%

c. 20%

d. 25%

. What can be done to enhance staff efficiency and

ensure specimens are collected at the right time?

a. Preprint sufficient labels to allow staff to collect
multiple patients during a phlebotomy round.

b. Use coat pockets to store supplies and collected
tubes between the patients.

c. Communicate with staff and check medical
record documentation prior to collecting
specimens.

d. Ensure specimens are collected only when it is
convenient for the patient.

. Which of the following are possible resources for

information on laboratory interference?

a. Physician’s Desk Reference with drug inserts on
prescription medications

b. Dr. Young’s books on laboratory test effects

c. manufacturers

d. all of the above

. Which of the following are possible sources of prea-

nalytical variation?

a. season of the year

b. working in the night shift
c. sunlight

d. all of the above

. Prolonged use of the tourniquet can lead to increases

in which analyte?
a. calcium

10.

11.
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b. digoxin

c. phosphate

d. triglycerides

Which of the following is most a concern for preana-
lytical variation?

a. collecting a specimen through an IV line

b. inadequate filling of the collection tube

C. patient identification

d. all of the above

. Why are newer PDA technologies for phlebotomy

collection an advantage?

a. to save time

b. to provide positive patient identification

c. to track the phlebotomist and specimen

d. all of the above

Which of the following tubes will clot?
green-top heparin

lavender-top EDTA

red-top activator

gray-top fluoride/oxalate

. light-blue top citrate

What is hemolysis?

breakdown of red blood cells

a yellow by-product of hemoglobin breakdown
high triglycerides that make the sample turbid
an assay interference from radiopaque dye
aand b
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Chapter 2

Statistical methods in laboratory medicine

Daniel T. Holmes

Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada

Learning objectives

After reviewing this chapter, the reader should be able to:

e Understand and apply descriptive statistical analyses and
visualizations to a laboratory medicine data set.

e Describe how to determine if a data set is significantly differ-
ent from the normal distribution.

e Understand the application of statistical tests of central
tendency.

e Explain the differences between different linear regression
methodologies.

e Discuss how to numerically evaluate diagnostic test
performance.

Introduction

The purpose of this chapter is to introduce the major sta-
tistical concepts and tools required for clinical practice.
This is not a resource as used in undergraduate statistics
courses. There are no derivations or proofs and few expla-
nations on how to perform statistical calculations by
hand. There are many free resources and textbooks that
do an excellent job of this. Rather, this chapter is intended
to highlight important content and key conceptual notions.
However, in the modern era, it is impossible to divorce
statistical analysis from a software tool, and it is therefore
necessary to pick a representative tool to accompany this
chapter. Traditionally, this would have been the perva-
sively installed spreadsheet software. However, spread-
sheet programs do not have the specialized statistical
tools required for clinical practice. For this reason, I have
elected to use the R statistical programming language to
perform the calculations demonstrated. This does not
mean that this chapter will introduce the R language, as
there are many online texts [1,2] and open-learning
resources [3] for this. Rather, by showing example R
code, the student will be able to see that, in a few lines, a
great deal can be accomplished and it is my hope to
inspire readers to learn R for use in their clinical practice.

Basic descriptive statistical analysis

Consider a data set taken from the Intersalt study [4],
where diastolic blood pressure (BP) and 24-hour urine
sodium excretion were collected on individuals from sev-
eral countries.

The data set happens to have 52 entries, but only the
first 10 are displayed in Table 2.1.

Central tendency and dispersion

In lab medicine, we need to be able to calculate the mean,
standard deviation (SD), median, interquartile range
(IQR), and selected quantiles (usually expressed as
percentiles).

TABLE 2.1 Representative data from the Intersalt study.

Contemporary Practice in Clinical Chemistry. DOI: https://doi.org/10.1016/B978-0-12-815499-1.00002-8

© 2020 Elsevier Inc. All rights reserved.

Diastolic pressure Sodium excretion Country
(mm Hg) (mmol/day)
72.0 149.3 Argentina
78.2 133.0 Belgium
73.9 142.6 Belgium
61.7 5.8 Brazil
61.4 0.2 Brazil
73.4 148.9 Canada
79.2 184.3 Canada
66.6 194.1 Colombia
82.1 135.6 Denmark
75.0 138.7 East
Germany
15
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Mean
The mean of x, denoted X, is calculated by:

Z:‘Ll Xi

n

2.1

xX=

that is, “add up all values of x and divide by the total
number of values.” The problem with expressing results

as a mean is that the mean is strongly affected by outlier
results. By way of example, turnaround times for lab tests
should not be expressed by using the mean, because there
are often problematic individual samples with very large
turnaround times.

In R, the mean of the BP results can be calculated by
reading the data, and by using the mean() function:

# Any text preceded by a "hastag" (#) is ignored by R and serves

# an informational comment.
library(DAAG) #load the package that contains
data(intersalt) #load the intersalt data

the dataset

mean (intersalt$bp) #calculate the average blood pressure

## [1] 73.15192

The R output, shown here (and throughout this chap-
ter) preceded by ## marks, shows us that the mean dia-
stolic BP is 73.2 mmHg.

Median

The median is the middle value of the data set. That is, if we
order the whole data set from lowest[h to highest values, the
middle value, calculated as the (“}1)" entry, is the median.

However, we encounter a problem when there are an
even number of data points, because there is no middle
value. In this circumstance, the median is given by the
average of the two middlemost values. Our Intersalt data
set has 52 values, so, if we sort the BP values and calcu-
late (%31), we get the number 26.5, which is to say that
the median lies halfway between the 26th and 27th
values.

We can do this out the long way:

sort(intersalt$bp) #display the raw data sorted

## [1] 61.4 61.7 62.9 66.1 66.6 67.2 67
## [16] 71.4 71.7 72.0 72.1 72.4 72.4 72
## [31] 73.9 74.7 75.0 75.2 75.5 75.6 75
## [46] 78.5 79.2 79.2 79.6 79.7 81.4 82

From the data, we can see that the 26th and 27th data
points are 73.1 and 73.2, respectively. Therefore the
median is 73.15. In the R language, this can be accom-
plished with the median() function:

median(intersalt$bp)
## [1] 73.15

Standard deviation, interquartile range, and
quantiles
The SD is the square root of the mean square deviation of

the results and is a measure of the dispersion of the
data. Readers are no doubt aware that the SD has

67.9 68.0 68.4 69.9 70.0 70.2 70.7 71.2
72.7 72.9 73.1 73.1 73.2 73.4 73.5 73.9
76.0 76.2 77.2 77.4 77.5 77.9 78.2 78.2

predictable meaning in normally distributed data sets (a
concept to be discussed). The SD is defined as:

Z?:] (.X,' _)_C)z

n

Oy = 2.2)
where X is the mean value of x. Most textbooks quote the
formula with n — 1 in the denominator, which makes the
result an unbiased estimate of the SD, accounting for lim-
itations associated with finite data sets. It is therefore
preferential to use the following:

oy = Z?:l (xi_x)z.
\/ n—1

(2.3)



In the R language, the SD function is sd(), and the
calculation is achieved as follows:

sd(intersalt$bp)
## [1] 4.786562

Quantiles and the interquartile range

Quantiles are a way of expressing how the data are dis-
tributed. The quantiles of the variable x are any set of
intervals of x that define bins with an equal number of
counts. The reader is likely familiar with the concept of
percentiles, bins that each contain 1% of the data.
Another common approach is the quartile, where there are
four intervals of x to define bins containing 25% of the
data.

Because the SD does not provide predictably
interpretable information for non-Gaussian distributions,
when the distribution has skewness or excess kurtosis, the
IQR is frequently provided as an alternative. The IQR is
the difference between the 75th percentile and the 25th
percentile, thereby defining a range of x encompassing
the central 50% of the distribution, not necessarily cen-
tered about the mean and median of the distribution.
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In the R language, the IQR is determined by using the
IQR() function:

IQR(intersalt$bp)

## [1] 5.875

However, if there is a desire to calculate a specific
quantile, this can be achieved with the quantile() func-
tion. There are a number of strategies for inferring the
quantiles of a distribution, and R implements nine of
them, any one of which can be specified if desired. The
simple strategy of linear interpolation, recommended by
the Clinical Laboratory Standards Institute (CLSI)
Document EP28-A3C [5], is available, but not as default.

The following R code calculates estimates of the 10th,
25th, 50th, 75th, and 90th percentiles of the BPs of the
Intersalt study.

quantile(intersalt$bp, probs = c(0.1, 0.25, 0.5, 0.75, 0.9))

## 10% 25% 50% 75% 90%
## 67.220 70.575 73.150 76.450 79.130

To specify the linear interpolation strategy recom-
mended by the CLSI, the type parameter can be set to 6.

quantile(intersalt$bp, probs = c(0.1, 0.25, 0.5, 0.75, 0.9), type = 6)

H# 10% 25% 50% 75% 90%
## 66.780 70.325 73.150 76.950 79.200

Histogram of Intersalt BP

15
|

Frequency
10
l
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o
[ I I I I 1
60 65 70 75 80 85
Diastolic BP (mmHg)
FIGURE 2.1 A histogram of the Intersalt diastolic blood pressure data.

The CLSI strategy can also be accomplished by hand by:
(1) sorting the results; (2) calculating the rank of the desired
quantile estimate by multiplying it by (n + 1), where n is the
number of observations; and (3) interpolating the desired
quantile estimate from the value found from step (2).

For example, if the 95th percentile is desired and there
are 52 observations, then the rank of the 95th percentile is
0.95 X 53 =50.35. This means that the sample with the
50.35th rank represents the 95th percentile estimate. That
is, we must interpolate a value that is 0.35 (i.e., 35%) of
the way between the 50th and 51st results (taken from the
list shown above) as follows:

79.7 +0.35 X (81.4 — 79.7) = 80.295.

If one wants to find the reference interval of a popula-
tion of putatively normal values, this can be accomplished
with the quantile() function. There is no reason (beyond
compliance) to believe that the CLSI-recommended
method (type = 6) is the best in all circumstances, but, in
most cases, all the R methods will perform similarly.
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Is my data normally distributed?

Many of the decisions we make in clinical laboratory
medicine are predicated on whether the data are signifi-
cantly different from the normal distribution. Most stu-
dents assume that, if a histogram looks like a “bell
curve,” this is sufficient evidence of normality. It is not.
However, if the distribution is highly skewed, then it is
certainly evidence that the data are not normally
distributed.

hist(intersalt$bp,

There are a number of simple tests to answer the ques-
tion, “Is my data’s distribution significantly different
from the normal distribution?”

Make a histogram

The first approach is to prepare a histogram. In the R lan-
guage, this is achieved with the hist() command (see
Fig. 2.1):

xlab = "Diastolic BP (mmHg)", # provide z-aztis label

main =

Prepare a normal QQ plot

The normal quantile—quantile (QQ) plot is a rapid and
effective manner of gauging the normality of a distribu-
tion. The plot compares the empirical quantiles of a sam-
pled distribution with the corresponding theoretical
quantiles of the normal distribution. The closer the normal
QQ plot is to the line of identity, the better the assump-
tion of normality becomes. It is very easy to prepare in
the R language, as there is function qgnorm() dedicated to
generating it (see Fig. 2.2)

qqnorm(intersalt$bp)
qqline(intersalt$bp) # adds the line of tidentity

In this case, the left tail shows larger deviation from

Normal Q-Q plot

Sample quantiles

I T T T I
-2 -1 0 1 2

Theoretical quantiles

FIGURE 2.2 A normal quantile—quantile plot.

"Histogram of Intersalt BP") # provide y-azis label

normality than the right, but the relative straightness of
the normal QQ plot gives confidence that a normal
assumption is reasonable.

Calculate the skewness and kurtosis

The skewness is a numerical measure of a distribu-
tion’s asymmetry, either leftward or rightward. A dis-
tribution is said to have a negative skew when the left
tail is longer and a positive skew when the right tail is
longer.

Skewness is calculated from the ratio of the ‘“third
moment” of the distribution, denoted ms, to the cube of
the SD, s, as follows: (Fig. 2.3)

Yl %)’
3
= L @)’ |
[ i —X)Z} 3/2

The skewness of a normal distribution is 0.
Interpretation of skewness is somewhat arbitrary, but rules
of thumb are applied as follows:

ms3
Skewness = — =
$3

(2.4)

e [f the absolute value of the skewness is <<0.5, it is
considered mildly skewed.

e [f the absolute value of the skewness is =0.5 and is
<1, it is considered moderately skewed.

e [f the absolute value of the skewness is =1, it is con-
sidered highly skewed.

We do not need to go to the trouble of using Eq. (2.4)
to calculate the skewness unless we feel so determined.
The calculation (including confidence intervals) is built
into the R language’s DescTools package and can be
called as follows:
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FIGURE 2.3 Negative (left) skew and positive (right)
skew.

Y

Negative skew Positive skew

library(DescTools)
Skew(intersalt$bp, conf.level = 0.95)
it skew lwr.ci upr.ci

## -0.46010230 -0.92059805 -0.01591163

Our result of —0.46 indicates only mild negative (left-
ward) skewing.

Kurtosis is a numerical measure of the tailedness of a
distribution. It is calculated in an analogous fashion to that
of Eq. (2.4) but using the ratio of the distribution’s fourth
moment to the fourth power of the SD. Strictly speaking,
the normal distribution has a kurtosis of 3, but, for simplic-
ity, the kurtosis is often reported as the “excess kurtosis,”
which is the raw value minus 3. This causes the excess kur-
tosis of the normal distribution to be 0, the excess kurtosis
of “leptokurtic” (tall, slender, and pointy) distributions to be
greater than 0, and the excess kurtosis of “platykurtic”
(short, flat, and broad) distributions to be less than 0. We
can calculate the excess kurtosis in R using the following:

Kurt (intersalt$bp, conf.level = 0.95)
#i#t kurt lwr.ci upr.ci
## -0.1618429 -0.8408011 1.1293546

Similar to the skewness, the excess kurtosis of —0.16
has a 95% confidence interval that includes 0, suggesting
that it is not significantly different from that of a normal
distribution.

Statistical tests for normality

A number of statistical tests for normality are implemented
in R. Examples include the Shapiro—Wilk Test [6], its sim-
plified variant, the Shapiro—Franci test [7], the Lilliefors
(Kolmogorov—Smirnov) test [8], and the Anderson—Darling
test [9]. These are presented here with references to the pro-
cedures but without the underlying calculations.

The Shapiro—Wilk test
This is implemented in R with the shapiro.test() function:

Y

shapiro.test(intersalt$bp)

#it

## Shapiro-Wilk normality test
##

## data: intersalt$bp

## W = 0.97341, p-value = 0.2932

The P-value indicates that the distribution is not sig-
nificantly different from the normal distribution.

The Shapiro—Francia test

This function is implemented in the DescTools [10] pack-
age and is invoked as follows:

ShapiroFranciaTest (intersalt$bp)

##

## Shapiro-Francia normality test
##

## data: intersalt$bp

## W = 0.97639, p-value = 0.326

The P-value indicates that the distribution is not sig-
nificantly different from the normal distribution.

The Lilliefors test

This function is implemented in the DescTools [10] pack-
age and is invoked as follows:

LillieTest(intersalt$bp)

##

## Lilliefors (Kolmogorov-Smirnov) normality test
##

## data: intersalt$bp

## D = 0.077987, p-value = 0.598

The P-value indicates that the distribution is not sig-
nificantly different from the normal distribution.
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The Anderson—Darling test

This function is implemented in the DescTools [10] pack-
age and is invoked slightly differently, as the distribution
(in this case, the normal distribution) to which your data
are to be compared and the associated defining parameters
(in this case, the mean and the SD) need to be specified.

m <- mean(intersalt$bp)
s <- sd(intersalt$bp)
AndersonDarlingTest (intersalt$bp, "pnorm", mean = m, sd = s)

##

## Anderson-Darling test of goodness-of-fit

## Null hypothesis: Normal distribution

## with parameters mean = 7.315e+01, sd = 4.787e+00
##

## data: intersalt$bp

## An = 0.35745, p-value = 0.8891

The P-value indicates that the distribution is not sig-
nificantly different from the normal distribution.

Detecting outliers

An outlier is a data point that differs significantly from
other observations and should be considered for remea-
surement or removal from the data set, since it may
reflect an experimental error or contamination of the
cohort with subjects who do not conform to the a priori
assumptions. For example, suppose that you are perform-
ing a reference interval study for fasting serum insulin on
a healthy adult population and you find one insulin result
that is disproportionately high. After investigating, you
find that this subject is obese and was not excluded as per
study protocol. You conclude this subject’s data should
be removed, because they are likely insulin-insensitive.
Alternatively, you might hypothesize that this subject’s
specimen had a heterophile interference and their sample
requires remeasurement. However, unless you discover a
valid reason to exclude a result based on analytical error
or clinical grounds, it is not good scientific practice to
remove outliers. Rather, readers are encouraged to use
statistical tests resistant to the effects of outliers.

While a thorough discussion of identification and
management of outliers is beyond the scope of this chap-
ter, it is useful to present some of the traditionally
employed strategies for finding them.

The Grubbs test

The Grubbs test [11] is based on the assumption that the
data are normally distributed. The test is used to identify
a single outlier, and the test statistic, G, is defined as:

_ max|x; — X|
s

where X is the sample mean, s is the SD, and max refers
to the largest value. So, for example, if we take a small
data set of 10 values: x={ —1.3, 0.7, —0.8, —0.7, 0.1,
—0.3, —0.7, 0.0, 0.6, 4.2}, we can see that the mean is
x=0.18 and s = 1.55, so that G = 2.60, which is the value
associated with x;o =4.2.

The critical value for the test statistic, G, can be found
in a table for different values of o and N or calculated
by using the following formula (for the two-sided
hypothesis):

G> N-—1 tczy/(zN),N*Z
_ 2
W N-—-2+ t(y/(ZN),N—Z

where 7,/on)n-2 denotes the upper critical value of the
student’s ¢-distribution for N —2 degrees of freedom
and a significance level of o/2N. In this case, the criti-
cal G is 2.29, and the calculated value of G of 2.60
means that x =4.2 is an outlier, because its value of G
exceeds the critical value. A one-sided formulation of
the formula above is obtained by simply replacing a/2N
by ao/N.

Grubbs’ test is implemented in the R outliers’ pack-
age, and the same analysis can be invoked as follows:

library(outliers)
53 2 @8, Ouy 0By Wolly @oily By 0Ty 0y ©eEy 2D
grubbs.test (x)

##

## Grubbs test for one outlier
##

## data: x

## G = 2.59630, U = 0.16778, p-value = 0.001165
## alternative hypothesis: highest value 4.2 is an outlier

This gives us the same results but with some addi-
tional statistical information.

Dixon test

Dixon’s Q-test [12] is another test used for the identifica-
tion of outliers, which again assumes that the data are
normally distributed. Suppose that we have a data set that
we have sorted (i.e., x; <x, <x3...<xy) and the poten-
tial outlier is x,. First, we calculate the “gap” value, Q,
which is the difference between x, and its nearest neigh-
bor xy_:



Xy — Xn—1]
w

gz =

where w is the range of the data, that is, w =xy —x;. If w
exceeds a critical value (which can only be obtained from
tabulated values, not a formula), then the data point is
considered an outlier. Critical values Q for a = 0.1, 0.05,
and 0.01 are provided in Table 2.2.

Considering the small data set we used above, first,
we sort it to obtain this data set: —1.3, —0.8, —0.7,
—0.7, —0.3, 0.0, 0.1, 0.6, 0.7, 4.2. The value in question
is 4.2. Its nearest neighbor is 0.7. The calculated value of
Q is:

[4.2 —0.7]
0= 2= (—13) 0.64.

This value Q =0.64 exceeds the critical value of
0.466 for 10 observations and « =0.05, as shown in
Table 2.2.

A slightly more sophisticated variant Dixon’s Q-test
taking into account the sample size [13] is implemented
in the R outliers’ package, and the same analysis can be
invoked as follows:

library(outliers)
52 > Gy 0Ty 0By Wally Woily
dixon.test(x)

08y 0¥y 0@y OBy Eo2D)

## Dixon test for outliers
#it

## data: x

## Q = 0.7, p-value < 2.2e-16

## alternative hypothesis: highest value 4.2 is

The reader will notice that the calculated value of Q is
different than the above, which is attributable to the
slightly more sophisticated approach used.

Tukey’s fences

Another way to flag a potential outlier was suggested by
Tukey [14]. If a result is more than 1.5 IQRs below the

TABLE 2.2 Critical values for Dixon’s Q statistic.
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first quartile, Q;, or more than 1.5 IQRs about the third
quartile, Q3, then the result can be considered an outlier.
For the data set we have been considering in this section,
the first quartile can be calculated to be Q; = —0.700, the
third quartile to be Q3 =0.475, and the IQR to be
IQR =1.175. The Tukey fences are therefore [ — 2.4625,
2.2375]. Because 4.2 lies outside this interval, it is consid-
ered an outlier.

Chauvenet’s criterion

Chauvenet’s criterion [15] is another means of identifying
an outlier in a normally distributed data set. The principle
behind the test is that, if a value falls outside a probability
band centered at the mean of the data, then it can be con-
sidered an outlier. Despite its frequent application in the
field of clinical chemistry, its use is not recommended
because of errors in its derivation; it was considered anti-
quated some 60 years ago [16]. The reader determined to
use Chauvenet’s criterion may do so as follows.

A measurement can be rejected if its probability of
occurrence is less than 1/2N [15]. For the data we
have been considering in this section, N = 10, the mean
is 0.180, the SD is 1.548, and the z-score of the
prospective outlier, x=4.2, is 2.596. The minimum
acceptable probability is 1/2N =1/20 =0.05. Any obser-
vation having a probability of occurrence less than this is
considered an outlier.

an outlier

From the perspective of how z-tables for the standard
normal distribution are tabulated (i.e., presenting the area
under the distribution function from — oo to z), this corre-
sponds to a z-score for a probability of 1/4N. In this case,
for the data set we have been evaluating, the critical
z=1.960. Because our calculated value for z=2.596
exceeds 1.960, we can say x = 4.2 is an outlier.

In the R language, the Chauvenet’s criterion can be
calculated with the qnorm() function for any value of N

Number of values 3 4 5 6 7 8 9 10

Q90%: 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412
Q95%: 0.970 0.829 0.710 0.625 0.568 0.526 0.493 0.466
Q99%: 0.994 0.926 0.821 0.740 0.680 0.634 0.598 0.568
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by calculating gnorm(1 - 1/(4*N)). For example, if
N = 30, the critical z is calculated as follows:

N <- 30
gnorm(1-1/(4#N))

## [1] 2.39398

Those invoking Chauvenet’s method will often apply
it serially, removing outliers until no samples fail the cri-
terion. This is not sound practice.

Common inferential statistics

This section will not cover the theoretical basis for these
tests. This is covered in all introductory statistical text-
books, some of which are available online [17,18].
Rather, this section will inform the reader when each type
of test is appropriate, how to perform the test, how to
interpret the results, and how to perform the test in the R
language.

The two-sample t-test

The two-sample #-test is a way of assessing whether the
means of two populations are different. In statistical
terms, it iS more correct to say, “the test allows us to

t.test (VitD$Iceland, VitD$Florida)

##
## Welch Two Sample t-test
##

## data:

## t = -12.432, df =

accept or reject the null hypothesis,” where the null
hypothesis is the hypothesis that the means are equal.

The ¢-test, in its simplest form, compares the means of
two unrelated populations. For example, if you were com-
paring the mean mid-winter plasma vitamin D concentra-
tion in a cohort of Icelanders to Floridians (who are in no
way matched), you would use a two-sample #-test.

The assumption of the z-test is that the quantity being
compared in the two populations is normally distributed.
One may wish to assume that the variances of the two
populations are equal or not, but the ensuing calculations
will be different accordingly. If the reader wishes to
assess the normality of the distributions, strategies in the
section “Is my data normally distributed?” can be applied.
If the data are found not to conform to a normal distribu-
tion, normalizing transformations such as the logarithm,
Box—Cox [19], or one of many others available in R [20]
can be employed first. Finally, the data should be sampled
independently from the two populations.

Examples

Suppose that we have a small sampling of mid-winter
plasma vitamin D levels from Icelandic and Floridian
adult males (see Table 2.3) that we wish to compare with
a r-test.

In the R language, a #-test is accomplished as follows:

VitD$Iceland and VitD$Florida
21.113, p-value =

3.516e-11

## alternative hypothesis: true difference in means is not equal to O

## 95 percent confidence interval:

## -40.00254 -28.54069
## sample estimates:

## mean of x mean of y
## 51.77245 86.04407

The output indicates that the difference between the
two means, 51.8 and 86.0, is statistically significant based
on the P-value since P <« .05.

t.test(VitD$Iceland, VitD$Florida, alternative

If a one-sided r-test is preferred because there is an a
priori assumption that the Icelandic vitamin D levels
should be lower, then the code is modified as follows:

”less")



TABLE 2.3 Independently sampled plasma vitamin D
levels from Icelandic and Floridian adult males.

Iceland VitD (nmol/L) Florida VitD (nmol/L)
52.6 85.0
68.3 84.9
46.6 85.2
59.0 76.8
54.9 81.4
37.4 94.6
50.2 94.9
60.9 82.2
48.7 81.9
39.2 92.1
58.6 88.0
46.4 90.1
51.7 80.2
37.6 87.3
64.6 91.3
— 81.8
= 85.0

wilcox.test(VitD$Iceland, VitD$Florida)

##

## Wilcoxon rank sum test

it

## data: VitD$Iceland and VitD$Florida
## W = 0, p-value = 3.535e-09

##

The paired t-test

The results are similarly significant to the z-test.

Wilcoxon signed-rank test

This is the nonparametric equivalent of the paired r-test.
It makes no assumption about the distributions of the
original population themselves, but it does assume that
the distributions of the differences are at least symmetri-
cal (though there is no need for the differences to be nor-
mally distributed). In the R language, the syntax to obtain
the Wilcoxon signed-rank test on paired data sets, x; and
X, 18t
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If the data are paired, that is, one is comparing popula-
tions before and after some intervention or the popula-
tions respectively comprise cases and matched
controls, then the appropriate test is a paired two-
sample #-test. The test assumes that the distributions
of the differences between the paired values of the two
populations are normally distributed rather than
the two distributions themselves. So, if we were
comparing the vitamin D levels of a single group of
Icelanders in the summer versus winter, we would use
a paired ¢-test. The syntax for calling a paired z-test
on two populations, x; and x,, in R is similarly
straightforward:

t.test(xl, x2, paired = TRUE)

Wilcoxon rank-sum test (Mann—Whitney U-test)

This is the nonparametric equivalent of the #-test and as
such does not require that the populations compared be
normally distributed. Applying this test to the vitamin D
data, as shown in Table 2.3, and using the R language
implementation of this test, we have:

alternative hypothesis: true location shift is not equal to O

wilcox.test(xl, x2, paired = TRUE)

The chi-square test

The chi-square test is used to test for statistically signifi-
cant differences in frequencies observed in different
categories.

Application to proportions

For example, if we had four clinical chemistry training pro-
grams and we knew how many students had passed and
failed over the course of the last 20 years, we could look for
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TABLE 2.4 Relationship between smoking frequency
(heavy, regular, occasional, and never) and exercise
frequency (frequent, some, and none) in survey data
from the MASS package in R.

Heavy Never Occas Regul
Freq 7 87 12 9
None 1 18 3 1
Some 3 84 4 7

significant differences in the pass/fail frequencies to make
evidence-based recommendations to our younger colleagues.

School A School B School C School D
Pass 35 33 34 25
Fail 4 3 5 11

In the R language we can construct a data frame or matrix
to house the data and apply the chi-square test as follows:

chisq.test(cbind(pass,fail))

##

## Pearson's Chi-squared test
##

## data: cbind(pass, fail)

## X-squared = 8.7483, df = 3, p-value = 0.03283

The resulting P-value of 0.03 indicates that school D,
aptly named, should not be on the recommendation list.

Another R function, prop.test(), is specifically tai-
lored for testing proportions. Not surprisingly, it gives the
same result:

prop.test(cbind(pass,fail))

##

General application to contingency tables

If you have a more general contingency table, you can
apply the chi-square test similarly. For example, the MASS
package in the R language [21] has a data set containing
survey responses from 237 statistics students from the
University of Adelaide. A contingency table for smoking
and exercise can be prepared from this data set: (Table 2.4)

Applying the chisqg.test() function directly to this
contingency table gives:

library(MASS) #load the package with the data

data(survey) #load the data

cont.table <- table(survey$Exer, survey$Smoke) #prepare table
chisq.test(cont.table)

##

## Pearson's Chi-squared test
##

## data: cont.table

## X-squared = 5.4885, df = 6, p-value = 0.4828

These results indicate that there is no significant relation-
ship between exercise frequency and heaviness of smoking.

Methods of regression

Ordinary least squares

In laboratory medicine, regression is used to prepare cali-
bration curves, assess linearity, and compare methods.
Usually, we are discussing linear regression with a single
explanatory (independent) variable, but regression can be
mulitvariate and it can be nonlinear. For the moment, we
will confine ourselves to discussing the simplest regres-
sion method, ordinary least squares (OLS) linear regres-
sion. The method, usually attributed to Carl Friedrich
Gauss, works by finding the line that minimizes the sum
of squared residuals of a sequence of points (see Fig. 2.4).

## 4-sample test for equality of proportions without continuity

## correction
##

## data: cbind(pass, fail)

## X-squared = 8.7483, df = 3, p-value = 0.03283

## alternative hypothesis: two.sided

## sample estimates:

## prop 1 prop 2 prop 3 prop 4
## 0.8974359 0.9166667 0.8717949 0.6944444

The residuals, in this case, are the vertical distances
between the points and the line. The minimization of
these squared distances leads to a regression line whose
slope and intercept can easily be calculated.



OLS regression assumes that there is no error in the
independent (i.e., x-axis) variable. This is never true in
bioanalytical chemistry, of course. However, there are set-
tings where the error in the x-axis variable is low relative
to that of the y-axis variable. For example, if you are
doing a method comparison against an absolute reference
method, it might be reasonable to assume no error in the
x-axis. Another example is a calibration curve, where the
assigned concentrations of the calibrators are considered
correct but the instrument responses on the y-axis are sub-
ject to error. OLS regression also assumes that the scatter
about the regression line is constant and not a function of
x. This property of constant error is called “homoscedas-
ticity,” and it is likewise almost never true (see Fig. 2.5).
If the data exhibit obvious heteroscedasticity, weighting is
often applied to the regression (to be discussed).
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FIGURE 2.4 Typical scatterplot with the residuals of the points shown
as vertical blue line segments. The ordinary least squares regression line
is shown in solid black.
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Computational methods for OLS regression report
back a number of useful parameters and diagnostics for us
to examine. These are usually the slope, the y-intercept,
the residual standard error (RSE), and the coefficient of
determination, R>.

The slope is a measure of the regression line’s steep-
ness and is calculated from the ratio of the rise to the run
(see Fig. 2.4). The y-intercept is the y value of the inter-
section of the regression line and the y-axis (i.e., the line
x=0). If the values on the x- and y-axes are measure-
ments of the same quantity using two different analytical
methodologies, the nonzero y-intercept indicates that the
y-axis method has a constant bias compared with the x-
axis method, and the fact that the slope is not equal to 1
indicates that the y-axis method has a proportional (i.e., x-
dependent) bias compared with the x-axis method.

The RSE is given by:

RSE = (2.5)

where resid; is the residual of the ith value of x. The RSE
therefore gives a measure of the spread of the residuals
and is a goodness of fit measure of the linear regression
line to the data.

The coefficient of determination is the square of the
Pearson correlation coefficient, r, where r is defined as:

Z;;l(xi —X)(yi —Y)
VI =3 05
T xy

xy

/22
O'XO'y

Oy

(2.6)

Ox0y

The numerator of r, denoted o, is referred to as the
covariance of x and y. The correlation coefficient is a

FIGURE 2.5 Examples of data
showing homoscedastic error (left)

and heteroscedastic error (right).
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measure of how close two variables are to having a linear
relationship with one another. It can take on values between
—1 and + 1. If the value is positive, the OLS regression line
will have a positive slope, and, if the value is negative, the
regression line will have a negative slope. This is because the
OLS slope can be expressed as 3 = r X 0,/0,, meaning that r
and (3 have the same sign since both o, and o, are positive.
A value of r = 0 implies that the data are uncorrelated.

The correlation coefficient is an oft-abused quantity in
methodological comparisons, because it can be inflated
by the inclusion of an outlier that lies close the regression
line, thus imparting the illusion of “good correlation.”
The author has even seen manuscripts where said outlier
is excluded from the scatterplot and the inflated value of r
is ascribed to the remaining visible data. Fig. 2.6 shows
an extreme example of this phenomenon.

In the R language, the OLS regression is built in as
the 1m() function. Using the data shown in Fig. 2.4 and
Table 2.5, the summary of the results of the linear model
is obtained as follows:

x <- ¢(89.0,79.2,35.1,57.6,96.7,98.2,18.2,16.4,39.5,43.3,
74.4,78.2,10.2,76.8,27.3,50.7,39,19.8,36,83.8)
Yi <=L c(T1OR7H N 0707, 53585 82T PR8I 8 S 248302 9552857,
59 E8 906500k 9 21MIROE I VMIME SHSNEEIIRSIMINABRGI0285)
linmod <- lm(y ~ x)
# the notation y ~ © means y is a function of x
summary (1inmod)

##

## Call:

## lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.8589 -2.9527 -0.3047 2.2277 10.2365
##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 9.71087 2.31172 4.201 0.000537 *x*

Method 2
60 80 100

40

20

0 20 40 60 80 100

Method 1

## x 1.10799 0.03827 28.951 < 2e-16 *x**

## ———

## Signif. codes: O '*¥x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1
1 1 1

##

## Residual standard error: 4.809 on 18 degrees of freedom
## Multiple R-squared: 0.979, Adjusted R-squared: 0.9778
## F-statistic: 838.2 on 1 and 18 DF, p-value: < 2.2e-16

TABLE 2.5 Example correlation data.

X Y

89.0 110.7
79.2 107.7
35.1 53.8
57.6 82.1
96.7 112.8
98.2 112.8
18.2 24.0
16.4 30.9
39.5 52.7
43.3 59.8
74.4 90.6
78.2 90.9
10.2 21.3
76.9 96.0
27.3 32.1
50.7 63.3
39.0 55.1
19.8 31.1
36.0 48.9
83.8 102.5

3

Method 2
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FIGURE 2.6 The spuriously positive effect of an outlier on the correlation coefficient.



Among a number of other results, we can see that the
intercept of the regression line is 9.71, and the slope of
the regression line is 1.11. The RSE is 4.81, and
R*=10.979.

Weighted ordinary least squares

As mentioned, the assumption of OLS regression is that
the data show a homoscedastic error. When this is not
the case, there is often a desire to limit the effect of the
“spread” of x results. This can be accomplished by
applying weights to the residuals in the calculation pro-
cess, which can be chosen to make the regression line
to be more affected by the lower values of x and less
affected by the higher values of x. This is also common
practice in calibration curve preparation, where accu-
racy of results in the concentration domain of the low
calibrators is more important than that of higher
calibrators.

Typically, one can weight with 1/x or 1/4* weights.
This is accomplished in the R language very easily. A
small set of mock data is created:

xhE<=NclEIN3NANG STNSHI0)
yhR<=NCl (12 SR gENE N2 6 221 s 078 1))
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FIGURE 2.7 The effect of weighting an ordinary least squares regres-
sion of heteroscedastic data.

Deming regression

Some of the deficiencies of OLS regression are addressed
by the method of Deming [22,23]. Specifically, Deming

7

0.06 '." 0.1 " "1

summary(lm(yh ~ xh, weights = 1/xh))

##

## Call:

## Im(formula = yh ~ xh, weights = 1/xh)

#i#

## Weighted Residuals:

#i# 1 2 3 4 5 6

## -0.1496 -0.2470 0.5915 0.3693 -0.4099 0.6103 -0.6805
##

## Coefficients:

#i# Estimate Std. Error t value Pr(>[tl)

## (Intercept) 0.3604 0.6044 0.596 0.576941

## xh 0.9892 0.1408  7.023 0.000903 *x*x*

##H -—-

## Signif. codes: O 'x*x' 0.001 '*x' 0.01 '='

##

## Residual standard error: 0.5609 on 5 degrees of freedom

## Multiple R-squared: 0.908,

## F-statistic: 49.33 on 1 and 5 DF, p-value: 0.0009028

The effect of the weighting is best appreciated graphi-
cally (see Fig. 2.7).

Adjusted R-squared:

0.8896

regression does not make the assumption that the x-axis
variable has no error. Rather, the data of both the x- and
y-axes are considered to have error associated with them.
Accordingly, Deming regression calculates its residuals as
the perpendicular distance to the regression line rather



28 Contemporary Practice in Clinical Chemistry

than the vertical distance, as shown in Fig. 2.8. The
Deming approach assumes that the error (i.e., scatter) is
independent between the variables (which should be
method comparison studies) and that it is normally dis-
tributed. However, Deming regression requires prior
knowledge of the ratio of the variances of the error. That
is, it does not assume that the variables x and y have the
same analytical coefficient of variation. Unless specified,
the ratio of the variance is assumed to be 1, and this may
not be a correct assumption.

A number of packages that can perform Deming
regression are available for the R language. These include
the mer [24] package from Roche Diagnostics and the
deming package from Mayo Clinic [25]. Using the mcr
package, the mcreg() function generates the Deming
regression results as follows, assuming a value of 1 for
the ratio of variances, as expressed in the parameter set-
ting error.ratio = 1:

library (mcr)

x <- ¢(89.0,79.2,35.1,57.6,96.7,98.2,18.2,16.4,39.5,43.3,
74.4,78.2,10.2,76.8,27.3,50.7,39,19.8,36,83.8)

Vi <=c GHOR7 SO7NG3ME FE 2 MMM B N2 E8 8D AR 089 6 AMTNE 9IRS
901.6/,90.:9,21 13796 ;132 1156353 ,650111,)31°1 /48 9 §1025)

deming <- mcreg(x,y,method.reg = "Deming", error.ratio = 1)

printSummary (deming)

##
##
##
#i#
## Reference method: Methodl
## Test method: Method2

## Number of data points: 20
#i#
##
##
## The confidence intervals are calculated with
## bootstrap ( quantile ) method.

## Confidence level: 95%

## Error ratio: 1

#i#
##
##
## DEMING REGRESSION FIT:

#i#

## EST SE LCI UCI

## Intercept 9.006000 NA 4.985596 13.150060
## Slope 1.121171 NA 1.052231 1.205403

#i#
##
##
#i#
## BOOTSTRAP SUMMARY

##

## global.est bootstrap.mean bias bootstrap.se

## Intercept 9.00600 9.03326 0.02726 2.13112

## Slope 1.12117 1.12205 0.00088 0.04032

##

## Bootstrap results generated with environment RNG
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20
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X
FIGURE 2.8 Perpendicular residuals of Deming regression.
wdeming <- mcreg(x,y,method.reg = "WDeming", error.ratio = 1)

Deming regression can also be weighted for the same
motivations that weighting is performed in OLS regres-
sion. Weighting is specified by choosing the regression
setting the parameter method.reg = "WDeming":

<N C (CIIINANENANSISTONS)

W & G2 B.85Bc85 7 0258085 1M0,85 ik 5 i)
pb <- mcreg(x, y, method.reg = "PaBa")
printSummary (pb)

In this case, a slightly different intercept and slope of
8.01 and 1.14 are produced.

Passing—Bablok regression

The reader is undoubtedly aware that both OLS and Deming
regression are unduly affected by outlier points. There exists
a class of regression methods resistant to the effect of a small
number of outliers. These are called “robust” regression
methods, and Passing—Bablok (PB) regression is among
them [26—28]. The general approach of PB regression is to
identify all possible pairs of points in the data set, calculate a
slope for each pair, and use the median as the slope of the
regression line. The intercept is then calculated in a mathe-
matically consistent manner. No assumptions are made about
errors in the x or y variables, and there are no assumptions
about the distribution of the error (i.e., scatter) about the
regression line. The problem with PB regression is that it is



computationally intensive in that when there are N data
points, there are (§) = Y1 possible pairs of slopes, mak-
ing the calculation quite slow for large data sets. While there
are many strategies for robust regression, it is a peculiarity of
Clinical Chemistry as a field that it is culturally devoted to
this particular method. Like Deming regression, PB regres-
sion is available in the R language in both the mcr and dem-
ing packages. To illustrate its resistance to the effect of an
outlier, we can introduce the outlier point (x, y) = (8, 1) into
the data set used in Fig. 2.7 and compare the effect on PB
regression, OLS regression, and Deming regression. These
are calculated in R in a manner analogous to Deming
regression:

library (pROC)

data(aSAH)

ndka.roc <- roc(outcome ~ ndka, data =
plot(ndka.roc)

aSAH)

ndka.roc

##
## Call:

## roc.formula(formula = outcome ~ ndka, data = aSAH)
The regression coefficients of the three approaches are

shown in Table 2.6 and illustrated in Fig. 2.9.

Evaluation of diagnostic test performance

It is common to discuss sensitivity of an assay from an
analytical perspective. That is, “How low can the assay
measure?” Likewise, we talk about assays from the per-
spective of their analytical specificity. That is, “What are
the known cross-reacting substances and how much do
they interfere (%) on a molar basis?”

We can also discuss the sensitivity and specificity of
tests from an epidemiological perspective, which
addresses assay performance from a diagnostic perspec-
tive rather than an analytical perspective. The calculation
of sensitivity and specificity requires knowledge of the
true disease state of the individual by some other means
(gold-standard testing or clinical criteria).

Sensitivity

The sensitivity of a test can be remembered by the brief
phrase “positivity in disease.” More accurately, the sensi-
tivity of a diagnostic test is the probability of obtaining a
positive result in a diseased individual.

® The sensitivity of a diagnostic test is an intrinsic prop-

erty of the diagnostic test and the diagnostic threshold
defined by the user.
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FIGURE 2.9 Illustration of the effect of an outlier on ordinary least
squares, Deming, and PB regression.

® A test that has perfect (100%) sensitivity catches all
diseased individuals but does not necessarily catch
only diseased individuals.

Mathematically, the sensitivity is defined as:

TP
TP + FN

where TP is the number of true positives and FN is the
number of false negatives. The reader may convince
themselves that this is indeed the probability of a positive
result when a test is applied to a diseased individual.

Graphically, if we imagine that healthy individuals
have a different distribution of possible results and dis-
eased individuals have a distribution of possible results,
we may visualize Eq. (2.7) as shown in Fig. 2.10.

Sensitivity = 2.7)

Specificity

The specificity of a test can be remembered by the brief
phrase “negativity in health.” More accurately, the speci-
ficity of a diagnostic test is the probability of obtaining a
negative result in a healthy individual.

® The specificity of a diagnostic test is an intrinsic prop-
erty of that test and the diagnostic threshold that is
defined by the user.

® A test that has perfect (100%) specificity catches only
diseased individuals but does not necessarily catch all
diseased individuals.

Mathematically, the specificity is defined as:
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FIGURE 2.10 True/false positives and true/false negatives visualized
as areas of overlapping normal distributions of test results in the diseased
and healthy populations. The diagram assumes that test results higher
than the diagnostic threshold are positive and that test results lower than
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Specificity =

Positive predictive value

The positive predictive value (PPV) of a diagnostic test is
the probability that a subject who tests positive is dis-
eased. This is represented mathematically as:

TP
TP + FP’

The PPV is not an intrinsic feature of the diagnostic
test. Rather, it is dependent on the population to which
the test is applied. When the prevalence of the disease in
question is low, the PPV will be correspondingly low. As
the prevalence approaches 0, the PPV will also approach
0. Using the fact that Prevelance =
Eq. (2.9) can be reexpressed as follows:

PPV 2.9

TP
TP + FP + TN + FN”

sensitivity X prevalence
PPV = Y2 P

populations of low disease prevalence, because most posi-
tives will be false positives.

Negative predictive value

The negative predictive value (NPV) of a diagnostic test

is the probability that a subject who tests negative is

healthy. This is represented mathematically as:
TN

TN +FN’

The NPV is gauge of the reassurance that can be pro-
vided to a patient who tests negative.

PPV = @2.11)

Likelihood ratios

There is an alternative manner of expressing the concepts
from the section “Evaluation of diagnostic test performance,”
which is that of likelihood ratios. The first required concept
is one of odds. Most readers will have a sense from collo-
quial usage that probability is expressed as a number
between O and 1, while odds are expressed by numbers that
may be greater than 1. The relationship between odds and
probability is as follows. If the probability of an event’s
occurrence is p,, then the odds for that event’s occurrence,
0, 18:

0, =P (2.12)
1 —pe
It can be shown that, if one defines the positive likeli-
hood ratio for a diagnostic test, denoted LR, as follows:
sensitivity

LR+ —

= 2.13
1 — specificity (2.13)

then there is a relationship between the pretest odds of
disease and the posttest odds of disease given by:

Opost = LR X 0pre. (2.14)

Eq. (2.14) is a simplified formulation of Bayes’ theo-
rem and has very important implications for the use of
diagnostic tests. The pretest odds, op, is directly calcu-
lated by using Eq. (2.12) using the pretest probability of
disease (i.e., the prevalence) in the population to be
tested. The posttest odds of having disease is then simply
a multiple of the pretest odds, which underscores the
notion that if the pretest odds (and therefore the pretest

sensitivity X prevalence + (1 — specificity) X (1 — prevalence)

(2.10)

which demonstrates that, as the prevalence goes to 0, the
PPV also goes to 0. The consequence of Eq. (2.10) is that
screening tests provide little value when applied to

probability) are low, then the odds (and probability) of
finding a diseased individual using the test are likewise
low.



TABLE 2.6 Comparison of outlier effects on commonly
employed regression methods.

Method Slope Intercept
Least squares 0.6 1.5
Deming 1.2 1.6
Passing—Bablok 1.1 0.2

As a rule of thumb, if LR™ > 10, the test has a large
effect on increasing the probability identifying a diseased
individual, if 5=<LR"* =10, the test has moderate effect
on increasing this probability, and if LR <5, the test is
weak effect on increasing this probability.

Similarly, we can formulate an analogous version of
Eq. (2.14) for negative tests:

1 —sensitivity

LR~ (2.15)

specificity
and

Opost = LR™ X 0ppe (2.16)

where Eq. (2.16) determines the posttest odds of being
healthy based on the pretest odds of health.

Example calculation

Let us suppose that we have developed a diagnostic test,
which we can call my patented biomarker (MPB), to
determine whether a patient has irritable bowel syndrome
(IBS) versus inflammatory bowel disease (IBD). A posi-
tive test indicates the presence of IBD. Suppose that MPB
testing is performed on a cohort of patients who have had
colonoscopies and long-term clinical evaluation, so that
they are correctly clinically classified as either IBS or
IBD. Suppose that the MPB results on a cohort of 117
people with chronic diarrhea were as follows:

From Table 2.7, we can infer that TP =17, FN =15,
FP = 3, and TN = 92. This means that the prevalence of the
disease in the testing population is Prev= (TP + FN)/
(TP + TN + FP + FN) = 0.188. Therefore, using Eq. (2.12),
we can calculate the positive pretest odds of IBD as
Opre = lEr;\r'ev =0.232. From Eq. (2.7), the sensitivity is
found to be Sens=TP/(TP+ FN)=0.773, and from
Eq. (2.8), the specificity is found to be Spec= TN/
(TN + FP) = 0.968. This means that the positive likelihood
ratio can be calculated:

LR* = _Sens 0.773

= ~ =242
1 —spec 1—0.968
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TABLE 2.7 A table of test performance of a blood
biomarker my patented biomarker for inflammatory
bowel disease in a mixed cohort of inflammatory
bowel disease and irritable bowel syndrome.

IBD+ IBD

MPB+ 17 3

MPB 5 92

and from this, we can determine the positive posttest
odds:

ol  =LR" Xol =242x0232=56l.

post pre

Because the PPV corresponds to the disease prevalence
in the population of patients who test positive, by substitut-
ing 0;05: =5.61 into Eq. (2.12) and solving for the corre-
sponding probability, the reader should be able to convince
themselves that the PPV =5.61/6.61 =0.849, which

matches the value calculated directly by using Eq. (2.9).

Receiver operating characteristic curves

The tacit assumption of the section “Likelihood ratios”
was that the appropriate cutoff of a diagnostic test is
already established. However, when we are evaluating a
new diagnostic test which generates a numerical (and not
dichotomous) result, we do not know the cutoff that will
produce the best diagnostic accuracy. This is where
receiver operating characteristic (ROC) curves can be
used. These serve to both determine the appropriate con-
centration above which (or below which) to declare tests
as “positive” and also give objective measure as to the
test’s diagnostic utility via the area under the ROC curve.

The ROC curve is a plot of sensitivity (y-axis) versus
1 — specificity (x-axis) for all possible diagnostic cutoffs.
Considering Fig. 2.10, if the vertical dashed line represent-
ing the diagnostic threshold of the test was moved to a value
of 5, the TN rate would decrease by about 50%, while the
FN result would go to nearly 0. The FP rate would go up
sharply, and the TP rate would be nearly 1. Naturally then,
the sensitivity and the specificity would change. If we slide
the vertical dashed line through all possible values of the
test result and plot sensitivity versus 1 — specificity for all
of these values, the ROC curve is obtained.

Interpreting a receiver operating characteristic
curve

When we apply a diagnostic test to a population of
healthy and diseased individuals, the more separated the
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two distributions are, the better the diagnostic test will
perform. In a situation where the healthy and diseased
are well-separated, the ROC curve will look rectangular
and will have an area under the curve (AUC) approach-
ing 1. In contrast, if the test has no discriminating power
between the healthy and diseased populations, the ROC
curve will approach the line y=x and will define an
area close to % Examples of the effect of population
overlap on the corresponding ROC are shown in
Fig. 2.11.

For this reason, ROC curves that have larger area indi-
cate better discriminating power of the test, and better
clinical test utility is expected. Obviously with any real
experimental data, there will be a margin of error in the
AUC, and this should be considered when comparing the

Preparing a receiver operating characteristic
curve

ROC curves are tedious to generate in spreadsheet pro-
grams but have been implemented in a number of
packages for the R language.

By way of example, the R package pROC [29] pro-
vides a mock data set for 113 patients with an aneurysmal
subarachnoid hemorrhage using s100 calcium-binding

TABLE 2.8 Representative data from the aSAH data set
from the pROC package showing the relationship
bteween s100b, ndka, and clinical outcome after
aneurysmal subarachnoid hemorrhage.

AUC:s of different tests. Subject Outcome s100b ndka
The i)ptimal diagnostic threshf)ld of .th.e test is gener- 1 Good 0.13 3.01
ally defined as the value that will optimize the sum of
e - e . . . . 2 Good 0.14 8.54
specificity and sensitivity. Geometrically, this will be the
point on the ROC curve that is furthest from the light 3 Good 0.10 8.09
gray line of identity shown in the ROC curves of 4 Good 0.04 10.42
Fig. 2.11. . L, 5 Poor 0.13 17.40
There are no rules about what AUC is “good enough
but as a rule of thumb: 6 Poor LU 128
. 7 Good 0.47 6.00
e AUC >0.9 is excellent. 00
e (0.8=AUC<0.9 is good. 8 Poor 0.16 13.20
® 0.7=AUC <0.8 is fair. 9 Good 0.18 15.54
o .
AUC<0T7ispoor. ~ 10 Good 0.10 6.01
® AUC = 0.5 has no discriminating power.
— FIGURE 2.11 A comparison of receiver operating characteris-
< | o | Threshold = 11.9 tic curves generated from a test wiili g(?od discriminating pi)wer
o il .. © (top) between healthy (blue) and diseased (red) populations and
- ! ‘g - poor discriminating power (bottom). The optimal test threshold
R | D <5 that maximizes the sum of sensitivity and specificity is identi-
g © |\ 5 o fied on each ROC curve and by vertical dashed lines on
a . H H ) A=0.99 i ‘
_ 1stograms.
o ’li ! ii||.
© T T 1 o |
5 10 15 20 DL B B B B
0.0 0.4 0.8
Tostigault 1 - Specificity
Threshold = 12.
P \
= 2
> =
ga [\, ‘@
o © &
[ | %]
-1 il
S T T 1

5 10 15 20

0.4

Test result

0.8
1 - Specificity
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protein B (s100b) and nucleoside diphosphate kinase A  with their confidence intervals, and a confidence band
(ndka) as biomarkers of good or poor outcome. Relevant  on the ROC.
columns of the first 10 rows of the data set (Table 2.8)
give the reader an understanding of how it must be struc-
tured to prepare an ROC curve. Suggested additional topics for study
The package makes preparing an ROC curve a trivial

matter. Here is the code to create a curve based on ndka: ® Method validation statistics

® Quality control statistics

##
## Data: ndka in 72 controls (outcome Good) < 41 cases (outcome Poor).
## Area under the curve: 0.612

Fig. 2.12 shows the resulting ROC curve. The AUC, ® Dealing with missing values
in this case 0.61, is calculated in the output among ® Traceability and commutability
many other statistics discussed in the package docu- ©® Biological variation and reference changf.: value's
mentation [29]. More elaborate ROC representations  ® Total allowable error and uncertainty in the
can be prepared with ease. For example, Fig. 2.13 measurement .
shows the s100b threshold providing optimal diagnostic ~ ® Multl.varlate regression
accuracy, the optimized sensitivities, and specificities ® Nonlinear regression
® The propagation of error
® Analysis of variance and Kruskal —Wallis
= e Resampling techniques
e Statistical analysis and data visualization in R or
= Python
2 9 ]
= e
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Self-assessment questions

1.

The SD is:

a. the average difference between any value and the
mean

b. the variance divided by 2

c. the square root of the variance

d. the mean squared difference between individual
values and the mean

e. the mean difference between any value and the
mean

. If the probability of an event occurring is 90%, what

is the corresponding odds?

a. 9

b. 10%

c. 90

d. 10:1

Regarding Passing—Bablok regression, which of the

following is false?

a. It is computationally expensive.

b. It is a form of so-called robust regression.

c. It has unique popularity in the field of clinical
chemistry.

d. It relies on the principle of minimization of
squared residuals.

e. It may give different slope and intercept if the
units of reporting are changed.

If a linear regression line has a slope of 1.07 and y-

intercept of 12:

There is a proportional bias of 12.

There is a constant bias of 12.

There is a constant bias of 0.07.

The correlation coefficient will be negative.

y values will typically be less than the corre-

sponding x values.

In a population of 190 subjects with a disease preva-

lence of 10%, a diagnostic test is performed. It is

found that there are 15 true positives, 4 false nega-

tives, 160 true negatives, and 11 false positives. The

posttest odds of a positive test is:

a. 57%

b. 1.36

c. 0.11

d. 78%

P a0y

. The normal QQ plot is:

a. useful to determine if the data follow a >
distribution

Statistical methods in laboratory medicine Chapter | 2 35

10.

b. a plot of the quantiles of the sample distribution
against the theoretical quantiles of the normal
distribution

c. sigmoidal when the sample distribution is
Gaussian

d. a way of comparing the mean of two
distributions

. Which of the following is true of OLS regression:

a. It assumes that there is no error in the x-axis
data.

b. It assumes that the error in the y-axis data is
homoscedastic.

c. Its residuals are vertical.

d. The procedure minimizes the sum of the squared
residuals.

e. All of the above.

In a distribution that has positive skewness:

The mean and the median are likely equal.

The mean and the mode are likely equal.

The median is likely lower than the mean.

The median is likely higher than the mean.

. The distribution is platykurtic.

1/x weighting is useful in linear regression when:

a. There is homoscedastic error.

b. The error is constant.

c. The scatter in the data shows no spreading as x
increases.

d. There is a need to make the small values of x
affect the regression line more than the large
values of x.

e. Deming regression is not available in your
spreadsheet program.

Which of the following cannot be used to assess the

normality of a distribution?

a histogram

a QQ plot

a Shapiro—Wilk test

a Kaplan—Meier curve

calculation of the skewness and kurtosis

S Y

P 0T
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Chapter 3

Reference intervals: theory and practice

Victoria Higgins, Michelle Nieuwesteeg, and Khosrow Adeli
Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada

Learning objectives

After completing this chapter, the reader should be able to:

e Discuss the value of reference intervals to laboratory
medicine.

® Describe the processes of establishing reference intervals,
including selection of a reference population, consideration
of analytical and preanalytical variables, and statistical meth-
ods for calculating reference intervals.

e Identify the challenges associated with establishing reference
intervals for subgroups of the population (i.e., pediatrics and
geriatrics).

e Explain the process, value, and limitations of transferring and
verifying reference intervals.

e Understand the concept, challenges, and limitations of
harmonization in laboratory medicine, especially reference
intervals.

Introduction

Concept of reference intervals and importance to
laboratory medicine

Reference intervals are fundamental tools used by medical
practitioners to interpret patient laboratory test results and
help differentiate between healthy and unhealthy indivi-
duals [1]. Sometimes referred to as “normal” or “expected”
values, reference intervals provide the range of laboratory
test results that would be expected in a healthy population.
Therefore reference intervals serve as “health-associated
benchmarks,” where results that fall outside of the reference
interval may be interpreted as abnormal, indicating the
need for additional medical follow-up and/or treatment [2].
Clinical laboratories provide valuable information to phy-
sicians and health care providers to aid in clinical decision-
making, including diagnosis and management of disease
[3,4]. Over the past several decades, there have been signifi-
cant technological advancements in laboratory medicine,
leading to increased accuracy and precision of biochemical
assays, improved analytical quality of laboratory procedures,
and a growing number of novel biomarkers that are assessed

to aid in disease diagnosis, prognosis, and monitoring [5].
However, the tools used to interpret laboratory test results
and their impact on patient care and safety have received less
attention from laboratorians and clinicians. Arguably, the
quality of the reference intervals used to interpret test results
may be equally important as the quality of the result itself
[6]. In modern medicine, it is essential that reference intervals
are updated frequently to keep pace with changing methodol-
ogies and that well-defined reference intervals are established
for novel tests. It is clear that the lack or inappropriate use of
reference intervals can result in misdiagnosis, unnecessary
medical follow-up, increased patient risk, and higher health
care costs. Although the concept and use of reference inter-
vals are generally straightforward, establishment of accurate
reference intervals can be complex, requiring recruitment of
healthy subjects, awareness of analytical and preanalytical
factors that can affect testing, careful statistical analysis,
and consideration of important covariates (e.g., age, sex, and
ethnicity). Establishing a new reference interval requires a
minimum of 120 healthy reference subjects per partition,
as recommended by the Clinical and Laboratory Standards
Institute (CLSI) [7]. Given the complexity of establishing
a new reference interval, most laboratories adopt reference
intervals provided by the instrument manufacturer or attempt
to transfer and validate an existing reference interval.
Verification of a reference interval requires a much smaller
sample size of healthy subjects (i.e., minimum n =20 per
partition [7]), and is thus much more feasible for individual
laboratories to perform. This chapter will review procedures
for establishing reference intervals, factors that affect refer-
ence interval determination, implementation and transference
of reference intervals, global reference interval initiatives,
and approaches for reference interval harmonization (hRI).

Reference intervals versus clinical decision limits

Statistically, reference intervals are defined as limiting
values within which a specified percentage (usually the cen-
tral 95%) of values from an apparently healthy reference
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population would fall. According to this definition, typi-
cally, the 2.5th and 97.5th centiles of the test result distribu-
tion are used to define the upper and lower reference limits,
as depicted in Fig. 3.1. This means that 2.5% of individuals
with the highest test results and 2.5% of individuals with
the lowest test results are excluded (reviewed in Ref. [8]).
In some cases, this definition may be modified. For exam-
ple, only the upper or lower limit may be considered for
analytes, where only one side of the distribution is clinically
significant. In addition, for some analytes, a different centile
may be used to provide greater specificity. For instance, the
99th centile of a healthy population is used to establish the
upper reference limit for cardiac troponin [9].

The International Organization for Standardization (ISO)
directive for medical laboratories (ISO 15189) requires biologi-
cal reference intervals or clinical decision limits to be available
and appropriately reviewed and updated [10]. Clinical laborato-
ries use reference intervals to interpret most laboratory test
results; however, decision limits are used for a limited number
of biomarkers. Reference intervals describe the distribution of
values from an apparently healthy population. Individual test
results can be compared to the reference interval to determine
if the test value fits within the defined reference range, estab-
lished from the distribution of values based on an apparently
healthy reference population. In contrast, clinical decision lim-
its, as the name suggests, distinguish between particular clinical
states. Decision limits provide threshold values; values exceed-
ing or falling below the threshold indicate a significantly higher
risk of a clinical outcome or may satisfy criteria for diagnosis
of a specific disease [10]. Furthermore, multiple thresholds
may be used to indicate levels of increasing risk for a disease
(e.g., borderline high and high). In contrast to reference inter-
vals, decision limits are often established from clinical
outcome studies, including prospective cohort studies and

Central 95%

2.5% false
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i 0

97.5th
percentile

Analyte concentration

2.5% false
positive

_/
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Number of reference individuals

Reference interval

FIGURE 3.1 Graphical representation of a reference interval. A refer-
ence interval is defined as the central 95% of laboratory test results from
a healthy, reference population. An example of a normal distribution for
analyte concentration is shown.

meta-analyses, but can also be based on consensus of expert
panels. The CLSI EP28-A3c guidelines state that “when
decision limits determined by national or worldwide consen-
sus exist, these limits, rather than reference intervals, should
be reported” [7].

Current gaps and recent initiatives in reference
interval establishment

Patients and their health care workers assume that refer-
ence intervals are readily available to medical laboratories
and health care institutions performing clinical tests and
interpreting test results. Unfortunately, this is not always
the case and many laboratories depend on outdated and
incomplete information when reporting test results. In
many cases, the same reference intervals are used to inter-
pret test results for children and adults, which can lead to
erroneous and inaccurate interpretation. Available refer-
ence intervals also suffer from several limitations includ-
ing small sample sizes, and the use of outpatient or
hospitalized patient samples. There has thus been an
urgent need for the development of new up-to-date labo-
ratory reference interval databases based on healthy chil-
dren, adult, and geriatric populations. It is often difficult
to obtain sufficient numbers of healthy reference samples
to stratify reference intervals according to multiple cov-
ariates [11]. This can pose a major challenge when estab-
lishing accurate reference intervals, particularly for
pediatric or geriatric populations where it is more difficult
to collect large numbers of blood samples from healthy
individuals. As a result, many existing reference intervals
were determined decades ago using methods and/or
instruments that are no longer relevant given the techno-
logical advances in laboratory testing. Further, reference
intervals are lacking for many novel/emerging biomar-
kers. Thus current and future initiatives should consider
these gaps in the design of their reference interval studies.

A number of international initiatives are recognizing the
current gaps in reference intervals and the need to establish
values that are up-to-date and appropriate for the local popula-
tion. In Canada, Canadian Laboratory Initiative on Pediatric
Reference Intervals (CALIPER) has partnered with the
Canadian Health Measures Survey (CHMS) to evaluate data
collected from over 12,000 Canadians, ranging in age from
3—79 years, in order to establish reference intervals for over
50 common biochemical, endocrine, and hematology biomar-
kers for pediatric, adult, and geriatric populations [12—14].
CALIPER also has established a comprehensive pediatric ref-
erence interval database of age- and sex-stratified reference
intervals for over 170 pediatric biomarkers currently available
(described further below) [15—31]. In Australia, a direct ref-
erence interval study, called Aussie Normals, has surveyed
1876 healthy male and female participants aged 18—65 years.



All individuals were from the Australian Capital Territory,
which has a multicultural population, representative of other
regions in Australia. The study established reference intervals
for 91 analytes, with individuals excluded on the basis of
pregnancy, diabetes, renal disease, and cardiovascular disease
[32]. In Europe, several reference interval initiatives have
been established. Nordic Reference Interval Project (NORIP)
is a collaborative initiative among five Nordic countries to
measure 25 of the most common chemistry analytes [33].
Laboratory Reference Ranges for Turkey, conducted by the
Association of Clinical Biochemists in Turkey, is a reference
interval initiative aimed at updating all outdated reference
intervals for the Turkish population [11]. REALAB, an Italian
reference interval initiative, has developed reference intervals
for 23 chemistry analytes plus 13 additional markers, based
on 61,246 samples collected from hospital patients [34].
Although this is not the preferred method recommended by
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the CLSI, many reference studies use this approach to esti-
mate reference intervals due to the challenges of collecting
large numbers of blood samples from healthy individuals.

Methodological approaches to
establishment of reference intervals

The CLSI and the International Federation of Clinical
Chemistry and Laboratory Medicine (IFCC) provide detailed
guidelines for the clinical laboratory community on defining,
establishing, and verifying reference intervals [7,35—41].
The recommendations for the selection of reference indivi-
duals, preanalytical and analytical considerations, outlier
exclusion, and statistical methods for reference interval deter-
mination and partitioning are described below and are sum-
marized in Fig. 3.2.

Indirect sampling method
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FIGURE 3.2 Flowchart of direct and indirect reference interval establishment processes.
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Population-based reference intervals

Population-based reference intervals are derived from a
group of well-defined reference individuals that, ideally,
are similar to the target patient in all respects other than
the disease condition under investigation. Population-based
reference intervals are widely used in contrast to individual
reference intervals, based on values obtained from the
same individual, as they are more impractical to establish
and implement. Thus this chapter will refer only to the
establishment of population-based reference intervals.

Selection of reference individuals

The quality of a reference interval can depend heavily on
the selection and recruitment of appropriate reference indi-
viduals [8,11,42]. According to the CLSI EP28-A3c guide-
lines, reference intervals should be based on direct sampling
of healthy individuals from the age group(s) of interest,
using well-defined inclusion/exclusion criteria. Important
factors to consider when selecting reference individuals
include direct versus indirect sampling and application of a
priori versus a posteriori selection criteria.

Direct versus indirect sampling

Direct sampling is the preferred method recommended by
the CLSI [7] and involves the selection of healthy indivi-
duals using defined inclusion/exclusion criteria. Using this
method, “unhealthy” individuals are not included, and thus
do not jeopardize the validity of the reference interval. The
challenges associated with the direct sampling method,
however, include the difficulty and cost associated with col-
lecting a sufficient number of blood samples from healthy
individuals to calculate accurately reference intervals [39].
Statistical methods used to establish reference intervals using
data obtained by direct sampling are discussed in the section
“Statistical determination of reference intervals.”

In contrast, indirect sampling uses laboratory values
obtained from a patient population, which includes both
healthy and pathological subjects, to estimate reference
intervals. This approach is easier and less costly than the
direct sampling technique. However, the use of indirect
sampling is not recommended by the CLSI due to the risk
of including values from diseased individuals, which may
result in skewed, broader, or less sensitive reference inter-
vals [7]. However, the CLSI does acknowledge that, in
some cases, the use of indirect sampling may be neces-
sary when it is too difficult to recruit sufficient numbers
of healthy individuals [7]. This is often the case in pediat-
rics, where issues such as small sample volume and paren-
tal consent can pose significant challenges to recruitment
of a healthy reference population. Statistical methods that
have been proposed to calculate reference intervals based
on the indirect sampling method include the Hoffmann

[43], Bhattacharya [44], modified Bhattacharya to accom-
modate Gamma distributions [45], and methods proposed
by Arzideh et al. [46,47] for data that typically require a
Box—Cox transformation and Gaussian distributed data. All
proposed methods attempt to define the range of data
explained by healthy subjects amidst a mixed population of
both healthy and pathological samples. Furthermore, all
methods assume the majority of observations in the data set
are from healthy individuals, an assumption difficult to
ascertain depending on the patient population employed.

A priori versus a posteriori sampling

Both a priori and a posteriori sampling approaches can be
used to establish reliable reference values. The determination
of which method to use often depends on the nature of the
study. In a priori sampling, well-defined inclusion/exclusion
and partitioning criteria must be established before reference
individuals are selected. In addition, an appropriate question-
naire designed to reveal these criteria is necessary. Exclusion
criteria should exclude individuals from the reference sample
group based on assessments indicating lack of good health
(e.g., recent or chronic illness, use of prescription or nonpre-
scription medication, use of tobacco or alcohol, and diet) [7].
Reference intervals can be partitioned by several covariates
that are known to affect the level of the specific analyte (i.e.,
sex, age, Tanner stage, and ethnicity), and therefore the ques-
tionnaire should include these factors as well. This procedure
is typically applied for analytes with well-established methods
and laboratory procedures, and known sources of biological
variation. Information from the literature is used to develop
exclusion and partitioning criteria, which are included in the
questionnaire to exclude individuals from the sampling pro-
cess [7]. In contrast, in the a posteriori approach, exclusion
and partitioning occur after sample collection and analysis.
This approach is recommended for analytes that are new or
for which well-documented information does not exist in the
literature regarding laboratory procedures and biological vari-
ation. However, this approach may require a more detailed
questionnaire to capture information on all potential covari-
ates that may be used as exclusion or partitioning criteria [7].

Preanalytical and analytical variables

A number of preanalytical and analytical variables can
influence test results and reference intervals. Therefore
these variables must be carefully considered and con-
trolled in both the patient population and in reference
individuals. The CLSI EP28-A3c guideline lists a variety
of preanalytical and analytical variables that should be
considered when developing reference intervals [7].
Preanalytical variables include subject preparation,
specimen collection, and specimen handling considera-
tions. Depending on the analyte, subjects may need to be



in a fasted or a nonfasted state, may require a rest period
from physical activity prior to sample collection, or may
need to abstain from substances that could affect analyte
levels, such as pharmacological agents, caffeine, alcohol,
tobacco, or vitamin C. In addition, some analytes vary
with circadian rhythm or stage of the menstrual cycle (in
the case of females) and, thus, these factors should also be
considered. Other subject-related variables may include
prior diet and stress level. Specimen collection considera-
tions include time of day, environmental conditions during
collection, body posture, specimen type, blood flow, equip-
ment, tourniquet time, collection technique, sample vol-
ume, and anticoagulants. Regarding specimen handling, it
is important to consider variables such as transport, storage,
clotting, separation of serum/plasma, and sample prepara-
tion for analysis.

Analytic variability of the method used for measure-
ment can also impact reference intervals, and thus it is
important that the measurement of reference samples and
patient samples are performed in an identical manner
[2,7]. The methods used should be clearly described, and
between-run analytical imprecision, limit of detection, lin-
earity, recovery, reportable range, interference characteris-
tics (i.e., hemolysis, icterus, and lipemia), and traceability
should be reported. Instrument and equipment maintenance
and normal operation must also be equivalent, as should
quality control procedures for reagents, calibration, con-
trols, and calculation methods. Additional consideration
should include reagent lot-to-lot variability, instrument-to-
instrument variability (if multiple analyzers are used), and
technologist variability [7].

Outlier exclusion

Before reference intervals are calculated, the data should
first be examined for the presence of observations with
extreme values that have the potential to influence the
estimation of reference values. Although reference popu-
lations are usually selected to minimize the number of
outliers in the distribution, in actuality, this is often
impossible to achieve. Thus the frequency distribution of
the data should first be inspected for the presence of out-
liers. Frequency histograms or box plots can be used to
inspect visually the data for the presence of outliers.
However, statistical methods should be applied to remove out-
liers prior to reference interval determination. According the
CLSI EP28-A3c guidelines, two methods are recommended
for outlier removal: Dixon’s test or Tukey’s method [7].
Dixon’s test calculates the absolute difference (D)
between the suspected outlier (which can be an extreme large
or extreme small value) compared with the next largest/smal-
lest observation and compares this with the range of all
observations (R), including extremes. In Dixon’s test, a ratio
of 1/3 is used as a cutoff, where, if D/R exceeds the 1/3 ratio
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(meaning that D is greater than or equal to 1/3 of the range
R), then the outlier should be removed. If two or more out-
liers are suspected on the same side of the distribution, the
1/3 rule can be applied to the least extreme outlier and
removed collectively with more extreme values [48.,49].
Dixon’s test requires the data be normally distributed, and
data that do not follow a Gaussian distribution should be
transformed before applying Dixon’s test. In addition, it
should be noted that Dixon’s test should only be applied
once to remove outliers, which may not always be practical
depending on the nature of the distribution. Furthermore,
Dixon’s tests preferentially identify and remove outliers with
high values compared with those at the lower end of the nor-
mal distribution, which should be considered before choos-
ing to use Dixon’s test or Tukey’s method for outlier
removal [48].

Tukey’s method involves calculating the 25th and
75th percentiles of the data set (Q1 and Q3, respectively),
and subsequently using these values to determine the
interquartile range (IQR; Q3—Q1). The IQR is used to
determine the boundaries for outlier exclusion, where the
lower boundary is calculated by Q1—1.5 X IQR and the
upper boundary is calculated by Q3 + 1.5 XIQR. Any
value below the lower boundary or above the upper
boundary should be removed as outliers [50]. Similar to
Dixon’s test, Tukey’s method requires a normally distrib-
uted data set. The data may be transformed to achieve
normality using a method such as Box—Cox transforma-
tion, or an adjusted Tukey test may be used on a skewed
data set [51]. Unlike Dixon’s test, however, the Tukey
method may be applied to a data set more than once to
remove outliers and does not preferentially favor removal
of outliers from one side of the distribution over the other.
Thus Tukey’s method may be better suited for outlier
removal when both the upper and lower limits of the ref-
erence interval must be determined [2].

Partitioning and minimum sample size

Partitioning is used when significant differences exist in
analyte levels between subgroups, such as between sexes
or different age groups. Partitioning or establishment of
separate reference intervals for different subgroups of a
reference population may be necessary for certain ana-
lytes. For established analytes, the clinical or physiologi-
cal significance of partitioning may already be known.
For new markers, however, this information may not be
available. The CLSI recommends that for each partition,
or subgroup, a minimum number of 120 reference indivi-
duals should be included in the calculation of the refe