


Genome Mapping and Molecular Breeding in Plants
Volume 4

Series Editor: Chittaranjan Kole



Volumes of the Series
Genome Mapping and Molecular Breeding in Plants

Volume 1
Cereals and Millets

Volume 2
Oilseeds

Volume 3
Pulses, Sugar and Tuber Crops

Volume 4
Fruits and Nuts

Volume 5
Vegetables

Volume 6
Technical Crops

Volume 7
Forest Trees



Chittaranjan Kole (Ed.)

Fruits and Nuts

With 50 Illustrations, 2 in Color

123



Chittaranjan Kole
Department of Horticulture
316 Tyson Building
The Pennsylvania State University
University Park, PA 16802
USA

e-mail: cuk10@psu.edu

Library of Congress Control Number: 2006930259

ISBN-10 3-540-34531-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34531-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permissions for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Editor: Dr. Sabine Schreck, Heidelberg, Germany
Desk Editor: Dr. Jutta Lindenborn, Heidelberg, Germany
Cover design: WMXDesign GmbH, Heidelberg, Germany
Typesetting and production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany
39/3100/YL 5 4 3 2 1 0 – Printed on acid-free paper



Preface to the Series

Genome science has emerged unequivocally as the leading discipline of this new
millennium. Progress in molecular biology during the last century has provided
critical inputs for building a solid foundation for this discipline. However, it has
gained fast momentum particularly in the last two decades with the advent of
genetic linkage mapping with RFLP markers in humans in 1980. Since then it has
been flourishing at a stupendous pace with the development of newly emerging
tools and techniques. All these events are due to the concerted global efforts
directed at the delineation of genomes and their improvement.

Genetic linkage maps based on molecular markers are now available for almost
all plants of significant academic and economic interest, and the list of plants is
growing regularly. A large number of economic genes have been mapped, tagged,
cloned, sequenced, or characterized for expression and are being used for genetic
tailoring of plants through molecular breeding. An array of markers in the ar-
senal from RFLP to SNP; tools such as BAC, YAC, ESTs, and microarrays; local
physical maps of target genomic regions; and the employment of bioinformatics
contributing to all the “-omics” disciplines are making the journey more and more
enriching. Most naturally, the plants we commonly grow on our farms, forests, or-
chards, plantations, and labs have attracted emphatic attention, and deservedly so.
The two-way shuttling from phenotype to genotype (or gene) and genotypte (gene)
to phenotype has made the canvas much vaster. One could have easily compiled the
vital information on genome mapping in economic plants within some 50 pages in
the 1980s or within 500 pages in the 1990s. In the middle of the first decade of this
century, even 5,000 pages would not suffice! Clearly genome mapping is no longer
a mere “promising” branch of the life science; it has emerged as a full-fledged
subject in its own right with promising branches of its own. Sequencing of the
Arabidopsis genome was complete in 2000. The early 21st century witnessed the
complete genome sequence of rice. Many more plant genomes are waiting in the
wings of the national and international genome initiatives on individual plants or
families.

The huge volume of information generated on genome analysis and improve-
ment is dispersed mainly throughout the pages of periodicals in the form of review
papers or scientific articles. There is a need for a ready reference for students and
scientists alike that could provide more than just a glimpse of the present status
of genome analysis and its use for genetic improvement. I personally felt the gap
sorely when I failed to suggest any reference works to students and colleagues
interested in the subject. This is the primary reason I conceived of a series on
genome mapping and molecular breeding in plants.

There is not a single organism on earth that has no economic worth or concern
for humanity. Information on genomes of lower organisms is abundant and highly
useful from academic and applied points of view. Information on higher animals
including humans is vast and useful. However, we first thought to concentrate
only on the plants relevant to our daily lives, the agronomic, horticultural and
technical crops, and forest trees, in the present series. We will come up soon
with commentaries on food and fiber animals, wildlife and companion animals,
laboratory animals, fishes and aquatic animals, beneficial and harmful insects,
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plant- and animal-associated microbes, and primates including humans in our
next “genome series” dedicated to animals and microbes. In this series, 82 chapters
devoted to plants or their groups have been included. We tried to include most
of the plants in which significant progress has been made. We have also included
preliminary works on some so-called minor and orphan crops in this series. We
would be happy to include reviews on more such crops that deserve immediate
national and international attention and support. The extent of coverage in terms
of the number of pages, however, has nothing to do with the relative importance of
a plant or plant group. Nor does the sequence of the chapters have any correlation to
the importance of the plants discussed in the volumes. A simple rule of convenience
has been followed.

I feel myself fortunate to have received highly positive responses from nearly
300 scientists of some 30-plus countries who contributed the chapters for this se-
ries. Scientists actively involved in analyzing and improving particular genomes
contributed each and every chapter. I thank them all profoundly. I made a consci-
entious effort to assemble the best possible team of authors for certain chapters
devoted to the important plants. In general, the lead authors of most chapters
organized their teams. I extend my gratitude to them all.

The number of plants of economic relevance is enormous. They are classified
from various angles. I have presented them using the most conventional approach.
The volumes thus include cereals and millets (Volume I), oilseeds (Volume II),
pulse, sugar and tuber crops (Volume III), fruits and nuts (Volume IV), vegeta-
bles (Volume V), technical crops including fiber and forage crops, ornamentals,
plantation crops, and medicinal and aromatic plants (Volume VI), and forest trees
(Volume VII).

A significant amount of information might be duplicated across the closely
related species or genera, particularly where results of comparative mapping have
been discussed. However, some readers would have liked to have had a chapter on
a particular plant or plant group complete in itself. I ask all the readers to bear
with me for such redundancy.

Obviously the contents and coverage of different chapters will vary depending
on the effort expended and progress achieved. Some plants have received more
attention for advanced works. We have included only introductory reviews on
fundamental aspects on them since reviews in these areas are available elsewhere.
On other plants, including the “orphan” crop plants, a substantial amount of
information has been included on the basic aspects. This approach will be reflected
in the illustrations as well.

It is mainly my research students and professional colleagues who sparked my
interest in conceptualizing and pursuing this series. If this series serves its purpose,
then the major credit goes to them. I would never have ventured to take up this
huge task of editing without their constant support. Working and interacting with
many people, particularly at the Laboratory of Molecular Biology and Biotechnol-
ogy of the Orissa University of Agriculture and Technology, Bhubaneswar, India
as its founder principal investigator; the Indo-Russian Center for Biotechnology,
Allahabad, India as its first project coordinator; the then-USSR Academy of Sci-
ences in Moscow; the University of Wisconsin at Madison; and The Pennsylvania
State University, among institutions, and at EMBO, EUCARPIA, and Plant and
Animal Genome meetings among the scientific gatherings have also inspired me
and instilled confidence in my ability to accomplish this job.

I feel very fortunate for the inspiration and encouragement I have received
from many dignified scientists from around the world, particularly Prof. Arthur
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Kornberg, Prof. Franklin W. Stahl, Dr. Norman E. Borlaug, Dr. David V. Goeddel,
Prof. Phillip A. Sharp, Prof. Gunter Blobel, and Prof. Lee Hartwell, who kindly
opinedon theutilityof the series for students, academicians, and industry scientists
of this and later generations. I express my deep regards and gratitude to them all
for providing inspiration and extending generous comments.

I have been especially blessed by God with an affectionate student community
and very cordial research students throughout my teaching career. I am thankful
to all of them for their regards and feelings for me. I am grateful to all my teachers
and colleagues for the blessings, assistance, and affection they showered on me
throughout my career at various levels and places. I am equally indebted to the few
critics who helped me to become professionally sounder and morally stronger.

My wife Phullara and our two children Sourav and Devleena have been of great
help to me, as always, while I was engaged in editing this series. Phullara has
taken pains (“pleasure” she would say) all along to assume most of my domestic
responsibilities and to allow me to devote maximum possible time to my profes-
sional activities, including editing this series. Sourav and Devleena have always
shown maturity and patience in allowing me to remain glued to my PC or “printed
papers” (“P3” as they would say). For this series, they assisted me with Internet
searches, maintenance of all hard and soft copies, and various timely inputs.

Somefigures includedby theauthors in their chapterswerepublishedelsewhere
previously. The authors have obtained permission from the concerned publishers
or authors to use them again for their chapters and expressed due acknowledge-
ment. However, as an editor I record my acknowledgements to all such publishers
and authors for their generosity and good will.

I look forward to your valuable criticisms and feedback for further improve-
ment of the series.

Publishing a book series like this requires diligence, patience, and understand-
ing on the part of the publisher, and I am grateful to the people at Springer for
having all these qualities in abundance and for their dedication to seeing this series
through to completion. Their professionalism and attention to detail throughout
the entire process of bringing this series to the reader made them a genuine plea-
sure to work with. Any enjoyment the reader may derive from this books is due in
no small measure to their efforts.

Pennsylvania, Chittaranjan Kole
10 January 2006
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Fruit and nut crops make perhaps the largest group of species of economic impor-
tance and they by far outnumber any other major groups of domesticated plants.
However, progress of genetic or genomic researches on fruit and nut crops is indeed
much slower than the pace they deserve. Relatively more importance attached to
the agronomic crops might be one of the reasons. The most important reason, to
our mind, however, is the constraints inherent to the long life cycle, heterozygosity,
space required to raise large populations often required, and difficulty in recording
phenotypic trait data for most of the fruit and nut crops. The common constraints
in most of these crops include too long juvenile period, problems of sterility and
incompatibility, large plant size, the randomness of artificial mutations, limita-
tions of the sexual system to incorporate small changes, the dependence upon
natural origin of variation and the exorbitant costs needed to select, detect, and
evaluate desirable recombinants those lead to the difficulties for genetic analysis
and breeding. Most of these crops invoke for formulating strategies specific to the
above problems and limitations, employment of pseudo-testcross method and use
of SDRF markers, for examples.

Appreciable progress has been made in some fruit crops, mostly temperate,
including say apple, grapes, stone fruits, cherries, citrus fruits. Still many others
remain neglected, particularly the tropical and subtropical fruit and nut crops
grown in the developing countries, litchi, custard apple, guava to name a few.
These ‘orphan’ fruit and nut crops are too many and deserve global attention for
concerted efforts. The presentation of the chapters in this volume, therefore, has
nothing to do with the production statistics and relative economic importance of
the fruit and nut crops at world level, but has been done primarily envisaging the
quantum of works accomplished. We have included 20 chapters in this volume
including seven chapters perhaps with the first time comprehensive review such
as on mango, banana, olive, pineapple, pistachio, persimmon and papaya. How
we wish to have independent volumes on temperate, and tropical and subtropical
fruits and nuts in near future.

Due to some unavoidable circumstances there was delay for this volume to go
to press and obviously the authors had to take pain to rework on the manuscripts
for updating. I remain grateful to them for their co-operations and perseverance. I
am also thankful to them for presenting the most current commentary on genomic
researches on fruit and nut crops.

The former three volumes of this series have earned appreciation from all levels
of readers and we hope this volume also will be liked by them. In that case the
credit must go to the authors and the publishers for their contributions and care. I
take the sole responsibility of all the shortcomings, and look forward to the readers
for their suggestions for improvement in contents and format of this volume in its
future edition(s).

Pennsylvania, Chittaranjan Kole
15 April 2006
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CHAPTER 1

1 Apple

S. E. Gardiner1, V. G. M. Bus2, R. L. Rusholme3, D. Chagné1, and E. H. A. Rikkerink4

1 HortResearch, Palmerston North Research Centre, Private Bag 11 030, Palmerston North, New Zealand
e-mail: sgardiner@hortresearch.co.nz

2 HortResearch, Hawke’s Bay Research Centre, Private Bag 1401, Havelock North, New Zealand
3 University of East Anglia, School of Biological Sciences, Norwich, Norfolk, NR4 7TJ, UK
4 HortResearch, Mt Albert Research Centre, Private Bag 92 169, Auckland, New Zealand

1.1
Introduction

1.1.1
Origin of the Domesticated Apple

The genus Malus belongs to the Rosaceae family
and forms with its closely related fruit (Pyrus and
Cydonia) and ornamental (Amelanchier, Aronia,
Chaenomeles, Cotoneaster, Crateagus, Pyracantha,
Sorbus) genera, the subfamily Maloideae (Challice
1974). This subfamily is believed to be an allopoly-
ploid, that evolved from a hybridization between
a Spiraeoidae (x = 9) and a Prunoidae (x = 8) ances-
tor resulting in the basic haploid number of x = 17
for the Pomoidae (Lespinasse et al. 1999). Most Malus
species are diploids (2n = 34), but a few are triploid
(e.g., M. hupehensis and M. coronaria), or tetraploid
(e.g., M. sargentii), while some species show variable
levels of ploidy (Way et al. 1989). Little information is
available on the karyotype of apple. The lengths of the
chromosomes in haploid M. domestica range from
1.5 to 3.5 µm, with 11 of them being submetacentric,
and six being metacentric with respect to the position
of the centromere (Bouvier et al. 2000). The longest,
and possibly a second chromosome carry a satellite.

With the number ranging from eight to about
122 (Robinson et al. 2001; Harris et al. 2002), there
is no agreement among taxonomists as to how many
species this genus comprises. The higher estimates
may also include many interspecifics, as the species
are widely compatible and readily interbreed (Kor-
ban 1986). This characteristic has been deployed in
apple breeding for the introgression of pest and dis-
ease resistance genes. For this reason as well as the
assumed interspecific origin of the eating apple in
general (Korban 1986; Korban and Chen 1992; Robin-
son et al. 2001), it seems appropriate to identify the

domesticated apple as M. x domestica Borkh. How-
ever, more recently it has been argued that the correct
nomenclature is M. pumila Mill. (Korban and Shirvin
1984), and that this species should include the wild
apple identified as M. sieversii (Lebed.) Roem. (Mab-
berley et al. 2001). Vavilov (1951) also referred to the
wild apple asM.pumilawhendescribing the centers of
origin of cultivated plant species, which is in complete
opposition to the view of another well-known Russian
botanist, Ponomarenko, who denied the existence of
this species (Way et al. 1989). However, the related-
ness of the domesticated and wild apples is strongly
supported by the small degree of morphological, bio-
chemical and molecular variation between the two
species (Harris et al. 2002). The same could be said of
the European wild crabapple M. sylvestris. This also
belongs, together with M. sieversii, to M. pumila Mill.
(Westwood, in Way et al. 1989), and may have been
the result of a separate introduction of the wild apple
into Europe. However, the UK research team has not
adhered to its own recommendation in later papers
and refers to the domesticated apple as M. domestica
Borkh., while recognizing M. sieversii from Central
Asia as a separate species (Robinson et al. 2001; Har-
ris et al. 2002). As it suits a purpose of these reviewers,
we adhere to the nomenclature according to Way et al.
(1989), who identify M. domestica and M. sieversii as
separate species.

The domestication of the apple went hand in hand
with the civilization of mankind and has been de-
scribed extensively by Morgan and Richards (1993).
There is evidence of fruit gathering having started as
early as the Neolithic times (Juniper et al. 1999). Cul-
tivation increased with propagation through cuttings
and also with the discovery of grafting techniques
(Morgan and Richards 1993). The fixing of geno-
types had a long-lasting effect on apple production,
enabling varieties to be grown in orchards and pro-

Genome Mapping and Molecular Breeding in Plants, Volume 4
Fruits and Nuts
C. Kole (Ed.)
© Springer-Verlag Berlin Heidelberg 2007



2 S. E. Gardiner et al.

viding horticulturalists with the possibility of select-
ing the best varieties from the many that would have
only suited processing because of their bitterness and
astringency. Even today, apple production is domi-
nated by cultivars, such as McIntosh (1800s), Jonathan
(1820s), Cox’s Orange Pippin (1830s), Granny Smith
(1860s), Delicious (1870s), Golden Delicious (1890s)
and Braeburn (1940s), which were mostly selected
from chance seedlings over 100 years ago. By this pe-
riod, apple had reached all the corners of the world, as
emigrants from the Old World introduced them into
their new home countries. In Asia, these varieties of-
ten replaced the local varieties selected fromthenative
species M. prunifolia and its cultivated species M. asi-
atica (Morgan and Richards 1993). It is only recently
that bred cultivars developed in the 1930/40s and in-
troduced in the 1960/70s, such as Royal Gala (Kidd’s
Orange Red × Golden Delicious), Jonagold (Delicious
× Jonathan), Fuji (Ralls Janet × Delicious), and Elstar
(Ingrid Marie × Golden Delicious), have made major
inroads in some countries, even completely replac-
ing existing cultivars. For example, China’s enormous
growth in apple production is entirely due to the in-
troduction of Fuji.

1.1.2
Apple Production and Exports

With the advent of the new bred cultivars, apple
production started to increase rapidly, with several
Southern Hemisphere countries, into which apple was
introduced, starting to develop major apple indus-
tries as they took advantage of the seasons being op-
posed to those in the Northern Hemisphere (Morgan
and Richards 1993). Table 1 shows that in 2004, the
world production of apples was an estimated 59 mil-
lion metric tonnes (MT) produced on 5,280,638 ha of
trees (http://faostat.fao.org). After bananas (71 mil-
lion MT), grapes (65 million MT) and oranges (63
million MT), apples are the fourth biggest fruit crop
in the world and production is more than three times
that of pears (18 million MT). At 20.5 million MT,
China produced over one third of the world produc-
tion,with theUSAbeingadistant secondat 4.3million
MT (Table 1). However, many of the large producers
do not export much of their crops, as they have large
internal markets, with most of the fruit probably be-
ing processed. At 6.2 million MT, about 10% of the
world production of apples is exported.

1.1.3
Breeding Strategy

The traditional method of apple improvement by se-
lecting the best phenotypes from seedlings grown
from open-pollinated seeds was replaced by delib-
erate hybridization about 200 years ago. The science
of breeding started with the first controlled cross-
pollinisation carried out by Thomas Knight early
in the nineteenth century (Brown 1975). However,
initially little progress was made in improving ap-
ple cultivars through controlled crossing, which has
been attributed to poor selection of parents (Janick
et al. 1996). The success of the relatively recent intro-
ductions must be attributed to the selection of par-
ents with good fruit quality. Royal Gala, Fuji, and
Jonagold were selected in the first generation from
the best commercial cultivars, notably Golden Deli-
cious and Delicious, available at the time of cross-
ing.

Table 1. Estimated apple production (for 2004) and exports
(for 2003) (× 1000 metric tonnes) by country (FAOSTAT data)

Country Production Export

China 20,503 609
USA 4,290 546
Poland 2,500 349
France 2,400 804
Iran 2,350 109
Turkey 2,300 19
Italy 2,012 708
Russian Federation 1,900 1
Germany 1,600 70
India 1,470 9
Argentina 1,262 200
Chile 1,100 601
Brazil 978 76
Japan 881 17
Ukraine 850 10
Romania 810 0
South Africa 701 326
Hungary 680 8
North Korea 660 0
Spain 614 73
New Zealand 550 323
Mexico 503 0
Uzbekistan 500 4
Egypt 485 0
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Apple is self-incompatible and highly heterozy-
gous, which results in very diverse progeny with only
a few of them being a major improvement on the
parents. As most characters are under polygenic con-
trol, low efficiency in genetic improvement of breed-
ing lines together with a long juvenile period make
breeding in this crop a slow and expensive pro-
cess. Hence most apple breeders cannot afford long-
term breeding strategies based on recurrent selection
achieving incremental gains for a range of charac-
ters in each generation (Bringhurst 1983; Oraguzie
et al. 2004). Instead, the most common breeding strat-
egy in apple is a limited version of recurrent selec-
tion, which is applied to fewer but larger progenies
derived from a limited number of parents, selected
for a few characters to be improved in a new cul-
tivar (Janick et al. 1996). As breeders cannot afford
the time to develop test-crosses to assess the abil-
ity of crossing combinations to achieve the breed-
ing goals (Bringhurst 1983), there will be an aspect
of chance in the parent selection for a high spe-
cific combining ability (SCA) with regard to quan-
titatively inherited traits. The effect of parents with
poor fruit quality is illustrated by the breeding of
scab-resistant cultivars carrying the Vf gene from M.
x floribunda 821, a crabapple with small fruit of low
quality. The first cultivar, Prima (Dayton et al. 1970),
is an F4 descendant of M. x floribunda and was in-
troduced about 30 years after the Purdue-Rutgers-
Illinois (PRI) breeding program started with the spe-
cific objective of developing pest and disease resis-
tant cultivars (Crosby et al. 1992). In spite of an “un-
ceasing, single-minded emphasis on moving the Vf
gene into an adapted type” (Janick et al. 1996), 35
years later there still are no cultivars that have had
a considerable impact on pipfruit production by re-
placing major susceptible cultivars. Breeders have not
been able to make the scab-resistant cultivars “catch
up” with the eating quality expected of new cultivars
today. Nevertheless, the program might have made
still less progress if the breeders had been aiming
to achieve too many breeding objectives at the same
time, which creates inefficiencies as large numbers
of seedlings are required to improve the chances of
meeting all selection criteria (Brown 1975; Oraguzie
et al. 2004).

1.1.4
Breeding Objectives

The principal breeding objective for apple is to in-
crease the marketability of the fruit (Janick et al.
1996). As most breeding programs aim to develop
new cultivars for the fresh market, the emphasis is
on appearance and eating quality meeting the con-
sumers’ expectationofpleasurable fruit consumption,
linked with storability to extend the market window.
Selection criteria for external quality mostly pertain
to skin color, the pattern and amount of fruit cov-
ered with color, and the size and shape of the fruit,
while internal quality is predominantly determined
by flesh texture and flavor (Janick et al. 1996). How-
ever, selection criteria may differ in accent, as dif-
ferent breeders aim to develop new cultivars specific
to the particular market they target (Laurens 1999)
and long-term breeding goals are being increasingly
determined by consumer preference research. For ex-
ample, in reply to an increased consumer interest in
the nutritional value of fruit and vegetables, apple is
currently being investigated particularly as a source
of antioxidants (Davey and Keulemans 2004; Thielen
et al. 2004; Lichtenthaler and Marx 2005), which may
help prevent diseases and ageing (Raskin and Ripoll
2004; Graziani et al. 2005). On the other hand, a health
concern is that apple is a well-known source of aller-
gens. Genetic markers have been identified for genes
controlling development of allergens in apple (Gao
et al. 2005a, b) (see also Sect. 1.3.2.5.6) and ways are
being sought to reduce their negative effect (Hoffman-
Sommergruber and the SAFE consortium 2005).

Breeding for pest and disease resistance comes
aclose secondasamajorobjective (Laurens1999).Ap-
ple is host to a wide range of pests and diseases (Way
et al. 1989), many of which need to be controlled in
order for commercial production to be profitable. The
use of plant resistance is widely regarded as the pre-
ferred means of controlling pests and diseases. There
are major socio-economic advantages in using resis-
tant cultivars, because they help reduce production
costs and diminish the effects on the users and en-
vironment because of the reduced requirements for
equipment, labour, and fossil fuels (Way et al. 1989;
Hogenboom 1993). However, while the potential ben-
efits of resistance breeding are large with regard to
the wider impact of pesticide use, the savings to the
grower in the direct costs of disease protection are
only about 4% of the value of the annual crop (Merwin
et al. 1994). The savings also may easily be offset by
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market fluctuations and may be reduced by the emer-
gence of other diseases requiring additional control
(Merwin et al. 1994). Consumer objection to the use
of pesticides was a significant driver for apple breed-
ers to include resistance breeding as a major objective
in the development of new cultivars (Laurens 1999),
but this to date has not translated into consumers
showing a preference for resistant varieties. Although
new resistant selections with improved fruit quality
are available (Crosby et al. 1992; Fischer et al. 1999),
their success in the market place is determined fore-
most by their ability to differentiate themselves based
on appearance and texture in direct competition with
the current susceptible cultivars (Murphy and Schertz
Willet 1991; Merwin et al. 1994). Therefore, the value
of disease resistance to the marketers may prove to
be only incremental, until resistant varieties provide
an opportunity to rapidly reap the financial benefits
of increased demand for fruit produced with reduced
chemical inputs, e.g. in organic production systems.
These gains will be realised in the long-term only if
resistances are durable.

Climatic adaptation isageneralbreedingobjective
that ensures trees are productive, bear regularly, and
produce fruit with minimal defects, and is achieved by
selecting for tree habit, vigor, duration of the juvenile
period, andfloweringseason(Janicket al. 1996).A few
breeding programs have more specific objectives to
meet the needs of their industries, e.g. adaptation to
cold hardiness for climates with severe winters, or low
chilling requirements for some subtropical climates.
New cultivars often are selected to replace cultivars
occupying certain market windows, but in some cases
the aim is to extend the marketing period by selecting
for very early, or very late maturing cultivars (Laurens
1999).

1.1.5
Molecular Markers and Genetic Maps

Most of the molecular research to date has focused on
identifying genetic markers for pest and disease re-
sistance genes, as apple has proved to be a rich source
of simply inherited resistance genes with major ef-
fects (Table 2). Initially, isoenzymes were used, but
they were rapidly superseded by DNA-based mark-
ers (see Sect. 1.2). Many different types of markers
are available to breeders now, but it has become clear
that highly informative markers, such as microsatel-
lite (SSR) and single nucleotide polymorphism (SNP)

markers are required to identify resistance genes
that are linked or residing in clusters (e.g. Bus et al.
2005b). To date, the primary use of genetic markers
in resistance breeding has been in the application of
marker-assisted selection (MAS) for pyramided re-
sistance genes in seedling progenies, but they also
are an important tool for germplasm screening for
sources of resistance (see Sect. 1.5), in host-pathogen
interaction research, and map-based cloning of re-
sistance genes (see Sect. 1.6). The mapping of resis-
tance gene loci increasingly shows that they are often
linked (Hemmat et al. 2003; Bus et al. 2005a, b), or
form part of a gene cluster (Vinatzer et al. 2001; Xu
and Korban 2002b). Recent research has also shown
that quantitative trait loci (QTL), e.g. for scab resis-
tance, map to the same chromosomal regions as major
genes (Durel et al. 2003; Calenge et al. 2004), which
suggests that these QTLs probably include residual
resistance of “defeated” major effect genes (Peder-
sen and Leath 1988). The same research has shown
that some QTLs are isolate-specific, which suggests
that they conform to a gene-for-gene relationship and
therefore are subjected to the same risk of resistance
“breakdown” as major effect genes (see Sect. 1.4). In
apple, gene-for-gene relationships have been demon-
strated for Venturia inaequalis (Boone and Keitt 1957;
Williams and Shay 1957; Bagga and Boone 1968a,
b); and apple-cedar rust Gymnosporangium juniperi-
virginianae (McNew 1938; Niederhauser and Whet-
zell 1940; Aldwinckle 1975b). The presence of bio-
types overcoming major resistance genes suggests
that gene-for-gene interactions exist for woolly ap-
ple aphid (Eriosoma lanigerum Hausm.) (Giliomee
et al. 1968; Sandanayaka et al. 2003) and the rosy leaf
curling aphid (Dysaphis devecta Wlk.) (Alston and
Briggs 1968, 1977). Major gene resistances against
powdery mildew are also common, while resistance to
diseases, such as fire blight and crown rot are predom-
inantly under polygenic control. The same applies
to polyphagous insect species, such as leafrollers, al-
though it recently was shown that the resistance to the
New Zealand native leafroller species Ctenopseustis
obliquana Walk. in Prima is controlled by a major
gene (Wearing et al. 2003).

QTL mapping is becoming more important in ap-
ple breeding as more QTLs are detected not only for
pest and disease resistance characters, but increas-
ingly for fruit and tree characters as well (King et al.
2000, 2001; Durel et al. 2003; Liebhard et al. 2003a, c;
Calenge et al. 2004; Stankiewicz-Kosyl et al. 2005).
Successful mapping of QTL for use by breeders re-
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Table 2. Major genes for resistance or susceptibilityz in apple

Gene Species Malus source Reference

Apple scab
Va Venturia inaequalis Antonovka PI172623 (Hough et al. 1970)
Vb Venturia inaequalis Hansen’s baccata #2 (Dayton and Williams 1968)
Vc Venturia inaequalis Cathay (Korban and Chen 1992)
Vbj Venturia inaequalis Malus baccata jackii (Dayton and Williams 1968)
Vd Venturia inaequalis Durello di Forlí (Tartarini et al. 2004)
Vf Venturia inaequalis M. floribunda 821 (Hough et al. 1953)
Vfh Venturia inaequalis M. floribunda 821 (Bénaouf and Parisi 2000)
Vg Venturia inaequalis Golden Delicious (Bénaouf et al. 1997)
Vh8 Venturia inaequalis M. sieversii W193B (Bus et al. 2005a)
Vj Venturia inaequalis Jonsib (Korban and Chen 1992)
Vm Venturia inaequalis M. micromalus 245-38 (Dayton et al. 1970a)
Vh2 Venturia inaequalis Russian apple R12740-7A (Bus et al. 2005b)
Vr2 Venturia inaequalis Russian apple R12740-7A (Patocchi et al. 2003)
Vh4 Venturia inaequalis Russian apple R12740-7A (Bus et al. 2005b)
Powdery mildew
Pl-1 Podosphaera leucotricha M. x robusta OP 3762 (Knight and Alston 1968)
Pl-2 Podosphaera leucotricha M. x zumi OP 3752 (Knight and Alston 1968)
Pl-8 Podosphaera leucotricha M. sargenti 843 (Korban and Dayton 1983)
Pl-d Podosphaera leucotricha D12 (Visser and Verhaegh 1980)
Pl-m Podosphaera leucotricha Mildew Immune Selection (Dayton 1977)
Pl-w Podosphaera leucotricha White Angel (Batlle and Alston 1996)
Aphids
Er-1 Eriosoma lanigerum Northern Spy (Knight et al. 1962)
Er-2 Eriosoma lanigerum M. x robusta (King et al. 1991)
Er-3 Eriosoma lanigerum Aotea (Bus et al. 2000)
Sd-1 Dysaphis devecta Cox’s Orange Pippin (Alston and Briggs 1968)
Sd-2 Dysaphis devecta Northern Spy (Alston and Briggs 1977)
Sd-3 Dysaphis devecta M. x robusta OP MAL59/9 (Alston and Briggs 1977)
Sm-h Dysaphis plantaginea M. x robusta OP MAL59/9 (Alston and Briggs 1970)
Miscellaneous pests and diseases
Cob-1 Ctenopseustis obliquana Prima (Wearing et al. 2003)
Gbz Glomerella cingulata Golden Delicious (Thompson and Taylor 1971)
Gy-a Gymnosporangium juniperi-virginianae Spartan (Aldwinckle et al. 1977)
Gy-b Gymnosporangium juniperi-virginianae Spartan (Aldwinckle et al. 1977)
Pc Phytophthora cactorum Northern Spy (Alston 1970)
Ps-1z Phyllosticta solitaria Jonathan (Mowry and Dayton 1964)
Ps-2z Phyllosticta solitaria Idared (Mowry and Dayton 1964)

quires appropriate and rigorous phenotyping tech-
niques, as well as maps saturated with markers that
are transportable across genetic backgrounds.Thede-
velopment of the genetic marker maps, e.g. Liebhard
et al. (2002, 2003b), perhaps is the easier task, as the
meaningful measurement of some quantitatively in-
herited characters, such as fruit texture (King et al.
2001), is difficult and further complicated by environ-
mental factors (Kearsey and Luo 2003).

In this chapter we describe the advances made in
the development and application of molecular tech-
niques in apple breeding to date. We cover the areas
of genetic map construction, gene mapping, identi-
fication of QTLs, the application of MAS and map-
based cloning, following the gene annotation of Al-
ston et al. (2000). Finally, we will discuss the most
advanced technologies that are being developed, and
future directions of cultivar improvement.
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1.2
Construction of Genetic Maps

1.2.1
Brief History of Genetic Mapping in Apple

The earliest genetic maps of apple were developed in
theUSAand tookadvantageof the readyavailabilityof
Random Amplified Polymorphic DNA (RAPD) mark-
ers during the nineties. They also included a small
number of isoenzyme markers (Hemmat et al. 1994;
Conner et al. 1997). These maps were specific to the
genetic background of the mapping parents because
of the poor transferability of RAPD markers. For that
reason, an international initiative based in Europe
developed a genetic map with a number of codom-
inant transportable markers. These were mostly Re-
striction Fragment Length Polymorphisms (RFLPs)
plus a few microsatellite markers (Maliepaard et al.
1998). The most complete map to date is constructed
with 129 microsatellites, as well as larger numbers
of dominant Amplified Fragment Length Polymor-
phisms (AFLPs) and RAPDs to assist in filling in gaps
(Liebhard et al. 2003b). Such robust polymerase chain
reaction (PCR)-based saturated reference maps are
essential for whole genome scanning and for under-
standing complex traits controlled by several Quan-
titative Trait Loci (QTLs). Several groups worldwide
are currently developing transportable genetic maps
for apple and a fully saturated consensus map of apple
is still required.

1.2.2
First-Generation Maps

Progress in construction of apple genetic maps is
summarized in Table 3. The first map (Hemmat et al.
1994) exhibits isoenzyme, RFLP and RAPD markers
distributed over 21 and 24 linkage groups, for the
cultivars Rome Beauty and White Angel, respectively.
Neither of these cultivars was being used in the Cor-
nell University breeding program at the time. How-
ever, the second set of maps, for accessions Wijcik
McIntosh, NY 75441-67 and NY 75441-58, that were
being used in that breeding program, also relied heav-
ily on the contribution of RAPD markers, limiting
their usefulness in other progenies. The number of
linkage groups (19, 16 and 18 respectively) had been
reduced to a number closer to that of the chromo-
some number of Malus (n = 17), indicating that these

maps were more saturated than previous ones (Con-
ner et al. 1997).

Because of the low transferability of RAPD mark-
ers between different cultivars and laboratories, sev-
eral groups have developed more specific microsatel-
lite markers (also called SSRs or Simple Sequence
Repeats). These highly polymorphic and transfer-
able markers proved to be the marker of choice. The
first microsatellite markers mapped in apple included
some of those identified by Guilford et al. (1997) and
Hemmat et al. (1997), as well as four developed by
Horticulture Research International (HRI), Welles-
bourne, UK. The use of these markers, plus a number
of codominantly segregating isoenzymes and RFLPs
in a Prima × Fiesta population of 152 seedlings, per-
mitted alignment of the 17 linkage groups and con-
structionof thefirst integratedapplemap(Maliepaard
et al. 1998). This initial apple reference map utilized
a small number of AFLP markers as well as RAPDs
to assist in filling the longer intervals. The culti-
vars Prima and Fiesta are used in European breed-
ing programs and as such are central to the succes-
sion of research programs on genetic mapping in ap-
ple situated there: European Apple Genome Mapping
Project (EAGMP), Durable Apple Resistance in Eu-
rope (DARE) (Lespinasse and Durel 1999) and High-
Quality Disease Resistant Apples for a Sustainable
Agriculture (HiDRAS). Information from this collab-
oration, plus that from the mapping of 41 microsatel-
lite markers in the White Angel × Rome Beauty popu-
lation (Hemmat et al. 2003) enabled cross-referencing
of US linkage group numbering with that adopted in
Europe. This Prima×Fiesta population has been used
to map QTL for apple scab (Durel et al. 2003) and fire-
blight (Calenge et al. 2005b) (see Sect. 1.4.2).

The genetic map constructed in a Fiesta × Dis-
covery population of 267 individuals (Liebhard et al.
2003b) contains the largest core of robust PCR based
markers to date, namely 129 microsatellites, includ-
ing loci identified by Gianfranceschi et al. (1998) and
Liebhard et al. (2002). These markers are supple-
mented by 710 dominant RAPDs and AFLPs, en-
abling a good coverage of the 17 linkage groups.
The construction of this map was aided by the use
of a robotic workstation to set up the large num-
ber of PCR reactions required. This reference map
has already been used as the framework for mapping
QTL (Liebhard et al. 2003a, c; Calenge et al. 2005a, b)
– (see Sect. 1.4 below) and Resistance gene analogs
(RGAs) that are homologues of nucleotide binding-
site (NBS)/leucine-rich repeat resistancegenes (LRRs)
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Table 3. Genetic maps of apple

Cross Pop size Number Marker Type Length of map Reference Traits
of markers
Female Male Isoen- RFLPs RAPD AFLP Micro- Others cM (female, male)
parent parent zyme satellite

Rome Beauty × 56 156 253 34 8 367 – – – –, 950 Hemmat Pl-w
White Angel et al. 1994
Wijcik McIntosh × 114 238 110 6 – 138 – – – 1206 (integrated WM), Connor Skin color,
NY 75441-67 692 et al. 1997 Vf, columnar

habit, juice pH
Wijcik McIntosh × 172 181 183 6 – 266 – – – 1206, 898 –
NY 75441-58
Prima × Fiesta 152 194 163 17 124 133 9 10 SCAR = 1 Rf, 842, 984 Maliepaard Vf, Sd-1,

BC226 et al. 1998 Ma, SI
Fiesta × Discovery 112 202 227 – – 217 118 914, 1015 Liebhard –

et al. 2002
Fiesta × Discovery. 267 439 499 – – 235 475 129 SCAR = 1 Rf, 1144, 1455 Liebhard –

– – – – – – – – BC226 (F × D integrated 1371) et al. 2003b –
Fiesta × Discovery 44 – – – – – – – 18 RGAs Partial map, based Baldi RGAs

(subset (NBS LRR) on Liebhard et al. 2003b et al. 2004
of 112)

Discovery × TN10-8 149 – – 13 – – 102 62 22 RGAs 1,219 (integrated map) Calenge Vg, scab QTL,
(43 bands et al. 2004, 2005 RGAS
generated by
NBS profiling
mapped)

Telamon × Braeburn 257 259 264 – – – 463 20 1039, 1245 Kenis and For QTL analysis
Keulemans 2005 growth habit

and fruit quality
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(Baldi et al. 2004). These RGAs were isolated using
a PCR-based strategy based on degenerate primers
for conserved sequence motifs in the NBS region
and include members of the two major groups of
NBS-LRRs described in plants – those possessing
a toll-interleukin repeat region, and those lacking it.
Eighteen NBS-LRR analogues were mapped as either
cleaved amplified polymorphic sequences (CAPS) or
single-strand conformation polymorphism (SSCP)
markers. These RGAs were distributed widely over
the apple genome, covering 12 linkage groups. Po-
tential clustering and association with loci conferring
pathogen resistance was noted.

Employment of at least two microsatellite mark-
ers per linkage group from this map enabled Calenge
et al. (2004, 2005b) toorientate an integratedmapcon-
structed in a related Fiesta × Discovery progeny with
regard to the two earlier reference maps (Maliepaard
et al. 1998; Liebhard et al. 2003b). They then used NBS
profiling (Van der Linden et al. 2004) to simultane-
ously amplify and map 23 polymorphic markers with
sequence homology to Malus NBS-LRRs, as well as
20 markers with unrelated homologies (Calenge et al.
2005a). Most of the NBS markers were organized in
more or less extended clusters, as found in other plant
species (Michelmore and Meyers 1998; Young 2000).
An extended cluster comprising 13 markers on Link-
age Group 2 in a region around Vr2 is particularly
noteworthy (Calenge et al. 2005a). Tight clusters dis-
playing no recombination events were observed on
LG 2, LG 10 and LG 17. NBS markers mapped close to
major scab and powdery mildew resistances on LG 2,
LG 8, LG 10 and LG 12 (Vr2, Pl-w, Vd and Vg respec-
tively) and to QTLs for resistance to scab and powdery
mildew identified previously in this progeny (Calenge
et al. 2003, 2004, Calenge and Durel 2006).

The recent construction of a genetic map in
a progeny from Telamon × Braeburn has added a fur-
ther resource for QTL analysis of columnar growth
habit and of fruit quality (Kenis and Keulemans 2005)
Interestingly, this is the first map in Braeburn, a key
cultivar in the New Zealand breeding program, where
apopulationofat least600plantsofRoyalGala×Brae-
burn is being developed for mapping of fruit quality
attributes (R. Volz, unpublished). The application of
the planned QTL analyses from the Telamon × Brae-
burn progeny to studies of fruit quality in other pro-
genies would be improved by adding more microsatel-
lite markers, as these are low (20) in comparison to
the Fiesta × Discovery and Discovery × TN-8 maps
(129 and 62) respectively. It has been reported that

in Europe a molecular marker map is already under
construction for Fuji × Mondial Gala, and that one
for Fuji × Braeburn was initiated in 2005 (Costa et al.
2005). These maps in aggregate will provide a valuable
resource that will enable rapid progress to be made in
establishing the genetics of apple fruit quality.

The recent development of large numbers of Ex-
pressed Sequence Tag (EST) sequences for apple
(Crowhurst et al. 2005; Korban et al. 2005; Newcomb
et al. 2006) has given apple researchers access to a new
source of a vast number of potential markers (there
are currently nearly 260,000 Malus sequences in the
public database, GenBank). Polymorphic microsatel-
lite sequences have been identified in great numbers
in the EST databases. These EST-microsatellites are
being added to those previously developed from both
genomic DNA and from the untranslated regions of
apple cDNAs. The first apple genetic map utilizing
EST-microsatellites is under construction in a cross
between Royal Gala and A689-24 (E. Rikkerink et al.,
work in progress). Single Nucleotide Polymorphism
(SNP) markers are also being developed using ESTs.
These markers are present throughout the genome
and can be used directly to map genes that are hy-
pothesized to be involved in the trait of interest (i.e.
are candidate genes). SNPs are already widely used
for genetic mapping and association studies in hu-
man, animals and plants and represent the markers
that will be used in second generation maps in apple.

1.2.3
Genome Organization and Homeology

There are several hypotheses concerning the allote-
traploid (or amphidiploid) origin of domestic ap-
ple (see Sect. 1.1 and Maliepaard et al. 1998), each
of which imply a certain level of duplication within
the genome. Maliepaard et al. (1998) were the first
to identify the duplication of an entire linkage group
(LG 5 and LG 10) by examining the positions of multi-
locus EST-RFLP markers on a molecular marker link-
age map of the cross Prima × Fiesta. An update of
this map (Van de Weg et al., in preparation) identified
additional duplications (Fig. 1). The amount of ho-
mology differed across linkage groups. Some linkage
groups seem to be entirely homoeologous to a sin-
gle other linkage group, such as LG 5 and LG 10, LG
13 and LG 16, and LG 9 and LG 17. Other linkage
groups are composite, with several segments, each
of which is homoeologous to a segment of a differ-
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Fig. 1. Map positions of multi-locus markers reveal duplication patterns within the apple genome. Map positions are according
to an update of the Prima × Fiesta map of Maliepaard et al. (1998) (van de Weg et al. in prep). The different duplicated (mostly
homoeologous) chromosome segments are indicated by different filling patterns of bar segments. Duplicated markers are printed
in black and are connected by lines. Single locus microsatellite-markers (in grey) were added as points of reference. Linkage
groups are named and orientated according to Maliepaard et al. (1998), except for the orientation of the LG 2, LG 5 and LG 13
that were inverted according to the orientation of their homoeologous linkage groups. Map positions of the Mal d 1 and Mal d
3 genes are according to Gao et al. (2005a, b). This figure was kindly supplied by Eric van de Weg and arose in part within the
framework of the project EU-DARE (Durable Apple Resistance in Europe, FAIR5, CT97-3898)
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ent linkage group. For instance, the proximal part of
LG 4 is homoeologous to the proximal part of LG 6,
while the more distal part of LG 4 is homoeologous
to the distal part of LG 12 (Fig 1). While LG 5 and
LG 10 are clearly homoeologous to each other, they
also have some markers in common with LG 9 and
LG 17 (MC109, MC224, CH04c06). Similarly, LG 3 and
LG 17 have two EST-RFLP markers in common, and
thus share partial sequences. These shared markers
may be due to different genes of a gene family that are
dispersed over pairs of homoeologous linkage groups,
e.g.Mald1 (Gaoet al. 2005b; andSect. 1.3.2.5.6)where
Mal d 1 represents a gene cluster of seven genes on LG
13 and nine on LG 16.

The order in map position of markers is some-
times slightly different between homoeologous seg-
ments. It is not clear whether these differences are
real, and arose from genomic rearrangements, or are
artefacts due to tension among marker scores during
the integration of unbalanced maternal and paternal
data sets. For the composite LG 4, LG 6, LG 12 and LG
14, an inversion may have occurred during transloca-
tion events, either for the proximal parts of LG 4 and
LG 6, or the distal parts of LG 6 and LG 14. Based on
these results, Van de Weg et al. (in preparation) pro-
posed to change the Maliepaard (1998) orientation of
LG 2, LG 5 and LG 13 to make them consistent with
that of their homoeologous linkage groups, thus facil-
itating comparative analysis within the apple genome.

1.2.4
Comparative Mapping Across Genera

In comparison to other plant systems, for which com-
parative genome mapping has proven to be a valu-
able approach both to study genome evolution and to
transfer mapping information between genera, only
preliminary studies have been carried out to compare
the genome maps of apple with others.

1.2.4.1
Malus and Pyrus
The first example of comparative genome mapping
between apple and other members of the Maloideae
has been the alignment with the linkage maps of pear.
In the course of developing maps for Japanese (Ho-
sui) and European (Bartlett) pears, Yamamoto et al.
(2004) located 36 apple microsatellite loci (Liebhard
et al. 2002) on the pear map. All pear linkage groups

were aligned to the apple consensus map, suggesting
conservation of genome organization between apple
and pear. This was confirmed in the conservation of
the order of loci and the distances between them,
which is in agreement with the conserved karyotype
between the two genera. An extension of this study
to include 69 apple microsatellites and the pear culti-
var La France confirmed this finding (Yamamoto et al.
2005). In the same way, apple microsatellite markers
from LG 10, 12 and 14 have been mapped in detail on
three pear linkage groups by Pierantoni et al. (2004),
following the characterization of more than 100 apple
microsatellites in four cultivars of pear. For practical
purposes, comparativemappingcouldhelp to transfer
genomic information from apple to the less-studied
pear. As a first example, Yamamoto et al. (2005) lo-
cated the Vnk locus for the resistance to pear scab
(Venturia nashicola) on LG 1 of the Japanese pear
cultivar Kinchaku, 33 cM from the map position of
CH-Vf2, a close marker for the Vf resistance to ap-
ple scab in Malus (Vinatzer et al. 2004). These studies
indicate that further, more detailed map alignment
between apple and pear could help pear researchers.

1.2.4.2
Malus and Prunus
In the first comparison between genomes within the
Rosaceae family, 30 loci in the Prunus almond×peach
(Texas×Earlygold) reference map were found to have
homologous counterparts in the Prima × Fiesta ap-
ple reference map (Dirlewanger et al. 2004). Gener-
ally one linkage group of Prunus corresponds to two
homeologous apple linkage groups because of the al-
lotetraploid origin of the apple genome, e.g. Prunus
LG 4 with apple LG 5 and LG 10; half of Prunus LG 1
with apple LG 13 and LG 16. As well as these large
collinear blocks, major genome rearrangements were
identified, e.g. the rearrangement between LG 1 of
Prunus and LG 8, LG 13 and LG 16 of Malus. However
the synteny seems conserved between the two species.
Nevertheless, considering the high economic impor-
tanceofMalusandPrunus species, and in regard to the
complementarity of the genomic resources for the two
systems (i.e. large characterized EST datasets in ap-
ple compared with physical map and small genome in
peach), a high-density alignment of the two genomes
should be a priority in the next few years, in order to
consider the Rosaceae genome as a single system, as
has been done for cereals (Keller and Feuillet 2000).
Consideration needs to be given to the type of mark-
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ers to be used. Dirlewanger et al. (2004) found that
microsatellite markers were not as useful as RFLPs
and isoenzymes for map comparisons, because only
a small proportion of microsatellites mapped had
more than one copy.

1.3
Gene Mapping

The task of identification of genetic markers for resis-
tances to the economically significant pests and dis-
eases of apple (i.e. apple scab, powdery mildew and
rosy and woolly apple aphid) has been simplified by
the large number of resistances to these pathogens
that are controlled by major genes (Table 2). A num-
ber of major apple resistance genes have now been as-
signed to linkage groups; Vf (Maliepaard et al. 1998)
- to LG 1, Vm to LG 17 (Patocchi et al. 2005), Vr2,
Vh2, Vh4, Vt57, Vbj and Vh8 to LG 2 (Bus et al.
2004; Gygax et al. 2004; Patocchi et al. 2004; Bus et al.
2005a,b), Sd-1 and Sd-2 to LG 7 (Maliepaard et al.
1998; Cevik and King 2002a), Pl-w plus Er-1 and Er-3
to LG 8 (Maliepaard et al. 1998; James and Evans 2004;
Chagné, Gardiner and Durel, unpublished), Vd to LG
10 (Tartarini et al. 2004), Pl-2 to LG 11 (Seglias and
Gessler 1997), Vg plus Pl-d and Vb to LG 12 (Durel
et al. 1999; James et al. 2004; Erdin et al. 2006).

1.3.1
Methods Used to Map Major Genes in Apple

For major gene resistances, the relatively speedy
process of BSA (Bulked Segregant Analysis) suf-
fices, rather than the time-consuming development
of a complete map for the variety in question. This in-
volves identification of markers using pooled DNA
from a number of resistant and susceptible plants
(Michelmore et al. 1991), in order to develop par-
tial maps around resistance loci. The earliest mark-
ers for apple resistance genes were obtained using
BSA with RAPDs and the method is still widely uti-
lized by some groups. The efficiency of gene tag-
ging with anonymous markers has been further fa-
cilitated by the introduction of automation for DNA
extraction from plant tissue, setting up PCR reac-
tions and loading of agarose gels (Cook et al. 2002;
Cook and Gardiner 2004). Reproducibility of reac-
tions using RAPD primers is enhanced by automa-
tion, and a laboratory throughput of 1,200 samples

in a 24-hour period is now possible. RAPD mark-
ers are normally converted to more robust sequence
specific markers (e.g. SCARs, sequence characterized
amplified region), CAPS (cleaved amplified polymor-
phic sequence) for final map construction and use for
MAS.

The publication of the comprehensive micro-
satellite-based framework map of Liebhard et al.
(2003b) has opened up the way to whole genome
scanning in apple. Patocchi et al. (2004, 2005 and
Erdin et al. 2006) first utilized this approach in their
identification of a microsatellite marker linked to
Vr2 and later to locate Vm to LG 17 and Vb to LG 12.
It was successfully modified by James and Evans
(2004) in a screen of bulked DNA from a population
segregating for the Pl-w resistance to enable location
of this gene at the top of LG 8. Later, Rusholme
(unpublished) confirmed the location of Pl-2 on
LG 11 in a similar approach, utilizing screening
of bulked DNA of extreme phenotypes with 3-4
microsatellite markers/linkage group. Patocchi et al.
(2005) discuss the significant parameters in setting up
a whole genome scanning experiment. These include
the interdependent parameters of number of plants
and number of microsatellite markers per linkage
group, plus the degree of detail in the microsatellite
map, and polymorphism in the markers. The recent
development of 157 new microsatellite markers brings
the total published markers available to over 300 and
subset of 86 highly polymorphic microsatellite mark-
ers covering 85% of the apple genome with an average
density of one marker per 15 cM have been selected as
a resource for whole genome scanning (Silfverberg-
Dilworth et al.; http://www/hidras.unimi.it). EST
databases 2006 are being currently used as a resource
for further microsatellite marker development
(Gardiner and Korban, unpublished).

A drawback of microsatellites is that they are gen-
erally anonymous markers that can be located at large
distances fromtheresistancegenes, andtherefore they
may not be the most suitable for MAS in breeding
programs. Another, more recent approach consists of
identifying candidates for the gene, or even the poly-
morphism that is directly responsible for the observed
phenotype. This approach is commonly termed the
candidate gene approach. Candidate resistance genes
identified by searching EST databases with sequence
or protein motifs from known resistance genes from
model plant systems have proved to be a rich source
of genetic markers for resistance genes in apple. Can-
didates from all known classes of resistance genes
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have proved to generate good markers for apple R
genes (Gardiner et al. 2003). To date candidate gene
markers have been identified for 13 different resis-
tances to apple scab, powdery mildew and woolly
apple aphid. Candidate genes are most economically
screened initially as RFLPs across mini-populations,
and markers mapping as RFLPs close to specific genes
are then converted to PCR-based markers such as
SNPs or SCARs for mapping in large segregating pop-
ulations (Gardiner et al. 2003). Other workers have
found that NBS-LRR homologues generated by PCR
using degenerate primers (Baldi et al. 2004) or from
the new methodology of NBS-profiling (Calenge et al.
2005a) generate effective markers. These frequently
map in the vicinity of known major resistance loci
as well as QTL, accelerating the identification of the
genomic regions where functional resistances are lo-
cated.

1.3.2
Target Traits

1.3.2.1
Apple Scab Resistance Genes
Apple scab resistance genes have received the most
attention by genetic mapping groups, because of the
significance of the economic impact of apple scab on
production. It is also relatively easy to identify mark-
ers for major resistances to apple scab in comparison
with other resistances. This is because of the relative
reliability of phenotypes obtained from glasshouse
screening of very young seedlings from mapping pop-
ulations for response to infection by Venturia inae-
qualis, compared with other pathogens.

1.3.2.1.1 Vf The first report of a marker linked to Vf
was that of the isoenzyme Pgm-1 (Manganaris et al.
1994) (Table 4). In the same year use of bulked seg-
regant analysis (BSA) enabled speedy identification
of a number of RAPD markers linked to this gene
(Durham and Korban (1994) (OPA15), Koller et al.
(1994) (OPU01, OPM18), Tartarini (1996) (OPC09)
and Yang and Kruger (1994) (OPD20)). DNA for BSA
was extracted from phenotypic extremes, either from
segregating populations, or from varieties. Further
markers linked to Vf were identified by the same
technique and mapped either directly as RAPDs,
or after conversion to more robust SCAR or CAPS
markers (Gardiner et al. (1996) (OPH01, OPR16);

Gianfranceschi et al. (1996) (OPUO1, OPM18); Tar-
tarini (1996) (OPAM19, OPAL07); Yang et al. (1997a)
(OPAR4); Yang et al. (1997b) (OPK16); and Hemmat
et al. (1998) (S5, B505, S29, P198, B398)). Vf was
mapped to LG 1 of Prima on the reference map of
Maliepaard et al. (1998).

King et al. (1998) and Patocchi et al. (1999a) devel-
oped fine maps around Vf, locating this resistance in
a short interval between OPM18 and OPAL07, thus re-
solving discrepancies among earlier maps concerning
the relationship of these two markers and Vf. Later,
the colocation of OPAM19 and OPAL07 reported by
King et al. (1998) was confirmed by Tartarini et al.
(1999). Xu and Korban (2000) constructed a highly
saturated AFLP map around Vf using a ‘narrow down’
bulked segregant strategy and converted these mark-
ers to SCARs (Xu et al. 2001a). These were later em-
ployed to develop a revised higher order fine map
around Vf (Huaracha et al. 2004). The closest SCAR
markers to Vf (ACS 3, ACS 7 and ACS 9) are ex-
tremely reliable for MAS. The first physical map of
the Vf region, constructed by Vinatzer et al. (2001),
located four homologs of the tomato Cf gene family
to a 350 kb region around Vf. Xu and Korban (2004)
have performed detailed pairwise sequence compar-
isons among these and concluded that the 4 paralogs
have arisen by divergent selection on 4 original so-
matic variations.

Recently, bacterial artificial chromosome (BAC)
clones within the contig encompassing Vf have been
successfully employed as a source of multiallelic
microsatellite markers (Vinatzer et al. 2004), termed
CHVf-1 and CHVf-2. Analysis of linkage of the
Vf – coupled alleles, plus Vf markers OPM18 and
AL07SCARs indicates that a clone of M. micromalus,
SA573-3, Golden Gem, M. prunifolia 19651 and
M.A. 16 all carry Vf. The use of these markers
in combination will enable breeders to predict
quickly and economically in germplasm collections,
which scab resistant plants carry resistances other
than Vf.

Gardiner et al. (2003) employed RFLP screening of
a mini-population of Royal Gala × A172-2 to identifiy
very close linkage to Vf of a candidate appleEST (Gen-
Bank accession DR033891) derived from a Royal Gala
(susceptible) library. This EST possesses homology to
the Hcr-Vf resistance genes and mapped to the same
region on LG 1 of A172-2 as markers derived from
the candidate genes of Xu and Korban (2002b). Sev-
eral other apple candidate ESTs mapped to Vf more
distantly.
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Table 4. Mapping of Vf resistance to apple scab

Progeny No. sdlgs Method Markers (marker/distance) Marker class Reference
(cM from Vf )

A. Initial Jonathan × A849-7 37 Segregation analysis Pgm-1/8 isoenzyme Manganaris et al. 1994
mapping Idared × A679-12 58 – – – –

Prima × Spartan 63 – – – –
Liberty × Royal Gala 39 – – – –
COOP selections, commercial cultivars 15 BSA OPA15900/n.d. RAPD Durham and Korban 1994
M. floribunda 821 7 – – – –
Idared × M. floribunda 821 59 BSA OPU01400/19.7 RAPD Koller et al. 1994
– – OPM18900/10.6 RAPD –
Susceptible cultivars plus: 10 BSA OPD20600/n.d. RAPD Yang and Kruger 1994
Prima × A142/5 (resistant sdlgs), 5 – (25.0, 20.0% recombination – –
M.floribunda, Pillnitz (for BSA) frequency)
81/19-35 × Margol (mapping) 28 – – – –
81/19-35 × 87/7-10 (mapping) 158 – – – –
Granny Smith × A679-2 98 BSA OPH011100/10 RAPD Gardiner et al. 1996
Royal Gala × A172-2 160 – OPR16400/14, 13 – –
Florina × Nova Easygro 500 Cloning/sequencing OPU01400/4 RAPD → SCAR Gianfranceschi et al. 1996
Florina × Golden Delicious 100 – OPM18450,230,170/1.9 RAPD → CAPS –
Prima × Golden Delicious 40 BSA OPM192200/0.9 RAPD Tartarini 1996

– – – OPAL07580/0.9 RAPD –
– – – OC09900/8.8 RAPD –
– – – OPC081100/15.5 RAPD –
– – – OPAB191430/13.4 RAPD –

COOP selections, commercial cultivars 10 BSA OPAR41400/3.6 RAPD Yang et al. 1997a
81/19-35 × 87/7-10 10 – – – –
– 138 Cloning/sequencing OPAR41400/3.6 SCAR
COOP selections, commercial cultivars 10 BSA OPK161300 RAPD Yang et al. 1997b
81/19-35 × 87/7-10 10 – – – –
– 138 Cloning/sequencing OPK161300/4.3 SCAR –
Prima × Spartan (for BSA) 38 BSA based on S52500/1.3 RAPD Hemmat et al. 1998

Pgm-1 genotype B5051700/7.8 RAPD
Golden Delicious × Prima (mapping) 73 – P198 750/26.8 RAPD –

B398 480/10.8 RAPD
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Table 4. (continued)

Progeny No. sdlgs Method Markers (marker/distance) Marker class Reference
(cM from Vf )

B. Fine Prima × Fiesta 155 Genetic mapping (JoinMap 2.0, OPM192200/0.7, RAPD King et al. 1998
mapping Stam and van Ooijen, 1995) OPAL07580/0.7, RAPD

OPM18900/0 RAPD, RFLP
Florina × Nova Easygro 491 Genetic mapping OPAL07466/0.9 SCAR Tartarini et al. 1999
5 other seedling progenies 125 (JoinMap 1.4, Stam, 1993) OPM19526/0.9 SCAR
Florina × Nova Easygro 521 Genetic mapping OPAL07466/1.1 SCAR Patocchi et al. 1999a
Braeburn × FAW 167 279 (JoinMap 1.4, Stam, 1993) OPM18900/0.2 CAPS
Fuji × Ariwa 409
Co-op selections 1-38 38 Narrow-down BSA OPM18450/0.4 CAPS Xu and Korban 2000
Commercial cultivars 10 – ET9MC3-1/0.4 AFLP –
M. floribunda 821 – – EA2G11-1, EA12MG16-1, AFLPs –
Resistant Co-op selections 38 Genetic mapping (CRI-MAP v 2.4, EA11MG4-1, ET2MC8-1, – –

Green et al. 1990) ET3MG10-1, ET8MG1-1,
ET8MG7-1/0

Co-op 17 × Co-op 16 203 – OPM19526, OPAL07466/0.2 SCARs –
(resistant seedlings) EA9MC15-1, EA4MG1-1 AFLPs
Jonafree × III. Del.no.1 227 – EA16MG2-1, ET4MC14-1, – –
(resistant seedlings) ET8MG16-1, ET3MG10-2,

ET10MG8-1/0.2
– – Physical mapping HcrVf1, HcrVf2, HcrVf3, HcrVf4 Gene Vinatzer et al. 2001

mapped to 350 kb interval around Vf homologs
Resistant Co-op selections 38 Genetic mapping OPM18450/0.4 CAPS Xu et al. 2001a
Co-op 17 × Co-op 16 203 (CRI-MAP v 2.4, Green et al. 1990) ACS-6/0.4, SCAR
(resistant seedlings) ACS-3, ACS-7, ACS-9/0 SCARs
Jonafree × III. Del.no.1 227 – OPM19526, OPAL07466/0.2 SCARs –
(resistant seedlings) ACS-1, ACS-2, ACS-4, ACS-5, SCARs

ACS-8, ACS-10, ACS-11/0.2
– – Physical mapping Vfa 1, Vfa2, Vfa3, Vfa4 Gene Xu and Korban 2002b

mapped to 200kb interval around Vf paralogs
Royal Gala × A172-2 160 Screening of ESTs with 2 bands from DR033891 mapped RFLP Gardiner et al. 2003

homology to R genes between Vfa 1, 2 and Vfa 3, 4
16 Crosses 1412 Genetic mapping ACS-6/0.2 SCAR Huaracha et al. 2004

ACS-7, ACS-9/0 SCARs
ACS-3/0.1 SCAR
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1.3.2.1.2 Vm Bulked segregant analysis with RAPD
markers was employed to identify the OPB12 marker
for Vm, using a population three generations removed
from M. x atrosanguinea 804. OPB12RAPD was con-
verted to a SCAR marker and verified in a second pop-
ulation derived from a selection of M. x atrosanguinea
804. Joint segregation analysis on the combined data
indicated a distance of 6 cM between Vm and OPB12
(Cheng et al. 1998) (Table 5). OPB12 has proved re-
cently to be linked to Vm in the breeding parent X2225
derived from M. micromalus (Richards, Rikkerink,
Bassett and Plummer, unpublished). Recently, Pa-
tocchi et al. (2005) performed a whole genome scan
with three selected microsatellite markers per link-
age group to locate Vm at the end of LG 17, the first
major resistance gene in this genomic region. A new
microsatellite marker that co-segregated with the re-
sistance phenotype (Hi07h02) will be invaluable for
MAS.

OPB12 is also linked to apple scab resistances de-
rived from Red Sauce o.p. F91-135 A002-100 and Ze-
lenovka Sotchnaya o.p. F91-184 A003-020 (Rusholme
et al. unpublished). The same group used bulked seg-
regant analysis of a Red Sauce o.p. population to iden-
tify linkage of OPAY5 to apple scab resistance and
this marker was transferable into M. x atrosanguinea
804 and Zelenovka Sotchnaya o.p. populations. Mi-
crosatellite Hi07h02 has recently been mapped to the
resistance in the M. micromalus, Zelenovka Sotchnaya
o.p and Red Sauce o.p. populations, indicating a close
relationship, if not the same gene, between Vm and
the resistances from Red Sauce o.p. and Zelenovka
Sotchnaya o.p. (Chagné et al. unpublished).

M. micromalus has been reported to carry both
Vm and a ‘masked gene’ (Shay et al. 1953), that has
been demonstrated to be allelic to Vf (Dayton and
Williams 1968, 1970). This second gene is likely to be
that identified by amplification of the Vf specific alle-
les of the microsatellite markers CHVf-1 and CHVf-2
in DNA from M. micromalus (Vinatzer et al. 2004).

1.3.2.1.3 Apple Scab Resistances from Differen-
tial Hosts 2 and 4 that Map to Linkage Group 2
Several streams of research have contributed to the
knowledge of markers linked to apple scab resistances
mapping to LG 2 in differential hosts 2 and 4 derived
from Russian apple R12740-7A (conditioning stellate
necrotic and hypersensitive reactions, respectively).

1.3.2.1.3.1 Vh2 Bulked segregation with RAPDs was
used to identify marker OPL19 that mapped close to
Vh2 from differential host 2 (Gardiner et al. 1999a;

Bus et al. 2000) (Table 5). The use of its deriva-
tive OPL19SCAR for MAS in a second population
was reported by Bus et al. (2002). At this stage, the
host 2 was mistakenly identified in several publi-
cations as accession TSR34T132 from the Purdue-
Rutgers-Illinois apple breeding program (Bus et al.
2005b). However, the correct identification number
is now known to be TSR34T15 (Lespinasse, personal
communication). Hemmat et al. (2002) reported that
a gene they identified as Vr was closely flanked by
a SCAR marker OPB18620bp and a more distant mi-
crosatellite CH02b10 reported by (Gianfranceschi et
al. 1998). More recent mapping using CH02b10121bp,
OPL19433bpSCAR and OPZ13900bpSCAR (Gygax et al.
2004) in the population Royal Gala × TSR34T15 has
indicated that Vr and Vh2 are identical and that the
gene maps to LG 2 (Bus et al. 2005b). This was con-
firmed in a second population Sciglo × A68R03T057
derived from a non-differential accession of Russian
apple R12740-7A. It was therefore proposed that the
gene conditioning stellate necrotic reactions from
Russian apple R12740-7A be known as Vh2, and that
the name Vr be reserved for the original race-non
specific gene from this accession.

1.3.2.1.3.2 Vt57 Vt57 was identified in the Sciglo ×
A68R03T057 population through the use of differ-
ential screening of the population with several iso-
lates of V. inaequalis (Bus et al. 2005b). It conditions
a chlorotic resistance reaction, and maps 3 cM from
OPL19SCAR on LG 2 (versus 1 cM for Vh2) (Table 5).

1.3.2.1.3.3 Vh4 Similarly, research has been per-
formed in parallel by teams internationally on the
host 4 derivative of Russian apple conditioning
a hypersensitive response. (Hemmat et al. 2002)
reported the identification of a RAPD marker from
primer S22 that they converted to S22SCAR and
mapped in R12740-7A within 9 cM of Vx (Table 5).

InNewZealand, S22SCARwasmappedat a similar
distance or closer to Vh4 in Royal Gala × TSR33T239
populations (Bus et al. 2002; 2005b). This group also
reported a distant linkage of Vh4 to OPB10RAPD (Bus
et al. 2000) and OPB10SCAR (Bus et al. 2005b), but
had been unable to identify new markers closer to
the gene. Boudichevskaia et al. (2004) identified the
linkage of OPAD13950bp to a gene they termed Vr1 that
segregated in three Regia progenies. However consid-
eration of pedigree, resistance phenotype and linkage
information for all markers, including OPAD13950bpin
the Royal Gala × TSR33T239 population (Gardiner
et al. unpublished) suggests that this gene is iden-



16
S.E.G

ard
in

er
et

al.
Table 5. Mapping of major scab resistance genes, apart from Vf, in apple

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

Vm Empire × NY74828-12 59 BSA OPB12687/6.0 SCAR – Cheng et al. 1998
(3 generations from
M. x atrosanguinea)

– Royal Gala × OR45T132 184 Verification by genetic mapping – – – –
(selection of
M. x atrosanguinea 804)

Vm Golden Delicious × Murray 142 Whole genome scan Hi07h02/0 microsatellite LG 17 Patocchi et al. in press
CH05d08y/3.5 microsatellite

Vh2 Royal Gala × TSR34T15 192 BSA OPL19550/2.5 RAPD – Gardiner et al. 1999a,
(F2 of R12740-7A) Bus et al. 2000

Vh2 Golden Delicious × TSR34T15 122 Population screen OPL19433/n.d. SCAR – Bus et al. 2002
(8.2% recombination
frequency [r.f.])

Vh2 Empire × R12740-7A 315 BSA OPB18620/n.d. (0.8% r.f.) SCAR – Hemmat et al. 2002
– Population screen CH02b10122/n.d. (7.8% r.f.) microsatellite – –
– – – – (ex Gianfranceschi – –

et al. 1998)
Vh2 Royal Gala × TSR34T15 192 Comparative mapping CH02b10121/8.8 OPZ13900/5.0 microsatellite LG 2 Bus et al. 2005b

(JoinMap v. 3.0, (ex Gygax et al. 2004) SCAR
Van Ooijen and Voorrips, 2001) OPL19433/1.0 SCAR

CH05e03165/10.0 microsatellite
Vh2 Sciglo × A68R03T057 111 As above CH02b10121/9.0 microsatellite – Bus et al. 2005b

– – OPL19433/5.0 SCAR – –
– – CH05e03165/4.0 microsatellite – –

VT57 Sciglo × A68R03T057 111 Single strain inoculation, CH02b10126/2.0 microsatellite LG 2 Bus et al. 2005b
comparative mapping OPL19433/3.0 SCAR
(JoinMap v. 3.0, CH05e03166/4.0 microsatellite
Van Ooijen and Voorrips, 2001)

Vh4 Royal Gala × TSR33T239 242 BSA OPB10>2000/22.1 RAPD – Bus et al. 2000
Vh4 Empire × R12740-7A 315 BSA S221300/n.d. (9.8% r.f.) SCAR – Hemmat et al. 2002

S6800/n.d. (23% r.f.) RAPD –
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Table 5. (continued)

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

Vh4 Royal Gala × TSR33T239 154 Population screen S221300/n.d. (9.8% r.f.) SCAR – Bus et al. 2002
Regia × Pingo 191 BSA OPAD13950 n.d. (15% r.f.) SCAR – Boudichevskaia
Regia × Pinova 188 – – – – et al. 2004
Regia × Delbarestivale 97 – – – –

Vh4 Royal Gala × TSR33T239 242 Genetic mapping S221300/4.0 SCAR LG 2 Bus et al. 2005b
– – (JoinMap v. 3.0, CH02c02a170/5.0 Microsatellite – –

Van Ooijen and Voorrips, 2001) OPB10>2000/19.0 SCAR
– – – OPAD13950/7.0 SCAR – Gardiner et al.

unpublished
Vr2 GMAL 2473 × Idared 377 BSA EA35MA41262/0 AFLP LG 2 Patocchi et al. 2004

– – – EA37MA39188/0 AFLP – –
– – – CH02c02a176/0 microsatellite – –
– – – CH02f06146/6.9 microsatellite – –

Vr2 Fiesta × Discovery 44 Comparative mapping ARGH37/3.5 ARGH17 3.5 RGA RGA – Baldi et al. 2004
Vr2 Discovery × TN10-8 149 Whole genome scan NBS2M9/2.0 NBS marker – Calenge et al. 2005
– – – Comparative mapping NBS2M10/2.0 NBS marker – –

on another framework map NBS2R9/1.0 NBS marker
NBS3M3/1.0 NBS marker

– – – – NBS2M4/2.0 NBS marker – –
– – – – NBS3M1b/3.0 NBS marker – –
Vbj A722-7 × Golden Delicious 148 BSA OPZ13773/0 SCAR LG 2 Gygax et al. 2004

– – OPT06410/5.8 SCAR – –
– – – – OPK08 743/10.2 SCAR – –
– – – Comparative mapping CH2c06248/0 microsatellite – –
– – – (JoinMap v 2.0, CH5e03150/2.1 microsatellite – –

Stam and van Ooijen, 1995) CH3d01115/8.3 microsatellite
Vh8 Royal Gala × M. sieversii 152 Comparative mapping OPL19433/1.3 SCAR LG 2 Bus et al. 2005a

W193B (JoinMap v. 3.0, OPB18628/4.3 SCAR
Van Ooijen and Voorrips, 2001) OPB 18799 (Vh8 SCAR)/5.1 SCAR

CH3d01124/18.5 microsatellite
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Table 5. (continued)

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

Va Fortune × PRI 1841-11 and 120 BSA P136700/n.d. (18% r.f) RAPD; SCAR LG 1? Hemmat et al. 2003
primers unpubl.

NY489 × PRI 1841-11 – – B398480/n.d. (16% r.f) RAPD – –
ACS-6/n.d. (24% r.f.) SCAR – –

Vb Empire × Hansen’s baccata #2 140 BSA B220700/n.d. (12% r.f) RAPD; SCAR LG 1? Hemmat et al. 2003
primers unpubl.

– – – OPAM19450/n.d. (24% r.f) SCAR – –
– – – – ACS-1; OPU01400/26% r.f.) SCARs – –
Vb Golden Delicious × 149 Whole genome scan Hi02d05/7.8 microsatellite LG 12, Erdin et al. 2006

Hansen’s baccata #2 Hi07f01/9.7 microsatellite not LG 1
Vd Durello di Forlì × Fiesta 146 Genetic mapping OPAF07880bp/2.0 RAPD LG 10 Tartarini et al. 2004
– – – – G63Tru91a/2.0 microsatellite –
– Discovery × TN10-8 149 Comparative mapping NBS3M13/2.0 NBS marker – Calenge et al. 2004

on another framework map NBS2M18/1.0 NBS marker
NBS2M12/1.0 NBS marker
NBS3M8/3.0 NBS marker

Vg Prima × Fiesta 149 Single strain inoculation; MC105/3.0 RFLP LG 12 Durel et al. 1999
mapping

Vg Discovery × TN10-8 149 Genetic mapping CH01d03/0.5 microsatellite – Calenge et al. 2004
Vg Discovery × TN10-8 149 Genetic mapping NBS2M14/5.0 NBS marker – Calenge et al. 2005

NBS3M11/0.7 NBS marker –
Vmis Splendour × 155 BSA OPAS11760/<8.0 RAPD Not Gardiner et al. 2001

MIS o.p. 93.051 G01-048 OPAS07690/<17.5 RAPD determined
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tical to Vh4, and that since the first naming of the
gene takes precedence over later namings, it should
be identified as Vh4. Vh4 has been mapped to LG 2
(Bus et al. 2005b). Screening of EST candidate R genes
using RFLP analysis, followed by conversion to SNPs
has indicated that screening of candidate genes will
be a useful route for developing further markers for
both Vh2 and Vh4 (Gardiner et al. unpublished).

1.3.2.1.4 Other Major Apple Scab Resistances
Mapping to Linkage Group 2 Described below are
three other major apple scab resistances that have
been mapped to LG 2, which possesses the largest
number of resistances to apple scab of any linkage
group. QTL for scab and mildew resistance have also
been identified there – see Sect. 1.4.2, (Calenge et al.
2004; Calenge and Durel, in preparation) as well
as numerous RGAs (Baldi et al. 2004; Calenge et al.
2005a) -see below. This high concentration of active
and potential resistances makes LG 2 of high priority
for an apple genome sequencing initiative.

1.3.2.1.4.1 Vr2 Vr2 from GMAL 2473 was reported by
Patocchi et al. (2004). Four markers were obtained by
BSAusingbothRAPDsandAFLPs.Twoof thesemark-
ers segregated with the resistance (EA35MA41 and
EA37MA39), making their future SCAR derivatives
excellent tools for MAS (Table 5). A fifth marker, a mi-
crosatellite that also co-segregatedwith the resistance,
was identified by a whole genome scan using selected
markers from the map of Liebhard et al. (2002). This
marker (CH02c02a) enabled the location of Vr2 on LG
2 at about 43 cM from Vh2, which excludes any pos-
sibility that these two resistance genes are identical.
However, the question of the relationship between Vr2
and Vh4 is not yet completely resolved. Uncertainty
about the origin of the Russian apple accession used,
the low number of seedlings with distinctive HR, the
difference in their distances to CH02c02a, and the
absence of data for S22SCAR suggest that they are dif-
ferent. On the other hand, since 65% of the seedlings
of the GMAL2473 × Idared family were resistant (Pa-
tocchi et al. 2004), GMAL2473 may well carry two,
possibly linked, scab resistance genes, one of which
may be Vh4, while the other gene is the true Vr2 gene.
The two-gene hypothesis is supported by the distinct
phenotypes of HR (for Vh4) and chlorotic/necrotic
(for Vr2) resistance reaction. Another reason for the
segregation of Vr2 not fitting a clear R:S ratio may be
segregation distortions, since LG 2 is well-known for
these (Maliepaard et al. 1998; Liebhard et al. 2003b;
Bus et al. 2005a ).

Baldi et al. (2004) located two RGAs within 3.5 cM
of the putative location of Vr2, while Calenge et al.
(2005a) mapped six markers identified by NBS profil-
ing to a genomic region corresponding to 5 cMaround
Vr2 and seven more in the next 3 cM in the direction
of Vh4 confirming that the region around Vr2 and
Vh4 is extremely rich in potential resistance genes
and certainly warrants further analysis.

1.3.2.1.4.2 Vbj RAPD markers for Vbj (OPZ13 and
OPK08) have been identified by BSA and converted
to SCAR markers (Gygax et al. 2004). These were
mapped around Vbj together with three microsatel-
lite markers (CH02c06, CH05e03 and CH03d01) pre-
viously defined as members of LG 2 by (Liebhard et al.
2002) (Table 5).

1.3.2.1.4.3 Vh8 A new scab resistance from M. siever-
sii accession W193B was identified and distinguished
from Vh2 with the aid of a new race of V. inaequalis,
race 8. Although no distinction between Vh2 and
Vh8 could be made on the basis of genetic marker
studies with the original markers for Vh2 (OPL19
and OPB18628bp), the latter marker produced a sec-
ond band of 799 bp that was specific to the Vh8 gene
(Bus et al. 2005a). Sequencing of the products of the
OB18 PCR reaction from both resistant parents en-
abled thedevelopmentof a secondmarker (Vh8SCAR)
that could distinguish the two genes as that also exhib-
ited a band in the presence of Vh8 that was not exhib-
ited by Vh2. Microsatellite CH03d01 from LG 2 maps
5 cM from Vh8 (Table 5). Sequencing of the prod-
ucts of the OPB18 PCR reaction from both resistant
parents enabled the development of a second marker
(Vh8SCAR) that could distinguish the two genes.

Considerationof themappingdata for theVh2and
Vh4 genes from Russian apple R12740-7A, plus the
information on markers for Vh8 and Vbj and Vr2, en-
abled Bus et al. (2004) to use the then available mark-
ers to delineate a map of LG 2 that locates Vbj, Vh2
and Vh8 close to each other, and at a distance from
Vr2 and Vh4 (Fig 2).

1.3.2.1.5 Va Hemmat et al. (2003) employed BSA to
identify linkage of P136RAPD to the hypersensitive
Va resistance from Antonovka PI1762623 and then
developed a SCAR marker (sequence not published)
(Table 5). Screening of their mapping population with
a range of markers for Vf demonstrated that many
markers for this gene map on the opposite side to
P136. These markers include those reported to map
with Vf in a high resolution map (Xu et al. 2001a)
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Fig. 2. Delineation of a scab resistance gene cluster on LG 2 of apple based on the genetic maps for the individual major genes
(A). The diagram on the right is a higher magnification of the diagram on the top left in the area containing several QTL and
major genes. The chromosome regions of LG 2 identified as carrying QTLs for scab resistance in a Discovery × TN10-8 family
(B) have been mapped according to their QTL peaks. (Adapted from Bus et al. 2005b)
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but not all Vf markers mapped in this population.
This indicates that Va may be located on LG 1, with
a recombination frequency of 27%between theVaand
Vf loci. This agrees with Dayton and Williams (1968),
who had earlier concluded that Va and Vf were not
allelic.

1.3.2.1.6 Vb In the same paper as their Va study,
Hemmat et al. (2003) reported the linkage of
B220RAPD to Vb (chlorotic resistance reaction from
Hansen’s baccata #2) and that several markers for Vf
mapped on the opposite side to B220SCAR (primer
sequence unpublished), but in a different order from
that found around Vf (Table 5). Test crosses had
indicated that Vb and Vf were not allelic (Dayton and
Williams 1968). B220SCAR mapped in repulsion to
resistance phenotype in the Va population (above),
and also in material not related to Hansen’s baccata
#2, including M. floribunda, M. prunifolia, M. zumi
calocarpa, David, Liset, Prairiefire, Carmine Crab,
D95-295 Redleaf Crab and AV Redleaf Crab. Hansen’s
baccata #1 amplified fragments with 11 of the 16 Vf
primers tested. M. baccata jackii amplified fragments
from four of the primers. Rusholme and Gardiner
(unpublished) mapped B220RAPD distantly, at 30 cM,
to Vb in a population derived from the GMAL2477
accession of Hansen’s baccata #2 and identified a new
RAPD marker (OPAJ03) mapping inside B220 at
25 cM from Vb. They confirmed the finding of M.
Hemmat and S. Brown (personal communication)
that a marker for Vbj (OPZ13773bpSCAR) mapped
outside B220RAPD. However, the Vf markers re-
ported by Hemmat et al. (2003) were not exhibited by
Hansen’s baccata #2 GMAL2477. A recent conference
report (Erdin et al. 2006) clarifies the issue. A whole
genome scan of plants in a Golden Delicious ×
Hansen’s baccata #2 progeny using microsatellite
markers demonstrated that Vb maps to the distal end
of LG 12 and not to LG 1. This result is consistent
with the early test cross results (Dayton and Williams
1968), and demonstrates the power of the whole
genome scan for mapping of major resistances to
linkage group.

1.3.2.1.7 Vd The resistance from the old Italian ap-
ple cultivar Durello di Forli that has been described as
conferring high field tolerance to apple scab (3B type
reaction) and a stellate necrotic reaction in glasshouse
grown seedlings exposed to the EU-D-42 race 6 refer-
ence strain of Venturia inaequalis has been mapped
to one end of LG 10 (Tartarini et al. 2004) using the

microsatellite map developed by this team (Tartarini
et al. unpublished). The markers OPAF07880bpRAPD
and G63Tru91a, that flank Vd closely (Table 5), are in
repulsion phase to the resistance and will need to be
converted to markers linked to the presence of a frag-
ment, before becoming useful for MAS. Four markers
identified by NBS profiling mapped to a genomic re-
gion corresponding to 5 cM around Vd in another
apple progeny (Calenge et al. 2005a). The high level
of resistance to race 6 conferred by Vd would make
it a useful reinforcement to the otherwise effective Vf
resistance that has been broken by race 6 (Bénaouf
and Parisi 2000).

1.3.2.1.8 Vg Vg, the major gene derived from
Golden Delicious that confers resistance to apple
scab incited by race 7 of V. inaequalis, breaker of the
Vf resistance from Malus floribunda 821 was first
described by Bénaouf et al. (1997). Screening of the
Prima × Fiesta framework mapping population of
Maliepaard et al. (1998) with differential strains of
V. inaequalis enabled Durel et al. (1999) to map Vg
3 cM from a new RFLP marker on LG 12 (Table 5).
Mapping in a second framework mapping population
(Discovery × TN10-8) enabled location of the gene
0.5 cM from the microsatellite CH01d03 (Calenge et
al. 2004). NBS profiling identified two more markers
close to Vg, one 5 cM upstream of Vg and the other
flanking the resistance at 0.7 cM (Calenge et al.
2005a).

1.3.2.1.9 Vmis Scab resistance segregates from an
open pollinated seedling (93.051 G01-048) of the
mildew immune seedling described by Dayton (1977)
as being the product of a pollination of a domestic
apple with an unknown crab apple. Initial analysis by
bulked segregant analysis resulted in identification of
two RAPD markers, OPAS07 and OPAS11 (Gardiner
et al. 2001) (Table 5). As the phenotype segregation
data suggested the presence of a second gene, this
analysis has been carried into the second generation,
resulting in the identification of new markers with
flanking markers located in a 15 cM span around Vmis
(Gardiner et al. unpublished).

1.3.2.2
Powdery Mildew Resistance Genes (Table 6)
Mapping of resistances to powdery mildew is much
more time consuming than mapping apple scab re-
sistances, because of the need to phenotype seedling
populations over several years to ensure that the adult
resistance phenotype has been attained and that this
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Table 6. Mapping of major genes for powdery mildew resistance in apple

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

Pl-w Jester × White Angel Gloster 40 LAP isoenzyme analysis Lap-2an/n.d. Isoenzyme Batlle and Aston 1996
69 × White Angel 80 (2.6 – 3.1%

recombination frequency)
Pl-w Prima × Fiesta 152 Mapping of LAP-2 LG 8 Maliepaard et al. 1998
Pl-w Katja × White Angel 80 BSA EM M02 /6.4 AFLP → SCAR – Evans and James 2003,

EM M01/4.6 AFLP → SCAR
Fiesta × 267 Whole genome scan CH01e12/10 microsatellite – James and Evans 2004
(Gloster 69 × White Angel) CH05a02y/13 microsatellite

Pl-d Fiesta × A871-14 272 Whole genome scan CH03c02/8.0 microsatellite LG 12 James et al. 2004
– – BSA OPA01900/4.0 (repulsion) RAPD –
– – – ETA-CTC/5.0 AFLP –
– – – EM DM01/9.0 AFLP; SCAR – –
– – Whole genome scan Ch01d03/13.0 microsatellite – –

Pl-1 85/23-2 × 81/19-35 64 BSA OPAT20450/4.0 SCAR Markussen et al. 1995
OPD021000/5.0 RAPD –

Pl-1 Idared × 78/18-4 233 Population screen OPAT20450/7.0 SCAR – Dunemann
– – BSA AU?bpSCAR/3-4 AFLP; SCAR – et al. 2004
– – – AU<100CAPS /3-4 – – –

Pl-1 – 150 Whole genome scan – – LG 12 Lesemann and
Dunemann 2006

Pl-n X3191 × Novosibirski Sweet 200 Screen of 76 phenotype OPAT20450/9 SCAR Not Dunemann et al. 2004
o.p. 91.117 A01-003 extremes AU<100CAPS/9.5 CAPS determined

AU600SNP trans/9.5 SNP
Pl-2 A679-2 × Iduna 358 QTL analysis OPN181000/ RAPDs spanning – Seglias and Gessler 1997

OPO041800/ a QTL of and Gianfranceschi
OPK151400/ 28 cM et al. 1999
OPAG02450/

Pl-2 Fiesta × SA572-2 61 Population screen OPAT20900/6 RAPD – Dunemann et
– – – Genetic map construction OPAJ13600/11 RAPD – al. 1999
Pl-2 Royal Gala × A689-24 190 Population screen OPN18950/7 RAPD – Gardiner et al. 1999a
Pl-2 Fiesta × Discovery and 112 Comparative – – LG 11 Liebhard et al. 2002

A679-2 × Iduna microsatellite mapping
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Table 6. (continued)

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

Pl-2 Royal Gala × A689-24 190 BSA OPU021700/8 RAPD → SCAR – Gardiner
– – – BSA OPAY17AB16a1100/5.9 RAPD → SCAR – et al. 2003
– – – BSA OPAY17AB16b400/7.1 RAPD → SCAR – –
– – – EST screening GenBank DR033891/closest band 0.9 RFLP – –
– – – – GenBank DR033886/closest band 1.1 RFLP – –
– – – – GenBank DR033892 /closest band 2.9 RFLP – –
– – – – GenBank DR033893/4.1 RFLP – –
– – – – GenBank DR033888/5.4 SCAR – –
Pl-m Fuji × MIS o.p. 93.051 G02-054 174 BSA OPAC201800/14.4 RAPD Not Gardiner

determined et al. 1999a
Pl-m Fuji × MIS o.p. 93.051 G02-054 – Genetic mapping OPAC201800/0.7 SCAR – Gardiner

et al. 2003
(JoinMap v.2.0, OPN181000/13.5 SCAR
Stam and van Ooijen 1995) OPAY17AB16a1100/5.5 SCAR

– – – – OPAY17AB16b400/7.3 SCAR – –
– – – – OPU022000/8.1 SCAR – –
– – – EST screening GenBank DR033892/closest band 1.1 RFLP – –
– – – – GenBank DR033886/closest band 1.6 RFLP – –
– – – – GenBank DR033888 /5.8 SCAR – –
Pl-a M9 × Aotea 277 Marker screening OPN181000/11.5 SCAR Not Gardiner

determined et al. 2004
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phenotype is stable. It is necessary to expose the
seedlings to the inciting organism Podosphaera leu-
cotricha in the field, as it cannot be cultured in vitro.

1.3.2.2.1 Pl-w The first markers reported to be
linked to a major resistance to powdery mildew were
isoenzymes linked to the Pl-w gene derived from the
crab apple White Angel (Manganaris 1989; Manga-
naris and Alston 1992; Hemmat et al. 1994; Batlle and
Alston 1996). The closest was Lap-2 (Table 6). Batlle
and Alston also used segregation analysis to identify
a complementary but unlinked gene Rw that was re-
quired for expression of resistance by Pl-w.

A whole genome scan using phenotype bulks
demonstrated that the microsatellites CH01e12 (lo-
cus 1) and CH05a02y flank Pl-w, at positions 10 and
12 cM, respectively from the gene (James and Evans
2004). These microsatellites both map to LG 8 (Lieb-
hard et al. 2002) confirming the assignment of Pl-w
to this linkage group that was first indicated by the
mapping of Lap-2 to LG 8 by (Maliepaard et al. 1998).
A study employing bulked segregant analysis using
amplified fragment length polymorphisms (AFLPs)
enabled the identification of two markers that map in-
side CH01e12 at 4.6 and 6.4 cM (EM M01 and EM M02,
respectively) (Evans and James 2003; James and Evans
2004). Baldi et al. (2004) located an RGA marker 7 cM
from the putative position of Pl-w in the Fiesta × Dis-
covery population and Calenge et al. (2005a) mapped
three NBS-LRR homologs within 2 cM of the putative
position of Pl-w in the Discovery × TN10-8 popula-
tion.

1.3.2.2.2 Pl-d This strong mildew resistance is de-
rived from an open pollinated crab apple from the
South Tyrol, Italy (Visser and Verhaegh 1976). Bulked
segregant analysis identified AFLP and RAPD mark-
ers mapping to Pl-d (James et al. 2004) (Table 6). One
of the AFLPs has been converted to a SCAR marker
that maps to one side of Pl-d. In the course of the same
study, two flanking microsatellite markers that were
identified in a whole genome scan located Pl-d on the
bottom of LG 12, a region where other disease resis-
tance genes have been identified, including Vg (Durel
et al. 1999), and NBS markers (Calenge et al. 2005a).

1.3.2.2.3 Pl-1 Markussen et al. (1995) first reported
OPAT20450SCAR as a close marker for the Pl-1 mildew
resistance fromM.robusta (Table6).Pl-1was later ver-
ified to map at a distance of about 7 cM from the gene
in a separate population (Dunemann et al. 2004). Two
more markers have been identified using BSA with

AFLPs. One was converted to a SCAR (AU-SCAR) and
also a CAPs marker AU-CAPs (Urbanietz 2002; Dune-
mann et al. 2004) that maps 3-4 cM from Pl-1, making
thismarkeraveryvaluable tool for selectionpurposes.
Pl-1 has been mapped to LG 12 in the vicinity of Vg
and Pl-d following a whole genome scan (Lesemann
and Dunemann 2006).

1.3.2.2.4 Pl-n Screening of a segregating population
derived from a cross between the susceptible breed-
ing parent X3191 and mildew resistant Novosibirski
Sweet o.p. (91.117 A01- 003) demonstrated clearly that
the Pl-1 marker AT20450bpSCAR is linked to resistance
to powdery mildew infection derived from Novosi-
birski Sweet o.p. (Table 6). Development of a new SNP
marker for this population from AU-CAPs enabled
the mapping of this second Pl-1 marker to the mildew
resistance (Dunemann et al. 2004). The relationship
between Pl-1 and Pl-n is currently unclear; Pl-n may
be a new gene, perhaps allelic to Pl-1.

1.3.2.2.5 Pl-2 The earliest molecular markers for
the Pl-2 resistance from M. zumi were RAPDs ob-
tained using a QTL mapping approach (Seglias and
Gessler 1997; Gianfranceschi et al. 1999) (Table 6)
but the gene clearly segregated as a single gene in
a Royal Gala × A689-24 family in New Zealand
(Bus et al. 2000). Dunemann et al. (1999) screened
the markers that Markussen et al. (1995) had identi-
fied for Pl-1 and found that AT20900bpRAPD mapped
at a similar distance from Pl-2 as the 450 bp band
had mapped to Pl-1. Gardiner et al. (1999a) utilized
the OPN18 RAPD marker from the first study to
construct DNA bulks on the basis of genotype as
well as phenotype and identified a second, flank-
ing marker for Pl-2 (OPU02). They reported that
the markers mapped in absence of phenotype were
located less than 12 cM apart, making them use-
ful for MAS. Gardiner et al. (2003) reported two
more SCARs mapping inside OPN18SCAR, both de-
rived from BSA with a combination of OPAY17RAPD
and OPAB16RAPD primers (OPAY17/OPAB16a and
b SCARs). They also mapped OPAC15/OPAZ16SCAR
distal to OPU02SCAR and used this map of anony-
mous markers as a framework to locate EST markers
(Gardiner et al. 2003). One hundred and ten ESTs were
mined from an EST database of 30,000 unigene sets on
the basis of sequence homology to recognized resis-
tance genes from other plants and screened as RFLP
probes over mini-populations segregating for a range
of resistances. This enabled the detection of putative
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Fig. 3. Comparison of Pl-2
and Pl-m genetic linkage
maps using PCR based
markers only. The vertical
line represents the linkage
group with marker loci on
the left, interval sizes (in cM)
on the right and the total
length (in cM) at the base
of the maps (after Gardiner
et al. 2003)

linkages to Pl-2 and other genes. These were then
confirmed in larger subsets of the mapping popula-
tion.

Loci characterized by ESTs mapped to either side
of Pl-2 in regions where it had previously proved dif-
ficult to locate anonymous SCAR markers. Of ESTs
mapped as RFLPs within 3 cM of Pl-2, a band from
GenBank accession DR033891 showing homology to
HcrVf2 mapped 0.9 cM from Pl-2. The closest bands
from GenBank accession DR033886 and GenBank ac-
cession DR033892 (no homology to known R gene
classes) mapped at 1.1 and 2.9 cM, respectively on
the other side of Pl-2. A second NBS-LRR homolog
(GenBank accession DR033893) mapped just outside
of GenBank accession DR033892. An EST exhibiting
homology to the NBS-LRR class of R genes (Gen-
Bank accession DR033888) was converted to a PCR
based marker that mapped at 5.4 cM from Pl-2, inside
OPUO2SCAR.

It has been noted that GenBank accession
DR033891 also maps close to Vf (Sect. 1.3.2.1.1). It is
interesting to speculate that it might be involved in
the scab resistance QTL located close to Pl-2 that was
reported by Liebhard et al. (2003c).

Mapping of a common microsatellite in the A679-
2 × Iduna population of (Seglias and Gessler 1997)
and the Fiesta × Discovery population (Liebhard
et al. 2002) enabled assignment of Pl-2 to LG 11.
This has been confirmed by Rusholme et al. (unpub-

lished) in a whole genome scan of DNA bulks with
74 microsatellite markers, as well as the framework
map under construction by Rikkerink et al. (unpub-
lished).

1.3.2.2.6 Pl-m This strong mildew resistance seg-
regates as a major gene from an open pollinated
seedling (93.051 G07-062) of the mildew-immune
seedling described by Dayton (1977) as being the
product of a pollination of a domestic apple with
an unknown crab apple. The first marker reported
for Pl-m, OPAC20, was obtained using BSA with
RAPDs (Gardiner et al. 2001) (Table 6) and the SCAR
derivative mapped very closely to the resistance at
0.7 cM (Gardiner et al. 2003). Four SCAR markers
previously mapped around Pl-2 also mapped to Pl-m
and the marker order around the resistance pheno-
type was conserved. Fragment length was conserved
for three of these anonymous markers and for the
NBS-LRR marker derived from GenBank accession
DR033888.

Figure 3 shows simplified maps around Pl-m and
Pl-2, constructed with the PCR-based markers in
common only. Two other ESTs with no known se-
quence homology to R genes (GenBank accessions
DR033886 and DR033892) also identified markers
for both mildew resistances when mapped as RFLPs.
Whole genome scanning with the same 74 microsatel-
lites used to assign Pl-2 to LG 11 did not enable as-
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signment of Pl-m to a linkage group, and therefore
the possibility that Pl-2 and Pl-m may not map to the
same group (Rusholme et al. unpublished) and that
the genomic regions around these two genes may be
homeologous rather than homologous cannot yet be
ruled out. As Pl-2 and Pl-m have already been pyra-
mided in a resistance breeding population (Bus et al.
unpublished), test crosses from seedlings with both
genes would provide information on this question,
as would more intensive microsatellite mapping of
Pl-m.

1.3.2.2.7 Pl-a The rootstock Aotea 1 derived from
M. sieboldii (Taylor 1981) has been observed to carry
resistance to powdery mildew, as well as to apple scab
(Vat) and woolly apple aphid (Er-3). When markers
for Pl-2 and Pl-m were screened across a population
phenotyped for three years for mildew resistance, it
was noted that two of the markers (OPN18SCAR and
OPUO22100bpSCARc) mapped to Pl-a (Table 6), indi-
cating that Pl-a may share a positional relationship
with Pl-2 and Pl-m (Gardiner et al. 2004).

1.3.2.3
Rosy Leaf Curling Aphid Resistance Genes

1.3.2.3.1 Sd-1 Three very close RFLP markers
(MC06a, 2B12a and MC029b) mapped within 2 cM
from the Sd-1 gene for resistance to biotypes 1
and 2 of Dysaphis devecta from Cox’s Orange
Pippin (Roche et al. 1997a) in a Prima × Fiesta
population (Table 7). Four RAPD markers mapped
more distantly. The RFLP 2B12a was later converted
into 2b12a196bpSCAR (Roche et al. 1997b) and its
linkage with Sd-1 was confirmed through pedigree
analysis. The original mapping population was
later employed to construct the detailed genetic
map of Maliepaard et al. (1998), which located
Sd-1 at the top of LG 7. Repeated phenotyping,
plus fine mapping in over 700 seedlings from six
more families later enabled the co-location of
MC064a with Sd-1 in a 1.3 cM interval between
2b12a196bpSCAR and microsatellite SdSSRa (Cevik
and King 2002a).

1.3.2.3.2 Sd-2 Co-segregation of 2b12a196SCAR and
SdSSRa in a small population segregating for the Sd-
2 gene from Double Red Northern Spy that confers
resistance to D. devecta biotype 1 only, indicated that
Sd-2 is tightly linked to Sd-1, and is probably allelic to
Sd-1 (Cevik and King 2002a) (Table 7).

1.3.2.4
Woolly Apple Aphid Resistance Genes

1.3.2.4.1 Er-1 Markers G327 and OPC20RAPD
that flanked the Er-1 resistance from Northern
Spy at 12 and 8 cM, respectively were identified by
bulked segregant analysis (Gardiner et al. 1999a;
Bus et al. 2000) (Table 7) and converted to SCARs
for use in MAS. OP05SCAR, a marker close to Er-3
is linked more distantly to Er-1 (Gardiner et al.
2004). More recently, mapping of two microsatellite
markers (CH01c06 and CH02g09) from Liebhard
et al. (2002) made it possible to assign Er-1 to LG 8.
Interestingly, CH01c06 was located only 2 cM from
Er-1 (Chagné, Durel and Gardiner unpublished),
which makes it a suitable marker for marker-assisted
selection.

1.3.2.4.2 Er-3 A novel resistance to woolly apple
aphid identified in the rootstock Aotea 1 (Taylor
1981) has been studied in a segregating population
(M9 × Aotea 1) and named Er-3 (Gardiner et al.
1997; Bus et al. 2000). The close linkage of OP051700bp

SCAR to this resistance (0.8 cM) (Table 7) indicated
that it would be useful for MAS. This was confirmed
by the detection of only four recombinants in a
2nd generation population of 121 plants, using
the modified marker OP05880SCAR constructed to
segregate in this particular population (Bus et al.
2000). Candidate genes developed from ESTs that
mapped to Er-3 include two NBS LRR homologs
(GenBank accession DR033890 and GenBank
accession DR033887), a receptor protein kinase
(GenBank accession DR033889) and a leucine rich
repeat EST with homology to extensin and tomato
Cf-2 (GenBank accession DR033885). GenBank
accessions DR033885 and DR033887 have been
converted to PCR based markers and mapped to
Er-1 as well as Er-3 (Gardiner et al. unpublished).
Screening of these two markers in a Discovery ×
TN10-8 population enabled the assignment of
Er-1 and Er-3 to LG 8 (Chagné, Durel and Gar-
diner unpublished). This has been confirmed for
Er-3 by mapping of microsatellite CH02g09 12 cM
(Liebhard et al. 2003c) from Er3 in the M9 ×
Aotea 1 population (Chagné, Durel and Gardiner
unpublished).

1.3.2.4.3 Er-m The same pollinated seedling (93.051
G07-062) that is the source of the Pl-m resistance
(see above) also carries a novel resistance to woolly
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Table 7. Mapping of major genes for resistance to aphids in apple

Trait Resis- Gene Progeny No. Method Markers (marker/distance) Marker class Linkage group Reference
tance to sdlgs (cM from gene) assignment

1. Rosy leaf Sd-1 Prima × Fiesta 141 Linkage analysis MC029b/2 RFLP – Roche et al. 1997a
curling aphid (JoinMap v.2.0, Stam MC064a/1 RFLP
(Dysaphis and van Ooijen, 1995) 2B12a/1 RFLP
divecta) Sd-1 Prima × Fiesta 77 Marker conversion, DdARM196 SCAR – Roche et al. 1997b

pedigree analysis
– Sd-1 Prima × Fiesta 152 Mapping – – LG 7 Maliepaard et al. 1998
– Sd-1 Resistant cultivars 9 BSA ETC/MCTT-1/1.4 AFLP → SCAR Cervik and King 2002a

Susceptible cultivars 8
– – 6 segregating families 759 Linkage analysis MC064a/0 RFLP – –

Sd-1 located in 1.3 cM
– – – – – interval between 2B12a196 SCAR – –
– – – – and SdSSRa AFLP; microsatellite – –
– Sd-2 Double Red 47 Linkage analysis 2B12a196/0 SCAR LG 7 Cervik and King 2002a

Northern Spy × Totem SdSSRa/0 microsatellite
2. Woolly apple Er-1 Sciglo x Northern Spy 132 BSA G3271600/11.6 RAPD; SCAR – Gardiner et al. 1999a,
aphid (Eriosoma OPC202000/7.9 RAPD; SCAR Bus et al. 2000
lanigerum) Er-1 Sciglo × Northern Spy 132 Linkage analysis OPO051700/9.6 SCAR – Gardiner et al. 2004

DR0338851500/23 trans SNP
DR033887900/23 SCAR

– Er-1 Discovery × TN10-8 149 Marker screening DR0338851300 SNP LG 8 Chagné et al. unpublished
DR033887750 SCAR

– Er-1 Sciglo x Northern Spy 94 Marker screening CH01c06/2 microsatellite LG 8 Chagné et al. unpublished
– Er-3 M.9 × Aotea 131 BSA OPO051700/0.8 RAPD; SCAR – Gardiner et al. 1997
– OPA011250/3.3 RAPD (trans) – Bus et al. 2000
– Er-3 M.9 × Aotea 277 EST screening DR033885500/9.8; 7.0 RFLP; SNP – Gardiner et al. 2004
– – – – – DR033890 /closest band 5.7 RFLP – and Gardiner et al.

DR033887750/7.8; 7.0 RFLP; SCAR unpublished
DR033889 /closest band 8.0 RFLP

– Er3 M.9 × Aotea 277 Marker screening CH02g09/12 microsatellite LG 8 Chagné et al. unpublished
– Er-m Fuji × MIS 153 BSA OPA04950/7 RAPD → SCAR Not Gardiner et al.

o.p. 93.051 G02-054 OPZ201200/6 RAPD determined unpublished
– Er-l Prima × Longfield 144 BSA OPAD01630/13 RAPD; SCAR Not Gardiner et al. 2001

o.p. 93.043 G07-062 determined



28 S. E. Gardiner et al.

apple aphid that does not map to markers for Er-1 and
Er-3. Flanking markers OPA4SCAR and OPZ20RAPD
have been identified by BSA (Table 7) (Gardiner et al.
unpublished).

1.3.2.4.4 Er-l A single RAPD marker, OPA01, has
been identified for a novel woolly apple aphid re-
sistance derived from an open pollinated seedling
of Longfield (93.043 G07-062) (Gardiner et al. 2001).
Markers identified todate forotherwoolly apple aphid
resistances do not map to Erl (Table 7) (Gardiner et al.
unpublished).

1.3.2.5
Other Major Gene Traits

1.3.2.5.1 Self-Incompatibility (SI) Maliepaard
et al. (1998) mapped the self-incompatibility locus
as an allele-specific marker (Janssens et al. 1995) in
the Prima × Fiesta framework map (Table 8). It is
closely associated with AAT-1 isoenzyme and the
RFLP MC038b on the lower end of LG 17.

1.3.2.5.2 Rootsuckers (Rs) Joint segregation analy-
sis of root sucker formation with RAPD markers seg-
regating from White Angel identified linkage of RAPD
P124e with a single locus determining the formation
of root suckers (Rs) (Weeden et al. 1994) (Table 8).
This locus was assigned to a US linkage group that
corresponds to LG 17 in the European numbering
system (Maliepaard et al. 1998; Hemmat et al. 2003).

1.3.2.5.3 Fruit skin color (Rf) Weeden et al. (1994)
found that the isoenzyme marker Idh-2 was closely
linked to red skin color in a Rome Beauty×White An-
gel population. Study of segregation of BC226SCAR
(identified by BSA) in the same Rome Beauty ×
White Angel population indicated that the basis for
control of red/yellow skin color was simple (Cheng
et al. 1996) (Table 8). Fruit of progeny with the dom-
inant 1160 bp fragment from Rome Beauty or the
1180 bp fragment from White Angel (or both) were
red skinned, while the recessive 1230 bp fragment
inherited from both parents segregated with yellow
skin. In three other progenies, only the 1160 bp frag-
ment segregated with red skin. A second fragment
of 1320 bp could be associated with yellow skin,
in addition to the 1230 bp fragment. Screening of
56 other cultivars indicated that this marker system
could be used to predict skin color in most cases.
BC226 mapped to the US LG 3 (Conner et al. 1997)

and to European LG 9 between two RFLP markers
in the Prima × Fiesta framework map (Maliepaard
et al. 1998). Comparative DNA sequencing would have
to be carried out to confirm that the BC226 locus
in the Rome Beauty × White Angel cross is allelic
to the BC226 locus amplified in the Prima × Fiesta
framework population, and the putative LG 9 assign-
ment.

1.3.2.5.4 Fruit Juice pH (Ma) Acidity in apple is
mainly due to malic acid and Nybom (1959) demon-
strated that low acid fruit (pH 3.8 and above) was
determined by the presence of homozygous recessive
alleles for the Ma gene, ma ma. Mapping of fruit juice
pH <3.7 in a Wijcik McIntosh × NY75441-58 popu-
lation enabled the identification of a RAPD marker
for ma (S65600) (Table 8) (Conner et al. 1997). Acid-
fruited progeny were assumed to have at least one
copy of Ma and both parents (acid fruited) were het-
erozygous Ma ma. Using similar criteria, Maliepaard
et al. (1998) located Ma on the distal end of LG 16,
co-segregating with the RAPD OPT161000.

1.3.2.5.5 Columnar habit (Co) The Co gene in
apple that was identified in a mutant of McIntosh
(Fisher 1970) decreases branching, internode length
and plant height, while increasing spur formation.
The columnar character is believed to be controlled
by a dominant allele, but modifiers may be involved
(Lapins 1976). Bulked segregant analysis was used
to identify a RAPD marker for the columnar habit
that contained a repeat of (GA)17 (Table 8) (Hemmat
et al. 1997). This RAPD fragment was converted to
a microsatellite marker (SSRCO), where the null allele
was linked to Co. Conner et al. (1997) then mapped
two further RAPDs, B347 and B318 to a 5 cM interval
around Co on the US linkage group corresponding to
LG 10 in the EU framework map. SSRCO (designated
USASSR11) was later mapped directly to LG 10 in Fi-
esta (Maliepaard et al. 1998).

1.3.2.5.6 Fruit Allergens (Mal d) Allergies to
fresh apples in Northern and Central European
populations sensitized to birch pollen arise from
four allergens identified to date: Mal d 1 (a Bet
v 1 homologous protein) belonging to a group
of pathogenesis related (PR10) proteins, Mal d
2 (apple thaumatin-like protein), Mal d 3 (apple
non-specific lipid transfer protein) and Mal d 4
(apple profiling) (see Gao et al. 2005a). Knowledge
of the genetics of allergenicity caused by healthy
apple fruit will enable breeding for low allergen
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Table 8. Mapping of major genes not involved in resistance, in apple

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

SI Prima × Fiesta 152 Map construction AAT-1/<1 Isoenzyme LG 17 Maliepaard et al. 1998
MC038b/1 RFLP

Rs Rome Beauty × White Angel 56 Joint segregation analysis P124e/not determined RAPD LG 17 Weeden et al. 1994
Rf Rome Beauty × White Angel 56 Joint segregation analysis Idh-2/not determined Isoenzyme – Weeden et al. 1994
Rf Rome Beauty × White Angel 72 BSA, mapping BC2261180/<2 RAPD; SCAR – Cheng et al. 1996

Idh-2/<2 Isoenzyme
Rf Wijcik McIntosh × NY75441-58 172 Linkage analysis BC2261175/0 RAPD (= 1,160 bp – Conner et al. 1997

SCAR fragment above)
Rf Prima × Fiesta 152 Mapping of BC226 SCAR LG 9 Maliepaard et al. 1998
Ma Wijcik McIntosh × NY75441-58 172 Map construction S65600/7.1 RAPD – Conner et al. 1997
Ma Prima × Fiesta 152 Map construction OPT161000/0 RAPD LG 16 Maliepaard et al. 1998
Co Wijcik McIntosh × NY5441-67 126 BSA OPA111000/? RAPD, trans – Hemmat et al. 1997

→ SSRCO microsatellite
– Wijcik McIntosh × NY75441-58 172 Linkage analysis SSRCO/6 microsatellite, trans –
Co Wijcik McIntosh × NY75441-58 172 Map construction B347890/1.8 RAPD – Conner et al. 1997

B318440/3.2 RAPD
Co Prima × Fiesta 152 Mapping of SSRco – microsatellite LG 10 Maliepaard et al. 1998
Mal d 1 Prima × Fiesta 144 PCR based cloning; – – – Gao et al. 2005b
gene family plus Jonathan × Prima 196 mapping of allele specific

markers for each member
of family (18 members)

Subfamilies I, IV – – – Gene specific markers SNP, microsatellite LG 13, –
LG 16

Subfamilies II, III – – – Gene specific markers SNP, microsatellite LG 16 –
Mal d 1.05 – – – Gene specific marker SNP, microsatellite LG 6 –
Mal d 2.01A Prima × Fiesta 141 PCR based cloning; Gene specific marker SNP LG 9 van de Weg, personal

mapping of allele communication
specific markers

Mal d 2.01B – – – Gene specific marker SNP – –
Mal d 3.01 Jonathan × Prima 196 PCR based cloning; Mal d 3.0101a-JO/0, SNP LG 12 Gao et al. 2005a

mapping of allele
specific markers



30
S.E.G

ard
in

er
et

al.
Table 8. (continued)

Gene Progeny No. Method Markers Marker class Linkage Reference
sdlgs marker/distance group

(cM from gene) assignment

Mal d 3.02 Prima × Fiesta 144 PCR based cloning; Mal d 3.0201c-PM/0 SNP LG 4 Gao et al. 2005a
plus Jonathan × Prima 196 mapping of allele

specific markers
Mal d 4.01 Prima × Fiesta 141 PCR based cloning; SNP LG 9 van de Weg, personal

Gene specific marker communication
-2 copies plus Jonathan × Prima 175 Mapping of allele – – – –

specific markers
Mal d 4.2A – – – Gene specific marker SNP LG 2 –
Mal d 4.3A – – – Gene specific marker SNP, SSR LG 8 –
Md-ACS1 Prima × Fiesta 144 Mapping of gene specific SCAR LG 15 Costa et al. 2005

molecular marker
Md-AC01 Prima × Fiesta 144 Mapping of gene specific – SCAR LG 10 Costa et al. 2005

Fuji × Mondial Gala ? molecular marker
sl-1 6 progenies segregating for Vf Mapping with Vf markers – ± 14 cM from Vf LG 1 van de Weg, personal

communication
sl-2 6 progenies segregating for Vf Mapping with Vf markers – 1–8 cM from Vf LG 1 van de Weg, personal

communication
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cultivars for European consumers with this food
allergy.

1.3.2.5.6.1 Mal d 1 A number of conserved and spe-
cific primers were designed to obtain all possible Mal
d 1 sequences from Prima and Fiesta. PCR cloning
of fragments, sequencing and genome walking to-
wards the endsof genes enabledconstructionof allele-
specific SNP and microsatellite primers for 18 Mal d
1 genes that could be classified into four sub-families
according to intron size and presence/absence. These
genes were mapped directly in the Prima × Fiesta
population, as well as a Jonathan × Prima progeny
(Table 8). Seven genes from sub-families I and IV
mapped in a 30–35 cM interval between the RFLP
markers MC001 and MC041 on LG 13, and nine on
the homeologous LG 16. One gene mapped to LG 6
and one has not yet been mapped (Gao et al. 2005b).

1.3.2.5.6.2 Mal d 3 PCR-based cloning and sequenc-
ing of DNA from the parents of the Prima × Fiesta
framework mapping population of Maliepaard et al.
(1998) resulted in the identification of two distinct
genes, each with several sequence variants, that en-
code Mal d 3 proteins. SNP markers were constructed
for each of the genes, Mal d 3.01 and Mal d 3.0, and
mapped to homeologous segments of LG 12 and 4 be-
tween two RFLP markers shared in common (MC127
and MC105) (Gao et al. 2005a) (Table 8).

1.3.2.5.6.3 Mal d 2 Similar techniques have been em-
ployed to map two copies of Mal d 2 to an identical
position on LG 9 (Table 8) (Gao et al. 2005c)

1.3.2.5.6.4 Mal d 4 Two copies of a Mal d 4 gene
mapped to LG 9 and two single copy genes mapped to
LG 2 and LG 8 respectively (Table 8) (Gao et al. 2005c).

1.3.2.5.7 Ethylene Production Shelf life in apple
is a significant factor in determining the economic
value of an apple cultivar, particularly in countries
that rely on shipping of product to distant markets.
In the course of a study examining the role of en-
zymes involved in the biosynthesis of ethylene and
shelf life of apple fruit stored at room temperature
after harvest, two key genes of the ethylene biosyn-
thesis pathway were mapped. Both have proved to be
candidates for marker-assisted breeding, as homozy-
gotes for alleles Md-AC01-1 and MdACS1-2 yield fruit
with lowest ethylene production and superior shelf
life (Costa et al. 2005).

1.3.2.5.7.1 Md-ACS1 The Md-ACS1 marker devel-
oped by Harada et al. (2000) mapped to LG 15 in

the Prima × Fiesta framework mapping population
(Costa et al. 2005) (Table 8). Its location is distant
from a known QTL for fruit firmess that was
previously identified in this population (King et al.
2000; Maliepaard et al. 2001). Md-ACS1 exhibited
a relatively large effect on ethylene content and apple
fruit shelf life.

1.3.2.5.7.2 Md-AC01 A codominant gene specific
marker for Md-AC01 developed from full-length gene
sequences derived from apple gDNA and mRNA
mapped to LG 10 in two populations (Table 8). The
clear, although small effect of Md-AC01 on ethylene
production, coupled with its location at the border
of the 5% interval for fruit firmness QTL (King et al.
2000; Maliepaard et al. 2001), indicates that the role
of Md-AC01 in determining shelf life requires further
examination (Costa et al. 2005).

1.3.2.5.8 Sub-lethal Genes (sl) Distorted segrega-
tion ratios have frequently been reported in popu-
lations segregating for the Vf gene (e.g., Yang and
Kruger 1994; Tartarini 1996; Conner et al. 1997; Gar-
diner et al. 1999b; Tartarini et al. 1999; Bus et al. 2002).
Analysis of this phenomenon in six progenies has in-
dicated that these distortions could be explained by
three homozygous recessive sub-lethal genes (sl-1, sl-
2, sl-3). Sl-1 mapped about 14 cM from Vf, and sl-2 be-
tween 1–8 cM from Vf. Both genes required the pres-
ence of an unlinked gene, sl-3, for expression (Van de
Weg, personal communication). A good understand-
ing of the role of sub-lethal genes will facilitate strate-
gic choice of parents by breeders to provide progenies
with optimal proportion of seedlings with Vf.

1.4
QTL Trait Mapping

1.4.1
QTL Identification and Mapping in Apple

‘Quantitative trait’ describes a character for which the
observed variation is due to the segregation of sev-
eral genes and where, for each gene, the effects of the
allelic differences on phenotype are generally small
compared with the effects of the environment for each
gene (Kearsey and Poon 1996). Genetic mapping of
quantitative trait loci (QTL) involves identifying and
determining the degree of association between con-
tinuousquantitative traits andsetsof geneticmarkers.
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The ability to assess complex phenotypes in apple at
the seedling stage, such as tree architecture, fruit tex-
ture, fruit size and susceptibility to storage disorders
using genetic markers would greatly accelerate new
variety development. In addition to the selection of
advantageous traits, markers linked to complex traits
could be used to select against negative characteris-
tics, and could even be used to select the combination
of parents that would give rise to progeny with the
desired genotype.

An essential requisite for accurate QTL identifica-
tion in any plant species is a saturated genetic map
covering the entire genome. If certain regions of the
genome are not adequately represented by genetic
markers, then QTLs located in such regions will not
be reliably mapped, because it will be difficult to de-
termine if the QTL has a genuinely small phenotypic
effect, or is merely weakly linked to flanking mark-
ers (Lander and Botstein 1988). Several genetic maps
have been constructed for apple using a range of ge-
netic markers, such as random amplified polymor-
phism (RAPDs), restriction fragment length poly-
morphisms (RFLPs), amplified length polymorphism
(AFLPs) and isozymes (Hemmat et al. 1994; Conner
et al. 1997; Seglias and Gessler 1997; Maliepaard et al.
1998) (see Sect. 1.2.2). More recently, codominant mi-
crosatellite markers have been employed, and the de-
velopment of 115 new microsatellite markers, mapped
in the Fiesta × Discovery population (Liebhard et
al. 2002; Liebhard et al. 2003b) has established a sat-
urated, robust apple map comprising 1,140 cM and
1,450 cM in Fiesta and Discovery, respectively. This
geneticmaphasbeenalignedwith the Iduna×A679/2
map (Gianfranceschi et al. 1998) using common mi-
crosatellite loci, demonstrating that existing linkage
maps, such as those published by Conner et al. (1997)
and Hemmat et al. (1994) could easily be enriched and
subsequently aligned and integrated with the Fiesta ×
Discovery map (Liebhard et al. 2002, 2003b), provid-
ing a valuable tool for QTL detection and analysis
in apple. Map alignment with a consensus, saturated
map will enable the detailed comparison of QTL po-
sitions between populations (King et al. 2000; Durel
et al. 2003; Liebhard et al. 2003a, b, c; Calenge et al.
2004).

In addition to the classical QTL mapping ap-
proaches, there are other resources that can be utilised
in the identification of QTLs. For example, genetic
markers based on the sequence homology between
the NBS domain in plant resistance genes identi-
fied loci which co-segregated with apple scab and

powdery mildew resistance QTLs previously detected
in a Discovery × TN10-8 population (Calenge et al.
2005a). Since such QTLs could sometimes be the re-
sult of residual resistance encoded by defeated major
resistance genes, this is effectively a candidate gene
mapping approach. Genome synteny between related
species has also been exploited in QTL detection, with
comparative mapping approaches used to identify
QTLs conserved between maize and rice (Chardon
et al. 2004) maize and sorghum (McIntyre et al. 2004)
and maritime and loblolly pines (Chagné et al. 2003),
suggesting that QTLs detected in genomes of other
species belonging to the Rosaceae family, could be
used to aid the identification of QTLs in apple.

1.4.2
Mapping QTLs for Disease Resistance

Most of the disease resistance genes character-
ized to date in apple are single dominant genes
(see Sect. 1.3). Such genes commonly confer resis-
tance to the pathogen in a gene-for-gene manner
and are therefore in theory, easily overcome by the
pathogen’s ability to mutate to virulence (Crute
and Pink 1996). In view of the ease with which
a pathogen can break down single gene resistances,
illustrated by the two recently discovered races of
apple scab, able to overcome Vf (Parisi et al. 1993;
Roberts and Crute 1994), it is likely that durable
resistance to apple pathogens will be established
through the pyramiding of different resistance genes
with different resistance specificities into a single
cultivar. Pathogen resistance conferred by QTLs
would be a valuable addition to breeding portfolios
of major resistance genes, as incorporating QTLs
into a single cultivar is likely to be more effective
than the combining of major genes alone (Parlevliet
and Zadoks 1977). However, it is likely that several
QTLs with significant phenotypic effects would be
required to achieve a level of resistance comparable
to that controlled by major genes (Liebhard et al.
2003c).

1.4.2.1
QTLs for Resistance to Powdery Mildew
Kellerhals et al. (2000) identified two major QTLs for
powdery mildew resistance in the accession A 679-2
(Table 9). One of these QTLs originates from M. zumi,
(Pl-2 parent) and the other is linked to the Vf locus
(approximately 16 cM from Vf ) and is likely to origi-
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Table 9. Summary of QTLs for resistance to powdery mildew

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Iduna A 679-2 450 189 Artificial infection in field
Scored:
5 point scale

A 679-2 map:
LG 3, 5, 16
Iduna map:
LG 2, 3, 5, 7, 8, 9

Kellerhals et al. 2000c

Idared U 211 98 98 Assessed:
3 years in nursery
2 years in orchard
Scored:
5 point scale

U 211 map:
G 2: LOD 12.0; 72.1% and LOD 12.1; 71.5%
G 3: LOD 2.6; 37.5% and LOD 8.9; 72.4%
G 4 = LG 12: LOD 9.3; 64.9% and LOD 8.8; 71.9%
and LOD 10.8; 72.0%
Idared map:
G 3 = LG 2: LOD 3.3; 40.6% and LOD 2.4; 39.4%
G 5 = LG 15: LOD 7.9; 61.0%

Stankiewicz-Kosyl et al. 2005d

Discovery TN10-8 149 149 Natural infection in field
Assessed over 5 seasons
Scored:
10 point scale

Discovery × TN10-8 map:
LG 2: LOD 3.0–9.01; 7.4%–22.5%
LG 13: LOD 3.74–9.73; 7.5%–27.4%
LG 1: LOD 3.0; 7.4%
LG 8: LOD 5.27–8.45; 8.9%–19.5%
LG 10: LOD 3.99–4.02; 7.9%–8.3%
LG 14: LOD 3.45; 5.7%
LG 17: LOD 4.36–4.64; 8.8%–10.5%

Calenge and Durel 2006e

a Number of individuals used in QTL detection, either in phenotyping population (P/T) or in map construction and genetic marker analysis (G/T)
b Linkage groups containing QTL are listed with the prefix LG or G. Where possible, the LOD score of the associated QTL and the percentage of phenotypic variance (PVE) it explains
are included, with the LOD score first. Where several linkage groups are included, the range of associated LOD score and PVE have been included.
c Linkage maps not aligned with adopted consensus map (Liebhard et al. 2003b), thus standard linkage group nomenclature not used.
d Where possible linkage groups have been aligned with those of the consensus map (Liebhard et al. 2003b) and are annotated as such.
e Linkage maps have been aligned with the consensus map (Liebhard et al. 2003b), and standard nomenclature is used.
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nate from Malus floribunda 821. Eight other putative
QTLs were also identified, six of which were located on
the genome of the susceptible parent, Iduna. Mildew
infection was assessed in the field using a 5-point
classification scale, and the non-parametric Kruskal-
Wallis test was used to determine the association of
mapped RAPD markers with powdery mildew re-
sistance. Stankiewicz-Kosyl et al. (2005) used MAP-
MAKER/EXP 3.0 and MAPMAKER/QTL 1.1, to anal-
yse data from a limited number of 98 individuals de-
rived from an Idared × U211 cross and map 10 QTLs
involved in powdery mildew resistance (Table 9). Al-
though the genetic maps of Idared and U211 span
only five and four linkage groups, respectively, these
maps were specifically constructed around genomic
regions of interest. Several of the markers used made
it possible to align some of these linkage groups with
those of Maliepaard et al. (1998).

Stankiewicz-Kosyl et al. (2005) assessed trees over
a period of three years in the nursery and two years
in the field. Of the 10 QTLs detected five of them were
associated with powdery mildew resistance in only
one year. QTL U7, mapped on the equivalent of LG 12,
was associated with powdery mildew resistance over
four years and explained between 47.8% and 72.0%
of phenotypic variation. Apple scab resistance genes
such as Vg (Durel et al. 1999) and Pl-d (James et al.
2004) have already been mapped to LG 12, suggesting
the possibility of resistance QTL/gene clusters in this
region.

Calenge and Durel (2006) also assessed the occur-
rence of powdery mildew resistance in a population of
149 individuals derived from a Discovery × TN10-8
cross (Calengeet al. 2004) acrossfive seasonsover four
years (Table 9). Using MapQTL software, two QTLs on
LG 2 and LG 13 were consistently identified over all
five seasons and explained between 7.5 and 27.4% of
the phenotypic variation depending upon the season,
making them ideal candidates to select for in marker-
assistedbreedingprograms.FiveotherQTLswerealso
identified during either one or more seasons on LG 1,
LG 8, LG 10, LG 14 and LG 17 and several of these
QTLs were mapped to the same region as previously
identified major resistance genes, or resistance gene
clusters. Calenge and Durel (2006) hypothesised that
the detection of a range of QTLs over the five seasons
could be the result of environmental effects, such as
climate, tree growth and development, or changes to
the P. leucotricha local populations. The fluctuation in
the presence/absence of these five QTLs over the four
seasons indicates that to explain this powdery mildew

resistance fully, assessments over more years will be
necessary. Indeed, Calenge and Durel (2006) plan to
maintain and continue to assess this population be-
yond this study, to determine a key set of QTL that
control resistance to powdery mildew.

1.4.2.2
QTLs for Resistance to Apple Scab
QTLs have been identified for apple scab resistance
using the reference genetic maps (Sect. 1.2.2) con-
structed in the following populations; Prima × Fiesta
(Durel et al. 2003), Fiesta × Discovery (Liebhard et al.
2003c), Discovery × TN10-8 (Calenge et al. 2004) (Ta-
ble 10). A summary of these results plus those from
progenies of Discovery × Prima and Durello de Forli
x Fiesta is presented in Durel et al. (2004).

Durel et al. (2003) used two monoconidial strains
of race 6 to identify QTLs controlling resistance in
both Fiesta and Prima. Detailed QTL analysis using
both MCQTL (Jourjon et al. 2000) and MapQTL (Van
Ooijen 2004) software identified four genomic regions
that were significantly involved in partial resistance,
characterizedbya reduction in sporulation (Table 10).
One of these regions was located close to the original
Vf gene and it is possible that the observed partial
resistance was due to a closely linked gene, or a result
of a residual effect of the overcome Vf gene (Durel
et al. 2003). The remaining three additional regions
identified on LG 15, 11 and 17 were novel locations for
association with scab resistance.

Liebhard et al. (2003c) carried out extensive as-
sessment of field resistance to apple scab over a three-
year period involving three different geographical
sites. Using MapQTL, eight QTLs were identified that
contributed to apple scab resistance; six for leaf scab
and two for fruit scab (Table 10). Interestingly, al-
though Discovery demonstrated a greater degree of
resistance, most of the identified QTLs were attributed
to Fiesta, the more susceptible parent, indicating
a high degree of homozygosity at the resistance gene
loci in Discovery that prevented their detection in
the progeny because of the lack of segregation. The
high levels of resistance observed in individuals dur-
ing the study confirmed that Discovery was a strong
resistant parent for breeding (Liebhard et al. 2003c).
The strongest scab resistance QTL from Prima × Fi-
esta mapped to LG 17 (Liebhard et al. 2003c), coin-
ciding with a scab resistance QTL that Durel et al.
(2003) identified, and similarly LG 11 was identified
in both studies as possessing a region of interest. One
of the QTLs detected by Liebhard et al. (2003c) that
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Table 10. Summary of QTLs for apple scab resistance

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Prima Fiesta 143 143 Glasshouse inoculated:
Race 6 strains (strain 302, EU-D-42)

QTLs in four main genomic regions identified:
LG 1 (isolate specific): LOD 8.2–8.9; 16.0–17.8%
LG 11: LOD 5.4–9.5; 16.5–22.8%
LG 15 (isolate specific): LOD 3.1–3.3; 5.6–6.0%
LG 17: LOD 3.6–5.9; 9.4–13.4%

Durel et al. 2003c

Fiesta Discovery 251 251 Infected leaves placed in all locations
and artificial inoculations at Wädenswil
and Conthey
Detached leaf assay and 9 point scale
3–4 times/season
Fruit assessed using 4 point scale

Fiesta × Discovery map:
Leaf scab:
LG 6, 7, 10, 11, 12, 17: LOD 2.3–13.2; 4.0–23%
Fruit scab:
LG 15, 17: LOD 2.8–4.9; 7.0–9.0%

Liebhard et al. 2003cc

Discovery TN10-8 149 149 Glasshouse tested
Scored:
Infection on 6 point scale
Sporulation on 8 point scale

Discovery:
LG 2, 5, 12, 13, 15, 17
TN10-8:
LG 1, 2
Discovery × TN10-8 map:
3 major QTL for partial resistance to most isolates:
LG 1, 2, 17: LOD 3.16–26.59; 5.1–51.1%
QTL for single isolate resistance
LG 5: LOD 5.4–12.57; 12.5–20.8%

Calenge et al. 2004c

a Number of individuals used in QTL detection, either in phenotyping population (P/T) or in map construction and genetic marker analysis (G/T)
b Linkage groups containing QTL are listed with the prefix LG. Where possible, the LOD score of the associated QTL and the percentage of phenotypic variance (PVE) it explains are
included, with the LOD score first. Where several linkage groups are included, the range of associated LOD score and PVE have been included.
c Linkage maps have been aligned with the consensus map (Liebhard et al. 2003b), and standard nomenclature is used.
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accounted for 4% of the phenotypic variability was
located on LG 12 in a position comparable to Vg (Van
de Weg unpublished data).

Calenge et al. (2004) used a panel of eight mono-
conidial isolates to inoculate replicated progeny from
a Discovery × TN10-8 cross, resulting in the identifi-
cation of numerous QTLs across seven linkage groups
(with MapQTL), depending upon the isolate used (Ta-
ble 10). Combining QTLs with overlapping confidence
intervals and close likelihood peaks revealed three
major QTLs on LG 1, LG 2 and LG 17. The region
identified on LG 1 corresponds to the region around
Vf that Durel et al. (2003) identified as contributing
between 16.0% and 17.8% of phenotypic variation,
and the QTL identified on LG 17 (Calenge et al. 2004)
is also in agreement with a QTL mapped in both Fi-
esta and Discovery that explained 23% of the observed
phenotypic variability. Calenge et al. (2004) also de-
tected additional QTLs on LG 5, 13 and 15 to only one
or two isolates and a QTL on LG 2 that appeared to
controlmorebroad-spectrumresistance toapple scab.
This QTL spans a region around the major scab resis-
tances Vbj, Vh2 and Vh8 (Calenge et al. 2004; Durel
et al. 2004). The identification of isolate-specific QTL
indicates that somepartial resistanceQTL couldbe in-
volved in a pathogen-mediated recognition response,
similar to major genes.

These reports of detecting QTLs contributing to
disease resistance highlight the importance of pheno-
typing segregating populations over several years and
in different environments. Different infection pres-
sures in different years, especially years with low
disease incidence, can lead to high within-genotype
variability (Liebhard et al. 2003c). Location-specific
pathogen populations are another possible cause of
increased variability, expressed as genotype-location
interaction. This occurs particularly with pathogens
such as apple scab, where the first wave of infection
in a season is often due to ascospores originating
from crosses between fungal strains from the previ-
ous growing season and where it is likely that partic-
ularly effective ascospore-derived progeny can then
multiply asexually as the season progresses. An ex-
ample of this is the QTL detected by Liebhard et al.
(2003c) on LG 10 for leaf scab, as this QTL was only
associated with data gathered at the Wädenswill loca-
tion, over three years. Stankiewicz-Kosyl et al. (2005)
identified five QTLs for powdery mildew resistance
that were only associated with resistance for a single
year. A QTL that is detected in a single year is depen-
dent upon the allelic difference at a particular locus,

the interaction of the QTL with environmental fac-
tors and/or the alteration of the expression of the QTL
over time with plant development (Stankiewicz-Kosyl
et al. 2005). Assessment of QTL detection over several
years is one way of independently verifying the pres-
ence of QTL in the same genetic background, which
can in turn minimise additional sources of variation.

1.4.2.3
QTL for Resistance to Fire Blight
Although accessions of apple displaying resistance
to fire blight have been identified, the genetic con-
trol of this resistance is not well understood, and
is thought to have a quantitative, polygenic aspect
(Lespinasse and Aldwinckle 2000). Using two popula-
tions derived from crosses between Prima × Fiesta
and Fiesta × Discovery respectively, Calenge et al.
(2005b) described the first comprehensive identifica-
tion of QTL controlling fire blight resistance in ap-
ple (Table 11). Several QTL were detected in both
progenies, with one QTL on LG 7, derived from
the common parent Fiesta explaining 34.3–46.6% of
the resistance. The identification of this major QTLs
in both populations demonstrated its robustness in
two different genetic backgrounds. Four minor QTL
were also identified on LG 3 (Prima and Fiesta),
LG 12 (Discovery) and LG 13 (Discovery), each ex-
plaining 4.4–7.9% of the variation. Using a different
strain of fire blight, and a different Fiesta × Dis-
covery progeny, Khan et al. (2006) confirmed a QTL
for resistance on LG 7 of Fiesta and demonstrated
the stability of this QTL. The minor QTL identified
by Calenge et al. (2005b) were not detected in this
study.

In addition, Calenge et al. (2005b) utilized a num-
ber of microsatellite markers in common between ap-
ple and pear to compare the location of the QTLs they
detected inapplewithQTLs for resistance tofireblight
that had been previously mapped in pear (Dondini et
al. 2004). In two cases, the microsatellite markers de-
tecting loci close to identified fire blight resistance
QTL in apple, also identified loci in pear that mapped
close to fire blight resistance QTLs. Further investi-
gation of these potentially homologous fire blight re-
sistance QTLs could aid the identification of potential
new resistance QTLs candidates in both crops, and
enhance our understanding of the synteny between
pear and apple. Calenge et al. (2005b) also compared
inter-loci interactions for all possible two-way com-
binations of markers to identify potential epistatic
QTLs. The recurrent involvement of certain genomic
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Table 11. Summary of QTLs for resistance to fire blight

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Prima Fiesta 144 144 Artificial inoculation in glasshouse
with strain CFBP 1430
Assessed 7 and 14 dpi using a multipoint
scale

Fiesta × Prima:
Fiesta map:
LG 7: 7 dpi, LOD 18.43; 43.2%
14 dpi, LOD 19.14; 46.6%
Prima map:
LG 3: 14 dpi, LOD 4.09; 7.5%

Calenge et al. 2005c

Fiesta Discovery 188 188 – Fiesta × Discovery:
Fiesta map:
LG 3: 7 dpi, LOD 3.57; 4.4%
LG 7: 7 dpi, LOD 26.82; 42.6%
14 dpi, LOD 13.39, 34.3%
Discovery map:
LG 12: 7 dpi, LOD 3.53; 5.4%
LG 13: 17 dpi, LOD 4.87; 7.9%

Fiesta Discovery 86 251 Artificial inoculation in glasshouse
with strain Ea610
Assessed 6,13,20 and 27 dpi using
a multipoint scale

Fiesta × Discovery:
Fiesta map:
LG 7; 13, 20, 27 dpi, LOD 7.5–8.1; 37.5–38.6%

Khan et al. 2006c

Idared M. x robusta 150 150 Artificial inoculation M. x robusta map:
LG 5

Peil et al. 2006c

a Number of individuals used in QTLs detection, either in phenotyping population (P/T) or in map construction and genetic marker analysis (G/T)
b Linkage groups containing QTLs are listed with the prefix LG or G. Where possible, the LOD score of the associated QTL and the percentage of phenotypic variance (PVE) it explains
are included in parentheses, with the LOD score first. Where several linkage groups are included, the range of associated LOD score and PVE have been included.
c Linkage maps have been aligned with the consensus map (Liebhard et al. 2003b), and standard nomenclature is used.
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regions indicated putative epistatic QTLs that need to
be confirmed in more detailed future analyses utiliz-
ing larger progeny sets.

A recent report by Peil et al. (2006) has identi-
fied a QTL controlling fireblight resistance on LG 5 of
M. x robusta.

1.4.3
Mapping QTLs for Tree Growth and Development

Many morphological and developmental traits in ap-
ple are perceived to be under complex genetic control.
When Lawson et al. (1995) compared marker data of
Rome Beauty × White Angel progeny with pheno-
typic data, single loci controlling branching type, re-
productive budbreak and root suckering were iden-
tified using the Microsoft Excel macro, QUIKMAP
(designed by N. F. Weeden and J. Barnard) and the
program LINKAGE-1 (Suiter et al. 1983). However,
of these three traits only root sucker formation ap-
peared to be under simple Mendelian genetic control
(See Sect. 1.3.2.5.2). Branching type and reproduc-
tive budbreak gave a range of phenotypes for which
the genetic basis was not immediately apparent (Ta-
ble 12). Using only the phenotypic extremes of these
traits, initial genetic analysis enabled loci contribut-
ing major portion of the variation to be identified,
but it became obvious that other genetic loci were
probably involved in the expression of branching and
budbreak (Lawson et al. 1995). However, the ability
to detect other genes in this study would have been
limited, because, although data was available for over
400 markers (isozymes, RAPDs and RFLPs), segrega-
tion data was only available from 56 individuals, and
thus only major gene effects could have been exam-
ined in this population. Limited population size in
QTL detection exercises may lead to an underestima-
tion of QTL number, overestimation of QTL effect,
and a failure to accurately quantify QTL interactions.
Vales et al. (2004) explored the effect of population
size in the estimation of barley stripe rust QTLs and
showed that as population size increased, so did the
number of QTLs detected and that the overestimation
of the percentage of variance explained by the QTLs
was reduced.

Further work by Conner et al. (1998) used a pop-
ulation derived from a cross between the columnar
mutant Wijcik McIntosh and accession (NY 75441-58)
to position additional QTLs influencing tree growth
and development. Maps were constructed for each

parent, consisting of approximately 180 RAPD and
isozyme loci. These maps were aligned using markers
heterozygous in both parents. The positions of these
putative QTLs were established by a range of statis-
tical analyses of marker and phenotype data using
MINITAB. One to eight QTLs were identified as in-
volved in the control of height increment, internode
number and length, base diameter, branch number
and leaf break (Table 12). Most of the regions identi-
fied were associated with a specific trait for one year
and many of the traits assessed were related to each
other, and when mapped appeared to be clustered on
linkage groups. The largest cluster was identified on
LG 10, close to the position of the Co gene (Conner
et al. 1997). Conner et al. (1998) suggested that other
large clusters of marker trait associations could be the
result of single lociwithpleiotropic effects. Previously,
Lawson et al. (1995) also hypothesised that vegetative
budbreak, which correlated with the segregation of
the terminal bearing characteristic could be the result
of the pleiotropic effect of this gene.

Using the extensive Fiesta × Discovery linkage
map, consisting of 804 genetic markers (a significant
proportion of these microsatellites) and covering all
17 apple chromosomes, Liebhard et al. (2003a) under-
took a more comprehensive analysis of several quan-
titative physiological traits in apple (Table 12). Both
single parent linkage maps and the integrated map
were used in MapQTL analysis to identify the con-
tributor of the effective allele, map position and effect.
For some traits, data was collected from own rooted
seedling populations as well as grafted individuals.
Three QTLs were detected for seedling stem diameter
and two QTLs for seedling leaf size, but these could
not be detected using the grafted plants, where inde-
pendent QTLs were identified. Liebhard et al. (2003a)
also positioned six QTLs for tree height increment.
As found by others (Lawson et al. 1995; Conner et al.
1998), there were associations among some of these
different growth and development traits. Of the six
regions (Liebhard et al. 2003a) identified for height
increment, four coincided with QTLs for stem diame-
ter, indicating that these traits are related or clustered
in some way. Conner et al. (1998) also reported a cor-
relation between height increment and ‘base diameter
increment’ identifying single markers on two linkage
groups associated with this trait. Investigations into
blooming traits identified five QTLs associated with
blooming characters, located on five different linkage
groups (Liebhard et al. 2003a). Similarly one of these
QTLs for number of flower bunches was located very
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Table 12. Summary of QTLs for tree growth and development

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Rome Beauty
(RB)

White Angel
(WA)

82 56 Branching habit:
3 point scale and with and without spurs
Vegetative budbreak:
5 point scale, over 3 years
Reproductive budbreak, used phenological
categories of Chapman and Catlin (1976),
over 2 years
Bloom time:
2 dates used

White Angel:
Terminal bearing (Tb):
LG 6, possible QTL or masked by spurring
Bloom time:
LG 1

Lawson et al. 1995c

Wijcik
McIntosh

NY75441-58 172 172 Tree vigour assessed by tree height
and base diam (3 years plus again in year 9)
Branch no. scored after 3rd year of growth
Leaf break scored:
5 times at weekly intervals, 6 point scale
Columnar form:
visual assessment

Wijcik McIntosh × NY75441-58 map:
Height increment:
LG 6, 7, 9, 10, 11, 12, 21 (3.9–7.9%)
Internode length:
LG 5, 6, 9, 10 (4.6–23.1%)
Internode no:
LG 1, 5, 7, 10, 12, 21 (4.3–16.8%)
Base diameter increment:
LG 2, 7, 10, 14, 16, 21 (4.0–8.5%)
Base diameter:
LG 7, 9 (5.5–7.5%)
Branch number:
LG 7, 10 (7.1–24.3%)
Leaf break:
LG 3, 6, 7, 9, 11, 12, 15 (3.9–7.3%)

Conner et al. 1998c

a Number of individuals used in QTL detection, either in phenotyping population (P/T) or in map construction and genetic marker analysis (G/T)
b Linkage groups containing QTL are listed with the prefix LG. Where possible, the LOD score of the associated QTL and the percentage of phenotypic variance (PVE) it explains are
included in parentheses, with the LOD score first; except for the Wijcik McIntosh × NY75441-58 map where only PVE are listed. Where several linkage groups are included, the range of
associated LOD score and PVE have been included.
c Linkage maps not aligned with adopted consensus map (Liebhard et al. 2003b), thus standard linkage group nomenclature not used.
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Table 12. (continued)

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Fiesta Discovery 251 251 Leaf area, stem diameter measured
on seedlings at one site over 2 years.

Stem diam, height increment, blooming,
no. measured over next 3 years in all
locations

Fiesta × Discovery map:
Seedling:
Stem diam:
LG 2, 15, 17 (LOD 3.1-4.8; 6.0–10.0%)
Leaf size:
LG 9, 17 (LOD 3.0–4.2; 6.0–8.0%)
Tree:
Height increment:
LG 3, 5, 8, 11, 13, 17 (LOD 2.4-6.2; 5.0–11.0%)
Stem diam:
LG 1, 2, 3, 8, 11, 13, 14, 15, 17 (LOD 1.7-6.5; 4.0–13%)
Blooming time:
LG 7, 10, 17 (LOD 2.5-3.6; 5–13%)
No. bunches:
LG 8, 15 (LOD 3.6-5.1; 7.0–10.0%)
Juvenile phase length:
LG 3, 15 (LOD 3.2-4.0; 6.0–8.0%)
Fruit harv. date:
LG 3 (LOD 4.7; 16.0%)

Liebhard et al. 2003ad

d Linkage maps have been aligned with the consensus map (Liebhard et al. 2003b), and standard nomenclature is used.
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close to another QTL for juvenile phase length on LG
15, but on the alternate linkage group of the Fiesta
parent.

QTLs or major genes have been identified for a va-
riety of growth and development characteristics in
apple with a view to using marker-assisted selec-
tion to develop new varieties with shorter juvenile
phase, later blooming to avoid frost injury, and de-
sired branching patterns. Controlling the growth of
the grafted apple scion, through the use of a dwarfing
rootstock, such as Malling 9 (M.9) permits a higher
planting density, which in turn results in an increased
yield per hectare. However, the precise physiological
or genetic mechanism by which a rootstock induces
dwarfing is not well understood. In a similar approach
to that of Lawson et al. (1995), Rusholme et al. (2004)
used bulked segregant analysis (BSA) of the pheno-
typic extremes of a segregating population to identify
geneticmarkersflankingasinglegene,Dw-1, that con-
tributed to the dwarfing effect of M.9. Dw-1 has been
mapped to LG 5 with microsatellite markers (Celton
et al. 2006).This single major effect gene did not ex-
plain all of the variation observed in the segregating
population, indicating that additional genes could be
involved in the control of dwarfing. However, this ini-
tial genetic analysis was based on individuals that had
been assigned to one of four simplified phenotypic
classes. QTL analysis with more detailed phenotyp-
ing on a larger population is required to determine
how many loci are involved in addition to the one
identified. Such a whole genome-based approach, in
addition to identifying QTL involved in dwarfing, will
also enable additional QTL involved in the control of
flowering tobe identified, andhence thepostulated re-
lationship between the dwarfing ability of rootstocks
and grafted scion precocity to be determined.

When identifying genetic markers for traits con-
trolled by major, simply inherited genes, it is possible
to use straightforward, accelerated approaches that
are designed to target specific regions of the genome,
such as BSA (Michelmore et al. 1991) or candidate
gene screening (Gardiner et al. 2003) as well as more
detailed genetic analysis of the whole genome. In ad-
dition to identifying markers for major genes, BSA
has also been used to identify QTL for increased yield
in soybean (Yuan et al. 2002) and drought tolerance
in maize (Quarrie et al. 1999) through the analysis
of recombinant inbred lines. In more genetically di-
verse species, such as apple, it is possible that signif-
icantly more individuals would be required in each
bulked DNA sample, to ensure that each allele is rep-

resented in the bulks at the same frequency as in
the population, as several marker alleles are likely
to be present (Quarrie et al. 1999). Although BSA has
been employed as a cost-effective approach to iden-
tify genetic markers for a major locus contributing to
dwarfing of apple scions by the rootstock M.9, genetic
mapping of QTL using whole population analysis is
a more precise method, likely to identify additional
smaller QTL that also impact on phenotype, enabling
full characterization and understanding of the dwarf-
ing trait.

1.4.4
Mapping QTLs for Fruit Quality

In addition to positioning QTLs for a range of growth
characteristics, Liebhard et al. (2003a) also assessed
a range of traits associated with fruit development and
quality. The development of genetic markers linked
to key physiological traits in apple would significantly
accelerate and improve the efficiency of new cultivar
development inapple. Suchrapidandnon-destructive
marker-based assessment of young seedlings for fruit
characteristics would greatly reduce the number of
generations required for cultivar development, an in-
valuable benefit in a crop with such a long gener-
ation time. Liebhard et al. (2003a) identified a QTL
on LG 3 of the variety Discovery that explained 16%
of the variability associated with fruit ‘harvest date’
and eight QTLs controlling ‘fruit weight’ (Table 13).
It could be predicted that some blooming traits and
fruit traits would exhibit co-segregation. Indeed one
of the three QTLs identified for the ‘number of fruit’
coincided with a QTLs for ‘number of flower bunch-
es’, yet poor correlation was detected (Liebhard et al.
2003a) between the phenotypes of these traits, which
was attributed to other potential QTL affecting the
same traits, or changes in tree behavior with time. It
is recognised that as the tree enters different phases
of development and growth, the expression of cer-
tain traits can change, making accurate phenotypic
assessments difficult. Continued assessment of such
populations is essential to establish true phenotypes
and subsequently identify the genetic loci involved
accurately.

Fruit texture is also a complex character and is
of key importance in the development of new apple
varieties that comply with consumer preference. Sev-
eral quite different aspects of fruit composition can
be assessed to determine fruit texture, such as fruit
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Table 13. Summary of QTL for fruit quality

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Fiesta Discovery 251 251 No. fruit, fruit weight, flesh firmness
(penetrometer), sugar content, acidity
measured over next 3 years in all locations

Fiesta × Discovery map:
Tree:
No. fruit:
LG 5, 15, 16 (LOD 3.2–4.5; 8.0–10.0%)
Fruit weight:
LG 1, 3, 6, 8, 10, 12, 15, 16 (LOD 2.5–17.0; 7.0–31.0%)
Flesh firmness:
LG 6, 11, 12, 14 (LOD 3.6–12.3; 6.0–27.0%)
Sugar content:
LG 3, 6, 8, 9, 14 (LOD 3.1–5.1; 3.6–12%)
Fruit acidity:
LG 8, 16 (LOD 4.7–6.2; 42.0–46.0%) (Ma locus on LG 16)

Liebhard et al. 2003ac

Prima Fiesta 152 152 Fruit firmness (2 penetrometer readings)

Stiffness by acoustic resonance

Sensory descriptors (hardness, crispness,
granularity, spongy texture, slow
breakdown, juiciness, overall liking)
scored on scale of 0–100:

Prima × Fiesta map:
Fruit firmness:
LG 1, 8, 10 (LOD 4.7–7.4; 16.0–22.0%)
Resonant freq:
LG 10 (LOD 4.6; 21.0%)
Hardness:
LG 10
Crispness:
LG 1, 5, 10, 12, 13, 16 (LG 16, LOD 6.0; 24%)
Juiciness:
LG 1, 12, 16 (LG 16, LOD 14.8; 46%)
Granularity:
LG 2 (LOD 5.1; 24%)

King et al. 2000c

a Number of individuals used in QTL detection, either in phenotyping population (P/T) or in map construction and genetic marker analysis (G/T)
b Linkage groups containing QTL are listed with the prefix LG. Where possible, the LOD score of the associated QTL and the percentage of phenotypic variance (PVE) it explains are
included in parentheses, with the LOD score first. Where several linkage groups are included, the range of associated LOD score and PVE have been included.
c Linkage maps have been aligned with the consensus map (Liebhard et al. 2003b), and standard nomenclature is used.
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Table 13. (continued)

Parents No. indv.a Method of phenotypic assessment Number of QTL detected Reference
Female Male P/T G/T Linkage group (LG or G), LOD score

and percentage of variance explained by QTLb

Slow breakdown:
LG 1
Sponginess:
LG 1, 5, 6, 16 (LG 16, LOD 7.7; 30.0%)
Overall liking:
LG 12, 16 (LG 16, LOD 11.3; 38.0%)

Prima Fiesta 130 152 6 fruit per tree sampled, texture:
wedge fracture test, compression test,
cells in fruit cortex analysed

Prima × Fiesta map:
Compression:
LG 1, 6, 8, 12, 15 (LOD 4.09–8.62; 16.0–27%)
Wedge measures:
LG 1, 7, 15, 16 (LOD 4.51–9.83; 15.0–32.0%)
Specific gravity:
LG 6 (LOD 7.99; 28.0%), 16 (LOD 4.54; 15.0%)
Fruit weight:
LG 4 (LOD 4.53; 25.0%)
Stress at first failure (compression):
LG 13 (LOD 3.51)
Work of fracture (wedge fracture):
LG 7 (LOD 4.51)
Circularity of cells:
LG 3 (LOD 3.3)

King et al. 2001c
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firmness, crispness and juiciness. These characteris-
tics are in turn determined by several variables such
as cell size or cell wall strength. It is therefore particu-
larly complicated to accurately identify QTLs control-
ling fruit texture, making fruit texture a challenging
candidate for marker-assisted breeding.

King et al. (2000, 2001) carried out a detailed ge-
neticdissectionof fruit textural attributesusingapop-
ulation derived from the Prima × Fiesta cross that
had been used earlier for the construction of the first
reference genetic map (Maliepaard et al. 1998) (See
Sect. 1.2.2). Fruit was assessed using a range of me-
chanical measurements and sensory parameters. Us-
ing MapQTL, QTLs accounting for differing degrees
of variation for firmness, stiffness and a number of
sensory attributes were identified on seven linkage
groups (Table 13). This research also provided insight
into the relationship between some of the mechanical
measurements and sensory perceptions (King et al.
2000). Further work (King et al. 2001) extended the
range of mechanical measurements to include com-
pression and wedge fracture tests. The wedge frac-
ture tests identified significant QTLs on LG 16 and
LG 1. The QTL on LG 16 was located in the same
region as QTL identified for certain sensory textural
attributes, such as crispness and juiciness. Linkage
group 16 has also been shown to contain the Ma acid-
ity locus (Maliepaardet al. 1998).Kinget al. (2001)de-
termined that the apparent association of the Ma gene
with regions contributing to sensory assessments was
unlikely to be the result of ‘perceptual interactions’
with the Ma locus. Four QTLs controlling fruit firm-
ness, measured by penetrometer, were also identified
by Liebhard et al. (2003a) in the Fiesta × Discovery
reference population. The results of this study can
be compared with the previous studies (King et al.
2000, 2001), as both genetic maps were constructed
in part using codominant markers and have the Fi-
esta parent in common. Liebhard et al. (2003a) and
King et al. (2000, 2001) identified three QTLs for fruit
firmness (using penetrometer readings) on the com-
mon linkage groups LG 3, LG 12 and LG 16. How-
ever King et al. (2000) also identified additional QTLs
for fruit firmness, (measured by penetrometer) across
four more linkage groups. Investigations with the re-
latedFiesta×Discoverypopulationdidnotdetect this
range of QTLs, indicating that expression of Fiesta al-
leles contributing to fruit firmness could be different
in different genetic backgrounds, or that certain al-
leles may only be expressed in certain environments
(Liebhard et al. 2003a).

1.4.5
Conclusions

There are many favorable complex traits that would be
desirable to select for in the development of new apple
varieties. The studies detailed in this Section, where
manyQTLshavebeen identified fordisease resistance,
tree architecture and fruit quality traits, are the initial
steps that will lead to the unravelling of such com-
plex traits, and the development of molecular mark-
ers linked to major QTLs that can be deployed in the
marker-assisted selection of parents and progeny in
apple breeding programs. These broad-ranging stud-
ies emphasise that to develop robust genetic markers
that will be useful to apple breeders, it is essential that
QTL are accurately positioned on the apple genome.
There are many factors that can influence and further
enhance reliable QTL identification, such as the use
of dense genetic maps constructed with codominant
markers and robust, objective phenotyping methods.
Estimates of variance for site-to-site and occasion-to-
occasion variance can be accurately determined by
the inter- and intra-site replication of only a relatively
small proportion of the population (Lynn 1998), and
maximising the number of recombinant individuals
in a population can also enable greater genetic resolu-
tion. If marker-assisted selection is to be successfully
applied to traits controlled by QTLs, it is important to
remember that QTL analysis of a population can de-
tect only differences between the inherited parental
alleles (Liebhard et al. 2003a). Therefore, to fully es-
timate the phenotypic effect of identified QTL alle-
les, they should also be compared with the equiva-
lent and ineffective allele at the same locus (Liebhard
et al. 2003a). Once QTL and associated markers have
been identified, their conserved position in different
genetic backgrounds, such as other cultivars or ge-
netically more diverse germplasm accessions, should
be established to ensure that the genetic markers de-
veloped have the widest applicability to new variety
development.

The continued development of new QTL mapping
models and algorithms designed to extract the max-
imum amount of information about QTL positions
and effects will also aid in more accurate positioning
of QTLs on the apple genome. Unfortunately, a précis
of methods of QTLs detection is beyond the scope of
this review, but of interest is a study by Maliepaard
et al. (2001) that recently compared the more tradi-
tional simple interval mapping and approximate mul-
tiple QTL model mapping with Bayesian multiple QTL



Chapter 1 Apple 45

analysis, in the context of experimental data derived
from a large full-sib family in apple.

New statistical tools and methods are also cur-
rently being assessed in a pedigree-analysis based ap-
proach to QTLs mapping in apple (Van de Weg et al.
2004). Pedigree-analysis is an ideal approach to iden-
tify QTL in data gathered from more complex and
diversepopulations, such as thosederived frommulti-
ple founders or collected from ongoing breeding pro-
grams. This method of QTL identification, originally
used for detecting QTLs in human populations, has
several advantages for plant geneticists, namely: de-
tailed data on QTL variation within relevant breeding
populations will be generated, since multiple alleles
will be present; the context of identified QTL alleles
can be examined; and the cost efficiency of the QTL
mapping exercise will be improved as existing selec-
tion experiments can be utilised (Bink et al. 2002).

1.5
Marker-Assisted Breeding

The advantages and limitations of conventional ver-
sus molecular breeding have recently been discussed
in general terms in a review article by Oraguzie et al.
(2004). A major advantage of the use of markers is
that they increase the breeding efficiency by enabling
early selection for adult traits; simultaneous selection
for multiple traits, including resistance gene pyra-
mids; and selection for traits that are expensive to
phenotype. Strategies can be developed for the effi-
cient marker-assisted introgression of a range of traits
into one cultivar (Servin et al. 2004). In this chapter,
wewill discussmarker-assistedbreeding (MAB)using
examplesof its application, and thepotential ofwhole-
genome selection as part of a fast-breeding strategy
combined with the reduction of the juvenile phase.

1.5.1
Germplasm Screening

Genetic markers linked to a specific gene are an
efficient modern alternative for the screening of
germplasm for the distribution of that gene, com-
pared with the traditional cumbersome allelism
tests (MacHardy 1996). For example, evaluation of
selected germplasm with the OPB12SCAR marker
for Vm showed that it was present in two other
species only, apart from M. micromalus and M. x

atrosanguinea which are the two primary allelic
sources for this gene (Dayton and Williams 1970), out
of 28 species tested (Cheng et al. 1998). However, such
marker data needs to be interpreted with caution, as
presence of a marker does not necessarily mean that
the gene is present, or vice versa, since even if the
marker and gene are in linkage disequilibrium, rare
recombination events can uncouple the association
between the particular alleles of the marker and gene
of interest. Furthermore, as resistance loci in plants
are frequently located in clusters (Michelmore and
Meyers 1998), a marker may well be expected to be
linked to more than one gene. This was demonstrated
with the OPL19SCAR marker, which could not
distinguish the Vh2 and Vh8 genes for scab resistance
(Bus et al. 2005a). As microsatellite markers are very
polymorphic, there is more opportunity for a specific
allele to be linked to a resistance gene than for SCAR
markers. While there are many germplasm sources
with resistances allelic to Vf (Williams et al. 1966;
Williams and Dayton 1968; Dayton and Williams
1970; Dayton et al. 1970), only M. micromalus,
M. prunifolia 19651, and M.A.16 have been suggested
to carry this gene, because all three amplify the same
allele for the two very closely linked CHVf-1 and
CHVf-2 microsatellite markers (Vinatzer et al. 2004).
In the same study, it was shown that the F2 selections
26829-2-2 and 26830-2 are not descendants of the
original cross between M. floribunda and Rome
Beauty (Hough et al. 1953), because a CHVf-1 allele
of 137 bp amplified from both accessions was not
present in either of the parents of this original cross.

1.5.2
Marker-Assisted Selection

Genetic markers enable the selection of combinations
of both specific genes and QTLs, which cannot be
identified through phenotypic selection, as epistatic
effects are usually involved. Using the example of
resistance breeding, in the past such combinations
would have been eroded during the breeding process
and eventually led to a loss of the quantitative resis-
tances, which in turn put the major gene resistances
under pressure. This sometimes had disastrous con-
sequences, as was shown with the ‘Vertifolia effect’ of
P. infestans on potato (Solanum tuberosum) in spite of
this cultivar carrying two major genes for late blight
resistance (Vanderplank 1984). Hence, the monetary
value of genetic markers to a breeding program goes
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well beyond the replacement cost of traditional phe-
notypic selection techniques (Luby and Shaw 2001)
and should include an estimation of their contribu-
tion to realizing the potential value of durable resis-
tances in food production. The cost of marker assisted
selection (MAS) can be reduced in cases where an ini-
tial phenotypic selection can be performed prior to
MAS. An example can be seen in a glasshouse screen
for scab resistance in a family segregating for genes
conditioning distinctly different resistance reactions,
e.g. Liberty (Vf conditioning chlorotic resistance re-
actions) × TSR33T239 (Vh4 conditioning HR resis-
tance reactions epistatic to Vf ). Since we know now
from marker analysis that one of these resistance re-
actions is epistatic to the other, the number of marker
analyses could be halved by discarding the suscep-
tible seedlings and the seedlings showing chlorosis
(Bus et al. 2000). Further cost efficiency of MAS will
be achieved through the development of (semi-) auto-
mated DNA extraction and marker analysis systems.
Robotic systems and the use of marker multiplexes
(Cook and Gardiner 2004; Frey et al. 2004) will reduce
the costs of both labour and consumables.

The success of MAS with one marker is deter-
mined mostly by the linkage distance of the marker
to the gene of interest. If one assumes a recombina-
tion rate of 5% between a marker and a gene, a rate
not met in many breeding families (Bus et al. 2000),
MAS would result in 14.3% of the selected seedlings
not carrying the desired combination of resistances in
the case of three pyramided genes, and 26.5% in the
case of six genes. A recombination rate of 1% for each
marker would see the levels of inaccurate selection
drop to 3.0% and 5.9%, respectively. However, when
using flanking markers, the distance of the markers
becomes much less of an issue, as the rate of inac-
curate selection declines to less than 1%, even if the
recombination rate is 5% for both markers for each of
the three genes, and selection is carried out for one
or both markers for each gene. With recombination
rates of 1%, inaccurate selection becomes negligible.
One issue for some types of markers, such as SCARs,
is that their transportability may be limited, hence it
is prudent to check linkages in a new parent prior to
developing progenies intended for MAS. Once reliable
markers have been developed, a strategy can be devel-
oped to efficiently pyramid the resistance genes from
a number of breeding parents (Servin et al. 2004).
One can also utilise more transportable markers from
previously published apple maps if the position of
the gene of interest in the genome (or failing that the

SCAR marker) has been confirmed. On the other hand
these transportable markers (mainly microsatellites
and RFLPs) are more labour intensive than SCARs.

The application of MAS has been shown to be suc-
cessful in several examples involving epistatic interac-
tions between resistance genes (Bus et al. 2000, 2002).
In the case of the A163-42 × TSR34T15 family, where
Vf (conditioning chlorotic resistance reactions) and
Vh2 (conditioning stellate necrotic resistance reac-
tions) were combined, a number of seedlings showed
an unexpected hypersensitive response. Marker anal-
ysis with the OPL19SCAR and AL07SCAR revealed
that in 91% of the cases these pin-point lesions were
the result of a synergistic effect between the two genes
(Bus et al. 2002) (Table 14). A similar effect was shown
for Vf with relatively more seedlings showing no or
Class 2 symptoms (sensu Chevalier et al. 1991) when
carrying thegene inhomozygous state, than thosecar-
rying it in heterozygous state (Tartarini et al. 2000).

Genetic markers are also an important tool in un-
derstanding the segregation of traits involving seg-
regation distortions. For example, the naming of the
Er-3 gene for woolly apple aphid resistance consistent
with a single gene was based on the R:S = 1:1 segre-
gation in one M.9 × Aotea family (Bus et al. 2000).
When a progeny of this family was crossed with Royal
Gala, only 17% percent of the seedlings were resistant,
which suggested that the single gene model was not
correct. However, MAS with the OPO05SCAR devel-
oped for Er-3 confirmed that there had been a seg-
regation distortion (Table 15) as the marker was also
not segregating 1:1 as expected. In contrast, the con-
sistent discrepancies between the AT20SCAR marker
segregating1:1,while thephenotypes for the Pl-1pow-
dery mildew resistance gene do not (Dunemann et al.
2004), is consistent with the two-gene hypothesis pro-
posed for this resistance (Alston 1977).

1.5.3
Marker-Aided Introgression

The term MAS usually refers to the introgression of
a gene, or a limited number of genes, e.g. in the case of
pyramiding resistance genes. A step up from MAS is
the use of genetic markers to select for a wide range of
traits within one breeding cycle, or for “whole genome
selection” (Pradhan et al. 2003), i.e. the selection of
the genome resembling one of the parents. For exam-
ple, the number of progeny of a backcross between
a crabapple selected for a specific resistance gene and
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Table 14. The segregation data for the Vf and Vh2 apple scab resistance genes and AL07SCAR
and OPL19SCAR markers in an A163-42 × TSR34T15 family. Adapted from Bus et al. (2002)

Marker Phenotypez Dead Total
L19 AL07 HR SN 3A 3B S

+ + 20 162 13 45 29 7 276
+ – 1 156 0 5 60 37 259
– + 1 11 3 48 15 4 82
– – 0 3 1 1 37 22 64

22 332 17 99 141 70 681

z HR = hypersensitive response, SN = stellate necrosis, 3A and 3B = chlorosis with sporulation,
S = susceptible (scale adapted from (Chevalier et al. 1991))

Table 15. The segregation data for the Er3 woolly apple aphid resistance gene and PO05SCAR
marker in a Royal Gala × S26-E290 family. Adapted from Bus et al. (2000)

O05 Woolly apple aphid phenotype Segregationz Total
Marker 0 1 2 3 4 5 R S

+ 18 2 0 0 0 1 18 3 21
– 2 0 0 0 13 84 2 97 99

20 2 0 0 13 85 20 100 120

z R = immune (Class 0); S = susceptible (Classes 1–5)

ahighquality apple cultivar cannotonlybe reduced to
the resistant progeny, but to the number of seedlings
carrying genomes most resembling that of the quality
grandparent(s) as well as the desired resistance gene.
In a crop with a long juvenile period, such as apple,
considerable cost savings in the breeding program
may be achieved by not having to grow seedlings un-
til fruiting and to perform fruit evaluations on them.
Obviously, the larger the number of markers used in
the selection, the more effective this approach will be.
However, the optimum number will be determined
by balancing the extent of selection achieved with the
cost of achieving it. As with MAS, the economics of
this technology is determined for a large part of the
market value of the character(s) of interest (Moreau
et al. 2000).

At HortResearch, the whole genome selection ap-
proach is being investigated in combination with
a technique of reducing the juvenile period in or-
der to develop “fast breeding”. It has been shown that
the juvenile period in apple can be reduced from on
average five years from seed germination, to about
one to one and a half year by growing the seedlings
continuously in the glasshouse (Zimmerman 1971;
Aldwinckle 1975a). The aim of the HortResearch fast

breeding program is to reduce the breeding cycle from
cross to cross from the current six years on average,
to two years. In initial studies involving growing the
seedlings under optimal conditions in a phytotron,
inducing flower bud formation, providing sufficient
chilling, and forcing the seedlings to flower, have
to date shown a success rate of only 15% within 10
months from germination (Bus et al. 2001) compared
with over 68% for glasshouse grown seedlings (Ald-
winckle 1975a). Further research is being carried out
to increase the efficiency of this breeding strategy.

1.6
Map-Based Cloning

In the 1990s several disease resistance genes (Martin
et al. 1993; Bent et al. 1994; Jones et al. 1994; Lawrence
et al. 1995) and a few pest resistance genes (Milligan
et al. 1998; Rossi et al. 1998) were cloned from tomato,
tobacco, Arabidopsis and flax. Because of their dom-
inant nature and major effect, resistance genes have
become the most common plant genes to be targeted
by map-based cloning techniques in recent years and
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apple is no exception to this rule. In fact, all known
apple map-based cloning projects embarked upon to
date have been for disease or pest resistance genes. By
the late 1990s, as detailed in Sect. 1.3, several partial
maps had been constructed around disease resistance
genes in apple with the most detailed maps being
around the Vf locus conferring resistance to apple
scab (Sect. 1.3.2.1 and Table 4). Map-based cloning
projects to isolate the Vf gene were initiated in Europe
by a Swiss/Italian consortium and later in the USA by
the University of Illinois (see references below).

1.6.1
Vf

Considerable progress has been made in the last few
years in identifying the Vf gene, the first apple disease
resistance gene to be cloned. Apple BAC libraries have
been developed from at least four different sources
containing Vf. Vinatzer et al.(1998) developed the
first BAC library of almost 37,000 clones from Flo-
rina, a cultivar containing the Vf locus. It has an av-
erage insert size of 120 kb and is expected to cover
about five haploid genomes. Xu et al. (2001b) devel-
oped a 31,000 clone library from Malus floribunda
clone 821, the original source of the Vf locus. This
library has an average insert size of 125 kb and is also
expected to cover about five haploid genomes. Subse-
quently Xu and Korban (2002a) constructed a 35,000
clone BAC library with an average insert size of 110 kb
from the Vf containing cultivar GoldRush. This again
represents approximately five haploid genome equiv-
alents. The present authors have developed a 56,000
clone BAC library and a 168,000 clone cosmid library
from an apple breeding parent containing both the Vf
apple scab resistance locus and the powdery mildew
resistance locus Pl-2 (Rikkerink et al. unpublished).
These two libraries are each expected to cover nearly
seven haploid genome equivalents.

In reality, the map-based cloning projects that
utilise these BAC resources have relied on a mixture
of pure map-based techniques and candidate gene ap-
proaches made possible by information provided by
other plant systems. Patocchi et al. (1999b) identified
a 550 kb minimal BAC tiling path containing the Vf lo-
cus, based on detailed analysis of markers around the
gene and new markers generated from the BAC clones
in theregion.Asimilarbut somewhat smaller contigof
290 kb around the gene was later developed by Xu and
Korban (2002b), assisted by previous saturation map-

ping with AFLPs (Xu et al. 2000, 2001a). Vinatzer et al.
(2001) continued theworkofVinatzer et al. (1998) and
Patocchi et al. (1999a), using BAC inserts to probe
a large cDNA library combined with partial cDNA
sequencing to identify three putative genes in the Vf
region that showed homology to the cloned Cladospo-
rium fulvum (Cf) resistance genes from tomato. These
cDNA clones were then used to identify the portions
of the BACs that needed to be sequenced to derive
the sequence of the entire open reading frame corre-
sponding to each of these cDNAs. They also derived
partial sequence data from a fourth candidate. These
candidates were named HcrVf1 to HcrVf4. Xu and
Korban (2002b) used a slightly different approach,
based on screening BAC subclones with labelled total
cDNA. The BAC subclones containing transcribed re-
gions were then partially sequenced and a full gene se-
quencewasobtainedbyacombinationofRACE(rapid
amplification of complementary DNA ends) and fur-
ther sequencing of clones containing resistance-like
sequences. The first candidates identified were also
used to develop additional PCR-based screens for fur-
ther (similar) genes. This yielded an almost identical
set of four candidate genes to that of Vinatzer et al.
(2001) near Vf that they labelled Vfa1 to Vfa4. Based
on available sequence data Vfa1 = HcrVf1, Vfa2 =
HcrVf2 and Vfa4 = HcrVf3. It is reasonable to assume,
in the absence of full sequence data, that Vfa3 may
be the same as HcrVf4, although the relative loca-
tion of these four genes does not quite agree between
the two contigs with Vfa4 (i.e. HcrVf3) being the fur-
thest clone from Vfa1 (i.e. HcrVf1) in one contig, but
HcrVf4 (i.e. presumably Vfa3) being the furthest in
the other contig. This could also be explained if there
are in fact five candidates, and Vfa3 is not the same
as HcrVf4. Recently Belfanti et al. (2004) expressed
one of their candidate genes (HcrVf2) in a susceptible
apple (Gala) under a 35S promoter and demonstrated
that this construct confers resistance against apple
scab. This result may indicate that this candidate is
the Vf gene. However, the interpretation of this result
could be complicated by the substitution of the native
promoter with the 35S promoter that (presumably)
drives higher expression. The same group reported
recently (Silfverberg-Dilworth et al. 2005) that the re-
sistance in these HcrVf2 transformants could be over-
come by a scab race that specifically overcomes the
Vf resistance. This result strengthens the conclusion
that HcrVf2 is actually the Vf gene. A contribution to
Vf resistance by another gene in the cluster cannot
be formally ruled out without similar transformation
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data for all the candidates and indeed there is now
transgenic evidence to suggest that in fact two of the
candidates at the Vf locus can each (independently)
confer a degree of resistance to scab (Malnoy et al.
2006).

1.6.2
Sd-1

Cevik and King (2002a) developed a high-resolution
map around the Sd-1 aphid Dysaphis devecta resis-
tance locus. Subsequently, Cevik and King (2002b)
used the abovementioned ‘Florina’ library to develop
a BAC contig around the Sd-1 locus. They identi-
fied several putative NBS-LRR resistance-like gene
sequences within a BAC in this contig (Genbank
AM167520), suggesting the presence of a cluster of
these genes. This library is however not expected to
contain the gene encoding this resistance as the Sd-1
resistance gene is derived from Cox’s Orange Pippin,
which does not feature in the ancestry of Florina.
Cevik and King (2002b) also confirmed that Florina
is susceptible to the aphid. More work using libraries
from an aphid resistant host will therefore be required
to identify the gene(s) responsible for conferring the
resistance present at this locus.

1.7
Advanced Work

1.7.1
Tools Developed: Transformation, ESTs,
Microarrays and Functional Genomics

1.7.1.1
Transformation
Agrobacterium-based apple transformation was first
demonstrated by James et al. (1989) using a disarmed
Ti-binary vector and has since been demonstrated
in a number of laboratories around the world us-
ing several different apple cultivars ( Sriskandarajah
et al. 1994; Yao et al. 1995; Puite and Schaart 1998).
These transformation events can be stably maintained
(James et al. 1995) in the plant. Initially transfor-
mation was used to introduce various heterologous
(trans)genes largely aimed at providing pathogen or
pest protection, including the attacin family (Norelli
et al. 1994) and T4 lysozyme (Ko et al. 2002) lytic pro-
teins, chitinases (Bolar et al. 2000, 2001) and avidin

or streptavidin (Markwick et al. 2003). More recently,
it has been used to deliver endogenous genes in or-
der to identify their function or effect on pathogen
resistance. These studies have included Vf gene can-
didate HcrVf2 (Belfanti et al. 2004) mentioned above,
introducing an apple homologue of the Arabidopsis
regulatory gene NPR1 as well as apple proteins that
are known to interact with the E. amylovora secreted
type III effector protein DspE (Aldwinckle et al. 2003).
Another strategy for functional analysis attempts to
turn off the genes in order to either identify function
(Dandekar et al. 2004), or modify the plant’s develop-
ment to create a novel phenotype or mimic a useful
phenotype such as dwarfing (Bulley et al. 2005).

Methods for gene knock-down using RNA inter-
ference technology (Wesley et al. 2001) have also be-
gun to be applied in apple (Gilissen et al. 2005). There
is significant scope to extend this list to further genes,
such as other disease resistance genes that are likely
to be identified in the near future, as well as genes that
may play a role in the various defense pathways that
can now be identified in apple EST databases (see be-
low). For example, we have also started investigating
the function of members of several key protein fami-
lies identified in theESTsequencing effort (Crowhurst
et al. 2005, Newcomb et al. 2006).

Introducing genes by transformation is not only
a useful analytical tool, but also is a way to circum-
vent the difficulty of introgressing useful single genes
into new varieties by pseudo-backcrossing. This effec-
tively becomes equivalent to the true backcrossing-
based introgression that can be performed in selfing
species to recreate existing varieties with new char-
acteristics. The introgression of useful simply inher-
ited characters such as disease resistance from wild
germplasm into commercial varieties is a relatively
standard breeding strategy for autogamous crops. In
such crops, a variety that is very similar to the origi-
nal but containing the introgressed character can be
recreated by repeated backcrossing. Introgression is
not as simple in non-autogamous crops like apple.
The re-creation of a variety with a single introgressed
gene (or more correctly a small region in linkage dis-
equilibrium with this gene) in non-autogamous crops
such as apple by traditional backcrossing is rendered
impractical by the low success rate with traditional
backcrossing, because the resultant apple progeny are
either unviable or much less vigorous. The combina-
tion of various gene cloning/identification methods
and gene transformation now make this possible in
apple. Precautions are required, because of the possi-
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bility of somaclonal variation in plant tissue culture
(Courtial et al. 2001), but the essential character of the
existing variety can be maintained and the new vari-
ety could be marketed essentially as a new sport of the
variety, with an added advantage (e.g. a scab resistant
Gala). In the case of apple, characterization of trans-
formants has only been carried out in containment. It
would be interesting to see whether most transformed
apples perform true to type when they are grown un-
der field conditions for extensive periods of time.

1.7.1.2
EST and Candidate Gene Sequencing
In the last five years a considerable effort has gone
into developing more advanced genomics resources
for apple, in addition to the large insert library re-
sources discussed in Sect. 1.6. An extensive public do-
main EST resource now exists for apple. This is largely
derived from cDNA based single pass sequencing car-
ried out by HortResearch (Newcomb et al. 2006) and
more recently, from a program initiated by a US con-
sortium (Korban et al. 2005). Over 250,000 apple ESTs
are in the public domain at the time of writing and
these probably represent a substantial proportion of
the expressed genes in apple, since they form well over
30,000 non-redundant clusters of sequence. A bioin-
formatic analysis of the combined sequencing efforts
is still needed to get a more accurate measure of the
number of non-redundant sequences that these ESTs
represent. Since they are largely based on single pass
sequencing from one end, it is likely a number will end
up falling into the same non-redundant contig once
complete cDNA sequence becomes available. There
has also been considerable progress in identifying
candidate genes of particular classes by PCR based
approaches.Wehaverecentlyused this approach tose-
quence parts of over 350 candidate disease resistance
genes (Rikkerink et al. submitted manuscript) and
build on the smaller datasets of these genes already
available from apple (Lee et al. 2003, Baldi et al. 2004).

1.7.1.3
Microarrays
Microarrays are now becoming an important tool
in the global characterization of gene expression in
plants (e.g., Liu 2005). They consist of high den-
sity arrays on glass slides using either PCR-amplified
cDNAs, or long oligonucleotides complementary to
the transcribedpart of genes.Theexpressionof a large
number of genes can be simultaneously assayed by
hybridizing these slides with labeled RNA prepared
from plants subjected to different treatments or from

different tissue types, and looking for hybridization
patterns that suggest a significant change in expres-
sion. HortResearch has also gone on to develop a 5,000
oligonucleotide pilot and a 16,000 oligonucleotide mi-
croarray from their EST data (Crowhurst et al. 2005).
These arrays are based on oligonucleotides of approx-
imately 50 bases in length with a Tm near 74 ◦C and
have started yielding information on RNA expression
profilesof the correspondingESTs (JanssenandSchaf-
fer, personal communication)

1.7.1.4
Functional Genomics
Some of the other tools required for any comprehen-
sive functional analysis have also been developed in
apple. These include RNA interference, expression in
apple cell lines, the use of model plant species such
as Arabidopsis thaliana and micro-organisms such
as E. coli or yeasts to express apple genes in order
to develop assays for their biochemical function. Ex-
pression of candidate genes in Arabidopsis thaliana
has helped narrow down candidates for SNP marker
development and subsequent genetic mapping.

1.7.2
Third-Generation Maps: Physical

Currently the only physical maps of apple that exist
are around specific resistance genes that have been
targets for map-based cloning (see Sect. 1.6). Other
novel technologies such as radiation hybrid mapping
have not been developed or applied to accelerate map
development. Given that the apple genome is modest
in size and that the price of whole genome sequencing
efforts aredecreasing, it is likely that genomesequenc-
ing (see below) will overtake such strategies and make
them more or less obsolete.

1.8
Future Scope of Work

1.8.1
Association Mapping and Other Ways
to Link Genotype to Phenotype

A major goal of research in the future will consist of
developing faster and better methods to link geno-
type information to both desirable and undesirable
phenotype information. Association mapping, which
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utilises the phenomenon of linkage drag (disequi-
librium) to identify candidate genome regions (and
at its extreme, candidate genes) that show statisti-
cally significant associations between phenotypes and
markers, is likely to be one of these methods. To im-
prove the chance of identifying candidate genes for
any given phenotype by whole genome scans will re-
quire methodology that can generate very dense ge-
netic maps – since the region that stays in linkage dis-
equilibrium (LD) with the phenotype is expected to
rapidly decay because of recombination. Microarray
technology inpartnershipwithSNPscouldpotentially
generate enough markers and the methodology to si-
multaneously assay a large number of SNPs in a single
genotype. The recently developed EST databases can
be used to identify many of these SNPs. In order to be
able to effectively utilise this tool and to identify the
most appropriate germplasm, we will also need to de-
velop knowledge about the rate of LD decay in various
apple populations and how uniform (or non-uniform)
this decay is across the genome. Other methodologies
such as targeting local lesions in genomes (TILLING)
can now utilise EST sequence data and could poten-
tially rapidly generate much greater variation in plant
phenotypes than exists in the wild (Slade et al. 2005).

1.8.2
Structural Genomics
and Whole Genome Sequencing

When compared with our understanding of the
genome of the model plant species Arabidopsis and
rice, it is clear that apple still lags a long way behind
these plant genomes. Although a certain degree
of lag with respect to these crops is inevitable, the
range of resources identified above indicate that this
gap could be closed significantly during the next
decade. More detailed maps, or the construction of
proper whole chromosome physical maps will be
required before the apple community can realistically
contemplate whole genome sequencing in apple. It
is likely that the existing sequencing effort in the
related genus Prunus will yield both an interesting
start point for comparative analysis of these two
important Rosaceae genera, and some actual leads to
help construct physical maps in apple. As might be
reasonably expected, there is already some indication
of significant levels of synteny between apple and
other Rosaceae genera (particularly with Pyrus,
another member of the Maloideae) (see Sect. 1.2.4).

Even without a whole genome analysis, a pilot
comparative study sequencing BACs around one or
a few homologous loci in several members of the
Rosaceae would be informative in terms of the level
of microsynteny. This sequencing would probably
also yield other useful information, such as the na-
ture of transposable elements, the identity of trans-
poson families present in several of the Rosaceae,
and the gene density in these species. Information
about transcribed transposons could also be deduced
from the EST sequencing efforts. HortResearch has
already identified ESTs in its database that appear
to be interrupted by transposon-like sequences (E.
Rikkerink unpublished), but a more comprehensive
analysis might identify many more of the active trans-
posons in apple. Comparative BAC sequencing might
also begin to cast some additional light on the origin
of the Maloideae as a subfamily within the Rosaceae
(see also Sect. 1.1.1). While genome resources for ap-
ple have come a long way in the last decade, much
remains to be done.

There is a commitment now within the Rosaceae
research community to support the complete genome
sequencing of peach as the first crop in the family.
However, the world-wide economic importance of ap-
ple means that it should follow reasonably quickly
as the next logical Rosaceae member to sequence in
full. This would generate very significant amounts
of comparative data in regions outside the immediate
(transcribed) gene-space, which could play important
regulatory roles. The haploid genome size of mem-
bers of the Rosaceae is not unreasonably large (262–
743 Mb, Table 16) when compared with the genome
size of other plants like Arabidopsis (145 Mb), rice
(420 Mb) and poplar (550 Mb). Moreover, even if little
is known about the structure of the apple genome,
its relatively small size compared with the complex
and highly-repeated sequence-rich genomes of maize
and pine, and the fact that it is probably an ancient
polyploid suggests that it may have a true haploid size
close to that of peach and be of relatively low com-
plexity. The average physical/genetic ratio for apple
(estimated at 0.51 Mb/cM using the most complete
maps available) is lower than that observed in tomato
(0.77 Mb/cM). Since positional cloning of QTL has
been successfully carried out in tomato, this suggests
thatmap-basedchromosomewalking is feasible inap-
ple. Therefore, whole genome sequencing of many of
the major Rosaceae genomes is well within the realms
of possibility in the next decade. Indeed, the technical
limitations that were encountered by pioneer whole
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Table 16. Genome size and physical/genetic correlation of distance in several plant species

Species Common name Physical Maximum Ratio Status of
size (Mb/C) genetic (Mb/cM)1 genome

length (cM) sequencing

Arabidopsis thaliana Arabidopsis 145 675 0.21 Completed
Populus deltoides Poplar 550 2,300 0.24 Completed
Oryza sativa Rice 420 1,490 0.28 Completed
Lycopersicum esculentum Tomato 980 1,280 0.77 In progress2

Zea mays Maize 2,300 1,860 1.24 In progress
Pinus pinaster Maritime pine 25,700 1,850 13.89 Still impractical
Rubus ideaus Raspberry 280 789 0.35 –
Prunus persica Peach 262 712 0.37 Physical mapping

in progress3

Fragaria spp Strawberry 392 445 0.88 Limited BAC resources
Pyrus communis Pear 496 949 0.52 –
Malus x domestica Apple 743 1,454 0.51 BAC and EST resources4

1 Average physical/genetic ratio based on most complete genetic maps
2 Gene space sequencing
3 Physical mapping partially completed and several thousand ESTs also exist
4see above for details

genome sequencing projects in the past (e.g. human
and Arabidopsis genomes) can be easily circumvented
now by the progress made in terms of sequencing
methods and bioinformatics analysis, as well as the
availability of large sequencing facilities. One striking
example is the sequencing of the poplar genome in
less than two years (Brunner et al. 2004).

The alternative (and complementary) way for ac-
cessing genomic information relies on the use of
cDNA libraries instead of BAC genomic libraries. As
detailed above, this approach has been extensively
used in apple where over a quarter of a million
of ESTs have been produced recently. However, as
EST data can only partially compensate for complete
genome data, whole genome sequencing is therefore
still required. ESTs are proving to be a good source
for the microsatellite markers and SNPs (Newcomb
et al. 2006) that should help to generate more de-
tailed maps. Even though most of the ESTs devel-
oped by HortResearch are derived from a single vari-
ety (Royal Gala) SNPs can still be identified at a rea-
sonable frequency (presumably because of the highly
heterozygous nature of apple). These more detailed
maps can then act as a springboard for developing
whole chromosome physical maps. Alternatively, this
could be done by a random strategy relying on BAC
fingerprinting to develop contigs, using new meth-
ods such as overlapping oligonucleotide (OVERGO)

probes (Wesley et al. 2001) or a combination of these
approaches.

If the cost of sequencing goes down significantly,
then the option of assembly from deep sequencing us-
ing a whole genome shotgun (WGS) library approach,
as opposed to a hierarchical shotgun sequencing ap-
proach, becomes feasible for apple. Another alterna-
tive strategy couldbe toconcentrate initial sequencing
efforts on transcribed regions of the genome. In some
species such as tomato there is evidence of reason-
ably sharp demarcation lines between transcription-
ally active and more silent portions of the genome, the
euchromatic regions making up the former perhaps
constituting less than one-quarter of the total genome
(Van der Hoeven et al. 2002). Van der Hoeven et al.
(2002) based these deductions on sequence data from
a set of BACs biased by being selected because they
contained transcribed genes.

There is anecdotal evidence for a higher gene den-
sity on BACs than might be expected by chance based
on thenumberof times randomBACsequencing iden-
tifies ESTs in the HortResearch database (Rikkerink
et al. unpublished). Sequence analysis of several com-
plete BACs would indicate if concentrating on eu-
chromatic regions is a viable strategy for sequencing
the “more important” parts of the apple genome. Of
course this strategy also suffers from the major draw-
back that it assumes the non-euchromatic regions are
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less important. It is possible that this assumption is
based largely on inability to make sense of the func-
tion of DNA in these regions. This is particularly per-
tinent to remember, now that there is increasing evi-
dence that short transcribed RNAs in fact may some-
times contain very significant regulatory information
and tie in with endogenous RNA interference-based
methods of gene control. While there are many dis-
advantages to apple lagging behind the model crops
in terms of genomics efforts, some of the advantages
include learning important lessons from these model
systems about paying closer attention to the less-well
characterized parts of plant genomes. In these may
well lie the secret to many of the interesting and use-
ful properties of our own favorite plant system.
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2.1
Introduction

The Vitis vinifera L. grape is one of the oldest cul-
tivated plants, and is thought to have originated in
the region between the Mediterranean basin and the
Caspian Sea (Olmo 1976). Grapevines are climbing
perennial plants with coiled tendrils. Under cultiva-
tion they generally require trellising to increase pro-
ductivity and optimize growth and quality. They are
pruned during the dormant and growing season to
enable cultivation and promote fruitfulness and fruit
quality. The fruit, a berry, is essentially an indepen-
dent biochemical factory. It is primarily composed of
water, sugars, amino acids, minerals, and micronu-
trients. The berry has the ability to synthesize other
berry flavor and aroma components that define a par-
ticular berry or wine character. The berry is a com-
mercial source of tartaric acid and is also rich in malic
acid. Cultivation is easiest in a Mediterranean type
climate with hot dry summers and cool rainy win-
ters, however grapevines are grown throughout the
world’s temperate climates. Vitis vinifera cultivars are
heterozygous and are therefore propagated clonally in
order to maintain their distinctive and economically
significant individual characteristics. These cultivars
are typically grown on rootstocks to resist soil-borne
pests and to adapt to adverse soil conditions, but there
are areas of the world where they can be grown with-
out rootstocks.

Grapes are grown in more than 80 countries of
the world with a total of 7,572,237 hectares devoted
primarily to wine grapes, but also including table
and raisin grapes. The countries with the greatest
acreage are Spain, France, Italy, Turkey, China and
the United States of America (FAOSTAT data 2005).
Wine production adds at least $2 for each $1 of farm

gate value. The leading countries for production
of table grapes consumed as fresh fruit are China,
Turkey, Italy, Chili, the USA, RSA, Spain and Greece
(www.fas.usda.gov/psd/complete_tables/HTP-table6-
104.htm). The leading countries in the production of
raisins, largely sun dried fruit of seedless cultivars,
are the USA, Turkey, Greece and Australia.

2.1.1
Origin and Early History of Domestication

A single Eurasian grape species (V. vinifera) is the
source of the estimated 10,000 cultivars that produce
99% of the world’s wine and table grapes today. This
species has tremendous genetic diversity and an ex-
tremely wide range of variants have been selected over
the millennia. Grape cultivation is a very ancient art.
Legend and tradition favor ancient Armenia as the
home of the first grape (Olmo 1976). Figure 1 indicates
the principle areas of the Old World where viniculture
began. Levadoux (1956) summarized the distribution
of wild and domesticated varieties of V. vinifera as
follows:

– Vitis viniferawas in existenceduring thefinal stages
of the tertiary period as evidenced by the fossils in
many locations of Western Europe and the Mediter-
ranean basin.

– During the Pleistocene period fossil evidence sug-
gests that V. vinifera survived in the forests circling
the Mediterranean and south shores of the Caspian
Sea.

– In the Neolithic period, V. vinifera occupied the
same distribution, as at present, however, primi-
tive polymorphism and dioecious nature remained
intact because of heterozygosity.

Genome Mapping and Molecular Breeding in Plants, Volume 4
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– The domestication of V. vinifera began ca. 8000–
6000 BC in Transcaucasia.

– Toward the end of fifth millennium BC, grape cul-
ture began to spread around the Mediterranean.

Although there is no written record describing the
process, there has been sufficient archaeological evi-
dence uncovered to demonstrate the transformation
from wild to domesticated forms (Olmo 1995). Do-
mestication likely started when nomads marked for-
est trees that supported particularly fruitful vines.
Grapevines grow most successfully in areas where
water is readily available. As sedentary agriculture
developed and forests were cleared, fruit trees and
vines were kept in areas where water was available
and plants were protected from the reach of grazing
animals by building mud walls around what became
vineyards and orchards. Neolithic communities of the
ancient Near East and Egypt were permanent, year-
round settlements made possible by domesticated
plants and animals. Given a more secure food supply
and a stable base of operations than nomadic groups
possessed, a Neolithic culture and “cuisine” emerged.
Using a variety of food processing techniques – fer-
mentation, soaking, heating, spicing – Neolithic peo-
ples are credited with first producing bread, beer, and
an array of meat and grain entrées we continue to
enjoy today. A major advance in the development of
winemaking was the creation of pottery vessels about
6000 BC that allowed the production and storage of
wine. Confirmation of the evolution of winemaking
comes from yellowish residue inside a wine storage jar
excavated by Mary M. Voigt at the site of Hajji Firuz
Tepe in the northern Zagros Mountains of Iran (Mc-
Govern 2003, see Plate 1 and 2). The jar, with a volume
of about 10 liters was found together with five similar
jars embedded in the earthen floor along one wall of
a “kitchen” of a Neolithic mud brick building, and
was dated to ca. 5400–5000 BC (McGovern 2003, see
Map 2). Infrared, liquid chromatographic, and wet
chemical analyses were conducted and detected the
presence of calcium tartrate in the jars. Grapes are
the only fruit in which tartaric acid occurs in large
amounts.

Archeological evidence indicates that organized
cultivation of wine grapes was underway in the near
east as early as fourth millennium BC and in Greece
during the first millennium BC (Helbaek 1959). The
westward movement of viticulture fanned out from
Asia Minor and Greece, following the Phoenician sea
routes. Religion was strongly associated with viticul-

ture and winemaking. The Egyptians ascribed wine to
the god Osiris, the Greeks had Dionysus, the Romans
Bacchus, and the Babylonians the goddess Siduri (Mc-
Govern 2003). Wine was associated with the Christian
faith as a necessary ingredient in the consecration of
the Mass during the Roman period. With the decline
of the Roman Empire, Europe plunged into the Dark
Ages, wine’s influence waned, and vineyards became
relegated to monasteries and churchyard plots. Wine’s
influence was revived in 800 AD, and vineyards were
planted along the major river valleys of the Danube,
Rhône, Rhine, Tiber and Douro. Records document
vineyards along the Moselle valley in Germany by 55
AD. In the fifteenth century viticulture became es-
tablished in Madeira and the Canary Islands. Later it
spread to South Africa, Australia and South America.
The V. vinifera grape was introduced to the new World
by Portuguese and Spanish explorers and settlers in
the 1500s. The first recorded introduction of grape
into the USA was in 1621 (Olmo 1976). Grapes were
moved from Mexico into California in the mid 1700s,
and expanded rapidly during the 1850s.

2.1.2
Genetic Diversity

The botanical family Vitaceae is made up of 15 genera
(http://www.ars-grin.gov/) and about 1,000 species.
Only the genus Vitis contains species with edible fruit.
There are about 60 Vitis species in the world, with the
greatest concentration in Asia and North America.
The number of Vitis species is in taxonomic dispute
due to the interfertility of all the species, their sym-
patric nature and the resulting high degree of hybrid-
ity. Some authors separate the species V. rotundifolia
and its related subspecies and species (V. rotundifo-
lia var. munsoniana and V. popenoei) into a separate
genus Muscadinia (Small 1913). Muscadinia species
have 40 somatic chromosomes and are restricted to
the southeastern USA and northeastern Mexico (Win-
kler et al. 1974; Einset and Pratt 1975).

Domestication of V. rotundifolia, the muscadine
grape, pre-dates the arrival of Europeans in the USA
in the 1600s. The rest of the Vitis species contain 38
very small somatic chromosomes that form 19 bi-
valents at meiosis and fertile hybrids with the mus-
cadine species are rare and do not occur naturally
(Jelenkovic and Olmo 1969). Estimates of the number
of Vitis species varies widely depending upon taxo-
nomic opinion. De Lattin (1939) grouped the species
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into nine sections, and included 18 North American
species. Bailey (1934) included 28 American species
and his grouping and designation differed from that
of De Lattin. Galet (1956, Vol 1) states that about 20
species of Vitis can be found in America but later re-
ports that there are 28 (Galet 1988). A literature search
covering published reports from 1753 to 1940 revealed
155 species names for American grapes, adding to the
confusion (Rogers and Rogers 1978). This confusion is
largely based on disagreements as to what constitutes
goodspecies, extremevariants andhybrid forms (Lev-
adoux et al. 1962; Barrett et al. 1969; Comeaux et al.
1987). Additional summaries of the family Vitaceae
are found elsewhere (Galet 1988; Alleweldt et al. 1990;
Mullins et al. 1992 Chap. 2). The United States De-
partment of Agriculture Germplasm Resources Infor-
mation Network (GRIN) (http://www.ars-grin.gov/) is
an accepted listing of crop plant germplasm. This list
describes the 15 genera and 43 species, 5 natural hy-
brids and 15 varieties of species in Vitis. Molecular
techniques are being applied to taxonomic relation-
ships within Vitaceae (Rossetto et al. 2001), but more
work is needed. The North American species, includ-
ing V. aestivalis, V. cinerea var. helleri, V. labrusca, V.
riparia and V. rupestris, have been extensively used to
produce rootstocks and fruiting cultivars with fungal
resistance. Among the Asian species, only V. amuren-
sis has been domesticated and used for fresh fruit,
juice, wine and jelly production (Huang 1980). Vitis
vinifera is the most successfully used grape species
with thousands of wine, table and raisin grape culti-
vars grown throughout the world’s temperate zones
(Alleweldt et al. 1990).

2.1.3
Advanced Breeding Objectives

The common objectives of most breeding programs
are to produce locally adapted, high yielding and
quality cultivars adapted to environmental and pest
stresses. Inpractice theseobjectives are complexgiven
the different characteristics needed for table, raisin
and wine grape production. In addition, other de-
sirable qualities are considered when breeding root-
stocks.

Grapes are generally grown in the Northern hemi-
sphere between 20 and 51◦N latitude. The most north-
ern extent of V. vinifera cultivation is in Germany’s
Rhine Valley and British Columbia, Canada. The
southern ranges extend into India, but most culti-

vation occurs between 20 and 40◦S latitude. The ma-
jor limiting factors to V. vinifera cultivation are the
length of the growing season and water availability,
which must allow both fruit and cane maturation, and
winter cold. Tropical viticulture is practiced with both
V. vinifera cultivars, and with hybrids based on Amer-
ican grape species, in areas where dormancy can be
enforced by a dry season, by withholding water or by
planting at high elevation. Grapes are grown beyond
the winter cold limits of V. vinifera. These cultivars
are hybrids based on northern species particularly
V. riparia, V. amurensis and V. labrusca.

Grape is subject to an array of diseases caused by
bacteria, fungi, mycoplasmas, nematodes and viruses
(Pearson and Goheen 1988). The most damaging
grape pests are indigenous to North America and,
because V. vinifera cultivars have no or little inher-
ent resistance, they created havoc when introduced
into Europe during the nineteenth century. Insects
and nematodes can also act as vectors for diseases
such as Pierce’s disease, flavescence dorée and fan-
leaf degeneration, and cause serious vine decline or
death as in the case of grape phylloxera and root borer.
The most common fungal disease in the world’s grape
growing regions is powdery mildew, caused by Unc-
inula necator. This fungus was unintentionally in-
troduced to Europe from North America before the
1850s (Reisch and Pratt 1996). About 20 years later
downy mildew caused by another fungus, Plasmo-
spora viticola, became a serious problem. Soon after,
black rot (Guignardia bidwellii) appeared in Euro-
pean vineyards. These diseases were all introduced
from North America. A serious disease of warmer cli-
mate is anthracnose, Elsinoë ampelina, perhaps the
first North American grape disease to be imported
to Europe. Sources of resistance to these diseases
are found in many North American grape species.
Barrett (1955) reported that resistance to black rot
is quantitatively controlled. A few forms of resis-
tance to this disease have been identified. Some geno-
types of V. rupestris and V. cinerea transmit high lev-
els of resistance, however, there is great variability
among different clones suggesting quantitative inher-
itance is likely, as reported by Barrett earlier (McGrew
1976).

Several plant parasitic nematodes attack grape
roots, and many commonly used commercial root-
stocks are susceptible (Raski et al. 1965). The root-
knot nematode (Meloidogyne spp.) and dagger ne-
matode (Xiphinema index) cause serious damage to
grape roots and reduce vigor and productivity of the
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plant. Xiphinema index also acts as a vector for grape
fanleaf virus, and this virus/nematode complex cause
one of the most severe grape viral diseases – fan-
leaf degeneration. This disease interferes with nor-
mal fertilization of the flowers, disrupting berry set
and resulting in severe yield losses. Nematode prob-
lemsbecomemore severewith timeasgrowers replant
grapes on vineyard sites without regard to fallow or
crop rotation, or plant vineyards on agricultural soils
with high nematode populations. Resistance to ne-
matodes is found in a number of North American
grape species particularly V. arizonica, V. candicans
and its hybrids, V. cinerea and Muscadinia rotundifo-
lia. Table 1 summarizes known sources of resistances
to different pests and diseases in grapes.

2.1.4
Classical Breeding Efforts:
Obstacles and Achievements

French scientists, nurserymen and viticulturists first
initiated well-documented grape breeding, when
phylloxera and fungal diseases created havoc in
European grape growing regions. Table 1 presents
the main genetic resources used by European and
North American breeders to incorporate disease,
pest and abiotic stress resistance into V. vinifera
cultivars. Some of these hybrids, Hybrid Direct
Producers or French Hybrids, are still used to combat
fungal diseases and cold winter weather, however
they are generally considered to have inferior fruit
quality compared to V. vinifera cultivars. Breeding
of these interspecific hybrids ceased in Europe
after the creation and utilization of phylloxera
resistant rootstocks took hold. Progress on limiting
the expression of undesirable flavor compounds
was limited because most of them are inherited as
complex polygenic traits (Alleweldt and Possingham
1988). However, new V. vinifera cultivars continue
to be developed. The most successful of these are
seedless table grapes, while wine grapes have been
less successful since their wide utilization is greatly
limited by the demands of winemakers and marketers
to have traditional varieties with well-documented
quality and historical acceptance. New V. vinifera
varieties continue to be released in a number of
countries including Argentina, Australia, France,
Germany, Hungary, South Africa, USA and Chile
(Antcliff 1978).

There are several main constraints to grapevine
improvement. Grape is a relatively long-lived peren-
nial and requires time and space for adequate eval-
uation. It can also be slow to come into bloom re-
sulting in a relatively long generation time. In the
case of wine grapes vinification and wine evalu-
ation must be carried out which further compli-
cates and delays selection. Most wine grape culti-
vars are extremely heterozygous and old varieties
carry deleterious alleles that exhibit pronounced in-
breeding depression after selfing or sibling mating,
although inbreeding affects can vary among culti-
vars (Winkler et al. 1974). The grape breeding effi-
ciency depends on the screening methods used for
fruit quality, yield, disease resistance, winter hardi-
ness and tolerance to other abiotic stresses. Field
and laboratory procedures are often performed in
order to select for horticultural traits prior to de-
termining enological potential. Wine grape evalua-
tion is again more complex because single seedling
vines produce very small amounts of fruit, adding to
the difficulty of judging wine making potential. Fi-
nally, little is known about the inheritance of wine
quality components, which are likely to be quan-
titatively inherited and under environmental influ-
ence.

Improvement of crops through breeding is greatly
facilitated by genetic knowledge of traits under se-
lection. Such genetic information can be used to
calculate heritability estimates, which help breed-
ers to select parents for controlled crosses. Heri-
tability estimates could be derived from parame-
ters of covariance among relatives. One method of
covariance estimation is through factorial sib anal-
ysis, a mating system that is less biased by en-
vironmental covariances than other methods (Fehr
1991; Falconer and Mackay 1996). The design II
mating system consists of a series of male par-
ents each mated to a series of female parents. To
make the calculations simple, selected females are not
mated to each other, selected males are not mated
to each other, and there are no reciprocal or self-
ing crosses. Such factorial designs are particularly
well-suited to a dioecious species such as the wild
species and rootstocks of grape. This design has been
used with wild grape species to study the inheritance
of Pierce’s disease resistance (Krivanek et al. 2005)
and has been used with grape rootstocks to study
root-knot nematode resistance (Cousins and Walker
2002).
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Table 1. Native american species as sources of resistance or tolerance to diseases and biotic stress

Stress factor Causal agent Sources References
of resistance
or tolerance

Fungal Diseases
Anthracnose Elsinoe ampelina [de Bary] shear V. simpsoni Mun. Mortensen (1981)

V. smalliana Bailey Olmo (1986b)
V. shuttleworthii House.
V. labrusca L.
V. rotundifolia Michx
V. munsoniana Simp ex Mun

Botrytis bunch rot Botrytis cinerea Pers. V. vinifera L. Alleweldt et al. (1990)
V. riparia Michx
V. rupestris Scheele

Black rot Guignardia bidwellii V. riparia Michx Alleweldt et al. (1990)
[Ellis]Viala & Ravaz V. rupestris Scheele

V. candicans Engelm Jabco et al. (1985)
V. rotundifolia Michx McGrew (1976)
V. cinerea Engelm

Downy mildew Plasmopara viticola V. riparia Michx Alleweldt et al. (1990)
Berl. and Toni V. rupestris Scheele Eibach et al. (1989)

V. lincecumii Buckl. He and Wang (1986)
V. labrusca L.
V. amurennsis Rupr.
V. rotundifolia Michx
V. yenshanesis
V. aestivalis
V. cinerea Engelm
V. berlandieri

Powdery mildew Oidium, Uncinula necator V. aestivalis Michx Alleweldt et al. (1990)
(schw.) Burr. V. cinerea Engelm Pearson and Goheen (1988)

V. riparia Michx
V. berlandieri
V. rotundifolia Michx
V. labrusca L.

Rust Physopella ampelopsidis V. shuttleworthii House. Fennell (1948)
V. simpsoni Mun.
V. rotundifolia Michx

Bacterial Diseases
Crown gall Agrobacterium tumefaciens V. amurennsis Rupr. Alleweldt et al. (1990)

V. labrusca L. Pearson and Goheen (1988)
Pierce’s disease Xylella fastidiosa Wells et al. V. rotundifolia Michx Mortensen et al. (1977)

V. candicans Engelm Olmo (1986b)
V. champinii Pl Stover (1960)
V. vulpina L.
V. shuttleworthii House.
V. simpsoni Mun.
V. smalliana Bailey
V. arizonica

Flavescence doree Mycoplasma like organism V. labrusca L.
suspected V. rupestris Scheele Pearson and Goheen (1988)
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Table 1. (continued)

Stress factor Causal agent Sources References
of resistance
or tolerance

Viral diseases
grapevine fan leaf virus V. arizonica

V. rotundifolia Michx Walker et al. (1985)
V. vinifera L. Walker and Meredith (1990)
V. rufotomentosa Small
V. candicans Engelm
V. riparia Michx

Insects
Rootknot nematodes Meloidogyne Goeldi spp V. champinii Pl Lider (1954)

V. candicans Engelm
V. rotundifolia Michx Olmo (1986b)

Dagger nematodes Xiphinema index V. rufotomentosa Small Alleweldt et al. (1990)
V. arizonica
V. rotundifolia Michx Bouquet and Danglot (1983)
V. cinerea Engelm Meredith et al. (1982)

Phylloxera Dakyulosphaira vitifolia V. riparia Michx Alleweldt et al. (1990)
[Fitch] V. rupestris Scheele Olmo (1986a)

V. berlandieri
V. rotundifolia Michx
V. cinerea Engelm
V. champinii Pl

2.1.5
New Genetic Tools for Grape Improvement

2.1.5.1
In Vitro Culture
Tissue culture has greatly increased our knowledge
of plant biology from the cellular (metabolism, dif-
ferentiation) to the plant level (organogenesis, host-
parasite relationships). Successful tissue culture also
led to unconventional methods for genetic improve-
ment. Since early 1960s, grapevine has been the sub-
ject of research aimed at defining the best procedures
for micropropagation.

In vitro culture starts with the excision of a small
piece of contaminant-free plant tissue followed by its
establishment in sterile culture. The choice of plant
material and preparation of sterile explants are crit-
ical, since the tissue must be able to survive the ini-
tial culture and produce expected or experimental
responses. Environmental conditions and the phys-
iological state of the mother plant also need to be
considered. Once the plant material is cleaned with
surface disinfectants [common surface disinfectants

and procedures are reviewed by Street (1977) and Hu
and Wang (1983)], the tissue is placed in an appro-
priate culture media. The major functions of culture
media are (i) to supply the basal nutrients for contin-
ued growth of the isolated explants and its subsequent
propagules; and (ii) to manipulate growth and devel-
opment through the balance of growth regulators. In
vitrodevelopment is commonly controlledby thekind
of growth regulator, its concentration and combina-
tion with other growth regulators, and the sequence
in which growth regulators are supplied. Auxins and
cytokinins are most typically used, but gibberellins
and abscisic acid have also been used in specific situ-
ations.

Techniques of in vitro culture are commonly
classified as standard techniques using pre-existing
meristems, and those requiring neoformation of buds
or meristem like structure. The standard method uses
explants bearing intact apical or axillary buds cul-
tured on a growth regulator-free media containing
sucrose, macro and micronutrients with vitamins,
and solidified with a gelling agent. Depending on
the genotype and environmental conditions, an ax-
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illary bud gives rise to a single rooted plant. Sub-
culturing of these plants can generate yearly mul-
tiplication rates of 104 to 106. Such techniques are
widely used because of their operational feasibility
and ease of plantlet transfer to greenhouse condi-
tions. In addition the culture of small meristems can
often give rise to virus-free plantlets and thus these
methods are specifically used for virus elimination
programs.

Neo-formation techniques require the stimulation
of axillary bud proliferation through the use of cy-
tokinins, plant growth regulators with the ability to
overcome the apical dominance of axillary buds. Cy-
tokinins in the culture medium induce intense shoot
proliferation by the enhanced release of axillary buds.
Axillary bud proliferation is currently considered one
of the most convenient and reliable regeneration tech-
niques for shoot multiplication in many plants, herba-
ceous and woody crop species, and grapevine (Hu
and Wang 1983). Yearly production rates can theoret-
ically reach108 budsper initial explant.Many research
groups have adapted and improved these techniques
with a wide range of Vitis genotypes (Table 2).

Progress in cell, tissue and organ culture of
grapevine led to the development of other technolo-
gies with great potential for grape improvement
(Mullins et al. 1992; Torregrosa and Bouquet 1993).
Major advances in genetic engineering of grapevine
have been made through the coupling of recombinant
DNA technologies with regeneration from plant
tissue cultures. A brief overview of uses of in vitro
culture in grapevine is present below.

Generation of Virus-Free Grapevines Virus and
virus-like entities greatly hinder grape cultivation
by reducing vine vigor and yields, delaying and ar-
resting berry ripening, changing must composition
and aromatic profiles, and affecting graft compati-
bility (Walter and Martelli 1996). Many viruses af-
fect grape including fanleaf (GFLV), leafroll (GLRaV),
fleck (GFkV), stem pitting (RSPaV), stem groov-
ing (GVA-closely associated) and corky bark (GVB-
closely associated) and are considered to be of major
importance to growers, nurseries and winemakers. In
vitro meristem, shoot apex cultures, and one node ex-
plant cultureweredeveloped toeliminateviruses from
grapevines (Barlass et al. 1982; Hatzinikolakis and
Roubelakis-Angelakis 1993; Staudt and Kassemeyer
1994). In recent years, micrografting of scion graft
meristems on hypocotyls of germinating embryos re-
sulted in theadvantageof simultaneousvirus indexing

(Tanne et al. 1993, 1996). Somatic embryogenesis be-
came a useful tool to eliminate harmful viruses after
methodsweredeveloped toestablish long-termregen-
eration of somatic embryos in different grape geno-
types (Torregrosa 1995). When combined with heat
therapy, somatic embryogenesis successfully elimi-
nated viruses from vascular and non-vascular tis-
sues (Goussard and Wiid 1992). Researchers in South
Africa have used somatic embryogenesis to estab-
lish V. vinifera cultivars since 1990. It was judged to
be more effective and less expensive than conven-
tional techniques at virus elimination and has not
resulted in somaclonal variation or virus contamina-
tion, as judged by ISEM and ELISA (Goussard and
Wiid 1995).

Establishment of Germplasm Repositories Grape
germplasm is currently maintained in field collections
where two or more plants of each genotype (species,
hybrid, variety andclone) are cultivated.Management
of germplasm in the filed is expensive and subject to
environmental hazards and funding shortages. There
are three basic types of in vitro storage modes for
conservation: (i) standard micropropagation, (ii) in
vitro culture combined with reduced growth rate,
and (iii) suspension of growth (Withers 1992). Be-
cause of the cost and risk of genotype instability, the
first method is unsuitable for long-term conservation
of grapevine. Reducing the growth rate of in vitro
cultures increases the time between subcultures, re-
ducing upkeep costs and risk of subculture mistakes.
Galzy et al. (1990) reported that grapevine plantlets
could adapt to a number of different culture con-
ditions. When culture conditions encourage growth,
plant behavior depends on a number of variables such
as nutrients, carbohydrate source and concentration,
and light, but dry matter remains stable. Conversely,
when growth is restricted by lowering temperature,
dry matter content increases significantly in response
to stress. To compensate for this effect, Galzy et al.
(1990) suggested reducing the carbohydrate content
of the medium. The nutrient content of media has
a strong impact on growth (Torregrosa 1994), and
restricting nutrients, especially nitrogen and potas-
sium, can alter plantlet growth (Moriguchi and Ya-
maki 1989).

Grapevine cryopreservation studies have been
conducted on latent buds taken from in situ canes.
Ezawa et al. (1989) obtained high survival rate with
V. labrusca (V. X. labruscana), and low to no success
with several Vitis species and V. vinifera cv Riesling,
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Table 2. Axillary bud proliferation studies in grapevine

Species Studied factor Reference

V. vinifera Culture vessel size Monette (1983)
Vitis hybrids Vitamins, amino acids, Chee and Pool (1985)

BAP/Kin/Picloram
V. labrusca Adenine/MS strength Reisch (1986)
Vitis hybrids Light spectrum, Mn and KI Chee (1986)
Vitis hybrids Salt formulation Chee and Pool (1987)
V. rotundifolia BAP/IBA Lee and Wetztein (1990)
V. vinifera TDZ Gribaudo and Fronda (1991)
V. rotundifolia BAP/TDZ/Kin/NAA/ explant length Gray and Benton (1991)
V. vinifera and Vitis hybrids MS strength, vitamins Zlenko et al. (1995)
Vitis × muscadinia hybrids Mg, Ca, BAP, salt formulation Torregrosa and Bouquet (1995)
Vtis hybrids, V. vinifera BAP/2iP/NAA, darkness Molina et al. (1998)

respectively (Esensee et al. 1990). Plessis (1994) de-
scribed the most comprehensive work while adapt-
ing cryopreservation techniques developed for pear.
In this process, axillary buds from in vitro grown
plantlets, composed of the prompt (lateral) bud with
several leaf primordia and a rudimentary latent bud
are encapsulated in calcium alginate and soaked in
a liquid medium containing 1 M sucrose to reduce
the water content of beads. The coated buds are then
partially dehydrated under sterile airflow and frozen
through two immersion steps in liquid nitrogen. Us-
ing this process, it was found that 24% of frozen buds
from V. vinifera cv. Chardonnay were capable of pro-
ducing viable plants (Plessis 1991).

Utilization of cryopreservation techniques to con-
serve germplasm is an appealing alternative to field
culture. However, cryopreservation of large collec-
tions of genotypes is expensive and time consuming.
Moreover the possibility, even if remote, of propa-
gating plants with genotypic alterations undetectable
under in vitro conditions is problematic. The primary
goal of cryopreservation is to back-up working collec-
tions for short and long terms, but they are not likely
to replace field collections.

In Vitro Embryo Rescue In many table-grape grow-
ing countries, consumers favor seedless table grapes.
In the USA, seedless cultivars make up more than
80% of the total table grape production, and only one
seeded table grape, Redglobe, is a commercial success.
Table grape breeding has been pursued intensively for
more than 70 years in California, and a large number
of new seedless cultivars have been released (Ledbet-

ter and Ramming 1989). Traditional breeding meth-
ods are based on hybridization between seeded female
parents and seedless male parents. The seedlessness
is stenospermocarpic (where fertilization occurs, em-
bryo is viable, but seed development aborts at various
stages, leading to quantitative variation of seed trace
size) with low proportion of seedless plants in the pro-
genies. Since seedlessness is only one of a number of
important traits, the selection process requires grow-
ing a large number of plants. In addition, since grape
seedlings often take 3–4 years to produce fruit after
planting, selection for seedless progeny is further de-
layed.

Through the use of in ovulo and in vitro culture
techniques, it is possible to rescue viable embryos
from seedless × seedless crosses and greatly increase
the number of seedless progeny (Emershad and Ram-
ming 1984, Spiegel-Roy et al. 1985; Bouquet and Davis
1989; Gray et al. 1990; Gribaudo et al. 1993; Garcia et
al. 2000; Ponce et al. 2000). Fertilized ovules are ex-
tracted and placed on media with GA3and IAA fol-
lowed (although not in all cases) by the excision of
the embryos. The success of embryo rescue depends
on many factors, the most important being the vari-
ety used as the female parent, and the harvest time of
the berries and ovules after pollination (Bouquet and
Davis 1989; Ponce et al. 2000). Low temperatures and
treatments with growth retardants have been shown
to improve embryo germination (Agüero et al. 1995,
1996).

Emershad and Ramming (1994a) showed that pro-
liferative somatic embryogenesis could be initiated
from in ovulo cultured zygotic embryos of seed-
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less grapes. This phenomenon was later shown to
be a demonstration of direct somatic embryogene-
sis occurring from epidermal cells of larger embryos
(Margosan et al. 1994), and was proposed as a sys-
tem to facilitate gene transfer technology in seedless
grapes (Emershad and Ramming 1994b). However,
the seedless character cannot be controlled in the
genotypes of such embryos. Higher proportions of
seedless plants can be recovered through in ovulo em-
bryo culture (Ramming et al. 1990; Spiegel-Roy et al.
1990; Bouquet and Danglot 1996). The limitation of
these procedures is their labor-intensive nature, and
the size of progeny populations must therefore be lim-
ited.

2.1.5.2
Genetic Engineering
Over the last 20 years, advances in plant biotechnol-
ogy have produced new tools for genetically improv-
ing crops. The general aim of molecular grapevine
breeding programs is to develop and apply novel gene
technologies capable of introducing genes in a care-
ful targeted manner. The transfer of a single trait
into a grape variety is almost impossible by classi-
cal methods due to grape’s heterozygous nature. The
potential of genetic engineering would be to make
directed and specific changes in existing grape cul-
tivars, thus modifying disease or pest resistance and
perhaps regulating fruit and wine quality factors. The
use of genetic engineering in the wine, table and
raisin grape industries has high potential because
grapevines are vegetatively propagated. Thus, mod-
ifications to established cultivars by genetic transfor-
mation should, in theory, leave intact the essential
characteristics that make each cultivar unique. This is
especially important in the wine industry, due to the
dependence of wine sales on the use of established
and historic cultivars names. New cultivars result-
ing from classical breeding are assigned new names,
which contributes to their slow acceptance in the mar-
ketplace.

Agrobacterium-mediated transformation of grape
began with the use of leaf disks, petioles, and other
shoot/root explants in the 1980s (reviewed by Grey
and Meredith 1992; Reisch and Pratt 1996). These ef-
forts produced transformed cells, but not transgenic
plants, due to the tissue type used, the competency of
the cells, and difficulties with regeneration. However,
by the mid 1990s, many groups had reported devel-
opment of transgenic grapes including rootstocks and
scion cultivars (Table 3). These successes derived from

advances in embryogenesis, regeneration, and trans-
formation and biolistic methods. The production of
transgenic vines has now become routine in both pub-
lic and private laboratories (Table 3).

Many projects have focused upon pest resistance
including fungal resistance in scion varieties (pow-
dery mildew: Kikkert et al. 2000) and virus resis-
tance in rootstocks (fanleaf degeneration: Mauro et al.
1995). Other studies have also focused on product
quality: changing seeded grapes into seedless grapes
(Perl et al. 2000a, b), and reducing the browning of
raisins (Thomas et al. 2000). While potentially im-
proved forms of important cultivars have been pro-
duced, years of field and product testing are still re-
quired before genetically engineered grapes will reach
the marketplace. Although it may become possible to
target gene incorporationandexpression, at this point
transformation events are independent of each other
and require the same evaluation strategies, as would
classically bred grapes.

Field trials in most countries require approval
from the relevant authorities. In France, trans-
genic research is controlled by two authorities: the
Commission de Génie Génétique (CGG), which
oversees research in confined environments such as
laboratories and glasshouses; and the Commission
d’étude de la dissémination des produits issus du
Génie Biomoléculaire (CGB), which is responsible
for field releases. In Germany, license from the
Robert Koch Institute is required for field trials
and the “Gene Technology law” controls trans-
genic research. In Australia, the office of the Gene
Technology Regulator (OGTR) established by the
Federal Government oversees the deliberate release
of transgenic plants for field trials. A legislative
basis for the regulation of GMO’s in Australia
came into force following passage of the Gene
Technology Bill 2000. In the USA, authority to
regulate transgenic plant research resides within
the Animal and Plant Health Inspection Service
(APHIS)– Biotechnology Permits Unit of the United
States Department of Agriculture (USDA). The
web database of field releases in the United States
(http://www.nbiap.vt.edu/cfdocs/fieldtests1.cfm) lists
33 separate release notifications and permits for
grape from both private companies and universities
dating from 1995. Most of these were later withdrawn.
Any plant engineered for fungal, viral or herbicide
resistance would also undergo a required review by
the Environmental Protection Agency, which assesses
the impact upon the environment.
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Table 3. Summary of transgenic plants of Vitis scion and rootstocks

Cultivar Selectable Trait of interest Reference
marker

Rootstocks 110R NPTII Coat protein (GCMV resistance) Le Gall et al. 1994
110R NPTII Coat protein (GFLV) Krastanova et al. 1995
41B NPTII Coat protein, replicase protein Mauro et al. 1995
SO4 NPTII Coat protein (GFLV) Mauro et al. 1995
V. rupestris NPTII Coat protein (GFLV) Krastanova et al. 1995
Freedom NPTII GNA (homopeteran Viss and Driver 1996

insect resistance)
MGT101-14
5C Teleki
V. rupestris, 110R NPTII Coat protein, antifreeze protein Tsvetkov and Atanassov 2000
V. rupestris NPTII Anti-sense movement protein Martinelli et al. 2000
110R NPTII Coat protein Gölles et al. 2000

NPTII Replicase (virus resistance) Barbier et al. 2000
na Eutypa toxin resistance Legrand et al. 2000

3309C NPTII Virus resistance Krastanova et al. 2000
V. riparia NPTII Virus resistance Krastanova et al. 2000
MGT101-14 NPTII Virus resistance Krastanova et al. 2000
5C Teleki NPTII Virus resistance Krastanova et al. 2000

Scion Chardonnay NPTII Coat protein (GFLV) Mauro et al. 1995
cultivars Sultana NPTII Shiva-1 (disease resistance) Scorza et al. 1996

Superior seedless Bar Basta herbicide resistance Perl et al. 1996
Cabernet Franc NPTII Fe-superoxide dismutase Rojas et al. 1997

(freeze tolerance)
Chardonnay NPTII Chitinase (disease resistance ) Kikkert et al. 2000
Sultana NPTII, HPT Silencing of polyphenol oxidase Thomas et al. 2000

to reduce browning
Merlot NPTII Chitinase (disease resistance) Kikkert et al. 2000
Riesling, NPTII Glucanase, chitinase Harst et al. 2000a
Dornfelder (disease resistance)
Red Globe na Barnase gene (seedlessness) Perl et al. 2000a
Red Globe NPTII, HPT Seedlessness Perl et al. 2000b
Neo Muscat NPTII Class I chitinase Yamamoto et al. 2000

(disease resistance)

Public perception Education about the environ-
mental and health benefits likely to derive through the
use of gene technology for crop improvement appears
to be the key to public acceptance of transgenic plants.
The year 1999 saw increased media attention paid to
consumer and environmentalist groups opposed to
the use of genetic engineering for the production of
food items. This opposition was particularly strong in
Europe where the matter quickly became a political
and economic issue. Most of ongoing field trials were

discontinued or put on halt in France and Germany.
However, in Australia and the USA, public opposition
to field trials of transgenic grapevines has been much
less vocal. Perhaps an advantage of working on trans-
genic grapes, at least wine grapes is that many years
of field evaluation and wine quality tests are required
before release. Thus, there will be more time for public
education and awareness before transgenic grapes are
usedcommercially, comparedwith transgenic cereals,
grains and vegetables.
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2.2
Genome Mapping

The genome size of Vitis is 475 Mbp, 96% of which
is non-coding (Lodhi et al. 1995a). It is about half
the size of the tomato genome (950 Mbp) and equiv-
alent to the rice genome (450 Mbp). There is no sig-
nificant variation for DNA content among cultivars
of V. labrusca, V. vinifera and diploid Vitis hybrids
(Lodhi et al. 1995b). Knowledge of an organism’s
DNA content is essential to allow correlation of ge-
netic and physical mapping distances. In grapes,
1 cM represents on average 300 kb in physical dis-
tance.

A genetic linkage map of an organism is an ab-
stract model of the linear arrangement of a group of
genes and markers. The gene can be a traditionally
defined Mendelian factor or a piece of DNA identified
by a known function or by means of a biochemical
assay. The marker can be a cytological marker, a pro-
tein, or a piece of DNA without known function. Be-
cause a genetic map is based on homologous recom-
bination during meiosis, this map is also a meiotic
map.

In plants, some traits are controlled by a single
gene (major gene). The location of the gene control-
ling a trait of interest is deduced by following the
inheritance of the trait relative to the inheritance of
linked molecular markers. Markers that are located
very close to the DNA region controlling the trait are
identified by virtue of co-inheritance with the trait
in the progeny of a cross between two plants differ-
ing in the trait (but not necessarily in heterozygote
species). By identifying twosuchmarkers that arevery
close and flank the trait of interest (fine-mapping),
a small DNA fragment that contains the gene can
be isolated (positional or map-based cloning). Once
isolated, the DNA sequence can be determined and
the function and organization of the gene can be
studied.

Map-based cloning has been used to isolate dis-
ease resistance genes in many crop plants, for example
the gene controlling resistance to bacterial pathogen,
Pseudomonas syringae, in tomato (Martin et al. 1993).
This gene product was determined to be a protein ki-
nase, and when this gene was transferred to suscepti-
ble plants, they became resistant. A rice gene control-
ling resistance to Xanthomonas oryza was also identi-
fied with the map-based cloning approach (Song et al.
1995). Genome maps have also been used to find genes

controlling various aspects of plant composition and
development that have not been previously described
or isolated. For example, map-based cloning of Ara-
bidopsis has been used to find a gene controlling fatty
acid composition, as well as several genes controlling
developmental response to ethylene and abscisic acid
(Arondel et al. 1992; Chang et al. 1993; Leung et al.
1994).

In plants, many traits exhibit continuous varia-
tion resulting from the action of multiple genes that
are subject to environmental modification, a quan-
titative trait loci (QTL). Determining the location
and number of genes that condition such quantita-
tive traits and estimating the magnitude of individ-
ual gene effects is the focus of quantitative geneti-
cists. Before interval mapping, QTL detection could
be done by variance analysis at individual markers:
Lander and Botstein (1989) provided the theoretical
basis for QTL analysis. The availability of detailed
linkage maps composed of molecular markers and
major genes for traits of interest provided the frame-
work for manipulation of QTL. Once a large number
of markers are available, segregating loci can be cho-
sen to mark most regions of a genome. QTL map-
ping has been used to locate genomic regions con-
trolling aroma in corn (Azanza et al. 1996) and clone
sugar content QTLs from the wild tomato species Ly-
copersicon pennellii (Zamir et al. 2000). In the lat-
ter case, the L. pennellii introgression IL9-2-5 im-
proves sugar content by 22% by increasing fructose
and glucose compared to the controls. This partially
dominant QTL (designated as Brix9-2-5) enhanced
total soluble solids of the fruit in different years,
environments and genetic backgrounds. In a simi-
lar study, another QTL fw2.2 was found to be re-
sponsible for approximately 30% of the difference
in fruit size between large, domesticated tomatoes
and their small-fruited wild relatives. The gene un-
derlying this QTL was cloned and shown to be as-
sociated with altered cell division in ovaries (Frary
et al. 2000). Many QTLs were detected but only few
identified.

Genome maps also provide tools to plant breeders
for marker-aided selection (MAS), allowing them to
optimize selection for a desirable trait. If seedlings
are screened for the presence of a closely linked
molecular marker, there is high probability that
the seedlings carrying the marker will also carry
the desirable trait, allowing them to be selected at
a much earlier stage than would otherwise have been
possible.
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2.2.1
History and Current Status of Grape Genetic
Linkage Mapping

Linkage maps in most plants are obtained from seg-
regating populations derived from crosses between
pure or inbred lines. Because grapes are extremely
heterozygous, their mapping populations are usually
F1 and the pseudo-testcross mapping strategy is used
to construct genetic linkage maps of both parents,
which can be then be integrated into a consensus
map with the use of multialleleic codominant mark-
ers with alleles that segregate in both parents (Gratta-
paglia and Sederoff 1994). In the last decade, several
groups have initiated programs to develop molecu-
lar marker linkage maps in grapes. Table 4 summa-
rizes all published maps in grapes. Initial efforts by
Weeden et al. (1988) and Mauro et al. (1992) reported
linkage groups in grape using isozyme and RFLP
(restriction fragment length polymorphism) mark-
ers. However, these molecular markers are limited;
isozymes are restricted to genes encoding soluble pro-
teins, and RFLP markers are mostly limited to cod-
ing regions of the genome. In 1995, Lodhi et al. re-
ported the first detailed genetic linkage map of grape
basedona seedlingpopulation fromacrossof ‘Cayuga
White’ (a complex hybrid of V. vinifera, V. labrusca,
V. rupestris and V. aestivalis) and ‘Aurore’ (a com-
plex hybrid of V. vinifera, V. rupestris and V. aesti-
valis). The parental maps were based on 422 ran-
domly amplified polymorphic DNA (RAPD) and 16
RFLP and isozyme markers. These maps were devel-
oped by using the double pseudo-testcross strategy
with an average distance of 6.1 cM between mark-
ers. The ‘Cayuga White’ map consisted qof 20 linkage
groups with 214 markers covering 1,196 cM and that
of ‘Aurore’ map consisted of 22 linkage groups with
255 markers spanning 1,477 cM. This mapping pop-
ulation segregated for disease resistance and other
important traits.

A second grape map utilizing interspecific hy-
brids was developed by Dalbò et al. (2000), using
the progeny from ‘Horizon’ (‘Seyval’ × ‘Schuyler’) ×
Illinois 547-1 (V. cinerea B9 × V. rupestris B38).
Parental maps were constructed with 277 RAPD, 25
microsatellite, 4 CAPS (cleaved amplified polymor-
phic sequences), and 12 amplified fragment length
polymorphism (AFLP) markers This map also used
the double pseudo-testcross strategy, and consisted
of 153 markers covering 1,199 cM, with an average
distance of 7.6 cM between markers on the Hori-

zon map and 179 markers covering 1,470 cM with
an average distance of 8.1 cM on the Illinois 547-1
map.

In 2002, Doligez et al. reported the first V. vinifera-
based genetic linkage map. The map was constructed
using a F1 progeny of 139 individuals from a cross be-
tween two partially seedless genotypes [MTP2223-2
(Dattier de Beyrouth × Pirovano 75) × MTP2121-
30 (Alphonse Lavallée × Sultanina)]. All the progeny
were produced via embryo rescue (Bouquet and Davis
1989). This consensus map consisted of 301 markers
[AFLP, simple sequence repeat (SSR), RAPD, SCAR
(sequence characterized amplified region)]. This map
consisted of 20 linkage groups and covered 1,002 cM.
In 2003, Grando et al. reported on a map of a Vi-
tis inter-specific hybrid population from 81 progeny
of V. vinifera ‘Moscato bianco’ × V. riparia Wr63.
Three types of markers were used to construct this
map, AFLP, SSR and SSCP (single strand conforma-
tion polymorphism). A total of 338 markers were
assembled in 20 linkage groups covering 1,639 cM
for the maternal map, and 429 loci defined the 19
linkage groups of the paternal map, which covered
1,518 cM.

In 1998, the grape genetics research community
formed the International Grape Genome Program
(IGGP) for the purpose of cooperation and coordi-
nation in increasing knowledge of the grape genome
(http://www.vitaceae.org). The cooperative effort re-
sulted in the Vitis Microsatellite Consortium (VMC),
established to generate a large number of codomi-
nant SSR markers, an effort coordinated by Agro-
Gene S.A. in France. Among the goals of the IGGP
is the creation of reference linkage maps to harmo-
nize linkage groups resulting from individual map-
ping projects, and to serve as a resource for phys-
ical mapping. This map would also be useful for
targeting genomic regions for more intensive map-
ping efforts, such as localizing QTLs and optimizing
MAS.

The first reference map was based on only codom-
inant SSR markers and used V. vinifera ‘Riesling’
(prime name ‘Riesling weiss’) × V. vinifera ’Caber-
net Sauvignon’. Riesling is one of the world’s most
important white wine varieties and is especially im-
portant incool climates, suchasGermany,Canadaand
the northeastern United States. Cabernet Sauvignon
is the world’s most widely distributed red wine vari-
ety; it has also been selected by the IGGP as the target
cultivar for cooperative efforts on physical mapping.
This reference mapping population consisted of 153
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Table 4. A list of all published maps in grapes

Population Marker system No. of Average Reference
Genotypes marker

distance (cM)

Cayuga White (Hybrid RAPD, RFLP, 60 6.1 Lodhi et al. 1995
of V. vinifera, V. labrusca, Isozyme
V. rupestris and V. aestivalis) ×
Aurora (Hybrid of V. vinifera,
V. rupestris and V. aestivalis)

Horizon (‘Seyval’ × ‘Schuyler’) × RAPD, SSR, 58 7.8 Dalbo et al. 2000
Illinois 547-1 (V. rupestris × V. cinerea) CAPS, AFLP

MTP2223-2 (Dattier de Beyrouth × AFLP, SSR, 139 6.2 Doligez et al. 2002
Pirovano 75) × MTP2121-30 RAPD, SCAR,
(Alphonse Lavallée × Sultanina) Isozymes

Moscato bianco (V. vinifera L.) × SSR, AFLP, SSCP 81 8.1 Grando et al. 2003
V. riparia Mchx

Riesling × Cabernet Sauvignon SSR, EST 153 11 Riaz et al. 2004

V. rupestris and V.arizonica hybrids AFLP, SSR, 116 10.2 Doucleff et al. 2004
RAPD, ISSR

Syrah × Grenache SSR 96 6.4 Adam-Blondon et al. 2004

Regent × Lemberger AFLP, RAPD, SSR, 153 5.9 Fisscher et al. 2004
SCARs/CAPS

Riesling Self SSR 96 6.4 Adam-Blondon et al. 2004

progeny plants. A total of 152 SSR markers and one
polymorphic expressed sequence tag (EST) marker
mapped to 20 linkage groups (Riaz et al. 2004). An in-
tegrated linkage analysis was performed to obtain the
consensus map. The map covered 1,728 cM with an
average distance of 11.0 cM between markers (Fig. 2).

As part of the IGGP an international grape
genomics initiative (IGGI) was proposed to generate
an international consensus genetic linkage map
to integrate the codominant marker data from
different mapping populations. This effort will
combine information from different genetic back-
grounds into one framework map for use in MAS
and the physical mapping of genes. Five different
populations have been chosen for this purpose.
The first population (A1) of 95 full-sib progeny
is the Syrah × Grenache map mentioned above
(Adam-Blondon et al. 2004). The second population
(A2) is the population of 114 progeny obtained by
selfing Riesling as mentioned above (Adam-Blondon
et al. 2004). The third population of 46 full-sib
progeny (DG) is from a cross between Chardon-

nay and Bianca cultivars (Di Gaspero et al. 2005).
The fourth population (D) consists of 139 full-sib
progeny from the cross MTP2223-27 × MTP2121-30
mentioned above (Bouquet and Danglot 1996). The
fifth population (R) consists of 153 full-sib progeny
from the Riesling × Cabernet Sauvignon cross,
mentioned above (Riaz et al 2004). The first two and
the fourth population are being maintained at INRA,
France, the third population is maintained at the
University of Udine (Italy), and the National Clonal
Germplasm Repository, Davis, USA, maintains the
last population.

2.2.2
Mapping and Tagging of Major Genes

Relatively few genes have been isolated in grapes com-
pared to the other major agronomic crop plants and
model organism Arabidopsis thaliana. Two strategies
from “phenotype to gene” and from “gene to phe-
notype” (reverse genetics) have been used to isolate
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Fig. 2. Linkage map of Vitis vinifera ‘Riesling’ × ‘Cabernet Sauvignon’. For each linkage group, parental maps are shown on the
left (‘Riesling’) and right (‘Cabernet Sauvignon’) and consensus map is in the center (Riaz et al. 2004)
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Fig. 2. (continued)
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and characterize genes. In Arabidopsis, several com-
bined approaches, such as positional cloning, can-
didate gene approach, and insertional mutagenesis
with either transposons or T-DNA vectors have been
used successfully to isolate genes identified by the
phenotype of their mutant alleles. In grape, it is very
difficult to use reverse genetic approach to tag and iso-
late genes. Multiple genes control most horticultural
traits and no information is available about gene func-
tion and expression. With the availability of molecular
markers, it became possible to map traits of interest
on genetic linkage maps of segregating populations.
The main focus is on disease resistance for different
pests and diseases.

2.2.2.1
Fungal Diseases
Bouquet (1986) introduced a dominant resistance
gene for powdery mildew from Muscadinia rotundi-
folia, Run1, into the Vitis vinifera genome over five
backcross generations (Bouquet 1986). Run1 confers
total resistance to the populations of this fungus nat-
urally occurring in Montpellier, France. The segre-
gating population was created in 1995 by crossing
a resistant hybrid carrying Run1 in the heterozy-
gous state (VRH3082-1-42)withCabernet Sauvignon.
They used the bulked segregant analysis (BSA) ap-
proach with AFLP markers tightly linked to the Run1
locus to develop a local map around the gene. Pauquet
et al. (2001) later reported a local map of AFLP mark-
ers around the Run1 gene (Fig. 4a). A BC5population
of 157 genotypes was used to select AFLP markers
linked to the resistance gene. A total of 13 mark-
ers were used to develop this local map and 10 of
them co-segregated with the resistance gene. They
also studied the usefulness of these 13 AFLP mark-
ers in a wider set of resistant and susceptible geno-
types. Three markers out of 13 analyzed were absent
in all susceptible genotypes and present in all resistant
genotypes.

Doucleff et al. (2004) reported on a map of
V. rupestris × V. arizonica. This mapping population
segregates for resistance to the dagger nematode
(Xiphinema index) and to Pierce’s disease (PD),
a bacterial disease caused by Xylella fastidiosa.
A total of 475 DNA markers [mostly AFLP, inter
simple sequence repeat (ISSR), RAPD and SSR)]
were used to construct the parental maps with
PGRI (Plant Genome Research Initiative) mapping
program. Maternal and paternal maps covered 756
and 1,082 cM, respectively. Currently, this population

is being re-mapped with SSR, EST-SSR and EST
markers. A total of 240 markers have been mapped
to 19 linkage groups. The main focus is to develop
a high density linkage map around the nematode
and PD resistance loci, and use these tightly linked
markers for MAS in an ongoing grape scion and
rootstock breeding program and initiate map-based
positional cloning of resistance genes.

Fischer et al. (2004) reported on a map of full sib
F1 population consisting of 153 genotypes from the
cross of ‘Regent’ × ‘Lemberger’. Parental maps were
constructed with AFLP, RAPD, SSR and SCARs/CAPS
markers. The Regent map covered a total of 1,277.3 cM
with an average marker distance of 4.8 cM. The Lem-
berger map extends over 1,157.7 cM with an average
marker distance of 7.0 cM.

A second international grape reference map
solely based on SSR markers was published in 2004
(Adam-Blondon et al. 2004). It mapped 96 progeny
from V. vinifera ‘Syrah’ × V. vinifera ‘Grenache’. The
Syrah map was constructed from 177 markers (many
VMC, and newly developed VVI within Genoplante,
see Merdinoglu et al 2005) into 19 linkage groups
(1,172.2 cM) and the Grenache map was constructed
of 178 markers into 18 linkage groups (1,360.6 cM).
The consensus map consisted of 220 markers ordered
in 19 linkage groups covering 1,406.1 cM. This was
the first published map that represented the 19
chromosomes of genus Vitis (Fig. 3). In the same
study, a map based on progeny from a selfed Riesling
population consisting of 110 SSR and covering
1,191.7 cM was also reported. Using these maps, the
genome length was estimated to be around 2,200 cM,
which was comparable to genome length estimates
from the first published reference map (Riaz et al.
2004).

A new PCR-based approach for rapid generation
of genetic markers capable of tagging disease resis-
tance genes has been developed and effectively used
in other crops. This approach is based on the obser-
vation that genes conferring resistance from a diverse
range of host-pathogen interactions have a high de-
gree of structural and amino acid sequence conser-
vation. In particular, the majority of cloned resistant
genes, “R genes”, contain a nucleotide binding site
(NBS)anda leucinerichrepeat (LRR)domain(Meyers
et al. 1999; Young 2000). The NBS sequences of these
genes are characterized by the presence of up to seven
conserved domains including the P-loop, Kinase-2,
and GLPL motifs. The presence of these conserved
domains has facilitated the cloning of resistance gene
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Fig. 3. (continued)

analogs (RGA) from diverse species using PCR and
degenerate oligonucleotide primers. NBS encoding
sequences tend to be clustered in the genome and,
in accordance with this, isolated RGAs are frequently
genetically located at, or near, previously identified
resistance loci (Aarts et al. 1998; Collins et al. 1998;
Leister et al. 1999; Mago et al. 1999; Pan et al. 2000).
Therefore, the identification of RGAs represents a po-
tentially powerful strategy to develop new markers
around resistance genes and a good aid for map-based
positional cloning of genes.

In a continuation of the previous work on the
Run1 locus, Donald et al. (2002) were the first
grape researchers to utilize the RGA approach in
grapes. They used degenerate primers designed to
conserved regions of NBS motifs within previously
cloned pathogen resistance genes, to amplify RGAs
from grape. Twenty-eight unique grapevine RGA
sequences were identified and subdivided into 22
groups on the basis of a nucleic acid sequence
identity of approximately 70% or greater. Three RGA
markers were tightly linked to the Run1 locus. Of
these markers, two RGA (GLP1-12 and MHD 145)
co-segregated with the resistance phenotype in the
167 tested genotypes of BC5 population, and the
RGA marker MHD98 was mapped to a position
2.4 cM from the Run1 locus (Fig. 4b). As part of the
continuing effort to tag the Run1 gene, Barker et al.
(2005) recently published a genetic and physical map
of the gene using a BAC library constructed using
genomic DNA from a resistant V. vinifera individual
carrying Run1 within an introgression. This is the
first published report of physical mapping of any
gene in grape. The BAC contig assembly also allowed
the generation of new genetic markers that are closely
linked to the Run1 gene. Initial analysis indicates that
region containing Run1 gene contains two multigene
families of RGA.

Luo et al. (2001) also employed BSA with
RAPD and sequence characterized amplified re-
gion (SCAR) molecular markers to tag the downy
mildew-resistance genes of grape derived from
V. quinquangularis. The parents and 60 selected
progeny were tested. Among 280 Operon RAPD
primers tested, 160 gave distinct banding patterns
and one marker, OPO06-1500, was tightly linked to
a major gene for resistance to Plasmopara viticola
(RPv-1). Linkage analysis with Mapmaker deter-
mined the distance between RPv-1 and OPO06-1500
to be 1.7 cM. Marker OPO06-1500 was cloned and
sequenced to develop a SCAR marker (SCO06-1500),
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Fig. 4. Local map of the resistant genotype VRH3082-1-42 and in Cabernet Sauvignon of the RUN1 region. The 11 loci in brackets
together with RUN1 at the top of the VRH3082-1-42 linkage groups are all co-segregate. Figure 3b shows linkage map of the
resistant locus RUN1 and RGA markers GLP1-12, MHD145 and MHD98 (Pauquet et al. 2001; Donald et al. 2002)

which produces a single band only in resistant
plants.

2.2.2.2
Bacterial Diseases

In spite of the fact that bacterial diseases cause se-
rious losses in grape (Pierce’s disease and bacte-
rial blight of grape), there has been little informa-
tion available for incorporation of bacterial resis-
tance from wild species into V. vinifera except for
the case of Pierce’s disease (PD). All V. vinifera va-
rieties are highly susceptible to PD, which is caused
by the bacterium Xylella fastidiosa. In grape growing
areas, where the bacterium is endemic, the disease
severely limits the cultivation of V. vinifera cultivars.
Symptoms of PD include: leaf scorching, fruit clus-
ter dehydration, uneven maturation of infected canes,
stunting and death within 3–4 years. Resistance to
PD exists in American Vitis species and has been in-
trogressed into many hybrid cultivars, but very little
is known about the genetics of resistance. Krivanek
et al. (2005) reported that a single gene PdR1 with
a dominant allele is responsible for PD resistance orig-
inating from a V. arizonica background. An extensive,
grape-breeding program is underway to incorporate
this resistance gene into improved wine, table and
raisin grapes. The PdR1 locus has been localized on
chromosome 14 of a genetic linkage map resulting

from a cross of D8909-15 [V. rupestris ‘A. de Serres’ ×
‘b42-26’ (V. arizonica)] and F8909-17 [V. rupestris ‘A.
de Serres’ × b43-17 (V. arizonica/V. candicans)] (Kri-
vanek et al. 2006).

2.2.2.3
Insects and Nematodes

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is
the most important insect pest of grape and continues
to impact the world’s vineyards. It is native to North
America but has spread to every region where grapes
are grown and caused billions of dollars in damage
by its destructive feeding on V. vinifera roots. Native
American grape species are resistant to phylloxera
and rootstocks have been bred and used to control
phylloxera for over 100 years. Very little is known
about the mechanism of resistance or the number of
resistance genes available from the Native American
grape species.

Researchers at the Department of Viticulture and
Enology, University of California, Davis, are attempt-
ing to position phylloxera resistance on a genetic link-
age map of a population from a cross between the
resistant V. rupestris and the susceptible V. vinifera
grape (Roush et al. 2004). It has been hypothesized
that the number and type of root galls formed in
response to phylloxera should be associated with
a plant’s level of resistance. In this study, plants from
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the F1 generation were selected for a series of sibling
crosses among resistant and susceptible individuals as
well as backcrosses to V. vinifera ‘Aramon’ and V. ru-
pestris ‘Ganzin’. A subset of the resulting F2 progeny
was selected from these crosses and infested to iden-
tify resistant and susceptible plants and to determine
the inheritance of gall formation. Preliminary data
suggests that more than one gene is likely responsible
for gall formation, and hence resistance or suscepti-
bility.

The Department of Viticulture and Enology is
also studying resistance to root-knot (Meloidogyne
incognita) and dagger (Xiphinema index) nematodes.
Two mapping populations have been developed from
progeny segregating for resistance to these pests. The
first is a V. riparia ‘Riparia Gloire’ × V. champinii
‘Ramsey’ population created to map resistance to
root-knot nematode and locate QTLs for salt toler-
ance and rooting angle (Lowe and Walker 2004). The
second is the 9621 population mentioned above on
which X. index resistance is being mapped. Both ne-
matode resistances seem to map as a single dominant
gene, but to different linkage groups.

2.2.2.4
Other Morphological Traits
Grape, being relatively large, perennial, and heterozy-
gous, is not a good system for classical developmental
genetic efforts to map and tag important horticul-
tural traits that affect plant form, cluster architecture,
factors affecting fruit composition and yield. Thus,
only a few morphological traits have been mapped.
Dalbo et al. (2000) mapped a locus controlling flower
type on linkage group 14 of parental map of ‘Illinois
547-1’ that corresponds to linkage groups 2 of refer-
encemap (Adam-Blondonet al. 2004;Riaz et al. 2004).
The probable parental genotypes were homozygous
hermaphrodite, HH (‘Horizon’), and heterozygous
male, MF (III.547-1). The resulted progeny indicated
1:1 segregationofmaleandhermaphrodite types.This
confirmed that a single gene controls sex expression
in grapes as previously suggested by Olmo (1976).

In another study, Doligez et al. (2002) mapped
a major gene for berry color to linkage group 3 that
now corresponds to linkage group 2 of the inter-
national reference maps (Adam-Blondon et al. 2004;
Riazet al. 2004). Fischer et al. (2004)also reported that
berry color segregated as a simple trait and it mapped
on the linkage group 13 of their population, which
also corresponded to linkage group 2 of international
consensus map.

Seedlessness is another important trait that was
tagged in a study by Bouquet and Danglot (1996).
Analysis of progenies obtained by crossing seedless
genotypes led to a proposed model for the inheritance
of seedlessness (Bouquet and Danglot 1996) and to the
identification of a SCAR marker linked to the seedless
character (Lahogue et al. 1998). The efficiency of ob-
taining seedless progeny can be greatly improved by
the use of molecular markers tightly linked to seed-
lessness and thesemarkerswill alsohelp inoptimizing
parental selections.

2.2.3
Detection of QTLs

Genetic linkagemapshave facilitatedmappingofagri-
culturally important QTLs in grapes, including QTLs
for disease resistance, seedlessness and berry weight.
Using QTL mapping, resistance loci whose alleles ex-
ert smaller effects on the phenotype may be manip-
ulated more effectively (Young 1996). In the case of
disease resistance, an obvious goal would be to de-
velop grape cultivars with resistance alleles at all QTLs
of interest. Establishment of generalized genomic re-
gions that affect a particular trait within inter- and
intra-species grape mapping populations with com-
mon markers will help to clarify the relationships of
QTLs in different genetic backgrounds, and promote
marker assisted selection and breeding.

2.2.3.1
QTLs for Disease and Pest Resistance

There are only a few published reports of QTL stud-
ies in grape and the main focus is powdery (Uncinula
necator) and downy mildew (Plasmopora viticola).
Dalbo et al. (1997) studied the inheritance of pow-
dery mildew resistance in the cross Horizon × Illinois
547-1. Genetic maps based on RAPD markers were
constructed for each parent with a mean distance be-
tween markers of 5.5 cM. A major QTL was found
in the resistant parent Illinois 547-1. BSA was used
to screen 203 primers to find additional linked RAPD
markers. A single marker (S25b; LOD = 6.9) explained
44% of the variation. The same marker was present
in V. cinerea B9, one of the parents of Illinois 547-1
and the likely source of resistance. Two other regions
on the Horizon map were associated with powdery
mildew resistance. The markers S25b (from Illinois
547-1) and S35a (from Horizon) could be used to cor-
rectly classify resistance in all but 9 of 60 seedlings.
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Zyprian et al. (2002) reported on the tagging of
resistance to powdery and downy mildew from the
cultivar Regent. An F1 population on about 153 in-
dividuals was derived from the cross of the fungus-
resistant Regent × the fungus-susceptible Lemberger.
This population segregates for resistance to both dis-
easesaswell asotheragronomic traits inaquantitative
manner and AFLP, RAPD and SSR markers were used
in the map. In continuation of this work, Fisher et al.
(2004) reported major QTLs for resistance to powdery
and downy mildew on linkage groups 9, 10 and 16 of
the Regent map that corresponds to group 7 and 11 of
international consensus map. These QTLs explained
up to 69% variation in the tested population.

2.2.3.2
QTLs for Other Traits
Doligez et al. (2002) reported on the detection of QTLs
for traits involved in seed production with the goal
of characterizing seedlessness sub-traits (seed num-
ber, seed total fresh and dry weights, seed percent
dry matter and seed mean and fresh dry weights)
and berry weight in an F1 progeny obtained by cross-
ing two partially seedless genotypes (MTP2223-2 ×
MTP2121-30, mentioned above) and embryo rescuing
the progeny. QTL detection was performed with two
methods: the non-parametric Kruskal-Wallis rank-
sum test, and composite interval mapping. QTLs with
large effects (R2 up to 51%) were detected for all traits
and years at the same location on linkage group X
(which now corresponds with linkage group 18 of the
international reference map, Riaz et al. 2004). Three
QTLs with small effects (R2 from 6% to 11%) were
found on three other groups.

Riaz (2001) genetically analyzed different compo-
nents of the grape cluster. Compact cluster architec-
ture is closely associated with bunch rot (Vail et al.
1998), and small berries contribute to loose clusters.
Small berries are also desirable for red wine produc-
tion because the higher skin to pulp ratio is thought
to increase wine color intensity. Cluster form was di-
vided into different components (rachis length, num-
ber of laterals, length of laterals, total cluster weight,
number of berries, berry weight, and cluster den-
sity) in order to study their individual contribution to
cluster architecture and compactness and their rela-
tionship to each other. The QTL analysis was carried
out on a consensus framework linkage map based
on 154 SSR and one EST marker on 153 progeny of
Riesling × Cabernet Sauvignon. QTLs were identified
with two different methods (Interval mapping and

Kruskal-Wallis rank sum test). They were identified
for total cluster weight, average weight of one berry,
berry number per cluster, rachis length, number of
laterals per cluster, average lateral length and clus-
ter density, as well as for fruit composition and young
shootmorphology. Most of the traits thatmarkedly af-
fected cluster architecture showed strong correlation
to each other and QTLs were identified with overlap-
ping intervals. These were preliminary results based
on three years of data on a single plant of each geno-
type and it is very important to validate data with
multi-vine replicates of progeny and parents in dif-
ferent environments. Thus far, three studies on QTLs
associated with berry size have been reported (Riaz
2001; Doligez et al. 2002; Fischer et al. 2004), how-
ever they mapped to different linkage groups in first
two studies (group 17 and group, 18 respectively) and
mapped to linkage groups 3 and 10 of Regent map
(Fischer et al. 2004). Neither of these linkage groups
had SSR markers common to the international refer-
ence map (Riaz et al. 2004). Fischer et al. (2004) also
reported QTLs for veraison and axillary shoot growth.

2.3
Whole Genome Projects

The completion of the human, Arabidopsis and rice
genome sequences in the last five years stimulated
rapid development of genomic technologies and ap-
plications. The functional information accumulating
in Arabidopsis also offers a model system for the
functional analyses of grape genes. These possibilities
provide a framework for a concerted effort to effi-
ciently identify and functionally analyze important
grape genes. The International Grape Genome Pro-
gram was formally announced in January 2002 at the
Plant, Animal, and Microbe Genome X Conference,
in San Diego, California. The main objectives are:
(1) Coordinate the Grape Genome Program. (2) Fa-
cilitate exchange of information and collaboration
with the wider viticulture and enology research com-
munities. (3) Monitor, summarize and communicate
progress of scientific activities of participating labo-
ratories. (4) Identify research areas of benefit to grape
improvement and plant biology and communicate
them to funding agencies of participating nations.
(5) Periodically up-date the goals of the program.
(6) Serve as a primary contact with other plant
genome projects. (7) Interact with an Industry Advi-
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sory Committee to ensure relevance of the research
to industry problems. (8) Act on recommendations
received from the various working groups.

In addition to the International Grape Genome
Initiative, individual genomic efforts are also un-
derway in grape growing countries and are briefly
described below.

2.3.1
Australia

Current research involves a wide range of techniques
from functional characterization of single genes to ge-
nomic approaches including genetic mapping, phys-
ical mapping, gene discovery using ESTs, and gene
expression analysis using microarrays and transgenic
plants. Beneficial outcomes from this research are ex-
pected to increase our knowledge of grape biology,
improved berry and wine quality, and provide resis-
tant or tolerant plants to powdery mildew, botrytis,
nematodes and phylloxera.

Recently,DupontGenomeSciences in conjunction
with Southern Cross University initiated a large-scale
grape DNA sequencing project. The main focus of
this project is to obtain genetic information to allow
research in areas such as dormancy and bud burst;
fruit quality including sugar content, flavor and color,
and tendril development. The technologies include
large-scale expressed sequence tag (EST) analysis
(Ablett et al. 2000), a 16× BAC library (Tomkins
et al. 2001), and functional analysis of grape genes in
Arabidopsis to advance gene discovery in these areas.
The BAC library was constructed from the cultivar
Syrah and consisted of 55,296 clones with average
insert size of 144 kb.

To date, this project has produced over 45,000
grape (V. vinifera) ESTs or partial gene sequences
from a range of tissues and cultivars. These repre-
sent nearly 19,000 distinct ESTs covering an estimated
two-thirds to three-quarters of the grape genes (based
on an estimated number of 25,000 to 28,000 genes).
New SSR markers with a high degree of transferability
have been developed from the ESTs (Scott et al. 2000).
This was the first report of SSR identification from
grape ESTs. This approach has been used widely in
other plant species. Phenotypic changes produced by
over-expression of novel grape transcription factors
in Arabidopsis, are being analyzed, and cDNA grids
are being used to study gene expression during bud-
burst and berry development.

2.3.2
France

The development of grape genomic resources in
France has been greatly aided since 1999 through
financial support from the Génoplante consortium
(www.genoplante.org) and INRA (www.inra.fr). BAC
libraries have been constructed and will be used in
the development of a physical map of the V. vinifera
genome in collaboration with members of the IGGP
(Chalhoub et al. 2002; Adam-Blondon et al. 2005). The
URGV (Unité de recherche en génomique Végétale)
has been set-up at INRA to work on several BAC
libraries from different cultivated plants of impor-
tance to France and Europe. They have developed
three grape BAC libraries: Cabernet Sauvignon (13×,
International Grape Genome Program reference li-
brary, www.vitaceae.org), Syrah (8×) and Pinot noir
(15×), with about 70,000 BAC clones each. The aver-
age size of inserts is 150 Kb. Further work was car-
ried out to develop physical map with the Caber-
net Sauvignon BAC library (http://www.evry.inra.fr/
public/projects/genome/grape). It involved develop-
ment of 3D pools from a 6× subset of the Cabernet
Sauvignon BAC library to anchor with PCR 237 SSR
markers (Adam-Blondon et al. 2004) and 565 ESTs
(from the unigene set used in the Génoplante project
CI2001003). An additional set of 592 ESTs from the
NCBI Vitis Unigene set # 11 was anchored in silico on
the BAC end sequences. These results are providing
access to regulatory regions of genes of interest and
to the position of about 50 new genes on the genetic
map. The fingerprinting of 30,000 BAC clones is now
underway in collaboration with Génoscope and the
University of Udine (M. Morgante).

Recently, emphasis was put on the development of
SSR markers and on a reference genetic map as a tool
for QTL detection of traits such as berry characters
and pathogen resistance. The production of ESTs by
Terrier et al. (2001) will contribute to the develop-
ment of microarrays for the study of the expression,
regulationandsignalingcontrol ofberrydevelopment
genes. In parallel, INRA has been developing meth-
ods for grapevine transformation (transient & stable).
A database for grape genetic resources is available at
INRA and at the European level and several other
databases are under development (EST management
and processing, genetic maps, BAC) (See lists below).
This knowledge should help in the development of
high quality grape varieties resistant to pathogens and
also lead to a better understanding and management
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of grape-environment interactions and their effect on
fruit and wine quality.

2.3.3
Germany

In Germany grapevine genomics started in the early
1990s with the application of molecular marker tech-
nology toquestionsof cultivar identification,pedigree
analysis, evaluation of genetic resources, and genetic
mapping (also in France). The major focus is on lo-
calization and long-term molecular characterization
of genes involved in pest resistance and fruit quality
traits with the aim of understanding their complex
genetic basis. Different marker systems are being em-
ployed, including SSR markers developed by the Vitis
Microsatellite Consortium (VMC) allowing integra-
tionwith the results fromother internationalmapping
projects.

2.3.4
Italy

Since the early 1990s molecular biologists have been
using molecular tools for variety characterization,
disease diagnosis, phylogenetic studies, and genetic
transformation of Vitis species. In the last few years,
the interest in grape genomics has increased enor-
mously and research involves marker-assisted selec-
tion, molecular mapping, and large EST sequenc-
ing, establishing BAC libraries for map-based posi-
tional cloning of genes of economical interest, pest
resistance, and fruit quality. Italy has two large ge-
nomic projects: the first is headed by a public institu-
tion, The University of Udine, focused on developing
tools for molecular breeding and map-based posi-
tional cloning of genes approaches; and the second is
a collaborative project among several universities and
headed by S. Grando, with a focus on the functional
genomics of berry maturation phases.

2.3.5
South Africa

Grapevine genomics research in South Africa started
with participation in the Vitis Microsatellite Consor-
tium (VMC) in 1998. The Institute for Wine Biotech-
nology (IWBT) and the Institute for Plant Biotechnol-

ogy (IPB), are the two major sites for grape genomic
research. Genomics efforts include genetic transfor-
mation, and development of cDNA libraries. The
IWBT generated genomic libraries for the V. vinifera
cultivars Sultana (correctly Sultanina) and Pinotage,
andcDNAlibraries fromyoungexpanded leavesof the
same two cultivars. Genomic libraries for Chardon-
nay and Merlot as well as cDNA libraries from early
and late berry developmental stages of these culti-
vars were made at the IPB. A consortium including
the Genetics Department, the IWBT, the Department
of Molecular and Cellular Biology at the University
of Cape Town, and the Biotechnology Department of
the University of the Western Cape, have an interest
in studying molecular interactions between grape and
fungal pathogens using microarray technology.

2.3.6
USA

In the USA, grape genomics work commenced in the
early 1990s. Several groups have developed molecular
marker based maps in both V. vinifera and interspe-
cific hybrid populations (Lodhi et al. 1995; Dalbo et al.
2000; Doucleff et al. 2004; Riaz et al. 2004). There are
several labs involved with research on functional ge-
nomics of V. vinifera. The main focus of research at the
University of Nevada, Reno (GR Cramer and JC Cush-
man) is to study the effect of abiotic stresses (e.g. cold,
heat, salinity, drought) on grape. They have initiated
an EST-based gene discovery program focused solely
on stressed vines by constructing cDNA libraries from
mRNA isolated from leaf, root, and berry tissues of
V. vinifera cv. Chardonnay. The growing database of
EST sequence information will allow large-scale gene
expression profiling using microarray technology.

At the Department of Plant Pathology, University
of California, Davis (DR Cook) another EST project
is focused on identifying the transcriptional path-
ways correlated with susceptibility or resistance in
V. vinifera to Pierce’s disease (PD) and with genes
involved in berry ripening (http://cgf.ucdavis.edu/).
This database contains an analysis of all public ESTs
from Vitis, and ESTs are grouped as contigs or sin-
gletons and analyzed for homology to the NCBI Non-
Redundant (NR) database by means of BLASTX. All
contigs and singleton ESTs were also analyzed for the
presence of SSRs and 1000 EST-SSR markers were de-
veloped that are available to grape genetic research
community. The GeneChip® Vitis vinifera Genome
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Array developed by Affymetrix is the first commer-
cially available array to provide comprehensive cov-
erage of the V. vinifera genome. Convenient one-
array views of 14,000 V. vinifera transcripts and 1,700
transcripts from other Vitis species can be examined
(http://www.vitaceae.org/).

A collaborative research project between the
USDA/ARS – Parlier, CA and the Department of
Viticulture and Enology, University of California,
Davis (H. Lin and M.A. Walker) is studying resis-
tance to PD and developing new tools for grape
improvement (Lin and Walker 2004). The goal of
this project is to characterize the molecular events
in grape/Xylella fastidiosa interaction and develop
a functional genomic approach to specifically identify
the PD-related gene expression profiles from suscep-
tible and resistant responses. About 5000 expressed
genes have been sequenced from PD resistant and
susceptible grape plants. These expression profiles
derived from stem, leaf and shoot of resistant and
susceptible genotypes throughout the course of
disease development will provide informative details
of molecular basis of PD responses.

Lin et al. (2005) used a cDNA-AFLP technique to
analyze the gene expression profile of PD infected
grapevines. In this study, they compared gene expres-
sion of highly susceptible and resistant siblings se-
lected from a segregating population of V. rupestris ×
V. arizonica. Comparing the profiles of resistant and
susceptible genotypes identified fragments represent-
ing up- and down-regulated genes. About 100 differ-
entially expressed cDNA-AFLP fragments were col-
lected, sequenced and annotated. These fragments
reflect the differentially expressed genes from vari-
ous tissues at different stages of PD development. To
further study the genes involved in the host-pathogen
interaction at different stages of disease development,
a Taq-Man gene expression assay was developed to
analyze selected genes for their spatial and temporal
expression in response to PD infection. This study will
help identify genes involved in the defense response
and signaling/recognition cascade in PD susceptible
genotypes.

2.4
Marker-Aided Selection and Breeding

In the last 15 years, the development of molecu-
lar markers has stimulated advances in breeding,
since these markers directly reveal genetic variability

through DNA analysis (Staub et al. 1996), and envi-
ronmental effectsdonot influence theirdetection.The
primary use of these molecular markers is in marker-
assisted selection (MAS) (Paterson et al. 1991). The
main objective of crop breeding is to obtain new cul-
tivars exhibiting better yield, quality traits, and re-
sistance to biotic and abiotic stresses. In many cases,
these useful traits come from wild and distantly re-
lated species. The traditional approach is based on in-
terspecific hybridization to transfer genes from wild
to cultivated species, followed by selection of hybrids
that combine the “new wild” trait with the cultivated
genetic background. This breeding strategy is primar-
ily achieved by generational backcrossing in which the
selected hybrids at each generation are crossed back
to the cultivated genotype (although the cultivated
genotype may vary in grape to avoid inbreeding de-
pression) with the aim of reducing the wild genome
and its undesirable traits.

Marker-aided selection is one of the most efficient
applications of biotechnology to plant breeding. It is
an effective and efficient breeding tool for detecting,
tracking, retaining, combining, and pyramiding dis-
ease resistance genes in crop species (Kelly and Mik-
las 1998, 1999). The essential requirements for MAS
in a plant breeding program are: 1) the marker(s)
should be closely linked (1 cM or less is probably suf-
ficient for MAS) with the desired trait; 2) an efficient
means of screening large populations for the molecu-
lar marker(s) is key; 3) the screening technique should
have high reproducibility across laboratories, be eco-
nomical to use and user-friendly. Molecular markers
closely linked to the gene controlling the trait to be
transferred allow precocious screening on the DNA
extracted from young leaves without waiting for the
specific developmental stage at which the trait is ex-
pressed. This precocious screening results in large
savings in time and space, and becomes far more valu-
able when multiple traits and many progeny are under
testing. Choosing the most suitable markers for MAS
depends on the ease of their detection, the possibility
of revealing single or multiple loci, their dominant
or co-dominant nature, and their expense. The most
widely used markers for MAS are RFLP, RAPD, AFLP,
and SSR. Their polymorphic nature is based on point
mutations or chromosome rearrangements that ac-
cumulate during the evolution of the species without
negatively influencing survival and reproduction. The
recent surge of development of grape genetic linkage
maps with molecular markers has the potential to
greatly expand use of MAS in grape breeding pro-
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grams. However, until additional work is completed
that tags phenotypic traits with molecular markers,
progress will be limited.

Thefirstpublishedeffort toutilizeMASwithgrape
was tagging QTLs for powdery mildew and black rot
resistance with RAPD and AFLP markers (Dalbo et al.
2001). As mentioned above this effort utilized a segre-
gating population from a cross of Horizon × Illinois
547-1. A major QTL (LOD 6.6) was found for powdery
mildew resistance in the Illinois 547-1 (resistant par-
ent) map and two other QTLs with a smaller effect
were found in the Horizon map. When black rot re-
sistance was mapped, four QTLs were detected, two
in each parent. The three most important QTLs were
located in the same linkage groups as the ones for
powdery mildew. One was also associated with a QTL
for production of the phytoalexin resveratrol. Two
markers (a RAPD and an AFLP) linked to this QTL
were obtained by BSA and then converted into CAPS
markers for testing in four different crosses. In all
cases, the markers were strongly associated with re-
sistance to powdery mildew. A similar approach was
used to find markers that are tightly linked to the pow-
dery mildew resistance gene Run1 in a BC5population
with AFLP markers (Pauquet et al. 2001).

In another study, Lahogue et al. (1998) used BSA
to identify two RAPD markers tightly linked to the
seedlessness gene SdI, a dominant gene that controls
three recessive complementary genes for seedlessness
in the Sultanina (Thompson Seedless in California,
and Sultana in Australia) grape. The closest marker
was used to develop a co-dominant SCAR named
SCC8. This latter marker was used to exclude seeded
progeny (scc8-scc8-) and to select seedless individu-
als (SCC8+SCC8+). The SCC8 marker accounted for
at least 65% of the phenotypic variation of the seed
fresh weight, and for at least 79% of the phenotypic
variation of the seed dry matter. SCC8 was further
checked by Adam-Blondon et al. (2001) in a grape
germplasm collection and in other seedling popula-
tions and found out that seeded individuals can be
heterozygous at SSC8 marker. This observation indi-
cated that more understanding of the genetic determi-
nation of stenospermocarpic seedlessness is required
to allow use of molecular markers for efficient MAS
for seedlessness.

Mejía and Hinrichsen (2003) also chose the BSA
approach with RAPD markers to identify markers
linked to seedlessness. They studied a Ruby (Ruby
Seedless) × Sultanina population for different
stenospermocarpy sub-traits. Of the 336 RAPD

primers tested, six fragments were seedless-specific
and one was related to the seeded phenotype.
A RAPD fragment named WF27-2000 was cloned
and sequenced, and then converted into a SCAR
marker. This SCAR, designated SCF27, generated
a specific amplicon of 2.0 kb that was present in
all of the seedless individuals, and segregated 3:1
in the population suggesting both parents were
heterozygous for this locus.

2.5
Cultivar Identity

Ampelography is the traditional method of identi-
fying grape cultivars based on morphological differ-
ences of the foliage and fruit. It is accurate and reli-
able, but requires years of training and practice, and
few individuals are sufficiently skilled. Ampelography
is also influenced by environmental conditions, which
can alter leaf and cluster size and influence characters
such as the degree of tomentum, vine vigor and shoot
tip coloration. In addition, the most reliable leaves for
identification are formed in the mid-shoot region and
they may not be available for observation or shipment.
In the case of rootstocks, once they are grafted they
rarely formshoots frombelowtheunion.Finally, there
are many thousands of cultivars in germplasm collec-
tions around the world and few have been described
in readily accessible forms, and ampelographers tend
to be experts on cultivars grown within the region
they reside. Thus, alternative identification methods
based on tissue DNA have been developed to over-
come these limitations and produce DNA fingerprints
of grape cultivars.

Molecular identification efforts began with the use
of isozymes (Stavrakakis andLoukas 1983;Benin et al.
1988; Calo et al. 1989; Walker and Liu 1995), but this
systemhad limitations.Theprimarydisadvantagewas
that expression of certain enzymes was dependent on
developmental and environmental influences, which
restricted the number of available markers and the
consistency of their polymorphisms.

In the early 1990s, it became possible to analyze
grape DNA. The main advantage of the techniques
that were developed was that DNA could be obtained
from all plant material, in any environment and at any
time of year. Restriction fragment length polymor-
phism (RFLP) analysis was used successfully to detect
cultivar specific DNA fingerprints for grapevine and
rootstock varieties (Bourquin et al. 1991, 1992, 1993,
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1995; Thomas and Scott 1993). However, the RFLP fin-
gerprinting method was limited by the nature of their
complex banding patterns, low level of polymorphism
in the coding regions of the genome, and time con-
suming and costly development of probes for analysis.
With the advent of PCR technology, RAPD and later
AFLP systems became popular in efforts to finger-
print grape cultivars (Jean-Jacques et al. 1993;Moreno
et al. 1995; Xu and Bakalinsky 1996; This et al. 1997;
Hinrichsen et al. 2000). Finally, the development of
co-dominant SSR markers surpassed all other marker
systems. The establishment and development of SSR
markers was expensive and time consuming because
of the construction and screening of the required ge-
nomic libraries, prior to design and optimization of
PCR primers. However reproducibility, standardiza-
tion, and transfer and comparison of data among dif-
ferent labs made SSR markers the choice for finger-
printing and cultivar identification.

Thomas and Scott (1993) were the first to report
on the use of SSR markers to identify grape culti-
vars. Their work demonstrated that SSR sequences are
abundant in the grape genome and primer sequences
are conserved among Vitis species and other genera
in Vitaceae. These results generated immense interest
in grapevine SSR markers, leading to the development
of many more markers (Bowers et al. 1996, 1999b; Sefc
et al. 1999) culminating in the development of the Vi-
tis Microsatellite Consortium (VMC) consisting of 21
different grape research groups from 12 countries.
The VMC effort resulted in development of 333 new
markers fromSSRenrichedgenomic libraries. Most of
these markers were later used to develop genetic link-
age maps (Doligez et al. 2002; Adam-Blondon et al.
2004; Riaz et al. 2004).

Many studies made use of SSR markers to
fingerprint and genotype wine, table, raisin grape
and rootstock cultivars (Thomas and Scott 1993;
Cipriani et al. 1994; Thomas et al. 1994; Botta et al.
1995; Bowers et al. 1996; Sefc et al. 1998a, 1998b,
1998c, 1998d, 1999; Grando and Frisinghelli 1998;
Lin and Walker 1998; Bowers et al. 1999; Lefort
et al. 2000; Sefc et al. 2000). SSR-based fingerprint-
ing has been used to correct synonyms (Cipriani
et al. 1994; Bowers et al. 1996; Sefc et al. 1998a;
Lopes et al. 1999; Lefort et al. 2000), detect clonal
polymorphism (Riaz et al. 2002), and construct
pedigrees for old grape cultivars (Bowers and
Meredith 1997; Sefc et al. 1998; Bowers et al. 1999a;
Lopes et al. 1999; Meredith et al. 1999; Vouillamoz
et al. 2004). There are three public databases that

provide information of grapevine genetic fingerprint
with SSR markers: the grape microsatellite collec-
tion (GMC) database (http://relay.ismaa.it:12164/
genetica/gmc.html) was developed to permit an
easy retrieval of grape nuclear microsatellite profiles
and related information, the Greek Vitis database
(http://www.biology.uch.gr/gvd/) contains nuclear as
well as chloroplast SSR profiles of Greek grapevine
cultivars, rootstocks, Vitis species and hybrids used
as rootstocks.

2.6
Conclusions and Future Prospects

To date grape improvement has been based on clas-
sical breeding and the incorporation of advances in
viticulture and enology to optimize vine growth and
wine production. However, we are now poised to
make rapid advances in grape improvement through
the utilization of molecular genetic tools. The devel-
opment of genomic technologies and their applica-
tion in other crops like Arabidopsis and rice is now
providing the necessary tools and comparative in-
formation for grape biologists to begin understand-
ing the genetic and molecular basis of pest resis-
tance, tolerance to abiotic stresses, and fruit ripen-
ing and quality. The potential of grape genomic re-
search has been recognized by both the public and
private sector in many countries of the European
Union, Australia, the USA, South Africa, and many
other grape growing countries. The coordinated ef-
forts of the Vitis Microsatellite Consortium have gen-
erated a large set of SSR markers, which contin-
ues to be expanded, refined and utilized. Research
groups in many countries are involved in develop-
ing genetic linkage maps focused on resistance and
tolerance to biotic and abiotic stress and fruit and
vine quality. These efforts have resulted in two in-
ternational reference genetic maps based on SSR
markers, and efforts are underway to develop con-
sensus map utilizing populations of different back-
grounds. Coordination of these maps will greatly aid
researchers to identify set of markers linked to traits
of interests (single major genes and QTLs) for use
in MAS breeding programs and gene identification
efforts.

The next phase of genetic research will be the
initiation of the grape genome project to identify
key grapevine genes and understand their functions.
Grape researchers in Europe, Australia, Canada and
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the USA have begun this effort with public and private
sector funding. Most of these projects are combining
a number of technologies including large-scale EST
analysis, BAC libraries, physical map construction,
and functional analysis of grape genes in Arabidop-
sis. The development of EST libraries will greatly aid
the characterization of genes and allow researchers to
study gene expression profiles. Finally, sequencing of
the grape genome would be a quantum leap for the
grape research community and is critical for the real-
ization of molecular genetics potential on grape and
wine production.

2.7
Grape Research Resources on the Web

1. The American Vineyard Foundation (AVF):
(http://www.avf.org/).

2. Bioinformatics.Org: (http://bioinformatics.org/).
Bioinformatics.Org is a non-profit, academe-
based organization committed to opening access
to bioinformatics research projects, providing
Open Source software for bioinformatics by
hosting its development, and keeping biological
information freely available.

3. Grapevine Genomics at the Centre for Plant Con-
servation Genetics: (http://bioinformatics.org/).
Grapevine Genome database is a result of a large-
scale sequencing project carried out at the Centre
for Plant Conservation Genetics.

4. The Cooperative Research Centre for Viticulture
(CRCV): (http://www.crcv.com.au/). The Cooper-
ativeResearch Centre for Viticulture is a joint ven-
ture between Australia’s viticulture industry and
leading research and education organizations

5. Grapevine Breeding and Genetics Program:
(http://www.nysaes.cornell.edu/hort/faculty/
reisch/grapeinfo.html)

6. CSIRO Plant Industry, Australia - Research
Programs: (http://www.csiro.au/). CSIRO ap-
plies strategic research in the plant sciences to
promote profitable and sustainable agri-food,
fiber and horticultural industries, develop novel
plant products and improve natural resource
management.

7. French Institute for Agrononomical Research:
(http://www.inra.fr/gap/departement/especes/
vigne.htm). INRA(InstitutNationaldeRecherche
Agronomique) (site is in French)

8. Grapevine Biotechnology at the Institute for
Wine Biotechnology (IWBT)
(http://academic.sun.ac.za/wine_biotechnology/
research_programmes.htm): University of Stel-
lenbosch, South Africa – The IWBT is a member
of the “Vitis Microsatellite Consortium” con-
sisting of 20 laboratories world-wide to develop
genetic markers, primers and probes for the
genetic fingerprinting of Vitis vinifera varieties.

9. International Grape Genomics Initiative (http://
grapegenomics.ucdavis.edu) – The site (utilizing
frames) provides information in the categories:
Meetings and Conferences, Grape Experts, Grape
Websites, and the Phone Book.

10. Institute for Grapevine Breeding, Geilweilerhof,
Germany (http://www.bafz.de/baz99_e/baz_orte/
sdg/irz/irz_frmd.htm): The institute’s research
concentrates on: Development of disease-re-
sistant grapevine varieties in consideration of the
wide diversity of varieties in German viticulture;
Selection methods to assess characteristics such
as resistance to noxious agents, resistance to
stress factors (e.g. drought, frost), and the flavor
and taste-determining aroma components.

11. International Grape Genome Program (http://
www.vitaceae.org/):Theprimaryresearch focus is
grapevine genomics carried out within the frame-
workof the InternationalGrapeGenomeProgram
(IGGP).

12. National Clonal Germplasm Repository for
Fruit and Nut Crops at Davis, California (http://
www.ars-grin.gov/ars/PacWest/Davis/): is one
of over two dozen facilities in the National
Plant Germplasm System (NPGS) which collect,
maintain, characterize, document and distribute
plant germplasm from all over the world.

13. Pomology&ViticultureProgramat theUniversity
of Udine, Italy (http://www.dpvta.uniud.it/arb/
Arb_ric.htm#grape): The grape research group
manages a grape germplasm repository, which
includes wild species, international and local cul-
tivars and breeding lines carrying disease resis-
tance genes.

14. The Institute for Genomic Research (TIGR)
(http://www.tigr.org/): The TIGR databases are
a collection of curated databases containing DNA
and protein sequence, gene expression, cellular
role, protein family, and taxonomic data for
microbes, plants and humans.

15. Vitis Gene Discovery Program: A Mission to
Explore the Genetic Resources of Native North
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American Grape Species. (http://mtngrv.smsu.
edu/vgdp/). Wild grapes (Vitis species) are able
to thrive in harsh environments and under high
disease and pest pressure conditions. They are
natural sources for genes that confer tolerance to
adverse biotic and environmental conditions.

2.8
Databases

1. EST Database of Grape from Genomics Facil-
ity, College of Agricultural and Environmental
Sciences, University of California, Davis. - This
database contains an analysis of all public ex-
pressed sequence tags (ESTs) from grape. ESTs
are grouped as contigs or singletons and analyzed
for homology to the NCBI Non-Redundant (NR)
database by means of BLASTX.

2. European Network for Grapevine Genetic
Resources Conservation and Characteriza-
tion (http://www.genres.de/vitis/vitis.htm): The
database is collection-oriented, i.e. the same
cultivar/variety appears in the database as many
times as there are participating collections
containing it. Data (IPGRI passport data, pri-
mary and secondary descriptor data) refer to an
individual accession (cultivar) only.

3. Grape Microsatellite Collection (GMC) – A web-
backed database of genotypes at SSR loci ob-
tained from IASMA analysis and literature. GMC
is a database developed to permit an easy retrieval
of grapenuclearmicrosatelliteprofilesandrelated
information.Each recordhas 8fields: locus (name
of the locus), allele 1 and allele 2 (allele size in bp),
cultivar (nameof theaccession) andfinally 3fields
providing information about authors, references
and fragment analysis method of collected data.

4. Grapevine Genome Database (http://www.scu.
edu.au/research/cpcg/genomics/index.php):
The Grapevine Genome database is a result of
a large-scale sequencing project carried out
at the Centre for Plant Conservation Genetics.
A number of objectives were achieved including
the development of SSR markers from grape
ESTs, micropropagation of table and wine grape
varieties and an analysis of the grape genome
based on 5000 EST sequences.

5. The Greek Vitis Database (http://www.biology.
uch.gr/gvd/contents/index.htm): A multimedia
web-backed genetic database for germplasm

management of Vitis resources in Greece. By
Francois Lefort and Kalliopi A. Roubelakis-
Angelakis, Laboratory of Plant Physiology
and Biotechnology, Department of Biology,
University of Crete, Haralson, Crete, Greece.

6. TIGR Grape Gene Index (VvGI) (http://www.tigr.
org/tigr-scripts/tgi/T_index.cgi?species=grape):
The TIGR Grape Gene Index integrates research
data from international Grape EST sequencing
and gene research projects. The ultimate goal of
the TIGR Gene Index projects, including VvGI, is
to represent a non-redundant view of all Grape
genes and data on their expression patterns,
cellular roles, functions, and evolutionary
relationships.

7. Vitis International Variety Catalogue (http://
www.genres.de/idb/vitis/): All available informa-
tion has been condensed for each cultivar/variety,
i.e. each variety makes a single data set. Data (IP-
GRI passport data, bibliography, morphological
and resistance characteristics
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3.1
Introduction

The cherry is one of the most popular temperate fruit
crops despite of its relatively high price. The fruits are
attractive in appearance, because of their bright, shiny
skin color, and their subtle flavor and sweetness are
appreciated by most consumers. Compared to other
temperate fruits, such as apple and peach, breeding
improvements for cherries have been slow. The long
generation time and the large plant size of cherry trees
severely limit classical breeding. Thus, the integration
of molecular markers in breeding programs should be
a powerful tool. Only a few genetic linkage maps are
available for sweet or sour cherry and quantitative
trait loci (QTLs) were reported only for sour cherry.
Until now,mostof theeffortswere concentratedon the
use of molecular markers in order to (i) identify the S-
alleles controlling gametophytic self-incompatibility,
(ii) characterize cultivars, and (iii) assess genetic di-
versity.

3.1.1
Brief History of the Crop

Prunus avium L. includes sweet cherry trees culti-
vated for human consumption and wild cherry trees
used for their wood, also called mazzards (Webster
1996). The sweet cherry is indigenous to parts of
Asia, especially northern Iran, Ukraine, and coun-
tries south of the Caucasus mountains. In Europe,
the Romanian and Georgian wild cherry trees ap-
peared to be very differentiated from those of cen-
tral and western Europe (Tavaud 2002). The Geor-
gian wild cherry trees were the most genetically di-
verse suggesting that this area could have been a main
glacial refuge. The ancestors of the modern cultivated

sweet cherries are believed to have originated around
the Caspian and Black Seas, from where they have
slowly spread. This phenomenon was driven initially
by birds. Sweet cherries are now cultivated commer-
cially in more than 40 countries around the world, in
temperate, Mediterranean, and even subtropical re-
gions. Its natural range covers the temperate regions
of Europe, from the North part of Spain to the South-
eastern part of Russia (Hedrick et al. 1915). They pre-
fer regions with warm and dry summers, but require
adequate rainfall or irrigation during the growing sea-
son for production of fruit with appropriate size for
marketing. Rainfall at harvest time may reduce the
commercial potential of the production by inducing
fruit cracking.

Fruit of Prunus cerasus L., the sour cherry tree, are
mainly used for processed products such as pies jam
or liquor. Sour cherry originated from an area very
similar to that of sweet cherry, around the Caspian Sea
and close to Istanbul. While sour cherry is less widely
cultivated than sweet cherry, large quantities of sour
cherries are produced in many European countries
and in the USA. Most of these are used in processing
and processed cherry products are sold worldwide.

Prunus fruticosa Pall., the ground cherry tree,
is sometimes used as rootstocks for other Prunus
species. This species is widespread over the major part
of central Europe, Siberia and Northern Asia (Hedrick
et al. 1915).

The duke cherries, which result from crosses be-
tween P. avium and P. cerasus, are cultivated at a much
smaller scale. Different names have been given to
this species like Prunus acida Dum, Cerasus regalis,
Prunus avium ssp. regalis, but the name used today is
P. x gondouinii Rehd. (Faust and Suranyi 1997; Saunier
and Claverie 2001). Duke cherry trees are intermedi-
ate for their tree and fruit characteristics compared
to their progenitors.

Genome Mapping and Molecular Breeding in Plants, Volume 4
Fruits and Nuts
C. Kole (Ed.)
© Springer-Verlag Berlin Heidelberg 2007
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3.1.2
Botanical Descriptions

All cherry species belong to the Cerasus subgenus of
the Prunus genus, part of the Rosaceae family. The
majority of cultivated cherry trees belong to Prunus
avium L. and Prunus cerasus L. species. Together with
Prunus fruticosaPall., these species and their interspe-
cific hybrids constitute the Eucerasus section of the
Cerasus subgenus, based on morphological criteria
(Rehder 1947; Krussmann 1978). This classification
and the monophyletic origin of the Eucerasus clade
have been confirmed by chloroplast DNA variation
analysis (Badenes and Parfitt 1995).

A large amount of morphological polymorphism
is observed among P. avium, P. fruticosa and P. cerasus
species. Multivariate analysis on sour cherry revealed
continuous variation between the P. avium and P. fru-
ticosa traits throughout thegeographicdistributionof
the species. In Western Europe, P. cerasus trees look
like P. avium whereas in Eastern Europe, P. cerasus is
closer to P. fruticosa (Hillig and Iezzoni 1988; Krahl
et al. 1991). This continuum of morphological charac-
teristics makes the species assignation difficult when

Fig. 1. Relationships and genome constitution among the
species of the Eucerasus section. ∗ P. avium is thought to pro-
duce diploid gametes. A and F are haploid genomes coming
from P. avium and P. fructicosa respectively

considering only phenotypic traits. The sweet cherry
is a deciduous tree of large stature, occasionally reach-
ing almost 20 meters in height, with attractive peeling
bark. The sour cherry is a small tree, or more often
a deciduous bush, which suckers profusely from the
base. It has smaller leaves and flowers than the sweet
cherry. Concerning the fruits, sweet cherries fruits are
usually split into three groups: Mazzards, often wild
types with small inferior fruits of various shapes and
colors: Guignes, Hearts or Geans, with soft-fleshed
fruits and the Bigarreaux with hard-fleshed, heart-
shaped, light-colored fruits. Sour cherries cultivars
are generally classified as Amarelles (or Kentishand)
and as Griottes (or Morellos). Amarelles have pale
red fruits flattened at the ends and uncolored juice.
Griottes have, in contrast, dark spherical fruits and
dark-colored juice. A third group of sour cherry culti-
vars, called Marasca, are characterized by small, very
black-red colored and bitter fruit whose juice is of the
best quality for making maraschino liquor. Marasca
cultivars are sufficiently distinct to have been classi-
fied by early botanists as a subspecies of P. cerasus
(Prunus cerasus Marásca (Reichb.) Schneid, Redhder
1947).

3.1.3
Genome Contents

Prunus avium has a diploid genome (AA, 2n = 2x =
16) and small haploid genome size (338 Mb) (Arumu-
ganathan and Earle 1991) bigger than the genome of
peach (290 Mb) which is the smallest Prunus genome
evaluated to date.

Prunus fruticosa, the ground cherry tree, is
a tetraploid wild species (2n = 4x = 32) believed to
be (FFFF). The genome size is still unknown.

Prunus cerasus is an allotetraploid species (AAFF,
2n = 4x = 32), with a genome size of 599 Mb, sup-
posed to result from natural hybridization between
P. avium (producing unreduced gametes) and P. fruti-
cosa (Fig. 1). This origin was first suggested by Olden
and Nybom (1968) who observed that artificial hy-
bridsbetween tetraploidP.aviumandP. fruticosawere
very similar to P. cerasus. Isozyme analysis, genomic
in situ hybridization and karyotype analysis further
confirmed the hybrid origin of P. cerasus (Hancock
and Iezzoni 1988; Santi and Lemoine 1990; Schuster
and Schreiber 2000). The patterns of inheritance of
seven isozymes in different crosses of sour cherry in-
dicated that P. cerasus might be a segmental allopoly-
ploid (Beaver and Iezzoni 1993; Beaver et al. 1995).
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Studies based on cpDNA markers detected two dis-
tinct chlorotypes in P. cerasus which strongly sug-
gest that crosses between P. avium and P. fruticosa
have occurred at least twice to produce sour cherry
(Badenes and Parfitt 1995; Iezzoni and Hancock 1996;
Brettin et al. 2000). Moreover, these works showed
that, most of the time, P. fruticosa was the female pro-
genitor of P. cerasus, but in few cases, P. avium was
the female parent due to the formation of unreduced
ovules. Tavaud et al. (2004) demonstrated that specific
alleles in P. cerasus were not present in the A genome
of P. avium and probably came from the F genome
of P. cerasus. Recent analysis with cpDNA and mi-
crosatellite markers show that some P. cerasus share
the same chloroplastic haplotype as some P. fructi-
cosa, and that some microsatellite markers are shared
by both species (A. Horvath, personal communica-
tion). Triploid hybrids through the fusion of normal
gametes of P. avium and P. fruticosa occur naturally
but remain sterile. Due to this sterility and many un-
favorable P. fruticosa traits, these triploids are not
clonally propagated by humans (Olden and Nybom
1968).

P. x gondouinii Rehd is an allotetraploid (AAAF,
2n = 4x = 32) species stemming from the polliniza-
tion of sour cherry by unreduced gametes of sweet
cherry (Iezzoni et al. 1990). These hybrids are often
sterile, due to disturbances during meiosis, but they
are clonally propagated by human.

3.1.4
Economic Importance

Worldwide, 375,000 Ha of sweet cherry and
248,000 Ha of sour cherry are cultivated giving
a total production of 1,896,000 Mt and 1,035,000 Mt
respectively (FAO 2005). The main production areas
in the world for sweet and sour cherries are located in
Europe (953,000 Mt and 711,000 Mt), Asia (653,000 Mt
and 208,000 Mt) and North America (228,000 Mt for
sweet cherry and 115,000 Mt for sour cherry) (FAO
2005). However, a huge increase in sweet cherry
hectares in production occurred 10 years ago in
the Southern hemisphere especially in Chile and
Argentina. In Chile, the cultivated area increased by
four times in two years and nearly all the production
is exported to the USA and Europe. In the Northern
hemisphere, sweet cherry production is mainly
located in Europe but major shifts are occurring
in European production. France which was one of
the main producers in Europe (100 to 120,000 tons)

reduced its production by two in 2003 and 2004
(57,000 tons), and at the same time Spain doubled its
production, especially with early maturing varieties.
In the next following years, Turkey may become the
leading world producer of sweet cherries.

3.1.5
Breeding Objectives

The main breeding objectives for sweet cherry are:

– large, attractive and good-flavored fruits,
– short juvenile phase,
– large and constant yields,
– reduced susceptibility to fruit cracking,
– self-compatibility,
– improved resistance or tolerance to diseases, es-

pecially bacterial canker induced by Pseudomonas
mors pv. prunorum and P. syringae.

Regular yields and superior fruit quality are the two
main objectives of sour cherry breeding programs.
Breeding for disease resistance in sour cherry is con-
centrated on resistance to cherry leaf spot caused by
Blumeriella japii.

Yields per hectare vary by the country of pro-
duction, the commercial use (for fresh market or
for industry) and the training system. The average
yield ranges from 8 to 10 t/ha in classical orchards
but can reach 30 to 40 t/ha for an intensive industrial
orchard. The highest limitation to the development of
the cherry culture is the high cost required to manu-
ally pick the fruit as manual picking can account for
70% of the production price. The yield of the pick up
can be 6 to 8 Kg/ha and by person in a traditional or-
chard and can be 30 Kg/ha in intensive orchards. Sev-
eral breeding programs led to the selection of new va-
rieties that can be harvested partially with machines,
such as ‘Sweetheart’ and ‘Van’ cultivars that can be
harvested without the stem. In the same time, a better
knowledge of the architecture of the tree led to new
ways of orchards training.

Thanks to classical breeding programs, a large
number of cultivars are now available. Within the last
10 years, 20 new varieties are gaining wide interest in-
ternationally such as ‘Earlise’ (early season), ‘Summit’
(middle season) and ‘Sweetheart’ (late season). Each
of them should be widely cultivated in the next 15 to
20 years.

Classical breeding programs are time consum-
ing, especially for cherry that requires a minimum
of 3–5 years of growth before flowering and fruit pro-
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duction. Prior knowledge of linkage relationships be-
tween marker loci and important flower and fruit
characteristics will facilitate and shorten the selec-
tion of promising individuals. Consequently, marker-
assisted selection would be especially beneficial for
sweet and sour cherry breeding.

3.2
Construction of Genetic Maps

The construction of genetic maps is useful for locali-
sation of important genes controlling both qualitative
and quantitative traits in numerous plant species and,
then, for improvingandshorteningbreedingselection
(Tanksley et al. 1989). In Prunus, many mapping stud-
ies were done on peach (Belthoff et al. 1993; Chaparro
et al. 1994; Rajapakse et al. 1995; Dirlewanger et al.
1998;Luet al. 1998;Dettori et al. 2001;Yamamotoet al.
2001) or on interspecific crosses between peach and
other Prunus species (Foolad et al. 1995; Joobeur et al.
1998; Jauregui et al. 2001;Bliss et al. 2002;Dirlewanger
et al. 2004a; Quilot et al. 2004). An highly saturated
linkage map including 562 markers, based on segre-
gation analyses of an almond (cv. ‘Texas’) × peach cv.
(‘Earlygold’) F2 population serves as a reference map
for the Prunus scientific community (Dirlewanger
et al. 2004b). Several genetic linkage maps were also
obtained for other Prunus such as almond (Viruel
et al. 1995; Joobeur et al. 2000) and apricot (Hurtado
et al. 2002; Lambert et al. 2004). Despite the potential
usefulness of genetic linkage maps for sweet or sour
cherry, saturated cherry linkage maps have not yet
been constructed.

In the subgenus Cerasus, several maps have
been published using five segregating populations
(Table 1). Until now, only partial maps for sweet
or sour cherry are available. The earliest of them
was constructed in a sweet cherry using random
amplified polymorphic DNA (RAPD) and allozyme
analysis of 56 microspore-derived callus culture
individuals of the cv. ‘Emperor Francis’ (Stockinger
et al. 1996). Two allozymes and 89 RAPD markers
were mapped to 10 linkage groups totalling 503 cM.
Interestingly, another map integrating isozyme
genes exclusively, was obtained using data from two
interspecific F1 cherry progenies: P. avium ‘Emperor
Francis’ × P. incisa E621 and P. avium ‘Emperor
Francis’ × P. nipponica F1292 (Bošković and Tobutt
1998). This map, one of the most exhaustive ever

made with isozyme markers in the Plant Kingdom,
included a total of 47 segregating isozyme genes,
from which 34 were aligned into seven linkage
groups.

Another genetic linkage map is in progress in the
INRA of Bordeaux (France) for sweet cherry using
an intraspecific F1 progeny including 133 individu-
als from a cross between cultivars ‘Regina’ and ‘Lap-
ins’. These cultivars were chosen as parents for their
distinct agronomic characters and especially because
they differ for resistance to fruit cracking which is
a limiting factor in sweet cherry production. ‘Regi-
na’ is resistant and ‘Lapins’ is susceptible to fruit
cracking. ‘Lapins’ is a self-compatible cultivar as op-
posed to ‘Regina’. Moreover, they differ for several
other characters: blooming and maturity dates, pe-
duncle length, and fruit color, weight, firmness, titrat-
able acidity and refractive index. Preliminary maps of
each parent and their comparison with the referenced
Prunus map ‘Texas’ × ‘Earlygold’ (T×E) is described
by Dirlewanger et al. (2004b). These maps include mi-
crosatellite markers, 30 of which are located in the
‘Régina’ map are anchors marker with T×E map, 28
located in the ‘Lapins’mapareanchorswithT×Emap.
Only one non-collinear marker was detected but for
all other markers the location in the maps were in
the homologous linkage group. These results are in
agreement with the high level of synteny among the
Prunus genus (Arús et al. 2005). The two sweet cherry
maps will be used for detection of QTLs involved in
fruit quality as soon as the progeny produces fruits,
in 2006.

A sweet cherry genetic linkage map is also in
progress at Michigan State University (US) from a F1

progeny from a cross between a wild forest cherry
with small (∼2 g) highly acidic dark-red colored
fruit (NY54) and a domesticated variety with large
(∼6 g), yellow/pink, sub-acid fruit ‘Emperor Fran-
cis’ (EF). The F1 population is composed of approxi-
mately 700 individuals, 200 of them will be used for
map construction and initial QTL analysis. The re-
maining progeny will be used for fine mapping major
QTL identified. The objective of the study is to iden-
tify QTLs that control fruit quality traits that have
been improved during domestication. In addition,
this cross is fully compatible and progeny segregation
for the S-locus fits the expected 1:1:1:1 ratio (Ikeda
et al. 2005). This population will be used to fine map
the S-locus region due to the large family size and the
absence of skewed segregation that exists in many of
the Prunus mapping populations.
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Table 1. Cerasus linkage maps

Population Type (nb. of Nb. of Marker type Linkage Total Longest Unlinked References
individuals) markers groups distance gap (cM) markers

in the map (cM)

P. avium Microspore- 89 RAPD (90), 10 503 27 3 Stockinger
‘Emperor Francis’ derived calli isozyme (2) et al. 1996

P. avium ‘Napoleon’ × F1 (63) 34 Isozymes 7 174 r.u.1 24 r.u. 13 Boškovíc
P. incisa E621 and Tobutt

1998

P. avium ‘Napoleon‘ × F1 (47)
P. nipponica F1292

P. avium ‘Régina’ (R) × F1 (133) R: 68 SSRs 11 639 26 1 Dirlewanger
‘Lapins’ (L) L: 54 9 495 30 10 et al. 2004b

P. avium NY54 × F1 (200) in progress Iezzoni 2004
’Emperor Francis’

P. cerasus
‘Rheinische F1(86) RS: 126 RFLPs 19 461 19 17 Wang
Schattenmorelle’ (‘RS’) × EB: 95 RFLPs 16 279 20 23 et al. 1998
‘Erdi Botermo’ (‘EB’) Consensus: RFLPs (144) 19 442 17 Canli 2004a

160 SSRs (16)

1 Distance is measured in recombination units (r.u.)

In sour cherry, linkage maps were constructed at
Michigan State University (US) from 86 individuals
from the cross of two cultivars; ‘Rheinische Schat-
tenmorelle’ (RS) and ‘Erdi Botermo’ (EB). Since sour
cherry is a tetraploid, informative restriction frag-
ment length polymorphisms (RFLPs) were scored as
single-dose restriction fragments (SDRF) according
to Wu et al. (1992). A genetic linkage map was con-
structed for RS that consists of 126 SDRF markers
assigned to 19 linkage groups covering 461 cM (Wang
et al. 1998). The EB linkage map had 95 SDRF mark-
ers assigned to 16 linkage groups covering 279 cM
(Wang et al. 1998). Due to the limited number of
shared markers between the RS × EB map compared
to other Prunus maps, putative homologous linkage
groups could only be identified in for the Prunus LGs
2, 4, 6, and 7. The other linkage groups were arbitrar-
ily numbered from the longest to shortest and there-
fore the sour cherry linkage groups numbers have
not been rigorously aligned with that of the Prunus
consensus map. The RS × EB population was subse-
quently scored using 10 Prunus microsatellite primer
pairs (Canli 2004a) and a consensus map of 442 cM,
less than the previously reported RS map of 461 cM,
was constructed. A total of 16 microsatellite markers
were added to 10 of the 19 linkage groups; however,

the linkage groups were not re-numbered to reflect
these markers. In addition, four of the microsatellite
primer pairs identified duplicate linked markers. This
“double mapping” of a marker is due to the inclusion
of progeny individuals exhibiting tetrasomic inher-
itance for that linkage group. If this correction had
been done by Canli (2004a), it is likely that the num-
ber of microsatellite markers added to the map would
be reduced to twelve.

The difficulty of identifying SDRFs and elimi-
nating progeny that resulted from non-homologous
pairing for the linkage group under study, illustrate
the complexity of linkage mapping in a segmental al-
lopolyploid. Therefore, future work at Michigan State
University will concentrate on linkage map construc-
tion in the diploid sweet cherry.

3.3
Gene Mapping and QTLs Detected

In sour or sweet cherries most of the agronomically
important traits have complex inheritance. Only self-
incompatibility (SI) is controlled by a single locus
(S) with multiple alleles, and fertilization only takes
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Fig. 3. QTLs detected for flower and fruit
traits in sour cherry (Wang et al. 2000). LOD
scores for bloom date on linkage groups EB
1 (blm1) (A) and Group 2 (blm2) (B); pistil
death (pd) on linkage groups EB 1 (C) and
RS 8 (D); pollen germination percentage (pg)
on linkage group EB 1 (E). Peak LOD scores
for each trait are indicated by arrows. Linkage
groups are shown below the x-axes. The hor-
izontal line indicates the level of significance
at LOD = 2.4. Curves represents results from
individual years of 1995 ( · · · ), 1996 (- - -),
1997 (– –) and over years (—)
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Fig. 3. (continued) LOD scores for ripening
date on linkage groups RS 4 (rp1) (A) and
Group 6 (rp2) (B); fruit weight on linkage
groups EB 4 (fw1) (C) and Group 2 (fw2)
(D); soluble solids concentration on linkage
groups EB 7 (ssc1) (E) and RS 6 (ssc2) (F)
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place when the S allele in the haploid genome of the
pollen is different from the two S alleles in the diploid
tissue of the style. In contrast, blooming and ripen-
ing time, flower bud and pistil death and characters
controlling fruit quality are quantitative traits. The
self-incompatibility locus is located in the distal part
of the linkage group 6 in almond (Ballester et al. 1998;
Bliss et al. 2002) and in apricot (Vilanova et al. 2003)
on the same area (Fig. 2; Dirlewanger et al. 2004b).
According to the high level of synteny within Prunus
(Arús et al. 2005), the gene S may be located on the
same place in cherry.

Linkage relationships between molecular mark-
ers and agronomically important quantitative traits
have been extensively studied in many tree fruit
crops. In peach many QTLs involved in fruit qual-
ity (Dirlewanger et al. 1999; Etienne et al. 2002; Quilot
et al. 2004) and diseases resistance (Quarta et al. 1998;
Viruel et al. 1998; Foulongne et al. 2003) have been
reported. However, the only QTL study published to
date in cherry is a QTL analysis of flower and fruit
traits using the sour cherry RS × EB linkage mapping
population (Wang et al. 1998). Eleven QTLs (LOD >
2.4) were identified for six traits (bloom time, ripen-
ing time, % pistil death, % pollen germination, fruit
weight, and soluble solids concentration) (Wang et al.
2000, Fig. 3). The percentage of phenotypic variation
explained by a single QTL ranged from 12.9% to 25.9%
(Wang et al. 2000). Subsequently, three microsatellite
markers were identified that mapped within the puta-
tive location of the previously described QTLs (Wang
et al. 2000) for bloom time (blm2), pistil death (pd1)
and fruit weight (fw2), respectively (Canli 2004a). Un-
fortunately these three microsatellite markers were
not used in QTL analyses to determine their location
relative to the previously published QTLs.

The identification of bloom time QTL is of partic-
ular interest for cherry breeding as the development
of new cultivars with late bloom would significantly
reduce the probability of spring freeze damage to the
pistils (Iezzoni 1996). Sour cherry exhibits extreme di-
versity for bloom time with many cultivars blooming
exceedingly late in the spring (Iezzoni and Hamil-
ton 1985; Iezzoni and Mulinix 1992). This late bloom
character in sour cherry is likely due to the hybridiza-
tion and continued introgression with the very late
blooming ground cherry, P. fruticosa.

Bloom time in cherry is a quantitative trait; how-
ever its high broad sense heritability (0.91) led to the
identification of two bloom time QTL, blm1 and blm2,
in the RS × EB population (Wang et al. 2000). Un-

fortunately the genetic effects of these two QTL alle-
les from EB were to induce early bloom. To identify
QTL with alleles conferring late bloom time, a sec-
ond mapping population between the mid-season
blooming ‘Balaton®’ and late blooming ‘Surefire’ was
developed at Michigan State University (US). The
population exhibited transgressive segregation for
bloom time permitting a bulked segregant approach
to identify markers linked to bloom time QTL (Bond
2004). To date, a third QTL for late bloom, named
blm3, was identified using AFLP markers that is sig-
nificantly associated with late bloom using Single
Marker QTL analysis (Bond 2004). This QTL allele
is present in Surefire and confers late bloom time.
We are in the process of determining the linkage
map location of this QTL. Using this same map-
ping population, two AFLP markers were identi-
fied that differed between the early and late bulks
(Canli 2004b). However these markers were never
scored on the ‘Balaton’ × ‘Surefire’ progeny popu-
lation and the marker results described could not be
repeated.

3.4
Marker-Assisted Breeding
for Self-Incompatibility
and Molecular Cloning

3.4.1
Self-Incompatibility

Sweet cherry, like in other Rosaceae species, operates
a strict self-incompatibility system that has been nat-
urally selected to promote out-breeding (De Nettan-
court 2001). This mechanism avoids the fertilization
of flowers of one genotype by its own pollen. As a con-
sequence, commercial fruit set in this species depends
upon the presence of other compatible pollinating
genotypes or on the introduction of self-compatible
cultivars. In sour cherry, self-incompatible as well
as self-compatible genotypes have been identified
(Lansari and Iezzoni 1990; Yamane et al. 2001; Hauck
et al. 2002). Sour cherry is a tetraploid hybrid of
diploid sweet cherry and tetraploid ground cherry,
and thus the self-incompatibility mechanism seems
to be conserved only in some genotypes.

The type of self-incompatibility operating in the
Rosaceae is called gametophytic self-incompatibility
(GSI) (De Nettancourt 2001), and it is shared by
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Fig. 4. PCR amplification
with primers PruT2-SI32, of
cultivars: 1: Summit (S1S2);
2: Bing (S3S4); 3: Hedelfin-
gen (S3S5); 4: Hartland
(S3S6); 5: Charger (S1S7);
6: Burlat (S3S9); 7: Orleans
171 (S10S11); 8: Schneiders
(S3S12); 9: Noble (S6S13);
10: Vittoria (S3S23); 11: Pico
Colorado (S6S24)

other plant families like the Solanaceae and Scrophu-
liaraceae. Self-incompatibility has been extensively
studied at the molecular level (Kao and Tsukamoto
2004). It is now known that GSI is controlled by dif-
ferent genes of one polymorphic locus (S) that de-
termine the incompatibility response of the pollen
and the style (McCubbin and Kao 2000). The incom-
patibility phenotype of the style in sweet and sour
cherry is determined by a ribonuclease called S-RNase
(Boskovic and Tobutt 1996; Tao et al. 1999c; Yamane
et al. 2001) and the specificity of the pollen is now
believed to be determined by the product of the re-
cently identified F-box gene SFB (Yamane et al. 2003;
Ikeda et al. 2004a; Ushijima et al. 2004). These two
factors would interact in an allele specific manner
to give rise to the self-incompatibility reaction. The
mechanism of this reaction is such that the growth of
the pollen tube is inhibited in the style when the S-
allele of the pollen factor matches either of the two
S-alleles of the S-RNases expressed in the diploid
style tissue. Several models have been proposed to
explain in which manner these factors mediate to
produce the incompatibility reaction (Luu et al. 2001;
Kao and Tsukamoto 2004; Ushijima et al. 2004). In
sour cherry there is evidence that a similar mecha-
nism takes place to inhibit the growth of pollen tubes,
but self-compatibility seems to be caused by different
mutations in each genotype, either in the S-RNase,
in SFB or in additional factors involved in the reac-
tion (Hauck et al. 2002). The progress made in the
knowledge of the genetic and molecular basis of the
self-incompatibility reaction has allowed the appli-
cation of molecular techniques in two main aspects
of sweet cherry breeding, the identification of cross-
compatible combinations of different varieties by the
identification their S-alleles and the selection of self-
compatibility.

3.4.2
S-Allele Typing

Self-incompatibility in sweet cherry prevents inbreed-
ing but the same mechanism also prevents cross-
pollination among varieties with the same S-alleles.
This situation makes it necessary to know the S-
haplotypesof eachvariety tobeable to establishwhich
cultivar combinations are compatible and, thus, to
select which varieties can be inter-planted. Varieties
with the same incompatibility alleles and, therefore,
cross-incompatible, form an incompatibility group.
Until the molecular basis of self-incompatibility were
known, S-allele typing and incompatibility group as-
signment was carried out by controlled pollinations
followed by the recording fruit set (Crane and Brown
1937; Matthews and Dow 1969) or by the observance
of pollen tube growth in the style by fluorescent mi-
croscopy. Since the style S-factor in GSI was known to
be a ribonuclease in Solanaceae (McClure et al. 1989),
it was possible to identify S-alleles in sweet cherry by
correlating known S-alleles with bands obtained from
stylar proteins separated by isoelectric focusing and
stained for ribonuclease activity (Boskovic and Tobutt
1996). Subsequentlydifferentbandswere correlated to
new incompatibility alleles (Boskovic et al. 1997).

The cloning and sequence characterization of the
S-RNases of sweet cherry (Tao et al. 1999a, b) allowed
the development of PCR and RFLP based methods
to type the sweet cherry S-alleles. Tao et al. (1999c)
developed an S-allele typing method based in the uti-
lization of two pairs of PCR primers, designed in the
conserved regions of the sweet cherry S-RNase se-
quences. These S-RNase sequences have two introns
varying in length for each different allele and, conse-
quently, PCR amplification with those primers allows
to distinguish the different S-alleles according to the



Chapter 3 Cherry 113

Fig. 5. Schematic represen-
tation of genomic DNA of
8 sweet cherry S-RNases.
Boxes represent exons, lines
represent introns and ar-
rows represent PCR primers.
PCR primers shown Pru-T2,
Pru-C2 and Pru-C4R from
Tao et al. (1999c), SI-32 from
Wiersma et al. (2001)

size of the amplified fragments (Figs. 4 and 5). Sub-
sequently, other sweet cherry S-RNases were cloned
and other PCR methods based in conserved sequence
primers (Wiersma et al. 2001), allele specific primers
(Sonneveld et al. 2001; Sonneveld et al. 2003), and
PCR followed by restriction fragment analysis (Ya-
mane et al. 2000b) have been developed. Simultane-
ously RFLP profiles have also been used to assign
self-incompatibility alleles to different sweet cherry
genotypes (Hauck et al. 2001). The introduction of
molecular methods in sweet cherry S-allele typing
has allowed a rapid confirmation of the S-alleles and
incompatibility groups of different cultivars reported
previously, the identification of the S-genotype of new
varieties and the identificationofputativenewSalleles
by their correlation with new PCR products (Table 2;
Tao et al. 1999; Yamane et al. 2000a, b; Hauck et al.
2001; Sonneveld et al. 2001; Wiersma et al. 2001; Choi
et al. 2002; Zhou et al. 2002; Sonneveld et al. 2003;
Wunsch and Hormaza 2004a, c, d; De Cuyper et al.
2005; Iezzoni et al. 2005).

3.4.3
Self-Compatibility

The use of self-compatible varieties in sweet cherry
orchards can avoid some of the problems derived

from self-incompatibility, such as the cost derived
from the need to use pollinator varieties and
a more erratic production (Teherani and Brown
1992). As a consequence, obtaining and introducing
self-compatible varieties has been one of the main
objectives of sweet cherry breeding (Brown et al.
1996). Self-compatibility was induced in sweet cherry
by X-radiation, giving rise to several self-compatible
seedlings (Lewis 1949). The variety ‘Stella’ (Lapins
1970), descendent of one of these seedlings (JI2420),
is self-compatible and has been widely used as
a progenitor in self-compatible sweet cherry breed-
ing. Most of the self-compatible varieties currently
used derive from ‘Stella’. Self-compatibility in these
genotypes is caused by a pollen function mutation
in the S4′ allele (S4′ standing for mutated S4 allele),
(Boskovic et al. 2000). To carry on selection of self-
compatible seedlings derived from these genotypes
it is necessary to differentiate the genotypes that
inherited the S4′ allele. However, since the S4-RNase
in these genotypes is intact, it was not possible
to differentiate genotypes that presented the S4′
mutant allele from genotypes with a ‘normal’ S4
allele, by using S-allele typing methods based on
S-RNase sequence allele diversity. It was not until
the recent finding of the pollen determinant of
GSI in Prunus (Yamane et al. 2003; Ushijima et al.
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Table 2. Incompatibility groups and S-allele genotype of some of the most widely used sweet cherry cultivars. Nomenclature
according to Tobutt et al. (2001). For extensive reviews in sweet cherry S-allele genotypes see Iezzoni et al. (in press) and Tobutt
et al. (2001 and 2004)

Inocomp. Group S-Genotype Cultivar

I S1S2 Black Tartarian, Early Rivers, Sparkle, Starking Hardy Giant, Summit
II S1S3 Cristalina, Gil Peck, Lamida, Regina, Samba, Sumele, Van, Venus
III S3S4 Bing, Emperor Francis, Kristin, Lambert, Napoleon, Sommerset, Star, Ulster
IV S2S3 Merton Premier, Sue, Vega, Velvet, Victor, Viva, Vogue
V S4S5 Late Black Bigarreau
VI S3S6 Elton Heart, Governor Wood, Hartland, Satonishiki, Ambrunesa, Duroni 3
VII S3S5 Hedelfingen
VIII S2S5 Vista
IX S1S4 Black Republican, Chinook, Merton Late, Rainier, Sylvia, Garnet, Viscount∗
X S6S9 Early Lyons, Black Tartarian, Ramon Oliva∗
XII S6S13 Noble∗
XIII S2S4 Corum, Deacon, Merchant∗, Peggy Rivers, Royalton, Sam, Schmidt, Vic
XIV S1S5 Valera
XV S5S6 Colney
XVI S3S9 Burlat, Moreau, Chelan, Tieton
XVII S4S6 Elton Heart, Merton Glory, Larian
XVIII S1S9 Brooks, Marvin, Earlise
XIX S3S13 Reverchon
XXI S4S9 Inge
XXII S3S12 Princess, Schneiders
XXV S2S6 Arcina
SC/O S3S′

4 Newstar, Sonata, Stella, Sunburst, Staccato, Sweetheart
SC/O S1S′

4 Celeste, Lapins, Santina, Skeena

SC: Self-compatible cultivar. O: Universal donor. ∗: Cultivars also reported with another S-allele genotype

2004;) that has been possible to establish a method
that allows to determine genotypes carrying the
mutated S4′ allele (Ikeda et al. 2004b). This method
is based in the identification of a 4 bp deletion in
the SFB sequence of the S4′ allele when compared
with the normal S4 allele. This deletion has been
used to design molecular markers that identify the
S4′ allele by PCR followed by polyacrylamide gel
electrophoresis or restriction digestion (Ikeda et al.
2004b). Additional sources of self compatibility,
that can broaden the genetic base of cultivated
germplasm and that can also be highly useful to
understand the mechanism of GSI, are also being
studied (Wunsch and Hormaza 2004b; Sonneveld
et al. 2005).

3.5
Conclusion and Future Scope
of Works

3.5.1
Genome Mapping and QTL Detection

Genetic mapping and QTL detection efforts will be
continued especially in sweet cherry. Since sweet
cherry is diploid, it is much easier to develop
a linkage map as it avoids the difficulties associated
with tetraploidy in sour cherry, e.g. partial disomic
inheritance, with occasional intergenomic pairing
and pre- or post-zygotic selection. According to the
high level of synteny already demonstrated within the
Prunus, results obtained in sweet cherry will be useful
for sour cherry. For the same reason, we can expect
that cherry will benefit from knowledge generated for
a multitude of Rosaceae genera. A Rosaceae database
(www.genome.clemson.edu/gdr) has recently been
created with the objective of assembling all this
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information and making it available worldwide to
researchers working in this group of species. An
international consortium led by Albert Abbott at
Clemson University (Clemson, SC) has developed
tools for the characterization of the Prunus genome.
The enormous progress made during the last decade
on genetic knowledge of the cultivated species of
the Rosaceae, and particularly of peach as its more
logical model, can be exploited for cherry.

3.5.2
Self-(in)compatibility: Molecular Cloning
and MAS

The identification and characterization in the late 90s
of the S-RNase gene in sweet cherry has accelerated
S-allele genotyping and incompatibility group assign-
ment, as this information can now be obtained using
molecular tools like PCR. Since then, the incompati-
bility group of a great number of varieties has been
confirmed, and the S-genotype of the most widely
used cultivars has been identified. Additionally the
screening of more exotic germplasm has allowed the
rapid identification of new S-alleles. On the other side,
the more recent finding of the SFB gene has led to the
design of PCR markers for the early screening of self-
compatible seedlings carrying S4′.

In sweet cherry self-compatibility is a priority in
commercial varieties and thus the investigationofnew
sources of self-compatibility will allow the develop-
ment of molecular markers that permit a more rapid
introduction of this character in elite germplasm.
This is of special importance in this species, where
breeding for self-compatibility has been mostly done
from the same source, with the consequent narrow-
ing of the genetic base. Additionally, the study of self-
compatibility in sweet cherry and the knowledge of
how the mechanism is operating in tetraploid sour
cherry, will help to understand the gametophytic self-
incompatibility reaction, a mechanism, which molec-
ular and biochemical basis are still not fully under-
stood.
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4.1
Introduction

4.1.1
History, Diversity, Domestication, Ploidy Level

According to Rehder (1947), Prunus are divided
into three major subgenera: Prunophora (plums and
apricots), Amygdalus (peaches and almonds) and
Cerasus (sweet and sour cherries). The subgenus
Prunophora is divided into two main sections:
Euprunus which groups the plum species and
Armeniaca which contains the apricot species.
Plums have been domesticated independently in
Europe, Asia and America (Weinberger 1975; Shaw
and Small 2004). In Europe, P. domestica L. is
the most important source of fruit cultivars and
has been grown for over 2,000 years. Neverthe-
less, seeds of another European plum, P. insititia
L., have been recovered in antiquity ruins and
might be of a more ancient origin. The Myrobalan
plum P. cerasifera Ehrh. probably originated in
the Caucasus and Crimea regions (Eremin 1978).
In Asia, the Japanese plum P. salicina Lindl. orig-
inated from China where it has been cultivated
since very ancient times. Two to four centuries
ago, it has been brought to Japan from where it
has been spread all around the world as Japanese
plum (Hedrick 1911). In North America, the third
plum domestication source, a wide range of native
species such as P. americana Marsh., P. hortulana
Bailey, P. munsoniana Wight & Hedr., P. angustifolia
Marsh. and P. maritima Marsh. (Okie 1987) are
present.

Within the Prunus genus, plums are the most tax-
onomically diverse and are adapted to a broad range
of climatic and edaphic conditions (Ramming and

Cociu 1991; Salesses et al. 1993). Morphological tax-
onomy has long been difficult because species bound-
aries are blurred by interspecific similarities and hy-
bridizations and intraspecific variations. Some plum
species are used for their fruits but a majority is
being used as rootstocks for plum and other stone
fruits. As all the Prunus species, plums have a basic
chromosomic number of 8 and range from diploid
(2n = 2x = 16) to hexaploid (2n = 6x = 48). Most
commercial varieties of plums belong to the European
plums P. domestica and P. insititia, which both are
hexaploid, and to the Japanese plum P. salicina which
is diploid. The diploid Myrobalan plum P. cerasifera
is widely used as a rootstock (Salesses et al. 1994)
and is supposed to have been one of the genomic
components of P. domestica (6x) in association with
P. spinosa (blackthorn or sloe; 4x) and might also be
one of the components of this latter species (Salesses
1975; Reynders-Aloisi and Grellet 1994). As the peach
genome size (diploid) is estimated of 280 Mbp/1C,
diploid plums are expected to have equivalent genome
sizes (what corresponds to twice the value of the Ara-
bidopsis genome) while P. domestica genome size is
estimated of 883 Mbp/1C (Arumuganathan and Earle
1991).

4.1.2
Economic Importance

In 2004, approx. ten billion tons of plums have been
produced in the world of which ca. 3 and 5 billion
tons are grown in Europe and Asia, respectively. Af-
ter peaches and nectarines, this represents the sec-
ond production among Prunus crops at the world,
American and European scales. In Europe, the first
producer is Germany with 450 millions tons (FAO
2005).
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4.1.3
Breeding Objectives

Breeding purposes in plum concern both cultivar and
rootstock. In cultivars, besides the selection for large
and good-flavored fruits and for wide ranges of pro-
duction time, the main objective relates to resistance
to Plum pox virus (PPV), the causal agent of the sharka
disease. PPV, a quarantine pathogen naturally trans-
mittedbyaphids, is among themost importantPrunus
diseases and is widely disseminated in European plum
orchards, causing significant economic losses. For
rootstock breeding, the remarkable variability of wild
plum species is starting to be exploited to enlarge the
narrow genetic bases of most cultivated plum species
(Rom and Carlson 1987; Ramming and Cociu 1991;
Dosba et al. 1994). Rootstock programs are being con-
ducted that use Myrobalan plum (alone or crossed
with another Prunus species) (Eremin 1978; Salesses
et al. 1993, 1994) for its positive traits such as good
vegetative propagation and adaptation to waterlogged
soils (Okie 1987). Some accessions of this species also
exhibit a high and wide-spectrum resistance to root-
knot nematodes (RKN)Meloidogyne spp. (Esmenjaud
et al. 1994, 1997) or a graft compatibility with most
peach varieties (Salesses et al. 1994).

4.2
Selection for Resistance to PPV

In reaction to the spread of PPV across European
borders, control programs have included the devel-
opment of plum cultivars tolerant or resistant to PPV
infection, and programs of strict eradication. Local-
ization (Hoffman et al. 1997), concentration (Polak
1998) and systemic spread of the virus in the plant
(Ferry et al. 2002) as well as spatial spread at the or-
chard scale (Dallot et al. 2003, 2004) has been investi-
gated in plum and other stone fruit species.

4.2.1
Classical Breeding Approach

Development of resistance to PPV in plum has fol-
lowed the classical approach of searching for natural
resistance and incorporating this resistance into new
varieties (Kegler et al. 1998). Quantitative resistance
has been estimated in a high number of cultivated
plums (Paprstein andKaresova1998) andaqualitative

factor such as a hypersensitive character (Hartmann
1998; Hartmann and Petruschke 2000) has also been
detected in the European plum cv. Jojo.

Strategies aiming at combining both types of re-
sistances in the hexaploid genome of P. domestica
are being deployed. As an example, three European
plum cultivars, ‘Cacanska najbolja’, ‘Cacanska rana’
and ‘Cacanska lepotica’ (also called ‘Cacak Best’, ‘Ca-
cak Early’ and ‘Cacak Beauty’ respectively) are being
used extensively for the introduction of tolerance and
partial resistance toPPV(Hartmann1998).A studyby
Decroocq et al. (2004) using 10 nuclear microsatellite
markers (simple sequence repeat = SSRs) designed
for apricot and four chloroplastic SSR markers from
dicotyledonous angiosperms (Weising and Gardner
1999) has established that these Cacak accessions were
full siblings and were also half siblings of Jojo. These
results based on a total of 15 European plum cultivars
also showed the cross transportability of the nuclear
markers between two Prunus species belonging to the
same Prunus subgenus (Prunophora) and established
frombothnuclear andchloroplasticmarkers thepedi-
gree of all four cvs, which had always been previously
a matter of discussion (Paunovic et al. 1978).

For a successful identification of the QTLs in the
Prunus resistance sources, genetic studies need to be
associated to the detection of candidate genes. Ana-
logues of virus resistance genes were identified (De-
croocq et al. 2005) in P. davidiana, a wild relative of
peach, that co-localize with genomic regions linked to
PPV in this source.

4.2.2
Genetically Engineered Plums

To control PPV spread in plants, attempts to develop
genetic engineering technology can be regarded as
an alternative approach to the conventional breeding
techniques. For this purpose, Sanford and Johnston
(1985)haveproposed thepathogen-derived resistance
as a new strategy to combat viral diseases. Subse-
quently many research teams have focussed their re-
search program in the creation of transgenic plants
resistant to virus infection. Scorza et al. (1994) have
successfully engineered the full-length PPV CP gene
in Prunus domestica. Results about the preliminary
greenhouse testing showed that a transgenic clone
designated as clone C-5 has been identified as resis-
tant (Ravelonandro et al. 1997; Jacquet et al. 1998).
The molecular mechanisms involved have been re-
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ported as the post-transcriptional gene silencing or
PTGS (Scorza et al. 2001). To verify the stability of
PPV resistance in plums, transgenic clones were re-
leased in field conditions. For over five years under
high inoculum pressure, and regardless of the PPV
strains, D or M, the transgenic plum C5 remained
healthy when compared to control clones expected to
show clear PPV symptoms (Ravelonandro and Scorza
2004). Interestingly, cross hybridization of the trans-
genic clone C-5 with other plum species permitted
to show that the virus transgene can be inherited in
the progeny as a single gene trait (Ravelonandro et al.
2001).

4.3
Breeding Efforts for Rootstocks

In plum, no mapping results have yet been used in the
specific objective of breeding varieties and available
data mainly relate to the Myrobalan plum as a cen-
tral species in rootstock programs. Breeding efforts
have been devoted to the introgression of resistance
to root-knot nematodes (RKN) Meloidogyne spp.
from this latter species into rootstocks (Dirlewanger
et al. 2004c; Esmenjaud 2004). Genome mapping and
molecular breeding concern in priority interspecific
crosses also involving, besides Myrobalan plum, the
peach resistance sources Nemared (Ramming and
Tanner 1983) and Shalil (Layne 1987). Major results
have been obtained on the cross Myrobalan plum
‘P.2175’ x almond-peach Garfi × Nemared (= ‘GN’).
The objectives of this Prunus rootstock breeding pro-
gram are to provide an efficient alternative to the use
of highly toxic nematicides by developing a new gen-
eration of Prunus rootstocks bearing high resistance
to RKN, using marker-assisted selection (MAS) for
pyramiding Prunus resistance genes, and several ad-
ditional characters suchas adaptation to chlorosis and
drought (from almond), tolerance to water logging
(from plum) together with graft compatibility with
peach (from peach) and good rooting ability (from
plum) (Dirlewanger et al. 2004c; Esmenjaud 2004).

The complete characterization of one major resis-
tance gene to RKN (Ma) from Myrobalan plum has
been achieved and the molecular cloning of this gene
is in progress. Recent advances in this work through
the steps of high-resolution mapping, construction of
a BAC library for chromosome landing, isolation of
one BAC clone carrying the gene, detection of can-

didate genes, will be reported in this chapter. As an
introduction to the molecular aspects of these breed-
ing efforts detailed further for RKN resistance, we
develop hereafter the basic knowledge on genetics of
resistance in Prunus sources.

4.3.1
Genetics of RKN Resistance in Prunus Sources

Genetics of resistance to RKN has been studied in
the Myrobalan plums P.2175 and P.2980 and in the
peach sources Nemared, Shalil, Juseitou and Okinawa
(Table 1).

Accessions P.2175 and P.2980 have been shown to
carry one dominant allele (heterozygous) of a sin-
gle resistance gene, designated Ma1 and Ma3, respec-
tively (Esmenjaud et al. 1996b; Rubio-Cabetas et al.
1998). Each of these Ma alleles confers a high and
wide-spectrum resistance to M. arenaria, M. incog-
nita, M. javanica and M. floridensis (Esmenjaud et al.
1997; Lecouls et al. 1997; Rubio-Cabetas et al. 1999;
Handoo et al. 2004) and to the minor species M.
mayaguensis (Rubio-Cabetas et al. 1999) which over-
comes the resistance of the Mi tomato gene (Fargette
et al. 1996). This Ma resistance was not overcome by
any of the over-30 RKN species and isolates tested (Es-
menjaud et al. 1994, 1997; Fernandez et al. 1994) and
was not modified under conditions usually known as
affecting plant defences to RKN such as high tem-
perature and high inoculum pressure (Esmenjaud
et al. 1996a). Within perennials, where the genetics
of RKN resistance is poorly documented, the Ma gene
from Myrobalan plum is the first genetic system fully
characterized for resistance to a plant pest (Lecouls
et al. 1997, 1999; Lecouls 2000; Claverie et al. 2004a, b;
Lecouls et al. 2004).

Resistance inNemaredpeachhasbeenfirstly stud-
ied in an F2 population derived from self-pollination
of an F1 peach hybrid Lovell × Nemared by Lu
et al. (2000) who proposed the Mi and Mij genes
for resistance to M. incognita and both M. incog-
nita and M. javanica, respectively. Resistance in Ne-
maredhas alsobeen studied from interspecific crosses
[P. 2175 × (Garfi × Nemared)] segregating both for
Ma and Nemared resistance (Claverie et al. 2004a).
Resistance from Shalil (the peach parent for the
almond-peach GF.557) was established from the cross
P. 2175 × GF.557 segregating both for Ma1 and Shalil
resistance (Claverie et al. 2004a). As those interspe-
cific crosses involving Nemared and Shalil segregated
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Table 1. Spectrum and genetics of resistance of main sources to root-knot nematodes used in Prunus rootstock breeding

Subgenus Species Resistance status to Resistance gene and genotype References
M. M. M. M.
arenaria incognita javanica floridensis
(MA) (MI) (MJ) (MF)

Prunophora
Myrobalan plum (P. cerasifera) Ma gene controlling MA, MI, MJ and MF

P.2175 R1 R R R (Ma1 ma) Esmenjaud et al. 1994, 1996, 1997
P.2980 R R R R (Ma3 ma) Lecouls et al.1997
P.20322 S1 S S S (ma ma) Rubio-Cabetas et al. 1999
P.26462 S S S S (ma ma)
P.16.52 S S S S (ma ma)

Amygdalus
Peach (P. persica)

Nemared R Mi gene controlling MI Lu et al. 2000
and (or) Mij controlling MI and MJ

Shalil
GF.557 = almond × Shalil peach RMia557 gene controlling MA and MI Esmenjaud et al. 1994, 1997
GF.557 R R S S (RMia557rMia557) Claverie et al. 2004a

Nemared RMiaNem gene controlling MA and MI Esmenjaud et al. 1997
Nemaguard R R R/S 3 S (RMiaNemRMiaNem) Claverie et al. 2004a
Nemared R R R/S S (RMiaNemRMiaNem) Dirlewanger et al. 2004a

Juseitou R R Mia gene controlling MI Yamamoto et al. 2001
and Mja controlling MJ Yamamoto and Hayashi 2002

Okinawa R Mi gene controlling MI race 1 Sharpe et al. 1969
Gillen and Bliss 2005

1 R = resistant; S = susceptible
2 Susceptible control accessions
3 R/S: variable behavior in function of M. javanica isolates
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identically for resistance to M. incognita and M. are-
naria, a single gene controlling both RKN species was
hypothesized and designated, respectively, RMiaNem

and RMia557 in Nemared and GF.557 (Claverie et al.
2004a). Resistances in ‘Juseitou’ to M. incognita (gene
Mia) and M. javanica (gene Mja) and in ‘Okinawa’
to M. incognita race 1 (gene Mi) have been stud-
ied in the F2 populations Akame × Juseitou (Ya-
mamoto et al. 2001; Yamamoto and Hayashi 2002)
and Harrow Blood × Okinawa (Gillen and Bliss
2005).

4.3.2
Mapping of the RKN Ma Gene in Plum –
Comparison with Peach RKN Genes

Molecular studies concerning Ma have been con-
ducted to develop a local map of the gene and to locate
it on the plum and referencePrunus maps. The data on
comparative locations of RKN resistance genes from
plum and peach have been firstly reported in Claverie
et al. (2004a) and then confirmed in Dirlewanger et al.
(2004a).

4.3.2.1
Local Map and Marker-Assisted Selection (MAS)
for Ma
Random amplified polymorphic DNA (RAPD) and
amplified fragment length polymorphism (AFLP)
markers have been identified by bulked segregant
analysis (BSA) (Michelmore et al. 1991) using in-
traspecific progenies involving P.2175 (Ma1 ma) and
several susceptible parents (ma ma). Two reliable
SCAR (sequence characterized amplified region)
markers, SCAL19690 (derived from a RAPD marker)
and SCAFLP2202 (derived from an AFLP marker),
were shown to be linked in coupling phase to the
dominant resistance alleles Ma1 and Ma3 (Lecouls et
al. 1999, 2004). SCAL19 is located less than 1 cM from
Ma and SCAFLP2 is cosegregating with Ma, as shown
by the analysis of over 1,300 individuals belonging to
diverse intra- and interspecific progenies (Claverie
et al. 2004b).

4.3.2.2
Location of RKN Genes in the Prunophora
Subgenus (Myrobalan and Japanese Plums)
In Myrobalan plum, three RFLP markers among 46
probes distributed all over the Prunus genome, re-

vealed polymorphic fragments between the resistant
and the susceptible bulks. All three RFLP markers lie
on the linkage group G7 of the reference map (Joobeur
et al. 1998) and cover 32 cM. This preliminary posi-
tion of Ma on G7 was confirmed by the detection of
a polymorphism or difference in amplification signal
intensity between bulks for three SSR markers located
on this group, pchgms6, UDP98-405, and CPPCT033.
Genotyping the individuals of the couples of bulks
completed by all other individuals previously charac-
terized for Ma allowed to locate these markers on the
same side of the gene at 2.3, 9.5 and 21.3 cM, respec-
tively. These SSR markers are placed on the other side
of the gene relative to the SCAR markers SCAL19 and
SCAN12 (Claverie et al. 2004a) (Fig. 1).

Additionally, in the Japanese plum, a single dom-
inant gene designated Rjap was hypothesized from
a segregating progeny of 26 individuals between the
RKN resistant accession J.222 (heterozygous) and the
RKN susceptible accession J.13 (homozygous). The
SCAR markers linked to Ma and all the SSRs avail-
able in the reference map for this G7 region were
evaluated for their polymorphism in parents and all
individuals of the progeny. On this small-sized cross,
the markers pchgms6, CPPCT022 and SCAL19 coseg-
regated with the Rjap gene (Fig. 1), which shows that
this gene lies on the G7 probably in the same position
as Ma (Claverie et al. 2004a). In Prunophora, differ-
ences in allelism and polymorphism of genetic mark-
ers linked to resistance associated with co-location
of the Ma and Rjap genes suggest the conservation
of a resistance locus acquired before separation of
the species Myrobalan and Japanese plums. It is
likely that this location is conserved in cultivated
and wild plum species including diploid to hexaploid
species.

4.3.2.3
Comparative Location of Plum and Peach Genes
– Consequences for MAS
All studies concerning peach mapping located the
RKN resistance genes from this species in the link-
age group G2 of the reference Prunus map T × E
(Joobeur et al. 1998, 2000; Aranzana et al. 2003).
The peach genes RMia557 and RMiaNem, carried by
two a priori unrelated resistance sources, Shalil and
Nemared respectively (Table 1), were colocalized in
a subtelomeric position on the G2 (Claverie et al.
2004a; Arús et al. 2004). This location was differ-
ent from the more centromeric position previously
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Fig. 1. Local maps of SSR (in italics) and SCAR (normal letters) markers linked to the Ma gene in the Myrobalan plum P.2175
(b) and to the Rjap gene in the Japanese plum J.222 (c) in comparison with SSR markers located on the linkage group G7 of
the almond × peach reference Prunus map Texas × Earlygold (T×E) (a) (Aranzana et al. 2003). For the Ma gene, distances are
expressed in cM using the Kosambi distance given by the MAPMAKER software version 3 (Lander et al. 1987) with a minimum
LOD score of 3.0. For the Rjap gene, distances are expressed in recombination percentages

proposed by Lu et al. (1999) for the resistance gene
Mij to M. incognita and M. javanica in Nemared
near the SSR pchgms1 and the STS EAA/MCAT10.
By contrast, RMia557 and RMiaNem were flanked by
STS markers obtained by Yamamoto and Hayashi
(2002) for the resistance gene Mia to M. incognita
in the Japanese peach source Juseitou. Concordant
results for the three independent sources, Shalil, Ne-
mared and Juseitou, suggest that these peach RKN
sources share at least one major gene for resistance
to M. incognita located in this subtelomeric posi-
tion.

The most beneficial and applied result is that Ma
on the one hand and peach genes on the other hand
are independent and can be pyramided into inter-
specific rootstock material. Construction of rootstock
genotypes carrying Ma and peach genes by interspe-
cific hybridization (e.g. Myrobalan plum × Amyg-
dalus) is underway (Dirlewanger et al. 2004c; Esmen-
jaud 2004). These hybrids can thus cumulate favorable
agronomic traits from both origins together with the
complete-spectrum resistance controlled by the My-
robalan Ma gene and the more-restricted spectrum
of Amygdalus genes. Indeed, the pyramiding of sev-
eral genes in the same genotype may limit the risk of
resistance breaking (Johnson 1983; Cook and Evans
1987; Roberts 1995) and thus extend the useful life of
new rootstocks.

4.4
Construction of Maps
for the 3-Way Interspecific Cross
Myrobalan Plum × (Garfi × Nemared)

The mapping results reported here have been
developed in Dirlewanger et al. (2004a). Inheri-
tance and linkage studies were carried out with
SSR markers in an F1 progeny including 101 in-
dividuals of the cross between Myrobalan plum
clone P.2175 and the almond-peach hybrid clone
(Garfi × Nemared)22 (= GN22). The Ma gene from
P.2175 and the RMiaNem gene from Nemared, are
each heterozygous in the parents P.2175 and GN22,
respectively. Two hundred and seventy seven Prunus
SSRs were tested for their polymorphism. A genetic
map was constructed for each parent according
to the ‘double pseudo-testcross’ model of analysis
(Fig. 2).

4.4.1
SCAR Analysis

SCAL19690 and SCAFLP2202, the two SCARs tightly
linked to the Ma gene (Lecouls et al. 2004), were ana-
lyzed on the progeny. The five STS markers obtained
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by Yamamoto and Hayashi (2002) linked to the resis-
tance loci of the peach Juseitou, were also tested but
only STS-OPA11 had a readable profile with a frag-
ment of 481 bp segregating in the P.2175 × GN22 F1

progeny.

4.4.2
SSR Analysis

Among the 277 SSRs originated from several Prunus
species, 46 (16.6%) had complex profiles on acry-
lamide gels, 14 (5%) revealed no polymorphism,
104 (37.5%) revealed polymorphism in P.2175, 184
(66.4%) revealed polymorphism in GN22 and 84
(30.3%) were polymorphic in both parents. Thus
the polymorphism detected in GN22 (66.4%) was
much higher than in P.2175 (37.5%). The high degree
of heterozygosity in GN22 results from its interspe-
cific hybrid status. Most heterozygous SSRs in P.2175
were also heterozygous in GN22 (80.8%). These data
confirm the high degree of microsatellite portability
among Prunus previously reported by Cipriani et al.
(1999) and Dirlewanger et al. (2002, 2004b). This high
polymorphism between the Myrobalan plum P.2175
and GN22 has also been observed by Mnejja et al.
(2004) between Japanese plum and peach (85%) or
almond (78%), using 27 single-locus microsatellites.
More SSRs deviated significantly from the expected
ratio in GN22 (41.5%) than in P.2175 (10.6%); the
interspecific status of GN22 may explain these re-
sults. In most cases, distorted segregations are more
frequent in interspecific crosses than in intraspecific
ones (Guo et al. 1991; Kianian and Quiros 1992) con-
sidering that mistakes between the coupling of ho-
mologous chromosomes during the metaphase 1 may
occur in interspecific crosses. Among the 166 SSRs
heterozygous in GN22, all those located on G3 and
nearly all those located on G5 and G6, had a dis-
torted segregation. In P.2175, distortions are located
mainly in G6 and G7. Only the middle part of the
G6 contained distorted segregating markers in both
maps.

Many SSR markers (92) were already located on
the T×E map (Aranzana et al. 2003), others were
mapped on the peach P×F map (Dettori et al. 2001),
on the apricot Stark Early Orange and Polonais maps
(Lambert et al. 2004) or in the almond Ferragnès and
Tuono maps (Joobeur et al. 2000). Here, 75 SSR mark-
ers were mapped for the first time.

4.4.3
Inheritance and Map Construction

4.4.3.1
Segregation of the Ma, RMiaNem and Gr Genes
The 101 individuals from 2175 × GN22, tested to
M. floridensis (Handoo et al. 2004) to evidence the
Ma gene (Table 1), were shown to segregate into
40 resistant: 61 susceptible. This segregation devi-
ated from the expected 1:1 ratio (P = 0.036). The
61 susceptible individuals were then processed for
evaluation to M. incognita, in order to evidence the
RMiaNem resistance gene. Nevertheless, only a subset
of both mapping populations could be evaluated, due
to unsuccessful rooting of the cuttings. Within the
27 P.2175 × GN22 hybrids evaluated to M. incognita,
13 were resistant and 14 were susceptible thus fitting
the expected 1.1 ratio. A high distorted segregation
ratio (P = 0.00059) was observed for the color of
the leaf, with 32 red-leaf and 66 green-leaf individ-
uals.

4.4.3.2
P.2175 Myrobalan Linkage Map
The P.2175 Myrobalan linkage map was constructed
by analyzing the segregation of the Ma gene and 94
markers (92 SSRs, 2 SCARs) (Fig. 2). The P.2175 link-
age map covered 524.8 cM with a LOD > 5.0 and
653.8 cM with a LOD > 3.2.

The Ma gene, already reported to cosegregate with
the SCAR marker SCAFLP2 (Lecouls et al. 2004), co-
segregated also with the SCAR SCAL19690 and the
SSR 96D14-B4. This SSR was identified within a BAC
clone from the Nemared library (Georgi et al. 2002),
containing SCAFLP2202 (Lecouls, Personal Communi-
cation). The Ma gene and SSR 96D14-B4 segregated
with the expected Mendelian 1:1 ratio; the two SCARs
had distorted segregation (P = 0.037 each). They were
located on P.2175 G7 at 12.4 cM from the top of the
linkage group.

4.4.3.3
GN22 Linkage Map and Evidence of Translocation
The map of the interspecific almond-peach GN22 par-
ent from the P2175 × GN22 progeny was constructed
by analyzing the segregation of the RMiaNem gene,
the Gr gene, and 166 markers (165 SSRs and 1 STS)
(Fig. 2). With a LOD > 5.0, all markers were grouped
into 7 linkage groups instead of the 8 expected. The
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27 plants evaluated for resistance to M. incognita al-
lowed the RMiaNem gene to be mapped to linkage group
2 (G2) with a LOD>4.7. Six of the linkage groups, G1,
G2, G3, G4, G5, G7, were homologous to those found
in T×E with identical locus order and similar dis-
tances.

Thirty-eight markers formed a single group in
the GN22 map and among them, 16 were already
mapped in linkage group 6 and 11 in linkage group
8 in other maps [T×E (Aranzana et al. 2003), P×F
(Dettori et al. 2001), J×F (Dirlewanger et al. 2006)];
11 markers were not previously mapped. Ordering
of this group (G6-G8) was difficult and linear or-
der containing all loci could not be established. The
map with the most markers included only 29 loci: 11
were already mapped in other maps on G6 and 11
on G8 (Fig. 2). The top of G6-G8 contained mark-
ers already mapped in the G6 but in the inverse or-
der comparing to the T×E map, the bottom of G6-
G8 contained markers already mapped in the G8 in
exactly the same order as in T×E map. This pseu-
dolinkage between G6 and G8 groups is a conse-
quenceof a reciprocal translocationbetween the chro-
mosomes corresponding to G6 and G8. This was
already reported in a ‘Garfi’ × ’Nemared’ F2 pop-
ulation (Jauregui et al. 2001). Reciprocal transloca-
tions are one of the most common structural chro-
mosome rearrangements and have been detected in
many species through the study of pollen viabil-

Fig. 3. Local map around Ma showing the position of AFLP
and SCAR markers obtained from BSA. Distances expressed in
recombination percentages have been evaluated from a popu-
lation of approx. 300 individuals. P = PstI; M = MseI

ity and chromosome pairing during meiosis (Garber
1972).

With a LOD > 5.0, the GN22 map covered
716.0 cM, including the Gr gene located on G6 and
166 markers (165 SSRs and 1 STS). With a LOD
> 4.7, the RMiaNem gene controlling the nematode
resistance from ‘Nemared’ was placed, as expected
from location previously established by Claverie et al.
(2004a), on G2 near the top of the group, between
ssrPaCITA27 (13 cM) and the SCAR STSOPA11
that cosegregates with the SSR MAO24a (7.4 cM).
The mean density of the map was 4.3 cM between
markers.

4.4.4
Comparison of the P.2175 and GN22 Maps

Among the 73 SSRs markers polymophic in both par-
ents and tested in the progeny, 68 were placed on
both maps on homologous linkage groups. This shows
a high level of colinearity between Myrobalan plum
and the peach and almond genomes. This was al-
ready observed between apricot Stark Early Orange,
Polonais and T×E (Lambert et al. 2004). These results
reveal a strong homology of the genomes belong-
ing to the Prunophora and Amygdalus sub-genera.
By comparing all the Prunus maps sharing common
markers, it is now possible to identify a set of single
SSR loci covering all the genomes as it was proposed
by Aranzana et al. (2003). Translocation events are
now easily detected by using already mapped mark-
ers.

4.5
Strategy for Map-Based Cloning
of the Ma Gene

Developingapositional cloning strategy for theMa lo-
cus for resistance to RKN from the rootstock species
P. cerasifera is a challenging task in particular be-
cause of the time and space required for produc-
ing and characterizing adequate populations. This
project has been undergone because of the remark-
able properties of the Ma gene which confers to this
allogamous diploid plum, a complete-spectrum and
a heat stable resistance to Meloidogyne spp. Con-
versely, the Mi gene from tomato, which is the RKN
reference resistance (R) gene and the sole RKN R
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Fig. 4. Segregation of the SCAR marker SCAFLP4 in 19 individuals from different intraspecific progenies segregating for Ma.
Lanes 1–10: Ma resistant individuals, heterozygous for the marker. Lanes 11–19: Ma susceptible individuals, homozygous for the
marker. The arrows indicate the alleles in coupling with susceptibility (S) and resistance (R) in P.2175

Fig. 5. Fine genetic mapping of Ma linked SSR (plgms) and SCAR (SCAFLP) markers (a) and physical mapping of positive BAC
clones from the resistant contig (b). In (a), values between markers are recombination percentages (upper row) and numbers
of recombinants among 1332 total individuals (between parenthesis, lower row). Amplification of the expected resistance allele
of a marker from a BAC is represented by a cross between this BAC and the dotted vertical line joining the marker name (c).
For some BAC clones, insert sizes are indicated after the BAC designation. BAC clones experimentally characterized by the same
markers are grouped under the same representation. The double arrow indicates the interval containing the Ma locus (resistance
allele)

gene cloned up-to-now, has a more restricted spec-
trum and a reduced efficiency at high temperature.
Another favorable argument is that Myrobalan plum
is a diploid species with a small and compact genome
(2n = 2x = 16) estimated to be equivalent to the
botanically closely related apricot species (P. armeni-
aca) (300 Mbp/1C; Arumuganathan and Earle 1991)
i.e. with an average physical distance of about 300–
400 kb per cM. The different steps of this strategy
reported hereafter have been developed in Claverie
et al. (2004b).

4.5.1
Detection of AFLP Markers by BSA,
Development of PCR Markers
and High-Resolution Mapping of the Ma Gene

Additional markers in the Ma region were obtained
by BSA of 320 AFLP primer pairs combinations. Using
a segregating population of 307 individuals, five AFLP
markers tightly linked to the Ma1 allele from P.2175
were obtained and mapped in the 2.3 cM interval
spanning the gene, between the previously obtained
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Fig. 6. Fine genetic mapping of ma linked SSR (plgms) and SCAR (SCAFLP) markers (a) and physical mapping of positive BAC
clones from the susceptible contig (b). In (a), values between markers are recombination percentages (upper row) and numbers
of recombinants among 1,332 total individuals (between parenthesis, lower row). Amplification of the expected susceptibility
allele of a marker from a BAC is represented by a cross between this BAC and the dotted vertical line joining the marker name
(c). For the SSR marker plgms19 two amplification products (differing in length by 4 base pairs) in coupling with susceptibility
and genetically cosegregating were physically separated and designated as plgms19(S1) and plgms19(S2). For some BAC clones
insert sizes are indicated after the BAC designation. BAC clones experimentally characterized by the same markers are grouped
under the same representation. The double arrow indicates the interval containing the Ma locus (ma susceptibility allele)

markers SCAL19 and pchgms6 (Fig. 3). Three of
these markers were sequenced and transformed into
SCAR or CAPS (cleaved amplified polymorphism
sequence) markers designated SCAFLP3, SCAFLP4
(Fig. 4) and SCAFLP5.

A total number of 1,332 individuals, from 21
crosses segregating for Ma, revealed 31 individuals re-
combining between the flanking markers SCAL19 and
pchgms6 in the genetic interval of 2.3 cM encompass-
ing thegene.Theserecombinant individualswere then
genotyped with the markers SCAFLP2, SCAFLP3 and
SCAFLP4 and RKN resistance tests allowed a finer lo-
cation of the gene (Figs. 5a and 6a): Ma co-segregated
with the SCAFLP2 marker and was separated from
SCAFLP4 by a single recombination event.

4.5.2
BAC Library Construction

A total of 30,720 BAC clones distributed into four-
size classes (sub-libraries) were organized into 384-

well plates. Sub-library 1 consists of 9,513 clones with
insert size ranging from 50 to 150 kb and an average
of 120 kb, sub-libraries 2 and 3 grouped 19,200 clones
with insert size ranging from 80 to 200 kb and an
average of 150 kb. Sub-library 4 grouped 2,007 clones
with insert size ranging from 110 to 350 kb and an
average of 210 kb. Thus the average insert size of the
whole library is estimated to be 145 kb with insert
distribution ranging from 50 to 350 kb and the library
has a 14–15× coverage of Myrobalan plum haploid
genome. Considering that Myrobalan plum is highly
heterozygous, this coverage must be expressed as a 7–
8× coverage of the diploid genome.

4.5.3
Construction of Physical Contigs Spanning
the Ma Region and Chromosome Landing

As the accession P.2175 is heterozygote and carries
both R and S alleles of the Ma gene, R and S physical
contigs were constructed by screening the BAC library
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with the codominant co-segregating or tightly linked
markers, SCAFLP2, SCAFLP3, SCAFLP4, SCAFLP5
and SCAL19 (Figs. 5a and 6a). The identified posi-
tive BAC clones were considered as belonging to ei-
ther the resistant or the susceptible contigs based on
their detection with either the resistant or the suscep-
tible alleles of the codominant markers. Surprisingly
the markers SCAFLP2 and SCAFLP4 only separated
by 0.08 cM were detected together only in a single
clone of the R contig and three clones of the S contig.
Finally a single BAC clone (‘BAC76H19’) carried all
together the resistant alleles of SCAFLP2, the flanking
SCAFLP3 and SCAFLP4 markers and subsequently
the Ma gene.

Thirteen random DNA sequences, from 224 to
827 bp long, were obtained from the 76H19 BAC sub-
cloningand the sequencingofother-BACends that an-
chor to the gene region. Four of these sequences were
shown to contain microsatellite repeats and served to
generate four polymorphic SSR markers tightly linked
to Ma. SSR amplifications were performed on recom-
binant individuals (and on parental material as con-
trols) for a refined genetic mapping of the region sur-
rounding Ma; the SSR plgms9 from the 9L18 T7 BAC
end cosegregated with SCAFLP3, the SSR plgms19
cosegregated with Ma (and SCAFLP2) and the two
others (plgms8 and plgms17) cosegregated and fell
between SCAFLP4 and SCAL19. From amplification
data in the BAC clones from the Ma-resistant and
Ma-susceptible contigs, these newly developed mark-
ers were then placed on the resistant and susceptible
physical maps (Figs. 5b and 6b).

4.6
Conclusion and Future Scope
of Works

4.6.1
Resistance to Plum Pox Virus

Several genes are involved in the resistance to Plum
pox virus in peach and apricot and identification of
QTLs is inprogress inboth species (Guillet andAuder-
gon 2001; Villanova et al. 2003; Decroocq et al. 2005).
Because of the high synteny within Prunus and the
close genetic relationships between them and in par-
ticular between apricot and plum, it is assumed that
most genetic and mapping information acquired in

peach or apricot about resistance to PPV will be easily
transferable and thus exploitable in plum. In P. davidi-
ana for example, identification of distinct genomic re-
gions involved in resistance and their co-localization
with virus resistance gene analogues (Decroocq et al.
2005) are the first steps towards marker-assisted selec-
tion of PPV resistance for peach from this wild peach
species and might be useful later in plum species. The
numerous SSR markers now characterized in plum
(Decroocq et al. 2004; Dirlewanger et al. 2004a) are
powerful tools in this way.

As a complement to conventional breeding, trans-
genic clone C5 is a promising source of high level
PPV resistance transferable to progeny through cross-
hybridization experiments (Ravelonandro and Scorza
2004). To alleviate the concern of consumers about ge-
netically modified organisms (GMOs), research work
is still necessary to evaluate the safe use of geneti-
cally modified fruits and the ability of such GMOs to
contribute to a sustainable agriculture.

4.6.2
Genome Mapping

The Ma gene and 93 markers (2 SCARs, 91 SSRs)
were placed on the P.2175 Myrobalan map cover-
ing 524.8 cM. In peach, the RMiaNem gene, the Gr
gene controlling the color of leaves, and 166 mark-
ers (1 SCAR, 165 SSRs) were mapped to seven linkage
groups instead of the expected eight in Prunus. Mark-
ers belonging to groups 6 and 8 in previous maps
formed a single group in the GN22 map and evi-
denced a reciprocal translocation, already reported
in a Garfi × Nemared F2, near the Gr gene. By sep-
arating markers from linkage groups 6 and 8 from
the GN22 map, it was possible to compare the eight
homologous linkage groups between the two maps
using the 68 SSR markers heterozygous in both par-
ents (anchor loci). All but one of these 68 anchor
markers are in the same order in the Myrobalan
plum map and in the almond-peach map, as expected
from the high level of synteny within Prunus. The
Ma and RMiaNem genes confirmed their previous lo-
cation in the Myrobalan linkage group 7 and in the
GN22 linkage group 2, respectively. The SCAR mark-
ers (SCAL19690, SCAFLP2202) (Lecouls et al. 2004)
cosegregated with Ma and 4 SSRs (SSR 96D14-B4,
SSR 81P4-B7, SSR6, SSR12) were located in the same
region.
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All these data will be used in the Prunus
rootstock breeding program aiming at developing
a new generation of Prunus rootstocks bearing high
resistance to RKN using MAS and several additional
characters such as adaptation to chlorosis and
drought (from almond), tolerance to waterlogging
(from plum) together with graft compatibility with
peach (from peach) and good rooting ability (from
plum) (Esmenjaud 2004; Dirlewanger et al. 2004c).
These data will also be available for the other
rootstock programs relative to Prunus crops and
particularly peach (Reighard 2002). The genetic
linkage maps constructed from the interspecific
F1population issued from the cross P.2175 × GN22
will be used for the detection of QTLs involved
in drought, waterlogging and chlorosis resistance.
A subset of the progeny has already been evaluated
for different ecophysiological parameters (predawn
leaf water potential, conductance, transpiration,
photosynthesis and growth parameters). A high
variability of response was observed, especially
for the water use efficiency, an essential condition
for a breeding program (Kleinhentz et al. 2005),
confirming that this material is promising for the
selection of a new generation of Prunus rootstock
associating the favorable characters of each species.

4.6.3
Towards Map-Based Cloning of Ma

The Ma1 allele from the heterozygous parent P.2175
was accurately located using SSR markers available
from Prunus maps. Applying an adapted BSA strategy
resulted in three extra AFLP markers tightly flanking
Ma1 which were transformed into codominant SCAR
markers. These markers, as well as the two closely
linked markers obtained in previous studies, were
used to build a high-resolution map, based on recom-
bination events at the Ma1 locus from segregating
intra- and inter-specific crosses including more than
1,300 individuals. A BAC library of the parent P.2175
characterized by a large mean insert size (145 kb) and
a 14–15 × haploid genome coverage was constructed.
The markers tightly linked to the gene allowed the
elaboration of the R and S contigs at the Ma locus.
One 287 kb insert BAC carrying Ma1 was detected in
the R contig.

Because of the characteristics of Ma (i.e., complete
RKN spectrum, heat stability, and no virulent isolate
known), it may be of an outstanding interest to iden-

tify the gene and to study its structure, function and
evolution. In this objective, a complete sequencing
of the 280-kb insert has been performed. Bioinfor-
matic sequence analysis revealed a cluster of three
TIR-NBS-LRR (TNL) open reading frames (ORFs) ly-
ing between candidate ORFs from other multigenic
families. New SSR markers directly derived from the
BAC sequence reduced the physical interval encom-
passing Ma to a 70 kb region including a putative
lectin/kinase receptor (LecRK) and the TNLs. Addi-
tional fine mapping, using 1,700 young Myrobalan
plum segregating seedlings, still reduced this interval
to 54 kb only containing the three TNLs as candidate
resistance genes (Claverie 2004). The analysis of these
sequences, in combination with a linkage disequilib-
rium study among Myrobalan plum accessions should
allow to identify the best candidate to encode the Ma
gene. Sequence analysis will also generate data about
Prunus genome organization (genes, microsatellites,
structure and distribution of repeated sequences) in
this particular region that will be compared to the sus-
ceptible Ma region and extended via microsynteny to
other Prunus or Rosaceae species. This study may also
provide new information about the dynamics of the
natural evolution of a resistance locus from a peren-
nial, near-wild and self-incompatible plant (Salesses
et al. 1993, 1994).
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5.1
Introduction

5.1.1
Peach [Prunus persica (L.) Batsch]

In temperate regions, the family Rosaceae ranks third
in economic importance. Its commercially valuable
members include fruit producing (e.g., stone fruits,
apples, brambles, and strawberries), nut-producing
(almond), lumber producing (e.g., black cherry) and
ornamental (e.g., roses, flowering cherry, quince, and
pear) species. Rosaceae is the type family for the Ros-
ales, the largest order in the Rosidae (Heywood 1978)
or Calyciflorae (Benson 1979). It is traditionally di-
vided into four well-defined subfamilies. The genus
Prunus, within the subfamily Prunoideae, is char-
acterized by species that produce drupes known as
“stone fruits” where the seed is encased in a hard,
lignified endocarp referred to as the “stone”, and the
edible portion is a juicy mesocarp. The agriculturally
most important stone fruit species are P. persica (L.)
Batsch (peach, nectarine), P. domestica L. (European
or prune plum), P. salicina Lindl. (Japanese plum),
P. cerasus L. (sour cherry), P. avium L. (sweet cherry),
P. armeniaca L. (apricot) and almond (P. amygdalus
Batsch) which is cultivated for its edible seed.

All commercial varieties of peach are P. persica,
including nectarines that differ from peach in the ab-
sence of pubescence on the fruit surface. This charac-
ter segregates as a simple trait presumably controlled
by a single gene or a few closely linked genes.

5.1.2
Center of Origin and History of Dispersal

Peaches originated in China, with a cultivation his-
tory of over 4,000 years (Hesse 1975). Peach dispersal

followed westward with human migration through
trade routes and in the wake of conquering armies
found it way to Greece. According to Pliny, peach
was cultivated in Greece by 332 BC (Hedrick 1917).
From Greece, peaches were further dispersed with
expansion of the Roman Empire. The early writings
of Pliny, Dioscorides, and Virgil exhibit references
to peach and apricot (Hedrick 1917; Cullinan 1937).
Peaches were brought to North and South America
on the ships of the European explorers and settlers.
Due to the fact that stone fruits have the seed encased
in a hard, lignified structure (stone) obviates special
storage conditions thus facilitating their dispersion
over long distances. Peach seeds are viable for a year
at room temperature and for several years if refriger-
ated (Scorza and Sherman 1996).

5.1.3
Peach production

Peach is a temperate fruit crop and is grown on all
continents except Antarctica. Generally, commercial
production lies between latitudes 30◦ and 45◦. The
major limiting factors for expansion of commercial
production areas are extreme cold temperatures be-
low−35 ◦Cto−40 ◦Cor insufficient lengthof cold tem-
perature to satisfy dormancy. Table 1 lists the world-
wide production, yield and harvest area for peaches
and nectarines.

5.1.4
Breeding

Most major peach producing countries have active
breeding programs. To develop a new peach cultivar
usually takes 15–20 years and requires: 1) pollen col-
lection from male parents; 2) individual hand emas-
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Table 1. Peach world cultivation statistics (FAOSTAT, http//faostat.fao.org)

Year 2000 2001 2002 2003 2004
Production (Mt) 13,317,455 14,005,372 14,712,287 15,355,170 15,561,206
Yield (Hg/Ha) 104,425 112,320 109,781 109,506 109,409
Area Harv. (Ha) 1,275,308 1,246,920 1,340,153 1,402,221 1,422,293

culation of flowers of female parents; 3) hand polli-
nation; 4) collection of seed from fruit that developed
from hybridization; 5) seed stratification and germi-
nation; 6) greenhouse or nursery culture of seedlings;
7) field planting of the seedlings; and 8) selection
and testing of superior phenotypes. The juvenility
period in peach is from 2 to 5 years (Sherman and
Lyrene 1983). Maintenance, propagation, and selec-
tion of seedlings require a large investment of labor,
equipment,materials andspace, thusvarious timeand
space saving methods required for seedling evalua-
tion include the use of high density fruiting nurseries,
cultural manipulation, i.e., grafting seedlings onto
mature rootstocks, girdling, growth regulator treat-
ments, breeding with dwarf germplasm, and marker-
assisted selection (Hansche and Beres 1980; Sherman
and Lyrene 1983; Hansche 1990; Scorza 2003). The
evaluation of superior seedling selections is a crit-
ical stage prior to cultivar release and requires the
multiplication of elites on rootstock and evaluation of
yield and horticultural characteristics including fruit
quality under conditions simulating commercial pro-
duction. This process generally requires replication in
locations and/or years.

Although many commercial peach cultivars were
developed from a restricted germplasm base and
peach is predominantly self-fertilizing, they remain
fairly heterozygous for many characters as evidenced
from character segregation in progeny from self or
out crosses with wild germplasm. In most cases the
characteristics that are desirable for commercial cul-
tivars, including large fruit size, high coloration of the
fruit epidermis, and firmness of the flesh, are reces-
sive (Bailey and French 1949). Therefore, integration
of adaptive traits from germplasm requires several
rounds of introgressive backcrossing to fix the new
trait and regenerate the high quality value traits in
the original cultivated parent.

Commercially grown peach cultivars represent
only a small fraction of the genetic diversity of this
species (Scorza et al. 1985; Mehlenbacher et al. 1990;
Scorza and Okie 1990; Scorza and Sherman 1996). One
of the major problems confronting the fruit breeding

community is the loss of native germplasm through
deforestation, urbanization, and lack of funds to sup-
port germplasm collection and maintenance in the
centers of origin. Additionally, cultivation of high
quality stone fruit cultivars displaces the lower qual-
ity native landraces that carry many of the locally
important adaptive traits further accelerating the loss
of genetic variability.

5.1.5
Breeding Goals

5.1.5.1
Disease and Pest Resistance
Peaches are susceptible to numerous pathogens and
pests (Bailey andHough1975;Hesse1975;USDA1976;
Mehlenbacher et al. 1990; Scorza and Okie 1990). Sev-
eral book chapters and review articles have summa-
rized the most important disease problems and have
discussed breeding strategies and/or programs aimed
at obtaining disease resistance (Bailey and Hough
1975; Hesse 1975; Okie et al. 1985; Layne and Sher-
man, 1986; Childers and Sherman 1988; Scorza 1991;
Scorza and Sherman 1996). With the currently en-
vironmentally conscious public, chemical control of
pests is coming under close scrutiny. As a result,
many pesticides are no longer available to the grower,
thus interest in natural resistance or engineered re-
sistance has moved the forefront in breeding pro-
grams. This fact further underscores the importance
of maintenance and study of natural germplasm re-
sources since many native species carry resistance
genes that could be introgressed into cultivated va-
rieties.

Peachgenotypeshavebeen screened for resistance
or tolerance to ring nematode (Criconemella xeno-
plax) (Okie et al. 1987), a primary factor in Peach
Tree Short Life syndrome (PTSL), Cytospora canker
caused by Leucostoma spp. (Scorza and Pusey 1984;
Chang et al. 1989), and brown rot (Monilinia fructi-
cola) (Gradziel and Wang 1993). These studies have
revealed somewhat low but potentially useful levels



Chapter 5 Peach 139

of disease resistance and in the case of tolerance to
the ring nematode, rootstocks have been developed
from initial isolates of tolerant material that amelio-
rate the effects of peach tree short life in the south-
eastern United States. Other studies examining the
response of numerous peach and nectarine cultivars
to Stigmina carpophila, Monilinia laxa, Sphaerotheca
pannosa,Tranzscheliapruni-spinosae,Taphrinadefor-
mans and Xanthomonas campestris pv. pruni (Sime-
one 1985; Werner et al. 1986; Simeone and Corazza
1987; Scorza 1992 ), found most cultivars susceptible
to these pathogens.

Other major pests of peach include fruit feeding
insects which reduce fruit quality and marketability
and insects which feed on vegetative parts of the tree
causing reduced viability, performance and increased
risk of fungal, bacterial and viral disease. Only a few
cases of insect resistance in cultivated genotypes have
been reported (Mehlenbacher et al. 1990; Scorza and
Okie 1990).

Soil born pathogens also represent a major prob-
lem for peach tree cultivation. Nematodes of sev-
eral different genera are major pathogens of peaches,
these include: the dagger nematode (Xiphenema spp.)
which is responsible for the spread of tomato ring
spot virus, a serious pathogen in peach particu-
larly in the US Mid-Atlantic States; root-knot nema-
todes (Meloidogyne spp.) which severely decrease the
performance of the trees; the root lesion nematode
(Pratylenchus spp.) which is associated with replant
problems (Scorza and Okie 1990); and the ring ne-
matode (Criconemella xenoplax) a primary factor in
Peach Tree Short Life syndrome (Okie et al. 1987).

Plum Pox Virus Plum Pox Virus (PPV), also referred
to as “Sharka” disease, is one of the most serious
diseases of peach and other Prunus trees worldwide.

The “Sharka” disease of fruiting trees is caused by
a potyvirus Plum pox virus. Like other potyviruses, its
genome consists of a single RNA molecule/strain (680
to 900 nm length and 15 nm width) 9,800 nucleotides
in length with a MW of 3.5 × 106 daltons. It encodes
a VPg protein at the 5′ end and is poly adenylated
at the 3′ end. According to the sequence the types
of isolates can be divided into D, Dideron and M or
Marcus serotypes (Laín et al. 1989; Maiss et al. 1989;
Teycheney et al. 1989; Riechman et al. 1992; García et
al. 1994; Candresse et al. 1998; Rosales et al. 1998).

The woody hosts for PPV are the Prunus species
including; plums (P. domestica) and Japanese plum
(P. salicina), the apricot (P. armeniaca) and peach

(P. persica). Almonds (P. dulcis) can be infected by
PPV but are asymptomatic. New PPV isolates that
infect cherries (P. avium and P. cerasus) have also been
described. Kalashyan et al. (1994) described a PPV-C
in P. cerasus and Crescenzi et al. (1997) a PPV-C strain
that infects most of the ornamental and wild Prunus
species, some that are used as rootstocks for grafting
trees such us P. cerasifera, P. insititia, P. besseyi, P.
tomentosa, P. spinosa.

PPV produces symptoms on leaves and fruits.
Symptoms vary according to the species, the isolate
and the environmental conditions. The symptoms on
leaves are chlorotic ring spots with necrosis. Symp-
toms on fruits appear before ripening, and appear as
ring spots and deformations. The flesh appears brown
and the pits show yellow ring spots. On plum species
the affected fruits sometimes drop before reaching
maturity.

As is typical with diseases caused by virusus, ad-
equate procedures are presently not available to con-
trol the spreading of the virus on infected trees (Llácer
and Cambra1998). Cross protection does not work for
PPV strains. The spreading of the virus by aphids in
a non-persistent manner makes the chemical control
of aphids by spraying ineffective. In short term the
control of the diseases relays on removing infected
trees and planting virus free trees. In a long term
the control will be the replacement of the susceptible
varieties by resistant cultivars (Dosba et al. 1991).

Natural Resistance to Plum Pox Virus in Prunus
Germplasm Resistance to pests and pathogens as-
sumes particular importance when fruit quality is
affected. Among virus diseases, Sharka disease is of
particular concern as it is completely devastating to
productivity and to fruit quality. Several laboratories
in Europe examined Prunus germplasm for resistance
to the virus. From this work, it was reported that a lim-
itednumber of apricot varieties appear tohavenatural
resistance to this disease including ‘Goldrich’, ‘Stark
Early Orange’, ‘Harlayne’ ‘Harcot’ ‘Stella’ and ‘Hen-
derson’ (Dosba et al. 1992; Karayiannis and Maniou
1994; Polak and Kominek 1995).

Evaluation of the susceptibility of plum and peach
cultivars to Sharka disease has not resulted in the
discovery of resistant cultivars like those in apricot.
Introgression in a peach genetic background of the re-
sistance available in a related wild species, Prunus da-
vidiana and in some almond cultivars, is in progress
through back cross progenies (Kervella et al. 1998;
Foulongne et al. 2003; Martinez-Gomez et al., 2004).
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Due to variable penetrance of the resistance char-
acter, to test a putatively resistant cultivar, one needs
four years of monitoring after infection to assess the
level of resistance or susceptibility. This slows the
breeding process and makes finding new sources of
resistance difficult. Therefore, it would be of major
importance to develop efficient tools to screen for
Sharka resistance, particularly where the resistance is
recessive or only partial. These genes could then be
pyramided to enhance or complement already exist-
ing resistant cultivars produced through conventional
breeding or via transgenic approaches (see below). In
woody plants, molecular tools can provide early in-
formation on the genetics of Prunus progenies and
enable the use of marker-assisted selection (MAS)
methods for more efficiently breeding resistant mate-
rials.

5.1.5.2
Environmental Stress Tolerance
Peaches are widely adapted throughout their range,
and cultivars developed in one growing area are often
utilized in many production regions. One of the most
important breeding objectives is the development of
varieties that perform well in the extremes of a species
cultivation range. Thus, for example, in northern re-
gions greater winter hardiness of both flower buds
and whole trees is a major breeding consideration
as it is the most important factor limiting produc-
tion in mid-continent and northern climates (Bai-
ley and Hough 1975; Hesse 1975; Mehlenbacher et al.
1990; Scorza and Okie 1990). Flower bud hardiness in
peach has been shown to be a complex quantitative
trait (Mowry 1964). Peach avoids low temperature in-
jury through deep supercooling, a physical state that
depresses the freezing point of cells. In Prunus, the
degree of deep supercooling is related to cold hardi-
ness of the xylem and flower buds. Cultivated species
generally supercool to a lesser degree than hardy wild
species (Quamme et al. 1982).

5.1.5.3
Growth Control
Control of tree architecture is of major concern in
many fruit tree breeding programs. Genetic control of
tree growth habit reduces the need for pruning and fa-
cilitates development of more productive, easily man-
aged high-density production systems (Scorza 1984).
In peach, several loci control tree size and canopy
architecture producing compact (Mehlenbacher and
Scorza 1986), spur-type (Scorza 1987), semidwarf
(Fideghelli et al. 1979; Scorza 1984), columnar (Scorza

et al. 1989, 2002), dwarf (Lammerts 1945; Monet and
Salesses 1975; Hansche 1988;) and weeping (Monet
et al. 1988) trees. Currently, identification and ma-
nipulation of genes controlling the columnar growth
habit is underway through application of peach ge-
nomic resources and molecular marker mapping (Ra-
japakse et al. 1995; Scorza et al. 2002, Dr. Renate Horn,
personal communication)

5.1.5.4
Fruit Characteristics
Ultimately, fruit quality drives the market for stone
fruits. Breeding programs have produced very high
quality fruits at maturity, however for storage and
shipping of fruit to non-local markets, these varieties
must be picked earlier than full maturity resulting in
fruits of lesser flavor and aroma in the market place.
This has led to a marked decrease consumption of
peaches. In the 1960s the US average per capita con-
sumption of peaches was 4.4 kg (Frecon 1988). In the
past 20 years the consumption level has remained at
2.0 kg (Cristoso 2002). In comparison to other fruit-
ing species in Rosaceae, (apples 16 kg/yr/capita) the
reduced consumption of peaches is partly due to the
marketing of immature fruit (Frecon 1988).

Increased firmness of ripe fruit is one of the ma-
jor breeding targets in peach. Fruit firmness exhibits
quantitative genetic control, however, major genes
dramatically affecting fruit firmness were previously
described including the stony-hard gene (Yoshida
1976), the slow-ripening genes (Ramming 1991). Sev-
eral other peach fruit traits such as flesh color, melting
flesh, soft melting flesh, freestone, low malic acid, and
saucer shape are simply inherited. A more complete
discussion of the inheritance of peach fruit quality
traits can be found in Hesse (1975) and Scorza and
Sherman (1996).

5.2
Construction of Genetic Maps

Although Prunus is an economically and biologically
important genus, little was known about the genome
structure and organization of its members up un-
til the advent of DNA marker technologies. However,
peach is considered the best genetically character-
ized species in the genus, and one of the best genet-
ically characterized fruit trees (Mowrey et al. 1990).
With the application of DNA marker technologies to
the problem of developing genetic resources in trees,
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peach has distinct advantages that make it suitable
as a model species for structural, comparative and
functional genomics. Peach has a relatively short ju-
venility period, 2–3 years compared to most other
fruit tree species, such as, apple, pear, and citrus that
have a juvenile phase ranging from 6–10 years (Sher-
man and Lyrene 1983). While some Prunus species
such as cultivated plums and sour cherries are poly-
ploid (Moore and Janick 1975), peach is a diploid
with n = 8 (Jelenkovic and Harrington 1972) and
has a comparatively small genome: 5.9 × 108 bp
or 0.61 pg/diploid nucleus (Baird et al. 1994). This
is equates to about 290 Mbp, about twice the value
for Arabidopsis thaliana (Arumuganathan and Earle
1991). Finally, a peach transformation system has re-
cently been reported (Perez-Clemente et al. 2005) in-
dicating that peach transformation technologies are
developing and these will be useful for facilitating
functional genomic studies.

In addition to the importance of peach as a ref-
erence for Rosaceae genomics, the genetics of a large
number of genes controlling fundamentally impor-
tant traits has been described in peach. These in-
clude genes controlling flower development, fruit de-
velopment, tree growth habit, dormancy, cold har-
diness, disease and pest resistance. Extensive and
detailed molecular genetic mapping efforts are be-
ing carried out worldwide, and many of these traits
(both single gene and QTL) have been mapped. Thus,
through the integrated study of genomics and ge-
netics, peach promises to provide biological insight
into many important pathways and genes associ-
ated with the growth and sustainability of fruiting
trees.

5.2.1
Peach Genetics, a Brief History

The cultivated peach belongs to the Rosaceae family,
subfamily Prunoideae, genus Prunus and subgenus
Amygdalus. The peach karyotype consists of a clearly
identifiable large submetacentric chromosome, and
seven more chromosomes of smaller size, two of them
acrocentric (Jelenkovic and Harrington 1972; Salesses
and Mouras 1977). Although little is known about
the chromosomal level location and organization of
gene sequences in peach, recent results with fluo-
rescence in situ hybridization (FISH) in the closely
related almond (P. dulcis) have enabled detection
of each chromosome individually based on chromo-

some length and the positions of the ribosomal DNA
(rDNA) genes (Corredor et al. 2004). It is likely that
peach chromosomal organization does not differ sig-
nificantly from that of the other species of Amygdalus
since crosses between peach and these closely related
species are possible and produce fertile hybrids; in-
cluding thespeciesP. ferganensis,P.mira,P.davidiana,
and P. kansuensis, and the cultivated almond. Crosses
with species of other subgenera (Prunophora and
Cerasus) such as apricot (P. armeniaca), Myrobalan
plum (P. cerasifera), European plum (P. domestica),
Japanese plum (P. salicina) or sour cherry (P. cerasus)
are also possible, but fertile hybrids are only produced
occasionally (Scorza and Sherman 1996).

A distinctive characteristic of peach is its self-
compatible mating, unlike the majority of its con-
generic species that exhibit various levels of gameto-
phytic self-incompatibility. Selfing (Miller et al. 1989),
plus important bottlenecks in its recent breeding his-
tory (Scorza et al. 1985), have resulted in a lower level
of genetic variability of peach compared to the other
Prunus crops (Byrne 1990). The high economic value
of peach, its self-compatible nature that allows the
development of F2 progenies, and the possibility to
shorten the juvenile period to 1–2 years after plant-
ing (Scorza and Sherman 1996) together suggest the
peach can serve as an appropriate genetic and ge-
nomic reference species for Prunus.

A total of 42 morphological characters of simple
Mendelian inheritancewerediscoveredduring the last
century (Dirlewanger and Arús 2004), however until
the recent development of molecular marker maps,
only a few linkage relationships had been determined.
Five linkage groups involving 11 major genes were
reported by Monet et al. (1996).

5.2.2
Molecular Genetic Mapping in Peach

Chaparro et al. (1994) constructed the first molecular
marker map in fruit trees consisting of 83 Random
Amplified Polymorphic DNA (RAPD) markers,
one isozyme and four morphological characters in
a peach intraspecific F2 progeny. Two more maps
based on Restriction Fragment Length Polymor-
phism (RFLP) markers were published shortly there
after; the first constructed in a peach × peach F2

progeny (Rajapakse et al. 1995) and the second in
a peach × almond F2 progeny (Foolad et al. 1995).
Later peach maps integrated dominant RAPDs
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and Amplified Fragment Length Polymorphism
(AFLP) markers with codominant (RFLPs) and
morphological markers (Dirlewanger et al. 1998) or
were constructed almost entirely with AFLPs (Lu
et al. 1998). These maps were considered low level
saturated maps having a low average marker density
(4.5–8.5 cM/marker), and an excess of linkage groups
over the eight expected based on karyotype analysis.
These maps had large gaps without markers and
many unlinked orphan markers (8–28%).

The first saturated linkage map, constructed
exclusively with transferable markers (11 isozymes
and 226 RFLPs, most of them detected with Rosaceae
DNA probes) in a ‘Texas’ almond × ‘Earlygold’
peach F2 population, was published by a European
consortium (Joobeur et al. 1998). All markers were
distributed into eight linkage groups with a total
distance of 491 cM, representing an average density of
2.0 cM/marker, and maximal gap size of 12 cM. This
map (abbreviated as the T×E map) was improved
by the addition of 185 simple sequence repeat (SSR)
markers, and 126 RFLPs most of them obtained with
Arabidopsis DNA probes, and five sequence-tagged
sites (Aranzana et al. 2003; Dirlewanger et al. 2004).
Recently, 264 additional SSRs have been mapped
to T×E using the “bin mapping” approach (Howad
et al. 2005). From the 817 markers currently placed
on the T×E map, 756 (92%) are based on known
publicly available DNA sequences, with at least 198
(24%) of these sequences corresponding to a pu-
tative protein. Recent EST mapping has tentatively
placed an additional 600 EST sequences on this
map.

The Prunus scientific community has adopted the
T×E map as the reference map for the genus. It pro-
vides a set of transferable markers that can be used
as anchors for map construction in other progenies,
a common linkage group terminology and marker
order within each linkage group, and a highly poly-
morphic population that allows mapping markers
that would not segregate in most peach intraspecific
crosses. Table 2 presents a compilation of the inter-
and intra-species peach maps that have been pub-
lished. Those anchored on the Prunus general map
are highlighted.

The network of maps interconnected with T×E
reference map provides the density of markers nec-
essary to saturate specific genomic regions of any
progeny and to search genome wide for sufficient
markers for quantitative trait loci (QTL) or other ge-
netic analyses. Given that peach has a low level of

intraspecific variation, a very dense “consensus” map
with highly polymorphic markers well distributed in
all genomic regions would insure that segregating
markers are available in regions of interest in other
peach crosses. To reach this goal, a supplementary ef-
fort will be required to increase the number of SSRs
mapped in parallel with targeted strategies to fill re-
gions with low SSR density (Wang et al. 2001, 2002;
Georgi et al. 2002).

The existence of a single reference map has made
it possible to locate the major genes and QTL that
segregated in different populations (Table 3).

In total, 22 loci controlling simple characters were
assigned to specific positions on the T×E map, 18 of
these loci were mapped in intraspecific peach crosses
and three that segregated in interspecific almond ×
peach crosses. For complex characters 28 QTLs for
bloom and maturity time, fruit quality, tree architec-
ture or disease resistance were also placed on the map
(Abbott et al. 1998; Viruel et al. 1998; Dirlewanger
et al. 1999; Etienne et al. 2002; Verde et al. 2002; Fou-
longne et al. 2003b).

With the current marker density, most simple
characters are marked sufficiently for selection. Other
strategies for gene tagging that do not require knowl-
edge of the map position, such as bulked segregant
analysis (Michelmore et al. 1991), have also been used
successfully in peach (Chaparro et al. 1994; Warbur-
ton et al. 1996; Lu et al. 1998). In spite of this infor-
mation being available, the use of markers for com-
mercial breeding is still in its infancy. Marker-assisted
selection is currentlyused inarootstockbreedingpro-
gram to pyramid a root-knot nematode (Meloidogyne
spp.) resistance gene coming from ‘Nemared’ peach
(Lu et al. 1998; Yamamoto and Hayashi 2002; Arús
et al. 2004) with another independent root-knot ne-
matode resistance gene coming from Myrobalan plum
(Claverie et al. 2004). However, selections using mark-
ers of other well-characterized genes affecting fruit
characters (i.e. such as flesh color, skin pubescence,
fruit shape or fruit sweetness) have not been reported.
This is undoubtedly due to the fact that the variabil-
ity of major traits of interest for the breeders (i.e.
ripening time, fruit quality and other characters) is
quantitatively inherited. There is published informa-
tion on QTL characters in peach (Dirlewanger et al.
1999; Etienne et al. 2002), but a more detailed knowl-
edge of the number, effects and map positions of the
QTL affecting them is necessary before QTL associ-
ated markers can be routinely integrated in selection
programs.
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Table 2. Peach inter- and intra-specific maps

Population Species Type Marker # T×E No. Total References2

Anchors L.G.1 Map
distance

‘Texas’ ‘Earlygold’ almond × F2 817 817 8 519 cM Joobeur et al. 1998;
peach Aranzana et al. 2003;

Dirlewanger et al. 2004;
Howad et al. 2005

NC174RL × ‘Pillar’ peach F2 88 0 15 396 cM Chaparro et al. 1994
‘N J Pillar’ × KV77119 peach F2 47 2 8 332 cM Rajapakse et al. 1995
‘Padre’ × ‘54P455’ almond × F2 161 23 8 1,144 cM Foolad et al. 1995;

peach Bliss et al. 2002
‘Ferjalou Jalousia®’ × peach F2 124 49 7 518 cM Dirlewanger et al. 1998;
‘Fantasia’ Etienne et al. 2002
‘Lovell’ × ‘Nemared’ peach F2 153 1 15 1,297 cM Lu et al. 1998
‘Garfi’ × ‘Nemared’ almond × F2 51 51 7∗ 474 cM Jáuregui et al. 2001

peach
IF7310828 × peach × BC1 216 71 8 665 cM Dettori et al. 2001;
P. ferganensis P. ferganensis Verde et al. 2005
‘Akame’ × ‘Juseitou’ peach F2 178 45 7∗ 571 cM Yamamoto et al. 2001

and personal
communication

‘Summergrand’ × peach × F2 153 57 8 874 cM Foulongne et al. 2003a
P1908 P. davidiana

1 L.G. = linkage groups; ∗linkage groups 6 and 8 of these maps, were mapped as a single group due to the effects of a reciprocal
translocation.
2 When more than one reference is given, the data presented are either from the most recent publication or from the combination
of the data from all publications.

Additional candidates for marker-assisted selec-
tion in peach are genes or QTLs that can be in-
trogressed into peach from other wild or cultivated
species, such as disease or pest resistances identified
in P. davidiana (mildew, leaf curl, aphids, sharka) by
Viruel et al. (1998) and Foulongne (2002). Introgres-
sion from wild species is facilitated with marker based
whole genome selection approaches (Tanksley et al.
1989) that streamline the recovery of the genome of
the cultivated species or elite genotype.

5.2.3
Comparative Mapping of Peach
and Other Prunus Species

The transferable markers (RFLPs, SSRs and isozymes)
mapped in the T×E population have been used for
the construction of linkage maps in other Prunus
species. Detailed comparisons can be made between
this map and those of almond (Joobeur et al. 2000),

apricot (Lambert et al. 2004), P.davidiana (Foulongne
et al. 2003a), cherry (Dirlewanger et al. 2003) and
P. cerasifera (E. Dirlewanger, INRA Bordeaux, 2004,
personal communication). The order and distribu-
tion of the markers into the eight linkage groups was
generally identical between species, suggesting a high
degree of synteny. Occasional marker position dis-
crepancies among species maps are attributed to the
mapping of different duplicated loci detected by the
same RFLP probe or SSR primer pair. An exception
to the full collinearity observed within Prunus was
reported by Jáuregui et al. (2001), who demonstrated
the presence of a reciprocal translocation between
linkage groups 6 and 8 in an F2 progeny of ‘Garfi’
almond × ‘Nemared’ peach, and established the ap-
proximate position of the translocation breakpoint.

Taken together, these results strongly indicate that
the group of Prunus species studied to date shares
a nearly identical genome. Therefore, the information
ongene sequenceandpositionobtained inonePrunus
species would be generally useful for the rest.
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Table 3. Major genes and QTL placed on the Prunus reference map

Characters L.G.1 Symbol2 Populations References

Flesh color (white/yellow) G1 Y ‘Padre’ × ‘54P455’ Warburton et al. (1996)
Bliss et al. (2002)

Evergrowing G1 Evg ‘Empress op op dwarf ’ × PI442380 Wang et al. (2002)
Internode length G1 QTL (P. ferganensis × ‘IF310828’)BC1 Verde et al. (2002)
Powdery mildew resistance G1 QTL ‘Summergrand’ × P1908 Foulongne et al. (2003b)
Flower color G1 B ‘Garfi’ × ‘Nemared’ Jauregui (1998)
Root-knot nematode resistance G2 ‘P.2175’ × ‘GN22’, Claverie et al. (2004),

‘Akame’ × ‘Juseitou’ Yamamoto et al. (2001)
Mi3 ’Lowell’ × ‘Nemared’, Lu et al. (1998),

‘Garfi’ × ‘Nemared’ Bliss et al. (2002)
‘Padre’ × ‘54P455’ Jáuregui (1998)

Ripening time, fruit skin color, G2 QTL (P. ferganensis × ‘IF310828’)BC1 Verde et al. (2002)
soluble-solids content
Double flower G2 Dl ‘NC174RL’ × ‘PI’ Chaparro et al. (1994)
Broomy (or pillar) growth habit G2 Br Various progenies Scorza et al. (2002)
Flesh color around the stone G3 Cs ‘Akame’ × ‘Jusetou’ Yamamoto et al. (2001)
Anther color (yellow/anthocyanic) G3 Ag ‘Texas’ × ‘Earlygold’ Joobeur (1998)
Leaf curl resistance G3 QTL ‘Summergrand’ × P1908 Viruel et al. (1998)
Fruit weight, fruit diameter, G3 QTL ‘Suncrest’ × ‘Bailey’ Abbott et al. (1998)
glucose content
Polycarpel G3 Pcp ‘Padre’ × ‘54P455’ Bliss et al. (2002)
Flower color G3 Fc ‘Akame’ × ‘Jusetou’ Yamamoto et al. (2001)
Blooming time, ripening time, G4 QTL ‘Ferjalou Jalousia®’ × ‘Fantasia’; Etienne et al. (2002)
fruit development period (P. ferganensis × ‘IF310828’)BC1 Verde et al. (2002)
Soluble-solids content, fructose, G4 QTL ‘Ferjalou Jalousia®’ × ‘Fantasia’ Etienne et al. (2002)
glucose G4 F (P. ferganensis × ‘IF310828’)BC1; Verde et al. (2002),

Dettori et al. (2001)
Flesh adhesion ‘Akame’ × ‘Juseitou’ Yamamoto et al. (2001)
(clingstone/freestone)
Flesh texture G4 M ‘Dr. Davis’ × ‘Georgia Belle’ Peace et al. (2005)
(melting/non-melting) and ‘Georgia Belle’⊗

G5 D ‘Ferjalou Jalousia®’ × ‘Fantasia’ Dirlewanger et al. (1998, 1999)
Non-acid fruit Etienne et al. (2002)
Sucrose, malate, titrable acidity, G5 QTL ‘Ferjalou Jalousia®’ × ‘Fantasia’ Etienne et al. (2002)
pH, sucrose
Skin hairiness (nectarine/peach) G5 G ‘Ferjalou Jalousia®’ × ‘Fantasia’; Dirlewanger et al. (1998, 1999)

‘Padre’ × ‘54P455’ Bliss et al. (2002)
Kernel taste (bitter/sweet) G5 Sk ‘Padre’ × ‘54P455’ Bliss et al. (2002)
Ripening time, fruit skin color, G6 QTL (P. ferganensis × ‘IF310828’)BC1 Verde et al. (2002)
soluble-solids content
Plant height (normal/dwarf) G6 Dw ‘Akame’ × ‘Juseitou’ Yamamoto et al. (2001)
Leaf shape (narrow/wide) G6 Nl ‘Akame’ × ‘Juseitou’ Yamamoto et al. (2001)
Male sterility G6 Ps ‘Ferjalou Jalousia®’ × ‘Fantasia’ Dirlewanger et al. (1998)
Powdery mildew resistance G6 QTL ‘Summergrand’ × P1908 Foulongne et al. (2003b)
Leaf curl resistance G6 QTL ‘Summergrand’ × P1908 Viruel et al. (1998)
Fruit shape (flat/round) G6 S∗ ‘Ferjalou Jalousia®’ × ‘Fantasia’ Dirlewanger et al. (1998, 1999)

1 L.G. = Linkage group; G6-G8 genes located close to the translocation breakpoint between these two linkage groups.
2 QTL are included if they have been consistently found (at least in two independent measurements) in the indicated populations.
3One or two genes of nematode resistance with different notations and one QTL with have been described in this linkage group.
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Table 3. (continued)

Characters L.G.1 Symbol2 Populations References

Leaf color (red/yellow) G6–G8 Gr ‘Garfi’ × ‘Nemared’; Jauregui (1998)
‘Akame’ × ‘Juseitou’ Yamamoto et al. (2001)

Fruit skin color G6–G8 Sc ‘Akame’ × ‘Juseitou’ Yamamoto et al. (2001)
Leaf gland G7 E (P. ferganensis × ‘IF310828’)BC1 Dettori et al. (2001)
(reniform/globose/eglandular)
Resistance to mildew G7 QTL (P. ferganensis × ‘IF310828’)BC1 Verde et al. (2002)
Powdery mildew resistance G8 QTL ‘Summergrand’ × P1908 Foulongne et al. (2003b)
Quinase G8 QTL ‘Ferjalou Jalousia®’ × ‘Fantasia’ Etienne et al. (2002)

5.2.4
Comparative Mapping of Peach to Arabidopsis

In order to examine the evolution of the plant genome,
it is extremely valuable to compare structural orga-
nization of relatively similar sized genomes of plants
that have diverged over significant evolutionary time.
Thus, identification of significantly conserved regions
potentially identifies functional chromosomal units.
ThePrunusmapand theA. thalianagenomesequence
have been compared using a set of RFLP markers
mapped in T×E obtained either with probes of dif-
ferent species (mainly Prunus and apple) that had
a high level of sequence conservation with Arabidop-
sis (TBLASTX values lower than 10−15) or with Ara-
bidopsis probes that hybridized well to Prunus DNA
(Dominguez et al. 2003). The position of 227 Prunus
loci (map average density of 2.6 cM/marker) could be
compared to that of 703 Arabidopsis homologous se-
quences. The criterion for declaring a syntenic region
was that three or more homologous markers had to be
located within 1% of the Prunus map distance (6 cM)
and within a 1% of the Arabidopsis genome (1.2 Mb).
In addition, blocks with gaps longer than 1% of either
genome were rejected. With these stringent criteria it
was possible to detect 37 syntenic regions, covering
23% and 17% of the Prunus and Arabidopsis genomes,
respectively. The longest of these regions included 13
markers for a distance of 25 cM in linkage group 2
of Prunus and 16 homologous sequences spanning
5.4 Mb in chromosome 5 of Arabidopsis.

Similarly, higher resolution studies have not sup-
ported extensive preservation of localized genome
structure between the two genomes. The sequence
of peach bacterial artificial chromosomes (BACs)
and BAC ends located in several locations in the
peach genome was compared with that ofArabidopsis.

(Georgi et al. 2003; Sook Jung, personal communica-
tion). Predicted genes in these sequences were ho-
mologous to genes scattered along the five chromo-
somes of Arabidopsis, with an approximate preserva-
tion limit of 2 genes. In summary, macro- and micro-
synteny results concur in detecting a fragmentary
preservation between these two genomes putatively
separated for more than 90 million years.

5.3
Genomics

5.3.1
Construction of the Peach Physical Map
and its Use in Gene Discovery

5.3.1.1
Structural Genomics in Peach
Large-insert libraries and physical maps are impor-
tant tools for map-based cloning of Mendelian loci
(Arondel et al. 1992) and QTL (Frary et al. 2000).
In peach BAC libraries were constructed for ‘Ne-
mared’ rootstock and a haploid of ‘Lovell’. The re-
striction enzymes used were HindIII and Sau3A1,
respectively. The ‘Nemared’ library consists of ap-
proximately 40,000 clones with average inserts ap-
proximately 60 kb in size. The theoretical coverage of
the genome is 8–10 fold but in practice it is approx-
imately 4–5 fold. The haploid Lovell library consists
of approximately 35,000 clones with an approximate
average insert size around 80 kb yielding a theoretical
twelve fold coverage of the genome.

Utilizing these BAC library resources the Inter-
national Rosaceae Genome Consortium (IRGC) is
constructing a complete physical map of the peach
genome anchored on the general Prunus genetic
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Table 4. Current summary data for the peach physical map

Number of clones fingerprinted 21,120
Number of clones used for map contig assembly 18,387
Number of singletons 7,194
Number of clones in contigs 11,193
Number of contigs 1,367
Size of contigs: >200 (chloroplast genome) 1

51–100 clones 1
26–50 clones 27
10–25 clones 3,478
3–9 clones 763
2 clones 228

Number of anchored contigs 149 (2,031 clones)
Physical length of contigs 210–230 Mb
Physical length of the anchored contigs 33 Mb

map (Joobeur et al. 1998) essentially following strate-
gies utilized to develop the Drosophila physical map
and others (Marra et al. 1999; Hoskins et al. 2000;
Tao et al. 2001; Cone et al. 2002). The approach uti-
lizes a combination of hybridizing mapped markers,
BAC fingerprinting and in our case hybridizing ex-
pressed sequence tag (EST) sequences. With the cur-
rent Prunus molecular marker map resources, 210
low-copy mapped RFLP markers, 4,000 peach fruit
ESTs, 80 resistance gene analogs, 200 specific compli-
mentary DNAs (cDNAs) and numerous specific AFLP
markers have been hybridized to the BAC libraries. We
completed BAC fingerprinting approximately 25,000
BACs (15,000 from the ‘Nemared’ library and 5,000
from the haploid ‘Lovell’ library from which approx-
imately 15,000 have been used to construct an ini-
tial physical map (see map specifics in Table 4 and
www.genome.clemson.edu/gdr/).

FPC (V4.7) (Soderlund et al. 2000) was used to
construct an initial physical map of the peach genome
following strategies employed to construct physical
maps inother crops (Marra et al. 1999;Taoet al. 2001).
Initially, the map was constructed at a cut-off from
e−10 to e−12 and tolerance 5 to obtain all high confi-
dence overlapping BAC inserts (contigs). These were
then merged by testing end clones at cut-off values
ranging e−8 – e11. As there was a significant amount of
hybridization data, merges were often achieved based
on common hybridization of BACs in different con-
tigs. However, if only BAC fingerprint data existed, we
noted the merge points for further testing. Presently,
the framework map is composed of ∼1,000 contigs
containing approximately 11,000 clones (see Table 4).

Based on estimates of an average BAC insert size of
60 kb and an average of 60% degree of overlap in con-
tigs, 80% or better of the peach genome should be
high confidence contigs. Currently we are adding in
orphan singleton BACs (approximately 7,000 not in
contigs from initial map construction) and merging
contigs at lower cutoff scores is underway to finalize
the initial peach physical map. Preliminary estimates
from trial merges of contigs suggests that the initial
map will consist of 800–900 contigs with an average
of 12 clones/contig upon completion of the analy-
sis. Since the map includes marker hybridization data
from the general Prunus genetic map, the developing
physical map is directly anchored to the genetic map.
Frominitial analysisof the integratedgenetic/physical
map, there is already evidence for duplication of some
regions of the peach genome. The developing physical
map is located at the Prunus genome website within
the Genome Database for Rosaceae (GDR) at Clem-
son University www.genome.clemson.edu/gdr/. This
database is under ongoing development (for details
see below).

5.3.2
Functional Genomics

5.3.2.1
Peach EST Functional Genomics
Database Development
With the support of the United States Department of
Agriculture, the IRGC initiated a peach EST project
with the central goal of developing the unique ex-
pressed gene set (unigene set) for peach. The cur-
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rent efforts are centered on sequencing 30,000–40,000
cDNAs from libraries of developing fruit, shoot and
seeds. Original expectations were that these would re-
solve into 3,000–4,000 unigenes, however, this num-
ber was obtained from the first 15,000 sequences fin-
ished. The data summary for the completed anal-
ysis of 23,000 cDNAs from developing peach fruit
and almond seed libraries is available at the website
www.genome.clemson.edu/gdr/. Sequencing of devel-
oping shoot and root cDNAs is in progress.

We have also begun mapping peach ESTs on the
developing physical/genetic peach map and have
determined that a significant portion of ESTs (11%)
hybridized on our BAC libraries are placed directly
on genetically mapped anchored contigs in the
physical map. From the current 15,000 sequences,
a peach/almond unigene set has been initiated. This
unigene set consists of 3,842 putative unique genes.

5.3.2.2
Transcript Map
A set of 180 ESTs (11%) have been localized in 86
locations (involving 80 core markers) on the general
Prunus genetic map by common hybridization with
RFLP markers to BACs in the ‘Nemared’ library. This
EST resource will provide candidate genes for marked
regions of the Prunus maps containing traits of inter-
est and will be available on-line through the Prunus
genome database noted above. From the initial fruit
unigene set, we have completed hybridizing in excess
of 4,000 ESTs onto the ‘Nemared’ BAC library. From
this set, 184 ESTs have been directly located on the
general Prunus genome map through common hy-
bridization of mapped molecular markers and ESTs.
BACs have been identified in the ‘Nemared’ library
for nearly 85% of these ESTs. Initial hybridizations of
∼ 100 ESTs, that failed to detect BACs in the ‘Nemared’
library, on the haploid ‘Lovell’ BAC library have been
60% successful. Thus, upon completion of the phys-
ical map, virtually all unigene EST locations will be
identified.

We are also mapping resistance gene analogues
(RGAs) and resistance associated genes (RAGs).
We have completed hybridizing over 80 different
RGA/RAG genes. From these analyses, we have
positioned on the general Prunus map/physical map
approximately 40 RGAs and RAGs placing a number
of these genes in regions known to contain resistance
to powdery mildew, plum pox virus and parasitic
nematodes (Lalli et al. 2005). This map serves as
an initial starting point in the identification and

marking of important disease resistance genes in
peach and other Prunus species.

The structural and functional genomics databases
of peach serve as tools for microsynteny analysis of re-
gions of interest and for gene cloning investigations.
With the integration of sequenced cDNA loci (EST
loci), the physical map database immediately provides
candidate genes located in the genetically marked in-
tervals containing traits of interest. These associations
provide the potential to greatly speed the process of
gene discovery and characterization.

5.3.3
Comparative Physical Mapping of Peach
and Other Model Genome Species

One of the most important contributions of DNA
marker technology to fundamental studies in plant
biology is the ability to rapidly compare genome or-
ganization in closely related as well as diverse species.
Comparativemappingstudiescan identifyhighlycon-
served genome blocks, and regions of lesser conserva-
tion. Identification and molecular dissection of these
evolutionarily conserved regions may uncover genetic
associations that by virtue of their preservation, are
implicated as important for plant development. In ad-
dition, comparativemapping informationcanserveas
a starting point for initial mapping and gene cloning
investigations in poorly characterized species.

The comparative genome sequence organization
of plant genomes has not been examined as exten-
sively as chromosomal mapping level studies, how-
ever, some reports suggest that within families, there
is a significant preservation of gene repertoire and
order among plants with quite different genome sizes
(Dunford et al. 1995; Bennetzen et al. 1996; Chen et al.
1997; Kilian et al. 1997; Aramova et al. 1998). Initial
comparative sequencing studies between Arabidopsis
and rice have revealed some conservation of genomic
structure in defined regions. The data suggests, how-
ever, that genes are being dispersed into and out of re-
gions by mechanisms such as transposition, thus, ob-
scuring microsynteny across great evolutionary dis-
tances (Van Dodeweerd et al. 1999). Future research
is necessary to examine the degree of microsynteny
within and among plant families.

As discussed in the genetic mapping section
above, limited comparative mapping between peach
and other model genome species was done utilizing
molecular marker technologies (Dominguez et al.
2003). This lack of comparative data is also evident at
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the high-resolution level, however, there are several
reports suggesting that specific regions of the peach
genome maintain a very limited microsynteny with
the Arabidopsis genome (Georgi et al. 2002). These
initial studies demonstrate that substantial genome
rearrangements have occurred thus limiting the value
of interfamily comparative genomics as a tool for gene
discovery. However, within Prunus, the high level
of genome preservation at the low-resolution scale
suggests that utilization of the peach genome as an
anchor for identification of important genes in other
species is more promising. Initial high-resolution
comparative studies of peach with plum and apricot
suggest that the peach genome database will serve as
an excellent source of candidate genes for traits in
these species (D. Esmenjaud, INRA Antibes, France
2004, personal communication; M.Badenes, IVIA,
Valencia Spain, 2004, personal communication).

5.4
Peach Tissue Culture
and Transformation

Genetic transformation is a complementary method
of stone fruit improvement that may be particularly
useful to increase biotic and abiotic stress resistance
and fruit quality (Scorza 1991, 2001; Scorza et al.
1995a; Srinivasan et al. 2004). Plant genetic transfor-
mation generally involves the transfer of DNA with
the desired gene(s) into cells, and the regeneration of
transgenic plants from the transformed cells through
in vitro culture.

While genetic transformation is an important tool
for peach improvement, a reliable and reproducible
transformation and regeneration system from so-
matic tissue has yet to be developed. The following
summarizes the reports of work in peach transforma-
tion and regeneration.

Although induction of somatic embryogenesis has
been reported for peach, conversion of these somatic
embryos into plants is far from routine (Scorza 2001).
Raj Bhansali et al. (1990) induced somatic embryos
from 1–3 mm long immature zygotic embryos of
peaches and nectarines. Guohua and Yu (2002) pro-
duced embryogenic callus from immature cotyledons
of four Chinese peach cultivars using a two-step pro-
cess that induced up to 95% of the immature embryos
to produce callus with up to eight somatic embryos
per explant. Up to 75% of these somatic embryos pro-

duced shoots. Scorza et al. (1990a) produced somatic
embryogenic cultures from immature (45–50 days
post bloom) embryos. Following a 6-month culture
period on the media of Hammerschlag et al. (1985)
these cultures became growth regulator independent
(habituated) and continually produced somatic em-
bryos forup to fouryears. These embryogenic cultures
only rarely germinated to produce viable shoots even
when exposed to a number of treatments including
cold treatment and various growth regulators.

Direct adventitious shoot regeneration without
intervening somatic embryo production has been in-
duced from callus derived from immature zygotic
peachembryos (Hammerschlaget al. 1985).Theuseof
immature zygotic explants limit source material avail-
ability to only a few months out of the year. Pooler and
Scorza (1995) demonstrated adventitious shoot pro-
duction from mature cotyledons of peach rootstock
(‘Nemaguard’, ‘Flordaguard’, and ‘Nemared’) seeds
that had been cold-stored at 4 ◦C for 1–3 years.

As with all peach regeneration systems developed
to date successful regeneration is highly genotype
dependent. Most of the preceding reports of regen-
eration from peach have focused on the use of zy-
gotic tissues, and most from immature zygotic em-
bryos. In contrast, Gentile et al. (2002) reported ad-
ventitious shoot regeneration from callus cultures
of young leaves (1–2 mm long) from in vitro-grown
peach shoots in a medium containing 9 µM BA and
0.54 µM NAA. Regeneration rates of 13–28% were ob-
tained using three cultivars from diverse origins and
two seedling selections. Most regeneration was ob-
tained from leaf petioles.

Clearly, it is possible to regenerate peach plants
in vitro. This has been achieved for the most part by
using zygotic tissues. These explant sources have gen-
erally not been favored for tree fruit transformation
because the ability to improve established cultivars is
lost. Each seed-derived genotype is unique and not
a clone of the parent. Transformation of zygotic tis-
sues would be useful for providing unique and useful
genes to breeding programs where they could be in-
corporated into new germplasm. Given the facts that
the generation cycle for peach is approximately three
years [a short cycle when compared with most tree
fruit species (Sherman and Lyrene 1983)]; that most
new peach cultivars are produced by breeding pro-
grams versus the selection of sports of established
cultivars; and that peach varieties are continually re-
placed at a fairly rapid pace (10–12 years or less in
some areas), the efficient transformation of peach
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germplasm can be of great benefit to the genetic im-
provement of this species.

While the production of transgenic Prunus de-
pends largely on the efficiency of regeneration of
plants from transformed cells, the efficiency of trans-
formation itself is also an important factor, one that
takes on an even greater level of importance in the
case of low regeneration rates. Several reviews have
been published on transformation of Prunus species,
including peach (Scorza and Hammerschlag 1992;
Scorza et al. 1995a; Rugini and Gutierrez-Pesce 1999;
Srinivasan and Scorza 1999, 2004). Transformation
efficiency is affected by many factors including the
method of transformation (e.g., A. tumefaciens or bi-
olostics); transformation environment; and the an-
tibiotic selection pressure. In most published reports,
A. tumefaciens has been used to transfer the DNA
plasmids carrying the gene(s) of interest to peach
cells. Neomycin phosphotransferase (NPTII) has been
used as the selectable marker, and in some cases,
β-glucuronidase (GUS) or green fluorescent protein
(GFP) as a visual marker of transformation (Pérez-
Clemente et al. 2004; Padilla et al. 2006).

Although peach is infected by wild A. tumefa-
ciens and crown gall disease is common in Prunus
(ScorzaandSherman1996), transformationefficiency
of peach cells in vitro with disarmed A. tumefaciens
appears to be relatively low (Padilla et al. 2006). Scorza
et al. (1990b) reported the transformation of peach
leaf segments, immature embryos, and long-term
embryonic callus using A. tumefaciens strain A281
carrying plasmid pGA472 with the NPTII selectable
marker. Transformation rates of 5% of immature em-
bryos and up to 64% of leaf segments were observed.
These explant sources did not undergo organogensis,
thus no transgenic shoots were obtained from this
work.

In addition to A. tumefaciens-based transforma-
tion particle bombardment (biolistics) has also been
used to produce stably transformed embryogenic
peach callus (Ye et al. 1994). Embryogenic callus de-
rived from immature embryos was used as the start-
ing material. No regeneration was obtained from
the transformed embryogenic callus produced in this
study. Transient expression tests of biolistic transfor-
mationofembryogeniccallus, embryonicaxes, cotyle-
dons, and immature embryos demonstrated high lev-
els of transformation efficiency. The ability to trans-
form these explants was considered to be significant
because regeneration from these tissues had been pre-
viously reported.

To date, there are only two reports of the develop-
ment of transgenic peach plants. Smigocki and Ham-
merschlag (1991) regenerated transgenic peach plants
from immataure zygotic embryos following transfor-
mation with a shooty mutant strain of A. tumefa-
ciens, tms328::Tn5, which carried an octopine type Ti
plasmid with a functional cytokinin gene and a mu-
tated auxin gene. The use of this cytokinin-producing
shooty-mutant strainofA. tumefaciens mayhavebeen
responsible for the successful regeneration of trans-
formed shoots and also for the altered growth habit
of the transgenic trees (Hammerschlag et al. 1997).
Pérez-Clemente et al. (2004) developed several trans-
genic peach plants by using zygotic embryo explants
from stored seed. Efficiency of plant production was
reported as 3.6 + 1.0%. In both reports of peach trans-
formation few transgenic plants were produced and
an efficient, reproducible transformation system re-
mains to be developed.

Peach is not unique in the Prunus in its recalci-
trance to transformation and regeneration. There are
few reports of the successful production of transgenic
Prunus species. Those species that have been trans-
formed include apricot (P. armeniaca) (Laimer da Ca-
mara Machado et al. 1992), sweet cherry (P. avium)
(Brasileiro et al. 1991), sweet × sour cherry (Dolgov
and Firsov 1999), almond (P. amygdalus) (Miguel and
Oliveira 1999) P. avium × P. pseudocerasus cv. Colt
(Gutierrez-Pesce et al. 1998), P. subhirtella autumno
rosa (da Camara Machado et al. 1995) and P. domes-
tica (European or prune plum) (Mante et al. 1991;
Padilla et al 2003). For most of these species there ex-
ists a single report of the development of only a few
transgenic plants. Although the P. domestica system,
uses mature seeds as the explant source and therefore
is not a clonal system it hasbeenused repeatedly tode-
velop transgenic trees (Mante et al. 1991; Scorza et al.
1994, 1995b; Padilla et al. 2003) and presents what can
be considered a reliable and routine system. It is such
a system in terms of reliability and productivity that
remains a goal for peach and one that will advance the
utilization of gene transfer for peach improvement.

5.5
Future Directions

Significant progress has been made in recent years to
understand the genome organization in peach and
the other closely related species in Rosaceae. For
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Prunus species, the genome organization is highly
collinear and thus genetic resources developed in
one key species will serve as a tool for identifica-
tion, characterization and manipulation of impor-
tant trait controlling genes in the other species. In
this regard, genomic research in peach has signifi-
cantly progressed toward the completion of a physical
map/genetic map resource in peach with significant
numbers of genes identified and mapped through EST
and genomic sequencing efforts. This information is
publicly available in the GDR. Recent reports utilizing
these resources have demonstrated the importance
of this database for identification and study of im-
portant fruit tree genes. Manipulation of these genes
in peach awaits the development of a reliable trans-
formation system for peach, however, recent reports
(Perez-Clemente et al. 2005) suggest that this lies just
around the corner and transformation in companion
species such as Prunus domestica is routine.

Future work in peach will focus on the utiliza-
tion of this gene information and marker systems for
manipulation of important characters in the breed-
ing schemes. The integration of the molecular ge-
netic resources for peach with the traditional breed-
ing programs promises to streamline the breeding
process and provide new and improved varieties for
the global market. Additionally, significant research
efforts remain particularly in the characterization of
many of the fundamental gene systems responsible for
the unique and important life history traits of these
fruit tree species, such as, endodormancy, cold har-
diness, chilling requirements for flower bud break,
growth habit and drupe fruit development. Other tar-
gets of research in peach should include the technolo-
gies of proteomics and metabolomics both areas that
promise to provide much needed information the ge-
netic control of important fruit quality characters as
well as fundamental knowledge on the genetic basis
of fruit tree physiology.
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6.1
Introduction

Pears are among the oldest of the world’s fruit crops.
Cultivar development has been continuous since early
days and now pears are grown in all temperate zones.

6.1.1
Origin and Early Development

Pear species belong to the genus Pyrus, the subfamily
Maloideae (Pomoideae) in the family Rosaceae. There
are 22 widely recognized primary species (Table 1),
which are distributed to Europe, temperate Asia and
mountainous areas of northern Africa (Bell et al.
1996). All species of Pyrus are intercrossable and there
are no major incompatibility barriers to interspecific
hybridization, in spite of the wide geographic distri-
bution of this genus (Westwood and Bjornstad 1971).
So, classification is often difficult, giving similar taxa
designated as different species by some authorities.
This genus is considered to originate in the mountain-
ous area of western and southwestern China during
the Tertiary periods (65–55 million years ago) and
to spread into the east and west. Two sub-centers
(Central Asia, and Eastern China) of diversity for
the genus have been identified (Vavilov 1951). Dis-
persal is believed to have followed the mountain
chains both east and west (Bell et al. 1996). Spe-
ciation probably involved geographic isolation and
adaptation to colder and drier environments (Rub-
zov 1944). Kikuchi (1946) classified Pyrus species into
three groups, small fruited species with two carpels,
large fruited species with five carpels, and their hy-
brids with 3–4 carpels. Small fruited species, called as
Asian pea pears, are used for ornamental purpose or
rootstocks. Of large fruited species with five carpels,
there are three major species, P. communis L. (pear
or European pear), P. bretschneideri Rehd. or P. us-
suriensis Maxim. (Chinese pear) and P. pyrifolia Nakai

(Japanese pear: Nashi), which are commercially cul-
tivated in temperate zone. P. communis is native to
Europe, and is the main commercial species in Eu-
rope, North America, South America, Africa and Aus-
tralia. P. bretschneideri is the main species in northern
and central China. P. pyrifolia is the main species in
Japan, southern and central China and Korea. P. ni-
valis Jacq., the snow pear is cultivated in Europe for
making perry. P. pashia P. Don. is cultivated in north-
ern India, Nepal and southern China. Asian pears
are thought to have been domesticated in prehistoric
times and to have been cultivated in China for at least
3,000 years (Lombard and Westwood 1987). European
pears are thought to have been in Europe since as early
as 1000 BC. Homer referred to a large orchard with
pears in the Odyssey written in between 900 and 800
BC. The earliest written records of Japanese pears date
back to the ancient manuscript of the Emperor Jito in
AD 693 (Kajiura 1994).

6.1.2
Evolution of Pyrus

Maloideae includes the genus Malus (apple). The ba-
sic chromosome number of the Maloideae (x = 17) is
highcompared tootherRosaceae subfamilies (x = 7 to
9), indicating a polyploid origin. Classical biochem-
ical studies on leaf phenolic compounds, isozyme
studies and botanical data support the hypothesis of
an allopolyploid origin (Chevreau et al. 1997). It has
been suggested that the Maloideae arose as an am-
phidiploid of two primitive forms of Rosaceae, cross-
ing a basic chromosome number of 8 and 9 (Sax 1931;
Zielinski and Thompson 1967). These were possibly
primitive members of the Prunoideae (x = 8) and
Spiraeodeae (x = 9). A recent molecular study of
the chloroplast gene rbcL suggests that Spiraeodeae
is the maternal ancestor of Maloideae (Morgan et al.
1994). The majority of cultivated pears are functional
diploids (2n = 34). A few polyploid (triploids and

Genome Mapping and Molecular Breeding in Plants, Volume 4
Fruits and Nuts
C. Kole (Ed.)
© Springer-Verlag Berlin Heidelberg 2007
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Table 1. Pyrus species. Adapted from Bell et al. (1996)

Species Distribution

Asian pea pears
P. calleryana Decne. Central and South China
P. koehnei Schneid. South China, Taiwan
P. fauriei Schneid. Korea
P. dimorphophylla Makino Japan
P. betulaefolia Bunge North-East China

Asian large fruited pears
P. pyrifolia Nakai Japan, Korea, Central China
P. pashia P. Don. Nepal, Pakistan, India, West China
P. hondoensis Nakai et Kikuchi Japan
P. ussuriensis Maxim. North-East China, Korea, Siberia
P. kawakamii Hayata Taiwan, South-East China

West Asia
P. amygdaliformis Vill. Mediterranean Europe
P. elaeagrifolia Pall. Turkey, Russia, South-East Europe
P. salicifolia Pall. Iran, Russia
P. syriaca Boiss. Lebanon, Israel, Iran
P. regelii Rehd. Afghanistan, Russia
P. globra Boiss. Iran

North Africa
P. gharbiana Trab. Morocco
P. longipes Coss. et Dur. Algeria
P. mamorensis Trab. Morocco

Europe
P. communis L. Europe, Turkey
P. nivalis Jacq. Central, South, West Europe
P. cordata Desv. South Europe

tetraploids) cultivars of P. communis and P. bretschnei-
deri exist. Speciation in Pyrus has proceeded with-
out a change in chromosome number (Zielinski and
Thompson 1967). The genome size of P. communis
has been estimated by using flow cytometry (Arumu-
ganathan and Earle 1991). According to their report,
DNA content of P. communis is a 1.03 pg/2C, com-
pared to 0.54 pg/2C in peach and the genome size is
approximately 496 Mbp/haploid nucleus.

6.1.3
Morphology and Growth Habitat

The flowers of Pyrus usually have 5 sepals, 5 petals,
many stamens and 2 to 5 pistils. Asian pea pears
(P. calleryana, P. betulaefolia, P. dimorphophylla etc.)
have 2 pistils, while the major edible species (P. com-

munis, P. bretschneideri and P. pyrifolia) have 5 pistils.
The number of pistils equals the number of carpels.
The Pyrus have mixed flower buds with leaf and flower
initials, an ovary and 2–5 carpels. Carpels are united
with each other at the receptacles and each locule has
2 ovules giving a rise to a maximum seed number
of 10. The Pear fruits have a core with a fleshy pith
and a cortex of flesh. The European pear (P. commu-
nis) combines a buttery juicy texture with good flavor
and aroma. Asian pears are characterized by a crispy
texture and unique flavor. Pears are usually grown as
a compound genetic system, consisting of a fruiting
scion grafted on a rootstock. The rootstock is used for
the control of scion vigor and an adaptation to some
environmental factors such as alkaline soil, flooding,
drought cold hardiness and so on. In some cases of P.
communis cultivation, trees consist of three compo-
nents: the scion, the rootstock and an interstock. The
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interstock is used where the scion and the rootstock
will be incompatible, but will be united each other
with the interstock.

6.1.4
Production and Economic Importance

Pear is the third important temperate fruit species
after grape and apple, with a world production of
17.2 million metric tons (FAO: Food and Agriculture
Organization of the United Nations 2003). Asia pro-
duced the most (11 million t), followed by Europe
(3.1 million t), North and Central America (894,000),
and South America (813,000). The European pear
(P. communis) production is concentrated in five pro-
duction area: Europe, North America, South Amer-
ica, South Africa and Oceania, while Asian pears
(P. bretschneideri or P. pyrifolia) production is con-
centrated in Asia only. Different area produces dif-
ferent pear species. Among countries, China pro-
duced the most (9.4 million t), followed by United
States (837,000 t), Italy (822,000 t), Spain (682,000 t),
Argentina (560,000 t), South Korea (386,000 t), Ger-
many (374,000 t), Japan (366,000 t), Turkey (360,000),
and South Africa (320,000). Increased pear produc-
tion in recent 10 years mainly reflects larger crops in
China, and the production in China exceeds 50% of
the world production. Production in China increased
by 218% between 1990 and 1999. On the basis of the
new plantations of pear trees, extension of world pear
production is estimated (Segre 2002). A strong exten-
sion in pear growing is expected in South America and
China. In many countries, pear production is concen-
trated inareas favorable to its cultivationwhich results
in a good fruit quality. For example, in Italy, more
than 70% of output of pears comes from the lowlands
of Emilio Romagna and Veneto (Sansavini 1990) and
in United States, production is concentrated in the
states of California, Washington, and Oregon (Bell et
al. 1996). The world yield average is stable but declin-
ing a little (Segre 2002). Yields in Asia and Europe are
below the world average while other larger productive
area is high. Pears figure prominently in international
trade. Pear exports in 1998/1999 were 1.5 million met-
ric tons increasing from 1 million metric tons in 1990
(Segre 2002). Main suppliers in Northern Hemisphere
were Italy, Belgium, China and United States, and Ar-
gentina and Chile were leading exporters in Southern
Hemisphere. Pears have many uses: fresh fruits, fruit
juice,perry, syrup, cubes for fruit salads, cannedprod-

ucts and dry fruits. But pears are grown mainly for the
fresh market and for canning industry (Jackson 2003).
About 80% of the total production is destined for fresh
consumption.

6.1.5
Nutritional Composition

On the basis of 100 grams of the edible portion, Euro-
pean pears (P. communis) provide 54 calories of food
energy (Standard Tables of Food Composition, re-
leased by Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan 2003). They consist of
84.9% water, 0.3% protein, 0.1% fat, 14.4% carbohy-
drate, and 1.9% fiber. Of the major mineral nutrients,
there are 140 mg of potassium, 5 mg of calcium, 4 mg
of magnesium, 13 mg of phosphorus, 0.1 mg of iron.
Of vitamin contents, there are 3 mg of ascorbic acid,
and trace amounts of other vitamins. While Japanese
pears (P. pyrifolia) provide 43 calories of food en-
ergy. They consist of 88.0% water, 0.3% protein, 0.1%
fat, 11.3% carbohydrate, and 0.9% fiber. There are
140 mg of potassium, 2 mg of calcium, 5 mg of mag-
nesium, 11 mg of phosphorus, and 3 mg of ascorbic
acid. Asian pears are usually rich in water with less
content of sugars and starch. Asian pears are charac-
terized as a dietary or healthy fruit. The sugar con-
tent in fruit depends on the metabolism of unloaded
sugars. Pears belong to the Rosaceae, in which the
main translocating sugar is sorbitol. Sorbitol is con-
verted into glucose, fructose, and sucrose in fruit.
The composition of these four sugars plays a key role
in sweetness of pear fruits. The differences in sugar
compositionwithinspeciesare reported(Kajiuraet al.
1979). According to their report, Japanese pears tend
to have high sucrose content, on the other hand Chi-
nese pears tend to have low content of sucrose, and
European pears tend to have high fructose and starch
contents.

6.1.6
Breeding Objective

6.1.6.1
Breeding of New Pear Varieties
In pear breeding programs, improvement of fruit
quality is a main objective. A few reports on the in-
heritance of fruit characters have dealt with pears
(Abe et al. 1993; Crane and Lewis 1949; Machida and
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Kozaki 1975, 1976). It is very important, for increas-
ing breeding efficiency, to elucidate the mode of the
main characters which influences fruit quality. These
characters are the fruit weight, flesh firmness, soluble
solid content, organic acid content, ripening time and
storage potential. However, the attributes that con-
stitute good quality in one species may be different
in others. This is the case with European pears and
Asian pears. Attributes that constitute good quality
among European pears are such as soft, buttery tex-
ture, but those among Asian pears are such as juicy,
crisp, cracking flesh. The most distinctive characters
of Asian pears are their maturation on the tree, no
requirement of ripening treatment like off tree, and
smooth round shape. Ideal fruit for Japanese market
should be large (about 10 cm in diameter), regular
and round (Kajiura 1994), although some old culti-
vars bear fruits with various types of shape, ranging
from fusiform and pyriform to oblate. Asian pears
are quite distinct from European pears. In Euro-
pean pears, fruit size is important and should ex-
ceed 7 cm in length and 6 cm in diameter (Bell et al.
1996). A pyriform shape is preferable. Some impor-
tant commercial characters of pear breeding are given
below.

Fruit Appearance Pears are mainly served as fresh
marketing and must have an attractive appearance.
The fruit color is the most important factor for the
fruit appearance. There are wide variations in skin
colors. Yellow, green and red pears attract Chinese
consumers (Wei and Gao 2002). In Japan, yellow-
green and brown russet pears are preferred. In Eu-
ropean pears, the skin should be free of russet and
should resist bruising from handling during harvest,
grading, storing and ripening. The skin color should
be golden yellow and bright with or without a red
blush, although green or greenish-yellow type is also
acceptable (Bell et al. 1996).

Disease Resistance Disease resistance has become
a major concern in the development of new pear va-
rieties. Pears are susceptible to a number of diseases,
mostly caused by fungi. In European pears, resis-
tance against fungal disease such as scab (Venturia
pirina), powdery mildew (Podosphaera leucotricha),
brown spot (Stemphylium vesicarium) and fire blight
(Erwinia amylovova) is the important breeding ob-
jective. Especially, in North America as well as many
regions of Europe, the fire blight is widespread in oc-
currence and devastating effect. In Europe, there is

a reduction in pear growing area, mainly due to the
fire blight (Deckers and Schoofs 2002). The prime
objective of breeding programs in these regions is
improved resistance to fire blight in these affected
area. While in Asian pears, resistance against fungal
disease such as scab (Venturia nasicola), rust (Gym-
nosporangium asaticum) and black spot (Alternaria
alternata Japanese pear pathotype) is receiving atten-
tion. Rust (Gymnosporangium) and scab (Venturia)
are differentiated into different species between Eu-
ropean and Asian pears. Resistance to the black spot
disease has been a major breeding objective in Japan
and Korea.

Resistance to Insects Pear psylla, Cacopsylla pyri-
cola, can be a limiting factor in European pear pro-
duction. It is a native species that produces abundant
honeydew, which allows a sooty fungus to grow on
the fruit surface. The result can be severe tree injury.
Codling moth (Cydia pomonella L.) is also single most
important pest of pears. Resistance to Pear psylla and
codling moth is a major breeding objective in Europe
and North America.

Ripening Period The earlier harvesting often has
a higher commercial value and the orchard scale can
be increased owing to the dispersion of labor. The har-
vest season ranges from July to November in Japan.
Early cultivars make growers more profit in Japan. So
there is a trend for breeding earlier maturing culti-
vars in Japan. This is also the case with China. How-
ever, pear germplasm resources preserved at present
are rich in mid season and late maturing cultivars
while there are insufficient early maturing cultivars
(Cao et al. 2000). Uniformity of maturity and uniform
ripening are important in European pears.

Storage Quality For the world market, it would be
useful to have new pear varieties with long storage
ability, which would allow continuous marketing dur-
ing the whole year. In Japan, before the development
of the railway or road network growing regions were
limited to the suburbs of big cities such as Tokyo and
Osaka (Kajiura 1994). In addition, early-maturing cul-
tivars were limited because of their short shelf lives.
Even though refrigerating systems has been devel-
oped, late- or mid-maturing cultivars are predomi-
nant. So new pear varieties with long storage ability
are needed especially for an international trade.

Growth Habit Most pears are upright and vigorous,
although some variability occurs in breeding popula-
tions. But compact columnar habit is not observed in
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pears, but found in apples. The recent trend in fruit
production is oriented to dwarf and compact trees,
which are easier to prune, chemical spray and har-
vest. A size-controlling rootstock can be a useful tool
to produce trees of reduced height. However, a scion
mutant with changes in growth habit is found. ‘Con-
ference Light’, a mutant of ‘Conference’ shows a re-
duction of 20% in vegetative growth in comparison
with standard ‘Conference’. ‘Abate Light’ also shows
a reduction of 40% in vegetative growth in compari-
son with standard ‘Abate Fetel’ (Deckers and Schoofs
2002).

Self-Compatibility Most pears show self-incompat-
ibility and do not have a parthenocarpic ability. This
self-incompatibility is not a preferable trait for grow-
ers because for good cross pollination and fruit set
growers must plant cultivars together that are mutu-
ally compatible and that flower at the same time. In
commercial production of pears, factors such as cli-
mate conditions at the timeofbloom, effectiveperiods
of pollination, pollination methods are important and
these need to be considered every year because pol-
lination affects the stable pear production. In Asian
countries such as Japan and Korea, artificial pollina-
tion is used for stable production and making perfect
round shaped fruits. It would be very valuable if new
pear varieties have the ability to self-pollinate. This
major obstacle to achieve this objective is a short-
age of germplasm resources with self-compatibility.
A Japanese pear ‘Osanijisseiki’ and a Chinese pear
‘Jinzhuili’, self-comaptibility mutants of ‘Nijisseiki’
and ‘Yali’ respectively, are available for making new
cultivars with self-fertile.

6.1.6.2
Breeding for New Pear Rootstocks
Pear cultivars are still almost exclusively propagated
through budding or grafting onto rootstocks. Success
in pear culture depends on the use of appropriate
rootstocks. The development of improved rootstocks
is an important phase of pear breeding. Currently,
in vitro propagation of pear is easy, but the trees on
their own roots often perform less well than those
propagated on good rootstocks (Wertheim 2002). In
European pear production, pear trees should not be
too vigorous, as they must be suitable for high-density
plantings. So the most important breeding objective
in production of European pears is to develop root-
stocks that induce smaller size and precocity. Clonal
quince (Cydonia oblonga L.) rootstocks, which can
induce different degrees of dwarfing relevant to high-

density planting, are used in areas with not too cold
winters. When pear is grafted on quince the tree may
be reduced by 30 to 60% of the standard size. But, they
are usually sensitive to fire blight and to lime-induced
chlorosis with less iron absorption. Among quince
rootstocks, ‘Quince A’ (‘EMA’), ‘B’ (‘EMB’), and ‘C’
(‘EMC’), were released from East Malling, UK, have
been the leading pear rootstocks planted in Europe
and other regions. Of these three quince rootstocks,
‘EMC’ is dwarfing as a result of the heavy and pre-
cocious cropping that it induces. Recently, promis-
ing rootstocks are the selections ‘QR 193-16’ of the
breeding program of East Malling, ‘Pyrodwarf ’ from
Germany, ‘Pyriam’ from France and Fox series from
Italy (Deckers and Schoofs 2002). It may be better to
develop dwarfing Pyrus rootstocks than to improve
the quince rootstocks, because more grafting incom-
patibility is encountered between intergenic than in-
tragenic grafts. However, the frequency developing
dwarf Pyrus rootstocks is low and none of the present
Pyrus clonal selections are easy to propagate. P. com-
munis seedlings, especially of the main commercial
cultivars ‘D’Anjou’, ‘Winter Nelis’ and ‘Bartlett’, are
still widely used although trees on them can be too
vigorous and they are susceptible to fire blight and
pear decline. However, they have very good winter
hardiness, good graft compatibility with scion cul-
tivars and low susceptibility to lime induced iron
chlorosis.

While in Asian pear production, a dwarf rootstock
has not been developed. Japanese pear trees generally
have their vigor controlled by being trained on
a horizontal trellis and therefore developing a dwarf
rootstock has not been a priority. Most widely used
rootstocks are open-pollinated seedlings of semi
wild P. pyrifolia and pea pear, P. dimorphophylla in
Japan. Seedlings of P. betulaefolia strains originating
in northern China should be used where stony pear
(Yuzuhada: physiological disorder causing rough
skin) is a problem. Strains of P. calleryana tolerant
to water logging have been selected in Japan. The
rootstocks used widely for Asian pears in China
are seedlings of P. bretschneideri, P. pyrifolia, P.
betulaefolia and P. calleryana (Wei and Gao 2002).
Since rootstocks used for pear in Japan and China
are all seedlings, which may be from interspecific
or intraspecific hybridization and cannot provide
uniform growth. This sometimes makes pear
management complicated. In the future, uniform
vegetative propagated rootstocks and methods for
careful selections are needed.



162 A. Itai

6.2
Construction of Genetic Maps

Linkage maps and molecular markers would be use-
ful in traditional crossbreeding programs for peren-
nial crops such as fruit tree species. However, genetic
studies in pear, as in many fruit trees, have been rare.
There is little information on genetic linkage maps,
and development of molecular markers on pears de-
spite many researches on apple mapping and molecu-
lar markers. The long juvenile periods, the space nec-
essary to manage large number of progenies and the
high level of heterozygosity due to a gametophytic in-
compatibility have limited inheritance studies to a few
morphological characters (Chevreau et al. 1997).

6.2.1
Development of Molecular Markers

6.2.1.1
Isozymes
The first report on the use of isozymes in pears was
in 1980 by Santamour and Demuth to identify six
ornamental cultivars of P. calleryana by peroxidase
patterns. Peroxidase diversity has also been studied
on several species of Pyrus (Menendez and Daley
1986) and on 172 cultivars of P. pyrifolia (Jang et al.
1991, 1992). Isozymes’ variability of several enzymes
in pollen was reported by Cerezo and Socias y Com-
pany (1989). However, these approaches are used for
cultivar identification and in a desire to differentiate
genetic sports. Chevreau et al. (1997) examined the
inheritance and linkage of isozyme loci in P. commu-
nis varieties. They analyzed the polymorphisms of 11
enzymes (AAT: Aspartate aminitransferase, ENP: En-
dopeptidase, EST: esterase, LAP: Leucine aminopep-
tidase, PRX: Peroxidase, SOD: Superoxide dismutase,
ADH:Alcoholdehydrogenase,DIA:Diaphorase, PGD:
6-Phosphogluconate dehydrogenase, PGI: Phospho-
glucoisomerase, PGM: Phosphoglucomutase) in 11
progenies from controlled crosses. According to their
report, 22 loci were identified and segregation was
scored for 20 loci. Three pairs of duplicated loci form-
ing intergenic hybrid bands were detected and these
were found to correspond to equivalent duplicated
genes inapple.They identified49activeallelesandone
null allele and revealed three linkage groups, which
could all be related to existing groups on the apple
map. Conservation of isozyme patterns, duplicated
genes and linkage groups indicates a high degree of

synteny between apple and pear. But no linkage map
for pears was constructed based on the information
of isozyme analysis.

6.2.1.2
DNA-Based Markers
RAPD RAPD has been widely used on pear ge-
netic studies because RAPD has the advantages of
being readily employed, requiring small amounts
of genomic DNA. RAPD markers have been suc-
cessfully used for identification and genetic rela-
tionships of pear. Oliveira et al. (1999) investigated
molecular characterization and phenetic similari-
ties between several cultivars of P. communis and
P. pyrifolia and several wild species by RAPD mark-
ers. A total of 118 Pyrus spp. and cultivars native
mainly to east Asia were analyzed by RAPD mark-
ers to evaluate genetic variation and relationships
among the accessions (Teng et al. 2001, 2002). Ac-
cording to their reports, RAPD markers specific to
specieswere identified, andthegroupingof thespecies
and cultivars by RAPD largely agrees with morpho-
logical taxonomy. RAPD markers have also been
used to identify parentage (Banno et al. 2000). Banno
et al. (1999) also identified an RAPD marker linked
to the gene conferring susceptibility to black spot
disease (Alternaria alternata Japanese pear patho-
type).

AFLP AFLP technology is a powerful tool that com-
bines DNA restriction and PCR amplification. AFLP
has several advantages over the RAPD technique, like
a higher number of loci analyzed and a higher re-
producibility of banding patterns. Monte-Corvo et al.
(2000) investigated the genetic relationships among
39 cultivars including 35 P. communis and 4 P. pyri-
folia cultivars using AFLP and RAPD markers. They
confirmed that AFLP markers were five times more
efficient in detecting polymorphism per reaction. Al-
though some differences can be noticed between the
dendrograms resulting from AFLP and RAPD anal-
yses, both techniques produced similar results. Ya-
mamoto et al. (2002b) also made 184 and 115 poly-
morphic AFLP fragments using 40 primer combina-
tions in the F1 population originating from ‘Bartlett’
and ‘Hosui’, respectively. They reported that the av-
erage number of polymorphic fragments per primer
combination was 4.6 in ‘Bartelett’ and 2.9 in ‘Hosui’.

SSR SSRs are excellent sources of polymorphisms in
eukaryotic genomes. The development of SSRs is la-
bor intensive. However, SSRs have been very useful in
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studying diversity in Pyrus. Yamamoto et al. (2002a)
constructed a genome library enriched with (AG/TC)
sequences from ‘Hosui’ Japanese pear using the mag-
netic beads method. They obtained 85 independent
sequences containing 8–36 microsatellite repeats. Out
of the 85 sequences, 59 contained complete (AG/TC)
repeats. Thirteen primer pairs could successfully am-
plify the target fragments, and showed a high degree
of polymorphisms in the Japanese pear. Kimura et al.
(2002) identified 58 Asian pear accessions from six
Pyrus species using these nine SSR markers with a to-
tal of 133 putative alleles. They obtained a phenogram
based on the SSR genotypes, showing three major
groups corresponding to the Japanese, Chinese and
European groups. Moreover, nine apple SSRs were in-
tergenetically applied to the characterization of 36
pear accessions (Yamamoto et al. 2001). All of the
tested SSR primers derived from apple produced dis-
crete amplified fragments in all pear species and ac-
cessions. The differences in fragment size are mostly
due to the differences in repeat number. A total of 79
alleles were detected from seven SSR loci and thus
pear and apple varieties could be differentiated. This
data show that Pyrus family has a close genetic rela-
tionship with Malus family.

RFLP and Others RFLPs have been used to iden-
tify Japanese pears, including the parentage of 10
cultivars, with two minisatellite probes from human
myoglobin DNA (Teramoto et al. 1994). Similar at-
tempts have been made to distinguish Pyrus species
with RFLPs of chloroplast DNA (Iketani et al. 1998;
Katayama and Uematsu 2003). However, these mark-
ers were used for cultivar identification and investi-
gating genetic relationships among Pyrus species. Itai
et al. (1999) have identified RFLP markers linked to
the locus that determine the rate of ethylene evolu-
tion in ripening fruit of the Japanese pear by using
two probes of 1-aminocyclopropane-1-carboxylate
(ACC) synthase genes in ethylene biosynthetic path-
way. SCARs were developed from RAPDs to evaluate
and identify P. communis andP. pyrifolia cultivars (Lee
et al. 2004). ISSR markers also have been used for
cultivar identification and taxonomic relationships
in pears (Monte-Corvo et al. 2001). Another unique
markers, copia-like retrotransposons have been iden-
tified in pears (Shi et al. 2002). They suggest that the
transposition of retrotransposons take place during
evolution leading to diversification. However, no data
on the inheritance of these markers has yet been re-
ported.

6.2.2
Constructing Linkage Maps

First linkage maps in Pyrus species were developed for
‘Kinchaku’ and ‘Kosui’ Japanese pears using RAPD
markers (Iketani et al. 2001). Black spot and pear
scab are the most severe diseases of Japanese pear.
Only a few cultivars are susceptible to black spot,
on the other hand most cultivars of Japanese pear
are susceptible to pear scab. A survey of P. pyrifolia
germplasm has identified ‘Kinchaku’ as the only culti-
var having resistance. They used the pseudo-testcross
method (Grattapaglia and Sederoff 1994) and con-
structed two separate maps from segregation data of
82 F1 individuals. The reason for using the pseudo-
testcross method is that it is very difficult to make F2

or backcross populations because pears take long pe-
riods to progressing generation and don’t have a self-
pollination nature. The linkage map for ‘Kinchaku’
consisted of 120 loci in 18 linkage groups (LG) span-
ning 768 cM, while that for ‘Kosui’ contained 78 loci
in 22 linkage groups extending over 508 cM. This is
the first report of a linkage map of pear species. The
resistance allele of pear scab (Vn) and the suscepti-
bility allele of black spot were mapped in different
linkage groups in ‘Kinchaku’. However, in both maps
the number of linkage groups do not converge into
a basic chromosome number (x = 17). Therefore, the
total map length is still not sufficient for covering the
complete genome.The lengthof the apple genomewas
reported to be 1,200 cM or a little more (Conner et al.
1997). Pear has the same basic chromosome number
as apple. In addition, the nuclear DNA content of pear
species is estimated 3/4th or 4/5th of that of apple
(Dickson et al. 1992). These two maps are estimated
to cover at least about a half of the total pear genome
(Iketani et al. 2001).

The second linkage maps were reported using 63
F1 individuals obtained from an interspecific cross be-
tween the European pear ‘Bartlett’ and the Japanese
pear ‘Hosui’ by Yamamoto et al. (2002b, 2004). They
constructed maps based on AFLPs, SSRs (from pear,
apple and Prunus), isozymes, and phenotypic traits
(leaf color and S-genotype). The map of ‘Bartlett’
consisted of 256 loci including 178 AFLPs, 76 SSRs
(32 pear, 39 apple, 5 Prunus), one isozyme and a self-
incompatibility locus on 19 linkage groups over a total
length of 1,020 cM (Fig. 1). The average distance be-
tween each pair of loci is 4.0 cM. The size of linkage
groups ranges from 88 cM (LG 4) to 11 cM (LG 18).
The segregation of many markers on LG 14 is largely
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distorted. The self-incompatibility locus (S-locus) is
in the bottom of LG17. While the map of ‘Hosui’ con-
tained 180 loci including 110 AFLPs, 64 SSRs (29 pear,
29 apple, 6 Prunus), two phenotypic traits and four
other markers on 20 linkage groups encompassing
a genetic distance of 995 cM (Fig. 2). Genetic link-
age maps of these cultivars are aligned using 37 co-
dominant markers that show segregating alleles in
both cultivars (Yamamoto et al. 2002b, 2004). They
foundthatof tested80SSRsobtained fromapple,more
than four-fifth could produce discrete PCR bands in
pear. Similar findings were observed in European
pears by another reaserch group (Pierantoni et al.
2004). Yamamoto et al. (2004) reported that 38 apple
SSRmarkers showed39 segregating loci on the linkage
map of ‘Bartlett’, and that 27 SSRs produced 29 loci
on that of ‘Hosui’. Moreover, they considered synteny
between pear and apple linkage maps. Total 36 SSRs
originating from apple were mapped on the genetic
linkage maps of ‘Bartlett’ and apple. Only two SSR loci
were aligned to different linkage groups between pear
and apple. Other 34 apple SSR loci were positioned in
presumably homologous linkage groups of pear. All
pear linkage groups were successfully aligned to the
apple consensus map by at least one apple SSR, in-
dicating that positions and linkages of SSR loci were
well conserved between pear and apple. Their trials
were the first major effort in comparing maps of apple
and pear. Next, more SSRs and molecular markers for
agronomically important characters could be devel-
oped to construct fine linkage maps resulting in useful
for marker assisted selection.

Othermapsweredeveloped for twoEuropeanpear
cultivars ‘Passe Crassane’ and ‘Harrow Sweet’ using
SSRs, MFLPs, AFLPs, RGAs and AFLP-RGAs markers
in 99 F1 individuals (Dondini et al. 2004). The exis-
tence of different levels of susceptibility to fire blight,
one of the most terrible diseases, was distributed in
European pear cultivars. This suggests that it is pos-
sible to identify quantitative trait loci (QTL) related
to resistance in pear germplasm. ‘Passe Crassane’ is
a susceptible cultivar and ‘Hallow Sweet’ is resistant.
The ‘Passe Crassane’ map consists of 155 loci includ-
ing98AFLPs, 37SSrs, 6MFLPs, 4RGAs, and10AFLPs-
RGA for a total length of 912 cM organized in 18 link-
age groups. The average distance between each pair
of loci is 5.8 cM. The size of each linkage group ranges
from 7.0 to 92.9 cM. The ‘Hallow Sweet’ map consists
of 156 loci including 101 AFLPs, 35 SSRs, 3 MFLPs, 3
RGAs and 14 AFLPs-RGA for a total length of 930 cM
organized in 19 linkage groups. The sizes of these

maps are comparable with the report by Yamamoto
et al. (2002b).

6.3
Gene Mapping and QTL Detection

So far, there is only a report on the QTL analysis in
Pyrus (Dondini et al. 2004). The only and the first QTL
mapping involved the fire blight resistance in Euro-
pean pears. Fire blight continues to spread through-
out western, central and southern Europe despite
quarantine measures treated (Jock et al. 2002). The
existence of different levels of susceptibility to fire
blight is distributed in European pear cultivars. Fire
blight resistance in pear is known as a quantitative
trait (Dondini et al. 2002). Dondini et al. (2004) con-
structed two genetic linkage maps of the parental lines
‘Passe Crassane’ (susceptible) and ‘Hallow Sweet’ (re-
sistant) using SSRs, MFLPs, AFLPs, RGAs and AFLP-
RGAs markers and conducted QTL analysis of fire
blight resistance. QTL analysis identified four regions
of ‘HallowSweet’ associated with fire blight resistance,
while no QTLs related to resistance were found in sus-
ceptible ‘Passe Crassane’. This represents a first step
of marker-assisted selection (MAS) approach in pear
breeding programs designed to select new fire blight
resistant genotypes. Moreover, the presence of each
putative QTL of SSR markers makes it possible to
transfer map information to different pear cross pop-
ulations.

6.4
Marker-Assisted Breeding

A long juvenile period and high level of heterozygos-
ity due to a strict gametophytic incompatibility have
limited the parental combinations in pear breeding
programs. Marker-assisted selection (MAS) is con-
sidered to be a powerful tool for increasing selec-
tion efficiency by identifying favorable genetic com-
binations in fruit trees as well as other crops. The
major advantage of MAS is the ability to evaluate
many traits at the seedling stage in fruit trees that
have a long juvenile phase. Especially, MAS in pear
breeding programs can be particularly important for
traits that are difficult to evaluate. However, available
markers for MAS are limited to some extent in Pyrus.
Banno et al. (1999) tested 250 RAPD primers to screen
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a pair of bulked DNA samples derived from open-
pollinated progenies of Japanese pear ‘Osa Nijisseiki’
to identify markers linked to the susceptible A gene
of black spot disease, caused by Alternaria Alternata
Japanese pear pathotype. The CMNB41 primer gener-
ates a 2,350 bp fragment, which is present in the sus-
ceptible bulk, but not in the resistant one. This RAPD
marker, CMNB41/2350, is at a distance of about 3.1 cM
from the susceptible A gene. They found that the fre-
quency of occurrence of the CMNB41/2350 marker
was 96% in susceptible cultivars and progenies of ‘Osa
Nijisseiki’ × ‘Oharabeni’.

Ethylene production by cultivated Japanese pear
fruits varies from 0.1 nl g−1 h−1 to 300 nl g−1 h−1during
fruit ripening, suggesting there are both climacteric
and non-climacteric cultivars. Climacteric-type fruits
exhibit a rapid increase in ethylene production and
have a low storage potential, while non-climacteric
fruits show no detectable ethylene production and
fruit quality maintained for over a month in storage.
Fruit storage potential is closely related to the
maximum level of ethylene production in Japanese
pear. Itai et al. (1999, 2003b) have cloned three
ACC (1-aminocyclopropane-1-carboxylate) synthase
genes (PPACS1, 2, 3), and studied their expression
during fruit ripening. PPACS1 was specifically
expressed in cultivars of high ethylene production,
while PPACS2 was specifically expressed in cultivars
of moderate ethylene production. Moreover, they
have identified RFLP markers linked to the ethylene
evolution rate of ripening fruit using RFLP analysis
with two ACC synthase genes (PPACS1 and PPACS2).
RFLPs were designated as A (2.8 kb of PPACS1)
linked to high levels of ethylene (> 10 nl g−1 h−1)
and B (0.8 kb of PPACS2), linked to moderate levels
of ethylene (0.5 nl g−1 h−1–10 nl g−1 h−1), when the
total DNA was digested by HindIII. These markers
(A and B) are useful for the selection of Japanese
pear cultivars with enhanced post-harvest keeping
ability. These markers were converted to more
convenient and easier PCR-based CAPS markers (Itai
et al. 2003a). Furthermore, linkage analysis of these
two markers were conducted in the F2 populations
derived from self-pollinated ‘OT16’, a F1 of ‘Osa
Nijisseiki’ (a self-compatible mutant of ‘Nijisseiki’)
× ‘Cili’, which revealed that the recombination
frequency between the two markers was 20.8±3.6%.
F2 populations in Pyrus have not been reported so
far because of a strict gametophytic incompatibility.
These are the first populations of self-pollinated F2 in
Pyrus species.

Most pear cultivars have been classified as self-
incompatible. Therefore, the proposition of polliniz-
ers inter-planted in the orchard is a requirement to get
an economic crop from most of the cultivars (Sanzol
and Herrreo 2002). The progression of our under-
standing of incompatibility in Pyrus has accelerated
greatly since the mid-1990s. In Pyrus, gametophytic
self-incompatibility is controlled by a single poly-
morphic gene locus, the S-locus. The S-locus harbors
a multi-allelic gene, which encodes for S-RNase that
blocks incompatible-tube growth through the style
(Ushijimaet al. 1998). In Japanesepear, cDNAsencod-
ing S1- to S9-RNase have been isolated and sequenced
(Sassa et al. 1997; Ishimizu et al. 1998; Takasaki et al.
2004). Based on the nucleotide sequences, Ishimizu
et al. (1999) established a PCR-RFLP (S1- to S7-) sys-
tem for S-genotype assignments in Japanese pear.
Takasaki et al. (2004) modified this system and fi-
nally established the system for discriminating S1-
to S9-allele in Japanese pear. Both S-alleleic constitu-
tion and cross-incompatibility groups have been for
Japanese pear, although the situation contrasts with
the scarce information available in European pear. In
Asian countries, artificial pollination is often used for
stable production, therefore knowing S-genotype of
commercial cultivars is very important thing, in com-
parison with open-pollination in Europe. Recently,
molecular techniques have started to be used for the
identification of S-genotypes in European pears (San-
zol and Herreo 2002; Zuccherelli et al. 2002; Zisovich
et al. 2004). Six S-allele (Sa- to Sh-) was identified
using 10 cultivars by Zuccherelli et al. (2002), four S-
allele (S1- to S4-) was identified using seven cultivars
by Sanzol and Herreo (2002), and seven S-allele (Si- to
So) was identified by Zisovich et al. (2004). Both the
methods and the determination of S-gentypes will fa-
cilitate the stable production.

6.5
Future Scope of Works

Breeding pears is complicated by their long juvenile
phase and complex genetic structure. Pears present
a high level of heterozygosity, therefore a great deal
of segregation must be taken into account for in
breeding populations. Moreover, the lack of mor-
phological markers in pears has been the obstacle
to limit the improvement of selection techniques.
However, approaches to the improvement of pears
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by breeding have changed markedly in recent years,
due to our expansion of knowledge and techniques
on genes and gene function. This trend will be ac-
celerated by the development of biochemical and
molecular markers linked to important horticultural
traits. Pear breeding will be entering a new era of
knowledge acquisition with the start of large scale
genomics programs. We expect pear genomics re-
search programs to deliver a vast amount of data
which will lead to a better understanding of this
crop in terms of its relationship with the environ-
ment and its metabolic pathways. Finally, the in-
creased knowledge provided by genomic studies will
bring new tools to assist the creation of cultivars more
adapted to the future request for stable pear produc-
tion.
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7.1
Introduction

7.1.1
History of the Crop

Under the generic term apricot different species and
one naturally occurring interspecific hybrid are usu-
ally included: Prunus armeniaca L., the common apri-
cot; P. armeniaca var. ansu Komar, the Ansu apri-
cot; Prunus brigantina Vill., the Briancon apricot or
Alpine plum; Prunus holosericea Batal., the Tibetan
apricot; Prunus mandshurica (Maxim.) Koehne, the
Manchurian apricot; Prunus mume (Sieb.) Sieb. et
Zucc., the Japanese apricot; Prunus sibirica L., the
Siberian apricot, and Prunus × dasycarpa Ehrh, the
black or purple apricot, a naturally occurring hybrid
of P. cerasifera Ehrh. and

P. armeniaca L. (for reviews see Mehlenbacher
et al. 1990; Layne et al. 1996; Faust et al. 1998). In addi-
tion, new interspecific hybrids have been recently ob-
tained by artificial cross-pollination. Thus, “plumcot”
is a putative hybrid between diploid plums (Prunus
salicina Lindl.) and apricots (P. armeniaca L.) and
“pluot” and “aprium” are complex hybrids consid-
ered to result from interspecific crosses of plums and
apricots with subsequent backcrossing to plum (plu-
ots) or to apricot (apriums) (Manganaris et al. 1999a;
Ahmad et al. 2004). All apricot species are interfer-
tile diploid species with eight pairs of chromosomes
(2n = 16). In this review, we will pay attention to
two cultivated species, P. armeniaca, the common or
European apricot, and P. mume, the Japanese apricot.

Most cultivated apricots belong to the species
Prunus armeniaca that originated in Central Asia
where it has been cultivated for millennia and from
where it was later disseminated both east and west-
ward. Vavilov proposed three centers of origin: the
Chinese Center (mountains of northeastern, central

and western China), the Central Asian Center (moun-
tains of Tien-Shan, Hindukush to Kashmir), and the
Near-Eastern Center (mountains west of the Caspian
Sea including the Caucasus and mountains of Georgia,
Azerbaidjan, Armenia, Turkey and Northern Iran),
the latter being a secondary center of diversifica-
tion (Vavilov 1992). Bailey and Hough (1975) also
suggested a North Chinese group (Siberian apricot
and Manchurian apricot) and an East Chinese group
(Ansu apricot).

According to Layne et al. (1996), the common
apricot can be classified into six main ecogeographi-
cal groups: Central Asian, East Chinese, North Chi-
nese, Dzhungar-Zailij, Irano-Caucasian, and Euro-
pean. Nevertheless, this classification is becoming
complicated due to the introduction of new cultivars
derived from crosses between genotypes of the dif-
ferent groups (Faust et al. 1998). The Central Asian
group is the oldest and more diverse; most of the
apricots belonging to this group are self-incompatible
and show high chilling requirements. The Dzhungar-
Zailij group includes mostly self-incompatible small-
fruited cultivars. The Irano-Caucasian group includes
mostly self-incompatible genotypes with low cold re-
quirements from the Caucasian area, Iran, Iraq, North
Africa and some cultivars from Southern Europe. The
European group is the most recent and the least vari-
able, comprising mainly self-compatible genotypes
and includes the commercial cultivars of Europe,
America, South Africa and Australia (for reviews see
Mehlenbacher et al. 1990 and Faust et al. 1998).

Cultivation of P. armeniaca in China was prac-
ticed more than 3,000 years ago and spread through
central Asia. Apricot culture was introduced in the
Mediterranean region from Iran or Armenia around
the first century BC (Zohary and Hopf 1993), although
more recently new introductions were made from the
Middle East, especially into Southern Europe (Faust
et al. 1998). Thus, Spanish cultivars could be derived
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from North African genotypes brought by the Arabs
(Hagen et al. 2002). As a result of trading and com-
merce, apricots were introduced into England and the
United States (Virginia) in the 17th century (Ogawa
and Southwick 1995). Later, apricot was introduced
into California by the Spaniards in 18th century (for
review see Faust et al. 1998).

The Japaneseapricot (PrunusmumeSieb. etZucc.)
originated in Southeast China in warmer and more
humid conditions than P. armeniaca (Mehlenbacher
et al. 1990). It has been cultivated for over 3,000 years
and wild forms can still be found in mountainous ar-
eas. In Japan, Japanese apricot has been planted as or-
namental since ancient times. Later, ancient Japanese
people found that Japanese apricot fruits have medici-
nal properties and the cultivation for fruit production
started and spread across the country.

7.1.2
Botanical Description

P. armeniaca and P. mume are members of the
family Rosaceae, in the genus Prunus L., subgenus
Prunophora Focke and section Armeniaca (Lam.)
Koch (Rehder 1940). Both P. armeniaca and P. mume
are diploid (2n = 16). P. armeniaca has a small
genome (5.9 × 108 bp) that is about twice the size of
Arabidopsis thaliana and between that of two other
important diploid species in Prunus with n = 16 such
as peach (5.4 × 108 bp) and cherry (6.8 × 108 bp)
(Arumuganathan and Earle 1991).

The common apricot grows in geographically di-
verse areas ranging from the cold winters of Siberia to
the subtropical climate of North Africa and from the
deserts of Central Asia to the humid areas of Japan
and eastern China. However, commercial production
areas are still very limited (Mehlenbacher et al. 1990).
Some apricot cultivars are particularly prone to irreg-
ular productions that have been associated to the nar-
row adaptability range of the species. Indeed, while
in other fruit tree species a few cultivars are grown
all around the world, in apricot each cultivar is usu-
ally restricted to a particular geographical area with
certain ecological conditions (Layne et al. 1996) and
where apricot culture is most successful is in mild,
Mediterranean climates. Rainfall and high humidity
during the growing season, particularly at bloom or
harvest, is a serious limitation due to fungal diseases,
which can kill the flowers and shoots or rot the fruits
(Ogawa and Southwick 1995).

Common apricots are small to medium sized
spread trees capable of reaching 14 m in their na-
tive range. The one-year-old wood and spurs are thin,
twiggy, and shorter lived than those of other Prunus.
Leaves are elliptic to cordate and have serrate mar-
gins and long, red-purple petioles. Apricots produce
perfect, perigynous, white to pinkish flowers borne
singly or doubly at a node, with five sepals and petals
and about 30 stamens, all of which emanate from the
hypanthium or floral cup, and one pistil with a sin-
gle carpel. In apricot, as in other Prunus species,
two ovules are present in the flower although usu-
ally only one seed is produced (Rodrigo and Herrero
2002). Several cases of pollen sterility have been de-
scribed and, although most commercial cultivars are
self-fertile, self-incompatible cultivars exist (Schultz
1948). Floral buds are initiated in late spring or sum-
mer. The chilling required to initiate flowering (below
7 ◦C) ranges from 300 to 1,200 h. The heat require-
ment following chilling is very short, causing apri-
cots to bloom early in most locations. The blooming
period lasts one to two weeks in early spring. Dor-
mant trees tolerate winter low temperatures, but early
emergence from dormancy results in freeze injury to
blossoms and even death of trees in some growing ar-
eas where late freezes occur. Thus, apricot is prone to
frost injury due to the early bloom habit and, subse-
quently, the production area is limited by the danger
of spring frost (Mehlenbacher et al. 1990; Layne et al.
1996).

The fruit of the apricot is a drupe consisting of
a stony endocarp surrounding the seed, a fleshy meso-
carp, and an exocarp (fruit skin). Fruits of the com-
mon apricot can be freestone or clingstone with round
to oval shape and glabrous to pubescent fruit skin.
Fruit flesh can be sweet or sour and flesh color is
mostly orange, but a few white-fleshed cultivars exist
(Layne et al. 1996). Fruits are climacteric and require
3–6 months for development, depending on cultivar
(Jackson and Coombe 1966). Ripe fruits are soft to
touch and highly susceptible to decay-causing organ-
isms (Ogawa and Southwick 1995).

The Japanese apricot is a deciduous tree of large
stature, occasionally reaching almost 10 meters in
height. The type of petals is variable depending on
the cultivar. Petals are either single or multiple, white,
pink or red. Flowers consist of one pistil including
two ovules and more than 50 stamens. Some cultivars
show male-sterility or self-incompatibility. Fruit size
is also variable from 5 to 50 g depending on cultivars.
The fruits are clingstone and smaller than European
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Table 1. FAO: Apricot production (t) (%), area (ha) (%), yield (t/ha). Average data from 2000
to 2004. (Faostat 2005)

Country Production (%) Area (%) Yield

World 2,595,871 (100) 395,250 (100) 6.57
Turkey 448,800 (17) 63,665 (16) 7.05
Iran 278,664 (11) 30,929 (8) 9.01
Italy 182,570 (7) 16,044 (4) 11.48
France 138,548 (5) 15,431 (4) 9.01
Spain 132,893 (5) 22,630 (6) 5.87
Pakistan 130,113 (5) 12,985 (3) 10.02
Morocco 101,200 (4) 13,056 (3) 7.74
Syria 89,340 (3) 12,549 (3) 7.11
Ukraine 84,862 (3) 10,740 (3) 8.01
USA 82,274 (3) 7,645 (2) 10.76
China 81,873 (3) 17,680 (4) 4.65
Greece 72,389 (3) 4,700 (1) 15.40
Russia 70,400 (3) 19,400 (5) 3.63
Egypt 69,714 (3) 5,620 (1) 12.41
Algeria 67,562 (3) 25,378 (6) 2.66
South Africa 64,322 (2) 5,960 (2) 10.79

apricots. Since the fruits are sour, the entire produc-
tion is utilized in some processed form (pickles, con-
centrate, liquor, or juice). With the development of
fruit processing techniques, some cultivars with high
quality for pickles have been selected (Horiuchi et al.
1996).

7.1.3
Economic Importance

The common apricot is an edible fruit mainly culti-
vated in Mediterranean climates. Apricot production
is widely distributed and apricots are produced com-
mercially in 60 countries on about 395,000 ha. Total
world production has reached about 2.6 million tons
although a few countries (Turkey, Iran, Italy, France,
Pakistan and Spain) account for over than 50% of that
production (FAOstat 2005). Yields average more than
6 t/ha, ranging from just 2 to over 15 t/ha in some
European countries (Table 1).

Traditionally, apricot has been one of the few tem-
perate fruit trees not affected by overproduction and
often premium prices are reported for both fresh and
processed fruits. However, this crop is challenged by
a number of problems: yields are subjected to yearly
fluctuation mainly due to frosts and low adaptation
of many cultivars, several pests and diseases threaten

the crop, and the spread of yield-efficient but taste-
less cultivars often is causing consumer disaffection
(Bassi 1999).

The variability within apricot species is large.
However, only one or two major cultivars lead most of
the production in each production area. This is partly
responsible for large fluctuations in yield and makes
apricots vulnerable to adverse environmental condi-
tions, diseases and pests (Mehlenbacher et al. 1990).
Thus, more than 80% of the world production is based
on less than 30 cultivars. This situation is changing
in Mediterranean countries where, due to the prob-
lems associated with sharka (caused by the Plum Pox
Virus, PPV), new cultivars from North America and
European breeding programs are being introduced
(Badenes et al. 2003).

In some regions there is an enormous amount of
diversity because trees have been commonly grown
from seed for many centuries. Production from
seedling orchards is still important in countries such
as Turkey, Iran, Iraq, Afghanistan, Pakistan or Syria,
whereas in other countries most of the production
relies on a few clonally propagated cultivars well
adapted to local conditions (Table 2).

Apricots are T- or chip-budded onto rootstocks
usually during summer or fall, although June bud-
ding is practiced occasionally. Apricot seedlings are
the most popular rootstock worldwide. Other root-
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Table 2. Leading apricot cultivars in the world. (Mehlenbacher et al. 1990; Ogawa and Southwick 1995; Bassi 1999)

Country Cultivar

Algeria Canino, Amor Leuch
Australia Hunter, Moonpark, Story, Trevatt, Pannach, Watkins
Canada Goldcot, Goldrich, Harcot, Harglow, Hargrand, Harlayne, Harogem, Veecot, Velvaglo, Vivagold
China Bak-Ta-Sin, Caoxing, Chu-In-Sin, Dahongxing, GulotiLochak, Hongjing zhen, Huax-iandjiexing,

Hvang-Sin, Isko-Dari, Liganmeix-ing, Nan zhoudajiexing, Konak Doraz, Kzil Kumet, Luotao xhuang,
Maj-Ho-Sin, Manti-Rujuk, Shi-Sin, Shoyinhouz, Tulaki,

France Bergeron, Canino, Earlyblush, Fantasme, Goldrich, Hatif Colomer, Helena du Roussillon, Ivresse, Luizet,
Malice, Modesto, Orange Red, Polonais, Rouge de Roussillon, Rouge de Fournes, Tirynthos, Tomcot

Greece Bebeco, Tirynthos, Luizet
Hungary Bergeron, Ceglédi Bìborkajszi, Ceglédi Orìas, Gönci Magyar Kajszi, Magyar Kajszi (Hungarian Best),

Mandula Kajszi
Italy Baracca, Bella di Imola, Boccuccia, Cafona, Canino, Ceccona, Fracasso, Goldrich, Monaco Bello,

Palummella, Portici, Reale di Imola, San Castrese, Tirynthos, Vitillo
Iran Tabarza, Tokbam, Damavand, Malayer, Lasgherdi
Morocco Canino, Amor Leuch
New Zealand CluthaGold, Sundrop, Valleygold
Pakistan Shakarpara
Portugal Bulida, Canino
Romania Callatis, Comandor, Excelsior, Favorit, Litoral, Mamaia, Olimp, Neptun, Saturn
South Africa Bulida, Empress, Imperial, Lady Sun, Palsteyn, Peeka, Royal, Soldonné, Super Gold
Spain Bulida, Canino, Galta Rocha, Mauricio, Moniqui, Palabras, Paviot, Pepitos, Real Fino
Syria Ajamy-Hamoy, Balladi Falik-Huby, Balladi Khashabi, Balladi Maourdi, Canino, Hamani, Hamoy, Klaby,

Malty, Shahmy, Sindyany, Shakrbara, Tadmory, Wazary
Turkey Aprikoz, Cataloglu, Cologlu, Darende, Hacihaliloglu, Hasanbey, Kabaasi, Sekerpare, Soganci,

Tokaloglu, Yegen
Ukraine Krasnoschekii, Krasnoshchekii Pozdnii, Krasnyi Partizan, Nikitskii
USA Blenheim (Royal), Castelbrite, Katy, Modesto, Patterson, Tilton

stocks include peach seedlings, Myrobalan (Prunus
cerasifera) cuttings or seedlings and Prunus insititia
rooted suckers (for a review see Crossa-Raynaud and
Audergon 1987).

There are many different uses of apricots. It is
enjoyed as fresh fruit, but a large portion of the
worldwide production is preserved primarily by dry-
ing (Faust et al. 1998). All fruits for the fresh market
are hand-harvested. Mechanical trunk shakers and
catching frames used for processed fruits may in-
crease trunk injuries and incidence of canker dis-
eases. Apricots are also utilized as canned, dried,
frozen, and baby food. Other products include wine,
brandy, jam, and nectar. Ground apricot pits are used
to clean jet engines, and the kernel oil is used for
soaps and perfume (Ogawa and Southwick 1995). In
some Asian regions, apricots used for edible seed
and for seed oil are more important than apri-
cots grown for fruit (Bailey and Hough 1975; Layne

et al. 1996). Seeds of Central Asian and Mediter-
ranean apricots are generally “sweet” and, thus, the
seeds can be used as a substitute for almonds, or
crushed for almond-like cooking oil. Mature fruits
for drying purposes are usually held for further
ripening, treated with sulfur dioxide, and placed
on wooden trays in the sun (Ogawa and Southwick
1995).

Apricot quality consists of a balance of sugar and
acidity as well as a strong apricot aroma. Central
Asian and Irano-Caucasian cultivars are lower in acid-
ity than European and Japanese cultivars (Mehlen-
bacher et al. 1990). Fresh fruits have and edible por-
tion of 94% and are an excellent source of Vitamin A
(carotene) and Vitamin C (ascorbic acid) (Wills et al.
1983) (Table 3).

The cultivation of Japanese apricot for fruit
production is limited to Japan, China and Korea
and some other Asian countries. The annual fruit
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Table 3. Nutrient composition of apricot fruit. (Wills et al.
1983)

Component Unit Range

Water g/100g 85.3–85.6
Protein g/100g 0.7–0.9
Dietary fiber g/100g 2.0–3.0
Energy kJ/100g 141–167
Sugars g/100g

Sucrose 4.4–5.1
Glucose 1.1–2.7
Fructose 0.3–0.5

Titratable Acidity Meq H+/100g 17.5–33.7
Organic Acids Mg/100g 1.5–2.6

Maleic 440–770
Citric 660–2130
Ascorbic 7–16

Carotene Mg/100g 153–617
Thiamin Mg/100g 0.02–0.03
Riboflavin Mg/100g 0.03–0.04
Niacin Mg/100g 1.1–1.4
Potassium mg/100g 320–350
Sodium mg/100g 1–3
Calcium mg/100g 15–16
Magnesium mg/100g 9
Iron mg/100g 0.3
Zinc mg/100g 0.1–0.2

production in Japan is approximately 100,000 tons.
The fruits are not consumed fresh but rather pro-
cessed in different ways to make them palatable.
Most of them are processed and consumed as pickles
(“Ume-boshi”). Japanese apricot fruits have a higher
content of organic acids such as citric acid and
malic acid than other fruits. The pickled fruits have
been reported to aid the digestive system, increase
saliva, and even act as a cure for a hangover. The
flesh of the fruits produces an extract known as
“bainiku-ekisu”. This by-product is the grated,
condensed flesh of the fruit. Recent studies (Chuda
et al. 1999; Utsunomiya et al. 2002) have reported
that “bainiku-ekisu” includes a bioactive substance,
known as mumefral, produced during the fruit
processing, which improves human blood fluidity.
Other uses of Japanese apricot include traditional
medicinal purposes and juices (Yoshida 1994). More
than 300 cultivars have been described being ‘Nanko’,
‘Shirokaga’ and ‘Ryukyo Koume’ the most popular.
The flowers of the Japanese apricot are revered for

their beauty and mume trees have been increasingly
used as ornamentals (Faust et al. 1998) and several
cultivars such as ‘Kankobai’, ‘Kobai’, and ‘Koume’
are grown as early blooming, small landscape
trees.

7.1.4
Breeding Objectives

The main objective of any fruit tree breeding program
is to develop new cultivars with the best quality and in
the most economical way possible. There is a wealth
of diversity in common apricot germplasm, but cul-
tivar improvement is slowed by the high degree of
heterozygosity within the species. Although most of
the production in many countries still comes from
chance seedlings and local cultivars (Bassi 1999), the
main cultivars of many of the producing countries
belong to the European group that shows a narrow
genetic base (Mehlenbacher et al. 1990). The main fac-
tors limiting the expansion of apricot growing areas
include a lack of agronomic and adapted varieties,
a limited market value of most native cultivars and
a poor adaptability of cultivars out of their native area
(Badenes et al. 1998). Thus, although apricot breed-
ing objectives differ depending on the country and on
the main use of the product (dry, fresh or canned),
some selection criteria are common to most apricot
breeding programs (Bailey and Hough 1975; Mehlen-
bacher et al. 1990; Layne et al. 1996; Lespinasse and
Bakry 1999):

– One of the main objectives in most apricot breed-
ing projects is climatic adaptation. Most apricot
cultivars are highly specific in their ecological re-
quirements. Consequently, commercial production
is limited to some locations, where usually one or
two cultivars account for most of the production.
Therefore, there is a need to evaluate apricot culti-
vars in each production area to look for high and
regular production. Depending on the location, this
adaptation involves breeding for late blooming to
avoid frost damages, for early blooming in frost
free areas to develop early maturing cultivars or for
greater midwinter cold hardiness in colder areas.
Local fruit tree adaptation is expressed in terms
of productivity and regularity of production, and
directly related to specific environmental condi-
tions.
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– Fruit quality. Some of the most important charac-
teristics for the fresh market are large size (more
than 60 g), attractive appearance (a bright blush
over bright orange or cream), freestone, firm flesh,
resistance to skin cracking and uniform ripening.
For canning apricots, good orange skin and flesh
colors are preferred as well as uniform medium
size, regular shape, good texture, high sugar con-
tent, small pit and a good balance of acid and
sugar. For drying purposes, high soluble solids are
needed.

– Introduction of self-compatibility in some self-
incompatible interesting cultivars. Although
most apricot cultivars are self-compatible, self-
incompatibility is present in some interesting
cultivars and cultivars used as parents in breeding
programs.

– Disease resistance: important diseases includeapri-
cot chlorotic leaf roll (Mediterranean countries),
bacterial canker caused by Pseudomonas spp., Xan-
thomonas pruni (America and South hemisphere),
Monilia, Gneumonia (Eastern European countries).
A special case is the menace of sharka, caused by
the plum pox virus (PPV) that is causing important
damages in most Mediterranean countries. There
is no treatment to cure virus-infected trees, and
once a tree is infected it serves as a source of
infection for other trees. In countries where the
level of infection is low and infected trees are re-
stricted to limited areas, eradication has allowed
to maintain a low level of infection and, more
rarely, to eliminate the disease. However, eradi-
cation has proven insufficient in most countries
because newly planted healthy trees become in-
fected in a short time. Breeding programs for re-
sistance/tolerance to sharka have been initiated in
France (Audergon 1995), Greece (Karayiannis and
Mainou 1999), Italy (Bassi et al. 1995) and Spain
(Egea et al. 1999; Badenes et al. 2003) and they
are yielding some interesting results (Egea et al.
2005).

Regarding Japanese apricot, its most notable bio-
logical characteristic is self-incompatibility although
self-compatible cultivars are occasionally found.
Some cultivars show also male sterility. Self-sterility
limits fruit set in many locations and may force
growers to plant unprofitable pollinating cultivars.
Other important breeding objectives include in
order of importance: big fruit size (more than 30 g),
tolerance to gumming in fruits by which some fruits

often lose their commercial value, late flowering
which avoids frost damage, early ripening, and
resistance or tolerance to scab and bacterial canker
(H. Yaegaki, personal communication).

7.1.5
Classical Breeding Achievements

A high parent-offspring correlation was detected for
fruit sizeandfleshfirmness, twoof themost important
traits related to fruit quality, in the progeny analysis
of some apricot crosses (Lapins et al. 1957). However,
very little information is available in apricot about
simple associations between morphological traits and
fruit quality. Perez-Gonzales (1992) reported a wide
range of variability among accessions representing
apricot germplasm from Central Mexico for 20 mor-
phological and phenological variables, especially for
those factors associated with yield efficiency. Fruit
weight was correlated with morphological traits such
as tree growth habit, apical and basal diameter of
fruiting spurs, and bud and leaf size. On the other
hand, Badenes et al. (1998) showed a narrow range
of variation among 55 cultivars from Spain, France,
Italy, Greece, Tunisia, and USA for 18 morphological,
phenological and fruit quality traits using principal
component analysis. The only correlation observed
between morphology and phenology was blossom
and budbreak season with internode length. These
results confirm that cultivars of the European group,
the youngest in origin and the source of most of the
commercial cultivars are difficult to sub-group mor-
phologically and have a narrow genetic base (Bailey
and Hough 1975; Layne et al. 1996).

In spite of its lower variability most of the progress
in common apricot breeding has been carried out
through hybridization and selection within the Euro-
pean group. However, a vast amount of mostly unex-
plored genetic variability is available within the other
groups. A limited amount of published information of
Irano-Caucasian cultivars comes from Armenia, Iran,
Turkey, and North Africa. Soviet researchers pub-
lished extensively on Central Asian cultivars and their
hybrids. Information fromPakistan,Afghanistan, and
China is very limited, although these areas are known
to be rich sources of genetic diversity. Thus, informa-
tion on genetic variability in apricot is primarily from
collections where the European group is overrepre-
sented lacking the enormous amount of variability
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present in other groups (for review see Mehlenbacher
et al. 1990 and Layne et al. 1996).

Most of the leading cultivars in the world come
from local cultivars well adapted to one or very few
areas (Bassi 1999). A number of apricot cultivars have
been selected for several interesting traits such as dis-
ease resistance, climatic adaptation, fruit quality and
tree growth habit (Mehlenbacher et al. 1990). Frost
resistance has been also searched in apricots from
wild species such as Prunus sibirica or Prunus mand-
shurica (Dosba 2003) and from native cultivars in
Turkey (Akca and Sen 1999).

Released cultivars have been mainly obtained
from open pollination, selfing, and, more recently,
from controlled crosses (Layne et al. 1996). A num-
ber of apricot cultivars from controlled pollinations
havebeen introduced inArgentina,Australia,Canada,
Czechia, France, Hungary, Romania, Russia, South
Africa, Spain, and the USA. While in most of these
countries the production is still based on local cul-
tivars, in others, like Canada and Romania, most of
the production comes from cultivars developed from
breeding programs specifically tailored for those re-
gions (Bassi 1999).

Thedeterminationof the inheritanceofa fewtraits
of interest as self-compatibility (Burgos et al. 1997)
or male sterility (Burgos and Ledbetter 1994) and to
the identification of sources of tolerance/resistance
to sharka (reviewed in Martinez-Gomez et al. 2000)
have taken place in recent years. The genetic control
of sharka resistance is still not very well known since
contradictory reports have been published. Thus,
the results of Dosba et al. (1991), Moustafa et al.
(2001) and Vilanova et al. (2003a) suggested a two-
loci control of the trait whereas the results of Di-
centa et al. (2000) fit with a monogenic control and
Guillet-Bellanger and Audergon (2001) suggest a con-
trol of the resistance by at least three loci. Fur-
ther studies involving a larger number of individu-
als are needed to clarify the genetics of sharka resis-
tance.

Regarding Japanese apricot, most main commer-
cial cultivars resulted from natural selection carried
out within the original areas of production. Because of
the best quality for “Ume-boshi” processing, ‘Nanko’
is the most important cultivar so far. ‘Nanko’ was se-
lected in Wakayama prefecture where more than half
of total Japanese apricot fruits in Japan are produced.

Conventional breeding is still today the most
important method of obtaining new European and
Japanese apricot cultivars. As with other fruit tree

species, this method is time-consuming and labori-
ous; hence, the development of molecular markers
linked to important biological character is absolutely
required.

7.2
Construction of Genetic Maps

Genetic maps can be a useful tool to locate traits
of interest to perform marker-assisted selection. Al-
though advances in the construction of linkage maps
in Prunus have been mainly obtained in peach, in the
last few years, several genetic maps have been pub-
lished in apricot:

– Hurtado et al. (2002a) developed two apricot maps
composed of RAPD, AFLP, RFLP and SSR markers
with 81 F1 individuals from the cross ‘Goldrich’ ×
‘Valenciano’. A total of 132 markers (33 RAPDs,
82 AFLPs, 4 RFLPs, 13 SSRs) were placed into
eight linkage groups in the ‘Goldrich’ map defin-
ing 511 cM of total map distance with an average
distance between adjacent markers of 3.9 cM. A to-
tal of 80 markers (19 RAPDs, 48 AFLPs, 4 RFLPs,
9 SSRs) were placed into seven linkage groups on
the ‘Valenciano’ map defining 467.2 cM of total map
distance with an average interval of 5.8 cM between
adjacent markers.

– Vilanova et al. (2003a) developed a map composed
of AFLPs and SSRs from an F2 population of 76
individuals from self-pollination of ‘Lito’ (an F1

individual of ‘Stark Early Orange’ × ‘Tyrinthos’).
A total of 209 molecular markers (180 AFLPs and
29 SSRs) were assigned to 11 linkage groups cov-
ering 602 cM of total map distance with an average
distance between adjacent markers is 3.84 cM.

– Lambert et al. (2004) used RFLP and SSR markers,
previously mapped, in an F2 progeny of the inter-
specific cross almond cv Texas × peach cv Early-
gold (Joobeur et al. 1998; Aranzana et al. 2002) to
develop two maps using 142 F1 hybrids from a cross
between the apricot cultivars ‘Polonais’ and ‘Stark
Early Orange’ (Fig. 1); a total of 141 markers were
placed on the map of ‘Stark Early Orange’ with a to-
tal length of 669 cM and 110 markers on the ‘Polon-
ais’ map with a total length of 538 cM. Most mark-
ers present in each linkage group were aligned with
those of the almond cv Texas × peach cv EarlyGold
F2 progeny map that is considered as a saturated
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Fig.1. Genetic maps obtained with the Polonais (P)×Stark Early Orange (S) (P×S) progeny compared to that of Texas×Earlygold
(T×E) almond × peach. (Reproduced by permission of Lambert et al., Theoretical and Applied Genetics 108:1120–1130)
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Fig. 1. (continued)
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Fig. 1. (continued)
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Fig. 1. (continued)
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map (Joobeur et al. 1998; Aranzana et al. 2002). The
results show a high degree of colinearity between
theapricot and thepeachandalmondgenomessug-
gesting a strong homology among Prunus genomes

Regarding Japanese apricot, although no reports of
classical mapping efforts have been published to date,
attempts to generate a first genetic map have been
initiated recently (H. Yaegaki, personal communica-
tion).

7.3
Marker-Assisted Breeding:

7.3.1
Germplasm Screening

The information available on morphological apricot
descriptors includes mainly varieties from the Eu-
ropean group. They are based on a wide range of
characteristics, such as tree vigor and growth habit,
leaf size and shape, productivity, disease resistance
or fruit quality (Crossa-Raynaud 1969; Brooks and
Olmo 1972; Couranjou 1977, Fideghelli and Monas-
tra 1977; Guerriero and Watkins 1984; Perez-Gonzales
1992; Badenes et al. 1998).

More recently, as in other fruit tree species (Wün-
sch and Hormaza 2002), different molecular markers
have been used to fingerprint apricot cultivars and
for genetic diversity studies. Molecular characteriza-
tion of apricot cultivars was initially carried out using
isozymes. Thus, Byrne and Littleton (1989a) studied
isozymes on 69 accessions including European, Cen-
tral Asian, North Chinese apricots and their hybrids,
and found polymorphism at three of the seven ex-
amined enzymes; a few cultivars were uniquely iden-
tified. Battistini and Sansavini (1991) found four en-
zyme systems showing enzymatic polymorphism and
could separate the 50 cultivars studied into 16 groups
on the basis of the zymograms observed. Badenes
et al. (1996) used 10 enzymatic systems, six of which
were polymorphic, and were able to separate 94 apri-
cot accessions in three geographical groups: North
American, Irano-Caucasian and European. Likewise,
Manganaris et al. (1999b) studied the enzyme vari-
ability among 17 apricot cultivars and 56 genotypes
from intraspecific crosses using 20 enzyme systems,
15 of which were polymorphic. These studies with
isozymes were not able to address the genetic diver-
sity of apricot on a larger germplasm basis because of

a lack of representative accessions from more diverse
origins (Badenes et al. 1996; Manganaris et al. 1999b)
or a lack of informative markers (Byrne and Little-
ton 1989a). Identification of interespecific hybrids be-
tween diploid plums and apricots has been also re-
ported using isozymes. Thus, a useful marker was
found for identifying plum × apricot hybrids among
six enzymes (Byrne and Littleton 1989b) and 14 plum
and 12 apricot specific alleles were found as useful
markers for identifying plumcot, pluot and aprium
hybrids (Manganaris et al. 1999b).

Due to the low polymorphism obtained with
isozymes, in the last two decades efforts have been
dedicated to obtain more efficient cultivar identifi-
cation and diversity studies with the use of DNA-
based molecular markers. Shimada et al. (1994) stud-
ied the genetic relationships among 54 Japanese apri-
cot cultivars with 95 RAPD primers and classified
them in seven groups that reflected their origin: 1)
Taiwan mume, 2) Ko-ume, 3) Chuu-ume, 4) Ou-
ume with white flower, 5) Ou-ume with pink flower,
6) Anzu-ume or Bungo-ume, and 7) Sumomo-ume.
RAPDs were also applied to determine the parentage
of Japanese apricot cultivars (Ozaki et al. 1995). Later,
Takeda et al. (1998) investigated the relationships be-
tween 33 common apricot cultivars and two related
species (P. sibirica L. and P. brigantina Vill.) with
18 RAPD primers, clustering the genotypes into two
main groups, cultivars originated in the East (eastern
China and Japan) and cultivars from the West (Eu-
rope, Central Asia and Western China). Mariniello
et al. (2002) could identify 19 out of 25 cultivars ana-
lyzed with 44 RAPD primers.

RFLPs have also been used in apricot for finger-
printing and diversity studies. Thus, 45 different phe-
notypes from 52 apricot (Prunus armeniaca L.) culti-
vars (de Vicente et al. 1998) were identified using 31
selected probes developed in almond. The similarity
matrix obtained from the molecular data was used to
construct a dendrogram that separated the Spanish
apricot cultivars from those from Europe and North
America.

AFLPs have also been used for fingerprinting and
diversity studies in apricot and the results obtained
agree with the known historical movement of apricot
cultivation. Hurtado et al. (2002b) examined 16 culti-
vars with six primer sets obtaining 231 polymorphic
markers that allowed to distinguish all the cultivars
studied. Similarly, Hagen et al. (2002) studied 47 apri-
cot cultivars with five EcoRI-MseI AFLP primer com-
binations revealing 379 polymorphic markers show-
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ing a gradient of decreasing genetic diversity of va-
rieties from the former USSR to Southern Europe.
Panaud et al. (2002) studied 19 genotypes of a Sa-
harian oasis with seven primer combinations pro-
ducing a total of 197 amplification bands, of which
97 were polymorphic allowing the identification of
all the genotypes studied. Similarly, Ricciardi et al.
(2002) studied five apricot cultivars and 34 local Apu-
lian ecotypes with four primer combinations resulting
in 267 polymorphic bands from a total of 409 ampli-
fication fragments allowing the identification of all
the genotypes. Geuna et al. (2003) used five primer
combinations to unequivocally fingerprint 118 acces-
sions resulting in 165 polymorphic fragments. Re-
garding Japanese apricot, recently 14 cultivars from
China and Japan have been characterized with AFLPs
with 12 primer combinations producing a total of 470
amplification bands, of which 284 were polymorphic
allowing the identification of the genotypes studied
and their grouping according to the known origin
(Fang et al. 2005).

More recently, microsatellites have been used for
genotype identification and variability studies in apri-
cot. In a first step, primer pairs developed in other
Prunus, mainly peach, were used. Thus, Hormaza
(2002) identified 48 apricot genotypes with 20 primer
pairs from peach grouping the cultivars according
to their geographical origin and/or known pedi-
gree information. Similar results were obtained by
Zhebentyayeva et al. (2003) with 74 cultivars and 12
primer pairs, Romero et al. (2003) with 40 cultivars
and 11 pairs of primers and Sánchez-Pérez et al.
(2005) with 25 genotypes and 14 primer pairs. Ah-
mad et al. (2004) used 25 SSRs developed in cherry
and three in peach to fingerprint seven apricot, one
plumcot and six pluot cultivars confirming the trans-
ferability of SSRs among Prunus species. SSRs have
also been used for identification of P. mume geno-
types. Thus, Gao et al. (2004) reported the identi-
fication of 24 genotypes from diverse geographical
areas with 14 SSRs derived from different Prunus
species (nine from peach, five from sweet cherry and
one from sour cherry). More recently, SSRs have also
been specifically isolated in apricot. Thus, Lopes et al.
(2002) and Messina et al. (2004) reported the isola-
tion from genomic libraries of 21 and 99 SSRs, re-
spectively, whereas Decroocq et al. (2003) isolated 10
EST SSRs from a leaf apricot cDNA library and Hagen
et al. (2004) developed 24 new loci (13 from genomic
libraries, eight from fruit EST libraries and three from
a leaf cDNA library).

7.3.2
Marker-Assisted Selection
and Gene Identification

The best example of the development of molecu-
lar markers linked to a trait of interest in Japanese
apricot is self-incompatibility. Conventional assess-
ment of self-incompatibility, as determined by pol-
lination and pollen tube growth tests, requires sev-
eral years after the tree reaches the flowering age.
Recent identification of pistil and pollen-S determi-
nants, namely S-RNase and SFB, respectively, enabled
to develop molecular marker for S-haplotypes. Tao
et al. (2002a) and Yaegaki et al. (2001) cloned cDNAs
encoding S-RNases and established molecular typing
system for S-haplotypes using the S-RNase sequence
information. Cloning of cDNAs encoding pollen-S
candidates, SFBs, led to a firm determination of S-
haplotypes because the use of molecular markers for
both pistil and pollen determinants became available
(Yamane et al. 2003). This is very useful especially
when S-RNase genes from different S-haplotypes gave
the same PCR and RFLP bands. In addition, Tao
et al. (2000, 2002b) and Yamane et al. (2003) revealed
unique PCR or hybridization bands derived from S-
RNase or SFB, linked to a mutated S-haplotype con-
ferring self-compatibility in Japanese apricot. Regard-
ing common apricot, the self-incompatibility trait has
been mapped on linkage group G6 using an F2 popu-
lation derived from the self-pollination of an F1 indi-
vidual (‘Lito’) originated from a cross between ‘Stark
Early Orange’ and ‘Tyrinthos’ (Vilanova et al. 2003a)
and, more recently, the putative genes controlling ga-
metophytic self-incompatibility have also been iden-
tified (Romero et al. 2004). Moreover, several research
groups have determined apricot S alleles by PCR anal-
ysis (Halasz et al. 2005; Qi et al. 2005; Vilanova et al.,
2005).

Another important trait for breeding purposes is
resistance to sharka. Hurtado et al. (2002a) mapped
the sharka resistance trait in linkage group 2 using
an F1 population derived from the cross between
‘Goldrich’ and ‘Valenciano’ whereas Vilanova et al.
(2003a) mapped the trait in the G1 linkage group us-
ing an F2 population derived from the self-pollination
of an F1 individual (‘Lito’) originated from a cross
between ‘Stark Early Orange’ and ‘Tyrinthos’. The
conservation of plant disease resistance genes has al-
lowed the screening of apricot to isolate resistance
gene analogs (RGAs) to find markers associated with
resistance genes (Dondini et al. 2004; Soriano et al.
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2005); one putative marker only present in sharka re-
sistant genotypeshasbeen recently reported (Dondini
et al. 2004).

Regarding the study of specific genes, ripening-
related genes are being widely studied in most Prunus
species, including apricot, where fruit is the product
of interest. Thus, a full length ACC-oxidase cDNA
has been isolated from a cDNA library made from
ripe apricot fruits based on sequence conservation
among ACC-oxidases (Mbéguié-A-Mbéguié et al.
1999), a polyphenol oxidase expressed in leaves and
mature fruits and turned off during fruit ripening
has also been isolated from an immature green
fruit cDNA library (Chevalier et al. 1999) and two
expansins have been isolated from a ripe apricot
fruit cDNA library (Mbéguié-A-Mbéguié et al. 2002).
Expressions of ACC synthase and ACC oxidase have
also been studied in Japanese apricot (Mita et al.
1999). As other fruit tree species, apricots contain
some allergenic compounds and the most important
is a protein that belongs to the family of lipid transfer
proteins (LTP) (Pastorello et al. 2000) which is highly
similar to peach and almond LTPs (Conti et al. 2001).

7.4
Future Scope of Works

Conventional apricot breeding has been successful for
the development of new cultivars. New approaches
with biotechnological tools offer the possibility of
speeding up the development of new cultivars with
improved characteristics. Promising results have been
obtained in the development of molecular markers,
fingerprinting and diversity studies although QTL
analysis and gene identification, marker development
and marker-assisted selection for important agro-
nomic traits are strongly required to facilitate apricot
breedingprograms.Althoughgeneticmapsare agreat
advance to locate genes and QTLs, even in saturated
maps, genetic markers are still too far in base pairs
from genes. Physical maps can bridge the gap between
markers and genes. Advances in the development of
a physical map in peach (as a model species for the
Rosaceae) will be very useful for apricot in the near
future (Jung et al. 2004) due to the synteny observed
among Prunus species. Similarly, the construction of
BAC libraries in apricot can help in that direction (Vi-
lanova et al. 2003b). Thus, any attempts for marker
conversion such as EST analysis, saturated map con-

struction and QTL detection (probably increasing the
number of individuals in the progenies and improving
the evaluation of phenotypic traits) or the application
of gene analogs will undoubtedly open the door to
clone and transfer genes of interest.

However, as in most Prunus tree species, the lack
of an efficient transformation system hinders studies
on the gain and loss of function in transgenic experi-
ments. Plant regeneration from somatic seeds of adult
trees is necessary to preserve genetic integrity of apri-
cot cultivarsbut there are just limited reportsof regen-
eration of transgenic apricot plants (Burgos and Al-
burquerque 2003). An efficient transformation system
would allow the introduction of tolerance/resistance
to sharka in adult material following the approaches
used with by Da Câmara Machado et al. (1992) who
regenerated from cotyledons transgenic plants with
the PPV coat protein (PPV-CP).
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8.1
Introduction

The genome composition of the octoploid (2n = 8x =
56), cultivated strawberry, Fragaria ×ananassa, is
among the most complex of any crop species. The
most recently proposed genome composition model
for the octoploid Fragaria species, AAA′A′BBB′B′
(Bringhurst 1990), implies the presence of up to four
distinct subgenomes (A, A′, B, and B′). The genomic
complexity of the octoploid species has prompted at-
tention to diploid relatives, such as Fragaria vesca
(2n = 2x = 14), as model systems for strawberry ge-
netics and genomics (Davis and Yu 1997; Sargent et al.
2004). Previous reviews have summarized the history
of strawberry breeding and genetics (Darrow 1966;
Galletta and Maas 1990; Hancock 1999) and initial
developments in strawberry biotechnology (Hokan-
son and Maas 2001). This review updates the state of
progress in the genetic and genomic characterization
and manipulation of the cultivated strawberry and its
respective diploid model system.

8.1.1
Origin of the Cultivated Strawberry

The genus Fragaria is comprised of 23 species var-
iously distributed throughout the northern hemi-
sphere and also extending southward along the west-
ern coast of South America and to Hawaii. Histori-
cally, several Fragaria species and novel hybrids have
been brought into cultivation in various parts of the
world, including F. chiloensis in South America, and
F. moschata and F. vesca in Europe (Darrow 1966;
Hancock 1999). However, the current economic sig-
nificance of all other Fragaria species combined is in-
significant compared to that of F. ×ananassa. There-
fore, use of the term “cultivated strawberry” in this

review will refer specifically to F. ×ananassa unless
otherwise qualified.

The origin of the cultivated strawberry traces
to the 1700s, when representatives of the octoploids
F. chiloensis and F. virginiana – previously brought
to Europe from South and North America, respec-
tively – were grown in proximity in European horti-
cultural gardens. Cross-pollination produced hybrids
that were quickly recognized for their unique and
desirable combinations of morphological and fruit
characteristics, and were brought into cultivation and
breeding (Hancock 1999). This recent origin makes
F. ×ananassa one of the youngest of contemporary
crop species. The cultivated species’ immediate oc-
toploid progenitors, F. chiloensis and F. virginiana,
may have arisen from a common octoploid ances-
tor (Potter et al. 2000); however, no lineage has been
established connecting the octoploids to any lower
ploidy level. Several diploid species have been sug-
gested as possible ancestors of the octoploid species,
including F. vesca, F. iinumae, F. daltoniana, and oth-
ers (Hancock 1999). The need for a comprehensive
phylogenetic treatment of Fragaria that identifies the
diploid ancestors of the cultivated species is becom-
ing increasingly acute, as researchers begin to develop
F. vesca and perhaps other diploid species as model
systems for strawberry genetics and genomics.

8.1.2
Systematics and Phylogenetics

The strawberry genus, Fragaria, belongs to the fam-
ily Rosaceae, subfamily Rosoideae. Fragaria has been
represented in two molecular phylogenetic studies of
the Rosaceae family (Morgan et al. 1994; Eriksson
et al. 1998), but these broad studies included only
one or two Fragaria species, respectively, and pro-
vided no insight into species relationships within Fra-
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garia. The monophyly of Fragaria is considered to be
well-supported (Potter et al. 2000), but species rela-
tionships within Fragaria have not been adequately
delineated. Molecular phylogenetic resolution within
Fragaria has been limited, in part, by the low lev-
els of variability detected in the nuclear ITS (internal
transcribed spacer of rDNA) and chloroplast DNA
(cpDNA) sequences that have been used for phyloge-
netic analysis (Harrison et al. 1997; Potter et al. 2000).

The Harrison and Potter studies provide an infor-
mative foundation for further, more detailed inves-
tigations of Fragaria phylogenetics. Significantly, the
Potter study draws attention to F. vesca, F. nubicola,
and F. orientalis, as possible progenitors to the octo-
ploids. However, neither study discerned the reticu-
late phylogenetic history expected for the octoploids,
or for hexaploid F. moschata. Of course, uniparentally
inherited cpDNA sequence alone cannot provide evi-
dence of phylogenetic reticulation. However, study of
the biparentally inherited, nuclear ITS sequence has
also failed to provide evidence of reticulate evolution
in the Fragaria octoploids. Although ITS has been
widely used for phylogenetic analysis at the specific
and generic level in angiosperms, concerted evolution
can homogenize ITS regions in allopolyploids, poten-
tially erasing the contribution(s) of all but one diploid
progenitor (Wendel et al. 1995). Perhaps this has been
the case for the ITS region in Fragaria octoploids.

8.1.3
Karyotype

The basic chromosome number in Fragaria is x = 7
(Ichijima1926).TherecognizedFragaria species com-
priseapolyploid series, including twelvediploid (2n =
2x = 14) species, four tetraploids (2n = 4x = 28), one
hexaploid (2n = 6x = 42: F. moschata), and four octo-
ploids (2n = 8x = 56). Synthetic octoploids have been
constructed via controlled, interspecific hybridiza-
tions accompanied by chromosome doubling, in an
effort to broaden the octoploid gene pool available to
strawberry breeders (Evans 1977; Bors 2000). The de-
caploid level has been obtained in controlled crosses
accompanied by chromosome number manipulation
(Scott 1951;AhmadiandBringhurst1992).Decaploids
referred to as Fragaria ×vescana were derived from
crossingF.×ananassa (2n = 56)with tetraploid forms
of F. vesca var. semperflorens (2n = 28) followed by
backcrossing to F. ×ananassa (Bauer 1993). Other
decaploids have been derived from crosses involv-

ing octoploid cultivars and diploids F. vesca or F. nil-
gerrensis (Mochizuki et al. 2002). Many other natural
or synthetic hybrids of various even and odd ploidy
levels have been described (Darrow 1966; Bringhurst
and Gill 1970; Staudt 1999; Staudt et al. 2003), reflect-
ing the broad potential for interspecific hybridization
both within and between ploidy levels in Fragaria.

Chromosomes are quite small in all Fragaria
species, and only minor variation in chromosome
morphology has been described (Ichijima 1926;
Senanayake and Bringhurst 1967; Iwatsubo and
Naruhashi 1989, 1991). Satellites have been observed
on one chromosome pair in five diploid species:
F. vesca, F. iinumae, F. nipponica, F. nubicola, and
F. daltoniana (Iwatsubo and Naruhashi 1989, 1991),
and chromosome morphology, per se, has provided
no basis for differentiating the subgenomes in the
octoploids.

8.1.4
The Strawberry Plant

A detailed description of strawberry morphology and
physiology is provided in Darrow (1966 – Chap. 18).
Strawberries are perennial, herbaceous, low-growing
plants. Strawberries are capable of vegetative propa-
gation via the production of runners (stolons), which
are trailing, above-ground stems that can take root at
their nodes to establish new, clonal daughter plants.
A runnerless mutant form is known in F. vesca. Straw-
berry leaves are generally trifoliate; however, pentafo-
liate leaves occur in the diploid species F. penta-
phylla, and are sometimes seen in other species as
well.

The fleshy red strawberry “fruit” is actually the ex-
panded receptacle of the strawberry flower. The true
fruit of strawberry are the seed-like achenes borne on
the surface of the receptacle. Each achene is derived
from an individual, monocarpelate pistil, and if suc-
cessfully fertilized contains a single seed. Strawberry
flowers typically have five white petals, exceptions in-
cluding higher petal number in some Asian species
(Staudt 1989, 2003, 2005) and pink flowers in certain
novelty varieties (e.g., ‘Pink Panda’). Typically, straw-
berry is a short day plant, flowering in response to
short day lengths and low temperature (Battey et al.
1998). However, day neutral forms have been iden-
tified in octoploid F. virginiana and diploid F. vesca
(Ahmadi et al. 1990; Brown and Wareing 1965; Sakin
et al. 1997). The day neutral (everbearing), or “Sem-
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perflorens” form of Fragaria vesca ssp. vesca is of Eu-
ropean origin, and is often termed the ‘Alpine’ form.

Sex determination in strawberry varies among
species (Hancock 1999). Contemporary cultivars of
F. ×ananassa are hermaphroditic; however, gynodi-
oecy and/or trioecy have been reported in the octo-
ploid species F. chiloensis and F. virginiana (Ahmadi
and Bringhurst 1991; Staudt 1989; Ashman 2003), and
in tetraploid F. orientalis and hexaploid F. moschata
(Staudt 1989). A genetic model was proposed for tri-
oecy in the octoploids involving a sex determination
locus with three alleles (F, H, and M) (Ahmadi and
Bringhurst 1991). According to this model, females
are heterogametic (F/H or F/M), hermaphrodites
may be heterogametic (H/M) or homogametic (H/H),
and males are homogametic (M/M). The diploid
species are reportedly all hermaphroditic, except
for F. vesca ssp. bracteata, in which gynodioecy
also occurs (Ahmadi and Bringhurst 1991). Game-
tophytic self-incompatibility occurs in the diploid
species F. viridis, F. nubicola, F. mandshurica, F. nip-
ponica, F. yezoensis, F. gracilis and F. pentaphylla,
while diploids F. vesca, F. iinumae, F. nilgerrensis, and
F. daltoniana are self-compatible (Staudt 1989; Han-
cock 1999). Self-incompatibility is not known to occur
in the octoploid species.

8.1.5
Breeding

Detailed accounts of the history of strawberry do-
mestication and breeding are to be found in Dar-
row (1966) and Hancock (1999). Before obtaining the
first genotypes of F. ×ananassa in the 1760s, F. vesca
and F. moschata (Hautbois) were cultivated in Eu-
rope. F. viridis was also cultivated but was less impor-
tant than the former two species. In 1764, Duchesne
identified clearly the parentage of the modern, culti-
vated strawberry. This strawberry appeared as a vig-
orous, perfect hermaphrodite displaying fruit a little
smaller than the Chilean and with pineapple aroma.
Duchene suspected a cross between the Scarlet straw-
berry (F. virginiana) as pollen source, and the Frutil-
lar (F. chiloensis) (Darrow 1966). At the same period,
this new species was also reported in England and in
Holland.

The first breeding work on modern strawberries
was conducted in the middle of the 1800s, mainly
in England and in America. In the 1900s and
particularly after World War II, breeding programs

appeared in public institutions. In 1961, the pro-
tection of new plant varieties by an intellectual
property right (International Convention for the
Protection of New Varieties of Plants in Paris,
http://www.upov.int/index.html), allowed private
companies to develop their own breeding programs.
During the twentieth century, the efficiency of
strawberry production and the fruit quality were
drastically improved with the development of supe-
rior production environments and with the breeding
of cultivars specifically adapted to these superior
environments. In this context, the breeders have to
integrate the research in production physiology and
cultural practices in order to optimize their selection
strategies.

The methodology of strawberry breeding mainly
involves pedigree selection, since strawberry is highly
heterozygous as observed in other polyploid species.
Large genetic variability among strawberry progenies
is the major factor for the selection of desirable char-
acters. Traditionally, the best cultivars are crossed and
from their progenies, the best genotypes are selected.
The succession of crosses between the best genotypes
and the selection in the progenies constitute recurrent
breeding associated to pedigree selection in which the
choice of the parents and the choice of the best com-
bination are critical.

Selection for a new cultivar starts with the cross,
and ends with the release of the new cultivar, which
takes about 8–10 years. Usually, the process of the
breeding program is as follows. The first cycle is ob-
tained with controlled crosses among selected parents
chosen for their phenotype values in the considered
location. Since main characters of interest are quanti-
tativeones, thegenetic gain is achievedwith thechoice
of the best genotypes phenotypically selected for their
desirable traits, thenmakingnumerouscrosses topro-
mote the best combination of alleles. Selfing to fix
character is rarely used since inbreeding depression
is observed.However, selfing can reveal genetic poten-
tial of some genotypes to be used further as parents.
The first year of evaluation is performed on the basis
of seedling performance. Approximately, 1–3% of the
genotypes are kept and further evaluations are per-
formed on plots of runner plants. After a few years
of screening on the desirable characters, the selected
genotypes are evaluated in multi-location trials under
commercial conditions. Controlled tests are required
to analyse some characters in the breeding program,
i.e. disease resistance tests or simulation of fruit con-
servation test.
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Although some breeding objectives vary accord-
ing to the area of cultivation, traditional main breed-
ing objectives are the following (Rosati 1993): a pro-
duction of relative large berry size in order to limit
the cost of harvest, a firmer fruit with regular shape
and long shelf life, which is easy to harvest, an in-
crease in the total yield, an improvement in fruit
appearance (color, shape, brightness), and disease
resistances. When cultivars have to be adapted to
specific regions or to specific markets, specific ob-
jectives are included in the breeding programs such
as developing production for processing, time of
ripening (very early or very late ripening). Breed-
ing for good taste and flavor is also an impor-
tant objective to fit the quality market needs. The
evolution of cultural practices leads also to new
objectives such as resistance to powdery mildew
which is more important in greenhouse produc-
tion.

8.1.6
Nutritional Composition

Strawberries present many specific nutritional char-
acteristics known to have health benefits. They are
particularly rich in vitamin C (60 mg per 100 g fresh
fruit corresponding to 75% of the daily need), richer
thanoranges, andcontain ahighamountofpotassium
(180 mg per 100 g of fresh fruit). Besides these essen-
tial nutrients, strawberries contain a high content of
ellagic acid more commonly found in the form of
water-soluble ellagitannins. This phenolic compound
is known as a naturally occurring dietary antimu-
tagen and anticarcinogen (Maas and Galetta 1991;
Clifford and Scalbert 2000). In vitro, strawberry ap-
pears to exert a weaker antioxidant activity as com-
pared to other berries. They are rich in pelargonidin-
3-glucoside, the major strawberry anthocyanin, and
ascorbic acid, both of which are weak antioxidants
(Törrönen and Määttä 2002). However interesting re-
sults have been reported on beneficial effects of straw-
berries in experimental animals (e.g., Joseph et al.
1999).

8.1.7
Economic Importance

Globally, 214,118 Ha of strawberries were cultivated
in 2004, representing a worldwide production of

3,113,840 Mt (FAOSTAT data 2004). A large part of
the cultivated area is located in Europe (63.3% of
the total area), followed by Asia (14.8%) and North
and Central America (13.8%). However, Europe and
North and Central America have a comparable pro-
duction level with 1,164,650 Mt and 1,022,521 Mt.
The USA is the world’s leading strawberry producer
with 840,000 Mt. Spain ranks second (285,600 Mt)
followed by the Republic of Korea, Japan, Mexico,
Italy, the Russian Federation, Turkey, Poland and Ger-
many. During the last ten years, some countries like
Turkey, Morocco and Egypt have strongly increased
their production. Germany (109,824 Mt) and France
(93,591 Mt) are importing a large quantity of straw-
berries whereas Spain and the USA are exporting
a largepartof theirproduction (212,327and94,666 Mt
respectively).

8.2
Genetic Characterization

8.2.1
Genome Composition

The first model of octoploid Fragaria genome
composition – AABBBBCC – was proposed by
Federova (1946). Cytological (meiotic pairing)
evidence also provided the basis for Bringhurst’s
initial, partially differentiated AAA′A′BBBB genome
composition model for the octoploid strawberry
species (Senanayake and Bringhurst 1967). Sub-
sequent genetic evidence, notably the absence of
any indication of polysomic inheritance patterns,
prompted the proposal of the prevailing, fully
differentiated AAA′A′BBB′B′ model (Bringhurst
1990). This last cytological formula implies that
the genome of F. ×ananassa is highly diploidized.
A recent study using CAPS (cleaved amplified
polymorphic sequence) markers detected only
disomic inheritance in F. ×ananassa (Kunihisa
et al. 2005). The diploidization of the wild octoploid
strawberry F. virginiana, one of the parents of the
cultivated species, was also suggested by studying
SSR (single sequence repeat) markers (Ashley et al.
2003). However, a final conclusion regarding the
diploidized status of the octoploïd genome requires
the analyses of markers spread over the whole
genome, as will be further detailed in the linkage
mapping section.



Chapter 8 Strawberry 193

8.2.2
Genome Size

C-value determinations based on flow-cytometric
measurement were reported for one representative
of F. vesca (1 C = 164 Mb), and for two F. ×ananassa
cultivars (1 C = 562 Mb and 1 C = 571 Mb) (Akiyama
et al. 2001), where 1 C is the DNA content of an un-
replicated haploid nucleus. In this study, Arabidop-
sis thaliana was used as a standard, and it was as-
signed a C-value of 125 Mb based on the length of the
Arabidopsis genome sequence (Arabidopsis Genome
Initiative 2000). However, when Bennett et al. (2003)
measured the A. thaliana C value via flow cytometry
(in comparison toaCaenorhabditis elegans standard),
they obtained a value of 157 Mb, which is about 25%
larger than the 125 Mb value determined on the basis
of genome sequencing. Using the A. thaliana flow-
cytometric C-value of 157 Mb as an appropriate stan-
dard for flow-cytometric analysis, the 164 Mb C-value
reported for F. vesca (Akiyama et al. 2001) should be
proportionately corrected upward by 25% to 206 Mb,
and the F. ×ananassa values of 562 Mb and 571 Mb
should be corrected to 708 Mb and 720 Mb, respec-
tively. Notably, if the two corrected octoploid C values
are divided by four to obtain an average C-value for
the “basic” (x = 7) subgenome size in F. ×ananassa,
the resulting values of 177 Mb and 180 Mb, respec-
tively, are less than the corrected 206 Mb size of the
F. vesca genome.

In a similar study using A. thaliana as refer-
ence (1C = 157 Mb), the diploid (F. vesca), hexaploid
(F. moschata) and octoploid (F. ×ananassa) geno-
types displayed genome sizes of 264 Mb, 731 Mb and
884 Mb, respectively (Denoyes-Rothan, unpublished
results). These values, which are corrected in accord
with the reference of Bennett et al. (2003), are slightly
higher than the corrected values of Akiyama et al.
(2001). In both the Akiyama and Denoyes-Rothan
studies, the evident diminution of the size of the oc-
toploid genome relative to the diploid one is sim-
ilar (12% and 16% less than the size expected if
the octoploid genome was four times the size of the
diploid one). This discrepancy prompts speculation
that the genomes originally contributed to the octo-
ploid species by their diploid ancestors were not of
uniform size – some being smaller than the 206 Mb
size of F. vesca. Alternately, the octoploid subgenomes
may have undergone some size reduction since the
origin of the octoploid species. This smaller size
could be due to events which followed the origina-

tion of a polyploid such as loss of DNA segments
(reviewed in Osborn et al. 2003). It is evident that
a comprehensive survey of C-values in the diploid
and polyploid species is needed to provide a basis
for future investigations of genome evolution in Fra-
garia.

8.2.3
Gene Nomenclature

This review provides a useful opportunity to consider
the statusof genenomenclature in strawberry.Nouni-
form nomenclatural guidelines have been established
for strawberry, and very few gene names have been
assigned. Nevertheless, some conflicts and inconsis-
tencies have occurred, drawing attention to the need
for development of a uniform gene nomenclature sys-
tem for strawberry.

The first use of gene names in strawberry was the
assignment of the symbols s, c, and r to the mono-
genic recessive traits, respectively, of perpetual flow-
ering, yellow/white fruit color, and non-runnering, in
F. vesca (Brown and Wareing 1965). In this instance,
the single-letter gene symbols correspond to the dom-
inant, wild type forms of the respective traits: seasonal
flowering (S), colored fruit (C), and runnering (R).
Subsequently, Guttridge (1973) employed the gene
symbol j with reference to the perpetual flowering
trait in F. vesca f. semperflorens cv ‘Baron Solemacher’,
one of the two everbearing varieties previously stud-
ied by Brown and Wareing (1965). Although not ex-
plicitly stated, the symbol j evidently referenced the
dominant, wild type “June bearing” (J) or seasonal
bearing form. More recently, Albani et al. (2004) in-
troduced the symbol SFL (SEASONAL FLOWERING
LOCUS) in relation to the locus governing seasonal
(SFL) versus perpetual (sfl) flowering in F. vesca f.
semperflorens. Again, although not explicitly stated by
the authors (Albani et al. 2004), the chosen gene sym-
bol referenced the dominant, wild type form of the
trait (seasonal flowering). Thus, three different gene
symbols, s, j, and sfl, have already been introduced for
what is probably a single locus conferring the mutant
form, perpetual flowering. This example emphasizes
the need for the establishment of a genetic nomen-
clature committee for strawberry at the earliest avail-
able opportunity. This committee should be charged
with establishing guidelines for gene nomenclature in
strawberry, and for resolving existing nomenclatural
conflicts. Of even greater benefit would be the adop-
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tion of a common nomenclatural system for all of the
species within the Rosaceae family.

8.2.4
Morphological Markers

Few monogenic morphological markers have been
identified in strawberry, in large part because of the
genetic and genomic complexity of the octoploid cul-
tivated species. At the diploid level, a few simply in-
herited traits have been described in the classical liter-
ature (reviewed by Brown and Wareing 1965), but few
genes have been named. Other than the c, s, and r loci
described in the previous paragraph, the only other
named morphological marker at the diploid level is
the arb (arborea) locus conferring a long stemmed
phenotype (Guttridge 1973). At the octoploid level,
very few simply inherited traits have been described
(Scott and Lawrence 1975; Galetta and Maas 1990)
or gene symbols assigned. A series of monogenic,
dominant determinants (Rpf genes) of resistance to
red stele disease (causal organism Phytophthora fra-
gariae var. fragariae) have been described by Van de
Weg (1997), and linkages to molecular markers have
been identified for three of these (Haymes et al. 1997;
Hokanson and Maas 2001). Another dominant gene,
Rca2, conferring resistance to Colletotrichum acuta-
tum (Denoyes-Rothan et al. 2005) has been described.
In contrast, quantitative variation has been assessed
in a plethora of traits and studies in F. ×ananassa
(reviewed in Galletta and Maas 1990). Despite their
major significance to strawberry breeding, quantita-
tive genetic studies that do not include a molecular
or mapping component fall outside the scope of this
review.

8.2.5
Isozymes and Molecular Markers

Hokanson and Maas (2001) carefully summarized ap-
plications of isozymes and the initial phase of molec-
ular marker (RAPD, RFLP, AFLP and first SSRs) devel-
opment in Fragaria. The investigations of PGI (phos-
phoglucoisomerase) isozymes by Bringhurst and co-
workers provided the first evidence that a single
gene could be represented by four distinct loci, all
of which could be expressed, in the octoploid straw-
berry (Arulsekar et al. 1981). RFLP (restriction frag-
ment length polymorphism) markers using probes

developed from Prunus were used for mapping in the
octoploid strawberry (Viruel et al. 2002). Among the
123 probes tested, 27 (22%) revealed polymorphism
whereas 60–75% revealed polymorphism in Prunus,
indicating a low overall level of variability in straw-
berry in the conditions of the study. RFLP markers,
which potentially reveal homologous loci, could be
very useful in the study of synteny between species of
the Rosaceae family.

AFLP (amplified fragment length polymorphism)
markers were utilized exclusively in construction of
the first published octoploid map (Lerceteau-Köhler
et al. 2003). RAPD (randomly amplified polymorphic
DNA) markers were employed in construction of the
first Fragaria linkage map, in F. vesca (Davis and Yu
1997). A remarkable aspect of this mapping study was
the development of a method of identifying codomi-
nant RAPD markers by heteroduplex analysis (Davis
et al. 1995) that resulted in placement of 11 codomi-
nant RAPD markers on the map. Nevertheless, con-
cern about the comparatively poor transferability of
RAPD markers between mapping populations (Sar-
gent et al. 2004), a concern that also applies to AFLP
and other anonymous marker types, has prompted
intensive attention to the development of sequence-
specific, PCR-based markers such as SSR markers for
strawberry.

The high cost of SSR marker development via ge-
nomic library screening – the source of the initial
wave of Fragaria SSRs (Nourse et al. 2002; Ashley et al.
2003; James et al. 2003; Sargent et al. 2003; Cipriani
and Testolin 2004; Hadonou et al. 2004; Lewers et al.
2005; Monfort et al. 2006) – has been drastically re-
duced by the advent of EST (expressed sequence tag)
database mining as a means of discovering SSR loci
within the rapidly growing body of publicly available
cDNA and genomic sequences for strawberry (Lew-
ers et al. 2005; Sargent et al. 2006). Lewers et al. (2005)
showed that SSRs developed from the genomic library
were only slightly superior to GenBank-derived SSRs
in their ability to detect polymorphisms. An antici-
pated advantage of SSRs was their portability at the
intra or inter-generic levels. In Lewers et al. (2005),
most of SSRs from various species of Fragaria am-
plified within the genus Fragaria. Differential pat-
terns of SRR marker transferability from octoploid
to various diploid Fragaria species are reported in
Davis et al. (2006), who also review the general is-
sues relevant to SSR marker transferability within
Fragaria. Preliminary studies on transferability be-
tween genera of the same Rosoideae tribe such as
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Rosa showed that about 30–50% of the microsatellites
amplified. However, this transference was very low
between genera from different tribes such as between
Fragaria and Prunus (Denoyes-Rothan, unpublished
results).

The CAPS technique (Konieczny and Ausubel
1993) has also been explored as a gene-based marker
technology for strawberry (Kunihisa et al. 2003, 2005).
In this method, PCR primers located in exon se-
quences flanking one or more introns are used to
amplify intron-containing sequences, and the amplifi-
cation products are subjected to restriction digestion
with the goal of detecting sequence polymorphisms
that are not readily detectable as intron length poly-
morphisms. This promising method offers the oppor-
tunity to conveniently map genes that do not contain
SSRs.

8.3
Linkage Mapping

Thefirst instancesof genetic linkage tobedescribed in
Fragaria each involve an isozyme marker and a single
gene morphological trait in F. vesca. In a cross be-
tween Alpine F. vesca cultivars ‘Yellow Wonder’ and
‘Baron Solemacher’, the yellow fruit color trait (c lo-
cus)was linked to theSDH(shikimatedehydrogenase)
isozyme locus, with a recombination frequency of
1.1% (Williamson et al. 1995). Analysis of several seg-
regating populations derived from crosses between
non-runnering, ‘Alpine’ cultivars and wild type run-
nering plants detected a linkage (∼18% recombina-
tion frequency) between the non-runnering (r) locus
and the PGI-2 (phosphoglucoseisomerase 2) isozyme
locus (Yu and Davis 1995).

The first Fragaria linkage map was also con-
structed in F. vesca (Davis and Yu 1997). This map
defined the expected number of seven linkage
groups, covered a total map length of 445 cM, and
consisted of 80 markers of which 75 were RAPD
markers. The remaining five markers were the
SDH and PGI-2 isozyme markers, which anchored
linkage groups I and II, respectively, the r locus,
the Adh (alcohol dehydrogenase) gene detected
molecularly as an intron length polymorphism, and
the c locus, which was not segregating in the cross
but was added to the map based upon its known
close linkage to the SDH isozyme locus (Williamson
et al. 1995).

A subsequent diploid linkage map (Sargent et al.
2004), based on the interspecific cross F. vesca ×
F. nubicola (Fv × Fn), consisted of 78 markers and
spanned a map distance of 448 cM, nearly identical to
the 445 cM length of the initial F. vesca map (Davis
and Yu 1997). The Fv × Fn map marked the begin-
ning of a shift toward use of SSR markers for mapping
in strawberry, and contained 68 SSR markers out of
a total of 78 markers mapped. The development of
this map is ongoing, and has been expanded to a 182
marker version by the addition of new microsatellite
loci (Sargent et al. 2006).

The first reported instance of linkage in the oc-
toploid strawberry was that of Haymes et al. (1997),
who used bulked segregant analysis (Michelmore
et al. 1991) to identify seven RAPD markers linked
to the Rpf1 gene for resistance to Phytophthora
fragariae (red stele) resistance in F. ×ananassa.
Two SCAR (sequence characterized amplified re-
gion) markers closely linked in coupling phase
to the Rpf1 gene were subsequently developed
and found to be widely associated with resistance
in a survey of 133 European and North Amer-
ican cultivars and breeding selections (Haymes
et al. 2000).

The first published octoploid map was that of
Lerceteau-Köhler et al. (2003) for F. ×ananassa. This
mapping study employed a two-way pseudo-testcross
strategy, combined with a single dose restriction frag-
ment (SDFR) analysis applied to 789 AFLP markers.
Due to the difficulty of accurately detecting repulsion
phase linkage in cases of polyploids with polysomic
inheritance, as described in Wu et al. (1992) and de-
tailed recently in Qu and Hancock (2001), a two-step
mapping procedure was applied (Grivet et al. 1996;
Fregene et al. 1997). In a first step, markers linked
in coupling phase were mapped into cosegregation
groups and in a second step the data matrix was
inverted to test the repulsion phase between mark-
ers allowing the definition of linkage groups. Sep-
arate female and male maps were constructed, and
had total map lengths of 1,604 cM and 1,496 cM, re-
spectively. The female map consisted of 235 markers
assigned to 30 linkage groups, or an average of 7.8
markers per group (Fig. 1). The male map consisted
of 280 markers assigned to 28 linkage groups, or 10
markers per group. Dividing the total map lengths
by the number of linkage groups yields average link-
age group lengths of 53.5 cM and 53.4 cM for the fe-
male and male maps, respectively, which is slightly
less than the average linkage group lengths of 63.6 cM
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Fig. 2. Comparison of Fragaria vesca and F. ×ananassa linkage groups (LG). The genetic distances are expressed in map distances
(cM) according to Kosambi. Only microsatellites (SSRs) involved in comparisons of linkage groups are indicated (in underlined,
SSR from F. x ananassa and in italic SSR from F. vesca). The other markers (SSRs or AFLP) are indicated by dashes. Connections
between microsatellites located on the four homoeologues LG of F. ×ananassa and on their homologue LG in F. vesca are indicated
by continuous lines. Connections between microsatellites located exclusively on the four homoeologues LG of F. ×ananassa are
indicated by dotted lines

and 64.0 cM calculated, respectively, for the F. vesca
(Davis and Yu 1997) and F. vesca × F. nubicola (Sar-
gent et al. 2004) diploid maps described above, both of
which had about 11 markers per linkage group. How-
ever, since the octoploid map is not fully saturated,
the previous figures might be biased and a direct
comparison between the diploid and the octoploid
maps might be problematic. The analysis of repulsion
phase showed that most of the groups were in cou-
pling/repulsion phase reflecting a disomic behavior.
However, the presence of some large groups display-
ing only single dose markers in coupling phase sug-

gested that the entire genome might not be completely
disomic.

Recently, a comparison between the octoploid
(Lerceteau-Köhler et al. 2003) and the diploid (Sar-
gent et al. 2004, 2006) maps was initiated using mi-
crosatellites (Denoyes-Rothan, unpublished results).
The first step was the construction of an integrated
map in F. ×ananassa. The pattern of conserved link-
ages between F. ×ananassa and F. vesca allows the
assignment of linkage groups of F. ×ananassa as po-
tentially homoeologous and homologous to one link-
age group of F. vesca (Fig. 2).
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8.4
Gene Mapping

In the diploid species, F. vesca, gene mapping has ini-
tially focused on fruit and flowering aspects. A candi-
date gene mapping approach undertaken by Deng and
Davis (2001) discovered an association between the c
(fruit color) locus and the flavanone 3-hydroxylase
(F3H) gene in F. vesca. Molecular markers linked to
the F. vesca seasonal flowering locus were identified by
Albani et al. (2004). Initially, three ISSR (inter simple
sequence repeat) markers (Cekic et al. (2001) linked
to the seasonal flowering locus were identified, and
were thenconverted to sequence-specific SCARmark-
ers (Albani et al. 2004). SCAR2 cosegregated with the
seasonal flowering locus, which was in turn flanked
by SCAR1 (3.0 cM distance) and SCAR3 (1.7 cM dis-
tance). The identification of these and other mark-
ers linked to the flowering locus provides a start-
ing point for positional cloning of this important lo-
cus.

In F. ×ananassa, gene tagging has so far fo-
cused on disease resistances. As previously men-
tioned, RAPD markers and their derived SCAR mark-
ers linked to the Rpf1 gene for resistance to Phytoph-
thora fragariae (red stele) resistance have been iden-
tified in F. ×ananassa (Haymes et al. 1997, 2000). The
development by Haymes of RAPD markers closely
linked to the Rpf3 and Rpf3 red stele resistance
genes has also been reported (Hokanson and Maas

Fig. 3. A genetic map of the chromosome region containing
the Rca2, Colletotrichum acutatum, pathogenicity group 2, re-
sistance gene (Lerceteau-Köhler et al. 2005). The map is based
on 62 F1-individuals from the ‘Capitola’ × ‘Pajaro’ cross. AFLP
markers labeledwithanasterisk (∗)were successfully converted
into SCAR markers

2001). A bulked segregant analysis (BSA) was re-
cently used to identify molecular markers linked to
the Rca2 gene conferring resistance to Colletotrichum
acutatum pathogenicity group 2, which causes an-
thracnose in the octoploid strawberry F. ×ananassa
(Lerceteau-Köhler et al. 2005). Among the four AFLP
markers linked to the resistance gene, two were con-
verted into SCAR markers (STS-Rca2_417 and STS-
Rca2_240) and were located at 0.6 cM and 2.8 cM
from the resistance gene respectively. Studying the
presence of the STS-Rca2_417 marker in 43 cul-
tivars of F. ×ananassa showed that 81.4% of the
resistant/susceptible genotypes were correctly pre-
dicted. All these developed SCARs constitute new
tools for indirect selection criteria of disease resis-
tance genotypes in strawberry breeding programs
(Fig. 3).

A complementary approach to the identification
and mapping of resistance genes is the use of degen-
erate PCR primers targeted to conserved sites in the
NBS (nucleotide binding site) domain of many plant
resistance genes to isolate resistance gene analogs
(RGAs) (Leister et al. 1996; Kanazin et al. 1996; Yu
et al. 1996). Martinez Zamora et al. (2004) have re-
ported the isolation of RGAs from cultivated and wild
strawberries. Seven distinct families of RGAs were
described.

8.5
QTL Detection

Only a few QTL (quantitative trait locus) studies
have been published to date in strawberry. New ap-
proaches such as genetic association have been initi-
ated for studying the relationship between the under-
lying genotype and the observed phenotype. These
studies have their extension in the pedigree approach
(Van de Weg et al. 2005). The first QTLs published on
strawberry concerned fruit quality (Lerceteau-Köhler
et al. 2004) and were detected using a segregating pop-
ulation of 213 individuals of a cross between Capi-
tola and CF1116, two genotypes with many contrast-
ing fruit quality traits. A total of 34 traits involved
in fruit quality were evaluated, including develop-
mental and fruit aspect related traits, texture related
traits, fruit acidity, sugar and ascorbate concentra-
tions. Amino acid concentrations were quantified us-
ing one-dimensional proton NMR spectroscopy. Most
of the traits except the amino acid concentrations
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Fig. 4. QTL clusters for fruit quality traits (mal, malate; anth, anthocyanin; L/D, length/diameter ratio; dia, diameter; L and a,
external skin color parameters; SSC, soluble-solids content) detected on the CF1116 linkage map (Lerceteau-Köhler et al. 2004).
Analyses were conducted on two years data (1 and 2), and on year-adjusted data. The linkage groups M7 and M9 are in the
coupling/repulsion phase. Horizontal bar represents the percentage of phenotypic variation explained by a QTL. Vertical bar
represents the one-LOD support confidence interval

were evaluated during two successive years. A total
of 22 significant QTLs were detected by simple inter-
val mapping (LOD > 3.0) in year 1, four on the female
map and 18 on the male map, whereas 17 were de-
tected in year 2, ten on the female map and seven on
the male map. Only two QTLs could be detected both
years. When removing the year effect, 22 QTLs were
observed, eight on the female and 14 on the male map.
The percentages of phenotypic variance explained by
each QTL ranged from 6.5% to 16.0%. An example of
QTL cluster of fruit quality-related traits is given in
Fig. 4.

QTLs associated with C. acutatum and P. cactorum
resistances were also detected in the same population
(Denoyes-Rothanet al. 2004).Onehundredeightyfive
progeny were inoculated with C. acutatum by dipping
cold stored plants obtained from vegetative multipli-
cation in a conidial suspension adjusted to 2.106 coni-
dia per ml. Cold stored plants of the all progeny were
also inoculated separately by P. cactorum by inserting
anagardiskcontainingmyceliuminto thecrown.Each
inoculation was conducted twice, named experiments
1 and 2. For resistance to C. acutatum-pathogenicity
group 1, five QTLs with LOD scores ranging from 2.0
to 2.8 and spread over three female and two male

groups were mapped. The individual QTL effects (R2)
ranged from 5.8 to 12.2%. No QTLs common to ex-
periments 1 and 2 were detected. For resistance to P.
cactorum, five QTLs with LOD scores ranging from
2.0 to 2.6 and spread over two female and three male
groups were mapped. The individual QTL effects (R2)
ranged from 6.5 to 10.2%. Two QTLs, one on female
group (F19) and one on male group (M2a), were de-
tected in both experiments. No QTL for P. cactorum
resistance overlapped the QTLs for C. acutatum resis-
tance.

In both fruit quality and disease resistance QTL
studies, different putative QTLs were found depend-
ing on the technique, the year or the experiment.
These differences could be attributed to an environ-
ment variation or to a lack of accuracy in the nota-
tion. Therefore, before using QTLs in breeding pro-
grams, it is necessary to know in which conditions the
QTL is expressed. Since there was no QTL for the dif-
ferent studied resistances (C. acutatum-pathogenicity
groups 1 and 2, and P. cactorum resistances), a pyra-
midal strategy as suggested by Hospital and Char-
cosset (1997) should be considered for constructing
a durable resistance to both pathogens in a breeding
scheme.
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8.6
Marker-Assisted Selection

The identification of molecular markers linked to
QTLs, as well as to qualitative trait loci, enhances
the opportunity for use of marker-assisted selection
(MAS) in strawberry. Luby and Shaw (2001) have
specified criteria that can be used to assess whether
MAS will make economic sense in fruit breeding pro-
grams. Among these are the requirements for inex-
pensive marker technologies and for markers that
have highly robust marker-locus association. The ul-
timate test will be whether MAS can provide an eco-
nomical and substantially improved probability of
selecting superior individuals as compared with the
best conventional breeding and evaluation practices
(Luby and Shaw 2001). Already at least one commer-
cial strawberry breeder is utilizing molecular mark-
ers for MAS. RAPD-derived SCAR markers are being
used at Driscoll Strawberry Associates in California
to screen 1,500 – 30,000 seedlings per year for mark-
ers associated with day-neutrality and resistance to
Colletotrichum acutatum (T. Sjulin, personal commu-
nication).

8.7
Development of Genomics Resources

As of July 2005, approximately 7,000 strawberry ge-
nomic and cDNA sequence entries were listed in Gen-
Bank. By April 12, 2006, this number exceeded 20,000.
Although these numbers are small in comparison to
the GenBank entry lists for many crop species, they
represent a dramatic uptrend over the prior 2–3 year
period, before which the number of GenBank en-
tries was well under 1,000. Many thousands of ad-
ditional strawberry EST sequences are in the bioin-
formatics pipeline. DNA microarray technology has
been employed by only one laboratory, resulting in
the identification of genes involved in fruit ripening
and flavor, including genes SAAT (strawberry alcohol
acetyltransferase) (Aharoni et al. 2000), and FaNES1
(F. ×ananassa Nerolidol Synthase1) and related genes
(Aharoni et al. 2004).

Initiation of positional cloning efforts has been
hampered by the general unavailability of high molec-
ular weight genomic libraries for strawberry. BAC
(bacterial artificial chromosome) and fosmid libraries
have been constructed from F. vesca genomic DNA at

the University of Reading and the University of New
Hampshire, respectively, have yet to be described in
peer reviewed publication. However, initial sequenc-
ing of genomic fosmid clones from F. vesca (Davis,
unpublished results) suggests that gene density in
F. vesca is about 1 gene per 6 kb.

8.8
Conclusion and Future Prospects

Despite its genomic complexity, the small size of the
basic Fragaria genome makes the strawberry a fa-
vorable subject for genomics resource development.
The next few years should bring rapid progress in
strawberry genomics in several areas. These areas in-
clude linkage mapping, positional cloning, functional
genomics, and possibly the complete sequencing of
a basic strawberry genome. Much of the genomics
and mapping data being generated for strawberry and
other rosaceous crops is being coordinately assem-
bled and disseminated through the Genome Database
for Rosaceae (GDR). Details are available at the site
http://www.mainlab.clemson.edu/gdr/.

Second generation linkage maps at the diploid and
octoploid levels will be constructed using sequence-
specified, transferable markers such as gene-based
SSRs, CAPS, and other PCR-based marker technolo-
gies. Establishment of robust associations, and ideally
identities, between gene-based markers or candidate
genes and quantitative or qualitative trait loci will
promote the wider evaluation, and potentially adop-
tion, of MAS methods by strawberry breeders. The en-
hanced transferability of gene-basedmarkers, as com-
pared with the anonymous RAPD and AFLP markers
used for construction of the first generation diploid
and octoploid maps, respectively, will greatly facili-
tate map comparison between Fragaria species within
and between ploidy levels. Mapping with gene-based,
codominant markers in the octoploid will enhance
the opportunity to detect polysomic inheritance, if it
exists at all, in the octoploids.

The high gene density evident from preliminary
genomic sequence samples in strawberry favors ef-
forts to positionally clone genes known only by phe-
notype, particularly in the diploid model system.
However, for such efforts to move forward, routine
methods for constructing BAC libraries with inserts
in the∼150 kbrangeareneeded.Theprimaryobstacle
here is the isolation in large quantities of high qual-
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ity, high molecular weight DNA, which has proven
to be a particular problem in strawberry. Efforts to
overcome this obstacle are in progress.

EST resource development for strawberry still
lags far behind that of many other fruit crops, in-
cluding other rosaceous species such as apple and
peach. The advent of new technologies for economi-
cal, high-throughput, short-read sequencing of indi-
vidual cDNAmolecules in the absenceof cloning, such
as that recently introducedby theprivate company454
Life Sciences, promises to open up an enormous op-
portunity to expand the strawberry EST database, and
to extend the opportunity for strawberry microarray
analysis beyond the narrow private sector in which it
currently resides.

Finally, the prospect of obtaining the complete se-
quence of a basic strawberry genome looms inevitably
in the minds of strawberry genomicists. The less-than
200 Mb size of the basic (x = 7) strawberry genome
makes it by far the smallest genome of any rosaceous
crop species. An inbred line of the diploid model
species, Fragaria vesca, almost certainly a genome
contributor to the octoploids, would be an excellent
subject for complete genome sequencing.
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9.1
Introduction

Rubus is one of the most diverse genera in the plant
kingdom, comprising over 400 species (Bailey 1949)
subdivided into 12 subgenera (Jennings 1988). Ploidy
levels range from diploid to 14-ploid (Nybom 1985).
Members of the genus can be difficult to classify into
distinct species for a number of reasons including hy-
bridization between species and apomixes (Robert-
son 1974). The domesticated subgenera contain the
raspberries, blackberries, arctic fruits and flowering
raspberries, all of which have been utilised in breed-
ing programs. The most important raspberries are the
Europeanred raspberry,R. idaeusL. subsp. idaeus, the
North American red raspberryR. idaeus subsp. strigo-
sus Michx and the black raspberry (R. occidentalis L.).
Rubus subgen. Idaeobatus is distributed principally in
Asia but also East and South Africa, Europe and North
America. In contrast, subgen. Eubatus is mainly dis-
tributed inSouthAmerica,EuropeandNorthAmerica
(Jennings 1988). The members of subgenus Idaeoba-
tus sp. are distinguished by the ability of their mature
fruits to separate from the receptacle. The subgenus
is particularly well represented in the northern hemi-
sphere.

The place of origin of raspberry has been pos-
tulated to be the Ide mountains of Turkey. Jennings
(1988) and Roach (1985) have given extensive ac-
counts of early domestication. Records were found
in 4th century writings of Palladius, a Roman agricul-
turist, and seeds have been discovered at Roman forts
in Britain; hence, the Romans probably spread culti-
vation throughout Europe. The British popularized
and improved raspberries throughout the middle-
ages, and exported the plants to New York by 1771.

Rubus species are prostrate to erect, generally
thorny shrubs producing renewal shoots from the
ground (called canes). They are perennials only be-
causeeachbushconsistsofbiennial canes,whichover-

lap in age. Leaves are compound with 3–5 leaflets, the
middle one being the largest; margins serrate to ir-
regularly toothed.

Small (0.5–1.5 cm), white to pink flowers are ini-
tiated in the second year of planting. The gynoecium
consists of 60–80 ovaries, each of which develops into
a druplet. There are 60–90 stamens. Raspberries pro-
duce copious amount of nectar and attract bees. The
flowers of Rubus are structurally rather similar to
those of strawberries, with five sepals, five petals,
a very short hypanthium, many stamens, and an apoc-
arpous gynoecium of many carpels on a cone-like
receptacle. Raspberries are an aggregate fruit, com-
posed of individual drupelets, held together by almost
invisible hairs. In Rubus each carpel will develop into
a small drupelet, with the mesocarp becoming fleshy
and the endorcarp becoming hard and forming a tiny
pit that encloses a single seed. Each drupelet usually
has a single seed, though a few have two. Fruiting be-
gins in the second year of planting and can continue
for more than 15 years if properly managed. Fruit de-
velopment occurs rapidly, taking only 30–36 days for
most raspberry cultivars.

Canes grow one year and fruit the next, but there
are also primocane varieties which fruit in the first
year. The biennial growth cycle of raspberry stems
begins when a bud from below soil level develops
and elongation of the internodes carries the grow-
ing point, protected by leaf scales, to the soil sur-
face. At the surface, leaves expand to form a tight
rosette around the growing point. Elongation of the
shoot starts in spring and continues until autumn, by
which time the shoot will have attained a height of 2 to
3 m. In red raspberries (R. idaeus L.), shortening days
and falling temperatures in late summer cause shoot
elongation to cease and dormancy to set in. This is
a gradual process extending over several weeks and
once a stage of complete dormancy is reached it is
not readily reversible. Black raspberries (R. occiden-
talis L.) or purple raspberries (hybrids between red
and black raspberries) and most blackberries differ
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from red raspberries both in time when dormancy
begins and intensity of dormancy attained. In these
fruits, growth continues well into autumn. The initia-
tion of flower buds usually starts at the same time as
the canes begin to acquire dormancy. In the spring of
the second year, vegetative primocanes become fruit-
ing canes. The fruit is composed of a large number
of one-seeded druplets set together on a small conical
core (Jennings 1988).

The traditional method of culture harvests fruit
annually from each plant, although both non-fruiting
vegetative canes (primocanes) and fruiting canes
(fructocanes) are present. This main season summer-
fruiting crop is usually supported on a post-and-wire
system designed to carry the weight of fruits and to
protect canes from excessive damage due to wind, har-
vesting and cultivation. Primocanes are produced in
numbers excessive to requirements for cropping in the
following season so many must be removed by prun-
ing in winter and early spring to reduce inter-cane
competition and create an open crop canopy for effi-
cient light capture. Old dead fruiting canes must also
be removed by pruning after harvest. Such pruning
operations remove sources of fungal inoculum from
the plantation and are important for the long-term
health of the crop.

Primocanes and fruiting canes are in close prox-
imity resulting in a complex plant-architecture that
provides spatial and temporal continuity for pests and
pathogens to colonise a range of habitats (Willmer
et al. 1996). The complex nature of the plant ar-
chitecture also creates a barrier of foliage that im-
pedes spray penetration of plant protection chemi-
cals, thus requiring specialised chemical application
equipment (Gordon and Williamson 1988). Healthy
plantationsare expected tocropproductively formore
than 10 years, but this is only possible if the planting
stocks and soils are free from persistent viral, bacte-
rial and fungal diseases and certain pests, hence the
importance of quarantine arrangements and certifi-
cation schemes to protect the propagation industry
and fruit production (Jones 1991; Smith 2003).

In a mature plantation the raspberry roots spread
completely across the inter-row space. Young canes
(‘suckers’) developing from root buds (Hudson 1959)
in the inter-row space must be removed, to prevent
competition of these suckers for light, water and nu-
trients with the crop. Uncontrolled suckers also repre-
sent a reservoir for pests and pathogens. Cultivation
of the inter-row space is another alternative way to
remove suckers and weeds, but repeated cultivation

by machinery leads to loss of soil structure and soil
erosion on slopes where raspberries are often grown.
Effective weed management by residual herbicides, or
cultivation, is essential to remove weeds as alternative
hosts for nematodes that are vectors for many viruses
(Murant 1981; Harrison and Murant 1996) and to re-
duce humidity around the base of plants where several
pathogens thrive and sporulate at high humidity.

There has been increased interest in the sale of
raspberry fruitsharvested from‘organicproduction’–
farming based on methods relying entirely on crop
rotation and avoidance of pesticide application ex-
cept certain substances currently permitted by the
national regulatory authority for organic farming.
However, with woody perennial crops the difficulties
of maintaining healthy productive plantations over
many years are profound and it is too early to judge
the overall success of these ventures in Rubus cane
fruits.

Increasing popularity of autumn-fruiting rasp-
berries, in which late season fruit is harvested from
berries forming on the upper nodes of primocanes,
has extended the production season and the pe-
riod of attack of some foliar and cane pests. Some
very early spring fruits with high value can also be
obtained from the remaining lower nodes of these
over-wintered primocane-fruiting types. Primocane-
fruiting raspberries tend to be grown in the warmer
areas of Europe where the temperature in autumn is
relatively high and there is little risk of early autumn
frosts.

Interest has also been shown in extended-season
production under glass or under plastic structures in
northern European countries, e.g. Belgium (Meesters
and Pitsioudis 1993; Verlinden 1995) and the UK
(Barry 1995) and now in the Mediterranean fringe,
e.g. Spain and Greece, and this trend will affect their
pest and disease status. To satisfy these production
systems, long primocanes grown in northern regions,
such as Scotland, are lifted, chilled and stored for long
periods forplanting in late spring for late summerhar-
vest under plastic. The concept of extended-season-
production would mean that by careful manipulation
of plant dormancy cycle and flower initiation it should
be possible to produce fresh raspberries in Europe for
sale in almost all months.

ThegenomicnumberofRubus is sevenandspecies
representing all ploidies from diploid to duodecaploid
are found in nature. The range in size is from 1–4 µm
(Jennings 1988). The genome has been estimated to
be 275 Mbp.
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Self-incompatibility systems occur in some Rosa-
ceous species and it is common among many of the
diploidRubus species (Keep1968). Incontrast allpoly-
ploidy species are self-compatible as are the domesti-
cated forms of the diploid raspberries.

Raspberries are grown in many parts of the
world with production estimated at 385,000 Mt
(http://faostat.fao.org), Europe is estimated to
produce around 316,000 Mt. Cane fruit production,
mainly red raspberry (Rubus idaeus L.), is an
important high-value horticultural industry in many
European countries because it provides employment
directly in agriculture, and indirectly in food process-
ing and confectionary. Most raspberry production is
concentrated in the northern and central European
countries, although there is an increasing interest in
growing cane fruits in southern Europe e.g. in Greece,
Italy, Portugal and Spain. In many production areas,
the fruit is grown for the fresh market, but in central
Europe e.g. Poland, Hungary and Serbia, a high
proportion of the crop is destined for processing. In
the UK there has been a major movement away from
processing towards fresh fruit production under
protected cultivation for the high-value fresh market.
Commercial blackberries are also grown, mainly in
east Europe, and arctic raspberries (R. arcticus L.) are
produced commercially on a small-scale in Finland
(Koponen et al. 2000).

Fruit has become important in the human diet
due to increased consumers awareness of healthy
eating practices. In 2003, the global fresh fruit
market was valued at £7.6 bn at current prices,
having increased by just 3.9% since 1999. The
fresh fruit sector accounts for 38.1% of the overall
market and is gaining share due to continuing trend
towards convenience food. Banana account the
largest segment of the fruit sector with 22.5% of the
market in 2003. In term of soft fruit, strawberries
remain the UK’s best selling soft fruit, but other
fruit such as raspberry, are gaining popularities
because the increasing all year round availability.
Raspberries have always been attractive as fresh
dessert fruits or for processing from frozen berries
into conserves, purees and juices. It is interesting
to see that raspberries were first used in Europe for
medicinal purposes (Jennings 1988), but there is
now heightened interest focused on these foods as
major sources of antioxidants, such as anthocyanins,
catechins, flavonols, flavones and ascorbic acid,
compounds that protect against a wide variety of
human diseases, particularly cardiovascular disease

and epithelial (but not hormone-related) cancers
(Deighton et al. 2000; Stewart et al. 2001; Moyer et al.
2002). As a result, the consumption of these berries
is expected to increase substantially in the near
future as their value in the daily diet is publicised.
A concerted effort by the public health authorities
in Finland, for example, has promoted the con-
sumption of small berry fruits to their populations
(Puska et al. 1990) and in 2002, a similar initiative
was launched in Scotland (Berry Scotland Project
www.berryscotland.com) though success here has yet
be demonstrated.

Five parent cultivars dominate the ancestry of
red raspberry; ‘Lloyd George’ and ‘Pynes Royal’ en-
tirely derived from the European sub-species and
‘Preussen’, ‘Cuthbert’ and ‘Newburgh’ derived from
both European and North American subspecies. Do-
mestication has resulted in a reduction of both mor-
phological and genetic diversity in red raspberry
(Haskell 1960; Jennings 1988) with modern cultivars
being genetically similar (Dale et al. 1993; Graham
and McNicol 1995). This is of concern as a lack of ge-
netic diversity can lead to inbreeding depression and
susceptibility to external stresses. Extensive genetic
diversity has been found in wild raspberry germplasm
offering scope for expanding the genetic base of culti-
vated raspberries (Graham et al. 1997b; Marshall et al.
2001; Graham et al. 2003).

The objectives of breeding programs vary from
region to region, but certain traits are always consid-
ered important. Breeding for high yields of easily har-
vested, quality fruit remains the priority in any com-
mercial breeding program (www.fruitgateway.co.uk).
The incorporation of novel resistance/tolerance to
pests and diseases is regarded as essential for the
development of cultivars suitable for culture under
integrated pest (crop) management (IPM (ICM)) sys-
tems (Gordon et al. 2002a, b). The selection of re-
sistant or tolerant cultivars is essential for reduced
pest and disease pressure on the raspberry plantation.
Careful thought however must be given to the man-
agement of reducing chemical applications as these
may result in previously well-controlled pests or dis-
eases becoming an unexpected problem in their own
right. Additionally specification of cultivars, for ex-
ample by UK supermarkets where the cultivars Glen
Ample and Tulameen have been selected because of
their high fruit quality, has lead to increased pes-
ticide use because these cultivars are aphid suscep-
tible (S.C. Gordon personal communication) again
challenging the concepts of IPM and highlighting the
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often conflicting demands breeders face. Most rasp-
berries are produced by small enterprises, frequently
lacking the resources to fund adequate support from
technical advisory services to manage this complex
crop in a low input system. However, a survey in New
England, USA in the early 1990s showed that farmers
generally knew more about IPM than did consumers,
wholesalers and food processors (Hollingsworth et al.
1993). Similarly, when driven by legislation and ad-
equate state support, cane fruit IPM systems can be
vibrant and generate considerable local and interna-
tional interest e.g. Whatcom County (Nootsack) IPM
raspberry program in Washington State, USA (Mac-
Connell et al. 2002). Resistance breeding is becoming
increasingly urgent due to the withdrawal of and un-
desirability of remaining chemical control measures.
Fruit quality though, determines the ultimate success
of a cultivar and these objectives may prove to be
conflicting. Initial market acceptance of most fruits
is based on color and appearance, as other factors
are not evaluated until later when the product is con-
sumed. Usually, the consumer associated eye appeal
with quality. For an extensive review of fruit qual-
ity parameters in plant breeding see Sistrunk and
Moore (1983). There is pressure from the supermar-
kets and some consumers to develop organic sources
of many crops including raspberry. There appears to
be no large-scale organic production of cane fruit in
Western Europe, except for a few isolated produc-
ers. However, several large-scale producers are adopt-
ing the ‘biodynamic’ production system in central
Europe. Many growers who have tried organic pro-
duction in Western Europe in the past have failed
due to the lack of control of perennial weeds within
the crop and to infestation by raspberry beetle. Al-
though derris (rotenone) sprays applied to the green
fruit will give some protection against raspberry bee-
tle, experimental and commercial experience sug-
gests that the level of control is inadequate to sat-
isfy the demands of the consumers. In trials in the
early 1970s, comparing the efficacy of different in-
secticides, derris was considerably less effective than
the then standard, malathion (Taylor 1971). Safety
concerns of some organically approved products are
being raised. Some producers, particularly in Scandi-
navia are keen to develop organic or very low-input
production to exploit the demand. The geographi-
cal isolation of plantations coupled with low win-
ter temperatures result in low pest burdens in these
areas. Organic production will greatly benefit from
cultivars with high levels of resistance or tolerance

to the major pests and diseases. The large number
of characteristics in any breeding program coupled
with long generation times and problems with in-
breeding depression have prompted the move towards
marker-assisted breeding in red raspberry. For a re-
view of breeding objectives and breeding techniques
see Daubeny 1996.

Raspberry breeders have successfully produced
cultivars that vary in growth habit, pest and disease
resistance, spinelessness, fruit quality and primocane
varieties.

9.2
Construction
of Genetic Linkage Maps

Breeding methods used in raspberry have changed
very little over the last 40 years or so. Little novel
germplasm has made its way into commercial cul-
tivars. However, with the narrowing genetic base cou-
pled with the increasing demands from consumers,
new breeding methods are required to meet demands.
The speed and precision of breeding can be im-
proved by the deployment of molecular tools for
germplasm assessment and the development of ge-
netic linkage maps. Such genetic linkage maps can
facilitate the development of diagnostic markers for
polygenic traits and the identification of genes con-
trolling complex phenotypes. Understanding the ge-
netic control of commercially and nutritionally im-
portant traits and the linkage of these characteristics
to molecular markers on chromosomes is the future
of plant breeding. Red raspberry (Rubus idaeus) is
a good species the application of such techniques, be-
ing diploid (2n = 2x = 14) with a very small genome
(275 Mbp). Indeed, the haploid genome size of rasp-
berry is only twice the size of Arabidopsis, making it
highly amenable to complete physical map construc-
tion, therebyprovidingaplatformformap-basedgene
cloning and comparative mapping with other mem-
bers of the Rosaceae (Dirlewanger et al. 2004). The
availability of abundant genetic variation in natu-
ral and experimental populations and adaptation to
a range of diverse habitats (Graham et al. 1997b; Mar-
shall et al. 2001; Graham et al. 2003) offers researchers
a rich source of variation in morphology, anatomy,
physiology, phenology and response to a range of bi-
otic andabiotic stress.Theability tovegetativelyprop-
agate individual plants provides opportunities to cap-
ture genetic variation over generations and replicate
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individual genotypes to partition and quantify en-
vironmental and genetic components of variation of
genetic linkage maps. These are necessary to develop
diagnostic markers for polygenic traits and, in the
future, possibly identify the genes behind the traits.
The Rosaceae is an economically important family of
perennial fruit bearing crops that includes members
of the following genera: Malus (apple), Pyrus (pear),
Rubus (raspberry, blackberry), Fragaria (strawberry)
and Prunus (stone fruits). In addition, the family also
includes a number of important ornamental plants
such as roses, flowering cherry, crab apple and quince.
Molecular marker applications have been reviewed
in Rubus (Antonius-Klemola 1999) and in the small
fruits (Hokanson 2001). Linkage maps have been gen-
erated in other woody species (Ritter et al. 1990; Grat-
tapagliaandSederoff 1994;Bradshawet al. 1994;Brad-
shaw and Stattler 1995) and in the small (soft) fruit
crops a few maps exist. In the diploid strawberry (Fra-
garia vesca) and diploid blueberry (Vaccinium spp.)
445 cM and 950 cM or 1,288 cM long linkage maps
based on RAPD markers have been constructed (Row-
land and Levi 1994; Davis and Yu 1997; Qu and Han-
cock 1997). Maps of other Rosaceous crops include
Prunus maps (Dirlewanger et al. 1997, 1998; Joobeur
et al. 1998, Ballester 2000; Joobeur et al. 2000; Dettori
et al. 2001; Aranzana et al. 2003), apple (Hemmat et al.
1994; Maliepaard et al. 1998; Liebhard et al. 2003). Re-
sources are being developed in strawberry to enhance
maps based on RAPD markers (Sargent et al. 2003;
Graham 2005). The first genetic linkage of raspberry
has recently been constructed (Graham et al. 2004b).
This 789 cM genetic linkage map was constructed util-
ising a cross between the phenotypically diverse Eu-
ropean red raspberry cultivar Glen Moy and the North
American cultivar Latham. SSR markers were devel-
oped from both genomic and cDNA libraries from
Glen Moy. These SSRs, together with AFLP markers,
were utilised to create a linkage map. An enhanced
with further SSR and EST-SSR and gene markers has
recently been completed (Graham et al. 2006).

9.3
Gene Mapping

Mapping in raspberry is at an early stage. Prelim-
inary work is underway to map genes underlying
a number of commercially important traits. Gene H
in raspberry has recently been mapped to Group 2 of
the raspberry map (Graham et al. 2006). Raspberry

breeders in general have limited resources and rarely
include a primary screen for fungal diseases. It has
been reported that some disease resistances are as-
sociated with distinctive morphological traits, most
notable cane pubescence (fine hairs). Pubescence is
determined by gene H (genotype HH or Hh), the re-
cessive allele of which gives glabrous canes (geno-
type hh). Gene H is rarely homozygous because it is
linked with a lethal recessive gene (Jennings 1988).
Raspberry cultivars and selections with fine hairs
(pubescent canes) are more resistant to cane botrytis
(Botrytis cinerea), cane blight (Leptosphaeria conio-
thyrium) and spur blight (Didymella applanata) than
non-hairy ones (Knight and Keep 1958; Jennings and
Brydon 1989) but more susceptible to cane spot (Elsi-
noe veneta), powdery mildew (Sphaerotheca macu-
laris) andyellowrust (Phragmidiumrubi-idaei) (Keep
1968, 1976; Anthony et al 1986; Jennings and McGre-
gor 1988; Williamson and Jennings 1992). How Gene
H has the large increase or decrease in disease resis-
tance has not been determined. It has been suggested
that it is due to linkage with major resistance genes or
minor gene complexes that independently contribute
to the resistance or susceptibilities of the six diseases
affected. An alternative explanation is that the gene it-
self is responsible through pleiotrophic effects on each
of the resistances (Williamson and Jennings 1992).
This gene has now been mapped and further map-
ping of the disease resistance genes is underway (Gra-
ham et al. 2006). Other work underway is aimed at
identifying the gene(s) responsible for resistance to
raspberry root rot (Graham and Smith 2002). Two re-
gions on two linkage groups have been identified and
further research aimed at confirming these in a sec-
ond population through glasshouse and field trials is
underway (Graham, Smith and Tierney unpublished
data). Efforts to map aphid resistance by anchoring
data marker data from appropriate segregating popu-
lations to the published raspberry maps are underway
(Sargent, Knight Personal Communication).

9.4
Analysis of Quantitative Trait Loci

Preliminary quantitative trait loci (QTL) mapping has
been carried out in raspberry using the recently de-
veloped genetic linkage map (Graham et al. 2004b,
2006). Morphological data based on the segregation of
cane spininess, and root sucker density and diameter
were quantified in two different environments. Breed-
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ing for spinelessness is a major concern for breeders
and there are several major genes that confer this trait
(Jennings and Ingram 1983; Jennings 1988). The map-
ping parents differ for spine morphology with Glen
Moy having a spine-free phenotype (being homozy-
gous for gene s (Jennings 1988), whereas Latham is
a densely spiny cultivar, the genetics of which has not
been determined. The progeny generated from the
cross were all spiny, though the extent of spines var-
ied continuously from a very sparsely spiny cane to
the densely spiny phenotype of the Latham parent.
From the phenotypic data it was proposed that two or
more genes are involved. This was supported by the
mapping data where a number of markers were iden-
tified, linked to the spiny phenotypes. These markers
mapped onto linkage group 2, and there appeared to
be two linked regions within this group accounting
for 98% of the variation.

Large differences exist in the extent of root sucker
production in cultivated raspberries. Control mea-
sures based on the chemical burning of early canes
produced from suckers are required in commercial
plantations to optimise fruit yield (Jennings personal
communication). Roots of red raspberry have adven-
titious buds, which develop on most roots. The num-
ber, density and distance from the mother plant of the
root suckers varies between genotypes. Only a pro-
portion of the buds normally develop into suckers.
Knight and Keep (1960) have shown that the ability to
produce suckers in red raspberry is determined by the
recessive gene skI or by the complementary genes sk2

and sk3. Interestingly, and probably not surprisingly,
the measurements of density and spread map to the
same linkage group (group 8), with an overlap in the
location of the QTLs for the two traits (Graham et al.
2004b).

A number of QTLs for fruit quality parameters
have been identified on the raspberry maps and some
candidate genes which underlie these traits have been
identified. For example a QTL for fruit size has been
located (Graham unpublished data) with a vacuolar
H+-ATPase (Martinoia et al. 2000).

9.5
Marker-Assisted Breeding

A number of DNA-based marker systems have been
developed for use in raspberry (Antonius-Klemola
1999; Hokanson 2001; Graham et al. 2002a). Genetic
markers have been used to widely to examine ge-

netic variation within and between Rubus spp. An
M13 bacteriophage probe has been used to examine
different Rubus spp. and a number of red raspberries
(Nybom et al. 1990). A minisatellite probe was used
by Kraft et al. (1996) to demonstrate that fingerprints
of out-crossing species vary considerably compared
to vegetative and apomictic clones. Chloroplast DNA
sequence probes were used by Waugh et al. (1990)
and Howarth et al. (1997) to examine genotypic and
taxonomic relatedness in raspberry. Ribosomal DNA
ITS region has been used to construct a phylogenetic
tree with representatives from 20 species (Alice and
Campbell 1999). RAPD markers have been widely
used to examine the relatedness of raspberry culti-
vars and species (Graham and McNicol 1995; Graham
et al.1997b; Coyner 2000).

Marker-assisted selection is developing into
a powerful tool for plant breeding, through its ability
to select plants with the desired trait(s) accurately
and at an early stage of growth. Rather than screening
for a particular phenotype (trait), a breeder can
screen for a marker tightly linked to the gene of
interest that is identified through the construction of
a linkage map in a population segregating for that
trait. Alternatively, bulked segregant analysis can be
used to identify markers linked to a particular trait,
the position of which can then be determined on
a linkage map (Graham and Smith 2002).

9.6
Map-Based Cloning

Map-based cloning has yet to be carried out in rasp-
berry. Genetic engineering technologies, if they be-
come widely acceptable to customers, could allow
high quality cultivars to be transformed with genes
conferring resistance to a range of pests and diseases
(Watt et al. 1999), thus offering the prospect of re-
duced pesticide application. Recent research in straw-
berry has demonstrated that introduction of the Cow-
pea protease trypsin inhibitor (CpTi) gene resulted
in promising levels of control in glasshouse feeding
trials and field trials against larvae of Otiorhynchus
sulcatus (Graham et al. 1997a, 2002b). Use of gene
transfer technologies to improve resistance to mites,
insects and nematodes would be especially valuable
because of the toxicity of acaricides, insecticides and
nematicides, many of which are likely to be with-
drawn from use in minor crops in the future. Fruit
quality and other stress resistance genes would be
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valuable. However, it is vitally important that these
genetically engineered crops are not toxic or pose
a serious allergenic risk to humans, do not harm
beneficial organisms (e.g., natural enemies of pests,
crop pollinators, soil micro-organisms) or affect the
wider environment. Large-scale ‘risk assessments’ of
genetically engineered crops such as the Farm-Scale
Evaluation of oil seed rape, sugar beet and maize
are currently being undertaken in the UK to en-
sure that, on release, they are environmentally be-
nign.

9.7
Advanced Works

Advanced work for red raspberry is still at an early
stage. A search of the NCBI nucleotide database for
Rubus retrieved only 1,744 sequences a large number
ofwhichwereactually viral sequences. Incomparison,
a similar search for the genus Prunus, also a member
of the Rosaceae family, yielded 325,773 sequences of
which 76,619 originated from Prunus persica (peach).

The number of raspberry sequences is, however,
very likely to increase rapidly as efforts are under way
to generate EST libraries from different tissues and
developmental stages. At the Scottish Crop Research
Institute, cDNA libraries have been generated from
leaves (approximately 6,500 clones), canes (approxi-
mately 8,000 clones) and roots (approximately 7,300
clones) and further libraries will be constructed from
fruit and shoots in the near future (Graham, Smith
and Tierney unpublished data). Bacterial colony fil-
ters derived from the above libraries have been sub-
jected to hybridization screening to identify simple
sequence repeats (SSR) markers and will be partially
sequenced.

A further project aims at the characterization of
bud dormancy in woody perennial plants on a molec-
ular level and generated in total 5,300 ESTs from en-
dodormant (true dormancy) and paradormant (api-
cal dominance) raspberry meristematic bud tissue
(Mazzitelli et al. unpublished data). PCR-products
from these cloned cDNA fragments have been spot-
ted onto glass slides and are currently being used
in microarray experiments to identify genes that
show differential expression. At present, approxi-
mately 380 clones exhibit up or down regulation dur-
ing the endodormancy – paradormany transition.

Large insert genomic libraries (BACS) are inval-
uble tools and a source of genomic DNA for physical

mapping, positional cloning and as a scaffold for
whole genome sequencing. Rubus idaeus is an ideal
candidate for BAC library construction, since it
is diploid (2n = 2x = 14) and has a very small
genome (275 Mbp). Indeed, the genome size of
raspberry is only twice that of the model plant
Arabidopsis, making it highly amenable to complete
physical map construction, and thereby provid-
ing a platform for map-based gene cloning and
comparative mapping with other members of the
Rosaceae.

One of the most challenging steps required for
the construction of plant large-insert genomic li-
braries is the isolation of high molecular weight DNA
(HMW-DNA), either in the form of embedded proto-
plasts ornuclei. Raspberry andother soft-fruit species
have, however, proven recalcitrant to standard ge-
nomic DNA extractions as they contain very high
levels of carbohydrates, particularly polysaccharides,
and polyphenolic compounds. They require heavily
modified methods for ordinary genomic DNA isola-
tions (Woodhead et al. 1998) and the utilization of
activated charcoal in tissue culture to prevent growth
inhibition due to excess polyphenolics released into
the medium (Millan-Mendoza and Graham 1999). To
prepare HMW-DNA suitable for the construction of
BAC libraries we have developed a novel nuclei iso-
lation procedure (Hein et al. 2005). The method is
based on a modified buffer system including 4% (w/v)
PVP-10 described by Peterson et al. (2000) and uti-
lizes a combination of nylon filters and PercollTM

gradients to purify nuclei extracts prior to embed-
ding in agarose plugs. The isolated HMW-DNA is of
high quality and has been used for the construction
of the first publicly available red raspberry BAC li-
brary from the European red raspberry cultivar Glen
Moy, which has also been utilised as a parent for
the first reported genetic linkage map of R. idaeus
basedonacrosswith thephenotypicallydiverseNorth
American cultivar Latham (Graham et al. 2004b).
Currently, the library comprises over 15,000 clones
with an average insert size of approximately 130 kb
(6–7 genome equivalent). Hybridization screening of
the BAC library with chloroplast (rbcL) and mito-
chondrial (nad1) coded genes revealed that contam-
ination of the genomic library with chloroplast and
mitochondrial clones was very low (>1%) (Hein et al.
2004a).

Future work will focus on anchoring the physi-
cal map to the genetic map, which will enable align-
ment of the maps and the identification of genomic



214 J. Graham, I. Hein, W. Powell

regions harbouring genes controlling important phe-
notypes. An integrated physical/genetic map will also
allow the extent of synteny or collinearity of the Rubus
genome with other members of the Rosaceae to be de-
termined.

The availability of a detailed genetic linkage map,
together with a deep coverage bacterial artificial
chromosome library, will be of great value in the
identification of the genetic factors that underpin
a wide range of commercial characteristics such
as appearance, genetic resistance, texture and sen-
sory (taste and aroma) attributes of fruit. The es-
tablishment of gene-phenotype relationships will al-
low gene-based selection in breeding and the func-
tional assignment of genes for commercially impor-
tant traits.
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10.1
Introduction

Blueberries are members of the Ericaceae or Heath
family, genus Vaccinium, subgenus Cyanococcus.
Genus Vaccinium consists of blueberries, cranberries,
lingonberries and many related wild species. The
genus is very diverse, containing about 400 species,
mostly found in the tropics at high elevation, but
also in temperate and boreal regions. Vaccinium is
widely distributed plant genus and exhibits a high
level of morphological diversity. Fruits from several
Vaccinium species are collected from the wild for
food. Vaccinium species in section Cyanococcus
are used to develop blueberry cultivars which are
grown for their edible fruit. Most are shrubs like the
blueberries; however diverse range of growth forms
from epiphytes to trees exists.

Blueberry is an important small fruit crop and
the most recent major fruit crop to be cultivated,
having being domesticated during the twentieth cen-
tury. They are high value crop which can thrive on
acidic imperfectly drained sandy soils, once con-
sidered worthless for agricultural crop production.
North America is the major producer of blueberries.
The total area devoted to growing commercial blue-
berries in North America is approximately 74,000 ha.
Blueberries are one of the richest sources of an-
tioxidants of all fresh fruits and vegetables (Prior
et al. 1998). In addition, fresh blueberries are fair
source of vitamin C (Matzner 1967). Blueberries are
produced commercially in 16 countries worldwide.
Worldwide average yields have increased almost by
50% in the last 10 years to just over 4,000 lbs/acre.
Acreage has also increased by 37%, causing pro-
duction to double in the last 10 years. Major coun-
tries of blueberry production are USA and Canada,
together account for the major blueberry produc-
tion. In addition to these, other countries includ-
ing Poland, The Netherlands, France, Italy, Mexico,

New Zealand and Lithuania also produce blueber-
ries.

10.1.1
Cytology

According to Longley (1927), the genus Vaccinium has
a basic chromosome number of 12. Blueberry exists
at three ploidy levels: 2× (2n = 24), 4× (2n = 48)
and 6× (2n = 72). Diploid population (2n = 24)
includes species: V. myrtilloides Michx, V. corymbo-
sum L., V. pallidum Ait., V. darrowi Camp, V. el-
liottii Chapm, V. tenellum Ait. V. boreale. Impor-
tant tetraploids are V. angustifolium Ait, V. corym-
bosum, V. hirsutum Buckley, V. simulatum Small,
V. myrsinites Lam. These tetraploids may have re-
sulted from crosses between members of the same
species, resulting inautotetraploids, orbetweenmem-
bers of different species as allotetraploids. Species
V. corymbosum L. and V. australe Small, are natu-
ral tetraploids. The third important group of species
is represented by the hexaploid (2n = 72) population
of which V. ashei Reade, and V. constablaei Gray, are
members. There are seven diploid, six tetraploid and
two hexaploid species (Rowland and Hammerschlag
2005). Sinceno fundamental sterilitybarrier exists be-
tweenhomoploidVaccinium species,manypolyploids
havearisennaturally (Coville1927;Newcomber1941).
These polyploids particularly tetraploids (2n = 48),
are thought to be responsible for the wide range of
adaptation of the genus (Newcomber 1941). Ahokas
(1972) concluded that the diploid Vaccinum genome
(x = 12) is actually “homoeologous tetraploidy” (sec-
ondary polyploidy), based on Hall and Galletta’s find-
ings (1971).

Three species are of major economic importance:
(1) The highbush blueberry, Vaccinium corymbosum
(2) The lowbush blueberry Vaccinium angustifolium
and (3) the rabbiteye blueberry, V. ashei. Most of
the worldwide blueberry production comes from the
highbush blueberry.
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10.1.2
Commercial Blueberries

Commercially grown blueberries can be divided into
five major groups.

(1) Highbush Blueberry: In Highbush types (4×)
Vaccinium corymbosum makes up much of the
genetic material of the northern highbush. It is
a very variable deciduous shrub that is typically
4 to 6 ft. tall. It is most widely planted blueber-
ries, popular with home gardeners throughout
the northern US and southern Canada. There are
over 100 named varieties of northern highbush
blueberries.

(2) The wild or lowbush blueberries of North Amer-
ica: The lowbush types (2× and 4×) include man-
aged wild populations of V. angustifolium, V. myr-
tilloides, V. boreale and improved lowbush culti-
vars. In North America most are Vaccinium an-
gustifolium and are known as sweet lowbush blue-
berry. The lowbush is not commercially planted,
but thousands of acres of natural stands are
pruned, sprayed and harvested. It is a dwarf,
woody, usually deciduous shrub that is found
growing in wide range of areas. The term lowbush
applies to those species that are less than 3 ft.

(3) Rabbiteye: The Rabbiteyes (6×) are all wild
selections and hybrid cultivars of V. ashei.

(4) Southern Highbush: Southern highbush blueber-
ries (4×) cover hybrids that may contain genetic
material from two, three and sometimes four Vac-
cinium species. These are predominantly high-
bush V. corymbosum germplasm but which have
the low-chilling species V. darrowi in their parent-
age, as well as V. angustifolium and in some cases
V. ashei and V. tenellum (Lyrene 1990; Ballington
et al. 1991). Southern highbush were specifically
hybridized for superior fruit, soil adaptability,
heat tolerance, and low winter chilling.

(5) Halfhigh Blueberries: Halfhigh blueberry (4×)
is a term given to a group of blueberries that do
not exceed about 3 ft. at maturity, but most have
the bushy, woody habit of highbush cultivars.
These are species hybrid or backcross derivatives
of lowbush-highbush hybrids, usually involving
Vaccinium angustifolium and V. corymbosum
parentage. The half high category refers to bushes
intermediate in height between high bush and low
bush (Galletta and Ballington 1996; Hokanson
2001; Rowland and Hammerschlag 2005).

10.1.3
Breeding Objectives

10.1.3.1
Horticultural Attributes
The early objectives in blueberry breeding included
large berry size, light blue color, small scar, firmness
of fruit, good dessert quality and productivity. Each
of these objectives has been realized, but all are not
yet combined in a single variety. The trait that receive
emphasis in selection vary with the location and type
of blueberry, but generally include plant vigor, disease
resistance, desirable plant architecture, easy of clonal
propagation, large fruit size, good flavor, light blue
fruit color, long storage life, season of ripening, and
consistent high yields. Other objectives of breeding
work involve thedevelopmentof cultivarswith greater
winter hardiness, drought resistance and adaptation
to mechanical harvesting.

10.1.3.2
Biotic Stress Resistance

Insects The control of blueberry insects is one of the
most important phases of blueberry culture. Some of
these insects seriously reduce the productivity of the
bush, while others impair the quality of berries lower-
ing their value. Blueberries are subject to attack from
many different insects. Blueberry maggot is the major
fruit pest of blueberry. The adult is a small fly which
lays an egg under the skin of the developing fruit.
The tiny larva feeds within the fruit. Cranberry fruit-
worm, plum curculio, blueberry bud mite are other
important insects.Mites are tiny pests (<1/100th inch)
inhabit the leaf and flower buds, feeding on them
before they emerge. The other problematic insects
to blueberries are: blueberry blossom weevil, blue-
berry leafminer, blueberry stem borer, cherry fruit-
worm, cranberry fruitworm, cranberry rootworms
andgrubs, scale insects, sharpnosed leafhopper, blue-
berry crown girdler, black vine borer, and cranberry
rootworm.

Diseases Blueberries can be attacked by a host of
fungi, bacteria, and viruses. Most of the diseases vary
in severity and economic importance from one blue-
berry growing region to another. Lowbush blueber-
ries, highbush blueberries, and rabbiteye blueber-
ries have similar types of diseases, but the disease
that is most important in one type may be minor
in the other. Mummy berry is probably the most
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Table 1. Important diseases and pests of blueberry

Causal Agents

Diseases
Fusicoccum canker Fusicoccum putrefaciens
Anthracnose Colletotrichum gloeosporioides
Botrytis blight Botrytis cinerea
Mummy berry Monilinia vaccinii-corymbosi
Red leaf rose bloom Exobasidium vaccinii
Blueberry stunt Mycoplasma-like organism
Blueberry Shoestring Blueberry Shoestring Virus
Stem blight Botryosphaeria dothidea
Stem canker Botryosphaeria corticis
Phomopsis twig blight and canker Phomopsis vaccinii
Alternaria fruit rot Alternaria spp.

Insects
Blueberry maggot Rhagoletis mendax Curran
Sharp-nosed leafhopper Scaphytopius magdalensis Provancher
Blueberry aphid Illinoia pepperi MacGillivray
Cranberry fruitworm Acrobasis vaccinii Riley
Cherry fruitworm Grapholita packardi Zeller
Plum curculio Conotrachelus nenuphar Herbst
Blueberry bud mite Acalitus Vaccinii Keifer

widespread threat to blueberry in almost all coun-
tries. It is characterized by the formation of dried-out
mummified fruit at harvest. The disease kills leaves,
shoots, and flowers and then produces the spores
on these dead tissues that infect the fruit later. It
may reduce yields by up to 10% in severe infesta-
tions of some main commercial areas. Other com-
mon diseases of blueberry are blueberry stunt, blue-
berry shoestring, leaf mottle, scorch and red ringspot
viruses, stem blight, stem canker, botrytis, anthrac-
nose, phomopsis twig blight, canker, alternaria and
fruit rot, fusicoccum canker and red leaf rose bloom
(Galletta and Ballington 1996; Rowland and Hammer-
schlag 2005).

Viruses cause several diseases in blueberry. Two
viruses of importance in North America are Blueberry
scorch and red ringspot viruses. Virus diseases are
the most difficult to control since infection may occur
several months, or possibly years, before symptoms
are seen, and theonlyeffective controlusually involves
removing infected bushes. Fruit and foliar diseases
are controlled with a combination of proper cultivar
selection, cultural practices, and fungicides. Stem and
root diseases are more difficult to control. Disease-
free planting stock, promotion of good plant growth,

removal and destruction of infected plant parts, and
the selection of well drained ground all help reduce
the incidence and severity of root and stem diseases.
Table 1 lists important diseases and pests of blueberry
(Galletta 1975; Luby et al 1991; Galletta and Ballington
1996).

10.1.4
Blueberry Breeding

There has been a great breeding effort in the highbush
blueberry than any other Vaccinium species (Draper
and Scott 1971). The breeding of highbush blueberries
began in about 1900 while rabbiteye breeding began
in about 1940. Of the three types of blueberries, low-
bush blueberries have benefited the least from culti-
var development, and most lowbush blueberries still
come from native plants. Breeders have released sev-
eral blueberry cultivars comprised of diverse species
and fromwidely different geographical areas (Balling-
ton 1990; Lyrene 1990).

Three themes have been evident in the breeding
of both highbush and rabbiteye cultivars: recurrent
selection (Lyrene 1988), the proven-cross method,
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and interspecific hybridization (Lyrene and Balling-
ton 1986; Lyrene and Perry 1988). Interspecific hy-
bridization continues to be the keystone to the suc-
cess of the cultivated blueberry improvement pro-
gram. The genus Vaccinium has many species. Within
section Cyanococcus, interspecific crosses are easy to
make and interspecific hybrids are usually vigorous
and fertile if the two species involved have the same
chromosomenumber.Coville (1937)undertook inter-
specific hybridization for blueberry breeding. Most of
the native species of blueberry could be hybridized
with the cultivated types and provide unique genes.
(Draper 1977; Draper et al. 1982). Crosses of diploid
× tetraploid, diploid × hexaploid, and tetraploid ×
hexaploid species give varying result, depending on
the species involved. Many breeders utilized vari-
ous species for blueberry improvement. (Moore 1965;
Sharp and Sherman 1971; Ballington 1990; Lyrene
1990). Wild V. corymbosums selections have been
used for many years for developing blueberry cul-
tivars.

The first varieties to be introduced were hybrids
of V. corymbosum and V. australe. Modern cultivars
were derived from the hybrids of Vaccinium angus-
tifolium and Vaccinium corymbosum and from the
hexaploid hybrids of V. ashei and V. constablaei.
(Ballington 1980). There has been an emphasis in
several breeding programs in the past to develop
highbush blueberry varieties (V. corymbosum, 4×)
with low chilling requirements, suitable for grow-
ing in the southern United States because they are
early ripening. Crosses between high-chilling north-
ern highbush cultivars and the low-chilling south-
ern evergreen diploid, V. darrowi Camp, have been
important in the development of low-chilling high-
bush cultivars (Sharpe and Darrow 1959; Sharp and
Sherman 1971). Crosses between V. ashei and V. con-
stablaei have resulted in the release of two rab-
biteye hybrid cultivars (Ballington 2001). However
traditional breeding approaches for blueberry are
labor-intensive due to heterozygosity, polyploidy, and
length of evaluation trails. Hybridization between cer-
tain species has been difficult to achieve due to chro-
mosome number difference and the inability to eas-
ily induce polyploidy. Attempts to transfer genes be-
tween tetraploid highbush cultivars and hexaploid
rabbiteye cultivars have not been highly success-
ful.

10.2
Application of Marker Technologies

10.2.1
Protein Markers

Isozymes have been used in genome analysis of higher
plants both to determine phylogenetic and evolution-
ary relationships and in genetic linkage analysis. Hill
and Vander Kloet (1983) used isozyme markers for ge-
netic studies in blueberry and reported limited varia-
tion in four enzyme systems. Among four Vaccinium
sections Vorsa et al. (1988) studied diploid, tetraploid
and hexaploid Cyanococcus species for isozyme poly-
morphisms using 12 enzyme systems. Further Kreb
and Hancock (1989) used isozyme markers to inves-
tigate the mode of inheritance in tetraploid V. corym-
bosum and reported that it has tetrasomic inheritance
in the four enzyme systems analyzed. Bruederle et al.
(1991) extended isozyme analysis of 20 loci to the
investigation of population genetic structure among
diploid blueberry species V. elliotii, V. myrtilloids,
and V. tenellum. They found that the diploid species
exhibit high level of variation within populations as
expected for highly self-sterile, outcrossing crops in
taxa. Hokanson and Hancock (1998) examined levels
of allozymic diversity in native Michigan populations
of diploid V. myrtilloids and the tetraploid V. angus-
tifolium and V. corymbosum. The number of poly-
morphic loci is very limited within a gene pool, and
polymorphism is low. DNA markers were favored for
most purposes.

10.2.2
Molecular Markers

Several types of DNA markers are now available for
use in genetic mapping. PCR-based markers such as
random amplified polymorphic DNA (RAPD), arbi-
trary primer-PCR (AP-PCR), inter-simple sequence
repeat (ISSR), expressed sequence tag (EST), cleaved
amplified polymorphic sequences (CAPS) and mi-
crosatellites have also been used mainly for the anal-
ysis of plant genomes. With respect to molecular ge-
netic research in blueberry molecular markers have
beendeveloped forDNAfingerprinting, analysisofge-
netic relationship and mapping. Several cDNA and ge-
nomics clones have been isolated and an EST database
has been made publicly available. The type of mark-
ers currently available includes isozyme, RFLP, RAPD,
ISSR, EST-PCR, CAPS and microsatellite markers.
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Molecular markers have been identified that are
useful for DNA fingerprinting of representative se-
lections and cultivars of three major commercial
grown types of blueberries: the highbush, lowbush
and rabbiteye types. Haghighi and Hancock (1992),
performed RFLP analysis on various genotypes rep-
resenting the blueberry species V. corymbosum, V. an-
gustifolium, V. darrowi and V. ashei, using chloro-
plast specific and mitochondria specific probes. In
this study, high polymorphism was observed in mi-
tochondrial genome while no polymorphism was de-
tected in chloroplast genome. Aruna et al. (1993) and
Levi et al. (1993) reported successful amplification
of RAPD markers from blueberry DNA. Aruna et al.
(1993, 1995) reported good results from DNA of na-
tive selections and improved cultivars of rabbiteye
blueberry, V. ashei. In this study the extent of genetic
relatedness among 19 cultivars of rabbiteye blueberry,
15 improved cultivars and the four original selections
from the wild were used. Their analysis was consistent
with phylogenetic data provided for rabbiteye blue-
berries. Levi et al. (1993) described an RAPD pro-
tocol from several different woody plants including
blueberry, cherry, peach, pear and apple.

Levi and Rowland (1997) used RAPD and SSR-
anchored primers for the usefulness for amplifying
blueberry DNA. These markers were used to differ-
entiate and evaluate genetic relationship among 15
highbush (V. corymbosum) or highbush hybrid culti-
vars, two rabbiteye (V. ashei) cultivars and one south-
ern lowbush (V. darrowi) selection from the wild. The
V. ashei cultivars and V. darrowi selection grouped
out separately from the V. corymbosum cultivars. The
study indicated thatRAPDandSSR-anchoredprimers
are useful for identifying blueberry cultivars or selec-
tion. Burgher et al. (1998) screened 26 wild lowbush
(V. angustifolium) clones, including six named culti-
vars and 12 selections. Clustering of genotypes corre-
lated fairly well with geographic origin of clones. Fur-
ther Bugher et al. (2002) used RAPD analysis with low
bush blueberry selections and native accessions that
has been collected from various geographic regions in
Atlantic Canada and Maine. This analysis successfully
distinguishedall theclones.Arce-Johnsonet al. (2002)
reported using two RAPD primers to distinguish five
highbushChileancultivars.Rowland(2003a) reported
development of EST-PCR markers for fingerprinting
and genetic relationship studies in blueberry. The
polymorphic EST-PCR and CAPS marker developed
in this study distinguished all the genotypes indicat-
ing that these markers should have general utility for

DNA fingerprinting and examination of genetic di-
versity in blueberry. Further, EST-PCR primers were
tested for their ability to amplify fragments in re-
lated Ericaceae, cranberry and rhododendron (Row-
land et al. 2003b).

Microsatellite or SSRs have recently become im-
portant genetic markers in plant genome research.
The development of SSR in plants is accelerating, and
SSR loci are now being incorporated into established
genetic maps of the major plant species. SSRs are par-
ticularly attractive for distinguishing between culti-
vars because the level of polymorphism detected at
SSRs loci is higher than that detected with any other
molecular marker assay. Boches (2005) reported mi-
crosatellite markers for Vaccinium from EST and ge-
nomic libraries. SSR markers were derived from two
Expressed Sequence Tags (EST) libraries and from
microsatellite enriched genomic library constructed
fromV. corymbosum cultivarBluecropDNA.Recently,
Boches et al. (2006) used 20 EST-SSR and eight ge-
nomic microsatellite loci to determine genetic diver-
sity in 69 Vaccinium corymbosum L. accessions con-
sisting of 13 wild accessions and 56 cultivars (one half-
high, 18 southern highbush and 37 northern high-
bush).

10.3
Genetic Linkage Mapping

Different types of markers have been used for gen-
erating the linkage maps. PCR-based markers are
being used extensively for the construction of link-
age maps. Within the Ericaceae molecular linkage
maps have been developed only for blueberry (Row-
land and Levi 1994; Qu and Hancock 1997). Initial
RAPD based genetic linkage maps have been devel-
oped for three diploid and one tetraploid blueberry
populations. Rowland and Levi (1994) reported the
construction of an initial genetic linkage map for
diploid blueberry using a population resulting from
a test cross between the F1 interspecific hybrid US
388 (V. darrowi × V. elliottii) and another V. darrowi
clone US 799. The map comprises 70 RAPD markers
mapped to 12 linkage groups in agreement with the
basic blueberry chromosome number and cover a to-
tal genetic distance of over 950 cM, with a range of
3–30 cM between adjacent markers. Qu and Hancock
(1995) have used RAPD markers to establish a tetra-
somic mode of inheritance in interspecific hybrids
of diploid V. darrowi and tetraploid V. corymbosum.
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Vorsa and Rowland (1997) reported RAPD for the es-
timation of 2n megagametophyte heterozygosity in
a diploid blueberry Vaccinium darrowi Camp. Qu and
Hancock (1997) reported construction of an RAPD
based genetic linkage map of tetraploid blueberry
population that should be segregating for high fruit
quality, heat tolerance andcold tolerance.Thepopula-
tion resulted from a cross of US75 (a tetraploid hybrid
of a diploid V. darrowi selection Fla 4B and tetraploid
V. corymbosum ‘Bluecrop’) and another V. corymbo-
sum ‘Bluetta’. A total of 140 RAPD markers unique
to Fla 4B that segregated 1:1 in the tetraploid popu-
lation were mapped into 29 linkage groups. Rowland
et al. (1999) constructed RAPD-based genetic linkage
map using diploid blueberry populations shown to be
segregating for both chilling requirements and cold
hardiness. The population resulted from test crosses
between F1 interspecific hybrids, V. darrowi × diploid
V. corymbosum, and another V. darrowi clone and an-
other diploid V. corymbosum clone. Recently a few
EST-PCR markers have been added to these maps; the
map of the V. corymbosum test cross currently com-
prises approximately 90 RAPD and EST-PCR markers
and the map of the V. darrowi test cross comprises
approximately 70 RAPD and EST-PCR markers (Row-
land et al. 2003c; Rowland and Hammerschlag 2005).

One of the unique contributions of genetic map-
ping is the possibility of detection of genomic regions
controlling quantitative traits. Most of the agronomi-
cally and economically important traits are controlled
by a relatively large number of loci. Such loci are called
as quantitative trait loci (QTL). A preliminary QTL
analysis using current genetic linkage map and cold
hardiness data for the V. corymbosum test cross pop-
ulation have identified one putative QTL associated
with cold hardiness that explains ∼20% of the geno-
typic variance (Rowland et al. 2003c). With further
saturation, these maps and segregating populations
should allow researchers to map genes and QTLs con-
trolling the important traits.

Muthalif and Rowland (1994a, b) studied changes
in protein levels associated with low temperature ex-
posure infloral budsofblueberry cultivarswithdiffer-
ent levels of cold hardiness. Characterization of cold-
responsive proteins revealed them to be members of
a family of proteins known as dehydrins. Levi et al.
(1999) reported isolation of 2.0 kb dehydrin cDNA
which encodes the 60 kDa dehydrin. The sequence of
2 kb cDNA was further used to design primers to am-
plify alleles of two dehydrin-related genes from the
cold sensitive and cold tolerant parent plants. Panta

et al. (2004) reported mapping of dehydrin related
gene to linkage group 12 of the current genetic linkage
map of blueberry. Dhanraj et al. (2004, 2005) reported
that family of dehydrins of 65, 60 and 14 kDa accu-
mulates in floral buds during winter, and the levels of
these proteins correlate with cold tolerance. A cDNA
clone from blueberry floral bud RNA that encodes the
14 kDa dehydrin was identified and sequenced.

Genetic mapping provides a direct means of inves-
tigating the number of genes influencing a trait, the
location of these genes along the chromosomes, and
the affects of the variation in doses of these genes. The
most successful applications will be in those species
with well developed molecular marker maps. A large
number of monogenic and polygenic loci for vari-
ous traits have been identified in a number of plants,
which are currently being exploited by breeders and
molecular biologists together for marker-assisted se-
lection. Tagging of useful genes like the ones responsi-
ble for conferring resistance to plant pathogen, insect,
drought tolerance and a variety of other important de-
velopmental pathway genes, is a major target. Identi-
fication of the marker loci that are linked to the trait of
interest is followed by the utilization of linkage associ-
ation in genetic improvement program. Once linkage
between a trait and a marker locus is established, it
is possible to use the information in the selection of
the breeding lines. The availability of more molecular
marker based maps in blueberry would facilitate the
localization of genes controlling traits such as fruit
quality, fruit size, plant vigor, disease resistance and
various environmental tolerances.

10.4
In Vitro Culture
and Genetic Engineering

Mostblueberrygenotypes canbecloned in largenum-
bers with great rapidity from small amount of start-
ing by means of in vitro shoot culture (Nickerson
1978; Cohen and Elliott 1979). Shoot tip propagation
of blueberry was initiated by Layrene (1978), who
reported successful in vitro propagation of rabbiteye
blueberry seedling. Since then, several reviews (Smag-
ula and Lyrene 1984; George et al. 1987; Zimmerman
1980, 1991; Galletta and Ballington 1996) have sum-
marized the in vitro technology for blueberry prop-
agation. The first studies on shoot tip propagation
of lowbush blueberry (V. angustifolium) were con-
ducted by Frett and Smagula (1983). Further Smagula
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and Litten (1989) and Litten et al. (1992) studied my-
corrhizial inoculation of lowbush blueberry as an aid
to micro-propagation. The earliest studies on shoot
tip propagation of highbush blueberry (V. corymbo-
sum) date back to 1979-1980 (Cohen and Elliott 1979;
Cohen 1980; Zimmerman and Broome 1980).

Wolfe et al. (1983) conducted studies to com-
pare various media and to determine the optimum
medium for micropropagating highbush blueberry.
Young and Cameron (1985a, b) studied influence
of growth regulators, nitrogen form and effect of
light on micropropagation of rabitteye blueberries.
Grout and read (1986) studies the influence of the
stock plant propagation method on propagation and
rooting of halfhigh blueberry ‘Northblue’. Rooting
and establishment of in vitro blueberry plantlets in
the presence of mycorrhizal fungi was studied by
Lareau (1985). Chandler and Draper (1986) studied
the effect of zeatin and 2iP on shoot proliferation of
highbush blueberry clones. Grout et al (1986) con-
ducted studies on the influence of stock plant prop-
agation method, tissue culture and leaf-bud prop-
agation of ‘Northblue’ blueberry. Long-term effects
of in vitro propagation of ‘Northblue’ halfhigh blue-
berry under greenhouse and field conditions have
been reported (El-Shiekh et al. 1996). Noè and Ech-
her (1994) and Noè (1998) studied the influence of
irradiance on the in vitro growth of highbush blue-
berry. Growth vigour and yielding of highbush blue-
berry from semi-woody cuttings and in vitro was
studied by Smolarz and Chiebowska (1997). Isutsa
et al. (1994) conducted investigations to identify en-
vironmental conditions that would accelerate rooting
and acclimatization and improve survival of ex vitro
blueberry microcuttings. Gonzalez et al. (2000) initi-
ated studies to develop a uniform method of micro-
propagation using nodal segment from mature field-
grown highbush blueberry plants. Further Cao et al.
(2003) investigated the effect of sucrose concentra-
tion in the propagation medium on shoot prolifer-
ation and on gene delivery into highbush blueberry
shoots.

The first success with organogenesis from high-
bush blueberry (Billings et al. 1988) occurred from
leaf explants of in vitro propagated shoots. Rowland
and Ogden (1992, 1993) investigated zeatin riboside
(ZR) for highbush blueberry regeneration from leaf
explant. Hruskoci and Read (1993) studied the in
vitro shoot shoot regeneration from internode seg-
ment and internode-derived callus in blueberry. Cao
and Hammerschlag (2000) reported improved shoot

organogenesis from leaf explant of highbush blue-
berry. Cao et al. (2002) also reported that growth reg-
ulator pre-treatments enhance shoot organogenesis
from leaf explants of ‘bluecrop’.

As a tool in cultivar breeding, in vitro chromo-
some doubling with colchicines is feasible with blue-
berry (Lyrene and Perry 1982). Lyrene and Perry
(1982) reported that a combination of colchicine fa-
cilitates chromosome doubling in blueberry. Differ-
ent methods have been used to induce tetraploids
in V. darrowi, V. elliottii and V. darrowi × V. elliot-
tii hybrids (Perry and Lyrene, 1984), 8× plants from
4× V. corymbosum clones (Goldy and Lyrene 1984)
and 6× plants from triploid (V. coryombosum (4×)
× V. elliotii (2×)) hybrid (Dweikat and Lyrene 1989).
The use of 2n gametes to obtain elevated polyploids
is also possible with blueberry, and is more efficient
than colchicine doubling in many situations.

Transformation is a powerful approach to intro-
duce genes of interest and accelerate the breeding
process for many fruit crops. Transformation is par-
ticularly suited to blueberry since it has a polyploidy
genome and is asexually propagated. To date, regen-
eration has been reported for only a few commer-
cial blueberry cultivars (Billings et al. 1988; Callow
et al. 1989; Rowland and Ogden 1992, 1993; Hruskosi
and Read 1993). Cao et al. (1998) studied several
factors that influenced the efficiency of Agrobac-
terium-mediated transfer of an intron containing
β-glucuronidase (GUS) gene into leaf cells of several
commercially important blueberry cultivars and into
callus derived from these cells during the early stages
of transformation. There is one report of transforma-
tion but has not been confirmed by Southern analysis
(Graham et al. 1996).

Hancock et al. (1990) conducted transformation
studies with the highbush, sierra with Agrobacterium
tumefaciens. They investigated the effect of concen-
tration of A. tumifaciens, length of co-cultivation
and antibiotic treatments on transformation. Row-
land and Ogden (1993) initiated transformation stud-
ies with A. tumifaciens strain C58C1/pGA482. Gra-
ham et al. (1996) reported transformation of half high
North country using disarmed A. tumifaciens strain
LBA4404 containing a binary vector with an intron
containingGUSmarker gene (Vancanneyt et al. 1990).
Cao et al. (1998) conducted an in-depth study on fac-
tors that influence the early stages of transformation.
They used 10 highbush blueberry cultivars and dis-
armed Agrobacterium strain LBA4404. Recently, Song
and Sink (2004) described an efficient shoot regen-
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eration method and results of transient transforma-
tion studies that led to A. tumefaciens-mediated stable
transformation of four selected highbush blueberry
cultivars.

10.5
Future Scope of Works

The increasing use of biotechnology in blueberry re-
search, in fields such as diverse as linkage mapping,
gene cloning, functional genomics, tissue culture and
genetic transformation has increased ability to ma-
nipulate species for the advantage in breeding pro-
grams. There is still much work needed to provide
a better understanding of gene regulation and pheno-
typic expression, generation of high-density genetic
maps, and transformation system.
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11.1
Introduction

The almond [P. dulcis (Mill.) D.A. Webb; syn. P. amyg-
dalus Batsch] is a species of genus Prunus and sub-
genus Amygdalus (Rosaceae, subfamily Prunoideae)
that is commercially grown worldwide. The culti-
vated almond is thought to have originated in the
arid mountainous regions of Central Asia (Grasselly
1976a). Several wild species are also found growing in
these mountainous areas from Tian Shan mountain
in western China through the mountainous areas and
deserts of Kurdistan, Turkestan, Afghanistan and into
Iran and Iraq (Grasselly 1976b; Kester and Gradziel
1996). The Prunus species P. fenzliana (Fritsch) Lip-
sky, P. bucharica Korschinsky and P. kuramica Ko-
rschinsky (of the Section Euamygdalus) from these re-
gions are described as the wild species most closely re-
lated to almond (Grasselly 1976b; Browick and Zohary
1996), and may be the ancestral species of the mod-
ern cultivated almond (Kester et al. 1991). Ladizinsky
(1999),however, identifiedonlyP. fenzlianaas thewild
ancestor of almond. P. webbii (Spach) Vieh, which is
thought to have originated on the Balkan peninsula, is
also described as closely related to almond (Grasselly
1976a, b; Browick and Zohary 1996). The evolution
and distribution of almonds, both in cultivation and
in the associated semi wild state, has been divided
into three stages: Asiatic, Mediterranean, and Califor-
nian, corresponding to the geographical areas where
is grown (Fig. 1) (Grasselly 1976a; Kester et al. 1991;
Kester and Gradziel 1996).

The fruit of almond, as with other Prunus species,
is a drupe where the mature, stony endocarp together
with the seed forms a propagation unit comparable

to a botanical seed surrounded by its protective testa.
The almond is the earliest deciduous fruit and nut
tree to bloom in spring due to its low winter chill-
ing requirements and quick growth response to warm
temperatures. The almond growth cycle is adapted
to a Mediterranean type climate (Kester et al. 1991;
Kester andGradziel 1996).Almond is apredominantly
self-incompatible species. This self-incompatibility is
gametophytic and it is controlled by a single locus
with multiple codominant alleles (Socias i Company
and Felipe 1988; Dicenta and García 1993a). Since self-
compatible almond cultivars were reported in Puglia
region in Italy, self-compatibility has become one of
the main objectives for almond breeding programs
in Europe and the USA (Grasselly et al. 1981; Vargas
et al. 1984; Socias i Company and Felipe 1988; Dicenta
and García 1993a; Gradziel and Kester 1998). Culti-
vated almond is among the most polymorphic of all
cultivated fruit and nut species (Hauagge et al. 1987a;
Byrne 1990; Kester et al. 1991; Socias i Company and
Felipe 1992; Bartolozzi et al. 1998; Martínez-Gómez
et al. 2003a). Sixteen (2n = 2x = 16) small, but distin-
guishable (Corredor et al. 2004), chromosomes and
a small diploid genome of approximately 300 Mbp
(Baird et al. 1994) also characterize this species.

Horticulturally, almonds are classified as a nut
in which the edible seed (the kernel) is the commer-
cial product. Almond kernels are concentrated energy
sources because of their high lipid content. The oil
is primarily unsaturated, composes mostly oleic and
linoleic fatty acids (García-López et al. 1996). The ker-
nel also contains considerable proteins, minerals, and
some vitamins (Kester et al. 1991; Kester and Gradziel
1996). However, native almond species predominantly
have bitter kernels because of high levels of the gluco-
side amygdalin (Grasselly 1976b; Kester et al. 1991).
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Fig. 1. Map of world show-
ing the origin for almond
[Prunus dulcis (1)] and
different relative Prunus
species [P. bucharica (2),
P. fenzliana (3), P. davidiana
(4), P. persica (5), P. sco-
paria (6), P. webbii (7), and
P. argentea (8)], the dis-
semination routes for the
cultivated almond [→], and
the three main areas for
diversification and culti-
vation of almonds [Asiatic
(A), Mediterranean (B), and
Californian (C)]

The principal almond-producing area of the world is
the central valley of California with around 50% of the
world production. In 2003, worldwide annual almond
production exceeded 1679 thousand metric tons, in-
cluding 741 thousand metric tons in California. The
second major almond-producing area includes the
European countries bordering the Mediterranean Sea,
including Spain (the second leading country after the
United States with 197 thousand metric tons in 2003),
Italy (91 thousand metric tons) and Greece (40 thou-
sand metric tons). Finally, emergent areas exist in
central and southwestern Asia including Syria (139
thousand metric tons in 2003), Iran (109 thousand
metric tons) and Turkey (38 thousand metric tons)
(Fig. 2) (FAO 2004).

The threebasicobjectivesof almond improvement
are to increaseyield (self-compatibility, lateflowering,
flower density, and productivity), to improve qual-
ity (maturity date, kernel bitterness), and to decrease
production costs (pest and disease resistance, drought
resistance) (Socias i Company 1998). The efficiency
of breeding programs depends on the information
available on the transmission of those traits to be im-
proved. There has been a considerable progress in the
study of inheritance of agronomic traits in almond.
In this species most of the important agronomical
characteristics are quantitative. These quantitatively
inherited characters constitute the bulk of the vari-
ability selected during the breeding process (Kester
and Asay 1975; Grasselly and Crossa-Raynaud 1980;
Dicenta et al. 1993a, b; Socias i Company 1998). Late
flowering allows the avoidance of the spring frosts in
colder areas and has been an objective of early al-
mond breeding programs (Kester 1965; Vargas et al.

1984; Dicenta et al. 1993a; Socias i Company et al.
1999). Genetic studies have demonstrated a positive
response to selection for this trait (Kester et al. 1973;
Dicenta et al. 1993a). Flowering density and produc-
tivity are also two important traits, which have been
studied by Kester and Asay (1975), Grasselly and
Crossa-Raynaud (1980), Vargas et al. (1984) and Di-
centa et al. (1993a). Few studies have been performed
regarding the time of maturity (Kester and Asay 1975;
Dicenta et al. 1993b). On the other hand, other impor-
tant agronomic traits in almond seem to be controlled
by major genes, including kernel bitterness or self-
compatibility. There are many studies regarding the
transmission of the kernel traits (see Kester et al. 1977;
Vargas et al. 1984; Dicenta et al. 1993b). In addition,
kernel bitterness has been characterized as a mono-
genic trait, the bitter genotype being recessive (Hep-
pner 1923, 1926; Dicenta and García 1993b; Vargas
et al. 2001). Finally, self-compatibility was studied by
different authors who have determined its monogenic
nature with a multi-allelic S series, and identified the
Sf allele as the responsible for self-compatibility (So-
cias i Company and Felipe 1988; Dicenta and García
1993a; Ortega and Dicenta 2003). Self-compatibility
is expressed within the styles of flowers and results
in the successful growth to fertilization of self-pollen
tubes (Bošković et al. 1997, 2003).

The absence of extensive crossing barriers among
thedifferentPrunus species in the initialhybridization
and the subsequent backcrosses, demonstrates a di-
rect accessibility of this rich germplasm to almond
breeding (Browicz and Zohary 1996; Gradziel et al.
2001a; Martínez-Gómez et al. 2003b). The encourag-
ing performance of interspecific hybrids and back-
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Fig. 2. World almond
production according with
FAO (2004)

crosses to date, support continuing opportunities for
transferringuseful traits, includingself-compatibility,
resistance to important pests and diseases, improve-
ment of seed oil quality, tolerance to aberrant envi-
ronments, and modified tree architecture and bearing
habit (Gradziel et al. 2001a). The direct utilization of
these related almond species as a rootstock, mainly
under non-irrigated native conditions, has been re-
ported by several authors (Grasselly 1975; Denisov
1988). Interspecific crosses have also been used as
peach and plum rootstocks (Kester and Hansen 1966;
Felipe 1975). Related species have also been reported
as having potential in almond breeding to improve the
quality of kernels and as sources of self-compatibility
(Kester and Gradziel 1996; Gradziel and Kester 1998;
Gradziel et al. 2001a). However, a major impediment
to the full utilization of this rich germplasm is the te-
dious selection process emphasizing the need for ac-
curate molecular markers allowing efficient and rapid
selection tools (Martínez-Gómez et al. 2003b, c).

11.2
Variability Analysis
with Molecular Markers

Traditionally, the identification and characterization
of almond cultivars has been based on morphological
traits. However, such traits are not always available
for analysis, are affected by changing environmental
conditions and may only be visible in adult materi-
als and so requiring a long time for their analysis.
Molecular markers have offered a solution to many of

these problems allowing a fast, accurate, highly dis-
criminative and environmentally stable test that has
been used for variability analysis, pedigree determi-
nations or cultivar identification (Wünsch and Hor-
maza 2002; Martínez-Gómez et al. 2003b; Sánchez-
Pérez et al. 2004a). Moreover, some markers, such
as isozymes, restriction fragment length polymor-
phisms (RFLPs), simple sequence repeats (SSRs) and
other markers derived from the knowledge of specific
genome sequences; allow the comparison of variabil-
ity among homologous regions of the same or differ-
ent species.

Isozymes were the first molecular markers
used because of their environmental stability, their
codominant expression, and their good reproducibil-
ity (Arulsekar et al. 1986; Hauagge et al. 1987a, b;
Cerezo et al. 1989; Foolad et al. 1995; Vezvaei et al.
1995; Sathe et al. 2001). Isozyme studies have detected
high levels of variability in almond and allowed the
individual identification of most genotypes studied.
A comparative study of isozyme variability in Prunus
(Byrne 1990) showed that almond and Japanese
plum, both with a strong self-incompatibility system
were more variable than apricot and peach that have
different degrees of self-compatibility. Nevertheless,
their utilization is limited by the small number of
loci that can be analyzed with conventional enzyme
staining methods, as well as a low variation at most
loci. On the other hand, RFLPs are codominant and
can detect a virtually unlimited number of markers,
thus providing an efficient method for discovering
linkages between markers and for constructing
genetic maps. RFLPs also proved to be useful for vari-
ability analysis and cultivar identification in almond
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(Viruel 1995). However, RFLP analysis has important
limitations: it is laborious and time-consuming and
it often involves the use of radioisotopes. The recent
utilization of PCR-based markers has increased the
opportunities for mapping and tagging a wide range
of traits. RAPDs, based on the PCR amplification of
random locations in the genome, typically use arbi-
trary primers. A single oligonucleotide is utilized for
this random amplification of genomic DNA. Unlike
RFLPs, RAPDs can be obtained with a simple method,
but have some disadvantages when compared to
isoenzymes and RFLPs: they are dominant markers
and have a variable degree of repeatability which
limit their utilization for cultivar identification and
map construction. RAPD techniques have been used
in almond for the study of germplasm variability
(Bartolozzi et al. 1998; Martins et al. 2003).

SSR (or microsatellite) markers, also based on the
PCR technique, are currently becoming the mark-
ers of choice for genetic fingerprinting studies for
a wide range of plants. Because of their high poly-
morphism, abundance, and codominant inheritance,
they are well suited for the assessment of genetic vari-
ability within crop species, and of the genetic rela-
tionships among closely related species (Gupta et al.
1996; Powell et al. 1996). In the case of Prunus, SSR
markers covering the almost whole genome have been
obtained in different species including peach, apri-
cot, Japanese plum and cherry almost (Cipriani et al.
1999; Downey and Iezzoni 2000; Sosinski et al. 2000;
Testolin et al. 2000; Cantini et al. 2001; Aranzana et al.
2002, 2003; Dirlewanger et al. 2002; Georgi et al. 2002;
Wang et al. 2002; Yamamoto et al. 2002; Clarke and To-
butt 2003; Decroocq et al. 2003; Schueler et al. 2003;
Hagen et al. 2004; Messina et al. 2004; Mnejja et al.
2004). Recently, the first set of almond SSRs has been
published (Testolin et al. 2004). They have been suc-
cessfully used for the molecular characterization and
identification of almond cultivars (Martínez-Gómez
et al. 2003a; Testolin et al. 2004) and related Prunus
species (Martínez-Gómez et al. 2003c). Electrophore-
sis in polyacrilamide gels with radioactive and silver
stainingwas thefirstmethodused in theanalysisof the
PCR amplified fragments of DNA obtained from the
SSR markers. Electrophoresis in Metaphor® agarose
gels was an alternative method to polyacrilamide gels
due to its easier application (Morgante et al. 2003).
More recently, new methods for PCR amplified DNA
have been developed including the utilization of auto-
matedsequencers.While theuseofMetaphor®agarose
gels appears less useful for genotype characterization

that the other two methods, this method may be the
most convenient in mapping of populations involv-
ing alleles separated more than 5 bp due to its lower
cost and easier routine application (R. Sánchez-Pérez
et al. 2006) (Fig. 3). The comparative analysis of the
variability of five Prunus species with 125 SSRs has
detected that the most polymorphic species was al-
mond, followed by Japanese plum, apricot, cherry
and peach (M. Mnejja and P. Arús, unpublished re-
sults). This is the same order of variability that was
found with isozymes by Byrne (1990), which confirms
almond as a species with a very high level of polymor-
phism.

11.3
Construction of Genetic
Linkage Maps

Linkage analysis was first performed in almond us-
ing isozyme genes (Arús et al. 1994a; Vezvaei et al.
1995), but the low number of isozymes that can be an-
alyzed with conventional enzyme staining methods in
a given population precluded the use of these markers
for the construction of genetic maps. The develop-
ment of RFLPs at the beginning of the 1980s provided
a virtually unlimited source of high quality markers
located all over the genome, making map construc-
tion with markers a feasible endeavor for most animal
and plant species. The first map for almond was con-
structed by Viruel et al. (1995) based almost entirely
on these markers (120 RFLPs and 7 isoenzymes) for
the F1 progeny between ‘Ferragnès’ and ‘Tuono’ (the
F×T map). This map detected the eight expected link-
age groups and spanned approximately 400 cM. An-
other map constructed by Foolad et al (1995) with
an F2 population of the interspecific cross between
a peach selection (54P455) and the almond cultivar
‘Padre’ (P×5), had a similar marker composition (101
RFLPs and 6 isozymes). This map was longer than
that of Viruel et al. (1995), with a total length of about
800 cM.

As a result of a European project (see Arús et al.
1994b), a saturated linkage map of for Prunus was
obtained in an almond (cv. ‘Texas’, syn. ‘Mission’)
× peach (cv. ‘Earlygold’) F2 progeny (Joobeur et al.
1998) including 246 markers (235 RFLPs and 11
isozymes). All markers studied mapped in the eight
linkage groups found, with a total distance of 491 cM.
Given that this map (the T×E map), considered as the
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Fig. 3. Analysis of DNA
polymorphisms of SSR
markers in several almond
cultivars using polyacry-
lamide electrophoresis gels
(a), Metaphor® agarose elec-
trophoresis gels (b) and
automated capillary se-
quencers (c)

Prunus reference map, had many markers in common
(67) with the ‘Ferragnès’ × ‘Tuono’ (F×T) map, it was
possible to compare them, having the same distribu-
tion of makers among linkage groups and a complete
colinearity of markers within each linkage group. For
that reason the terminology for linkage groups coined
for the F×T almond map was adopted for the T×E ref-
erence Prunus map. The T×E map has been progres-
sively improved (Aranzana et al. 2003) with the addi-
tion of more markers of good quality, such as addi-
tionalRFLPsandsimple-sequence repeats (SSRs).The
current version (Dirlewanger et al. 2004a) includes
562 markers (361 RFLPs, 185 SSRs, 11 isozymes and 5
STSs), which cover a total distance of 519 cM with high
density (average density 0.92 cM/marker and largest
gap of 7 cM).

The development of markers that could be ob-
tained with simpler methods than RFLPs, such as
RAPDs and SSRs (particularly given the latter’s high
quality) fostered the improvement of other maps, and
more saturated versions were produced such as the
F×T map (Joobeur et al. 2000) with 174 markers and
the P×5 [‘Padre’ (almond) × 54P455 (peach)] map
(Bliss et al. 2002) with 161 markers including six mor-
phological genes and eight resistance-gene analog se-
quences.

Two more maps were constructed after T×E and
used the information of this map to elaborate frame-
work maps with a low number of markers selected
from it that covered the whole genome at distances
of 10–25 cM. The first of these maps was obtained
in the F1 progeny of the cross between two almond
cultivars ‘Felisia’ (syn. D-3-5) and ‘Bertina’ which
allowed a study of the map position of genes in-
volved in self-incompatibility (Ballester et al. 1998,
2001), shell hardness (Arús et al. 1999) and bloom-
ing time (Ballester et al. 2001). The second map was
based on an F2 progeny between ‘Garfi’ almond and
‘Nemared’ peach (Jáuregui et al. 2001), which located

genes involved in nematode resistance, and flower
color (Jáuregui 1998).

The similar order of molecular markers observed
in different Prunus maps when compared to the
Prunus reference map, suggests a high level of synteny
within the genus (Aranzana et al. 2003; Dirlewanger
et al. 2004a, b; Lambert et al. 2004). This homology
among the genomes of Prunus species is in agreement
with the low level of breeding barriers to interspe-
cific gene introgression and supports the opportu-
nity for successful gene transfer between closely re-
lated species (Gradziel et al. 2001a; Martínez-Gómez
et al. 2003b). In addition, the synteny among Prunus
genomes offers important opportunities to transfer
and compare genetic information from linkage maps
generated in different species of this genus.

The Prunus reference map has been compared
with the Arabidopsis sequence, finding 23 syntenic
blocks between them, which covered 23% of the
Prunus map distance and 16% of the Arabidopsis
genome (Dominguez et al. 2003). Microsynteny stud-
ies have found also a fractional conservation between
these two distant taxons (Georgi et al. 2003) and in-
dicate that the sequence of Arabidopsis can be em-
ployed to a limited extent for gene or marker search
in Prunus.

11.4
Major Gene and QTL Mapping,
and Gene Cloning

The usual approach for the analysis of marker-trait
association is the use of mapping populations segre-
gating for the agronomic characters of interest. The
analysis of cosegregation among markers and char-
acters allows establishment of the map position of
major genes and QTLs responsible for their expres-
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Table 1. Markers associated to main agronomic traits in almond

Trait Symbol Linkage Populations Marker Reference
group

Flower color B G1 ‘Garfi’ (almond) × ‘Nemared’ (peach) RFLP Jáuregui 1998
Shell hardness D G2 ‘Ferragnés’ (almond) × ‘Tuono’ (almond) RFLP Arús et al. 1999
Nematode resistance Mi G2 ‘Garfi’ (almond) × ‘Nemared’ (peach) RFLP Jáuregui 1998
Nematode resistance Mi G2 ‘Padre’ (almond) × ‘54P455’ (peach) RFLP Bliss et al. 2002
Anther color Ag G3 ‘Texas’ (almond) × ‘Earlygold’ (peach) RFLP Joobeur 1998
Blooming time Lb G4 ‘D.3.5’ (almond) × ‘Bertina’ (almond) RAPD Ballester et al. 2001
Kernel taste Sk G5 ‘Padre’ (almond) × ‘54P455’ (peach) RFLP Bliss et al. 2002
Kernel taste Sk G5 ‘Texas’ (almond) × ‘Earlygold’ (peach) RFLP Joobeur 1998
Self-incompatibility S G6 ‘D.3.5’ (almond) × ‘Bertina’ (almond) RAPD Ballester et al. 2001
Self-compatibility S G6 ‘Ferragnés’ (almond) × ‘Tuono’ (almond) RFLP Ballester et al. 1998
Self-compatibility S G6 ‘Ferragnés’ (almond) × ‘Tuono’ (almond) RFLP Arús et al. 1999
Self-compatibility S G6 ‘Padre’ (almond) × ‘54P455’ (peach) RFLP Bliss et al. 2002

sion (Arús and Moreno-González 1993). Some of the
linkage maps developed in almond include markers
associated with several traits of horticultural value.
With the previously reported high level of synteny be-
tween the genome of Prunus crops, and the existence
of a reference map, a considerable number of genes
studied in different populations of almond have been
integrated in a single map. The approximate position
of these genes is providing in Fig. 4 and their descrip-
tion in Table 1. The important characters and QTLs
that are presently being mapped in almond include
flower color (B) in the linkage group 1 (G1) (Jáuregui
1998), nematode resistance (Mi) (G2) (Jáuregui 1998;
Bliss et al. 2002), shell hardness (D) (G2) (Arús et al.
1999), anther color (Ag) (G3) (Joobeur 1998), bloom-
ing time (Lb) (G4) (Ballester et al. 2001), kernel taste
(Sk) (G5) (Joobeur 1998; Bliss et al. 2002), and self-
incompatibility (S) (G6) (Ballester et al. 1998, 2001;
Arús et al. 1999; Bliss et al. 2002). Although in some
cases the location of these genes has been established
in low-density maps, their position can be further
defined by using the information provided by the
network of maps available for Prunus (Dirlewanger
et al. 2004a). Prunus genome synteny should also
facilitate the successful transfer of sets of markers
and coding sequence among species (Aranzana et al.
2003; Decrocq et al. 2003; Dirlewanger et al. 2004a, b).
Candidate gene approaches have also proven to be
useful for finding associations between genes in-
volved in relevant metabolic pathways and the major
genes or QTLs as have been reported in peach (Eti-
enne et al. 2002).

Bulked segregant analysis (BSA), where two
pooled DNA samples are formed from plant sources
that have similar genetic backgrounds but differ in
one particular trait, is another powerful approach
for the analysis of molecular marker-horticultural
trait association. A strategy combining different
markers with bulked segregant analysis was used
to identify markers linked to loci of specific fruit
characters in peach × almond crosses (Warburton
et al. 1996). In addition, Ballester et al. (2001) using
this methodology identified three RAPD markers
associated with self-incompatibility and a gene
conferring delayed blooming in almond.

Although gene cloning studies in almond are very
scarce, the first gene sequence reported in Prunus was
that of extensin obtained from almond developing
seeds (García-Mas et al. 1992), to which followed
some other genes abundantly expressed during seed
development (García-Mas et al. 1995, 1996). The
genes involved in the self-incompatibility trait have
also been characterized. Ushijima et al. (1998) cloned
the cDNAs encoding S-RNases from almond after
studying the primary structure and the sequence
diversity of the S-RNases in other related Rosaceae
species. These studies have been completed by other
research groups studying other S alleles (Channun-
tapipat et al. 2001; Ma and Oliveira 2001; Certal et al.
2002). In addition, Ushijima et al. (2001) cloned
and characterized the cDNAs encoding S-RNases in
an almond cultivar ‘Jeffries’ which is a somaclonal
mutant of ‘Nonpareil’ (Sc and Sd self-incompatibility
alleles) and has a dysfunctional S allele haplotype
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both in pistil and pollen. Results indicated that
at least two mutations had occurred to generate
this mutant, the deletion of the Sc allele haplotype
and the duplication of the Sd allele haplotype. On
the other hand, Suelves and Puigdomenech (1998)
identified and sequenced a gene highly expressed
in the floral organs of almond and coding for the
cyanogenic enzyme (R)-(+)-mandelonitrile lyase.
However, the study of the mRNA levels during seed
maturation and floral development in fruit and floral
samples indicated a lack of correlation between these
characteristics and levels of mandelonitrile lyase
mRNA and the level of kernel bitterness of almond
cultivars classified as homozygous or heterozygous
for the sweet trait or homozygous for the bitter
trait. In addition, Vezvaei et al. (2004) developed
a strategy for the discovery the glucosyltransferase
gene responsible for producing bitter kernel in
almond using degenerate primers based on consen-
sus regions of glucosyl-transferase genes for other
plants.

11.5
Marker-Assisted Breeding

Developing new cultivars is a long and tedious process
in almond, involving the generation of large popula-
tion of seedlings from which the best genotypes are
selected. Whereas the capacity of breeders to gener-
ate big populations from crosses is less limited, the
management, study and selection of these seedlings
remain the main limiting factors in the generation of
new releases (Kester et al. 1991; Kester and Gradziel
1996; Socias i Company 1998). Marker-assisted selec-
tion (MAS) is emerging as a very promising strat-
egy for increasing selection gains (Arús and Moreno-
González 1993; Luby and Shaw 2001). Knowledge
provided by advances in molecular genetics promise
faster and more efficient approaches to cultivar im-
provement. Early selection utilizing molecular mark-
ers allowsaccurate screeningof seedlings several years
before the mature plant traits can be evaluated in the
field, makes possible the accumulation of different
genes/QTLs for horticultural traits of interest, and
shortens the number of generations to recover the
desired genotype particularly after a cross with an
exotic genotype or wild species (Arús and Moreno-
González 1993; Baird et al. 1996; Dirlewanger et al.
2004a). Selection by molecular markers is particu-

larly useful in fruit, nut, and other tree crops with
a long juvenile period, when the expression of the
gene is recessive or the evaluation of the charac-
ter is difficult, as with resistance to biotic or abiotic
stresses (Luby and Shaw 2001; Scorza 2001; Testolin
2003). If sufficient mapping information is known,
MAS can dramatically shorten the number of gener-
ations required to “eliminate” the undesired genes
of the donor in backcrossing programs. Selection
of marker loci linked to major genes can be some-
times more efficient than direct selection for the tar-
get gene (Arús and Moreno-González 1993; Baird
et al. 1996).

A very promising application of MAS is the ma-
nipulation of self-incompatibility in almond. Almond
self-incompatibility alleles (S-alleles) were initially
identified in the field through controlled crosses with
a series of known S-genotypes (Kester and Gradziel
1996; Certal et al. 2002). Molecular methods have
been developed in two areas: identification of sty-
lar S-RNases by electrophoresis in vertical polyacril-
amide gels (Bošković et al. 1997, 2003), and the am-
plification of specific S-alleles using appropriately de-
signed primers for PCR and electrophoresis in hori-
zontal agarose gels (Tamura et al. 2000; Channuntapi-
pat et al. 2003; López et al. 2004). This latter technique
is being routinely used for the identification of cross-
incompatibility groupings for current almond cul-
tivars and for efficiently breeding self-compatibility
into new cultivars (Gradziel et al. 2001b; Ortega and
Dicenta 2003) allowing earlier and more accurate se-
lection of the most common self-incompatibility or
self-compatibility alleles. More recently, a multiplex-
PCR strategy has been developed for the unequiv-
ocal identification of self-incompatibility and self-
compatibility alleles. This multiplex PCR opens the
possibility to identify new S-alleles using different sets
of primers (Sánchez-Pérez et al. 2004b) (Fig. 5).

In a recent study to determine the genetic ba-
sis of mechanisms involved in almond drought tol-
erance, several genes that were strongly expressed in
response to dehydration of almond have been iden-
tified. A differential expression technique based on
cDNA-AFLP (amplified fragment length polymor-
phism derived technique for RNA fingerprinting)
has been used to identify transcripts that accumu-
lated in mature embryos and in in-vitro-cultured
plantlets subjected to desiccation or abscisic acid
treatment. This study showed that the levels of ex-
pression of the identified genes in leaves of young
trees of eight almond cultivars differing in drought
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Fig. 5. Agarose 1.5% gel
showing amplified S-alleles
(self-compatibility and self-
incompatibility) in 17 al-
mond cultivars and breeding
lines using PCR specific
primers AS1II (Tamura et al.
2000), CEBASf (Sánchez-
Pérez et al. 2004b) and
AmyC5R (Tamura et al.
2000)

tolerance provided valuable information for breed-
ing drought resistance in almond (Campalans et al.
2001).

11.6
Advanced Works and Future Scope

Apart from the molecular markers described (isoen-
zymes, RFLPs, RAPDs, and SSRs), other markers be-
ing used in the development of marker associated
traits in almond and other Prunus, are those based on
single point mutations and those obtained from either
cDNA sequences (expressed sequences tags, ESTs) or
databases (cloned gene analogs, CGAs) (Van Nocker
et al. 2002; Testolin 2003, Jung et al. 2004). The large-
scale single-pass sequencing of ESTs can give a more
global picture of the genes involved in the develop-
ment and function of organs and tissues. A recent
collection of ESTs from peach and almond based on
cDNA libraries has been released to public databases,
and more than 3,800 putative unigenes have been de-
tected (http://www.mainlab.clemson.edu/gdr/) (Main
et al. 2004). This work is complementary to the other
works regarding EST development in Prunus per-
formed by different research groups in other Euro-
pean countries (Grimplet et al. 2004; Pozzi et al. 2004).
Lazzari et al. (2004) also presented a collection of
6,817 ESTs prepared from four cDNA libraries ob-
tained from mesocarps of peach as part of the work of
the Italian National Consortium for Peach Genomics
(http://www.itb.cnr.it/ESTree). In almond, a study of
expressed transcripts during pistil development has
selected and partially sequenced over 1,000 clones

from a cDNA library. Analysis of these ESTs using
the National Center for Biotechnology Information
(NCBI) databases indicated significant similarity to
protein coding sequences in the database. The EST
analysis has provided a preliminary picture of the
numerous almond genes potentially involved in pis-
til development and provides an extensive reservoir
for future gene cloning and genetic mapping in al-
mond (Jiang and Ma 2003). As part of a worldwide
collaboration effort to increase and enrich the ge-
nomics resources in different Prunus species, the fab-
rication of different Prunus microarray using unigene
sets as probes is being initiated. A group of nearly
4,600 unique ESTs derived from peach mesocarp and
developing almond seeds have been sequenced to an-
alyze the expression profile of the unigene set during
fruit development and the identification of additional
genes involved in this process (McCord et al. 2004).
The development of microarrays has also been de-
scribed in peach for the study of fruit quality by Train-
otti et al. (2003, 2004) including the development of
markers associated to these important horticultural
characteristics.

A recent strategy for the location of new mark-
ers in an established genetic linkage map is the “se-
lective” or “bin” mapping approach. This technique
allows mapping with the use of a subset of plants of
a population from which a map is already available
(Vision et al. 2000). The plants of this subset are se-
lected to maximize the information on linkage, so that
their joint genotype for any marker identifies a small
as possible unique genome fragment (a bin). The ad-
vantage of this strategy is that it allows mapping with
less time and cost and is adequate for simplifying the
construction of high-density maps or for the addi-
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tion of large numbers of markers (such as SSRs or
EST-derived markers) to a previous map. Recently,
Howad et al. (2005) have incorporated 151 SSRs to the
Prunus reference map using only six individuals from
the T×E (‘Texas’ × ‘Earlygold’) Prunus reference pop-
ulation. The use of this set of six individuals, promises
to be a useful resource for Prunus geneticists in the
future.

Twin seeds (multiple embryos within the same
seed coat) occur spontaneously in several almond cul-
tivars including the Californian ‘Nonpareil’ and ‘Mis-
sion’ (Kester and Gradziel 1996). Seedlings from the
same twin peach seed are frequently viable and show
similar growth habits, though occasionally one of the
seedlings show weak growth and develops poorly.
Some of these low-vigor plants have been shown to
be haploids from which true-breeding dihaploids can
be generated (Gulcan 1975) for genetic studies, hy-
brid rootstock production, and transformation and
regeneration studies. In addition, some of the low-
vigor twin almond seedlings were found to be aneu-
ploids (Martínez-Gómez and Gradziel 2003) and thus,
have value for developing near isogenic lines (NIL).
A collection of these haploid/aneuploid NILs has been
presented as an interesting germplasm to aid in ge-
netic (locating genes, selective transfer of particular
chromosomes) andmolecular (isolationandsequenc-
ing of genes, genetic transformation, etc.) studies for
the development of new strategies of markers linkage
to agronomic traits in almond (Sánchez-Pérez et al.
2004c).

In conclusion, the typical long generation time,
alongwith the extensive space requirements andother
limitations to generating the required large segregat-
ing almond progeny populations, have frustrated the
development and testing of new almond cultivars.
These same limitations, however, make molecular-
based strategies that improve breeding efficiency par-
ticularly valuable to tree crops. Because they are veg-
etatively propagated, most Prunus tree crops such as
almond have a unique advantage over other agro-
nomic crops since desirable, unique gene/genomic
combinations can be ‘captured’ and disseminated by
clonal propagation. Future research needs include the
comparative mapping between the most important
genera of fruit crops and the numerous wild species.
Almond species include a large number of intercom-
patible species which provide an enormous gene pool
available for breeding. Little use has been made of this
variability because the slowness of classical breeding
methods. However, genomic methodologies, includ-

ing the development of quick gene sequencing and
cloning tools, may make it possible to rapidly discover
and incorporate genes of interest from this exotic ma-
terial. Additional advantages encouraging the utiliza-
tion of new technologies to almond tree crop improve-
ment include a small genome size, high levels of syn-
teny between genomes, and a well-established inter-
national network of cooperation among researchers.
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12.1
Introduction

12.1.1
History of the Crop

Pistachio (Pistacia vera L.), a deciduous, dioecious,
and wind-pollinated tree species, is a member of
the family Anacardiaceae. This family includes other
known species such as cashew (Anacardium occi-
dentale L.), mango (Mangifera indica L.), ambarella
(Spondias dulcis Forst.), purple mombin (Spondias
purpurea L.), poison ivy and poison oak (Toxico-
dendron spp.), pepper tree (Schinus spp.), or sumac
(Rhus spp.). Although pistachio is widely cultivated in
Mediterraneancountries, its probableorigin is central
and southwestern Asia. The most complete surveys of
the current range of wild pistachio trees were made by
Whitehouse (1957),whotraveled tosouthwesternAsia
in the late 1920s, and by Zohary (1952, 1973). These
two authors note that P. vera grows wild in the low
mountains and foothills of the semi-desert region of
south-central Asia. The range extends from northeast
Iran and northern Afghanistan to western Tien-Shan
and the Karatau mountains through Turkmenistan,
Uzbekistan, Tajikistan, Kazakhstan and Kyrgyzstan
(Kayimov et al. 2001). East of the Karatau range, in
the central Tien-Shan range, wild pistachio trees exist
in only a few, separate, small areas, and the species
also grows in Baluchistan (western Pakistan) (Anwar
and Rabbani 2001). Historical records, however, tell
of pistachio trees growing in places where none ex-
ists today, and the present distribution has been in-
fluenced by exploitation of pistachio trees by local
human populations, who used them as a source of
fuel and heavy pasturing of cattle, preventing natural
renewal (Whitehouse 1957).

The presence of pistachio nuts in archeological
excavations provides evidence that pistachio has long
been associated with human activities, although these

reports do not always indicate if the nuts found are
from P. vera or from closely related Pistacia species
such as P. palaestina or P. atlantica (Hormaza et al.
1994a). Pistachio cultivation is very ancient and prob-
ably started in areas close to wild pistachio stands,
likely from seedlings obtained from the best wild
trees (Whitehouse 1957). Remnants of true pista-
chio nuts dated from the sixth millennium BC have
been found, east of the Zagros mountains, in Short-
ughai, Afghanistan (Wilcox 1991) and in Yahya in the
Soghum valley of southeastern Iran (Prickett 1986),
two places that were situated close to wild pistachio
stands. From its presumed center of origin, pistachio
cultivation was extended within the ancient Persian
Empire from where it gradually expanded westward.
In fact, according to Joret (1976), the name pistachio
seems to derive from the word pista-pistak in the an-
cient Persian language Avestan. In Assyria, about the
tenth century BC, the Queen of Sheba monopolized
the limited crop of nuts for her exclusive use and that
of her guests (Whitehouse 1957). Pistachio trees were
also planted in the gardens of the king Merodach-
Baladan of Babylon around the eighth century BC
(Brothwell and Brothwell 1969). Pistachio nuts, called
botnim in Hebrew, are mentioned in the Bible (Gen-
esis 43:11) as precious gifts carried from Canaan to
Egypt by the sons of Jacob (Zohary 1982). In the sec-
ond century BC, Nicander found pistachios in Susa,
a village in southwestern Iran close to the current
border with Iraq (Joret 1976). In the first century BC,
Poseidonius finds cultivated pistachios in Syria which
misled Greek and Roman writers to consider Syria
as the site of origin for pistachio (Joret 1976), a mis-
conception that persisted until recent times (Zohary
1973). Pliny wrote in his Natural History that pista-
chio was introduced into Italy from Syria by the Ro-
man consul in Syria, Lucio Vitello, at the end of the
reign of the emperor Tiberius early in the first cen-
turyAD(Bonifacio1942). FromItaly itwas introduced
into Spain by Flavius Pompeius, and, probably at that
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time, to other Mediterranean regions of Southern Eu-
rope, North Africa, and the Middle East (Lemaistre
1959). Pistachio cultivation was also extended east-
ward from its center of origin and it was reported in
China around the tenth century AD (Lemaistre 1959).
More recently, its culture has begun in Australia and
in California.

12.1.2
Botanical Description

Pistachio (Pistacia vera L.) is a diploid (2n = 30)
(Zohary 1952; Ila et al. 2003) member of the Anac-
ardiaceae. This virtually cosmopolitan family in the
Sapindales/Rutales (Wannan and Quinn 1991) com-
prises about 70 genera and over 600 species (Mitchell
and Mori 1987). The most widely accepted classifica-
tion divides the family into five tribes: Anacardieae,
Rhoeae, Semecarpeae, Spondiadeae, and Dobineae
(Mitchell and Mori 1987; Wannan and Quinn 1991),
with Pistacia belonging to the tribe Rhoeae. Zohary
(1952) considers the genus to comprise 11 species di-
vided into four sections (Lentiscella, Eu Lentiscus,
Butmela and Eu Terebinthus, where P. vera is in-
cluded), although some authors recognize as many
as 15 species (Whitehouse 1957). Except the North
American species P. texana and P. mexicana, Pista-
cia species are distributed mainly within the Mediter-
ranean region, Western and Central Asia and the Mid-
dle East.

The pistachio is a small to medium sized, bushy,
deciduous tree which grows slowly to a height of about
6–9 meters with a single or several trunks. Leaves are
compound-pinnate, hairy when young and glabrous
when old, with three to five oval leaflets. Pistachio is
dioecious and both the staminate and pistillate in-
florescences are panicles formed in the axils of the
previous year’s growth, consisting of up to several
hundred individual flowers (Crane and Iwakiri 1981).
Both types of flowers are apetalous and wind is the
pollinating agent. P. vera shows perfect dioecy since
mature pistillate flowers have no trace of stamens and
mature staminate flowers lack any evidence of female
structures (Wannan and Quinn 1991). However, sta-
men and carpel primordia are initiated in both male
and female flowers, but the development of organs of
the opposite sex becomes arrested at the primordial
stage (Hormaza and Polito 1996). Mature pistillate
flowers consist of two to five tepals and a pistil with
three stigmas. The commercial pistachios are known
as nuts, but the pistachio fruit is indeed a drupe with

a fleshy exocarp and mesocarp (hull) and a hard, bony,
dehiscent endocarp (shell) that splits longitudinally
along its suture beginning at the apex when the fruit
has ripened. The pistachio nuts of commerce com-
prise the endocarp (shell) and the edible kernel, which
has a papery seed coat, which color ranges from yel-
lowish to green. Although the fleshy hull loosens at
maturity, it has to be removed from the nut in pro-
cessing either by hand or mechanically.

12.1.3
Economic Importance

Although some species other than P. vera produce
seeds that are eaten or used for oil and soap pro-
duction by local populations in their native ranges
(Hepper 1992), P. vera is the only commercially impor-
tant species in the genus Pistacia (Whitehouse 1957).
Among the nut tree crops, pistachio tree ranks sixth
in world production behind almond, walnut, cashew,
hazelnut andchestnut (Mehlenbacher2003).Totalpis-
tachio world production has reached about 650,000
tons (2002–2004 average) and the main world pro-
ducer is Iran with more than 300,000 tons followed
by Turkey, USA and Syria (Faostat 2004). Pistachio
nuts are an excellent source of vegetable protein, with
a high arginine and unsaturated fat content, mainly
monounsaturated, as well as phytosterols. Pistachios
also contain appreciable levels of copper, magnesium,
phosphorus and calcium as well as many vitamins
such as vitamin E and folic acid (Favier et al. 1995).

Most pistachio cultivation is based on clonally
propagated scion cultivars grafted onto seedling root-
stocks of the same species, or of other Pistacia species
or hybrids. Different rootstocks are used in the differ-
ent growing areas, thus, P. atlantica, P. integerrima
and hybrids P. atlantica × P. integerrima are the
main rootstocks in California, P. vera seedlings are
used in Turkey, while P. mutica, P. khinjuk as well as
seedlings of P. vera are the main rootstocks used in
Iran. In areas where wild forms exist, wild P. vera
individuals are occasionally grafted in situ with se-
lected genotypes (Zohary and Hopf 1988). The few
cultivars of P. vera described, probably less than 100
worldwide, are thought to be derived from only a few
primitive varieties (Maggs 1973) resulting in a high
degree of genetic vulnerability. These cultivars are
relatively few generations removed from their wild
ancestors and usually only a few cultivars are grown
in a given pistachio producing area. The main culti-
vars grown in Iran are Ohady, Kaleh ghochi, Ahmad
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Aghai, Badami Zarand, Rezaii and Pust piazi (Esmail-
pour 2001); in Turkey, Uzun, Kirmizi, Halebi, Siirt,
Beyazben, Sultani, Deǧirmi and Keten Gömleǧi (Ak
and Açar 2001); and in Syria, Ashoury, Red Oleimy
and White Batoury (Hadj-Hassan 2001). The Cali-
fornia pistachio industry relies almost exclusively on
two seedling selections: ‘Kerman’, a nut-producing
female cultivar, and ‘Peters’, a male cultivar used as
a pollinizer.

The pistachio is a xerophitic tree that requires long
and hot summers and moderately low winter tem-
peratures. These conditions are met in Iran, Turkey
and California but some pistachio producing coun-
tries from the Mediterranean basin like Syria and
Tunisia usually require varieties with lower chilling
requirements. Similarly, in regions with spring frosts
or high summer humidity and rainfall, the pistachio
trees may suffer during blooming and can be affected
by diseases not found in dry areas (Crane 1984). Pista-
chios are adapted to a variety of soils, but commercial
production is best on well-drained, deep, light, sandy
loams with high lime content. Although pistachio can
thrive in arid conditions, yields in non-irrigated con-
ditions are much lower than in irrigated conditions
such as California. Several diseases and pests can af-
fect pistachios (Holtz 2002) although their incidence is
variable depending on the cultivar and environmental
conditions.

12.1.4
Breeding Objectives

Themain taskscarriedout in thedifferentexistingpis-
tachio collections include characterization and eval-
uation trials (Caruso et al. 1998). Only recently, a few
breeding programs have started in different places,
like California (Parfitt et al. 1995; Chao et al. 1998,
2003), Spain (Vargas et al. 1987, 1993, 2002; Batlle
et al. 2001) and Turkey (Atli and Kaska 2002). As in
other tree-crop species, traditional breeding progress
has been slow and many of the selections are still in
experimental collections.

Selection and breeding in male pistachio trees
is directed towards obtaining pollinators that pro-
duce a large amount of viable pollen, with an over-
lap in blooming with the female cultivar of inter-
est (Martinez-Palle and Herrero 1994). Most of the
breeding effort has been focused on the fruiting re-
lated problems of female pistachios. The main traits
of interest in current pistachio breeding programs in-
clude:

– Increasing the percentage of split shells. Split shells
make pistachio nuts more attractive to consumers
since the kernels can be extracted with the fingers
avoiding cracking. The percentage of split shells
depends on the cultivar and on environmental con-
ditions (Crane 1984).

– Reduction in the number of blank or unfilled nuts.
Blanks are fruits without kernels resulting mainly
from embryo abortion and subsequent fruit devel-
opment (Crane 1973). The extent to which blanks
occur varies upon cultivar and rootstock and year
to year (Crane 1984). It has been observed that, in
blank nuts, the shell does not split, indicating the
involvement of the seed in shell dehiscence.

– Increased and regular yields trying to diminish al-
ternate bearing. Alternate bearing is a common
problem in most pistachio cultivars, resulting in
a heavy crop one year followed by little or none the
following year. This problem is observed in other
fruit crops and, in pistachio, it seems to be the result
of the premature abscission of inflorescence buds
during a heavy crop year (Crane and Nelson 1971)
although the physiological causes are still not clear
(Roussos et al. 2003).

– Vegetative propagation. Pistachio rootstocks are
produced from seed. The genetic variation found
in seedling rootstocks results in a great variability
in the performance of the grafted cultivar affect-
ing diverse traits such as fungal resistance, shell
splitting, blank nut production or yield. Conse-
quently, a greater uniformity is desirable and it
could be obtained by using vegetative propagated
rootstocks (Crane 1984). Important advances have
taken place in micropropagation (Parfitt and Alme-
hdi 1994) and micrografting (Onay et al. 2004a).
Recently, clonal propagation from leaf cuttings of
the rootstock UCB-1 (hybrid between P. atlantica
and P. integerrima) widely used in California has
been also reported (Almehdi et al. 2002).

– Increase in nut size, quality and appearance. As in
other crops, the improvement of quality traits are
becoming important breeding objectives towards
agreater acceptanceof theproduct by the consumer
and to reduce the number of undesirable fruits.

– Later flowering. Late flowering in regions with late
frosts is a desirable breeding and selection trait to
avoid flower damage that would affect production
and to avoid spring fungal infections.

– Resistance to both aerial and soil fungal diseases.
Several fungal diseases affect pistachio but their
impact is highly variable depending on the cultivar
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and the environmental conditions. The most im-
portant include: panicle and shoot blight (caused
by Botryosphaeria dothidea), botrytis blossom
and shoot blight (caused by Botrytis cinerea),
alternaria late blight (caused by Alternaria alter-
nata), Verticillium wilt (caused by Verticillium
dahliae), Armillaria root rot (caused by Armillaria
mellea), Schizophyllum wood decay (caused by
Schizophyllum commune), Sclerotinia shoot blight
(caused by Sclerotinia sclerotiorum), Phomopsis
shoot blight (caused by Phomopsis spp.) and
Septoria leaf and fruit spot (caused by Septoria
spp.) (Michailides et al. 1995; Holtz 2002).

– Other interesting traits in rootstock breeding in-
clude resistance to nematodes and salinity.

Although a few exceptions have been described
in various Pistacia species (Ozbek and Ayfer 1958;
Crane 1974; Kafkas et al. 2000) dioecy is the norm
in pistachio. Dioecy represents an inconvenience for
pistachio breeding because pistachio seedlings need
between five to eight years to reach reproductive ma-
turityandbothsexesarephenotipically indistinguish-
able at the seedling stage (Hormaza et al. 1994b).
However, molecular methods (see below) can facil-
itate breeding and selection by enabling screening for
gender at the seedling stage, thereby simplifying the
breeding of male and female plants for different ob-
jectives, with savings of time and economic resources.

12.1.5
Classical Breeding Achievements

Breeding and introducing new pistachio varieties is
of great interest for the pistachio industry in different
areas of the world. The use of a single variety, like
‘Kerman’ in the US, makes pistachio production very
vulnerable to new diseases, and limits the possibility
of extending the ripening season. Additionally, due to
the little breeding efforts made until recently, most of
the varieties used today have low levels of the desired
characteristics like percentage of split nuts, number of
blanks or exhibit an extreme alternate bearing. This
situation limits production and, therefore, breeding
towards the improvement of these characteristics can
greatly improve yields. Due to the relatively recent ini-
tiation of pistachio breeding programs and to the long
time required to achieve results in fruit tree species,
the progress obtained in this direction following clas-
sical selection breeding approaches is slow. The most

advanced pistachio breeding programs are now evalu-
ating advanced selections from breeding crosses. This
is the case of the program initiated at the Univer-
sity of California-Davis in the USA (Parfitt et al. 1995;
Chao et al. 1998, 2003), at the IRTA Mas Bové in Spain
(Vargas et al. 1987, 1993, 2002; Batlle et al. 2001) and
at the Pistachio Research Institute in Gaziantep in
Turkey (Mehlenbacher 2003). In other countries like
Iran, Turkey, Israel or Australia, current pistachio ge-
netic improvement involves evaluating cultivars, lo-
cal seedling populations and species (Mehlenbacher
2003). In Turkey, monoecious P. atlantica genotypes
are being investigated to determine the mechanism
and inheritance of sex determination in the species
(Kafkas 2002). Regarding disease resistance, the im-
pact of Verticillium wilt on the susceptible species
P. atlantica and P. terebinthus is now minimized by
using P. integerrima hybrids, resistant to this fungus,
as rootstock in infected soils (Morgan et al. 1992).
Also, heritable resistance to Alternaria (Chao et al.
2001) and to Botryosphaeria (Parfitt et al 2003) has
been identified in pistachio progenies.

12.2
Marker-Assisted Breeding

Nogeneticmapshavebeenreleased so far inpistachio,
although some advances have been made in the use of
molecular tools for germplasm screening and breed-
ing for specific traits. Results on genetic transforma-
tion of pistachio are also not yet available, although
efficient somatic embryogenesis protocols have been
reported (Onay et al. 1995, 1996, 2000, 2004b).

12.2.1
Germplasm Screening

Several studies have been conducted in pistachio con-
cerning intra- and inter-specific genetic relationships,
patterns of inheritance, or breeding histories. As in
other fruit tree species, identification of pistachio
cultivars has been traditionally carried out through
pomological, morphological and horticultural traits
(Zohary 1952; Grundwag and Weker 1976; Lin et al.
1984), and the consensus on those traits has allowed
the release of descriptors for pistachio (IPGRI 1997).

More recently, as in other fruit tree species (Wün-
sch and Hormaza 2002), different molecular mark-
ers have been used to fingerprint pistachio cultivars
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and to perform genetic diversity studies. Molecular
characterization of Pistacia cultivars and species was
initially carried out using isozymes (Loukas and Pon-
tikis 1979; Dollo 1993; Barone et al. 1993, 1996; Rovira
et al. 1995; Vargas et al. 1995). However, insufficient
isozyme polymorphism among closely related cul-
tivars limits their usefulness for fingerprinting and
genetic diversity studies. In the last two decades ef-
forts have been dedicated to obtain a more objective
identification of genotypes with the use of DNA-based
molecular markers. Initial work on molecular identi-
fication of pistachio using DNA markers was carried
out by Hormaza et al. (1994a) and Dollo et al. (1995).
They examined 15 pistachio cultivars with 33 RAPD
primers and selected 14 primers that produced 143
amplification fragments, 37 of them being polymor-
phic. UPGMA cluster analysis grouped the cultivars
according to their geographical origin distinguishing
two major clusters, one comprising cultivars origi-
nated in the Mediterranean countries and the other
from Iran and the Caspian Sea. Those studies were
continued later (Hormaza et al. 1998), increasing both
the number of genotypes closer to the pistachio cen-
ter of origin and the number of RAPD primers. The
results obtained with 29 genotypes and 37 primers
agreed with earlier observations since most of the
new genotypes fell into the Iranian-Caspian cluster.
RAPD markers have also been used more recently to
study the diversity of local pistachio germplasm in
Turkmenistan (Barazani et al. 2003).

Recently, a first set of microsatellite markers has
been developed in pistachio (Ahmad et al. 2003). In
this work, a genomic library enriched for dinucleotide
and trinucleotide repeats from the cultivar ‘Kerman’,
was used to identify 14 SSRs that resulted in 46 pu-
tative alleles in a set of 17 pistachio cultivars (six
from Syria, eight from Iran and two from Turkey).
These microsatellites have been initially used by Ah-
mad et al. (2003) to identify the set of cultivars stud-
ied, analyze their genetic similarity and to establish
a true to type assay based in the DNA extraction from
pistachio kernels and shells. Twelve of those markers,
together with 104 polymorphic markers produced by
eight primer combinations following the Sequence-
Related Amplified Polymorphism (SRAP) technique,
have also been recently used to identify four com-
mercial pistachio rootstocks (P. atlantica cv. ‘Stan-
dard Atlantica’, P. integerrima cv. ‘Pioneer Gold’, and
the P. atlantica × P. integerrima hybrids ‘PGII’ and
‘UCB-1’) detecting variation in the UCB-1 rootstock
(Ahmad et al. 2005).

At the interespecific level,molecularDNAmarkers
have been used in Pistacia to analyze the phylogenetic
and similarity relationships among the species of the
genus. Thus, Parfitt and Badenes (1997) determined
the phylogenetic relations among 10 Pistacia species
using PCR-RFLP chloroplast DNA analysis. This anal-
ysis led to the classification of the Pistacia species
into two main groups, Lentiscus and Terebinthus, with
all the species of the former group being evergreen
with paripinnate leaves, and the species inTerebinthus
group, including P. vera, being deciduous with impar-
ipinnate leaves. This work confirmed the morpholog-
ical observations of Zohary (1952) that P. vera and
P. khinjuk are the most primitive Pistacia species and
thus confirming Central Asia, the natural area of this
species, as the origin of diversity of the genus. The
interspecific relationships described by Parfitt and
Badenes (1997) using chloroplast DNA were later con-
firmed by Kafkas and Perl-Treves (2001) using RAPD
nuclear DNA markers. Additionally, Kafkas and Perl-
Treves (2001)wereable to separateP. vera fromP.khin-
jukandestablishedspecies-specificRAPDmarkers for
the identification of unknown Pistacia germplasm. In
a subsequent study, Kafkas and Perl-Treves (2002)
analyzed the interspecific relations of nine Pista-
cia species using RAPD markers, and included two
species (P. palaestina and P. eurycarpa) that had not
been analyzed before. In this study, the species ana-
lyzed grouped in two clusters, one comprising single-
trunked trees, including P. vera, and a second group
comprising shrubs or small trees including P. lentis-
cus and P. terebinthus, and differing from the clas-
sification made by Parfitt and Badenes (1997). How-
ever, other works with RAPDs and AFLPs (Katsio-
tis et al. 2003; Golan-Goldhirsh et al. 2004) grouped
the species in agreement to the initial classification,
with one group containing evergreen species and in-
cluding P. lentiscus, and a second group containing
deciduous species and including P. vera and P. tere-
binthus. RAPDs have also been used to study the ge-
netic diversity of P. lentiscus populations in Southern
Spain and Northern Africa (Werner et al. 2002). The
identification of RAPD markers specific to P. lentiscus
or P. terebinthus, has also allowed to identify hybrid
genotypes of Pistacia × saportae Burnat (P. lentiscus
× P. terebinthus), a P. vera rootstock, using RAPD
marker profiles (Werner et al. 2001). Recently, a set of
microsatellite markers developed in mango by Viruel
et al. (2005) have also been used to analyze the ge-
netic relationships among Pistacia species and among
several pistachio cultivars (Viruel and Hormaza, un-
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published data). The study of the transferability of
SSR markers between the two genera, showed that
44% of the SSRs developed in mango are conserved in
the four Pistacia species studied (P. vera, P. atlantica,
P. therebinthus and P. lentiscus) and, thus, they can be
added to the set of microsatellite markers available for
studies in Pistacia species.

12.2.2
Marker-Assisted Selection

The use of molecular markers linked to sex determi-
nation in Pistacia is one recent application of marker-
assisted selection in this species. Pistachio, as well as
other species of the genus, is dioecious, and is charac-
terized by a long juvenile period needing five to eight
years to reach maturity. Since morphological markers
do not allow distinguishing female from male plants
prior to flowering, determination of the plant gen-
der at an early vegetative stage would greatly facilitate
breeding, selection and management of this species.
The first molecular marker linked to sex determina-
tion in P. vera was identified by Hormaza et al. (1994b)
usingbulked segregant analysis (BSA).To identify this
marker, theDNAof sevenmaleandseven femalepista-
chio trees from two different crosses (Lassen × Peters
and Kerman × Peters) were bulked and screened for
polymorphisms with 700 RAPD primers. One RAPD
marker (OPO08945) was found to be present in female
genotypes and absent in male genotypes and, thus,
linked to the gene(s) controlling sex determination
in P. vera. Subsequently, this marker has proved to
be useful for sex identification in a large number of
genotypes (Yakubov et al. 2005). A similar approach
was followed by Kafkas et al. (2001) to identify mark-
ers linked to sex determination in the wild Pistacia
species P. eurycarpa and P. atlantica, used as P. vera
rootstocks. In this work, two markers linked to P. eu-
rycarpa sex determination (one present in the male
bulked DNA and the other in the female bulked DNA),
and one in P. atlantica (present in the female bulked
DNA) were found from the screening of 472 RAPD
primers. In both works (Hormaza et al. 1994b; Kafkas
et al. 2001), hybridization signals of the identified sex-
related RAPD markers were found in repetitive se-
quences and a low frequency of sex related polymor-
phisms was observed. These results suggest that sex
determination in Pistacia species must be restricted
to a small region of the genome comprising one or few
genes, surrounded by repetitive sequences.

12.3
Future Scope of Works

Fruit tree breeding is hampered by factors that make
progress slower and more expensive than other crops.
The large generation time of fruit trees makes tradi-
tional breeding including crossing, evaluation and se-
lection a lengthy process. Additionally, a great amount
of space and resources are needed to maintain living
trees. Thus, the size of progenies and breeding pro-
grams and, consequently, the variability that can be
screened is usually limited. Molecular markers tag-
ging single gene traits or quantitative loci allow early
seedling screening, reducing space and resources.
Therefore, although crossings can only be carried out
at maturity, fruit tree breeding can still greatly bene-
fit from molecular genetics. Transformation can also
help to make rapid advance in fruit breeding. The in-
troduction of desired characters in elite germplasm
eliminates the long time needed to introduce traits
of interest by recurrent crossings. Additionally fruit
trees are vegetatively propagated and, therefore, the
improvement, once it is introduced, can be main-
tained through clonal propagation. The drawbacks
of transformation are that regeneration protocols are
still not available for most fruit tree species and, that
the evaluation of transgenic fruit trees is still expen-
sive and time consuming (Scorza 2001).

In pistachio, important advances have been
obtained using classical breeding and selection
approaches. Thus, germplasm has been character-
ized using phenotypical descriptors and molecular
markers, breeding programs based on controlled
crosses of selected genotypes are currently underway
in different countries, information of heritability of
some traits is available and advances in propagation
and regeneration have been reported. However, the
integration of molecular tools with conventional
methods will be a qualitative advance in pistachio
breeding programs. Initial molecular works in
pistachio have initiated by molecular marker studies
to identify germplasm and to study the genetic
variability available. Advances have also been made
in the identification of molecular markers linked to
traits of interest such as sex determination; these
markers allow the rapid and early screening of a large
number of seedlings. However, for a widespread
use of molecular breeding in pistachio, saturated
genetic maps should also be built in this species
and other genes of interest should be tagged to
carry out marker-assisted selection and map-based
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cloning. Additionally the availability of genetic maps
will allow QTL identification and genome selection.
Therefore, strong interdisciplinary breeding pro-
grams combined with appropriate networks that
put together conventional breeding and molecular
techniques are highly needed in pistachio to make
a qualitative advance similar to that currently
occurring in other fruit tree species such as those of
the Rosaceae.
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13.1
Introduction

13.1.1
Brief History of the Crop

The tree species olive (Olea europaea L.) is among the
most ancient of crops of the Mediterranean region
(Zohary and Spiegel-Roy 1975) (Figs. 1 and 2). In the
archaeological records, woods of cultivated olive from
Eastern Spain and Southern France have been dated
up to the Neolithic age (Terral 2000). Before its domes-
tication, wild olive was endemic across the Mediter-
ranean region, but particularly in the Middle East.
Wild olive grows abundantly in thick forest, and is
believed to be indigenous to the Mediterranean Basin
(Green 2002). The domestication process is thought to
have involved the selection of trees of large fruit size
and/or high oil content, and their vegetative propa-
gation, either directly planted via cuttings or grafted
onto indigenous oleasters. There is evidence for con-
temporaneous starting of olive domestication at both
ends of the Mediterranean. In the Near East it oc-
curred in the Early Bronze Age (second half of the 5th
millennium BCE), as has been demonstrated both by
the discovery of olive oil presses and by the presence
of pollen grains, stones and wood remains (Zohary
and Spiegel-Roy 1975; Liphschitz et al. 1991); while
analysis of archaeological charcoal and olive stones
have dated domestication to the end of the Bronze
Age in the north-western Mediterranean area (Terral
2000; Terral et al. 2004). From the 6th century BC, cul-
tivated olive spread throughout the Mediterranean,
reaching Tunisia and Sicily, and later Northern Italy.
With the European settlement of America after the XV
century, olives arrived in the New World, but only in
recent times has its cultivation extended significantly
beyond the Mediterranean area. Today, it is grown
commercially in Australia, South America (Argentina
and Chile) and South Africa.

13.1.2
Botanical Description

Olive belongs to the Oleaceae family, sub-family Olei-
deae. The family includes about 30 genera (Johnson
1957), accounting ornamental shrub species such as
jasmine (Jasminum fruticans L.), lilac (Syringa vul-
garisL.) and forsythia (Forsythia× intermediaZabel);
and tree species, such as ash (Fraxinus excelsior L.
and F. angustifolia Vahl.), privet (Ligustrum vulgare

Fig. 1. An ancient olive tree (Olea europaea L.)
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L.) and phyllirea (Phyllirea angustifolia L., P. media L.
and P. latifolia L.). The genus Olea, sub-family Olei-
deae, includes two sub-genera: Olea and Paniculatae.
The former is divided in two sections: Olea, which
contain only O. europaea (including both cultivated
andwild forms), andLigustroides. According to recent
revisions of O. europaea taxonomy (Green and Wick-
ens 1989; Green 2002), this species is divided into six
sub-species, based on morphology and geographical
distribution:

1) subsp. europaea, with the two botanical varieties
europaea (cultivated olive) and sylvestris (wild
olive),widelydistributed throughout theMediter-
ranean Basin;

2) subsp. cuspidata, distributed from SE Asia to SW
China, as well as from the Arabian peninsula
through East and South Africa;

3) subsp. laperrinei, restricted to the Sahara region;
4) subsp. maroccana, restricted to Morocco;
5) subsp. cerasiformis, restricted to the island of

Madeira;
6) subsp.guanchica, restricted to theCanary Islands.

Wild olive fruits are smaller in size and have lower
mesocarp oil content than do cultivars (Terral and
Arnold-Simard 1996). Populations of wild olive are
restricted to a few isolated areas of native Mediter-
ranean forest, where pollen/stones may be wind/bird-
distributed (Lumaret et al. 2004). Molecular analy-
sis, using both nuclear and cytoplasmic markers, has
shown that the eastern and western Mediterranean
populations are strongly differentiated from one an-

Fig. 2. Ripening olive fruits of cultivar Frantoio

other (Besnard et al. 2001a, 2001b, 2002b; Lumaret
et al. 2004). On the contrary, cultivated olives do not
show such geographical structure, even though their
variability is quite high. It has been repeatedly shown
evidence for the multilocal selection of most culti-
vars (Besnard et al. 2001b; Rotondi et al. 2003), em-
pirically undertaken by olive growers from naturally
cross-bred genotypes. At least 1,275 cultivars have
been described (Bartolini et al. 1998), but many other
local varieties and ecotypes contribute to the richness
of the olive germplasm. Few cultivars are dispersed
over a widespread area; rather, the majority is highly
localized.

The olive is a long-living evergreen tree, which
can attain a mature height of up to 15 m and a spread
of 9 m; its life span is typically more than 500 years,
but trees older than 2,000 years have been recorded.
Mature leaves are elliptic and characteristically gray-
green in color, as a result of the presence of star-hairs.
Flowers are wind pollinated, and although most culti-
vars are self-incompatible, some are self-compatible.
The flowers are generally hermaphroditic, but cer-
tain cultivars are male-sterile (Besnard et al. 2000),
while others are purely staminate. The fruit is a drupe,
with a thick, fleshy oil-accumulating mesocarp. When
pulped, the mesocarp is made up of oil (22%), water
(50%), proteins (1.6%), carbohydrates (19.1%), cellu-
lose (5.8%) and minerals (1.5%).

Green olives destined for canning are usually har-
vested when the fruit is completely developed and
the skin color starts to change from green to reddish,
while olives used either as a source of oil, or for pro-
cessing as black olives, are picked later in the ripen-
ing process, when oil accumulation is completed and
the skin has become black. The characteristic com-
pound oleuropein, which confers a strong bitter taste
to the fruit, makes the fruit unpalatable, so that pre-
treatment is necessary before table consumption.

Olive trees grow in semi-arid to temperate cli-
mates, on almost any well-drained soil with a pH
below 8.5, and are reasonably tolerant of mild soil
salinity. They show cold winter hardiness, tolerating
temperatures as low as −12 ◦C. Even though olive has
the ability to initiate vegetative shoots from the base of
the trunk, productivity may be compromised for sev-
eral years following episodes of severe cold-induced
die-back.

Significant pests and diseases include the olive-
specific pathogens Spilocaea oleagina Cast., causing
olive leaf spot, and the olive fruit fly (Bactrocera
oleae). Major non-specific pathogens cause Verticil-
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lium wilt (Verticillium dahliae Kleb.) and olive knot
(Pseudomonas syringae subsp. savastanoi). B. oleae
directly attacks the fruit mesocarp, and can have seri-
ous consequences on production, by inducing early
fruit fall or causing total disruption of the pulp.
Plant propagation is generally by cutting or grafting
onto seedling rootstocks. Cultivars are mostly diploid
(2n = 2x = 46) (Falistocco and Tosti 1996; Minelli
et al. 2000), but tetraploid plants have been reported
(Rugini et al. 1996). The DNA content is 2.2 pg per 1C
nucleus (Rugini et al. 1996), equivalent to a genome
size of 2.2 Gbp (De la Rosa et al. 2003).

13.1.3
Economic Importance

Olive is one of the most important crops as a source
of oil, and for table consumption. Olive oil has fa-
vorable nutritional properties, and as a result, its
consumption, traditionally restricted to the Mediter-
ranean area (77% of the world production area), is
increasing worldwide (mainly United States, Canada,
Australia and Japan). Some varieties are cultivated
specifically for table consumption, but the majority is
used for oil extraction.

Virgin olive oil is mechanically extracted from
pressed or centrifuged pulped fruit. In the common-
est process (the continuous extraction system), two
centrifugations generate three fractions: oil, pomace
and vegetable water. Olive production is concentrated
in Southern Europe, mainly Spain and Italy, followed
by Greece, Portugal and France, which together ac-
count for about the 85% of world production. Turkey,
Syria, Lybia, Morocco, Algeria and Tunisia are also
important producers. Over the last ten years olive cul-
tivation has extended around the world, from South
Africa to Latin America (Argentina and Chile), Cal-
ifornia, New Zealand and Australia and, since the
late 1990s, there has been a strongly rising produc-
tion trend in these countries; nevertheless, the ma-
jor producers remain in Europe. Olive oil produc-
tion in Europe in 2003 was 2.3 Mt, while competitor
oil-producing crops such as rapeseed and sunflower
generated, respectively, 4.2 Mt and 4.9 Mt (data from
FAOSTAT database).

Olive oil is a relatively expensive vegetable oil due
to its high cultivation costs and limited production.
Fruit production can start 3–5 years after planting, if
properly cultivated, but generally optimal yields are
not attained before trees are 10 years old. Mean pro-

duction per tree (15–50 kg fruit) and per unit area
(about 2 t/ha) are low in comparison with other oil
crops, and extractability rarely exceed 24% of fresh
weight (depending on variety, agro-climatic condi-
tions and extraction method). Yield is unpredictable
from year to year, but the source of much of this vari-
ation remains unclear. Oil accumulates in the fruit
mesocarp, and to a lesser extent, also in the seed (Har-
wood and Sanchez 2000).

Virgin olive oil is overwhelmingly made up of
triglycerides (98–99%), along with a small propor-
tion of other compounds. The dominant triglyceride
fatty acid species are the mono-unsaturated acids
oleic (18:1) (57–78%), palmitic (16:0), and stearic
(18:0), and the poly-unsaturated acids linoleic
(18:2) (7–19%) and linolenic (18:3) (0.6–0.8%)
(Salas et al. 2000). The minor compounds (al-
cohols, polyphenolic compounds, chlorophyll,
carotenoids, sterols, tocopherols and flavonoids)
contribute to the organoleptic qualities, taste, fla-
vor, and nutritional value (Servili and Montedoro
2002; Garcia-Gonzalez et al. 2004), which may
distinguish olive oils originating from different
production regions. Recent studies have shown
that olives contain antioxidants in abundance (up
to 16 g/kg), represented by acteosides, hydroxyty-
rosol, tyrosol and phenilpropionic acids. Olive oil,
especially extra virgin, contains smaller amounts
of hydroxytyrosol and tyrosol, but also contains
secoiridoids and lignans, as well as other compounds
deemed to be anticancer agents (e.g. squalene
and terpenoids) (Fabiani et al. 2002; Owen et al.
2004).

The European Union has developed a PDO (Pro-
tected Designation of Origin) assignation to olive oils
with important regional traditional origins. Oil qual-
ity is strongly cultivar-dependent, but is also affected
by agro-climatic factors and agronomic practices.

Various categories of olive oil have been defined
(Reg. CEE 1513/01):

– virgin oil: oil produced by mechanical or other
physicalmeansunder conditions (e.g. temperature)
that do not lead to any chemical alteration in the oil,
and which has not undergone any treatment other
than washing, decantation, centrifugation and fil-
tration. Within this category is included the ‘extra
virgin olive oil’: virgin olive oil which has a free
acidity, expressed as oleic acid, of not more than
0.8 grams per 100 grams, and the other character-
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istics of which correspond to those fixed for this
category in this standard;

– refined oil: oil obtained from virgin oil by refining
methods which do not lead to an alteration in the
initial glyceric structure;

– olive oil: oil consisting of a blend of refined and
virgin olive oil;

– olive-pomace oil: oil obtained by treating olive po-
mace with solvents, to the exclusion of oil obtained
by re-esterification processes and of any mixture
with oils of other kinds.

Two types of adulteration have been identified:
blending of virgin olive oils with olive oils of lower
grade, and mixing olive oils with other vegetable oils.
Mislabeling of olive oils is of considerable concern, as
this results in the product not being of the claimed
grade (Lai et al. 1994; Yoke et al. 1994; Spangenberg
and Ogrinc 2001). The International Olive Oil Coun-
cil (1993) and the Codex Alimentarius Commission
(1993) have therefore produced standards for virgin,
refined and olive-pomace oils. Instruments such as
Protected Designation of Origin (PDO), Protected Ge-
ographical Indication (PGI) and Traditional Specialty
Guaranteed (TSG)are all important forquality control
in this context.

13.1.4
Breeding Objectives

Primary goals in olive breeding are directed towards
overcoming current limiting factors for production.
These include: shortening the juvenile stage; increas-
ing fruit number and size; increasing oil content and
quality (fatty acid composition, polyphenol content,
etc.); stabilising yield; dwarfing, and other manip-
ulations of tree architecture to facilitate mechanical
pruning and harvesting; improving resistance to pests
(in particular olive fruit fly, Bactrocera oleae) and dis-
eases (leaf peacock spot, caused by Spilocaea oleag-
ina; Verticillium wilt, Verticillium dahliae; and olive
knot, Pseudomonas savastanoi). Other important ob-
jectives relate to improvement in cold tolerance (to
allow cultivation in more northerly areas) and to the
promotion of self-fertility (to reduce reliance on polli-
nators). Tree architecture and vigour are particularly
important because the height of the tree prevents me-
chanical harvesting and pruning, thereby increasing
the costs of cultivation. Although the olive is gener-
ally considered to be a drought-tolerant species, its

productivity is strongly reduced under drought con-
ditions, and thus there is interest in the possibility
of tolerant cultivars, as well as those that can thrive
on saline and heavy soils. Rootstock selection is fo-
cused on the ability to control scion vigour, and to
improve the level of resistance to biotic and abiotic
stresses.

13.1.5
Breeding Achievements

In spite of its economic importance to all Mediter-
ranean countries, there has been little directed olive
breeding to date, despite the pressing need to improve
productivity and agronomic performance. Most se-
lection programs have so far relied on clonal selec-
tion, on the assumption that in a long-living plant
such as olive, natural mutations generating any pos-
itive alteration in a trait of agronomic interest, can
be maintained by vegetative propagation (Rallo 1995;
Belaj et al. 2004). Exploration of phenotypic variabil-
ity in agronomic characters has led to the identifi-
cation of valuable clones within numerous olive cul-
tivars (Suárez et al. 1990; Lavee et al. 1995; Bartolini
et al. 2002; Grati-Kammoun et al. 2002). However, in
spite of the significant efforts made towards clonal
selection, very few clones have outstanding perfor-
mance (Loussert and Berrichi 1995; Tous et al. 1998).
Similarly, induced mutagenesis has not been encour-
aging, and so far has succeeded in producing only
a compact mutant of the cv. Ascolana Tenera (Roselli
and Donini 1982). The evaluation of minor local cul-
tivars, present in every cultivation area, has recently
been exploited to identify individuals highly adap-
tive to extreme environmental conditions (Pannelli et
al. 2003; Rotondi et al. 2003). Clonal rootstocks with
high rooting ability have been identified from cross-
bred populations (Baldoni and Fontanazza 1990), and
other selected rootstocks have shown ability to con-
trol scion vigor and resistance to frost injury (Pan-
nelli et al. 2002). The use of the cvs. Souri, Muhasan
and Barnea as rootstocks under dry conditions, after
10 years from planting, did not show any significant
effect on tree vigor, shape and fruit production (Lavee
and Schachtel 1999).

Experiments of genetic transformation are in
progress with the aim to select disease resistant culti-
vars or to introduce key genes involved in important
metabolic pathways (Rugini et al. 2000; Rugini and
Baldoni 2004).
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The long generation time has severely hindered
both classical breedingandgenetic studies (De laRosa
et al. 2003). It is possible to greatly reduce the length of
the juvenile phase by using forcing protocols, but the
evaluation of the agronomic performance of mature
plants still requires at least five years of experimen-
tation (Santos Antunes et al. 1999). Furthermore, the
genetic control of the major traits is unknown (De
la Rosa et al. 2003). Vigor, leaf size and fruit shape
seem controlled by major genes showing dominance
(Bellini 1993), while the inheritance of other charac-
ters, such as fruit size, flowering intensity, fruit set,
ripening time and yield remains uncertain (Bellini
1993; Parlati et al. 1994). Very few cultivars have been
emerged from formal breeding programs.

A new cultivar (Maalot) resistant toSpilocea oleag-
ina has been selected from the selfed F1 progeny
of a semi resistant seedling probably of Chemlali
(Lavee et al. 1999). From seedling populations ob-
tained by unknown parents two other cultivars were
selected: ‘Barnea’, with vigorous and upright growth,
and ‘Kadesh’, as a table olive (Lavee 1978; Lavee et al.
1986).

Three new olive cultivars (Arno, Tevere and
Basento) were released from the progeny of the cross
‘Picholine × Manzanilla’ (Bellini et al. 2002) and their
performance is still under evaluation.

The University of Adelaide has recently estab-
lished a selection program utilizing the plant olives
locally reproduced from cultivars previously intro-
duced in Australia and well adapted to that environ-
ment. The aim of the project is the identification of
new improved olive cultivars showing superior mor-
phological and oil characteristics (Sedgley 2000).

13.2
Construction of Genetic Maps

The first linkage map of the olive genome was based
on RAPD (random amplified polymorphic DNA)
andAFLP(amplified fragment lengthpolymorphism)
dominant markers, along with a small number of
codominant RFLPs (restriction fragment length poly-
morphisms) and SSRs (simple sequence repeats) (De
la Rosa et al. 2003). The mapping population con-
sisted of a progeny derived from two highly heterozy-
gous cultivars, Leccino and Dolce Agogia. The Leccino
map covered 2,765 cM and comprised 249 markers,
falling into 22 major and 17 minor linkage groups

(the latter each involving less than four markers). The
Dolce Agogia map was of similar length (2,445 cM)
and comprised 236 markers arranged in 27 major and
three minor linkage groups. Mean inter-marker dis-
tances were similar in both maps (13.2 cM in Leccino
and 11.9 cM in Dolce Agogia). AFLP and RAPD mark-
ers were homogeneously distributed across all of the
linkage groups. Based on the olive genomic size, esti-
mated around 3,000 cM (Wu et al. 2004), the Leccino
× Dolce Agogia map is thought to have covered about
80% of the genome. A second linkage map was con-
structed by Wu et al. (2004), based on RAPDs, SCARs
and SSRs exploiting the progeny of a cross between
the cultivars Frantoio and Kalamata. The greater use
of codominant markers allowed the integration of the
two parental maps to generate 15 linkage groups, cov-
ering 101 loci and 879 cM with a mean inter-marker
distance of 10.2 cM.

In situ hybridization using tandem repeated se-
quences has allowed most of the olive chromosomes
to be distinguished, and has also revealed structural
heterozygosity in three chromosome pairs (Minelli
et al. 2000).

At present, no further olive genome mapping data
are available, and as yet, no QTL have been detected,
neither is there any detailed analysis on genome or-
ganization.

13.3
Gene Mapping

Mapping of gene sequences has concentrated on
orthologous genes characterized in other species
(Table 1). Particular attention has focused on
genes encoding key enzymes involved in fatty acid
biosynthesis, modification, triacylglycerol synthesis
and storage. These include enoyl-ACP reductase
(ear), stearoyl-ACP desaturase, omega 6 plastidial
desaturase (fad6), omega 3 plastidial desaturase
(fad7), cytochrome b5 (cyt b5), omega 6 cytoplasmic
desaturase (fad2), omega 3 cytoplasmic desat-
urase (fad3), acyl-CoA:diacylglycerol acyltranferase
(DGAT) and oleosin (Hatzopoulos et al. 2002). The
temporal and transient expression of stearoyl-ACP
desaturase (a key enzyme for the conversion of
18:0 stearic acid to 18:1 oleic acid, the main com-
ponent of olive oil) has been studied during fruit
development (Haralampidis et al. 1998). Expression
of a cDNA encoding an ω-3 fatty acid desaturase
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Table 1. Genes and expressed sequences identified in olive

GenBank Accession Gene encoding for Authors (Year of publication) Length (bp)
Number

AJ536118 Partial putative copia retrotransposon RNaseH gene Natali L, Giordani T, Maestrini P, Cavallini A (2005) 1,164
and gene encoding retrotranscriptase

AJ536119 Partial putative copia retrotransposon RNaseH gene Natali L, Giordani T, Maestrini P, Cavallini A (2005) 499
and putative LTR

AJ536120 Partial putative gypsy retrotransposon RNase gene, Natali L, Giordani T, Maestrini P, Cavallini A (2005) 1,930
and genes encoding retrotranscriptase and integrase

AY772187 Fatty acid desaturase 6 (fad6) Moressis A, Banilas G, Hatzopoulos P (2005) 1,597 (complete cds)
AJ810085 Beta-1,3-glucanase (glu-4 gene) Caliente R, Barea J, Azcon C, Ferrol N (2004) 1,032
AJ810086 Beta-1,3-glucanase (glu-5 gene) Caliente R, Barea J, Azcon C, Ferrol N (2004) 643 (partial cds)
AY445635 Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) Giannoulia K, Hatzopoulos P (2004) 1,836 (complete cds)
AY738639 Phenylalanine ammonia-lyase (PAL) gene Tosti N, Baldoni L (2004) 713 (partial cds)
AY788899 Actin Tosti N, Baldoni L (2004) 427 (partial cds)
AY083161 Oleosin Giannoulia K, Haralampidis K, Milioni D, 792 (complete cds)

Hatzopoulos P (2002)
AY083162 Beta-glucosidase (bglc) Gazis F, Hatzopoulos P (2002) 1,902 (complete cds)
AY083163 Fatty acid desaturase 2 (fad2) Nikoloudakis N, Hatzopoulos P (2002) 1,452 (complete cds)
AY083164 Enoyl ACP reductase (ear) Poghosyan Z, Hatzopoulos P (2002) 1,674 (complete cds)
AJ428575 Cu/Zn super-oxide dismutase Butteroni C, Afferni C, Tinghino R et al. (2002) 459
AY095446 Photosystem II protein D1 (PSBA) Muleo R, Proietti C, Paolucci I et al. (2002) 942 (partial cds)
AF492010 Monosaccharide transporter (MST) Oliveira JM, Geros HV, Tavares RM (2002) 726 (partial cds)
AF479171 26S ribosomal RNA gene Soltis DE, Senters A, Kim S et al. (2002) 1,603 (partial sequence)
AF428256 Acyl carrier protein (ACP) Guerrero CM, Valpuesta V, Baldoni L (2001) 763
AJ416434 Ty1-copia-like retrotransposon, Toe21 gene Stergiou G, Katsiotis A (2001) 264
L49289 18S ribosomal RNA gene Johnson LA, Soltis DE, Soltis PS (2001) 1,729 (partial sequence)
AF426829 Cu/Zn-superoxide dismutase Corpus FJ, Barroso JB, Romero-Puertas MC et al. (2001) 312 (partial sequence)
AY040811 trnT-trnL intergenic chloroplast spacer Baldoni L, Guerrero CM, Abbott AG et al. (2001) 658
AF384051 Expansin Ferrante A, Hunter DA, Reid MS (2001) 486 (partial cds)
AF384050 Anthocyanidin synthase Ferrante A, Hunter DA, Reid MS (2001) 789 (partial cds)
AF384049 Chalcone synthase Ferrante A, Hunter DA, Reid MS (2001) 571 (partial cds)
AY059387 Putative cullin protein Butowt R, Rodriguez-Garcia MI (2001) 2,637
AF429429/AF429430 Polyubiquitin OUB1 and OUB2 Butowt R, Rodriguez-Garcia MI (2001) 1,184/1,666
AF427107 Manganese superoxide dismutase Corpus FJ, Barroso JB, Romero-Puertas MC et al. (2001) 435 (partial cds)
AY036055 Hexose transporter pGlT Butowt R, Rodriguez-Garcia MI (2001) 2,039
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Table 1. (continued)

GenBank Accession Gene encoding for Authors (Year of publication) Length (bp)
Number

AF130163 NADH dehydrogenase subunit F (ndhF) Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ (2000) 2,217
AF288707 Cytochrome c oxidase subunit I (cox1) Zilhao IT, Tenreiro RP, Fevereiro PS (2000) 447 (partial cds)

mitochondrial gene
AF225275 Ribosomal protein S16 (rps16) chloroplast gene Wallander E, Albert VA (2000) 853 (partial intron)
AF191342 Copper/zinc superoxide dismutase (SOD1) Alche JD, Castro AJ, Rodriguez-Garcia MI (1999) 276 (partial cds)
AB025343 Lupeol synthase Shibuya M, Zhang H, Endo A et al. (1999) 2,546
AB025344 Cycloartenol synthase Shibuya M, Zhang H, Endo A et al. (1999) 1,983 (partial cds)
AJ236163 ATP synthase beta subunit Albach DC, Soltis PS, Soltis DE, Olmstead G (1998) 1,493
Z70240/Z70241 Cytochrome oxidase; subunit 3, cox3 gene Perrotta G, Cavallotti A, Quagliariello C (1997) 1,817/1,818
AJ001766 Chloroplast ribulose 1,5-bisphosphate carboxylase Oxelman B, Backlund M, Bremer B (1997) 1,402 (partial cds)

large subunit (rbcL) gene
AJ001369/AJ001370 Cytochrome b5 genes 1 and 2 Martsinkovskaya AI, Poghosyan ZP, Haralampidis K 688/752

et al. (1997)
AF027288 NADH dehydrogenase (ndhF) chloroplast gene Oxelman B, Backlund M, Bremer B (1997) 2,193 (partial cds)
U58141 Stearoyl-ACP desaturase Baldoni L, Georgi LL, Abbott AG (1996) 1,493
AF511041 Retrotransposon Muleo R, Intrieri MC (2002) 484 (partial sequence)
AY095446 PSBA gene Muleo R, Proietti C, Paolucci I et al. (2002) 942 (partial cds)
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has been studied in leaves, anthers and embryos
(Poghosyan et al. 1999), and two cytochrome b5

genes and their spatial and temporal patterns of
expression have been characterized during flower
and fruit development (Martsinkovskaya et al. 1999).
The differential expression of other genes such as
diacylglycerol acyltransferase (DGAT) and oleate
desaturase has been evaluated in various tissues
(Giannoulia et al. 2000; Banilas et al. 2005). Finally,
a candidate stearoyl-ACP desaturase was mapped
on linkage group 4 of cv. Leccino (De la Rosa et al.
2003).

13.4
Marker-Assisted Breeding

The very preliminary works performed on olive ge-
nomics are far before producing effective results to-
ward the selectionofnewcultivarsby theuseofmolec-
ular tools.

For that reason and considering the lack of knowl-
edge on the real useful variability already present in
the cultivated and wild olive germplasm, attention
has been focused in the last ten years mainly on
the evaluation of such germplasm. The large num-
ber of cultivars and wild populations, in fact, posi-
tions olive as a crop species with a very extensive
germplasm. The geographic distribution of variabil-
ity within the Olea genus and the genetic relationships
among the different species have been studied using
various molecular methods, including cpDNA pro-
files (Lumaret et al. 2000; Baldoni et al. 2002), AFLPs
(Angiolillo et al. 1999; Baldoni et al. 2000), and rDNA
and mtDNA polymorphisms (Besnard and Bervillé
2002; Besnard et al. 2002a, 2002b). The wild relatives
of cultivated olive (oleasters) have been widely anal-
ysed using RFLP markers derived from mitochon-
drial, chloroplast andnuclearDNA,which, in addition
to allozyme markers, provide evidence for the sur-
vival of indigenous oleaster populations, particularly
in the western Mediterranean (Lumaret and Ouazzani
2001; Lumaret et al. 2004). Within wild populations,
a clear distinction between the eastern and western
Mediterranean has been noted (Besnard and Bervillé
2000; Besnard et al. 2002b; Bronzini de Caraffa et al.
2002).

Internal transcribed spacer 1 (ITS-1) sequences,
RAPD and inter-SSR (ISSR) markers have been
deployed to evaluate the colonization history of

O. europaea (Hess et al. 2000). Some Olea europaea
retroelements have also been identified (Hernandez
et al. 2001) and their copy number has been estimated
(Stergiou et al. 2002).

The development of SCAR markers has been
attempted from RAPDs (Hernandez et al. 2001),
and one such has been reported by Mekuria et al.
(2001) to be linked to tolerance to leaf peacock
spot.

DNA fingerprinting is a powerful aid for the
identification of olive oil provenance, since it can be
used to generate a profile specific for any given plant
genotype. Over the last decade, molecular markers
have been widely applied also to characterize and
identify olive cultivars. These analyses have utilised
RAPDs (Fabbri et al. 1995; Belaj et al. 1999; Mekuria
et al. 1999; Barranco et al. 2000; Gemas et al. 2000;
Belaj et al. 2001; Besnard et al. 2001c; Belaj et al. 2002;
Guerin et al. 2002), AFLPs (Angiolillo et al. 1999;
Rotondi et al. 2003; Owen et al. 2005; Montemurro
et al. 2005), ISSRs (Hess et al. 2000; Pasqualone
et al. 2001; Vargas and Kadereit 2001) and SSRs
(Rallo et al. 2000; Sefc et al. 2000; Carriero et al.
2002; Cipriani et al. 2002; Bandelj et al. 2004). The
same methods have also been applied to trace the
geographic origin of batches of olive oil (Muzzalupo
and Perri 2002; Busconi et al. 2003; Breton et al.
2004; Pasqualone et al. 2004; Testolin and Lain
2005).

Single Nucleotide Polymorphisms (SNPs) are cur-
rently under development (Reale et al. 2006) in or-
der to clearly distinguish inter-cultivar variability and
characterize the clonal variants.

13.5
Future Scope of Works

Projects are currently under development in order
to address gaps in genetic mapping and molecular
breeding in olive. Three main areas of interest can be
resumed:

1) completing the research on the evaluation, char-
acterization and utilization of the available ge-
netic resources, both on cultivated varieties and
wild relatives;

2) continuing the project on genomic, functional
and physical mapping;
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3) establishing new breeding programs and com-
pleting those in progress by the extended appli-
cation of marker-assisted selection.
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14.1
Introduction

14.1.1
Background

Citrus, belonging to the family Rutaceae, is one of
the world’s most important fruit crops with a total
world production of 105 million metric tons. It is
commercially grown in the tropical and subtropical
regions around the world, primarily between the lat-
itudes of 40◦N to 40◦S. The literature record of cit-
rus domestication and cultivation history dates back
to 2100 BC (Webber 1967; Scora 1988). It is consid-
ered to have originated from the Malay Archipelago
and Southeast Asia, occurring from Northern India
to China and in the South through Malaysia, the
East Indies and the Philippines. Movement of citrus
worldwide was achieved by distant explorers, traders,
and church missionaries. More recent evidence sug-
gests that Yunnan Province in the Southwest China
may be the center of origin due to the diversity of
species found there (Gmitter and Hu 1990). The net-
work of rivers in this area could have provided an
on-route dispersal to the south (Sauer 1993). Much
has been written on the evolution of modern citrus
cultivars and its broad diversity (Swingle and Reece
1967). Studies on the relationships between genera
and species were carried out based mainly on mor-
phological characteristics leading to the formulation
of numerous classification systems. As there were dif-
ferences of opinion among the taxonomists, the num-
bers of species of citrus classified by them were very
controversial (Swingle 1943; Swingle and Reece 1967;
Tanaka 1976), with Tanaka favoring the naming of
many more species than Swingle. Barrett and Rhodes
(1976) suggested that there were three true ances-
tral citrus species, namely, C. maxima (pummelos),
C. reticulata (mandarins), and C. medica (citrons);
all other species are viewed as introgressions of these

ancestral forms. More recently, molecular marker ev-
idence q(Nicolosi et al. 2000) has supported this hy-
pothesis, though theremaybeother species thatmight
also be considered as ancestral.

Citrus plants are small, spreading, evergreen trees
with thorny shoots, growing to about 2–15 m tall.
Leaves are unifoliate and alternate with more or less
broadly winged petioles. Flowers are fragrant, usually
white but sometimes pink or purple pigmented, per-
fect with 5 petals and 5 sepals, and are borne solitary
or in short cymes. Citrus industries in many pro-
duction areas generate substantial regional revenue.
Brazil, the United States, and China (Fig. 1) are the
three largest citrus producers in the world (FAO 2003).
Citrus is primarily valued for the fruit which can be
eaten as a fresh fruit, processed into juice, or added
to dishes and beverages. The major types of edible
citrus including the ancestral Citrus species and their
introgressions along with their possible place of ori-
gin are listed in Table 1. Citrus is rich in vitamin C,
flavonoids, acids, volatile oils, carotenoids, and other
microelements.

In a wide genetic perspective, the general term cit-
rusalso includes species fromtwootherclosely related
genera, Poncirus (trifoliate orange) and Fortunella
(kumquat), which are sexually compatible with Cit-
rus species. Poncirus is the most valuable genetic re-
source for genetic improvement of Citrus. Though its
fruits are not edible, Poncirus is often used in the
production of rootstocks as it possesses many resis-
tance genes that are not found in Citrus. Resistance
or tolerance to citrus tristeza virus (CTV), Phytoph-
thora root rot, citrus nematode, cold accumulation,
and other environmental stresses have been explored
for use in scion and rootstock genetic improvement
via conventional or molecular approaches (Cai et al.
1994; Gmitter et al. 1996; Tozlu et al. 1999a, b; Ling
et al. 2000). In addition, the genetically dominant tri-
foliate leaf of Poncirus is a big advantage to develop
mapping populations, as it allows the direct identifi-
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Fig. 1. World production of
citrus (FAO, 2003)

cation of zygotic hybrids from true nucellar seedlings.
Fortunella is an important edible fruit and also a re-
source for resistance to Asian citrus canker (ACC). In
order to have a clear usage of the term “citrus” in this
chapter, citrus, in regular font, will be a general term
referring to any related species regardless of genus,
and Citrus, in italic font with initial letter capitalized,
will be a genus name representing only the Citrus
species.

Citrus is vegetatively propagated. Selection of new
citrus and related cultivars has been occurring for
thousands of years and superior phenotypes have
been selected from the wild for cultivation. Citrus has
mainly two different breeding targets, viz., scion and
rootstock. Yield and fruit quality (both for domes-
tic as well as international market demand) are two
of the most important considerations for scion im-
provement. A superior rootstock is desired to possess
broad and durable resistance to pests, diseases, and
other environmental stresses (particularly from soil
and water). A rootstock should also grow vigorously,
be compatible with the scion, and produce maximal
numbers of seeds containing true nucellar embryos.
Finally, rootstocks substantially influence both yield

and fruit quality of the grafted scion cultivars, so these
factors also are considered in the evaluation of new
candidates. Though the objectives of breeding scion
and rootstocks are different, overall breeding objec-
tives may sometime address the aspects of both pro-
grams by improving traits such as disease resistance,
cold tolerance, etc.

Conventional breeding is a very slow and difficult
process due to long juvenility, large tree size, polyem-
bryony, high heterozygosity, and self-incompatibility
to some extent. There is a significant lack of knowl-
edge regarding genetic mechanisms controlling the
inheritance of agriculturally important traits (most
of them may be quantitatively inherited), and only
a few of them thus far have demonstrated a single
gene inheritance pattern (Davies and Albrigo 1994).
Through conventional hybridization, few new Citrus
cultivars have been produced, although a few root-
stocks were developed (Soost and Cameron 1975;
Cameron and Soost 1984; Gmitter et al. 1992). Most of
the commercially grown cultivars were derived from
well-adapted native seedlings/varieties, spontaneous
bud mutations, or artificial irradiations. For exam-
ple, most Satsuma mandarin varieties were from field
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Table 1. Four original wild and four hybrid Citrus edible species

Name Scientific name Possible place of origin

Citron C. medica India and China
Pummelo C. grandis Malaysia and India
Mandarin C. reticulata Southeast Asia
Lime C. aurantifolia East India
Sour orange C. aurantium Pummelo × Mandarin. China
Sweet orange C. sinensis Pummelo × Mandarin. China
Lemon C. limon Citron × Lime. Unknown, likely in China
Grapefruit C. paradisii Pummelo × Sweet orange. Barbados island

selection or bud mutation in Japan and China, as
were grapefruits and oranges in the US (Hodgson
1967). Chromosomal rearrangements have also been
involved in selection for seedlessness and other traits
within cultivated citrus (Gmitter et al. 1992). A con-
sequence of the mutational origin and diversification
of many of the most important cultivar groups (in-
cluding oranges, grapefruit, lemons, and certain cate-
gories of mandarins such as the Satsuma and Clemen-
tine cultivar groups) is that sexual hybridization is
excluded as a strategy for genetic improvement. In-
breeding depression and the lack of phenotypic sim-
ilarity to market expectations and definitions, when
hybrids within groups are created, results in plants
that are unacceptable to citriculture. A further conse-
quence is that the ability to move useful genes within
or among citrus cultivars and germplasm resources,
for disease resistance or fruit quality for example,
is reliant entirely upon alternatives such as genetic
transformation.

Few studies have been conducted to understand
the genetics of citrus. Knowledge and understand-
ing of the genetic mechanisms that control important
traits such as juvenility/maturity, disease resistance,
cold toleranceandaspectsof fruit ripeningprocessare
clearly lacking (Gmitter et al. 1992). The rapid devel-
opment of molecular marker technologies has made it
possible to investigate gene expression and has helped
in construction and integration of genetic and phys-
ical maps of the economically important traits. The
knowledge and establishment of genomics and bioin-
formaticshavealsoprovidedefficient tools for tagging
and cloning the genes, and have made the sequencing
of the citrus genome plausible. This chapter will sum-
marize the achievements of citrus genome research in
the past thirty years, as well as ongoing efforts and
planned genomic goals.

14.1.2
Early Knowledge of Citrus Genome and Genetics

Most citrus species, including those from other three
distant relative genera, Microcitrus, Eremocitrus and
Clymenia, are diploids with nine pairs of chromo-
somes (2n = 2x = 18), although polyploids have been
reported. Many spontaneous and induced tetraploids
have been used as breeding parents to produce seed-
less triploid varieties (Gmitter et al. 1992; Gmitter
1994), and numerous tetraploid somatic hybrids have
been created as well, by protoplast fusion experiments
(Grosser et al. 1996). Many citrus species are outcross-
ing (Roose et al. 1998). Cytogenetic studies revealed
citrus has small but highly variable chromosomes
(Naithani and Raghuvanshi 1958; Raghuvanshi 1962;
Guerra 1984, 1993). Karyotypes based on Geimsa C-
banding (Liang 1988) and staining with the intercalat-
ing fluorochromes chromomycin A3 (CMA) and 4′-6-
diamidino-2-phenylindole (DAPI, Guerra 1993) show
that many chromosome pairs must be heteromorphic.
Staining citrus metaphase chromosomes with DAPI
and CMA showed that several chromosomes contain
large blocks of terminal heterochromatin (Miranda
et al. 1997). Factors contributing to chromosomal het-
erozygosity in citrus include the origin of many acces-
sions by interspecific hybridization and clonal prop-
agation which allow accumulation of karyotypic re-
arrangements (Roose et al. 1998). The chromosomal
identification of different genomes may be an addi-
tional and simple method of identifying citrus hy-
brids and could be of importance for future work on
substitution lines. Citrus genome size is also relatively
small, and theCvalueofC. sinensiswasestimated tobe
0.6 picogram per haploid DNA content (Guerra 1984),
equivalent to approximately 367 Mb, which is nearly
three times the size of Arabidopsis genome (125 Mb,
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see the International Citrus Genome/Genomics Con-
sortium home page, ICGC).

Most of the knowledge acquired on the inheri-
tance of citrus traits was generally a by-product of
the efforts of conventional breeding of rootstocks
and scions. The dominance or recessiveness of these
morphological traits was speculated according to the
segregations of these phenotypes. Some characters
such as cold hardiness, fruit acidity, leaf and rind
oil, dwarfness, tolerance to chloride stress, resistance
to Phytophthora and nematodes were roughly de-
scribed as quantitative trait loci (QTLs). Characters
such as polyembryony, trifoliate leaf and polyphe-
nol oxidase-catalyzed browning appeared to be dom-
inant over their allelic phenotypes, monoembryony
(single gene), monofoliate leaf (two complimentary
genes) and non-browning (single gene) (Soost and
Cameron 1975). Rind texture was found to segregate
as QTL with a dominant tendency (Yamamoto et al.
1990). According to early inoculation experiments
and field survey, resistance to Asian citrus canker
(ACC) was also thought to be a dominant trait (Lee
1918) and later, after genetic analysis of dozensofpop-
ulations, it was assumed to be governed by a single
dominant gene (Matsumoto and Okudai 1990). Using
ELISA(enzyme-linked immunosorbent assay)onsev-
eral Poncirus-derived populations, resistance to CTV
was found to be dominant and was assumed to be con-
trolled by a single gene (Yoshida et al. 1983; Yoshida
1985). By mapping the desired genes, it would be pos-
sible to improve the efficiency of conventional plant
breeding by carrying out selection not directly on the
trait of interest but on molecular markers linked to
genes influencing that trait. Efforts to develop local-
ized linkage maps with associated molecular markers
will be addressed in the following section.

14.2
Mapping of the Citrus Genome

Plant genome maps may include important linkage
relationships among molecular markers and genes
that breeders wish to manipulate for cultivar improve-
ment, thereby increasing the efficiency of breeding
programs. Long juvenile periods and large plant size
combine to hinder conventional breeding of citrus
by requiring large investments of time and land for
characterization and evaluation of progeny. Mapping
and sequencing of a citrus genome would help to

elucidate gene function, gene regulation and expres-
sion. Genetic maps of citrus may provide the basis for
early screening procedures, thus, permitting breeders
to make initial selection among very young progeny
basedon thephenotypepredictedby their genotypeat
molecular loci known to cosegregate with a particular
phenotype (Durham et al. 1992).

The first linkage analysis of citrus genome be-
gan in the 1980s using isozyme markers. The two
linkage groups, one with two markers and another
with three markers, were found by a mapping pro-
gram, Linkage-1 (Suiter et al. 1983) from 37 isozyme
genes, using nine families of C. grandis Osbeck cv
Acidless (pummelo) × C. jambhiri Lush. cv Florida
and C. grandis Osbeck cv Chandler × P. trifoliata
cv Webber-Fawcett (Torres et al. 1985). Codominant
isozyme markers, though very limited, were contin-

Fig. 2. Citrus linkage map (group 4) deduced from segregation
data of two backcross populations of citrus using isozyme and
RFLP markers (Durham et al. 1992)
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uously used in the later DNA marker-based linkage
maps due to their low cost and feasibility (Durham
et al. 1992; Garcia et al. 1999). Isozymes may be influ-
enced by the environment as well as by the stage of
development of the plant and its organs, thus making
themethod less reliable; howevermanycitrus isozyme
locus linkage studies were conducted using selected
systems that were found to be invariant when run
on starch gels and using different stages or tissues

Fig. 3. A localized linkage map of Ctv region of Poncirus trifo-
liata constructed using RAPD and SCAR markers (Deng et al.
1997)

sources. Throughput of such marker systems was ex-
tremely low.

Several researchershaveusedrestriction fragment
length polymorphism (RFLP), a DNA based marker,
for citrus mapping (Liou 1990; Durham et al. 1992;
Jarrell et al. 1992; Liou et al. 1996). After cloning and
characterizing RFLP markers in Citrus, Liou (1990)
developed a citrus RFLP-based map, comprising of 29
RFLPand8 isozyme loci ineight linkagegroups.Three
other RFLP-based linkage maps have been developed
within citrus. Each was constructed from highly het-
erozygous intergeneric crosses which allowed a range
of segregating characteristics to be genetically dis-
sected. One map contained 46 markers (Jarrell et al.
1992) while the other two, constructed within the
same cross, had a total of 62 markers (Durham et al.
1992) and each contained 11 linkage groups. Durham
et al. (1992) were the first to demonstrate the poten-
tial of combining RFLP and isozyme analyses (Fig. 2)
for developing a genetic map for citrus and reported
that a total of 11 isozymes and 58 RFLPs segregated
in a monogenic fashion.

Citrus maps, using other DNA based molecular
markers such as randomly amplified polymorphic
DNA (RAPD), inter simple sequence repeats (ISSRs)
andamplified fragment lengthpolymorphism(AFLP)
were also constructed for obtaining much higher den-
sity of entire genome coverage (Cai et al. 1994; Luro
et al. 1994, 1996; Weber and Moore 1996; Simone et al.
1998; Ling et al. 1999; Roose et al. 2000; Sankar and
Moore 2001). Several traits of horticultural impor-
tance including CTV resistance (Gmitter et al. 1996),
nematode resistance (Ling et al. 2000), fruit acidity
(Fang et al. 1997) and dwarfing (Cheng and Roose
1995) have been tagged with RAPD markers. The
second of the two maps developed by Durham et al.
(1992) was extended to include 109 RAPD markers,
which condensed to nine linkage groups with a total
length of 1,192 cM estimated to cover 70–80% of the
Citrus genome (Cai et al. 1994).

ISSRs and AFLPs provide a relatively high-
throughput polymorphism facilitating the develop-
ment of dense maps that are effective for identifying
markers linked to major genes (Roose 2000). Sanker
and Moore (2001) evaluated the usefulness of ISSR
analysis in generating markers to extend the genetic
linkage map of citrus using a backcross population
previously mapped (Durham et al. 1992) with RFLP,
RAPD and isozyme markers (Cai et al. 1994). The
new map has an improved distribution of markers
along the linkage groups with fewer gaps; marker
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Table 2. Crosses used for genetic maps of citrus genome

No Crosses Cross types Progeny Country

1a C. grandis cv. Acidless × C. jambhiri cv. Florida Citrus F1 35 USA
1b C. grandis cv. Chandler × P. trifoliata cv. Webber-Fawcett Intergeneric F1 360 USA
2 LB 1-21 (C. reticulata cv. Clementine × C. paradisi cv. Duncan) × Citrus BC1 65 USA

C. reticulata cv. Clementine
3 C. grandis cv. Thong Dee × Intergeneric BC1 65 USA

USDA 17-40 (C. grandis cv. Thong Dee × P. trifoliata cv Pomeroy)
4 Sacaton (C. paradisi × P. trifoliata) × Intergeneric F1 60 USA

Troyer (C. sinensis × P. trifoliata)
5a C. grandis × C. grandis Citrus self F1 52 France
5b C. reshni × P. trifoliata Intergeneric F1 52 France
6 C. auratium × C. latipes Citrus F1 120 Italy
7a C. auratium × P. trifoliata cv Flying Dragon Intergeneric F1 66 Spain
7b C. volkameriana × P. trifoliata cv Rubidoux Intergeneric F1 80 Spain
7c Self-pollation of P. trifoliata cv Flying Dragon Poncirus self F1 57 Spain
8 C. sunki × P. trifoliata Intergeneric F1 80 Brazil

order showed partial or complete conservation in
the linkage groups, suggesting that ISSR markers
are suitable for genetic mapping in citrus. Fang
et al. (1998) identified RAPD and ISSR markers
linked to the Ctv region in P. trifoliata. The genome
map of an intergeneric backcross population of
citrus, constructed using AFLP, gave 16 linkage
groups covering 910.7 cM; when combined with the
RAPD-based map, it generated 14 linkage groups
covering 1,031.7 cM (Ling et al. 1999). Recupero et al.
(2000) reported data on C. aurantium and C. latipes
molecular maps based on a two-way pseudo-testcross
mapping strategy using AFLP, RAPD, and RFLP
markers.

Dominant markers like RAPDs, ISSRs and AFLPs
are useful in the specific population in which they
are identified, but are difficult to apply to other pop-
ulations due to their biallelic nature, which reduces
the probability of polymorphism (Roose 2000). To
overcome the problems associated with RAPDs, they
have also been converted into sequence characterized
amplified region (SCAR) markers. This is done by
cloning and sequencing RAPD products, designing
longer specific primers based on the sequence and
amplifying DNA under stringent conditions. SCARs
have been developed linked to the Ctv resistance gene
(Fig. 3) from P. trifoliata (Deng et al. 1997). SCAR
markers have also been used in the studies on inheri-
tance of citrus nematode resistance (Ling et al. 2000).

Table 2 lists the major crosses that were used in
Table 3 for construction of different versions of citrus
maps. As these maps (developed in different labora-
tories) share few common markers, there has gener-
ally been very little effort to inter-relate them. Since
RAPD or AFLP markers are dominant, they are hardly
used as chromosome-anchored markers for general
reference and comparative mapping. Hence, recently,
locus-specific DNA molecular markers such as sim-
ple sequence repeats (SSRs), expressed sequence tags
(ESTs), or sequence tagged sites (STS) have also been
integrated into these maps (Kijas et al. 1995; Kijas
et al. 1997; Ruiz and Asins 2003). Roose et al. (2000)
tested nine trinucleotide SSR markers developed by
Kijas et al. (1997) in a population derived from C. tai-
wanica × P. trifoliata and observed that one of the
primer pairs tested had the segregation type desired
for combining maps. Cristofani et al. (2000) also used
SSRs to construct linkage maps of P. trifoliata and
C. sunki. They further reported a total of 78 RAPD,
3 SSR and 10 AFLP markers to fall into 11 linkage
groups of C. sunki and 73 RAPD, 4 SSR and 9 AFLP
to fall in 11 linkage groups of P. trifoliata. The inte-
gration of SSR markers into a linkage map of Citrus
has demonstrated the utility of this marker type for
genetic analysis within wide intergeneric crosses and
the potential to act as “anchor loci” to align linkage
maps from different crosses and laboratories (Kijas
et al. 1997). However, their number was still too lim-
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Table 3. Genetic maps developed for citrus genomes

References Marker types Markers Linkages cM Crosses Noa

Torres et al. 1985 isozymes 5 2 – 1a, 1b
Liou 1990 RFLP, isozymes 35 8 314 2
Durham et al. 1992 RFLP, isozymes 52 11 533 3
Jarrell et al. 1992 RFLP, isozymes 38 10 351 4
Cai et al. 1994 RAPD, RFLP, isozymes 189 9 1,192 3
Luro et al. 1996 RAPD 34 for C. grandis 7 600 5a, 5b

95 for Poncirus 12 1,503
Kijas et al. 1997 RFLP, ISSR 48 12 410 4
Simone et al. 1998 AFLP, RAPD, RFLP 247 for C. aurantium 20 1,000 6

92 for C. latipes 12 600
Ling et al. 1999 AFLP, RFLP, isozyme 337 11 1,026 3
Garcia et al. 1999 RAPD, RFLP, CAPS, 69 3 – 7b

isozyme
Cristofani et al. 1999 RAPD 63 for C. sunki 10 732 8

62 for P. trifoliata 8 866
Roose et al. 2000 RAPD, RFLP, ISSR 156 16 701 4
Sankar and Moore 2001 ISSR, RAPD, RFLP, 310 9 874 3

isozymes
Ruiz and Asins 2003 RAPD, SSR, IRAP 48 for Poncirus 10 – 7a, 7b, 7c

120 for C. auratium 17

a Cross number is cited from Table 2.

ited at that time to expand their comparative and
integrative usage in subsequent citrus genomic ex-
ploration.

Recently, ESTs have proven to be powerful tools
for gene discovery, gene mapping and for the anal-
ysis of quantitative traits. ESTs are generated by
large-scale sequencing of randomly picked clones
from cDNA libraries constructed from mRNA iso-
lated at a particular development stage and/or tis-
sue; these sequences are available from the public
domain such as GenBank (Guo et al. 2004). From
the total EST sequence database, a representative
set of unigenes are derived and their functions are
compared to genes of known function from other
organisms. Arrays can be designed using the uni-
genes to observe the spatial and temporal expres-
sion profiles of the available citrus genes. Many ESTs
also contain SSR sequences, and through data min-
ing these can be identified and exploited, thus in-
creasing greatly the number of SSRs available as
anchoring loci. Development of EST-based genetic
maps covering the entire citrus genome is under
way and will lay the basis of integration with phys-
ical maps for future genome sequencing (Chen et al.
2006).

14.3
Molecular Tagging and Cloning
of Specific Genes and QTLs

Molecular marker technologies have provided tools
to tag the genes of known phenotypes by developing
localized molecular linkage maps, which are essen-
tial for a map-based cloning (MBC) approach and
marker-assisted selection (MAS) breeding programs.
With QTL mapping, the roles of specific resistance
loci can be described, race-specificity of partial re-
sistance genes can be assessed, and interactions be-
tween resistance genes, plant development and the
environment can be analyzed. Resistance to CTV, ap-
parently, was the first phenotype in citrus for which
a localized map was developed (Gmitter et al. 1996).
The linkage map contained DNA markers associ-
ated with its designated conferring gene, Ctv. The
Ctv gene was identified from Poncirus and was as-
sumed to be a single dominant gene (Yoshida et al.
1983; Yoshida 1985, 1993). This map was developed
using a bulked segregant analysis (BSA) approach
(Michelmore et al. 1991) and RAPD markers. Since
then, several labs have independently made efforts to
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map and clone Ctv. Some of these maps shared sev-
eral common markers (Gmitter et al. 1996; Fang et
al. 1998), while others did not (Mestre et al. 1997a;
Cristofani et al. 1999). Two BAC contigs (Fig. 4) with
integrated fine genetic maps have been constructed
(Deng et al. 1997, 2001; Yang et al. 2001), resulting in
full length sequencing of the locus spanning several
hundreds of kilobases and identification of the candi-
dategenes (Yanget al. 2003;Gmitter et al. unpublished
data). These putative Ctv gene(s) are now under fur-
ther confirmation using genetic transformation and
complementation tests. However, evidence after pro-
longed CTV challenge has suggested that there may be
more than one CTV resistance genes involved (Mestre
et al. 1997b). Under a similar prolonged CTV chal-
lenge on a population of citradias (derived from the
cross between sour orange and Poncirus), one CTV
resistance gene was later mapped in a different loca-
tion within linkage group 4 of Poncirus. The change
of mapping position was interpreted as a deviation
from the single gene hypothesis, which could be QTLs
(Bernet and Asins 2003). Further, by QTL analysis

Fig.4. BAC contigs of CTV resistance gene region (Ctv contig) and its allelic susceptibility gene region (ctv contig, Deng et al.
2001)

of CTV-citradia interactions, considering CTV accu-
mulated titer as a quantitative trait, up to five minor
QTLs were detected besides the previously located
major Ctv gene (Asins et al. 2004). There were other
pathogen resistant phenotypes mapped. For example,
it was found that a major QTL, designated Tyr1, con-
trols resistance to citrus nematode (Ling et al. 2000),
and it was adjacent to the Ctv region (Ling 1999).
Nineteen putative QTLs (8 in C. volkameriana and
11 in P. trifoliata) controlling the number of fruits
per tree were detected in the C. volkameriana and
P. trifoliata progeny (Garcia et al. 2000). Mapping of
QTLs associated with freezing tolerance was accom-
plished using a C. grandis × P. trifoliata F1 pseudo-
testcross population (Weber et al. 2003). Other QTLs
controlling some fruit characters and tolerances to
salt and cold stress were characterized and DNA link-
age maps for these traits have also been constructed
(Table 4).

Molecular maps, particularly of those with very
closely flanking or co-segregating DNA markers with
the gene(s) of interest, may be very useful for fur-
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ther genomic manipulation, MBC and MAS breeding
programs (Recupero et al. 2000; Asins 2002). MBC,
also called positional cloning, is an approach using
comprehensive genetics, genomics and bioinformat-
ics tools to isolate gene(s) without prior knowledge
of gene product. In theory, flanking or co-segregating
DNA markers associated with the gene of interest are
identified and a contig covering the target gene region
with large insert genomic DNA clones (usually bacte-
rial artificial chromosomes or BACs) are constructed.
Sequencing of the spanning physical region and sub-
sequent analysis of the sequence using various gene
prediction programs will result in identification of
the gene candidate sequences that can be confirmed
by complementary test after genetic transformation
into the host plant. This strategy has been employed
to isolate Ctv, a single dominant gene from P. trifoli-
ata that confers resistance to CTV (Gmitter et al. 1998;
Deng et al. 2001). The resistance gene contig consists
of 20 BACs and is approximately 550 kb in length. The
susceptibility gene contig, derived from the suscep-
tible citrus chromosome region consists of 16 BACs
and extends to about 450 kb (Deng et al. 2001). Al-

Table 4. Mapped citrus phenotypes

Phenotypes Genotypes Genetic map

Resistances to
Citrus tristeza virus (CTV) Single dominanta Gmitter et al. 1996
Nematode QTLs Ling et al. 2000
Citrus variegated chlorosis (CVC) QTLs Oliveira et al. 2002
Alternaria QTLs Dalkilic et al. 2005
Asian citrus canker (ACC) QTLsa Choi et al. 2005
Citrus leaf miner (CLM) QTLs Bernet et al. 2005

Tolerance to
Cold accumulation QTLs Cai et al. 1994
Na+ stress QTLs Tozlu et al. 1999a
Cl− stress QTLs Tozlu et al. 1999a
Salinity QTLs Tozlu et al. 1999b
Freezing QTLs Weber et al. 2003

Characters of
Dwarfing Single dominant Cheng and Roose 1995
Acidity QTLs Fang et al. 1997
Apomixis QTLs Garcia et al. 1999
Nucellar embryony QTLs Kepiro and Roose 2000
Yield and seed number QTLs Garcia et al. 2000
Rooting QTLs Siviero et al. 2003

a Different genotypes, which may or may not be from the same locus, were found to have the
same phenotype name.

though it now takes less than 1 person-year to isolate
a gene in Arabidopsis (Jander et al. 2002), application
of similar tools in cloning citrus gene(s) would take
a much longer time to reach the goal. For example
Ctv, the only citrus gene upon which extensive MBC
efforts have been made, has taken about ten years to
reach the last step partly due to genetic restraints.
However, MBC will make trait-specific improvement
of citrus cultivars and rootstocks possible. Isolation
and deployment of gene(s) of interest will greatly ben-
efit the citrus industries and would enable a deeper
understanding of the citrus genome.

Morphological traits such as dominant trifoliate
leaf, considered to be the earliest MAS marker,
were easily used to distinguish zygotic hybrids from
nucellar seedlings. However, they cannot be used
with varieties without such distinct characters.
Therefore, common MAS is carried out with the aid
of generic biochemical and DNA based markers.
Isozymes, RAPDs and EST-SSRs have also been used
in the identification of hybrids (Soost and William
1980; Nageswara Rao et al. 2006). The use of DNA
based molecular markers to select rootstocks that
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may contain many of the desired resistances to CTV,
nematode, Phytophthora, etc., will be of very high
cost-efficiency as compared to traditional greenhouse
or field screening approaches using inoculation. Blind
tests of several rootstock selection populations of
known phenotypes using DNA markers associated
with CTV and nematode resistance genes indicated
that MAS is a very promising and highly effective tool
for breeding programs (Gmitter et al. unpublished
data). In addition, molecular markers have also
been widely applied on phylogenetic and taxonomic
studies (Herrero et al. 1996; Fang and Roose 1997;
Fang et al. 1997; Bret et al. 2001).

14.4
Citrus Genome Plan
and Future Trends

The expanding capabilities of genomics and bioin-
formatics have the potential to revolutionize the en-
tire field of citrus biology and genetics, and they of-
fer promise of greatly improving the cultivars that
are grown through precise and targeted manipula-
tions of the genome. The foundations for the future
are currently being laid by the international citrus
genomics community. Many citrus genetic linkage
maps have been developed in different laboratories
in the past two decades (Table 3). Due to the use of
very few common markers, it is difficult to interrelate
the various linkage groups identified on these maps.
Hence, it is essential to develop a reference map of
the model genotype (Chen et al. 2006). The reference
map should include a set of markers that are highly
polymorphic and which can be mapped in various
populations. This will allow various maps to be com-
pared and combined. Also, more molecular markers
are needed to saturate the genome. Long term studies
of the nature and mode of inheritance of economi-
cally important traits must be pursued to link these
difficult-to-evaluate traits more easily to the scored
markers (Gmitter et al. 1992). Limited efforts have
been made for single-case characterization of a cit-
rus genome in a few areas such as resistance gene
candidates (RGCs) (Deng et al. 2000; Deng and Gmit-
ter 2003; Bernet et al. 2004), retrotransposons (Asins
et al. 1999; Bernet and Asins 2003), microsatellites
(Kijas et al. 1995; Ahmad et al. 2003), satellites (Fann
et al. 2001), variations fromfragment restriction (Liou
et al. 1996), methylation (Cai et al. 1996), and individ-

ual gene expressions (Moriguchi et al. 1998; Shimada
et al. 2005). Physical maps of citrus, integrated with
genetic linkage maps, are also required for efficient lo-
calization and isolation of the genes, for studying the
organization and evolution of the genome, and as an
initial step for efficient whole genome sequencing by
serving as the scaffold onto which genomic sequence
will be assembled.

Large-scale citrus genome plans have been
launched in several countries, and the International
Citrus Genome Consortium (ICGC) has been ini-
tialized, to provide general guidance and overall
goals on a citrus genome sequencing plan. The
countries that are leading in planned citrus genome
sequencing research are Brazil, US, Spain, Japan,
France, Australia, China, Israel and Italy (Machado
et al. 2005; Omura et al. 2005; Roose et al. 2005; Talon
et al. 2005). Those activities, already done, being
done, and to be done, include sequencing ESTs,
developing microarray platforms for expression
and genotyping studies, constructing genetic maps
using ESTs or SNPs, fingerprinting large insert
clones to develop physical maps, integrating genetic
and physical maps, and eventually the complete
sequencing of one or two citrus genome(s). A great
number of citrus EST sequences, for example, over
200,000 in Brazil, and over 100,000 in the US, have
been acquired (Fig. 5). A citrus GeneChip® from
Affymetrix, containing 30,264 citrus unigene probe
sets and other important contents, has been recently
released (Close et al. 2006). Some are partially or
completely released to the public database such as
GenBank, and others are still kept for in-house use.
Regardless of the availability, these contributors and
other citrus genomic research communities have
been utilizing comprehensive bioinformatics tools
to categorize them, to design gene chips, to explore
genetic information such as SSRs and SNPs, for
large-scale gene expression and function studies,
genetic and physical mapping, and comparison with
other advanced genomes (Hisada et al. 1997; Fujii
et al. 2003; Boscariol et al. 2005; Terol et al. 2005).
Great progress on citrus genome research has been,
and is being made, by these efforts eventually leading
to the completion of an international citrus genome
plan.

Citrus genomic technology is essential for the sus-
tainability and future viability of the world’s citrus
industries. Most of the critical goals for scion im-
provement, such as resistance to devastating diseases
or quantum changes in fruit quality attributes (color,
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Fig. 5. Current Citrus EST entries in GenBank dbEST [Modified from International Citrus Genome Consortium (ICGC)]

flavor, peelability, nutrient content, and phytonutri-
ent value to improve human health), are difficult if
not absolutely impossible to approach in any practi-
cal sense by conventional breeding strategies. It will
be through genomic research that an understanding
of fundamental processes can be realized, candidate
genes can be identified and cloned, and through some
type of genetic transformation these genes and this
information will be exploited for the improvement
of citrus. Likewise, rootstock improvements will be
hastened and maximized through the application of
new knowledge and tools developed from it, to make
sexual hybridization remarkably more efficient. It is
important tokeep inmind,however, that thevalueand
utility of new genetic combinations must be demon-

strated ultimately by field trials to verify the function
and productivity of genetically modified citrus, and
the value to consumers of improvements in fruit qual-
ity will be proven in the marketplace.
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15.1
Introduction

Genomics is a rapidly emerging field of research,
whichcame intoexistenceat theendof the last century
and promises to become the dominant theme of intel-
lectual activity in the coming decades, revolutionizing
our understanding of biology as never before (Ma-
heshwari et al. 2001). It took approximately 100 years
from the rediscovery of Mendel’s work to the com-
plete sequencing of a higher plant (Arabidopsis). The
advent of genomics is the direct result of the devel-
opment DNA sequencing by Sanger et al. (1977) and
Maxam and Gilbert (1977). However, genome-wide
sequencing could not have proceeded without exten-
sive automation such as high throughput sequencing
and the innovation of methods such as fluorescent
primers, laser excitation of DNA bands, and the de-
tection of these bands with photomultipliers (Smith
et al. 1985, 1986). DNA sequencing makes it possible
to decipher the entire blueprint of the development of
an organism, its genes and their functions. Genomics
can play a vital role in agriculture. The world’s popula-
tion depends to a very large extent on a few crops like
rice, wheat, maize, bananas, beans and potato for their
food. Understanding the genomics of these crops can
lead to enhanced yields and survival under adverse
conditions. In the next 20 years the world faces the
tremendous challenge of feeding the global popula-
tion from rapidly diminishing resources. The study of
plant genomics helps reveal the alleles and biochemi-
cal pathways linked to many processes such as flower-
ing, nutrition, disease and pest resistance, as well as
their tolerance to abiotic stresses (Zandstra 2005).

Despite the importance of Musa as a food crop for
overhalf abillionpeopleworldwide, genomic research
currentlyundertakencanbest bedescribedas apatch-
work of initiatives undertaken by a few advanced lab-
oratories. Genetic and physical maps of Musa are be-
ing developed by CIRAD (Centre de Cooperation In-

ternationale en Recherché Agronomique pour le De-
veloppement), France, and the Institute of Experi-
mental Botany, Czech Republic. The BAC (bacterial
artificial chromosomes), BIBAC (binary bacterial ar-
tificial chromosomes) libraries and ESTs (expressed
sequence tags) have been developed by laboratories
in Mexico, France and Europe (Vilarinhos et al. 2003;
Ortiz-Vaquez et al. 2005). Segregating populations are
beingdevelopedby the International InstituteofTrop-
ical Agriculture (IITA), Nigeria and Centre Africain
de Recherches sur Bananiers et Plantains (CARBAP),
Cameroon and CIRAD. The Queensland University of
Technology (QUT) inAustralia is identifyinggenes for
resistance to Fusarium wilt. Genetic transformation
of bananas is routinely being done at the Katholieke
Universiteit Leuven (KUL), QUT and IITA. Sequenc-
ing of BAC clones is being conducted at KUL and The
Institute for Genomics Research (TIGR). Activities
for discovery of functional genes in Musa are being
undertaken in Israel (Khayat 2004). This chapter pro-
vides an overview of banana breeding and genome
analysis of Musa.

15.1.1
Botanical Origin and Distribution of Banana

Bananas and plantains (Musa spp. L), hereafter re-
ferred to as bananas are perennial monocotyledonous
herbs that grow well in humid tropical and subtrop-
ical regions. There is a wide variety of historic refer-
ences to bananas and the crop is mentioned in ancient
Hindu, Chinese, Greek and Roman texts. The earliest
reference to banana dates back to about 500 BC. Some
horticulturists suspect thatbananawas theearth’sfirst
fruit. Nevertheless, the origin of bananas is traced
back to Southeast Asia in the jungles of Malaysia, In-
donesia or Philippines (Simmonds 1966, 1987). Ba-
nana originated from two wild diploid (2n = 22)
species namely, Musa acuminata Colla and M. bal-
bisiana Colla, with genomic compositions of AA and
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BB, respectively (Cheesman 1948). Musa accuminata
is a native of the Malay Peninsula and adjacent re-
gions while M. balbisiana is found in India eastwards
to the tropical Pacific (Simmonds 1966). Many wild
varieties still exist in the natural vegetation of South-
east Asia, the center of origin. Although South East
Asia and the Western Pacific are believed to be the
primary center of origin and domestication of edi-
ble bananas (Simmonds 1962; Robinson 1996; Jones
2000), they are also widely distributed in the humid
tropical and subtropical world. From Asia, bananas
and plantains are believed to have spread throughout
the humid tropics (Swennen and Ortiz 1997; Valmayor
2000) solely by humans through suckers (Simmonds
1962). The history of banana cultivation is therefore
closely linked to the early movement of human popu-
lations. Movement eastwards resulted in the develop-
ment of a distinct group of AAB bananas, which are
cultivated throughout the Pacific Islands. In Africa,
banana is thought to have been introduced by Arab
traders from India, through Madagascar on the East-
ern Coast during the 15th century (Simmonds 1962).
The crop was then moved inwards by local migrants
and later, from Africa it spread to other parts of the
tropical and subtropical world. A great diversity of ba-
nanas and plantains now exist in sub-Saharan Africa
with various types cultivated in different eco-regions
(Swennen and Vuylsteke 1991). The AAB plantains
dominate the humid lowlands of West and Central
Africa while the AAA cooking and beer bananas pre-
vail in the East African Highlands. The latter two eco-
regions harbor the world’s greatest diversity of plan-
tains and highland bananas, respectively, and are thus
considered the secondary centers of diversification of
plantain and bananas (Swennen 1990). The secondary
centers of diversification are believed to have enriched
the diversity of Musa with about 100 clones each (Le-
scot 2000).

15.1.2
Taxonomy of Musa

Banana belongs to the genus Musa in the family
Musaceae, order Zingiberales. It belongs to the sub-
class Zingiberidae, Class Liliopsida and Division Mag-
noliophyta. The family Musaceae comprises two gen-
era viz., Musa and Ensete (Fig. 1). The genus Ensete
consists of monocarpic herbs none of which bears
edible fruit. The genus was formally recognized by
Cheesman in 1948 comprising 25 species. However,

only eight species are now recognized in the genus
Ensete (Novak 1992). Ensete is cultivated in Southern
Ethiopia as a major source of food that is obtained
fromthepseudostemandrhizome(Novak1992).Only
two species, E. ventricosum and E. edule, are of eco-
nomic importance as food and fiber crops (Bezuneh
and Feleke 1966). Genetic relationships between Musa
species and Ensete clones based on genome size, num-
ber of chromosomes and number of 45S rDNA loci
showed that Ensete is related to M. beccarii of section
Callimusa (Bartos et al. 2005).

The genus Musa comprises all the edible bananas
and plantains with over 50 species. Five sections
namely, Australimusa, Callimusa, Rhodochlamys, Eu-
musa and Ingentimusa exist in the genus Musa (Stover
and Simmonds 1987; Purseglove 1988). These sec-
tions vary in the basic chromosomes, i.e. species of
Callimusa and Australimusa have a basic chromo-
some number of x = 10, while species in Eumusa
and Rhodochlamys have a basic chromosome number
of x = 11. Ingentimusa has a single species M. ingens
with a chromosome number of 2n = 14. Musa in-
gens, a highland banana in Papua New Guinea, is the
largest known herb (Argent 1976). Sections Callimusa
and Rhodochlamys consist of non-parthenocarpic
species with no nutritional value and are only im-
portant as ornamental crops. Australimusa consists
of parthenocarpic edible types, collectively known
as Fe’i cultivars. The Fe’i bananas have erect fruit
bunches and red sap which differentiates this sec-
tion from other cultivated bananas. Bananas in this
section are not only important for food and fiber
but their pseudostems also produce a valuable dark
red dye which is used in various ways. The ori-
gin of Fe’i is controversial among banana authors.
Simmonds (1966) suggested that M. maclayi is the
most likely ancestor, while Cheesman (1950) sug-
gested that Fe’i is closely related to M. lolodensis.
RFLP analysis by Jarret et al. (1992) revealed that Fe’i
was indeed closest to M. lolodensis and thus con-
curred with Cheesman’s (1950) findings. Eumusa is
the largest, most widely distributed, highly diversi-
fied and the most important section to which all
edible bananas belong. Most cultivars in this sec-
tion are derived from two species, Musa acuminata
(A genome) and M. balbisiana (B genome). Musa
acuminata is the most widespread of the Eumusa
species being found throughout the range of the sec-
tion with Malaysia (Simmonds 1962) or Indonesia
(Nasution 1991; Horry et al. 1997) as the center of
diversity.
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Fig. 1. Classification of Family Musaceae showing sectional treatment of the genus Musa. Based on Cheesman (1948); Simmonds
(1962); Simmonds and Shepherd (1955)

Edibility and subsequent domestication of diploid
M. acuminata (AA) came about as a result of female
sterility and parthenocarpy. Triploid AAA cultivars
arose from diploids, perhaps, following crosses be-
tween edible diploids and wild M. acuminata sub-
species, giving rise to a wide range of diverse AAA
genotypes such as the AAA dessert bananas and the
AAA East African Highland bananas. These two AAA
groups of bananas differ markedly in their fruit char-
acteristicswith regard to starchcontent and taste.This
suggests that theAgenomesof thedifferent subspecies
of Musa are different from each other. In most parts
of South East Asia triploids have replaced the origi-
nal AA diploids due to their larger fruit and vigorous
growth. However in Papua New Guinea, AA diploids
remain agriculturally significant and a wide diversity
is still found in cultivation.

15.1.3
Botanical Description and Morphology
of Banana

East African Highland beer and cooking bananas
grow best at altitudes between 1,200 and 1,800 meters
above sea level, while dessert bananas and plantains
thrive well in the lowlands. Bananas grow well in deep
loamy and well-drained soils. The optimum temper-
ature for most cultivated bananas is 26–30 ◦C (Stover

and Simmonds 1987). Temperatures lower than the
optimum result in low leaf production, thus limit-
ing the supply of food from the limited photosyn-
thetic leaf area. Banana growth stops at tempera-
tures beyond 38 ◦C and dies at temperatures be-
low 0 ◦C. A relative humidity of 60–100% is neces-
sary for proper banana growth, and depending on
the evapotranspiration, 25–75 mm of water is re-
quired by a banana plant per week which is equiv-
alent to 100 mm rainfall per month. Bananas are
prone to wind damage because of weak pseudostems,
large leaves that trap wind and shallow root sys-
tem.

A banana plant is a giant perennial herb with
a height of 1.5 to 9 m. It consists of a true stem called
corm with roots and a false stem (pseudostem) con-
sisting of leaf sheaths. At maturity, the leaves sur-
round the “heart” that carries the bunch with fruits.
The stem (corm) is usually underground and its shape
is cultivar dependent. However, in most cultivars the
corm is round with the apical meristem at its tip. The
meristem remains below the soil level until flower-
ing when it develops into the flower inflorescence axis
that bears the bunch. Roots develop from the corm
from the region between the inner zone (central cylin-
der) and the outer zone (cortex) into the soil. Leaves
also develop from the meristem of the corm and con-
sist of a sheath, a petiole and lamina or blade. The
leaf sheaths’ of successive leaves overlap and closely
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encircle each other forming the pseudostem or the
false stem. The pseudostems of Highland and dessert
bananas are green to dark green with many black
blotches, while those of plantains are yellowish green
with few brown-black blotches. As new leaves develop
at the meristem, older leaves are pushed outwards,
die and dry out (Simmonds 1962). Most bananas pro-
duce approximently 30–40 leaves in its lifetime. After
a fixed number of leaves are produced, the meris-
tem gives rise to the flowering stem, which begins to
grow upwards through the pseudostem. The flower-
ing stem emerges in the middle of the leaf crown and
a complex inflorescence of flower clusters develops.
The female flowers appear first and have large ovaries
that develop into fruits. As the inflorescence devel-
ops, a bulb shaped male bud containing small flowers
develops at the end. However, in most cultivated ba-
nanas, the fruit develops by parthenocarpy prevent-
ing formation of seeds that would otherwise make
the fruit unsuitable for human consumption. Three
types of flowers are produced on the banana inflo-
rescence. The female (pistillate) flowers develop into
the fruit, while the male (staminate) flowers found
in the male bud may produce pollen that may or
may not be fertile. The third type of flowers called
hermaphrodite or neuters are found on the inflores-
cence axis or rachis between the female flowers and
the male bud. They are usually sterile. The female
flowers of most cultivated bananas are almost always
sterile and the fruits develop by parthenocarpy. In all
bananas the growing shoot dies after fruiting once
(Simmonds 1962) and its life is perpetuated by means
of suckers, which develop from adventitious buds pro-
duced on the corm. The suckers are the major form of
vegetative planting material and form the subsequent
vegetative generation. When the first plant fruits and
dies, the maiden sucker (large but non fruiting ra-
toon with foliage leaves) continues the growth cycle.
Bananas are propagated vegetatively through suckers,
although wild species can also be propagated by seed
(Stover and Simmonds 1987). Sucker development
consists of three distinct stages; peeper (young sucker
bearing scale leaves only), sword sucker (sucker bear-
ing narrow sword leaves) and maiden sucker (large
but non fruiting ratoon with foliage leaves) (Sim-
monds 1966; Swennen et al. 1984). The cluster formed
by the mother plant and the surrounding suckers is
referred to as a ‘mat’. The number of suckers pro-
duced by a plant is very important to farmers in ba-
nana production since the crop is vegetatively propa-
gated.

15.1.4
Importance of Bananas and Major Areas
of Production

Bananas are the 4th world’s most important food crop
after rice, wheat and maize, with vast majority of the
crop grown and consumed in the tropical and sub-
tropical zones (FAO 2002). The annual world banana
production is estimated at 98 million tons of which
only 7 million tons enter the world market, suggest-
ing that the crop is more important as food for local
consumption than for export. Bananas supply more
than 25% of the carbohydrate requirements for over
70 million people in humid forest and mid altitude
region of Africa (Robinson 1996), with per capita
consumption of approximately 250 kg. Its ability to
produce fruits all the year round makes it an impor-
tant food security crop and cash crop in the tropics
(Jones 2000). Bananas are prepared and consumed
in a number of ways with each country that pro-
duces the crop having its own traditional dishes and
methods of processing (Frison and Sharrock 1998).
For example, mature unripe bananas are eaten as
a starchy food while ripe bananas are consumed raw
as a dessert fruit. They can also be consumed boiled,
roasted, or fried in ripe or unripe state. Nutrition-
ally, fresh bananas contain 35% carbohydrates, 6–7%
fiber, 1–2% protein and fat, besides the major ele-
ments such as potassium, magnesium, phosphorus,
calcium, iron, and vitamins A, B6 and C (Robinson
1996). Bananas are also used in the manufacture of
beer, wine and other products and form an important
part of the cultural life of many people (Stover and
Simmonds 1987). Other products produced from ba-
nana include jam, juice and squashes, banana chips or
crisps, sweet banana figs, banana flour, banana pow-
der and starch.

Although, a small proportion of banana produc-
tion enters the world market, the banana fruit is ex-
tremely important as an export commodity especially
in Latin America and Caribbean which contribute
over 83% of the total banana in the international mar-
ket (FAO 2002). In Africa, only five countries namely,
Ivory Coast, Cameroon, Somalia, Ghana and Cape
Verde export approximately 427,000 tons banana and
plantain (FAO 2002). The introduction of refrigerated
shipment has greatly accelerated the growth of the ex-
port trade from Central America and the Caribbean
to other parts of the world. Most of the bananas ex-
ported are the dessert type from triploid cultivars of
M. acuminata.
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Table 1. Largest producers of banana/plantain in 2004 (FAOSTAT 2004)

Country Production Country Production
(metric tons) (metric tons)

India 16,820,000 Nigeria 2,103,000
Uganda 10,515,000 Mexico 2,026,610
Brazil 6,602,750 Thailand 1,900,000
Ecuador 6,552,000 Cameroon 1,830,000
China 6,420,000 Peru 1,660,310
Philippines 5,638,060 Côte d’Ivoire 1,602,423
Colombia 4,400,000 Burundi 1,600,000
Indonesia 4,393,685 Democratic Republic 1,412,000

of Congo
Rwanda 2,469,741 Vietnam 1,353,800
Ghana 2,390,858 Guatemala 1,268,000
Costa Rica 2,230,000 Honduras 1,225,066

Because of their high vitamin A and B6 content,
bananas are beneficial in the prevention of cancer and
heart diseases in humans. Bananas are used to treat
diseases such as gastric ulcer and diarrhoea. Vita-
min rich nectar sap from banana flower buds is fed
to babies and children to strengthen their growth,
while potassium helps in boosting brain function-
ing.

Besides the food and income, banana plays many
important roles. For example banana leaves can be
usedas thatchingmaterials for houses, asplates, table-
cloths, umbrellas, sleeping mats, animal feed and in
food preparation. Non-fruit parts of the banana plant,
including the corm, shoots, pseudostem and male
buds are eaten as vegetables in Africa and parts of
Asia (Simmonds 1962). The banana pseudostems can
also be used as animal feed. Banana leaves and pseu-
dostems contain a high quality fiber which is used for
making ropes, handcraft, baskets, carpets and manu-
facturingofbananapaper. Inmixedcropping systems,
bananaplantsprovide shade for crops that growbetter
in shade conditions such as cocoa, black pepper, cof-
fee and vanilla. At the system level, bananas maintain
the soil structure and cover throughout the year, pro-
tecting it from wind and rain erosion. Further more, if
the biomass is used as mulch, soil fertility and organic
matter remains stable.

Between 1970 and 1997 the annual world banana
production increased, from 51 million tons to 88 mil-
lion tons, an increaseof seventypercent (Sharrockand
Frisson 1998). At that time banana production was es-
timated to be growing faster than the production of

any other starchy crop in the world. The world’s cur-
rent banana/plantain production is estimated at about
104 million metric tones, grown on about 10 million
acres of land in over 100 countries (FAOSTAT 2004).
Africa produces 35% of banana and plantains, Asia
andPacific29%,andLatinAmericaand theCaribbean
35%. India is the world’s leading producer of banana
and plantain with a production of about 16 million
tons followed by Uganda with 10.5 million tons (FAO-
STAT2004).Mostbananasproduced inAfricaareused
for local consumption and for local markets than for
international trade. The major world banana produc-
ing countries are summarized in Table 1.

15.1.5
Genome Groups and Genome Size of Musa

Cultivated bananas are grouped on the basis of their
genomic origins in relation to M. acuminata and
Musa balbisiana and their ploidy level (Simmonds
1966). Currently, the known cultivars are the diploids
(AA), triploids (AAA), and tetraploids (AAAA) forms
of M. acuminata and diploids (BB), triploids and
tetraploids (BBBB) forms of M. balbisiana or their
hybrids (AB, AAB or ABB) (Simmonds and Shep-
herd 1955). However, other genomic groups including
AAAB, AABB and ABBB from either natural or artifi-
cial hybridization are also known to exist (Pillay et al.
2004). The Indian subcontinent is thought to have
been the major center of hybridization of ‘acuminata’
types with the indigenous M. balbisiana. The region is
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known for its wide variety of AAB, and ABB cultivars
(Price 1995). Triploid M. acuminata derived (AAA)
cultivars are the most common and the most impor-
tant grown cultivars, and include ‘Gros Michel’ and
‘Cavendish’ types (dessert bananas), which constitute
most of the world’s banana trade. Cooking and beer
bananas (AAA) are indigenous to East Africa while
plantains (AAB) are very important staple crop in
West Africa and some parts of central Africa (Sim-
monds 1976). The B genome from M. balbisiana con-
fers hardiness and resistance to drought observed in
the diploid AB and triploid AAB and ABB hybrids
(Purseglove 1988). Musa balbisiana derivatives show
greatervariabilityandproduce fruitswithmorestarch
and acid, higher dry matter content and more vita-
min C. They also give textures and flavors that are
not characteristic inM. acuminata derived genotypes.
Musa acuminata has traces of wax on fruits while
M. balbisiana is often strongly waxy (Stover and Sim-
monds 1987).

Banana has a small haploid genome of 552–
607 Mbp dividedamong11 chromosomes.This is only
25% larger than rice, a crop that has been used as
a model species in monocotyledon plant genomics
studies. Due to its relatively small size, the Musa
genome is highly amenable to complete functional
and sequence analysis and extensive characterization
of genes. Banana being one of the few plants with bi-
parental cytoplasmic inheritance namely, mitochon-
drial paternal inheritance and maternal inheritance
of chloroplasts, can act as a good genomic model.

15.1.6
Banana Breeding Objectives

Breeding programs of crops are designed/initiated to
address production constraints. Banana production
is affected by a wide range of pests and diseases,
drought and low yielding cultivars. Therefore, the pri-
mary objective of banana breeding programs world-
wide is to address these constraints and develop culti-
vars that are acceptable by farmers. The earliest focus
in banana breeding programs was to develop disease-
resistant dessert cultivars for export (Rowe and Ros-
ales 1993) following the outbreak of Fusarium wilt
(Panama disease) in ‘Gros Michel’. Shortly thereafter
the Cavendish variety that took over as the number
one dessert banana replacing ‘Gros Michel’ was at-
tacked by another fungus, Mycosphaerella fijiensis,
which caused the Black Leaf Streak (BLS) disease or

black Sigatoka. Consequently, breeding efforts for the
genetic improvement of Cavendish by developing hy-
brids resistant to BLS were also initiated. Since then
breeders especially in the banana exporting regions
have been mainly aiming at developing banana cul-
tivars similar to ‘Gros Michel’ but with resistance to
Panama and leaf diseases (Sathiamoorthy and Bal-
amohan 1993). Besides the diseases, other traits of
concern in breeding include high yield, fruit qual-
ity (finger length, finger curvature and finger pedicel
length), flavor, ripening, plant height (stature) and
production efficiency (Stover and Simmonds 1987).
Indeed several authors (Simmond 1987; Eckstein et al.
1995; Pillay et al. 2002) described and emphasized the
ideotype cultivar as one which is disease and pest
resistant, high yielding, photosynthetically efficient,
early maturing, display minimum delay between con-
secutive harvests, short stature, strong roots for op-
timal nutrient uptake and greater resistance to wind
damage.

Breeding for pest resistance especially against the
banana weevil has, however, not featured prominently
in any breeding program. This is probably because
of the absence of good sources of resistance, and
lack of a simple screening method for weevil resis-
tance, to enable breeders to rapidly pinpoint resistant
line across the available germplasm (Kiggundu et al.
1999). Nevertheless with the advancement of biotech-
nology, breeding objectives such as resistance to the
banana borer, viruses, nematodes, and modification
of the fruit ripening patterns are expected to be vig-
orously pursued.

15.1.7
Limitations of Classical Breeding of Bananas

The overall strategy in banana breeding is to incor-
porate the desired traits often harbored in wild and
cultivated diploids (2×) such as resistance to diseases
and pests to the existing cultivars rather than aiming
at genetic materials that are completely different from
the existing cultivars. However, most of the cultivated
clones are triploids (3×) characterized by low male
and female fertility (Vuylsteke et al. 1993). The high
level of sterility is attributed to uneven chromosome
distribution during meiosis that is characteristic of
triploids (Adeleke et al. 2004). Other mechanisms of
sterility result from morphological errors in post mei-
otic stages and physiological dysfunction during pol-
lination and fertilization (Simmonds 1962; Pillay et al.
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Fig. 2. Simplified Musa
breeding scheme (adapted
from Pillay et al. 2002)

2002). Seed set per bunch in many clones is less than
one seed, and germination in soil is less than one per-
cent (Ortiz and Vuylsteke 1996). Bananas also take up
to 18 months to mature, which prolongs breeding ef-
forts compared to annual crops. Consequently, breed-
ers currently devolve much of their resources for ob-
taining, rather than evaluating progeny from crosses.
Compounded to this is the fact that the initial steps
in genetic improvement of most cultivated bananas
involve crossing triploid (3×) accessions to diploid
(2×) to produce 4× hybrids as described in Fig. 2 (Pil-
lay et al. 2002). Although the process is conceptually
straight forward, complex ploidy and genome arrays
which complicate selection can arise. The effect of
multiploidy and autopolyploidy chromosome behav-
ior results in unpredictable frequency of aneuploids
andundesirablehyperpolyploids (>5×) inaddition to
2×, 3×, and 4× euploids (Simmonds 1966). Diploid
bananas generally have unacceptably low yield poten-
tial, while tetraploid bananas often suffer from pre-
mature senescence, fruit drop, short shelf life, weak
pseudostem and are prone to undesirable production
of seed (Pillay et al. 2002). In addition, banana seeds
are large and hard and are not acceptable to most
banana consumers (Pillay et al. 2002).

15.1.8
Overcoming Musa Breeding Difficulties

Low seed set and germination rates are the major hin-
drances to hybrid plant production in most triploid

Musa. This makes it difficult to obtain adequate popu-
lation sizes to select disease resistant cultivars through
crossing. The application of aseptic embryo culture
techniques has improved seed germination rates by
a factor of 3 to 10 (Vuylsteke et al. 1990). The discov-
ery of seed-fertile landraces capable of producing true
seed upon hand pollination (Vuylsteke et al. 1993) and
use of advanced breeding populations with improved
fertility (Pillay et al. 2000) are sought to further im-
prove the efficiency of banana breeding. Breeders are
using in vitro techniques such as shoot-tip culture
for multiplication of newly bred genotypes. Micro-
propagated plants establish faster than conventional
suckers and have almost uniform production cycle,
which further facilitates establishment and evalua-
tion of hybrids (Robinson 1996). In vitro culture also
guarantees safe collection, exchangeandconservation
of germplasm required for identification of breeding
traits and facilitates dissemination and propagation of
newly selected cultivars or hybrids. The high in vitro
multiplication rates also enable rapid production of
clean or disease-free planting material for establish-
ment of large pollination blocks.

In addition, the problems of fertility could be
bypassed by using an array of available biotechno-
logical techniques (Pillay et al. 2002). Recombinant
DNA technology for instance has been beneficial in
the improvement of Musa cultivars that are difficult
to breed and remains the most promising solution
for those varieties that are totally sterile. Biotechnol-
ogy makes it possible to incorporate genes coding
for characters that are not available in the Musa gene
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pool. Using molecular techniques, novel genes en-
coding agronomically important traits can be identi-
fied, isolated, characterized and introduced into cul-
tivars via a combination of genetic transformation
and in vitro regeneration (Sagi 2000; Tripathi 2003).
Genetic transformation, i.e. the introduction and sta-
ble integration of genes into the nuclear genome and
their expression in a transgenic plant, offers a better
alternative for the genetic improvement of cultivars
not amenable to conventional cross breeding such as
Cavendish bananas or Horn plantains (Jones 2000).
Some success has been registered in genetic engi-
neering of bananas and plantains, which enabled the
transfer of foreign genes into plant cells. Protocols for
electroporation of protoplasts derived from embryo-
genic cell suspensions (Sagi et al. 1994), particle bom-
bardment of embryogenic cells (Sagi et al. 1995; Remy
et al. 1998), and co-cultivation of wounded meristems
(May et al. 1995; Tripathi et al. 2005) or cell suspen-
sion cultures with Agrobacterium tumefaciens (Gana-
pathi et al. 2001; Khanna et al. 2004) are available for
bananas and plantains. Particle bombardment (or bi-
olistic transformation) uses accelerated heavy-metal
microparticles coated with DNA to penetrate and de-
liver foreign genes into plant cells, which are then
selected and regenerated into plants while A. tumefa-
ciens, a soil bacterium, transforms its plant hosts by
integrating a segment (T-DNA) of its tumor-inducing
plasmid into the plant nuclear genome allowing intro-
duction of virtually any novel gene. Both of these sys-
tems have been used successfully on banana.Agrobac-
terium-mediated transformation has been applied to
a range of plantain and banana cultivars and syn-
thetic hybrids. The status of research on genetic en-
gineering of banana for disease resistance and future
possibilities has been reviewed (Sagi 2000; Tripathi
2003). Since the cultivated banana is largely sterile, its
genetically manipulated plants are environmentally
safe because the modified genes would not be able to
easily escape from the transformed crop.

On the other hand the application of molecu-
lar techniques such as RFLP and RAPD in banana
breeding can increase the efficiency of identification
of promising new genotypes. Early detection of de-
sirable genome combinations significantly improves
breeding efficiency and saves field evaluation costs.
Faster, precise, none destructive methods for ploidy
determination based on the use of flow cytometry
(Pillay et al. 2001) have made it easier to detect mixo-
ploidy of especially segregating progeny populations.
RAPD and PCR-RFLP markers that are specific for

the A and B genomes have been identified (Pillay
et al. 2000; Nwakanma et al. 2003a). These molecu-
lar methods can be used at any developmental stage
of the plant and therefore provide an objective and
reliable way for genome classification in bananas and
plantains. Indeed the role played by molecular mark-
ers in banana and plantain breeding is crucial and
inexhaustive.

15.1.9
Banana Breeding Achievements

Though no new banana hybrid has reached the fruit
quality of the natural varieties to replace the current
Cavendish varieties, plantains, East African Highland
and other banana groups in regard to their eating
qualities, the recent advances in several breeding pro-
grams hold a lot of hope in eventually achieving man-
bred acceptable cultivars for commercial production
and local consumption through conventional breed-
ing. The initial major challenge that faced banana
breeders was developing diploids with combinations
of disease resistance and desirable agronomic quali-
ties and identification of seed-fertile triploids for use
in breeding desired types of banana. The quest for
bred diploids came from the realization that most
traits of economic importance are more predictably
inherited from the diploid parents than from parents
with higher ploidy level (Tenkouano et al. 1999a, b).
It is also easier to carry genetic analysis in a diploid
background due to disomic inheritance, which facili-
tates and accelerates breeding. Furthermore, popula-
tion improvement at the 2× level is effective for elimi-
nating deleterious recessive alleles in selected 2× pro-
genitors for further crosses with cultivated bananas
and plantains (Ortiz and Vuylsteke 1996). Hence, the
majorbreedingprogramsworldwide initially invested
in the development of diploid breeding stocks (Ortiz
and Vuylsteke 1996) to permit the development of
the desired hybrids. Since then several diploid hy-
brids have been successfully developed by the various
breeding programs and registered in the public do-
main and/or distributed to breeders and geneticists
for use in germplasm enhancement and genetic anal-
ysis of Musa genomes (Rowe 1984; Rowe and Rosales
1993; Vuylsteke 1993; Ortiz et al. 1994; Vuylsteke and
Ortiz 1995; Tenkouano et al. 2003). The development
of thesediploids isundoubtedlyabreakthroughwhich
was needed for more rapid progress towards the de-
velopment of new cultivars. For instance, improved
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diploid banana germplasm developed by the Funda-
cion Hondurenea de Investigacion Agricola (FHIA
Honduras) has been successfully utilized as parents
of internationally released tetraploid hybrids such as
the dessert banana ‘FHIA-1’ (Goldfinger), ‘FHIA-3’,
‘FHIA 17, 23, 25’ (Rowe and Rosales 1993). These im-
proved diploids have also been used to produce East
African Highland banana type hybrids (Pillay, unpub-
lished).

Although there have been arguments against
tetraploids as potential cultivars because of their
weak leaf petioles and theoretical possibility of
spontaneous seed setting, several tetraploid hybrids
of plantains and other banana types have been de-
veloped, some of them having striking resistance to
black Sigatoka and good plant and bunch character-
istics (Vuylsteke et al. 1993, 1995; Ortiz and Vuylsteke
1998a, b; Jones 2000) and have been globally tested for
possible adoption as new cultivars. The yield of most
of the tetraploid hybrids is relatively higher than that
of their parent landraces. This has been attributed
to characteristics such as shorter and robust plant
stature, better suckering behavior and at times early
maturity, which are all linked with yield. The high
yield in plantain tetraploids is particularly attributed
to improve ratooning as compared to their parents,
which have generally low suckering behavior.

Nevertheless, further ploidy manipulation to re-
duce the chromosome number to the triploid level to
develop male sterile hybrids has been pursued (Ortiz
1997). Major gains in fruit quality have been achieved
by restoration of the seedless character in resulting
3× offspring (Tenkouano et al. 1998). For instance,
Tropical Musa secondary triploid hybrids (here after
TM3×) resistant to black Sigatoka have been obtained
from tetraploid-diploid crosses and made available to
breeders and geneticists interested in germplasm en-
hancement or for further testing and cultivar release
in accordance with the countries specific variety re-
lease regulations (Ortiz et al. 1998).

On the other hand, although some important
Musa subgroups (Cavendish, False Horn plantain) re-
main recalcitrant to conventional breeding, seed set
rates have tremendously improved in many Musa hy-
brids and the germination percentage drastically en-
hanced using established tissue culture techniques.
Consequently, a number of improved genotypes have
been widely evaluated and knowledge on genotype-
by-environment interaction and stability of the im-
portant traits gained. Insight into combining abilities,
heterotic groups, and the genetics of qualitative and

quantitative traits has been gained and is being ap-
plied to make breeding more efficient. A wide array
of breeding schemes has been explored, combining
conventional and innovative approaches, and produc-
ing potential cultivars from primary tetraploids, sec-
ondary triploids and other populations (Tenkouano
et al. 2003).

15.2
Gene Mapping in Musa

Basically, mapping aims at identifying molecular
markers genetically (genetic maps) or physically
(physical maps) linked to major or minor genes
(generally loci) contributing to the expression of
a particular trait or continuously varying character
(e.g. a QTL). Linked markers can then be exploited to
isolate the gene(s) underlying the trait. The isolated
genes in turn are used to improve selected genotypes
via direct or Agrobacterium-mediated gene transfer
or, alternatively, the linked markers may serve to
select segregants of a cross that carry a desirable
trait (marker-assisted selection, MAS). For these
reasons genetic and (in a more advanced state)
physical maps have now been established for almost
all the important crop plants. Most of these maps are
integrated maps, i.e. they contain a series of different
molecular markers, preferably in a framework
of STMS (sequence-tagged microsatellite sites).
Genetic mapping in Musa is not very far advanced,
though a first low-density map of M. acuminata was
established using isozyme, RFLP, and RAPD markers
based on a cross between SF265 (AA) × a banksii
(AA) segregating for parthenocarpy (Faure et al.
1993). Although a series of crosses segregating for
other traits like black Sigatoka resistance, bunch
position, chromosome rearrangements have been
developed, and mapping projects have been under-
taken at CIRAD, no high-density linkage map is yet
available. Till now, mapping populations are limited
in number, despite the fact that several activities are
aimed at developing suitable segregating populations
at various Research Institutes. The International
Institute of Tropical Agriculture is developing several
populations based on the A genome and B genomes.
Segregating populations of M. acuminata (Calcutta
4) × M. acuminata (Calcutta 4), M. balbisiana ×
M. balbisiana, M. acuminata × M. balbisiana have
been developed. Field evaluations of populations
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show that the BB segregating populations show
very little variation among the progeny while the
‘Calcutta 4’ × ‘Calcutta 4’ cross shows a high degree of
variation, suggesting that M. acuminata (Calcutta 4)
may not be homozygous as was previously suggested.

Although genetic mapping of the Musa genome
obviously lags behind that of other crop plants of
comparable market value, several bacterial artificial
chromosome (BAC) libraries of the A and B genomes,
which will allow the physical mapping of the banana
genome, have been established. Genes known only
by their phenotypes are best cloned by positional or
map-based cloning. This requires the development
of large-insert genomic libraries and ordering them
into contigs that span the genome region carrying the
gene(s) of interest. The BAC system of cloning large
DNA fragments is the preferred method for construct-
ing large insert-libraries of genomes (Tomkins et al.
1999). Physical mapping aims at defining the location
of a particular gene (or DNA sequence) on a cloned
genomic sequence of a size of 100–200 kb. It also al-
lows one to relate genetic distances (cM) between two
(or more) markers to physical distances (kb), to align
syntenic (and also non-syntenic) regions of two or
more genomes from related or non-related organisms
to search for homologous, orthologous or paralogous
sequences, and to build contigs of specific genomic
regions to pinpoint a target gene and to isolate it us-
ing map-based cloning approaches (Budiman et al.
2000). The physical mapping methodology involves
FISH (fluorescent in situ hybridization) or fiber-FISH
to locate sequences on chromosomal preparations
(Jackson et al. 1998), or the production of yeast arti-
ficial chromosomes, or more efficiently, BAC libraries
with large inserts, or transformation-competent arti-
ficial chromosomes (TACs). Global physical mapping
comprising the entire genome has been achieved for
only a few plant species like Arabidopsis thaliana and
Oryza sativa (Kurata et al. 1997; Mozo et al. 1999), but
is in progress for many other crop plants.

Although several BAC libraries of different Musa
species (M. acuminata, A library; M. balbisiana, B
library) have been produced, the clones have not gen-
erally been ordered, nor has a tiling path been con-
structed around interesting regions. However, it is to
be expected that the growing awareness of the scien-
tific banana community will catalyse the process of
physical mapping, which is the path to the isolation
of agronomically interesting genes.

Genomic libraries from M. acuminata and M. bal-
bisiana accessions have been screened with a vari-

ety of repetitive oligonucleotides including (GA)11,
(AT)11, (CT)11, (ATT)10 and (CTT)10 (Jarret et al.
1994). The sequence of selected fragments was then
determined and PCR primers designed from se-
quences flanking the SSR. More than half of the SSR
isolated from M. acuminata had simple dinucleotide
(GA) or (CT) core motifs (Crouch et al. 1997). No sim-
ple (AT) repeats were isolated despite their reported
abundance in plant species. This is likely to be due to
self-annealing of the (AT)11 probe. However, several
complex SSR which included (AT)n motifs were iso-
lated by virtue of their association with (GA), (AG)
or (CT) motifs. In common with other genera, trinu-
cleotide and tetranucleotide repeats appear to be less
abundant in Musa than dinucleotide repeats. In this
way, approximately 100 useful microsatellite markers
have been generated from M. acuminata while a simi-
lar number is expected to result from parallel work on
M.balbisiana. Similarmicrosatellite isolationprojects
are also ongoing at CIRAD (Lagoda et al. 1995), the
University of Frankfurt (Weising et al. 1996) and the
University of Saskatchewan while smaller projects
have been initiated elsewhere. This is likely to result in
the availability of more than 500 microsatellite mark-
ers for genetic analysis and molecular breeding in
Musa.

15.3
Identification of Quantitative Trait
Loci (QTL) in Musa

Plant characters are often referred to as qualitative or
quantitative depending on the number of genes that
control them (Fehr 1987). Qualitative characters such
as flower color are controlled by one or a few major
genes. On the other hand quantitative traits show con-
tinuous variation and are controlled by a number of
minor genes (polygenes) that are greatly affected by
theenvironment. It isknownthatgenetic and theenvi-
ronmental factors interact to make up the phenotype
of a plant. Traditional genetic studies have quantified
these factors by using statistical models such as:

Yij = µ + Gi + Ej + Iij + e

Where Yij is the observed phenotype, µ is the mean
phenotype in the population, Gi and Ej are the net
effects due to an individual having genotype i and
j, Iij is the interaction effect between i and j, and e
is the random contribution to the phenotype. These
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models can estimate the statistical effects as means
variances or covariances of a group of genes, but give
very little information about the nature of the poly-
genes that underlies the trait (Kearsey 2002). In ad-
dition, while these models described the effects of
genetic and environmental factors, it was not pos-
sible to locate the exact genes or chromosomal re-
gions of a plant that contributed to the trait. Locating
genes on a chromosome cannot be achieved with-
out gene maps. In the past, classical markers such
as pigmentation, morphological traits and isozyme
loci were used to generate linkage maps. The general
lack of abundance of these types of markers meant
that most linkage maps had large intervals between
the markers. The first linkage map to be established
was that of maize (Sturtevant 1965). Complete ge-
netic maps are essential for studying the genetics un-
derlying quantitative traits. Genetic maps show the
ordering of loci along a chromosome and the rela-
tive distances between them (Lynch and Walsh 1998).
Early ‘genetic’ linkage maps provided a rough road
map to order some genes. Thereafter ‘physical’ maps
provided with landmarks along the whole length of
the chromosomes. The physical map was superseded
by the concept of molecular maps which rely on
molecular markers. Molecular markers such as re-
striction fragment length polymorphisms (RFLPs),
simple sequence repeats (SSRs) and single nucleotide
polymorphisms (SNPs) have now made it possible to
dissect traits into their genetic components. A chro-
mosomal region that is associated with molecular
markers and with a quantitative trait is defined as
quantitative trait loci (QTL, Xu 2002). Plant breeders
are interested in knowing how many genes are in-
volved in a given trait, the nature of the dominance
and epistatic properties of these genes and how they
interact with the environment, and whether these
genes are structural or regulatory. These questions
can only be answered if we have an accurate loca-
tion of gene(s) on a chromosome. If QTLs could be
identified the transfer of traits such as yield, drought
tolerance etc. could be accelerated in breeding pro-
grams.

Plant populations with different genetic struc-
tures have been created for genetic mapping, includ-
ing F2/F3, backcross, doubled haploids, recombinant
inbred lines, near isogenic lines, back cross inbred
lines andvariousmutants (Xu2002). Several advanced
statistical methods have been proposed for mapping
quantitative trait loci (Lander and Botstein 1989).
Much work has also been covered on the theoreti-

cal aspects of mapping quantitative trait loci. This is
beyond the scope of this chapter.

Several traits in banana such as fruit filling period,
bunch weight, and fruit parameters are considered to
be quantitative in nature (Ortiz 1995). Studies to iden-
tify QTLs in banana are limited. The primary reason
for this is the absence of a high density linkage map
for Musa. A partial linkage map for diploid bananas
based on 58 RFLP, four isozyme and 28 RAPD markers
was published in 1993 (Faure et al. 1993). A composite
linkagemaphasbeenconstructedbyCIRADfromtwo
mapping populations at a LOD score of 4.75. This map
covers 1,227 cM and links 373 isozyme, microsatellite,
RFLP, RAPD and AFLP markers in 11 linkage groups
(unpublished).AQTL for Sigatoka resistancehasbeen
placed on the map developed by CIRAD. The identi-
fication of QTLs in Musa will be of great value for
genetic improvement of bananas for polygenic traits
such as yield, drought tolerance and others. Published
reports and our own unpublished data show that ba-
nanas are greatly influenced by the environment. Re-
searchers identifying QTLs in Musa must consider
environment as a factor. The level of QTLs across en-
vironments is trait specific. For example, in soybean
out of 11 RFLP markers associated with plant height
and eight with lodging, only two markers for plant
height and one for lodging were detected in all four
locations where the experiments were conducted (Lee
et al. 1996).

15.4
Marker-Assisted Breeding in Musa

The success of crop improvement programs is highly
reliant on the power and efficiency with which the ge-
netic variability can be manipulated. For thousands of
years, breeders have been relying on morphological
characters to select and cross plants carrying desired
traits to finally yield superior cultivars. However, the
practice is extremely slow and highly unpredictable
often limited by the low number of morphological
characters available to them for crop improvement
programs. Besides, the expression of morphological
characters is affected by environmental conditions
and sometimes altered by epistatic and pleiotropic
interactions resulting in the difficulty to obtain reli-
able data. Where breeding goals cannot be achieved
using traditional approaches, there is now consider-
able scope for using molecular or genetic markers to
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develop new varieties. Genetic markers offer plant
breeders the potential of making genetic progress
more precisely and more rapidly than through pheno-
typic selection. The potential benefits of using mark-
ers linked to genes of interest in breeding programs
have been obvious for many decades. However, the re-
alization of this potential has been limited by the lack
of useful markers. With the advent of DNA-based ge-
netic markers in the late 1970s, the situation changed
and researchers could, for the first time, begin to iden-
tify large numbers of markers dispersed throughout
the genetic material of any species of interest and
use the markers to detect associations with traits of
interest, thus allowing MAS to finally become a real-
ity. Molecular markers can be conveniently used in
plant breeding programs for the characterization of
germplasm, assessment of genetic diversity and iden-
tification of crop varieties via DNA fingerprinting.

Marker-assisted breeding provides a dramatic im-
provement in the efficiency with which breeders can
select plants with desirable combinations of genes.
To date, many markers linked to useful traits have
been identified and being utilized in many breeding
programs. However, before initiating marker-assisted
breeding, it is imperative to define the specific objec-
tives to be achieved through the use of markers, the
specific problem and the cost of the technologies to be
used, especially in the developmental phase. The suc-
cess of MAS depends upon several critical factors, in-
cluding the number of target genes to be transferred,
the distance between the flanking markers and the
target gene, the number of genotypes selected in each
breeding generation, the nature of germplasm and the
technical options available at the marker level.

The use of molecular markers in banana breed-
ing is reported for many purposes, such as cultivar
identification (Pillay et al. 2001), phylogenetic studies
(Kardolus et al. 1998), analysis of recombination be-
tween genomes (Osuji et al. 1997a, b), identification
of genes controlling traits (Damasco et al. 1996), and
assisted selection (Shanmugaveluet al. 1992).Marker-
assisted breeding is a powerful tool in many breeding
programs and it is being utilized by many breeders to
transfer useful genes among species. Thus, MAS of-
fers clear advantages in genetic terms over traditional
selection in many circumstances (Crouch et al. 1998).
RFLPs of diverse germplasm have been used to study
the taxonomy and phylogeny of Musa species (Gawel
et al. 1992; Jarret et al. 1992; Nwakanma et al. 2003a),
and variation in the chloroplast genome within the
Musa genus (Gawel and Jarret 1991a, b). However,

there is only one report of their use to distinguish
more closely related material (Bhat et al. 1994). More
importantly perhaps, the relatively high cost and tech-
nically demanding nature of this technique is not ap-
propriate to routine breeding applications. Thus, re-
searchers have concentrated on applications of the
polymerase chain reaction (PCR) for Musa genome
analysis. All PCR-based molecular markers appear to
detect a high level of polymorphism within a range
of Musa breeding populations. PCR-based assays are
amenable to the large-scale throughput demands of
screening breeding populations. The RAPD technique
has been successfully used to distinguish diverse
Musa germplasm (Howell et al. 1994; Bhat and Jar-
ret 1995; Pillay et al. 2001). In addition, a molecular
linkage map has also been developed using a variety
of marker systems including RAPD (Faure et al. 1993).
RAPD assays are particularly useful, as they require
no prior knowledge of the genome of an organism.
RAPD analysis has been used to differentiate Musa
genome groups (Howell et al. 1994; Pillay et al. 2000),
more closely relatedMusagermplasm(Bhat and Jarret
1995) and full-sib hybrids in plantain breeding pop-
ulations (Crouch et al. 1998, 2000). Teo et al. (2005)
used retrotransposon derived markers for identifi-
cation and characterization of banana cultivars and
classification of Musa genome constitutions. These
reports clearly demonstrate the potential value of this
technique for germplasm characterization and culti-
var identification but give little insight into the value
of the assay for molecular breeding.

Recently the technique of AFLP has been success-
fully applied in Musa. AFLP analysis of Musa breed-
ing populations suggests that this technique may be
a powerful tool in the molecular breeding of plantain
and banana (Ude et al. 2002a, b; Ude et al. 2003). Using
AFLP markers, Lheureux et al. (2003) found that 10
markerswere co-segregatingwith thepresenceand/or
absence of BSV infection in Musa hybrids. AFLP anal-
ysis is clearly a powerful technique in terms of its abil-
ity to identify a large number of polymorphic bands
without any prior knowledge of the organism. Un-
fortunately, the information content of these banding
patterns is restricted, as they must initially be treated
as dominant markers. However, when AFLP analysis
is applied to large populations, circumstantial allelic
relationships may be sufficient for practical purposes.
Software has been developed to distinguish homozy-
gotes and heterozygotes on the basis of band intensity.
Yet, such an approach may be frequently confounded
by the presence of bands of intermediate intensity.
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AFLP assays are also technically demanding and ex-
pensive in that they require a number of DNA ma-
nipulations and a complex visualization procedure.
In addition, they require relatively large amounts of
reasonably high quality DNA. The use of poor quality
DNA may lead to incomplete digestion which can re-
sult in artificial polymorphisms. Nevertheless, AFLP
and SSR markers are now being used to identify mark-
ers for fruit parthenocarpy, dwarfism and apical dom-
inance in banana and plantain.

Microsatellite markers and AFLP analysis appear
to be the most appropriate technologies for marker-
assisted breeding in Musa (Crouch et al. 1999; Hautea
et al. 2005). DNA markers have provided power-
ful tools for genetic analysis in Musa (Crouch et al.
1998, 2000) but may not provide an effective means
of predicting progeny performance (Tenkouano et al.
1999b). All marker systems have different advantages
and disadvantages in specific applications. Thus, it
is important for molecular breeding programs to de-
velop capacity in several assays in order that the most
suitable system can be chosen and rapidly applied for
any particular application.

15.5
Marker-Assisted Introgression

Marker-assisted selection and aided introgression are
being employed by plant breeders mostly to locate and
select genes controlling important quality and dis-
ease or pest resistant traits (Crouch and Ortiz 2004).
The first step however, is the identification of one or
more markers linked to the gene(s) to be introgressed
and their localization on the molecular map. Though
mapping of the Musa genome is still in its infancy, the
results of functional genomics of model plants will
increase the understanding of the basic Musa biology
as well as the exploitation of genomic information for
its improvement. Crouch et al. (1998, 2000) empha-
sized the fact that introgression of genes for pest and
disease resistance from wild germplasm has been and
is likely to continue to be a crucial aspect in Musa
improvement. DNA markers are now being sought for
several characters of importance including partheno-
carpy, apical dominance, resistance to black Sigatoka,
nematodes, and other pests and diseases. Fruit quality
parameters (color, texture, ripening) are other candi-
date traits forDNAmarkers.RAPDassayshaveproven
to be powerful and efficient means of assisting in-

trogression and backcross breeding. In fact, RAPD
markers that are specific for the A and B genomes
of Musa have been identified and are routinely used.
However, RAPD analysis has several disadvantages in-
cluding thedominant natureof themarker systemand
reproducibility problems, which may limit their ap-
plication in marker-assisted selection. Consquently,
this led to a focus on the development and utilization
of primers for Musa microsatellites (Jarret et al. 1994;
Kaemmer et al. 1997; Creste et al. 2004), which have
been considered optimum markers in other systems
due to their abundance, polymorphism and reliabil-
ity. Simple sequence repeats (SSR) are regions of short
tandemly repeated DNA motifs (generally less than
or equal to 4 bp) with an overall length in the order
of tens of base pairs. SSR have been reported to be
highly abundant and randomly dispersed throughout
the genomes of many plant species. Variation in the
number of times the motif is repeated is thought to
arise through slippage errors during DNA replication.
Thus, SSRLP may occur even between closely related
individuals. Microsatellite markers have been used in
plants for fingerprinting, mapping, and genetic anal-
ysis. SSRLP analysis has been shown to detect a high
level of polymorphism between individuals of Musa
breeding populations (Crouch et al. 1998, 2000). How-
ever, the isolation of microsatellites is time consuming
and expensive. Nevertheless, several hundred SSRLP
markers have been generated in Musa (Jarret et al.
1994; Kaemmer et al. 1997; Crouch et al. 1998). Fur-
thermore, the isolation of SSR is becoming routine
with the availability of automated DNA sequencing
facilities, improved techniques for the construction
of genomic libraries enriched for SSR and improved
techniques for the screening of appropriate clones.
This has recently allowed the rapid isolation of sev-
eral hundred microsatellites from the Musa B genome
(Buhariwalla et al. 2005).

Marker-assisted gene introgression offers an ex-
tremely efficient means of precisely identifying rare
segregants with the required genome compositions
and it is routinely being applied in many breeding
programs. While selection theory is the most impor-
tant tool for the design of breeding programs for im-
provement of quantitative characters, no general se-
lection theory is available for marker-assisted back-
crossing. Its efficiencydependsmostlyonmarkerden-
sity and position, population size, and selection strat-
egy. Adopting a selection theory approach to predict
response to marker-assisted selection for the genetic
background of the recurrent parent promises to com-
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bine several of the factors determining the efficiency
of a gene introgression program into one criterion.

15.6
Map-Based Cloning

The isolation of agriculturally important genes is an
important goal in plant molecular biology. Since most
agriculturally important genes are known only by
phenotype, techniques have been developed to isolate
such genes. Currently, map-based cloning (or posi-
tional cloning), insertional mutagenesis and subtrac-
tion cloning are three of the best-developed strate-
gies. Map-based cloning has been successfully used to
isolate plant genes based solely its position on a ge-
netic map. The strategy of map-based cloning is to
find molecular markers that are very closely linked
to the gene of interest. Those molecular markers can
serve as the starting point for chromosome walking
or jumping to the gene.

Map-based gene cloning includes four steps:

(a) Target gene mapping: The first step of map-based
or positional cloning is to identify a molecu-
lar marker that lies close to the gene of interest
(5 cM). This procedure typically is done by first
finding a marker in the vicinity of the gene. For
the initial screening smaller population sizes are
used (60–150 individuals).

(b) Physical mapping: The next step is to saturate
the region around that original molecular marker
with other markers. At this point you are looking
for a one that rarely shows recombination with
your gene. At this stage, the population size could
increase to 300–600 individuals.
The next step is to screen a large insert genomic
library (BAC or YAC) with the marker to isolate
clones that hybridize to the molecular marker.
Once the initial markers that are flanking the tar-
get gene have been identified and hybridized to
a clone, the position of the gene can be deter-
mined. Distance is measured in base pairs other
than genetic recombination (in cM). Methods for
physical mapping involve FISH, YACs, BACs, STSs
(sequence tagged sites).

(c) Chromosome walking or landing:
1. Chromosome walking relies on isolation of

a DNA fragment at or near an end of a cloned
insert for use as a probe to screen the li-
brary and identify more clones. Chromo-

somal walking was the major map-based
cloning method in the past.

2. Chromosomal landing starts with identifying
tightly linked molecular markers. The DNA
markers are then used to screen a library and
isolate (or land on) the clone containing the
gene.

Chromosome walking involves creating new
markers (usually sequences at the end of the
clone) and screening of a segregating population
with these new markers. Often this population
is large (1,000–3,000 individuals). The goal
is to find a set of markers that co-segregate
(no recombination) with the gene of interest.
Co-segregation means that whenever one allele
of the target gene is expressed, the markers
associated with that allele are also present. In
other words, recombination is not seen between
the gene and the markers. If these markers do
not co-segregate, new large insert clones should
be selected and the process is repeated until the
finding of a clone whose markers co-segregate
with the gene. To speed the cloning process, it is
best to begin with a marker that is tightly linked
to the target gene.

(d) Gene identification: Genetic complementation
through transformation.DNAfragmentsbetween
the flanking markers are cloned and introduced
into a genotype mutant for your gene by a genetic
engineering technique called plant transforma-
tion. If the transgenic plant expresses the wild
type phenotype, it confirms the presence of the
gene of interest on that fragment. At this point
the fragment must be sequenced to find a po-
tential open reading frame (ORF), sequences that
most likely will encode a gene product. In the
best situation, only a single ORF is found, but
often this is not the case. Usually several possi-
ble ORFs are found and new transgenic plants
are created by transforming with a single ORF.
Once this ORF is shown to rescue the mutant phe-
notype, an in-depth molecular and biochemical
analysis of the newly cloned gene could then be
performed.

RFLP or other molecular genetic markers can be
used in chromosome walking procedures. High den-
sity genetic maps have been developed or are being
prepared in a number of crops. Using RFLPs, the chro-
mosomal location of a particular probe can be deter-
mined and a map of various RFLP probe positions
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can be constructed. Genes can then be located genet-
ically by their co-segregation with a particular RFLP.
The starting gene can be cloned using a closely linked
RFLPprobeand isolatinggenomic clones that it corre-
sponds with, then walking from these genomic clones
to the gene of interest.

The cloning of genes underlying important agro-
nomic characters offers to revolutionize progress in
plant research and breeding, particularly in the area
of pest and disease resistance. In addition, map-
based cloning of gene(s) responsible for partheno-
carpy, dwarfism and albinism in plantains and ba-
nanas, would be of great value to both fundamental
and applied researchers of many crops.
In fact, only in Arabidopsis thaliana have map-based
approaches been widely applied (Giraudat et al. 1992;
Busch et al. 1996; Lukowitz et al. 1996). In other plants
there are only few reports of genes that have been
cloned by a map-based approach (Martin et al. 1993;
Dixon et al. 1996; BuK Schges et al. 1997).

15.7
Genes and Gene Expression in Musa

Although several expressed sequence tag (EST)
and cDNA libraries have been established (e.g.
for M. acuminata ssp. malaccensis), no Musa EST
database can yet be tapped for information about
expressed genes (Caetano et al. 2005; Carlos et al.
2005). In addition, the depth of these libraries is not
known. Yet full-length cDNA libraries, normalized
and representative, would be needed from a whole
series of tissues and states (e.g. normal vs. diseased;
susceptible vs. resistant; different developmental
states). A series of resistance gene analogs have been
isolated, using degenerate PCR primers targeting
highly conserved regions in proven plant resistance
genes (e.g. kinase or transmembrane-encoding
domains, or leucine-rich repeat sequences, to name
only few). Plant disease resistance genes involved
in signal transduction contain domains that are
conserved throughout mono- and dicotyledons.
Primers have been designed to those domains
in the RPS2 gene of Arabidopsis thaliana and
the N gene of tobacco. Using these primers for
PCR, candidate resistance genes have already been
cloned from soybean, potato, rice, barley and
Arabidopsis. A similar strategy has been applied
to clone candidate resistance genes from banana

(Wiame et al. 2000). A series of disease resistant
genes were isolated from the somaclonal mutant
CIEN-BTA-03 (resistant to both M. fijiensis and
M. musicola) and the parent ‘Williams’ that fall into
two classes: nucleotide-binding site-leucine-rich
repeat-containing kinases, and serine-threonine
protein kinases of the pto type (Kahl 2004). All the
resistance genes were fully sequenced, and eight
of them are also transcribed in the mutant, its
parental genotype, ‘Pisang Mas’ and a tetraploid
M. acuminata. The researchers at QUT have isolated
the complete gene sequence of R gene candidate
(RGC-2) from Musa acuminata ssp. malaccensis,
a wild diploid banana segregating for resistance to
Fusarium oxysporum fsp. Cubense (FOC) Race 4. The
development of Fusarium wilt resistant transgenic
banana using this gene is in progress (Dale et al.
2004).

Few genes are targeted, some sequences are
known, fewer publications have appeared, but no
banana gene has been applied in any way (e.g. for
transformation). Also, no attempt has yet been made
to design expression chips with families of genes
whose sequences are derived from either cDNAs
(cDNA microarray), or oligonucleotides, or from
clones obtained from related or unrelated plants.
Relative success in genetic engineering of bananas
and plantains has been achieved recently to enable
the transfer of foreign genes into plant cells.

Genetic transformation using microprojectile
bombardment of embryogenic cell suspension is
now a routine procedure (Sagi et al. 1995; Becker
et al. 2000). An efficient method for direct gene
transfer via particle bombardment of embryogenic
cell suspension has been reported in the cooking
banana cultivar ‘Bluggoe’ and the plantain ‘Three
Hand Planty’ (Sagi et al. 1995). Becker et al. (2000)
reported the genetic transformation of the Cavendish
banana cv. ‘Grand Naine’. Agrobacterium-mediated
transformation offers several advantages over direct
gene transfer methodologies (particle bombardment,
electroporation, etc), such as the possibility to
transfer only one or few copies of DNA fragments
carrying the genes of interest at higher efficiencies
with lower cost and the transfer of very large DNA
fragments with minimal rearrangement (Gheysen
et al. 1998; Hansen and Wright 1999; Shibata and Liu
2000).

Musa was generally regarded as recalcitrant for
Agrobacterium mediated transformation. Hernandez
(1999) has reported that A. tumefaciens is compati-
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ble with banana indicating the potential for genetic
transformation. The recovery of transgenic plants of
bananaobtainedbymeansofA. tumefaciensmediated
transformation has been reported. The protocol has
been developed for Agrobacterium mediated trans-
formation of embryogenic cell suspensions of the ba-
nana (Ganapathi et al. 2001; Khanna et al. 2004). At
present most of the transformation protocol use cell
suspension, however establishing cell suspension is
lengthy process and cultivar dependent. The proto-
col has also been established using shoot tips from
various cultivars of Musa (May et al. 1995; Tripathi
et al. 2002, 2005a). This technique is applicable to
a wide range of Musa cultivars irrespective of ploidy
or genotype (Tripathi et al. 2003, 2005a). This pro-
cess does not incorporate steps using disorganized
cell cultures but uses micropropagation which has the
important advantage that it allows regeneration of ho-
mogeneous populations of plants in a short period of
time. This procedure offers several potential advan-
tages over the use of embryogenic cell suspensions
(ECS) as it allows for rapid transformation of Musa
species.

Currently, the transgenes used for banana im-
provement have been exclusively isolated from het-
erologous sources like other plant species, insects,
microbes and animals (Tripathi 2003; Tripathi et al.
2004, 2005b). For example the most attractive strat-
egy for serious fungal disease like black Sigatoka con-
trol in Musa is the production of disease resistant
plants through the transgenic approach including the
expression of antifungal peptide genes from radish,
onion and dahlia. Similarly, research is in progress
at IITA for producing bacterial wilt disease (caused
by Xanthomonas campestris pv. musacearum) resis-
tant banana varieties using genes encoding for plant
ferredoxin like protein (pflp) and hypersensitive re-
sponse assisting protein (hrap) isolated from sweet
pepper.

Since most cultivated varieties of banana are ster-
ile and therefore do not set seed, traditional breeding
by hybridization is difficult making genetic transfor-
mation a viable tool for improving bananas. Although
attempts to produce transgenic bananas and plan-
tains are proceeding slowly, public acceptance of these
novel plants and their products should be encouraged
through sound information and risk assessment stud-
ies. The chances of transfer of transgenes from field
material to wild species (the major public concern)
are expected to be negligible in Musa in view of the
sterility of many cultivars.

15.8
Future Scope of Works

Bananas are staple food crops for over half a 100 mil-
lion people in sub-Saharan Africa and over half a bil-
lion worldwide. Bananas are the developing world’s
fourth most important food crop after rice, wheat and
corn. Despite these statistics, Musa is not included
in international genome analysis initiatives. A Global
Musa Genomics Consortium was established in 2001
with the goal of assuring the sustainability of banana
as a staple food crop by developing an integrated ge-
netic and genomic understanding, allowing targeted
breeding, transformation and more efficient use of
Musa biodiversity. Basically, the Consortium aims to
apply genomics to the sustainable improvement of
bananas. The consortium believes that genomic tech-
nologies such as analysis and sequencing of the ba-
nana genome, identification of its genes and their ex-
pression, recombination and diversity can be applied
for the genetic improvement of the crop (Frison et al.
2004). However, large scale funding for this initiative
has not been realized as yet.

Banana breeding is a complex procedure that is
fraught with constraints such as female and male
sterility and long generation times. Musa genomics
can open up new avenues for more efficient breeding
of the crop. It is important to investigate the possi-
bilities via which the primary production and other
uses of Musa can be promoted for the benefit of the
growing world’s population.

Strategies for future genomics research in Musa
include the development molecular markers, con-
struction of genetic and physical maps, identification
of genes and gene expression and whole genome se-
quencing. Sequencing of other plant genomes such as
A. thaliana and O. sativa has provided an enormous
amount of data that could reveal unknown features of
their genomes. Such data could also be generated for
Musa. These include sequence composition of various
genomic regions, an inventoryof thevariousgenicand
non-genic sequences (genes and repetitive DNA such
as satellites, mini- and macrosatellites, pseudogenes,
retropseudogenes, retrotransposons, LINES, SINES,
DNA transposons and many others), the distribution
of various elements along the chromosomes, potential
duplications, translocations, inversions, macro- and
microsynteny, structure of centromeres and telom-
eres, the exact genome size, and number of open
reading frames (Kahl 2004). Together with genome
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sequencing, the handling of such data must be con-
sidered since bioinformatics for banana genomics has
not been developed.

Although a number of marker techniques are now
available for genomic research, they have not been
as widely used in Musa as in some of the other crop
plants. Markers that co-segregate with a trait can be
exploited to accelerate the selection of that trait. This
will be especially useful in Musa because of its long
life cycle. New markers such as SNPs have not yet
been applied to banana research and promise to have
an impact on protein function. Genetic and physical
mapping of the Musa genome will make it possible
to isolate genes that can be used in genetic trans-
formation. Although a map of a diploid banana is
available a much greater effort in developing high
density maps to identify QTLs is necessary for Musa.
The development of ESTs and cDNA libraries are cru-
cial areas of research in Musa that needs greater em-
phasis. In addition, no attempt has been made to
design expression chips. Expression chips are be-
ing used in many laboratories for other crops. There
is enormous potential for genetic manipulation of
Musa species for disease and pest resistance using
the existing transformation systems with the genes
isolated from Musa genome. The use of appropriate
gene constructs may allow the production of nema-
tode, fungus, bacterial and virus-resistant plants in
a significantly shorter period of time than using con-
ventional breeding, especially if several traits can be
introduced at the same time. It may also be possible
to incorporate other characteristics such as drought
tolerance, thus extending the geographic spread of
banana and plantain production, and thus contribut-
ing significantly to food security and poverty allevi-
ation in developing countries. Long-term and multi-
ple disease resistance can be achieved by integrating
several genes with different targets or modes of ac-
tion into the plant genome. Technically, this can be
done either in several consecutive steps or simultane-
ously.

Banana and plantain are regarded as ‘orphan
crops’ or the ‘poor man’s fruit’ with regards to re-
search and the amount of funding devoted to the crop.
Yet they are important plants in the subsistence diet
of the poor millions. New diseases such as banana
bacterial wilt threaten to wipe out the crop in many
countries. A whole repertoire of techniques is now
available to study the genomes of plants, including
Musa. Such research will have a tremendous impact
in Musa breeding and genomics.
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16.1
Introduction

Mango (Mangifera indica L.) is popularly known as
the ‘king of fruits’. Believed to have originated in East-
ern India (Knight 1980), it is an allotetraploid that
evolved after interspecific hybridization and subse-
quent doubling of the chromosome number (Mukher-
jee 1953). The mango genome is of 4.39 × 108

bp size (Arumuganathan and Earle 1991) and has
20 chromosomes, most of them small. Mango is com-
mercially grown in over 103 countries of the world
but nowhere is it so greatly valued as in India. Apart
from India the other major mango growing countries
in the world are China, Mexico, Pakistan, Indone-
sia, Thailand, Philippines, Brazil, Australia, Nigeria
and Egypt. According to Galan (1993) between 1971
and 1993, the production of mango worldwide, has
increased by nearly 50 per cent. Much of this new pro-
duction has occurred outside traditional centers of
mango culture, in South and Central America, Africa
and Australia. Mango lends itself to a variety of uses
in one form or another, as every part of the tree is
valuable and the fruits are rich sources of vitamin
A and C. There is a good demand for mango fruits
and their processed products in both the national and
international market.

Therearemore thana thousandvarietiesofmango
under cultivation, but only a few of them are grown
on a commercial scale. Both polyembryonic and mo-
noembryonic mango cultivars are grown. Accord-
ing to Leroy (1947), adventive embryony is proba-
bly due to the effect of one or more recessive genes.
Polyembryonic cultivars are grown in Southeast Asia
and in tropical Latin America, whereas monoembry-
onic cultivars are major contributors to commercial

production in India and in Florida. Polyembryonic
mango cultivars are seed-propagated and exhibit little
variability in seedling populations. Monoembryonic
mango cultivars are propagated either by inarching or
by grafting bud wood onto seedling rootstock.

Not all varieties have been commercially ex-
ploited. There are varieties which have some unique
characteristics while lacking in others. Therefore, it is
necessary to study all the varieties/accessions in the
germplasm in order to cope up with the mango crop
improvement program. Several crop improvement
measures have been taken up in mango with respect
to high yield, regular bearing and resistance to cer-
tain physiological disorders. Although conventional
breeding methods have yielded quite a good number
of hybrids and varieties, they are laborious and time
consuming. It is necessary that one should know the
desirable characteristics of a variety before taking up
conventionalormolecularbreeding.There isvery lim-
ited work on molecular breeding and mapping of the
genotypes in mango as compared to other fruit crops.

16.1.1
Origin and Distribution

The genus Mangifera, which belongs to the family
‘Anacardiaceae’, originated in the Indo-Burma region.
According to Mukherjee (1958), the natural spread of
the genus is limited to the Indo-Malaysian region,
stretching from India to the Philippines and New
Guinea in the East. Evidence based on morpholog-
ical, phytogeographical, cytological, anatomical and
pollen studies have indicated that the genus had its
origin in the continental region of (i) Burma, Thai-
land, Indo-China and (ii) the Malayan Peninsula since
these happen to be the main centers of species forma-
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tion; the Sunda Islands (Java, Sumatra and Borneo),
the Philippines and the Celebes- Timor group form-
ing the secondary centers of development. The highest
concentrationof Mangifera species is reported tobe in
the Malayan Peninsula, followed by the Sunda Islands
and the Eastern Peninsula with many of the species
being common between them (Mukherjee 1949a).

The genus which has been sub-divided into two
sections, on the basis of the presence or absence of
the disc in the flowers (Mukherjee 1949a), is reported
to contain 41 species in all but almost all the edi-
ble cultivars of mango belong to the single species
Mangifera indica Linn which originated in the Indian
subcontinent. Occurrence of wild forms of M. indica,
allied species M. sylvatica and M. caloneura, fossil leaf
impressions of M. pentandra (a species similar to in-
dica) and presence of numerous cultivated and wild
varieties in India have been cited as some of the ma-
jor reasons in favor of M. indica having originated in
the Indo-Burma region through allopolyploidy, pos-
sibly amphidiploidy (Mukherjee 1958). The few other
species which contribute edible fruits (though of rel-
atively inferior fruit quality) are M. caesia, M. foetida
and M. odorata, which are confined to the Malaysian
region.

The mango, though well-known to the people of
the Indian subcontinent for several centuries, was
virtually unknown to any botanist until 1605 when
Carol Clusius first mentioned about it in his writings
(Mukherjee 1949b). Bauhin (1623, 1650), cited in Bose
(1985) subsequently, referred to it under the names
“Mangas” and “Amba”. Bontius (1658) cited in Bose
(1985) gave Mangifera the name for the first time and
he referred to this plant as arbor Mangifera (the tree-
producing mango). Later, it was mentioned in the
literature as Mangifera indica Ray, Mangus dornes-
tica Hermann or Mangas sylvatica Rheede. Linnaeus
also referred to it as Mangifera arbor in 1747, prior
to changing the name to its present form Mangifera
indica L. in 1753, in his much quoted book ’Species
Plantarum’ (Mukherjee 1949b).

Besides the Indiansubcontinent, themango isnow
found in several countries of the tropical and sub-
tropical world where Muslim missionaries, Spanish
voyagers and Portuguese explorers introduced it to
several places during 15th to 18th century. Accord-
ing to Hayes (1957) mango was being cultivated at
the head of the Persian Gulf by the 16th century. It
was introduced to Philippines after 1600, to Moluc-
cas in 1665 and to Yemen in the later part of the
18th century (Burns and Prayag 1921). It is also re-

ported that the mango was being grown in England
under glass-house conditions as early as 1690 and
that the trees at Kew were in fruiting during 1818. In
Mexico, it was introduced before 1778 by the Spanish
travelers from the Philippines. The Portuguese, who
carried mango to South Africa in the 16th century
from Goa, were also responsible for introducing it in
Brazil by 1700 (Popenoe 1920). It was in cultivation
in Barbados in 1742 and in Jamaica in 1782. Accord-
ing to Pope (1929) it was introduced in Florida and
the east coast in 1860s and the west in 1870s (Hayes
1957). However, it was only in 1889 that the United
State Department of Agriculture (USDA) successfully
introduced the grafted plants from India. It reached
Azores in 1865 and Queensland in 1870 (Burns and
Prayag 1921).

Presently, besides India, it is being cultivated
in Pakistan, Bangladesh, Burma, Sri Lanka, Thai-
land, Vietnam, Malaysia, the Philippines, Indonesia,
the Fiji Islands, Tropical Australia, Egypt, Israel, Su-
dan, Somalia, Kenya, Uganda, Tanzania, South Africa,
Niger, Nigeria, Zaire, Madagascar, Mauritius, the USA
(Florida, Hawaii, Puerto Rico), Venezuela, Mexico,
Brazil and the West Indies Islands.

16.1.2
Taxonomy

Mango (Mangifera indica L.) belongs to the dicotyle-
donous family ‘Anacardiaceae’. The nomenclature of
Mangifera species and mango cultivars has been com-
plicated by the widespread use of synonyms (Laksh-
minarayana, 1980). This family consists of sixty-four
genera, mostly of trees or shrubs, often containing
milky or acrid juice, some of which are even poi-
sonous. The leaves are exstipulate, usually alternate
and simple. The inflorescence is generally an axillary
or terminal panicle or spike bearing small and reg-
ular flowers. They may be unisexual (usually male)
or bisexual, borne on the same or different trees.
Mango possesses a very long taproot. The fruit is usu-
ally a drupe and seed is exalbuminous and is located
inside the stony endocarp.

The tree is large, spreading, and evergreen, with
a dense rounded or globular crown. The trunk is
erect, thick, without furrows or buttresses, when old.
The bark is thick, sometimes with longitudinal bursts
containing a little yellowish transparent gum resin
like juice. The wood is reddish grey, often streaked,
moderately hard, coarse grained and soft in a young
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tree. It is somewhat harder and darker brown on the
older trees. Branches are very numerous, the lower
ones spreading horizontally to a great extent, the up-
per ones gradually ascending till they become nearly
erect in the center; branchlets are rather thick and ro-
bust, often with alternating groups of long and short
internodes, glabrous, yellowish green when young,
with slightly prominent scars of the fallen leaves.

16.1.3
Crop Improvement

The main objectives of mango breeding are to achieve
regular bearing, high yield and resistance to certain
physiological disorders like spongy tissue.

16.1.3.1
Mango Breeding
Hybridization, clonal selection, isolation of chance
seedlings and mutation breeding are some of the con-
ventional crop improvement methods in mango. After
the initiation of hybridization in mango during 1911
at Pune, Maharashtra by Burns and Prayag, till today
at least 30 hybrids have been released from different
parts of India and abroad.

A clone is one of the basic categories of cultivar
(Bricknell et al. 1980) with extremely important ap-
plications in horticulture. ‘Cloning’ may be defined
as the vegetative regeneration of a single genotype as
represented by a single plant, single growing point,
single meristem or single explant. Cloning is a power-
ful procedure both as a plant selection tool for breed-
ing and as a plant propagation tool for reproduction
(Kester 1983). The exploitation of cloning for the se-
lection of superior individuals followed by vegetative
propagation has been one of the consistent themes
throughout horticultural history. Clones exist in na-
ture and with some species, vegetative multiplication
is a major strategy for their adaptation.

16.1.3.2
Crop Improvement in Mango by Hybridization
In India, work on inter-varietal hybridization was ini-
tiated in1911atPune,Maharashtra (Burns andPrayag
1921). Subsequently hybridization work was under-
taken at many fruit research centers in the country,
viz., Sabour in Bihar, Anantharajupet and Kodur in
Andhra Pradesh, Saharanpur and Central Institute of
Subtropical Horticulture, Lucknow in Uttar Pradesh,
Krishnanagar in West Bengal, Quaidian in Punjab,

IARI (Indian Agriculture Research Institute) in New
Delhi, Periyakulam in Tamil Nadu, Paria in Gujarat,
Vengurla in Maharashtra and Indian Institute of Hor-
ticultural Research, Hessaraghatta, Bangalore in Kar-
nataka. Initial success in hybridization program was
very poor because the technique of hybridization was
traditional and cumbersome.

Based on a genetic marker, Singh et al. (1980) have
shown that the percentage of fruit set from crosses in
mango can be doubled simply by doing away with
cumbersome process of bagging the panicles again
after cross-pollination by hand. This will facilitate the
raising of large hybrid populations for selection. As
a result of hybridization at least 30 hybrid mango vari-
eties were developed since the initiation of hybridiza-
tion program in the country. The following are some
of the salient research findings with respect to crop
improvement in mango by hybridization in different
parts of India and Israel.

The hybridization work carried out at the Indian
Agricultural Research Institute, New Delhi under the
leadership of Dr. R. N. Singh led to the evolution of two
improved, regular bearing hybrids namely ‘Mallika’
(Neelum × Dashehari) and ‘Amrapali’ (Dashehari
× Neelum). The tree of Mallika is semi-vigorous, it
is medium to heavy cropper (15 ton ha−1) and has
a strong tendency to bear regularly. The fruits have an
attractive appearance and the average fruit weight is
307 g. The pulp recovery is high (75%) and it is fiber-
less and firm and the stone is very thin. Total soluble
solids (TSS) is high (25°Brix), and keeping quality of
the fruit is better (Singh et al. 1972; Singh 1990).

Amrapali, the other hybrid released from IARI,
New Delhi is distinctly dwarf, precocious, highly reg-
ular andhigh yielding (Sharmaet al. 1980). It hasbeen
utilized for a high-density plantation. An orchard
with a density of 1,600 plants ha−1 can yield about
11.50 tons in the 4th year and yield reaches about
22.20 tons in the 7th year (Majumder et al. 1982). Be-
sides, Amrapali is very high in vitamin A content (β-
carotenoid pigment) and its flesh is deep orange in
color. The deep flesh color is important in fruit preser-
vation industry, since addition of artificial color is not
required (Singh 1990).

Thirty-nine mango hybrids developed at IARI,
New Delhi were studied in order to identify promising
plant types on the basis of dwarf growth habit, reg-
ularity and prolificacy of bearing. Out of these, two
hybrids, viz., Hybrid No. 427 and Hybrid No. 411 both
of Neelum × Himsagar parentage were found to be
dwarf, regular and prolific in bearing. Eight-year-old
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hybrid plants of 427 and 411 attained the height of
2.27 and 3.70 m, respectively. The yield per unit vol-
ume was 1,433.96 g per cubic meter in Hybrid No. 427
seedling and it was 1,251 g in Hybrid No. 411 (Rangith
1984).

Intensive mango hybridization program was ini-
tiated at the Agricultural Experiment Station, Gujarat
Agricultural University, Paria, Gujarat in 1968. Thirty
hybrids of various parental combinations were as-
sessed for high yielding, regular bearing varieties of
mango with improved quality. Of these, three mango
hybrids, viz., Neelphanso (Neelum × Alphonso), Nee-
leshan Gujarat (Neelum × Baneshan) and Neelesh-
wari (Neelum × Dashehari) were found promising
and released for commercial cultivation (Sachan et al.
1989). ‘Neeleshan’ was found to be highly suited for ta-
ble and juice purposes since fruit quality was excellent
(TSS 19.06%; total sugar 13.13%).

‘Neeleshan Gujarat’ is moderately regular bearer
and late maturing type. Fruits are of medium size
weighing318 gwithanaverageyieldof47.75 kg tree−1.
Fruit quality is very good (TSS 16.26%; total sugars
11.51%; acidity 0.12%; Vitamin C 16.09 mg 100 g−1

pulp). ‘Neeleshwari’ is dwarf in nature, bearing is
moderate and late maturing type. Fruits are medium
in size (228 g) and the average yield per tree is 34.95 kg
fruits. Fruit quality is very good (TSS 20.53%; total
sugars 10.78%; acidity 0.11%; Vitamin C 36.04 mg
100 g−1 pulp). Fruit pulp is moderately firm, non-
fibrous and suited for table and juice making (Sachan
et al. 1989).

Work was initiated at the Regional Fruit Research
Station, Vengurla, Maharashtra, in order to evolve
a regular bearing variety having Alphonso like quali-
ties.CrossesofAlphonsoandNeelumweremadesince
1970. Out of 40,000 crosses made, nearly 300 hybrid
seedlings were obtained and evaluated for desirable
characters. Out of the hybrids planted in 1971, No.
13, a cross between Neelum × Alphonso, was found
to be the most promising and later this hybrid was
released for commercial cultivation under the name
‘Ratna’ (Limaye et al. 1984). ‘Ratna’ is a regular bearer
with most of the fruit qualities of Alphonso. The fruit
is large with good sugar/acid blend, pleasing aroma,
long shelf-life, early maturing and free from spongy
tissue (Salvi 1983; Salvi and Gunjate 1989). This hy-
brid is a high yielder and 8, 9, 10, 11 and 12 year old
tree has yielded 41.52, 34.66, 30.00, 34.09 and 32.24 kg
fruits per tree respectively (Salvi and Gunjate 1989).

Although, ‘Ratna’ unlike ‘Alphonso’ is a regular
bearer, a good yielder with good fruit qualities and

free from spongy tissue, this quality lacks an attrac-
tive blush, fruit shape and a typical ‘Alphonso’ flavor.
Hence, intensive work involving back-crossing be-
tween ‘Ratna’ and ‘Alphonso’ was undertaken with an
objective to bring about the desired improvement in
‘Ratna’. Parthenocarpic mango Hybrid-117 perhaps
the first of its kind was obtained as a result of intensive
back-crossing between the hybrid ‘Ratna’ (Neelum ×
Alphonso) and Alphonso at RFRS, Vengurla, Maha-
rashtra. This work resulted in the development of
Hybrid 117 that was released for cultivation in the
Konkan region of Maharashtra with the name ‘Sind-
hu’ (Gunjate and Burondkar 1993). ‘Sindhu’ is com-
paratively dwarf and a regular bearer having medium
sized fruit (215 g), with very high pulp to stone ratio
(26:1) and very thin (30 mm) and small stone (6.72 g).
Fruits are deep orange in the flesh, fiberless and free
from spongy tissue disorder. The fruit pulp is very
rich in ascorbic acid (52.22 mg 100 g−1 of pulp) and β-
carotene (11,850 mg 100 g−1). The non-viable cotyle-
don free stone makes up only 3.1 per cent of the total
fruit weight. The striking character of this hybrid is
seedlessness (Gunjate and Burondkar 1993).

Work at Fruit Research Station, Sabour, Bihar on
hybridization in mango was initiated as early as 1942
and in the first batch as many as 63 hybrid proge-
nies were obtained. The difficulties faced in hybridiza-
tion program and probable remedies have also been
suggested (Sen et al. 1946). Naresh Kumar (1997) de-
scribed Sundar Langra (Langra × Sundar Pasand)
and Alfazli (Alphonso × Fazli) hybrids developed
from Sabour. Sundar Langra hybrid is semi-vigorous,
spreading tree, moderate but regular bearer, fruits
are medium in size (240 g), fruit pulp was similar
to Langra and skin was similar to that of Sundar
Pasand.

Work was initiated at the Central Institute for Sub-
Tropical Horticulture, Lucknow, UP on mango breed-
ing and two hybrids, viz., CISHM-1 and CISHM-2
were released. CISHM-1 is a cross between Amrapali
× Janardhan Pasand. Fruits of CISHM-1 are medium
in size (225 g), oblong in shape and with slight sinus.
Fruit skin is attractive, pulp is firm, high TSS (21%)
and suitable for export purpose (Negi et al. 1996).
CISHM-2 is a cross between Dashehari × Chausa.
Fruits of this hybrid are medium sized, weighing 220 g
and oblong in shape. Skin is smooth, tough, yellowish
green when ripe. Flesh is firm with scanty fibers and
dark yellow in color. TSS of pulp is high (23%). This
hybrid has good potential because of its sooty mould
free fruit surface even after exposure to heavy rains.
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The fruits are similar to Dashehari but mature 15 days
later than Dashehari (Negi et al. 2000).

Mango breeding at the Horticultural Research Sta-
tion, Periyakulam, TNAU resulted in isolation of the
Hybrid 2/7 which was later released as PKM-1 in the
year 1980. This hybrid is a cross between Chinnasu-
vernarekha × Neelum. A mean yield of 536 fruits with
102.70 kg was obtained per tree per year with a max-
imum yield of 1420 fruits weighing 284 kg. The yield
has been steady and regular. The hybrid bears fruits
on clusters and the fruits are fairly big and very sweet
in taste (Shanmugavelu et al. 1987).

An evaluation of four mango hybrids at the Horti-
cultural Research Station, Periyakulam, revealed that
a hybrid between Neelum × Mulgoa was high yielder.
As many as 48.4 fruits per tree were obtained weigh-
ing 25.22 kg. It is a regular bearer with excellent fruit
quality. Later this hybrid was released under the name
PKM-2 (Shanmugavelu et al. 1987).

Work at the Regional Fruit Research Station,
Anantharajupet, Cuddapah district, AP resulted in the
release of hybrid, viz., Au-Rumani and the Fruit Re-
search Station, Sangareddi released another hybrid,
viz., Mangera. ‘Au-Rumani’ is a cross between Rumani
× Mulgoa. This hybrid is high yielder and regular
bearer. Fruit is apple shaped and resembles ‘Rumani’
with prominent shoulders. Fruit pulp is firm, sweet
and good flavored (Swamy et al. 1970). Mangera is
also a cross between Rumani × Neelum varieties. The
tree of Mangera is dwarf and hence suitable for high
density planting. It is a precocious, regular bearer
and high yielder. The fruit is large, roundish oblique
in shape. The fruit skin is uniformly yellow with red
blush on the shoulders. Quality of fruit is very good
(Swamy et al. 1972).

Works on mango breeding at the Regional Fruit
Research Station, Kodur, AP resulted in the develop-
ment of four hybrids, viz., Neeluddin, Neelgoa, Nee-
leshan and Swarnjahangir. ‘Neeleshan’ is a cross be-
tween Neelum × Baneshan. It is a mid-season variety
with regular bearing in habit. The fruit size is large
and almost similar to Baneshan in shape. It bears in
clusters and some trees bear a second crop. Fruits are
medium to large in size (300 g). Pulp recovery is high
(69%), it is fiberless, fragrant and suitable for can-
ning. Neeluddin (Neelum × Himayuddin) is a regular
bearer, but fruits are small in size (220 g). The fruit is
pulpy, fiberless, juicy and aromatic.

Work was initiated at the Indian Institute of Hor-
ticultural Research, Hessaraghatta, Bangalore in Kar-
nataka during 1970 to develop varieties with regu-

lar bearing, high yield, good fruit quality and free
from spongy tissue. About 100 F1 hybrids of different
parental combinations were raised and evaluated. Out
ofwhich, fourhybrids, viz.,ArkaAruna (Banganapalli
× Alphonso), Arka Puneet (Alphonso × Bangana-
palli), Arka Anmol (Alphonso × Janardhan Pasand)
and Arka Neelkiran (Neelum × Alphonso) have been
selected (Iyer and Subramanyam 1993).

ArkaAruna isdwarf in stature, regular, precocious
and medium yielder. It bears large fruits (450 g) hav-
ing attractive peel color with red blush, cream color
and fiberless pulp of good flavor, high TSS (22°Brix)
and small stone. It has high pulp percentage (78.5)
and free from spongy tissue. This is suitable for home-
stead planting. Arka Puneet is of vigorous plant type
with regular and prolific bearing of medium size fruits
(225 g) having attractive peel color, good aroma, high
TSS (22°Brix), fiberless pulp about 75%, free from
spongy tissue and good keeping quality. This hybrid
is suitable for table purpose and processing. It is free
from fruit fly incidence. The fruits can be stored at
room temperature for more than 15 days. Arka An-
mol is a semi-vigorous plant type with regular, prolific
bearing habit, fruits weighing about 250 g with good
table and keeping quality. Attractive golden yellow
peel color makes it suitable for export. Arka Neelki-
ran is a regular bearer, fruits are medium in size,
attractive and quality of fruit is better than Neelum.

In Israel mango breeding is in progress at the
Agricultural Research Organisation (ARO), Bet De-
gan from where two hybrids, viz., ‘Tango’ and ‘Shelly’
have been released. ‘Tango’ is a cross between Naomi
× Keitt. Tango tree is medium in size, the inflores-
cence is pyramidal, 35 cm long and is densely flow-
ered. The flowering season begins in late February to
early March. Fruits are oblong with pointed beak and
shallow sinus. The dorsal shoulder is higher than the
ventral one and the apex is tombed. The fruit size is
uniform with an average weight of 380 g. The skin of
the mature fruit is thin and smooth and its color is
orange, blushed with a brilliant red. The orange col-
ored pulp is juicy and tender with scarce fibers. It has
a mild, sweet and sour flavor with a mild, pleasant
aroma. The fruit can be stored for 13 days at 20 ◦C
and 21 days at 14 ◦C. Preliminary data suggest that
the yield of ‘Tango’ is slightly above average of par-
ents (Lavi et al. 1997b).

‘Shelly’ was selected from a cross between ‘Tomy
Atkins’ and ‘Keitt’ and is a late ripening hybrid. Fruits
are round with no beak or sinus, apex is rounded. Av-
erage fruit weight is 500 g (ranging from 350 to 700 g).



308 H. K. N. Vasanthaiah et al.

The peel of the mature fruit is of medium thickness
and smooth and its color is orange with a red blush.
The pulp is orange with a juicy, firm texture and scarce
fibers. The flavor is mild and slightly sweet. Mature
fruit have remained firm and attractive up to 30 days
after picking at room temperature. Preliminary data
reveals that the yield of Shelly hybrid is well above
average of parents (Lavi et al. 1997a).

16.1.3.3
Crop Improvement in Mango
by Clonal Selection
Clonal selection within cultivars has yielded valuable
results and hence appears to be worth pursuing par-
ticularly in countries where certain cultivars are in
cultivation for a long time. When a cultivar is grown
for a long period, though originated through vegeta-
tive propagation, variation may occur due to mutation
at micro or macro level. This mutation is a possibility
in a variety when cultivated for a prolonged period.

Alphonso mango is an export quality cultivar
of India. Pandey (1998) studied different clones of
this cultivar, viz., ‘Alphonso of Behat’ in Saharanpur
(UP), ‘Alphonso Batli’ of Kirkee, Pune (Maharash-
tra), ‘Alphonso Punjab’, ‘Alphonso White’ of North
Kanara district of Karnataka, and found that they
differ from one another in more than one char-
acter. Pandey (1984, 1998) described seven differ-
ent clones in Alphonso mango, viz., Alphonso Be-
hat, Alphonso Batli, Alphonso Bihar, Alphonso Black,
Alphonso Bombay, Alphonso Punjab and Alphonso
White. The origins of all these clones are not known
but these clones are indigenous to different parts of
India.

Inperennial trees likemango, asexualpropagation
renders preservation of accumulated mutations (both
macro and micro) which normally would be sieved
out by sexual propagation. This offers the scope for
the selection of good clones within a cultivar (Iyer
and Mukunda 1998). Exploitation of natural variabil-
ity through selection of superior clones of commercial
mango cultivar has been undertaken by several work-
ers. Naik (1948) observed significant variation among
the trees of the same variety in an orchard with re-
gard to fruit shape, size, color and quality of the fruits
which was ascribed to bud mutations. Oppenheinmer
(1956) based on a survey in many mango orchards
in India reported wide variability in the performance
of the trees of the same variety in the same orchard.
Singh (1971) and Naik (1971) have emphasized on
the role of clonal selection in mango improvement

basedon their extensiveobservations. Iyer andDinesh
(1997) and Iyer and Degani (1997) have emphasized
on the need for great caution while identifying new
clones. It is necessary to test the new clones under
replicated trials to compare them against standard
commercial varieties to confirm the distinctiveness
and superiority.

Work on clonal selection at the University of Agri-
cultural Sciences, Bangalore has led to the identifica-
tion of two superior clones in the cultivars Alphonso
and Raspuri (Mukunda 1996; Anon 1998). HSA-4
(Alphonso clone) has fruits of larger size (410 g) with
attractive fruit color. NPP-5 (Raspuri clone) is a high
yielder, regular bearer, has better fruit shape and TSS
of 21% (Mukunda 1996; Iyer and Mukunda 1998).

Studies carried out on the evaluation of certain
clones of mango cv. Alphonso at the University of
Agricultural sciences, Bangalore have revealed that
‘MA-1’ clone was an outstanding progeny, as the
plants were vigorous in growth habit; panicle den-
sity was highest and produced largest sized panicles
(Mukunda 2004). Sex ratio in this clone was highest
and as such fruit set was also highest. Fruits of ‘MA-1’
clone were medium to large in size, firm pulp, highest
pulp recovery, thin stone and medium peel. Highest
TSS, moderate acidity and excellent TSS/acid blend
was noticed in the fruit pulp of ‘MA-1’ clone. Fruits of
‘MA-1’ clone had attractive skin color with red blush
on the shoulders; flavor was delightful and superb in
taste. Fruits of ‘MA-1’ were tolerant to spongy tissue.

A regular bearing and high yielding mango clone,
“Dashehari-51” has been released by the Central In-
stitute for Sub-tropical Horticulture, Lucknow, UP.
This clone produces good crop every year without
off-bearing rhythm, the per year productivity being
38.8% more than “Dashehari”. Even in an ‘off ’ year,
‘Dashehari-51’ clone produced an average yield of
43.4 kg fruits per plant per year while Dashehari tree
produced very poor fruits (Chadha et al. 1993; Rajput
et al. 1996; Ghosh 1997; Anon 1999; Negi 2000).

Desai and Dhandar (2000) studied a large number
of mango varieties of Goa state which are important
either from commercial or from breeding point of
view, for their physico-chemical and morphogenetic
variations. These varieties differ in respect of bear-
ing habit, fruit size, fruit color, flesh contents, pulp
color and quality. Pulp contents depending on fruit
size varied from 67.56% in Bemcorado to 83.21% in
RC-MS-1 a clonal selection of Bemcorado. In general,
the varieties namely Mankurad selection and Bom-
carado selection were observed to be promising as
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these clones possessed most of the desired commer-
cial traits meeting international standard.

Chaikiattiyos et al. (2000) conducted the progeny
test of ‘320’ Kaew clones collected from the North,
North-east and Central Thailand, and selected a num-
ber of clones with superior horticultural traits for fur-
ther evaluation. Of these, the ‘SK007’ clone produced
the highest fruit yield of 65.4 kg per tree at the age of
7–8 years. A subsequent comparison yield trial of the
previously selected clones indicated that the ‘SK007’,
officially recommended by the Department of Agri-
culture, Bankok, Thailand and currently known as
‘Kaew Sisaket’, has an average yield of 25.5 kg per
tree at year 5–6 with the average fruit weight of 252 g,
81% flesh and 0.049% citric acid. The fine texture,
low fiber content and firm flesh offer good quality for
pickling.

Jintanawongse et al. (1999) made an attempt to
improve the existing commercial mango cultivars in
Thailand by the clonal selection in Nam Dok Mai,
Khiew Sawoey, Rad and Nang Klang Wan cultivars.
Since 1990, the growth behavior, yield and quality
of fruit characteristics such as fruit size, flesh color,
sweetness, aroma and texture were evaluated. The
data showed ‘Clone No. 01’ of Nam Dok Mai, ‘Clone
No. 04’ and ‘05’ of Khiew Sawoey, Clone No. 03 of Rad
and ‘Clone No. 03’ of Nang Klang Wan clones were
superior over the other clones. In addition, DNA fin-
gerprinting was also made for all these five clones.
These clones are to be released as recommended and
certified cultivars by the Department of Agriculture
in the near future.

Singh (1999) reported a new variety ‘MDCH-1’
(Madhulika) out of 41 species found in the world.
Studies made from 1990 onwards at ICAR, Manipur
Centre, Imphal showed that this new species was the
most promising one of the region besides its resis-
tance to stone-weevil which is the common pest for
the region.Among the17genotypes studied in foothill
conditions of Manipur, the genotypes MDCH-1 and
STH-1 have been found to be very promising with
most desirable characteristics such as regular bearer,
dwarf, better fruit quality and resistance to stone-
weevil and diseases. Thus Singh (1999) was of the
opinion that the new genotypes, MDCH-1 and STH-1,
would be ‘wonder mangoes’ of the 21st century, and
may be able to revolutionize the mango production in
India and abroad.

Survey of local mango genotypes at Goa state has
enabled collection of 68 different varieties. Big-fruited
clones of ‘Hilario’ and ‘Udgo’ with outstanding fruit

quality were screened (Anon 1994). During 1985–
1995, mango clone Cardozo Mankurad was selected
from the Mankurad variety of Goa. This new clone
was described in detail and compared with the par-
ent variety Mankurad. Cardozo Mankurad is regular
bearer and produces large fruits of attractive color,
high quality and yield (Mathew and Dhandar 1997).

Intensive survey made by Ramaswamy (1989) in
the North-Western region of Tamil Nadu comprising
Salem and Dharmapuri districts led to the isolation of
three selections of ‘plus trees’. Parameters like regular
bearing, dwarfness, high yield, good fruit quality and
field tolerance to pests and diseases formed the basis
of selection. Dwarf clonal selections, one each in Ru-
mani and Bangalora, and a high yielding elite Neelum
clone were isolated. The estimated bark phenol con-
tents were from 4,300 to 4,800 µg per gram of fresh
weight. This physiological parameter appears to be
linked with dwarfness. The selected clones lend scope
for high density planting at a density of 500 trees per
ha. The average weight of fruit in these elite clones
of Rumani (362 g), Neelum (404.20 g) and Bangalora
(639.40 g) clones was high and the pulp recovery was
thehighest (89.26, 87.74 and93.93%, respectively) and
TSS of the fruit pulp was medium to good (16.85, 22.34
and 16.96%, respectively).

Vijayakumar et al. (1991) made an intensive sur-
vey in Dharmapuri district of Tamil Nadu and ex-
ploited the natural variability present in Rumani and
Neelum varieties of mango. ‘DPI 55’ a clone of Rumani
and ‘DPI 45’ a clone of Neelum were dwarf in nature
and suitable for high density planting. These clones
possess precocity, regular bearing, attractive good
quality fruit with high productivity. Vijayakumar
et al. (1992) developled “Paiyur 1” mango, a clonal
selection from Neelum variety of Tamil Nadu. This
new clone is a dwarf plant, low spreading in nature
and thus suitable for high density planting at a close
spacing of 5 m × 5 m accommodating 400 trees per
hectare. During the ninth year of planting the fruit
yield of ‘Paiyur 1’ clone was 22.30 kg per tree account-
ing for 8,920 kg of fruits per hectare. The mean fruit
weight was 121 g with 68 per cent pulp recovery and
good taste.

Anassessmentofvariousvegetativeand fruit char-
acters was made by Subramanyam and Iyer (1989) in
mango germplasm collected from different regions
of India, to select suitable parents for hybridization.
Accordingly they identified two dwarf plants from
collections made in Kerala state, which they named
as ‘Kerala Local’ and ‘Local Kalapady’. These selec-
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tions have potential for incorporating dwarfness in
vigorous growing commercial varieties as well as
using as new clones to establish high density or-
chards.

Mukherjee et al. (1983) based on detailed sur-
veys of mango orchards in eastern India have identi-
fied many superior clones. Based on their survey 23
elite clones were identified. Some of the clones which
ranked excellent grade by them are: ‘Dawadi’, ‘Em-
rat Bhog’, ‘Shah Pasand’, ‘Sadik Pasand’, ‘Kali Bhog’
(all from Murshidabad) and ‘Misrikanta’ (from Mal-
dah). They also suggested that it would be worth
putting these clonal selections in a varietal trial for
comparison with the standard commercial variety for
releasing as new superior selections for commercial
exploitation and for utilization in the hybridization
program.

In Punjab, several selections of sucking mango
with good sucking qualities, abundant juice, less fiber,
small stone and red blush on cheeks have been made
at the Regional Fruit Station, Gangian. These are num-
bered as GN 1, GN 2, GN 3, GN 4, GN 5, GN 6 and GN
7 (Sandhu et al. 1990).

The ‘Davis-Haden’ is an example of a bud sport
originated in Florida (USA) from ‘Haden’ variety.
The fruit of ‘Davis-Haden’ is somewhat larger than
‘Haden’ and its season of maturity is about a month
later. Such mutations occur frequently in some plants
though in mango nothing is known of the frequency
with which spontaneous mutations occur (Young and
Ledin 1954). One of the mutant varieties reported in
mango from Peru is ‘Rosica’. It is a bud mutant of
the local Peruvian cultivar “Rosado de Ica”. In tri-
als it was found to be precocious and regular bear-
ing, giving good yield of high quality fruit. Unlike
other local cultivars, it did not produce small seed-
less fruit, and it was monoembryonic (Medina 1977).
Li Gueiheng et al. (1996) reported that ‘Hongmang 6’
is a mutant derived from Zill variety of mango from
China. Production of Hongmang 6 is very high, 7-
year-old trees producing yields of 43.50 kg fruits per
tree. Fruits are of good eating quality and red to
purplish-red in color while flesh is dark yellow and
juice with TSS of 15.8%. Roy and Sharma (1960) ob-
served a bud-sport in the local variety Hirasonia at
the Bihar Agricultural College, Sabour, which bore
virtually fiberless fruits, larger than those of parent
variety and differing in other respects. The mutant
was considered to be of potential economic value.
Sharma et al. (1981) obtained some very interesting
plant types in the VM1 generation by stabilizing the

changes induced through the heading back technique.
Amongst these are plants with very long and very
short extension growths, very thick and very thin
shoots; multiple branching shoots; very large and very
small lanceolate leaves and small leaves with highly
wavy margins and plants which appear to be compact
in growth habit. A few of these induced plant types,
both from the varieties Dashehari and Mallika, appear
to be promising from the point of view of dwarfness
and hence, may prove their immense value. Higher
TSS and better sugar/acid blend, than the standard
Dashehari (as a control), were also observed in few
plants.

A clone of mango ‘Totapuri’ has been selected
at the Gujart Agricultural University, Paria, Gujrat
(Anon 1997). This clone was identified from a private
farmer’smangoorchardofBabubhoiBhagvanbhaiPa-
tel of Goima village, Pardi taluk, Valsad district. The
age of the mother plant is 35 years and vigorous in
nature with irregularly spreading primary and sec-
ondary branches. This clone flowers and fruits twice
in a year, first week of October and second week of
March. It yields 24,000 fruits per tree per year weigh-
ing 700 kg per tree (Naik 2000).

In North-Eastern region, selections Manipur-I
and Manipur-II have been identified. These clones are
dwarf, precocious, polyembryonic and regular bearer
(Chadha and Yadav 1996). Chadha (1998) also re-
ported about clonal selection in mango (‘Sunderra-
ja’) made at Rewa, Madhya Pradesh. Two clones one
each of Banganapalli, ‘Rati Banganapalli’ and clone
(‘Nuzvid’) selected earlier, performed well (Anon
1999). Further, one clone each of Alphonso, Tota-
puri and Banganapalli has been selected at the Re-
gional Fruit Research Station, Vengurla, Maharashtra;
the Fruit Research Station, Anantharajupet, Andhra
Pradesh, and the Agricultural Experimental Station,
Paria, Gujrat, respectively (Anon 1999).

Studies on evolving improved plant types through
physical and chemical mutagens are, in general, lack-
ing in fruit trees, more particularly in mango. The
study conducted by Sharma et al. (1983) showed that
the LD50 values (S-irradiation) for the mango culti-
vars Neelum, Dashehari, and Mallika were 3.9, 2.9
and 2.4 Krad respectively. The effective dosages of
EMS and NM for cvs. Dashehari and Neelum were
1.5% and 0.05%, respectively. Primary effects of both
physical and chemical mutagens were found to be
more or less the same. Some interesting changes in
vegetative characters have also been established. Out
of these a few plants appeared to be promising for
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dwarfness whereas in some others, fruit quality im-
proved.

A survey was initiated by Singh et al. (1985) be-
tween 1982 and 1985, to find out relative superior-
ity of selected clones from different orchards, viz.,
Pilkhini, Motijhil and Nawalpur around Varanasi.
One of the selected mango clones of ‘Banarasi Lan-
gra’ mango on the basis of overall performance, the
‘clone No. 2’ from Pilkhini orchard and ‘clone No. 1’
from Motijhil orchard were found to be most promis-
ing clones because of less fruit drop, better yield,
light bottle green color of the skin with fairly high
fruit quality and negligible incidence of malforma-
tion.

Kher (1961) gave a detailed account of the mor-
phology and anatomy of the leaf, stem and fruit of
a variegated mango plant from Malihabad region. The
variation appears to be genetically controlled and re-
sults from a mutation in the middle histogenic layer.
Singh and Ranganath (1997) surveyed 85 locally avail-
able clones in South and North Andaman, and six
clones having regular and early flowering habit and
bearing good yield of quality fruits were selected for
further study. Two years after planting of grafts in
the field, it was noticed that clone No. 6-1-3 showed
early flowering (early October), and in its first year of
fruiting about 100 fruits were harvested in March. The
fruits were of good quality with minimum thickness
of peel and had minimum stone weight.

Rukayah Aman (1989) reported that mango clone
MA-125 which is known to be difficult to flower can
be induced chemically using flower inductants. Both
paclobutrazol and uniconazole between 5 and 10 g
a.i. per tree and 0.50 to 1.50 g a.i. per tree, respec-
tively increased flowering and fruiting in this clone.
However potassium nitrate was not effective for this
clone.

Siller Cepeda et al. (1994) studied the fruit qual-
ity and post-harvest behavior of four mango clones,
viz., ‘Osteen’, ‘Palmer’, ‘Fabian’ and ‘S1-25’ in com-
parison with ‘Kent’ the commercial variety from Mex-
ico. ‘Osteen’ and ‘Kent’ had similar fruit characteris-
tics. ‘Osteen’ had the largest fruits and ‘Fabian’ the
smallest (516 and 387.5 g per fruit, respectively). Af-
ter storage ‘Osteen’ had the highest pulp percentage
(83.2) and the lowest percentage of seeds (5.8) and
peel (10.9). ‘Osteen’ and ‘Fabian’ had a yellowish pulp
colorwhile theother cloneshadamoreorangecolored
pulp. It was concluded that ‘Osteen’ has potential as
a commercial cultivar because when compared with
‘Kent’, it showed a comparable or higher values of fruit

weight, pulp weight, sweetness and sugar/acid ratio.
The post-harvest behavior of Palmer indicated that it
could be used for longer storage periods, because it
maintained high firmness and a low sugar/acid ratio
after the storage. ‘Fabian’ had a high percentage of
latent anthracnose which was expressed during stor-
age.

Strains within ‘Kensington Pride’ have been iden-
tified in Australia and one of them, Grosszmann even
having improved resistance to bacterial black spot
(Mayers et al. 1988; Whiley et al. 1993).

16.1.3.4
Limitation of Traditional Breeding Methods
The main disadvantage of traditional breeding is that
it is laborious and consumes lot of time. A superior
mango type can be isolated through selection, clonal
selection and by hybridization. It involves extensive
field and paper work; and collection of at least ten
years’ data to confirm its quality. One can release a va-
riety through these methods in his lifetime. The ju-
venile period present in most of the tropical fruits
also affects quick assessment of a variety. Therefore,
it is necessary to look for the important objectives
in mango improvement program and use the avail-
able molecular approaches to address these problems.
Selection of unique plants/genotypes/clones can be
easily achievable using molecular approach. Mark-
ers can be used as a tag to isolate unique types us-
ing marker-assisted selection. Even linkage distance
studies among genotypes can be taken up using these
markers. Using molecular approach one can isolate
desirable genes from one plant and incorporate into
another. With this one can genetically manipulate
a plant to have desirable characters. It can be easily
achievable in less time. However, molecular studies
in mango are limited when compared to other fruit
crops.

16.2
Application of Molecular Markers
for Genetic Analysis in Mangoes

There are hundreds of mango cultivars, of which only
some 25 to 40 are of commercial importance (Chadha
and Pal 1986). Commercially grown cultivars have
been identified on the basis of leaf, panicle, fruit,
and stone characteristics; however, these characters
may change with environmental conditions (Laksh-
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Fig. 1. Schematic zymo-
grams of representative
phenotypes for PGI, TPI,
IDH, LAP, PGM And ACO
isozymes in mango. Relative
mobility (Rf × 100) on the
left; O = Origin. All enzymes
migrated anodally (toward
the top of the figure) (With
permission from J Am Soc
Hort Sci)

minarayana 1980). Furthermore, the actual identity
of some cultivars is still in question, because similar
cultivars grown in different areas often have differ-
ent names (Lakshminarayana 1980). Having reliable
means of cultivars identification and verification is
important. Therefore, identification of genetic mark-
ers is of great value in this regard.

16.2.1
Isozymes

In the recent years, enzyme polymorphism has been
used successfully to identify cultivars in various fruit
species. However, isozymes can be affected by stage
of development and tissue used for extraction (Feret
and Bergmann 1976). Leaf isozymes of esterases, as-
partate amino transferase, acid phosphatases, and al-
kaline phosphatases were used to detect possible ge-
netic variation among individual mango clones (Gan
et al. 1981). Degani et al. (1990) have used isozyme
systems aconitase, isocitrate dehydrogenase, leucine
aminopeptidase, phosphoglucose isomerase, phos-
phoglucomutase, and triosephosphate isomerase to
characterize 41 mango (Mangifera indica L.) culti-
vars. The outcross origin of some of the mango culti-
vars was supported by the isozymic banding patterns
(Fig. 1). Reported parentage of some other cultivars
was not consistent with their isozymic banding pat-
terns.

Isozyme systems were also used to detect zygotic
seedlings fromfivepolyembryonic cultivarsofmango.
Significant differences were found between cultivars
for the percentage of zygotic and nucellar seedlings
detected (Schnell and Knight 1992). They were able
to determine the off-types using isozymes and con-
cluded that this procedure can be used to help certify
rootstock mother trees (Fig. 2).

Fig.2. Isozymebandingpatterns (photograph andcorrespond-
ing diagram) of glucose-6-phosphate iosmerase among root-
stock cultivars and seedlings. Gel position: 1) Madoe, 2) Madoe
RSP 1, 3) Madoe RSP 11, 4) Madoe RSP 18, 5) 13-1, 6) Turpen-
tine, 7) Turpentine RSP 2, 8) Turpentine RSP 9 and 9) Golek
RSP 13 (With permission from HortScience)

On the contrary, Gazit and Knight (1989) used
one enzyme system, glucose-6-phosphate isomerase
(GPI), and gas chromatography to detect zygotic
plants among open-pollinated seedling populations
from polyembryonic mango cultivars. Gas chro-
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Fig. 3. RAPD gel profile of 50 mango cultivars using Operon primer D1. Lanes 1–10: Raspuri, Neelum, Baneshan, Ratna,
Mulgoa, Dashehari, Hamlet, Alphonso and Totapuri, Lanes 11–20: PKM-1, Rumani, Sindhu, Mallika, Amrapali, Neeleshan,
Neelgoa, Neeluddin, PKM-2 and Himayuddin, Lanes 21–30: Kesar, Goamunkur, Suvarnarekha, Vanraj, Cherukurasam, Arka
Aruna, Jehangir, Svarna Jehangir, Kuddus and Kalapadu, Lanes 31–40: Arka Puneet, Vikrabad, Arka Anmol, Pulihora, Rajgira,
Achar Pasand, Fazli, Khas-Ul-Khas, Nekkere and Bombay Green, Lanes 41–50: Langra, Janardhan Pasand, Willard, Allumpur
Baneshan, Rajapuri, Zardalu, Kishen Bhog, Tenneru, Ratnagiri Alphonso and Dilpasand

matograms were too cumbersome for analysis of
large populations; the isozymes system proved to
be simple, repeatable, and cost effective. However,
enzyme polymorphism in mango has not been
examined systematically.

16.2.2
DNA Markers

As the efficiency of a selection scheme or genetic anal-
ysis on phenotype is a function of heritability of the
trait, factors like environment, traits of multigenic
and quantitative inheritance, or partial and complete
dominance often confound the expression of genetic
traits. Many of these complications of a phenotype-
based assay can be overcome through direct identifi-
cation of genotypes with DNA (deoxyribose nucleic
acid) based diagnostic assay. Genomic fingerprint-
ing has been accomplished traditionally through the
use of isozymes, and more recently through restric-
tion fragment length polymorphism (RFLP), variable
number tandem repeats (VNTRs), or a combination
of both. While these methods have been very useful in
cultivars identification, they have a number of disad-
vantages, including a limited number of isozyme loci
and the time, expense, and use of [32P] for labeling
with RFLPs and VNTRs. Polymerase Chain Reaction
(PCR) based method overcomes these disadvantages
and is used in several crops. For this reason, DNA-
based genetic markers are being integrated into sev-
eral plant systems and are expected to play an im-
portant role in future plant improvement programs
in mango.

16.2.2.1
Random Amplified Polymorphic DNA (RAPD)

PCR technology has led to the development of several
novel genetic assays based on selective DNA amplifi-
cation (Krawtez 1989; Innis et al. 1990). A genetic as-
say was developed independently by two laboratories
(Welsh and McClelland 1990; Williams et al. 1990).
RAPD assay detects nucleotide sequence of polymor-
phisms in DNA using only a single primer of arbitrary
nucleotide sequence. The protocol is also relatively
quick and easy to perform and uses fluorescence in-
stead of radioactivity. Because the RAPD technique is
an amplified-based assay, only nano-gram quantities
of DNA are required. One of the strengths of this new
assay is that they are more amenable to automation
than conventional techniques. It is simple to perform
and is preferable to experiments where the genotypes
of large number of individuals are to be determined
at a few genetic loci.

The use of RAPDs to determine genetic relation-
ships has been demonstrated in several crops. Within
Mangifera (mango) species, RAPDs have been used
to determine phylogenetic relationships (Schnell and
Knight 1993). RAPD generated clusters did not agree
with the taxonomic classification in mango based on
phenotypic traits (Kostermans and Bompard 1993)
into Mangifera and Limus. When the two subsections
of the genus were analyzed separately, the classifica-
tion agreed more closely with the traditional taxo-
nomic analysis. This technique has been successfully
used to identify 25 accessions of mango and to vali-
date their genetic relationships (Schnell et al. 1995).
Genetic relatedness of traditional Indian mango cul-
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tivars grown in commercial scale was studied using
RAPD makers (Ravishankar et al. 2000). Results of
the study indicated that cultivars from a particular
geographical region were closely related. In India, it
is very difficult to distinguish wild trees from culti-
vated ones as they spread all over Indian peninsula,
the result clearly indicate that majority of the com-
mercial cultivars evolved from local germplasm and
later they were selected and propagated vegetatively.
Fifty commercial mango cultivars were screened us-
ing RAPD markers to estimate the genetic diversity
(Kumar et al. 2001). A high degree of genetic varia-
tion was observed among the cultivars and the variety
‘Mulgoa’ was found to be very distinct (Figs. 3 and 4).

Fig. 4. Association among mango genotypes revealed by UP-
GMA cluster analysis from RAPD data of 139 amplification
products generated by 10 primers

Alongwith thispaternity analysisof 14mangohybrids
was also carried out. The cluster analysis revealed the
relationship of hybrids with their parents. The proge-
nies were placed close to one of their parents whose
characters resemble with it.

Lopez-Valenzuelaet al. (1997) reported thatRAPD
marker can distinguish mangoes based on embry-
onic types and their geographical origin. The ge-
netics of polyembryony in mango (Mangifera indica
L.) was studied by Arnon et al. (1998) and they sug-
gested that it is determined single dominant gene.
The segregation pattern obtained by RAPD of indi-
viduals originating from selfing of several monoem-
bryonic cultivars and one polyembryonic line indi-
cated that the polyembryony in mango was of ge-
netic nature. All the plants originating from mo-
noembryonic bear monoembryonic fruit. An one-
monoembryonic to three-polyembryonic segregation
pattern was observed among individuals originating
from the polyembryonic line, indicating that polyem-
bryony in mango is under the control of a single
dominant gene. This was also proved by Ravishankar
et al. (2004) where they used both RAPD and chloro-
plast DNA for PCR-RFLP analysis to detect the genetic
bases of Indian polyembryonic and monoembryonic
mango cultivars. The cluster analysis of both mark-
ers revealed that eventhough the embryonic types are
intercrossable, the polyembryonic types group sepa-
rately indicating diverse genetic base. This suggested
thatpolyembryonic typesmighthavebeen introduced
from other parts of Southeast Asia and is unlikely to
have originated from India.

The long juvenility period of mangoes (up to
5 years) would make RAPDmarkers an extremely use-
ful tool for the identification of cultivars during prop-
agation and growth. The ability to identify mango
cultivars using RAPD markers would also aid in the
management of germplasm collections as identical
cultivars often have different names. However, RAPD
markers suffer from low reproducibility between lab-
oratories.

16.2.2.2
Simple Sequence Repeats (SSRs)
This is widely used as a versatile tool in plant breeding
programs as well as in evolutionary studies because
of their ability for showing diversity among cultivars
(Adato et al. 1995; Mhameed et al. 1996; Levi and Row-
land 1997). SSRs, also known as microsatellites, are
an efficient type of molecular marker based on tan-
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Fig. 5. Dendrogram illus-
trating the phylogenetic re-
lationship among 22 mango
cultivars based on UPGMA
cluster analysis (With per-
mission from Elsevier)

dem repeats of short (2–6 nucleotides) DNA sequence
(Charters et al. 1996). These repeats are highly poly-
morphic, even among closely related cultivars, due to
mutations causing variation in the number of repeat-
ing unit (Brown et al. 1996). SSRs, therefore, target
highly variable and numerous loci.

Using Jeffrey’s minisatellite probe Adato et al.
(1995) identified and analyzed genetic variations
among mango genotypes. They were able to trace
back the offspring to one of the parents using banding
pattern, demonstrating the reliable application of
the system for paternity dilemmas. On the contrary
SSR anchored primers were used to identify and
to validate genetic variation among Thai cultivars
(Eiadthong et al. 1999), but could not separate the
cultivars according to their embryonic types, nor the
types eaten as ripened fruit or unripe fruits (Fig. 5).

Recently, Sequence Tagged Microsattelite Sites
(STMS) markers are being developed by many lab-
oratories for mango. The main advantage of these
markers are precise quantification of allele length
and they are amenable for automation using auto-
mated DNA sequencer. Viruel et al. (2005) reported
the sequence and variability parameters of 16 mi-
crosatellite primer pairs obtained from two mango
genomic libraries after digestion of DNA of the cul-
tivar Tommy Atkins with HaeIII and RsaI and en-
richment in CT repeats. The polymorphism revealed
by those microsatellites was evaluated in a collection
of 28 mango cultivars of different origins. The SSRs
studied allowed unambiguous identification of all the

mango genotypes studied. They suggested that this
discrimination can be carried out with just three se-
lected microsatellites. UPGMA cluster analysis and
principal coordinate analysis grouped the genotypes
according to their origin and their classification as
monoembryonic or polyembryonic types reflecting
the pedigree of the cultivars and the movement of
mango germplasm. A similar attempts is being made
to develop SSR markers for mango in France (Duval
et al 2005), Japan (Honso et al. 2005) and in India
(Ravishankar 2006. Personal communication). These
SSR markers are going to help extensively in mango
genome mapping.

16.3
Linkage Mapping

Genetic linkage and QTL (Quantitative Trait Loci)
mapping experiments involve large volumes of data.
These include pedigree details, genotypes and trait
data all of which must be combined in different forms
to suit the nuances of each analysis program. Such
experiments frequently also consist of collaborations
between several groups making data sharing and con-
currency a key concern. Many good software modules
for statistical analysis of genomic data are offered in
the public domain like MapMaker for linkage map
construction, MapMaker/QTL for interval mapping
for experimental crosses and others.
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Fig. 6. Analysis of 16 mango
cultivars using 42 various
AFLP bands (With kind
permission from Springer
Science and Business Media)

An important development during the last decade
in quantitative genetics was the ability to identify
genome regions responsible for variation of a trait
due to theadventofmolecularmarkers (Patersonet al.
1988). The term QTL has come to refer to polygenes
underlying a quantitative trait. In genetics, the dis-
tance between genes on the genome is assessed on
the basis of the frequency of recombination of the
genes, estimated from scoring genotypes of progeny
of a cross (Kearsey and Pooni 1996). Mapping quanti-
tative traits is difficult because the genotype is never
unambiguously inferred from the phenotype. Classi-
cal quantitative genetics pursues a different approach,
using statistical concepts such as means, variances,
correlations, heritabilities (h2), built on assumptions,
e.g., that effects of individual genes on a trait are small
and additive. This assumption sheds little light, if any,
on the individual genes themselves (Prioul et al. 1997).

Major gene mutants, however, are scarce and may
not exist in a population under study. Because QTL
may occur throughout the genome, a large number
of gene markers are required to locate them. Early
studies of quantitative traits suffered from the lack of
major-gene markers that could make a complete map.
This problem was overcome with the realization that
maps could be constructed using pieces of DNA as
markers.

The advent of complete genetic linkage maps con-
sisting of codominant DNA markers like RFLP, AFLP
and SSR, that has stimulated interest in the systematic
genetic dissection of discrete Mendelian factors un-
derlying quantitative traits in plants. A marker link-
age map can be used to localize QTL for a quantitative
trait, as first demonstrated by Paterson et al. (1988).
The basis of all QTL detection is the statistical analysis
of associations between markers and trait values. Sta-
tistical techniques for using a marker map to detect
QTL have reached a fairly high level of sophistica-
tion, but improvements are still being made(Kearsey
and Farquhar 1998). A widely used method was
intervalmapping (Lander and Botstein 1989). Other
approaches, e.g., the multiple QTL method (Jansen
1995), were developed to detect multiple linked QTL.
However, a QTL detected by any technique is not
a true gene, only the indicated genome region that
most likely contains gene(s) for the trait under study.

Two complementary uses of the QTL approach
have emerged: the fundamental and the applied (Pri-
oul et al. 1997). The first use, which is of interest to
physiologists, targets QTL by determining their con-
tribution tophysiological componentsofmacroscopic
traits. Not only does the QTL approach provide un-
equivocal answers to a range of physiological ques-
tions, it also generates new insight into the causality
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Fig. 7. Mango genetic link-
age map. The various marker
names refer to the primer
combinations used for AFLP
analysis. The numbers in
parentheses indicate the size
of the markers in base pairs
(bp). Distances between
markers are in centiMor-
gans. (With kind permission
from Springer Science and
Business Media)

between components that would have been difficult
to obtain by conventional physiological approaches
(Simko et al. 1997). The second use of the QTL stud-
ies, which is of interest to breeders, is marker-assisted
breeding (MAB). This approach uses markers for tag-
ging QTL of interest so as to pyramid favorable QTL
alleles and break their linkage with undesirable alleles
(Lee 1995; Ordon et al. 1998; Ribaut and Hoisington
1998).

The AFLP technique is based on the detection of
genomic restriction fragments by PCR amplification,
and has been applied to various plant species. This
PCR-based technique permits inspection of polymor-
phism at a large number of loci within a very short
period of time and requires very small amount of
DNA. This method is robust for efficient DNA finger-
printing of the mango genome. A great majority of the
AFLP markers (85%) are transmitted in a Mendelian
fashion. Thus these markers could be used for genetic
analysis.

Kashkush et al. (2001) used AFLP technique to
identify mango cultivars, for studying the genetic
relationship among 16 mango cultivars (Fig. 6) and
seven mango rootstocks, and for the construction of
a genetic linkage map. A preliminary genetic linkage
map of the mango genome was constructed, based on
the progeny of a cross between ‘Keitt’ and ‘Tommy-
Atkins’. Each of the two parents and 29 progeny were
genotyped using 105 AFLP bands. The segregation of
the alleles from each marker was examined for de-
viation from Mendelian expectation. The combined
map consists of 13 linkage groups and 34 markers
(Fig. 7). They reported that the genetic map consists
only of markers that behave in a Mendelian fashion.
Linkage analysis was carried out using both the MAP-
MAKER and LINKEM software. Both the programs

provided identical results. They finally conclude that
AFLP markers are suitable for cultivar identification,
estimating genetic relationships and mapping QTLs
in mango.

This is the only reported work on genetic linkage
mapping in mango. Plant Genetics group at United
States Department of Agriculture, Agricultural Re-
search Service, Miami, Florida are working to solve
the problems associated with the evaluation, en-
hancement, and preservation of subtropical/tropical
fruit, using linkage maps. They have maintained
germplasm repository. Their main objective is to de-
velop and apply new or improved methods for elu-
cidating the genetic bases for important horticul-
tural traits, genetic marker-based approaches for ge-
netic diversity assessment, and selection of improved
germplasm and also identifying genes involved with
horticulturally and agronomically important traits
using Candidate Gene Approach (CGA). Mapping
QTL for fruit characteristics, yield and disease in an
F2 population in mango in under progress. More fo-
cus has to be given towards this area of research that
helps in tagging the genes of desirable traits.

16.4
Gene Isolation and Analysis

Gene expression studies in mangoes are limited. It is
desirable to identify the genes uniquely expressed for
particular traits. This would help in genetic manipu-
lation of the plant to derive superior types having de-
sirable characters. In mango, genes related to ripening
have been characterized biochemically, but at molec-
ular level only very few genes have been studied like
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Fig.8. Autoradiogram of northern analysis of
the ten selectedgenes. 20 µgof totalRNAfrom
tissuesofmaturedunripe fruites,RNAfrom1,
2, 3 and 4 d fruits after ethylene treatment and
from both spongy and healthy tissues. Lane
1–5 represent different stages of fruit ripen-
ing starting from matured fruits and lane 6–7
represent RNA from both spongy and healthy
tissues

peroxisomal thiolase mRNA (Bojorquez and Gomez-
Lim 1995), alternative oxidase (AOX) and uncoupling
proteins (UCP) (Considine et al. 2001). AOX and UCP
play an important role in post-climacteric senescent
processes.

The next step in the molecular analysis of fruit is
the construction of a gene library. This approach has
already yielded valuable information in other fruit
crops, where the genes coding for several ripening-
relatedenzymeshavebeen isolated. Inmango, a cDNA
library has been recently constructed and several
ripening-related genes have been isolated (Gomez-
Lim et al. unpublished data). Among the genes iden-
tified are those coding for cellulase, ACC synthase
and the alternative oxidase, an enzyme involved in
the cyanide-resistant respiration in fruits (Day et al.
1980). Preliminary expression studies of these genes
show that they are predominantly expressed during
fruit ripening, a fact consistent with their function
and with studies in other fruits. In addition, other

ripening related genes from mango have been cloned
(Gomez-Lim et al. unpublished data) but their iden-
tity is still unknown. They also show predominant ex-
pression during ripening. Sequence analysis of these
genes is in progress together with further studies to
try and elucidate their function or identity.

At molecular level, no studies have been carried
out to isolate genes involved in pest and disease re-
sistance, and physiological disorders. This has been
successfully isolated in several other crops. Very re-
cently RAPD analysis was used to determine the ge-
netic diversity on mango malformation pathogens
(Zheng and Ploetz 2002). Vasanthaiah (2006) suc-
cessfully isolated the differentially expressed genes
specific to spongy tissue in Alphonso mango cul-
tivar using subtractive hybridization. Thirty-seven
genes from both spongy and healthy tissues were
cloned and characterized. Higher expression of cata-
lase, ubiquitin, coproporhyrinogen III oxidase and
keratin genes were noticed in the tissue indicating



Chapter 16 Mango 319

the existence of oxidative stress in spongy tissue
(Fig. 8). It is also evident from the earlier studies
that high temperature, high humidity, high respira-
tionand low transpiration (ShivashankaraandMathai
1999) result in spongy tissue. These conditions ele-
vate temperature and free radical levels in the fruit,
which are toxic to the cell and resulting in cell mem-
brane damage. Because of this the activity of en-
zymes like amylase, glutamate dehydrogenase, glu-
tamate oxaloacetate transaminase, peroxidase were
reduced. This influences sugar metabolism making
the tissue hard and affecting the normal ripening.
This study (Vasanthaiah 2006) indicated that oxida-
tive stress is the probable cause for the spongy tissue
formation.

Recently, in mango fruit cv Alphonso, 26 differen-
tially regulated cDNAs from ripening tissue were iso-
lated using PCR based subtraction at Indian Institute
of Horticultural Research, Bangalore. These cDNA se-
quences were analysedwith NCBI database to assign
putative identification. Expression patterns of major
latex protein,cytokinin oxidase, omega-3-fatty acid
desaturase, chitinase, putative flavanone 3-beta hy-
droxylase, putative auxin regulated protein, lipoxyge-
nase, succinate dehydrogenase, protein phosphatase-
2C and Acetyl-CoA acyltransferase were studied using
RNA blot analysis at different stages of ripening. Ma-
jority of the identified genes were up-regulated dur-
ing ripening process. A few of the identified genes
have not been characterized in mango. The genes
identified by differential expression are involved in
changes associated with fruit ripening process like
surge in respiration, ethylene biosynthesis, softening
of mesocarp tissue, accumulation of pigments, de-
velopment of characteristic aroma, change in color
of the fruit and defense response (Ravishankar 2006
personal communication).

16.5
Gene Manipulation
by Genetic Engineering

Limited reports exist on genetic manipulation in fruit
crops. Recent experiments have shown that it is pos-
sible to turn-off the expression of certain genes in
transgenic plants by introducing a gene constructed
to generate antisense RNA (Eguchi et al. 1991). This
allows expression of specific genes to be diminished,
permitting their identificationandassessmentof their

function during ripening. Genetic transformation has
also been employed to achieve this goal. In mango
anumberof enzymeactivitieshavebeendetecteddur-
ing mango fruit ripening (Selvaraj and Kumar 1995).
Some of these may or may not be directly involved
in the softening process. The results of the genetic
transformation studies clearly indicated that correla-
tive data linking enzyme activity and fruit softening
might not accurately predict enzyme function.

The genetic transformation studies have also
shown their potential for prolonging fruit shelf life.
These procedures are universal and can be applied
to many crops. Recent achievements in the transfor-
mation techniques will permit testing the function
of specific hydrolytic enzymes for extending mango
fruit shelf life. This development is particularly
relevant because it will probably be the first tropical
fruit whose ripening pattern may be genetically
manipulated.

16.6
Future Scope

Mango has comparatively small haploid genome
size and is about three times as large as Arabidopsis
(Armuganathan and Earle 1991). This fact should
be helpful for the application of other molecular
techniques like Restriction Fragment Length Poly-
morphism (RFLP), Amplified Fragment Length
Polymorphism (AFLP), SSR, Differential Display RT-
PCR (Reverse Transcriptase-PCR) and Subtractive
Hybridization technique to assess genetic diversity, to
construct linkage maps and to identify genetic mark-
ers linked to a trait of interest among different mango
cultivars. This will help in isolating distinct types that
are regular and precocious bearer. However, these
techniques can also be used in isolating desirable
genes responding to pest and disease incidence,
and physiological disorders, which can be utilized
to genetically manipulate mango plant to make it
disease resistant. Very recently, Amplified Fragment
Length Polymorphism (AFLP) information was
used for identification of mango (Mangifera indica
L.) cultivars to study genetic relationship among
mango cultivars and rootstocks for the construction
of a genetic linkage map (Kashkush et al. 2001).
The development PCR based SSR markers from
various laboratories will further strengthen molec-
ular mapping activities and help in fine mapping
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of mango genome. The molecular techniques also
provide information on the genetic variability of
mango species to build database on mango genetic
diversity. Finally, all these molecular techniques
have a potential for developing a superior genotypes
with desirable characteristics in a shorter time when
compared to conventional breeding methods.
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17.1
Introduction

17.1.1
Crop Production

Avocado (Persea americana Mill.) is a high-value spe-
cialty crop enjoying widespread cultivation in the far
corners of the world. Mexico (Michoacán State) is
the primary producer, with over 200,000 acres yield-
ing almost 2.1 billion lbs of avocados, followed by the
United States (68,000 acres, 531 million lbs; 90% from
California) and Chile (65,000 acres, 388 million lbs),
and significant contributions (cited in order of de-
creasing fruit production) also by Peru, South Africa,
Israel, Spain, Australia, and New Zealand (figures for
2004/2005 season;http://www.avocadosource.com). By
far the most widely grown cultivar is ‘Hass’, a black-
skinned form adapted to a Mediterranean climate and
combining high yields with excellent flavor. The ex-
emplary nutritive composition of avocado – including
lutein, vitamin E, monounsaturated (“good”) fat and
folate – has also contributed to its growing popular-
ity.

17.1.2
Botanical Races

Three botanical races are often distinguished to
circumscribe subgroups combining particular fruit
characteristics and ecological adaptations: the
Mexican, Guatemalan and West Indian races. The
Mexican botanical race includes cultivars with
thin, black skin and anise-scented leaves. Culti-
vars with thick, rough, green skin belong to the
Guatemalan botanical race and have a level of cold
tolerance somewhat inferior to the Mexican race.
Cultivars of the West Indian race – a misnomer as
these genotypes appear to have arisen in coastal

Guatemala – are cold-sensitive, often relatively
salt-tolerant, and have fruit with low oil content.
Wild Persea relatives bear little resemblance to
their cultivated counterparts, but cultigens have
been selected by local people throughout Central
America, Mexico, and farther afield, which has led
to a plethora of forms that are assigned to one of
the three botanical races based on the best morpho-
logical and ecological “fit”. A discontinuity between
wild and selected avocado forms suggests that any
intermediate genotypes have long disappeared, and
that human selection has been in progress for some
considerable time. Indeed, the first archaeological
evidence from the Mexican state of Puebla dates
back to ca. 8000 BC (Smith 1966, 1969; Whiley et al.
2002).

17.1.3
Classical Breeding

The process of avocado breeding today continues to
rely on open-pollination of promising varieties and –
until very recently – without knowledge of the pollen
source and unassisted by molecular techniques. This
selection approach is the consequence of several ob-
stacles to traditional breeding that are related to the
biology of the avocado tree itself. The first and fore-
most among these is the inability to perform con-
trolled pollinations (avocado trees produce well over
a million tiny flowers that are abundantly shed; re-
viewed in Davenport 1986). The bulky size of the
avocado tree makes large-scale experimental trials
land- and labor-intensive. The widespread use of root-
stocks introduces additional cost, conflicting breed-
ing strategies, and can even confound data collection
when the rootstock outgrows its scion. Finally, trees
are slow to mature, and five or more years elapse be-
fore reliable estimates of fruit yield and quality are
obtained.
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17.2
Molecular Beginnings

Faced with these substantial challenges, attempts
have been made over the past 25 years to adopt
molecular approaches. Various molecular studies
have focused on the development of markers,
including isozymes (Torres and Bergh 1980),
RFLPs (Furnier et al. 1990; Davis et al. 1998),
microsatellites (SSRs) (Lavi et al. 1994; Ashworth
et al. 2004), VNTRs (Mhameed et al. 1996), and
RAPDs (Kobayashi et al. 2000). Nonetheless,
molecular technologies have been slow to take
hold.

Several factors have so far conspired to delay the
application of molecular tools to avocado breeding, in
addition to thosepertaining to thebiologyof theplant.
Most importantly, the public sequence databases have
been largely devoid of any suitable gene regions or
ESTs. Moreover, avocado is a member of family Lau-
raceae that lacks major crop species and represents
an ancestral lineage predating the origin of the Eu-
dicots (Stevens 2001 onwards). The phylogenetically
distant position of avocado decreases the utility of se-
quences from the major model organisms, e.g., Ara-
bidopsis, which in turn has discouraged the pursuit of
alternative molecular approaches, such as candidate
genes and comparative gene expression. Similarly,
linkage and genetic mapping studies (Lavi et al. 1991,
1992, 1993; Mhameed et al. 1996; Sharon et al. 1997,
1998), though providing preliminary insight into as-
sociations between such traits as skin color and fiber
presence in the fruit flesh, are limited in scope due
to a relative shortage of markers in relation to the
number of chromosomes (x = 12), a lack of experi-
mental replication, and limited baseline cytogenetic
work. It therefore seems unlikely that genes will be
localized to particular chromosomes in the near fu-
ture.

Our laboratory is currently involved in a QTL
study that, unlike previous research, attempts
to control for genetic variation across sites and
environments. Our aim is to work toward marker-
assisted selection that will eliminate the delay
between genotype selection and evaluation of
maturity-dependent productivity traits. In parallel,
we have been pursuing a comparative sequencing
project to study haplotype diversity for several
genes in various avocado cultivars and wild rela-
tives/cultigens.

17.2.1
SSR Markers

The development of molecular marker technology
(primarily SSR markers) has benefited the breed-
ing process in the short-term by enabling the study
of genealogical relationships among varieties and
cultigens (e.g., Furnier et al. 1990; Davis et al. 1998;
Ashworth and Clegg 2003; Schnell et al. 2003) and
of parentage/pollen movement in avocado orchards
(Goldring et al. 1987; Degani et al. 1989; Davenport
et al. 1994; Kobayashi et al. 2000; Garner et al. 2006).
SSRs are now the markers of choice for avocado in
studies devoted to pollen flow and varietal differen-
tiation, having replaced some of the more costly or
less informative markers. These and other marker ap-
plications detailed below have fuelled the need for
a greater number of markers. One of our research
priorities has been to address this need by screening
two genomic DNA libraries of ‘Hass’ for dinucleotide
and trinucleotide markers, yielding some 150 useful
marker loci. Of these, we routinely use some 30 loci
(see Ashworth et al. 2004 for primer sequences), and
the remainder has been screened for ease of inter-
pretation and utility in distinguishing a panel of ca.
5–10 cultivars. In relation to the overall number of
library clones sequenced (ca. 1,500), the yield of SSR
markers has been exceedingly low, due primarily to
clone redundancy, an apparent scarcity of loci, and
poor interpretability of the banding profiles.

SSR Applications: Genealogical Studies These im-
pediments notwithstanding, considerable informa-
tion is beginning to accumulate on cultivar relation-
ships, the delimitation of the three botanical races,
and pollen movement within avocado groves.

Building on previous studies that used RFLP
markers (Furnier et al. 1990; Davis et al. 1998), we
analyzed genealogical relationships between 35 cul-
tivars using 25 SSR markers (Ashworth and Clegg
2003). Consistent with prior research, heterozygosity
was high, particularly for the SSR markers (73.4 and
52.6% for dinucleotide and trinucleotide markers, re-
spectively). Low statistical support (bootstrap) for the
assemblages denoting the three botanical races, even
after (known) hybrid genotypes had been excluded
from the analysis, suggested ancient hybridization or
a more recent origin of the botanical races than pre-
viously thought. Indeed, the hybrid nature of most
extant cultivars is probably responsible for homoge-
nizing some of the racial differences.
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One practical conclusion from our genealogical
study is that botanical race assignments and geo-
graphic origin of a cultivar are often confused or
applied inconsistently. For example, a “Guatemalan”
cultivar may be so called because it has a rough thick
green skin (characteristic of the Guatemalan botan-
ical race) or because it was collected in Guatemala.
Even when the geographic origin is disregarded, race
assignment is based on a somewhat vague formula
combining fruit skin thickness and color, presence
or absence of anise scent, and origin (if known) of
the maternal parent, with several other criteria added
based on breeder experience. Clearly, this conven-
tion does not readily accommodate genotypes that
have lost one or more of the key parental (maternal)
traits (e.g., skin color, thickness; anise scent) through
genetic segregation, for which ample evidence exists
(e.g., Storey et al. 1984; Bergh 1966, 1967; Bergh and
Whitsell 1974, 1975), or having a complex hybrid sta-
tus (multiple backcrossing). Consequently, SSR mark-
ers are now also being used to eliminate or change the
assignmentofmislabeledmaterial (Schnell et al. 2003)
or to unravel parentage (Ashworth and Clegg 2003).
These SSR studies show that phenotype tracks geno-
type in an unpredictable manner, and that greater
rigor is needed in the delimitation of botanical races
and in the description of avocado cultivars.

Another conclusion emerging from our work
with SSR markers (Ashworth et al. 2004) is that not
all markers developed using the ‘Hass’ genomic DNA
library are useful for typing more distant genotypes,
especially the more divergent rootstocks or the
related species P. schiedeana and P. steyermarkii.
Conversely, loci that show insufficient variation
(one or two alleles) within a core group of cultivars
sometimes harbor additional alleles when applied
to the more distant genotypes. These observations
have important implications for marker development
strategies, particularly with respect to the cut-off
applied to the number of repeat units that qualifies
a sequenced clone for inclusion in the subsequent
round of marker development.

SSRApplications:Pollination The co-dominance of
SSRs means that allelic segregation can reveal pater-
nity of a given progeny genotype, a major advance
in a crop that defies controlled pollination and where
paternal origin has hence always been subject to con-
jecture. The application of SSRs to pollination stud-
ies has therefore received considerable attention, not
only from breeders, but particularly from avocado

growers who are interested in the relationship be-
tween pollination and yields: ‘Hass’ fruit commands
a far higher market price than alternative cultivars
that are conventionally integrated into an orchard
for the sole purpose of enabling cross-pollination.
This planting practice stems from the observation
that ‘Hass’ trees adjacent to certain “pollinizer” cul-
tivars produce a profusion of fruit that often far ex-
ceeds that of ‘Hass’ trees located only one row farther
away.However, this yieldboost isnot alwaysobserved,
and growers are eager to embrace marker technology
to better understand the relationship of selfing and
cross-pollination on yield in order to calculate the
trade-off between planting a ‘Hass’ monoculture ver-
sus interplanting ‘Hass’ with less profitable “polliniz-
er” cultivars. In a multi-location study, RAPD mark-
ers (Kobayashi et al. 2000) suggested that while pro-
gressive distance from a “pollinizer” cultivar strongly
reduced the percentage of outcrossed fruit, the posi-
tive correlation between outcrossing and yield is only
weak, with other factors accounting for most of the
yield differential.

There continues to be considerable interest in de-
ploying SSR markers to tease apart the roles of pollen
source and competing environmental factors. How-
ever, as important insights into pollen flow within
commercial avocado orchards are starting to accumu-
late, new conundrums are also revealed. Thus, recent
SSR studies (Davenport et al. 2005; Garner et al. 2006)
are corroborating earlier work based on RAPD mark-
ers and isozymes, showing that pollen (mediated by
bees) does not move far from its source tree, yet con-
sensus continues to be elusive with regard to yield
differences between selfed and outcrossed fruit.

Sometimes, contradictory findings may have
humble origins, and it is possible that differential
sample collection methodologies are at least partially
responsible. The prevailing wisdom stipulates that
selfing reduces yields and that prematurely shed
fruit is likely to be selfed whereas outcrossed fruit
is more likely to be retained on the tree to maturity
(Degani et al. 1997). Consequently, the sampling of
marble-sized fruit – a common practice in experi-
ments involving large-scale DNA extraction – may
be skewing yield data on the assumption that it is
likely to over-represent the fraction of selfed fruit
relative to the more mature fruit harvested during
commercial operations. Molecular studies would
thus often be tracking a different (more highly selfed)
pool of fruit than that collected during a typical
harvest. For example, two studies in commercial
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orchards (Kobayashi et al. 2000; Garner et al. 2006)
report a very low outcrossing percentage (based
on sampling marble-sized fruit), yet our own work
(with trees raised from fruit that had been picked at
maturity) bespeaks much higher rates of outcrossing
(see below). Further studies will be needed to resolve
the relationship between sampling stage and the
impact of selfing and outcrossing on fruit yields.

17.3
QTL Analysis

The traditionalmethodofbreedingavocadostill relies
on the selection of progeny from a maternal source in-
terplanted with pollen donors having desirable prop-
erties, followed by prolonged field trials to ascertain
agronomic value. With a view to placing the process
of avocado improvement onto a molecular footing, we
have begun a QTL study that will feed into a marker-
assisted method of selection. SSR markers associated
with desirable (quantitative) traits will be used to pre-
select among seedlings: those that carry the markers
will be retained, while genotypes lacking the marker
will be eliminated from the outset.

Our QTL study is centered on 200 ‘Gwen’ progeny
genotypes that are clonally replicated twice at each of
two environments (coastal and inland Southern Cali-
fornia; 800 trees overall) and grafted onto a uniform
‘Duke 7’ rootstock. Growth and yield-related traits
(tree height, stem girth, canopy diameter and several
fruit yieldandquality traits)havebeenmeasuredonce
or twice a year since 2001, and the collection of SSR
marker data from over 100 loci is in progress. Pre-
liminary marker data indicate that virtually all our
‘Gwen’ progeny genotypes are outcrossed. Paternity
of about one quarter is unclear, but the remaining
three quarters are sired by ‘Fuerte’, ‘Bacon’, and ‘Zu-
tano’ in approximately equal proportions. This ge-
netic composition will furnish valuable information
on the influence of the pollen source against a uni-
form maternal genetic background under replicated
experimental conditions.

17.4
Comparative Sequencing Study

In order to explore the avocado genome at multi-
ple levels, our lab has sequenced four genes (cellu-

lase, chalcone synthase, flavonol-3-hydroxylase, and
serine-threonine kinase) in a panel of 54 Persea geno-
types (33cultivarsand21wildrelatives/cultigens from
Mexico, Ecuador, Costa Rica, and the West Indies).
Thenucleotidediversity (θW) for the fourgenes ranges
from 0.003 to 0.016. Nucleotide diversity is moderate
compared with other plants such as maize and bar-
ley, averaging 0.0157 and 0.0134 in the cultivars and
germplasm, respectively, for flavonol-3-hydroxylase.
These diversity values suggest that, subject to a more
prolific representation of avocado DNA sequences on
public databases, SNP development will be feasible,
resulting in a much enlarged pool of genetic markers
and paving the way for a more diversified approach to
molecular studies in avocado.

17.5
Prospects

Happily, ESTsandotherDNAsequences arenowstart-
ing to accumulate, as avocado has been selected as an
exemplar representing the basal angiosperms in the
Floral Genome Project (http://fgp.bio.psu.edu/fgp/).
Already, some 10,000 ESTs have been generated.
More elaborate studies are proposed that will focus
additionally on comparative gene expression in fruit
development and on genetic mapping (Douglas Soltis,
personal communication). The synergy between
a fortified sequencing effort, gene expression studies,
and existing molecular tools will open up new
opportunities and prospects for avocado breeding.
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18.1
Introduction

18.1.1
Economic Importance

Pineapple (Ananas comosus (L.) Merrill) is the third
most important tropical fruit crop, after bananas
and mangoes (citrus being considered mainly
subtropical). Although cultivated in all tropical
and subtropical countries, mostly between 30◦N
and 30◦S, minor plantations can be found beyond
these latitudes in areas with mild climates, often
under protective shelter (Nakasone and Paull 1998).
According to the Food and Agriculture Organisa-
tion (FAO) statistics (http://apps.fao.org), world
pineapple production increased from 3,833,137 tons
in 1961 to 15,287,413 tons in 2004. Five countries,
namely Thailand (17,000,000 t), the Philippines
(1,650,000 t), Brazil (1,435,600 t), China (1,475,000),
and India (1,300,000) contributed with about half
of the world production in 2004. A second group
of significant producers that includes countries
as disparate as Nigeria, Mexico, Costa Rica, In-
donesia, Kenya, Colombia, Ivory Coast, Venezuela,
Vietnam, Malaysia, United States, and South
Africa supply about one third of the total world
production.

Approximately 70% of the produced pineapple is
consumedas fresh fruit in the countryoforigin (Loeil-
let 1997). The world pineapple trade consists mainly
of processed products as canned slices, chilled fresh-
cut chunks and spears, juice and juice concentrates.
For example, worldwide exports of concentrated juice
represent more than US$ 250 million and the value of
exported canned pineapple more than US$ 600 mil-
lion. Even so, the value of the fresh fruit market is
rapidly increasing, particularly the chilled, fresh-cut
fruit market (Rohrbach et al. 2003). Pineapple is also

a source of bromelain, used as a meat-tenderising en-
zyme, and high quality fiber. The waste resulting from
industrial processing is used for animal feed.

18.1.2
Taxonomy

Pineapple is a perennial monocot belonging to the
order Bromeliales, family Bromeliaceae, subfamily
Bromelioideae. The Bromeliaceae comprise 56 gen-
era with 2,921 species (Luther 2002), classified into
three subfamilies: Pitcarnioideae, Tillandsioideae and
Bromelioideae. This last subfamily shows a tendency
towards the fusion of floral parts, a trait most de-
veloped in Ananas, the only genus whose flowers and
bracts are completelymerged intoa single sorose-type
parthenocarpic fruit formed by 50 to 200 coalescent
berries (Coppens d’Eeckenbrugge et al. 1997).

Pineapple taxonomy was recently revised by
Coppens d’Eeckenbrugge and Leal (2003). Until
then, the accepted taxonomy and nomenclature of
pineapple was that of Smith and Downs (1979),
which described nine species distributed in two
genera, Ananas and Pseudananas, the latter being
monotypic. It was first amended by Leal (1990) who
invalidated A. monstrosus.

Most quantitative traits used in the Smith and
Down’s classification are not clearly discriminative
and are excessively dependent on environmental
conditions. The qualitative traits used for classi-
fication, such as leaf spininess, are determined by
one or few loci (Cabral et al. 1997), which mutate
and segregate within species as well as between
species.

Many distinctions, particularly those related to
spininess, fruit size and fertility, appeared to be
the direct result of human selection in the course
of domestication. In addition, crosses among the
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species of Smith and Down are successful and the
resulting hybrids are fully fertile. Even the diploid
Ananas and the tetraploid P. sagenarius (Arruda da
Câmara) Camargo can be hybridized experimentally,
mainly producing self-fertile tetraploid hybrids and
a few triploids. Available data on biochemical and
molecular diversity also indicated an incipient spe-
ciation process within Ananas (Leal and Coppens
d’Eeckenbrugge 1996; Coppens d’Eeckenbrugge et al.
1997).

Coppens d’Eeckenbrugge and Leal (2003) pro-
posed a simplification of the classification, down-
grading the two genera and eight species into two
species (with the restoration of A. macrodontes Mor-
ren instead of P. sagenarius) and five botanical vari-
eties of A. comosus. Since then, more recent molecu-
lar marker analyses have refined our understanding
of pineapple diversity and speciation, and have pro-
vided new data on the relationship between the two
pineapple species, without affecting the new classifi-
cation.

A. macrodontes is a vigorous self-fertile tetraploid
(2n = 4x = 100), with spiny leaves, 2–3 m long and
7 cm wide, propagating by elongate basal stolons. The
syncarp lacks the leafy crown typical of A. comosus.
The latter species is generally diploid (2n = 50), self-
incompatible, and propagates vegetatively by suckers
(borne on the stem), slips (borne on the peduncle),
and the fruit crown(s). The pineapple cultivated for
the fruit corresponds to the botanical variety A. co-
mosus var. comosus. Its leaves are relatively wide
(more than 5 cm), spiny, partially spiny or smooth,
and its strong peduncle bears a fruit whose size may
reach several kilograms. A. comosus var. ananassoides
(Baker) Coppens & Leal (formerly A. ananassoides
(Baker) L.B. Smith and A. nanus (L.B. Smith) L.B.
Smith) corresponds to the most common wild form,
with thinner spiny leaves and a much smaller fruit on
a long, slender scape. Another wild form is A. como-
sus var. parguazensis (Camargo & L.B. Smith) Cop-
pens & Leal (formerly A. parguazensis Camargo &
L.B. Smith), with wider leaves, constricted at their
base, antrorse and retrorse spines, and a globose
fruit. The two remaining botanical varieties are cul-
tivated. A. comosus var. erectifolius (L.B. Smith) Cop-
pens & Leal (formerly A. lucidus Miller sensu Smith &
Downs) is very similar to A. comosus var. ananas-
soides, except for its smooth fibrous leaves, which
are used by Amerindians to make hammocks, fish-
ing lines and nets. A. comosus var. bracteatus (Lindl.)
Coppens & Leal (grouping the former A. bracteatus

(Lindley) Schultes f. and A. fritzmuelleri Camargo) is
a very vigorous and spiny plant, producing a medium-
sized fruit with long bracts. It is cultivated as a living
fence. Its fruit was also collected for juice and it is
still found as a sub-spontaneous plant in ancient set-
tlements of southern South America. A variegated
variant has become a common ornamental of tropical
gardens.

18.1.3
Natural Habitat and Origin

Both Ananas species (A. comosus and A. macrodontes)
have a natural distribution confined to the South
American sub-continent. Nevertheless, long before
the arrival of Christopher Columbus to Guadeloupe in
1493 and this first European contact with this crop, the
Native Americans had already domesticated and dis-
persed the pineapple throughout South and Central
America, the Antilles and the Caribbean region (Leal
and Coppens d’Eeckenbrugge 1996; Coppens d’Eeck-
enbrugge et al. 1997). The pineapple cultivation very
probably initiated with var. comosus and var. erec-
tifolius evolving from var. ananassoides and/or var.
parguazensis in the region north of the Amazon river
(Orinoco and Rio Negro basins, and Guiana shield),
where a wider morphological and molecular variabil-
ity is found in wild and cultivated types (Duval et al.
2003). A. comosus var. bracteatus, and A. macrodontes
originated in the South of the continent (Paraguay and
southern Brazil) (Leal and Coppens d’Eeckenbrugge
1996).

18.1.4
Chromosome Number and Genome Size

The most common chromosome number for the
subfamily Bromelioideae is 2n = 50, (Cotias-de-
Oliveira et al. 2000). It is also the most common
among the A. comosus varieties and cultivars. Nev-
ertheless, triploid and tetraploid clones have also
been identified in var. comosus and tetraploid clones
in var. ananassoides (Sharma and Ghosh 1971; Lin
et al. 1987; Dujardin 1991; Cotias-de-Oliveira et al.
2000). A. macrodontes is tetraploid (2n = 100) (Lin
et al. 1987). Arumuganathan and Earle (1991) esti-
mated the haploid genomes size at 444 Mbp for A. co-
mosus var. bracteatus and 526 Mbp for var. como-
sus.
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18.1.5
Propagation and Floral Biology

The propagation of pineapple is mainly vegetative,
by stem suckers, peduncle slips, and fruit crown.
A. macrodontes produce underground stolons. Natu-
ral genetic diversity studies indicate that clonal prop-
agation is also the most common mode of multipli-
cation in the wild, as seeds germinate slowly and/or
young seedlings rarely survive under natural condi-
tions (Coppens d’Eekenbrugge et al. 1997).

All botanical varieties of A. comosus possess
a gametophytic self-incompatibility system. The
self-rejection reaction is variable in intensity and
generally stronger in the cultivated var. comosus,
which is probably a result of the domestication
process and selection for seedless fruits (Cop-
pens d’Eeckenbrugge et al. 1993). In contrast,
A. macrodontes is self-fertile and the self-progenies
are very homogeneous, indicating that this species
is highly homozygous and autogamous (Collins
1960). The main vectors for natural cross-pollination
are humming birds, while bees and ants may play
a secondary role. Wind pollination has never been
reported. Seeds lack dormancy and can retain
germination capacity for at least six months.

While no apparent depression was detected in
formation or germination of self-seeds, severe in-
breeding depression has been observed among self-
progenies of several Ananas cultivars in later stages
of development, rendering almost impossible the con-
tinuation of the inbreeding process beyond the first or
second generation of selfing (Collins 1960; Coppens
d’Eeckenbrugge et al. 1993; Cabral et al. 2000).

The success of the intraspecific and interspecific
crosses in the genus Ananas was referred to above.
References to intergeneric hybrids involving Ananas
and other genera as Aechmea, Cryptanthus and Ne-
oreglia, exclusively for ornamental purposes, can be
found in Grant (1998) and, for example, on the web
page of the Florida Council of Bromeliad Societies
(http://fcbs.org/articles/Bigenerics.htm).

18.1.6
Pineapple Breeding

Hybridization and clonal selection, mainly involving
elite cultivars, have been used in modern pineapple
breeding for over a century. Nevertheless, the het-
erozygous nature of pineapple cultivars, and the con-

sequent strong segregation and recombination, have
strongly limited the success of hybrid breeding. Un-
til recently, the severe selection among millions of
seedlings resulted in cultivars of only average qual-
ity or of local importance (Coppens d’Eeckenbrugge
et al. 1997). This quite desperate situation ended in
the late 1990s with the commercial success of ‘Golden
Ripe’, a new cultivar that stirred the world market of
fresh pineapple and awakened the interest in cultivar
diversification.

Included among the goals of pineapple breeding
programs are the introgression of resistances to dis-
eases such as Phytophthora and Fusarium, the preven-
tion of disorders such as internal browning (black-
heart) and the control of specific traits such as early
natural flowering, in elite cultivars. To avoid the lot-
tery of segregation and recombination, genetic en-
gineering appears to be a promising breeding strat-
egy since it allows transferring a single gene, or
a few genes, without substantially altering the ini-
tial genome. Efficient procedures for genetic transfor-
mation (Sripaoraya et al. 2001; Espinosa et al. 2002)
and in vitro regeneration and propagation (Escalona
et al. 1999; Firoozabady and Gutterson 2003; Sri-
paoraya et al. 2003) have already been established.
The first field and greenhouse trials of genetically
transformed pineapple clones exhibiting reduced ex-
pression of polyphenol oxidase (PPO) and of 1-
aminocyclopropane-1-carboxilate (ACC) synthase or
expressing the bialaphos resistance (bar) gene have
already been carried out (Rohrbach et al. 2000; Sri-
paoraya et al. 2001; Sripaoraya et al. 2006; Botella and
Fairbairn 2005; Trusov and Botella 2006).

In this respect, the construction of dense genome
maps of molecular markers is of paramount impor-
tance for the further isolation, via positional cloning,
of genes of interest for pineapple improvement. This
is of particular significance regarding those genes
that are uniquely known and uniquely detected by
their phenotypic expression in plants (e.g. resistance
genes).

18.2
Molecular Systematics

Pineapple molecular studies have been carried out
with a variety of techniques, including isozymes (Gar-
cía1988;Aradhyaet al. 1994),RAPD(Ruaset al. 2001),
AFLP (Kato et al. 2004; Paz et al. 2005), RFLP (Duval
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et al. 2001) and cpDNA PCR-RFLP (Duval et al. 2003).
All of them clearly support the separation between
A. comosus and A. macrodontes, as well as the low level
of genetic differentiation among the former Ananas
species. Thus, Aradhya et al. (1994) observed that the
variation among the five botanical varieties accounted
merely for 14% of the total isozymic variation and
Duval et al. (2001) reported a continuous RFLP vari-
ation within A. comosus. Another consistent observa-
tion (Duval et al. 2001) was a wide variation within
A. comosus var. ananassoides and a close genetic rela-
tionship between this and other varieties, particularly
the wild parguazensis and the cultivated comosus and
erectifolius, confirming that the cultivated types were
directly derived from their wild relatives.

The existence of clones in the Guianas, morpho-
logically intermediate between comosus and ananas-
soides, with haplotypes also found in both these vari-
eties, suggests a recent domestication and a continu-
ing introgression process. Concerning the erectifolius
variety, the RFLP and PCR-RFLP data indicate multi-
ple domestication events, involving convergent selec-
tions from different ananassoides genotypes for a few
morphological traits (smooth and fibrous leaves).

According to isozyme, RFLP and AFLP data, A. co-
mosus var. bracteatus appears relatively uniform and
better differentiated from the other varieties. Isozyme
and RFLP markers indicate a particular affinity with
A. macrodontes. The study of cpDNA by PCR-RFLP
identified a unique haplotype for the common repre-
sentatives of var. bracteatus shared with all the other
varieties. On the other hand, a unique accession, for-
merly classified as A. fritzmuelleri Camargo, presents
a haplotype that is almost identical to the one typical
of A. macrodontes. Thus molecular data suggest a spe-
cialpositionofA. comosusvar.bracteatus in relation to
A. macrodontes, as it appears to be constituted by two
combinations of nuclear genes from both species with
chlorotypes from one or the other species. Whether
these combinations are the product of a rare intro-
gression event during the evolution of Ananas, an
“accidental genotype” maintained by vegetative prop-
agation, or the testimony of an intermediate stage in
its evolution, is difficult to ascertain.

18.3
Construction of Genetic Maps

Available information on ongoing genome mapping
programs in pineapple is very scarce. The unique

pineapple genome maps published so far are the
genetic maps of molecular markers including
the morphological trait ‘piping’, constructed by
Carlier et al. (2004, 2006). To our knowledge no
other qualitative trait or QTLs have been mapped,
and no results of physical mapping have been
reported.

18.3.1
F1-Based Genetic Maps

As mentioned above, except for breeding purposes,
Ananas is usually propagated vegetatively either for
cultivation or under natural conditions. Genotypes
well adapted to a particular natural environment, as
well as those selected forhumanneeds, tend tobefixed
in a heterozygous state. In addition, heterozygosity is
reinforced by different degrees of self-incompatibility
and lack of sexual barriers, which promote crosspol-
lination, and by a strong inbreeding depression.

The high level of heterozygosity allows the use
of F1 progenies as segregant populations for genetic
mapping employing the “two-way pseudo-testcross”
or “double pseudo-testcross” strategy (Grattapaglia
and Sederoff 1994; Hemmat et al. 1994), since the al-
leles of a heterozygous polymorphic locus present in
one parent and absent in the other are expected to
segregate in a 1:1 Mendelian ratio among the F1 pop-
ulation.

The first genetic maps of pineapple, one for
Ananas comosus var. bracteatus and a second one for
Ananas comosus var. comosus were recently published
(Carlier et al. 2004). The mapping population used
for the construction of both maps consisted of 46 F1

plants derived from a cross between var. comosus (cv.
Rondon – clone BR 50) and var. bracteatus (“Branco
do mato” – clone BR 20), carried out in Martinique.
Map construction was twice more efficient for var.
bracteatus than for var. comosus, a consequence of
the higher average heterozygosity of the former and,
also, of the fact that it possesses a large number of
specific DNA-markers not present in var. comosus.

The F1-based map of A. comosus var. bracteatus
is constituted by 335 DNA markers (60 RAPD, 264
AFLP and 11 ISSR), assembled in 50 linkage groups:
26 groups gathering at least four markers each, six
groups of three markers each and 18 pairs of markers.
This map spans over 2,111 cM, which corresponds
to 57.2% of the 3,693 cM genome length estimated
according to Chakravarti et al. (1991).
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The A. comosus var. comosus map gathers 156
molecular markers (33 RAPD, 115 AFLP and 8 ISSR)
in 30 linkage groups spanning over 1,311 cM, cor-
responding to 31.6% of the 4,146 cM long genome.
The locus P, whose dominant allele determines the
‘piping’ morphological trait, was also included in this
map. The ratio between physical and genetic distances
is approximately 120 kbp/cM for var. bracteatus and
127 kbp/cM for var. comosus (Carlier et al. 2004).

18.3.2
F2-Based Genetic Map

One of the F1 plants used for the construction of the
first genetic maps was selfed in Martinique and leaves
of 142 F2 plants were sent to Portugal for the con-
struction of a new, F2-based, genetic map. Among
the 451 molecular markers analysed, 52 molecu-
lar markers (16 from var. comosus and 36 from
var. bracteatus) showed a less pronounced distortion(
χ2

0.01 > χ2 ≥ χ2
0.05

)
while 43 other markers showed

a more skewed segregation
(
χ2 > χ2

0.01

)
.

The first genetic map constructed on the basis
of an F2 segregating population assembles 412 ge-
netic markers (311 AFLP, 66 RAPDs, 34 ISSRs and
one morphological trait, piping) in 50 linkage groups.
Thirty-nine markers remained unlinked (Carlier et al.
unpublished).

In order to estimate the total span of the map, each
linkage group was enlarged at each extremity (Mar-
ques et al. 1998) with the average distance between
adjacent markers 5.32 cM. The total span of the F2-
based map is 2,458 cM, which corresponds to 62.7%
of the average pineapple map length calculated on the
basis of the above-mentioned F1-based maps.

Unfortunately, the F2 population used to construct
this map showed a very strong inbreeding depression.
Mostof theplants exhibitedaveryweakandunhealthy
phenotype and died before fruit setting. Therefore,
the segregation analysis of morphological traits, with
the exception of the piping phenotype, could not be
performed.

18.3.3
Integrated Genetic Maps of Pineapple

One of the main goals of the construction of the F2-
based genetic map was to use it for the construction
of an integrated genetic map. Such an integrated map

would join the F2-based and the F1-based maps and
markers that had previously remained unlinked.

The first integrated genetic map of molecular
markers in pineapple was published recently by Car-
lier et al. (2006). This map gathered 574 markers (454
AFLP, 79 RAPD and 41 ISSR) in 46 linkage groups,
spanning more than 2,421 cM, and covering 62% of
the genome, the genetic size of which, 3,919 cM, was
calculated as the arithmetic average of the previous
estimations (Carlier et al. 2004) for the genomes of
var bracteatus and var. comosus.

Presently, the integrated map (Fig. 1) assembles
659 DNA markers (506 AFLP, 113 RAPD and 40 ISSR),
one isozyme locus (PGM)andonemorphological trait
locus (piping). Thus far, this map is constituted by:
(a) 17 linkage groups integrating molecular markers
of var. bracteatus and var. comosus (15 of these inte-
grate markers from the F1-based and F2-based genetic
maps, while two of them gather only markers analysed
in the F2 population); (b) 11 linkage groups integrat-
ing markers of F1- and F2-based maps, but only of var.
bracteatus; and (c) eight linkage groups that, in the
same way, integrate only markers from var. comosus.

18.4
Germplasm Resources
and GeneBank Data

Pineapple genetic resources (e.g., for plant genetic
improvement, production of segregating populations
or construction of cDNA or BAC genome libraries)
are maintained by CIRAD in Martinique (French
West Indies); by the Brazilian National Genetic Re-
sources and Biotechnology Research Centre (EM-
BRAPA/CENARGEN), in Brasilia; by the National
Cassava and Tropical Fruit Research Centre (EM-
BRAPA/CNPMF), Cruz das Almas, Brazil; and by the
US Pacific Basin Agricultural Research Center, USDA,
Hawaii. These represent the most diverse germplasm
collections. Other important collections are main-
tained for breeding purposes by national institutions
in Malaysia, Australia, Cuba, Japan, and other produc-
ing countries, as well as by private companies (Cop-
pens d’Eeckenbrugge and Duval 1999).

Functional genomic studies in pineapple are very
scarce but their number is increasing rapidly. Thus
far, have been cloned and functionally characterized
genes that encode: an ACC synthase and an ACC
oxydase (Cazzonelli et al. 1998); a NAD+-dependent
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malate dehydrogenase (Cuevas and Podestá 2000);
ananain (Carter et al. 2000); a Cu/Zn-superoxide dis-
mutase (Lin et al. 2000); two distinct polyphenol oxi-
dases (Stewart et al. 2001); and the cysteine protease
inhibitor cistatin (Shyu et al. 2004). A retroposon-
like sequence, repeatedly integrated in the genome in
multiple variable sequences and putatively capable of
transposing (Thomson et al. 1998), and the genomic
sequence coding for bromelain inhibitors (Sawano et
al. 2002), have also been isolated and characterized.
Moreover, recent studies on genes involved in root
development (Neuteboom et al. 2002) and in fruit
ripening and nematode-root interaction (Moyle et al.
2005a, b, 2006) have resulted in a very large number
of sequenced ESTs.

The amount of genomic data in databases
is still scarce but has been rapidly increasing,
particularly during the last two years. Presently,
a search for pineapple genomic data through the
National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov) results in
about 60 microsatellite and other DNA marker loci
from var. bracteatus and over 5,700 ESTs from var.
comosus. About 5,650 of these EST sequences have
been contributed by Moyle et al. (2005a, b, 2006)
who have clustered 408 green fruit, 1,140 yellow
fruit, 343 root tip, 1,298 early nematode infection
and 246 late nematode infection related ESTs into
3,383 contigs. This research group has created an
online pineapple bioinformatics resource: Pineap-
pleDB (www.pgel.com.au), periodically updated with
gene expression data arising from the pineapple
microarray project they are implementing.

The TropGENE-DB (http://tropgenedb.cirad.fr) is
an information system created by CIRAD, France, to
store genetic, molecular and phenotypic data, par-
ticularly data on genetic resources, molecular mark-
ers, genetic and physical maps, sequences, genes, etc.
Presently, information is available only on banana,
cocoa, coconut, coffee, cotton, oil palm, rice, rubber
tree and sugarcane, but the extension of the database
and the inclusion of pineapple and other tropical crop
species is expected soon.

18.5
Future Prospects

The pineapple integrated genetic map (Fig. 1) is in-
complete and requires further study in order to as-

semble nearly all analysed markers into 25 linkage
groups corresponding to the n = 25 chromosomes of
the species. Two tasks appear more urgent to accom-
plish this goal as described below.

The first task is to include in the map some of the
already published microsatellite markers, contribut-
ing to its further improvement by the integration of
new markers and groups of markers from the F1-
based and F2-based maps in linkage groups estab-
lished and ordered with higher statistical significance.
Additionally, due to the genetic similarity between
both Ananas species and among the botanical vari-
eties, the microsatellite markers and other polymor-
phic sequence tagged site (STS) markers are expected
tobeuseful for the integrationofgeneticmarkers from
other Ananas genotypes. Eventually, genetic mark-
ers could also be integrated from other Bromeliaceae
species.

The second task is to clone, sequence and trans-
form into sequence characterized amplified region
(SCAR) markers an array of mapped RAPD, AFLP
and ISSR markers strategically distributed along the
genome.

A very dense and integrated genetic map of molec-
ular markers, complemented by microsatellite and
SCAR markers covering almost all the pineapple
genome, will constitute a major scientific tool. It will
allow the rapid location of any genetic locus and, con-
sequently, the rapid identification of molecular mark-
ers linked to any gene of interest. Such markers can be
very useful in marker-assisted selection (MAS) and
in gene isolation via map-based cloning programs. In
addition, such a map would act as a basic framework
of the genome in future physical mapping programs
or pineapple genome sequencing projects.
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19.1
Introduction

Papaya belongs to family Caricaceae. This family con-
sists of six genera including Carica a monotypic gen-
era, Jacaratia with seven species, Jarilla with three
species, Cylicomorpha with two species, Horovitzia
with one species and Vasconcellea with 21 species
(Badillo 2000). All members of the Caricaceae exam-
ined cytologically are diploid with 2n = 2x = 18 (Dar-
lington and Ammal 1945). The genus Carica is char-
acterized by a unilocular ovary and is represented by
a single species C. papaya, while the genus Vasconcel-
lea comprises the remaining Carica species possess-
ing pentalocular origin. Carica is the only genus of
Caricaceae containing domesticated species papaya,
which is by far the most economically important hav-
ing a distribution throughout the tropics and subtrop-
ics of the world. Papaya probably originated in the
lowland of Central America, between southern Mex-
ico and Nicaragua. However, it is now cultivated in
many tropical and subtropical part of world (Storey
1969). Papaya is a major tropical fruit grown com-
mercially in India, Brazil, Mexico, Australia, Hawaii,
Thailand, South Africa, Philippines, Indonesia and
Taiwan. India is the largest producer of papaya con-
tributing 25% of the total world production. It thrives
well under tropical climate. However, papaya can be
grown in frost-free subtropical climate as well.

Intensive papaya improvement program in In-
dia, Hawaii, Mexico, Brazil and Philippines gave rise
to a large number of improved hybrids and se-
lections such as Kapoho Solo, Sun Rise, Sun Set,
Waimanalo, Laie-Gold, Kamiya (USA), Pusa Deli-
cious, Pusa Nanha, Pusa Dwarf, Pusa Majesty, Surya,
Coorg Honey Dew, CO 1, 2, 3, 4, 5, 6 and 7, Pant
Papaya-1 (India), Cavite Special (Philippines), Sai-
nampueng, Kak Dum (Thailand), and Improved Pe-
terson, Guinea Gold, Sunnybank and Arline-57 (Aus-

tralia). However, none of these varieties are close to
an ideal variety. Moreover, papaya cultivation is ham-
pered severely due to problems like prevalence of pa-
paya ring spot virus (PRSV), papaya leaf curl virus
(PaLCuV), fungal diseases such as foot rot and fruit
anthracnose, stamen carpelloidy and summer steril-
ity. Papaya is a polygamous plant, and sex forms con-
stitute thebasis forpapayabreedingprogram.Someof
theprevalent geneticproblemsare related to sex forms
such as summer sterility and stamen carpelloidy (Gi-
acometti 1987). Storey (1984) considered elimination
of ambisexual andromonoceous forms that tend to
become sterile at certain climatic conditions or show
a tendency towards stamen carpelloidy by developing
a heterozygous andromonoceous form, M2M2 by pos-
sible elimination of the zygotic lethal factor. Due to
fairly large size of papaya petiole (75–100 cm), high
density planting of papaya is not feasible. Papaya im-
provementprogramhas led todevelopmentof themu-
tant ‘Solo’ line with short petiole (45–60 cm) that are
positioned obliquely upright and trees can be planted
at 0.9–1.2 m apart in the row. Breeding program for
developing ring spot resistant variety in papaya is go-
ing on for long time.

A great deal of work on intergeneric hybridiza-
tion has been reported from India, Venezuela, Hawaii,
Brazil, Taiwan and Australia (Horovitz et al. 1958;
Padnis et al. 1970; Gama et al. 1985; Manshardt and
Wenslaff 1989a, b; Chen et al. 1991; Drew et al. 1998).
In order to transfer the gene conferring resistance
to PRSV, C. papaya was crossed with V. cauliflora, V.
cundinamarcensis, V. quercifoila, V. stipulata, V. gou-
datianaandV.parviflora. Fewhybridsweredeveloped
through the embryo rescue technique. However, most
of these crosses turned out to be sterile. Incompat-
ibility between C. papaya and Vasconcellea species
has been a major bottleneck in production of use-
ful intergeneric hybrids. Now it is understood that
postzygotic barriers, i.e., embryo abortion and lack
of endosperm development (Manshardt and Wenslaff
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1989a, b), were mainly responsible for incompatibility
between papaya and its wild species. Recent biotech-
nological investigations revealed that V. cauliflora
and C. papaya are genetically very distant and un-
fortunately a lot of efforts have gone into hybridiza-
tion work involving these species (Jobin-Décor et al.
1996). Hybrids between these two species lack vigor,
rarely survive till flowering, and if they do, are infer-
tile (Manshardt and Wenslaff 1989a, b). Similarly, hy-
brids between papaya and stipulata were reported to
lack vigor and viability (Horovitz and Jimenez 1967).
Interestingly, intergeneric hybridization program in
Australia with C. papaya crossed with Vasconcellea
species pubescens, quercifolia, parviflora and goudo-
tiana led to the development of vigorous hybrids
(Drew et al. 1998). PRSV resistance has been reported
often in crosses between C. papaya and V. cauliflora
(Moore and Litz 1984; Vegas et al. 2003). However,
the postzygotic barrier in these hybrids has prevented
further backcrossing. Interestingly, Khuspe (1980) re-
ported production of viable F1 and F2 populations
that were resistant to PRSV in the F1 population and
segregated for PRSV resistance in the F2 population
with a 3:1 ratio. However, his work did not confirm
development of papaya hybrid resistant to PRSV. In-
terspecific hybrids between C. papaya and other Vas-
concella species have also demonstrated resistance to
PRSV. All V. pubescens hybrids were resistant to PRSV
when manually inoculated three times at two-weekly
intervals in a glasshouse (Drew et al. 1998). A large
population of C. papaya × V. quercifolia hybrids were
manually inoculated using the same procedure. Of
those tested, two thirds were resistant and the re-
maining produced symptoms. However, progressing
past intergeneric F1 hybrids has been very difficult,
and the only successes have resulted from backcrosses
from C. papaya × V. quercifolia to C. papaya. Em-
bryo culture has produced no F2 progeny to date and
only limited progenies in backcrosses with papaya.
In Hawaii, F1 hybrids contributed only unreduced ga-
metes inbackcrosses, yieldingsequidiploidplants that
were very sterile indicating that meiosis did not func-
tion normally in those hybrids (Manshardt and Drew
1988). The first fertile backcross plants have been re-
ported from Australia (Drew and O’Brien 2001).

The tolerance-breeding program has enabled
farmers to grow papaya with reasonable fruit pro-
duction despite plants becoming infected with PRSV,
and it has also been helpful to farmers for obtaining
good quality, reasonably priced papaya seeds. In the
same way, other tolerant lines have been developed.

In Taiwan, Lin et al. (1989) reported the development
of the hybrid Tainung No. 5, from the cross of FL
77-5 (from Florida) and Costa Rica Red, with good
level of tolerance and horticultural characteristics.
It has a strong trunk and shows early fruit bearing
and ripening. The height of the first fruit from the
base of trunk is about 56–60 cm. The use of tolerant
papayas has not resolved the virus problem in the
long term and development of genetically resistant
cultivars is considered the only reliable solution to
PRSV control. In Thailand, a series of papaya lines
developed by crossing the Florida tolerant and local
variety ‘Khakdum’ followed by recurrent selections
is the result of an on-going breeding program since
1987 (Prasartsee et al. 1998). ‘Khakdum’ is a popular
Thai cultivar with desirable fruit characteristics, but
it is very susceptible to PRSV (Nopakunwong et al.
1993). Previous trials at the Khonkaen Horticultural
Experiment Station (Prasartsee et al. 1998) showed
that Florida tolerant papaya produced acceptable
amounts of fruit despite being infected with PRSV.
Thus, reciprocal crosses were made between the
Florida tolerant variety and ‘Khakdum’ in an effort to
produce hybrid lines that are PRSV-tolerant and have
acceptable horticultural characteristics. Only one
cross was made initially between ‘Florida Tolerant’
and ‘Khakdum’. Subsequent crosses were made from
within the progeny population. The first priority was
to maintain a high level of PRSV tolerance followed
by selection of desirable horticultural characteristics.
These progenies were named Thapra 1, Thapra 2
and Thapra 3. In 1997, ‘Thapra.2’ was released as
‘Khakdum Thapra’ tolerant to PRSV in Thailand.

19.2
Molecular Characterization

Molecular markers are being used in phylogenetic
studies of various taxa adding new dimension to
evolutionary pathways. Different molecular mark-
ers (RAPD, RFLP, AFLP, IISR-PCR) have been em-
ployed to measure genetic variation within and be-
tween species, varieties and related genera of Carica.
Badillo (2000) has rehabilitated Carica as a mono-
typic genera consisting one species and elevated Vas-
concellea as a separate genus with 21 species. Many
studies pertaining to molecular characterization are
clearly indicating the wide genetic distance between
Carica and Vasconcellea. Sharon et al. (1992) used mi-
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crosatellite and minisatellite probes to evaluate ge-
netic relationshipamongCarica species.Genetic anal-
ysis of DNA finger-print bands revealed no linkage
or allelic relationship among the bands analyzed in-
dicating that these loci are not clustered in Carica
genome. The phylogenetic relationship of 12 wild and
cultivated species of Carica was analyzed by Aradhya
et al. (1999) using restriction fragment length vari-
ation in a 3.2 kb-PCR amplified intergeneric spacer
region of cpDNA. The evolutionary split in Carica
strongly suggests that C. papaya diverged from the
rest of the species in the early period of evolution of
the genus and evolved in isolation probably in Central
America. The chloroplast and mitochondrial DNA di-
versity of 61 genotypes belonging to 18 Vasconcellea
species using PCR-RFLP revealed higher level of in-
terspecific variation in two cpDNA regions than anal-
ysis with mtDNA which supported the monophyly of
Carica. Further, cpDNA analyses showed two basic
evolutionary lineages within the genus Carica, one
defined by cultivated C. papaya and another consist-
ing of the remaining wild species from South Amer-
ica in a well resolved but poorly supported mono-
phyletic assemblage. This may indicate a higher level
of inter-fertility for Vasconcellea species from the lat-
ter clade in interspecific crossing with papaya. A retic-
ulate evolution for Vasconcellea has therefore been
suggested. Finally, intraspecific cpDNA variation was
detected in V. microcarpa thus providing molecular
evidence for the high diversity previously indicated
by morphological observation (Droogenbroeck et al.
2004). AFLP markers have been used to study the ge-
netic relationship among 71 papaya accessions and
related species with nine EcoRI/MseI primer combi-
nations. Genetic diversity among papaya cultivars de-
rived from the same or similar gene pool was smaller
such as Hawaiian solo hermaphrodite cultivars and
Australian dioecious cultivars with genetic similar-
ity at 0.921 and 0.912, respectively. Self-pollinated
hermaphrodite cultivars were as variable as open-
pollinated dioecious cultivars. C. papaya showed the
leastgenetic similaritywith thesespecies.AFLPmark-
ers supported the notion that C. papaya diverged from
the rest of Carica species early in the evolution of
this genus (Kin et al. 2002). This theory was further
strengthened by the study on phylogeny of Vasconcel-
lea and Carica species native to Ecuador using AFLP
markers (Droogenbroeck et al. 2002). A total of 95
accessions belonging to three genera were evaluated.
Both cluster and PCO analysis clearly separated the
species of three genera and illustrated the large ge-

netic distance between C. papaya accessions and Vas-
concellea group. The specific clustering of highly di-
verse group of Vasconcellea × heilbornii accessions
also suggests that these genotypes may be the re-
sults of bi-directorial introgression events between
Vasconcellea stipulata and V. cundinamarcensis. Pa-
paya is also grown widely in India. Many improved
papaya varieties from various parts of India have
been developed. Recently, Saxena et al. (2005) have
measured genetic diversity among 10 commercially
important papaya cultivars using three SPAR tech-
niques namely RAPD, IISR and DAMD and con-
cluded that IISR-PCR is probably the best technique
for assessing papaya germplasm. Papaya germplasm
was found to be quite narrow. However, least ge-
netic variation was observed between CO 2 and CO
3, whereas CO 4 and CO 7 and Coorg Honey Dew
and Red Fleshed were found to be genetically dis-
tant.

19.3
Marker-Assisted Selection

Papaya is conventionally propagated by seeds and
dioecious papaya varieties do not ensure the right sex
type. As a result, 50–60% of seeds produce male plants
which need to be uprooted after six to seven months
of planting. The resources (fertilizer, water, weeding,
land, labor and time) used in development and weed-
ing out male plants makes papaya cultivation cum-
bersome and uneconomical. Efforts to distinguish
sex of papaya at juvenile stage through morphologi-
cal and biochemical markers have not met with suc-
cess. A loose linkage between flower morphology and
sex type has been identified, but sex determination
based on flower morphology is not possible until four
months. In an open-pollinated species such as pa-
paya, the selection of the appropriate sex type of the
progeny for commercial planting would be beneficial,
since only the female and hermaphrodite plants are
grown for fruit. Knowledge of the sex type of papaya is
important in selecting parents for use in hybridization
work. Crosses between females and hermaphrodites
will give all fruit-bearing progenies. Sex expression
in papaya is controlled by a single gene with three al-
leles which have a pleiotropic effect (Hofmeyer 1941;
Storey 1953). The sex homologues were designated
as M for male, MH for hermaphrodite and m for fe-
male. All combinations of dominant alleles, such as
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MM, MHMH and MMH, are lethal to the zygote. This
makes all males and hermaphrodites into enforced
sex heterozygotes. One-fourth of the seeds in their
fruits are nonviable. The genotypes for sex are MM for
male, MHm for hermaphrodite and mm for female.
Using these sex genotypes, there are eight possible
cross combinations that could be made with various
segregation ratios. Self-pollination in males, cross-
pollination between males and females and cross-
pollination between male and hermaphrodites can all
be done using the sexually ambivalent males (SAMs)
that produce perfect flowers during certain periods
of the year. Male and hermaphrodite trees undergo
various degrees of sex reversal, depending on sea-
sonal changes and climate (Awada 1958). To make
the cultivation profitable it is necessary to grow more
female:male plants. To discriminate between male
and female plants, sex specific molecular markers
have been identified in a few dioecious species such
as Silene and Pistachio. In papaya, RAPD and mi-
crosatellite markers linked to sex have been reported
(Soundur et al. 1996; Parasnis et al. 1999). Two RAPD
markers, T12 and T1C each mapped 7 cM apart from
the SEX 1 locus (Soundur et al. 1996). Parasnis et al.
(2000) have also reported sex diagnostic. They have
developed a male specific SCAR marker in papaya by
cloning a male-specific RAPD (831 bp) fragment and
designing longer primers. The potential of this SCAR
marker is further exploited to develop a simplified
and highly accurate sex diagnostic assay by including
an internal PCR control following a single step DNA
extraction procedure, optimizing the PCR condition
to simultaneously amplify male-specific and control
bands from the crude leaf extract. This diagnostic
approach is of great commercial significance of pa-
paya growers as well as to seed companies and plant
nurseries for early identification of female seedlings
of dioecious species. In principle, this experimental
design could easily be applied to molecular analysis
of any agriculturally important trait for which spe-
cific DNA probes could be identified and hence opens
new avenues of research in the field of genetic diag-
nostics of plants. In 2002, a group in Japan (Urashaki
et al. 2002 a, b) has reported that the random ampli-
fied polymorphic DNA (RAPD) technique was used
to determine the sex of a dioecious species, Carica
papaya L. with three sex types, male, female and
hermaphrodite. A 450 bp marker fragmented PSDM
(Papaya Sex Determination Marker) was used for all
male and hermaphrodite plants but not in the female
plants so far analyzed. Recently embryo induction

of papaya by anther culture has been reported and
identification of the sex of plantlets derived from em-
bryos using a sex diagnostic PCR was done. Anthers,
containing approximately 80% pollen, were collected
from 10 to 14 mm long male flower buds. They were
pre-treated with agar (0.8%) or in liquid medium for
1–5 days at 25-350C, then transferred to agar medium
with 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Agar and liq-
uid media used for the pre-treatment contained only
water or MS nutrients with or without Sucrose (2.0%).
On the agar medium, no embryos were induced. At
35 ◦C embryo induction rate tended to increase up to
about 4% when anthers were treated in water for 1 day
or MS medium with Sucrose for 3 or 5 days. The sex of
plantlets established through anther culture was an-
alyzed using a sex-diagnostic PCR. All plantlets were
determined as female. From these results it was sug-
gested that all plantlets established through anther
culture were of microspore origin and then the an-
ther culture technique is useful for breeding of female
papaya.

19.4
Construction of Genetic Maps

Papaya is an ideal fruit crop for genomic research
because of its relatively small genome size (372 Mbp)
(ArumugunathanandEarle1991).However,notmuch
information has been generated so far. High-density
geneticmapsareprerequisite for isolationandcloning
of genes of interest, genomic dissection, marker-
assisted selection etc. Genetic mapping of many crops
has been accomplished. However, genetic map of pa-
payahasonly recentlybeendeveloped.Maet al. (2004)
constructed a high-density genetic map of papaya us-
ing 54 F2 plants derived from Kapoho and Sun Up
cultivars with 1,501 markers including 1,498 AFLP
markers, PRSV cp markers, morphological sex types
and fresh fruit color. These markers map to 12 link-
age groups at a LOD score of 5.0 and recombination
fraction of 0.25. The 12 major linkages groups covered
a total length of 3,294.2 cM, with an average distance
of 2.2 cM between adjacent markers. This map re-
vealed severe suppression of recombination around
the sex determination locus with a total of 22.5 mark-
ers co-segregating with sex type. The cytosine bases
were found to be highly methylated in this region on
the basis of distribution of methylation-sensitive and
methylation-insensitive markers (Fig. 1).
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BACs are the most commonly employed vectors
for carrying large DNA fragments. Ming et al. (2001)
reported construction of bacterial artificial chromo-
some (BAC) library from papaya. The BAC library
consists of 39,168 clones from two separate ligation
reactions. The average insert size of library is 132 kb.
The entire BAC library was estimated to provide 13.7×
papaya genome equivalents, excluding the false pos-
itive and chloroplast clones (Table 1). High-density
filters were made containing 94% or 36,864 clones
of the library with 12.7× papaya-genome equivalents.
Eleven papaya cDNA and 10 Arabidopsis cDNA probes
detected an average of 22.8 BACs per probe in the li-
brary.

Liu et al. (2004) fine-mapped the sex determi-
nation gene (Table 2) with the help of 4,380 infor-
mative chromosomes, two SCAR markers (W11 and
T12), three cloned sex linked AFLP markers (cpsm10,
cpsm31 and cpsm54) and one BAC end (cpbe 55).
No recombinants were detected. They reported the
discovery of an incipient Y chromosome in papaya
of which 10% is a non-recombining, rapidly evolving,
sex-determining region flanked by normal autosome-
like regions that comprise the remaining 90% of chro-

Fig. 1. AFLP products amplified by the primer pair E-GCT/M-
AG. The Sun Up dominant marker between 200 and 204 bp is
cosegregating with sex (Source: Genetics 166:419–436)

mosomes. This proves that sex chromosome evolve
from autosome. The severe suppression of recombi-
nation and excessive divergence between homologues
in the region containing the papaya sex-determining
genes indicate that this is an incipient sex chromo-
some. On the basis of size of present contig map
(2.5 Mb) and 57% of cpsm markers that have been
accounted for, the physical size of MSY is estimated
at 4–5 Mb or 10% of papaya’s primitive chromosome.
The incipient sex chromosomes of papaya may yield
insights about earlier stages of sex chromosome evo-
lution. The small physical size of MSY region and
the mosaic arrangements of sequence degradation
indicate a recent origin of the papaya sex chromo-
somes.

19.5
Recombinant DNA Technology

Recently, DNA recombinant technology has opened
up new vistas for development of virus resistant
papaya. Pathogen derived resistance (PDR) has been
proved to be an effective tool in combating plant
viruses. Genetic engineering for virus resistance
has been found effective whereby transgenic plants
expressing virus genome sequence resist attack
by corresponding viruses. Coat protein mediated
resistance (CPMR) was first reported in 1986 in
tomato. Subsequently, a large number of transgenic
lines (citrus, papaya, potato, peanut, squash, sugar
beet) containing CP transgene have been produced.
There are several mechanisms involved in CPMR.
However, it is largely believed that resistance
is RNA mediated via post-transcriptional gene
silencing.

PRSV resistant transgenic papaya has been devel-
oped and commercialized in 1998 in Hawaii, USA by
Dr. Dennis Gonsalves and his team (Gonsalves 1998).
SunUp and Rainbow cultivars of transgenic papaya
have been developed by cloning CP gene of mild
strain of PRSV from Hawaii. Dennis Gonsalves and
his group used PDR concept in 1986 by cloning the
CP gene of PRSV HA 5-1 (a mild strain) from Hawaii.
Because of various technical difficulties and the re-
quirement that the gene be expressed as a protein,
the gene was engineered as a chimeric protein con-
taining 17 amino acids of cucumber mosaic virus at
the N terminus of the full-length CP gene of PRSV
HA 5-1 (Ling et al. 1991). Dr. Maureen Fitch, Scientist
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Table 1. Results of screening of papaya BAC library with homologous and hetrologous cDNA,
rDNA and cpDNA. Source: Ming et al. (2001) Theor Appl Genet 102:892–899

Probes No. of bands Ligation 1 Ligation 2 Total

AEST9 2 5 8 13
AEST18 2 5 7 12
AEST36 2 6 14 20
AEST37 6 0 0 0
AEST47 2 10 17 27
AEST48 3 6 17 23
AEST63 4 8 17 25
AEST64 2 9 9 18
AEST69 4 16 47 63
AEST127 2 19 29 48
CPF9A1 5 8 7 15
CPF9A2 3 0 0 0
CPF9A3 6 5 11
CPF9A4 9 11 20
CPF9A5 4 6 10
CPF9A6 3 25 28
CPF9A7 10 11 21
CPF26A3 3 3 6
CPF26A7 18 19 37
CPF26A4&5 19 27 46
Total 44 154 279 433
18sPXp108 18 43 61
rop B and teunk 211 293 504

Table 2. Fine mapping with SCAR markers in MSY region of papaya. Source: Liu et al. (2004)
Nature 427:348–352

Population Progeny Hema- Female SCAR markers Recom-
phrodite binant

Kapoho × SunUp F2 335 150 W11 0
Kapoho × SunUp F2 335 156 W11, T12, cpbe55 0
Kapoho × SunUp F2 481 274 W11, T12, cpbe55 0
Kapoho × Saipan Red F2 175 49 Cpsm31, cpsm 10 0
AU0 × SunUp F2 170 65 W11, T12, cpsm54 0
Total 2,190 1,496 694 0

at USDA, Hawaii took the challenge of transform-
ing papaya in 1987. The red-fleshed Sunrise, Sunset
(a sib selection of Sunrise), and the yellow-fleshed
Kapoho, were chosen as target cultivars. The embryo-
genic tissue was bombarded with tungsten particles
coated with engineered DNA construct of the PRSV
HA 5-1 CP gene using the gene gun. Fifteen months
later, transgenic plants were obtained and grown in
the greenhouse (Fitch et al. 1990, 1992). R0 transgenic

lines were screened for virus resistance against severe
strain of PRSV HA from Hawaii at greenhouse at Cor-
nell University. R0 micropropagated plants of the first
line were further characterized as it showed excellent
resistance to PRSV HA (Fitch et al. 1992) among all R0

lines. Line 55-1 was female and thus progenies could
not be obtained directly from the R0 plants, unlike
a hermaphrodite. In order to know whether 55-1 is re-
sistant to PRSV, a trial was laid down using R0 plants.
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Rl plants were obtained by crossing line 55-1 with
nontransgenic Sunset under greenhouse conditions.
These plants were screened in the greenhouse for re-
sistance to PRSV isolates from around world. Analysis
clearly showed that 50% of the progenies were trans-
genic. This confirmed that transgenic plants had one
insert of the nptII gene and, the CP gene. Field ex-
periment was conducted to evaluate transgenic plants
under natural field condition. The transgenic papaya
showed excellent resistance throughout the two-year
trial (Lius et al. 1997). Nearly all (95%) of the non-
transgenic plants and those of a transgenic line that
lacked the CP gene showed PRSV symptoms. The ho-
mozygous line 55-1 was later named SunUp. The hy-
brid made from the cross of the transgenic SunUp and
the non-transgenic Kapoho was named Rainbow.

Efforts are being made to generate PaLCuV re-
sistant transgenic papaya using both sense and an-
tisense Rep gene as well as CP gene of PaLCuV in
India. The first report of papaya leaf curl disease
in India to be caused by a geminivirus was pub-
lished by Saxena et al. (1998a, b). Recently the first
report of papaya leaf curl virus (PaLCuV) infecting
papaya plants in Taiwan is also published (Chang
et al. 2003). Papaya cultivation is severely threat-
ened by PaLCuV. The disease is transmitted by the
vector whitefly (Bemisia tabaci), and characterized
by severe curling, downward cupping and crinkling
of leaves. Early infection leads to severe reduction
in yield and management of disease is urgently re-
quired. Developing transgenic papaya plants resis-
tant to PaLCuV seems to be most promising con-
sidering several points as discussed above regard-
ing genetics and breeding program of papaya. Nu-
cleotide sequence and intergeminiviral homologies
of the DNA-A of PaLCuV from India have already
been reported by Saxena et al. (1998c) and further
molecular characterization of papaya leaf curl gem-
inivirus (PaLCuV) and its isolates is currently under
studies.

Transformation of plants with viral genes has been
proven in many cases to produce resistance to the
virus from which the genes were derived. The tech-
nology has been successfully used to produce re-
sistance in papaya with respect to PRSV and trials
with PaLCuV are undergoing. The benefit of trans-
genic virus resistance includes increased yield, re-
duced pesticide use to control the vectors of viruses,
i.e. whitefly in case of PaLCuV and improved crop
as well as food quality. The coat protein (CP) gene
is most often used to confer resistance. In some

cases, the expression of CP correlated with resis-
tance, and strong evidence for prevention of un-
coating was shown. However, reports indicate that
coat protein mediated resistance is not successful
in case of geminiviruses, and most of the strategies
for genetically engineered resistance to geminivirus
involve the replication-associated protein (Rep) se-
quences (Sinistera et al. 1999; Yang et al. 2004). For
some viruses there can be both CP and RNA mecha-
nism that can confer resistance in transgenic plants.
In case of PaLCuV, it is being speculated that high
levels of resistance can be produced in papaya plants
transformed with a viral replicase gene, which in-
cludes the full length gene as well as various dele-
tions or sequence modifications. The mechanism of
resistance in replicase-expressing plants is complex
and may involve expression of a protein that blocks
virus replication and/or movement, as well as post-
transcriptional gene silencing. Further, development
of transformation technique in different commer-
cially significant papaya cultivars broadens the possi-
bility of use of engineered virus resistance in papaya
breeding.

It has been observed in case of several viruses
including geminivruses that resistant plants did not
confer resistance to other isolates (if present) of the
same virus. Resistance to virus on transgenic plants
expressing CP or Rep gene was shown to be depen-
dent on the sequence homology between the CP or
Rep transgene expressed in the plant genome and
the CP or Rep gene from the incoming virus. There-
fore, knowledge of the degree of homology among
the CP and Rep gene from the distinct PaLCuV iso-
lates which are present in a given area is important to
guide the development of transgenic papaya for the
control of PaLCuV. To address this problem a com-
prehensive plan is to be developed in case of PaLCuV
and already work on genetic variability of PaLCuV
isolates is currently going on in India (S Saxena, per-
sonal communication). The CP and Rep genes from
different isolates of PaLCuV (collected from different
geographic locations from North India) were cloned
and sequenced. The sequences revealed a substan-
tial amount of variability in different PaLCuV iso-
lates implicating the need to look for most homol-
ogous region in CP or Rep gene to be used as pu-
tative transgene and also the need for using genes
from local isolates in generation of PaLCuV resis-
tant transgenic papaya. If successful the technol-
ogy would improve the yield and quality of papaya
fruit.
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20.1
Introduction

Persimmon, Diospyros kaki Thunb., is a deciduous
fruit tree, native to the East Asia. It is believed to have
originated in the mountain area of southern China
and has been cultivated as an important fruit crop in
China, Korea, and Japan from prehistoric times. Per-
simmon fruit containing high amount of vitamin C,
dietary fiber, carotenoids and polyphenols (tannins)
is usually consumed as a fresh or dried fruit that was
one of the important nutrition sources in old times.
Young fruit has been used for obtaining tannins (per-
simmon oil), which is of great value for industrial
uses.

Persimmon is a typical oriental fruit and less
known in non-Asian countries. Most part of persim-
mon production is from East Asia. In 2004, the global
production of persimmon totaled 2,518,123 metric
tones, 72.3% from China, 11.9% from Korea and 9.2%
from Japan (FAO 2004). Following these main pro-
ducing countries, Brazil, Italy, and Israel are pro-
ducing substantial amounts, and Australia and New
Zealand are producing persimmon mainly for export.
Recently, remarkable expansion in persimmon pro-
duction has occurred in Spain, though persimmon
statistics of FAO does not include Spanish production
(Llácer and Badenes 2004). Thus, persimmon is gain-
ing popularity as a new fruit crop in the non-Asian
countries in recent years.

The genus Diospyros L. consists of approximately
400 species, found mostly in the tropics of Asia, Africa
and Central-South America (Yonemori et al. 2000).
Only few species, including D. kaki, are native to
the temperate zone. Most wild species of the genus
Diospyros are diploid (2n = 2x = 30) or tetraploid
(2n = 4x = 60), while D. kaki is basically a hexaploid
(2n = 6x = 90) (Ng 1978; Tamura et al. 1998; Choi
et al. 2003a,b). Someof the seedless cultivarsofD.kaki

have been reported as nonaploid (2n = 9x = 135)
(Zhuang et al. 1990; Tamura et al. 1998). Therefore,
single or several diploid and/or tetraploid species
must be involved in the polyploidization of persim-
mon, but so far, there is no consensus as to how per-
simmon acquired a high chromosome number and
whether it is an auto- or allo-polyploid. In an earlier
study based on morphological, geographical and cy-
tological analysis, Ng (1978) suggested a hypothesis
that D. kaki had originated directly from D. roxburghii
(syn. D. glandulosa) through polyploidy, cultivation
and selection. However, phylogenetic study based on
DNA variation in the special region of cpDNA (rbcL-
ORF106 and trnT-trnF) indicated that D. glandulosa
is closely related to D. oleifera, which is native of the
temperate region of China, and may not be the direct
progenitor of D. kaki (Yonemori et al. 1998). Recently,
phylogenetic analysisusingDNAsequencesof ITSand
matK region of some Diospyros species revealed that
D. galandulosa and D. oleifera were relatively close to
D. kaki, but direct relationship between D. galandu-
losa and D. kaki has not been proved (Yonemori et al.
submitted). On the other hand, close relationship be-
tween D. kaki and D. lotus was shown in both studies
(Yonemori et al. 1998; Yonemori et al. in preparation).
D. lotus is a diploid species, widely distributed in tem-
perate Asia and consumed as fresh or dried fruits. The
molecular data indicates that D. lotus or its ancestral
species would be associated with the speciation of
D. kaki.

It is difficult to define and characterize the sets
of homologous chromosomes based on chromosome
observation under a light microscope because so-
matic chromosomes of Diospyros species are too small
(Tamura et al. 1998). Recently, however, fluorescent in
situ hybridization (FISH) has been applied as a new
useful tool for analyzing karyotypes and phyloge-
netic relationships of some Diospyros species (Choi
et al. 2003a, b). When FISH using an rDNA probe was
performed, four homologous chromosomes and non-
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homologous two pairs of chromosomes carrying 45S
rDNA were observed (Choi et al. 2003a). The pres-
ence of non-homologous two pairs of chromosomes
bearing 45S rDNA indicates that D. kaki might be
an allohexaploid. However, four homologous chro-
mosomes with 45S rDNA might mean that D. kaki
may be an autoallohexaploid or at least some chromo-
somes are homoeologous among the different struc-
tural genomes of D. kaki. Thus, the genomic composi-
tion of D. kaki might be an allo- or autoallo-hexaploid
rather than autohexaploid, although further analy-
sis will be required to clarify the polyploid nature of
persimmon. Previously, Zhuang (1990) hypothesized
that D. kaki might be an allohexaploid, since bivalent
formation occurred regularly and few multivalents
were observed in the meiosis of pollen mother cell.
However, the possibility of polysomic polyploidy in
persimmon genome cannot be ruled out because lack
of multivalent formation does not necessarily indi-
cate a disomic polyploid in case of species with short
chromosomes (Krebs and Hancock 1989; Wolf et al.
1989; Qu et al. 1998). As discussed bellow, segregation
analysis of molecular markers indicated the existence
of polysomic inheritance in D. kaki (Kanzaki et al.
2001).

The polyploidy nature in persimmon makes ge-
netic linkage analysis difficult and, so far, no effort
has been made to develop a genetic map for persim-
mon. Recently, we have developed molecular markers
associated with the trait of natural astringency-loss in
persimmon fruit and the markers are practically use-
ful in persimmon breeding programs (Kanzaki et al.
2001). Through the analysis of the markers, a possi-
ble explanation has given about genetic nature of the
trait of natural astringency-loss. In this chapter, we
focus on the trait of astringency-loss and describe the
possibility of polysomic inheritance in persimmon.

20.2
Nature of Natural Astringency-Loss
in Persimmon Fruit
and Its Inheritance

Generally, a persimmon fruit accumulates high
amount of soluble tannins and tastes extremely
astringent. However, some cultivars are genetically
defined to lose astringency naturally on the tree as
fruit development and are called as ‘non-astringent
persimmon’ or ‘sweet persimmon’. Strictly speaking,

persimmon cultivars are classified into four types
based on the relationship between astringency in
the fruit at harvest, presence of seed, and flesh
color (Hume 1914; Kajiura 1946; Yonemori et al.
2000). These four types are: 1) pollination-constant
non-astringent (PCNA), 2) pollination-variant non-
astringent (PVNA), 3) pollination-variant astringent
(PVA), and 4) pollination-constant astringent (PCA).
Among these four types, the only inborn non-
astringent type is PCNA-type because PVNA-type
fruits lose astringency only when they have a suf-
ficient number of seeds. The decisive difference
between PCNA and the other three types (non-
PCNA-type) is the pattern of tannin accumulation in
fruits (Yonemori and Matsushima 1985). PCNA-type
fruits stop to accumulate tannins at the early stage
of fruit growth, while non-PCNA-type accumulates
tannins until the middle stage of fruit development.
Therefore, PCNA-type fruits contain much less
tannins than non-PCNA-type at maturity and low
amount of tannins results in easy deastringency in
PCNA-type fruit. In other words, PCNA-type lacks
the ability to accumulate high amount of tannins in
the fruits. The PCNA/non-PCNA trait is qualitatively
inherited to the progenies and PCNA-type is recessive
to non-PCNA-type (Ikeda et al. 1985; Yamada and
Sato 2002). According to their reports, crosses
among PCNA-type plants yielded only PCNA-type
offspring and all F1 hybrids between PCNA and
non-PCNA-type cultivars become non-PCNA-type
offspring. When these F1 hybrids were backcrossed
to PCNA-type cultivars/selections, only around
15% of PCNA-type offspring were segregated in
the backcross population. Thus, it can be said that
PCNA-type is a recessive mutant in which the muta-
tion has occurred on the gene(s) controlling tannin
accumulation (called Ast, for astringency). The low
ratio of PCNA-type offspring in the backcrossed
population might be caused by polyploid nature
of persimmon. Assuming that persimmon is an
allohexaploid (or disomic hexaploid), Ikeda et al.
(1985) suggested a hypothesis that each of three
structural genomes would have single Ast locus
(Ast1, Ast2, and Ast3) and PCNA phenotype can be
expressed only in recessive genotype with triplicate
genes (ast1 ast2 ast3). In such a case, the expected
ratio of PCNA-type offspring in the backcross
population would be 12.5% if the donor parent
(non-PCNA-type) was homozygous dominant geno-
type with the three genes. Recently, however, based
on the segregation pattern of molecular markers



Chapter 20 Persimmon 355

Fig. 1. (a) A part of AFLP fingerprints using primer combination EACC/MCTA. Lanes: 1, PCNA bulk; 2, non-PCNA bulk; 3, PCNA
parent; 4, non-PCNA parent; following PCNA and non-PCNA offspring used for bulked segregant analysis. Arrow indicates the
AFLP marker, EACC/MCTA-400. (b) RFLP analysis of genomic DNAs digested with HindIII, using EACC/MCTA-400 as a probe.
Lanes: 1, non-PCNA donor parent; 2, PCNA parent for F1 hybrid; 3, F1 hybrid; 4, PCNA parent for backcross; following PCNA and
non-PCNA offspring used for bulked segregant analysis. Arrow indicates the two RFLP markers (A1 and A2) linked to Ast locus

linked to the PCNA/non-PCNA trait, Kanzaki et al.
(2001) suggested a new hypothesis that the mode of
inheritance of Ast gene appeared to be polysomic
rather than disomic.

20.3
Identification of Molecular Markers
Liked to the PCNA/non-PCNA Trait
and Polysomic Segregation
of the Markers

AFLP analysis was conducted to identify molecular
markers linked to the trait of natural astringency-loss
in PCNA type (Kanzaki et al. 2001). A total of 128
primer combinations were used in a bulked segre-

gant analysis and a candidate marker linked to one
of the dominant alleles conferring non-PCNA trait
was identified (Fig. 1a). This marker (EACC/MCTA-
400) was absent in all PCNA-type offspring tested and
was present in half of the non-PCNA-type offspring.
When the EACC/MCTA-400 fragment was isolated
and used as a probe for RFLP analysis, two polymor-
phic markers (A1 and A2) were detected (Fig. 1b).
The segregation pattern of A2 marker in RFLP analy-
sis was the same as that of EACC/MCTA-400 obtained
by AFLP analysis. A1 marker could be detected in
all A2-negative non-PCNA-type offspring and some
A2-positive non-PCNA-type offspring. These results
indicate that EACC/MCTA-400 and A2 markers are
linked to one dominant allele and A1 marker is linked
to another dominant allele. In our breeding popu-
lation, all non-PCNA-type offspring could be distin-
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Table 1. Segregation analysis of the RFLP markers associated with PCNA/non-PCNA trait. F1 progeny is derived from the cross
PCNAa × non-PCNA and backcross progeny is derived from PCNA × non-PCNA-type F1

Observed segregation Genotype of Expected segregation χ2 P
of RFLP markersb non-PCNA parent of RFLP markers

F1 progeny 8 A1 : 22 A1A2 : 10 A2
Disomic model Ast1/Ast1 Ast2/Ast2 All A1A2 ** **

Ast1/ast1 Ast2/ast2 1 A1: 1 A1A2: 1 A2 : 1 a 24.8 < 0.01
Ast1/Ast2 Ast1/Ast2 1 A1: 2 A1A2 : 1 A2 0.6 0.74

Tetrasomic model Ast-1/Ast-1/Ast-2/Ast-2 1 A1 : 4 A1A2 : 1 A2 2.75 0.25
Backcross 14 A1A2 : 37 A1 : 27 A2 : 23 a
progeny Disomic model Ast1/ast1 Ast2/ast2 1 A1A2 : 1 A1: 1 A2 : 1 a 10.8 0.013

Tetrasomic model Ast-1/Ast-2/ast/ast 1 A1A2 : 2 A1: 2 A2 : 1 a 4.39 0.22

a Assume that genotype of PCNA parent is ast1/ast1 ast2/ast2 (disomic model) or ast/ast/ast/ast (tetrasomic model).
b Four RFLP patterns are represented as A1(showing only A1 marker), A2 (showing only A2 marker), A1A2 (showing both A1
and A2 markers), and a (showing neither markers).

guished from PCNA-type offspring by the presence of
either RFLP marker or both. This suggests that there
are two DNA fragments which are associated sepa-
rately with gene(s) conferring the non-PCNA trait,
and that the gene linked with each fragment is able
to express the same non-PCNA trait. Contrary to the
Ikeda’s hypothesis (1985) that triplicate genes could
be associated with the trait, our results indicated that
PCNA/non-PCNA trait would be controlled by du-
plicate genes. Here, we suggest a possible hypothesis
about the inheritance of the trait based on the seg-
regation analysis of these RFLP markers in F1 and
backcross progenies.

Assuming thatpersimmon is adisomicpoplyploid
(allohexaploid) and homeoalleic Ast genes are sepa-
rately associated with the trait, two RFLP markers (A1
and A2) linked to each Ast gene (Ast1 and Ast2) should
be segregated independently in a progeny. For exam-
ple, if the genotype of non-PCNA-parent is homozy-
gous for two loci (Ast1/Ast1 Ast2/Ast2), all F1 hybrids
between PCNA-parent (genotype: ast1/ast1 ast2/ast2)
must show both A1 and A2 markers (Table 1). If the
non-PCNA-parenthasheterozygous state forboth loci
(Ast1/ast1 Ast2/ast2), A1 and A2 bands will segregate
independently and 25% of F1 progeny should present
neither A1 nor A2 markers. These assumptions, how-
ever, did not fit to the observed segregation of these
markers in F1 progeny (Table 1). It might be possible
that both A1 and A2 markers are linked to homozy-
gous dominant alleles at each locus. Assuming that
Ast1 and Ast2 form two allele pairs at different loci
(Ast1:Ast2 Ast1:Ast2), the expected segregation of A1
and A2 markers in F1 progeny should be A1:A1A2:A1

= 1:2:1, and this ratio seems to fit to the observed seg-
regation (Table 1). However, when the segregation in
backcross progenies was considered, disomic model
did not fit to the observed ratio (Table 1). Thus, it
would not be most likely that duplicate Ast loci with
a disomic nature control the PCNA/non-PCNA trait.

On the other hand, assuming tetrasomic inheri-
tance of the Ast gene seemed to be more likely (Ta-
ble 1). If persimmon is an autoallohexaploid and the
PCNA/non-PCNA trait is controlled by tetra-alleic Ast
locus in the polysomic genome, segregation of the
RFLP markers linked to the locus would follow tetra-
somic segregation. The observed segregation of the
RFLP markers in both F1 and backcross progenies did
not deviated from the expected tetrasomic segrega-
tion (pure chromosome segregation) (Table 1) and
this result suggests the polysomic nature of the lo-
cus. In addition, the expected ratio of PCNA plants in
backcross progeny would be 16.7% (tetrasomic pure
chromosome segregation) and this seemed to be con-
sistentwith theratioofPCNA-typeplants in thebreed-
ing population previously reported (Ikeda et al. 1985;
Yamada and Sato 2002).

There exists no conclusive evidence that persim-
mon is an autoallohexaploid. Both of cytogeneic anal-
ysis (Choi et al. 2003a) and segregation analysis of
RFLP markers (Kanzaki et al. 2001) indicates that
persimmon may have four chromosomes in a ho-
mologous group. To elucidate the genomic compo-
sition, further cytogenetic studies and segregation
analysis using codominant molecular markers will be
required. Genetic studies on persimmon would not
progress without solving this issue.
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20.4
Future Scope
for Persimmon Breeding

PCNA type is the most desirable for fresh consump-
tion. Thus, to develop and release commercially at-
tractive PCNA-type cultivars have been the main
breeding objective in Japan. So far, several PCNA
type cultivars have been released from the breed-
ing programs in National Institute of Fruit Tree Sci-
ence (Yonemori et al. 2000). In the Japanese breed-
ing programs, PCNA-type cultivars/selections have
been used as both parents to obtain PCNA-type
offspring exclusively in the progenies. However, as
crossings amongPCNA-type cultivars/selectionswere
repeated, inbreeding depression becomes a serious
problem (Yamada 1993). Using non-PCNA-type cul-
tivars/selections as a source of breeding is the bet-
ter way for extending the genetic pool of breed-
ing population, but it had been an impractical and
inefficient strategy to develop PCNA-type cultivars.
All F1 hybrids between PCNA and non-PCNA type
cultivars become non-PCNA type and only around
15% of PCNA-type offspring is obtainable even in
backcross population. For making such a strategy
more practical, marker-assisted selection using the
RFLP markers linked to Ast locus is a useful sys-
tem. We are developing an easy PCR-based selection
system based on the DNA sequences of adjacent re-
gion of the RFLP markers because RFLP analysis is
a relatively laborious and inconvenient in a practical
work.

It had been believed that PCNA type was uniquely
developed only in Japan. Recently, however, a PCNA-
type cultivar, ‘Luo Tian Tian Shi’, was found growing
in Luo Tian prefecture of China (Wang 1982; Wang
et al. 1997). Phylogenetic tree based on AFLP anal-
ysis showed distant relationship between ‘Luo Tian
Tian Shi’ and Japanese PCNA-type cultivar (Kan-
zaki et al. 2000a) and it would indicate independent
occurrence of each Chinese- and Japanese- PCNA
type. Also, the genetic nature of Chinese PCNA trait
seemed to be different from that of Japanese PCNA
trait. The RFLP marker linked to Ast locus could
be detected in ‘Luo Tian Tian Shi’ (Kanzaki et al.
2000b) and Ikegami et al. (2004) reported that hybrids
between ‘Luo Tian Tian Shi’ and Japanese PCNA-
type cultivar segregated into PCNA and non-PCNA
plants. These results suggest that the gene control-
ling Chinese PCNA trait should be different from

Ast gene of Japanese cultivar, although genetic na-
ture of Chinese-PCNA trait has not been understood
well. However, as the cross between ‘Luo Tian Tian
Shi’ and Japanese non-PCNA cultivar yield PCNA-
type offspring in F1 generation (Ikegami et al. 2006),
Chinese PCNA cultivar will be an important breed-
ing source for persimmon breeding project in the fu-
ture.
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