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Preface 

Biology is a source of fascination for most scientists, whether their training is in 
the life sciences or not. In particular, there is a special satisfaction in discovering 
an understanding of biology in the context of another science like mathematics. 
Fortunately there are plenty of interesting (and fun) problems in biology, and 
virtually all scientific disciplines have become the richer for it. For example, two 
major journals, Mathematical Biosciences and Journal of Mathematical Biology, 
have tripled in size since their inceptions 20-25 years ago. 

The various sciences have a great deal to give to one another, but there are 
still too many fences separating them. In writing this book we have adopted the 
philosophy that mathematical biology is not merely the intrusion of one science 
into another, but has a unity of its own, in which both the biology and the math­
ematics should be equal and complete, and should flow smoothly into and out of 
one another. We have taught mathematical biology with this philosophy in mind 
and have seen profound changes in the outlooks of our science and engineering 
students: The attitude of "Oh no, another pendulum on a spring problem!," or 
"Yet one more LCD circuit!" completely disappeared in the face of applications 
of mathematics in biology. There is a timeliness in calculating a protocol for ad­
ministering a drug. Likewise, the significance of bones being "sinks" for lead 
accumulation while bone meal is being sold as a dietary calcium supplement adds 
new meaning to mathematics as a life science. The dynamics of a compartmen­
talized system are classical; applications to biology can be novel. Exponential 
and logistic population growths are standard studies: the delay in the increase of 
AIDS cases behind the increase in the HIV-positive population is provocative. 

With these ideas in mind we decided that our book would have to possess 
several important features. For example, it would have to be understandable to 
students of either biology or mathematics, the latter referring to any science stu­
dents who normally take more than a year of calculus, i.e .• majors in mathematics, 
physics, chemistry, and engineering. 

No prior study of biology would be necessary. Mathematics students rarely 
take biology as part of their degree programs. but our experience has been that 
very rapid progress is possible once a foundation has been laid. Thus, the cov­
erage of biology would be extensive, considerably more than actually needed to 
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put the mathematics of the book into context. This would permit mathematics 
students to have much greater latitude in subsequent studies. especially in the 
"what-if' applications of a computer algebra system. It would also help to satisfy 
the intense intellectual interest that mathematics students have in the life sciences. 
as has been manifested in our classes. 

One year's study of calculus would be required. This would make the mate­
rial accessible to most biology majors and is the least mathematics preparation we 
felt to be practical for the study of the subject matter. We use more advanced ma­
terial, such as partial derivatives, but we explain them fully. Our biology students 
have had no problems with this approach. 

Part of every section would have applications of a computer algebra system. 
This hands-on approach provides a rich source of information through the use of 
"what-if' input and thus allows students to grasp important biological and mathe­
matical concepts in a way that is not possible otherwise. To facilitate this we have 
posted various Maple programs to the World Wide Web in care of the Birkhiiuser 
web page (http://www.birkhauser.com/books/isbn/O-8176-3809-1). In particular, 
changes in syntax as a result of new releases of Maple will be posted on these 
Web pages. On the other hand. we realize that computer algebra systems may not 
be available to everyone, and each lesson is complete without their use. 

Most importantly. the biology and mathematics would be i1ltegrated. Each 
chapter deals with a major topic, such as lead poisoning. and we begin by present­
ing a thorough foundation of fundamental biology. This leads into a discussion of 
a related mathematical concept and its elucidation with the computer algebra sys­
tem. Thus, for each major topic, the biology and the mathematics are combined 
into an integrated whole. 

To summarize. we hope that mathematics students will look at this book as 
a way to learn enough biology to make good models and that biology students 
will see it as an opportunity to understand the dynamics of a biological system. 
For both these students and their engineering classmates. perhaps this book can 
present a new perspective for a life's work. 

Acknowledgements 
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Chapter 1 

Biology, Mathematics, and a 
Mathematical Biology 

Laboratory 

Section 1.1 

The Natural Linkage Between Mathematics and Biology 

Mathematics and biology have a synergistic relationship. Biology produces inter­
esting problems. mathematics provides models to understand them. and biology 
returns to test the mathematical models. Recent advances in computer algebra 
systems have facilitated the manipulation of complicated mathematical systems. 
This has made it possible for scientists to focus on understanding mathematical 
biology. rather than on the formalities of obtaining solutions to equations. 

What is the function o/mathematical biology? 

Our answer to this question. and the guiding philosophy of this book. is sim­
ple: The function of mathematical biology is to exploit the natural relationship 
between biology and mathematics. The linkage between the two sciences is em­
bodied in the reciprocal contributions that they make to each other: Biology gen­
erates complex problems. and mathematics can provide ways to understand them. 
In turn. mathematical models suggest new lines of inquiry that can only be tested 
on real biological systems. 

We believe that an understanding of the relationship between two subjects 
must be preceded by a thorough understanding of the subjects themselves. Indeed. 
the excitement of mathematical biology begins with the discovery of an interest­
ing and uniquely biological problem. The excitement grows when we realize the 
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mathematical tools at our disposal can profitably be applied to the problem. The 
interplay between mathematical tools and biological problems constitutes mathe­
matical biology. 

The time is right/or integrating mathematics and biolog): 

Biology is a rapidly expanding science; research advances in the life sciences 
leave virtually no aspects of our public and private lives untouched. Newspa­
pers bombard us with information about in vitro fertilization. industrial pollution. 
radiation effects. AIDS. genetic manipulation. and forensics. 

Quite apart from the news pouring onto us from the outside world. we have 
an innate interest in biology. We have a natural curiosity about ourselves. Every 
day we ask ourselves a non-stop series of questions: What happens to our bodies 
as we get older? Where does our food go? How do poisons work? Why do I 
look like my mother? What does it mean to "think"? Why are HIV infections 
spreading so rapidly in certain population groups? 

Professional biologists have traditionally made their living by trying to an­
swer these kinds of questions. But scientists with other kinds of training have 
also seen ways that they could enter the fray. As a result. chemists. physicists. 
engineers. and mathematicians have all made important contributions to the life 
sciences. These contributions often have been of a sort that required specialized 
training or a novel insight that only specialized training could generate. 

In this book we present some mathematical approaches to understanding bi­
ological systems. This approach has the hazard that an in-depth analysis could 
quickly lead to unmanageably complex numerical and symbolic calculations. 
However. technical advances in the computer hArdware and software industries 
have put powerful computational tools into the hands of anyone who is interested. 
Computer algebra systems allow scientists to bypass some of the details of solv­
ing mathematical problems. This then allows them to spend more time on the 
interpretation of biological phenomena, as revealed by the mathematical analy­
sis.' 

Section 1.2 

The Use of Models in Biology 

Scientists must represent real systems by models. Real systems are too com­
plicated. and. besides. observation may change the real system. A good model 
should be simple and should exhibit the behaviors of the real system that inter­
est us. Further. it should suggest experimental tests of itself that are so revealing 
that we must eventually discard the model in favor of a better one. We therefore 
measure scientific progress by the production of better and better models. not by 
whether we find some absolute truth. 

I References 1-4 at the end of this chapter arc recent articles that describe the importance of 
mathemalJcal biology. 
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A model is a representation of a real system. 

The driving force behind the creation of models is this admission: Truth is elusive, 
but we can gradually approximate it by creating better and better representations. 

There are at least two reasons why the truth is so elusive in real systems. The 
first reason is obvious: The universe is extremely complicated. People have tried 
unsuccessfully to understand it for millennia, running up countless blind alleys 
and only occasionally finding enlightenment. Claims of great success abound, 
usually followed by their demise. Physicists in the late nineteenth century ad­
vised their students that Maxwell's equations had summed up everything impor­
tant about physics, and that further research was useless. Einstein then developed 
the theory of general relativity, which contained Maxwell's equations as a mere 
subcategory. The unified field theory ("The Theory of Everything") will contain 
Einstein's theory as a subcategory. Where will it end? 

The second reason for the elusivity of the truth is a bit more complicated: It 
is that we tend to change reality when we examine any system too closely. This 
concept, which originates in quantum mechanics, suggests that the disturbances 
that inevitably accompany all observations will change the thing being observed. 
Thus, "truth" will be changed by the very act of looking for it. 2 At the energy scale 
of atoms and molecules the disturbances induced by the observer are especially 
severe. This has the effect of rendering it impossible to observe a single such 
particle without completely changing some of the particle's fundamental proper­
ties. There are macroscopic analogs to this effect. For example, what is the "true" 
color of the paper in this book? The answer depends on the color of the light used 
to illuminate the paper, white light being merely a convenience; most other colors 
would also do. Thus, you could be said to have chosen the color of the paper by 
your choice of observation method. 

Do these considerations make a search for ultimate explanations hopeless? 
The answer is "No, because what is really important is the progress of the search, 
rather than some ultimate explanation that is probably unattainable anyway." 

Science is a rational, continuing search for better models. 

Once we accept the facts that a perfect understanding of very complex systems is 
out of reach and that the notion of "ultimate explanations" is merely a dream, we 
will have freed ourselves to make scientific progress. We are then able to take a 
reductionist approach, fragmenting big systems into small ones that are individu­
ally amenable to und:rstanding. When enough small parts are understood, we can 
take a holist'c approach, trying to understand the relationships among the parts, 
thus reassembling the entire system. 

In this book we reduce complicated biological systems to relatively simple 
mathematical models, usually of one to several equations. We then solve the 

2This situation is demonstrated by the following exchange: Question: How would you decide 
which of two gemstones is a real ruby and which is a cheap imitation? Answer: Tap each sharply with 
a hammer. The one that shatters used to be the real ruby, 
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equations for variables of interest and ask if the functional dependencies of those 
variables predict salient features of the real system. 

There are several things we expect from a good model of a real system. 

a. The model must exhibit properties that are similar to those of the real system, 
and those properties must be the ones in which we are interested.3 A six-inch 
replica of a 747 airliner may have the exact fluid dynamical properties of the 
real plane, but would be useless in determining the comfort of the seats of a 
real 747. 

b. It must self-destruct. A good model must suggest tests of itself and predict 
their outcomes. Eventually a good model will suggest a very clever experi­
ment whose outcome will not be what the model predicted. The model must 
then be discarded in favor of a new one. 

The search for better and better models thus involves the continuous testing 
and replacement of existing models. This search must have a rational foundation, 
being based on phenomena that can be directly observed. A model that cannot be 
tested by the direct collection of data, and that therefore must be accepted on the 
basis of faith, has no place in science. 

Many kinds of models are important in understanding biology phenonema. 

Models are especially useful in biology. The most immediate reason is that living 
systems are lTluch too complicated to be truly understood as whole entities. Thus, 
to design a useful model we must strip away irrelevant, confounding behaviors, 
leaving only those that directly interest us. We must walk a fine line here: In our 
zeal to simplify, we may strip away important features of the living system, and 
the other extreme, a too-complicated model, is intractable and useless. 

Models in biology span a wide spectrum. The next box lists some that are 
commonly used. 

Why is there so much biological information in this book? 

It is possible to write a mathematical biology book that contains only a page 
or two of biological information at the beginning of each chapter. We see that 
format as the source of two problems: First, it is intellectually limiting. A student 
cannot apply the powerful tools of mathematics to biological problems he or she 
does not understand. This limitation can be removed by a thorough discussion 
of the underlying biological systems, which can suggest further applications of 
mathematics. Thus, a strong grounding in biology helps students to move further 
into mathematical biology. 

JOne characteristic of the real systemthnt we definitely do not want is its response to the obser­
vation process. as described earlier. In keeping with the concept of a model as an idealization. we want 
the model 10 represenl Ihe re:lI syslem in a "nalive Slate." divorced from the observer. 
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MODEL 

aaXAa 

dA =-kA 
dt 

~-t@]-t~ 

a camera 

WHAT THE MODEL REPRESENTS 

Gene behavior in a genetic cross 

Rate of elimination of a drug from the blood 

Reflex arc involving a stimulus Receptor. 
the hentral nervous system and 

an gffector muscle 

The eye of a vertebrate or of an octopus 

Second. giving short shrift to biology reinforces the misconception that each 
of the various sciences sits in a vacuum. In fact. it has been our experience that 
many students of mathematics. physics and engineering have a genuine interest 
in biology. but little opportunity to study it. Taking our biological discussions 
well beyond the barest facts can help these students to understand the richness of 
biology. and thereby to encourage interdisciplinary thinking. 

Section 1.3 

What Can Be Derived from a Model and How Is It Analyzed? 

A model is more than the sum of its parts. Its success lies in its ability to discover 
new results. results that transcend the individual facts built into it. One result of 
a model can be the observation that seemingly dissimilar processes are in fact 
related. In an abstract form. the mathematical equations of the process might be 
identical to those of other phenomena. In this case the two disciplines reinforce 
each other: A conclusion difficult to see in one might be an easy consequence in 
the other. 

To analyze the mathematical equations that arise in this book. we draw on 
the fundamentals of matrix calculations. counting principles for permutations and 
combinations. the calculus. and fundamentals of differential equations. However. 
we will make extensive use of the power of symbolic computational software-a 
computer algebra system. All of the displayed calculations and graphs in this text 
are done using Maple. The Maple syntax immediately accompanies the calcula-
tion or graph and is indicated by a special font. . 

Deriving consequences: the other side of modeling 

After a model has been formulated and the mathematical problems have been de­
fined. the problems must be solved. In symbolic form. a problem takes on a life 
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of its own, no longer necessarily tied to its physical origins. In symbolic form, 
the system may even apply to other, totally unexpected, phenomena. What do 
the seven bridges at Konigsberg have to do with discoveries about DNA? The 
mathematician Euler formed an abstract model of the bridges and their adjoining 
land masses and founded the principles of Eulerian graphs on this model. Today, 
Eulerian graphs are used, among other ways, to investigate the ancestry of liv­
ing things by calculating the probability of matches of DNA base pair sequences 
(see Kandel [5]). The differential equations describing spring-mass systems and 
engineering vibrations are identical to those governing electrical circuits with ca­
pacitors, inductors, and resistors. And again these very same equations pertain to 
the interplay between glucose and insulin in humans. The abstract and symbolic 
treatment of these systems through mathematics allows the transfer of intuition 
between them. Through mathematics, discoveries in anyone of these areas can 
lead to a breakthrough in the others. But mathematics and applications are mutu­
ally reinforcing: the abstraction can uncover truths about the application, suggest 
questions to ask and experiments to try; the application can foster mathematical 
intuition and form the basis of the results from which mathematical theorems are 
distilled. 

In symbolic form, a biological problem lends itself to powerful mathematical 
processing techniques, such as differentiation or integration, and is governed by 
mathematical assertions known as theorems. Theorems furnish the conclusions 
that may be drawn about a model so long as their hypotheses are fulfilled. As­
sumptions built into a model are there to allow its equations to be posed and its 
conclusions to be mathematically sound. The validity of a model is closely asso­
ciated with its assumptions, but experimentation is the final arbiter of its worth. 
The assumption underlying the exponential growth model, namely 'ft = ky (see 
Section 2.4 and Chapter 3), is unlikely to be fulfilled precisely in any case, yet 
exponential growth is widely observed for biological populations. However, ex­
ponential growth ultimately predicts unlimited population size, which never ma­
terializes precisely due to a breakdown in the modeling assumption. A model 
is robust if it is widely applicable. In every case, the assumptions of a model 
must be spelled out and thoroughly understood. The validity of a model's conclu­
sions must be experimentally confirmed. Limits of applicability, robustness, and 
regions of failure need to be determined by carefully designed experiments. 

Some biological systems involve only a small number of entities or are 
greatly influenced by a few of them, maybe even one. Consider the possible 
DNA sequences 100 base pairs long. Among the possibilities, one or two might 
be critical to life. (It is known that tRNA molecules can have as few as 73 nu­
cleotide residues (Lehninger (6 D.) Or consider the survival prospects of a skein of 
Canadian geese blown off migratory course, toward the Hawaiian islands. Their 
survival analysis must keep track of detailed events for each goose and possibly 
even details of their individual genetic makeups, for the loss of a single goose or 
the birth of defective goslings could spell extinction for the small colony. (The 
Ney-Ney, indigenous to Hawaii, is thought to be related to Canadian geese.) This 
is the mathematics of discrete systems, i.e., the mathematics of a finite number 
of states. The main tools we will need here are knowledge of matrices and their 
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arithmetic, counting principles for permutations and combinations, and some ba­
sics of probability calculations. 

Other biological systems or processes involve thousands, even millions, of 
entities, and the fate of a few of them has little influence on the entire system. 
Examples are the diffusion process of oxygen molecules or the reproduction of 
a bacterial colony. In these systems, individual analysis gives way to group av­
erages. An average survival rate of 25% among goslings of a large gaggle of 
Canadian geese still ensures exponential growth of the gaggle in the absence of 
other effects; but this survival probability sustained by exactly four offspring of 
an isolated gaggle might not result in exponential growth at all but, rather, in total 
loss instead. When there are large numbers involved, the mathematics of the con­
tinuum may be brought to bear, principally calculus and differential equations. 
This greatly simplifies the analysis. The techniques are powerful and mature and 
a great many are available. 

Computer algebra systems make the mathematics accessible. 

Students in biology and allied fields such as immunology, epidemiology, or phar­
macology need to know how to quantify concepts and to make models, yet these 
students typically have only one year of undergraduate study in mathematics. This 
one year may be very general and not involve any examples from biology. When 
the need arises, they are likely to accept the models and results of others, perhaps 
without deep understanding. 

On the other side of campus, students in mathematics read in the popular 
technical press of biological phenomena, and wish they could see how to use their 
flair for mathematics to get them into biology. The examples they typically see in 
mathematics classes have their roots in physics. Applications of mathematics to 
biology seem far away. 

How can this dilemma be resolved? Should the biology students be asked 
to take a second year of mathematics in order to be ready to use the power of 
differential equations for modeling? And what of discrete models, probabilistic 
models, or statistics? One might envision some collection of biology students 
having almost a minor in mathematics in order to be prepared to read, understand, 
and create biological models. 

Must the mathematics students take a course in botany, and then zoology, 
before they can make a model for the level to which the small vertebra popula­
tion must be immunized in a geographic region in order to reduce the size of the 
population of ticks carrying Lyme Disease? Such a model is suggested by Kantor 
[7]. 

There is an alternative. Computer algebra systems create a new paradigm 
for designing, analyzing, and drawing conclusions from models in science and 
engineering. The technology in the computer algebra systems allows concepts to 
be paramount while computations and details become less important. With such a 
symbolic computational engine it is possible to read about models that are being 
actively explored in the current literature. and to analyze these new models on a 
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home computer, a lap-top, or an office workstation. 
The theorems from which our conclusions are derived often result from care­

fully tracking evolving system behavior over many iterations in discrete systems 
or infinite time in continuous ones. Where possible, the mathematical equations 
are solved and the solutions exhibited. Predictions of the model are made under 
a range of starting conditions and possibly unusual parameter regimes. These are 
the bases of "what if?" experiments. For example, given a satisfactory model for 
a fishery, what if one imposes various levels of harvesting? To answer this and 
related questions, the computer algebra system can carry out the technical compu­
tations: calculate roots, symbolically differentiate, integrate, and solve differen­
tial equations, perform matrix arithmetic, track system evolution, and graphically 
display results. 

In this book we will use Maple. It should be emphasized that any Maple 
capability we use here is likely to be available on other symbolic processing sys­
tems as well. Maple code will be indented, set in smaller type and led off with 
the Maple prompt. Maple code will usually appear immediately preceeding a 
graphical figure or displayed results. That code (possibly along with lines from a 
preceeding display for lengthy developments) produces the figure or the display. 
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Chapter 2 

Some Mathematical Tools 

Introduction to this chapter 

This book is about biological modeling-the construction of mathematical ab­
stractions intended to characterize biological phenomena and the derivation of 
predictions from these abstractions under real or hypothesized conditions. A 
model must capture the essence of an event or process but at the same time not 
be so complicated that it is intractable or dilutes the event's most important fea­
tures. In this regard, the field of differential equations is the most widely invoked 
branch of mathematics across the broad spectrum of biological modeling. Future 
values of the variables that describe a process depend on their rates of growth or 
decay. These in turn depend on present. or past. values of these same variables 
through simple linear or power relationships. These are the ingredients of a dif­
ferential equation. We discuss linear and power laws between variables and their 
derivatives in Section 2.1 and differential equations in Section 2.4. 

Once formulated. a model contains parameters which must be specialized 
to the particular instance of the process being modeled. This requires gathering 
and treating experimental data. It requires determining values of the parameters 
of a model so as to agree with, or fit. the data. The universal technique for this 
is the method of least squares, the subject of Sections 2.2 and 2.3. Even though 
experimental data is subject to small random variations. or noise. and imprecision. 
least squares is designed to deal with this problem. 

Describing noisy data and other manifestations of variation is the province 
of statistics. Distributions of values can be graphically portrayed as histograms 
or distilled to a single number. the average or mean. The most widely occurring 
distribution in the natural world is the normal or Gaussian distribution. These 
topics are taken up in Section 2.5. 

Finally. to a greater extent in biological phenomena than in other fields of 
science and engineering. random processes playa significant role in shaping the 
course of events. This is true at all scales from diffusion at the atomic level. to 
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random combinations of genes, to the behavior of whole organisms. Being in the 
wrong place at the wrong time can mean being a victim (or finding a meal). In 
Section 2.6 we discuss the basics of probabilities. 

Fortunately, while an understanding of these mathematical tools is required 
for this book, deep knowledge of mathematical techniques is not. This is a con­
sequence of the fruition of symbolic mathematical software such as Maple. We 
will use the power of this software to execute the calculations, know the special 
functions, simplify the algebra, solve the differential equations and generally per­
form the technical work. Above all, Maple will display the results. Therefore, 
the curious are free to let their imaginations roam and focus on perfecting and 
exercising the models themselves. 

Section 2.1 

Linear Dependence 

The simplest, non-constant, relationship between two variables is a linear one. 
The simplest linear relationship is one of proportionality: if one of the variables 
doubles or triples or halves in value the other does likewise. Proportionality be­
tween variables x and y is expressed as y = kx for some constant k. Proportionality 
can apply to derivatives of variables as well as to variables themselves since they 
are just rates of change. Historically, one of the major impacts of calculus is the 
improved ability to model by the use of derivatives in just this way. 

Relationships among variables call be graphically visualized. 

When studying almost any phenomenon, among the first observations to be made 
about it are its changing attributes. A tropical storm gains in wind speed as it 
develops; the intensity of sound decreases with distance from its source; living 
things increase in weight in their early period of life. The measurable quan­
tities associated with a given phenomenon are referred to as constants, vari­
ables, or parameters. Constants are unchanging quantities such as the mathemat­
ical constant 1t = 3.14159 ... or the physical constant named after Boltzmann: 
k = 1.38 x 10- 16 ergs per degree. Variables are quantitative attributes of a phe­
nomenon that can change in value, like the wind speed of a tropical storm. or the 
intensity of sound, or the weight of an organism. 

Parameters are quantities that are constant for a particular instance of a phe­
nomenon but can be different in another instance. For example, the strength of 
hair fibers is greater for thicker fibers, and the same holds for spider web fila­
ments, but the latter has a much higher strength per unit cross-section. I Strength 
per unit cross-section is a property of material that tends to be constant for a given 
type of material but varies over different materials and therefore is a parameter in 
modeling filament strength. 

I The strength of a material per unit cross-section is known a< YtJUn!i'J lnodu/uJ. 
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Often two variables of a phenomenon are linearly related, that is. a graphical 
representation of their relationship is a straight line. Temperatures as measured 
on the Fahrenheit scale. F. and on the Celsius scale. C, are related this way; see 
Figure 2.1.1. Knowing that the temperatures C = 0 and C = 100 correspond to 
F = 32 and F = 212 respectively allows one to derive their linear relationship, 
namely 

9 
F = SC+32. (2.1.1) 

In this, both C and F have power or degree one, that is, their exponent is I. (Being 
understood, the I is not explicitly written.) When two variables are algebraically 
related and all terms in the equation are of degree one (or constant). then the graph 
of the equation will be a straight line. The multiplier. or coefficient. 9/5 of C in 
equation (2.1.1) is the slope of the straight line or the constallt of proportionality 
between the variables. The constant term 32 in the equation is the intercept of the 
straight line or translational term of the equation. These parameters are shown 
graphically in Figure 2.1.1. 

We can isolate the wnstant of proportionality by appropriate translation. Ab­
solute zero on the Celsius scale is -273.ISC, which is usually expressed in de-

> plot([C,915*C+32,C=0 .. 100).-1 0 .. 1 00.-30 .. 220.tickmarks=[5,OJ): 

212 

Temp of 

32 

o 20 40 60 80 100 

Temp "C 

Figure 2.1.1 Temperature conversion 
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grees Kelvin, K. Translation from degrees K to degrees C involves subtracting the 
fixed amount 273.15, 

C = K - 273.15. (2.1.2) 

From equation (2.1.1) we calculate absolute zero on the Fahrenheit scale as 

9 
F = 5(-273.15) + 32 = -459.67, 

or about -460 degrees Ranki", R, that is 

F = R - 459.67. (2.1.3) 

Hence, substituting equations (2.1.2) and (2.1.3) into equation (2.1.1), we find R 
is related to K by 

9 
R= -K. 

5 

Thus R is proportional to K and both are zero at the same time. so there is no 
translational term. 

It is often observed that the relationship between two variables is one of 
proportionality, in which the constant is not yet known. Thus if variables x and y 
are linearly related (and both are zero at the same time), we write 

)' = kx, 

with the constant of proportionality k to be subsequently determined (see Section 
2.2 on least squares). 

Power laws can be converted to linear form. 

The area of a circle does not vary linearly with the radius but rather quadratically, 
A = 1t?; the power. or degree. of r is two. Heat radiates in proportion to the 
fourth power of absolute temperature. gravitational force varies in proportion to 
the inverse square power of distance. and diffusivity varies with the one-third 
power of density (see Chapter 6). These are examples in which the relationship 
between variables is by a power law with the power different from one. There are 
many more. 

In general. a power law is of the form 

y = AxA' (2.1.4) 

for some constants A and k. Due to the particular ease of graphing linear relation­
ships. it would be advantageous if this equation could be put into linear form. This 
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can be done by taking the logarithm of both sides of the equation. Two popular 
bases for logarithms are 10 and e = 2.718281828 ... ; the former is often denoted 
by log while the latter by In. Either will work: 

logy = klogx+ logA, (2.1.5) 

and the relationship between logy and logx is linear. Plotting pairs of (x,y) data 
values on special log-log paper will result in a straight line with slope k. Of 
course, on a log-log plot there is no point corresponding to x = 0 or y = o. 
However, if A = I then logy is proportional to logx and the graph goes through 
the point (1, I). In general, A appears on the graph as the value of y when x = l. 

Another frequently encountered relationship between variables is the expo­
nential one given by 

)' = Ca'. (2.1.6) 

Note that the variable x is now in the exponent. Exponential functions grow (or 
decay) much faster than polynomial functions; that is, if a > I, then, as an easy 
consequence ofL'HOpital's rule, for any power k: 

> assume(a> 1); assume(k>O); 
> limit(x-k/a-x,x=infinity); 

lim X' = o. 
x-+oo aX 

(2.1.7) 

Figure 2.1.2 demonstrates this with k = 3 and a = 2. We have drawn graphs of 
y = xl, y = 2x, and y = 100· xl /2x. The graphs of the first two cross twice, the 
last time about x ~ 10: 

> solve(x"3=2"x,x); evalf(· ); 

1.3734, 9.939. 

Taking logarithms of equation (2.1.6) with base e gives 

Iny = xlna + InC. (2.1.8) 

Here it is In y that is proportional to x. A semi-log plot of exponentially related 
variables, as in equation (2.1.8), produces a straight line whose slope is In a. 
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> plot( {[x,x·3,x=O •• 121,[x,2"x,x=O •• 121,[x,1 OO·x·312·x,x=O .. 141}, 
x=O .• 14,y=O .. 4000); 

4000 

3000 

2000 

1000 

c 

o 0 2 4 6 8 10 

Figure 2.1.2 Exponential vs polynomial rate of growth. 
Graphs of (a) xl, (b) 2"', and (c) I ()()x3/2"'. 

12 14 

By defining r = In a and exponentiating both sides of equation (2.1.8), we 
get 

)' = Cerx where r = In a. (2.1.9) 

This is an alternate form of relationship equation (2.1.6) and shows that an expo­
nential relationship can be expressed in base e if desired. 

Proportionality can pertain to derivatives, too. 

A natural and simplifying assumption about the growth of a population is that 
the number of offspring at any given time is proponionai to the number of adults 
at that time (see Chapter 3). There is exactly a linear relationship between the 
number of offspring and the number of adults. Let y(t) (or just)' in brief) denote 
the number of adults at time t. In any given small interval of time ll.1, the number 
of offspring in that time represents the change in the population ll.y. The ratio 
ll.)' / ll.t is the average rate of growth of the population over the time period ll.t. 
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The derivative dy / dl is the instantaneous rate of growth at time t, or just the rate 
of growth at time I, instantaneous being understood. Making the questionable, 
but simplifying, assumption that new offspring are immediately adults, leads to a 
mathematical expression of the italicized statement above: 

dy 
- =ky 
dt 

for some constant of proportionality k. That is, the derivative or rate of growth is 
proportional to the number present. 

This particular differential equation is easily solved by integration, 

dy 
-=kdt or Iny=kt+lnA 
y 

with constant of integration In A. Exponentiating both sides gives 

This situation is typical and we will encounter similar ones throughout the 
book. 

Exercises 

1. Proportionality constants associated with changes in units are often used in 
making conversions after measurements have been made. Convert from the 
specified units to the indicated units. 
a. Convert: x inches to centimeters, y pounds per gallon to kilograms per 

liter, z miles per hour to kilometers per hour. 
Maple has the ability to change units (type: ?convert). Here is syntax 
for the above. 

> convert(x*inches,metric); 

> convert(y*poundslgallon,metric,US); 

> convert(Z*milesfhour,metric); 

b. Sketch three graphs similar to Figure 2.1.1 to show the changes in units 
indicated above. Syntax similar to that which generated Figure 2.1.1 can 
be used here. 

2. In this exercise, we compare graphs of power law relations with standard 
graphs, log graphs, and log-log graphs. 
a. Sketch the graphs of 7t? and ~7t,-3 on the same graph. Then sketch both 

as log-log plots. 

> plot( {Pi*(2,4I3*Pi*r"3} ,r=O .. 1); 
> plots[loglogplot)( {Pi*r"2,4/3*Pi*(3} ,r=O.1 .. 1); 
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b. Sketch the graphs of 3,r; and sxl on the same graph. Then sketch both 
log plots. 

> plot({ 3*S'x,S*3'x },x=O .. 1); 

> plots[logplot)( {3*S'x,S*3'x} ,x=O .. 1); 

3. This exercise examines limits of quotients of polynomials and exponentials. 
Sketch the graphs of 3x2 + 5x + 7 and 2x on the same axis. Also, sketch the 
graph of the quotient (3x2 + 5x + 7) 12x. Evaluate the limit of this quotient. 

> plot({3*x·2+S*x+7,2·x},x=O .. 7); 

> plot«3*x·2+S*x+7)J2·x,x=O .. 10,y:O .. 10); 

> Iimit«3*x'2+S*x+ 7)I2'x,x=infinity); 

4. This exercise solves differential equations such as those seen in Section 2.1. 
Give the solution and plot the graph of the solution for each of these differ­
ential equations. 

dy 
dl = 3y(I), )'(0) = 2, 

d)' 
dl = 2)'(1), yeO) = 3, 

d)' 
dl = 2)'(1), yeO) = -3, 

d)' 
dl = -2)'(1), )'(0) = 3. 

Here is syntax that will do the first problem and will un-do the definition of y 
to prepare for the remaining problems. 

> eq:=diff(v(t),t) = 3*V(t); dsolve( { eq,v(O)=2 } ,V(t)); 
> V:=unappIV(rhs(" ),t); ptot(V(t),I=O •. 1); 

> V:='V'; 

Section 2.2 

Linear Regression, the Method of Least Squares 

In this section we introduce the method of least squares for fitting straight lines to 
experimental data. By transformation, the method can be made to work for data 
related by power laws and exponential laws as well as for linearly related data. 

The method is illustrated with two examples. 
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The method of least squares calculates a linear fit to experimmtal data. 

Imagine performing the following simple experiment: Record the temperature of 
a bath as shown on two different thermometers, one calibrated in Fahrenheit and 
the other in Celsius, as the bath is heated. We plot the temperature F against 
the temperature C. Surprisingly, if there are three or more data points observed to 
high precision, they will not fall on a single straight line because the mathematical 
line established by two ofthe points will dictate infinitely many digits of precision 
for the others-no measuring device is capable of infinite precision. This is one 
source of error; there are others. Thus experimental data, even data for linearly 
related variables, are not expected to fall perfectly along a straight line. 

How, then, can we conclude experimentally that two variables are linearly 
related, and, if they are, how can the slope and intercept of the correspondence be 
determined? The answer to the latter question is by the method of least squares fit 
and is the subject ofthis section; the answer to the first involves theoretical consid­
erations and the collective judgment of scientists familiar with the phenomenon. 

Assume the variables x and yare suspected to be linearly related and we have 
3 experimental points for them, for example C and F in the example above. For 
the 3 data points (x .. YI), (X2, )'2), and (X3,)'3) shown in Figure 2.2.1, consider a 
possible straight line fit,l(x). Let el, e2, and e3 be the errors 

e; = )'; -l(x;), i = I ... 3, 

defined as the difference between the data value y; and the linear value l(x;) for 
each point. Note that we assume all x-data values are exact and that the errors are 
in the y-values only. This is reasonable because x is the independent variable; the 
x-values are the ones determined by the experimenter. 

We want to choose a line l that minimizes all of the errors at the same time; 
thus a first attempt might be to minimize the sum el + e2 + e). The difficulty 
with this idea is that these errors can cancel because they are signed values. Their 
sum could even be zero. But squaring each error eliminates this problem. And we 
choose the line l so as to minimize 

3 3 

E = Le~ = L[Y; -l(x;)J2, 
;=1 ;=1 

that is, the least of the squared errors. 
A line is determined by two parameters, slope m and intercept b, l(x) = 

mx+b. Therefore the mathematical problem becomes to find m and b to minimize 

n 
E(m,b) = L[Y; - (mx; + b)]2, (2.2.1) 

;=1 

for n equal to the number of data points, 3 in this example. We emphasize that this 
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4 

e2 e3 

3 

y 

2 

lei 

-I o 0 2 

x 

-I 

Figure 2.2.1 The differences ei = Yi - ((Xi) 

error E is a function of m and b (not x and y, as the Xi and )'i are given numbers). 
Solving such a minimization problem is standard practice: Set the derivatives of 
E with respect to its variables m and b equal to zero, and solve for m and b.2 

iJE " 
0= - = -2 Lb'; - (nu; + b)]x; am ;=1 

iJE " 
0= iJb = -2 LlY; - (nIX; + b)]. 

,=1 

These equations simplify to 

11 '1 n 

o = L X;)'i - m L xT - b LX; 
i=1 i=1 ;=1 

n " 
(2.2.2) 

0= LY; - m LX; - nb, 
i=1 ;=1 

2 Since E is a function of two independent variables III and b, it can vary with III while b i~ held 
constant or vice versa. To calculate it~ derivative~, we do just that: Pretend b is a constant, and 
differentiate with respect to III as usual. This is called the partial derivative with respect to m and is 
written aE/am in dereren~-e to the variables held fixed. Similarly. hold III constant and differentiate 
with respect to b to get aE/ab. At a minimum point of E. both derivatives must be zero since E will 
be moh'",ntarily stationary with respect to each variable. 
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which may be easily solved, for instance by Cramer's Rule. The least squares 
solution is 

n I.I-I XjYj - (I,i-I Xj)(I,i.:1 )'j) 
m = ~" __ ' (~" )2 n .L.j=1 Xi - .L.j=1 Xj 

b = (I,7=1 xi)(I,i.:, Yi) - (I,7=1 Xi)(I,7..1 XiYi) 
n I,i.:1 xi - (I,i=1 Xi)2 

The expression for b simplifies t03 

I It I " 
b = Y - mX where y = - LYi and j = - LXi' 

n ;=1 n j,=1 

We will illustrate the least squares method with two examples. 

Example 2.2.1 

Juvenile height vs. age is only approximately linear. 

In Table 2.2.1 we show age and averaged height data for children. 

Table 2.2.1 Average height versus age for children 

height (cm) 
age 

75 
1 

92 
3 

\08 
5 

121 
7 

130 
9 

142 
II 

(2.2.3) 

155 
13 

SOURCE: The Merck Manual of Diagnosis and Thuapy. I Sth ed .• David N. Holvey, editor, 
Merck Sharp & Dohme Research Laboratories, Rahway, NJ, 1987. 

With n = 7, age and height interpreted as x and Y respectively in equa­
tion (2.2.1), and using the data of the table, parameters m and b can be evaluated 
from equations (2.2.3): 

> ht:=[75,92,10B,121,130,142,155); age:=[1,3,5,7,9,11,13); 
> sumy:=sum(ht(nJ,n=1 .. 7); sumx:=sum(age(n),n=1 .. 7); 
> sumx2:=sum(age[nr2.n=1 .. 7); sumxy:=sum(age[n)*ht(n).n=1 .. 7); 
> m:=evalf«7*sumxy-sumx*sumy)/(7*sumx2-sumx'2)): 
> b:=evalf«sumx2*sumy·sumx*sumxy)/(7*sumx2·sumx·2)); 

m = 6.46, and b = 72.3. 

These data are plotted in Figure 2.2.2 along with the least squares fit for an 
assumed linear relationship ht = m· age + b between height and age. This process 

3Starting from ji - ml with m from equation (2.2.3), make a common denominator, cancel the 
tenns _(~x;)2ji + l~x; ~y;, and the expression for b emerges. 



20 Section 2.2 I Linear Regression, the Method of Least Squares 

has been developed as a routine called lit[leastsquareJ. To introduce this shortcut, 
clear m and h. 

> m:='m'; b:='b'; 
> ht:=[75,92,l 08,121,130,142,155); age:=[I,3,5, 7 ,9,11,13); 

pts:=[seq([age[iJ,ht[i)),i=1 .. 7)): 
> with(plots): with(stats): 

> Dala:=plot(pts,style=POINT,symbol=CiRCLE): 
> 1it(leastsquare[[x,y],y=m'x+b))([age,ht)); m:=op(l,op(l,rhs("))); 

b:=op(2,rhs(" • )); 

> Fit:=plot(m·x+b,x=0 .. 14): 

This demonstrates the mechanics of the least squares method. But it must be 
kept in mind that the method is merely statistical; it can demonstrate that data are 

consistent or not with a linear assumption, but it can not prove linearity. In this 
example, a linear fit to the data is reasonably good, but no rationale for a linear 
relationship has been provided. 

> display( {Data,Fit}); 

Height 

(em) 

160 

140 

120 

100 

80 

o Age 

Figure 2.2.2 Height versus age among children 

10 
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Example 2.2.2 

The number of AIDS cases increase cubically. 

As we saw in the first part of this section. when the data are obviously not 
linear. we can try to fit a power law of the form y = Axt. Consider the following 
data as reported in the HlV/AIDS Surveillance Report published by the U.S. De­
partment of Health and Human Services concerning the reported cases of AIDS 
by half-years shown in Table 2.2.2. The third column is the sum of all the cases 
reported up to that time. i.e .• the cumulative AIDS cases (CAC). 

A graph of the AIDS data is shown in Figure 2.2.4. The circle symbols of the 
figure give the CAC data versus year; the solid curve is the least squares fit. which 
we discuss next. In this figure. CAC is measured in thousands and t is decades 
from 1980. that is. t = (year - 1980)/10. 

We begin by first reading in the data. 

> AIDS:=([97, 206, 406, 700,1289,1654,2576,3392,4922, 
6343,8359,9968,12990,14397,16604,17124,19585, 
19707,21392,20846,23690,24610,26228,22768,4903]); 

> CAC:=[seq(sum(AIDSOY1000.0, i=1 . .i),i=1 .. 24)]; 
> Time:=[seq(1981+(i-l)I2,i=1..24)]: 

Table 2.2.2 Total and Reported Cases of AIDS in the U.S. 

Year 

1981 
1981.5 
1982 
1982.5 
1983 
1983.5 
1984 
1984.5 
1985 
1985.5 
1986 
1986.5 
1987 
1987.5 
1988 
1988.5 
1989 
1989.5 
1990 
1990.5 
1991 
1991.5 
1992 
1992.5 

Reported Cases of AIDS 

97 
206 
406 
700 

1289 
1654 
2576 
3392 
4922 
6343 
8359 
9968 

12990 
14397 
16604 
17124 
19585 
19707 
21392 
20846 
23690 
24610 
26228 
22768 

Cumulative AIDS Cases 
(thousands) 

.097 

.303 

.709 
1.409 
2.698 
4.352 
6.928 

10.320 
15.242 
21.585 
29.944 
39.912 
52.902 
67.299 
83.903 

101.027 
12.0612 
140.319 
161.71 ! 
181.557 
206.247 
230.857 
257.085 
279.853 
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> display( {LnFit.LnOata}); 

6 

4 
In(CAC) 

2 

-2.5 -2 1.5 -I --0.5 o 0 0.5 

In(year - 1980) 
-2 

Figure 2.2.3 Log·log plot of cumulative AIDS cases and its fit 

To produce the fit we proceed as before using equation (2.2.1) but this time 
performing least squares on y = In(CAC) versus x = In t, 

In(CAC) = k * Int + InA. (2.2.4) 

Here we rescale time to be decades after 1980 and calculate the logarithm of the 
data. 

> LnCAC:=map(ln,CAC); 

> Lntime:=map(ln,[seq«i+ 1 )/211 O,i=1 .. 24)]); 

It remains to calculate the coefficients. 

> with(stats): 

> fit[leastsquare[[x,y),y=k*x+LnA))([Lntime,LnCACj); 

> k:=op(1 ,op(1 ,rhs("))); LnA:=(op(2,rhs(" "))); A:=exp(LnA); 

k = 3.29, and InA = 5.04 A = 155. 
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> plots(display](Fit,Data); 

300 ;. 
200 

Number 

100-

o 1980 1985 1990 

year 

Figure 2.2.4 Cumulative AIDS cases 

We draw the graph of In(CAC) versus In(time) to emphasize that their re­
lationship is nearly a straight line. The log-log plot of best fit is shown in Fig­
ure 2.2.3 and is drawn as follows: 

> Lndata:=plot([seq([Lntime[i].LnCAC[ill.i= 1 .. 24)] 

slyle=POINT.symbol=CIRCLE): 

Lnfit:=plot(k*x+ln(A).x=-2.5 .. 0.5): 

plots[display]( {Lndata.Lnfit}); 

The curve of best fit is, from equation (2.2.4). 

CAC = 155 t 3.29• 

But we want an integer exponent, hence the comparative graph to the data will be 
taken as 

> n:=trunc(k); 

n=3 

CAC = 155t3 = 155 (year ~OI980) 3 
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Figure 2.2.4 is drawn as an overlay of the data and this fit. 

> pts:=[seq([Time[iJ. CACti)). i=1 .. 24J; 
> Fit:=plot(A*((t-1980)/10)"n.t=1980 .. 1993): 
> Data:=plot(pts.slyle=POINT.symbol=CIRCLE): 

Again. we see the fit is good. Turning from the mechanical problem offiuing 
the data to the scientific problem of explaining the fit. why should a cubic fit so 
well? 

In the studies of populations and infectious diseases. it is common to ask 
at what rate an infected population is growing. Quite often. populations grow 
exponentially in their early stages. that is according to equation (2.1.8). We will 
investigate this idea in Chapters 3 and 4. 

In the first decade after the appearance of AIDS and the associated HIV. an 
analysis of the data for the total number of reported cases of AIDS led to the an­
nouncement that the population was growing cubically as a function of time. This 
was a relief of sorts because the growth was not exponential as expected. since 
exponential growth is much faster than polynomial growth. see equation (2.1.6). 

Colgate. et al. [21 construct a model for HIV infection which leads to the 
resuJt that the growth rate should be cubic in the early stages. A central idea in 
the model is the recognition that the disease spreads at different rates in different 
"risk groups." and that there is a statistically predictable rate at which the disease 
crosses risk groups. 

In the exercises we attempt an exponential fit to this data. 

Exercises 

I. Ideal weights for medium built males are listed from Reference [31. 

Table 2.2.3 Ideal weights for medium 
built males 

Height Weight 
(in) (lb) 

62 128 
63 131 
64 135 
65 139 
66 142 
67 146 
68 150 
69 154 
70 158 
71 162 
72 167 
73 172 
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a. Show that a linear fit for this data is 

wt = 4.04· hI + 124.14. 

b. In many geometric solids, volume changes with the cube of the height. 
Give a cubic fit for this data. 

c. Using the techniques of Example 2.2.2, find n and A such that 

wI=A·(ht-60t· 

The following code can be used for (b). A modification of one line can 
be used for (a). For (c), modify the code for Example 2.2.2. 

> hl:=[62,63,64,65,66,67,68,69, 70, 71, 72,73, 74]; 

> wt:= [128,131,135,139,142,146,150,154,158,162,167,172, 177]; 

> with(slals): fit[leaslsquare([x,y],y=a*x'3+b*x'2 +cu+d]]([hl,wt)); 

> y:=unapply(rhs(" l,x); 

> pls:=[seq([ht[iJ,W1\i]],i=I .. 13)J; 

> J:=plot(pts,style=POINT,symbol=CROSS): K:=plol(y(x),x=62 .. 74): 

> with(plols): display( {J,K}); 

> errorLinear:=sum('(4.04*hl[i]·124.14· W1\IJf2','i'=I .. 13); 

> errorcubic:=sum('(y(ht[i))· wt[1]f2' ,'1'= 1 .. 13); 

> evalf("); 

2. Changes in the human life span are illustrated graphically on page 110 in the 
October 1994 issue of Scientific American. The data appear below in three 
rows: The first row indicates the age category. The next two rows indicate 
the percentage of people who survived to that age in the United States in the 
years 1900 and 1960. The last row is the percentage of people who survived 
to that age in ancient Rome. Get a least squares fit for these data sets. Syntax 
that provides such a fit is given for the 1960 data. 

> age60:=[O,10,20,30,40,50,60,80,100]: 

> percenI60:=[1 00,98.5,98,96.5,95,92.5,79,34,4]: 

> wlth(stals): 

> flt[leastsquare([x,y],v=au'4+b* x'3+c*x'2+d*x+e]]([age60,percent60]); 

> yflt60:=unapply(rhs(" ),x): 

> pts60:=[seq([age60[lj,percent60[i]],I=I .. 9)): 

> J6:=plot(pts60,style=POINT,symbol=CROSS): 

> K6:=plot(yflt60(x),x=0 .. 100): 

> wlth(plots): display({ J6,KS}); 
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18ble 2.2.4 Survival Rates for Recent U.S. and Ancient Rome 

age 0 JO 20 30 40 50 60 80 100 
1900 100 82 78 75 74 60 43 19 3 
1960 100 98.5 98 96.5 95 92.5 79 34 4 
Rome 90 73 50 40 30 22 15 5 0.5 

3. We have found a fit for the cumulative U.S. AIDS data as a cubic polynomial. 
We saw that, in a sense, a cubic polynomial is the appropriate choice. On first 
looking at the data as shown in Figure 2.2.3, one might guess that the growth 
is exponential growth. Find an exponential fit for the data. Such a fit would 
use equation (2.1.8). Maple code to perform the calculations is only slightly 
different from that for the cubic fit. 

> AIDS:=([97. 206, 406. 700,1289.1654.2576,3392,4922.6343.8359.9968. 

12990.14397.16604.17124.19585.19707.21392.20846,23690.24610. 

26228,22768.4903]); 

> CAC:=[seq(sum(AIDSOY1 OOO.O.i=l . .i).i= 1 .. 24»); 

> Time:=[seq(1981+(i-l)12.i=1..24)J: 

> pts:=[seq([Time(i).CAC[ij).i=1 .. 24)J: 

> LnCAC: .. map(ln.CAC); 

> Times:=[seq«i+ 1 )/2/1 0.i=1 .. 24)); 

> with(stats): 

> fll['eastsquare([x.y).y=m*x+bJl([Times.LnCAC)); 

> k:=op(l.op(l.rhs(·))); A:=op(2.rhs(· .»; 
> y:=t->exp(A)*exp(k*t); 

> J:=plot(y«t·1980)/1 0).1=1980 .. 1992): 

> K:=plot(pts.style=POINT.symbol=CIRCLE): 

> plots[display)( { J.K} ); 

4. Table 2.2.5 presents unpublished data that was gathered by Dr. Melinda 
Millard-Stafford at the Exercise Science Laboratory in the Department of 
Health and Performance Sciences at Georgia Tech. It relates the circumfer­
ence of the forearm with grip strength. The first two columns are for a group 
of college women and the second two columns are for college men. Find 
regression lines for both sets of data. 

> CW:=[24.2.22.9.27 .• 21.5.23.5.22.4.23.8.25.5. 24.5.25.5.22 •• 24.5); 

> GSW: .. [38.5.26 .• 34 •• 25.5.37 •• 30 .• 34 .• 43.5.30.5. 36 .• 29 .• 32); 

> with(stats): fil[leaslsquare[{x.y),y:m*x+bJl«CW.GSW); 

> pts:=[seq([CW[i).GSW[ilJ.i=1 .• 12)); 

> J:=plot(pts.style=POINT.symbol .. CROSS): 

> K:=plot(2.107*x-17.447.x=21 .. 28): 

> CM:=[28.5.24.5.26.5.28.25.28.2.29.5.24.5.26.9.28.2.25.6.28.1.27.8.29.5.29.5.29); 

> GSM:=[45.8.47.5.50.8.51.5.55.0.51 .• 47.5,45 •• 56.0,49.5.57.5.51 .• 59.5. 58 .• 68.25): 

> fil[leastsquare([x.y).y:m*x+bD([CM.GSM)); 

> pts:=[seq({CM{i).GSM[iJl.i=1 .. 15)); 
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Table 2.1.5 Forearm and Grip Strength in Males 
and Females 

Females Males 

Circumference Grip Circumference 
(em) (kg) 

24.2 38.5 
22.9 26.0 
27.0 34.0 
21.5 25.5 
23.5 37.0 
22.4 30.0 
23.8 34.0 
25.5 43.5 
24.5 30.5 
25.5 36.0 
22.0 29.0 
24.5 32.0 

> L:=plol(pts,slyle=POINT,symbol=CIRCLE): 

> M:=plol(2.153*x-6.567,x=24 .. 30): 

> wilh(plols): display( {J,K,L,M}); 

Section 2.3 

Multiple Regression 

(em) 

28.5 
24.5 
26.5 
28.25 
28.2 
29.5 
24.5 
26.9 
28.2 
25.6 
28.1 
27.8 
29.5 
29.5 
29.0 

Grip 
(kg) 

45.8 
47.5 
50.8 
51.5 
55.0 
51.0 
47.5 
45.0 
56.0 
49.5 
57.5 
51.0 
59.5 
58.0 
68.25 
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The least squares method extends to experimental models with arbitrarily many 
parameters, however, the model must be linear in the parameters. The mathe­
matical problem of their calculation can be cast in matrix form, and, as such, the 
parameters emerge as the solution of a linear system. 

The method is again illustrated with two examples. 

Least squares can be extended to more than two parameters. 

In the previous section we learned how to perform linear regression, or least 
squares, on two parameters, to get the slope m and intercept b of a straight line 
fit to data. We also saw that the method applies to other "models" for the data 
than just the linear model. By a model here we mean a mathematical formula of a 
given form involving unknown parameters. Thus the exponential model for (x,y) 
data is 

y = AeTX • 
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And to apply linear regression we transform it to the form, see equation (2.1.5), 

In)' = rx + InA. 

Here the transformed data are Y = In)' and X = x, while the transformed param­
eters are M = rand B = In A. The key requirement of a regression model is that 
it be linear in the parameters. 

Regression Principle. The method of least squares can be adapted to calculate 
the parameters of a model if there is some transformation of the model that is 
linear in the transformed parameters. 

Consider the Michaelis-Menten equation for the initial reaction rate Vo of 
the enzyme-catalyzed reaction of a substrate having a concentration denoted by 
[S], 

vmax[S] 
Vo = Km + [S]; 

the parameters are Vmax and Km. By reciprocating both sides of this equation we 
get the Lineweaver-Burk equation 

I Km I I -----+--
Vo - Vmax [S] vmax' 

Now the transformed model is linear in its parameters M = Kmlvmax and B = 
Ilvmax and the transformed data are Y = IlvoandX = I/[S]. After determining 
the slope M and intercept B of a doubLe reciprocaL pLol of I Ivo vs I/[SJ by least 
squares, then calculate Vmax = II Band Km = M I B. 

So far we have only looked at two parameter models, but the principles apply 
to models of any number of parameters. For example, the Merck Manual, 14th 
Edition, published by the Merck Sharp & Dohme Research Laboratories, in 1982, 
gives a relationship between the outer surface area of a human as a function of 
height and weight as follows: 

surface area = c . wt" . hi", 

with parameters a, b, and c (a and b have been determined to be 0.425 and 0.725 
respectively). A transformed. model, linear in parameters, for this is 

In (surface area) = aln(wt) + bln(hl) + Inc. 

The transformed data are triples of values (X"X2, Y) where XI = In(wt), X2 = 
In(hl), and Y = In(surface area). 
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We now extend the method of least squares to linear models of r general­
ized independent variables XI, ...• X, and one generalized dependent or response 
variable Y, 

Note that we can recover the two variable case of Section 2.2 by taking r = 2 
and X2 = I. Assume there are n data points (XI,i," . , X"i, f;), j = I, ... , n. As 
before, let ei denote the error between the experimental value f; and the predicted 
value, 

ei = Yi - (a.X.,; + ... + a,X,,;), j = I, ... ,n. 

And as before, we choose parameter values a., ... ,a, to minimize the squared 
error, 

II 

E(a., ... ,a,) = I.e; 
i=. 

II 

= I.[Y; - (a.X.,; + ' .. + a,X,,;)r 
;=. 

To minimize E differentiate it with respect to each parameter aj and set the 
derivative to zero, 

iJE II 

0= iJa. = -2 I. Xj,;[f; - (a. X.,; + ... + a,X,,;)], j = I, ... , r. 
} ;=1 

The resulting linear system for the unknowns a., ... ,a, can be rearranged to the 
following form (compare with equations (2.2.2» 

al I:XI,iXI,i + + a, 'I.7 X l,iX,,; = 'I.i X.,;f; 

(2.3.1) 

al I: X,,iXI,; + + a, "2:: X,,;X,,; = 'I.i X,,;f;. 

It is possible to write this system in a very compact way using matrix nota­
tion. Let MT be the matrix of data values of the independent variables 

[X'" 
X.,2 

X"] T X2,J X2,2 X2 ... 
M = . . . 

X"J X,,2 X"II 
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The ith row of this matrix is the vector of data values of Xj • Represent the data val­
ues of the dependent variable Y as a column vector and denote the whole column 
as Y. 

Y=[~;l' 
Y" 

Denoting by M the transpose of MT. the system of equations (2.3.1) can be written 
in matrix form as 

(2.3.2) 

where a is the column vector of regression parameters. 

Example 2.3.1 

Call body mass and skirr fold predict body fat? 

Sparling et al. l4J investigate the possibility of predicting body fat from 
height. weight. and skin fold measurements for black women. Percentage body 
fat can be estimated by two methods: hydrostatic weighing and bio-electric 
impedance analysis. As in standard practice. height and weight enter the pre­
diction as the fixed combination of weight divided by height squared to form a 
factor called body-mass-index. 

. weight 
body-mass-Index = ---2' 

height 

The assumed relationship is taken as 

percent-body-fat = a * body-mass-index + b * skin-fold + c 

for some constants a. b. and c. 
Table 2.3.1 gives a subset of data from Sparling et al. [4] that we will use in 

this example to find the constants. Weight and height measurements were made 
in pounds and inches respectively; body mass index is to be in kilograms per 
square meter. so the conversions 39.37 inches = I meter and 2.2046 pounds = 
I kilogram have been done to calculate the body mass index column of the table. 

We compute the third column of Table 2.3.1 from the first two: 

> ht:=[63,6S.61.7,6S.2.66.2.6S.2.70.0.63.9.63.2,68.7,68.66J; 

wt:=[109.3.11S.6.112.4,129.6,116.7,114.0,1S2.2,11S.6,121.3, 

167.7,160.9,149.9J; 

> convert([seq(wt[i)"lbS/(ht[iJ/12'feetf2.i=1 .. 12)],metric); 
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Table 2.3.1 Height. Weight. Skin Fold. and % Body Fat for Black Women 

height (in) weight (Ibs) body mass (kg/m2) skin fold % body fat 

63.0 109.3 19.36 86.0 19.3 
65.0 115.6 19.24 94.5 22.2 
61.7 112.4 20.76 105.3 24.3 
65.2 129.6 21.43 91.5 17.1 
66.2 116.7 18.72 75.2 19.6 
65.2 114.0 18.85 93.2 23.9 
70.0 \52.2 21.84 156.0 29.5 
63.9 115.6 19.90 75.1 24.1 
63.2 121.3 21.35 119.8 26.2 
68.7 167.7 24.98 169.3 33.7 
68.0 160.9 24.46 170.0 36.2 
66.0 149.9 24.19 148.2 31.0 

To apply equation (2.3.2). we take Xl to be body-mass-index. X2 to be 
skin-fold. and X3 = I identically. From the table, 

[
19.36 19.24 

MT = 86.0 94.5 
1 I 

and the response vector is 

20.76 21.43 
105.3 91.5 

18.72 
75.2 

24.19] 
14~.2 , 

yT=[19.3 22.2 24.3 17.1 19.6 ". 31.0]. 

Solving the system of equations (2.3.2) gives the values of the parameters. We 
solve equations (2.3.2) in Exercise 2. Here we use the "fit[leastsquares)" routine. 

> BMI:=[19.36,19.24, 20.76, 21.43,18.72,18.85,21.84,19.90,21.35, 

24.98,24.46, 24.19]; 

SF:=[86.0, 94.5,105.3, 91.5, 75.2, 93.2,156.0, 75.1, 119.8, 69.3, 170.0, 148.2]; 
PBF:=[19.3, 22.2, 24.3,17.1,19.6,23.9,29.5,24.1,26.2,33.7,36.2,31.0); 

> with(stats): 
fit[leastsquare[[bdymass,sfld,c]])([BMI,SF,PBF]); 

> bdft:=unapply(rhs(" ),(bdymass,sfld»; 

a = .00656 b = .1507 c = 8.074. 

Thus. we find that 

percent-body-fat ~ .00656 * body-mass-index + .1507 * skin-fold + 8.074. 
(2.3.3) 

To test the calculations. here is a data sample not used in the calculation. The 
subject is 64.5 inches tall, weighed 135 pounds, and has skin·fold that measures 
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159.9 millimeters. Her body fat percentage is 30.8 as compared to the predicted 
value of 32.3. 

> convert(13S*lbsl«64.5/12*ft)"2),metric); 

> bdft(22.B1S,1S9.9); 

bdft = 32.3 

Example 2.3.2 

Can thigh circumference and leg strength predict vertical jumping ability? 

Unpublished data gathered by Dr. Millard-Stafford in the Exercise Science 
Laboratory at Georgia Tech relates men's ability to jump vertically to the circum­
ference of the thigh and leg strength as measured by leg press. The correlation 
was to find a, b, and c so that 

jump height = a * (thigh circum) + h * (bench press) + c. 

Hence the generalized variable XI is thigh circumference, X2 is bench press and 
X3 = I. 

Data from a sample of college-age men is shown in Table 2.3.2. From the 
table, 

Table 2.3.2 Leg Size, Strength, and 
Jumping Ability for Men 

Thigh Average 
Circumference 

(em) 

58.5 
50.0 
59.5 
58.0 
60.5 
57.5 
49.3 
53.6 
58.3 
51.0 
54.2 
54.0 
59.5 
57.5 

56.25 

Leg Press 
(lbs) 

220 
ISO 
165 
270 
200 
250 
210 
130 
220 
165 
190 
165 
280 
190 
200 

Vertical Jump 
(in.) 

19.5 
18.0 
22.0 
19.0 
21.0 
22.0 
29.5 
18.0 
20.0 
20.0 
25.0 
17.0 
26.5 
23.0 
29.0 
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and 

50 59.5 58 
150 165 270 

I 

56.25] 
200 

I 

yT = [ 19.5 18 22 19 ... 29]. 
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Solutions for equation (2.3.2) using the data from Table 2.3.2 are found ap­
proximately: 

> thlgh:-{SS.5, 50, 59.5, 58, 60.5, 57.5, 49.3, 53.6, 58.3, 51, 54.2, 54, 59.5, 

57.5,56.25); 
> press:=[220,150,165,270,200,250,21 0,130,220,165,190,165,280,190,200); 
> Jump:..[19.5,18,22,19,21 ,22,29.5,18,20,20,25,17,26.5,23,29 ); 

> with(stats): 
fil{leastsquare[[x,y,z), z=a·x+b·y+c, {a,b,c} ll([thigh,press,jump)); 

a = -.29, b = .044, c = 29.5. 

And hence multilinear regression predicts that the height a male can jump is given 
by the formula 

jump height::::: -.29 * (thigh circum) + .044 * (bench press) + 29.5. (2.3.4) 

Surprisingly, the coefficient of the thigh circumference term is negative, which 
suggests that thick thighs hinder vertical jumping ability. 

Exercises 

I. This exercise will review some of the arithmetic for matrices and vectors. 

> with (linalg): 

> A:=matrix([[a,b),[c,d),[e,f))); 
c:-vector([c1,c2J); 

Multiplication of the matrix A and the vector c produces a vector. 

> evalm(A&·c); 

An interchange of rows and columns of A produces the transpose of A. 
Two matrices can be multiplied. 

> transpose(A) &" A; 
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2. Compute the solution for Example 2.3.1 using matrix structure and Maple. 
The following syntax will accomplish this. 

> with(Hnalg): 

> M:=matrix([[19.36. 86.11. [19.24. 94.5.11. [20.76.105.3.1). [21.43. 91.5.11. 

(18.72.75.2.11.[18.85.93.2.11. [21.84. 156.0. 11.[19.9. 75.1. 11. 

[21.35. 119.8. 11. [24.98. 169.3. 11. [24.46. 170 .• 1). [24.19. 148.2. 1 J)); 
> transpose(M); 

> A:=evalm(transpose(M) &. M); 

> z:=vector([19.3. 22.2. 24.3. 17.1. 19.6.23.9.29.5.24.1.26.2.33.7. 

36.2. 31.0)); 

> y:=evalm(lranspose(M)&'z); 

> evalm(inverse(A)&'y); 

3. a. In this exercise, we get a linear regression fit for some hypothetical data 
relating age. percentage body fat, and maximum heart rate. Maximum heart 
rate is determined by having an individual exercise until near complete ex­
haustion. 

Table 2.3.3 Data for Age, % Body Fat, and 
Maximum Heart Rate 

Age (Years) % Body Fat Maximum Heart Ratc 

30 21.3 186 
38 24.1 183 
41 26.7 172 
38 25.3 177 
29 18.5 191 
39 25.2 175 
46 25.6 175 
41 20.4 176 
42 27.3 171 
24 15.8 201 

The syntax that follows will produce a linear regression fit for the data. This 
syntax will also produce a plot of the regression plane. Observe that it shows 
a steep decline in maximum heart rate as a function of age and a lesser decline 
with increased percentage body fat. 
h. As an example of the use of this regression formula, compare the predicted 
maximum heart rate for two persons at age 40 where one has maintained 
a 15% body fat and the other has gained weight to a 25% body fat. Also, 
compare two people with 20% body fat where one is age 40 and the other is 
age 50. 

> age:=[30.38.41.38.29.39,46,41.42,24J; 

BF:= [21.3.24.1.26.7.25.3,18.5,25.2,25.6,20.4,27.3, 15.8J; 

hr:=[186, 183, 172, 177, 191,175,175,176,171 ,201J; 

> with(stats): 
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fit(leastsquare[[a,b,c])]([age,BF,hr); 

> h:=unapply(rhs(" ),(a,b»; 

> plot3d(h(a,b),a=30 .. 60,b= 1 O .. 20,axes=NORMAL); 

> h(40,15); h(40,25); h(40,20); h(50,20); 
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4. The following is further data relating leg size, strength. and the ability to 
jump. The data were gathered for college women. 

Table 2.3.4 Leg Size. Strength. and 
Jumping Ability for Women 

Thigh 
Circumference 

(cm) 

52.0 
54.2 
64.5 
52.3 
54.5 
SS.O 
4S.0 
SS.4 
SS.S 
60.0 
49.2 
55.5 

Leg Press 
(Ib) 

140 
110 
ISO 
120 
130 
120 
95 

ISO 
125 
125 
95 

115 

Vertical Jump 
(in.) 

13.0 
S.S 

13.0 
13.0 
13.0 
13.0 
S.S 

19.0 
14.0 
IS.S 
16.5 
10.5 

Find a least squares data fit for the data. which are from unpublished work 
by Dr. Millard-Stafford in the Health and Performance Science Department 
at Georgia Tech. 

Section 2.4 

Modeling with Differential Equations 

Understanding a natural process quantitatively almost always leads to a differen­
tial equation model. Consequently a great deal of effort has gone into the study 
of differential equations. The theory of linear differential equations, in particular, 
is well-known, and not without reason, as this type occurs widely. 

Besides their exact solution in terms of functions, numerical and asymptotic 
solutions are also possible when exact solutions are not available. 

In differential equations, as with organisms, there is need of a nomenclature. 

In Section 2.1 we proposed a simple differential equation for mimicking the 
growth of a biological popUlation, namely 
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dy - = ky. 
dt 

(2.4.1 ) 

A differential equation refers to any equation involving derivatives. Other exam­
ples are 

and 

dy y2 - = Y - ----''--­
dt 2 + sint' 

(2.4.2) 

(2.4.3) 

and many others. If only first order derivatives appear in a differential equation, 
then it is called ufirst order equation. Both equations (2.4.1) and (2.4.3) are first 
order. but equation (2.4.2) is a second order equation. Every first order differential 
equation can be written in the form 

dy 
dt = f(t,y) (2.4.4 ) 

for some function f of two variables. Thus f(t, y) = ky in the first equation above 
and f(t ,y) = y - (y2/(2 + sin t» in the third. 

A solution of a differential equation means a function y = y(t) which satis­
fies the equation for all values of t (over some specified range of t values). Thus 
y = Ae«' is a solution of equation (2.4.1) because then dy/dt = kAe«'. and substi­
tuting into equation (2.4.1) gives 

Mek' = k(Ai'), 

true for all t. Note that A is a parameter of the solution and can be any value. so 
it is called an arbitrary constant. Recalling Section 2.1. A arose as the constant 
of integration in the solution of equation (2.4.1). In general the solution of a 
first order differential equation will incorporate such a parameter. This is because 
a first order differential equation is making a statement about the slope of its 
solution rather than the solution itself. 

To fix the value of the inevitable arbitrary constant arising in the solution of 
a differential equation. a point in the plane through which the solution must pass 
is also specified. for example at t = O. A differential equation along with such a 
side condition is called an initial value problem. 

dy 
dt = f(t, y) and y(O) = Yo· (2.4.5) 
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It is not required to specify the point for which t = O. just conventional. The 
domain of definition. or simply domain. of the differential equation is the set of 
points (ttY) for which the right-hand side of equation (2.4.4) is defined. Often 
this is the entire t. Y plane. 

Initial value problems can be solved allalytically. 

Exact solutions are known for many differential equations, cf. Kamke [5]. For 
the most part, solutions derive from a handful of principles. Although we will 
not study solution techniques here to any extent. we make two exceptions: We 
discuss methods for linear systems below and the separation of variables next. 

Actually we have already seen separable variables at work in Section 2.1: 
The idea is to modify the differential equation algebraically in such a way that all 
instances of the independent variable are on one side of the equation and all those 
of the dependent variable are on the other. Then the solution results as the integral 
of the two sides. For example. consider 

dy 
- =ay- by2. 
dt 

Dividing by the terms on the right hand side and multiplying by dt separates the 
variables. leaving only the integration: 

J dy J -,-......:....:--:- = d t . 
y(a - by) 

Instead of delving into solution methods further. our focus in this text is on 
deciding what solutions mean and which equations should comprise a model in 
the first place. Happily, some of the solution techniques. such as separation of 
variables, are sufficiently mechanical that computers can handle the job. leaving 
us to higher level tasks. Here. then. are solutions to equations (2.4.2) and (2.4.3): 

> dsolve(diff(y(t),t,t)-4·diff(y(t),t)+4·y(t) =exp(-t),y(t)); 

and 

> dsolve(diff(y(t),t)=y(t)-y(t)"2/(2+sin(t)), vItI); 

1 -IJ e' -I -( ) = e 2 . ( ) dt + e C1• Y t + Sin t 



38 Section 2.4 I Modeling with Differential Equations 

> with(OEtools): 

> dfieldplot(diff(y(t),t)-y(t)+y(tr2l(2+sin(t))=o,y(t), t=O .. 5,y=·1 .. 5); 
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Figure 2.4.1 Direction field for equation (2.4.3) 

Initial value problems call be solved numerically. 

As mentioned above, equation (2.4.4) specifies the slope of the solution required 
by the differential equation at every point (t, y) in the domain. This may be vi­
sualized by plotting a short line segment having that slope at each point. This 
has been done in Figure 2.4.1 for equation (2.4.3). Such a plot is called a direc­
(iollfield. Solutions to the equation must follow the field and cannot cross slopes. 
With such a direction field it is possible to sketch solutions manually. Just start at 
the initial point (0, y(O)) and follow the direction field. Keep in mind that a figure 
such as Figure 2.4.1 is only a representation of the true direction field, that is to 
say, it shows only a small subset of the slope segments. 

The mathematician Euler realized three centuries ago that the direction field 
could be used to approximate solutions of an initial value problem in a numeri­
cally precise way. Since Euler's time. techniques have improved-Runge-Kutta 
methods are used today, but the spirit of Euler's method is common to most of 
them; namely, a small step ru to the right and ~y up is taken, where 

~y = !(ti,Yi) . ru. 
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> wi1h(DEtools): 

> DEplot1 (diff(y(t),t)-y(t)+y(t)"21(2+sin(t»=O,y(t), t=0 .. 5, {[O,1), [0,3), [O,5)}); 
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Figure 2.4.2 Solutions and direction field for equation (2.4.3) 

The idea is that fly / l:lt approximates dy/ dt. These increments are stepped off one 
after another 

Yi+1 = Yi + l:ly, ti+1 = ti + l:lt, i = 0,1,2, ... , 

with starting values Yo = yeO) and to = 0. Figure 2.4.2 shows some numerical 
solutions of equation (2.4.3). 

Linear differential equations are among the simplest kind. 

A differential equation that can be put into the form 

(2.4.6) 

is linear. The coefficients ai(t}, i = 0 ... 11, can be functions of t, as can the 
right-hand-side ret}. Equations (2.4.1) and (2.4.2) are linear, but equation (2.4.3) 
is not. When there are multiplications among the derivatives or the dependent 
variable Y, such as y2, the differential equation will not be linear, If y, (t) and)'2 (t) 
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are both solutions to a linear differential equation with right-hand-side O. then 
so is AYI(t) + BY2(t) for any constants A and B. Consider the first order linear 
differential equation 

dy 
dt = my + R(t), (2.4.7) 

where we have taken m = -ao/al and R(t) = r(t)/al in (2.4.6). Its solution is 

Y = Aell(l) + <l>(t) where g(t) = J mdt. (2.4.8) 

In this A is the arbitrary constant and <l> is given below. To see this, first assume R 
is 0, and write the differential equation as 

dy - = mdt. 
)' 

Now integrate both sides, letting g(t) = f mdt and C be the constant of integra­
tion, 

Iny=g(t)+C or )' = Ae~(') 

where A = eC . By direct substitution it can be seen that 

<l> = ell(r) J e-g(r)R(t)dt (2.4.9) 

is a solution.4 But it has no arbitrary constant, so add the two to get equa­
tion (2.4.8). This is allowed by linearity. If m is a constant, then f mdt = mt. 

To see that finding this solution is mechanial enough that a computer can 
handle the job, one has only to explore. 

> dsolve(dift(y(t),t)=m(t)'y(t)+R(t),y(t»; 

> dsolve(diff(y(t).t)=m·y(t)+R(t),y(t»; 

Systems of differential equations generalize their scalar counterparts. 

Quite often modeling projects involve many more variables than two. Conse­
quently it may require several differential equations to describe the phenomenon 
adequately. Consider the following model for small deviations about steady state 

4 A clever idea is to try a solution of the form y = V(I)e"{r l with V(I) unknown. Substitute this 
into equation (2.4.7) to get v' <",(tl = R(I) since the term VII' <",(tl = vm<",(li drops out. Now solve for v. 
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levels of a glucose/insulin system; g denotes the concentration of glucose and i 
the same for insulin. 

dg = _ag _ ~i + p{t) 
dt 
di ~. 
dl = yg - UI. 

(2.4.IO) 

As discussed in Section 2.1. the second equation expresses a proportionality re­
lationship. namely. the rate of secretion of insulin increases in proportion to the 
concentration of glucose but decreases in proportion to the concentration of in­
sulin. (Modeling coefficients are assumed to be positive unless stated otherwise.) 
The first equation makes a similar statement about the rate of removal of glucose 
except there is an additional term. p{t). which is meant to account for ingestion 
of glucose. Because glucose and insulin levels are interrelated. each equation in­
volves both variables. The equations define a system; the differential equations 
have to be solved simultaneously. 

A system of differential equations can be written in vector form by defining 
a vector. say Y. whose components are the dependent variables of the system. In 
vector notation equation (2.4.10) becomes 

dY 
- =MY+P 
dl 

where the matrix M and vector Pare 

_ [-a -~] M- ~ , Y -u 

(2.4.11 ) 

Since the system (2.4.10) is linear. its vector expression takes on the simple matrix 
form of equation (2.4.11). Furthermore. this matrix system can be solved in the 
same way as the scalar differential equation of equation (2.4.7). We have 

Y = ~Iyo + ~I 10' e-M··P{s)ds. (2.4.12) 

Just as the exponential of the scalar product mt is 

(2.4.13) 

so the exponential of the matrix product Mt is 

(2.4.14) 
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> Gldeq:= diff(g(t),I)=-g(I)-i(I), diff(i(I),I)=-i(I)+g(I); 

> sol:=dsolve( {Gldeq, g(0)=1, i(O)=O}, {g(I),i(I)}): 

> g:= unapply(subs(sol,g(I)),I); i:= unapply(subs(sol,i(I)),I); 

> plol( {g(I),i(I)} ,1=0 .. 5); 
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Figure 2.4.3 Plot of solutions g(t). itt) of equation (2.4.10) 

4 5 

Since many properties of the exponential function stem from its power series 
expansion equation (2.4.13), the matrix exponential enjoys the same properties. 
In particular the property that makes for the same form of the solution, 

d d 
_eMtY(t) = eMt _ V(t) + eMt MY(t). 
dt dt 

As in the case of a scalar differential equation, the system solutions can be 
plotted against t to help understand how the variables behave. For example, we 
could plot g(t) and i(t) using equation (2.4.12) (see Figure 2.4.3). But for a system 
there is an alternative; we can suppress t and plot i(t) against g(t). This is done. 
conceptually, by making a table of values of t and calculating the ~orresponding 
values of g and i. But we only plot (i, g) pairs. The coordinate plane of i and g is 
called the phase plane and the graph is called'a phase portrait of the solution (see 
Figure 2.4.4). 
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> restart: 

> with(DEtools): 

> Gldeq:= dilf(g(t).t)=-g(t)-i(t). diff(i(t).t)=-i(t)+g(t); 

> inlts:={[O.1.0).[O.2.0),[O.3.0).[O.4,O)}; 

> phaseportralt([Gldeq).[g,I).0..4.inits.stepsize=.1 ,g=-1 .. 4,i=-1 .. 1.5); 
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2 

-I 

Figure 2.4.4 Phase portrait for equation (2.4.10) 

Asymptotics predict the ultimate course of the model. 

43 

Often in science and engineering, we are interested in forecasting the future be­
havior of an observed process, y(t). As t increases there are several possibilities, 
among them: y can tend to a finite limit Yoo, known as an asymptotic limit, 

lim y(t) = Yoo; 
'->00 

y can tend to plus or minus infinity 

lim y(t) = ±oo; 
'->00 

y can oscilIate periodically, y can oscillate unboundedly, 

lim ly(t)1 = 00; 
'->00 
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or y can oscillate chaotically. If)' is part of a system. its fate will be linked to that 
of the other variables; in this case we inquire about the vector solution Y. 

In the simplest case, Y has asymptotic limits. If the system is autonomous, 
meaningt appears nowhere in the system (except of course in the form dldt), then 
to find the asymptotic limits, set all the derivatives of the system to zero. Solutions 
of the resulting algebraic system are called critical points or stationary point;. 
In the glucose/insulin example suppose the glucose ingestion term, p(t), were 
constant at p, then setting the derivatives to zero leads to the algebraic system 

0= -og - ~i+ P 

0= yg - oi. 

> solve( {-alpha -g-beta 'i+p;O,gamma -g-delta-i;O}, {g,i}); 

(2.4.15) 

Its one critical point is g = -opl(~ + 00), i = ypl(~ + 00). If this point is 
taken as the initial point of the system, then for all time g will be opl(~ + 00) 
and i will be 'Ypl(~ + 00). 

It is not necessarily the case that a stationary point is also an asymptotic limit. 
Exponential growth, '!Ii = y, is an example since y = 0 is a stationary point, but, 
if y(O) "f:. 0, then y -t 00 as t -t 00. On the other hand. when it can be shown 
that the solution of a system tends to an asymptotic limit, a giant step has been 
taken in understanding the system. For example, exponential decay. '!Ii = -yo has 

the asymptotic limit 0 for any starting point y(O). for if.r > 0 then '!Ii is negative 

so y will decrease. Similarly, if y < 0 then '!Ii > 0 so y will increase. Either way, 
o is the asymptotic limit. 

A complication here is that the existence or the value of the asymptotic limit 
can often depend on the starting point Y(O). Given that there is an asymptotic 
limit, Y 00' the set of all starting points for which the solution tends to Y 00 is 
called its basin of attractioll, By" . 

By = {Yo: lim Y(t) = Yoo when Y(O) = Yo}. 
'X 1-+00 

If the basin of attraction of a system is essentially the entire domain of definition, 
the asymptotic limit is said to be global. By way of example. the differential 
equation '!Ii = -y( I - y) has asymptotic limit y = 0 for solutions starting from 
-00 < Yo < I; but when the starting point is beyond I, solutions tend to infinity. 

Periodicity is a more complicated asymptotic behavior. Further, just as in the 
asymptotic limit case, the solution can start out periodic, or can asymptotically 
tend to periodicity. An example of the former is '!Ii = cos t, while the latter 

behavior is demonstrated by <!...,\' = -y + cost. This second differential equation 
" is solved by equation (2.4.8), y = Ae -I + ~ (cos t + sin t); A depends on the initial 

5These are also called cquilibnum poinl~ hy some authors. 
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condition but the whole term tends to zero. A well-known periodic system is the 
one due to Lotka and Volterra modeling predator prey interaction. We study this 
in Chapter 4. 

Exercises 

1. Here are four differential equations with the same initial conditions: 

d2y 
dl2 + 6y(l) = 0, y(O) = I, y'(0) = 0, 

d2y 
dl2 - 6y(l) = 0, y(O) = I, y'(O) = 0, 

d2y dy 
dt2 + 2 dl + 6y(t) = 0, )'(0) = I, y'(O} = 0, 

d2y dy 
dt2 - 2 dl + 6Y(I) = 0, y(O) = I, )"(0) = o. 

While these four differential equations have a similar appearance. they have 
radically different behavior. Sketch the graphs of all four equations with the 
same initial values. Here is syntax that will draw the graphs. 

> dsolve( { diff(y(t),t,t)+6*y(t)=0,Y(0) = 1. O(y)(O)= o} ,yet)); 

y1 :=unapply(rhs(' ),t); 

> dsolve( { diff(y(t),t,I)-6*y(I)=0,y(0) = 1, O(y)(O)= O} ,y(I)); 

y2:=unapply(rhs(" ),1); 

> dsolve( {diff(y(t),I,I)+2*diff(y(I),I)+6*y(I)=0,y( 0) = 1, 

O(y)(O)= o} ,y(I)); 

y3:=unapply(rhs( " ),1); 

> dsolve( {diff(y(t),I,I)- 2*diff(y(I),I)+6*y(I)=0,y(O) = 1, 

O(y)(O)= O} ,y(I)); 

y4:=unapply(rhs( " ),1); 

> plol( {y1 (1),y2(1),y3(1),y4(1)} ,1=0 .. 4, y=- 5 .. 5); 

2. We illustrate four ways to visualize solutions to a single first order differential 
equation in order to emphasize that different perspectives provide different 
insights. We use the same equation in all four visualizations: 

d2y 
dt2 + ),(t}/5 = cos(t). 
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a. Find and graph an analytic solution that starts at yeO) = o. 

> dsolve( {diff(y(t),t,t)+y(t)l5 =cos(t), y(O) = O,D(y)(O)=O} ,y(t»; 

> y:=unapply(rhs(" ),t); 

> plot(y(t),t=0 .. 4"Pi); 

> restart: 

b. Give a direction field for the equation. 

> with(DEtools): 

> dfieldplot(diff(y(t),t)+y(t)/S=sin(t),y(t), t=0 .. 4"Pi,y=-1 .. S); 

> restart: 

c. Give several trajectpries overlayed in the direction field. 

> with(DEtools): 

> DEplot1 (diff(y(t),t)+y(t)l5=sin(I),y(I), t=0 .. 4"Pi,{[O,11, [0,3], [O,S]}); 

d. Give an animation to show the effect of the coefficient of y(t) changing. 

> wi1h(plots): 

> for n from 1 to8do 

a:=nll0: 

dsolve( {diff(y(t),t)+a"y(I)/S=sin(t), y(O) = I} ,y(I)): 

y:=unapply(rhs(" ),t): 

P.n:=plot([t,y(t),t=0 .. 1 O"Pij,t=O .. 1 O"Pi): 

y:='y': 

od: 

> display([seq(P.n,n=I .. 8)],insequence=true); 

3. Find the critical points for each of the following equations. Plot a few trajec­
tories to confirm the locations of the basins of attractions. 
a. ¥Ii = -y(t)(1 - yet»~. 

> solve(y"(1-y)=O,y); 

> with(DEtools): 

> DEplot1 (diff(y(t),t)=-y(t)*(1-y(t»,y(t), t=O .. S, 

{[O,-I), [O,-1I2),[O,1/2)} ,y=-I .. 2); 

b. x = 4x(t) - x2(t) - x(t)y(t) 
y' = 5y(t) - 2y2(t) - xU )y(t) 

> solve( {4"x-x-2-x"y=O,S"y-2*y"2-y"x=O} ,{ x,y}); 

> with(DEtools): 
> eqns:=[4"x-x-2-x*y, 5*y-2*y-2-y'x): 

> inits:={[O,I,1),[O,I,4),[O,4,1),[0,4.4)}: 

> DEplot2(eqns,[x,Y),t=O .. 4,inits,x=-I .. S,y=-1 .. 5); 
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4. The solution for Z, = AZ(t), Z(O) = C, with A a constant square matrix and 
C a vector is exp(At)C. Compute this exponential in the case 

( -I A-- I 
-I) 
-I . 

Evaluate exp(At)C where C is the vector 

> with(linalg): 
> A:=matrlx«((-l ,-1 1,[1,-1 D); 
> exponential(A,t); 
> evalm(· &- [1,0)); 

Section 2.5 

Matrix Analysis 

C= G). 

The easiest kind of matrix to understand and calculate with is a diagonal matrix 
J, that is, one whose ik,h term is zero, jik = 0, unless i = k. The product of two 
diagonal matrices is again diagonal. The diagonal terms of the product are just the 
products of the diagonal terms of the factors. This pattern extends to all powers, 
J r , as well. As a consequence, the exponential of a diagonal matrix is just the 
exponential of the diagonal terms. 

It might seem that diagonal matrices are rare, but the truth is quite the con­
trary. For most problems involving a matrix, say, A, there is a change of basis 
matrix P so that PAP-I is diagonal. We exploit this simplification to make pre­
dictions about the asymptotic behavior of solutions. 

Eigenvalues predict the asymptotic behavior of matrix models. 

Every n x n matrix A has associated with it a unique set of n complex numbers, 
AI, A2, ... , A..., called eigenvalues. Repetitions are possible, so the eigenvalues 
for A might not be distinct, but even with repetitions, they are always exactly n 
in number. In turn, each eigenvalue A has associated with it a non-unique vector 
e called an eigenvector. An eigenvalue, eigenvector pair A, e is defined by the 
matrix equation 

Ae = A.e. (2.5.1) 
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An eigenvector for A such as e is not unique because for every number a, the 
vector e' = ae is also an eigenvector, as is easily seen from equation (2.5.1). 

Example 2.5.1 

The matrix 

A = [I 3] o -2 

has eigenvalues AI = I and A2 = -2 with corresponding eigenvectors el = (~) 

and e2 = (_:). Before invoking the computer on this one (see Exercise I in 

this section), work through it by hand. 

Eigenvalues and eigenvectors pia)' a central role in every mathematical 
model embracing matrices. 

This statement cannot be overemphasized. The reason is largely a conse­
quence of the following theorem. 

Theorem 1 

Let the n x II matrix A have n distinct eigenvalues; then there exists a ,lOll-singular 
matrix P such that the matrix 

J = PAP-I (2.5.2) 

is the diagonal matrix of eigenvalues of A. 

o 

The columns of P are the eigenvectors of A takell in the same order as the list of 
eigenvalues. 

If the eigenvalues are not distinct. then we are not guaranteed that there will be 
a completely diagonal form; it can happen that there is not one. But even if not, 
there is an almost-diagonal form, called Jordan Canonical form (or just Jordan 
form) which has a pattern of I's above the main diagonal. By calculating the 
Jordan form of a matrix. we get the diagonal form if the matrix has one. We will 
not need to discuss the Jordan form here. except to say that the computer algebra 
system can compute it. 
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The matrix product of this theorem, PAP-I, is a change of basis modification 
of A; in other words, by using the eigenvectors as the reference system, the matrix 
A becomes the diagonal matrix J. Note that if J = PAP-I then the kill power of J 
and A are related as the k-fold product of PAP-I, 

Jk = (PAp-I)(PAp-I) ... (PAp-I) 

= PAkp- 1 

since the interior multiplications cancel. 

(2.5.2) 

Diagonal matrices are especially easy to work with; for example, to raise J 
to a power, Jk , becomes raising the diagonal entries to that power: 

[
At 0 ... 0 1 o ~ ... 0 

Jk = . . 
o 0 ... ~k • 

n 

As a result, the exponential of J is just the exponential of the diagonal entries. 
From equation (2.4.13) 

J2t2 J3t3 
ti' = I + Jt + 2! + 3! + ... 

[ (I+Alt+~ ... ) 0 
o (I + A2t ... ) 

= · . · . · . 
o 0 

(2.5.3) 

o 1,] 
We illustrate the way in which these results are used. 

The age-structure of a population evolves as dictated by a matrix L. such as 
the following (see Chapter 5): 

0 0 0 0 0.08 0.28 0.42 
.657 0 0 0 0 0 0 

0 .930 0 0 0 0 0 
L= 0 0 .930 0 0 0 0 

0 0 0 .930 0 0 0 
0 0 0 0 .935 0 0 
0 0 0 0 0 .935 0 
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After k generations, the pertinent matrix is the klh power of L. From Theorem I, 
there exists a matrix P such that J = PLP- I , and, according to equation (2.5.2), 

Letting 1..1 be the largest eigenvalue of L in absolute value, it is easy to see that 

I 0 0 

I k 
0 (~r 0 

AkJ = 
I 

(~ )k 0 0 

[1 
0 

!l 0 
--+ as k ~ ::xl. 

0 

In other words, for large k, Lk is approximately At times a fairly simple fixed 
matrix related to its eigenvectors, that is it grows or decays like A.t. 

In another example, consider the matrix form of the linear differential equa­
tion of Section 2.4, equation (2.5.11). From above, the matrix exponential, eM', 
can be written as 

eM1 = p-1e" P 

where el' consists of exponential functions of the eigenvalues. If all those eigen­
values are negative. then no matter what P is, every solution will tend to 0 as 
t ~ 00. But if one or more eigenvalues are positive. then at least one component 
of a solution will tend to infinity. 

In Chapter 7 we will consider compartment models. A compartment matrix 
C is defined as one whose terms Cij satisfy the following conditions: 

I. All diagonal terms Cli are negative or zero; 
2. All other terms are positive or zero; 
3. All column sums Ii Cij are negative or zero. 

Under these conditions. it can be shown that the eigenvalues of C have negative 
or zero real parts, so the asymptotic result above applies. 

The fact that the eigenvalues have negative real parts under the conditions 
of a compartment matrix derives from Gerschgorill's Circle Theorem. (Note that 
since eigenvalues can be complex numbers. the circles are in the complex plane.) 
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Theorem 2 

If A is a matrix and S is the following union of circles in the complex plane, 

S = U{complex z : lamm - zl ~ L lajm!}, 
m #m 

then every eigenvalue of A lies in S. 

Notice that the mth circle above has center amm and radius equal to the sum of the 
absolute values of the other terms of the mth column. 

Exercises 

I. For both the following matrices, find the eigenvalues and eigenvectors. Then 
find the Jordan form. Note that the Jordan structure for the two is different. 

AI __ (0: o~ -2~) (3 I) and A2 = - ; 2 - ~ 

Here is the syntax for working the problem for AI. Define the matrix: 

> with(linalg): 

A:=matrlx([[O,O.-2J,[1,2,1J,[1,O,3))); 

a. Find the eigenvalues and eigenvectors for A. 

> eigenvecls(A); 

b. Find the Jordan form and verify that the associated matrix P has the 
property that 

> J:=jordan(A:P'); 

evalm(P): 

> evalm(P &* A &* inverse(P»; 

PAP-I = J 

2. In a compartment matrix, one or more of the column sums may be zero. In this 
case, one eigenvalue can be zero and solutions for the differential equations 

Z' = CZ(t) 

may have a limit different from zero. 
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If all the column sums are negative in a compartment matrix, the eigenval­
ues will have negative real parts. All solutions for the differential equations 

Z' = CZ(t) 

will have limit zero in this case. 
The following matrices contrast these ideas. 

C1 = (-: -I ~) 
o 0-1 

and 

Let C be the matrix defined below. 

> wilh(linalg): 

C:=malrix([[-1,1 ,0].[1,-1,0),[0,0,-1 1J); 

a. Find the eigenvalues and eigenvectors for C. 

> eigenvects(C); 

o 
-I 
1/2 

b. Graph each component of Z with Z(O) = [I, I, 1]. 

> expIC:=exponenlial(C,I); 

> U:=evalm( exptC &. [1,0,1)); 

> u:=unapply(U[1],I); 

v:=unapply(U[2],I); 

w:=unapply(U[3] ,I); 

> plot(u(t),v(t),w(I),t=0 .. 10); 

1/2) o . 
-I 

Section 2.6 

Statistical· Data 

Variation touches almost everything. A distribution is the fraction of observa­
tions having a particular value as a function of possible values. For example, 
the distribution of word lengths of the previous sentence is 3 of length I, 4 of 
length 2, I of length 3, and so on (all divided by 17, the number of words in 
the sentence). The graph of a distribution with the observations grouped or made 
discrete to some resolution is a histogram. Distributions are approximately de­
scribed by their mean or average value and the degree to which the observations 
deviate from the mean, their standard deviation. A widely occurring distribution 
is the normal or Gaussian distribution. This bell-shaped distribution is completely 
determined by its mean and standard deviation. 



Chapter 2 I Some Mathematical Tools 53 

Histograms portray statistical data. 

Given that the natural world is rife with variables, it is not surprising to find that 
variation is widespread. Trees have different heights, ocean temperatures change 
from place to place and from top to bottom, the individuals of a population have 
different ages, and so on. Natural selection thrives on variation. Variation is often 
due to chance events, thus the height of a tree depends on its genetic makeup, the 
soil it grows in, rainfall, and sunlight, among other things. Describing variation is 
a science all its own. 

Since pictures are worth many words. we start with histograms. Correspond­
ing to the phenomenon under study, any variation observed occurs within a spe­
cific range of possibilities, a sample space. This range of possibilities is then 
partitioned or divided up into a number of subranges or classes. A histogram is a 
graph of the fraction of observations falling within the various subranges plotted 
against those subranges. 

Consider the recent age distribution data for the U.S. population. shown in 
Table 2.6.1. The possible range of ages, 0 to infinity, is partitioned into subranges 
or intervals of every 5 years from birth to age 80; a last interval, 80+. has been 
added for completeness. The table lists the percentage of the total population 
fal\ing within the given interval; each percentage is also refined by sex. The cu­
mulative percentage is also given. that is the sum of the percentages up to and 
including the given interval. A histogram is a graph of these data; on each par­
tition interval is placed a rectangle or bar whose width is that of the interval and 
whose height is the corresponding percentage (see Figure 2.6.1). 

The resolution of a histogram is determined by the choice of subranges; 
smaller and more numerous intervals mean better resolution and more accurate 
determination of the distribution. larger and fewer intervals entail less data stor­
age and processing. 

Table 2.6.1 Age Distribution for the U.S. Population 

Age % Female % Male % Population Cumulative 

~ 3.6 3.6 7.2 7.2 
5-9 3.9 3.7 7.6 14.8 

10-14 4.1 3.9 8.0 22.8 
15-19 4.7 4.3 9.0 31.8 
20-24 5.0 4.2 9.2 41.0 
25-29 4.3 4.0 8.3 49.3 
30-34 4.0 3.5 7.5 56.8 
35-39 3.6 2.9 6.5 63.3 
~ 2.7 2.2 4.9 68.2 
45-49 2.8 2.0 4.8 73.0 
50-54 3.0 2.2 5.2 78.2 
55-59 3.1 2.1 5.2 83.4 
60-64 2.8 1.9 4.7 88.1 
65-69 2.3 1.8 4.1 92.2 
70-74 2.0 1.4 3.4 95.6 
75-79 1.7 0.8 2.5 98.1 
80+ 1.6 0.3 1.9 100 
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> mcent:=[3.6, 3.7, 3.9, 4.3, 4.2, 4.0, 3.5, 2.9, 2.2, 2.0, 2.2, 

2.1,1.9,1.8,1.4,0.8,0.3): 

fcent:=[3.6, 3.9, 4.1, 4.7, 5.0, 4.3, 4.0, 3.6, 2.7, 2.8, 3.0, 

3.1,2.8,2.3,2.0,1.7,1.6): 

tot:=[seq(mcenl[iJ+fcent[i),i= 1 •. 17)): 

> ranges:=[O .. 5, 5 .. 10, 10 •. 15, 15 .. 20, 20 .. 25, 25 .. 30, 30 .. 35, 35..40, 40 .. 45, 

45 .. 50,50 .. 55,55 .. 60,60 .. 65, 65 .. 70, 70 .. 75, 75 .. 80, 80 .. 85): 

> with(stats): with(plots): 

> mpop:=[seq(Weight(ranges[i),5*mcent[i)),i=1 .. 17)): 

fpop:=[seq(Weight(ranges[i),S*fcenl[i)),i=1 .. 17)): 

pop:=[seq(Weight(ranges[i),5*tot[i)),i=1 .. 17)): 

> statplots[histogram)(pop); 

Percenl in 
age 

bmckel 

10 

-2 
Age(years) 

Figure 2.6.1 Histogram for the U.S. population distributed by age 

The cumulative values are plotted in Figure 2.6.2. Since the percentage val­
ues have a resolution of 5 years, a decision has to be made about where the incre­
ments should appear in the cumulative plot. For example, 7.2% of the population 
is in the first age interval counting those who have not yet reached their 51h birth­
day. Should this increment be placed at age 0, at age 5, or maybe at age 2.5 in the 
cumulative graph? 

We have chosen to do something different, namely to indicate this informa­
tion as a line segment that is 0 at age 0 and 7.2 at age 5. In like fashion, we indicate 
in the cumulative graph the second bar of the histogram of height 7.6% as a line 
segment joining the points 7.2 at age 5 with 14.8{= 7.2 + 7.6) at age 10. Contin-
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> age:=[2.5, 7.5, 12.5, 17.5,22.5,27.5,32.5,37.5,42.5,47.5,52.5,57.5, 

62.5, 67.5, 72.5, 77.5, 82.5]; 

> cummale:=[seq(sum('mcent[i]' :i'=1 .. n),n=1 .. 17)]: 

cumfale:=[seq(sum('fcent[i]','i'=1 .. n),n=1 .. 17)]: 

cumtot:=[seq(sum('tot[i]','i'=l .. n),n=l .. 17)]: 

> ptsm:=[seq([age[i],cummale[iJl,i=1 .. 17)]; 

ptsf:=[seq([age(i],cumfale(iJl,i=1 .. 17)]: 

ptsT:=[seq((age(i],cumtot[iJl,i=1 .. 17)]: 

> plot(ptsm,ptsf,ptsT); 
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uing this ide~ for the balance of the data produces the figure. Our rationale here 
is the assumption that the people within any age group are approximately evenly 
distributed by age in this group. A graph that consists of joined line segments is 
called a polygonal graph or a linear spline. 

This graph of accumulated percentages is called the cumulative distribution 
function or cdf for short. No matter what decision is made about placing the 
cumulative percentages, the cdf satisfies these properties: (I) it starts at 0, (2) it 
never decreases, and (3) it eventually reaches I (or in percentage, 100%). 

The mean and median approximately locate the center of the distribution. 

Sometimes it is convenient to summarize the information in a histogram. Of 
course no single number or pair of numbers can convey all the information; such a 
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summary is therefore a compromise but nevertheless a useful one. First, some in­
formation about where the data lie is given by the mean or average; it is frequently 
denoted p. Given the n values XI, X2, ... , Xn , their mean is 

II = (XI +X2 + ... +xn)/n 
I n 

p = - LX;. 
n ;:1 

(2.6.1) 

Another popular notation for this quotient is x. It is necessarily true that some 
values X; are smaller than the mean and some are larger. In fact, one understands 
the mean to be in the center of the X values in a sense made precise by equa­
tion (2.6.1). Of course, given x and n, the sum of the x's is easily computed, 

" LX; = nX. 
;:1 

Computing the mean of a histogram goes somewhat differently. Suppose the 
total number of people referred to in Table 2.6.1 to be 100 million. (It no doubt 
corresponds to many more than that, but it will be more convenient to calculate 
percentages using 100 million, and we will see that, in the end, this choice is 
irrelevant.) Then the 7.2% in the first group translates into 7.2 million people. 
We don't know their individual ages, but as above, if they were evenly distributed 
over ages 0 to 4.999 ... , then counting all 7.2 million as 2.5 gives the same result. 
Hence in equation (2.6.1) these people contribute a value of 2.5 for 7.2 million 
such people, or 

contribution of"O to 5" group = 2.5 . 7.2 = 0; 5 . 7.2 

in millions. Similarly, the second group contributes 

5+ 10 
contribution of uS to 10" group = 7.5·7.8 = -2- ·7.8. 

Continuing in this way we get, with n = 100 million, 

> Sum('age[n]*tot[n)' ,'n'=1 .. 17)=sum('age[nj·tot[n)','n'=1 .. 17); 

n LX; = 2.5·7.2 + 7.5·7.6 + 12.5·8.0 + ... + 82.5· 1.9 = 3431.0. 
;=1 

Divide the result by 100 (million) for the answer. But dividing by 100 million 
means a quotient such as 7.2 million/l 00 million is just the fraction .072 (or 
7.2%). In other words, we don't need to know the total population size; instead 
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we just use the fractions, such as .072, as multipliers or weights for their corre­
sponding interval. Completing the calculation, then, 

x = 2.5·0.072 + 7.5·0.076 + ... + 82.5·0.019 = 34.31. (2.6.2) 

Equation (2.6.2) illustrates a general principle for calculating the mean, 
which applies to equation (2.6.1) as well, 

J1= 
over possible 

values x 

x· fraction of values equal to x. (2.6.3) 

In equation (2.6.2) the possible x's are 2.5, 7.5, and so on, while the fractions are 
.072, .076, and so on. In equation (2.6.1) the possible x's are XI, X2, and so on, 
while the fraction of values that are X, is just lout of n, that is I In, and similarly 
for the other x;' s. 

The median is an alternative to the mean for characterizing the center of a 
distribution. The median, X, of a set of values XI, X2, •.. , Xn is such that one half 
the values are less than or equal to x and one half are greater than or equal to it. 
If n is odd, x will be one of the x's. If n is even, then x should be taken as the 
average of the middle two X values. For example. the median of the values I. 3, 
6,7, and 15 is x = 6, while the median of 1,3,6, and 7 is (3 + 6)/2 = 4.5. 

The median is sometimes preferable to the mean because it is a more typical 
value. For example. for the values 3, 3, 3, 3, and 1000, the mean is 506 while the 
median is 3. 

In the population data, the median age for men and women is between 29 
and 30. This can be seen from an examination of the last column of Table 2.6.1. 
Contrast this median age with the average age, thus for men: 

> Sum('mcent[n)·age[n)','n'=1 .. 17)/Sum('mcent(n)','n'=1 .. 17) 

= sum('mcent!nj'age[n)','n'=1 .. 17)/sum('mcent[n)','n'=1 .. 17); 

f L~~' [percentage men at age n] . (age (n]] 
average age or men = ==::...:.:.....----,--=-------='::--=--"---=--"--!!. 

total percentage of men 

= 32.17 

In a similar manner, the average age for women in this data set is about 35.5, 
and the average age for the total population is about 33.8. The averages for these 
three sets of data-male popUlation age distribution, female population age distri­
bution, and total population age distribution-can be found with simple one-line 
commands and agree with our paper-and-pen calculations. 

> with(describe): mean(pop); median(pop); 
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Variance and standard deviation measure dispersion. 

As mentioned above, a single number will not be able to capture all the informa­
tion in a histogram. The data set 60, 60, 60, 60 has a mean of 60 as does the 
data set 30, 0, 120, 90. If these data referred to possible speeds in miles per hour 
for a trip across Nevada by bus for two different bus companies, then we might 
prefer our chances with the first company. The variance of a data set measures 
how widely the data is dispersed from the mean; for n values XI, X2, ... , Xn, their 
variance v, or sometimes cr2, is defined as 

I /I 

V = - I,(x; - xf 
/I ;=1 

(2.6.4) 

where x is the mean as before.6 Thus the speed variance for the first bus company 
is 0 and that for the second bus company is 

~ [(30 - 60)2 + (0 - 60)2 + (120 - 6W + (90 - 60f] = 2,250. 

As before, a more general equation for variance, one suitable for histograms, for 
example, is the following: 

v= 
over possible 

values x 

(X - X)2 . fraction of values equal to x. (2.6.5) 

A problem with variance is that it corresponds to squared data values making 
it hard to interpret its meaning in terms of the original data. If the data have units, 
like miles per hour, then variance is in the square of those units. Closely related 
to variance is standard deviation, denoted cr. Standard deviation is defined as the 
square root of variance, 

standard deviation = ..j variance. 

Standard deviation is a measure of the dispersion of data on the same scale as 
the data itself. The standard deviation of bus speeds for the second company is 
47.4 miles per hour. This is not saying that the average (unsigned) deviation of 
the data from the mean is 47.4 (for that would be ~ 17 Ix; - xl = 45), but this is 
approximately what the standard deviation measures. For the bus companies, we 
make these calculations: 

6For data representing a sample drawn from some distribution. x is only an estimate of the dis­
tribution's mean. For that reason, this definition of variance is a biased estimator of the distribution's 
variance Divide by n - I in place of n for an unbiased estimator. Our definition is, however, the 
maximum likelihood estImator of the variance for normal distributions. Furthermore, this definition 
IS consistent with the definition of variance for probability distributions, see Section 2.7, and for that 
reason we prefer it. 
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> bus1 :=[60,60,60,60); bus2:=[30,O,120,90); 

> range(bus1), range(bus2); 

median(bus1), median(bus2); 

mean(bus1), mean(bus2); 

variance(bus1), variance(bus2); 

standarddeviation(bus1), standarddeviation(bus2); 
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We can perform similar calculations for the U.S. census data in Table 2.6.1. 
The results are given in Table 2.6.2. 

> range(mpop}, range(fpop), range(pop); 

median(mpop), median(fpop), median(pop); 

mean(mpop), mean(fpop), mean(pop); 

variance(mpop), variance(fpop), variance(pop); 

standarddeviation(mpop), standarddeviation(fpop), 

standarddeviation(pop); 

Table 2,6.2 Summary for U.S. Age Distribution 

Standard 
Range Median Mean Deviation 

Male 0-84 29 31.7 21.16 
Female 0-84 30 35.6 22.68 
Total 0-84 29 33.8 22.10 

The normal distribution is everywhere. 

It is well known that histograms are often bell-shaped. This is especially true in 
the biological sciences. The mathematician Karl Gauss discovered the explana­
tion for this, and it is now known as the Central Limit Theorem (see Hogg and 
Craig [6]). 

Theorem 1 

Central Limit Theorem. The accumulated result of many independent random 
outcomes, in the limit, tends to a Gaussian or normal distribution given by 

-00 < x < 00, 

where J.I and cr are the mean and standard deviation of the distribution. 

The normal distribution is a continuous distribution meaning that its resolution is 
infinitely fine; its histogram, given by G(x), is smooth (see Figure 2.6.3). The two 
parameters mean J.I and standard deviation cr completely determine the normal dis-
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Table 2.6.3 

Age range 

0-1 
1-5 
5-10 

10-15 
15-20 
20-25 
25-30 
30-35 
35-40 

Deaths 
per I 00,000 

1122.4 
55.1 
27.5 
33.4 

118.4 
139.6 
158.0 
196.4 
231.0 

Age range 

40-45 
45-50 
50-55 
55--60 
60--65 
65-70 
70-75 
75-80 
80-85 
85+ 

Deaths 
per 100,000 

287.8 
487.2 
711.2 

1116.9 
1685.1 
2435.5 
3632.4 
5300.0 
8142.0 

15279.0 
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tribution. Likewise, even though a given histogram is not Gaussian, nevertheless 
its description is often made in terms of just its mean and variance or standard 
deviation. 

We show three curves in Figure 2.6.3 with the same mean and different stan­
dard deviations. In Figure 2.6.4, there are three curves with the same standard 
deviation and with different means. 

> y:=(sigma,mu,x)->exp(-(x-mu)-2/(2·sigma"2))! (sqrt(2·Pi)·sigma); 

> plot( {y(1 ,0,x),y(2,0,x),y(3,0,x)} ,x=-1 0 .. 1 0); 

> plot({y(1,-4,x),y(1 ,0,x),y(1 ,4,x)} ,x=-10 .. 1 0); 

Exercises 

I. In the February 1994 Epidemiology Report published by the Alabama De­
partment of Public Health, the following data was provided as Age-Specific 
Mortality. Make a histogram for this data. While the data is given over age 
ranges, determine a fit for the data so that one could predict the death rate 
for intermediate years. Find the median, mean, and standard deviation for the 
data. 

> with(stats): with (plots): with(describe): 

> Mort:=[1122.4, 55.1, 27.5, 33.4,118.4,139.6,158.0,196.4,231.0, 

287.8,487.2,711.2,1116.9,1685.1,2435.5,3632.4, 5300.0, 8142.0,15278.0): 

> MortRale:=[ seq(Mort[iV1 OOOOO,i = 1 .. 19)); 

> ranges=[seq(5·i..5·(i+ 1 ),1= 1 .. 17)); 

> mortdata=[Weight(0 .. 1 ,MortRate[1)), Weight(1 .. 5,4 ·MortRate[2)), 

seq(Weight(ranges[i),5·MortRate[2+i)),i= 1 .. 17)): 

> statplots[histogram)(mortdata); 

a. a polynomial fit 

> xcord:=[seq(3+S·(i-1 ),i=1 .. 1 8)]; 

mortrate:=[seq(MortRate[i+ 1), i=1 .. 18)]; 
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> plot([seq([xcord[i),mortrate[ill,i=1 .. 18)J,style=POINT. symbol=CROSS); 
> fit[leastsquare[[x,y),y=a+b'x+c'x'2+d*x"3)]([xcord,mort rate)); 
> approx:=unapply(rhs( " ),x); 

approx(30); 

> plot(approx(x),x=0 .. 90); 

b. an exponential fit 

> Lnmortrate:=map(ln,mortate); 

> fit[leastsquare[(x,y),y=m'x+b])([xcord,Lnmortrate)); 

> k:=op(I,op(I,rhs(" ))); A:=op(2,rhs(" ")); 
> expfit:=t->exp(A)'exp(k't); 

expfit(30)'10000; 

> J:=plot(expfit(t),t=0 .. 85): 

K:=plot([seq([xcord[iJ,MortRate[i+ 111,i~ 1 .. 18)), 
style=POINT,symbol=CROSS): 

> display({J,K}); 

c. a linear spline for the data (see the discussion in this section) 

> readlib(spline): 

> linefit:=spline(xcord,mortrate,x,linear): 

> y:='spline/makeproc'(linefit,x): 

> J:=plot('y(t)','t'=0 .. 85): 

> display( {J,K}); 

Give the range, median, mean, and standard deviation of the mortality 

rates. Note that the first entry is applicable to humans in an age group of width 
one year and the second is in a group of width four years. Each of the others 

applies to a span of five years. Thus we set up a weighted sum. 

> summary:=[Weight(Mort[I), t ),Weight(Mort[2),4), 

seq(Weight(Mort[i),5),i=3 .. 19)); 
> range(summary); median(summary); mean(summary); 

standarddeviation(summary); 

2. What follows are data for the heights of a group of males. Determine a his­
togram for the data. Find the range, median, mean, and standard deviation 

for the data. Give a normal distribution with the same mean and standard 
deviation as the data. Plot the data and the distribution on the same graph. 

Number of Males 2 I 2 7 10 14 7 5 2 I 
Height (in.) 66 67 68 69 70 71 72 73 74 75 
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3. 

> with(stats): with(plots): with(describe): 

> htinches:=[seq(60+i,i=1 .. 15)); 

numMales:=[O,O,O,O,O,2,1,2,7 ,10,14.7 ,5,2,1); 

ranges:=[seq(htinches[i) .. htinches(i)+ 1,i= 1 .. 15)); 

maledata:=(seq(Weight(ranges(i),numMales(ill,i=1 .. 15)); 

> statplots(histogram)(maledata): 

> range(maledata); median(maledata); mean(maledata); 

standarddeviation(maledata); 

> 'The average height is' ,floor(" "/12), 'feet and' ,floor(frac(" " "/12j*12):inches'; 

> 'The standard deviation is', floor(frac(" " "/12)'12), 'inches'; 

In what follows, we give a normal distribution that has the same mean and 
standard deviation as the height data. 

> mu:=mean(maledata); sigma:=standarddeviation(maledata); 

> ND:=x->exp(-(x-mu)-21(2'sigma-2))/(sigma'sqrt(2'Pi)); 

> J:=plot(mu'ND(x),x=60 .. 76): 

> lineplot:= seq((t,numMales(i),t=60+i..60+i+ 1),i=1 .. 1S); 

> K:=plot(lineplot): 

> plots(display]({J,K}); 

To the extent that the graph K is an approximation for the graph J. the heights 
are normally distributed about the mean. 
Here are population data estimates for the United States (in thousands) as 
published by the U.S. Bureau of the Census, Population Division, release 
PPL-21 (1995). 

Five Year Five Year 
Age Groups 1990 1995 Age Groups 1990 1995 

0-5 18.849 19.662 50-55 11.36R 13,525 
5-10 18.062 19.081 55-60 10,473 11.020 

10-15 17.189 18.863 60-65 10.619 10.065 
15-20 17,749 17.883 65-70 10,077 9,929 
20-25 19.133 18.043 70-75 8022 8816 
25-30 21.232 18,990 75-80 6145 6637 
30-35 21.907 22.012 80-85 3934 4424 
35-40 19.975 22,166 85-90 2049 2300 
40-45 17.790 20.072 90-95 764 982 
45-50 13.820 17.190 95-100 207 257 

100+ 37 52 

Find the median and mean ages. Estimate the number of people at ages 21. 
22.23.24. and 25 in 1990 and in 1995. Make a histogram for the percentages 
of the population in each age catagory for both population estimates. 
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4. In equation (2.6.3) we stated that the mean J.I is defined as 

J.I= x· f(x), 
all pos!\ibJe x's 

where f(x) is the fraction of all values equal to x. If these values are spread 
continuously over all numbers, J.I can be conceived of as an integral. In this 
sense, this integral of the normal distribution given by equation (2.6.3) yields 

100 I (I (x -J.I) 2) J.I = x r::c exp -- -- dx. 
-00 O'y 21t 2 0' 

In a similar manner, 

0' = (x-J.l) --exp -- -- dx. 2 100 
2 I (I (X-J.l)2) 

-00 0'J21i 2 0' 

Here is a way to evaluate the integrals with Maple: 

> f:=x->exp(-(x-mu)-21(2'sigma-2))/(sigma'sqr1(2'Pi)); 

> assume(sigma > 0); 

> int(x·f(x),x=-infinily .. infinity); 

> int«x-mu)"2·f(x),x=-infinily . .infinily); 

Section 2.7 

Probability 

The biosphere is a complicated place. One complication is its unpredictable 
events, such as when a tree will fall or exactly what the genome of an offspring 
will be. Probability theory deals with unpredictable events by making predic­
tions in the form of relative frequency of outcomes. Histograms portray the dis­
tribution of these relative frequencies, and serve to characterize the underlying 
phenomenon. 

Statistics deals with the construction and subsequent analysis of histograms 
retroactively, that is, from observed data. Probability deals with the prediction 
of histograms by calculation. In this regard, important properties to look for in 
calculating probabilities are independence. disjointness, and equal likelihood. 

Probabilities and their distributions. 

Probability theory applies mathematical principles to random phenomena in or­
der to make precise statements and accurate predictions about seemingly unpre-
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dictable events. The probability of an event E. written Pr(E). is the fraction of 
times E occurs in an infinitely long sequence of trials. (Defining probability is 
difficult to do without befng circular and without requiring eKperimentation. A 
d~finition requiring the performance of infinitely many trials is obviously unde­
Sirable. The situation is similar to that in geometry where the term "point" is 
necessarily left undefined; despite this. geometry has enjoyed great success.) For 
example. let an "experiment" consist of rolling a single die for which each of the 
six faces has an equal chance of landing up. Take event E to mean a 3 or a 5 lands 
up. Evidently the probability of E is then 113. Pr{E) = 1/3. that is roIling a 3 or 
5 will happen approximately one third of the time in a large number of rolls. 

More generally. by an event E. in a probabilistic experiment. we mean some 
designated set of outcomes of the experiment. The number of outcomes. or car­
dinality. of E is denoted lEI. The set of all possible outcomes. or universe, for an 
experiment is denoted U. Here are some fundamental laws: 

Principle of Universality One of the possible outcomes of an experiment will 
occur with certainty 

Pr{U) = I. (2.7.1) 

Principle of Disjoint Events If events E and F are disjoint. E n F = 0. that is 
they have no outcomes in common. then the probability that E or F will occur 
(sometimes written E U F) is the sum 

Pr{E or F) = Pr(E) + Pr(F). (2.7.2) 

Principle of Equally Likelihood Suppose each outcome in U has the same 
chance of occurring. i.e .• is equally likely. Then the probability of an event E 
is the ratio of the number of outcomes making up E to the total number of out­
comes. 

lEI 
Pr(E) = jUj' (2.7.3) 

To illustrate. consider the experiment of rolling a pair of dice. one red and 
one green. That anyone of 6 numbers can come up on each die is equally likely. 
so the total number of possibilities is 36; the first possibility could be I on red and 
1 on green; the second. 1 on red and 2 on green, and so on. In this scheme, the 
last would be 6 on red and 6 on green. So lUI = 36. There are two ways to roll an 
11. a 5 on red and 6 on green or the other way around. So letting E be the event 
that an 11 is rolled. we have Pr(E) = 2/36 = 1/18. Let S be the event that a 7 
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> with(stats): with(plots): with(describe): 

> roll:=[seq(n.n=2 .. 12)]; 

> prob:=[1136.2136.3136.4/36.5136.6/36.5!36.4/36.3!36.2136.1!36); 

> w1roll:=[seq(Weight(roll[i)-1!2 .. roll[i]+ 1!2.prob[i)).i=1 .. 11)]; 

> statplots[histogram)(w1roll); 
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Figure 2.7.1 Histogram for Table 2.7.1 

12 

is rolled; this can happen in 6 different ways. so Pr(S) = 6/36 = 1/6. Now the 
probability that a 7 or II is rolled is their sum 

2 + 6 2 
Pr(S U E) = Pr(S) + Pr(E) = 36 = 9' 

Since probabilities are frequencies of occurrence, they share properties with 
statistical distributions. Probability distributions can be visualized by histograms 
and their mean and variance calculated. For example, let the variable X denote 
the outcome of the roll of a pair of dice, Table 2.7.1 gives the possible outcomes 
of X along with their probabilities. Figure 2.7.1 graphically portrays the table 

Table 2.7.1 Probabilities for a dice roll 

roll 

probability 

2 

I 
Ji) 

3 

2 
Ji) 

4 5 

4 
Ji) 

6 7 8 9 10 II 12 

I 
)6 
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as a histogram. Just as in the previous section, the rectangle on x represents the 
fraction of times a dice roll will be x. 

Equation (2.6.3) can be used to calculate the mean value X of the random 
variable X, also known as its expected value, E(X), 

From Table 2.7.1, 

X= L x·Pr(X=x). 
over all possible 

values x of X 

> Sum('roll[i)'prob[i)' :i'=1 .. 11 )=sum('roll[i]*prob[i)' ,'i'=1 .. 11); 

Similarly, the variance is defined as 

V(X) = E(X - X)2 = 

For a dice roll 

over all possible 
values x of X 

(x - X)2 . Pr(X = x). 

21 22 2 3 24 V(X) = (2 - 7) - + (3 - 7) - + (4 - 7) - + (5 - 7) -
36 36 36 36 

(2.7.4) 

(2.7.5) 

2 5 2 6 2 5 24 + (6 - 7) - + (7 - 7) - + (8 - 7) - + (9 - 7) -
36 36 36 36 
2 3 2 2 2 I 35 + (10 - 7) - + (1 I - 7) - + (12 - 7)- = -

36 36 36 6 . 

> Sum('(roll[i)-7)"2·prob[i)' ,'i'=1 .. 11 )=sum('(roll[i)-7)"2·prob[i)' :i'= 1 .. 11); 

> mean(wtroll);variance(wtroll); 

Probability calculations can be simplified by decomposition and independence. 

Consider the experiment of tossing a fair coin in the air four times and observing 
the result. Suppose we want to calculate the probability that heads will come 
up 3 of the 4 times. This grand experiment consists of four sub-experiments, 
namely, the four individual coin tosses. Decomposing a probability experiment 
into sub-experiments can often simplify making probability calculations. This is 
especially true if the sub-experiments, and therefore their events, are independent. 
Two events E and F are independent when the fact that one of them has or has 
not occurred has no bearing on the other. 
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Principle of Independence If two events E and F are independent, then the prob­
ability that both will occur is the product of their individual probabilities 

Pr(E and F) = Pr(E) . Pr(F). 

One way 3 heads in 4 tosses can occur by getting a head the first three tosses 
and a tail on the last one; we will denote this by H H HT. Since the four tosses 
are independent, to calculate the probability of this outcome, we just multiply 
the individual probabilities of an H the first, second and third times, and, on the 
fourth, a T; each of these has chance 1/2, hence 

Pr(HHHT) = (D 4 
1 

16' 

There are three other ways that 3 of the 4 tosses will be H; H HT H, HT H H, and 
THHH. Each of these is also 1/16 probable, therefore, by the principle of disjoint 
events, 

J 1 
Pr(3 heads out of 4 tosses) = 4 . 16 = 4' 

Permutations and combinations are at the core of probability calculations. 

The previous example raises a question: By direct enumeration we found there are 
.. 4 ways to get 3 heads (or equivalently I tail) in 4 tosses of a coin, but how can we 

calculate, for example, the number of ways to get 8 heads in 14 coin tosses, or, in 
general, k heads in n coin tosses? This is the problem of counting combinations. 

In answer, consider the following experiment: Place balls labeled I, 2, and 
so on to n in a hat and select k of them at random to decide where to place the 
H's. For instance, if n = 4 and k = 3, the selected balls might be 3, then 4, then 
I. signifying the sequence HTHH. 

As a sub-question, in how many ways can the balls I, 3, and 4 be selected? 
This is the problem of counting permutations, the various ways to order a set of 
objects. Actually, there are 6 permutations. They are (1,3,4), (1,4,3), (3, 1,4), 
(3,4, I), (4,1,3), and (4,3, I). There are 3 choices for the first ball from the 
possibilities I, 3, or 4. Having been made, there are two remaining choices for 
the second and, finally, only one possibility for the last. Hence the number of 
permutations of three objects = 3 . 2 . I = 6. 

> with(combinat): 

> permute([1,3,4)); 

> numbperm(3); 

More generally, the number of permutations of n objects is 

number of permutations of II objects = n . (/I - I) . (n - 2) .... ·2· I = n!. 
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As indicated, this product is written II! and called nfactorial. 
So, in a similar fashion, the number of ways to select k balls from a hat 

holding n balls is 

n . (n - I) . (n - 2) ..... (n - k + I). 

As we said above, the labels on the selected balls signify when heads occur in 
the n tosses. But every such choice has k! permutations, all of which also give k 
heads. Therefore, the number of ways of getting k heads in n tosses is 

> with(combinat): 

> numbcomb(6,3); 

> binomial(6,3); 

n(n-I)(n-2) ... (n-k+ I) 
k(k-I) ... 2·1 

(2.7.6) 

The value calculated by equation (2.7.6) is known as the number of combinations 
of n objects taken k at a time. This ratio occurs so frequently that there is a 
shorthand notation for it, (~), called 11 choose k. An alternative form of (~) is 

( n) n(n - I) ... (n - k + I) n! 
k = k(k - 1) ... 2· I = k!(11 - k)! 

(2.7.7) 

where the third member follows from the second by mUltiplying numerator and 
denominator by (n - k)!. 

Some elementary facts about n choose k follow. For consistency in these 
formulas, zero factorial is defined to be I: 

O! = I. 

The first three combination numbers are 

(~) = 1, G) =n, 

There is a symmetry, 

for all k = 0, I, ... ,II. 
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These numbers. n choose k. occur in the Binomial Theorem, which states, for any 
p and q. 

II (n) to k lq"-k = (p + q)". (2.7.8) 

Finally. the probability of realizing k heads in n tosses of a fair coin. denoting 
it as Hn(k), is 

Hn(k) = G) G)", k = 0, I .... ,n. (2.7.9) 

The distribution Hn(k) is shown in Figure 2.7.2 for n = 60. If the coin were not 
fair. with the probability of a heads being p and that of a tails being q = I - P. 
then Hn(k) becomes 

H (k) _ (") k Il-k n - k pq , k = 0, I, .. . ,n. (2.7.10) 
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Continuous variations require continuous distributions. 

In Figure 2.7.2 we show the heads distribution histogram HfIJ(k) for 60 coin 
tosses. Notice that the distribution takes on the characteristic bell shape of the 
Gaussian distribution as predicted by the Central Limit Theorem discussed in the 
previous section: 

G(x) = _1_e-I/2((X-Jl )/O)2, 

J2ltcr 
-00 < x < 00, 

where f.I and cr are the mean and standard deviation. In Figure 2.7.2 we have 
superimposed the Gaussian over the histogram. In order to get the approximation 
right, we must match the means and variances of the two distributions. The mean 
of Hn(k) for a biased coin, equation (2.7.9), is given by 7 

f.I = np. 

And the variance of Hn(k) is, (see Reference [6]) 

v = npq. 

With P = q = 1/2 and n = 60, we get f.I = 30 and cr2 = 15. 

> n:= 60; 

> flip:=[seq(binomial(n,i)·(1/2)Y(1-1/2)"(n-i),i=0 .. n)]: 

> wthd:=[seq(Weight(i-1.flip[i]).i=1 .. n+ 1)]: 

> with(describe): mu:=mean(wthd); sigma:=standarddeviation(wthd); 

Hence, Figure 2.7.2, shows the graph of 

> G:=x->exp(-(x-mur2l(2'sigma-2))/(sigma'sqrt(2'Pi)); 

> J:=plot(G(x),x=O .. n): 

> K:=statplots[histogram]{wthd): 

> plots[display]({ J,K}); 

7Using the fact that kG) = n(Z:::D and the Binomial Theorem. 

~ k(n) <.1'-< n~1 (n - I) ,'+1 ,,_" J' = ,(,., P 'I "',(,., n p q = "p. 
t=" k r=O r 

(2.7.11 ) 

(2.7.12) 
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The nonnal distribution is an example of a continuous distribution. Any 
non-negative function. f(x) ~ O. where 

L: f(x)dx = I, 

can define a probability distribution. The condition that the total integral be 1 is 
dictated by the universality principle (2.7.1). In this role. such a function f is 
called a probability density function. Probabilities are given as integrals of f. For 
example, let X denote the outcome of the probabilistic experiment governed by f. 
Then the probability that X lies between 3 and 5, say. is exactly 

Pr(3 :$ X :$ 5) = is f(x)dx. 

Similarly, the probability that an outcome will lie in a vel)' small interval of width 
dx at the point x isS 

Pr(X falls in an interval of width dx at x) = f(x) dx. (2.7.13) 

This shows that outcomes are more likely to occur where f is large and less likely 
to occur where f is small. 

The simplest continuous distribution is the uniform distribution, 

u(x) = constant. 

Evidently, for an experiment governed by the uniform distribution. an outcome is 
just as likely to be at one place as another. For example, butterflies fly in a kind 
of random flight path that confounds their predators. As a first approximation. we 
might hypothesize that a butterfly makes its new direction somewhere within 45 
degrees of its present heading uniformly. Let 9 denote the butterfly's directional 
change, 9 is governed by the uniform probability law 

u(9) = { ~~nstant, if -45 :$ 9 :$ 45 
otherwise. 

By the universality principle. 

145 
u(9)dE> = I; 

-45 

therefore the constant must be 1/90 in equation (2.7.14). 

(2.7.14) 

"This equation is interpreted in the same spirit as the concept '"velocity at a point'" in dynamics 
which is the ratio of infinitcsimals ;Ii. 
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Exercises 

I. An undergraduate student in mathematics wants to apply to three of six grad­
uate programs in mathematical biology. She will make a list of three programs 
in the order of her preferences. Since the order is important, this is a problem 
of permutations. How many such choices can she make? There are three ways 
to answer this: Let Maple make a list of all permutations of six objects taken 
three at a time and let Maple count them, or let Maple compute the number 
of permutations of three objects where the objects in each permutation are 
chosen from a list of six, or use a formula. 

> with(combinat): 

> permute([a,b,c,d,e,fj,3);nops(" ); 

> numbperm(6,3); 

> 6!13!; 

The student must send a list of three references to any school to which she 
applies. There are six professors who know her abilities well, of whom she 
must choose three. Since the order is not important, this is a problem of com­
binations. How many such lists can she make? This question can be answered 
the same three ways as the preceding question. 

> with(combinat): 

> choose([a,b,c,d,e,fj,3);nops( ': ); 

> numbcomb(6,3); 

> 6!1(3!'(6-3)!); 

2. Five patients need heart transplants and three hearts for transplant surgery 
are available. How many ways are there to make a list of recipients? How 
many ways are there to make a. list of the two of the five who must wait for 
further donors? (The answer to the previous two questions should be the same 
because for every three recipients, there are two nonrecipients.) How many 
lists can be made for the possible recipients in the order in which the surgery 
will be performed? 

> with(combinat): 

> numbcomb(5,3); numbcomb(5,2): 

> numbperm(5,3); 

3. Choose an integer in the interval [1,6). If a single die is thrown 300 times, 
explain why one would expect to get the chosen number about 50 times. Do 
this experiment and record how often each face of the die appears. Compare 
how much this deviates from 50. 

> with(stats); 
> die:=rand(1 .. 6); 
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> for i from 1 10 6 do 

counl.i:=O 

od: 

> for i from 1 10 300 do 

n:=dieO: 

count.n:= count.n + 1: 

od: 

> for i from 1 10 6 do 

prinl(count.i); 

od' 

Section 2.7 / Probability 

4. Simulate throwing a pair of dice for 360 times using a random number gen­
erator and complete the table using the sums of the top faces. 

Sums Predicted Simulated 
2 10 
3 20 
4 30 
5 40 
6 50 
7 60 
8 50 
9 40 
10 30 
II 20 
12 10 

Calculate the mean and standard deviation for your sample and compare them 
with the outcome probabilities. Draw a histogram for the simulated throws 
on the same graph as a continuous, normal distribution defined by equation 
(2.13), where the mean and standard deviation in equation (2.13) are the same 
as for the predicted sums. 

Maple syntax that will generate an answer follows. 

> with(stats): with(describe): 

> red:=rand(t .. 6): 

blue:=rand(1 .. 6): 

> for i from 2 to 12 do 

count.i:=O: 

od: 

> for i from 1 to 360 do 

n:=red()+blue(): 

counl.n:=count.n + 1; 

od: 
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> for i from 2 to 12do 

print(count.i); 

od; 
> throws:=[seq(Weight(i,count.i),i=2 .. 12)); 

> mean (throws); standarddeviation(throws); 

> theory:= [Weight(2,10), Weight(3,20),Weight(4,30),Weight(S,40), 

Weight(6,SO),Weight(7,60),Weight(8,SO),Weight(9,40), 

Weight(1 0,30),Weight(11 ,20),Weight(12, 10)); 

> mu:=mean(theory); sigma:=standarddeviation(theory); 

> y:=x->360*exp(-(x- mu)"21(2*sigma-2»/(sigma*sort(2*Pi»; 

> J:=statplots[histogram)(lhrows): 

K:=plol([x,y(x),x=0 .. 14)): 

> wilh(plots): display( {J,K}); 
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5. This exercise i~ a study of independent events. Suppose a couple's genetic 
makeup makes the probability that they should have a brown-eyed child equal 
to 3/4. Assume that the eye color for two children is a pair of independent 
events. 
a. What is the probability that the couple will have two blue-eyed children? 

one blue-eyed and one brown-eyed? two brown-eyed children? What is 
the sum of these probabilities? 

> binomial(2,O)*1/4*1/4; binomial(2,1 )*3/4*1/4; binomial(2,2)*3I4*3I4; 

sum(binomial(2,j}*(3I4)'j*(1/4)'(2-j},j=O .. 2); 

b. Suppose that the couple have five children. What is the probability that 
among the five, exactly two will have brown eyes? 

> binomial(S,2)*(3/4)"2*(1/4)"3; 

c. What is the probability that among the five children, there are at least 
two with brown eyes? 

> sum(binomial(S,j}*(3I4)"nI/4)"(S-j),j=2 .. S); 
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Chapter 3 

Reproduction and 
the Drive for Survival 

Introduction to this chapter 

This chapter is an introduction to cell structure and biological reproduction and 
the effects that they have upon the survival of species according to the Darwinian 
model of evolution. The Darwinian model of evolution postulates that all living 
systems must compete for resources that are too limited to sustain all the organ­
isms that are born. Those organisms possessing properties that are best suited 
to the environment can survive and may pass the favored properties to their off­
spring. 

A system is said to be alive if it has certain properties. These life proper­
ties. e.g .• metabolism. reproduction and response to stimuli. interact with each 
other. and. in addition. the interactions themselves must be part of the list of Iife­
properties. 

Cells contain organelles. which are subcellular inclusions dedicated to per­
forming specific tasks such as photosynthesis and protein synthesis. Membranes 
are organelles that are components of other organelles and are functional in their 
own right-they regulate material transport into and out of cells. Prokaryotic or­
ganisms (bacteria and blue-green algae) lack most organelles; nil other organisms. 
called eukaryotes. have a wide range of organelles. 

A cell's genetic information is contained along the length of certain or­
ganelles called chromosomes. In asexual reproduction. or mitosis. genetic mate­
rial of one cell is exactly replicated and the identical copies are partitioned among 
two daughter cells. Thus. the daughter cells end up with genetic information iden­
tical to that of the parent cell. a decided advantage if the environment is one in 
which the parent cell thrived. In multicellular organisms. certain genes may be 
"turned off' in mitosis; the result will be cells with different behaviors. which 
leads to the various tissues found in multicellular organisms. Genetic information 
is not lost in this way; it is merely inactivated. often reversibly. Mitosis also in­
creases the surface-to-volume ratio of cells. which allows the cell to take up food 
and release waste more easily. 
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Sexual reproduction, the combining of genetic information from two par­
ents into one or more offspring, leads to variations among the offspring. This 
is achieved by the production of novel combinations of genetic information and 
by complex interactions between genetic materials affecting the same property. 
The result is the possibility for immense variation, which is one of the empirical 
observations at the heart of the Darwinian model. 

Left unchecked, populations would grow exponentially, but factors in the 
environment always control the sizes of populations. 

Section 3.1 

The Darwinian Model of Evolution 

We introduce the Darwinian model of evolution, a model that ties all biology 
together. Finite resources of all kinds place limits on the reproduction and growth 
of organisms. All must compete for these resources and most will not get enough. 
Those that survive may pass their favorable properties to their offspring. 

The diversity of organisms is represented by taxonomic categories. 

A group of organisms is said to represent a species if there is a real or potential 
exchange of genetic material among its members and they are reproductively iso­
lated from all other such groups. Thus, members of a single species are capable 
of interbreeding and producing fertile offspring. By inference, if individuals are 
very similar but reproductively isolated from one another, they are in different 
species. The definition above makes good sense in most cases: Horses and cows, 
different species, live in the same area but never mate; horses and donkeys, dif­
ferent species, may live in the same area and interbreed, but their offspring are 
sterile mules; lions and tigers, also different species, do not live in the same area, 
but have interbred in zoos to give sterile offspring. The definition also produces 
some odd results: St. Bernard dogs and chihuahuas would be in different species 
by the reproductive-isolation criterion, although both might be in the same species 
as, say, a fox terrier. English sparrows in the United States and in England would 
have to be put into different species, even though they are essentially identical. 
There are other, somewhat different definitions of species. 

A group of species is a genus, and a group of genera is afamity. Higher levels 
are orders, classes, phyla (called divisions in plants), and kingdoms. To identify 
an organism, its generic and specific names are usually given in the following 
format: Homo sapiens (humans), or Acer rubrum (red maple trees). 

Living systems operate under a set of powerful constraints. 

I. Available space is fillite. Some organisms can survive a few kilometers into 
the air or under water and others live a few meters under the ground, but that 
does not change the basic premise: Our planet is a sphere of fixed surface area 
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and everything alive must share that area for all its needs, including nutrient 
procurement and waste disposal. 

2. The temperature range for life is very restricted. Most living systems cannot 
function if their internal temperature is outside a range of about 0° to 50°C, 
the lower limitation being imposed by the destructive effect of ice crystals 
on ceIl membranes, and the upper limit being imposed by heat inactivation 
of large molecules. Some organisms can extend this range a bit with special 
mechanisms, e.g., antifreeze-like substances in their bodies, but this temper­
ature limitation is generaIly not too flexible. 

3. Energetic resources are limited. The only energy sources originating on earth 
are geothermal, radioactive and that which is available in some inorganic 
compounds. Some organisms, said to be chemoautotrophic, can use the lat­
ter compounds, but these organisms are exceptional. By far, the majority of 
the energy available for life comes from the sun. While the sun's energy is 
virtuaIly inexhaustible, it tends not to accumulate in any long-term biological 
form on earth. This limitation lies in an empirical observation-the Second 
Principle of Thermodynamics-that energy becomes less useful as it under­
goes a transformation from one form to another. The transformations that 
solar energy undergoes are described by a food chain: The sun's energy is 
captured and used by photosynthetic plants, which are eaten by herbivores, 
which are eaten by carnivores, which die and are broken down by decompos­
ing organisms. At each step, much of the useful energy is lost irreversibly to 
the immediate creation of disorder and/or to heat, which radiates away and 
creates disorder elsewhere. Thus, the sun's radiant energy does not accumu­
late in living systems for longer than a single organism's lifetime, and must 
be constantly replenished. (See the reference by Yeargers [II for further dis­
cussion.) 

4. Physical resources are finite. Obviously, there is more mass to the non­
organic world than to the organic one. The problem is that most of the earth's 
non-organic mass is not available to the organisms that inhabit the earth's 
surface. For example, only tiny fractions of our planet's inventory of such 
critical materials as carbon, oxygen and nitrogen are actually available to 
life. The rest is either underground or tied up in the form of compounds not 
chemically accessible to life. 

The Darwinian model of evolution correlates biological diversity alld the 
survival of species. 

The four constraints listed above would not be so serious if living organisms were 
different from what they are. We might picture a world in which every organism 
was non-reproducing, had a constant size, and was immortal. Perhaps the or­
ganisms would be photosynthetic and would have unlimited 5-upplies of oxygen, 
carbon dioxide, nitrogen and other important inorganic substances. They would 
have infinite sinks for waste materials or would produce little waste in the first 
place. 
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The biological world just described is, of course, just the opposite of the real 
one, where there is rapid reproduction and a resultant competition for space and 
resources. Charles Darwin formulated a model to describe the nature and effect of 
this competition on living systems. This model may be presented as two empirical 
observations and two conclusions. 

Observation #1: More organisms are born than can survive to reproductive ma­
turity. The high death toll among the young, from primitive plants to humans, 
is plain to see. There simply are not enough resources or space to go around, and 
the young are among the first to be affected. 

Observation #2: All organisms exhibit innate variability. While we are easily 
able to spot differences between humans or even other mammals, it is not easy 
for us to identify differences between members of a group of daffodils or coral 
snakes. The differences are there nonetheless, and if we observe the plants and 
snakes carefully we will see that, because of the differences, some will thrive and 
others wi II not. 

Conclusion #1: The only organisms that will survive and reproduce are those 
whose individual innate variatiolls make them well suited to the environment. 
Note the importance of context here: An organism suited to one environment 
may be totally unsuited to another. Note also the importance of reproduction; it is 
not enough to live-one must pass one's genes on to subsequent generations. The 
ability to produce fertile offspring is called fitness. This combines the ability to 
attract a mate with the fertility of otfspring. If Tarzan were sterile he would have 
zero fitness, in spite of his mate-attraction capabilities. 

Conclusion #2: Properties favored by selection can be passed on to off­
spring. Selection winnows out the unfit, i.e., those individuals whose innate 
properties make them less competitive in a given environmental context. The 
survivors can pass on favored characteristics to their progeny. 

Reproductive isolatiol! cal! generate /lew species. 

Suppose that a popUlation, or large, freely interbreeding group, of a species be­
comes divided in half, such that members of one half can no longer breed with 
the other half. Genetic mutations and selection in one half may be independent 
of those in the other half, leading to a divergence of properties between the two 
halves. After enough time passes, the two groups may accumulate enough differ­
ences to become different species, as defined earlier in this section. This is the 
usual method for species creation. An example is found at the Grand Canyon; 
the squirrels at the north and south rims of the canyon have evolved into different 
species by virtue of their geographical separation. 

The idea of reproductive isolation may suggest geographical separation, but 
many other forms of separation will work as well. For example, one part of the 
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population may mate at night and the other during the day, even if they occupy the 
same geographical area. As a second example, we return to dogs: St. Bernards 
and chihuahuas are reproductively isolated from each other, even if they live in 
the same house. 

Section 3.2 

Cells 

A cell is not just a bag of sap. It is a mass of convoluted membranes that separate 
the inside of a cell from the outside world. These membranes also form internal 
structures that perform specialized tasks in support of the entire cell. Certain 
primitive cells, e.g., bacteria and some algae, have not developed most of these 
internal structures. 

Organelles are cellular inclusions that petjorm particular tasks. 

A cell is not a bag of homogeneous material. High resolution electron microscopy 
shows that the interiors of cells contain numerous simple and complex structures, 
each functionally dedicated to one or more of the tasks that a cell needs carried 
out. The cell is thus analogous to a society, each different organelle contributing 
to the welfare of the whole. The sizes of organelles can range from about one­
thousandth of a cell diameter to half a cell diameter, and the number of each 
kind can range from one to many thousands. The kinds of organelles that cells 
contain provide the basis for one of the most fundamental taxonomic dichotomies 
in biology: prokaryotes vs. eukaryotes. 

Eukaryotes have many well-defined organelles and an extensive membrane 
system. 

The group called the eukaryotes' include virtually all the kinds of organisms in 
our every-day world. Mammals, fish, worms, sponges, amoebas, trees, fungi, and 
most algae are in this group. As the name implies, they have obvious, membrane­
limited, nuclei. Among their many other organelles, all formed from membranes, 
one finds an endoplasmic reticulum for partitioning off intermtl compartments of 
the cell, chloroplasts for photosynthesis, mitochondria to get energy from food, 
ribosomes for protein synthesis, and an external membrane to regulate the move­
ment of materials into and out of the cell. 

Prokaryotic cells have a very limited set of orgallelles. 

The organisms called the prokaryotes2 include only two groups, the bacteria and 
the blue-green algae. They lack a matrix of internal membranes and most other 

tThe word means "with true nuclei." 
2 Prokaryotes lack true nuclei. 
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organelles found in eukaryotes. They have genetic material in a more-or-Iess lo­
calized region. but it is not bounded by a membrane; thus. prokaryotes lack true 
nuclei. Prokaryotes have ribosomes for protein synthesis. but they are much sim­
pler than those of eukaryotes. The function of prokaryotic mitochondria-getting 
energy from food-is performed in specialized regions of the plasma membrane. 
and the chlorophyll of photosynthetic prokaryotes is not confined to chloroplasts. 

Section 3.3 

Replication of Living Systems 

Living systems can only be understood in terms of the integration of elemental 
processes into a unified whole. It is the organic whole that defines life. not the 
components. 

Asexual reproduction can replace those members of a species that die. The 
new organisms will be genetically identical to the parent organism. To the extent 
that the environment does not change. the newly generated organisms should be 
well-suited to that environment. 

Sexual reproduction results in offspring containing genetic material from 
two parents. It not only replaces organisms that die. but provides the new mem­
bers with properties different from those of their parents. Thus. Darwinian selec­
tion will maximize the chance that some of the new organisms will have a better 
chance to fit into their environment than did their parents. 

What do we mean by a "living system" ? 

To deal with this question. we need to back up conceptually and ask how we know 
whether something is alive in the first place. This question causes at least mild 
embarrassment to every thinking biologist. All scientists know that the solution 
of any problem must begin with clear definitions of fundamental terms. yet a 
definition of "life" is as elusive as quicksilver. 

If we start with the notion that a definition of a "living system" must come be­
fore anything else in biology. then that definition should use only non-biological 
terms. However. one virtually always sees living systems defined by taking a 
group of things everyone has already agreed to be living things. and then listing 
properties they have in common. Examples of these life properties are organiza­
tion. response to stimuli. metabolism, growth. evolution and. of course, reproduc­
tion. A system is said to be alive if it has these properties (and/or others) because 
other systems that have these properties are. by consensus. alive. Thus, living 
systems end up being defined in terms of living systems. This definition is a re­
cursive one: The first case is simply given, and all subsequent cases are defined 
in terms of one or more preceding ones. 

The list of life properties against which a putative living system would be 
compared is an interesting one. because no one property is sufficient. For ex­
ample. a building is organized. dynamite responds to stimuli, many metabolic 
reactions can be carried out in a test tube. salt crystals grow. mountain ranges 
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evolve, and many chemical reactions are autocatalytic, spawning like reactions. 
Of course, we could always insist that the putative system should exhibit two or 
more of the properties, but clever people will find a non-living exception. 

In spite of these objections, definition-by-precedent, applied to living sys­
tems, has an appealing practicality and simplicity-most six-year-olds are quite 
expert at creating such definitions. At a more intellectual level, however, recur­
sion always leaves us with the bothersome matter of the first case, which must 
be accepted as axiomatic-an idea foreign to biology-<>r accepted as a matter of 
faith, an idea that makes most scientists cringe. 

One way out of this dilemma is to drop the pretense of objectivity. After 
all, almost everyone, scientist or lay person, will agree with each other that some­
thing is or isn't alive. One wag has said, "It's like my wife-I can't define her, 
but I always know her when I see her." There is, however, a more satisfying way 
to handle this problem, and that is to note the unity of the life-properties list: 
The listed properties are related to each other. For instance, only a highly orga­
nized system could contain enough information to metabolize and therefore to 
respond to stimuli. A group of organisms evolves and/or grows when some of 
its members respond to stimuli in certain ways, leading some 10 thrive and some 
not. Reproduction, which requires metabolism and growth, can produce variation 
upon which selection acts. Selection, in turn, requires reproduction to replace 
those organisms that were weeded out by selection. 

We see then that living systems perform numerous elemental processes, none 
of which is unique to living systems. What is unique to living systems is the in­
tegration of all these processes into a unified. smoothly functioning whole. Any 
attempt to limit our focus to one process in isolation will miss the point; for ex­
ample. we must view reproduction as one part of a highly interacting system of 
processes. This does not preclude discussion of the individual processes, but 
it is their mutual interactions that characterize life. In Chapter 9 we will fur­
ther discuss the importance of organization to biological systems by considering 
biomolecular structure. 

Why do living systems reproduce? 

To try to answer this question we must first lay some groundwork by stating some­
thing that is obvious: Every organism is capable of dying. If an organism were 
incapable of any kind of reproduction, it would surely die at some point and would 
not be here for us to observe.3 Reproduction is therefore required as part of any 
lifestyle that includes the possibility of death, Le., it includes all living things. 

The cause of an organism's death may be built-in. i.e., ils life span may be 
genetically preprogrammed. Alternatively, the organism may wear out, a notion 
called the "wear-and-tear" theory, suggesting that we collect chemical and phys­
ical injuries until something critical in us stops working. Finally, some other 

3This reasoning is analogous to the "anthropic principle" of cosmology. in response to the ques· 
tion "Why does our universe exist". The principle says that if any other kind of universe existed we 
would not be here to observe il. (But we do not wish to get too metaphysical here.) 
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organism, ranging from a virus to a grizzly bear, may kill the organism in the 
course of disease or predation. 

A number of reproductive modes have evolved since life began, but they may 
be collected into two broad categories, asexual and sexual. Asexual reproduction 
itself is associated with three phenomena: First, there is the matter of a cell's 
surface-to-volume ratio, which affects the cell's ability to take up food and to 
produce and release waste; second, asexual reproduction allows the formation of 
daughter cells identical to the parent cell, thus providing for metabolic continuity 
under nonvarying environmental conditions; third, asexual reproduction allows 
individual multicellular organisms to develop physiologically ditferent tissues by 
allowing genetic information to be switched on and off. This provides for organ 
formation. 

Sexual reproduction, on the other hand, rearranges genetic information by 
combining genetic contributions from two parents in novel ways; this provides a 
range of variations in offspring upon which selection can act. In Chapter II we 
will describe the details of asexual and sexual reproduction in cells. Here we will 
restrict our discussion to general principles. 

Simple cell division changes the surface-to-volume ratio (SN) of a cell. 

An interesting model connects asexual cell division to waste management. Con­
sider a metabolizing, spherical cell of radius R: The amount of waste the cell 
produces ought to be roughly proportional to the mass, therefore to the volume, 
of the cell. The volume V of a sphere is proportional to R3. On the other hand, 
the ability of the cell to get rid of waste ought to be proportional to the surface 
area of the cell, because waste remains in the cell until it crosses the outer cell 
membrane on the way out. The surface area S is proportional to R2. As a result, 
the ratio (SjV), a measure of the cell's ability to get rid of its waste to the cell's 
production of waste, is proportional to R- 1• For each kind of cell there must be 
some minimum value permitted for the ratio SjV = IjR, a value at which waste 
collects faster than the cell can get rid of it. This requires that the cell divide, thus 
decreasing R and increasing SjV. A similar model, describing the ability of a cell 
to take up and utilize food, should be obvious. 

Asexual reproduction maintains the genetic material of a single parent 
in its offspring. 

In general, asexual reproduction leads to offspring that are genetically identical 
to the parent cell. This will be especially useful if the environment is relatively 
constant; the offspring will thrive in the same environment in which the parent 
thrived. 

Most eukaryotic cells replicate asexually by a process called mitosis.4 In 
mitosis a cell's genetic material is copied and each of two daughter cells gets one 

'Bacteria reproduce asexually by a somewhat different process. called biliary jis.wm. We will 
not go into it. 
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of the identical copies. At the same time, the cytoplasm and its organelles are 
divided equally among the daughter cells. Single-celled organisms, like amoebas, 
divide asexually by mitosis, as do the individual cells of multicellular organisms 
like daisies and humans. The details of mitosis are spelled out in Chapter II, 
where we will describe how the various cells of a multicellular organism get to be 
different, in spite of their generation by mitosis. 

Entire multicellular organisms can reproduce asexually. A cut-up starfish 
can yield a complete starfish from each piece. Colonies of trees are generated 
by the spreading root system of a single tree. These and similar processes create 
offspring that are genetically identical to the parent. 

The various tissues of multicellular organisms are created by turning genes on 
and off. 

A human has dozens of physiologically and anatomically different kinds of cell 
types. Virtually all ofthem result from mitosis in a fertilized egg. Thus, we might 
expect them all to be identical because they have the same genes.5 

The differences between the cells is attributable to different active gene sets. 
The active genes in a liver cell are not the same ones active in a skin cell. Never­
theless, the liver cell and the skin cell contain the same genes, but each cell type 
has turned off those not appropriate to that cell's function. 

Sexual reproduction provides for variation in offspring. 

Sexual reproduction is characterized by offspring whose genetic material is con­
tributed by two different parents. The interesting thing about the two contributions 
is that they do not simply I.Idd to one another. Rather, they combine in unexpected 
ways to yield offspring that are often quite different from either parent. Further, 
each offspring will generally be different from the other offspring. We have only 
to compare ourselves to our parents and siblings to verify this. 

The variations induced by sexual reproduction maximize the chance that at 
least a few progeny will find a given environ.ment to be hospitable. Of course, this 
also means that many will die, but in nature that is no problem because those that 
die will serve as food for some other organism. Note the lack of mercy here­
many variants are tried by sexual reproduction and most die. The few survivors 
perpetuate the species. 

Sexual reproduction is found in a very wide variety of organisms, ranging 
from humans to single-celled organisms like amoebas and bacteria. In fact, or­
ganisms whose life cycles exclude sexual reproduction are so unusual that they 
are generally put into special taxonomic categories based solely on that fact. In 
simple organisms, sexual reproduction may not result in increased numbers, but 
the offspring will be different from the parent cells. Chapter II and references (2) 
and [3] contain detailed discussions of sexual reproduction and genetics. 

S As always. there are notable exceptions. Mammalian red blood cells have nuclei when they are 
first formed. but lose them and spend most of their lives anucleate. therefore without genes. 
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Section 3.4 

Population Growth and Its Limitations 

We now combine the topics of the two previous sections of this chapter, namely 
the increase in an organism's numbers and the struggle among them for survival. 
The result is that, in a real situation, population growth is limited. 

Unchecked growth of a population is exponential. 

One of the observations of the Darwinian model of evolution is that more or­
ganisms are born than can possibly survive. (We use the word "born" here in a 
very broad sense to include all instances of sexual and asexual reproduction.) Let 
us suppose for a moment that some organism is capable of unchecked reproduc­
tion, doubling its numbers at each reproductive cycle. One would become 2, then 
2 would become 4, 4 would become 8, etc. After N reproductive cycles, there 
would be 2N organisms. If the organism's numbers increased M-fold at each re­
productive cycle, there would be MN organisms after N reproductive cycles. This 
kind of growth is exponential, and it can rapidly lead to huge numbers. Table 3.4.1 
shows the numbers generated by an organism that doubles at each cycle. 

Table 3.4.1 

Number of 
Generations: 0 2 10 25 40 72 
Number of 
Organisms: 2 4 1024 3.4 x 107 1.1 X 1012 4.7 X 1021 

Many bacteria can double their numbers every 20 minutes. Therefore each 
cell could potentially generate 4.7 x 1021 cells per day. To put this number into 
perspective, a typical bacterium has a mass on the order of 10- 12 grams, and a 
day of reproduction could then produce a mass of 4.7 x 109 grams of bacteria 
from each original cell. Assuming the cells have the density of water, I gm/cm3, 

4.7 X 109 grams is the mass of a solid block of bacteria about 1.6 meters on a side. 
Obviously, no such thing actually happens. 

Real life: population growth meet.l· enviro1lmental resistance 

Every population has births (in the broad sense described above), and it has 
deaths. The net growth in numbers is (births - deaths). The growth rate, r, is 
defined by6 

(birth rate - death rate) 
r= 

population size 

'The unIts of bU1h and dealh rales are IIl1l11ber., 0/ birlhs per unil ol lime and lIumber of dealhs 
per un" o/Iillle. The unilS ofpopulalion arc 11L1",bu., o(illdividllals. and r is in units of lime-I. 
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The maximum value that r can have for an organism is rllUlll , called the biotic 
potential. Estimates of rmax have been made by Brewer [4]. They range from 
about 0.03 per year for large mammals to about 10 per year for insects and about 
10,000 per year for bacteria. These numbers are all positive, and we therefore 
expect organisms growing at their biotic potential to increase in numbers over 
time, not so dramatically as described by Table 3.4.1, but constantly nevertheless. 

We must remember that rmuK is the rate of natural increase under optimal 
conditions, which seldom exist. Under suboptimal conditions the birth rate will 
be low and the death rate high, and these conditions may even lead the value of 
r to be negative. In any case, the value of r will drop as inimical environmental 
factors make themselves felt. These factors are collectively called environmental 
resistance, and they are responsible for the fact that we are not waist-deep in 
bacteria or, for that matter, dogs or crabgrass. 

From our discussion of evolution we now understand th:tt some organisms 
have a higher tolerance for environmental resistance than do others. Those with 
the highest tolerance will prosper at the expense of those with low tolerance. Our 
experience, however, is that every species is ultimately controlled at some level 
by environmental resistance. 

Section 3.5 

The Exponential Model for Growth and Decay 

Assuming a constant per capita growth rate leads to exponential growth. Despite 
its simplicity, most populations do in fact increase exponentially at some time over 
their existence. There are two parameters governing the process, initial population 
size and the per capita growth rate. Both or either may be easily determined from 
experimental data by least squares. 

If the growth rate parameter is negative, then the process is exponential de­
cay. Although populations sometimes collapse catastrophically, they can also de­
cline exponentially. Moreover exponential decay pertains to other phenomena as 
well, such as radioactive decay. In conjunction with decay processes, it is cus­
tomary to recast the growth rate as a half-life. 

The exponential model approximates population growth in its early stage. 

We will discuss logistic growth in the next chapter, after the biological discussion 
has been extended. Here we will discuss the mathematics of exponential growth 
only. 

The size of a popUlation, and its trend, has vital significance for that pop­
ulation, for interacting popUlations, and for the environment. It is believed that 
the Polynesian population of Easter Island grew too large to be supported by the 
island's resources with disasterous consequences for most of the flora and fauna 
of the island. A large sea gull population living near a puffin rookery spells high 
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chick losses for the puffins. At the height of a disease. the pathogen load on the 
victim can reach 109 organisms per milliliter. 

By a population we mean an interbreeding subpopulation of a species. Often 
this implies geographical localization; for example. the Easter Island community. 
or a bacterial colony within a petri dish. The first published model for predicting 
population size was by Malthus in 1798. in which it was assumed that the growth 
rate of a population is proportional to their numbers y. that is. 

dy 
dt = ry, (3.5.1 ) 

where r is the constant of proportionality. By dividing equation (3.5.1) by y. we 
see that r is the per capita grow rate. 

I dy 
-- =r, 
y dt 

with units of time. e.g .• per second. Hence Malthus' Law assumes the per capita 
growth rate to be constant. For a no-growth. replacement-only colony. r will be 
zero. 

Malthus' model is a vast oversimplification of survival and reproduction. 
Although population size can only be integer-valued in reality. by incorporating 
the derivative ~,y is necessarily a continuous variable in this model, it can take on 
any non-negative value. Further. the parameter r must be taken as an average value 
over all population members. Therefore equation (3.5.1) is a continuum model 
and does not apply to extremely small populations. Nevertheless. it captures a 
germ of truth about population, dynamics and is mathematically tractable. It is a 
significant first step from which better models emerge and to which other models 
are compared. 

This simple differential equation can be solved by separating the y and t 
variables and integrating, 

dy = rdt 
y 

These integrals evaluate to 

or j d)' j y = rdt. 

Iny = rt + c 

where c is the constant of integration. Exponentiate both sides to obtain 

or Y = )'oe" (3.5.2) 

where Yo = e". In this. the parameter Yo is the value of y when t = O. cf. Sec­
tion 2.4. 
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Under Malthus' Law equation (3.5.2). a population increases exponentially. 
the solid curve in Figure 3.5.5. While exponential growth cannot continue indefi­
nitely. it is observed for populations when resources are abundant and population 
density is low. compare the data designated by the circles in Figure 3.5.5. Under 
these conditions. populations approximate their biotic potential. rmax. cf. Section 
3.4. 

Per capita growth rate parameters r are often given in terms of doubling time. 
Denote by T2 the time when the population size reaches twice its initial value. then 
using equation (3.5.2) 

Divide out Yo and solve for T2 by first taking the logarithm of both sides. 

and then dividing by r; the doubling time works out to be 

In2 
T2=-· r 

(3.5.3) 

Thus the per capita growth rate and doubling time are inversely related. a higher 
per capita growth rate makes for a smaJler doubling time. and conversely. Re­
arranging equation (3.5.3) gives the per capita growth rate in terms of doubling 
time 

In2 
r=-. 

T2 
(3.5.4) 

Growth rate parameters are not always positive. In the presence of serious 
adversity. a population can die off exponentially. To make it explicit that the 
parameter is negative. the sign is usually written out. 

(3.5.5) 

where J1 > O. Such an exponential decay process is characterized by its half-life 
T./2 given by 

or 

In2 
TI/2 =-. 

J1 
(3.5.6) 
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Figure 3.5.1 Decay of Carbon-I 4. 

Exponential growth and decay apply to other natural phenomena as well as 
biological processes. One of these is radioactive decay. where emissions occur 
in proportion to the amount of radioactive. material remaining. The activity of a 
material in this regard is measured in terms of half-life. for example. the half-life 
of Carbon-14 is about 57QO years. Radioactive decay is the scientific basis behind 
various artifact dating methods using different isotopes. Figure 3.5.1 is a chart for 
14c. Locate the fraction of 14C remaining in an artifact relative to the environment 
on the horizontal axis and read its age on the vertical axis. 

As observed above. Malthus' assumption of immediate reproduction embod­
ied in equation (3.5.1) hanily seems accurate. Mammals. for instance, undergo a 
lengthy maturation period. Further. since no real population grows unboundedly. 
the assumption of constant per capita growth breaks down eventually for all or­
ganisms. Nevertheless. there is often a phase in the growth of populations. even 
populations of organisms with structured life cycles. when exponential growth is 
observed. This is referred to as the exponential growth phase of the population. 

It is possible to mathematically account for a maturation period and hence 
more accurately model population growth. This is done by the incorporation of 
a delay. 'to between the time offspring are born and the time they reproduce. In 
differential equation form. we have 

- = r . y(t - 1:); dY\ 
dt ( 

(3.5.7) 
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in words. the growth rate at the present time is proportional to the population 
size 't time units ago (births within the last 't periods of time do not contribute 
offspring). Equation (3.5.7) is an example of a delay differenlial equation. An 
initial condition for the equation must prescribe y(t) for -'t :5 1 :5 0. As an 
illustration. let r = I. 't = I and Y(I) = e'/IO for -I :5 1 :5 ° as an initial 
condition. Begin by setting /0(1) to this initial function and solving 

dy 
-=/o(t-I) 
dl 

for yon the interval [0, I]. that is for 0 :5 1 :5 I. In this. solving means integrating 
since the right hand side is a given function of I. Define this solution to be /1 (I). 
and repeat the procedure to get a solution on [1,2]. Continue in this way to move 
ahead by steps of length I. 

Here is a computational procedure that produces a graph of a solution for 
equation (3.5.7): 

> IO:=t->exp(tl10); 

> dsolve( {diff(y(t),t)=IO(t-1 ),y(O)=IO(O)} .y(t)); 
> 11 :=unapply(rhs( • ),t); 

dsolve( {diff(y(t),t)=11 (t-1 ).y(1 )=11 (1)} .y(t)); 

> 12:=unapply(rhs(" ),t); 

dsolve( {diff(y(t).t)=12(t-1 ).y(2)=12{2)} .y(t)); 

> f3:=unapply(rhs(" ).t); 

We see that this delay population model still follows an exponential-like 
growth law. The extent to which this is "exponential" is examined in the exer­
cises. 

Growlh parameters can be delermined/rom experimental data. 

Exponential growth entails two parameters, initial population size Yo and growth 
rate r. Given n experimental data values, (t.,y.), (/2,Y2), ... , (In,Yn). we would 
like to find the specific parameter values for the experiment. As discussed in 
Section 2.2. this is done by the method of least squares. The equations are. cf 
equations (2.2.3), 

and 

n I7-1 I, Iny; - I7-1 t, Ii~1 Iny, 
r = ~ft 2 (~ft )2 n ",,;=11; - ",,;=1 t; 
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A slightly different problem presents itself when we are sure of the initial 
population size. Yo. and only want to determine r by fit. If there were no ex­
perimental error. only one data value ('1, YI). besides the starting one. would be 
needed for this. thus 

so 

InYI - Inyo 
r= 

Unfortunately. however. experimental error invariably affects data. and perform­
ing this calculation using two data values will likely result in two different (but 
close) values of r. Given n data values (beyond the starting one). ('1, YI). (t2, Y2) • 
...• (tn,Yn). there will be II corresponding calculations of r. Which is the right 
one? 

To solve this. we use a specialization of the least squares method. As before 
(Section 2.2). use the logarithm form of equation (3.5.2); the squared error is then 
given by 

/I 

E = L [In)'; - (1n),o + rt;)f . (3.5.8) 
;=1 

As before. differentiate E with respect to r and set the derivative to zero: 

n 

2 L [Iny; - (1n),o + rt;)] (-t;) = O. 
;=1 

Now solve this for r and get 

(3.5.9) 

Alternatively. we can let the computer algebra system derive equation (3.5.9). 
The reader should understand the importance of (3.5.9); this is not a result 

that should be memorized. Indeed. a computer algebra system will be able to 
compute this result. 

Suppose the starting value is known. y(O) = A, and we have data given 
symbolically as 

{[at I], b[ I]], [a[2], b[2]], [a[3], b[3lJ}. 
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We find the value of r given in (3.5.9) for this general problem in the following 
manner: 

> wllh(lInalg): 

> xval:=[seq(a[i],i=1 .. 3)); 

> yval:=[seq(b[iJ,i=1 .. 3)); 

> Iny:=map(ln,yval); 

> wllh(stats); 

> fit(leastsquare[(x,yJ,y=r·x+ln(A), {r} J]([xval,lny»; 

> coeff(rhs(· ),x); 

> comblne(simpllfy('»; 

This computer calculation yields the same results as equation (3.5.9). 

Example 3.5.1 

The U.S. Census Data 

To i\Iustrate these ideas, we determine the per capita growth rate for the U.S. 
over the years 1790 to 1990. In Table 3.5.1 we give the U.S. census for every 10 
years, the period required by the Constitution. 

Table 3.S.1 U.S. Population Census 

1790 3,929,214 1860 
1800 5,308,483 1870 
18\0 7,239,881 1880 
1820 ,9,638.453 1890 
1830 12,866,020 1900 
1840 17,069,453 1910 
1850 23,191,876 1920 

31,433,321 
39,818,449 
50,155,783 
62,947,714 
75,994,575 
91,972,266 

105.7\0,620 

1930 
1940 
1950 
1960 
1970 
1980 
1990 

122,775,046 
131,669,275 
151,325.798 
179,323,175 
203.302,031 
226,545,805 
248,709,873 

SOURCE: Statistical Abstracts of the United States: 1993, 113th Edition, U.S. Deportment 
of Commerce, Bureau of the Census, Washington, DC. 

First, we plot the data to note that it does seem to grow exponentially. We 
read in population data as millions of people and plot the data in order to see that 
the population appears to be growing exponentially. 

> tt:=[seq(1790+i'1 O,i=0 .. 20)); 

> pop:=[ 3.929214, 5.308483,7.239881,9.638453,12.866020, 

17.069453,23.191876,31.433321,39.818449,50.155783, 

62.947714,75.994575,91.972266,105.710620,122.775046, 

131.669275, 151.325798,179.323175,203.302031,226.545805, 

248.709873]; 

> data:= [seq([tt(I],pop[ill,I=1 .. 21)); 

> plot(data,style=POINT,symbol=CROSS,tickmarks:[4,5)); 

In order to make the data manageable, we rescale the time data by taking 
1790 as year zero. 
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> scaledata:= (seq([(i-l)*10,pop(i)),i=1 .. 21)]; 

> pIOI(scaledata,slyle=POINT,symbol=CROSS,tickmarks=(4,5); 
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Figure 3.S.3 Population data for the U.S. 

II appears Ihat the growth of the U.S. population is approximately exponen­
tial with a deviation in the 1940·s. We will try to get an exponential fit between 
1790 and 1930. 

We take the logarithm of the data. The plot of the logarithm of the data 
should be approximately a straight line. 

Since this linear fit is the logarithm of the population. its exponential will 
approximate the data. Recall that these techniques were used in Chapter 2. 

Figure 3.5.5 shows the fit which is reasonably good up to 1910. We return to 
this data in the next exercise and in the exercises for Chapter 4. 

Exercises 

I. Repeat Example 3.5.1 with all the U.S. population data. instead of just 15 
points. Which fit is better for the data up to 1930. the partial fit or the total 
fit? Using an error similar to the one in equation (2.2.1) of Chapter 2. give 
a quantitative response. (If this fit for the U.S. population data interests you. 
note that we will return to it again in the exercises for Section 4.3.) 
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> semllnpop:= [seq([(1-1 )*10,ln(pop[I))),1=1 .. 15)]; 

> plol(semilnpop,style",POINT,symbol=CIRCLE); 
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Figure 3.5.4 Logarithm of population data 
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2. We present below the expected number of deaths per 1000 people as a func­
tion of increasing age. Surprisingly, an exponential fit approximates this data 
well. Find an exponential fit for the data. The set DR is the death rate at the 
ages in the set yrs. 

> yrs: .. ([9,19,29.39,49,59,69,79,89]); 

DR:=([.3,1.5, 1.9,2.9,6.5,16.5,37,83.5,181.9]); 

> pls:=[seq([yrs[i),DR[i)], 1=1 .. 9)]; 

> plol(pts,style=POINT, symboi=CROSS); 

> Inpls:=[seq([yrs[i),ln(DR[i]) ], i=1 .. 9)); 

> plol(lnpls,style=POINT,symbol=CIRCLE); 

> with(slats): 

> InDR:=map(ln,DR); 

> fit[leastsquare[[I,y),y=a*l+b))((yrs,lnDR]); 
> a:=op(1,op(1 ,rhs(·))); b:=op(2,rhs(" .»; 
> death:=I->exp(a*l+b); 

> J:=plol(pls,slyle=POINT. symbol=CROSS): 
K:=plol(death(t),t=O .. 90): 

plots[display]( {J,K}); 
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> with(stats): 

> tzeroed:=(seq((i-1 )·10.i=1..1S)]; 

Inpop:=(seq(ln(pop(i]),i=1 .. 1S)]; 

> fit(leastsquare((t,y],y=m·t+b]]((tzeroed,lnpop]); 
> y:=unapply(rhs{"),t); 

> J:=plot(exp(y(t-1790)),t=1790 .. 1930,tickmarks=(4,S]): 

> K:=plot(data,style=POINT,symbol=CROSS,tickmarks=[4,5]): 
> plots[display]( {J,K}); 
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Figure 3.5.5 Exponential growth data fit between 1790 and 1930 

1920 

3. Using the least square methods of this section, and by sampling nine data 

points on the interval [0,3], determine if the growth of the solution for the 
delay equation (3.5.7) is exponential. 

4. In Section 2.2 we gave a cubic polynomial fit for the cumulative number of 
AIDS cases in the U.S. Find an exponential fit for that data. Determine which 
fit has the smaller error-the cubic polynomial fit or the exponential fit. 

> AIDS:=([97, 206,406,700,1289,1654,2576,3392, 
4922,6343,8359,9968,12990,14397,16604,17124, 
19585,19707,21392,20846.23690,24610.26228, 
22768, 4903]}; 

> CAC:=[seq(sum(AIDSUJ!1000.0,j=1 .. i),i=1 .. 24)]; 
> Time:=[seq(1981 +(i-1 )/2.i=1..24)]: 
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> pts:=[seq([Time[i),CAC(i)],i=1 .. 24)): 

> LnCAC:=map(ln,CAC); 

T1mes:=[seq((i+ 1 )1211 0,i=1 .. 24)); 

> with(stats): 

fit(leastsquare([x,y),y:m*x+b))([Times,LnCAC)); 

> k:=op(1 ,op(1 ,ms(' ))); A:=op(2,rhs(" " )); 

> y:=t->exp(A)*exp(k*t); 

> J:=plot(y«t-1980)/1 0),t=1980 .. 1992): 

K:=plot(pts,style=POINT,symbol=CIRCLE): 

plots[display)( {J,K}); 

Section 3.6 

Questions for Thought and Discussion 

97 

1. What is the surface-lo-volume (S IV) ratio of a spherical cell with a radius of 
2? What is the radius of a spherical cell with SIV = 4? A spherical cell with 
S IV = 3 divides exactly in two. What is the S IV ratio of e~lch of the daughter 
cells? 

2. Name some factors that might prevent a population from reaching its biotic 
potential. 

3. Variations induced by sexual reproduction generally lead to the early deaths 
of many, if not most, of the organisms. What could be advantageous about 
such a ruthless system? 

References and Suggested Further Reading 

I. Biophysics of living systems: Edward Yeargers, Basic Biophysics for Biology, 
CRC Press, Boca Raton, FL, 1992. 

2. Cell division and reproduction: William Keeton and James Gould. Biological 
Science, 5th ed., W. W. Norton and Company, New York, 1993. 

3. Cell division and reproduction: William S. Beck, Karel F. Licm and George 
Gaylord Simpson, Life - An Introductioll to Biology. 3rd ed .. Harper-Collins Pub­
lishers. New York. 1991. 

4. Population biology: Richard Brewer. The Science of Ecology, 2nd ed .. Saunders 
College Publishing Co .• Fort Worth. TX. 1988. 



Chapter 4 

Interactions Between Organisms 
and Their Environment 

Introduction to this chapter 

This chapter is a discussion of the factors that control the growth of populations 
of organisms. 

Evolutionary fitness is measured by the ability to have fertile offspring. Se­
lection pressure is due to both biotic and abiotic factors and is usually very subtle, 
expressing itself over long periods of time. In the absence of constraints, the 
growth of populations would be exponential. rapidly leading to very large popu­
lation numbers. The collection of environmental factors that keep populations in 
check is called environmental resistance. which consists of density-independent 
and density-dependent factors. Some organisms. called r-strategists, have short 
reproductive cycles marked by small prenatal and postnatal investments in their 
young and by the ability to capitalize on transient environmental opportunities. 
Usually, their numbers increase very rapidly at first but then decrease very rapidly 
when the environmental opportunity disappears. Their deaths are due to climatic 
factors that act independently of population numbers. 

A different life style is exhibited by K -strategists, who spend a lot of energy 
caring for their relatively infrequent young. under relatively stable environmental 
conditions. As the population grows. density-dependent factors such as disease. 
predation and competition act to maintain the population at a stable level. A mod­
erate degree of crowding is often beneficial. however. allowing mates and prey to 
be located. From a practical standpoint, most organisms exhibit a combination of 
r- and K-strategic properties. 

The composition of plant and animal communities often changes over pe­
riods of many years. as the members make the area unsuitable for themselves. 
This process of succession continues until a stable community. called a climax 
community. appears. 
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Section 4.1 

How Population Growth Is Controlled 

In Chapter 3 we saw that uncontrolled growth of a biological population is expo­
nential. In natural populations, however, external factors control growth. We can 
distinguish two extremes of population growth kinetics, depending on the nature 
of these external factors, although most organisms are a blend of the two. First, 
r-strategists exploit unstable environments and make a small investment in the 
raising of their young. They produce many offspring, which often are killed off in 
large numbers by climatic factors. Second, K -strategists have few offspring, and 
invest heavily in raising them. Their numbers are held at some equilibrium value 
by factors that are dependent on the density of the population. 

An organism's environment includes biotic and abiotic factors. 

An ecosystem is a group of interacting living and nonliving elements. Every real 
organism sits in such a mixture of living and non-living elements, interacting 
with them all at once. Biologist Barry Commoner has summed this up with the 
observation "Everything is connected to everything else." Living components of 
an organism's environment include those organisms that it eats, those that eat it, 
those that exchange diseases and parasites with it, and those that try to occupy its 
space. The non-living elements include the many compounds and stflJctures that 
provide the organism with shelter, that fall on it, that it breathes and that poison it. 
(See References [1-4] for discussions of environmental resistance, ecology and 
popUlation biology.) 

Density-independent factors regulate the populations of r-strategists. 

Figure 4.1.1 shows two kinds of population growth curves, in which an initial in­
crease in numbers is followed by either a precipitous drop (curve a) or a period of 
zero growth (curve b). The two kinds of growth curves are generated by different 
kinds of enviromental resistance. I 

Organisms whose growth kinetics resemble curve (a) of Figure 4.1.1 are 
called r-strategists, and the environmental resistance that controls their numbers 
is said to be density-independent. 2 This means that the organism's numbers are 
limited by factors that do not depend upon the organism's population density. 
Climatic factors, such as storms or bitter winters, earthquakes and volcanoes, are 
density-independent factors, in that they exert their effects on dense and sparse 
populations alike. 

I Note that the vertical axis in Figure 4.1.1 is the total number of individuals in a population; thus. 
it allows for births, deaths. and migration. 

2The symbol"," indicates the importance of the rate of growth. which is also symbolized by "r." 
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(b) 

Time 

Figure 4.1.1 A graph of the number of individuals in a population vs. time. for an 
idealized r-strategist (a) and an idealized K -strategist (b). r-strategists suffer rapid 
losses when density-independent factors like the weather changc. K-strategists' num­
bers tend to reach a stable value over time because density-dependent environmental 
resistance balances birth rate. 

Two characteristics are helpful in identifying r-strategists: 

I. Small parental investmeflt in their young. The concept of "parental invest­
ment" combines the energy and time dedicated by the parent to the young in both 
the prenatal and the postnatal period. Abbreviation of the prenatal period leads 
to the birth of physiologically vulnerable young, while abbreviation of postna­
tal care leaves the young unprotected. As a result. an r-strategist must generate 
large numbers of offspring, most of whom will not survive long enough to re­
produce themselves. Enough. however, will survive to continue the population. 
Figure 4.1.2 is a survivorship curve for an r-strategist; it shows the number of 
survivors from a group as a function of time.3 Note the high death rate during 
early life. 

Because of high mortality among its young, an r-strategist must produce 
many offspring, which makes death by dist;!ase and predation numerically unim­
portant, inasmuch as the dead ones are quickly replaced. On the other hand, the 
organism's short life span ensures that the availability of food and water do not 
become limiting factors either. Thus. density-dependent factors like predation and 
resource availability do not affect the population growth rates of r-strategists. 

2. The ability to exploit unpredictable environmeflta/ opportunities rapidly. It 
is common to find r-strategists capitalizing on transient environmental opportu­
nities. The mosquitoes that emerge from one discarded, rain-filled beer can are 
capable of making human lives in a neighborhood miserable for months. Dan-

3Note that the venical axes in Figures 4.1.2 and 4.1.4 are the numbers of individuals surviving 
from an initial. fixed group; thus. they allow only for deaths. 
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Time 

Figure 4.1.2 An idealized survivorship curve for a group of r-strategists. The graph 
shows the number of individuals surviving as a function of time, beginning with a 
fixed number at time t = O. Lack of parental investment and an opportunistic lifestyle 
lead to a high mortality rate among the young. 

delions can quickly fill up a small patch of disturbed soil. These mosquitoes 
and dandelions have exploited situations that may not last long; therefore a short, 
vigorous reproductive effort is required. Both organisms, in common with all 
r-strategists, excel in that regard. 

We can now interpret curve (a) of Figure 4.1.1 by noting the effect of en­
vironmental resistance, i.e., density-independent factors. Initial growth is rapid 
and results in a large population increase in a short time, but a population "crash" 
follows. This crash is usually the result of the loss of the transient environmental 
opportunity because of changes in the weather: Drought, cold weather or storms 
can bring the growth of the mosquito or dandelion population to a sudden halt. 
By this time, however, enough offspring have reached maturity to propagate the 
population. 

Density-dependent factors regulate the populations of K -strategists. 

Organisms whose growth curve resembles that of curve (b) of Figure 4.1.1 are 
called K-strategists, and their population growth rate is regulated by population 
density-dependent factors. As with r-strategists, the initial growth rate is rapid 
but, as the density of the population increases, certain resources such as food 
and space become scarce, predation and disease increase, and waste begins to 
accumulate. These negative conditions generate a feedback effect: Increasing 
population density produces conditions that slow down population growth. An 
equilibrium situation results, in which the population growth curve levels out; this 
long-term, steady-state population is the carrying capacity of the environment. 

The carrying capacity of a particular environment is symbolized by "K," 
hence the name "K-strategist" refers to an organism that lives in the equilibrium 
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Time 

Figure 4.1.3 A more realistic growth curve of a population of K-strategists. The 
numbers lIuctuate around an idealized curve. as shown. Compare this with Figure 
4.l.l(b). 

situation. The growth curve of a K-strategist. shown as (b) in Figure 4.1.1. is 
called a logistic curve. Figure 4.1.3 is a logistic curve for a more realistic situation. 

Two characteristics are helpful in identifying K-strategists: 

1. Large parental investment in their young. K-strategists reproduce slowly. 
with long gestation periods. to increase physiological and anatomical develop­
ment of the young. who therefore must be born in small broods. After birth. the 
young are tended until they can reasonably be expected to fend for themselves. 
One could say that K-strategists put all their eggs in one basket and then watch 
that basket very carefully! 

Figure 4.1.4 is an idealized survivorship curve for a K -strategist. Note that 
infant mortality is low (compared to the infant mortality rate of r-strategists; see 
Figure 4. J .2) 

Time 

Figure 4.1.4 An idealized survivorship curve for a group of K-strategists. The graph 
shows the number of individuals surviving as a function of time. beginning with a 
fixed number at time I = O. High parental investment leads to a low infant mortality 
rate.' 
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2. The ability to exploit stable environmental situations. Once the population 
of a K-strategist has reached the carrying capacity of its environment, the popu­
lation size stays relatively constant. This is nicely demonstrated by the work of 
H. N. Southern, who studied mating pairs of tawny owls in England [5], The owl 
pairs had adjacent territories, with each pair occupying a territory that was the 
right size to provide it with nesting space and food (mainly rodents). Every year 
some adults in the area died, leaving one or more territories that could be occupied 
by new mating pairs. Southern found that while the remaining adults could have 
more than replaced those who died, only enough owlets survived in each season 
to keep the overall numbers of adults constant. The population control measures 
at work were failure to breed, reduced clutch size, death of eggs and chicks, and 
emigration. These measures ensured that the total number of adult owls was about 
the same at the start of each new breeding season. 

As long as environmental resistance remains the same, population numbers 
will also remain constant. But, if the environmental resistance changes, the car­
rying capacity of the environment will, also. For example, if the amount of food 
is the limiting factor, a new value of K is attained when the amount of food in­
creases. This is shown in Figure 4.1.5. 

The density-dependent factors that maintain a stabilized population, in con­
junction with the organism's reproductive drive, are discussed in the next section. 
In a later section we will discuss some ways that a population changes its own 
environment, and thereby changes that environment's carrying capacity. 

Some density-dependent factors exert a negative effect on populations and can 
thus help control K-strategists. 

There are many environmental factors that change with the density of populations. 
This section is a discussion of several of them. 
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Figure 4.1.5 The growth of a population of animals, with an increase in food avail­
ability midway along the horizontal axis. The extra food generates a new carrying 
capacity for the environment. 
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Figure 4.1.6 The Hudson's Bay Company data. The curve shows the number of 
predator (lynx) and prey (hare) pelts brought to the company by trappers over a 
90-year period. Note that, from 1875 to 1905, changes in the number of lynx pelts 
sometimes precede changes in the number of hare pelts. (Redrawn from "Sunspots 
and Abundance of Animals," by D. A. McLulich; The Journal of the Royal Astronom· 
ical Society of Canada, Volume 30. 1936, page 233. Used with permission.) 

Predation: The density of predators, free-living organisms that feed on the bodies 
of other organisms. would be expected to increase or decrease with the density 
of prey populations. Figure 4.1.6 shows some famous data. the number of hare 
and lynx pelts brought to the Hudson Bay Company in Canada over a period of 
approximately 90 years. Over most of this period. changes in the number of hare 
pelts led changes in the number of lynx pelts. as anticipated. After all. if the den­
sity of hares increased we would expect the lynx density to follow suit. A detailed 
study of the data. however. reveals that things were not quite that simple. because 
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Figure 4.1.7 This idealized graph shows the amount of sexual (reproductive) effort 
and asexual (vegetative) effort expended by many trees as a function of time. Sex­
ual effort is measured by nut (seed) production and asexual effort is measured by 
tree ring growth. Note that the tree periodically switches its emphasis from sexual to 
asexual and back again. Some related original data can be found in the reference by 
Harper [2]. 

ill the cycles beginning in 1880 and 1900 the lynxes led the hares. Analysis of 
this observation can provide us with some enlightening information. 

Most importantly, prey populntion density may depend more strongly on its 
own food supplies than on predator numbers. Plant matter, the food of many prey 
species, varies in availability over periods of a year or more. For example, Fig­
ure 4.1.7 shows how a tree might partition its reproductive effort (represented by 
nut production) and its vegetative effort (represented by the size of its annual tree 
rings). Note the cycles of abundant n.ut production (called mast years) alternat­
ing with periods of vigorous vegetative growth; these alternations are common 
among plants. We should expect that the densities of populations of prey, which 
frequently are herbivores, would increase during mast years and decrease in other 
years, independently of predator density (see Reference [2]). 

There are some other reasons why we should be cautious about the Hudson 
Bay data: First, in the absence of hares, lynxes might be easier to catch because, 
being hungry, they would be more willing to approach baited traps. Second, the 
naive interpretation of Figure 4.1.6 assumes equal trapping efficiencies of prey 
and predator. Third. to be interpreted accurately, the hares whose pelts are enu­
merated in Figure 4.1.6 should consist s()lely of a subset of all the hares that could 
be killed by lynxes, and the lynxes whose pelts are enumerated in the figure should 
consist solely of a subset of all the lynxes that could kill hares. The problem here 
is that very young and very old lynxes, many of whom would have contributed 
pelts to the study, may not kill hares at all (e.g., because of infirmities they may 
subsist on carrion). 
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Figure 4.1.8 Graphs showing the effect of environmental complexity on interspecies 
relationships. The data for (a) are obtained by counting the individuals of two species 
in a pure growth medium. The data for (b) are obtained by counting the individuals 
of the two species in a mechanically complex medium where. for example. pieces of 
broken glass tubing provide habitats for species 2. The more complex environment 
supports both species. while the simpler environment supports only one species. 

Parasitism. Parasitism is a form of interaction in which one of two organisms 
benefits while the other is harmed but not generally killed. A high population 
density would be unfavorable for a parasite's host. For example, many parasites, 
e.g., hookworms and roundworms, are passed directly from one human host to 
another. Waste accumulation is implicated in both cases. because these parasites 
are transmitted in fecal contamination. Other mammalian and avian parasites 
must go through intermediate hosts between their primary hosts, but crowding is 
still required for effective transmission. 

Disease. The ease with which diseases are spread goes up with increasing popu­
lation density. The spread of colds through school populations is a good example. 
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An important aggravating factor in the spread of disease would be the ac­
cumulation of waste. For example, typhoid fever and cholera are easily carried 
between victims by fecal contamination of drinking water. 

Interspecific competition. Every kind of organism occupies an ecological niche, 
which is the functional role that organism plays in its community. An organism's 
niche would include a consideration of all of its behaviors, their effects on the 
other members of the community, and the effects of the behaviors of other mem­
bers of the community on the organism in question. 

An empirical rule in biology, Gause's Law, states that no two species can 
long occupy the same ecological niche. What will happen is that differences in 
fitness, even very subtle ones, will eventually cause one of the two species to 
fill the niche, eliminating the other species. This concept is demonstrated by 
Figure 4.1.8. When two organisms compete in a uniform habitat, one of the two 
species always becomes extinct. The "winner" is usually the species having a 
numerical advantage at the outset of the experiment. (Note the role of luck here 
- a common and decisive variable in Darwinian evolution.) On the other hand. 
when the environment is more complex. both organisms can thrive because each 
can fit into its own special niche. 

Intraspecific competition. As individuals die. they are replaced by new individ­
uals who are presumably better suited to the environment than their predecessors. 
The general fitness of the population thus improves because it becomes composed 
of fitter individuals. 

The use of antibiotics to control bacterial diseases has contributed immeasur­
ably to the welfare of the human species. Once in a while. however. a mutation 
occurs in a bacterium that confers on it resistance to that antibiotic. The surviving 
bacterium can then exploit its greater fitness to the antibiotic environment by re­
producing rapidly. making use of the space and nutritional resources provided by 
the deaths of the antibiotic-sensitive majority. Strains of the bacteria that cause 
tuberculosis and several sexually transmitted diseases have been created that are 
resistant to most of the available arsenal of antibiotics. Not unexpectedly, a good 
place to find such strains is in the sewage from hospitals, from which they can be 
dispersed to surface and ground water in sewage treatment plant effluent. 

This discussion of intraspecific competition would not be complete without 
including an interesting extension of the notion of biocides, as suggested by Gar­
rett Hardin. Suppose the whole human race practices contraception to the point 
that there is zero popUlation growth. Now suppose that some subset decides to 
abandon all practices that contribute to zero population growth. Soori that subset 
will be reproducing more rapidly than everyone else, and will eventually replace 
the others. This situation is analogous to that of the creation of an antibiotic­
resistant bacterium in an otherwise sensitive culture. The important difference 
is that antibiotic resistance is genetically transmitted and a. desire for popUlation 
growth is not. But, as long as each generation continues to teach the next to ignore 
population control. the result will be the same. 
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Some density-dependent/actors exert positive effects on populations. 

The effect of increasing population density is not always negative. Within limits, 
increasing density may be beneficial, a phenomenon referred to as the "Allee Ef­
fect."4 For example, if a population is distributed too sparsely it may be difficult 
for mates to meet; a moderate density, or at least regions in which the individuals 
are clumped into small groups, can promote mating interactions (think "singles 
bars"). 

An intimate, long-term relationship between two organisms is said to be sym­
biotic. Symbiotic relationships require at least moderate population densities to 
be effective. Parasitism, discussed earlier, is a form of symbiosis in which one 
participant benefits and the other is hurt, although it would be contrary to the par­
asite's interests to kill the host. The closeness of the association between parasite 
and host is reflected in the high degree of parasite-host specificity. For instance, 
the feline tapeworm does not often infect dogs, nor does the canine tapeworm 
often infect cats. 

Another form of symbiosis is commensalism, in which one participant ben­
efits and the other is unaffected. An example is the nesting of birds in trees: The 
birds profit from the association, but the trees are not affected. 

The third form of symbiosis recognized by biologists is mutualism, in which 
both participants benefit. An example is that of termites and certain microor­
ganisms that inhabit their digestive systems. Very few organisms can digest the 
cellulose that makes up wood; the symbionts in termite digestive systems are rare 
exceptions. The termites provide access to wood and the microorganisms provide 
digestion. Both can use the digestive products for food, so both organisms profit 
from the symbiotic association. 

It would he unexpected to find a pure K -strategist or a pure r-straregist. 

The discussions above, in conjunction with Figure 4.1. I, apply to idealized K - or 
r- strategists. Virtually all organisms are somewhere in between the two, being 
controlled by a mixture of density-independent and dependent factors. For ex­
ample, a prolonged drought is non-discriminatory, reducing the numbers of both 
mosquitoes and rabbits. The density of mosquitoes might be reduced more than 
that of rabbits, but both will be reduced to some degree. On the other hand, 
both mosquitoes and rabbits serve as prey for other animals. There are more 
mosquitoes in a mosquito population than rabbits in a rabbit popUlation, and the 
mosquitoes reproduce faster, so predation will affect the rabbits more. Still, both 
animals suffer from predation to some extent. 

Density-independent factors may control a population ,in one context and 
density-dependent factors may control it in another context. A bitter winter could 
reduce rodent numbers for a while and then, as the weather warms up, predators, 

4namcd for a prominent popullllion biologist 
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arriving by migration or arousing from hibernation. might assume control of the 
numbers of rodents. Even the growth of human populations can have variable 
outcomes. depending on the assumption of the model (see Reference [6]). 

The highest sustainable yield of an organism is obtained durillg the period of 
most rapid growth. 

Industries like lumbering or fishing have. or should have. a vested interest in sus­
tainable maintenance of their product sources. The key word here is "sustainable." 
It is possible to obtain a very high initial yield of lumber by clear-cutting a mature 
forest or by seining out all the fish in a lake. Of course. this is a one-time event 
and is therefore self-defeating. A far better strategy is to keep the forest or fish 
population at its point of maximal growth. i.e .• the steepest part of the growth 
curve (b) in Figure 4.1.1. The population. growing rapidly. is then able to replace 
the harvested individuals. Any particular harvest may be small. but the forest or 
lake will continue to yield products for a long time. giving a high long-term yield. 
The imposition of bag limits on duck hunters. for instance. has resulted in the sta­
ble availability of wild ducks. season after season. Well-managed hunting can be 
viewed as a density-dependent population-limiting factor that replaces predation. 
disease and competition. al\ of which would kill many ducks anyway. 

Section 4.2 

Community Ecology 

There is a natural progression of plant and animal communities over time in a 
particular region. This progression occurs because each community makes the 
area less hospitable to itself and more hospitable to the succeeding community. 
This succession of communities will eventually stabilize into a climax community 
that is predictable for the geography and climate of that area. 

Continued occupation of an area by a population may make that region less 
hospitable to them and more hospitable to others. 

Suppose that there is a community (several interacting populations) of plants in 
and around a small lake in north Georgia. Starting from the center of the lake 
and moving outward. we might find algae and other aquatic plants in the water. 
marsh plants and low shrubs along the bank. pine trees farther inland and. finally. 
hardwoods well removed from the lake. If one could observe this community for 
a hundred or so years. the pattern of popUlations would be seen to change in a 
predictable way. 

As the algae and other aquatic plants died. their mass would fill up the lake. 
making it hostile to those very plants whose litter filled it. Marsh plants would 
start growing in the center of the lake. which would now be boggy. The area that 
once rimmed the lake would start to dry out as the lake di~appeared and small 
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shrubs and pine trees would take up residence on its margins. Hardwoods would 
move into the area formerly occupied by the pine trees. This progressive change, 
called succession, would continue until the entire area was covered by hardwoods, 
after which no further change would be seen. The final, stable, population of 
hardwoods is called the climax community for that area. Climax communities 
differ from one part of the world to another, e.g., they may be rain forests in parts 
of Brazil and tundra in Alaska, but they are predictable. 

If the hardwood forest described above ;s destroyed by lumbering or fire, 
a process called secondary succession ensues: Grasses take over. followed by 
shrubs, then pines and then hardwoods again. Thus, both primary and secondary 
succession lead to the same climax community. 

Succession applies to both plant and animal populations and, as the above 
example demonstrates, it is due to changes made in the environment by its in­
habitants. The drying of the lake is only one possible cause of succession; for 
instance, the leaf litter deposited by trees could change the pH of the soil beneath 
the trees, thus reducing mineral uptake by the very trees that deposited the litter. 
A new population of trees might then find the soil more hospitable, and move in. 
Alternatively, insects might drive away certain of their prey, making the area less 
desirable for the insects and more desirable for other animals. 

Section 4.3 

Environmentally Limited Population Growth 

Real populations do not realize constant per capita growth rates. By engineering 
the growth rate as a function of the population size, finely structured population 
models can be constructed. Thus, if the growth rate is taken to decrease to zero 
with increasing population size, then a finite limit, the carrying capacity, is im­
posed on the population. On the other hand, if the growth rate is assigned to be 
negative at small population sizes, then small populations are driven to extinction. 

Along with the power to tailor the population model in this way comes the 
problem of its solution and the problem of estimating parameters. However, for 
one-variable models simple sign considerations predict the asymptotic behavior 
and numerical methods can easily display solutions. 

Logistic growth stabilizes a populatioll at the ellvironmelllal carrying capacity. 

As discussed in Sections 3.1 and 4.1, when a biological population becomes too 
large, the per capita growth rate diminishes. This is because the individuals in­
terfere with each other and are forced to compete for limited resources. Consider 
the model. due to Verhulst in 1845, wherein the per capita growth rate decreases 
linearly with population size y (see Figure 4.3.1), 

(4.3.1 ) 
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Figure 4.3.1 Linearly decreasing per capita growth rate 

This differential equation is known as the logistic (differential) equation; two of 
its solutions are graphed in Figure 4.3.2. Multiplying equation (4.3.1) by )' yields 
the alternate form 

dY=rY(I_~). 
dt K 

(4.3.2) 

In this form we see that the derivative ~ is zero when), = 0 or Y = K. These 
are the stationary points of the equation (see Section 2.4). The stationary point 
y = K, at which the per capita growth rate becomes zero, is called the carrying 
capacity (of the environment). 

When the population size), is small, the term f is nearly zero and the per 
capita growth rate is approximately r as before. Thus for small population size 
(but not so small that the continuum model breaks down), the population increases 
exponentially. Hence solutions are repelled from the stationary point)' = O. But 
as the population size approaches the carrying capacity K, the per capita growth 
rate decreases to zero and the population ceases to change in size. Further, if the 
population size ever exceeds the carrying capacity for some reason, then the per 
capita growth rate will be negative and the population size will decrease to K. 
Hence solutions are globally atiracted to the stationary point)' = K. 
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From the form (4.3.2) of the logistic equation we see that it is non-linear. with 
a quadratic non-linearity in y. Nevertheless. it can be solved by the separation of 
variables (see Section 2.4). Rewrite equation (4.3.1) as 

dy 
( \') = rdt. y I - K 

The fraction on the left-hand side can be expanded by partial fraction decompo­
sition and written a.. .. the sum of two simpler fractions 

( I !) - + -( K \') dy= rdt. 
y 1- K 

The solution is now found by integration. Since the left-hand side integrates to 

we get 

/( 1 !) y y+(I~f) dy=lny-ln(I-"j()' 

)' 
In)' - In( I - -) = rt + c 

K 
(4.3.3) 

where c is the constant of integration. Combining the logarithms and exponenti­
ating both sides we get 

Y = Ae" 
I-y/K 

(4.3.4) 

where A = e, A is not the t = 0 value of y. Finally, we solve equation (4.3.4) 
for y. First divide the numerator and denominator of the left-hand side by yand 
reciprocate both sides; this gives 

or, isolating y, 

I I I -=-+-. 
y Ae" K 

Now reciprocate both sides of this and get 

(4.3.5) 
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or, equivalently, 

Ae" 
y= 

I + lie'" K 

113 

(4.3.6) 

Equation (4.3.6) is the solution of the logistic equation (4.3.1). To emphasize that 
it is the concept of "logistic growth" that is important here, and not these preceed­
ing procedures, we illustrate how a solution for equation (4.3.1) with initial value 
y(O) = Yo might be found. 

> dsolve( {diff(y(tl,tl = r"y(t)"(1-y(tllkl,y(OI=yO} ,y(t)); 

The output of this computation is 

k 
y(t) = --=-;-:--, I + ,-"(k-vn) . 

)'11 

It is an exercise to reduce this solution found by the computer to 

keff )'0 

y(t) = yo(eff _ I) + k 

Three members of the family of solutions (4.3.6) are shown in Figure 4.3.2 
for different starting values Yo. We take r = I, K = 3 and find solutions for 
equation (4.3.2) with Yo = I, or 2, or 4. 

Logistic parameters can sometimes be estimated by least squares. 

Unfortunately, the logistic solution, equation (4.3.6), is not linear in its parame­
ters A, r, and K. Therefore there is no straightforward way to implement least 
squares. However, jf the data values are separated by fixed time periods, t, then it 
is possible to remap the equations so least squares will work. 

Suppose the data points are (tl,yd, (t2,)'2), ... , (tn,)'n) with t; = t;_1 + t, 
i = 2, ... , n. Then ti = tl + (i - I)t and the predicted value of I/Yi, from 
equation (4.3.5), is given by 

I I I -- +-
Yi - Ae"le(i-I)rt K 

I [I ert] = ert Ae ff 'e{i-2)rt + K 
(4.3.7) 

By rewriting the term involving K as 
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y 

> r:=1; k:=3; 

> dsolve( {diff(y(I),I) = r'y(I)'(1-y(I)/k),y(O)=1 } ,y(I)); 

y1 :=unapply(rhs(· ),1); 

> dsolve( {diff(y(I),I) = r'y(t)"(1-y(I)/k),y(O)=2} ,y(I)); 

y2:=unapply(rhS(· ),1); 

> dsoIve({ diff(y(I),I) = r·y(I)*(1-y(t).'k),y(O)=4} ,y(I)); 

y4:=unapply(rhs(· ),1); 

> PIOI({ y1 (1),y2(1),y4(1)} ,1=O .. 5,y=O .. 5); 

s· 

4 

3 

2 

o 0 2 3 

Figure 4.3.2 Solutions for equation (4.3.1) 

and using equation (4.3.5) again, equation (4.3.7) becomes 

--- -+--11(1 ert-I] 
)'i - ert )'i-I K . 

Now put z = II)' and we have 

4 

I - e- rt 
Zi =: e-rtZi_1 + wherey =: liz. 

K 

5 

(4.3.8) 



Chapter 4 I Interactions Between Organisms and Their Environment 115 

A least squares calculation is performed on the points (Zh Z2), (Z2, Z3), ... , 
(Zn-I , Zn) to determine rand K. With rand K known, least squares can be per­
formed on, say, equation (4.3.5) to determineA. 

In the exercises we will illustrate this method and suggest another, for U.S. 
population data. 

Non-linear per capita growth rates allow more complicated popUlation behavior. 

Real populations are in danger of extinction if their size falIs to a low level. Pre­
dation might eliminate the last few members completely, finding mates becomes 
more difficult, and a lack of genetic diversity renders the population susceptible 
to epidemics. By constructing a per capita growth rate that is actualIy negative 
below some critical value, e, there results a population model that tends to extinc­
tion if the population size falIs too low. Such a per capita growth rate is given as 
the right-hand side of the folIowing modification of the logistic equation 

~ dy = r (~ _ 1) (1 _ 1:.) , 
y dt e K 

(4.3.9) 

where 0 < e < K. This form of the per capita growth rate is pictured in Fig­
ure 4.3.3 using the specific parameters: r ::= I, e ::= 1/5, and K ::= I. It is 
sometimes referred to as the predator pit. 

We draw the graph in Figure 4.3.3 with these parameters: 

> r::1; theta::1/5; K::1; 

> plot([Y,r*(y/theta-1 )*(1-y/K),y:0 .. 1J.-.2 .. 1.-1 .. 1); 

The stationary points of equation (4.3.9) are y ::= 0, y ::= e, and y ::= K. But 
now y = 0 is asymptotically stable; that is, if the starting value Yo of a solution 
is near enough to 0, then the solution will tend to 0 as t increases. This follows 
because the sign of the right-hand side of equation (4.3.9) is negative for 0 < y < 
e causing ~ < O. Hence y will decrease. On the other hand, a solution starting 
with Yo > e tends to K as t increases. This folIows because when e < y < K, the 
right-hand side of equation (4.3.9) is positive, so ~ > 0 also, hence y will increase 
even more. As before, solutions starting above K decrease asymptoticalIy to K. 

Some solutions to equation (4.3.9) are shown in Figure 4.3.4 with the fol­
lowing syntax: 

> r::1; theta::1/5; K::1; 

> inlts::{[0 •. 051.[O,.lJ,[O,O.3J,[0 •. 5J.[0.lJ,[0.0. 71,[0.1.51}; 

> with(DEtools): 

> DEplot1 (diff(y(tl.t):r*y*(yltheta-1 )*( 1-y/K).y(t).t=0 .. 3.inits, 

arrows:NONE.stepsize:0.1 ); 

As our last illustration, we construct a population model that engenders little 
population growth for small populations, rapid growth for intermediate ones, and 
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Figure 4.3.3 The predator pit per capita growth rate function 
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Figure 4.3.4 Some solutions to the predator pit equation 
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low growth again for large populations. This is achieved by the quadratic per 
capita growth rate and given as the right-hand side of the following differential 
equation: 

! dy = ry (I _ ~) . 
ydt K 

(4.3.10) 

Exercises 

I. At the meeting of the Southeastern Section of the Mathematics Association 
of America. Terry Anderson presented a Maple program that determined a 
logistic fit for the U.S. population data. His fit is given by 

U.S. Population ::::: ~ 51 ' 1+ e-

where (X = 387.9802, ~ = 54.0812. and 3 = 0.0270347. Here, population is 
measured in millions and t = time since 1790. (Recall the population data of 
Example 3.5.1.) 
a. Show that the function given by the Anderson Fit satisfies a logistic 

equation of the form 

with 

d, = 3y(t) (I - y~)) , 

(X 
y(O) =-. 

1+13 

b. Plot the graphs of the U.S. population data and this graph superimposed. 
Compare the exponential fits from Chapter 3. 

c. If population trends continue. what is the long-range fit for the U.S. 
population level? 

> Anderflt:=t->alphal(l +beta·exp(-delta·t»; 

> dsolve( { diff(y(t).t)-delta·y(t)·(l-y(t)/alpha)=O. 
y(O)=alphal(l +beta)} ,y(t»; 

> alpha:00387.980205; beta:=54.0812024; delta:=O.02270347337; 
> J: .. plot(Anderfit(t),t=0 .. 200): 
> tt:=[seq(i·l0,i=0 .. 20)); 
> pop:-(3.929214, 5.308483, 7.239881, 9.638453,12.866020, 

17.069453,23.191876,31.433321,39.818449,50.155783, 
62.947714,75.994575,91.972266,105.710620,122.775046, 
131.669275,151.325798,179.323175, 203.302031, 226.545805, 
248.709873J; 
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> data:= (seq((tt(iJ,pop(ilJ,i=1 .. 21)]; 

> K:=plot(data,style=POINT,symbol=CROSS): 

> plots(dlsplay]( {J,K}); 

> expfit:=t->exp(O.02075384393·t+ 1.766257672); 

> L:=plot(expfit(t),t=O .. 200): 

> plots(displayJ( {J,K,L}); 

> plot(Anderiit(t),t=O .. 350); 

2. Using the method of equation (4.3.8), get a logistic fit for the U.S. population. 
Use the data in Example 3.5.1. 

3. Suppose that the spruce bud worm. in the absence of predation by birds. will 
grow according to a simple logistic equation of the form 

dB = rB (I _ ~) . 
dt K 

Budworms feed on the foliage of trees. The size of the carrying capacity. K. 
would depend on the amount of foliage on the trees. We take it to be constant 
for this model. 
a. Draw graphs for how the population might grow if r were 0.48 and k 

were 15. Use several initial values. 
b. Introduce predation by birds into this model in the following manner: 

Suppose that for small levels of worm population there is almost no 
predation. but for larger levels birds are attracted to this food source. 
Allow for a limit to the number of worms that each bird can eat. A model 
for predation by birds might have the form 

8 2 
P(B) = a -2--2 ' 

b +B 

where a and b are positive (see Reference [7]). Sketch the graph for 
the level of predation of the bud worms as a function of the size of the 
population. Take a and b to be 2. 

c. A model for the bud worm population size in the presence of predation 
could be modeled as 

dB =rB(I-~) -a~. 
dt K b2 + B2 

To understand the delicacy of this model and the implications for the 
care that needs to be taken in modeling. investigate graphs of solutions 
for this model with parameters r = 0.48 (== 48/1(0). a == b == 2, and 
K = 15 or K == 17. 

d. Verify that in one case, there are two positive, attracting, steady state 
solutions and in the other, there is only one. 
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The significance of the graph with K = 17 is that the worm popu­
lation can rise to a high level. With K = 15 only a low level for the size 
of the budworms is possible. The birds will eat enough of the budworms 
to save the trees! 

Here is the syntax for making the study with K == 15: 

> k:= 15; 

> plot( {.4S*(1-mu/k),2*mu/(4+mu"2)} ,mu=0 .. 20); 

> with(share): readshare(ODE,plots): 

> h:=(t,P)-> .4S*P*(1-PIk)-2*P"21(4+P"2); 

> inits:={[O,1), [0,2), [0,4), [0,5), [0,6), [O,S), [0,10), [0,12), 

[0,141, [O,161}; 

> directionfield(h,O .. 30,O .. 1S,inits,grid=[O,O]); 

Section 4.4 

A Brief Look at Multiple Species Systems 

Without exception biological populations interact with populations of other 
species. Indeed, the web of interactions is so pervasive that the entire field of 
Ecology is devoted to it. Mathematically the subject began about 70 years ago 
with a simple two-species, predator-prey differential equation model. The central 
premise of this Lotka-Volterra model is a mass action-interaction term. While 
community differential equation models are difficult to solve exactly, they can 
nonetheless be analyzed by qualitative methods. One tool for this is to linearize 
the system of equations about their stationary solution points and to determine the 
eigenvalues of the resulting interaction, or community, matrix. The eigenvalues in 
turn predict the stability of the web. The Lotka-Volterra system has neutral stabil­
ity at its non-trivial stationary point which, like Malthus' unbounded population 
growth, is a shortcoming that indicates the need for a better model. 

Interacting population models utilize a mass action interaction term. 

Lotka (1925) and, independently, Volterra (1926) proposed a simple model for the 
population dynamics of two interacting species (see Reference [8]). The central 
assumption of the model is that the degree of interaction is proportional to the 
numbers, x and y, of each species and hence to their product. that is, 

degree of interaction = (constant)xy. 

The Lotka-Volterra system is less than satisfactory as a serious model because it 
entails neutral stability (see below). However, it does illustrate the basic principles 
of multi-species models and the techniques for their analysis. Further, like the 
Malthusian model, it serves as a point of departure for better models. The central 
assumption stated above is also used as the interaction term between reactants in 
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the description of chemical reactions. In that context it is called the Mass Action 
Principle. The principle implies that encounters occur more frequently in direct 
proportion to their concentrations. 

The original Lotka-Volterra equations are 

dx 
dt = rx - axy 

dy - = -my+bxy 
dt 

(4.4.1) 

where the positive constants r, m, a, and b are parameters. The model was meant 
to treat predator-prey interactions. In this, x denotes the population size of the 
prey, and y the same for the predators. In the absence of predators, the equation 
for the prey reduces to dx/ dt = rx. Hence the prey population increases exponen­
tially with rate r in this case, see Section 3.5. Similarly, in the absence of prey, the 
predator equation becomes dy/dt = -my, dictating an exponential decline with 
rate m. 

The sign of the interaction term for the prey, -a, is negative, indicating that 
interaction is detrimental to them. The parameter a measures the average degree 
of the effect of one predator in depressing the per capita growth rate of the prey. 
Thus a is likely to be large in a model for butterfies and birds but much smaller in 
a model for Caribou and wolves. In contrast, the sign of the interaction term for 
the predators, +b, is positive, indicating that they benefit by the interaction. As 
above, the magnitude of b is indicative of the average effect of one prey on the 
per capita predator growth rate. 

Besides describing predator-prey dynamics, the Lotka-Volterra system de­
scribes a host-parasite interaction as well. Furthermore, by changing the signs 
of the interaction terms, or allowing them to be zero, the same basic system ap­
plies to other kinds of biological interactions such as mutualism, competition, 
commensalism, and amensalism. 

Mathematically, the Lotka-Volterra system is not easily solved. Nevertheless 
solutions may be numerically approximated and qualitatively described. Since the 
system has two dependent variables, a solution consists of a pair of functions x(t) 
and y(t) whose derivatives satisfy equations (4.4.1). Figure 4.4.1 is the plot of 
the solution to equations (4.4.1) with r = a = m = b = I and initial values 
x(O) = 1.5 and y(O) = 0.5. 

Figure 4.4.1 is drawn with the foJlowing syntax: 

> with (plots): with(DEtools): 

> predprey:=[diff(x(t),t)=r·x-a·x·y,diff(y(t),t)=-m·y+b·x·y); 

> r:=1; a:=1; m:=1; b:=1; 

> J:=DEplot2(predprey,[x,y),O .. 10, {[O,312,1I2)} ,stepsize=.1, 

scene=[t,x)): 

K:=DEplot2(predprey,[x,y),O .. 1 0, {I0,312,1/2J} ,slepsize=.1, 

scene=[t,y)): 

display( {J,K}); 



Chapter 4 I Interactions Between Organisms and Their Environment 121 

3 

2 

x(t) 

)'(1) 

-2 0 

-I 

Figure 4.4.1 Graphs of x(t) and of y(I), solutions for equation (4.3.1) 

Notice that the prey curve leads the predator curve.s We discuss this next. 
Although there are three variables in a Lotka-Volterra system, t is easily 

eliminated by dividing dy/dt by dx/dt, thus 

dy -my+bxy 
-=-~-.::... 
dx rx-axy 

This equation does not contain t and can be solved exactly as an implicit relation 
between x and y:6 

> dsolve(diff(y(x),x)=(-y+x*y)/(x-x*y),y(x»; 

-In(y(x» + y(x) - In(x) + x = C. 

51n Section 4.1 we discussed a number of biological rea.o;ons why. in a real situation, this model 
is inadequate. 

6/mplicit means that neither variable x nor)' is solved for in terms of the other. 
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> inits:= {[O,312,1I2J,[O,415,312J}; 
> phaseportrait(predprey,[x,y),O •. 1 O,inits,stepsize=.1 ); 
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Figure 4.4.2 A plot of two solutions of equation (4.4.\) in the X,), plane 

This solution gives rise to a system of closed curves in the x,y plane called the 
phase plane of the system. These same curves, or phase portraits, can be gener­
ated from a solution pair x(t) and y(t) as above by treating t as a parameter. In 
Figure 4.4.2, we show the phase portrait of the solution pictured in Figure 4.4.\. 
(Recall the discussion of phase portraits in Section 2.4.7) 

Let us now trace this phase portrait. Start at the bottom of the curve, region 
A, with only a small number of prey and predators. With few predators, the pop­
ulation size of the prey grows almost exponentially. But as the prey size becomes 
large, the interaction term for the predators, bxy, becomes large, and their num­
bers y begin to grow. Eventually the product ay first equals and then exceeds r, in 

7Syntax similar to that for drawing Figure 4.4.1 and producing a picture similar to Figure 4.4.2 
(without the direction field) is the following. 

> with(DEtools): 
> predprey:=[dllf(x(t),I)=rox·aoxoy,dilf(y(I),t)=·mov+boxoV\: 
> r:=l; a:=l; m:=l; b:=l; 
> DEplot2(predprey,lx,Y),O .. 10.{IO.312,l/2),[O.4/S,3J2J} ,stepsize=.1); 
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the first of equations (4.4.1), at which time the population size of the prey must 
decrease. This takes us to point B on the figure. 

However, the number of prey are still large, so predator size y continues to 
grow, forcing prey size x to continue declining. This is the upward and leftward 
section of the portrait. Eventually the product bx first equals and then falls below 
m in the second of equations (4.4.1) whereupon the predator size now begins to 
decrease. This is point C in the figure. 

At first, the predator size is sti11 at a high level, so the prey size wi11 continue 
to decrease until reaching its smallest value. But with few prey around, predator 
numbers y rapidly decrease until finally the product ay falls below r. Then the 
prey size starts to increase again. This is point 0 in the figure. But the prey size is 
still at a low level, so the predator numbers conti~ue to decrease bringing us back 
to point A and completing one cycle. 

Thus the phase portrait is traversed counter-clockwise and, as we have seen 
in the above narration, the predator population cycle qualitatively follows that of 
the prey population cycle but lags behind it. 

Of course the populations won't change at all if the derivatives ~ and ¥Ii 
are both zero in the Lotka-Volterra equations (4.4.1). Setting them to zero and 
solving the resulting algebraic system locates the stationary points, 

0= x(r - ay) 

o = y( -m + bx). 

Thus if x = m/ band y = r/ a, the populations remain fixed. Of course, x = y = 0 
is also a stationary point. 

Stability determinations are made from an eigen-analysis of the community 
matrix. 

Consider the stationary point (0,0). What if the system starts close to this point, 
that is, Yo and Xo are both very nearly O? We assume these values are so small that 
the quadratic terms in equations (4.4.1) are negligible, and we discard them. This 
is called linearizing the system about the stationary point. Then the equations 
become 

dx 
- =rx 
dt 
dy 
dt = -my. 

(4.4.4) 

Hence x wi11 increase and y will further decrease (but not to zero) and a phase 
portrait will be initiated as discussed above. The system will not, however, return 
to (0,0). Therefore this stationary point is unstable. 
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We can come to the same conclusion by rewriting the system (4.4.4) in ma­
trix form and examining the eigenvalues of the matrix on the right-hand side. This 
matrix is 

(4.4.5) 

and its eigenvalues are A.I = rand A.2 = -m. Since one of these is real and 
positive, the conclusion is the stationary point (0,0) is unstable. 

Now consider the stationary point x = ml band y = rIa and linearize about 
it as folIows. Let ~ = x - mlb and TI = Y - rIa. In th~se new variables the first 
equation of the system (4.4.1) becomes 

Again discarding the quadratic term, this yields 

d~ am - = --Tl· dt b 

The second equation of the system becomes 

dTl r m r - = -m(TI + -) + b(~ + -)(11 + -) 
dt a b a 
dTl br - = -~+b~11· dt a 

Discarding the quadratic term gives 

Thus equations (4.4.1) become 

d11 = br~. 
dt a 

d~ am - = --11 
dt b 

dTl = br~. 
dt a 

The right-hand side of equation (4.4.5) can be written in matrix form 

(4.4.6) 

(4.4.7) 



Chapter 4 I Interactions Between Organisms and Their Environment 125 

This time the eigenvalues of the matrix are imaginary, A. = ±i vr;;;;.. This implies 
that the stationary point is neutrally stable. 

Determining the stability at stationary points is an important problem. Lin­
earizing about these points is a common tool for studying this stability, and has 
been formalized into a computational procedure. In the exercises, we give more 
applications that utilize the above analysis and use a computer algebra system. 
Also, we give an example where the procedure incorrectly predicts the behavior 
at a stationary point. The text by Steven H. Strogatz [9] explains conditions to 
guarantee when the procedure works. 

To illustrate a computational procedure for this predator-prey model, first 
make the vector function V: 

> restart: 

> with(linalg): 
> V:=vector([r*x-a·x·y,-m·y+b·x·y]}; 

Find the critical points of (4.2.1) by asking where this vector-valued function is 
zero: 

> SOlve({V[1)=O,V[2)=0}, {x,y}); 

This investigation provides the solutions {O,O} and {m/b,r/a}, as we stated 
above. We now make the linearization of V about {O, O} and about {m/b, rIa}: 

> jacobian(V,lx,y]); 
> subs( { "",o,V-o }, • ); 
> subS({x=mIb,y=r/a}," H); 

The output is the matrix in equation (4.4.5) and the matrix as in equation 
(4.4.7). Note that in matrix form 

(4.4.8) 

a:ld 

Finally, we compute the eigenvalues for the linearization about each of the critical 
points. 

> eigenvals(· "); elgenvals(" "); 
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The result is the same as the result after equation (4.2.5) and after equation (4.2.7). 

Exercises 

I. The following competition model is provided in Reference [9J. Imagine rab­
bits and sheep competing for the same limited amount of grass. Assume a 
logistic growth for the two populations, that rabbits reproduce rapidly, and 
that the sheep will crowd out the rabbits. Assume these conflicts occur at 
a rate proportional to the size of each population. Further, assume that the 
conflicts reduce the growth rate for each species, but make the effect more 
severe for the rabbits by increasing the coefficient for that term. A model that 
incorporates these assumptions is 

dx - = x(3 - x - 2y) 
dt 

dy - = y(2 - x - y) 
dt 

where x(t) is the rabbit population and y is the sheep population. (Of course, 
the coefficients are not realistic, but are chosen to illustrate the possibilities.) 
Find four stationary points and investigate the stability of each. Show that one 
of the two populations is driven 10 extinction. 

2. Imagine a three-species predator-prey problem, which we identify with 
grass, sheep, and wolves. The grass grows according to a logistic equation 
in the absence of sheep. The sheep eat the grass and the wolves eat the sheep. 
(See McLaren [IOJ for a three-species population in observation.) We model 
this with the equations that follow. Here x represents the wolf population, y 
represents the sheep popUlation, and z represents the area in grass: 

dx - = -x + X)' 
dt ' 

dy - = -y+2yz-xy, 
dz 

dz 2 - = 2z - z - )'z. 
dt 

What would be the steady state of grass, with no sheep or wolves present? 
What would be the steady state of sheep and grass, with no wolves present? 
What is the revised steady state with wolves present? Does the introduction 
of wolves benefit the grass? This study can be done as follows: 
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> wlth(share): readshare(ODE,plots): 
> rsx:=(I,x,y.z}->-x+x·y; 

rsy:-(t,x,y,Z}->-y+2·y·z-x·y; 
rsz:-(t,x,y,z}->2·z-z·2-y·z; 

For just grass: 

> inlt=[O,O,O,1.5); 
> output:=rungekuttahf([rsx,rsY,rszl,inlt,O.1,200): 
> plot( { makellst(output,1 ,4),makellst(output,1 ,3), 

makelist(output, 1,2) }); 

For grass and sheep: 

> Inll:=[O,O,.5,1.5); 
> output::rungekuttahf([rsx,rsy,rszl,inlt,O.1,200): 
> plot( {makelist(output, 1 ,4),makellst(output,1 ,3), 

rtlakelist(output, 1 ,2) }); 

For grass, sheep, and wolves: 

> Inll:=[O,.2,.5,1.5); 
> output:=rungekuttahf([rsx,rsy,rszl,lnit,O.1,200): 
> plot( { makellst(output, 1 ,4) .. makelist(output, 1 ,3), 

makelisl(output, 1 ,2) }); 
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3. I.M.A. Danby [1 1] has a collection of interesting population models in his de­
lightful text. The following predator-prey model with child care is included. 
Suppose that the prey x{t) is diyided into two classes: XI (t) andx2{t) of young 
and adults. Suppose that the young are protected from predatorsy{t). Assume 
the young increase proportional to the number of adults and decrease due to 
death or to moving into the adult class. Then 

The number of adults is increased by the young growing up and decreased by 
natural death and predation, so that we model 

Finally, for the predators, we take 

dy 
dt = - fy + gX2Y· 
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Investigate the structure for the solutions of this model. Parameters that might 
be used are 

a = 2, b = c = d = 1/2, and e = f = g = I. 

4. Show that linearization of the system 

dx = _y + ax(r + /) 
dt 

dy 
dt = x + ay(r + l) 

predicts that the origin is a center for all values of a. whereas in fact the origin 
is a stable spiral if a < 0 and an unstable spiral if a > O. Draw phase portraits 
for a = I and a = - I. 

5. Suppose there is a small group of individuals who are infected with a conta­
gious disease and who have come into a larger population. If the population 
is divided into three groups. the susceptible. the infected. and the recovered. 
we have what is known as a classical S-I-R problem. The susceptible class 
consists of those who are not infected. but who are capable of catching the 
disease and becoming infected. The infected class consists of the individuals 
who are capable of transmitting the disease to others. The recovered class 
consists of those who have had the disease. but are no longer infectious. 

A system of equations that is used to model such a situation is often 
described as follows: 

dS - = -rS(t)/(t), 
dt 
dl 
dt = rS(t)/(t) - al(t), 

dR dt = al(t), 

for positive constants rand a. The proportionality constant r is called the 
infection rate. and the proportionality constant a is called the removal rate. 
a. Rewrite this model as a matrix model and recognize that the problem 

forms a closed compartment model. Conclude that the total population 
remains constant. 

b. Draw graphs for solutions. Observe that the susceptible class decreases 
In size and that the infected class increases in size and later decreases. 
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> readllb(spllne); 

> r:=1; a: .. 1 ; 

> sol:=dsolve( {dlff(SU(t),t)=-r-SU(t)*IN(t), 

dlff(IN(t),t)-r"SU(t)"IN(t)-a*IN(t), 

diff(R(t),t)=a"IN(t), 

SU(0)=2.8, 

IN(0).Q.2, 

R(O)=O}, 

{SU(t),IN(t),R(t)}, numeric, output=lislprocedure): 

> f:=subs(sol,SU(t»: g: .. subs(sol,IN(t»: h:=subs(soI,R(t»; 

> plot( { f,g,h }, 0 .. 20); 
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c. Suppose, now, that the recovered do not receive permanent immunity. 
Rather. we suppose that after a delay of one unit of time, those who 
have recovered lose immunity and move into the susceptible class. The 
system of equations changes to the following: 

dS 
dt = -rS{t)/{t) + R{t - I), 

dl 
dt = rS{t)/{t) - al{t), 

dR 
dt =al{t)-R{t-I}. 

Draw graphs for solutions to this system. Observe the possibility of os­
cillating solutions. How do you explain these oscillations from the per­
spective of an epidemiologist? (Note: The program has a long run time.) 

> readlib(spline); 

> r:=1; a:=1; 

> f.0:=t->2.8; g.0:=t->0.2; h.O:=t->o; 

J.O:=plot( { f.O,g.O,h.O }, -1 .. 0): 

> xOseq:=[seq(j/S.j=O .. S)): N:=S; 

>fornfrom1toNdo 

sol:=dsolve( {diff(SU(t).t)=-rOSU(t)'IN(t)+'h.(n-1 )(t-1),. 

diff(IN(t),t)=r*SU(t)*IN(t)-aOIN(I). 

diff(R(I),t)=a*IN(I)-'h.(n-1 )(1-1)'. 

SU(n-1)=f.(n-1 )(n-1). 

IN(n-1)=g.(n-1)(n-1 ). 

R(n-1 ) .. h.(n-1 )(n-1) }. 

{SU(t),IN(t),R(t)}. numeric, oulput=listprocedure): 

f:=subs(sol,SU(t»: g:=subs(sol.IN(I»: h:=subs(sol,R(I»: 

xseq:=rnap(t->t+n-1.xOseq): 

fxseq:=rnap(f,xseq): gxseq:=map(g,xseq): hxseq:=map(h,xseq): 

F:=spline(xseq.fxseq,t,cublc): 

G:=spline(xseq,gxseq,t,cubic): 
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H:=spline(xseq,hxseq,t,cubic): 
f.n:='splineJmakeproc'(F,t): 
g.n:='splineJmakeproc'(G,t): 

h.n:='spline/makeproc'(H,t): 

J.n:= plot( {I.n,g.n,h.n}, (n-1 ) .. n): 
od: 

> plots[displayJ( {J.1,J.2,J.3,J.4,J.5}): 

Section 4.5 

Questions for Thought and Discussion 

I. Name and discuss four factors that affect the carrying capacity of an environ­
ment for a given species. 

2. Draw and explain the shape of survivorship and population growth curves for 
an r-strategist. 

3. Draw and explain the shape of survivorship and population growth curves for 
a K -strategist. 

4. Define carrying capacity and environmental resistance. 
5. Discuss the concept of parental investment and its role in r- and K -strategies. 
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Chapter 5 

Age-Dependent 
Population Structures 

Introduction to this chapter 

This chapter presents an analysis of the distribution of ages in a population. We 
begin with a discussion of the aging process itself and then present some data 
on the age-structures of actual populations. We finish with a mathematical de­
scription of age-structures. Our primary interest is in humans, but the principles 
we present will apply to practically any mammal and perhaps to other animals as 
well. 

Section 5.1 

Aging and Death 

The notion of aging is not simple. One must consider that oak trees, and perhaps 
some animals like tortoises, seem to have unlimited growth potential, that a Pacific 
salmon mates only once and then ages rapidly, and that humans can reproduce for 
many years. In each case a different concept of aging may apply. 

The reason that aging occurs, at least in mammals, is uncertain. The idea 
that the old must die to make room for the new gene combinations of the young is 
in considerable doubt. An alternative hypothesis is that organisms must partition 
their resources between the maintenance of their own bodies and reproduction, 
and that the optimal partitioning for evolutionary fitness leaves much damage 
unrepaired. Eventually the unrepaired damage kills the organism. We present 
several hypotheses about how and why damage can occur. 
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Figure 5.1.1 Death rate. modeled on the breakage of test tubes. Curve (a) is ob­
tained by assuming a specific death (breakage) rate of 70% of survivors per month 
of test tubes surviving to that point. This is equivalent to assuming that there is no 
aging. because the probability of death (breakage) is independent of time. Curve (b) 
is obtained by assuming that the specific death rate is 1% of the survivors in the first 
month and then doubles each month thereafter. This is equivalent to assuming than 
the test tubes age. because the probability of death (breakage) i:1creases with time. 

What is meant by "aging" in an organism? 

We will use a simple definition of aging. or senescence: I It is a series of changes 
that accelerate with age and eventually result in th~ death of an organism. This 
definition is a loose one because it does not specify the source of the changes-the 
only requirement is that they accelerate. We will adopt a common approach and 
not regard predation. injury and disease caused by parasites. e.g .• microorganisms. 
as causes of aging. even though their incidence may increase with age. 

The effect of aging on survival is demonstrated in Figure 5.1.1 for a simple 
model system of test tubes. Suppose that a laboratory technician buys 1000 test 
tubes and that 70% of all surviving test tubes are broken each month. Curve 
(a) of Figure 5.1.1 shows the specific rate of breakage of the tubes-a constant 
70% per month.2 Note that a test tube surviving for three months would have the 
same chance of breakage in the fourth month as would one at the outset of the 
experiment (because aging has not occurred). Alternatively. suppose that the test 
tubes broke more easily as time passed. A tube surviving for three months would 

tThere is much argument about definitions in the study of aging and we wi.h to avoid being part 
of the dispute. Our simplification may have the opposite effect! 

2The specific death (~breakage) rate is the number dying per unit time amO"1I thou ofa specific 
age. This is to be distinguished from the simple death rate. which is the death rate irrespective of age. 
In this experiment. of course. all the test tubes are of the same .1ge. 
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Figure 5.1.2 (a) A survivorship curve for a non-aging system. using the data of 
Figure S.I.I(b). (b) A survivorship curve for a system that exhibits aging. using the 
data of Figure 5.1.1 (a). Both curves assume an initial cohort of 1000 test tubes at 
time I = O. Note the similarity of curves (a) and (b) to Figures 4.1.2 and 4.1.4. which 
are survivorship curves for r-strategists and K -strategists. respectively. 

have a much greater chance of breakage during the fourth month than would one 
at the outset of the experiment (because the older one has aged). Curve (b) shows 
the rate of breakage for these tubes (doubling each month in this example). 

Figure 5.1.2 shows survivorship curves for the two cases whose specific 
death rates are described by Figure 5.1.1. You should compare them to Fig­
ures 4.1.2 and 4.1.4. which are survivorship curves for r-strategists and K­
strategists. respectively. It should be clear that r-strategists do not show aging 
(because they are held in check by climatic factors. which should kill a con­
stant fraction of them. regardless of their ages).3 The situation with regard to 
K-strategists is a bit more complex: Mammals. for instance, are held in check by 
density-dependent factors. If they live long enough, aging will also reduce their 
numbers. Both density-dependent factors and aging become more important as 
time passes. Thus, the survivorship curve for a mammalian K -strategist should 
look somewhat like that shown in Figures 4.1.4 and 5.1.2. 

Why do organisms age and die? 

When asking "why" of any biological process as profound as senescence we 
should immediately look to the Darwinian model of evolution for enlightenment 
and seek a positive selective value of aging to aspecies. A characteristic confer-

3admittedly an approximation 



Chapter 5 I Age-Dependent Population Structures 135 

ring a positive advantage is called an adaptation and, as we shall see, the adapta­
tion we seek may not exist. 

A simple adaptive explanation for senescence is that the Darwinian strug­
gle for survival creates new organisms to fit into a changing environment. Thus, 
the previous generation must die to make space and nutrients available for the 
new generation. Thomas Kirkwood has made two objections to this hypothesis 
[1]. The first objection is posed in the question "How can aging have a positive 
selective value for a species when it can kill all the members of the species?" Be­
sides, many organisms show the most evident aging only after their reproductive 
lives have ended. If the organism should show genetically programmed deterio­
ration in its old age, that would have minimal (or no) selective value because the 
organism's reproductive life would have already ended anyway. 

Kirkwood's second objection is that most organisms live in the wild and 
almost always die from disease and predation. Thus, there is no need for selection 
based on aging in most organisms-they die too soon from other causes. 

There is another way to answer the question "Why do organisms age?," a 
non-adaptive way in that aging does not have a positive selective value. First, re­
call that in Section 4.1 we discussed how trees can partition each year's energetic 
resources and physical resources between asexual and sexual reproduction. For 
a year or two a tree would add thick trunk rings (asexual growth) at the expense 
of reduced nut production (sexual reproduction). Then, for a year or two the tree 
would reverse the situation and produce lots of nuts at the expense of vegetative 
growth. There is a hypothesis about aging that generalizes this situation; it is 
called the disposable soma model.4 

Kirkwood assumes that the organisms whose aging is of interest to us must 
partition their finite resources between reproduction and the maintenance of the 
soma, i.e., the body. In particular, somatic maintenance means the repair of the 
many insults and injuries that are inflicted on the body by factors like ordinary 
wear lind tear, toxin product.ion, radiation damage and errors in gene replication 
and expression. The two needs, reproduction and somatic maintenance, thus com­
pete with one another. If excessive resources are put into somatic maintenance 
there will be no reproduction, and the species will die out. If excessive resources 
are devoted to reproduction there will be insufficient somatic maintenance, and 
the species will die out. We thus assume that there is an optimal partitioning of 
resources between somatic maintenance and reproduction. The disposable soma 
model postulates that this optimal partitioning is such that some somatic damage 
must go unrepaired and that the organism eventually dies because of it. Thus, the 
organism has a finite lifetime, one marked by an increasing rate of deterioration, 
i.e., aging. 

The disposable soma model is non-adaptive in that aging is a harmful pro­
cess. It is, however, an essential process because it is a measure of the resources 
diverted into reproduction. In a way, aging is a side effect, but, of course, it has 
powerful consequences to the individual organism. 

4"Soma" means "body." 
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Aging of cells can provide insight into organismal aging. 

The death of the only cell comprising an amoeba has consequences that are quite 
different from those associated with the death of a single skin cell of a person; 
thus, we will have to distinguish between aging in single-celled and multicellular 
organisms. 

It is fine to study the processes that lead to the death of a cell, but what if 
that cell is only one of many in an organ of a multicellular organism? To answer 
this question we must first understand that cell death is a natural part of the life 
and development of organisms. Our hands are initially formed with interdigital 
webbing, perhaps suggesting our aquatic ancestry. This webbing is removed in 
utero by the death of the cells that comprise it. There are many other examples of 
cell death as a natural consequence of living: Our red blood cells live only about 
three months, and our skin cells peel off constantly, and both are quickly replaced. 

We can now return to the question of what happens if one, or even a small 
fraction, of the cells in an organ dies. Usually nothing, of course-we see that it 
happens all the time. But, if that cell dies for a reason connected to the possible 
deaths of other cells, then the study of the one cell becomes very important. Thus, 
the study of aging in cells can contribute greatly to our knowledge of aging in 
multicellular organisms. 

How do organisms become damaged? 

Whether we accept Kirkwood's disposable soma model or not, it is clear that our 
cells age, and we must suggest ways that the relevant damage occurs. Numerous 
mechanisms have been proposed but no single one has been adequate, and in the 
end it may be that several will have to be accepted in concert. Some examples of 
damage mechanisms that have been proposed are: 

a. Wear and tear: A cell accumulates "insults," until it dies. Typical insults result 
from the accumulation of wastes and toxins, as well as from physical injuries 
like radiation damage and mechanical injury. These are all well-known causes 
of cell death. Cells have several mechanisms by which insults can be repaired, 
but it may be that these repair systems themselves are subject to damage by 
insults. 

b. Rate of living: This is the "live fast, die young" hypothesis. In general, the 
higher a mammal's basal metabolic rate, the shorter its lifespan is. Perhaps 
some internal cellular resource is used up, or wastes accumulate, resulting in 
cell death. 

c. Preprogrammed aging: Our maximum lifespan is fixed by our genes. While 
the average lifespan of human'> has increased over the past few decades, the 
maximum lifespan seems fixed at 100-110 years. Noncancerous mammalian 
cell lines in test tube culture seem capable of only a fixed number of divisions. 
If, halfway through that fixed number of divisions, the cells are frozen in 
liquid nitrogen for ten years and then thawed, they will complete only the 
remaining half of their allotted divisions. 
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Cell reproduction seems to have a rejuvenating effect on cells. 

It is a common observation that cells which reproduce often tend to age more 
slowly than cells that divide infrequently. This effect is seen in both asexual 
and sexual reproduction. Cancer cells divide rapidly and will do so in culture 
forever. Cells of our pancreas divide at a moderate rate and our pancreas seems to 
maintain its function well into old age. Brain cells never divide lind brain function 
deteriorates noticeably in old age. Even single-celled organisms can exhibit this 
effect: They may show obvious signs of senescence until they reproduce. at which 
point those signs disappear. 

Section 5.2 

The Age-Structure of Populations 

Age-structure diagrams show the frequency distribution of ages in a population. 
The data for males and females are shown separately. The shape of these diagrams 
clln tell us about the future course of population changes: The existence of a large 
proportion of young people at any given time implies that there will be large 
proportions of individuals of child-bearing age 20 years later and of retirees 60 
years later. The shapes of age-structure diagrams are also dependent on migration 
into and out of a population. Comparison of data for males and females can tell 
us about the inherent differences between the genders and about society's attitude 
toward the two genders. 

Age-structure diagrams are determined by age-specific rates of birth, death and 
migration 

Figure 5.2.1 is a set of age-structure diagrams for the United States for 1955, 
1985.2015 (projected) and 2035 (projected) (see also Reference [2]). They show 
how the population is, or will be. distributed into age groups. Data are included 
for males and females. These diagrams can convey a great deal of information. 
For example. look at the data for 1955 anu note the 20-30 year-old cohort.s There 
are relatively fewer people in this group because the birth rate went down during 
the Great Depression. On the other hand. the birth rate went up dramatically after 
World War II and the 20-40 year-old cohort in 1985 (the "baby-boomers") shows 
clearly. Both of these cohorts can be followed in the projected data. Note also 
how the populatioA of elderly people, especially ~me", is growing. 

S A cohort is a group of people with a common characteri~tlc. Here the characteri~tic they share 
is that they were born in the same decade. 
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• Male 

o Female 

Age 

80. - -

70-79- - -

61Hl9- - -

50-59- -

4()-49 -

30-39- -

20-29- -

0-9-

1955 

Millions 

Section 5.2 I The Age-Structure of Populations 

1985 2015 2035 

Millions Millions Millions 

Figure S.2.1 Past and future (projected) age-structure diagrams for the United 
States. Note the growing proportion of elderly, compared to young, people. The co­
hort of "baby-boomers" is evident at the base ~f the 1955 data. That group moves 
up the 1985 and 2015 diagrams. (Redrawn from "Age and Sex Composition of the 
U.S. Population," in "U.S. Population: Charting the Change-Student Chart Book," 
Population Reference Bureau, Inc. 1988. Used with permission.) 

Figure 5.2.2 shows recent data for four countries-Kenya, China, the United 
States and Russia. Future population growth can be estimated by looking at the 
cohort of young people. i.e .• the numbers of people represented by the bottom 
part of each diagram. In a few decades these people will be represented by the 
middle part of age-structure diagrams and will be having babies. Thus. we can 
conclude that the population of Russia will remain steady or even decrease, those 
of the United States and China will grow slowly to moderately and that of Kenya 
will grow rapidly. 

Another factor besides births and deaths can change an age-structure dia­
gram: Migration into and out of a population may change the relative numbers 
of people in one age group. Figure 5.2.3 shows data for Sheridan County, North 
Dakota. and fcr Durham County. North Carolina, for 1990. Rural areas of the 
Great Plains have suffered a loss of young people due to emigration. and the data 
for Sheridan County demonstrates it clearly. On the other hand. Durham County 
is in the North Carolina Research Triangle, the site of several major universities 
and many research industries. It is therefore a magnet for younger people, and it~ 
age-structure diagram shows that fact. 

Some populations have more men than women. 

We are accustomed to the idea that there are more women than men in our country. 
That (true) fact can be misle::ding, however. While the sex ratio at conception is 
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• Male 

o Female 

Rapid Growth 
Age Kenya, 1990 
80+ -----------

75 . 79- - - - - - - - - - -
70- 74- - - - - - - - - - -
65 . 69- - - - - - - - - -
60 . 64- - - - - - - - - -
55 . 59- - - - - - - - - -
50-54----------
45 . 49- - - - - - - - - -
40-44- - - - - - - --
35-39- - - - - - - - -
30-34- - - - - - - -
25 . 29- - - - - - -

Slow Growth 
China, 1990 
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60-64- - - - - - - --
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Figure 5.2.2 Age-structure diagram for four countries for 1990. Each is labelled ac­
cording to its expected future growth rate. For instance, Kenya has a high proportion 
of young people, so we expect its future growth rate to be high. (Redrawn from "Pat­
terns of Population Change" in "World Population - Toward the Next Century," page 
5; Population Reference Bureau, Inc. 1994. Used with permission.) 

not known, there is evidence that a disproportionate number of female fetuses are 
spontaneously aborted in the first trimester of pregnancy. On the other hand, in 
the second and third trimesters more male than female fetuses are lost. The ratio 
of sexes at birth in the United States is about 106 males to every 100 females. The 
specific death rate for males is higher than for women and by early adolescence 
the sex ratio is 100: 100. You can refer to Figure 5.2.1 to see the effect of males' 
higher death rate on the relative numbers of males and females in later life. 
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• Male 

o Female 

Age 
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Durham County, 1990 

85+ ------------80-84------------
75 . 79- - - - - - - - - - -
70 - 74- - - - - - - - - -
65 - 69- - - - - - - - - -
60·64---------
55 . 59- - - - - - - - -
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40 -44- - - --
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30-34- -
25- 29--
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0-4 -----

6 4 202 
Percent of population 

4 66 

Population 
Sheridan County, 1990 

2 0 2 
Percent of population 

Figure S.2.3 An age-structure diagram showing the effects of migration. Many 
young people in the 20-45 year-old age group have moved into Durham County, 
North Carolina, and many young people in the 20-30 year-old age group have moved 
out of Sheridan County, North Dakota. (Redrawn from "Age and Sex Profiles of 
Sheridan and Durham Counties, 1990," in "Americans on the Move," Population Bul­
letin, vol. 48, no. 3, page 25; Population Reference Bureau, Inc. 1993. Used with 
permission.) 

The fact that there are more females than males in the United States might 
lead us to be surprised by the data of Figure 5.2.4, an age-structure diagram for 
the United Arab Emirates. The unbalanced sex ratio, heavily tilted toward males, 
arises from immigration: U.A.E. has brought in many men from other countries 
to work in its oil fields, and the men seldom bring their families. 

Another feature of gender ratios can be noted in age-structure diagrams of 
certain countries. In the late 1980s, the ratio of men to women in advanced coun­
tries was about 94: 100; in developing countries it was about 104: 100. 

Section 5.3 

Predicting the Age-Structure of a Population 

A graph of population size P as a function of age y visually documents the age­
structure or profile of a population. Over time a population profile can change 
due to periodic environmental conditions which may be favorable or unfavorable 
to the population, and to occasional events such as natural diasters and epidemics. 
For human populations, medical improvements have gradually increased the rep­
resentation in the higher age brackets. 

6 
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• Male 

o Female 

Age 

Unbalanced Sex Ratio 
United Arab Emirates 

80+ -----------
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Figure 5.2.4 Age-structure diagram showing an unbalanced sex-ratio, from the 
United Arab Emirates. The gender imbalance. males outnumbering females, is due 
to the importation of males to work in the oil fields: These males are not accompa­
nied by their families. (Redrawn from "Unbalanced Sex Ratio: United Arab Emi­
rates,. 1985" in "Population-A Lively Introduction," Population Bulletin, vol. 46. no. 
2, page 25; Population Reference Bureau. Inc. 1991. Used with permission.) 

But much greater use can be made of the population density function P. 
With a knowledge of survival rates by age, i{y), the trend in P can be predicted. 
It can be shown that if survival rates are relatively constant over time, then the 
age-structure of a population tends to a fixed profile within which the overall size 
of the population may nonetheless increase or decrease. 

Age-structure is the distribution of a population by age. 

The age-structure of a population can be described by means of a function P{y) 
giving the size of the population in the ylh age group for a set of groups covering 
all possible ages. Table 5.3.1 shows the age distribution of the U.S population it' 
1990 refined to 20-year age brackets. Mathematically it is more common to use 
I-year age brackets so that P{O) is the number of newborns less than one year of 



142 Section 5.3 I Predicting the Age-Structure of a Population 

Table 5.3.1 U.S. Population. 1990 

Age Number 
Bracket (in millions) 

0-20 71.8 
20-40 \03.4 
4Q...W 60.3 
60-80 20.9 
80-100 .209 

100+ .001 

age. P( I) counts the one-year-olds. and so on. We shall refer to P(y) as the age 
density function. The total size of a population is calculated from its density by 
summing. 

00 

P= L P(y). (5.3.1 ) 
y=o 

The use of infinity as the upper limit of this sum is a simplifying measure; for 
some age (maybe Ymax = 115). P(y) = 0 for y > Ymax. so the indicated infinite 
sum is in reality only from 0 to 115. 

The age-structure of the United States has gradually evolved over the last 
half of the 20th century. as seen in Figure 5.2.1. On the other hand. any of several 
catastrophes can bring about rapid change to an age-structure. We account for 
these possibilities by regarding the age density function as dependent on calendar 
time t as well as age y. and in deference to these dual dependencies we write 
P(y, t). In addition. by including the reference to time. a mechanism is provided 
for describing births year by year. namely P(O, t). This is the birth rate of a 
population. If the birth rate is down in some year. say t = '0. this affects ~he 
population in subsequent years as well. as we have seen above. To begin with. 
the population of l-year-olds cannot exceed the population of newborns in the 
previous year: 

P(I,IO+ I):::; P(O,to), 

assuming no immigration into the popUlation. of course. This is generally true for 
any age b~acket. thus. under the condition of no immigration. 

P(y + I, 1 + 1) :::; P(y, 1 ) for)" ~ 0 and for all t. (5.3.2) 

While the population in an age bracket cannot increase in the following year. 
it can decrease due to deaths that occur during the year. Let p(y) denote the 
death rate. or mortality. experienced by the popUlation of age y. The death rate is 
dimensionless. being the fraction of deaths per individual. or. since it is usually a 
number in the thousandths. it is frequently given as deaths per 1000 individuals. 
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Table 5.3.2 U.S. Mortality Table for 1991 

Age 

0-10 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70+ 

Deaths (%) 

1.2 
.57 

1.2 
1.8 
3.1 
7.2 

16.4 
100 

SOURCE: U.S. Dept. of Health and Human Services. 
Hyattsville, MD. 
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The actual number of deaths that occur among the segment of the population of 
age Y in year t is the product of the death rate and the number of individuals at 
risk, 

J1(Y)P(y, t), 

(p must be deaths per individual here, or P must be population in thousands). 
Virtually all natural populations experience very high pre-adult mortality 

rates. Insect populations and other unnurtured species (r-strategists; cf Chap­
ter 4) experience death rates similar to that shown in curve (a) of Figure 5.1.1. 
Notice that the newly hatched young suffer the highest mortality rates with im­
provement as the animal ages. By contrast, nurtured species (K-strategists), such 
as mammals, experience much lower pre-adult mortality rates, as seen in curve 
(b) of Figure 5.1.1. 

A mortality table for the United States is given in Table 5.3.2. In most 
species, mortality rates are lowest during the middle adult years. 

Returning to equation (5.3.2), taking deaths into account yields the equality 

P(y + I, t + I) = P(y, t) - J1(Y)P(y, t) (5.3.3) 

provided there is no immigration or emigration. But this equation ignores the 
effect of external events, which may play havoc with death rates. For example, 
due to a catastrophic epidemic, death rates in the youth age groups may be high 
during the calendar year in which the epidemic strikes. On the other hand, the U.S. 
population has experienced a gradually decreasing death rate over this century as 
a result of improved medical care (see Table 5.3.3). To account for these and other 
factors unrelated to age, we must regard J1 as a function of time as well as age. 
Thus equation (5.3.3) becomes 

P(y + I,t + I} = P(y,t) - J1(y,t}P(y,t} 
= l(y,t}P(y,t} 

(5.3.4) 
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where ley, t) = I - JI(y, t) is the fraction of the population of age y which will 
live through year t. These factors l(·, .) are called survival rates. 

In the absence of external events, populations evolve 10 a stable age distribution. 

While survival rates depend on calendar time in general, here we are interested 
in predicting the population structure in the absence of external events. Conse­
quently we will regard JI (and i) as a function of age only. 

Knowing yearly birth rates P(O, t) and age-specific survival rates,l(y), equa­
tion (5.3.4) allows the calculation of the course of the population through time 
including its age distribution and size. We also need to know the present age 
distribution, P(y,O), where we may regard the present time as t = O. Usually 
the calculation is done for the female population of the species, since birth rates 
depend largely on the number of females while being somewhat independent of 
the number of males. The birth rates given will therefore pertain to the birth of 
females. 

We illustrate this calculation for a K-strategist, specifically, for the grey seal, 
whose (female) fecundity and survival rates are given in Table 5.3.4. 

Table 5.3.4 Grey Seal Fecundity and Survival Rates 

Age 
Fecundity 
Survival 

o 
o 
0.657 

I 
o 
0.930 

2 
o 
0.930 

3 
o 
0.930 

4 
0.08 
0.935 

5 
0.28 
0.935 

5+ 
0.42 
o 

SOURCE: D. Brown and P. Rothery, Model.' in Biology: Mathematics, Stuti.flit's 
and Computing, John Wiley & Sons Ltd .. Chirchester, 1993. 

To get it started, we make the assumption that the present population has 
uniform age density. Actually this assumption about the starting population is not 
important in the long term, as we will see in the exercises. The key values are 
the birth and survival rates in the table. Since the survival rate for age 0 is 0.657, 
from equation (5.3.4) we have 

P(I,t + I) = 0.657P(0,1), for aliI ~ O. 

Similarly, for y = 1,2, 3, 

P(y + 1,1 + I) = O.930P(y,I), for all I ~ O. 

And for y = 4, 5, 

P(y + 1,1 + I) = O.935P(y, I), for all I ~ O. 

In this we take 5 + I to be 5+. Since there is no catagory beyond "5+", the 
survival rate £(5+) is O. The birth rate calculation uses the fecundity entries and 
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is only slightly more complicated: 

p(a,t + I) = 0.OSP(4,t) + 0.2SP(5,t) + 0.42P(5+,t). 

It is convenient to write the calculation in matrix form. Let p(t} be the vector 
whose components are P(y, t}, 

P(O,t) 
P( l,t} 
P(2,t} 

pet} = P(3, t) 
P(4,t} 
P(S,t} 

P(5+, t) 

Then, p( I} is given as the matrix product 

0 a a a O.OS 
.657 0 0 0 0 

0 .930 0 0 0 
p(l} = 0 0 .930 0 0 

0 0 0 .930 0 
0 0 0 0 .935 
a 0 0 0 0 

= Lp(O). 

0.2S 
0 
0 
0 
0 
0 

.935 

0.42 
0 
0 
0 
0 
0 
0 

P(O,O) 
P(I,O} 
P(2,0} 
P(3,0) 
P(4,0} 
P(5,O) 

P(5+,0} 
(S.3.5) 

Denote by L the 7 x 7 matrix indicated. The first row reflects the births coming 
from various age groups and has non-zero terms indicated by these births. Except 
for the first row, the only non-zero terms are the principal subdiagonal entries, the 
survival rates ley). Such a matrix is called a Leslie matrix, and it always has the 
same form: 

... all) ... 0 

... 0 . 

... 0 

... 0 o o 

To be specific, assume a starting density p(O). The new density p( I) in equation 
(5.3.5) can be computed by inspection, or by using the computer: 
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> wilh(linalg): 
> el:=malrix(7,7); 
> fori from I107do 

for j from 1 10 7 do 

el[i,iJ:= 0: 
oct 

oct: 
> el[I,5):=2125: el[I,6):=7/25: el[I,7):=21/50: 

el[2,I):=657/1000: el[3,2):=93/100: el[4,3):=93/1 00: 
el[5,4):=93/100: el[6,5):=93511 000: el[7,6]:=93511 000: 

> evalm(el &. [PO,Pl,P2,P3,P4,P5,P6)); 

Either way we get 

0.08P(4,0) + 0.28P(5, 0) + 0.42P(5+. 0) 
.657P(0, 0) 
.930P(I,0) 

p(J) = .930P(2,0) 
.930P(3,0) 
.935P(4,0) 
.935P(5,0) 

Furthermore, the population size after one time period is simply the sum of the 
components of p( 1). 

The beauty of this formulation is that advancing to the next year is just an­
other multiplication by L. Thus 

p(2) = Lp(l) = L2p(0), p(3) = Lp(2) = L3p(0), etc. 

The powers of a Leslie matrix have a special property which we illustrate. For 
example, we compute LIO. 

> ell0:=evalf(evalm(eI"10)): 
> Digits:=2; 

evalf(evalm(ell0)); 
Digits:=10; 

The result, accurate to three places, is 

.00\8 .018 .058 .094 .71 0 0 
0 .00\8 .013 .041 .067 .050 0 
0 0 .0018 .013 .041 .066 .050 

LIO = .11 0 0 .0018 .013 .031 .033 (5.3.6) 
.073 .16 0 0 .0018 .0063 .0094 
.021 .10 .16 0 0 0 0 

0 .030 .10 .16 0 0 0 
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Remarkably, the power Ln can be easily approximated as predicted by the 
Perron-Frobenius Theorem [3]. Letting A be the largest eigenvalue of L and letting 
V be the corresponding normalized eigenvector, LV = AV, then 

where c is a constant determined by the choice of normalization, see (5.3.7). This 
approximation improves with increasing n. The importance of this result is that 
the long range forecast for the population is predictable in form. That is, the 
ratios between the age classes are independent of the initial distribution and scale 
as powers of A. 

The number A is a real, positive eigenvalue of L (recall Section 2.5). This 
eigenvalue for L can be found rather easily by the computer algebra system. The 
eigenvector can also be found by the computer. It is shown in Reference [4] that 
the eigenvector has the simple form 

( 
bl~A ) 

V = blbdA2 

b1b2b3' .. bn/An 

(5.3.7) 

To illustrate this property of Leslie matrices, we find A, V, and L10 for this exam­
ple. We explore other models in the exercises. 

> fel:=evalf(evalm{el)): 

> vel:=eigenvects(fel); 

This syntax finds all 7 eigenvalues and their corresponding eigenvectors. By 
inspection we see which is the largest, for instance, the seventh here. 

> B:=convert(vel[7)[3],list); 

> vec:=B[7]; Iype(vec,vector); 

> V:=[seq{vec[iVvec[1],i=1..7l]; 

We find the eigenvalue and eigenvector as 

1.0 
.765 
.829 

A ~ .8586, and V ~ .898 
.972 
1.06 
1.15 

(5.3.8) 
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normalized to have first component equal to I. The alternate formula (5.3.7) for 
computing V can be used to check this result. 

> chk:=[l,el[2,l]11ambda, el[2, 1 ]*el[3,2]11ambda'2, 
el[2,l )"el[3,2)"el[4,3]11ambda'3, 

el[2,l )"el[3,2)"el[4,3]*el[S,4]11ambda' 4, 

el[2,l )"el[3,2)*el[4,3)*el[S,4)*el[6,S)Ilambda 'S, 
el[2,l )"el[3,2)*el[4,3)*el[S,4)*el[6,S)*el[7 ,6]11ambda'6); 

This gives the same vector V as (5.3.8). We illustrate the approximation of the 
iterates for this example taking the intial value to be uniform, say, I. Then, making 
calculations, 

> evalf(evalm(ell0 &* [1,1,1,1,1,1,1])); 
> evalm(Iambda'10 * V); 

.24 

.17 

.17 

( .22 
.17 

p(O) = LIOp(O) = c .19 ~ cAIOV = c .19 l·IS 

.25 

.28 

.29 

.21 

.23 

.25 

One implication of this structure is that the total population is stable if A = I, 
and increases or decreases depending on the comparative size of A to I. 

Continuous population densities provide exact population calculations. 

Any table of population densities, such as P(y, t) for), = 0, I, ... , as above, will 
have limited resolution, in this case one-year brackets. Alternatively, an age dis­
tribution can be described with unlimited resolution by a continuous age density 
function, which we also denote by P(y, t), such as we have shown in Figure 4.1.2 
and Figure 4.1.4. 

Given a continuous age density P(y, t), to find the population size in any age 
group, just integrate. For instance, the number in the group 17.6 to 21.25 is 

/.
21.25 

number between age 17.6 and 21.25 = P(y, t )dy. 
17.6 

This is the area under the density curve between y = 17.6 and y = 21.25. The 
total population at time t is 

P = 10'''' P(y, t) dy, 
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which is the analog of equation (5.3.1). For a narrow range of ages at age y. for 
example, y to y + lly with lly small. there is a simpler formula. Population size is 
approximately given by the product 

P(y) ·lly 

because density is approximately constant over a narrow age bracket. 
The variable y in an age density function is a continuous variable. The pe­

riod of time an individual is exactly 20. for instance. is infinitesimal; so what 
does P(20, t) mean? In general. P(y, t) is the limit as lly -+ () of the number of 
individuals in an age bracket of size lly that includes y. divided by lly. 

P(y ) _ I. population size between y and y + lly 
,t - 1m . 

&y-+O lly 

As above. the density is generally a function of time as well as age. and is 
written P(y, t) to reflect this dependence. 

Table 2.6.3 gives the mortality rate for Alabama in 1990. From the table. the 
death rate for 70-year-olds, i.e .• someone between 70.0 and 70.999 ...• is approx­
imately 40 per 1000 individuals over the course of the year. Over one-half the 
year it is approximately 20 per 1000, and over llt fraction of the year the death 
rate is approximately /1(70, 1990) . ru in deaths per 1000, where /1(70, 1990) is 
40. To calculate the actual number of deaths we must multiply by the popu­
lation size of the 70-year-olds in thousands. On January 1st 1990. there were 
J~~ P(y, 1990) dy / 1000 numbers of such individuals. Thus the number of deaths 
among 70-year-olds over a small fraction ru of time at the beginning of the year 
1990 is given by 

171 

/1(70,1990)ru P(y,1990)dy/1000. 
70 

(5.3.9) 

A calculation such as equation (5.3.9) works. provided the death rate is con­
stant over the year and the time interval ru is less than one year. But. in general. 
death rates vary continuously with age. In Figure 5.3.1 we show an exponential 
fit to the data of Table 2.6.3. The approximate continuously vllrying death rate is 

/1(y, t) = Ae"Y, 

which is drawn using the methods of Exercise I, Section 2.6. This equation as­
sumes the death rate is independent of time; but, as we have seen. it can depend 
on time as well as age. 
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Figure 5.3.1 Least square fit to the Death Rate Table 2.6.3 

To calculate a number of deaths accurately, we must account for the chang­
ing death rate as well as the changing density. The equation for calculating the 
number of deaths to individuals of exact age y at time lover the interval of time 
&is 

P(y, t ).u(y, I )~t. (5.3.10) 

The number of deaths among those individuals who are between y and y + ~y 
years old over this same period of time is 

[P(y, t)~yl.u(y, 1)&. 

Suppose we want to do the calculation for those between the ages of al to a2 over 
the calendar time II to t2. The approximate answer is given by the double sum of 
such terms, 

L L.u(y,t)P(y, t)~y&, 

over a grid of small rectangles ~)'~t covering the range of ages and times desired. 
In the limit as the grid becomes finer this double sum converges to the double 
integral 
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j111"Z . JI(Y, t) P(y, t) dydt. (5.3.11) 
" QI 

Return to equation (5.3.10) which calculates the loss of population, AP, in 
the exact age group y over the time interval At: 

AP = -Jl(y,t)P(y,t)At. 

But by definition the change in population is 

AP = P(y + Ay,t + At) - P(y,t). 

Equate these two expressions for AP, incorporating the fact that as time passes, 
the population ages at the same rate, that is Ay = At. Therefore we have the 
continuous analog of equation (5.3.3) 

P(y + At, t + At) - P(y, t) = -Jl(Y, t)P(y, t)At. 

Add and subtract the term P(y, t + At) to the lefthand side and divide by At, 

P(y + At, t + At) - P(y, t + At) P(y, t + At) - P(y,t) ()P. 
At + At = -JI y, t . 

Finally, take the limit as At -t 0 and get 

This is referred to as the Von Foerster equation. Its solution for y > t is 

P(y, t) = P(y - t, O)e- J.:p(y-I+Il,u)dll 

as can be verified by direct substitution. 

> P:=(y,l)->h(y-l)*exp(-inl(mu(y-l+U,u),u=O .. l»; 

> diff(P(y,l),l)+diff(P(y,t),y)+mu(y,t)*P(y,l); 

> simplify("); 

(5.3.12) 

This solution does not incorporate new births. however. As in the computation of 
equation (5.3.5). we must use experimental data to determine 1'(0, t) as a function 
of P(y, t), y > O. 
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Exercises 

I. Consider this discrete population model. using equation (5.3.1): Suppose the 
initial population is given by 

P(n,O) = (100 - n) . (25 + n), n = 0, ... ,100. 

Take the birth rate to be 1.9 children per couple in the ten-year age bracket 
from 21 through 30 years of age. so that 

P(O ) = ~ ~ P(n- I,i) 
,n 2 . ..t.J 10 ' 

.=21 
II = 1, ... ,20. 

Take the death rate to be given by the exponential approximation 

JI(n) = exp(0.0756· t - 1.6134), n=O, ... ,loo. 

Advance the population for three years. keeping track of the total population: 

100 

total(n) = :E P(n, i). 

Does the total population increase? 

> PO:=t->(100-t)*(25+t): 

> sum('PO(p)','p'=0 .. 100); 

> birthO:= 1.9*sum('PO(p)','p'=21..30)/10; 

> plot(PO, L 1 00); 

> Death:=I->exp(.0756*I-l.6134); 

> Pl :=proc(p) if p < = 1 then birthO else 

i=O 

if 1 < p and p < 100 then PO(p-l)*(1-Death(p-l)/1000) else 

if p .. 100 then 0 

fi fi fi end; 

sum('Pl'(p)' ,'p'=O .. l 0Cil); , 
birth1:= 1.9*sum('Pl(p)','p'=21 .. 30)12O; 

> plot(Pl,1..100); 

> P2:=proc(p) if p i= 1 then birth1 else 

if 1 < p and p < 100 then P1(p-1)*(1-Death(p-1)11000) else 

ifp=loothenO 

fi fi fi end; 

sum(,P2(p), ,'p'=O .. l 00); 
birth2:= 1.9*sum('P2(p)' ,'p'=21 .. 30)ll 0; 

> plot(P2,l .. 100); 
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2. For the following two Leslie matrices find A and V as given in equation 
(5.3.4). What is the ratio of the ages of associated populations? 

( I 2/3) 
LJ = 1/2 0 

4 3) o 0 . 
1/4 0 

Section 5.4 

Questions for Thought and Discussion 

I. Draw age-structure diagrams for the three cases of populations whose maxi­
mum numbers are young, middle-aged and elderly people. In each case draw 
the age-structure diagram to be expected thirty years later if birth and death 
rates are equal and constant, and if there is no migration. 

2. Repeat Question #1 for the situation where the birth rate is larger than the 
death rate, and there is no migration. 

3. Repeat Question #1 for the situation where the birth and death rates are con­
stant, but there is a short-but-extensive incoming migration of middle-aged 
women at the outset. 
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Chapter 6 

Random Movements 
in Space and Time 

Introduction to this chapter 

Many biological phenomena, at all levels of organization, can be modeled by 
treating them as random processes, behaving much like the diffusion of ink in 
a container of water. In this chapter we discuss some biological aspects of ran­
dom processes, namely the movement of oxygen across a human placenta and 
the spread of infectious diseases. While these processes might seem to be quite 
different at first glance, they actually act according to very similar models. 

We begin with a description of biological membranes, structures that reg­
ulate the movement of material into, out of, and within the functional compart­
ments of a cell. At the core of a membrane is a layer of water-repelling molecular 
moities. This layer has the effect of restricting the free transmembrane move­
ment of any substance that is water-soluble, although water itself can get past 
the layer. The transmembrane movement of the normal water-soluble compounds 
of cellular metabolism is regulated by large biochemical molecules that span the 
membrane. They are called permeases. or transport proteins. Perm eases have the 
ability to select the materials that cross a membrane. Other membranes anchor 
critical cellular components that promote chemical reactions through catalysis. 

A human fetus requires oxygen for its metabolic needs. This oxygen is ob­
tained from its mother, who breathes it and transfers it via her blood to the pla­
centa. an organ that serves as the maternal-fetal interface. Because the blood 
of mother and child do not mix. material exchange between them must take 
place across a group of membranes. The chemical that transports the oxygen 
is hemoglobin, of which there are at least two kinds. each exhibiting a differ­
ent strength of attachment to oxygen molecules. Further, chemical conditions 
around the hemoglobin also affect its attachment to oxygen. The conditions at the 
placenta are such that there is a net transmembrane movement of oxygen from 
maternal hemoglobin to fetal hemoglobin. 
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Diseases seem to diffuse. as anyone who has watched the progress of a flu 
epidemic can testify. The diffusion of an infectious disease. however. is subject to 
numerous perturbations and variables; examples are variations in infective ability 
of the infective agent and in the resistance of the hosts and the frequent need for 
vectors to carry the disease. 

This chapter also serves as an introduction to the discussions of the blood 
vascular system in Chapter 7. of biomolecular structure in Chapter 9 and of HIV 
in Chapter 10. 

Section 6.1 

Biological Membranes 

Biological membranes do much more than physically separate the interior of cells 
from the outside world. They provide organisms with control over the substances 
that enter. leave and move around their cells. This is accomplished by selective 
molecules that can recognize certain smaller molecules whose transmembrane 
movement is required by the cell. A waterproof layer in the membrane other­
wise restricts the movement of these smaller compounds. In addition. membranes 
maintain compartments inside a cell. allowing the formation of specific chemical 
environments in which specialized reactions can take place. 

The molecular structure of a substance determines its solubility in water. 

Distinctions between oil and water are everywhere. We have all seen how salad 
oil forms spherical globules when it is mixed with watery vinegar. Likewise. we 
say that two hostile people "get along like oil and water." These experiences seem 
to suggest that all materials are either water-soluble or not. This is an oversim­
plification: Ethyl alcohol is infinitely soluble in water (gin is about half alcohol. 
half water). but isopropanol (rubbing alcohol). table salt and table sugar all have 
moderate water-solubility. Salt and sugar have very low solubility in gasoline and 
benzene (erstwhile dry-cleaning fluid). On the other hand. benzene will easily 
dissolve in gasoline and in fatty substances. 

The .!Iectronic basis for water-solubility will be described in Chapter 9. but 
for now it is sufficient that we recognize that the ability of a substance to dissolve 
in water is determined by its electronic structure. Further. an appropriate structure 
is found in ions (like sodium and chlorine from salt) and in molecules with oxygen 
and nitrogen atoms (like sugars and ammonia). Such substances are said to be 
hydrophilic. or polar. Hydrophilic structures are not found in electrically neutral 
atoms. nor in most molecules lacking oxygen and nitrogen. This is especially true 
when the latter molecules have a very high proportion of carbon and hydrogen 
(e.g .• benzene. gasoline and fatty substances). These latter materials are said to 
be hydrophobic. or nonpolar. 
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Bothfaces of a membrane are attracted to water, but the interior of the membrane 
repels water. 

The biological world is water-based. I Therefore. cells face a bit of a problem in 
that water is a major component of the external world. which could lead to too 
much interaction between a cell's contents and its environment. To deal with this 
problem. cells are surrounded by a water-proofing. or hydrophobic. membrane 
layer. We should be glad for this structural feature of our bodies-it keeps us 
from dissolving in the shower! 

Figure 6.1.1 shows a model of a cell membrane. The side facing the cellular 
interior is hydrophilic because it must interact with the cell's internal environ­
ment; the outside is also hydrophilic because it interacts with the external world.2 

The interior of the membrane. however. is strongly hydrophobic. being a kind 
of hydrocarbon (constructed from hydrogen and carbon only). This arrangement 
is thermodynamically favorable because there are no direct interactions between 
hydrophilic and hydrophobic groups.) Attached to. and sometimes piercing. the 
membrane are complicated biological molecules called proteins. which will be 
described in more detail in Chapter 9. 

No material can enter or leave the cell unless it negotiates its way past this 
membrane. because the membrane completely envelops the cell. Clearly. the ef­
ficiency of transmembrane movement of a substance will be determined by the 
ability of the substance to interact with the membrane's components. especially 
the interior hydrophobic layer of the membrane. 

Only a few kinds of substances call diffuse freely across the hydrophobic layer of 
a membrane. 

The substances that can move across the hydrophobic layer in response to a con·· 
centration gradient fall into two groups. The first group. surprisingly. contains wa­
ter and carbon dioxide. a fact that seems contrary to our earlier discussion. What 
seems to happen is that water and C02 molecules are small enough that they can 
slip past the large hydrocarbon fragments in the membrane. A nice demonstration 
of this is seen by placing human red blood cells into distilled water. The interior 
of the cell contains materials that cannot go through the membrane. so the water 
there is at a lower concentration than in the surroundings. Thus. water moves into 
the cell and eventually bursts it like a balloon. This movement of water (or any 
other solvent) is called osmosis. 

The second kind of material that easily passes through the membrane hydro­
carbon layer is a hydrocarbon. Of course. our cells are almost never exposed to 
hydrocarbons. so this material is of little interest. We will. however. point out in 

lOur bodies must resort to special tricb to solubilize fats that we eat. Our live", produce a 
detergent-like substance. called bile. that allows waler to get close 10 the fat.~. The hydrocarbon­
metabolizing microorganisms thai are useful in dealing with oil spills often use similar melhod.~. 

211 mighl be ea.~ie.~t here 10 picture a single-celled organism in a pond. 
)The arrangement of molecules in lhe membrane of Figure 6.1.1 is called a bilayer becau.~ il 

consists of two leaflet.~ of molecules. arranged back-Io-back. 
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Chapter 7 that one route of lead into our bodies is through ollr skin: If we spill 
leaded gasoline on ourselves. the hydrocarbons of the gasoline can carry the lead 
right across our hydrophobic membrane barriers and into our blood stream. 

Selective channels control the passive and active movements of ions and large 
molecules across membranes. 

Many relatively large hydrophilic particles. like ions and sugars. can pass through 
membranes-after all. these particles are essential components of cellular sys­
tems. They do not move directly through the bulk of the membrane. Rather. 
their movement is regulated by large proteins that completely penetrate the mem­
brane and act like specialized channels. choosing which substances get past the 
membrane (see Figure 6.1.1). These proteins are called permeases. or trans­
port proteins. and they are very selective: The substitution of a single atom in 
a transportable molecule with molecular weight of several hundred can cause the 

interior of cell 

hydrophilic 
(water soluble) 

L exterior "\. 
/ of cell membrane"\.. 

phospholipids 

/ 

exterior of cell 

Figure 6.1.1 A model of a cell membrane. showing the hydrocarbon (hydrophobic, 
water insoluble) interior and hydrophilic (water soluble) exterior of the membrane. 
This dual nature of the membrane is the result of the orientation of many phospho· 
lipid molecules. only four of which are actually shown in the figure. Figure 9.2.5 in 
Chapter 9 will show how the chemical nature of a phospholipid leads to hydrophobic 
and hydrophilic parts of the membrane. Two proteins are also shown to demonstrate 
that some span the membrane completely and others only pierce the outside halfway 
through (on either side of the membrane). 
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molecule to be excluded by its normal permease. Perm eases thus act like selective 
gates to control material transport into and out of a cell. 

Materials can move across membranes via permeases by two different mech­
anisms, both often called facilitated transport. First, the passive movement of a 
material in response to a concentration gradient (diffusion) is usually facilitated 
by permeases. The point is that only those substances recognized by a permease 
will behave this way. Any other substances will diffuse up to the membrane and 
then be stopped by the hydrophobic layer of the membrane. 

Second, many materials are pumped against a concentration gradient past a 
membrane. This process, called active transport, requires energy because it is in 
the opposite direction to the usual, spontaneous movement of particles. Active 
transport also requires a facilitating permease. 

Facilitated transport is discussed further in Chapter 8, in the text by 
Beck et al. [l], and in the reference by Yeargers [2]. 

Some cellular membranes face the outside world and regulate intercellular 
material movement. 

The day-to-day processes that a cell must perform require that nutrients and oxy­
gen move into the cell and that wastes and carbon dioxide move out. In other 
words, the cell must maintain constant, intimate communication with its external 
environment. The cell membrane provides the interface between the cell and the 
outside world, and membrane permeases, because of their selectivity, control the 
transmembrane movement of most of the substances whose intercellular transport 
is required. 

What about water? It moves across membranes irrespective of permeases 
and would therefore seem to be uncontrollable. In fact, cells can regulate water 
movement, albeit by indirect means. They accomplish this by regulating other 
substances and that, in turn, affects water. For example, a cell might pump sodium 
ions across a membrane to a high concentration. Water molecules will then follow 
the sodium ions across the membrane by simple diffusion, to dilute the sodium. 

Some cellular membranes are inside the cell and regulate intracellular material 
movements. 

Students are sometimes surprised to learn that the interior of a cell, exclusive of 
the nucleus, is a labyrinth of membranes. A mechanical analog can be obtained 
by combining some confetti and a sheet of paper, crumpling up the whole mess 
into a wad and then stuffing it into a paper bag. The analogy cannot be pushed too 
far; membranes inside the cell often have very regular structures, lying in parallel 
sheets, or forming globular structures (like the nucleus). In short, the interior of a 
cell is a very complicated place. 

Many thousands of different biochemical reactions occur in a mammalian 
cell. If these reactions were not coordinated in space and time the result would be 
chaos. Membranes provide coordinating mechanisms in several ways: First, large 
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Figure 6.1.2 A schematic diagram showing the process of pinoc:ytosis. A small 
indentation forms at the particle's point of contact. and the particle is then drawn into 
the cell's interior. 

biochemical molecules are always assembled step-wise, beginning with small 
structures and ending up with large ones. All of the fragments to be added must 
be close to the nascent biomolecule so that they can be added at the right time. 
Intracellular membranes provide compartmentalization to keep the reactants and 
products of related reactions in close proximity to one another. Second, the ef­
ficiencies of different cellular biochemical reactions are dependent on environ­
mental conditions, e.g., pH and salt concentration. The specialized environmental 
needs of each reaction, or set of reactions, are maintained by membrane com­
partmentalization. Thus, a cell is partitioned off into many small chambers, each 
with a special set of chemical conditions. A third point, related to the first two, 
is that virtually all chemical reactions in a cell are catalyzed by special proteins, 
and these catalysts often work only when they are attached to a membrane. Refer 
to Figure 6.1.1, and note that many of the proteins do not pierce the membrane, 
but rather are attached to one side or the other. These proteins represent several of 
the membrane-bound protein catalysts of a cell. You will read more about these 
catalysts in Chapter 9. 

lArge objects move into and out of a cell by special means. 

Neither simple diffusion nor facilitated transport can move particulate objects like 
cellular debris, food, bacteria and viruses into or out of a cell; those require com­
pletely different routes. If a cell is capable of amoeboid movement it can surround 
the particle with pseudopods and draw it in by phagocytosis. If the cell is not 
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amoeboid, it can form small pockets in its surface to enclose the particle; this pro­
cess is pinocytosis, as shown in Figure 6.1.2. Both phagocytosis and pinocytosis 
can be reversed to rid the cell of particulate waste matter. 

Section 6.2 

The Mathematics of Diffusion 
In this section we derive Fick's laws of diffusion by studying a random walk 
model. Using the normal approximation to the binomial distribution, we obtain 
the Gaussian solution of the diffusion equation for a point source concentration. 
It is seen that particles disperse on the average in proportion to the square root of 
time. 

Fick's laws are applied to investigate one aspect of diffusion through biolog­
ical membranes. It is shown that the rate of mass transport is proportional to the 
concentration difference across the membrane and inversely proportional to the 
thickness of the membrane. 

Random processes in the biosphere playa major role in life. 

In Section 6.1 we described the membrane system that surrounds and pervades 
a cell. In this section we show how the random motion of substances can carry 
materials across these membranes and through the bulk of a cell. 

Chance plays a major role in the processes of life. On the microscopic 
scale, molecules are in constant random motion corresponding to their temper­
ature. Consequently chance guides the fundamental chemistry of life. On a larger 
scale, genes mutate and recombine by random processes. Thus chance is a fun­
damental component of evolution. Macroscopically, unpredictable events such 
as intra-species encounters lead to matings or the transmission of disease, while 
inter-species encounters claims many a prey victim, but not with certainty. The 
weather can affect living things throughout an entire region and even an entire 
continent. And on a truly grand scale, astronomical impacts can cause mass ex­
tinction. 

, Diffusion can be modeled as a random walk. 

Molecules are in a constant state of motion as a consequence of their temperature. 
According to the kinetic theory of matter, there is a fundamental relationship be­
tween molecular motion and temperature, which is simplified by measuring the 
latter on an absolute scale, degrees Kelvin. Zero degrees Kelvin, or absolute zero, 
is - 273.15 0c. Moreover, in 1905 Einstein showed that the principle extends to 
particles of any size, for instance, to pollen grains suspended in water. Einstein's 
revelation explained an observation made in 1828 by the English botanist Robert 
Brown, who reported on seeing a jittery, undirected motion of pollen grains in the 
water of his microscope plate. We now refer to this phenomenon as Brownian 
motion. It is a visible form of diffusion. 
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The relationship between temperature and particle motion can be precisely 
stated: The average kinetic energy of a particle along a given axis is kT /2, where 
T is temperature in degrees Kelvin and k is the universal Boltzmann's constant, 
k = 1.38 X 10-16 ergs per degree (Reference [3]). The principle is stated in terms 
of the time average of a single particle, but we will assume that it applies equally 
well to the average of an ensemble or collection of identical particles taken at the 
same time, the ensemble average. 

Now the kinetic energy of an object of mass m and velocity v is !mv2 , so the 
average kinetic energy of N particles of the same mass m but possibly different 
velocities is 

--2 N 2 mv ri=1 mv;/2 
2"= N 

m N mv2 
= 2N;Lvt = 2"' ,=1 

In this we have used an overline to denote average ensemble value. 
Therefore, for a collection of particles of mass m. the kinetic theory gives 

or 

- kT 
v2 = -. 

m 
(6.2.1) 

Table 6.2.1 gives the average thermal velocity of some biological molecules at 
body temperature predicted by this equation. 

A particle does not go very far at these speeds before undergoing a collision 
with another particle or the walls of its container and careening off in some new 
direction. With a new direction and velocity the process begins anew. destined to 
suffer the same fate. With all the collisions and rebounds, the particle executes 
what can be described as a random walk through space. To analyze this process, 

Table 6.2.1 RMS Velocities at Body Temperature 

Molecule 

H20 
~ 
Glucose 
Lysozyme 
Hemoglobin 
Bacteriophage 
E. coli 

Molecular Weight 

18 
32 

ISO 
1.400 

65.000 
6.2 x 106 

R:2.9 x 1011 

Mass (g) 

3 X 10-26 

5.4 X 10-26 

3 X 10-25 

2.4 X 10-23 

I x 10-22 

I X 10-20 

2 X 10- 15 

r.m.s. speed at 
36"C (m/sec) 

652 
487 
200 

23 
II 

1.1 
.0025 
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we model it by stripping away as much unnecessary complication as possible 
while still retaining the essence of the phenomenon, see References [4,5). 

For simplicity, assume time is divided into discrete periods III and in each 
such period a particle moves one step Ax to the left or right along a line, the 
choice being random. After n time periods the particle lies somewhere in the 
interval from -n(Ax) to n(Ax) relative to its starting point, taken as the origin O. 

For example, suppose n = 4. If all four choices are to the left, the particle 
will be at -4; if three are to the left and one is to the right, it will be at -2. The 
other possible outcomes are 0, 2, and 4. Notice that the outcomes are separated 
by two steps. Also notice that there are several ways most of the outcomes can 
arise, the outcome 2, for instance. We can see this as follows. Let R denote a step 
to the right and L a step to the left. Then a path of four steps can be coded as a 
string of four choices of the symbols R or L. For example, LRRR means the first 
step is to the left and the next three are to the right. For an outcome of four steps 
to be a net two to the right, three steps must be taken to the right and one to the 
left, but the order doesn't maUer. There are four possibilities that do it, namely 
LRRR, RLRR, RRLR, and RRRL. 

In general, let p(m, n) denote the probability that the particle is at position 
x = m(Ax}, m steps right of the origin, after II time periods, t = 1I(1lI). We wish 
to calculate p(m, II). It will help to recognize that our random walk with II steps 
is something like tossing II coins. For every coin that lands heads we step right 
and for tails we step left. Let' be the number of steps taken to the right and I the 
number to the left; then to be at position m(Ax) it must be that their difference is 
m, 

m = ,-I where 11=,+1. 

Thus, can be given in terms of m and n by adding these two equations, and I is 
given by subtracting: 

and 
I 

1=2(II-m). .(6.2.2) 

As in a coin toss experiment, the number of ways of selecting' moves to the right 
out of n possibilities is the problem of counting combinations and is given by (see 
Section 2.7) 

II! 
C(II,') == '( _ )' r. II r. 

For example, three moves to the right out of four possible moves can happen in 
4!/(3! I!) = 4 ways in agreement with the explicitly written out L R possibilities 
noted above. Therefore, if the probabilities of going left or right are equally likely, 
then 

p(m, n) == probability of r steps right == C(;~ r) , I 
, == 2(11 + m). (6.2.3) 
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1\ 

-40 -20 o 0 20 40 

Figure 6.2.1 Graph of p(m,40) 

This is the binomial distribution with p = q = 1/2. The solid curve in 
Figure 6.2.1 is a graph of p(m,40). If the random walk experiment with n = 40 
steps were conducted a large number of times, then a bar graph of the resulting 
particle postions will closely approximate this figure. Such a bar graph is also 
shown in Figure 6.2.1. Equivalently, the same picture applies to a large number of 
particles randomly walking at the same time, each taking 40 steps, provided they 
may slide right past each other without collisions. 

Particles disperse in proportion to the square root o/time. 

The average, or mean, position, ifi. of a large number of particles after a random 
walk of n steps with equal probabilities of stepping left or right is O. To show 
this, start with equation (6.2.2) to get m = 2r - n. Then, since r has a binomial 
distribution. we can write down its mean and variance from Chapter 2. Equations 
(2.7.10) and (2.7.11) with p = 1/2 and q = 1- p = 1/2 give. 

_ n 
r= np = 2" 

fI 
var(r) = (r - r)2 = npq = 4' 

(6.2.4) 
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Hence 
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-- n in = 2r - n = 21 - ii = 2- - n = 0, 
2 

since the average value of the constant n is II. Unfortunately, knowing that the 
average displacement of particles is 0 does not help in expressing how quickly 
particles are moving away from the origin. The negative values of those that have 
moved to the left cancel the positive values of those that have gone right. 

We can avoid the left versus right cancellation by using the ~ares of dis­
placements; we will get thereby the mean sqlUlTe displacement, m. Since the 
mean displacement is 0, the mean square displacement is equal to the variance 
here; hence from equation (6.2.4), 

m2 = (m - m}2 
---:hr- n = (2r - n)2 = 4(r - 2)2 = 44 = II. 

Since m = xl4x and II = I I ~, we can convert this into statements about x and I: 

(6.2.5) 

But mean square displacement is not a distance, it is measured in square 
units, cm2, for example. To rectify this, the square root of the mean square dis­
placement, or rool mean sqlUlTe (rms) distance is used to quantify dispersion: 

and 

(6.2.6) 

Hence particles disperse in proportion to the square root of time. Thus there is no 
ctncept of velocity for diffusion. To traverse a distance twice as far requires four 
times as much time. 

The exact equation for p( m, n), equation (6.2.3), has a simple approximation. 
There is a real need for such an approximation because it is difficult to compute 
the combinatorial factor C(n, r) for large values of n. Moreover, the approxima­
tion improves with an error that tends to 0 as n -. 00. The binomial distribution 
(see equation (6.2.3) and Figure 6.2.1) looks very much like that of a normal 
distribution (see Chapter 2). Although Stirling's formula for approximating n!, 
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may be used to prove it, we will not do this. Instead we will match the means and 
standard deviations of the two distributions. First recall that the probability that a 
normally distributed observation will fall within an interval of width dm centered 
at m is, approximately 

(see Section 2.7), where J.I is the mean and 0" is the standard deviation of the dis­
tribution. On the other hand, p(m, 11) is the probability the walk will end between 
m - I and m + I, an interval of width 2, and. from above, its mean is 0 and its 
standard deviation is .;n. Hence 

(6.2.7) 

Our last refinement is to let .6x and 6t tend to 0 to obtain a continuous version 
of p(m, 11). Of course. without care, p( m, n) will approach zero, too. because the 
probability will spread out over more and more values of m. But since each value 
of m corresponds to a probability over a width of 2.6x. we take the quotient of 
p(m, n) by this width. That is, let u(x, t) denote the probability the particle lies in 
an interval of width 2(.6x) centered at x at time t. Then 

( ) _ P(~, -h) 
u x, t - 2(.6x) 

And. upon simplification, 

Now keeping the ratio 

= _I_J 2 e-(x/l!.x)2/2(IllY) 

2(.6x) n( X;) 

e-(xl/4(l!.x2/2l>t)I) 
u(x,t) = . 

41t (~) t 

fixed as .6x and 6t tend to O. we obtain the Gaussian distribution 

(6.2.8) 

(6.2.9) 
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Table 6.2.2 Diffusion Coefficients in Solution 

seconds to cross 

Molecule Solvent T, °C D (10-6 cm2/sec) .01 mm Imm 

~ blood 20 10.0 0.05 500 
Acetic acid water 25 12.9 0.04 387 
Ethanol water 25 12.4 0.04 403 
Glucose water 25 6.7 0.07 746 
Glycine water 25 10.5 0.05 476 
Sucrose water 25 5.2 0.10 961 
Urea water 25 13.8 0.04 362 
Ribonuclease water 20 1.07 0.46 4672 
Fibrinogen water 20 2.0 0.25 2500 
Myosin watcr 20 1.1 0.45 4545 

The parameter D is called the diffusion coefficient or diffusivity and has units 
of area divided by time. Diffusivity depends on the solute, the solvent, and the 
temperature, among other things. See Table 6.2.2 for some pertinent values. 

Diffusivity quantifies how rapidly particles diffuse tl .. "Ough a medium. In 
fact, from equation (6.2.6), the rate at which particles wander through the medium 
in terms of root mean square distance is 

w-
r.m.s. distance = V /ii t = J2Dt. (6.2.10) 

In Table 6.2.2 we give some times required for particles to diffuse the given 
distances. As seen, the times involved become prohibitively long for distances 
over I mm. This explains why organisms whose oxygen transport is limited to 
diffusion cannot grow very large in size. 

The function u has been derived as the probability for the ending point, after 
time t, of the random walk for a single particle. But, as noted above. it applies 
equally well to an ensemble of particles if we assume they "walk" independently 
of each other. In terms of a large number of particles. u describes their concentra­
tion as a function oftime and position. Starting them all at the origin corresponds 
to an infinite concentration at that point, for which equation (6.2.9) does not ap­
ply. However, for any positive time, u(x. t) describes the concentration profile (in 
number of particles per unit length). See Figure 6.2.2 for the times l. 2. 4. Evi­
dently, diffusion transports particles from regions of high concentration to places 
of low concentration. Fick's First Law, derived below, makes this precise. 

To treat diffusion in three dimensions, it is postulated that the random walk 
proceeds independently in each dimension. The mean transport in the x, y, and z 
directions are each given by equation (6.2. 1O),x2 = Wt,y2 = 2Dt.andZl = 2Dt. 
Hence in two dimensions. if r2 = xl + l. 

fJ = 4Dr, 
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> plot({ exp(-x-214)1sqrt(4·Pi), exp(-x-21(4·2))lsqrt(4·Pi·2), 

exp(-x-21(4·4 ))/sqrt(4·PI· 4)} ,x=-1 0 .. 1 O,color=BLACK); 

-10 

Figure 6.2.2 Dispersion of a unit mass after time 1. 2, and 4 

and in. three dimensions, if ,-2 = ;?- + y2 + <.2. 

r2 = 6Dt. 

Fick's laws describe diffusion quantitatively. 
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10 

Again consider a one-dimensional random walk, but now in three dimensional 
space, for example, along a channel of cross-sectional area A, as in Figure 6.2.3. 

x x+6.x 

Figure 6.2.3 One-dimensional diffusion along a channel 
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Let N(x) denote the number of particles at position x. We calculate the net move­
ment of particles across an imaginary plane perpendicular to the channel between 
x and x + tJ.x. In fact, half the particles at x will step to the right and cross the 
plane, and half the particles at x + tJ.x will step to the left and cross the plane in 
the reverse direction. The net movement of particles from left to right is 

Thenumber of particles crossing a unit area in a unit time is theflux of particles, 
denoted by J, and is measured in unit of moles per square centimeter per second, 
for instance. Dividing by A 61 gives the flux in the x direction, 

I 
Jx = - 2A 61 (N(x + tJ.x) - N(x». 

Let e(x) denote the concentration of particles at x in units of number of particles 
per unit volume such as moles per liter. Since e(x) = N(x)/A tJ.x, the previous 
equation becomes 

J == _~( ( A_) _ ( » = _ tJ.x2 e(x + tJ.x) - e(x) 
x 261 cx+u.. ex 261 tJ.x . 

Now let tJ.x -+ 0 and recall the definition of diffusivity, equation (6.2.8); we get 
Fick's First Law, 

de 
J = -DdX . (6.2.11) 

A partial derivative is used here because e can vary with time as well as location. 
To obtain Fick's Second Law, consider the channel again. The number of 

particles N(x) in the section running from x to x + tJ.x is c(x,I)AtJ.x. If con­
centration is not constant, then particles will diffuse into (or out of) this section 
according to Fick's First Law: 

the decrease in the number of particles in the section = 
I (the flux out at x + tJ.x - the flux in at x)A. 

More precisely, 

d - at (C(x,I)AAx) = (J(x + Ax,l) - J(x,t»A. 

Dividing by Ax and letting Ax .... 0 gives 

ae aJ 
-A- =A-. at ax 
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Cancelling the A on each side we obtain the continuity equation, 

ae aJ 
at = -ax' (6.2.12) 

Differentiating J in Fick's First Law and substituting into this gives Fick's Second 
Law of diffusion, also known as the diffusion equation, 

ck _ Da2c 
at - ax2 • 

(6.2.13) 

Direct substitution shows that the Gaussian distribution u, equation (6.2.9), satis­
fies the diffusion equation. 

Oxygen transfer by diffusion alone limits organisms in size to about one-half 
millimeter. 

As an application of Fick's laws, we may calculate how large an organism can be 
if it has no circulatory system. Measurements taken for many organisms show that 
the rate of oxygen consumption by biological tissues is on the order of Roz = 0.3 
microliters of <h per gram of tissue per second. Also note that the concentration 
of oxygen in water at physiological temperatures is 7 microliters of <h per cm3 

of water. Assuming an organism of spherical shape, balance the rate of oxygen 
diffused through the surface with that consummed by interior tissue; we get, using 
Fick's First Law (6.2.11), (V = ;ltrl is the volume of the organism) 

de 
AJ=DAdr=VRoz 

'- de 4 D(4ltr)- = -ltr3RO . 
dr 3 2 

Isolate de/dr and integrate; use the boundary condition that at the center of the 
sphere the oxygen concentration is zero, and at the surface of the sphere, where 
r = rm , the concentration is COz. We get 

de ROl 
-=-r 
dr 3D 

dc= -lrdr l eila lr .. Ro 
o 0 3D 

Raz 2 
Caz = 6D r;.. 



170 Section 6.2 I The Mathematics of Diffusion 

Using the values for Co, and R~ above and the value 2 x 10-5 cm2/sec for 
a maximal value of D. we get 

~ = 6DCoz 
m Roz 

_ 6 x 2 x IO-S(cm2/sec) x 7(pI/cm3) 

- O.3(p1/(gm x sec) 

= 0.OO28(cm2), 

where we have assumed that one gram of tissue is about I cm3 water. Taking the 
square root gives the result 

rm = 0.53 mm. 

We will use this value in Chapter 7 as a limitation on the size of certain organisms. 

Resistance to fluid flow is inversely proportional to the fourth power of the radius 
of the vessel. 

From the discussion above. it is clear that large organisms must actively move 
oxygen to the site of its usage. possibly dissolved in a fluid. In this section we 
derive the equation governing resistance to flow imposed by the walls of the vessel 
through which the fluid passes. In Chapter 7 we will discuss the anatomical and 
yhysiological consequences of this resistance to flow. 

As a fluid flows through a circular vessel. say of radius a, resistance to the 
flow originates at the walls ofthe vessel. In fact. at the wall itself. the fluid velocity 
u(a) is barely perceptible, thus u(a) = O. A little further in from the wall the 
velocity picks up and at the center of the vessel the velocity is largest. By radial 
symmetry. we only need one parameter to describe the velocity profile. namely 
the radius r from the center of the vessel. The fluid travels downstream in the 
form of concentric cylinders. the cylinders nearer the center moving fastest (see 
Figure 6.2.5). This results in a shearing effect between the fluid at radius rand 
the fluid just a little farther out, at radius r + Or. Shear stress. 'to is defined as the 
force required to make two sheets of fluid slide past each other. divided by their 
contact area. It is easy to imagine that the shear stress depends on the difference 
in velocity of the two sheets. and. in fact. the two quantities are proportional. thus 

du 
't = jJ­

dr 

where J.I is the constant of proportionality. 
Consider a portion of the vessel of length l and let /lp denote the difference 

in fluid pressure over this length. This pressure. acting on the cylinder of fluid 
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of radius r, is opposed by the shear stress mentioned above. The force on the 
cylinder is being applied by the difference in pressure acting on its end, thus 

force = Ilp1t,2, 

while the equal opposing force is due to the shear stress acting on the circular side 
of the cylinder, 

du 
force = t(21trl) = J-I-(21trl). 

dr 

Since these forces are equal and opposite, 

This simple differential equation can be solved by integrating to obtain 

where C is the constant of integration. Using the zero velocity condition at the 
vessel walls gives the value of C to be 

Hence, for any radius, the velocity is given by 

Thus the velocity profile is parabolic (see Figure 6.2.4). 

Figure 6.2.4 Parabolic velocity profile of How in a tube 



172 Section 6.2 I The Mathematics of Diffusion 

... -------
\ 

\ 
I , 

Figure 6.2.S Circular sheet of fluid moving together 

Now we can calculate the total flow rate, Q, of a volume of fluid through a 
cross-section of the vessel per unit time. A thin ring of fluid contains molecules 
that are at the same distance r from the axis of the vessel and that move together, 
see Figure 6.2.5. The volume of fluid per unit time which passes through a given 
cross-section of the vessel arising from such a ring, dQ, is given as the product of 
its velocity, u(r), times its area, dS: 

dQ = u(r)dS = u(r)(21tr)dr. 

Substituting the velocity profile from above and integrating gives 

Q = _(a2 - ?)21trdr La tlp 

o 41p 

= 1ttlp [a2? _ ~]a 
Up 2 4 0 

Jttlpa4 

= 8pl . 

This is known as Poiseuille's equation, see Reference [6]. It shows that the flow 
rate increases as the fourth power of the vessel radius, which means that a vessel 
of twice the radius can carry 16 times the fluid volume for the same pressure drop 
per unit length. 

It is natural to think of the shear stress in the moving fluid due to its contact 
with the wans as a resistance to flow. Fluid resistance R is defined as R = ~ and 
is given by 

R = 8Jl~. 
1ta 

It is seen that the fluid resistance is inversely proportional to the fourth power 
of the radius. We will note in Chapter 7 that this dependence affects the size of 
vertebrates' hearts. 
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Startup effects decay exponentially as exemplified by diffusion across a slab. 

A biological membrane is a complicated structure, as explained in Section 6.1. 
and we will take account of some of the details of the structure in the next sec­
tion. In this section we want to illustrate the decay of transient phenomena, in 
the fonn of startup effects, in diffusion. Further, while crude, this slab approxi­
mation shares with real membrane diffusion its dependence on the concentration 
difference to the first power as the driving force behind the transport of solute 
particles. 

By a slab we mean a solid homogenous material throughout which the dif­
fusivity of solute particles is D. The slab has thickness h but is infinite in its other 
two dimensions, so diffusion through it takes place one-dimensionally. 

To complete the statement of the problem, additional information, referred to 
as boundary conditions or initial conditions, must be specified, see Reference [7]. 
We will assume the concentrations of solute on the sides of the slab are maintained 
at the constant values of Co at x = 0 and Ch at x = h; assume Co > Ch, 

c(O,t) = Co, c(h,t) = Ch for all t ~ O. 

This could happen if the solvent reservoirs on either side of the slab were so large 
that the transport of solute is negligible. Or it could happen if solute particles 
are wisked away as soon as they appear at x = h or are immediately replenished 
at x = 0 as they plunge into the slab. Or, of course, any combination of these. 
Further, we assume the startup condition that the concentration in the slab is 0, 

c(x,O) = 0, o ~ x ~ h. 

We begin by assuming the solution, c(x,t), can be written in the form of a 
product of a function of x only with a function of t only, 

c(x, t) = X(x)T(t). 

Then dC/dt = X{x)T'(t) and iJ2c/axl = X"{x)T(t). Substituting into the diffu­
sion equation, equation (6.2.13), and dividing, we get 

I dT Dd2X 
rdt-Xdxl' (6.2.14) 

Now the left-hand side of this equation is a function of t only and the right-hand 
side is a function of x only and the equality is maintained over all values of x and 
t. This is only possible if both are equal to a constant, which we may write as 
-'A2D. Then equation (6.2.14) yields the two equations 

(6.2.15) 
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and 

..!.. d2X = -).,2 
X dx2 • 

It is easy to verify that the solution of equation (6.2.15) is 

and the solution of equation (6.2.16) is 

X _ {ax + b, ifl.. = 0; 
- c sin 'Ax + d cos 'Ax, ifl.. i 0, 

where A, a, b, c, and d are constants. 
The solution so far is 

( ) {ax + b, if I.. = 0, and cxt=. 2 , (c Sin 'Ax + d cos 'Ax)e-A. Dr, if I.. i O. 

(6.2.16) 

The constant A has been absorbed into the other constants, all of which have yet 
to be determined using the boundary conditions. For I.. = 0, the conditions on 
either side of the slab give 

aO+ b = Co, and ah+b = Ch. 

Hence it must be that b = Co and a = -(Co - Ch)/h. But this solution cannot 
satisfy the initial condition; we will use the I.. i 0 case for that. 

First note that if two functions CI (x, t) and C2(X, t) both satisfy the diffusion 
equation, then so does their sum, as follows: 

and 

And so 

a(c\ + C2) = _Da2(cl + C2). 
at ax2 

In particular the sum of the I.. = 0 and I.. i: 0 solutions 

c(x, t) = - Co - Ch X + Co + (c sin 'Ax + d cos 'Ax)e-A.'Dr, 
h . 

(6.2.17) 

will satisfy the ditlusion equation. It remains to satisfy the boundary conditions. 
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At x = 0 in equation (6.2. 17}, 

Co - CII ·ZDt Co = - h 0 + Co + (csin AO + dcosAO)e-1I. . 

Upon simplifying this becomes 

which must be valid for all t; thus d = o. Continuing with the x = h boundary 
condition in equation (6.2.17), we have 

Co - CII . _)..ZDt 
CII = --h-h+Co + (csmAh)e , 

or 

As before, this must hold for all t 2: O. We cannot take c = 0 for then the initial 
condition cannot be satisfied. Instead we solve sin Ah = 0 for A, which is as yet 
unspecified. The permissible values of A are 

A." - mt 
- h' II = ± I, ±2, ... , (6.2.18) 

known as the eigenvalues of the problem. The negative values of n may be ab­
sorbed into the positive ones since sin A-nX = - sin AnX. Remembering that so­
lutions of the diffusion equation may be added, we can form an infinite series 
solution with a term for each eigenvalue. and. possibly, each with a different coe­
ficient, Cn, 

c(X, t) = - Co ~ CII X + Co + I. (cn sin A."x)e-~Dt. 
n=1 

(6.2.19) 

Finally, in order to fulfill the initial condition, the coefficients Cn must be 
chosen to satisfy the initial condition 

Co - Ch ~. -)..,,00 
c(x,O) = 0 = - --h-x + Co + ..l.. (en sm A."x)e , 

n=1 

or, upon simplifying, 

00 Co - CII L Cn sin A."x = --h-x - Co· 
n-I 
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We will not show how to calculate the Cn 's; we only note that it can be done (Ref­
erence [7]). The infinite series is referred to as the Fourier series representation 
of the function on the right. 

Thus the solution occurs in two parts; in one part. every term contains the 
decaying exponential e-"'D, for constants A.. given above. These terms tcnd to 
zero and. in time. become negligible. That leaves the steady state part of the 
solution, 

Co -Ch 
c(x,t) = ---h-x+Co. 

a linear concentration gradient. The amount of solute delivered in the steady state 
is the flux given by Fick's First Law 

dc D 
J = -D- = -(Co - Ch). 

dx h 
(6.2.20) 

Membrane diffusion is proportional to the concentration difference across the 
membrane. 

The structure of cell membranes was described in Section 6.1. It consists of a 
double layer of lipid molecules studded with proteins. Some of the latter penetrate 
entirely through the lipid bilayer and serve to mediate the movement of various 
substances into and out of the cell's interior. This section is not about the transport 
of such substances. Rather. we describe the transport of those molecules that 
pass through the lipid bilayer itself by diffusion. These are mainly lipid soluble 
molecules.4 

We use the results of the previous section to model the diffusion through the 
lipid part of the membrane. However. the membrane molecules themselves have 
two ends: a hydrophlic head and a lipid tail. Functionally. the head end of one 
layer faces outward in contact with the aqueous environment of the cell while the 
head end of the other layer faces inward in contact with the aqueous interior of the 
cell. The lipid tails of both layers face together and constitute the interior of the 
membrane. Thus, the concentration of solute just under the head of the membrane 
molecule is not necessarily the same as in the aqueous phase. Denote by C' the 
solute concentration just inside the membrane on the environmental side, and by 
c' the concentration just inside the membrane on the cell interior side. Then. 
according to the slab equation (6.2.20). the flux of solute through the lipid part of 
the membrane is given by 

4 In Section 6.1 we noted that water and carbon dioxide. although polar molecules. can move 
through the lipid part of a membrane. 
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We next assume a linear relation between the concentrations across the 
molecular head of the membrane molecule; thus 

c=rc, and c' =rc 

where C is the environmental concentration of the solute and c is the concentra­
tion inside the cell. The constant r is called the partition coefficient. With this 
model, the partition coefficient acts as a diffusivity divided by thickness ratio for 
the diffusion of solute across the head of the membrane molecule. The partition 
coefficient is less than 1 for most substances, but can be greater than I if the solute 
is more soluble in lipid than in water. 

Combining the equations above we calculate flux in terms of exterior and 
interior concentrations as 

rD 
J = -(C-c) 

h 

this is in moles/cm2/sec for instance. 

(6.2.21) 

As solute molecules accumulate inside the cell, the concentration difference 
in equation (6.2.21) diminishes, eventually shutting off the tr!!!lsport. Denote the 
volume of the cell by V and the surface area by S. The quantity SJ is the rate of 
mass transport across the membrane in moles/sec, that is 

SJ = dm = V dc 
dt dt 

since concentration is mass per unit volume. Therefore, mUltiplying equation 
(6.2.21) by S and using this relation we get 

or 

V dc = SrD(C_c) 
dt h 

dc - = k(C-c) 
df 

where k = SrD/(Vh) is a constant. The solution is given by 

(6.2.22) 

where Co is the initial concentration inside the membrane. That is, the interior 
concentration becomes exponentially asymptotic to that of the environment. 

Exercises 

1. Instead of presenting a theoretical distribution of the position of particles af­
ter 40 steps. we simulate the random movement using the random number 
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generator of Maple. First, initialize a counter to record how many points end 
up at each site. 

> with(stats): with(plots): 

> for i from 1 to 100 do 

count.i:",O 

ad: 

Choose integers 0 or I randomly. 

> N:=rand(0 .. 1): 

Decide how many particles to follow. 

> particles:=500; 

Choose how many steps each particle will take. Make this an even integer. 

> steps:=40; 

Count how many particles end at each place. 

> for m from 1 to particles do 

place:=sum('2*N(p)-1', 'p'=1 .. steps)+steps: 

count.place:=count.place + 1: 

ad: 

Finally, set up a histogram plot of the data. 

> ranges:=[seq( -stepsl2+2*(i-1 ) .. -stepsl2+2*i,i= 1 .. stepsl2)); 

> movement:=[seq(count.(20+2*j),j=1 .. 20)); 

> diffusion:=[seq(Weight(ranges[i],movement[i)),i=1 .. 20)]; 

> statplots[histogram](diffusion); 

a. Plot the Gaussian distribution of equation (6.2.9) with D = I and for 
t = I, 2. and 3. 

> plot( {exp(-x-214)/sqrt(4*Pi),exp(-x'2 !(4*2»)/sqrt(4*Pi*2), 

exp(-x'21(4*3»!sqrt(4*Pi*3)} ,x=-1 0 .. 10); 

b. Verify that equation (6.2.9) satisfies the partial differential equation 
(6.2.13) with D = I. 
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> u:-(t,x)->exp(-x-21(4*t»)/sqrt(4*PI*t); 
> dlff(u(t,x),t)-dlff(u(t,x),x,x): 
> slmpllfy(·); 

c. The analogue for equation (6.2.13) for diffusion in a plane is 

> dlff(U(t,x,y),t) • dlff(U(t,x,y),x,x)+dIff(U(t,x,y),y,y); 
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Show that the function U given below satisfies this two dimensional 
diffusion equation: 

> U:=(t,x,y)->exp(-(x-2+y"2)1(4*t»)It: 
> diff(U(t,x,y),t) - diff(U(t,x,y),x,x)-diff(U(t,x,y),y,y): 
> simplify(·): 

d. Give visualization to these two diffusions by animation of (6.2.9) and of 
the two-dimensional diffusion. 

> plot({ exp("x"2I4)/sqrt(4*Pi),exp(-x"2/(4*2»)/sqrt(4*PI*2), 
exp(-x-21(4*3»)/sqrt(4*PI*3)} ,x .. -10 •. 10): 

> wlth(plots): 
> animate(exp(-x"21(4*t»)/sqrt(4*Pi*t),x=-10 .. 10,t=O.1 .. 5): 
> animate3d(exp(-(x"2+y"2)1 (4*t»)It,x=-1 .. 1,y=·1 .. 1,t=O.1 .. 0.5): 

3. A moment's reflection on the form of equation (6.2.13) suggests a geometric 
understanding. The right side is the rate of change in time of C(I, x}. The 
equation asserts that this rate of change is proportional to the curvature of 
the function C(I,X) as a graph in x and as measured by the second derivative. 
That is, if the second derivative in x is positive and the curve is concave up, 
expect C(I, x) to increase in time. If the second derivative is negative and 
the curve is concave down, expect C(I, x) to decrease in time. We illustrate 
this with a single function. Note that the function sin(x) is concave down on 
[0, x] and concave up on [x,2x]. We produce a function so that with I = 0, 
c(O,x) = sin(x), and for arbitrary t, C(I, x) satisfies equation (6.2.13). 

> c:=(t,x)->exp("t)*sin(x): 

Here, we verify this is a solution of (6.2.13). 

> dlff(c(t,x),t)-diff(c(t,x),x,x): 

Now we animate the graph. Observe where c(t,x) is increasing and where it 
is decreasing. 

> wlth(plots): 
anlmate(c(t,x),x=O .. 2*Pi,t=O .. 2); 
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Section 6.3 

Interplacental Transfer of Oxygen: Biological and Biochemical 
Considerations 

A fetus must obtain oxygen from its mother. Oxygen in the mother's blood is at­
tached to a blood pigment called hemoglobin and is carried to the placenta, where 
it diffuses across a system of membranes to the fetus' hemoglobin. A number 
of physical factors cause the fetal hemoglobin to bind the ~ more securely than 
does the maternal, or adult, hemoglobin, thus assuring a net ~ movement from 
mother to fetus. 

The blood of a mother and her unborn child do not normally mix. 

The circulatorY'systems of a mother and her unborn child face one another across 
a plate-like organ called the placenta. The placenta has a maternal side and a fetal 
side, each side being fed by an anery and drained by a large vein, the two vessels 
being connected in the placenta by a dense network of fine capillaries. The two 
sides of the placenta are separated by membranes and the blood of the mother 
and that of the child do not mix. All material exchange between mother and 
child is regulated by these placental membranes, which can pass ions and small­
to-medium biochemical molecules. Large molecules, however, do not usually 
transit the placental membranes. 

Hemoglobin carries oxygen in blood. 

The chemical hemoglobin is found in anucleate cells called red blood cells or 
erythrocytes. Hemoglobin picks up 02 at the mother's lungs and takes it to the 
placenta, where the 02 crosses the placenta to the hemoglobin of fetal red blood 
cells for distribution to metabolizing fetal tissues. 

Oxygen-affinity measures the strellgth with which hemoglobin binds oxygen. 

A fixed amount of hemoglobin can hold a fixed maximum amount of oxygen, at 
which point the hemoglobin is said to be saturated. Figure 6.3.1 is an oxygen 
dissociation cU/1le; it shows that the extent to which saturation is approached is 
determined by the partial pressure of the oxygen.s The panial pressure of 02 
at which the hemoglobin is half-saturated is a measure of the oxygen-affinity of 
the hemoglobin .. Thus, hemoglobin that reaches half-saturation at low 02 par­
tial pressure has a high oxygen-affinity (see References [I] and [8] for further 
discussion). 

'The pLir/iLit pre.<.ture of a gas is Ihe pressure exened by Ihal specific gas in a miXlure of gases. 
The panial pressure IS proponional 10 Ihe concenlralion of Ihe gas. The lotal pressure exened by Ihe 
gaseous mixlure is Ihe sum of lhe panial pressures of the various constituent ga..es. 
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The reversible attachment of 02 to hemoglobin is represented by 

Hb+02 ~ 02-Hb 
hemoglobin oxyhemoglobin 

At equilibrium the relative amounts of hemoglobin and oxyhemoglobin are fixed, 
the reaction going to the right as often as it goes to the left. The relative amounts 
of oxyhemoglobin, hemoglobin and oxygen at equilibrium are determined by the 
oxygen affinity of the hemoglobin. The greater the oxygen affinity, the more 
oxyhemoglobin there will be relative to the amounts of hemoglobin and oxygen, 
i.e., the more the equilibrium will move toward the right in the above reaction 
scheme. 

Oxygen affinity depends on a variety of factors. 

In practice, oxygen affinity is determined by multiple factors: First, we would 
surely expect that the structure of hemoglobin would be important, and that will 
be discussed below. Second, oxygen affinity is affected by the extent to which 
oxygen molecules are already attached. Hemoglobin can bind to as many as four 
02 molecules. The second, third and fourth are progressively easier to attach be­
cause the oxygen affinity of the hemoglobin increases as more 02 molecules are 
added. Third, blood pH affects its oxygen affinity. The pH of the blood and the 
presence ofe02 are related; this will be discussed in Section 7.5. Finally, a chem­
ical constituent of red blood cells, called D-2, 3-biphosphoglycaate (BPG), plays 
an important role in the oxygen-binding properties of hemoglobin by binding to 
it and thereby decreasing its 02 affinity. The role of BPG is a crucial one because 

fraction of 
Hb bound 

to 02 

partial pressure of O2 

Figure 6.3.1 Oxygen dissociation curves for adult and fetal hemoglobin. Note that, 
for a given partial pressure (concentration) of oxygen, the fetal hemoglobin has a 
greater fraction of its hemoglobin bound to oxygen than does the adult hemoglobin. 
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the more BPG is bound to hemoglobin the less tightly the hemoglobin binds oxy­
gen. Therefore. the oxygen will be released more easily and will be provided to 
metabolizing tissues in higher concentration. In terms of the chemical reaction 
above. BPG moves the equilibrium toward the left. 

Fetal hemoglobin has a greater affinity for oxygen than does adult hemoglobin. 

Adult and fetal hemoglobins have somewhat different structures. The result is 
that fetal hemoglobin binds less BPG than does adult hemoglobin. and therefore 
fetal hemoglobin has the higher oxygen affinity of the two. Figure 6.3.1 shows 
oxygen dissociation curves for the hemoglobin of an adult and for that of a fetus. 
Note that. at a given partial pressure of 02. the fetal hemoglobin has a greater 02 
affinity than does maternal hemoglobin. Thus. there is a net movement of oxygen 
from the mother to the fetus. 

We must be very careful here: We must not think that the fetal hemoglobin 
somehow drags 02 away from that of the mother. This would require some sort 
of "magnetism" on the part of the fetal hemoglobin. and such magnetism does not 
exist. What does happen is represented by 

02 • H baduh +=! 02 + H badult 

..................... T 1· ......... p.I~~,:, • 

Both kinds of hemoglobin are constantly attaching to. and detaching from. oxygen 
consistent with their oxygen affinities. The mother's breathing gives her blood a 
high concentration of oxyhemoglobin. and that leads to a high concentration of 
free oxygen on her side of the placenta. On the fetal side of the placenta. the fetus. 
which does not breathe. has a low 02 concentration. Therefore. 02. once released 
from maternal oxyhemoglobin. moves by simple diffusion across the placenta. in 
response to the concentration gradient. On the fetal side. fetal hemoglobin at­
taches to the oxygen and holds it tightly because of its high oxygen affinity. Some 
oxygen will dissociate from the fetal hemoglobin but little will diffuse back to 
the maternal side because the concentration gradient of the oxygen across the pla­
centa is in the other direction.6 In summary. oxygen diffuses across the placenta 
from mother to fetus. where it tends to stay because of its concentration gradi­
ent and the high oxygen affinity of fetal hemoglobin. compared to that of adult 
hemoglobin. 

61n Chapter 7 we will see that the concentration of C~ in the blood also affects the oxygen 
affinity of hemoglobin. 
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Section 6.4 

Oxygen Diffusion Across the Placenta: Physical Considerations 

The delivery of fetal oxygen typifies the function of the placenta. In this organ. 
fetal blood flow approaches maternal blood flow but the two are separated by 
membranes. Possible mechanisms for oxygen transfer are simple diffusion. diffu­
sion facilitated by some carrier substance. or active transport requiring metabolic 
energy. No evidence for facilitated diffusion or active transport has been found. 
We will see that simple diffusion can account for the required fetal oxygen con­
sumption. In this section we draw on References [9-15]. 

The oxygen dissociation curve is sigmoid in shape. 

Oxygen in blood exists in one of two forms. either dissolved in the plasma or 
bound to hemoglobin as oxyhemoglobin. Only the dissolved oxygen diffuses; 
oxyhemoglobin is carried by the moving red blood cells. The binding of oxygen 
to hemoglobin depends mostly on 02 partial pressure but also on blood acidity. 
The relationship. given by a dissociation curve. posseses a characteristic sigmoid 
shape as a function of partial pressure (see Figure 6.4.1 or Table 6.4.1). 

The affect of increasing acidity is to shift the curve rightward. (The dissoci­
ation curves can be constructed using the data in Table 6.4.1.) 

> with(plots): 
> fetaI74:=[O,O, 10,3.5,20,10.5,30,15.2,40,17.4,50,18.6,60,19.2, 
> 70,19.5,80,19.7,90,19.8,100,19.9); 
> f74:=plot(fetaI74); 
> fetaI72:=[O,O, 10,2.2,20,7.3,30,12.0,40,15.2,50,16.9,60,18.0, 
> 70,18.6, 80,19.1, 90,19.5,100,19.9); 

> f72:=plot(fetaI72); 
> matemaI74:=[O,O, 10, 1.3,20,4.6,30,8.7,40,11.5,50,13.2,60,14.2, 
> 70,14.7, 80,14.9, 90,15.0, 100,15.1); 
> m74:=plot(matemaI74); 
> matemaI72:=[O,O, 10, 1.0,20,4.0,30,7.8,40,10.6,50,12.5,60,13.7, 
> 70,14.4, 80,14.7, 90,14.9,100,15.1); 

> m72:=plot(matemaI72); 
> display({f74,f72,m74,m72}); 

Table 6.4.1 02 Concentration in ml per 100 ml Blood, References [9,10] 

pOzmmHg--+ 10 20 30 40 50 60 70 80 

fetal (pH 7.4) 3.5 10.5 15.2 17.4 18.6 19.2 19.5 19.7 
fetal (pH 7.2) 2.2 7.3 12.0 15.2 16.9 18.0 18.6 19.1 
maternal (pH 7.4) 1.3 4.6 8.7 11.5 13.2 14.2 14.7 14.9 
maternal (pH 7.2) 1.0 4.0 7.8 10.6 12.5 13.7 14.4 14.7 

90 100 

19.8 19.9 
19.5 19.8 
15.0 15.1 
14.9 15.1 
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20 

f7.4 

Percent 
saturation 

Hb 
10 

-20 80 100 

partial pressure of oxygen (%) 

Figure 6.4.1 02 Concentration in ml per 100 ml blood 

When maximally saturated, hemoglobin (Hb) holds about 1.34 ml 02 per 
gm. Fetal blood contains about 15 gm Hb per 100 ml while maternal blood has 
12 gm per 100 ml. 

Although only the dissolved oxygen diffuses, hemoglobin acts like a moving 
reservoir on both maternal and fetal sides of the placenta. On the maternal side, O2 

diffuses across the placental membrane from the maternal blood plasma causing 
a decrease in the partial pressure of 02, written p02. But a lower oxygen partial 
pressure dissociates oxygen out of the hemoglobin to replace what was lost. This 
chemical reaction is very fast. Consequently hemoglobin acts to preserve the 
partial pressure while its oxygen, in effect, is delivered to the fetal side. Of course 
as more and more oxygen dissociates, p02 gradually decreases. 

On the fetal side the opposite occurs. The incoming oxygen raises the partial 
pressure with the result that oxygen associates with fetal hemoglobin with gradual 
increase of p02. 

Fetal oxygen consumption rate at term is 23 ml per minute. 

The first step in showing that simple diffusion suffices for oxygen delivery is to 
determine how much oxygen is consumed by the fetus. By direct measurement, 
oxygen partial pressure and blood pH at the umbilical cord are as shown in Ta­
ble 6.4.2. 
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Table 6.4.2 Placental Oxygen and Flow Rate Data, from References [9,10] 

umbilical artery pOz: 15 mm Hg, 

umbilical vein 

umbilical ftowrate 
maternal artery 
maternal vein 
maternal ftowrate 
placental membrane surface 
placental membrane thickness 
p02 diffusivity (see text) 

pH: 7.24 
p02: 28 mm Hg, 
pH: 7.32 
250 ml per minute 
p02: 40mmHg 
p02: 33 mmHg 
400 ml per minute 
12 square meters 
3.5 x 10-4 cm 
3.09 x 10-8 cm2/minlmm Hg 
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It follows from Figure 6.4.1 that each 100 ml of venous blood in the fetus contains 
approximately 13.5 ml O2 while arterial blood contains about 4.5 ml. 

Evidently an 02 balance for fetal circulation measured at the umbilical cord 
is given by 

02 in - 02 out = 02 consumed. 

For each minute this gives 

ml blood ml 02 
rate 02 consumed = 250 min x (13.5 - 4.5) 100 ml blood 

= 22.5 ml 02/min. 

Maximal oxygen diffusion rate is J 60 ml per minute. 

Next we estimate the maximum diffusion possible across the placenta. Recall the 
membrane transport equation (6.2.21) 

D 
J = --!:1c, 

w 
(6.4.1) 

where we have taken the partition coefficient r = and the membrane thick­
ness to be w. This holds for those sections of the membrane that happen to have 
thickness wand concentration difference !:1c. Normally both these attributes will 
vary throughout the placenta. However, since we are interested in the maximal 
diffusion rate, we assume them constant for this calculation. Placental membrane 
thickness has been measured to be about 3.5 microns (3.5 x )()-4 cm). Since flux 
is the diffusion rate per unit area, we must multiply it by the surface area, S, of 
the membrane. Careful measurements show this to be about 12 square meters at 
term [15]. 

Actually taking a constant average value for w is a reasonable assumption. 
But taking 02 concentrations to be constant is somewhat questionable. Mainly, 
doing so ignores the effect of the blood flow. We will treat this topic below. 
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Here we assume 02 dissociates out of maternal blood in response to diffusion 
maintaining the concentration constant on the maternal side. On the fetal side 02 
associates with fetal blood maintaining a constant concentration there. We will 
see that in the countercurrent flow model this tends to be realized. 

A lesser difficulty in applying Fick's Law has to do with the wayan oxy­
gen concentration is normally measured, namely in terms of partial pressure. By 
Henry's Law (Reference [15], p. 1714), there is a simple relationship between 
them: The concentration of a dissolved gas is proportional to its partial pressure, 
in this case p02. Hence 

for some constant S. Incorporating surface area and Henry's Law. equation (6.4.1) 
takes the form 

The product SD has been calculated to be about 3.09 x 10-8 cm2/min-mm Hg 
(derived from data in [I5]. see the problems). 

For the constant fetal partial pressure we take the average of the range 15 to 
28 mm Hg noted in Table 6.4.2, so about 21.5 mm Hg. Maternal arterial p02 is 
40 mm Hg while venous p~ is 33 mm Hg for an average of 36.5 mm Hg. Hence. 
using the values in Table 6.4.2. 

2 
02 diffusion rate = 3.09· 10-8 . cm H 

mm-mm g 

12 m2 . 104 cm2/m2 (36.5 _ 21.5) mm H 
3.5 . 10-4 cm g 
3 

= 159 c",' . 
mm 

Recalling that only 22.5 ml of oxygen per minute are required. the placenta. in its 
role transfering oxygen. need only be about 22.5/ 159 = 14% efficient. 

The fetal flow rate limits place mal transport efficiency. 

The placenta as an exchanger is not 100% efficient due to ( I ) maternal and fetal 
shunts. (2) imperfect mixing, and (3) most importantly, flow of the working mate­
rial. which we have not taken into consideration. Let F be the maternal flow rate. 
f fetal the flow rate; C maternal 02 concentration. and c fetal 02 concentration. 
Use the subscript i for in and 0 for out (of the placenta). Let r denote the transfer 
rate across the placenta (r = SJ). From the mass balance equation. 

02/min in ± 02 gained/lost per min = 02/min out. 
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we get 

Fq -r=FCo (6.4.2) 

since the oxygen rates in or out of the placenta are the product of conentration 
times flow rate. From the membrane equation (6.2.21). 

r = K(Aconcentration across membrane) where K = rDS. 
w 

For the fetal and maternal concentrations we use Co and Ce . From equations 
(6.4.2) 

r = K(Co - co) 
r r = K(q - F - J - Ci). 

Solve this for r and get 

(6.4.3) 

Now consider the magnitude of the three terms in the denominator. If F 
and I were infinite. then the denominator reduces to 11K. and the transfer rate 
becomes 

r = K(G; - Ci) 

as before. In this case diffusion is the limiting factor. 
Since the flow terms are not infinite. their effect is to increase the denomina­

tor and consequently reduce the transfer coefficient. that is. 

Moreover. depending on the relative size of the three terms in the denomi­
nator of equation (6.4.3). diffusion may not be the limiting factor. In particular. 
the smallest of the quantities K. F. or I. corresponds to the largest of the recipro­
cals 11K. I/F. or III. Using the values of Sand w from Table 6.4.2. and taking 
rD = 4 x 10-7 cm2/sec. [15]. gives 

4· 10-7 • 12· 1Q4 
K = 3.5 . 10-4 ' 

3 
= 137cm . 

sec 
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Compare this with a maternal flow rate F of 400 mllmin or 6.7 mllsec and a fetal 
flow- rate f of 250 mllmin or 4.2 mllsec. Thus fetal flow rate is the smallest term 
and so is the limiting factor. Furthermore. from equation (6.4.3) we can see that 
diffusion is a relatively minor factor compared to the maternal and fetal flow rates. 
That is. 

while 

-I:---~I --=-I = 2.53 
137 + 6.7 + 4.i 

1 1 = 2.58. -+-6.7 4.2 

Countercurrentflow is more efficient than concurrentflow. 

In this section we will compare the diffusion properties of the placenta depending 
on whether the maternal and fetal blood flow in the same or the opposite directions 
through the placenta. For this we assume the placenta to be a channel separated 
by the placental membrane. Assume first that fetal and maternal blood flow in 
the same direction. As shown in Figure 6.4.2. on the maternal side we take the 
channel height to be H and the velocity to be Vm while these will be h and VI 

respectively on the fetal side. Let the channel width be b. Assume steady state has 
been reached and take the oxygen concentrations at position x along the maternal 
and fetal sides to be C(x) and c{x) respectively. 

On the fetal side. a block!!. V of blood at position x gains in concentration in 
moving distance !!.x due to the flux J{x) at x. Let!!.S denote the area of contact 

b~l- - _ 

// I 

/ 

hI: - / I 

Ht I / I / 
/ 

maternal side- -

Figure 6.4.2 Diffusion of oxygen into a moving incremental volume 
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of the block with the placental membrane. Since the time required to move this 
distance is l!J = Ax/vf. we have 

( A_) c(x)6V +l(x)6S(Ax/vf) 
CX+LU = 6V . 

But from the membrane equation (6.2.21) (with r = I) 

l(x) = (D/w)(C(x) - c(x)) 

and so 

c(x + Ax) - c(x) = ~ 6S (C(x) _ e(x». 
Ax wVf 6V 

Now 6S/6V = I/h. so in the limit we have 

de = (D/w) (C _ e). 
dx hv/ 

(6.4.4) 

A similar calculation on the maternal side gives 

(6.4.5) 

Denote by T the tension or concentration difference C(x) - e(x). By subtracting 
the first equation from the second we get 

dT D I I - = --(- + -)T. 
dx w HVm hVf 

For this parallel flow. denote by kp the constant coefficient. 

D I I 
kp = -(-+-) 

w HVm hVf 

D b b 
=-(-+-) 

w F J 

(6.4.6) 

(6.4.7) 

where we have replaced the velocities Vm and v / by the maternal and fetal flow 
rates F and J. respectively. using the fact that a flow rate is the product of velocity 
with cross-sectional area. 

F = (bH)vm and J = (bh)vf· 
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Now the solution of the differential equation (6.4.6) is 

(6.4.8) 

with To the initial tension, 40 - 15 = 25 mm Hg. Assuming the channel has 
length L and the final tension is 33 - 28 = 5 mm Hg, see Table 6.4.2, equation 
(6.4.8) with x = L becomes 

therefore kpL = -log(I/5). (6.4.9) 

Next we calculate the average tension t over the run of the channel. The 
average of equation (6.4.8) is given by integral 

T = - Toe-k,,x dx = _e-k,.x - 1 IoL -To IL 
L 0 kpL 0 

To - Toe-k,.L 25 - 5 
= kpL = log(5) = 12.4 mm Hg 

where equation (6.4.9) was used to substitute for kpL. 
Next consider countercurrent flow. Arguing in the same manner as above, 

the differential equations for countercurrent flow are similar to equations (6.4.4) 
and (6.4.5). The sign of the second is reversed because the flow is reversed here: 

de = (D/w) (C _ e) 
dx hVf 

on the fetal side, and 

dC = (D/w) (C _ e) 
dx HVm 

on the maternal side. Subtracting. we get 

dT D I 1 - = --(- - -)T. 
dx w hVJ HVm 

For this countercurrent flow, denote by kc the coefficient 

(6.4.10) 

As before. the solution is 

(6.4.11) 
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Now however To = 33 - IS = IS mm Hg. And for x = L, T = 40 - 2S = 12 
mm Hg, therefore 12 = ISe-k,.1.. from which it follows keL = log( 1.5). Hence the 
average tension in this case is 

To - Toe-k,.l.. 6 
l' = keL = log(1.5) = 14.S mm Hg. 

Therefore countercurrent flow is somewhat more efficient than concurrent flow, by 
these calculations, 14.8/12.4 = 1.2 times more efficient. Note that the average 
tension for countercurrent flow is approximately equal to the numerical average, 
(IS + 12)/2 = 15. 

Section 6.5 

The Spread of Infectious Diseases 

Mathematical models can be created to describe the spread of infectious diseases. 
We will only describe the qualitative details. One thing is clear at the outset: 
A model based on chance alone is unrealistic because every disease spreads in 
its own characteristic way. Thus, there are specific biases in the spread of each 
disease that must be considered. Among these are the facts that some diseases are 
not infectious, and that infectious diseases show a wide variety of transmission 
modes. Further, different hosts react differently to a pathogen, depending on the 
dose and host's health. 

Some diseases are not infectious. 

We often think of diseases in terms of "germs," suggesting a causative agent that is 
specific, isolatable and biological. Actually, many diseases are not even "caught," 
in the sense of being transmitted from one person to another. Examples are heart 
disease and headaches, which may result from stress, lead poisoning, which is 
caused by a metallic element, and scurvy, which results from a vitamin C defi­
ciency. Genetic disorders, like sickle-cell anemia and diabetes, are diseases but 
are likewise not infectious. 

Some diseases are infectious. 

Here we are interested in diseases that one person can transmit to another through 
the action of some intermediate, biological system, say a fungus, bacterium or 
virus. Even here the notion of infection is complicated because the pathogen 
may require an intermediate, non-human host between the two human hosts. For 
example, while smallpox is transmitted directly from one person to another by 
contact, malaria is transmitted via an intermediate mosquito vector and cannot be 
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given directly from one person to another. Many infectious diseases are very spe­
cific: Cat distemper is highly infectious between cats. but humans cannot contract 
it. 

The spread of a disease depends on many factors. 

In order to understand the rate and pattern of the spread of a disease we have to 
answer several questions: 

J. How does infection occur? We must consider the mode of transmission, e.g., 
body contact, drinking water, insect vector, etc. What is the portal of entry for 
the pathogen: an open wound, inhalation, ingestion? In particular, can we assume 
that infection is a random event? This latter question is relevant to any treatment 
that involves a random walk approach. 

2. Once infection occurs, does the disease actually occur? Here we must know 
the dose, i.e., the number of microorganisms that caused the infection. Then we 
must inquire about the condition of the host. A healthy host may never develop 
the disease whereas, with the same dose, a weakened host may show symptoms 
quickly. In the latter category are the very young, the aged and people already 
ill from other diseases. Further, a host who has previously been exposed to the 
disease may have immunity. 

3. Once the disease occurs, is it serious enough to cause problems? The word 
"problems" here covers the spectrum of symptoms from minor discomfort to 
death. If the symptoms are minor, the patient may never report them, in which 
case epidemiology statistics may be faulty and a mathematical treatment based on 
these statistics would then be faulty also. 

For more information see References [16] and [17]. 

Section 6.6 

Questions for Thought and Discussion 

I. What are the functions of the endoplasmic reticulum? 
2. Describe the physical and chemical factors that affect the attachment of oxy­

gen to hemoglobin. 
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Chapter 7 

The Biological Disposition of 
Drugs and Inorganic Toxins 

Introduction to this chapter 

This chapter is a discussion of how some foreign substances get into the body, how 
they become distributed, what their effects are and how they are eliminated from 
the body. Lead is the exemplar in the biological discussion, but the biological 
concepts can be applied to many other substances. The mathematical discussion 
focuses on lead poisoning and on pharmaceuticals. 

Lead can be eaten, inhaled or absorbed through the skin; it is distributed to 
other tissues by the blood. Some of it is then removed from the ,body by excre­
tion and defecation. Any lead that is retained in the body can have unpleasant 
biological consequences-anemia and mental retardation, for instance. These 
processes can only be understood at the levels of organ systems and of the tissues 
that comprise those organs. Thus, this chapter includes discussions of the lungs, 
the digestive tract, the skin, blood, the circulatory system, bones, and the kidneys, 
all of which are involved in the effects of lead on humans. 

Section 7.1 

The Biological Importance of Lead 

No biological requirement for lead has ever been demonstrated. Rather, there is 
much experimental evidence that it is toxic. Lead is sparsely distributed in nature, 
but mining activities to support the manufacture of batteries, leaded gasoline and 
other products have concentrated it. 

Trace metals play an important role in nutrition. 

A number of metallic elements play crucial roles in our nutrition, usually in small 
amounts. Sodium is necessary to nerve conduction, iron is an essential part of 
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hemoglobin and magnesium is a component of chlorophyll. In many cases, traces 
of metals are required for the correct functioning of biomolecules; examples are 
copper, manganese, magnesium, zinc and iron. On the other hand, no human 
metabolic need for lead has ever been demonstrated, whereas the toxic effects of 
lead are well-documented. 

Most lead enters the biosphere through human-made sources. 

Lead is found in the earth's crust in several kinds of ore. Its natural concentration 
in anyone place is almost always quite low and is of little concern to biology. 
Commercial uses for lead, however, have produced locally high concentrations of 
the metal in air, water and soil (see References [I] and [2]). 

About 40% of the refined lead in the western world is used in the manu­
facture of batteries and another 10% finds its way into antiknock compounds in 
gasoline. Cable sheathing and pipes account for about another 15%. Still more 
is used in paints, glassware, ceramics and plastics. Fortunately, the use of lead 
in interior paints and gasoline has lately been approaching zero in the USA and 
some other countries. 

A biological compartment model shows the paths of lead into. around and out of 
an organism. 

It often happens that a particular material, introduced into one part of an organism, 
quickly reaches a common concentration in several other parts of the organism. 
The various parts in which this equilibration occurs constitute a single biological 
compartment. Note that the parts of a compartment can be organ systems, or­
gans or parts of an organ, and that they need not be near each other if a suitable 
distribution system is available (see Reference [3]). 

Figure 7.1.1 illustrates these concepts in a biological compartment model 
for lead. One compartment is the blood, in which flow and turbulence cause rapid 
mixing. The blood carries the lead to "soft tissues," which we take to mean all 
tissues that are neither bone nor blood. All these soft tissues behave similarly 
toward lead and take it up to about the same degree, so they can be considered to 
constitute a second compartment. I A third compartment is bone, in which lead 
has a very long half life. The fourth compartment is implied: It is the environ­
ment, from which the lead originates and to which it must ultimately return, either 
through living biological processes or at the death of the organism. The arrows 
connecting the compartments show the direction of lead movement between the 
various compartments. 

IThis is a somewhat rough approximation: The aorta. the main anery out of the heart. is a soft 
tissue that seems not to equilibrate lead quickly with other soft tissues. Funher. the behavior of a few 
other soft tissues toward lead seems to depend on the national origin and age of the cadavers used in 
the data collection. (See the reference by Schroeder and Tipton (4).) 
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Figure 7.1.1 A compartment model of the three biological tissue types among which 
lead becomes distributed. and the relationship of the compartments to the environmen­
tal compartment 

Section :.2 

Early Embryogenesis and Organ Formation 

In discussions of the uptake and metabolism of toxins and drugs. the relevant com­
partments are almost always organs and groups of organs. This section presents 
some information about how organs develop in embryos. We show that organs 
and their interdependence on one another develop from the very start. This will 
allow us to treat organs as a group of interacting compartments for mathematical 
purposes. Thus. the stage will be set for our discussion of lead poisoning. 

Specific organs have evolved in multicellular organisms to perform very spe­
cific biological tasks. This functional specialization has a benefit and a cost. The 
benefit is that a given organ is usually very efficient at performing its assigned 
biological tasks. The cost is that the organ generally can do little else and must 
therefore rely on other organs to support it in other functions. As examples. the 
heart is a reliable blood pump and the kidneys efficiently remove nitrogenous 
wastes from blood. However. the heart is dependent on the kidneys to remove 
blood wastes which would be detrimental to the heart. and the kidneys are depen­
dent on the heart to pump blood at a high enough pressure to make the kidneys 
work. 

Early divisions offertilized eggs result in an unchanged total cell mass. 

A fertilized egg. or zygote. starts to divide by mitosis soon after fertilization. In 
the case of humans. this means that division starts while the zygote is still in the 
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oviduct. Early divisions merely result in twice the number of cells, without any 
increase in total cell mass, and are thus called cleavage divisions (see Reference 
[51). 

A one-celled zygote contains the full complement of genes available to the 
organism.2 As mitosis proceeds, many of the new cells differentiate, or take up 
more specialized functions, a process that coincides with the inactivation of un­
needed genes. The genes that remain active in a particular cell are those that 
determine the functional nature of that cell. Thus, cells of the heart and of the 
liver require different sets of active genes (although the two sets certainly over­
lap}.3 The gene inactivation process starts early: Even before the heart organ itself 
becomes obvious there are heart precursor cells that individually contract. Soon. 
however, a functioning heart and blood vessels develop in concert with the fetus' 
need for a continuing blood supply. 

Higher organisms have a three-layer body plan. 

Embryos of each species have their own unique behavior, out there are several 
events in embryogeny that are shared among most multicellular species: Early 
cleavage generates a solid mass of cells, which then hollows out. Next, cell pro­
liferation and movement create three basic tissue layers. Finally, the various organ 
systems develop out of these basic tissue layers. We will follow a human zygote 
through these steps. 

Fertilization of the human egg occurs in the upper third of the oviduct. after 
which the zygote moves toward the uterus, a powerful muscular organ (see Figure 
7.2.1). The initial cleavage divisions take place in the oviduct. and result in a solid 
ball of cells that resembles a mulberry; its name, morula, is taken from the Latin 
word for that fruit. The morula hollows out to form the structure shown in Figure 
7.2.1. It is called a blastocyst and consists of an outer sphere of cells, with an 
inner cell mass at one end. When the blastocyst reaches the uterus, it imbeds into 
the uterine wall, a process called implantation, at about Day 8. 

Figures 7.2.2 and 7.2.3 illustrate embryonic development after implantation. 
To start. the embryo is little more than a disk of cells, but an elongated structure 
called the primitive streak soon forms along what will be the head-to-foot axis. 
Cells on the outer margins of the primitive streak migrate toward it. downward 
through it and into the interior of the disk of cells (Figure 7.2.2 is a perspective 
view and Figure 7.2.3 is a cross-section through the disk). This migration. called 
gastrulation. establishes three germ layers of tissue from which all subsequent 
organs will develop. These germ layers are the endoderm, the mesoderm and 
the ectoderm. Next, the tips of the embryo fold down and around, a process 

21n Chapter 10 we will discuss an e)lception to this statement: Certain viruses can insert genes 
into cells. 

31nactivation of unneeded genes by a cell is a common event. For e)lample, different genes are 
active in different parts of a single division cycle. Even the inactivation of embryonic genes during 
early development is not irreversible: Crabs can grow new claws, plant stem~ can be induced to grow 
roots and the genes for cell division are reactivated in cancer cells. 
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Figure 7.2.1 The stages of development of a mammalian fetus, arranged with reo 
spect to where they occur in the female reproductive system. A single cell becomes 
a mass of cells (called a morula) and then forms a hollow ball (a blastula), with the 
inner cell mass at one side. (Redrawn from "Life - The Science of Biology," 4th edi­
tion, by William Purves, Gordon Orians and Craig Heller, Sinauer Associates. Inc., 
Sunderland, MA; 1995. Used with permission.) 
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Figure 7.2.1 A perspective view of gastrulation. Cells move from the sides, into the 
primitive streak and downward into the embryo. (Redrawn from "Life - The Science 
of Biology," 4th edition, by William Purves, Gordon Orians and Craig Heller, Sinauer 
AsSQ£iates, Inc., Sunderland, MA; 1995. Used with permission.) 

that establishes the tubular nature of the embryo (part (c) of Figure 7.2.3). The 
endoderm will form much of the digestive tract and lungs, the ectoderm will form 
the skin and nervous system and the mesoderm, lying in between the other two 
layers, wi\l form many of the internal organs. Part (d) of Figure 7.2.3 is a cross 
section of the fetus, which projects outward from the plane of the diagram. 

The placenta is the interface between mother and fetus. 

Mammalian fetuses are suspended in a watery amniotic fluid in a membranous sac 
called the-amnion; this structure cushions the fetus against mechanical injury.4 
As pointed out in Chapter 6, the blood of the mother and her fetus do not mix, 
a fact that necessitates a special structure for the exchange of maternal and fetal 
materials: A flat, plate-like organ called the placenta develops between mother 
and child at the point of implantation. All materials exchanged between mother 
and child cross at the placenta, one side of which is composed of fetal tissues and 
the other side of which is composed of maternal uterine tissue. The two sides 
of the placenta have interdigitating projections into one another to increase their 
area of contact, thus facilitating material exchange. Lead is among the many 
substances that cross the placenta; thus, a mother can poison her fetus by passing 
lead to it. 

Shortly after it leaves the fetal heart, the fetus' blood is shunted outward into 
a vessel in the umbilical cord and into the placenta. At the placenta the fetal blood 
takes 02 and nutrients from the mother's blood and gives up C02 and wastes. The 
fetus' blood, after having been enriched in 02 and nutrients and cleansed of C02 
and wastes, returns to the fetal body through the umbilical cord. 

4 An amnion and amniotic fluid are also found in the eggs of egg-laying mammals and reptiles 
and in bird eggs. 



200 

c) 

d) 

Section 7.2 I Early Embryogenesis and Organ Formation 

- embryo 
folds under 

~ __ ectoderm 

~I*=== mesoderm 
-+-tHH--- digestive tract 

,,~~~---- ~m 

~:::::;:'-';;;'::::::::;;/:';'4---- hollow coelom 

Figure 7.2.3 A cutaway view of gastrulation, showing how the mesodermal layer 
defines the coelom. All the structures shown project out of the plane of the paper. 
(a) The cells move toward the primitive streak. then down into the interior of the zy­
gote. (b) These cells form the mesodermal lining of the coelom. (c) This process is 
followed by a curling of the embryo to form the digestive tract. (d) This is a cross­
section of the elongated fetus. It forms a tube. with the digestive tract running down 
the center. 
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The evolutionary development of the coelom facilitated the evolution of large 
animals. 

During embryogenesis in the higher animals. a cavity forms in the center of the 
mesoderm (Figure 7.2.3). This cavity is the coelom. and it has played a major 
role in the evolution of large animals (larger than'" I cm). By definition a body 
cavity is called a coelom only if it is completely surrounded by mesoderm. the 
latter being identified by its creation during gastrulation and its role in forming 
specific internal organs. e.g .• bones. muscles. heart. sex organs and kidneys. 

A coelom provides room for the seasonal enlargement of the reproductive 
systems of some animals. notably birds. In addition. a coelom separates the mus­
cles of the digestive tract from those of the body wall. allowing the two to function 
independently of one another. For purposes of our discussion of lead poisoning. 
however. a coelom plays two roles (to be described at length below): First. a 
coelom provides room into which the lungs can expand during breathing. Second. 
a coelom is important in determining the structural properties of the circulatory 
system: large animals require a powerful heart. one that can expand and contract 
appreciably. A coelomic cavity provides space for a beating heart to change its 
size. 

Section 7.3 

Gas Exchange 

The lungs are gas exchange organs. This means. however. that they can provide 
an efficient entry route into our bodies for foreign substances such as lead. For 
example. the air we breathe may contain lead from leaded gasoline and particulate 
lead. mainly from lead smelters. About 40% of the lead we inhale is absorbed into 
the blood from the lungs. In this section we discuss the anatomy and functioning 
of our lungs. 

Animals can exchange gas with the outside world. 

Oas exchange between an animal and the atmosphere is diffusion-controlled. 
Thus. two physical factors influence the rate at which an animal gives up CO2 
and takes up 02 across membranes from its surroundings-these factors are con­
centration gradients and surface area (see equation (6.2.11». The concentration 
gradients are provided naturally by the metabolic usage of 02 and the subsequent 
production of C02 in respiring tissues. Carbon dioxide-rich/oxygen-poor blood 
arrives at the animals' gas exchange organs. where passive diffusion causes C02 
to move outward to the environment and 02 to move inward from the environment 
(Figure 7.3.1). 

Several organs other than lungs can serve as sites of gas exchange: In insects. 
tiny tracheal tubes carry air directly to and from target tissues. The sKi,n of some 
animals. notably amphibians. is a gas exchange organ. Many aquatic animals 
have gills. which are feathery structures that contain networks of blood vessels 
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Figure 7.3.1 A gas exchange organ. Blood with an excess of C~ and a deficiency 
of 02 arrives at the gas exchange organ. Concentration gradients drive C~ from the 
blood into the atmosphere and ~ from the atmosphere into the blood. 

over which water can flow. The water brings in 02 and carries away C02. We are 
most concerned. however. with humans. who. along with all other mammals and 
birds. exchange gases in lungs (see References [6] and [7]). 

Lungs themselves have no muscles. and are therefore incapable of pumping 
air in and out. Instead. air is pushed in and out of the lungs indirectly: Inhalation 
occurs when a set of intercostal muscles moves the ribs so as to increase the 
front-to-back size of the chest cavity (i.e .• the coelom). At the same time. a dome­
shaped sheet of muscle (the diaphragm) at the base of the chest cavity contracts 
and moves downward (Figure 7.3.2). The two actions expand the volume of the 

side view of chest cavity 

lungs deflated 

~ 
front 

diaphragm 

chest cavity 
expansion results 
in inhalation 

lungs inflated 

~ 

Figure 7.3.2 11le process of inhalation. The lungs have no muscles of their own. 
Their expansion and contraction are driven by the expansion and contraction of the 
chest cavity. Exhalation can also occur if the person simply relaxes. allowing the 
chest cavity to become smaller. 
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chest cavity and thereby draw air into the lungs. On the other hand. exhalation 
occurs when those intercostal muscles and the diaphragm relax.s 

Air enters the lungs through tubes that branch out profusely. and which lead 
to small sacs called alveoli. It is the large number of alveoli that gives the lungs 
their extensive surface exposure to the outside world-about 100m2 of area. The 
alveoli are lined with tiny blood vessels that exchange C02 and 02 with the at­
mosphere. giving up C02 to the environment and then carrying 02 to tissues. 

Section 7.4 

The Digestive System 

This section is a discussion of the function of our digestive tract. a system of 
organs uniquely able to take nutrient materials. as well as toxins like lead. from 
our environment and route them into our blood. 

The digestive system is an important path for lead intake. Rain washes at­
mospheric lead into municipal water supplies and people drink it. Lead in the 
pipes and solder of home water distribution systems leaches into drinking wa­
ter.6 Wine may have a high lead content. Plants absorb lead through their roots 
or bear it on their surfaces; the plants may then be consumed by humans. Or­
gan meats. particularly kidneys. may contain high lead concentrations. Children 
may eat lead-based paint from old furniture. The fraction of ingested lead that is 
absorbed by the digestive tract is usually about 10-15%. but may approach 45% 
during fasting (perhaps because it does not compete with food for absorption). 

Digestion is the splitting of biopolymers into smaller pieces. 

The word "digestion" has a very restricted meaning in physiology: It is a partic­
ular way of splitting the linkage between the components in a macromolecular 
polymer. The process is modeled: 

macromolecular I I I I I I I 
polymer: 

macromolecular 
subunits: 

,J.. digestion 

6·0 
We will discuss macromolecular structure in more detail in Chapter 9. but 

for now it is sufficient to note that when we eat a large molecule the process 

'Forcible exhalation of air does not result from the reverse action of the muscles mentioned for 
inhalation. Muscles can only exert force in contraction and thus a second set of intercostal muscles 
and certain abdominal muscles act to push air forcibly from the lungs by moving the front of the ribs 
downward and decreasing the volume of the chest cavity. 

6Lead is poorly soluble in water unless oxygen is present, a condition unfortunately met in most 
drinking water. 
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of digestion breaks it into smaller molecules. These smaller molecules are then 
either metabolized further to extract energy or are used to make building blocks 
for our own macromolecules (see References [6] and [7]). 

The mammalian digestive tract is a series of specialized organs. 

At a fairly early stage in the evolution of animals, different parts of the digestive 
tract assumed different roles. In particular, the various organs of the digestive 
system reflect the animal's lifestyle. Figure 7.4.1 is a diagram of a mammalian 
digestive system; we will use it for the ensuing discussion. 

teeth 

~-- esophagus 

1-'~- stomach 

\:::::===:::;-...., --- small 
intestine 

~--Iarge 
intestine 

.... --anus 

Figure 7.4.1 The digestive tract is a convoluted tube. with different portions per­
forming different specialized functions. See text for details. 
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a. Dentition. Teeth are used for cutting, piercing and grinding. Extreme devel­
opment of the piercing teeth is typical of predators; cutting and grinding teeth 
are prominent in herbivores. Human dentition is more characteristic of herbi­
vores than of carnivores. 

b. Tongue. This organ pushes food back into the esophagus, which leads to the 
stomach. The act of swallowing pushes a small flap over the opening to the 
windpipe (trachea), which minimizes the possibility of choking on food. 

c. Esophagus. This is the tube leading from the back of the mouth cavity to the 
stomach. 

d. Stomach. This is an organ of mixing and, to a lesser extent, digestion; ex­
cept for small molecules like water and ethanol, very little absorption takes 
place from the stomach into the blood. The presence of food in the stomach 
triggers the process of digestion: Glands in the wall of the stomach generate 
hydrochloric acid, which contributes directly to the chemical breakup of food 
and creates the acidic environment required by other digestive agents (these 
agents are called enzymes; they will be discussed in detail in Chapter 9). 

Stomach muscles churn the food and the stomach secretions to mix 
them. In our earlier discussion, it was pointed out that the coelom separates 
the voluntary muscles of the outer body from the involuntary muscles of the 
digestive tract, and allows them to work independently of each other. Thus, 
the involuntary movements of the digestive tract (called peristalsis) relieve us 
of the need to walk around waving our arms and wiggling in order to move 
food along our digestive tract. 

e. Small intestine. Peristalsis moves the food along and mixes it with a large 
variety of digestive enzymes from the pancreas and from the small intestine 
itself. Surprisingly, these enzymes function only near neutral pH, which is at­
tained by the secretion of alkali ions from the pancreas to neutralize stomach 
acid. 

The lining of the small intestine has a very large surface area, generated 
in several ways. First, the small intestine is very long, especially in herbi­
vores. (Plant matter contains a great deal of a carbohydrate called cellulose, 
which is very difficult to digest, so plant-eaters need a long intestine.) Sec­
ond, there are the numerous intestinal folds, called villi. Third, each cell in 
the intestinal lining has hundreds of small projections, called microvilli. The 
total absorptive surface of the human small intestine is several hundred square 
meters! 

Most absorption of digested food takes place in the small intestine. 
Molecular subunits of carbohydrates (e.g., starch and sugars), proteins (e.g., 
meat) and fats are absorbed throughout the highly convoluted intestinal sur­
face and i\lto the blood. 

1'. The large intestine.: Undigested matter and water collect in the large intestine, 
also called the colon. Most of the water is pumped out into the blood, leaving 
the waste, called fecal matter, which is expelled through the anus. Ingested 
lead, if not absorbed in the digestive tract, is removed from the body in fecal 
matter. 
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Section 7.5 

The Skin 

Section 7.5 I The Skin 

The third pathway by which chemicals can enter our bodies is through the skin. 
We will examine the unique properties of our skin and the conditions under which 
lead can cross it. 

Skin is a sensor of, and a waterproof barrier to, the outside world. 

Skin is uniquely constructed to be the interface to our environment. Working from 
the inside to the outside of our skin. there is first a layer rich in small blood vessels. 
or capillaries. Capillaries bring nutrients and oxygen to the skin to support the 
needs of the many nearby nerve endings and other specialized cells that detect 
stimuli like pain. pressure and heat. 

The next skin layer. also requiring materials brought by the blood. is a group 
of rapidly dividing. pancake-shaped cells. As these cells divide they push toward 
the outside and die. The final. outer skin layer, called the stratum corneum. con­
sists of these dead cells. Thus we are surrounded by a layer of dead cells. of which 
the membranes are a principal remnant. It is this layer that we need to examine 
more closely in our discussion of lead poisoning. 

Cellular membranes were described in Chapter 6; we can review that discus­
sion by pointing out that the principal structural components of cell membranes 
are closely related to fats. Thus. cell membranes are waterproof. a property that 
makes good sense. After all, most biological chemistry is water-based and there­
fore we need to protect our interior aqueous environment from our exterior envi­
ronment, which is also mostly aqueous. 

There are, however, chemicals that can penetrate the cell membranes of the 
stratum corneum and other cells and thereby get into our blood streams. Be­
cause membranes contain a lot of fat-like molecules we should not be surprised 
that some fat-soluble compounds may move across membranes via a temporary 
state in which the substances become transiently dissolved in the membrane. Ab­
sorption of compounds across the skin is said to be percutaneous.7 Examples of 
such compounds are tetramethyl lead and tetraethyllead, "antiknock" compounds 
found in leaded gasoline. It was common in days past to see people hand-washing 
machine parts in leaded gasoline, an activity virtually guaranteed to cause lead ab­
sorption. 

7The compound dimethylsulfoxide (OMSO) rapidly penetrates the skin :lnd is sold as a remedy 
for cenain bone joint disorders. It is possible to t:l.~te OM SO by sticking one's finger into it: The 
compound crosses the skin of the finger. gets into the bloodstream and goes to the tongue, where it 
generates the sensation of taste-said variously to be like garlic or oysters. 
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Section 7.6 

The Circulatory System 

Our circulatory system partitions chemicals throughout the body. It picks them 
up at the lungs, the digestive tract and the skin and distributes them to other body 
tissues. In the case of lead poisoning. the circulatory system plays another key 
role: One of the most important toxic effects of lead is to interfere with the syn­
thesis of the oxygen-carrying pigment hemoglobin, found in red blood cells. We 
will describe the circulatory system and show how its anatomy promotes the rapid 
distribution of materials to all other body tissues. 

The discussion of oxygen transfer across the placenta in Section 6.3 was a 
short introduction to some of the material in this section. 

Circulatory systems move a variety of materials around an animal's body. 

Living organisms are open thermodynamic systems, which means that they are 
constantly exchanging energy and matter with their surroundings. The exchange 
of materials between the cells of a multicellular animal and the animal's environ­
ment is mediated by a circulatory system. This system picks up 02 at the lungs, 
gills, tracheal tubes or skin. and delivers it to metabolizing cells. The C02 that 
results from the metabolic production of energy is returned to the gas exchange or­
gan and thus to the organism's surroundings. The circulatory system also picks up 
nutrients at the digestive tract and delivers them to the body's cells; there it picks 
up wastes which it takes to the kidneys or related organs for excretion. Further, the 
blood carries minerals, proteins and chemical communicators. or hormones, from 
one part of the body to the other. Hormones regulate such activities as growth, 
digestion, mineral balances and metabolic rate (see References [6] and [7]). 

Open circulatory systems are convenient, but inefficient. 

The blood of most small invertebrate animals spends most of its time circulating 
leisurely around the animal's internal organs. An example is shown in Figure 
7.6.1. Note that the blood is not necessarily confined to vessels at all; rather, it 
merely bathes the internal organs. This kind of circulatory system is said to be 
open. 

The correct functioning of an open circulatory system relies on a very im­
portant physical property: The materials carried by the blood, and listed in the 
previous section, can diffuse effectively over distances of no more than about one 
millimeter (see Section 6.2 and the reference by Dusenbery [8]). Thus, an upper 
limit is set for the size of internal organs; no part of any organ can be more than 
about I mm. from the blood. Of course, this also sets a limit on the size of the 
entire organism; animals with open circulation seldom exceed a few centimeters 
in size. Typical examples are snails and houseflies; atypical examples are giant 
clams and lobsters but, being aquatic, they have the advantage of being bathed 
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Figure 7.6.1 An open circulatory system. The heart pumps blood into an open body 
cavity. Organs in the body cavity are bathed by the blood. exchanging gases. nutri· 
ents and wastes with it. The blood eventually returns to the heart. 

in water, which provides for easy waste and C02 removal. Further, these large 
animals have low specific metabolic rates, which minimizes their 02 and nutrient 
needs, as well as their production of wastes. 

Open circulatory systems are structurally simple. but the size restriction they 
place on organisms is a major shortcoming. There are plenty of ecological niches 
into which large animals could fit. especially on land. but to do so has required 
the evolution of a different kind of circulatory system. We examine that next. 

Closed circulatory systems are efficient. but require a powerfuL heart. 

An open circulatory system can be likened to a large fan at the front of a class­
room. Air gets moved from the fan toward the rear of the room and it eventually 
returns to the back of the fan. Most people in the room feel a small breeze from 
time to time. On the other hand, a closed circulatory system can be likened to an 
enclosed air pump, with a network of conduits that take air directly to each person 
individually and return the air directly to the pump. 

As pointed out above, the problem with open circulation is that most materi­
als can diffuse distances of no more than about one millimeter during biologically 
realistic times, thus limiting the size of the organism. Closed circulatory systems 
remove this restriction by taking blood, via tiny vessels, directly to the immediate 
vicinity of all metabolizing cells. This blood distribution is independent of the 
size of the organism, how far the cells are from the heart, and how deep the cells 
are inside an organ. 

A vertebrate closed circulatory system contains a heart that pumps blood 
into a thick·walled artery. called the aorta. The latter then progressively branches 
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Figure 7.6.1 A closed circulatory system. The heart pumps blood into a system 
of arteries, which deliver the blood directly to capillaries in organs. The blood in 
these capillaries exchanges gases, nutrients and wastes with tissues in their immediate 
vicinity. The blood returns to the heart via a system of veins. 

into smaller arteries and then into capillaries, whose walls are only one cell thick, 
across which material exchange between blood and other tissues must take place 
(Figure 7.6.2). Capillaries have such narrow lumens that many blood cells must 
be bent in order to get through. Thus, capillaries have the large surface-to-volume 
ratio necessary for their material exchange function. Eventually, capillaries join 
together in groups to form small veins that combine into a few large veins and 
return blood to the heart. 

A closed circulatory system is very efficient because it delivers blood right 
to the doorstep of metabolizing tissues; no cell is very far from a capillary. An im­
portant problem is built into closed circulatory systems, however: The frictional 
resistance to blood flow in the capillaries is much greater than that in arteries. This 
is true in spite of the fact that the total cross-sectional area of the artery leading 
from the heart (the aorta) is much less than the total cross-sectional area of all the 
body's capillaries. 

The reason for this apparent contradiction is well-known: Blood is viscous 
and thus adheres to vessel walls as it passes. Only in the center of the vessel lumen 
is this friction reduced. The difficulty is that capillaries have a very small lumen 
and a lot of wall area (to increase their material-exchange properties). Therefore, 
the frictional resistance of capillaries to blood flow is very high. A general rule 
is that the friction encountered by a viscous material passing through a tube is 
inversely proportional to the fourth power of the radius of the tube (see Section 6-
2 and the reference by Vogel [9]). Thus, ifthe radius is halved. the frictional force 
goes up by 16 times. The end result is that a closed circulatory system requires a 
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very powerful heart to force blood through the many tiny capillaries. in spite of 
the large total cross-sectional area of the latter. 

The cellular fraction of blood serves a variety of functions. 

Whole blood has both a liquid fraction. called plasma. and a cellular fraction. 
Plasma is mostly water. but it also contains many inorganic ions. hormones. bio­
chemicals like sugars. fats. amino acids and proteins. The levels of al\ these 
plasma solutes are critical and thus are maintained at relatively constant levels. 

Blood cells are usually classified on the basis of their appearance. All of 
them originate from common precursor cells in the bone marrow and become 
specialized later. 

a. Red blood cells. or erythrocytes. will be of special importance to us in our 
later discussion of lead poisoning. Mammalian erythrocytes lose their nuclei 
during formation; the remaining cytoplasm contains large quantities of a bio­
chemical called hemoglobin. which has a high affinity for 02. We introduced 
the biological role of hemoglobin in Section 6.3; we now elaborate on it. 

Erythrocytes pick up 02 at the lungs: 

Reaction #1:8 Hb+02 ~ 02-Hb 
(hemoglobin) . (oxyhemoglobin) 

The erythrocytes are then carried to the sites of metabolism. where the oxygen 
is needed. and reaction #1 is reversed to free the oxygen for use in metabolic 
processes: 

Reaction #2: 

Interestingly. the affinity of hemoglobin for C02 is fairly low. therefore most 
C~ is carried from the sites of respiration back to the lungs in the form of 
carbonic acid or the bicarbonate ion. dissolved in the water of the plasma: 

Reaction #3: C02 + H20 ~ H2CO] ~ H+ + HCOl 
(carbonic acid) (bicarbonate ion) 

In the lungs the C~ is reconstituted from the bicarbonate ion and carbonic 
acid. and then exhaled: 

Reaction #4: 

8RecaJi from Chapter 6 that one hemoglobin molecule can bind up to four <h molecule.~. 
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Reactions #1 through #4 are related: Reaction #4 takes place at the lungs and 
raises the blood pH by removing carbonic acid. The rate of reaction #1 is 
pH-dependent; conveniently, it goes faster at higher pH. Thus the removal of 
C02 at the lungs promotes the attachment of hemoglobin to 02. The opposite 
occurs in metabolizing tissues: The production of C02 lowers the blood pH 
there via reaction #3, and the lower pH promotes reaction #2, the release of 
oxygen from oxyhemoglobin.9 

While the affinity of hemoglobin for C02 is low, its affinity for carbon 
monoxide (CO) is very high. As a result, the presence of even small amounts 
of CO can prevent the attachment of ~ to hemoglobin, accounting for the 
lethal effect of CO. 

The best-studied toxic effect of lead is its role in causing anemia, a 
reduction in erythrocyte concentration. This in turn reduces the oxygen­
carrying ability of the blood. The anemia is evidently the result of two pro­
cesses: First, lead interferes with hemoglobin synthesis and. second, lead 
causes the lifetimes of mature erythrocytes to be reduced from the usual four 
months. 

b. Platelets are blood cells involved in clotting; they are actually cell fragments 
that lack nuclei. Platelets collect at the site of an injury and disintegrate. This 
releases platelet proteins that generate a cascade of reactions, finally resulting 
in the formation of a clot consisting of a plasma protein called fibrin. 

c. Leukocytes are nucleated and are often called white blood cells; they are used 
to fight off infections. One class of leukocytes, the lymphocytes, will be dis­
cussed in Chapter IO in the context of HIV infections. A second group, the 
granulocytes, functions in certain general responses to infections and aller­
gens. 

There are four overlapping functional paths in our circulation: systemic, 
pulmonary, lymphatic and fetal. 

Blood cells and plasma can take several routes around the human body, the dif­
ferences between the routes being both anatomical and functional. 

Look at Figure 7.6.3. The mammalian heart has four chambers: the two 
upper ones are atria and the two lower ones are the muscular ventricles. Blood, 
rich in C~ from metabolizing tissues, enters the heart at the right atrium and 
goes to the right ventricle. The powerful ventricle pushes the blood to capillaries 
in the lungs; these capillaries surround the many small air sacs (alveoli), which 
are filled with air when we inhale. Here C02 is moved from the plasma into 
the alveoli for exhalation, and the erythrocytes pick up 02 from the alveoli; the 
chemistry for these two processes was outlined in Reactions #I and #4 in the last 
section. The blood then returns to the heart at the left atrium. The path of the 

9 At least slime CCh does bind to hemoglobin. It has the uilCful effectthlll it decreases the oxygen 
affinity oCthe hemoglobin (in the vicinity of metabolizing tissues). 
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Figure 7.6.3 The flow of blood through a mammalian heart and lungs. Note that 
the blood enters and leaves the heart twice. 

blood just described-from the heart to the lungs and back to the heart-is called 
pulmonary circulation. 

Pulmonary circulation in outline form: 
right ventricle --t pulmonary artery --t lung capillaries --t 

--t pulmonary vein --t left atrium 

After moving from the left atrium to the left ventricle, blood exits the heart 
and goes to respiring tissues all over the body via arteries and then capillaries. At 
the capillaries, 02 is given up to the respiring cells and C02 is taken from thew 
into the plasma. 1o These reactions were described earlier as reactions #2 and #3. 
The blood now returns to the heart by way of veins. The path of blood from the 
heart to respiring cells and back to the heart is called systemic circulation. 

Systemic circulation in outline form: 
left ventricle --t aorta --t other arteries --t 

--t capillaries of respiring tissues --t veins --t right atrium 

Note the importance of the powerful ventricles-they must overcome the 
high frictional resistance that blood meets in the narrow lumens of the capillaries. 

IOThe phrase "respiring cell~" here means cells that are breaking down sugar to get energy. and 
which are therefore giving oIT camon dioxide. 
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capillaries 

_art_ery __ ~ ___ v_ein __ _ 

~~ 

direction of blood flow 

Figure 7.6.4 A capillary bed. As blood moves fro:n aneries to capillaries. the over­
all cross-section of the circulatory system increases. but overall frictional resistance 
increases also. 

Figure 7.6.4 shows a connected group. or bed. of capillaries. The lumen of 
the artery narrows down as the blood approaches the capillaries and. as a result. 
the frictional resistance increases dramatically. For much of the blood. the effect 
is almost like hitting a dead end. Consequently. the hydrostatic pressure in the 
blood at the front (upstream) end of the capillary bed rises sharply. The high 
hydrostatic pressure pushes some of the liquid fraction of the plasma through 
gaps in the vessel walls (Figure 7.6.5). The only part of the plasma that cannot 
be pushed out is the plasma protein fraction. because these molecules are too big. 
Thus, this interstitia/fluid forced out of capillaries lacks the large plasma proteins. 

--~ -
~~ ~ 

hydrostatic pressure ~ osmotic pressure 
forcec; plasma out forces plasma in 

Figure 7.6.5 The increase in frictional resistance to blood flow imposed by capil­
laries generates a high hydrostatic pressure upstream from the capillaries. This hy­
drostatic pressure forces some of the liquid fraction of the blood out of the upstream 
end of the capillaries and into the surrounding tissues. On the downstream end of the 
capillaries the blood. now with a high concentration of dissolved substances. draws 
some of the liquid from the surrounding tissues back into the circulatory system by 
osmotic pressure. 



214 Section 7.6 I The Circulatory System 

g 

~ ~ 
hydrostatic pressure , ~ 

lymphatic fluid re-enters 
blood vascular system 

near heart 

Figure 7.6.6 Some of the liquid fraction of the blood. forced out of capillaries by 
hydrostatic pressure. does not return to the blood at the downstream end of the capil­
laries. This excess is picked up by lymphatic capillaries and eventually returns to the 
bloodstream near the heart. 

At the far (downstream) end of the capillary bed the capillaries join together, 
friction decreases. and the hydrostatic pressure also decreases. The blood plasma 
at this point contains everything that the interstitial fluid contains. plus plasma 
proteins. Thus. the plasma has more dissolved solute than does the interstitial 
fluid. As a result. most of the interstitial fluid is osmotically drawn back into the 
vessels to dilute the plasma proteins. Not all the interstitial fluid makes it back to 
the blood. however; there is a positive pressure differential of several millimeters 
of mercury between the hydrostatic pressure on the upstream end of the capillary 
bed and the osmotic pressure on the downstream end. This would cause a build­
up of fluid in the tissues if it were not for the fact that there is another path of 
circulation to collect the excess fluid. 

The extra fluid is collected in a set of capillaries of the lymphatic circulation 
arid brought by lymphatic veins to the upper body. where they empty into blood 
veins near the heart (see Figure 7.6.6). During the journey to the heart. the flow 
of the lymphatic fluid. as the interstitial fluid is called at this point. is pushed by 
contractions of the nearby skeletal (voluntary) muscles. This movement should 
be bi-directional. but lymphatic veins have valves that allow flow only toward the 

Lymphatic circulation in oUlline form: 
heart --. arteries --. systemic capillaries --. 
~ intercellular spaces ---+ lymphatic capillaries ~ 
~ lymphatic veins --. blood veins ---+ heart 
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heart. Along the way the lymphatic veins pass through lymph nodes. packets of 
lymphatic tissue that filter out pathogens. 

In addition to the interstitial fluid. some white blood cells can also move be­
tween the blood circulation and the lymphatic circulation. They do so by squeez­
ing between the endothelial cells that constitute the walls of blood capiJJaries. 

The fourth path of the circulatory system is found in fetuses and is called fetal 
circulation. A fetus does not breathe, so its pulmonary circulation is minimized 
via two shunts: There is an opening in the fetal heart (theforamen ovale), between 
the right and left atria, that directs blood away from the pulmonary circulation 
(Figure 7.6.7). Secondly, a special vessel, called the ductus arteriosus, carries 
blood from the pulmonary artery directly to the aorta. Finally, the umbilical artery 

Fetal circulation in outline form: 

right atrium'\." left atrium ..... Icft ventricle ) '" 
right ventricle ..... pulmonary artery ..... ductus arteriosus ..... " ..... 

--4 aorta ~ umbilical artery ~ placenta ~ 
--4 umbilical vein ~ veins to heart 

C02-rich 
blood 

in from body 

pulmonary 
artery 

opening in 
embryonic heart 

Figure 7.6.7 A diagram of fetal circulation. An opening between the two atria. the 
foramen ovale. and a vessel called the ducllls arteriosus. shunt fetal blood away from 
the lungs. 
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and vein carry the fetus' blood to and from the placenta. respectively. All the 
above fetal structures close off permanently in the first few minutes after birth. 

Section 7.7 

Bones 

Lead has a strong tendency to localize. or sequester. in bones; its half-life there is 
about 20 years. Thus. the skeleton can serve as a chronic systemic source·of lead 
long after the original exogenous lead exposure. 

Bones are not static. Besides producing blood cells. they are being "remod­
eled" in response to our physical activities throughout our lives. In this section 
we will examine the anatomy. function and growth of bones. 

Bones support. protect and move. 

The set of our bones is called our skeleton. It supports the rest of our body struc­
ture. All large terrestrial animals require an internal skeleton because the non­
skeletal tissue would collapse under its own weight and a hard external skeleton 
(like an insect's) would weigh too much. Our skeleton surrounds our internal or­
gans. protecting them from mechanical injury. In the cases where organs are not 
protected by bone. e.g .• eyeballs and testicles. reflexive reactions and very low 
pain thresholds are necessary for protection. With the aid of our voluntary mus­
cles we can use our skeleton to project effects at a distance-walking. reaching 
and hugging. for instance. 

Bone marrow is the source of blood cells. 

In the earlier section on the circulatory system a number of blood cells were de­
scribed. All of these cells originate from a single variety of cell in the core, or 
marrow. of bones. These cells are called stem cells. and they divide rapidly. gen­
erating large numbers of daughter cells. The subsequent fate of a daughter cell 
depends on the conditions of its maturation environment. Some lymphocytes. for 
instance. mature in the thymus gland. just behind the breast-bone of children. Red 
blood cells mature in the marrow. synthesize hemoglobin and then (in mammals) 
lose their nuclei. We will have more to say about blood cell origins in Chapter 10. 

Bony tissue is replaced throughout life. 

There are special cells. called osteoblasts. in bone that secrete a protein about 
which the compound hydroxyapatite (mainly calcium phosphate) crystallizes; 
thus. hard bone is formed. When the muscles to which a bone is attached be­
come stronger. the stresses cause the bone to thicken to adapt to the new need. 
This is initiated by another group of cells. called osteoclasts. which secrete chem­
icals to dissolve hard bone tissue. Osteoblasts then reconstitute the bone in a new. 



Chapter 7 I The Biological Disposition of Drugs and Inorganic Toxins 217 

thicker form. II It has been estimated that our bones are replaced up to ten times 
in our lives. 

Virtually all bone growth after adclescence affects the thickness of a bone. 
Bone growth before that time may be in thickness, but may also be in the length 
of the bone, accounting for the dramatic rate of change in a child's height. 

Lead tends to be deposited in the region of bones near their ends, as revealed 
by X-ray pictures. The lead is then very slowly released over a period of many 
years. This long half-life means that lead tends to accumulate in bones. Indeed, 
about 95% ofa person's total-body lead can be found in the bones [2]. 

Section 7.8 

The Kidneys 

Our kidneys provide a mechanism for ridding the body of water-soluble sub­
stances. They are very selective, however: They can maintain a constant chemical 
composition in our bodies by removing materials in excess and retaining materials 
in short supply. Thus, we should correctly expect that the kidneys would help to 
excrete lead. The problem is that much lead becomes sequestered in bone and is 
therefore not solubilized in blood where the kidneys can get at it. Nevertheless, if 
absorbed lead is to be removed from the body, kidney excretion will be the major 
route out. 

The kidneys remove nitrogenous wastes and help regulate the concentration of 
materials in the blood. 

When we eat protein, e.g., the muscle from a cow's leg, the process of digestion 
breaks the protein down into its component compounds, called amino acids. In 
our bodies amino acids have two possible fates. First, they can be incorporated 
into our own proteins. We can synthesize most, but not all, of the amino acids 
we need from related precursors we get in our diet. Second, ingested amino acids 
can be broken down to extract some of their energy. In this section we will be 
concerned with one aspect of the latter of these two fates-the removal of a certain 
chemical group ( - NIh) from an amino acid prior to extraction of the amino acid's 
energy. 

Unless it is to be used in the synthesis of other nitrogenous compounds in our 
bodies, the amino group (-NH2) of ingested amino acids must be removed from 
our body as waste. The problem is that the amino group quickly forms ammonia 
(NH3), which is toxic. Aquatic animals can get rid of ammonia by releasing it 
directly into the surrounding water, in which the ammonia is highly soluble. Many 
terrestrial animals, humans included, convert the ammonia to urea (H2NCOH2), 

\ 

II It should now be evident how archeologists can tell so much ahout an animal by examining a 
few bones. The pattern of bumps and thickening.~ on a bone constitute a graphic history of the animal's 
life. 
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Section 7.8 I The Kidneys 

kidney tubules 
givE! H20 and 
tieslral)le 
substances 
back to blood 

\ 
urine contains 
nitrogenous wastes 
and minimal H20 

Flgure 7.8.1 A simplified model of the mammalian kidney. Blood pressure at the 
kidneys forces some of the liquid fraction of the blood into kidney tubules. This liq­
uid fraction contains wastes. but also contains useful solutes. like sugars. Later. the 
kidney takes back the useful substances and most of the water. leaving urine with the 
concentrated wastes (to be voided). 

which is moderately water-soluble and much less toxic than ammonia. 12 The urea 
is then removed from our bodies by our kidneys in urine. 

At the kidneys. blood pressure forces some of the liquid fraction of blood into 
small kidney tubules (see Figure 7.8.1). This liquid contains water. ions. many 
essential biological molecules and. of course. urea. As the liquid moves along 
these convoluted tubes. most of the water and most of the desirable dissolved 
substances are resorbed back into the blood. The aqueous liquid left behind in the 
kidneys is urine. which contains a high concentration of urea. Urine also contains 
other dissolved substances that the blood has in excess of normal needs. Thus. 
the kidneys serve the homeostatic function of maintaining the concentration of 
dissolved substances in the blood and other tissues at normal levels. 13 

Lead is absorbed into bones about 100 times faster than it is released. Thus 
an important therapeutic approach to lead poisoning is to try to prevent the lead 
from becoming sequestered in bone. from which it would be slowly released back 
into the blood over a period of decades. The trick is to make the lead very sol­
uble shortly after exposure so the kidneys can excrete it efficiently. There is a 
class of chemical compounds. called metal chelates. that react rapidly with lead 
and many other metals to form very soluble compounds that the kidneys can 
excrete. Penicillamine. for example. can be administered orally and the com-

12Egg_laying animals go one step funher and conven the urea to uric acid. which is water­
insoluble. Thus. uric acid can accumulate inside an avian or reptilian egg and not harm the fetus 
prior to hatching. 

13PatienlS with djabele.~ mellilu.~ produce insufficient quantities of the protein in.<ulin. This leads 
to an excess of the sugar glucose in their blood. The kidneys remove some of the excess glucose in 
urine_hus providing a means of medical diagnosis. 
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pound it forms with lead, penicillamine-lead, is highly soluble in water. The 
structure of penicillamine-lead is shown above. 14 

In summary, kidneys first remove most dissolved materials, both useful and 
waste, from the blood and later put the useful materials back into the blood. We 
could easily imagine a simpler system, in which only a small amount of water, all 
the urea and any other material in excess is removed directly, without benefit of 
resorption, but that is not how our kidneys work. The forces of evolution do not 
necessarily yield the simplest system but, instead, yield a modification of a pre­
existing system. This frequently generates a more complicated system, but if the 
new system provides a selective advantage it can become fixed in the population. 

Lead has been shown to have a direct, pathological effect on kidney function. 
Acute exposure in children leads to malfunctioning of the resorption process, re­
sulting in a high concentration of glucose and other desirable compounds in the 
urine. Chronic lead exposure eventually results in general kidney failure. 

Section 7.9 

Clinical Effects of Lead 

Lead poisoning is indicated by a variety of clinical symptoms, including gastroin­
testinal and mental disorders. 

Lead poisoning causes a wide variety of general symptoms. 

We conclude with a short description of symptoms of lead poisoning that a physi­
cian might see in a patient. In adults there are gastrointestinal disorders like 
vomiting and pain. In children there are central nervous system disorders, e.g., 
drowsiness, irritability and speech disturbances, as well as gastrointestinal symp­
toms. An interesting symptom in some cases is a blue line along the gums, formed 
when lead reacts with sulfur, the accumulation of the latter being associated with 
poor dental hygiene. 

14Chelating agents are not without risks: A chelating agent thnt picks up lead may also pick up 
other divalent metals. e.g. calcium. Loss of blood calcium can lead to uncontrollable muscle tremors 
and even death. 
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The effect of lead on IQ is an interesting one. As mentioned above, lead­
induced neurophysiological disorders are especially noted in children. This is not 
unexpected because lead seems to affect the velocity of nerve impulse conduction. 
Evidence suggests that lead poisoning can reduce a child's IQ by about five points. 

Section 7.10 

A Mathematical Model for Lead in Mammals 
While lead interacts differently with the various tissues of the body, as a first 
approximation we need only distinguish three tissue types: bone, blood, and the 
other soft tissue of the body. Bone tends to take up lead slowly but retain it for 
very long periods of time in contrast to soft tissue. other than blood, in which the 
turnover of lead is much quicker. Blood is the transport agent of the metal. The 
disposition of lead in the body can be folio' led as a three campartment system by 
tracking its movement into and out of these three tissue types. In this section we 
analyze such a model proposed by Rabinowitz, Wetherill, and Kopple. 

The uptake and movement of lead can be modeled by the use of compartments. 

The activity of lead in the body depends on the tissue in which it is located (recall 
the end of Section 7.1). To construct a mathematical model for the movement of 
lead, at least three distinct tissue types must be recognized: bone, blood, and soft 
tissue (other than blood).IS These will be our mathematical compartments. Lead 
enters the system by ingestion and through the skin and lungs. These intake paths 
usher the substance to the blood. From the blood, lead is taken up by bone and 
by soft tissue. This uptake is reversible; lead is also released by these organic 
reservoirs back to the blood. However, especially for bone, lead's half-life in the 
tissue is very long. Lead can be shed from the body via the kidneys from blood 
and. to a lesser extent, through hair. Thus blood is the main conduit through which 
lead moves among our compartments. 

To begin the model,let Compartment I be the totality of the victim's blood, 
Compartment 2 the soft tissue, and Compartment 3 the skeletal system. We must 
also treat the environment as another compartment to account for lead intake and 
elimination; we designate it as Compartment O. Let X;, i = 1, ... ,3, denqte the 
amount of lead in compartment i and let a;j, i = 0, ... ,3, j = I, ... , 3, denote 
the rate of movement of lead to Compartment i from Compartment j. The product 
ajjxj is the rate at which the amount of lead increases in Compartment i due to 
lead in Compartment j. There is no reason that ajj should equal a.ij and, as noted 
above, the rate of movement from blood to bone is very different than the reverse 
rate. The units of the a's are per day. 

Because we will not keep track of the amount of lead in the environment, 
this is an open compartment model. Instead, we account for environmental intake 

(SAs In lhe diSCUSSion ending Section 7.1. throughout this section. by sofl tissue. we mean soft 
tissue other than blood. 
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by including a separate term, It(t}, applied to Compartment I, blood. From the 
discussion above, some of the rates are zero; namely tlo3 = a23 = a32 = 0, signi­
fying no direct elimination to the environment from bone and no direct exchange 
between bone and soft tissue. In addition, all rates aiO = 0 since there is no Xo 
term. Finally, there is no need for terms of the form ajj since a compartment is 
our finest unit of resolution. 

With these preparations, we may now present the model, which derives from 
the simple fact that the rate of change of lead in a compartment is equal to the 
difference between the rate of lead entering and the rate leaving. 

dXI dt = -(aOi + a21 + a3.)xl + al2X2 + al3x3 + It{t) 

dX2 dt = a21 XI - (ao2 + a12}x2 (7.1O.1) 

dX3 
dt = a31 XI - al3x 3 

In words, the first equation, for example, says that lead leaves blood for the 
environment, soft tissue and bone at a rate in proportion to the amount in the 
blood; lead enters blood from soft tissue and bone in proportion to their respec­
tive amounts; and lead enters blood from the environment according to It(t). The 
algebraic sum of these effects is the rate of change of lead in blood. In line with 
our discussion of Section 2.4, this system can be written in matrix form as 

x' =AX+f. (7.1O.2) 

Here X is the vector of x's, f is the vector 

[
It(t}] 

f= 0 
o 

and A is the 3 x 3 matrix 

[ 
- (tlol + a21 + a3.) 

A = a21 

a31 

a J3 ] o . 
-aJ3 

From equation (2.4.12), the solution is 

x = e4'Xo + e4' l e-A"f(s} ds. (7.1O.3) 

We will now suppose that the intake of lead, It(t), is constant; this is a rea­
sonable assumption if the environmental load remains constant. Then f is also 
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constant and we may carry out the integration on the right-hand side of equa­
tion (7.10.3). In keeping with the result that -a-I e-at is the integral of the ordi­
nary exponential function e-at • we get 

I It fIot 10 e-ASr(s)ds = fIot [_rle-A.,] / 

= _fIot fe-At - I] rlr 
= - [/- flo'] A-Ir. 

Substitution of this result into equation (7.10.3) gives 

x = fIotxo - [I - fIot] A-Ir 

= fIot [Xo + A -If] - A -Ir. 
(7.10.4) 

This is the solution of system (7.10.1) provided A -I exists and that the exponential 
fIot is computable. 16 

The long-term predictions of the model 

Recall from the discussion of Section 2.7 that the long-term behavior of the solu­
tion is predicted by knowledge of the eigenvalues of the matrix A. But it is easily 
seen that this is a compartment matrix (cf. Section 2.7). The diagonal terms are 
all negative. the first column sum is -aOl. the second column sum is -a02 and the 
third column sum is O. Therefore by the Gershgorin Circle Theorem. the eigen­
values of A have negative. or zero. real parts. In the case that they are all strictly 
negative. then the exponential eAt tends to the zero matrix as t -+ 00. As a result. 
the long-term fate of lead in the body is given by the term A -I f. 

as t -+ 00. (7.10.5) 

A study on human subjects 

Rabinowitz. Wetherill. and Kopple studied the lead intake and excretion of a 
healthy volunteer living in an area of heavy smog. Their work is reported in 
Reference [3]; and extended by Batschelet. Brand. and Steiner in Reference [II J. 
(See also Reference [12].) The data from this study were used to estimate the 
rate constants for the compartment model equation (7.10.1). Lead is measured in 
micrograms and time in days. For example. the rate 49.3 is given below as the 

16See Nineteen Dubious Ways to Compute the Exponent;al ora Matrix by Reference [10] for a 
delightful discussion of the problems involved. 
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1Bble 7.10.1 Lead Exchange Rates 

Coefficients 001 al2 al3 a21 002 a31 It 
Value .0211 .0124 .000035 .0111 .0162 .0039 49.3 

ingestion rate of lead in micrograms per day and the other coefficients are as given 
in Table 7.10.1. 

This model has significant biological implications. The output of the com­
putation of the exponential of this matrix does not seem to merit printing. More 
important for the purposes of understanding this model is the graph of the solu­
tions. These graphs are shown in Figure 7.10.15. This figure shows graphs of the 
total lead in Compartments 1, 2, and 3 over a period of 365 days. The horizontal 
axis is days and the vertical axis is in units of micrograms of lead. 

Our calculation of the solution for equation (7.10.1) follows the procedure 
of equation (7.1004) exactly. As we will see, the eigenvalues for this matrix are 
negative. Further. since the trend of the solution is independent of the starting 
condition-recall equation (7.1 O.5)-we take the initial value to be 

The solution is computed and graphed with 

> with(lInalg): 
> A:=matrix(3,3,[-0.0361, 0.0124, 0.000035. 0.0111. -0.0286, 0.0, 0.0039, 

0.0, -0.000035]); 

> etA:=exponential(A,t); 

> AinvF:= evalm(inverse(A)' vector([493110,O,O))): 

> u:= evalm(-AinvF + etA • AinvF); 

> plot( { u(1)(t),u[2)(t),u[3)(t)} ,t = 0 .. 365); 

One observation is that the level of lead in blood and soft tissue approaches a 
steady state quickly. Lead achieves a steady state in blood of about 1800 units and 
of about 700 in soft tissue. The level of lead in the bones continues to rise after 
a period of one year. In this model, the bones continue to absorb lead because of 
the constant rate of input. On the other hand, the bones release lead slowly and 
steadily. As we have already seen in the discussion in Section 7.8, a high level of 
lead in the bones has implications for severe and chronic biological problems. 

The levels of lead in the steady state is the next subject for discussion. For 
this lead model, the long-term behavior of solutions can be computed as follows: 

> lambda:=eigenvals(A): 

This computation yields 

-0.0447, -0.02, and - 0.00003. 
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Figure 7.10.15 Solutions for equation (7.10.1) 

We find that the eigenvalues for the matrix A associated with the lead problem are 
all negative. Further, a computation of -A -I f 

> v3::vector([493110,O.O)); 

> leadlim:=evalm(·inverse(A)·v3); 

yields 

-A -I f = (1800,698,200582) where f = (439/10,0,0). 

Hence, this model predicts the long-range forecast summarized as follows: The 
level of lead in the blood will rise to about 1800 micrograms, the level of lead in 
other soft tissue will rise to about 698 micrograms, and the level of lead in the 
bones will rise to about 200582 micrograms. 

It should be recognized that the coefficients for our absorption of lead are 
not constants. By way of data for long-range forecasts, Ewers and Schlipkoter 
point out that after age 20, the lead content of most soft tissue does not show 
age-related changes [I]. The lead content of bones and teeth increases throughout 
life, since lead becomes localized and accumulates in human calcified tissues. 
This accumulation begins with fetal development and continues to approximately 
the age of 60 years. Various studies show that approximately 95% of the total 
body lead is lodged in the bones of human adults. 
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Exercises 

I. This exercise is an investigation of the lead model. The exercise is broken 
into a set of questions that can be answered by modifications of the syntax in 
this chapter. 
a. What is the long-range forecast for lead in each of the compartments 

using model (7.10.1)? 
b. Approximately what is the lead level achieved in each of the compart­

ments in "one year"? 
c. Ewers and Schlipkoter state that 95% of the total body lead is lodged in 

the bones of human adults [I]. Schroeder and Tipton state that "Bones 
contain 91 % of the total body lead" [4]. What percentage of the total 
body lead does this model place in the bones? 

d. Re-do Questions (a) and (b) by doubling or halving the ingestion rate. 
What is the revised long-range forecast for each of the compartments? 
Approximately what is the revised lead level achieved in each of the 
compartments in "I year"? 

2. The remaining questions are concerned with a person who has lived in a lead­
contaminated environment so long that a level of 2500 micrograms of lead 
has accumulated in the bones. You may continue to assume that in the con­
taminated environment 49.3 micrograms per day are absorbed. In their 1968 
paper, Schroeder and Tipton stated that an average of 17 micrograms of lead 
are retained per day. We take this absorption rate to be a "clean" environment. 
a. What level of lead do you expect in the tissue and blood for a person 

living in a contaminated environment long enough that 2500 micrograms 
of lead has accumulated in the bones? 

b. Suppose that the person described is moved to a relatively lead-free en­
vironment. What is the approximate level of lead in the bones, tissue, 
and blood at the end of one year after living in the new environment? 

c. We have seen that there are drugs that alleviate the effects of lead in the 
bones by increasing the rate of removal from the bones. What should 
that rate be to cut in half the amount of lead in the bones at the end of 
one year in the cleaner environment? 

d. Suppose that the person takes the drug you have designed, but is not 
moved to the cleaner environment. What are the levels of lead in the 
bones, tissue, and blood after one year of taking the drug while living in 
the contaminated environment? 

e. Ewers and Shlipkoter give the half-life of lead in blood as 19 days, in 
soft tissue as 21 days, and in bones as 10 to 20 years [1]. What is the 
half-life as assumed in our model? 

f. According to this model, what percentage of the lead ingested into the 
body is returned to the environment during the 100th day in the initial 
situation? 
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Section 7.11 

Pharmacokinetics 

The routes for dispersion of drugs through the body follow the same pattern as 
those of lead. The previous section followed lead through the body. The model of 
this section examines how the body handles the ingestion of a decongestant. We 
keep track of this drug in two compartments of the body: the gastrointestinal tract 
and the circulatory system. The mathematical importance of this model is that the 
limit for the system is a periodic function. 

A two-compartment pharmacokinetic model is used to construct a drug 
utilization scenario. 

Among all the means for the delivery of therapeutic drugs to the blood stream, 
oral ingestion/gastro-intestinal absorption is by far the most popular. In this sec­
tion we study this delivery mechanism following closely the work of Spitznagel 
[13]. The working hypothesis of the study is the following series of events. The 
drug is taken orally on a periodic basis resulting in a pulse of dosage delivered 
to the GI tract. From there, the drug moves into the blood stream, without delay, 
at a rate proportional to its concentration in the GI tract and independent of its 
concentration in the blood. Finally the drug is metabolized and cleared from the 
blood at a rate proportional to its concentration there. 

Evidently the model should have two compartments; let x(t) denote the con­
centration of drug in the GI tract and y(t) denote its concentration in the blood. 
In addition, we need the drug intake regimen; denote by D(t) the drug dosage, as 
seen by the GI tract, as a function of time t. 17 The governing equations are 

dx 
- = -ax+D, 
dt 
dy 
- =ax- by. 
dt 

(7.11.1 ) 

Since equations (7.11.1) constitute a linear system with forcing function D(t), its 
solution, in matrix form, is given by equation (2.4.12): 

(7.11.2) 

where Y and P are the vectors 

Y = [;] and P _ [D(S)] 
- 0 ' 

17With the use of time-rel~as~ capsul~s. a drug may not be immediately available to thi! GI tract 
even though the medication has been ingested. 
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and M is the coefficient matrix 

[ -a 0]. 
a -b 

Note that. as a compartment model. the diagonal terms of this matrix are negative 
and the column sums are negative or zero. Consequently. the first term of the solu­
tion. eM/yo. is transient. that is. it tends to 0 with time. Therefore. asymptotically 
the solution tends to the second term 

(7.11.3) 

which is periodically driven by D. 

Periodic solutions predict serum concentration cycles. 

In conjunction with specific absorption and metabolism rates for a given drug. 
system (7.11.1) and its solution. equation (7.11.2), may be used to predict cycles 
of drug concentration in the blood. Fortunately the required data are available for 
a variety of drugs such as PPA and CPM. as reported and defined in Reference 
[13]. As mentioned above. the exact shape of the dosage profile, D{t), depends 

2 
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Figure 7.11.1 Graph of drug dosage D(/) 



228 Section 7.11 I Pharmacokinetics 

> a:=ln(2)"2; b:=ln(2)/5; 

> Dose:=t->sum«Heaviside(t-n"6)-Heaviside(t-(n"6+ 112)))"2.n=0 .. 1 0); 

> J:=OEplot2([diff(x(t).t)zOose(t)-a"x.dlff(y(t).t)=s"x-b"YJ.[x.yJ. 

0 .. 50. {[O.O.OJ} .stepsize=O.5.scene=[t.x]): 

> K:=OEpIOt2([diff(x(t).t)=Dose(t)-a"x.diff(y(t).t)=a·x-b·yJ.[x.yJ. 

0 .. 50. {[O.MI} .stepsize=0.5.scene=[t.y]): 

> plots[display)( { J.K} ); 
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Figure 7.11.2 Loading of the blood stream and the GI tract from a dosage regime 

on how the producer. the pharmaceutical company. has buffered the product. We 
assume the drug is taken every six hours (four times a day) and dissolves within 
about half an hour providing a unit-pulse dosage with height 2 and pulse width 112 
on the interval [0.6]. see Figure 7.11.1. The rate parameters a and b are typically 
given as half-lives. cf Section 3.4. For PPA we use a II2-hour half-life in the GI 
tract, so a = 2In(2), and a five-hour half-life in the blood, b = In(2}/5. 

For a numerical solution. we take zero initial conditions, x(O) = y(O) = O. 
that is, initially no drug is present in the OJ tract or circulatory system. and use a 
Runge-Kulla method to obtain Figure 7.11.2. The behavior of x(t) is the lower 
graph and predicts an oscillating increase and decrease of concentration in the 
GI tract. On the other hand, the concentration in the circulatory system, yet), 
is predicted to be an oscillation superimposed on a gradually increasing level of 
concentration. 

In Figure 7.11.3 we show the phase-plane plot. x vs y, of this solution. It 
shows that, asymptotically, the solution tends to a periodic (but non-sinusoidal) 
oscillation; this is called a limit cycle. 
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> phaseportrait([diff(x(t).t)=Dose(t)·a"x.diff(y(t).t)=a"x·b"y).[x.y). 

0 .. 50. {[o.o.ol} ,stepslze=O.5); 
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x 

Figure 7.11.3 {x(t),y(t)} with limit cycle 

0.6 

From the figure. the high concentration level in the blood is about 1.5 while 
the low is about 0.9 on the limit cycle. In designing a drug. it is desirable to 
keep the concentration as uniform as possible and to come up to the limit cycle 
as quickly as possible. Toward that end. the parameter a can be more easily 
adjusted. for example by a "time release" mechanism. The parameter b tends to 
be characteristic of the drug itself. 

The asymptotic periodic solution may be found from equation (7.11.3) or by 
the following manual scheme. 

We can solve for x(t) explicitly. There are two parts: one part for 0 < t < 
1/2 where the dosage function has value 2. and the other part for 1/2 < t < 6 
where the dosage function has value O. We call the first part XI (I) and find the 
solution here. In this case. the input from D(t) = 2 and the initial value for the 
periodic solution is yet unknown. Call the initial value Xo. We have 

X(/) = -ax(t) + 2 

with x(O) = Xo. 
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> dsolve( {diff(x(I),I)+a*x(I)=2,x(O)=xO} ,x(I)); 

> x1 :=unapply(op(2, • ),1); 

This equation has solution 

Section 7.11 I Pharmacokinetics 

Xl (t) :::: l/1n(2) + (xo - 1/ In(2))Z-2t. 

Follow this part of the solution from t = 0 to t = 1/2. Next we compute the 
solution x(t) for (7.11.1) with 1/2 < t < 6. In this case, the input from D(t) = 0 
and the initial value for the continuation of the periodic solution starts where the 
first part left off. Thus, 

with 

x(t) = -ax(t) 

x(I/2) = xl(I/2) 

> dsolve( { diff(x(t),I)+a*x(I)=O,x( 1/2) = xl (1/2) } ,x(t»; 
> x2:=unapply(op(2, "),1); 

This differential equation has solution 

In order for X(/) to be a periodic solution for (7.11.1) with period 6, it should be 
true that Xo = x(O) = x(6). We find Xo by setting Xl (0) - x2(6) equal to zero and 
solving for Xo. 

> xO:=solve(x2(6)-xO=O,xO); 

The solution is 

Xo = 1/(ln(2)4095). 

It remains to find the periodic solution y for the second equation. Equation 
(7.11.2) can be rewritten now that we have a formula for x(t): 

yet) + by(/) = ax(t). 

The function Yl (I) will be the solution for 0 < t < 1/2 and )'2(t) is the solution 
for I /2 < 1 < 6. 

Now continue the solution for 1/2 < 1 < 6 and for y( I /2) = )'1 (1/2). 
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> dsolve( {diff(y(I),I) = a ·x1 (I) - b*y(I), y(O) = yO} ,y(I)); 

> simplify(rhs(" I); y1 :=unapply(" ,I); 

> dsolve( {diff(y(I),I)=a*x2(1)-b*y(I),y(112)=y1 (112)} ,y(I)); 

> y2:=unapply(op(2, "),1); 

The final requirement is that Y2(6) = YI (0). 

> solve(y2(6)=yO,yO); yO:=evalf("); 

The result is that Yo is about .8864. To visualize the result, we make two 
graphs: a plot of x(t) and y(t) superimposed on the same graph and a phase plane 
plot {x(t),y(t)}. 

The upper graph is the graph of y(t). The two functions have periodic exten­
sions. 

> plol( {[I,X1 (1),1=0 .. 1/2I,[I,x2(I),1=112 .. 6I, 
[t,y1 (t),1=0 .. 1/2I,[t,y2(t),1=112 .. 61} ,color=BLACK); 
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Figure 7.11.4 Superimposed plots of x(t} and y(t) 
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> plot( {[Xl (t).yl (t).t=O .• 112).[X2(t).y2(t).t=112 .. 6)} • 
view=[O .. 1.0 .. 2).coIo,..BLACK); 

2 

I.S 

y(t) I 

0.5 

o 0 0.2 0.4 0.6 0.8 
x(t) 

Figure 7.11.S Parametric plots of {x(t),y(t)} 

This model continues to raise many questions. Because y(t) represents the 
level of the drug in the circulatory system, we note that the level should be high 
enough for the drug to be effective. and but not so high as to cause side effects. 
It is up to the drug companies to adjust the constants a and b so that these levels 
for the periodic solutions are maintained. The job of the pharmaceutical company 
is to determine the appropriate level that y should have, and to adjust a and b to 
maintain that level. 

Exercises 

I. Part of the interest in [13] was to contrast !he behaviors of PPA and CPM. 
CPM has a half life of one hour in the GI tract and 30 hours in the blood 
system. This contrast can be made by modifying the code suggested in Sec­
tion 7.11. 

2. With the model of this section, suppose that a and b are as specified for the 
two drugs. What could be an initial intraveneous injection level. Xo, with sub­
sequent equal dose levels as specified and taken orally. so that the periodic 
steady state is achieved in the first six hours, and maintained thereafter? 
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Section 7.12 

Questions for Thought and Discussion 

I. For what anatomical and molecular reasons do we expect the lead in leaded 
gasoline to move percutaneously into our bodies? 

2. Describe the path of ingested lead from mouth to bone marrow. 
3. For what reasons might we expect a person who has ingested lead to become 

anemic? 
4. Discuss why the evolution of small animals into large animals required the 

evolution of a closed circulatory system and a concomitant coelom. 
S. Starting with the number "2," number the following events in the order in 

which they occur. 
blood enters right atrium 
fluid from blood enters lymphatic system 
blood gives up C02 at alveoli 
blood enters systemic capillaries 
blood enters pulmonary artery 
blood enters aorta 
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Chapter 8 

Neurophysiology 

Introduction to this chapter 

This chapter presents a discussion of the means, primarily electrical, by which 
the parts of an organism communicate with each other. We will see that this 
communication is not like that of a conducting wire; rather, it involves a self­
propagating change in the ionic conductance of the cell membrane. 

The nerve cell, or neuron, has an energy-requiring, steady-state condition 
in which the interior of the cell is at a negative potential relative to the exterior. 
Information transfer takes the form of a disruption of this steady-state condition, 
in which the polarity of a local region of the membrane is transiently reversed. 
This reversal is self-propagating and is called an action potential. It is an all-or­
none phenomenon: Either it occurs in full form, or it doesn't occur at all. 

Neurons are separated by a synaptic cIeft, and interneuronal transmission of 
information is chemically mediated. An action potential in a presynaptic neuron 
triggers the release of a neurotransmitter chemical that di ffuses to the postsynaptic 
cell. The sum of all the excitatory and inhibitory neurotransmitters that reach a 
postsynaptic cell in a short period of time determines whether or not a new action 
potential is generated. 

Section 8.1 

Communication Between Parts of an Organism 

Specialization of structure and function in all organisms necessitates some means 
of communication among the various parts. Diffusive and convective flows of 
chemicals provide methods of communication, but they are very slow compared 
to the speed with whicr many intraorganismal needs must be conveyed. The high­
speed alternative is electrical communication, for which complex nervous systems 
have evolved. 
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Communication is necessary at all levels of biological organization. 

The wide variety of molecular structures available in living systems is necessitated 
by the wide variety of physicochemical tasks required. Each kind of molecule, 
supramolecular structure, organelle, ceIl, tissue and organ is usually suited to just 
one or a few tasks. This kind of specialization ensures that each task is performed 
by the structure best adapted to it, one that Darwinian selection has favored above 
all others. The down side to such specialization is that the resultant structures 
are often localized into one region, well-isolated from all others. If important 
parts are separated, there must be some means of communication between them 
to allow the entire organism to behave as a single integrated unit. 

We find such specialization at all biological levels of organization. For ex­
ample, there are many microscopic organisms that seem to be single cells, but 
close examination reveals that they possess special anatomical structures dedi­
cated to quite different functions. Because of these differentiated structures these 
organisms are often said to be "acellular," which is a simple admission that they 
do not fit into classical descriptive categories. Examples are found in the organ­
isms called protozoans: Many have light-sensitive spots to help them orient, while 
others have elementary digestive tracts, with an opening to the outside and a tube 
leading into the body of the "ceI\." Of special interest are the primitive neural 
structures of the protozoan ciliates. These one-celled (or acellular) organisms 
move from place to place via the rapid beating of many small hair-like cilia. If 
these cilia were to beat at random there would be as many pushing in one direc­
tion as in the other, and the ciliate would not move. Observation of the cilia shows 
that they beat in synchronized waves, pushing the organism in a particular direc­
tion. If a small needle is inserted into the ciliate and then moved around to cause 
mechanical damage, the cilia will continue to beat-but not s}nchronously. Evi­
dently there is some kind of primitive neural system to coordinate the movements 
of the cilia, and the needle damages that system, thus desynchronizing the cilia. 

In multicellular animals the need for a quick coordination between the per­
ception of stimuli and consequent responses has led to the evolution of an en­
docrine system and a specialized nervous system. The endocrine system, facil­
itated by blood flow, provides chemical communication. The nervous system, 
the most complicated system in our bodies, provides the high-speed network that 
allows the other organs to work in harmony with each other. 

Communication in multicellular organisms can be chemical or electrical. 

Hormones are chemicals secreted by one kind of tissue in a multicellular organism 
and transported by the circulat?ry system to target organs. At its target organ a 
hormone exerts powerful' chemical effects that change the basic physiology of 
cells. For example, sex hormones manufactured in the reproductive system cause 
changes in the skeletal and muscular structures of mammals, preparing them for 
the physical processes of mate attraction aod reproduction. Insulin, a pancreatic 
hormone, affects the way ceIls in various tis~ues metabolize sugars. 
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The target organs of hormones are specifically prepared for hormone recog­
nition. Protein receptors on the surfaces of cells in those organs can recognize 
certain hormones and not others. For instance, both men and women produce the 
hormone follicle stimulating hormone (FSH), but it stimulates sperm production 
in males and egg production in females. The different effects are attributable to 
the target organs, not to the hormone, which is the same in both sexes. On the 
other hand, FSH has no effect on the voluntary muscles, which evidently have 
no FSH receptors. In the unusual phenomenon called testicular feminization a 
person with both a man's chromosomal complement and testosterone levels has 
a woman's body, including external genitalia. The reason is that the person has 
no testosterone receptors on their target organ cells; thus, the testosterone in the 
blood is not recognized by the organs that manifest secondary sexual character­
istics. In humans the default gender is evidently female, the generation of male 
characteristics requiring the interaction of testosterone and its appropriate recep­
tors. 

A second form of communication in an animal is electrical. We have a highly 
developed nervous system that provides us with a means of perceiving the outside 
world and then reacting to it. Indeed, the elaborate nervous system of primates 
and the complex behaviors it supports are defining characteristics. 

Stimuli such as light, salt, pressure and heat generate electrical signals in 
receptors. These signals are relayed to the central nervous system, consisting of 
the brain and spinal cord, where they are processed and where an appropriate re­
sponse is formulated. The information for the response is then sent out to muscles 
or other organs where the response actually takes place. Examples of responses 
are muscular recoil, glandular secretion and sensations of pleasure. There are spe­
cial cells along which the electrical signals are passed. They are called neurons. 

Section 8.2 

The Neuron 

Neurons, and other cells as well, are electrically polarized, the interior being neg­
ative with respect to the exterior. This polarization is due to the differential per­
meability of the neuron's plasma membrane to various ions, of which potassium 
is the most important. Active transport by sodium/potassium pumps maintains the 
interior concentration of sodium low and potassium high. 

Neurons are highly specialized cells for conveying electrical information. 

Figure 8.2.1 shows a model of a typical mammalian neuron. The cell's" long, nar­
row shape suggests its role: It is specifically adapted to the task of conveying 
information from one location in the body to another. The direction of informa­
tion flow is from the dendrites, through the cell body, to the axon and on to other 
neurons, muscles and glands. Neurons also exhibit unusual electrical behavior, 
variations of which permit these cells to pass information from dendrite to axon. 



Chapter 8 I Neurophysiology 237 

dendrites 

axon 

Figure 8.2.1 A model of a neuron. The direction of information transfer is from 
left to right. 

a) Membrane completely permeable to K+ and 0-. 

[K+] 0 I [K+ ] 0 Therefore, [K+L] '" [K+A] 
L >: A > [O-L] • [a-A] 

I 

[O-L]>O : [O-A]>O 

c) Membrane permeable to K+ and impermeable to 0-. 

L .Ieft 
A • right 
K+. positive ion 
0- .. negative Ion 

;; membrane 

[K+L]>O : [K+A]>O Therefore, [K~L] > [K+R] .. 0 _ 
I [0 L] > 0 and [0 R] = 0 
I 

[O-L]>O : [O-R]=O 

Figure 8.2.2 This figure shows how a potential difference can be generated across a 
selectively permeable membrane without the expenditure of energy. See the text for a 
detailed discussion. Parts (a) and (b) depict extreme situations. in which no potential 
difference is generated across the membrane: In Part (a) the membrane is equally 
permeable to both the positive and the negative ions. In Part (b) the membrane is 
impermeable to both ions. In Part (c). however. the membrane is permeable to the 
positive ion and impermeable to the negative ion. This generates all equilibrium that 
is a compromise between electrical and mechanical diffusion properties, and results in 
an imbalance of charges across the membrane. 
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These two properties of neurons, shape and electrical behavior, suggest an anal­
ogy with the conduction of electric signals by a copper wire. That analogy is 
incorrect, however, and we will spend the part of this chapter discussing how that 
is so. 

A membrane can achieve electrical polarization passively. 

Under certain conditions a voltage, or potential difference, can be maintained 
across a membrane without the expenditure of energy. I We will use Fig­
ures 8.2.2(a}, (b) and (c) to show how this can happen in a model system of 
two water-filled compartments that are separated by a membrane. In each case 
we begin by dissolving a compound KQ in the water on the left of the mem­
brane, where K is a positive ion, perhaps potassium, and Q is any large organic 
group. This compound will immediately dissociate into K+ and Q-, such that 
[K+j = [Q-j. the braces indicating concentrations. (We assume that KQ dissoci­
ates completely.) 

In Figure 8.2.2(a} we imagine that the membrane is completely permeable 
to both ions. They will both move to the right by passive diffusion, eventually 
reaching an equilibrium state in which the concentrations of each of the two ions 
will be the same on both sides of the membrane. The net change will be zero on 
each side of the membrane and therefore, no potential difference will exist across 
the membrane. 

In Figure 8.2.2(b) we imagine that the membrane is completely impermeable 
to both ions. Neither will therefore move across the membrane, and the electrical 
charges on each side of the membrane will total zero. Thus, there will again be 
no transmembrane potential difference. 

In Figure 8.2.2(c) we will finally see how a potential difference can be gen­
erated. We imagine that the membrane is permeable to K+, but is impermeable 
to Q-, perhaps because Q- is too big to pass through the membrane. K+ will 
then move across the membrane in response to its own concentration gradient. 
Very quickly, however, the movement of K+ away from the Q- will establish a 
transmembrane electrical charge gradient that opposes the concentration gradi­
ent. The concentration gradient pushes potassium to the right and the electrical 
gradient pushes it to the left. The system will then quickly reach electrochemical 
equilibrium, because there will be no further net change in [K+j on either side of 
the membrane. Note that all of Q- is on the left, but the K+ is divided between 
the right and left sides. The right side thus will be at a positive electrical potential 
with respect to the left. 

Note that the potential difference in the system of Figure 8.2.2( c} is achieved 
spontaneou! Iy, i.e., without the expenditure of energy. Real biological systems 
can establish potential differences in much the same way: They possess mem-

IThis voltage difference across the neuron's plasma membrane is called a potential difference 
because it represents a form of potential energy. or enelllY conferred by virtue of the positions of 
electrical charges. 
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branes that are permeable to some materials and not to others, a feature that Fig­
ures 8.2.2(a), (b) and (c) show to be essential to the establishment of a potential 
difference. Our model system, however, lacks some realistic features: For exam­
ple, real systems have many other ions, like Cl- and Na+, that must be considered. 
Further, consideration of Figure 8.2.2 suggests that the degree of permeability will 
be important in the establishment of transmembrane potentials (see References [I] 
and [2]). 

The membrane of a "resting" neuron is electrically polarized. 

If one probe of a voltmeter is inserted into a neuron and the other probe is placed 
on the outside, the voltmeter will show a potential difference of about -70 mil­
livolts.2 In other words, the interior of the cell is 70mv more negative than the 
outside, and a positive charge would tend to be attracted from the outside to the 
inside. 

In the absence of strong stimuli the neuronal transmembrane potential differ­
ence does not change over time, and it is therefore referred to as the cell's resting 
potential. This term has wide usage, but can be misleading because it implies 
an equilibrium situation. The problem is that real equilibria are maintained with­
out the expenditure of energy, and maintenance of the resting potential requires a 
great deal of energy (see next paragraph). Thus, we should expect that the brain, 
being rich in nervous tissue, would require considerable energy. This suspicion 
is confirmed by the observation that the blood supply to the brain is far out of 
proportion to the brain's volume. 

The resting potential across a neuronal membrane is maintained by two com­
peting processes, the principal one of which is passive, and the other of which is 
active, or energy-requiring. The passive process is the leakage diffusion of K+ 
from the inside to the outside, leaving behind large organic ions, to which the 
membrane is impermeable. This process was shown earlier (in Figure 8.2.2) to 
generate a transmembrane potential difference.3 

The problem with leakage diffusion is that many other ions, of both charges, 
also leak across real biological membranes. After a while this would lead to the 
destruction of the electrochemical equilibrium. The cell, however, has a means 
of re-establishing the various gradients. This active, energy-requiring process is 
under the control of molecular sodium-potassium pumps, which repeatedly push 
three Na+ ions out of the cell, against a concentration gradient, while pushing 
two K+ ions into the cell, also against a concentration gradient.4 Thus. the NaIK 
pum" and diffusion work agains\ each other in a non-equilibrium. steady-state 
way: Such non-equilibrium. steady-state processes are very common in living 
cells. 

2For various kinds of cells. the potential may vary from about -40mv to more than -IOOmv. 
3The fraction of potassium ions that must leak out of a neuron to establish a potential difference 

of IOOmv is estimated to be only about 10-5. 
4The molecular basis for the Na/K pump is not known. What is known is its effect-pumping 

Na+ outward and K+ inward. 



240 Section 8.3 I The Action Potential 

Consideration of Figure 8.2.2 suggests that the low permeability of a mem­
brane to sodium eliminates that ion as a contributor to the resting potential, and 
that the high permeability to potassium implicates that ion in the resting poten­
tial. This suspicion is confirmed by experiment: The neuronal resting potential is 
relatively insensitive to changes in the extracellular concentration of sodium, but 
highly sensitive to changes in the extracellular potassium concentration. 

The concentrations of Na+, K+ and CI- inside and outside a typical neuron 
are given in Table 8.5.1. The asymmetric ionic concentrations are maintained by 
the two factors mentioned above: The NaiK pump and the differential perme­
abilities of the cell's plasma membrane to the different ions. In particular, we 
note that Na+. to which the membrane is poorly permeable. might rush across the 
membrane if that permeability increased. 

Section 8.3 

The Action Potential 
The neuronal plasma membrane contains voltage-controlled gates for sodium and 
for potassium. The gates are closed at the usual resting potential. When a stimulus 
depolarizes the membrane beyond a threshold value. the sodium gates open and 
sodium rushes into the cell. Shortly therafter. potassium rushes out. The NaiK 
pump then restores the resting concentrations and potential. The change in po­
tential associated with the stimulus is called an action potential. and it propagates 
itself without attenuation down the neuronal axon. 

The resting potential can be changed. 

The usual resting potential of a neuron is about - 70mv, but this value can be 
changed either by changing the permeability of the membrane to any ion or by 
changing the external concentration of various ions. If the potential is increased, 
say to -IOOmv. the neuron is said to be hyperpolarized. If the potential is de­
creased. say to -40mv. the neuron is said to be depolarized (see References [1-
4]). 

The membranes of neurons contain gated ion channels. 

In Sections 6.1 and 8.2 we described several ways that materials could move 
across membranes. They were 

a. Simple passive diffusion: Material moves directly through the bulk part of 
the membrane. including the hydrophobic layer. Water. carbon dioxide and 
hydrocarbons move in this fashion. 

b. Facilitated passive diffusion: Ions and neutral materials move through special 
selective channels in the membrane. The selectivity of these channels resides 
In the recognition of the moving material by transport proteins. or permeases. 
in the membrane. Nevertheless. the process is spontaneous in that the material 
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moves from regions of high concentration to regions of low concentration. 
and no energy is expended. 

c. Facilitated active transport: Ions and neutral materials move through selective 
channels (determined by transport proteins) but they move from regions of 
low concentration to regions of high concentration. Thus. energy is expended 
in the process. 

We are interested in certain aspects of facilitated passive diffusion. Some 
channels through which facilitated. passive diffusion occurs seem to function all 
the time. Others. however. are controlled by the electrical or chemical properties 
of the membrane in the area near the channel. Such channels can open and close. 
analogous to fence gates. and are therefore called voltage-gated channels and 
chemically gated channels. respectively. 

We now look more closely at voltage-gated channels; we will return to chem­
ically gated channels a bit later. The following narrative corresponds to Figure 
8.3.1. Voltage-gated sodium channels and potassium channels are closed when 
the potential across the membrane is -70 mv. Le .• the usual resting potential. If 
a small region of the axonal membrane is depolarized by an electrode (or other 
external stimulus) to about - 50mv the voltage-gated sodium channels in that area 
will open. Sodium ions will then rush into the cell (because the Na+ concentra­
tion outside the cell is so much higher than it is inside the cell. as will be shown 
in Table 8.5.1). 

The inward rush of sodium will further depolarize the membrane. opening 
even more sodium channels. suggesting an avalanche. This is prevented at the 
site of the original depolarization. however. by the spontaneous closing of the 
sodium gates about a millisecond after they open. During that millisecond the 
membrane potential difference not only goes to zero. but becomes positive. At 
that time the potassium gates open. and potassium rushes out of the neuron in 
response to the positive charges that have accumulated in the interior. This makes 
the transmembrane potential drop rapidly. even hyperpolarizing to below -70 mv. 
The NaIK pump now restores Na+ and K- to resting levels inside and outside the 
neuron. 

The entire process of action potential generation. from initiation to complete 
recovery. takes about two milliseconds. The neuron can be re-stimulated before 
it has recovered completely. Le .• during the period of hyperpolarization. but such 
stimulation naturally takes a greater depolarizing stimulus than the original one. 
Finally. note the "all-or-none" nature of action potential generation: No action 
potential is generated until the threshold degree of depolarization is reached. and 
then the same size action potential is generated. no matter how far past the thresh­
old the stimulatory depolarization is carried. 

The action potential propagates itself down the neuron. 

We saw just above how sufficient depolarization of the axonal membrane at a lo­
calized point can cause the voltage-controlIed sodium gates to open. permitting 
sodium ions to rush into the cen at that point. These sodium ions further depolar-
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Figure 8.3.1 The generation and movement of an action potential. This figure 
shows how an action potential is generated by an initial. localized depolarization of 
a neuron. This depolarization causes a depolarization at a neighboring site. Thus the 
disturbance. or action potential. propagates itself down the neuron. 
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ize the membrane at that point and permit even more sodium to enter the cell. The 
inrushing sodium ions now spread laterally along the inside of the membrane, at­
tracting negative ions from the extracellular fluid to the outside of the membrane. 
As the numbers of these ions increase, they will eventually depolarize the neigh­
borhood of the site of the original stimulus and thus open the sodium gates there. 
Meanwhile, the site of the original stimulus cannot be restimulated during a sev­
eral millisecond latent period. The temporary latency at the site of the original 
stimulus and the depolarization of the membrane in the neighborhood of that site 
combine to cause the action potential to spread away from the site of the original 
stimulus.s 

The decay of the action potential at its original site and its lateral spread 
from that site causes the disturbance to move along the neuron. The movement 
of the action potential is often compared to the burning of a fuse: Action at one 
site triggers action at the adjacent site and then the original action is extinguished. 
The size of the disturbance is the same as it passes any point on the fuse. 

In closing this section we bring up a point made at the beginning of this sec­
tion: The electrical propagation of an action potential is not like the propagation 
of an electrical current down a copper wire. The latter involves the lengthwise mo­
tion of electrons in the wire; the former involves radial and lengthwise motions of 
atomic ions. 

Section 8.4 

Synapses-Interneuronal Connections 

When an action potential reaches the junction, or synaptic gap, between two neu­
rons, it triggers the release of a neurotransmitter chemical from the presynaptic 
cell. The neurotransmitter then diffuses across the synaptic gap and, combining 
with other incoming signals, may depolarize the postsynaptic cell enough to trig­
ger a new action potential there. 

Besides the excitatory neurotransmitters, there are inhibitory neurotransmit­
ters. The latter hyperpolarize the postsynaptic neuron, making it more difficult for 
a new action potential to be generated. Thus, whether or not an action potential is 
generated is determined by the sum of all incoming signals, both excitatory and 
inhibitory, over a short time period. The nervous system can use this summation 
to integrate the signals induced by a complex environment, and thereby generate 
complex responses. 

In some cases, accessory cells wrap around neuronal axons to increase the 
electrical resistance between the cell's interior and its exterior. The action poten­
tial seems to jump between gaps in this sheath, thus greatly increasing the velocity 
with which the action potential is propagated. 

'The effect of some anaesthetics. e.g., ether and ethyl alcohol. is to reduce the electrical resis­
tance of the neuronal membrane. This causes the action potential to be extinguished. The effect of 
membrane resistance on action potential velocity is dis.:ussed in Section 8.5. 
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Most communication between neurons is chemical. 

The simplest "loop" from stimulus to response involves three neurons: one to 
detect the stimulus and carry the message to the central nervous system. one in 
the central nervous system and one to carry the message to the responding organ. 
Most neural processing is much more complicated than that, however. In any 
case, some means of cell-to-cell communication is necessary. It surprises many 
biology students to learn that the mode of communication between such neurons 
is almost always chemical. not electrical. 

Figure 8.4.1 shows the junction of two typical neurons. There is a gap of 
about 30nm between the axon of the neuron carrying the incoming action potential 
and the dendrite of the neuron in which a new action potential will be generated.6 

61 nm. = I nanometer = 10-9 meter. 

~~ 
.... ........ ....... ........ ..... . .............•..............•......... 
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Axon of 

presynaptIc neuron 
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Figure 8.4.1 Synaptic information transfer between neurons. The incoming action p0-

tential causes the presynaptic neuron to release a neurotransmitter chemical. which dif­
fuses across the synaptic space. or cleft. At the postsynaptic neuron the neurotransmitter 
causes a new action potential to be generated. 
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The gap is called a synapse. The arriving action potential opens certain voltage 
gated ion channels, which causes small packets of a neurotransmitter chemical 
to be released from the presynaptic membrane of the presynaptic neuron. This 
neurotransmitter then diffuses to the postsynaptic membrane of the postsynaptic 
neuron, where it opens chemically gated ion channels. The opening of these 
chemically gated channels causes a local depolarization of the dendrites and cell 
body of the postsynaptic neuron. If the depolarization is intense enough a new 
action potential will be created in the area between the postsynaptic cell body and 
its axon. 

More than a hundred neurotransmitters have been identified, but acetyl­
choline is a very common one, especially in the part of our nervous system that 
controls voluntary movement. If acetylcholine were to remain at the postsynap­
tic membrane it would continue to trigger action potentials, re.~ulting in neuronal 
chaos. There is. however. a protein catalyst called acetylcholine esterase that 
breaks down acetylcholine soon after it performs its work. Most nerve gasses, 
including many insecticides, work by inactivating acetylcholine esterase. leading 
to uncontrolled noise in the animal's nervous system, and therefore death. 

Note that synaptic transmission causes information flow to be one-way, be­
cause only the end of an axon can release a neurotransmitter and only the end of 
a dendrite can be stimulated by a neurotransmitter. 

Occasionally, synaptic transmission is electrical. 

At times chemical transmission by synapses is too slow, because diffusion may 
result in a delay of more than a millisecond. For these situations there are direct 
cytoplasmic connections that allow electrical communication between cells. For 
example, parts of the central nervous system controlling jerky eye movements 
have electric synapses. as do parts of the heart muscle (which, of course. is not 
nervous tissue). 

Summation of incoming signals occurs at the postsynaptic neuron. 

Whether or not a new action potential is generated depends on the degree to which 
the postsynaptic neuron is depolarized. Generally, no one presynaptic neuron 
will cause enough depolarization to trigger a new action potential. Rather, many 
presynaptic neurons working together have an additive effect. and the totality of 
their effects may be enough to depolarize the postsynaptic neuron. The various 
signals are simply summed together. 

Summation can be spacial or temporal. Spacial summation occurs when 
many presynaptic neurons simultaneously stimulate a single postsynaptic neuron. 
Temporal summation is a little more complicated. To understand it we need to re­
call the all-or-none nature of the action potential-every stimulus that depolarizes 
a neuron past its threshold generates the same size action potential. So, we ask. 
how does a neuron code for stimulus intensity, if all action potentials are the same 
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size? The answer is that stimulus intensity is coded by the frequency of action 
potentials, more intense stimuli generating more frequent spikes. Temporal sum­
mation occurs when many signals from one, or a few, presynaptic neurons arrive 
at a postsynaptic neuron in a short time period. Before one depolarizing pulse 
of neurotransmitter can decay away, many more pulses arrive, finally summing 
sufficiently to generate a new action potential. 

Figure 8.4.2 This picture shows how a Schwann cell wraps around a neuron, re­
sulting in many layers of membrane between the neuron and the outside world. This 
many-layered structure has a very high electrical resistance. which radically alters the 
action potential-transmitting properties of the neuron. 



Chapter 8 I Neurophysiology 247 

Synaptic transmission may be excitatory or inhibitory. 

As pointed out earlier, there are many known neurotransmitters. Some depo­
larize the postsynaptic neuron, leading to the generation of a new action poten­
tial. Other neurotransmitters, however, can hyperpolarize the postsynaptic neu­
ron, making the subsequent generation of a new action potential harder. These 
latter neurotransmitters are therefore inhibitory. In general, therefore, the infor­
mation reaching a postsynaptic cell will be a mixture of excitatory and inhibitory 
signals. These signals are summed and the resultant degree of depolarization de­
termines whether or not a new action potential is generated. 

We can now see an important way that the nervous system integrates signals. 
The actual response to a stimulus will depend on the pattern of excitatory and 
inhibitory signals that pass through the network of neurons. At each synapse, 
spacial and temporal summation of excitatory and inhibitory signals determine 
the path of information flow. 

Myelinated neurons transmit information very rapidLy. 

As will be demonstrated in the next section, the velocity of conduction of an 
action potential down an axon depends on the diameter of the axon and on the 
electrical resistance of its outer membrane. Figure 8.4.2 shows how special ac­
cessory cells, called Schwann ceLLs, repeatedly wrap around neuronal axons, thus 
greatly increasing the electrical resistance between the axon and the extracellular 
fluid. This resistance is so high, and the density of voltage-gated sodium channels 
so low, that no ions enter or leave the cell in these regions. On the other hand, 
there is a very high sodium channel density in the unwrapped regions, or nodes 
between neighboring Schwann cells. The action potential exists only at the nodes, 
internodal information flow occuring by ion flow under the myelinated sections. 
Thus, the action potential seems to skip from one node to another, in a process 
called saLtatory conduction. Saltatory conduction in a myelinated nerve is about 
I ()() times faster than the movement of an action potential in a nonmyelinated neu­
ron. We would (correctly) expect to see it in neurons that control rapid-response 
behavior. 

Section 8.5 

A Model for the Conduction of Action Potentials 

Through a series of meticulously conceived and executed experiments, Hodgkin 
and Huxley elucidated the physiology underlying the generation and conduction 
of nervous impulses. They discovered and charted the key roles played by sodium 
and potassium ions and the change in membrane conductance to those ions as a 
function of membrane potential. By empirically fitting mathematical equations to 
their graphs, they formulated a four-variable system of differential equations that 
accurately models action potentials and their propagation. The equations show 
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that propagation velocity is proportional to the square root of axon diameter for 
an unmylinated nerve. 

The Hodgkin-Huxley model is a triumph in neurophysiology. 

We present here the mathematical model of nerve physiology as reported by 
Hodgkin and Huxley, see References [5-10). Their experiments were carried out 
on the giant axon of a squid, the largest axon known in the animal kingdom, which 
achieves a size sufficient for the implantation of electrodes. Early experiments in 
the series determined that results at different temperatures could be mathemati­
cally transformed to any other (physiological) temperature. Consequently most 
of their results are reported for a temperature of 6.3°C. Temperatures from SoC 
to : 1°C are environmental for the animal, help maintain the nerve fiber in good 
condition, and 6.3°C is approximately 300° Kelvin. 

In the resting state a (non-mylinated) axon is bathed in an interstitial fluid 
containing, among other things, sodium, potassium, and chloride ions. The in­
terior material of the axon, the axoplasm, is separated from the external fluid by 
a thin lipid membrane, and the concentration of these ions differ across it. The 
concentration of sodium ions, Na+, is 10 times greater outside than inside; the 
concentration of potassium ions, K+, is 30 times greater inside than out; and 
chloride ions, CI- , are 15 times more prevalent outside than in (see Table 8.5.1). 

Diffusion normally takes place down a concentration gradient. but when the 
particles are electrically charged. electrical potential becomes a factor as well. In 
particular, if the interior of the axon were electrically negative relative to the exte­
rior, then the electrically negative chloride ions will tend to be driven out against 
its own concentration gradient until a balance between the electrical pressure and 
concentration gradient is reached (see Section 8.2). The balancing voltage differ­
ence, V, is given by the Nernst equation. 

RTI Cj 
V=- n-

F Co' 
(8.5.1 ) 

where R is the gas constant, R = 8.314 Joulesl"C/mole, T is absolute temperature, 
and F is Faraday's constant, 96)485 coulombs, the product of Avagadro's number 
with the charge on an electron. The concentrations inside and out are denoted by 
C; and ~o respectively. 

FOr CI- this potential difference is -68 mv. But, in the resting state (see 
Section, 8.2), the interior of an axon is at -70 mv relative to the exterior (see 
Figure ~.5.1). Thus there is little tendency for chloride ions to migrate. The same 

Table 8.5.1 Intra- and Extracellular Ion Concentrations 

Inside Axon Extracellular Fluid C;/Co Nernst Equivalent 

Na+ 15 Na+145 .10 -55mv 
K+ 150 K+ 5 30 82 mv 
CI- 7.5 CI-IIO .068 -68mv 
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Figure 8.S.1 Charges inside and outside an axon 

holds for potassium ions which are electrically positive. Their Nernst equivalent 
is 82 mv, that is, the outside needs to be 82 mv more positive than the inside for a 
balance of the two effects. Since the outside is 70 mv more positive, the tendency 
for K+ to migrate outward, expressed in potential, is only 12 mv. 

The situation is completely different for sodium ions, however. Their Nernst 
equivalent is -55 mv, but since sodium ions are positive, the interior would have 
to be 55 mv electrically positive to balance the inward flow due to the concen­
tration gradient. Since it is -70 mv instead, there is an equivalent of 125 mv 
(= 70 + 55) of electrical potential for sodium ions to migrate inward. But in fact 
there is no such inward flow; we must therefore conclude that the membrane is 
relatively impermeable to sodium ions. In electrical terms, the conductance of the 
membrane to sodium ions, gN., is small. 

Electrical conductance is defined as the reciprocal of electrical resistance, 

The familiar Ohm's Law relating voltage V, current i, and resistance R, 

V = iR, 

then takes the form 

j = gV. (8.5.2) 

In discrete component electronics, resistance is measured in ohms and conduc­
tance in mhos. However for an axon, conductance and current will depend on 
surface area. Therefore conductance here is measured in mhos per square cen­
timeter. Letting EN. = 55 mv denote the equilibrium potential given by the Nernst 
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equation for sodium ions. the current per square centimeter of those ions can be 
calculated as 

ENa = 55 mv (8.5.3) 

where V is the voltage inside the axon. A negative current corresponds to inward 
flow. Similarly for potassium ions. 

EK = -82 mv. (8.5.4) 

And. grouping chlorine and all other ionic currents together as leakage currents. 

EI = -59mv, (8.5.5) 

One of the landmark discoveries of the Hodgkin-Huxley study is that mem­
brane permeability to Na+ and K+ ions varies with voltage and with time as an 
action potential occurs.7 Figure 8.5.2(a) plots potassium conductance against time 
with the interior axon voltage "clamped" at -45mv. Hodgkin and Huxley's appa­
ratus maintained a fixed voltage in these conductance experiments by controlling 
the current fed to the implanted electrodes. The large increase in membrane con­
ductance shown is referred to as depolarization. By contrast. Figure 8.5.2(b) 

7The biological aspects of this variation were discussed in Section 8.3. 

b 

, 
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msec 5 o msec 5 

Figure 8.5.2 
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depicts membrane repolarization with the voltage now clamped at its resting 
value. In these voltage clamp experiments. the electrodes run the entire length 
of the axon. so the entire axon membrane acts in unison; there are no spacial ef­
fects. Figure 8.5.3 shows a Na+ conduction response. Somewhat significant in 
the potassium depolarization curve is its sigmoid shape. On the other hand. the 
sodium curve shows an immediate rise in conductance. We conclude that the first 
event in a depolarization is the inflow of Na+ ions. An outflow of K+ ions fol­
lows shortly thereafter. The leakage conductance is 0.3 m-mhoslcm2 and. unlike 
the the sodium and potassium conductances. is constant. 

Potassium conductance is interpolated by a quartic. 

Hodgkin and Huxley went beyond just measuring these conductance variations; 
they modeled them mathematically. To capture the inflexion in the potassium con­
ductance curve. it was empirically modeled as the fourth power of an exponential 
rise. thus 

(8.5.6) 

where .h is a constant with the same units as gK and n is a dimensionless expo­
nential variable. 

g 
Na 

o 0 5 
lime 

Figure 8.S.3 
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increasing from no to the asymptote noo. see Figure 8.5.4. If no = O. then. for 
small,. n behaves like ,4 as seen from a Taylor expansion. 

Therefore, the n4 curve has a horizontal tangent at 0, as desired. 
In order that n become no larger than I in the fit to the experimental data, gK 

is taken as the maximum conductance attainable over all depolarization voltages. 
This value is 

8K = 24.34 m-mhoslcm2. 

The function n may also be cast as the solution of a differential equation, thus 

Figure 8.5.4 

dn 
- = un(l - II) - !}nn, 
dl 

(8.5.7) 
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where the coefficients a.. and ~ .. are related to the rising and falling slopes of 
" respectively. see Figure 8.5.5. Their relationship with the parameters of the 
functional form is 

and a.. "00 = ---. a..+P .. 

Experimentally. these coefficients vary with voltage. Hodgkin and Huxley 
fit the experimental relationship by the functions 

0.01 (10 - (V - V,)) 
a.. = el-O.I(V-V,) _ I (8.5.8) 

and 

~II = 0.125e-(V-V,)/80. (8.5.9) 

where V, = -70 mv is resting potential. Note that equation (8.5.8) is singular at 
V = -60; however the singularity is removable with limiting value 0.1. 

n 

Figure 8.5.5 
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Substituting equation (8.5.6) into (8.5.4) gives 

(8.5.10) 

Sodium conductance is interpolated by a cubic. 

Sodium conductance is modeled as 

(8.5.11 ) 

where gNa = 70.7 m-mhos/cm2 is a fixed parameter carrying the units and m and 
h are dimensionless. The use of two dimensionless variables helps smooth the 
transition between the ascending portion of the curve and the descending portion. 
As above. m and h are exponential and satisfy similar ditferential equations: 

dm 
-=a",(I-m)-A m dt I'm , 

Further. the coefficients are functions of V interpolated as follows: 

0.1(25 - (V - V,)) 
a", = --;:-'i=:-"'7':':"'",,;,;,,;,,;--'-~ 

eO. I (2S-(V-V,)) _ I 

~m = 4e-(V-V,)/18 

<Xi. = 0.07e-o.oS(V-V,) 

I 
~h = eD.1(30-(V-V,)) + I . 

Substituting equation (8.5.11) into equation (8.5.3) gives 

(8.5.12) 

(8.5.13) 

(8.5.14a-<l) 

(8.5.15) 

The Hodgkin-Huxley space-clamped-axon equations produce action potentials. 

In another series of experiments. Hodgkin and Huxley fixed electrodes along the 
entire length of the axon as before. but now the electrodes were used to mea­
sure the voltage as it varied during a depolarization event. These are called the 
space-clamp experiments. In addition to its role as a variable conductor of electri­
cally charged particles. the axon membrane also functions as the dielectric of an 
electrical capacitor in that charged particles accumulate on either side of it. The 
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capacitance of the membrane was determined by Hodgkin and Huxley to be about 
I microfarad per square centimeter: 

Electrically, the membrane may be depicted as in Figure 8.5.6. When space 
clamped, the sum of the membrane ionic currents serves to deposit charge on 
or remove charge from this membrane capacitor. Said differently, the effective 
current "through" the capacitor balances the membrane current made up of the 
sodium, potassium, and leakage components; the sum of these currents must bf" 0 
by Kirchoff's Law, 

(8.5.16) 

The effective current through a capacitor is given by 

. C dV le= m-
dt 

where membrane capacitance em is measured in farads per square centimeter, '1, 
is in volts/second, and i is in amperes per square centimeter. Substituting from 
equation (8.5.16) gives 

C dV (. . .) 
m dt = - INu + IK + II • (8.5.17) 

We now collect the various equations to give the Hodgkin-Huxley space­
clamped equations. Substituting equations (8.5.5), (8.5.10), and (8.5.15) into 
equation (8.5.17) and recalling equations (8.5.7). (8.5.12). and (8.5.13) gives 
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where the alpha's and beta's are given functions of V according to equations 
(8.5.8), (8.5.9), and (8.5.14(a)-(d». 

The following code solves this system of differential equations and produces 
an action potential such as Figure 8.5.7. The action potential is initiated by a pulse 
of current lasting 0.001 of a second. 

The Hodgkin-Huxley propagation equations predict impulse speed. 

In vivo, an axon is not clamped. Consequently, instead of the entire axon under­
going an action potential at the same time, an action potential is localized and 
propagates along the axon in time. Thus voltage is a function of position, x, along 
the axon as well as a function of time. Consider a small section of axon lying 
between x and x + ax. The basic equation is the current in at x minus the current 
out at x + L\x, and minus the membrane current must equal the charge build-up on 
that section of membrane, that is, must equal the capacitance current. Hence 

In this we have taken the radius of the axon to be a and multiplied the per-square­
centimeter quantities by the surface area of the section of axon in question. Divide 
by ax, let ax 4 0, and divide by 27ta to get, 

-I ai dV 
-2 -a - (iNa + iK + h) = Cm -d . 

7ta X t 
(8.5.19) 

Next suppose there were no membrane current. Then the voltage drop over 
the length of the axon is related to the current i along the axon by Ohm's Law V = 
iR. In this, R i~ the total resistance of the axoplasm (not membrane resistance). 
But in fact each section of axon of length ax contributes to the overall resistance 
in proportion to its length, namely Rax/ L, where L is the total length of the axon. 
Thus if position along the axon is denoted by x, then resistance as a function of 
x increases linearly from 0 to R. In the meantime, voltage as a function of x falls 
from V to o. In particular, Ohm's Law as applied to the section dx becomes 

dV dR - = -i-, 
dx dx 

(8.5.20) 
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Figure 8,5_7 A simulated action potential 
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where the negative sign indicates that V is decreasing while R is increasing. 
In this ~~ is the resistance per unit length, which we take to depend only 

on the cross-sectional area of the axon. And this dependence is in inverse 
proportion-that is, jf the area is halved, then the resistance is doubled. Hence, 
letting R denote the resistance per unit length per unit area, then 

dR R 
dx = 7ta2 ' 

(8.5.21 ) 

where a is the radius of the axon. Substituting equation (8.5.21) into equation 
(8.5.20) and solving for i gives 

. 1ta2 dV 
1= --_--. 

R dx 
(8.5.22) 

In this, the negative sign can be interpreted to mean that current moves down the 
voltage gradient. 

Differentiate equation (8.5.22) with respect to x and substitute equation 
(8.5.19) to get 

(8.5.23) 

This equation, along with the equations for fI, m, and h corresponding to the 
membrane ion currents, equations (8.5.7), (8.5.12), and (8.5.13), constitute the 
Hodgkin-Huxley propagation equations. Hodgkin and Huxley numerically obtain 
from these equations the value 18.8 meters/second for the propagation velocity c 
of an action potential. It is known to be 21 meters/second, so the agreement is 
quite good. 

We will not solve this partial differential equation system here, instead we 
will show that the propagation velocity is proportional to the square root of the 
radius a and inversely proportional to the axon resistance R. Hodgkin and Huxley 
note that if the action potential propagates along the axon unchanged in shape, 
then its shape as a function of x for fixed t is equivalent to its shape as a function 
of t for fixed x. This is formalized by the wave equation (II) 

a2v I a2v 
ax2 - c2 ¥· (8.5.24) 

In this, c is the propagation velocity. Substituting the second derivative with re­
spect to x from equation (8.5.24) into equation (8.5.23) gives 

(8.5.25) 
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In this equation the only dependence on a occurs in the first term. Since the 
other terms do not depend on a, the first term must be independent of a as well. 
This can only happen if the coefficient is constant with respect to a, 

But then it follows that 

a 
2 - 2 = constant. 
Rc 

c = (constant)/i. 

Thus the propagation velocity is proportional to the square root of the axon radius 
and inversely proportional to the square root of axon resistance. The large size 
of the squid's axon equips it for fast responses, an important factor in eluding 
enemies. 

Section 8.6 

The Fitzhugh-Nagumo Two-Variable Action Potential System 

The Fitzhugh-Nagumo two-variable model behaves qualitatively like the 
Hodgkin-Huxley space-clamped system. But being simpler by two variables, 
action potentials and other properties of the Hodgkin-Huxley system may be vi­
sualized as phase-plane plots. 

The Fitzhugh-Nagumo phase-plane analysis demonstrates all-or-nothing 
response. 

Fitzhugh [12] and Nagumo [13] proposed and analyzed the following system of 
two differential equations, which behaves qualitatively like the Hodgkin-Huxley 
space-clamped system: 

dV I 3 
-=V--V -w 
dt 3 
dw dt = c(V + a - bw). 

(8.6.1) 

In this, V plays the role of membrane potential, but w is a general "refactory" 
variable not representing any specific Hodgkin-Huxley variable. The parameters 
a, b, and c are the constants 

a;:: 0.7 b = 0.8 c = 0.08. 

The virtue of this sytem is in elucidating the regions of physiological behavior of 
me~brane response. 
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The phase plane is the coordinate plane of the two dependent variables V 
and w. A curve V = V(t) and w = w(t) in the phase plane corresponding to 
a solution of the differential equation system for given initial values Vo = V(O). 
Wo = w(O) is called a trajectory. 

Two special curves in the phase plane are the isoclines. These are the curves 
for which either dV /dt or dw/dt are zero. The w isocline. from (8.6.1). 

V +a - bw= 0, 

is a straight line with slope 1.25 and intercept 0.875. To the left of it. dw / dt < 0 
and to the right dw / dt > O. The V isocline 

I 3 V--V -w=O 
3 

is a cubic with roots O. and ±v'3. Above it dV /dt < 0 and below it dV /dt > O. 
The isoclines divide the phase plane into four regions or quadrants. In the first. 
above the cubic and right of the line. dV /dt < 0 and dw/dt > O. Hence a 
trajectory in this quadrant will tend toward decreasing V and increasing w. upward 
and leftward. In Quadrant 2. above the cubic and left of the line. trajectories tend 
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Figure 8.6.1 Direction field for equations (8.6.1). 
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downward and leftward. In Quadrant 3, below the cubic and left of the line, 
trajectories tend downward and rightward. In Quadrant 4, below the cubic and 
right of the line, the derivatives are dV /dt > 0 and dw/dt > 0 so trajectories 
tend upward and rightward. The Quadrants are shown in Figure 8.6.1. 

The isoclines intersect at Ve = -1.1994 and We = -0.6243. At this point 
dV /dt = 0 and dw/dt = 0, so a trajectory at that point does not move at all, 
it is an equilibrium. For this particular system of differential equations it can be 
shown that trajectories starting anywhere eventually lead to this equilibrium. As 
a result it is known as a globally attracting stable equilibrium. It plays the role of 
the resting state in our description of an axon. 

Consider the progress of a trajectory that is begun at the point (Vo. wo) lo­
cated to the right of the ascending portion of the cubic isocline. As this is in 
Quadrant 4, the trajectory will tend rightward until crossing the decending sec­
tion of the same isocline. From there the trajectory will tend upward and leftward 
until crossing the w isocline. Proceeding from there leftward and downward, it 
next crosses the V isocline again. Finally it proceeds downward and rightward 
ending up at the equilibrium point. See Figure 8.6.2. 

Concentrate on the behavior of V along this trajectory. It first increases in 
value until reaching the descending branch of the cubic isocline. This will be its 
maximum value. Crossing this isocline, V then decreases, eventually below equi­
librium. Completing the trajectory, V increases slowly to equilibrium. But this 
describes the behavior of the membrane potential, V, during an action potential. 

\ 2~ 2 1st 
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Figure 8.6.2 Solution curve for equations (8.6.1). 
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Next suppose a trajectory is begun immediately to the right of the equilib­
rium point (V., We). then a very different thing happens. Assume the starting point 
(Vo, wo) is taken to so that Wo = We and Vo = Ve + 6V. This starting point lies on 
the horizontal line through the equilibrium as shown in Figure 8.6.1 and which. 
in turn. intersects the cubic isocline at -0.786 and 1.98 besides -1.1994. There­
fore. depending on the size of 6V. the starting point falls in either Quadrant I or 
4. 

If it is in Quadrant I. then the response trajectory returns more or less directly 
to equilibrium. This is analogous to a sub-threshold stimulation in an axon. 

But if 6V is so large that Vo = -0.64. say. well inside Quadrant 4. then the 
response trajectory corresponds to an action potential. 

Thus. this Fitzhugh-Nagumo model gives an all-or-none response to a stim­
ulus. just as an axon does. The separating point along the line W = -0.624 lies 
between Vo = -0.65 and Vo = -0.64. More generally. there is an entire separat­
ing all-or-none curve. corresponding to different values of w. called a separatrix. 
It follows the ascending branch of the cubic isocline closely. 

Refractory and enhanced regions 

Other features of axon behavior are demonstrated with this model as well. During 
an action potential consider what happens if a stimulus occurs while the trajectory 
lies above the cubic isocline. Nothing! That is. such a stimulus causes the trajec­
tory to jump horizontally to the right. but then it resumes its leftward horizontal 
movement. In particular. there is basically no change in the refractory variable w. 

Now suppose a stimulus occurs while the action potential trajectory is de­
scending in the third quadrant headed back to equilibrium. If the stimulus is large 
enough to cross the separatrix. then a new action potential can be initiated. Con­
sequently. this region corresponds to the relative refractory region of an axon's 
behavior. 

Finally, suppose a sub-threshold stimulation occurs from the equilibrium 
point. There is no action potential, but a second sub-threshold stimulation might 
be sufficient to cross the all-or-none separatrix and initiate an action potential. 
Therefore the region between the equilibrium and the separatrix corresponds to 
the enhanced state of an axon. 

Section 8.7 

Questions for Thought and Discussion 

I. Discuss the roles of voltage-gated channels and diffusion processes in the 
transmission of information across neuronal synapses. 

2. Starting with the number 2. number the following events in the order in which 
they occur. ("Site A" is an arbitrary mid-axonal location.) 



Chapter 8 I Neurophysiology 263 

neuronal membrane is depolarized at Site A 
by external stimulus ................................. __ -'-__ _ 

acetylcholine esterase breaks down neurotransmitter ........ _____ _ 
K+ channels open at Site A ............................... ____ _ 
postsynaptic chemical-gated channels open ................. ____ _ 
Na+ IK pump restores resting potential at Site A ............ ____ _ 

interior of neuron at Site A is at positive potential 
with respect to exterior ............................... ____ _ 

3. In what ways is the transmission of information by an action potential differ­
ent from the transmission of electrical information by a copper wire? 
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Chapter 9 

The Biochemistry of Cells 

Introduction to this chapter 

The purpose of this chapter is to present the structure of some of the molecules 
that make up a cell and to show how they are constructed under the supervision 
of hereditary elements of the cell. This will lead into a mathematical description 
of biological catalysis at the end of this chapter and is a necessary prelude to the 
discussion of the Human Immunodeficiency Virus in Chapter 10. As a result. this 
chapter contains a lot of biological information. 

We will see that biological molecules can be created outside of a cellular 
environment. but only very inefficiently. Inside a cell. however. the information 
for biomolecules is encoded in the genetic material called nucleic acid. Thus. we 
will establish a direct relationship between the chemicals that constitute a cell and 
the cell's hereditary information. 

The topical material of this chapter is organized along the lines of small 
to large. We begin by presenting a description of the atoms found in cells and 
then show how they are assembled into small organic molecules. Some of these 
small molecules can then be polymerized into large biochemical molecules. the 
biggest of which have molecular weights on the order of billions. These assembly 
processes are mediated by certain macromolecules which are themselves molec­
ular polymers. and whose own assembly has been mediated by similar molecular 
polymers. Thus. we develop a key process in biology-self-replication. 

Section 9.1 

Atoms and Bonds in Biochemistry 

Most of the atoms found in a cell are of common varieties: hydrogen. carbon. 
nitrogen and oxygen. They are. in fact. major components of air and dirt. What 
is it that makes them so fundamental to life? To answer this question we must 
examine the ways that these atoms form bonds with one another-because it is 
through molecular organization that we will characterize living systems. 
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A living system is a highly organized array of atoms. attached to one another 
by chemical bonds. The bonds may be strong. requiring considerable energy for 
their rearrangement. This leads to structures that are somewhat permanent and 
that can be changed only under special biochemical conditions. The bonds result 
from a process of "electron sharing." Carbon. nitrogen and oxygen atoms can 
form a practically unlimited array. held together by covalent bonds. 

Alternatively. some chemical bonds are weak, the heat energy available at 
room temperature being sufficient to break them. Because of their weakness. the 
structures they form are highly variable. leading to material movement and re­
gional uniformity (among other things). The most important weak bond is called 
a hydrogen bond: It is the electrical attraction between a hydrogen nucleus on one 
molecule and an asymmetrically oriented electron on a nitrogen or oxygen atom 
of the same molecule or a different one. 

Organization is the key to living systems. 

In Section 3.3 we pointed out that the individual processes found in living systems 
are also found in nonbiological situations. We emphasized that the "signature" of 
life was the organization, or integration, of those processes into a unified system. 
We now extend that concept to physical organization at the atomic and molecular 
levels. 

Calcium, phosphorus, potassium, sulfur, sodium and chlorine account for 
about 3.9% of the atoms in our bodies.· Just four other elements make up the 
other 96%; they are hydrogen, carbon, nitrogen and oxygen. These four elements 
most abundant in our bodies are also found in the air and earth around us-as 
H20, C02, N2, ~ and H2. Thus, if we want to explain why something has the 
special quality we call "life" it does not seem very fruitful to look for exotic 
ingredients; they aren't there. Where else might the explanation be? 

An important clue can be found in experiments in which living systems are 
frozen to within a few degrees of OOK, so that molecular motion is virtually halted. 
Upon reheating, these living systems resume life processes. The only properties 
conserved in such an experiment are static structural ones. We can conclude that a 
critical property of life lies in the special ways that the constituent atoms of living 
systems are organized into larger structures. We should therefore suspect that 
the atoms most commonly found in our bodies have special bonding properties, 
such that they can combine with one another in many ways. This is indeed the 
case: Carbon, nitrogen, oxygen and hydrogen are capable of a virtually infinite 
number of different molecular arrangements. In fact, it has been estimated that 
the number of ways that the atoms C, H, 0, N, P and S can be combined to make 
low molecular weight compounds (MW < 500) is in the billions! [I l. 

Of the large number of possible arrangements of C, N, 0 and H:'the forces 
of evolution have selected a small subset, perhaps a thousand or so, on which to 
base life. Members of this basic group have then been combined into a vast array 

1 About I S more elements are present in trace amounts. 
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of biomacromolecules. For example, the number of atoms in a typical biomacro­
molecule might range from a few dozen into the millions, but those with more 
than a few hundred atoms are always polymers of simpler subunits. 

Living systems are assemblages of common atoms, each part of the system 
having a very specific organization at all size I~vels. In other words, all living 
things can be thought of as regions of great orderliness, or organization. Death is 
marked by the disruption of this organization, either suddenly, as in the case of 
a bullet, or slowly, as in the case of degenerative disease. In any case, death is 
followed by decompositional processes that convert the body to gases, which are 
very disorganized. 

Physicists use entropy as a measure of disorder; there is an important empir­
ical rule, the Second Principle of Thermodynamics, which states that entropy in 
the universe increases in the course of every process. Living systems obey this 
rule, as they do all other natural chemical and physical principles. As an organism 
grows, it assembles atoms into an orderly, low-entropy arrangement; at the same 
time the entropy of the organism's surroundings increases by even more, to make 
the net en tropic change in the universe positive. This net increase is to be found 
in such effects as the motion of air molecules induced by the person's body heat, 
in the gases he/she exhales and in the natural waste products he/she creates. 

Nature is full of good examples of the critical role played by organization in 
living systems. Consider that a bullfighter's sword can kill a 600-pound bull and 
that 0.01 micrograms of the neurotoxin tetrodotoxin from a puffer fish can kill a 
mouse. The catastrophic effects of the sword and the toxin seem out of proportion 
to their masses. In light of the discussion above, however, we now understand that 
their effects are not based on mass at all, but instead on the disruption of critically 
organized structures, e.g., the nervous system [2]. 

Covalent bonds are strong interactions involving electron sharing. 

A very strong attraction between two atoms results from a phenomenon called 
"electron-sharing;" it is responsible for binding atoms into biochemical molecules. 
One electron from each of two atoms becomes somewhat localized on a line be­
tween the two nuclei. The two nuclei are electrostatically attracted to the electrons 
and therefore remain close to one another. 

Figure 9.1.1 shows simple planetary models of two hydrogen atoms. (Later 
we will generalize our discussion to other atoms.) The radius of this orbit is about 
0.05 nm, so the nuclei are about 0.1 nm apart. At some time each of the electrons 
will find itself at a point immediately between the two nuclei. When this happens, 
each of the two nuclei will exert the same electrical attraction on the electron, 
meanhg that the electron can no longer be associated with a particular nucleus. 
There being no reason to "choose" either the right or the left nucleus, the electron 
will spend more time directly in between the two than in any other location.2 The 

2The idea that an electron is more likely to be found in one region of space than in another is 
built into the quantum mechanical formulation. which is outside the scope of this book. In the quantum 
mechanical formulation there are no orbil~ and the electron is represented as a probability cloud. The 
denser the cloud, the greater the probability of finding the electron there. 
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Figure 9.1.1 A model of the hydrogen molecule. Planetary orbits are shown, but 
the electrons are equally attracted to both nuclei and therefore spend most of their 
time in the region directly between the two nuclei. This interaction is called a cova­
lent bond. 

two electrons in the center then act like a kind of glue, attracting the nuclei to 
themselves and thus toward each other. A stable molecule is thereby formed; the 
attraction between its constituent atoms is called a covalent bond. 

A covalent bond always contains two electrons because of an unusual elec­
tronic property: An electron spins on its own axis. For quantum mechanical rea­
sons, an electron always pairs up with another electron having the opposite spin 
direction, leading to "spin pairing" in covalent bonds and in certain other situa­
tions. An atom or molecule with an odd number of electrons is called a radical; 
it is unstable, quickly pairing up with another radical via a covalent bond. For 
example, atomic hydrogen has a very transitory existence, quickly forming the 
diatomic hydrogen molecule H2, in which the electrons' spins are paired. Thus, 
electrons in stable chemicals appear in pairs. For a further discussion of this topic, 
see Yeargers [3]. 

Covalent bonds are very stable. In order to break one, i.e., to dissociate a 
biomolecule, would require at least four electron volts of energy. For comparison, 
that much energy is contained by quanta in the ultraviolet region of the electro­
magnetic spectrum and exceeds that of the visible region of the solar spectrum. 
(In passing, this helps us to understand why sunlight is carcinogenic-its ultravi­
olet component alters the chemistry of chemical components of our skin.) If not 
for the fact that most of the sun's ultraviolet radiation is filtered out by the earth's 
atmosphere, life on earth would have to be chemically quite different from what 
it is. 

Each kind of atom forms a fixed number of covalent bonds to its atomic 
neighbors; this number is called the valence. The following table gives the atomic 
numbers and valences of hydrogen, carbon, nitrogen and oxygen. 

Atom Symbol Atomic No. Valence 

Hydrogen H 1 I 
Carbon C 6 4 
Nitrogen N 7 3 
Oxygen 0 8 2 
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methane 

Figure 9.1.2 Three-dimensional models of several small hydrocarbons (containing 
only hydrogen and carbon atoms). Bond angles are shown. 
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Figure 9.1.2 shows the structures and names of several common organic 
molecules. The nominal bond angles are shown; they may fluctuate by several 
degrees depending on the exact composition of the molecule. In each case the 
length of the bond is about 0.1 nm, again depending on the constituent atoms. 
Note also that double bonds are possible, but only if they are consistent with the 
valences given above. 

You can see from Figure 9.1.2 that there are only two basic bonding schemes: 
If the molecule has only single bonds, the bond angles are 109°, and if there is 
a double bond, the bond angles are 120°. Note that the fonner leads to a three­
dimensional shape and the latter to a planar shape. This should become evident if 
you compare the structures of ethane and ethene. 

Hydrogen bonds are weak interactions. 

Figure 9.1.3 shows some more molecular models, containing oxygen and nitro­
gen. These molecules are electrically neutral: Unless ionized, they will not mi­
grate toward either pole of a battery. Unlike hydrocarbons, however, their charges 
are not uniformly distributed. In fact, nitrogen and oxygen atoms in molecules 
have pairs of electrons (called lone pairs) that are arranged in a highly asymmetri­
cal way about the nucleus. Figure 9.1.3 shows the asymmetrically oriented elec­
trons of nitrogen and oxygen. There are three important points to be noted about 
these pictures: First, the reason that lone pair electrons are "paired" is that they 
have opposite spin directions from one another, as was described earlier. Second, 
the angles with which the lone pairs project outward are consistent with the 109° 
or 120° bond angles described earlier. Third, it must be emphasized that these 
molecules are electrically neutral-their charges are not uniformly distributed in 
space, but they total up to exactly zero for each complete molecule. The presence 
of lone pairs has important structural consequences to molecules that contain ni­
trogen or oxygen. Consider the water molecule shown in Figure 9.1.3. Two lone 
pairs extend toward the right and bottom of the picture, meaning that the right and 
lower ends of the molecule are negative. The entire molecule is neutral, so there­
fore the left and upper ends must be positive. We associate the negative charge 
with the lone pairs and the positive charge with the nuclei of the hydrogen atoms 
at the other end. Such a molecule is said to be dipolar. 

Dipolar molecules can electrically attract one another. the negative end of 
one attracting the positive end of the other. In fact, a dipolar molecule might enter 
into several such interactions, called hydrogen bonds (H-bonds). Figure 9.1.4 
shows the H-bonds in which a water molecule might participate. Note carefully 
that the ensemble of five water molecules is not planar. 

Hydrogen bonds are not very strong, at least when compared to covalent 
bonds. They can be broken by energies of the order of 0.1 eV, an energy that 
is thermally available at room temperature. There are two mitigating factors, 
however, that make H-bonds very important in spite of the ease with which they 
can be broken. The first is their sheer number. Nitrogen and oxygen are very 
common atoms in living systems, as mentioned earlier, and they can enter into 
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water 

ammonia 

acetic acid 

Figure 9.1.3 Three-dimensional models of molecules containing oxygen and nitro­
gen. The stubs originating on the oxygen and the nitrogen atoms, but not connected 
(0 any other a1om, represent lone pairs. or asymmetrically oriented electrons. 
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Figure 9.1.4 Three-dimensional model of one possible transient arrangement of wa­
ter molecules in the liquid phase. The central molecule is hydrogen-bonded to four 
other molecules. each of which is in turn hydrogen-bonded to four. The hydrogen 
bonds are represented by dotted lines between the lone pairs and hydrogen protons. 
This configuration will break up quickly at room temperature. and the molecules will 
reform into other. similar configurations. 

H-bonding with neighboring. complementary H-bondinggroups. While each H­
bond is weak. there are so many of them that they can give considerable stability 
to systems in which they occur. 

The second factor complements the first: The weakness of H-bonds means 
that the structures they stabilize can be altered easily. For example. every water 
molecule can be held by H-bonds to four other water molecules (see Figure 9.1.4). 
At 20-30 degrees Celsius there is just enough heat energy available to break these 
bonds. Thus. H-bonds between water molecules are constantly being made and 
broken. causing water to be a liquid at room temperature. This allows biologi­
cal chemistry to be water-based at the temperatures prevailing on the earth. As a 
second example. we shall see later that the genetic chemical DNA is partly held 
together by H-bonds that have marginal stability at body temperature. a consid­
erable chemical convenience for genetic replication. which requires partial disas­
sembly of the DNA. 

Hydrogen bonding plays a critical role in a number of biological phenomena. 
Solubility is an example: A molecule that is capable of forming hydrogen bonds 
tends to be water soluble. We can understand this by substituting any other dipo-
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lar molecule (containing one or more lone pairs) for the central water molecule 
of Figure 9.1.4. On the other hand, a molecule lacking lone pair electrons is not 
water soluble. Look at the propane molecule in Figure 9.1.2 and note that such 
hydrocarbons lack the ability to dissolve in water because they lack the neces­
sary asymmetrical charges needed for H-bonding. We shalI return to the topic of 
H-bonding when nucleic acids and heat storage are discussed later in this chap­
ter. These topics, as welI as other kinds of chemical bonding interactions, are 
discussed by Yeargers [3). 

Section 9.2 

Biopolymers 

At the beginning of this chapter it was pointed out that the attribute we calI "life" 
is due to the organization, not the rarity, of constituent atoms. Figures 9.1.2 
and 9.1.3 showed that sequences of carbon, oxygen and nitrogen atoms, with 
their many bends and branches, can potentially combine to form elaborate three­
dimensional macromolecules. What happens is that atoms combine to form 
molecular monomers having molecular weights of the order of a few hundred. In 
turn, these monomers are chained into linear or branched macromolecular poly­
mers having molecular weights of up to a billion. The ability to create, organize 
and maintain these giant molecules is what distinguishes living things from non­
living things. 

Polysaccharides are polymers of sugars. 

A typical ;ugar is glucose, shown in Figure 9.2.I(a). The chemical characteris­
tics that make glucose a sugar are the straight chain of carbons, the multiple -OH 
groups and the double-bonded oxygen. Most of the other sugars we eat are con­
verted to glucose, and the energy is then extracted via the conversion of glucose to 
carbon dioxide. This process is called respiration; it will be described below. A 
more common configuration for a sugar is exemplified by the ring configuration 
of glucose, shown in Figure 9.2.1 b. 

The polymerization of two glucose molecules is a condensation reaction, 
shown in Figure 9.2.2. Its reverse is hydrolysis. We can extend thf. notion of sugar 
polymerization into long linear or branched chains, as shown by the arrows in 
Figure 9.2.2. The actual function of a polysaccharide, also called a carbohydrate, 
will depend on the sequence of component sugars, their orientations with respect 
to each other and whether the chains are branched. 

Polysaccharides serve numerous biological roles. For example, plants store 
excess glucose as starch, a polysaccharide found in seeds like rice and wheat 
(flour is mostly starch). The structural matter of plants is mainly cellulose; it 
comprises most of what we call wood. When an animal accumulates too much 
glucose, it is polymerized into glycogen for storage in the muscles and liver. When 
we need glucose for energy, glycogen is hydrolyzed back to monomers. These and 
other functions of sugars will be discussed later in this and subsequent chapters. 
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Figure 9.2.1 (a) A model of the linear form of the glucose molecule. (b) A model 
of the ring form of the glucose molecule. The right-hand version. which omits many 
of the identifying symbols. is the more common representation. 

Lipids are polymers offatty acids and glycerol. 

Fatty acids, exemplified in Figure 9.2.3, are distinguished from each other by 
their lengths and the positions of their double bonds. Note the organic acid group 
(-COOH) at one end. Fatty acids with double bonds are said to be u1Isaturated; 
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a) 

o 

b) 

o 

o 

Figure 9.2.2 (a) A model of a disaccharide, consisting of two glucose molecules. 
(b) A model showing the three possible directions that the polysaccharide of (a) 
could be extended. A large polysaccharide, with many such branches, would be very 
complex. 

polyunsaturated fatty acids are common in plants whereas saturated fatty acids, 
lacking double bonds, are common in animals. Glycerol and three fatty acids 
combine to form a lipid, or jat, or triglyceride, as pictured in Figure 9.2.4. The 
reverse reaction is again called hydrolysis. 

Lipids are efficient at storing the energy of excess food that we eat; a gram 
of lipid yields about four times the calories of a gram of other foods, e.g., carbo-
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Figure 9.2.3 A model of a glycerol molecule (left) and three arbitrary fatty acids 
(right). 

hydrates and proteins. Lipids are fundamental components of cell membranes: A 
common lipid of cell membranes is a phospholipid, pictured in Figure 9.2.5. You 
should now be able to put Figure 9.2.5 into the context of Figure 6.1.1. Note how 
the hydrocarbon regions of the phospholipid are in the interior of the membrane 
and how the hydrophilic oxygen groups (having lone pair electrons) are on the 
membrane's exterior, where they can hydrogen-bond to the surrounding water. 

O~ 
O -C-CH=CH -CH=CH2 H2C-

Figure 9.2.4 A model of a fat. or triglyceride. It consists of a glycerol and three 
fatty acids. (Compare Figure 9.2.3.) 
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Figure 9.2.5 A phospholipid. or phosphoglyceride. found in cell membranes. Note 
that it has a hydrophilic end that is attracted to water and a hydrocarbon (hydropho­
bic) end that is repelled by water. The hydrophilic end faces the aqueous outside 
world or the aqueous interior of the cell. The hydrophobic end of all such molecules 
is in the interior of the membrane. where there is no water. This picture should 
be compared to the schematic lipids shown in Figure 6.1.1: The circles on the 
phopholipids of Figure 6.1.1 correspond to the right·hand box of this figure and the 
two straight lines of Figure 6.1.1 correspond to the two hydrocarbon chains in the 
left·hand box of this figure. 

Nucleic acids are polymers of nucleotides. 

Nucleic acids contain the information necessary for the control of a cell's chem­
istry. This information is encoded into the sequence of monomeric units of the 
nucleic acid. called nucleotides. and is expressed as chemical control through a 
series of processes called the Central Dogma of Genetics-to be described below. 
When a cell reproduces asexually. its nucleic acids are simply duplicated and the 
resultant molecules are partitioned equally among the subsequent daughter cells, 
thus assuring that the daughter cells will have the same chemical processes as the 
original cell. In sexual reproduction, nucleic acids from two parents are combined 
in fertilization, resulting in an offspring whose chemistry is related by sometimes 
complex rules to that of its parents. 

There are two kinds of nucleic acids, deoxyribonucleic acid (DNA) and ri­
bonucleic acid (RNA). The monomer of a nucleic acid is a nucleotide, which is 
composed of three parts: a sugar, one or more phosphate groups and a nitrogenous 
base. Figure 9.2.6 shows the components of a typical nucleotide. 

DNA is a double helix. Figure 9.2.7 shows a model of the macromolecule, 
partially untwisted to reveal its underlying structure. Note that it is formed from 
two covalently linked. linear polymers, which are wrapped around each other. The 
two single strands are H-bonded to one another, as shown by dotted lines in the 
figure. Figure 9.2.8 shows the details of the H-bonding between DNA nucleotides. 

The DNA molecule is very long compared to its width. The double helix is 
2.0 x 1Q-9m wide, but about 1O- 3m long in a bacterium and up to 1m long in 
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Figure 9.2.6 A typical nucleotide. consisting of a nitrogenous base (adenine). a 
sugar (ribose) and a phosphate group. Other nucleotides can have other nitrogenous 
bases, a different sugar and more phosphates. 

a human. There are ten base pairs every 3.4 x 10-7 m of length of double helix. 
Thus, a 1 meter-long DNA molecule has about 3 x 108 base pairs. If any of the 
four nucleotides can appear at any position. there could exist 43x 10" possible DNA 
molecules of length 1m. Obviously an incredible amount of information can be 
encoded into such a complex molecule. Note that DNA uses only a four-letter 
"alphabet." but can compensate for the small character set by writing very long 
"words." 

There are some important structural details and functional consequences to 
be noted about Figures 9.2.7 and 9.2.8. 

1. Each of the two single-stranded polymers of a DNA molecule is a chain of 
covalently linked nucleotides. All four possible nuc1eotides are shown. but there 
are no restrictions on their order in natural systems; any nucleotide may appear 
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Figure 9.2.7 A DNA molecule. showing the arrangement of the nucleotide com­
ponents into two covalent polymers, each of which is hydrogen-bonded to the other. 
Note that A (adenine) and T (thymine) are hydrogen-bonded to each other, and C (cy­
tosine) and G (guanine) are hydrogen-bonded to each other. The hydrogen bonds are 
indicated by the dashes. (Redrawn from "Biology - The Unity and Diversity of Life," 
by Cecie Starr and Ralph Taggart. 6th ed., 1992; Wadsworth Publishing Company; 
Belmont, CA. Used with permission.) 
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Figure 9.2.8 A detailed picture of the complementary hydrogen bonds between 
A and T (left pair), and between C and G (right pair). Compare this figure to the 
hydrogen-bonded groups in Figure 9.2.7. See text for details. 

279 

at any position on a given single strand. It is now possible experimentally to 
determine the sequences of long DNA chains. 

2. Once a particular nucleotide is specified at a particular position on one strand, 
the nucleotide opposite it on the other strand is completely determined. Note 
that A and T are opposite one another, as are C and G; no other base pairs are 
allowed in DNA. (From now on we shall indicate the names of the nuc1eotides by 
their initials, e.g., A, T, C and G.) There are very important physical and biological 
reasons for this compiemelltary property. The physical reason can be seen by a 
close examination of the H-bonds between an A and a T or between a C and a Gin 
Figure 9.2.8. Recall that an H-bond is formed between a lone pair of electrons and 
a hydrogen nucleus and note that two such bonds form between A and T and that 
three form between C and G. There are no other ways to form two or more strong 
H-bonds between any of these nucleotides; thus, the ways shown in Figure 9.2.7 
are the only possibilities. For example, A cannot effectively H-bond to C or G. 
You should note that the property of complementary H-bonding requires that the 
two single strands have different nucleotide sequences. but that the sequence of 
one strand is utterly determined by the other. 

3. The helical configuration is a spontaneous consequence of H-bonding the two 
single strands together. Helicity disappears if the H-bonds are disrupted. Recall 
from the discussion of the structure of water in Section 9.1 that H-bonds have 
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marginal stability at room temperature. We should therefore expect that the two 
strands of helical DNA can be separated. i.e .. the helix can be denatured. without 
expending much energy. In fact. DNA becomes denatured at around 45-55°C. 
only about 8 to 18 degrees above body temperature. Once thermal denaturation 
has occured. however. the two strands can often spontaneously reassociate into 
their native double helical configuration if the temperature is then slowly reduced. 
This should be expected in light of complementary H-bonding between the two 
strands. 

~ parent molecule 
(.A--~ 

original strands 
are unwound 

......"..~---+ 

4~~3 ..- complementary ---....."..'"---
new strands are 
synthesized ~~;;:::~ 
using the basel .4--.t;...Q ..... 

sequences of 
the original 
strands as a 
template 

Figure 9.2.9 A model of a replicating DNA molecule. The two strands of the par­
ent double helix separate. and each one acts as a template for a new strand. Com­
plementary hydrogen bonding assures that the two resulting double helices are exact 
copies of the original molecule. (Redrawn from "Biology," 1st ed .• by Joseph Levine 
and Kenneth Miller; D. C. Heath Company; Lexington, MA, 1991.) 
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There is another important structural feature related to double helicity: Look 
at Figure 9.2.7 and note that each nucleotide is fitted into the polynucleotide in 
such a way that it points in the same direction along the polymer. It is there­
fore possible to associate directionality with any polynucleotide. In order for the 
two strands of any nucleic acid to form a double helix, they must have opposite 
directionalities, i.e., they must be anti parallel to each other.3 

4. Complementry hydrogen bonding provides a natural way to replicate DNA 
accurately. This is the biological reason for complementary H-bonding and is 
illustrated in Figure 9.2.9. The two strands of DNA are separated and each then 
acts as a template for a new, complementary strand. In other words, the sequence 
information in each old strand is used to determine which nucleotides should be 
inserted into the new, complementary strand. This mechanism allows DNA to code 
for its own accurate replication, which is a necessary requirement for a genetic 
chemical. 

3 For example. look at the location of the methyl group (-CH2 -) between the phosphate group and 
the ribose group. Note how it is in a different position on the two strands. 

A 

C 

c 

Figure 9.2.10 A model of a transfer RNA molecule. A single-stranded tRNA molecule 
folds back on itself and becomes double helical in the regions shown by the dotted hy­
drogen bonds. (The actual helicity is not shown on the figure.) Note that there are sev­
eral non-helical (non-hydrogen-bonded) turns, at the bottom, right and left sides. 
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Occurring just prior to cell division. the process of DNA self-replication 
yields two double-stranded DNA molecules that are exact copies of the origi­
nal. Then. during cell division. each of the daughter cells gets one of the copies. 
The two daughter cells thus each end up with the same genetic material that the 
original cell had. and should therefore also have the same life properties. 

There are three classes of RNA molecules: The first is called messenger 
RNA. or mRNA. Each piece of mRNA averages about a thousand bases in length. 
but is quite variable. It is single-stranded and nonhelical. The second kind of 
RNA is transfer RNA. or tRNA. There are several dozen distinguishable mem­
bers of this class; they contain in the range of 75 to 95 bases. some of which 
are not the familiar A. T. C and G. tRNA is single-stranded but is double heli­
cal. This unexpected shape is due to the folding over of the tRNA molecule. as 
shown in Figure 9.2. 10. The third kind of RNA is ribosomal RNA. or rRNA. This 
molecule accounts for most of a cell's RNA. It appears in several forms in cellular 
organelles associated with protein synthesis. and it has molecular weights ranging 
from around a hundred up to several thousand. The functions of the various RNAs 
will be discussed shortly. 

Proteins are polymers oj amino acids. 

The monomer of a protein is an amino acid. a synonym for which is residue. 
A protein polymer is often called a polypeptide. While many amino acids can 
exist. only twenty are found in proteins. They share the general structure shown 
in Figure 9.2.11. The group labelled R can take on twenty different forms. thus 
accounting for all members of the group.4 The right end (-COOH) is the carboxyl 
end and the bottom (-NH2) is the amino end. 

Figure 9.2.12 shows how two amino acids are polymerized into a dipeptide 
(two residues). Note that the attachment takes place by combining the amino end 
of one residue with the carboxyl end of the other. The covalent bond created in 
this process is called a peptide bond. as shown in Figure 9.2.12. 

4We will ignore the fact that one of the amino acids is a slight exception. 

Figure 9.2.11 A model of an amino acid. which is the monomer of a protein. The la­
bel uR" stands for anyone of twenty different groups. (The text mentions a slight ex­
ception.) Thus. twenty different amino acids may be found in proteins. 
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Figure 9.2.12 A pair of amino acids bonded covalently into a dipeptide. The la­
bels RJ and R2 can be any of the twenty groups mentioned in the caption of Figure 
9.2.11. Thus. there are 400 different dipeptides. 

An interesting feature of a dipeptide is that. like an individual amino acid. it 
has both a carboxyl end and an amino end. As a result, it is possible to add other 
residues to the two ends ofthe dipeptide and thereby to extend the polymerization 
process as far as we like. It is quite common to find natural polypeptides of 
hundreds of residues and molecular weights over a hundred thousand. Figure 
9.2.13 is an idealized picture of a polypeptide "backbone"; the individual amino 
acids are represented as boxes. Note that the polymer has a three-dimensional 
structure that includes helical regions. sheet-like regions and that the whole 3-
D shape is maintained by H-bonds and disulfide (-S-S-) bonds. The disulfide 
bonds are covalent and the two amino acids that contribute the sulfur atoms are 

Figure 9.2.13 A model of a single protein. or polypeptide. molecule. Each box cor­
responds to an amino acid. The resultant chain is held in a roughly ovate shape by 
sulfur-to-sulfur covalent bonds and by many hydrogen bonds. a few of which are in­
dicated by dashed lines. 
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generally far from one another as measured along the polymer. They are brought 
into juxtaposition by the flexibility of the polymer and held there by the formation 
of the disulfide bond itself. 

Our model of a protein is that of a long polymer of amino acids, connected 
by peptide bonds and folded into some kind of 3-D structure. At any location 
any of twenty different amino acids may appear. Thus, there are 20100 possible 
polypeptides of 100 amino acids in length. Nowhere near this number have actual 
biological functions, but the incomprehensibly large number of possible amino 
acid sequences allows living systems to use proteins in diverse ways. Some of 
these ways will be described next. 

Some proteins are catalysts. 

There exists a very important class of proteins, called enzymes, whose function 
it is to to speed up the rate of biochemical reactions in cells (see References [2] 
and [4]). In order to understand this function we must understand what is meant 
by "reaction rate": Suppose there is a chemical reaction described by A ~ B, 
as shown in Figure 9.2.14. Let us suppose that initially there is lots of A and no 
B. As time passes some A is converted to B, and some B back to A. Eventually 
the relative amounts of A and B reach steady values, i.e., do not change with 
time. This final state is called an equilibrium state. The speed with which A 
is converted to B is the rate of the reaction. The observed rate evidently changes 
with time, starting out fast and reaching a net of zero at equilibrium, and therefore 
it is usually measured at the outset of the Cltperiment, when there is lots of A and 
noB. 

There are several very important biological consequences of enzymatic catal­
ysis. First, the essential effect of a catalyst is to speed up the rate of a reaction. A 
biochemical catalyst, i.e., an enzyme, can speed up the rate of a biochemical re­
action by as much as 1013 times. This enormous potential increase has some very 
important consequences to cellular chemistry: First, catalyzed biochemical reac­
tions are fast enough to sustain life, but uncatalyzed reactions are not. Secondly. if 
a reaction will not proceed at all in the absence of a catalyst. then no catalyst can 
ever make it proceed. After all. speeding up a rate of zero by 1013 still gives a rate 

increasing A B 
time 

~ 
100 0 .... initial state concentrations 
75 25 
50 50 
10 90 .... final (equilibrium) state concentrations 

Figure 9.2.14 The progress of the reaction A H B. The numbers give the amounts 
of the compounds A and B at various times. At the outset there is no 8 but. as time 
passes, the amount of R increases until A and B reach equilibrium at a ratio of B : 
A=9:1. 
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of zero. Third. catalysts have no effect whatever on the relative concentrations of 
reactants and products at equilibrium. but they do affect the time the system takes 
to reach that equilibrium. Thus. enzymes do not affect the underlying chemistry 
or net energetic requirements of the system in which they participate. Fourth. en­
zymes are very specific as to the reactions that they catalyze. their activity usually 
being limited to a single kind of reaction. This observation can be combined with 
the first one above (enzymatic increase in reaction rate) to yield an important con­
clusion: Whether or not a particular biochemical reaction goes at a high enough 
rate to sustain life depends entirely on the presence of specific enzyme molecules 
that can catalyze that particular reaction. Thus. enzymes act like valves. facilitat­
ing only the reactions appropriate to a particular cell. No other reactions proceed 
fast enough to be significant and so they can be ignored. 

The valve-like function of enzymes explains why a human and a dog can 
eat the same kind of food. drink the same kind of water and breathe the same 
air. yet not look alike. The dog has certain enzymes that are different from those 
of the human (and. of course. some that are the same). Thus. many biochemical 
reactions in a dog's cells proceed in a different direction from those in a human­
in spite of there being the same initial reactants in both animals. Figure 9.2.15 
shows how different metabolic paths can originate from the same starting point 

A 

c 

~ 
F 

Figure 9.2.15 A diagram showing how enzymes can direct sequences of reactions. 
A is the initial reactant. and the pair of enzymes E"B and EBO would catalyze the 
conversion of A to D. Alternatively. the enzymes E"c and ECF would catalyze the 
conversion of A to F. It is the enzymes. not the initial reactant. that determine what 
the end product will be. Of course. this does not mean that there will always exist an 
enzyme that can catalyze a particular reaction; rather. there will almost always exist 
an enzyme that can catalyze the particular reactions needed by a given cell. 
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substrate 

enzyme 

Figure 9.2.16 A model of the "lock and key" mechanism for enzyme-substrate 
specificity. The enzyme and the substrate are matched to each other by having com­
plementary shapes and electrical charge distributions. 

because of different enzyme complements. The same reasoning explains why two 
people have different hair color, or numerous other differences. 

The nature of the specificity of an enzyme for a single chemical reaction can 
be understood in terms of a "lock and key" mechanism: Suppose that we are again 
dealing with the reaction A ~ B, catalyzed by the enzyme EAB . The catalytic 
event takes place on the surface of the enzyme at a specific location, called the 
active site, as shown in Figure 9.2.16. The compound A, or substrate, has a shape 
and electrical charge distribution that are complementary to the active site. This 
assures that only the reaction A <==> B will be catalyzed. Note that this reaction 
is reversible, and that the enzyme catalyzes in both directions. 

Now we are in a position to understand why the 3-D structure of an en­
zyme is so important. Refer back to Figure 9.2.13 and recall that H-bonds and 
disulfide bonds hold together amino il~ids that are far from one another in the 
primary amino acid sequence. Therefore, th~ active site may be composed of 
several amino acids t~at are separated along the polymeric chain by a hundred 
or more intervening amino acids, but that are held close together by virtue of the 
folded 3-D polypeptide structure. This means that anything that disturbs, or de­
natures, the folded structure may disrupt the active site and, therefore, destroy 
enzymatic activity. All that is neces~ary is to break the hydrogen and disulfide 
bonds that maintain the 3-D structure. We can now see why cells are sensitive to 
heat: Heating to about 50°C inactivates their enzymes, quickly reducing the rates 
of their reactions to almost zero. Later in this chapter we will return to the topic 
of enzymatic function. 

Noncatalytic proteins. 

The immense diversity of possible protein structures allows these macromolecules 
to be used for many biological purposes. Many of these have nothing to do with 
catalysis. We will divide these noncatalytic proteins into two somewhat arbitrary, 
but customary, categories and discuss them next. 
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Category J - Fibrous proteins. These are called "fibrous" because they consist 
of large numbers of polypeptides arranged in parallel to yield long, string-like 
arrays. Collagen, for example, is a fibrous protein found in skin and other organs. 
It consists of shorter protein molecules, each staggered one quarter-length from 
the next one and thus linked into very long strings). Collagen acts as a binder, the 
long fibers helping to hold our bodies together. 

Other examples of fibrous proteins are found in muscle tissue. Each muscle 
cell contains large numbers of fibrous proteins that are capable of sliding past 
one another and exerting force in the process. Our muscles can then move our 
skeletons and, therefore, our bodies. What we call "meat" is just muscle cut from 
an animal and, of course, it contains a lot of protein. 

Another example of a fibrous protein is keratin, which appears in several 
forms in hair and nails, among other places. Some keratins form ropes of mul­
tiple strands, held together by disulfide bonds. Other keratins form sheet-like 
structures. One important form of keratin is silk, a thread-like exudation used in 
the wrapping of the cocoon of the silkworm Bombyx mori. 

Category 2 - Globular proteins. These proteins tend to be spherical or ovate 
and are often found dispersed, e.g., dissolved in solution. If aggregated, they do 
not form fibers. Enzymes are globular proteins, but we have already discussed 
them and we will therefore restrict our discussion here to noncatalytic globular 
proteins. 

As an example, the polypeptide hormones are typical noncatalytic globular 
proteins. They were introduced in Chapter 8. Hormones are biochemical commu­
nicators: They are manufactured in endocrine glands in one part of the body and 
are moved by the bloodstream to another part of the body, where they exert their 
effects on target tissues. At their target tissues, hormones change the production 
and activity of enzymes and alter membrane permeability. 

Insulin, a globular protein hormone, is produced by an organ called the pan­
creas and is released into the blood to be carried throughout the body. The func­
tion of insulin is to regulate the metabolism of glucose in the body's cells. Lack 
of insulin has powerful metabolic consequences: The disorder diabetes mellitus 
is associated with the loss of insulin-producing cells of the pancreas, increases in 
the glucose levels of blood and urine, malaise and even blindness. 

Another class of noncatalytic globular proteins, introduced in Chapter 6, de­
termines the selectivity of material transport by membranes. These proteins rec­
ognize and regulate the intercellular movements of specific compounds like amino 
acids and various sugars and ions like Na+ and CI-. Called transport proteins. 
or permeases, they penetrate through membranes and have a sort of active site on 
one end to facilitate recognition of the material to be transported. They are not 
catalysts. however, in that the transported matter does not undergo a permanent 
cl'emical change as a result of its interaction with the transport protein. 

Globular proteins are used to transport material in the body. One exam­
ple, hemoglobin. which was introduced in Chapter 7. contains four polypeptide 
chains and four heme groups. the latter being organic groups with an iron atom. 
Hemoglobin is found in red blood cells. or erythrocytes. The principal use of 



288 Section 9.3 I Molecular Information Transfer 

hemoglobin is to carry oxygen from the lungs to the sites of oxygen-utilzing 
metabolism in the body. 

Globular proteins are key molecules in our immune systems. A group of 
blood cells. called lymphocytes. are able to distinguish between "selr' and "non­
selr·. and therefore to recognize foreign material. like pathogens. in our bodies. 
These foreign substances are often proteins but may be polysaccharides and nu­
cleic acids; in any case. if they stimulate immune responses they are called ant;­
gens (Ag). Antigens stimulate Iymphoctes to produce a class of globular proteins. 
called antibodies (Ab) or immunoglobulins. that can preferentially bind to Ag. 
leading to the inactivation of the Ag. The immune response will be discussed in 
some detail in Chapter 10. 

Of particular importance to us in that chapter will be the globular proteins 
found in a covering. or capsid. of viruses. Viruses have very elementary struc­
tures. the simplest being a protein coat surrounding a core of genetic material. 
Viruses are so small that the amount of genetic material they can contain is very 
limited. Thus. as an information-conserving mechanism. they use multiple copies 
ofthe same one or two polypeptides to build their protein coverings. Thus. a typ­
ical virus may have an outer coat consisting of hundreds of copies of the same 
globular protein. 

Section 9.3 

Molecular Information Transfer 

This section is a discussion of molecular genetics. The ability of DNA to guide 
its own self-replication was described in an earlier section. In this section we will 
see how genetic information of DNA. coded into its polymeric base sequence. 
can be converted into base-sequence information of RNA. The base-sequence in­
formation of RNA can then be converted into amino acid-sequence information 
of proteins. The amino acid sequence of a protein determines its 3-D shape and 
therefore its function. i.e .• participation in Ortransport in erythrocytes. selection 
of material to cross a membrane or catalysis of a specific biochemical reaction. 
The net process is contained in the following statement: DNA is the hereditary 
chemical because it provides an informational bridge between generations via 
self-replication. and it ultimately determines cellular chemistry. These processes 
are schematically condensed into the Central Dogma of Genetics: 

DNA ---.~ RNA --... ~ protein 

U 
It is very important to recognize that the arrows of the Central Dogma show 

the direction of information flow. not the direction of chemical reactions. Thus. 
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DNA passes its infonnation on to RNA-the DNA is not chemically changed into 
RNA.s 

Information flow from DNA to RNA is called transcription. 

Recall that enzymes detennine which reactions in a cell effectively take place. For 
organisms other than certain viruses, DNA is the source of the information that 
detennines which enzymes will be produced. In any case, there is an intermediary 
between DNA and proteins-it is RNA. This is expressed in the Central Dogma 
presented above (see References [5] and [6]). 

RNA production is shown schematically in Figure 9.3.1. The sequence of 
the single covalent strand of RNA nucleotides is determined by complementary 
H-bonding with one strand of a DNA molecule; in other words, the single, or 
coding, strand of DNA acts as a template for RNA production. Note the similarity 
between the use of a single-stranded DNA template for DNA production and the 
use of a single-stranded DNA template for RNA production. The differences are 
that RNA uses a different sugar and substitutes uracil in place of thymine. 

The process of RNA production from DNA, called transcription, requires 
that the DNA molecule become denatured over a short portion of its length, as 
shown in Figure 9.3.1. This is a simple matter energetically because all that is 
required is to break a small number of H-bonds. The O-shaped denatured region 
moves along the DNA molecule, the double helix opening up at the leading edge 
of the "0" and closing at its trailing edge. RNA molecules, as mentioned earlier, 
are usually less than a thousand or so nucleotides long. Thus, RNA replication 
nonnally begins at many sites in the interior of the DNA molecule, whose length 
may be on the order of millions of nucleotides. 

Information flow from RNA to enzymes is called translation. 

The process of protein production from RNA code brings together. one by one, 
all three kinds of RNA: ribosomal, messenger and transfer. The three varieties 
are transcribed from the DNA of the cell and exported to sites away from the 
DNA. Here subcellular structures called ribosomes are constructed, in part using 
the rRNA. Ribosomes are the sites of protein synthesis. but the actual role of 
the rRNA is not well understood. Several dozen different kinds of transfer RNA 
are transcribed from DNA. They all have a structure similar to that shown in 
Figure 9.2.10, which shows that tRNA is single-stranded, but is helical by virtue 
of the folding of the polymer onto itself. This requires that some regions on the 
strand have base sequences that are complementary to others, but in reverse linear 
order. (Recall from Figure 9.2.8 that a nucleic acid double helix requires that the 
two strands be antiparalleJ.) The various kinds oftRNA differ in their constituent 
bases and overall base sequences; the most important difference for us, however, 

SWe will modify the Central Dogma somewhat in Chapter 10. 
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is the base sequence in a region called the anticodon, indicated in the figure. The 
anticodon is actually a loop containing three bases which, because of the looping, 
are not H-bonded to any other bases in the tRNA molecule. 

Let us consider the anticodon more closely. It contains three nucleotides that 
are not hydrogen-bonded to any other nucleotides. The number of such trinu­
c1eotides, generated at random, is 43 = 64, so we might expect that there could 

~:~~~:-- parent DNA molecule 

t direction 
of RNA 
synthesis 

Figure 9.3.1 A model showing the polymerization of RNA. using a DNA template. 
The DNA opens up to become temporarily single-stranded over a short section of its 
length, and one of the two DNA strands then codes for the RNA. Complementary 
hydrogen bonding between the DNA nucleotides and the RNA nucleotides assures 
the correct RNA nucleotide sequence. (Redrawn from "Biology." 1st ed .. by Joseph 
Levine and Kenneth Miller; D. C. Heath Company, Lexington, MA, 1991. Used with 
permission.) 
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be 64 different kinds of tRNA, if we considered only the anticodons. Actually, 
fewer than that seem to exist in nature, for reasons to be discussed shortly. The 
anticodon bases are not H-bonded to any other bases in the tRNA molecule, but 
are arranged in such a 3-D configuration that they could H-bond to three bases on 
another RNA molecule. 

All tRNA molecules have a short "pigtail" at one end that extends beyond 
the opposite end of the polymer. This pigtail always ends with the sequence CCA. 
An amino acid can be covalently attached to the terminal adenine, giving a tRNA­
amino acid molecule, as shown in Figure 9.3.2. A given type of tRNA, identified 
by its anticodon, can be attached to one, and only one, specific type of amino acid. 
No other pairings are possible. When we see such specificity in biochemistry 
we should always suspect that enzymes are involved. In fact, there are enzymes 
whose catalytic function is to link up an amino acid with its correct tRNA. A 
tRNA molecule that is attached to its correct amino acid is said to be "charged." 

Messenger RNA is transcribed in strings of about I ()()() or so nuc1eotides, but 
that is only an average figure-much mRNA is considerably longer or shorter. 
The reason for this variability is that each piece of mRNA is the transcription 
product of one or a few genes on DNA. Thus, the actual length of a particular 

Figure 9.3.2 A model of a tRNA molecule, with an amino acid attached to one end. 
An enzyme assures that the tRNA molecule becomes covalently attached to its correct 
amino acid. Compare this figure with Figure 9.2.10. 
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piece of mRNA corresponds to an integral number of DNA genes and, of course, 
that leads to a great deal of variability in length. After being exported from the 
DNA, the mRNA travels to a ribosome where it becomes reversibly attached to 
the ribosome. 

The next part of this discussion is keyed to Figure 9.3.3. (a) One end of 
a piece of mRNA is attached to a ribosome, the area of association covering at 
least six mRNA nucleotides. (b) A tRNA molecule, with its correct amino acid 
attached, forms complementary H-bonds between its anticodon and the first three 
nucleotides of the mRNA. The latter trinucleotide is called a codon. Note that 
codon-anticodon recognition mates up not only the correct anticodon with its 
correct codon but, in the process, also matches up the correct amino acid with its 
codon. (c) Next, a second charged tRNA hydrogen bonds to the second mRNA 
codon. (d) A peptide linkage forms between the two amino acids. detaching the 
first amino acid from its tRNA in the process. 

Let us review what has happened so far: A sequence of DNA nucleotides 
comprising a small integral number of genes has been transcribed into a poly­
mer of mRNA nucleotides. The sequence of the first six of these nucleotides has 
subsequently been translated into the sequence of two amino acids. There is a 
direct informational connection mapping the sequence of the original six DNA 
nucleotides into the sequence of the two amino acids. The correctness of this 
mapping is controlled by two physical factors: First. complementarity between 
DNA and mRNA and between mRNA and tRNA and. second. by specific enzy­
matic attachment of tRNA to amino acids. 

Now returning to Figure 9.3.3, the ribosome moves three nucleotides down 
the mRNA and a third charged tRNA attaches to the mRNA at the third codon. (e) 
A third amino acid is then added to the growing polypeptide chain. The translation 
process continues and eventually a complete polypeptide chain is formed. The 
nucleotide sequence of the DNA has been converted into the primary structure of 
the polypeptide. Note how the conversion of nucleotide sequence to amino acid 
sequence was a transfer of information. not a chemical change of DNA to protein. 

Figure 9.3.3 is reaIJy a pictorial representation of the Central Dogma. The 
overalJ process yields proteins. including enzymes of course. These enzymes 
determine what chemical reactions in the cell wiII proceed at a rate consistent 
with life. Two very important observations come out of this discussion: First, the 
chemistry of a ceIJ is ultimately determined by the sequence of DNA nucleotides 
and, second, because of this. the replication and partitioning of DNA during cell 
division assures that daughter cells wiII have the same chemistry as the parent 
cell. We can extend the latter conclusion: The union of a sperm and an egg 
in sexual reproduction combines genetic material from two parents into a novel 
combination of DNAs in a new organism. thus assuring that the offspring has both 
chemical similarities to. and chemical differences from. each of the parents. 

A gene is enough nucleic acid to code for a polypeptide. 

The word "gene" is often loosely used to mean "a site of genetic information." A 
more exact definition from molecular biology is that a gene is a sequence of nu-
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c1eotides that codes for a complete polypeptide. This definition. however. requires 
the elaboration of several points: 

I. If a functioning protein's structure contains two separately created polypep­
tides then. by definition, two genes are involved. 

2. As will be discussed below, some viruses eliminate DNA from their replica­
tive cycle altogether. Their RNA is self-replicating. In those cases, their genes 
are made of RNA. 

3. The nucleotide sequence for anyone complete gene normally lies entirely on 
one strand of DNA, called the coding strand. However. not all genes need lie 
on the same one strand; transcription may jump from one strand to the other 
between gene locations. Further, there may even be overlapping genes on the 
same strand. 

The concept of coding 

The so-called genetic code can be presented in a chart showing the correspon­
dence between RNA trinucleotides (codons) and the amino acids they specify. 
Such charts, for all 64 possible codons. are available in virtually all biochemistry. 
genetics and introductory biology texts. 

Several interesting features emerge from considering such a table. There 
are 64 codons potentially available to specify 20 amino acids. It turns out. how­
ever, that there are only about half that many distinctive tRNA molecules. indi­
cating that some tRNAs can bind to more than one codon. This redundancy is 
explained by the wobble hypothesis: Examination of tRNA structure shows that 
the nucleotide at one end of the anticodon has only a loose fit to the correspond­
ing codon nucleotide-it wobbles. Thus, H bonding specificit)' is relaxed at this 
position and some tRNAs can bind to more than one codon.6 

Not all possible codons specify an amino acid. Three of them are termina­
tion, or stop, codons. They do not specify any amino acid; rather, they signal the 
ribosome to cease translation and to release the completed polypeptide. This is 
especially useful if one piece of mRNA codes for two adjacent genes: Termina­
tion codons signal the translation machinery to release the first polypeptide before 
starting on the translation of the second one. Without the termination codons the 
ribosome would continue to add the amino acids of the second polypeptide to the 
end of the first one, negating the biological functions of both. 

The nature of mutations 

Mutations are changes in the nucleotide sequence of DNA. A base change in 
a codon would probably result in a new amino acid being coded at that point. 
For example. sickle cell anemia results from a single incorrect amino acid being 

~Recall that polynucleotides have directionality; thus. the two ends of:l codon or anticodon are 
distinct. Only the one drawn at the right.hand end wobbles. 
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inserted into the protein fraction of hemoglobin. Suppose a nucleotide pair were 
deleted: Virtually every amino acid encoded thereafter (downstream) would be 
incorrect. Evidently the severity of a deletion, or an addition for that matter, 
depends on how close to the start of transcription it occurs. 

Section 9.4 

Enzymes and Their Function 

Two important concepts that have been presented in this chapter are the Central 
Dogma of Genetics and the role of enzymes in facilitating specific chemical reac­
tions in a cell. DNA, via RNA, codes for a specific set of cellular enzymes (among 
other proteins). Those enzymes can catalyze a specific set of chemical reactions 
and thereby determine the biological nature of the cell. 

In this section we will take a closer look at the way that enzymes work. Our 
approach will be a thermodynamic one, following the path of solar energy into 
bioiogical systems, where it is used to create orderly arrangements of atoms and 
molecules in a cell. We will show how enzymes select from among the many 
possible configurations of these atoms and molecules to arrive at those which are 
peculiar to that type of cell. 

The sun is the ultimate source of energy used by biological systems. 

The sun is the ultimate source of energy available to drive biological processes. 
(We ignore the tiny amounts of energy available from geothermal sources.) Its 
contributions are two-fold: First, solar energy can be captured by green plants and 
incorporated into chemical bonds, from which it can be then obtained by animals 
that eat the plants and each other. Second, solar energy heats the biosphere and 
thus drives biochemical reactions, vitually all of whose rates are temperature­
dependent. Both of these considerations will be important in the discussion to 
follow. 

Entropy is a measure of disorder. 

A highly disordered configuration is said to have high entropy. The most disor­
dered of two configurations is the one that can be formed in the most ways. To 
show how this definition conforms to our everyday experience, consider the pos­
sible outcomes of tossing three coins: HHH, HHT, HTH, THH, HTT, THT, TTH, 
TIT. There is only one way to get all heads, but there are six ways to get a mix­
ture of heads and tails. Thus, a mixture of heads and tails is the more disordered 
configuration. The condition of mixed heads and tails has high entropy (is a dis­
orderly outcome). and the condition of all heads has low entropy (is an orderly 
outcome). Note that all eight specific configurations have the sa:ne probability 
(118). but that six of them contain at least one head and one tail. 
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Given that there generally are more disordered outcomes than there are or­
dered outcomes. we would expect that disorder would be more likely than order. 
This. of course. is exactly what we see in the case of the coins: Throw three coins 
and a mixture of heads and tails is the most common result. whereas all heads is 
a relatively uncommon result. 

The universe is proceeding spontaneously from lower to higher entropy. 

An empirical rule. the Second Principle of Thermodynamics. states that the en­
tropy of the universe increases in every process. For instance. if a drop of ink 
is placed in a beaker of water. it will spontaneously spread throughout the water. 
There are few ways to put all the ink into the one spot in the water and many ways 
to distribute it throughout the water. so we see that the entropy of the water/ink 
mixture increases. As other examples. consider what happens when the valve on 
a tank of compressed gas is opened or when a neatly arranged deck of cards is 
thrown up into the air. In each case. entropy increases. 

The Second Principle does not preclude a decrease in entropy in some lo­
cal region. What it does require is that if entropy decreases in one place it must 
increase somewhere else by a greater absolute amount. There is no reason why 
the ink, once ~persed. cannot be reconcentrated. The point is that reconcen­
tration will require some filtration or adsorption procedure that uses energy and 
generates heat. That heat will cause air molecules to move, and rapidly mov­
ing air molecules have more entropy (are more disordered) than slowly moving 
molecules. Likewise. the air can be pumped back into the tank and the cards can 
be picked up and resorted, both of which processes require work, which generates 
heat and, therefore. entropy. 

Living systems are local regions of low entropy; their structures are highly 
organized, and even small perturbations in that organization can mean the differ­
ence between being alive and not being alive. From the earlier discussion we can 
see that nothing in the Second Principle forbids the low entropy of living sys­
tems. as long as the entropy of the universe increases appropriately during their 
formation. 

Entropy increases in a process until equilibrium is reached. 

Recall the examples of the previous section: The ink disperses in the water until 
it is uniformly distributed; the gas escapes the tank until the pressure is the same 
inside and outside of the tank; the cards flutter helter-skelter until they come to 
rest on a surface. In each case the process of entropy-increase continues to some 
end-point and then stops. That end-point is called an equilibrium state. 

Any equilibrium can be disrupted; more water can be added to the ink, the 
room containing the gas can be expanded and the table bearing the cards can 
drop away. In each case the system will then find a new equilibrium. Thus, we 
can regard equilibria as temporary stopping places along the way to the maximal 
universal entropy predicted by the Second Principle. 
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Free energy is energy available to do useful work. 

Every organism needs energy for growing, moving, reproducing and all the other 
activities we associate with being alive. Each of these activities requires organized 
structures. To maintain this organization, or low entropy, requires that the living 
system expend energy, much as energy was required to reconcentrate the ink or to 
resort the cards in the earlier examples. 

Free energy is energy that can do useful work. In living systems, "useless" 
work is that which causes a volume change or which increases entropy. Whatever 
energy is left over is "free" energy. Living systems do not change their volume 
much, so entropy is the only significant thief of free energy in a cell. Therefore, 
free energy in a cell decreases when entropy increases. To a good approximation, 
we can assume that a living system begins with a certain amount of potential 
energy obtained from sunlight or food; some energy will then be lost to entropy 
production, and the remainder is free energy.7 

To a physical chemist, the convenient thing about free energy is that it is 
a property of the system alone, thus excluding the surroundings. In contrast, the 
Second Principle requires that one keep track of the entropy of the entire universe. 
As a result, it is usually easier to work with free energy than with entropy. We can 
summarize the relationship between the two quantities as they pertain to living 
systems by saying that entropy of the universe always increases during processes 
and that a system in equilibrium has maximized its entropy, whereas the free 
energy of a system decreases during processes and, at equilibrium, the system's 
free energy is minimized. 

Free energy flows, with losses, through biological systems. 

Thermonuclear reactions in the sun liberate energy, which is transmitted to the 
earth as radiation, which is absorbed by green plants. Some of the sun's radiation 
then heats the plant and its surroundings, and the rest is incorporated into glucose 
by photosynthesis. In photosynthesis some of the free energy of the sun is used 
to create covalent bonds among parts of six carbon dioxide molecules, forming 
glucose, the six-carbon sugar, as shown in the following (unbalanced) reaction:8 

The plant, or an animal that eats the plant, then uses some of the free energy of the 
glucose to add a phosphate group to adenosine diphosphate (ADP) in the process 
called respiration. 

7If you have studied physical chemistry. you will recognize this quantity specifically as Gibbs' 
free energy (4). , 

IThe reason that water ap~ars on both sides of the reaction equation is that the two water 
molecules are not the same: One is destroyed and the other is created in the reaction. The reaction 
shown is a summary of the many reactions that comprise photosynthesis. 
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ADP + phosphate 

The resultant adenosine triphosphate now has some of the energy that orig­
inated in the sun. The ATP can then move around the cell by diffusion or con­
vection and drive various life processes (moving, growing, repair, driving NaIK 
pumps, etc.). 

ATP ADP + Phosphate 

energy to drive 
life processes 

To recapitulate: Sunlight drives photosynthesis, in which carbon dioxide is 
combined to make glucose. The latter thus contains some of the energy that orig­
inated in the sun. In respiration, the plant or an animal that eats the plant then 
converts some of the free energy in the glucose into free energy of ATP. Finally, 
at a site where it is needed, the ATP gives up its free energy to drive a biological 
process, e.g., contraction of a muscle. 

At every step along the way from sun to, e.g .• muscle movement. entropy is 
created and free energy is therefore lost. By the time an animal moves its muscle, 
only a small fraction of the original free energy the green plant got from the sun 
remains. If a subsequent carnivore should eat the herbivore. still more free energy 
would be lost. After the carnivore dies. decomposing organisms get the last of 
whatever free energy is available to living systems. 

The heat generated in biochemical reactions can help drive other reactions. 

The earlier discussion pointed out thal free energy, ultimately derived from the 
sun, is used to drive the processes we associate with being alive. As these pro­
cesses occur entropy is generated. Although the resultant heat energy will even­
tually be lost to the sUIToundings. it can be stored for a short while in the water 
of the cell and thus be used to maintain or increase the rates of cellular chemical 
reactions. 

In order to understand how heat energy can promote chemical reactions we 
need to digress a bit. If a process were able to occur spontaneously (increasing 
entropy; decreasing free energy). why would it not have already occurred? Water 
should spontaneously flow from a lake to the valley below. as shown in Figure 
9.4.1 (a). This has not happened because there is a dam in the way, but a siphon 
would take care of that without any net outlay of energy. (Figure 9.4.l(b» The 



Chapter 9 I The Biochemistry of Cells 299 

latter point is critical: The water going up the siphon requires the same amount of 
energy that it gets back in going down the siphon.9 From that point on, the water 
can fall to the valley, developing exactly as much kinetic energy as it would have 
if the dam had not existed in the first place. 

9We are ignoring friction here. 

a) 
dam -

valley 

b) 

Figure 9.4.1 (a) A lake holds back water above a valley; thus, the water has a certain 
amount of potential energy with respect to the valley. (b) The water can get past the 
dam via a siphon, but the energy of the water with respect to the valley is not changed 
by the trip through the siphon. In other words. the energy yielded by the water in 
falling to the valley is independent of the path it takes. (We are assuming that friction 
is negligible.) 
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The example of the dam is a macroscopic analog to biochemical processes. 
For example. in respiration a cell takes up glucose. a high free energy compound. 
and converts it to C02. a low free energy compound. This process. on thermo­
dynamic grounds. should therefore be spontaneous. In fact. we can demonstrate 
a spontaneous change of glucose to C~ by putting some glucose into an open 
dish. from which it will disappear over a period of days to weeks. via conversion 
to C~ and H20. The reason the process in the dish takes so long is that there 
is an intermediate state (in reality. several) between glucose and C02 and H20. 
as shown in the free energy diagram in Figure 9.4.2. The intermediate state is 
called a transition state. and it is the analog of the dam in Figure 9.4.1. Before 
the sugar can change to the gas. releasing its free energy. the transition state must 
be overcome. i.e .• a certain amount of activation energy is needed to move the 
system into the transition state. IO This energy is returned on the other side of the 
transition state. after which the chemical system behaves as if the transition state 
were not there. The examples of the dam and the glucose suggest a general con­
clusion: The net change in free energy between two states is independent of any 
intermediate states. 

10 Figure 9.4.2 is, of course, only a model. The actual conversion of glucose to carbon dioxide 
in an open dish would involve numerous intennediate compounds, some of which would be real 
transition states and some of which would be morc-or-Icss stable compounds. For instructive pUrp<lSes 
we represent the system as having a single transition state. 

initial 
state 

(glucose) 

transition 
state 

direction of reaction 

final 
state 

(C02 + H20) 

Figure 9.4.2 A free energy diagram of the conversion glucose ~ C02 + H20. There 
is a transition state between the initial and final states. Even though the conversion of 
glucose to C02 and H20 is energetically downhill, it will not be a spontaneous conver­
sion because of the transition state. 
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......... '''. , • path of uncatalyzed reaction , . , 
path of catalyzed " 

reaction " . 
~ 

direction of reaction 

Figure 9.4.3 The effect of enzymic catalysis on the height of a transition state. The 
enzyme lowers the energy of the transition state but, as in Figure 9.4.1, the overall 
change in energy is independent of the path. Lowering the transition state does, how­
ever, permit the reaction to proceed spontaneously in the presence of a little thermal 
energy. 

Transition states are the rule, not the exception, and the biochemical reac­
tions of living systems are typical in that those that release free energy must first 
be activated. There are two sources of activation energy available to cells, how­
ever: First, most cells exist at 0-40°C and, second, heat energy is generated by the 
normal inefficiency of cellular processes. I I This heat energy is stored in H-bond 
vibrations in the water of the cell, at least until it is finally lost to the external 
environment. While this heat energy is in the cell it is available to push systems 
into their transition states, thus promoting chemical reactions. After serving its 
activation function, the heat energy is returned unchanged. 

The preceding discussion explains how heat serves a vital cellular function 
in providing activation energy to drive cellular biochemical reactions. This, how­
ever, does not close the subject, because activation energy is tied in with another 
observation: The glucose in a dish changes to C02 and H20 over a period of 
months, and the same change can occur in a cell in seconds or less. Yet, the tem­
peratures in the dish and in the cell are the same, say 37°C. The difference is that 
the reactions in the cell are catalyzed by enzymes. 

In brief, the catalytic function of an enzyme is to reduce the energy of the 
transition state and thereby to lessen the amount of heat energy needed by the sys­
tem to meet the activation energy requirement. In this manner the enzyme speeds 
up the rate at which the reaction proceeds from the initial state (100% reactant) 
toward the final, equilibrium state (perhaps 100% product). Figure 9.4.3 is a free 
energy diagram for a biochemical system in its catalyzed and uncatalyzed condi­
tions. The enzyme catalyst lowers the activation energy and makes it much easier 

II DireCI sunlighl is also used by many "cold-blooded" animals 10 henl up their bodies. 
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for the initial state to be converted into the transition state, and thus into the final 
state. The dependence of reaction rate on activation energy is exponential; thus, 
a small change in activation energy can make a very big difference in reaction 
rate. For comparison, enzymatic catalysis potentially can speed up the rates of 
reactions by as much as 1013 times. 

How much energy is actually available? At 30°C the average amount of 
heat energy available is about 0.025 eV per molecule, but the energy is unevenly 
distributed, and some substrate molecules will have more and some will have less. 
Those that have more will often have enough to get to the transition states made 
accessible by enzymatic catalysis. 

Section 9.5 

Rates of Chemical Reactions 

Stoichometric rules are not sufficient to determine the equilibrium position of a 
reversible chemical reaction; but adding reaction rate principles makes the calcu­
lation possible. Primarily, rate equations were designed to foretell the speed of 
specific reactions, and, in this capacity, they predict an exponentially decaying 
speed, as reactants are consumed. characterized by the reaction's rate constant. 
But in fact, the equilibrium position of a reversible reaction is reached when the 
rate of formation equals the rate of dissociation. Therefore equilibrium positions. 
as well as reaction rates, are determined by a combination of the forward and 
reverse rate constants. 

Irreversible (uni-directional) reactions are limited by the first reactant to be 
exhausted. 

Consider the irreversible bimolecular reaction 

A+B ~ X+Y, (9.5.1 ) 

in which one molecule each of reactants A and B chemically combine to make 
one molecule each of products X and Y. It follows that the rate of disappearance 
of reactants equals the rate of appearance of products. The Conservation of Mass 
principle takes the form 

dX dY dA dB 
-=-=--=--
dt dt dt dt 

If Mo denotes the initial number of molecules of species M, by integrating each 
member of this chai9 of equalities from time 0 to time t. we get 

X(t) - Xo = yet) - Yo = -A(t) + Ao = -B(t) + Bo· (9.5.2) 
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Equation (9.5.2) gives the amount of each species in terms of the the others, 
so if anyone of them is known, then they all are. But in order to know the 
amount of anyone of them, we must know how fast the reaction occurs. This is 
answered by the lAw of Mass Action (due to Lotka): The rate of at which two or 
more chemical species simultaneously combine is proportional to the product of 
their concentrations. Letting [M] denote the concentration of species M, the mass 
action principle states that the rate at which product is formed is equal to 

k[A][B] (9.5.3) 

where the constant of proportionality k is characteristic of the reaction. 
So far our considerations have been completely general, but now we must 

make some assumptions about where the reaction is occuring. We suppose this 
to occur in a closed reaction vessel, such as a beaker with a fixed amount of 
water. In this case, concentration is the number of molecules divided by, for all 
species, the same fixed volume of medium. 12 We allow the possibility that one 
or more of the products, X or y, be insoluble and precipitate out of solution. 
This is one of the main reasons that a bimolecular reaction may be irreversible. 
For such an insoluble species, "concentration" means the ratio of its number of 
molecules over the volume of the medium, even though it is not dissolved. While 
a product may precipitate out without disturbing the reaction, the reactants must 
remain dissolved. We now use the notation m(t), to mean this extended notion of 
concentration of species M. 

Combining the mass action principle with equation (9.5.2) we get 

dx 
- =kab 
dt 

= k(ao + Xo - x)(bo + Xo - x) 
(9.5.4) 

with initial value x(O) = Xo. The stationary points of equation (9.5.4) are given 
by setting the right-hand side to zero and solving to get (see Section 2.4) 

x = ao +xo. or x = bo +xo. (9.5.5) 

The first of these says that the amount of X will be its original amount plus an 
amount equal to the original amount of A. In other words, A will be exhausted. 
The second equation says the reaction stops when B is exhausted. 

Suppose, just for argument, that ao < boo Then also ao) + Xo < bo + Xo. 
While x(t) < ao + Xo, the right-hand side of equation (9.5.4) is positive, therefore 
the derivative is positive, so x increases. This continues until x asymptotically 

12By contrast, for an open reaction ve..sel, such as the heart or a chemostat, the concentrations 
are determined by that of the in flowing reactants. 
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reaches ao + Xo. whereupon the reaction stops. The progression of the reaction as a 
function of time is found by solving equation (9.5.4) which is variables separable: 

dx 
-:----:-:-:----"7 = k dt. 
(ao + Xo - x)(bo + xo - x) 

Note the similarity of this equation to the Lotka-Voterra system of Section 4.4. 
The left-hand side can be written as the sum of simpler fractions 

(00 + Xo - x)(bo + Xo - x) bo - ao ao + Xo - x 
I I 

- bo-aobo+xo-x· 

Thus equation (9.5.4) may be rewritten as 

[ I -b I ]dX=(bo-ao)kdt. 
ao+xo-x o+xo-x 

Integrating gives the solution 

- In(ao + Xo - x) + In(bo + Xo - x) = (bo - ao}kt + q 

In = (bo - ao)kt + q, ( bo +xo -x) 
ao+xo-x 

where q is the constant of integration. Now this may be solved for in terms of x. 

(00 + xo)Qe(ht,-un)kt - (bo + Xo) 
x = ..:......:;-.-:.;..:::....,.,.---:-:---'-~---'..:.. 

Qe(ht,-un)kt _ I (9.5.6) 

where Q = t!I is a constant. This equation is graphed in Figure 9.5.1. For th~ 
purpose of drawing the figure. we choose the constants. solve the resulting differ­
ential equation and draw its graph as follows: 

> k:=1; aO:=2; bO:=3; xO:=112; 

> dsolve( { diff(x(t).t)=k*(aO+xO-x(t»"(bO+xO-x(t».x(O)=xO }. {x(t)}); 

> simplify(·); 
> x: .. unapply(rhs(· ).t); 
> plot([t,x(t),t=0..4],t=-1 .. 3.tickmarks=[3,3],labels=(,t' ,'x(t),]); 
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3 

2 

X(I) 

-\ o 0 

Figure 9.S.1 A typical solution to equation (9.5.4). 

The result is 

() 1-15+ 14e-1 

xt =--...,.----
2 -3 + 2e-1 
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2 3 

Example: Suppose 2 moles of silver nitrate (AgN03) are mixed with 3 moles of 
hydrochloric acid (Hel). A white precipitate. silver chloride. is formed. and the 
reaction tends to completion. 

AgN03 + Hel --+ Agel.!. +HN03' 

From above. asymptotically. the reaction stops when the 2 moles of silver ni­
trate have reacted. leaving 2 moles of silver chloride precipitate and I mole of 
hydrochloric acid unreacted. 

Kinetics for reversible reactions work the same way. 

Now assume reaction (9.5.1) is reversible 

A+B ~ X+y (9.5.7) 
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with the reverse reaction also being bimolecular. This time there is a backward 
rate constant. L I as well as a forward one. kl. From the mass action principle 
applied to the reverse reaction. we have 

rate of conversion of X + Y = L I [X][Y]. 

Under normal circumstances. the forward and backward reactions take place in­
dependently of each other and consequently the net rate of change of any species. 
say X. is just the sum of the effects of each reaction separately. It follows that the 
net rate of change in X is given by 

dx . f . f Y dt = (converSIOn rate 0 A+B) - (conversion rate 0 X+ ) 

= kl[Aj[B] - L1[Xj[Y], (9.5.8) 

= kl (ao + Xo - x}(bo + xo - x) - Llx(yo - Xo + x), 

where equation (9.5.2) has been used in the last line. Circumstances under which 
the forward and backward reactions are not independent include precipitation of 
one of the species. as we have seen above. Another occurs when one of the 
reactions is highly exothermic. In that case. conditions of the reaction radically 
change. such as the temperature. 

The analysis of equation (9.5.8) goes very much like that of equation (9.5.4). 
The stationary points are given as the solutions of the ~ = 0 equation 

0= kl(ao +xo - x)(bo +xo -x) - Llx(yo - Xo + x) 

= (kl - L 1).? - (kl (ao + bo + 2xo) + LI (Yo - xo)) x 

+ kl (ao + xo)(bo + xo) 

(9.5.9) 

As one can see. jf kl =I L I. this is a quadratic equation and therefore has two 
roots. say x = a.. and x = ~. which may be found using the quadratic formula. 
t( -b ± Vb2 - 4ac). The right-hand side of equation (9.5.8) thus factors into 
the linear factors 

dx 
dt = (k l - LJ)(x - a)(x -13)· (9.5.10) 

Again. just as above. this variable separable differential equation is easily solved 
but the nature of the solution depends on whether the roots are real or complex. 
equal or distinct. To decide about that. we must examine the discriminant of 
the quadratic formula. b2 - 4ac. By direct substitution of the coefficients from 
equation (9.5.9) into the discriminant and then simplifying. we get 
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The first and last terms are squares and so are positive (or zero). We see that, if 
Yo ~ X(j, then the discriminant is always positive or zero and the two roots are 
real. Since X was an arbitrary choice, we can always arrange that Yo ~ Xo, so we 
assume this is so. 

Unless the initial concentrations are equal, ao = bo and Yo = XQ, the roots 
will be distinct. We assume without loss of generality that 

(9.5.12) 

Then, in a similar way to the derivation of equation (9.5.6), the solution of equa­
tion (9.5.10) is 

(
X -(3) In -- = {13 - a)(k, - L,)t + q, x-a 

where q is the constant of integration. This may be solved in terms of x. 

13 - Qe" x= '--~-
1 - Qert 

where Q is a constant and 

(9.5.13) 

If the discriminant is zero, then 13 = a and in that case the solution is 

-I -- = (k, -Ldt+q, x-a 

or 

where q is again the constant of integration. 

Exercises 

1. Suppose that A + B -+ C. that the initial concentrations of A, B. and C are 
112. 113, and 0, respectively, and that the rate constant is k. 
a. Show that this leads to the differential equation in z{t) = [C(t)] given by 

z(O) = O. 

b. Solve this equation. 



308 Section 9.6 I Enzyme Kinetics 

c. Show that the corresponding equation for x(t) = [A(t)] is 

I 
x(O) = 2' 

d. Solve this equation. Show by adding the solutions x and z that the sum 
is constant. 

e. At what time is 90% of the steady state concentration of C achieved? 
f. Suppose that k is increased 10%. Now rework part e. 

2. Suppose that A + B +-+ C + D is a reversible reaction, the initial concentrations 
of A and B are 4/10 and 5/10, respectively, and that the initial concentrations 
ofCandDareO. Takekl = lOandL I = 5/2. 
a. Show that this leads to the differential equation 

5y2 
y' = 10(0.4 - y)(0.5 - y) - 2' y(O) = O. 

b. What is the equilibrium level of [C]? Draw two graphs, one where L I = 
5/2andonewhereL I = 5/4. 

Section 9.6 

Enzyme Kinetics 

Enzymes serve to catalyze reactions in living systems, enabling complex chemical 
transformations to occur at moderate temperatures, many times faster than their 
uncatalyzed counterparts. Proteins, serving as the catalysts. are first used and then 
regenerated in a multi-step process. Overall, the simplest enzyme-catalyzed re­
actions transform the enzyme's specific substrate into product, possibly with the 
release of a by-product. Referred to as enzyme saturation, these reactions are typ­
ically rate limited by the amount of enzyme itself. The degree to which saturation 
occurs relative to substrate concentration is quantified by the Michaelis-Menten 
constant of the enzyme-substrate pair. 

Enzyme catalyzed reactions are normally rate-limited by enzyme saturation. 

The importance of enzyme catalyzed reactions along with a general description 
of the biochemical principles of enzyme catalysis was given in Section 9.4. Here 
we will consider an enzyme, E, which acts on a single substrate, S, and converts 
it to an alternate form which is regarded as the product P. The enzyme performs 
this function by temporarily forming an enzyme-substrate complex, C, which then 
decomposes into product plus enzyme: 

S+E P C 

C ---+ P+ E. 
(9.6.1) 
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The regenerated enzyme is then available to repeat the process. 13 Here we will 
work through the mathematics of enzyme kinetics. The general principles of 
chemical kinetics discussed in the previous section apply to enzyme kinetics as 
well. However, due to the typically small amount of enzyme compared to sub­
strate, the conversion rate of substrate to product is limited when the enzyme 
becomes saturated with substrate as enzyme-substrate complex. 

As in the previous section, we let m denote the concentration of species M. 
The forward and reverse rate constants for the first reaction will be denoted k\ and 
LI respectively while the rate constant for the second will be taken as k2. The 
rate equations corresponding to the reactions (9.6.1) are l4 

de 
dt = k\es - Lie - k2e 

ds 
dt = -kles + Lie 

de 
dt = -kles + Lie + k2e 

(9.6.2) 

dp 
dt = k2e. 

Note that complex C is both formed and decomposed by the first reaction and de­
composed by the second. Similarly, enzyme E is decomposed and formed by the 
first reaction and formed by the second. The first three equations are independent 
of the formation of product P, and so, for the present, we can ignore the last equa­
tion. As before, we denote by subscript 0 the initial concentrations of the various 
reactants. In particular, eo is the initial, and therefore total, amount of enzyme 
since it is neither created nor destroyed in the process. 

By adding the first and third equation of system (9.6.2) we get 

de de _ 0 
dt + dt - . 

Integrating this and using the initial condition that eo = 0, we get 

e = eo - e. (9.6.3) 

We may use this to eliminate e from system (9.6.2) and get the following reduced 
system: 

de 
dt = kls(eo - e) - (LI + k2)e 

ds 
dt = -kls(eo - e) + Lie. 

(9.6.4) 

13Comparc this scheme to Figure 9.4.3. S+E constitutes the initial state. C is the transition state 
and P+E is the final Slate. 

14The units of kl arc different than those of L I and k2 since the former is a bimolecular constant 
while the latter arc uni-molecular. 
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In Figure 9.6.1 we show some solutions of this system of differential equation. 
For the purpose of drawing the figure. we take the constants to be 

> k1:=1/10; km1:=1/10; k2:=1110; eO:=4/10; (km1+k2)1k1; 

The equations are non-linear and cannot be solved in closed form. Consequently 
we use numerical methods to draw these graphs. It should be observed that the 
level S. graphed as s(t). drops continuously toward zero. Also. the intermediate 
substrate C. graphed as c(t}. starts at zero. rises to a positive level. and gradu­
ally settles back to zero. In the exercises we establish that this behavior is to be 
expected. 

> with{plots): with{DEtools): 

> enz:=[diff(c(t),t)=k1*s(t)*(eO-c(t))-(km1 +k2)*c(t), 

diff(s(t),t)=-k1*s(t)*(eO-c(t)) + km1*c(t)); 
> J:=DEplot2(enz,[c,sj,0 .. 100,[O,O,811 OJ,stepsize=1, 

sceli [t,51,labels=!,t',' 'J): 
> K:=DEplot2(enz,[c,5),O .. 100,[O,O,8/10I,stepsize=1, 

scene=[t,c),labels=['t', ' 'J): 

> L:=textplot( {[75,O.3, 's(t),),[60,O.1, 'C(t),)} ): 
> displayc{ J,K,L}); 
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Figure 9.6.1 Solutions for Equation (9.6.2) 
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In the exercises we provide techniques to draw what may be a more interest­
ing graph: Figure 9.6.2. In particular, we draw graphs of S(I), p(I), and e(I). The 
first two of these are, in fact, the most interesting as they demonstrate how much 
of S is left and how much of P has been formed. The addition of a graph for e(l) 
illustrates that during the intermediate phase, some of the enzyme is tied up in the 
enzyme-substrate complex, but as t!te reaction approaches equilibrium, the value 
of e(l) returns to its original value. 

From Figure 9.6.1, notice that the concentration of complex rises to a rel­
atively invariant ("effective") level which we denote as CEff. This is found by 
setting !ffi = 0 in system (9.6.4) and solving for c, 

or 

The combination kM of rate constants 

(9.6.5) 

0.8 

0.6 

p(t) 
moles 

0.4 -

0.2 

o 0 20 40 60 80 100 

Figure 9.6.1 Solutions for Equation (9.6.1) 
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is known as the Michaelis-Menten constant; it has units moles per liter. Solving 
for c above we get 

seo 
c=---

kM +s' 
(9.6.6) 

which is seen to depend on the amounts of substrate S. But if s is much larger than 
kM • then the denominator of equation (9.6.6) is approximately just s and we find 
the invariant level of complex to be 

(9.6.7) 

Thus. most of the enzyme is tied up in enzyme-substrate complex. 
By the velocity v of the reaction we mean the rate. '11f. at which product is 

formed. From equation (9.6.2). this is equal to k2C. When the concentration of 
substrate is large. we may use CEff as the concentration of complex and derive the 
maximum reaction velocity 

(9.6.8) 

Likewise. from equations (9.6.6) and (9.6.8). the initial reaction velocity. vo, is 
given by 

Vo = - =k2---dp I seo 
dt 1=0 kM + s 

vmaxs 
- kM +s· 

(9.6.9) 

In this, s is the initial substrate concentration, s = [S]o. Equation (9.6.9) is 
the Michaelis-Menten equation. the rate equation for a one-substrate. enzyme­
catalyzed reaction. Its graph is shown in Figure 9.6.3. 

The value of kM for an enzyme can be experimentally found from Fig­
ure 9.6.3. At low substrate concentrations kM + S ~ kM and so the graph ap­
proximates the line Vo = (vrnax / kM)S near s = O. On the other hand. at high 
substrate concentrations the reaction rate approaches Vmax asymptotically be­
cause. at these concentrations, the reaction is essentially independent of substrate 
concentration. By experimentally measuring the in"itial reaction rate for various 
substrate concentrations. a sketch of the graph can be made. Working from the 
graph, the substrate level which gives !vmax initial velocity is the value of kM, 
seen as follows. 
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> fcn:=s->vmax°s/CkM+s); vmax:=10: kM:=1S: 
> crv:=plotC[x,fcnCx),x=0 •• 150),x .. -20 .• 160,y:=-t .• 12,tickmart<s-[O,O]): 
> asy:-plot(1 0,0 .• 1 SO,tlckmarks=[o,o]): 
> midllne:=plotCS,O .. 15.3,tlckmart<s-[O,O]): 
> vertline:=pIotC[15.3,y,y:=O .• S),tlckmarks=[O,O)): 
> a:=.O: A:=O.O: b:.13: B:-13°vmaxlkM: 
> s/ope: .. x->AoCx-b)/Ca-b)+B·Cx-a)/Cb-a): 
> slopeline:=plotCslope,a .. b): 
> txt1:=textplotC{[t30.S,10.3:-vmax-'),[-10.5,S:112 vmax1},align .. LEFT): 
> txt4:=textplotC{(b+14,B+0.S:S/Ope .. vrnaxIkM'J}): 
> txtS: .. textplot( {[1S.3,-0.3:-kM-'J} ,align=BELOW): 
> withCplots): 
> display( { crv,asy,mldline,vertline,slopeline,txtt,txt4,txt5 } ); 

initial 
reaction 
velocity 

vO 

112 Vmax 

kM initial substrate concentration .r 

Figure 9_6.3 Michaelis-Menten plot 

From equation (9.6.9) with Vo = vmax/2, 

and, solving for kM gives 

313 
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Thus. we interpret kM as the substrate concentration at which the reaction 
rate is half maximal. By inverting the Michaelis-Menten equation (9.6.9) we get 

kM +S -=--
Vo VmaxS 

(9.6.IO) 

kM 1 1 =---+--. 
Vmax S Vmax 

This is the Lineweaver-Burk equation and shows that a least squares fit may be 
made to the double-reciprocal plot of ; vs ~. This has the advantage of allowing 
an accurate determination of Vmax. 

Another transform of the Michaelis-Menten equation that allows the use 
of least squares is obtained from equation (9.6.10) by multiplying both sides by 
VoVmax; this yields 

(9.6.11) 

A plot of Vo against vo/IS] is called the Eadie-Hofstee plot; it allows the determi­
nation of kM as its slope and Vmax as its intercept. 

Exercises 

I. Our intuition for the long-range forecast for (9.6.1) is that some of the re­
actants that move from S to C move on to P. But the assumption is that the 
second reaction is only one-way so that the products will never move back 
toward S.15 This suggests S will be depleted. We conjecture that Soo = 0 
and Coo = O. We confirm this with the notions of stability that we studied in 
Section 2.5. 
a. Find all the stationary solutions by observing that setting ~ = 0 and 

~ = 0 leads to the equations 

While it is clear that S = 0 and c = 0 is a solution. establish that this is 
the only solution for the equations as follows: 

> soIve(k1·s·(eO-C)-(km1+k2)·~O,c); 

ISln the context of a free energy diagram (Figures 9.4.2 and 9.4.3). the one-way nature of the 
process C -+ P is due to a lack of sufficient free energy in the environment 10 cause the teYerlle 

reac:uon P -+ C. 
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Substitute this into the second equation and set the resulting equation 
equal to zero. Argue that s must be zero and e must be zero. 

> subs(e=" ,-k1*s*(eG-c) + km1*c); 

> numer(· )/denom(· .) '"' 0; 

b. Establish that s = c = 0 is an attracting stationary point by finding the 
linearization about this only stationary point. (Recall Section 4.4.) 

> jacobian([k1*s*(eO-c)-(km1 +k2)*c, -k1*s*(eO-c) + km1*c],[c,s)); 

> subs( { e=O,S=O } , " ); 

> elgenvals("); 

c. Verify that the eigenvalues of the linearization are 

and that both these are negative. Argue that this implies {O,O} is an 
attracting stationary point for {e(I), S(I)}. 

2. Draw the graph of Figure 9.3.3. With Maple V. release 3, we use a pro­
gram called ODE from the share package to get numerical solutions for this 
systems. Here is the syntax for using this program and for drawing Figure 
9.3.3. The routine uses a Runge-Kutta package by calling the program with 
rungekuttahf. Remove the final f from the call command if the machine 
on which the program is running does not have a math co-processor. 

> with(share): readshare(ODE,plots); with(plots): 

> k1:=1I10: k2:=1/10: kmb.1/10: sO:=8I10: eO: .. 4110: 

> rss:=(t,s,c,p,e)->-k1*e*s + km1*c; 

rsc:=(t,s,c,p,e)->k1*e*s - (km1 +k2)*c; 

rsp:=(t,s,c,p,e)->k2*c; 

rse: ... (t,s,c,p,e)->-k1*e*s + (km1 + k2)*c; 

> inll:=[O,sO,O,O,eO]; 

> output: .. rungekuttahf([rss,rsc,rsp,rse),init,1,1 00): 

> J: .. plot( {makelist(output, 1 ,2),makelist(oulput,1 ,4), 

makellst(output,1,5)} ,vle_[-10 .. 1 00,0 .. 0.8)): 

> K:-textplot( {(90,O.14, 's(t)'),(90,O.42, 'e(t),),[68,O .55, 'p(t)'), 

[-10,O.5,'moIes ')} ,view=(-1 0 .. 1 00,0 .. 0.8)): 

> dlsplay( { J,K} ); 

3. Draw the graph of the solution e(l) for in equation (9.3.2) with constants 
chosen so that kM :::::: 1 and S = 10. The point to observe is that e(t) :::::: eo for 
large values of t . 
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> with(share): readshare(ODE,plots); with(plots): 

> k1:=1: k2:=1/10: km1:=1/40: sO:=10: eO:=4110: 
(km1 +k2)1I<1: sO/(· +sO); 

> rss:=(t,s,c,p,e)->-k1"e"s + km1"c; 

rsc:=(t,s,c,p,e)->k1"e"s - (km1+k2)"c; 

rsp:=(t,s,c,p,e)->k2"c; 

rse:=(t,s,c,p,e)->-k1*e*s + (km1 + k2)*c; 
> init:=[O,sO,O,O,eO); 

Section 9.6 I Enzyme Kinetics 

> output:=rungekuttahf([rss,rsc,rsp,rse),init, 1/10,100): 

> plot(makelist(output, 1 ,3»; 

4. Suppose that A + B -+ C, that the initial concentrations of A, B, and Care 2, 
3, and 0, respectively, and that the rate constant is k. 
a. The concentration of C is sampled at t = 3/2 and is found to be 3/5. 

What is an approximation for k? 
b. Instead of determining the concentration of C at just t = 3/2, the con­

centration of C is found at five times: 

Time Concentration 

0.5 .2 
1.0 .4 
1.5 .6 
2.0 .8 
2.5 1. 

Estimate K. Plot your data and the model your K predicts on the same 
graph. 
5. We have stated in Section 9.2 that the addition of an enzyme to a reaction 

could potentially speed the reaction by a factor of 1013. This problem gives a 
glimpse of the significance of even a relatively small increase in the reaction 
rate. 
Suppose that we have a reaction 

Af-tB-+C. 

Suppose also that LI = k2 = I, that the initial concentration of A is ao = I, 
and the initial concentrations of Band C are zero. 
a. Show that the differential equations model for this system is 

da 
dt = -k1a(t) + k1b(t) 

db 
dt = k1a(t) - (LI + k2)b(t) 

de 
dt = k2b(t). 
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b. Find a(t), b(t), and c(t} for k\ = I and for kl = 10. Plot the graphs for 
the three concentrations in both situations. 

> with(linalg): 

> k1:=1; km1:=1; k2:=1; 
> A:=matrix([[-k1,km1,OJ,[k1,-km1-k2,OJ,[O,k2,O])); 
> u:=evalm(exponential(A,t) &* [1,0,0]): 

> a:=unapply(u[1J,t); 

b:=unapply(u[2J,t); 

c:=unapply(u[3J.t): 
> plot( {a(t),b(t),c(t)} ,t=0 .. 7); 
> solve(c(t)=.8,t); 

c. Take kl = I, 10,20,30,40, and 50. Find 1k such that C(Tk) = .8 for 
each of these k's. Plot the graph of the pairs {k, Tk }. Find an analytic fit 
for these points. 

Section 9.7 

Questions for Thought and Discussion 

I. Draw the structural formulas ("stick models") for (a) butane, the four-carbon 
hydrocarbon, having all carbons in a row, and no double bonds; (b) iso­
propanol, having three carbons, an -OH group on the middle carbon, and 
no double bonds; (c) propene, with one double bond. 

2. Relate this set of reactions to a free energy level diagram: A + E f-+ B -t 
C + E, where E is an enzyme. What effect does E have on the energy levels? 

3. Assume this reaction: A f-+ C f-+ B, where the intermediate state C has a 
lower free energy than A or B. Knowing what you do about the behavior of 
free energy, what would happen to the free energy difference between A and 
B if the free energy of C were changed? 

4. A mechanical analog of the situation in Question 3 is a wagon starting at A, 
rolling downhill to C and then uphill to B. There is a frictional force on the 
wagon wheels. What do you think will be the effect of varying the depth of 
C? 

,. Describe the chemical differences between RNA and DNA. What are their 
biological (functional) differences? 

6. Outline the process of information flow from DNA to the control of cellular 
chemistry. 

7. Name six kinds of proteins and describe their functions. 
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Chapter 10 

A Biomathematical Approach 
to HIV and AIDS 

Introduction to this chapter 

Acquired Immunodeficiency Syndrome (AIDS) is medically devastating to its 
victims and wreaks financial and emotional havoc on everyone, infected or not. 
The purpose of this chapter is to model and understand the behavior of the 
causative agent of AIDS-the Human Immunodeficiency Virus (HIV). This will 
necessitate discussions of viral replication and immunology. By the end of this 
chapter the student should have a firm understanding of the way that HIV func·· 
tions and be able to apply that understanding to a mathematical treatment of HIV 
infection and epidemiology. 

Viruses are very small biological structures whose reproduction requires a 
host cell. In the course of viral infection the host cell is changed or even killed. 
The host cells of HIV are specific and very unique: They are cells of our immune 
system. This is of monumental importance to the biological and medical aspects 
of HIV infection and its aftermath. HIV infects several kinds of cells, but perhaps 
its most devastating cellular effect is that it kills helper T lymphocytes. Helper 
T lymphocytes playa key role in the process of gaining immunity to specific 
pathogens; in fact, if one's helper T lymphocytes are destroyed, the entire specific 
immune response fails. Note the irony: HIV kills the very cells that are required 
by our bodies to defend us from pathogens, including HIV itself! The infected 
person then contracts a variety of (often rare) diseases to which uninfected persons 
are resistant, and that person is said to have AIDS. 

Section 10.1 

Viruses 
Viruses are small reproductive forms with powerful effects. A virus may have 
only four to six genes, but those genes enable it to take over the synthetic ma­
chinery of a normally functioning cell, turning it into a small biological factory 
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producing thousands of new viruses. Some viruses add another ability: They can 
insert their nucleic acid into that of the host cell, thus remaining hidden for many 
host cell generations prior to viral reproduction. 

HIV is an especially versatile virus. It not only inserts its genetic information 
into its host's chromosomes, but it then causes the host to produce new HIV Thus, 
the host cells, which are immune system components, produce a steady stream of 
HIV particles. Eventually this process kills the host cells and the patient becomes 
incapable of generating critical immune responses. 

A virus is a kind of parasite. 

Each kind of virus has its own special anabolic ("building up") needs which, be­
cause of its genetic simplicity, the virus may be unable to satisfy. The host cell 
then must provide whatever the virus itself cannot. This requires a kind of bio­
logical matching between virus and host cell analogous to that between, say, an 
animal parasite and its host. Host specificity is well-developed in viruses: As ex­
amples, the rabies virus infects cells of our central nervous system, cold viruses 
affect cells of our respiratory tract and the feline leukemia virus affects certain 
blood cells of cats (see Reference [I D. 

The basic structure of a virus is a protein coat around a nucleic acid core. 

Simple viruses may have only four to six genes, but most viruses have many more 
than that. In the most general case the viral nucleic acid, either DNA or RNA, 
is surrounded by a protein coat. called a capsid (see Figure 10. I. I). In addition, 

envelope 

capsid 

nucleic acid 

enzyme 
molecules 

Figure 10.1.1 A generalized drawing of a virus. In a given real case the envelope 
and/or enzyme molecules may be absent and the nucleic acid may be DNA or RNA. 
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many viruses have outer layers, or envelopes, which may contain carbohydrates, 
lipids and proteins. Finally, inside the virus there may be several kinds of enzymes 
along with the nucleic acid. 

A virus cannot reproduce outside a host cell, which must provide viral build­
ing materials and energy. All the virus provides is instructions via its nucleic acids 
and, occasionally, some enzymes. As a result, viruses are not regarded as living 
things. 

Viral nucleic acid enters the host cell and redirects the host cell's metabolic 
apparatus to make new viruses. 

A virus attaches to its specific host's outer covering, host-virus specificity being 
assured by host-to-viral molecular recognition. The molecules involved are pro­
teins or glycoproteins, a sugar-protein combination. At this point the viral nucleic 
acid enters the host cell, the precise means of entry depending on the nature of 
the virus (see Figure 10.1.2). For instance, viruses called bacteriophages infect 
bacteria. Bacteriophages have no envelope and seem to inject their nucleic acid 
into the bacterium, leaving the viral protein capsid outside. Alternatively, nucleic 
acids from viruses that infect animals can enter the host cell by fusion, in which a 
virus joins its envelope to the cell membrane of the host cell and the entire viral 
capsid is drawn into the host cell. Fusion is facilitated by the fact that the viral 
envelope is chemically similar to the cell membrane. The capsid is then enzymat­
ically removed, thus exposing its contents-the viral nucleic acid and possibly 
certain viral-specific enzymes. 

What happens next depends on the identity of the virus, but it will ultimately 
lead to viral multiplication. Viral replication requires the production of viral­
specific enzymes, capsid proteins and, of course, viral nucleic acid. The synthesis 
of these components is carried out by using the host cell's anabolic machinery and 
biochemical molecules. To do this, the host cell's nucleic acid must be shut down 
at an early stage in the infection, after which the viral nucleic acid takes control of 
the ceJlular machinery. It is said that the host cell's metabolic apparatus is changed 
from "host-directed" to "viral-directed." An analog can be found in imagining a 
computer-controlled sofa-manufacturing plant. We disconnect the original (host) 
computer and install a new (viral) computer that redirects the existing construction 
equipment to use existing materials to manufacture chairs instead of sofas. 

Typically a virus uses the enzymes of the host cell whenever possible, but 
there are important situations where the host cell may lack a critical enzyme 
needed by the virus. For example. some viruses carry single-stranded nucleic 
acids. which must become double-stranded shortly after being inserted into the 
host. The process of forming the second strand is catalyzed by a particular poly­
merase enzyme, one that the ~ost lacks. The viral nucleic acid can code for the 
enzyme. but the relevant gene is on the nucleic acid strand that is complemen­
tary to the one strand the virus carries. Thus the gene is unavailable until the 
viral nucleic acid becomes double stranded-but of course the nucleic acid can­
not become double-stranded until the enzyme is available! The virus gets around 
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a) bacterial host 

b) animal cell host 

Section 10. I I Viruses 

virus containing 
nucleic acid 

....-- virus attaches 
to bacterium 

....-- virus injects its 
nucleic acid 
into bacterium 

0~·-- virus containing 
nucleic acid 

virus fuses to 
cell membrane 

virus is drawn 
into cell's interior 

viral capsid is removed, 
exposing viral nucleic acid 

Figure 10.1.2 Some models of viral infection. (a) A virus whose host is a bac­
terium recognizes some molecular feature of the correct host, attaches to it and injects 
its nucleic acid into it. (A virus whose host is a bacterium is called a bacteriophage.) 
(b) A virus whose host is an animal cell recognizes some molecular feature of the 
correct host cell and is then drawn into the host cell, where the capsid is removed. 

this problem by carrying one or more copies of the actual enzyme molecule in its 
capsid and injecting them into the host at the time it injects the nucleic acid. 1 

I Recall from Chapter 9 that, in a given segment of DNA, only one of the two DNA strands 
actually codes for RNA. That strand is called the codinli strund. In the example given above, the 
coding strand would be the strand formed after infection. Thus its genes would not be available until 
after the nucleic acid became double-stranded. 
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As the virus' various component parts are constructed, they are assembled 
into new, intact viruses. The nucleic acid is encapsulated inside the protein capsid, 
perhaps accompanied by some critical viral enzymes. The assembly of the capsid 
is spontaneous, like the growth of a crystal. The newly assembled viruses then 
escape from the host cell and can start the infection process anew. 

Many RNA viruses do not use DNA in any part of their life cycle. 

The Central Dogma was presented in Chapter 9 to show the path of genetic infor­
mation flow. 

DNA ---.. RNA --+. protein 

U 
Note that, because RNA is complementary to DNA, it should be possible to 

skip the DNA part of the scheme. All that is necessary to justify this assertion is to 
demonstrate that RNA can code for its own self-replication. While this does not 
seem to happen in cellular systems, it is well-known in viruses: Viral RNA repli­
cates just like DNA does, using complementary base-pairing. After replication, 
the RNA is packaged into new viruses.2 

Our revised statement of the Central Dogma, accounting for RNA self­
replication, now looks like this. 

DNA • RNA ---.. protein 

UU 
There are several variations in the host-cell-escape mechamsmJor viruses. 

Some viruses merely replicate their nucleic acid, translate out the necessary pro­
teins, encapsulate and then burst out of the host cell an hour or two after infection. 
This bursting process kills the host cell and is called lysis; the virus is said to be 
lytic. 

2There are single·stranded and double-stranded RNA viruses. just like there are single- and 
double-stranded DNA viruses. HIV is a single-stranded RNA virus-its conven:ion to double-stranded 
form will be described in Section 10.3. 
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Other viruses, said to be lysogenic, delay the lytic part of their reproductive 
process. For example, the DNA of some DNA viruses is inserted into the host 
cell body and then into the host's DNA. Thus, when the host's DNA is replicated 
at cell division, so is the viral DNA. The inserted viral DNA is called a provirus, 
and it can remain inserted in the host DNA for many cell generations. Sooner or 
later, depending on the lysogenic virus, host and culture conditions, the provirus 
begins to replicate its nucleic acid and produces RNA, which then produces viral 
proteins. New viruses are then assembled and lyse the host to get out. 

There is an alternative to lysis in the escape process: When the viruses exit 
the host cell, they may instead bud o.fJfrom the host cell, in a process that is the 
reverse of fusion. In the process they take a piece of the cell membrane for an 
envelope. but do not kill the host cell. Cells which release viruses by budding can 
therefore act as virtually unending sources of new viruses. This, in fact, is the 
behavior of certain blood cells infected with HIV. 

Section 10.2 

The Immune System 

Our bodies fight off pathogens by two means. One is a general defense system 
that removes pathogens without much regard to their biological nature; stomach 
acid is such a system. 

Of more concern to us in our considerations of HIV is a second. specific 
response to pathogens (and other foreign substances); this response is tailored to 
each infective agent. Specialized blood cells called lymphocytes have the abil­
ity to recognize specific molecular parts of pathogens and to mount a chemical 
response to those fragments. Initially, we have at most only a few lymphocytes 
that can recognize each such fragment but, upon contact with the fragment, the 
lymphocyte will start to divide extensively to provide a clone of cells. Thus there 
results a large clone of identical lymphocytes, all of which are chemically "tuned" 
to destroy the pathogen. 

In this section we describe the means by which lymphocytes respond to for­
eign substances to keep us from getting diseases and from being poisoned by 
toxins. This subject is of great importance to our understanding of HIV because 
certain lymphocytes are hosts for HIV. Thus, HIV infection destroys an infected 
person's ability to resist pathogens. 

Some responses to pathogens are innate, or general. 

We possess several general mechanisms by which we can combat pathogens. 
These mechanisms have a common property: They are essentially nondiscrim­
inatory. Each one works against a whole class of pathogens and does not need to 
be adapted for specific members of that class. For example, tears and egg white 
contain an enzyme that lyses the cell walls of certain kinds of bacteria. Stomach 
acid kills many pathogens that we eat. Damaged tissue attracts blood clotting 
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agents and dilates capillaries to allow more blood to approach the wound. Finally, 
there are blood cells that can simply engulf pathogens; these cells are granulo­
cytes and macrophages. 

The problem with the innate response is that it cannot adapt to new circum­
stances, whereas many pathogens are capable of rapid genetic change. Thus, 
many pathogens have evolved ways to circumvent the innate response. For such 
pathogens, we need an immune response that can change in parallel with the 
pathogen (see References [l] and [2]). 

Blood cells originate in bone marrow and are later modified for different 
functions. 

Humans have bony skeletons, as do dogs, robins, snakes and trout, but sharks 
and eels have cartilaginous skeletons. In the core. or marrow, of our bones is the 
blood-forming tissue, where all of our blood cells start out as stem cells. Repeated 
division of stem cells results in several paths of cellular specialization. or cell 
lines, as shown in Figure 10.2.1. Each cell line leads to one of the various kinds 
of mature blood cells described in Section 7.6. One cell line becomes red blood 
cells. Another line generates cells involved in blood clotting. Still other lines have 
the ability to engulf and digest pathogens. Finally. there is a cell line that generates 
cells capable of specifically adapted defenses to pathogenic agents. These cells 
are called lymphocytes. 

committed nonlymphold 
stem cell 

uncommitted 
blood stem cell 
in bone marrow 

megakaryocytes erythrocytes macrophages granulocytes 
(platelets; (carry 02l (engulfing. Ag (general immunity. 
clotting) presentation) allergic reactions) ... ... 

leukocytes 

committed lymphoid 
stem cell 

lymphocytes 
IT and B. 

speCific immunity) -
Figure 10.2.1 A flow chart showing the development of mammalian blood cells 
from their generalized state to their final. differentiated state. 
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Some immune responses are adaptive. or specific. to the pathogen. 

Our immune system is capable of reactions specifically tailored to each foreign 
substance. or antigen; in other words. each and every antigen elicits a unique 
response. At first glance we might think that the finite amount of information 
that a cell can contain would place a ceiling on the number of specific responses 
possible. We will see that the restriction is not important because the specific 
immune system works against as many as 1012 distinct antigens!) 

Certain cell lines. derived from bone marrow stem cells. mature in our lym­
phatic system to become lymphocytes. For example, T-Iymphocytes, or T cells. 
mature in the thymus gland. which is found prominently under the breastbone 
of fetuses. infants and children. B-Iymphocytes, or B celis, mature in bone mar­
row. These two kinds of lymphocytes are responsible for the adaptive immune 
responses, but play different and complementary roles. 

T cells are responsible for the cell-mediated immune response. 

We will be especially interested in two groups of T cells: helper T and cyto­
toxic T cells (see Figure 10.2.2). After they mature in the thymus of neonatal 
and prenatal animals, these T cells are inactive. On their outer surfaces, inactive 
T cells have recognition proteins that can bind to antigens (via hydrogen bonds 
and other interactions). This binding cannot take place, however, unless some 
preliminary steps have already occurred. First, one or more antigen-presenting 
cells. or macrophages, must ingest the pathogen. Second. the antigen-presenting 
macrophages must then break off various molecular pieces of the pathogen and 
move them to their own surface. Le., present the various antigenic fragments 
(called epitopes) to inactive T cells. This presentation activates the T cells and 
causes them to divide repeatedly into clones, each of which consists of identical, 
active helper T or cytotoxic T cells. In fact. there should result a clone of active 
helper and cytotoxic T cells for each of the various epitopes that the antigen­
presenting cells display, one clone originating from each activated T cel1.4 An 
important point: The active helper T cells are required in the activation of the cy­
totoxic T cells. The active cytotoxic T cells then approach and kill cells infected 
with the pathogen. thus killing the pathogen at the same time. The cytotoxic T cell 
recognizes the infected cells because the infected cells, like macrophages, present 
epitopes on their surfaces. The T cell response is often called cell-mediated im­
munity because the effect requires the direct and continued involvement of intact 
T cells. 

3The size of this number. even its order of magnitude. is subject to some debate. In any case. it 
is very big. 

'When antigen-presenting cells cut up a pathogen. many different antigenically active epilopes 
may result. POlentially. each epitope can activate a differenl T cell upon pre..enlation. Thus. a single 
infecting baclenum could activate many different T cell clones. 
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Figure 10.2.2 A How chart showing the events and interactions surrounding the spe­
cific immune response. The cell-mediated response begins at the top left and the hu­
morlll response begins at the top center. The two responses interact at the center of 
the page. The details are described in the text. 
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The concept of an adaptive response. or immunological specificity. is asso­
ciated with the recognition of an infected antigen-presenting cell by a helper T or 
cytotoxic T cell. An inactive T cell will be activated only if its specific receptors 
recognize the specific antigenic fragment being presented to it. Evidence suggests 
that the surface receptors of each individual inactive T cell are unique. numerous 
and of a single kind. Because there are upwards of a trillion or so different inac­
tive T cells in our bodies. the presented parts of virtually every pathogen should 
be recognized by at least a few of the T cells. 

B cells are responsible for the humoral immune response. 

Like T cells. B cells are inactive at the time they mature and have recognition pro­
teins on their surfaces. As with helper T cells. these surface receptors vary from 
cell to cell and can recognize antigens. However. while helper T cells require that 
the antigen appear on an antigen-presenting cell. B cells can recognize an antigen 
that is free in the liquid fraction of the blood. When an inactive B cell recognizes 
and binds to the antigen to which its surface proteins are complementary. the B 
cell is then activated. and it subsequently divides many times to form a clone of 
identical active B cells. sometimes called plasma cells. Active B cells then se­
crete large quantities of a single kind of protein molecule. called an antibody. into 
the blood. These antibodies are able to bind to the antigen. an act that "labels" 
the antigen for destruction by either of two mechanisms: A set of chemical reac­
tions collectively called complement. can kill certain antibody-tagged bacteria. or 
tagged antigens can attract macrophages. which devour the antigen. The B cell 
response is often called the humoral immune response. meaning "liquid-based." 

The concept of specificity for B cell activation arises in a way similar to that 
for T cells. namely in the recognition of the antigen by B cell surface receptors. 
Evidently all. or most. of our approximately one trillion inactive B cells have 
different surface receptors. The recognition by a B cell of the exact antigen for 
which that particular B cell's surface is "primed" is an absolute requirement for 
the activation of that B cell. Fortunately. most pathogens, bacteria and viruses for 
example. have many separate and distinct antigenic regions; thus. they can trigger 
the activation of many different B cells. 

Intercellular interactions play key roles in adaptive immune responses. 

The specificity of both T and B cell interactions with pathogens cannot be overem­
phasized; no adaptive immune response can be generated until receptors on these 
lymphocytes recognize the one specific antigen to which they can bind. 

Note how T and B cells provide interlocking coverage: The cytotoxic T 
cells detect the presence of intracellular pathogens (by the epitopes that infected 
cells present) and B cells can detect extracellular pathogens. We would therefore 
expect T cells to be effective against already-infected cells and the B cells to 



Chapter 10 I A Biomathematical Approach to HlV and AIDS 329 

be effective against toxins, such as snake venom, and free pathogens, such as 
bacteria, in the blood. 

Our discussion so far has emphasized the individual roles of T and B cells. 
In fact, correct functioning of the adaptive immune system requires that these 
two kinds of cells interact with each other. It was pointed out earlier that the 
activation of cytotoxic T cells requires that they interact with active helper T cells. 
In fact, helper T cells are also needed to activate B ce\1s, as shown in Figure 
10.2.2. Note the pivotal role of active helper T cells: They exercise control over 
ce\1-mediated immunity and humoral immunity as well, which covers the entire 
adaptive immune system. 

Lymphocytes diversify their receptor proteins as the cell matUrE's. 

At first glance, the Central Dogma of Genetics would seem to suggest that the 
information for the unique surface protein receptor of each inactive lymphocyte 
should originate in a different gene. In other words, every inactive lymphocyte 
would merely express a different surface receptor gene. In each person there seem 
to be about 1012 unique inactive lymphocytes and therefore there would have to 
be the same number of unique genes! Actua\1y, independent estimates of the total 
number of genes in a human cell indicate that there are only about 105. 

The many variant forms of lymphocyte surface receptor proteins originate as 
the cell matures and are the result of the random scrambling of genetic material­
which leads to a wide variety of amino acid sequences without requiring the par­
ticipation of a lot of genetic material. As an example, Figure 10.2.3 shows a 
length of hypothetical DNA that we will use to demonstrate the protein diversifi­
cation process. We imagine the DNA to consist of two contiguous polynucleotide 
strings, or classes, labeled A and B. Each class has sections I through 4. The 
protein to be coded by the DNA will contain two contiguous polypeptide strings, 
one coded by a single section of A and one coded by a single section of B. Thus, 
there are 16 different proteins that could result. To generate a particular protein 
the unneeded sections of genetic material will be enzymatically snipped out, ei­
ther at the DNA stage or the mRNA stage. The protein that ultimately results in 
the figure is derived from DNA sections A2 and B4. The selection of A2 and B4 
was random; any of the other 15 combinations were equally likely. 

In a real situation, namely the DNA coding for one of the proteins in B 
cell antibodies, there are about 240 sections distributed among four classes. Of 
these, perhaps seven sections are actually expressed in a given cell, meaning that 
there are thousands of combinations of seven sections that were not expressed in 
that cell. These other combinations will be expressed in other B cells, thereby 
generating a large number of lymphocytes with different surface proteins. 

There are still other ways that lymphocytes generate diverse recognition pro­
teins. For example. B ce\1s form antibodies by combining two completely sepa­
rate polypeptides, each of which uses the random choice method described in the 
previous two paragraphs. Further, when maturing, the nucleic acid segments that 
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A B 

DNA 1~11--i11--i11--i11--il--i11--i1~1 
23423 4 

protein 1 1 I+H+I 1 1+1--1 -+-I-+-I~I 
A2 B4 A 1 A3 A4 B1 B2 B3 

final, functional ... 1 ___ nonfunctional antibody ___ ..... 1 
antibody fragments (discarded) 

Figure 10.2.3 A simplified picture of the creation of a specific antibody by a single 
lymphocyte. The final antibody molecule is coded from one section each of DNA 
regions A and B. Because the two sections are picked at random there are 16 pOssible 
outcomes. This figure shows how many possible antibodies could be coded from a 
limited amount of DNA. In a real situation there would be many sections in many 
DNA regions, and the final, functional antibody would contain contributions coded by 
several regions. 

code for lymphocyte surface recognition proteins mutate very rapidly, more so 
than do other genes. All of this leads to the great variability in recognition pro­
teins that is so crucial to the functioning of the adaptive immune system. and it 
does so while requiring a minimum amount of DNA for its coding. 

The adaptive immune system recognizes and tolerates "self" (clonal deletion). 

The whole idea behind the immune system is to recognize foreign material and rid 
the body of it. 01' the other hand, it would be intolerable for a person's adaptive 
immune systemio treat the body's own tissues as foreign. In order to prevent such 
rejection of self-products. or autoimmune reactions, the adaptive system must 
have some way to distinguish "self' from "non-self." This distinction is created 
during fetal development and continues throughout postnatal development. 

The organ systems of a human fetus. including the blood-forming organs. 
are formed during the organogenetic period of fetal development. as discussed 
in Chapter 7. Most organogenesis is completed at least a month or two before 
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birth. the remaining fetal period being devoted to enlargement and maturation of 
the fetus. Embryonic (immature) lymphocytes. which are precursors to inactive 
T and B cells. are present during the time of organogenesis. Each one will have 
a unique kind of recognition protein across its surface, inasmuch as such proteins 
are essentially generated at random from cell to cell. We could thus expect that 
among these embryonic lymphocytes there would not only be those that can bind 
to foreign substances. but also many that can bind to the embryo's own cells. 
The clonal deletion model explains how these self-reactive lymphocytes can be 
neutralized: Because there are no pathogens in a fetus, the only cells capable of 
binding to lymphocytes would be the fetuses' own cells. Therefore. embryonic 
B or T cells that bind to any cell in the fetus are killed or inactivated. Only 
self-reacting embryonic lymphocytes should be deleted by this mechanism. This 
reduces the possibility of maturation of a lymphocyte that could subsequently 
generate an autoimmune response. 

There is good evidence for clonal deletion: Mouse embryos can be injected 
early in utero with a virus or other material that would normally be antigenic in a 
postnatal mouse. After birth, the treated mouse is unable to respond immunologi­
cally to subsequent injections of the virus. The mouse has developed an acquired 
immunological tolerance to the antigen. What has happened at the cellular level is 
that any embryonic mouse lymphocytes that reacted with the prenatally injected 
virus were killed or inactivated by clonal deletion-the virus was treated as "self." 
Thus, there can be no mature progeny of these lymphocytes after birth to react to 
the second exposure to the virus. 

There is another mechanism for killing self-reacting lymphocytes. 

Clonal deletion reduces the possibility of an autoimmune response, but does not 
eliminate it. Recall that clonal deletion requires that self-products meet up with 
embryonic lymphocytes; mature lymphocytes will not do. The fact is that some 
embryonic lymphocytes slip through the clonal deletion net by not meeting the 
self-products that would have inactivated them. In addition, lymphocytes seem 
to mutate frequently, a process that postnatally may give them receptors that can 
react with self-products. Finally, the thymus gland, while much reduced in adults, 
continues to produce a limited number of new T cells throughout life. These 
new cells, with receptors generated at random, may be capable of reacting with 
self-products. 

There is a mechanism for getting rid of mature T cells that can react with 
their own body's cells: Recall that a T cell is activated when an infected antigen­
presenting cell presents it with a piece of antigen. In fact, this activation has 
another requirement: The antigen-presenting cell mus~ also display a second re­
ceptor, one that is found only on infected antigen presenters. If a mature T cell 
should bind to an uninfected antigen presenter, one lacking the second receptor, 
the T cell itself is inactivated (because that binding is a sign that the T cell re­
ceptors are complementary to uninfected self-products). On the other hand, if a 
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mature T cell binds to an infected antigen presenter, the infection being signaled 
by the second receptor, that binding is acceptable, and the normal activation of 
the T cell ensues. 

Inactive lymphocytes are selected for activation by contact with an antigen 
(clonal selection). 

The clonal deletion system described above results in the inactivation or killing of 
immature T and B cells if they react with any antigen. This process provides the 
individual with a set of lymphocytes that can react only with non-self-products. 
These surviving T and B cells then remain in our blood and lymphatic circulatory 
systems in an inactive state until they come into contact with the antigens to which 
their surface receptors are complementary. This will be either as free, extracellular 
antigens for B cells, or on an antigen-presenting cell in the case of T cells. 

Once the proper contact is made. the lymphocyte is activated and begins to 
divide rapidly to form a clone of identical cells. But what if the correct antigen 
never appears? The answer is an odd one-namely. the lymphocyte is never ac­
tivated and remains in the blood and lymphatic systems all of our life. What this 
means is that only a tiny fraction of our lymphocytes ever become activated in 
our lifetimes; the rest just go around and around our circulation or remain fixed 
in lymph nodes. This process of activating only those few lymphocytes whose 
activity is needed. via contact with their appropriate antigens. is called clonal 
selection. 

The notion of clonal selection suggests an immense amount of wasted ef­
fort on the part of the immune system. For example. each of us has one or more 
lymphocytes capable of initiating the rejection of a skin transplant from the sev­
entieth president of the United States (in about a century). and others that would 
react against a cold virus that people contracted in Borneo in 1370 AD. None of 
us will ever need those capabilities. but we have them nevertheless. It might seem 
that a simpler mechanism would have been the generation of a single generic 
kind of lymphocyte and then its adaptation to each individual kind of antigen. 
This process is called the instructive mechanism. but it is not what happens. 

The immune system has a memory. 

Most people get mumps or measles only one time. If there are no secondary 
complications these diseases last about a week. which is the time it takes for the 
activation of T and B cells by a pathogen and the subsequent destruction of the 
pathogen. Surely these people are exposed to mumps and me~sles many times 
in their lives. but they seem to be unaffected by the subsequent exposures. The 
reason for this is well-understood: First. they may have antibodies from the initial 
exposure and. second. among the results of T and B cell activation are "memory" 
cells, whose surface recognition proteins are complementary to the antigenic parts 
of the activating pathogen (refer to Figure 10.2.2). These memory cells remain in 
our blood and lymphatic systems for the rest of our lives. and if we are infected 
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by the same pathogen again, they mount a response just like the original one, but 
much more intensely and in a much shorter time. The combination of pre-existing 
antibodies from the initial exposure and the intense, rapid secondary response by 
memory cells usually results in our being unaware of the second exposure. 

Why then do we get so many colds if the first cold we get as babies generates 
memory cells? The answer lies in two facts: The adaptive immune response is 
very specific, and the cold virus mutates rapidly. The memory cells are as spe­
cific for antigen as were their original inactive lymphocyte precursors. They will 
recognize only the proteins of the virus that caused the original cold; once having 
gotten a cold from that particular strain of cold virus, we won't be successfully 
infected by it again. The problem is that one effect of cold virus mutation is that 
viral coat proteins (the antigens) change their amino acid sequences. Once that 
happens, the memory cells and antibodies from a previous infection don't recog­
nize the new, mutated strain of the virus and therefore can't respond to it. The 
immune response must start all over, and we get a cold that requires a week of 
recovery (again). If it is possible to say anything nice about mumps, chicken pox 
and such diseases, it is that their causative agents do not mutate rapidly and we 
therefore get the diseases only once, if at all. We shall see in the next section that 
rapid mutation characterizes HIV, allowing the virus to stay one step ahead of the 
specific immune system's defenses. 

Vaccinations protect us by fooling the adaptive immune system. 

The idea behind immunization is to generate the immune response without gen­
erating the disease. Thus, the trick is to inactivate or kill the pathogen without 
damaging its antigenic properties. Exposure to this inactive pathogen then trig­
gers the immune responses described earlier, including the generation of memory 
cells. During a subsequent exposure, the live, active pathogen binds to any pre­
existing antibody and activates memory cells; thus, the pathogen is inactivated 
before disease symptoms can develop. As an example, vaccination against polio 
consists of swallowing live-but-inactivated polio virus. We then generate memory 
cells that will recognize active polio viruses if we should be exposed to them at a 
later date. 

Exposure to some pathogenic substances and organisms is so rare that vac­
cination of the general population against them would be a waste of time and 
money. Poisonous snake venom is a case in point: The active agent in snake 
venom is a destructive enzyme distinctive to each kind of snake genus or species, 
but fortunately almost no one ever gets bitten by a snake. Snake venom is strongly 
antigenic, as we would expect a protein to be, but the symptoms of snake bite ap­
pear so rapidly that the victim could die long before the appropriate lymphocytes 
could be activated. Unless the snake-bite victim already has pre-existing antibod­
ies or memory T cells against the venom, say from a previous survivable exposure 
to the venom, he or she could be in a lot of trouble. The way around this problem 
is to get another animal, like a horse, to generate the antibodies by giving it a 
mild dose of the venom. The anti-venom antibodies are then extracted from the 
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horse's blood and stored in a hospital refrigerator until a snake-bite victim arrives. 
The antibodies are then injected directly into the bitten area, to tag the antigenic 
venom, leading to its removal. 

A snake-bite victim probably won't take the time to identify the species of 
the offending reptile, and each snake genus or species can have an immunolog­
ically distinctive venom. To allow for this, hospitals routinely store mixtures 
of antibodies against the venoms of all the area's poisonous snakes. The mix­
ture is injected at the bite site, where only the correct antibody will react with 
the venom-the other antibodies do nothing and eventually disappear without ef­
fect.s This kind of immunization is said to be passive and it has a very important 
function in prenatal and neonatal babies, who get passive immunity via interpla­
cental transfer of antibodies and from the antibodies in their mother's milk. This 
protects the babies until their own immune systems can take over. 

Section 10.3 

HIVandAIDS 
The Human Immunodeficiency Virus defeats the immune system by infecting, 
and eventually killing, helper T cells. As a result neither the humoral nor the 
cell-mediated specific immune responses can function, leaving the patient open 
to opportunistic diseases. 

As is true of all viruses, HIV is very fussy about the host cell it chooses. The 
problem is that its chosen hosts are immune system cells, the very same cells that 
are required to fend it off in the first place. Initially the victim's immune system 
responds to HIV infection by producing the expected antibodies, but the virus 
stays ahead of the immune system by mutating rapidly. By a variety of mech­
anisms, some poorly understood, the virus eventually wears down the immune 
system by killing helper T cells, which are required for the activation of killer T 
cells and B cells. As symptoms of a low T cell count become manifested, the 
patient is said to have AIDS. 

In this section we will describe the reproduction of HIV as a prelude to a 
mathematical treatment of the behavior of HIV and the epidemiology of AIDS. 

The Human Immunodeficiency Virus (HIV) infects T cells and macrophages, 
among others. 

The outer coat of HIV is a two-layer lipid membrane, very similar to the outer 
membrane of a cell (see Figure 10.3.1). Projecting from the membrane are sugar­
protein projections, called gp 120. These gp 120 projections recognize and at­
tach to a protein called CD4, which is found on the surfaces of helper T cells, 
macrophages and monocytes (the latter are macrophage precursors). The binding 

5Note that the unneeded antibodies do not provide a "memory" because there IS no activation of 
lymphocytes. and hence no memory cells. 
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Figure 10.3.1 A model of the Human Immunodeficiency Virus (HIV). The outer 
membrane of the mv is derived from the outer membrane of the host cell. Thus, an 
antibody against that part of the HIV would also act against the host cell. Note that 
the HIV carries copies of the reverse transcriptase enzyme. 

of gp120 and CD4 leads to the fusion of the viral membrane and the cell mem­
brane. Then. the viral capsid is brought into the blood cell (see References [3] 
and [4]). 

HIV is a retrovirus. 

The HIV capsid contains two identical single strands of RNA (no DNA). The 
capsid is brought into the host cell by fusion between the viral envelope and the 
cell membrane. as described in Section 10.1. The capsid is then enzymatically 
removed. The HIV RNA information is then converted into DNA information, a 
step that is indicated by the straight left-pointing arrow in the following Central 
Dogma flow diagram:6 

6This is our final aiteflllion to "dogma:· 



336 Section 10.3 HIVand AIDS 

DNA !:4 =:;. RNA --+. protein 

UU 
The conversion of RNA information into DNA information involves several 

steps and is called reverse transcription. First, the single-stranded HIV RNA acts 
as a template for the creation of a strand of DNA. This process entails comple­
mentary H-bonding between RNA nucleotides and DNA nucleotides, and it yields 
a hybrid RNA-DNA molecule. The RNA is then removed and the single-strand 
of DNA acts as a template for the creation of a second, complementary, strand 
of DNA. Thus, a double helix of DNA is manufactured, and it carries the HIV 
genetic information. 

The chemical process of covalently polymerizing DNA nucleotides and de­
polymerizing RNA nucleotides, like most cellular reactions involving covalent 
bonds, requires enzymatic catalysis to be effective. The enzyme that catalyzes re­
verse transcription is called reverse transcriptase. Reverse transcriptase is found 
inside HIV, in close association with the viral RNA, and it enters the host cell right 
along with the RNA, ready for use. Once HIV DNA is formed it is then spliced 
into the host cell's own DNA; in other words, it is a provirus. 

In a general sense, a provirus becomes an integral part of the host cell's ge­
netic material; for instance, proviruses are replicated right along with the host 
cell's genome at cell division. It should therefore not be surprising that the phys­
iology and morphology of the host cell changes as a result of the incorporated 
provirus. For example, one important consequence of HIV infection is that gp 120 
projections appear on the lymphocyte's surface. 

Once in the form of a provirus, HIV starts to direct the host cell's anabolic 
machinery to form new HIV As the assembled viruses exit the host cell by bud­
ding, they pick up a part of the cell's outer lipid bilayer membrane, along with 
some of the gp 120 placed there by the provirus. The newly-formed virus is now 
ready to infect a new cell. 

The budding process does not necessarily kill the host cell. In fact, infected 
macrophages seem to generate unending quantities of HIV. T cells do eventually 
die in an infected person but, as explained below, it is not clear that they die from 
direct infection by the virus. 

The flow of information from RNA to DNA was omitted when the Central 
Dogma was first proposed because, at the time, no one believed that information 
flow in that direction was possible. As a consequence, subsequent evidence that it 
existed was ignored for some years-until it became overwhelming. The process 
of RNA-to-DNA informational flow is still called "reverse transcription," the key 
enzyme is called "reverse transcriptase" and viruses in which reverse transcrip­
tion is important are still called "retroviruses," as though something were running 
backward. Of course, there is nothing actually "backward" about such processes; 
they are perfectly normal in their natural context. 
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Figure 10.3.2. A graph of the helper T lymphocyte count of an HIV·infected per­
son. Clinical symptoms are indicated along the top of the figure. :-.Iote the correlation 
between the decrease in T cell count and the appearance of the clinical symptoms. 
(Redrawn from "HI V Infection: The Classical Picture," by Robert Redfield and Don­
ald Burke, Scientific American, October 1988, Vol. 259, no. 4; copyright © 1988 by 
Scientific American, Inc. All rights reserved.) 

HIV destroys the immune system instead o/the other way around. 

As Figure 10.3.2 shows, the number of helper T cells in the blood drops from a 
normal concentration of about 800 per ml. to zero over a period of several years 
following HIY infection. The reason for the death of these cells is not well­
understood, because budding usually spares the host cell and, besides, only a 
small fraction of the T cells in the body ever actually become infected by the 
HIY in the first place. Nevertheless, all the body's helper T cells eventually die. 
Several mechanisms have been suggested for this apparent contradiction: Among 
them, the initial contact between HIY and a lymphocyte is through the gp 120 of 
the HIY and CD4 ofthe T cell. After a T cell is infected, gp 120 projections appear 
on its own surface, and they could cause that infected cell to attach to the CD4 
receptors of other, uninfected T cells. In this way, one infected lymphocyte could 
attach to many uninfected ones and disable them all. In fact, it has been observed 
that, if cells are artificially given CD4 and gp 120 groups, they clump together into 
large multinuclear cells (called syncitia). 

A second possible way that helper T cells might be killed is suggested by 
the observation that the infected person's lymph nodes atrophy. The loss of those 
parts of the lymphatic system may lead to the death of the T cells. 

Third, a normal function of helper T cells is to stimulate killer T cells to kill 
viral-infected cells. It may be that healthy helper T cells instruct killer T cells to 
kill infected helper T cells. Eventually, this normal process could destroy many 
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of the body's T cells as they become infected although, as noted earlier, only a 
small fraction of helper T cells ever actually become infected. 

Fourth, it has been demonstrated that if an inactive, HIV-infected lympho­
cyte is activated by antigen, it yields greatly reduced numbers of memory cells. 
In fact, it seems that the activation process itself facilitates the reproduction of 
HIV by providing some needed stimulus for the proper functioning of reverse 
transcriptase. 

HIV infection generates a strong initial immune response. 

It is shown in Figure 10.3.3 that the immune system initially reacts vigorously to 
HIV infection, producing antibodies as it should.7 Nonetheless, the circulating 
helper T cell count soon begins an irreversble decrease toward zero, as discussed 
above. As helper T cells die off. the ability of the adaptive immune system to 
combat any pathogen, HIV or other, also vanishes. 

In Section 10.4 we will describe a mathematical model for the interaction 
between helper T cells and HIV 

The high mutability of HIV demands continued response from the adaptive 
immune system. 

Mutations occur commonly in HlV RNA and the reason is reasonably well­
understood: Reverse transcriptase lacks a "proof-reading" capacity. This proof­
reading ability is found in enzymes that catalyze the polymerization of DNA from 
a DNA template in the "forward" direction of the Central Dogma. Thus, the occa­
sional mismatching of H bonds between nucleotides, say the pairing of A opposite 
G, gets corrected. On the other hand, reverse transcriptase. which catalyzes DNA 
formation from an RNA template. seems not to be able to correct base-pairing 
errors, and this leads to high error rates in base placement-as much as one mis­
matched base out of every 2000 polymerized. The two RNA polynucleotides of 
HlV have between 9000 and 10,000 bases distributed among about nine genes, 
so this error rate might yield up to five changed bases, ar.d perhaps three or four 
altered genes, per infection. 

We are concerned here especially with the effects of mutated viral surface 
antigens, e.g., proteins and glycoproteins, on immune system recognition. Every 
new antigenic version of these particular viral products will require a new round of 
helper T cell activation to defeat the virus. The problem there is that, as pointed 
out earlier, activation of an HlV-infected helper T cell seems to help the HIV 
inside it to replicate and, further, leads to the formation of stunted memory T 
cell clones. Thus. each new antigenic form of HIV causes the immune system to 

'The presence of antibodies against HIV is the basis for the diagnosis of HIV infection. Note 
that it takes several months to gel a measurable response. 
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Figure. 10.3.3 A graph of immune response and viral appearance versus time for 
an HIV-infected person. The initial infection generates a powerful immune response. 
That response. however, is later overwhelmed by the virus, which kills the helper T 
lymphocytes that are required by the humoral and cell-mediated immune responses. 
(Redrawn from "HIV Infection: The Clinical Picture," by Robert Redfield and Don­
ald Burke, Scientific American, October 1988, Vol. 259, no. 4; copyright © 1988 by 
Scientific American, Inc. All rights reserved.) 

stimulate HIV replication, while simultaneously hindering the immune system's 
ability to combat the virus. The HIV stays just ahead of the immune system, like 
a carrot on a stick, affecting helper T cells before the T cells can respond properly, 
and then moving on to a new round of infections. One could say, ''The worse it 
gets, the worse it gets!" 

The mutability of HIY has another unfortunate effect for its victims. Current 
therapy emphasizes drugs that interfere with the correct functioning of reverse 
transcriptase; AXf is an example. The high mutation rate of HIY can generate 
new versions of reverse transcriptase and, sooner or later, a version will appear 
that the drug cannot affect. 

In Section IO.S we will model the mutability of HIY and its eventual over­
whelming of the immune system. 

HIV infection leads to Acquired Immunodeficiency Syndrome (AIDS). 

A person infected with HIY is said to be "HIY-positive." Such people may be 
asymptomatic for a considerable time following infection, or the symptoms may 
be mild and transient; the patient is, however, infectious. Eventually, the loss of 
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helperTcells will leave the person open to infections, often ofa rare kind (see Fig­
ure 10.3.2). As examples, pneumonia caused by a protozoan called Pneumocystis 
carinii and a cancer of blood vessels, called Kaposi's sarcoma, are extremely rare 
in the general population, yet they frequently are found in HIV-positive people. 
Everyone is exposed to the pathogens that cause these diseases, but do not get the 
disease if their immune system is working properly. When HIV-positive persons 
exhibit unusual diseases as a result of low helper T cell counts, they are said to 
have AIDS. 

Section 10.4 

An HIV Infection Model 

A model for HIV infection involves four components: Normal T cells, latently 
infected T cells, infected T cells actively replicating the virus, and the virus itself. 
Any proposed model should incorporate the salient behavior of these components 
and respect biological constraints. In this section we present such a model and 
show that it has a stationary solution. This model was developed and explored by 
Perelson, Kirschner and co-workers. 

T cell production attempts to maintain a constant T cell serum concentration. 

In this section we will be presenting a model for T cell infection by HIV, as de­
scribed in Section 10.2 (see References [5-8]). This model tracks four compo­
nents; three types of T cells and the virus itself, and therefore requires a four­
equation system for its description. As a preliminary step toward understanding 
the full system of equations, we present first a simplified version; namely the 
equation for T cells in the absence of infection. In forming a mathematical model 
of T cell population dynamics based on the discussion of Section 10.2, we must 
incorporate the following assumptions. 

• Some immunocompetent T cells are produced by the lymphatic system; over 
relatively short periods of time, their production rate is constant and inde­
pendent of the number of T cells present. Over longer periods of time their 
production rate adjusts to help maintain a constant T cell concentration, even 
in adulthood. Denote this supply rate by s. 

• T cells are produced through clonal selection if an appropriate antigen is 
present, but the total number of T cells cannot increase unboundedly. Model 
this using a logistic term, rT( I - T /Tma.), with per capita growth rate r (cf .• 

Section 3.4). 
• T cells have a finite natural lifetime after which they are removed from circu­

lation. Model this using a death rate term, pT. with a fixed per capita death 
ratep. 
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Altogether, the differential equation model is 

dT T - = s + rT(1 - -) - pT. 
dt Tm•x 

(10.4.1) 

In this, T is the T cell population in cells per cubic millimeter. 
We want the model to have the property that solutions. T(t). which start in 

the interval [0, Tmaxl stay there. This will happen if the derivative dT /dt is positive 
when T = 0 and negative when T = T mox. From equation (10.4.1), 

and since s is positive. the first requirement is fulfilled. Next. substituting T = 
T max into equation (10.4.1), we get the condition that must be satisfied for the 
second requirement, 

dTI d = s - pTmox < 0, 
t T,:T .... 

or, rearranged. 

pTmax > s. ( 10.4.2) 

The biological implication of this statement is that when the number of T cells 
have reached the maximum value Tmax , then there are more cells dying than are 
being produced by the lymphatic system. 

Turning to the stationary solutions of system (10.4.1). we find them in the 
usual way. by setting the right hand side to zero and solving for T: 

- T.r T2 + (r - p)T + s = O. 
max 

The roots of this quadratic equation are 

T = T.2max (r - p) ± v(r - p)2 + 4S_r_) . 
r Tmax 

( 10.4.3) 

Since the product 4sr/Tmax is positive. the square root term exceeds Ir - pI. 

,.j(r - p)2 + 4sr/Tmax > Ir - pi, 

and therefore one of the roots of the quadratic equation is posi tive while the other 
is negative. Only the positive root is biologically important. and we denote it by 
To, as the "zero virus" stationary point (see below). We now show that To must lie 
between 0 and T max. As already noted. the right hand side of equation (10.4.1) is 
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positive when T = 0 and negative when T = Tmax. Therefore it must have a root 
between 0 and Tmax; this is our positive root To calculated from equation (10.4.3) 
by choosing the + sign. We will refer to the difference p = r - p as the T cell 
proliferation rate; in terms of it, the globally attracting stationary solution is given 
by 

T"",x ( J 2 r) To = 2;:- p+ P +4s T""", . (1O.4.4) 

This root To is the only (biologically consistent) stationary solution of equa­
tion (10.4.1). 

Now consider two biological situations. 

Situation J: Supply Rate Solution. In the absence of anj.nfection, or at least 
an environmental antigen, the clonal production rate r can be small, smaller than 
the natural deathrate p, resulting in a negative proliferation rate p. In this case 
the supply rate s must be high in order to maintain a fixed T cell concentration of 
about 1000 per cubic millimeter. Data in Reference [6] confirm this. 

Table 10.4.1 Parameters for Situation I 

Parameter Description Value 

s T cell from precursor supply rate IOImm3/day 
r normal T cell growth rate .03/day 
Tmax maximum T cell population ISOOImm3 

JJ T cell death rate .02lday 

With these data, calculate the stationary value of To using equation (10.4.3) 
as follows. 

> f:=T->s+r*TO(1-Trrmax)- mu °T; 

> s:= 10; r:=.03; mU:=.02; Tmax:=1500; 

> fzero:=solve(f(T) = O,T); 
> TO: .. max(fzero[1 J,fzero(2J); 
> TOnum:=evalf(TO); 

Next calculate and display trajectories from various starting points. 

> deq:=diff(T(t),t)=f(T(t»; 
> with(OEtools): 

> inits:={ (O,Ol,(O,TO/41,(O,TOI2J,(O,(TO+ Tmax)l2],(O,Tmax]}; 
> phaseportrait(deq,T(t),O .. 25,lnlts,stepslze= 1); 
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Figure 10.4.1 Time vs. number of T cells per cubic millimeter 

Situation 2: Clonal Production Solution. An alternate scenario is that adult 
thymic atrophy has occurred. or a thymectomy has been performed. As a hy­
pothetical and limiting situation. take s to equal zero and ask how r must change 
to maintain a comparable To. Use these parameters: 

Table 10.4.2 Parameters for Situation 2 

Parameter 

s 
r 
Tmax 
II 

Description 

T cell from precursor supply rate 
normal T cell growth rate 
maximum T cell population 
T cell death rate 

> s:= 0; r:=.06; mU:=.02; Tmax:=1500; 

> fzero:=solve(f(T)=O,T); 

> TO:=evalf(fzero[1),fzero[2J); 

Value 

OImm3/day 
.06lday 
ISOO/mm3 

.02lday 

As above. To is again about 1000 T cells per cubic millimeter. Trajectories 
in this second situation are plotted in Figure 10.4.2; contrast the convergence rate 
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Figure 10.4.2 Time VS. T cell count with a reduced thymus function 

to the stationary solution under this clonal T cell production situation with the 
supply rate convergence of Situation I. 

Remark: Contrasting these Situations shows that upon adult thymic atrophy or 
thymectomy, the response of the T cell population is much slower. This suggests 
that one would find differences in the dynamics of T cell depletion due to an 
HIV infection in people of different ages. Clearly, there is a need for r, the T 
cell growth rate, to be large in compensation when the supply rate, s, is small. 
How can one influence one's value of r? The answer should be an inspiration for 
continuing biological and medical research. 

A four-equation system is used to model T cell-HI V interaction. 

To incorporate an HIV infection into the above model, we follow the approach 
taken by Perelson, Kirschner, and De Boer (6) and differentiate three kinds of 
T cells: Besides the normal variety, whose number is denoted by T as before, 
there are T cells infected with provirus, but not producing free virus. Designate 
the number of these latently infected T cells by TL. In addition, there are T cells 
that are infected with virus and are actively producing new virus. Designate the 
number of these by TA. The interaction between virus, denoted by V, and T cells is 
reminiscent of a predator-prey relationship; a mass action term is used to quantify 
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the interaction (see Section 4.4). However, only the active type T cells produce 
virus, while only the normal T cells can be infected. 

We now present the model and follow with a discussion of its four equations 
separately: 

(a) 

(b) 
(1O.4.5) 

(c) 

(d) 

The first equation is a modification of equation (10.4.1) with the inclusion of 
an infection term having mass action parameter kl • When normal T cells become 
infected, they immediately become reclassified as the latent type. In addition, 
note that the sum of alJ three types ofT cells count toward the T cell limit, Tmax. 

The first term in the second equation corresponds to the reclassification of 
newly infected normal T cells. These cells disappear from equation (a) but then 
reappear in equation (b). In addition, equation (b) includes a per capita death rate 
term and a term to account for the transition of these latent-type cells to active­
type with rate parameter k2. 

The first term of equation (c) balances the disappearance of latent T cells 
upon becoming active, with their appearance as active-type T cells. It also in­
cludes a per capita death rate term with parameter P corresponding to the lysis 
of these cells after releasing vast numbers of replicated virus. It is clear that T 
cells active in this sense perish much sooner than do normal T cells, therefore P 
is much larger than p, 

P »p. (1O.4.6) 

FinalJy the fourth equation accounts for the population dynamics of the virus. 
The first term, NPTA , comes from the manufacture of virus by the active type T 
cells, but the number produced wiII be huge for each T cell. The parameter N, a 
large value, adjusts for this many-from-one difference. The second term reflects 
the fact that as a virus invades a T cell, it drops out of the pool of free virus 
particles. The last term, with per capita rate parameter a, corresponds to loss of 
virus through the body's defense mechanisms. 

Remark: Note that in the absence of virus, i.e., V = 0, then both TL = TA = 0 
as welJ and, setting these values into system (10.4.5), we see that this new model 
agrees with the old one, equation (10.4.1). 
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The T cell-HI V model respects biological cOllstraints. 

We want to see that the model is constructed well enough that no population goes 
negative or goes unbounded. To do this, we first establish that the derivatives, ~; , 

~, tfJt, and ':i: are positive whenever T, h, TA , or V = 0, respectively. This 
would mean that each population will increase, not decrease, at low population 
sizes. 

But from equation (I O.4.5a), if T = 0, then 

dT 
dt = S > 0; 

if TL = 0, then equation (10.4.5b) gives 

dTi. = k VT > o· dl I , 

likewise if TA = O. then from equation (I0.4.5c) 

and, finally, equation (I0.4.5d) becomes, when V = 0, 

dV 
- = NjlTA > o. 
dt 

We have assumed all the parameters are positive. and so these derivatives are 
also positive as shown. 

Following Perelson, Kirschner, and De Boer [6], we next show that the total 
T cell population as described by this model remains bounded. This total, Tr is de­
fined to be the sum Tr = T + Ii. + TA and satisfies the differential equation obtained 
by summing the right-hand side of the first three equations in system (10.4.5) 

- = s + rT I - - - IlT - IlTL - jlTA. dTr (Tr ) 
dt Tmax 

( 1O.4.7) 

Now suppose Tr = Tmax. Then from equation (10.4.7), 

and combining the second, third and last terms as -IlTrnax. this gives 

where equation (10.4.6) has been used to obtain the inequality. Recalling condi­
tion (10.4.2), we find that 
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dTr. 0 -< dt 
ifTr. = Tmax 

proving that Tr. cannot increase beyond T 111WI' 

347 

In summary. the system (] 0.4.5) has been shown to be consistent with the 
biological constraints that solutions remain positive and bounded. 

The T cell infected stationary solution is stable. 

To find the stationary points of the T cell-HIV model. that is. equation (10.4.5). 
we must set the derivatives to zero and solve the resulting (non-linear) algebraic 
system in four equations and four unknowns. Sol-ving the third equation. namely 
o = k2TL - ~TA. for TA gives TA = (k2/~)TL. which may in turn be substituted 
for all its other occurences. This reduces the problem to three equations and three 
unknowns. Continuing in this way we arrive at a polynomial in. say. T. whose 
roots contain the stationary points. We will not carry out this approach here. 
Instead we will solve this system numerically. below. using derived parameter 
values. However in Reference [6] it is shown symbolically that the uninfected 
stationary point To (10.4.4) is stable (see Section 2.4) if and only ifthe parameter 
N satisfies 

By defining the combination of parameters on the right-hand side as Ncrih we may 
write this as 

N<Ncri' (10.4.8) 

In Table 10.4.1 we give values of the parameters of the system (10.4.5) as 
determined by Reference [6]. 

Table 10.4.3 Parameters of the HIV Infection Model 

Parameter Description Value 

s T cell from precursor supply rate IOImm3/day 
r normal T cell growth rate .03/day 
Trnax maximum T cell population 15001mm3 

p normalJlatently infected T cell 
death rate JJ2/day 

~ actively infected T cell death rate .241day 
a free virus death rate 2.4/day 
k\ T cells infection rate by ffCC virus 2.4 x 10-5 mm3/day 
k2 latent to active T cell conversion rate 3 x 1O-3/day 
N virus produced by an active T cell taken as 1400 here 
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This model reflects the clinical picture as presented in Greene [9]. 

Exercises 

I. In the uninfected situations. for both s = 0 and s = 10 derive the numerical 
solution T for f(T) = O. Which of the roots for this equation is in the interval 
[0, Tmax]? 

2. In the virus-free situation. give a biological interpretation for r. Suppose that 
r is increased to rn so that 

rn - r = .10. 
r 

That is. r is increased by 10%. What is the percentage of increase of the 
steady state of T cells corresponding to a 10% increase in r? 

3. With the parameters as stated for the infected situation, what is the numeri­
cal value for each of these: Tmax , the uninfected steady-state of T cells. the 
infected steady-state of T cells, and NCrit. Is Ncrit more or less that the N used 
in these parameters? What are the implications of this last answer? 

4. Sketch a graph of how T, TL, TA. and V evolve during the first year and move 
toward equilibrium. Continue the graph for two more years. Here is Maple 
syntax that will accomplish this integration of the equations. 

> RT:=(t,T,TL,TA,V)->s • mu'T H·T*(1·(T + TL+ TA)lTmax)·k1·V·T; 

> RTL:=(t,T,TL,TA,V)->k1*V*T·mu ·TL·k2·TL; 

> RTA:=(t,T,TL,TA,V}->k2*TL-b'TA; 

> RV:=(t,T,TL,TA,V}->N"b·TA-k1·V·T·a·V; 

> s:=10;r:=.03; Tmax:=1700;mu:=.02; 

b:=.24; a:=2.4; k1:=.000024; k2:=.003; N:=1400; 

> with(share): readshare(ODE,plots): 

> initl:=[O,1oo0,0,O,.001); 

> sol:=rungekuttahf([RT,RTL,RTA, RV), 

initt,0.5,365): 

> plot(makelist(sol,1 ,3),makelist(sol,1 ,4), makelist(sol,1 ,5»; 

> initl:=sol(365); 

> plot(makelist(sol,1 ,2»; 

> sol:=rungekuttahf([RT,ATL,ATA, AV), 

initl,.99,7oo): 

> plot(makelist(sol,1 ,2»; 

Section to.5 

A Model for a Mutating Virus 

The model of the previous section illustrated the interaction of HIV with T cells. 
It did not account for mutations of HIV. The following is a model for evolving 
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mutations of an HIV infection and an immune system response. This model is 
based on one introduced into the literature by Nowak, May, and Anderson. 

Any model of an HIV infection should reflect the high mutability of the virus. 

In Section 10.3 we discussed the high degree of mutability characteristic of the 
HIV virus, which results in a large number of viral quasi-species. The human 
immune system seems able to mount an effective response against only a finite 
number of these mutations, however. Furthermore, the activation of a latently 
infected helper T cell appears to stimulate viral reproduction with the result that 
every time a new mutant activates a T cell, vigorous viral population growth en­
sues. The immune system's T cell population evidently can endure this cycle only 
a limited number of times. The objective of this section is to modify the T cell­
HIV model to reflect these facts in the model. In this, we follow Nowak, May, 
and Anderson [10] and [11];.see also Nowak and McMichael 14]. 

Key assumptions 

I. The immune response to a viral infection is to create sub-populations of im­
mune cells specific to a particular viral strain that direct immunological attack 
against that strain alone. The response is directed against the highly variable 
parts of the virus. 

2. The immunological response to the virus is also characterized by a response 
which is specific to the virus, but which acts against all strains. In other words, 
it acts against parts of the virus conserved under mutations. 

3. Each mutant of the initial viral infection can cause the death of all immune 
system cells whether those cells are directed at variable or conserved regions. 

In this modified model, we keep track of three sets of populations. Let 
{VI, V2, ••. , vn } designate the various SUb-populations of viral mutants of the ini­
tial HIV infection. Let {XI, X2, ..• , xn} designate the populations of specific lym­
phocytes created in response to these viral mutations. And let z designate the 
immune response that can destroy all variations of the infective agent. The vari­
able n, for the number of viral mutations that arise, is a parameter of the model. 
We also include a parameter, the diversity threshold Ndiv, representing the number 
of mutations that can be accomodated before the immune system collapses. 

The equation for each HIV variant, Vi, consists of a term, with parameter a, 
for its natural population growth rate, a term, with parameter b, for the general 
immune response, and a term, with parameter c, for the specific immune response 
to that variant, 

dVi di = vi(a - bz - eXi), i = 1, ... ,no (10.5.1) 

The equation for each specific immune response popUlation, x;, consists of 
a term, with parameter g, which increases the population in proportion to the 
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amount of its target virus present. and a term. with parameter k. corresponding to 
the destruction of these lymphocytes by any and all viral strains, 

i = I, ... ,n. ( 10.5.2) 

Finally. the equation for the general immune response population. z. embod­
ies a term. with parameter h. for its increase in proportion to the sum total of virus 
present but also a mass action term for its annihilation upon encounter with any 
and all virus. 

dz 
dt = (h - kz)(vi + V2 + ... + vn ). 

The fate of the immune response depends on a critical combination of 
parameters. 

( 10.5.3) 

Again drawing on Reference [10]. we list several results which can be derived 
from this modified model. The model adopts one of two asymptotic behaviors 
depending on a combination of parameters. denoted N div • defined by 

where aib > hlk. ( 10.5.4) 

If the number n of viral variants remains below or equal to Ndiv then the virus 
population eventually decreases and becomes subclinical. On the other hand. if 
n > Ndiv then the virus population eventually grows unchecked. 

Note that Ndiv depends on the immune response to the variable and conserved 
regions of the virus in different ways. If specific lymphocytes rapidly respond (a 
large g) and are very effective (a large c). then Ndiv will be large in proportion 
to each. meaning a large number of mutations will have to occur before the virus 
gains the upper hand. By contrast, the general immune response parameters. hand 
b. appear as a combination in the denominator. Their effect is in direct opposition 
to the comparable viral parameters a and k. 

Naturally. the size of Ndiv is of considerable interest. Assuming that the de­
nominator of equation (10.5.4) is positive. ak > bh. we make three observations; 
their proofs may be found in Reference [10]. 

Observation 1. The immune responses. the x;'s and z. in total. have only a lim­
ited response to the HIV infection. That is. letting X = XI + X2 + ... + Xn • be the 
sum of the specific immunological responses, then 

lim X(t) = glk 
1->00 

lim z(t) = hi k 
1-+00 

( 10.5.5) 
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where the parameters 8, h, and k are as defined as in equations (l0.5.2HIO.5.4). 
The implication is that. even though the virus continues to mutate, the immune 
system cannot mount an increasingly higher response. 

The next observation addresses the possibility that, after some time, all the 
immune subspecies populations are decreasing. 

Observation 2. If all mutant subspecies populations Vi are decreasing after some 
time't, then the number of mutants will remain less than Ndiy and the infection will 
be controlled. That is, if there is a time 1: such that all derivatives 1I;(t) < 0 are 
negative for t > 't, i = I, ... , n, then the number of mutations n will not exceed 
Ndiy. 

In the next observation, we see that if the number of variations increases to 
some level determined by the parameters, then the viral population grows without 
bound. 

Observation 3. If the number of mutations exceeds Ndiy, then at least one 
subspecies increases without bound. In fact, in this case, the sum V(t) == 
VI + "2 + ... + VII increases faster than a constant times t!" for some positive 
numbera. 

Observation 4. If ak < bh, the immune system will eventually control the in­
fection. 

Numerical studies illustrate the observations graphically. 

In what follows we give parameters with which computations may be made to 
visualize the results discussed here. These parameters do not represent biological 
reality; likely the real parameters are not known. The ones used illustrate the 
features of the model. In Reference [10], the authors choose a = c = 5, b = 4.5, 
and 8 = h = k = 1. This choice yields the diversity threshold as 10 (Ndjy = 10). 
Thus, if there are 11 or more mutations, the virus population will increase without 
bound. To keep computation time small, we choose the same constants, except 
b = 4. This produces a threshold of 5. As a result, only 13 differential equations 
need to be integrated: six for the virus strains. six for the variable-region immune 
responses, and one for the conserved-region immune response. We specify the 
times of mutation as 7i with To = o. Thus, we specify that Vi(t) = 0 for 0 < I < T; 
and v(T;) is some initial value. We take this initial value to be 511 00 for the initial 
infection and 11100 for each succeeding mutation. Step size in the integration is 
often a quandary. We want enough accuracy to understand the trends, yet not so 
much as to cause the computations to become long and boring. Step sizes of 1110 
in the range of greatest deviation and 2110 otherwise seem to make a compromise. 
W~ use the Runge-Kutta routine to integrate the system of thirteen differential 
(""'iuations. 

> wlth(share): readshare(ODE,pJots): 
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Observation I above introduces the diversity threshold. We initialize the 
constants and, with these constants, determine Ndiv. 

> a:=5: b:=4: c:=5: 9:=1: h:=1: k:=1: Ndiv:= c·g!(a·k·bOh); 

This computation should give the Ndiv = 5. 
As a result of this computation, we expect that after six mutations the level 

of the viral population will grow unbounded-until the virus kills the host. Be­
fore giving the syntax to run this simulation, we will show the results that should 
be expected in order to illustrate the nature of the results proved in this section. 
Suppose first that there is an initial infection and the virus runs a course as mod­
eled with equations (10.5.1 )-( I 0.5.3), except no mutations occur. We expect that 
the infection will Hare up and be controlled by the immune system. This scenerio 
is pictured in the graph of Figure 10.5.1. The plot is time plotted against viral 
particles. Because Ndiv == 5, we expect the viral infection to be subdued. 

We now allow two mutations. Because this number is still less than Ndiv 

for our choice of parameters, we expect the immune system to remove the virus. 
What we see is the growth and removal of the original infection and the growth 
and removal of two mutations. 

Finally, we allow six mutations to occur. It is expected that the viral infec­
tions will initially be suppressed, but the repeated mutations-greater than Ndiv­

eventually overwhelms the immune system. 

1.8 n 
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Figure 10.5.1 A viral infection with no mutation 
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Figure 10.5.2 Infection with two mutations 

> RSv1:- (t,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6.z)->(a • b*z • c*x1 )*v1: 
> RSv2:. (t,v1,v2,v3,v4,v5,v6,x1,x2.x3,x4,x5,x6,z)->(a • b*z· c*x2)*v2: 
> RSv3:- (t,v1,v2,v3,v4,v5,v6,x1,lC2,x3,x4,xS,x6,z)->(a • b*z· c*x3)*v3: 
> RSv4:- (t,v1,v2,v3,v4,v5,v6,X1,x2,x3,x4,x5,x6,z)->(a· b*z· c*x4)*v4: 
> RSvS:= (t,v1,v2,v3,v4,v5,v6,x1,x2.x3,x4,x5,x6,z)->(a • b*z· c*x5)*vS: 
> RSv6:- (t,v1,v2,v3,v4,v5,v6,x1,x2.x3,x4,xS,x6.z)->(a· b*z· c*x6)*v6: 
> RSx1:- (t,v1,v2,v3,v4,v5,v6,x1,x2.x3,x4,x5,x6,z)->O*v1 • 

k"(v1+v2+v3+v4+v5+v6) *x1: 
> RSx2:- (t,v1,v2,v3,v4,v5,v6,x1,x2,x3,x4,x5,x6,z)->g*v2· 

k"(v1 +v2+v3+v4+vS+v6)*x2: 
> RSx3:- (t,v1,v2,v3,v4,vS.Y6,x1,x2,x3.x4,x5,x6,z)->g*v3 • 

k*(v1 +v2+v3+v4+v5+Y6)*x3: 
> RSx4:- (t,v1,v2,v3,v4,v5,v6,x1 ,x2,x3,x4,x5,x6,z)->g*v4 • 

k"(v1+v2+v3+v4+vS+v6)*x4: 
> RSxS:- (t,v1,v2,v3,v4,vS,v6,x1,x2,x3,x4,x5,x6,z)->g*vS • 

k*(v1+v2+v3+v4+v5+v6)*x5: 
> RSx6:. (t,v1,v2,v3,v4,v5,v6,x1 ,x2.x3,x4,x5,x6,z)->g*VS­

k*(v1 +v2+v3+v4+vS+v6)·x6: 
> RSz: .. (t,v1 ,v2,v3,v4,vS,v6,x1 ,lC2,x3,x4,xS,x6,z)-> (h·k*z) • 

(v1 +v2+v3+v4+v5+v6): 

353 
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Figure 10.5.3 Six mutations, with Ndiv = 5 

What follows is the syntax for the right-hand side of the equations for each 
Vi in (lO.5.1), each Xi in (10.5.2), and for z in (10.5.3). The first six lines are 
"right-hand side VI," "right-hand side V2," etc. 

We now integrate these equations using the numerical scheme found in the 
ODE Runge-Kutta package. In the following syntax, a mutation is allowed to 
occur at each integral multiple of 1/2 until there are six mutations. Then the 
program is allowed to run until t = 20. By that time, the blow-up of the viral 
population will have begun. The first line starts with t = 0, VI = 5/ 100, and all 
other viral levels O. This is integrated in time steps of 1110 for 5 steps. 

> initl :=[0,5/100,0,0,0,0,0,0,0,0,0,0,0,0); 

> output 1 :=rungekutlahf([RSvl, RSv2, RSv3, RSv4, RSv5, RSv6, RSxl, 

RSx2, RSx3, RSx4, RSx5, RSx6, RSz),init1,.1 ,5): 

Each remaining pair initializes the third, the fourth, the fifth, and finally the 
sixth mutation at the level of 11100 and runs for time steps of I/lO for five steps. 

> ini12:=subsop(3=1/1 00 ,output 1 [5]); 

> outpu12:=rungekuttahf([RSvl, RSv2, RSv3. RSv4. RSv5, RSv6. RSxl. 

RSx2. RSx3. RSx4. RSx5. RSx6. RSz).init2 .. 1.5): 

> init3:=subsop(4=11100.output2[5]); 



Chapter 10 I A Biomathematical Approach to HIV and AIDS 

> output3:=rungekuttahf«(RSv1, RSv2, RSv3, RSv4, RSv5, RSvS, RSx1, 
RSx2, RSx3, RSx4, RSx5, RSx6,RSz],init3,.1,5): 

> init4:=subsop(5=1/100,output3[5]); 
> OUlpuI4:=rungekuttahf([RSv1, RSv2, RSv3, RSv4, RSvS, RSvS, RSx1, 

RSx2, RSx3, RSx4, RSx5, RSxS,RSz],iniI4,.1,5): 
> init5:=subsop(6=1/100,outpuI4[5]); 
> OUlpuIS:=rungekuttahf([RSv1, RSv2, RSv3, RSv4, RSvS, RSvS, RSx1, 

RSx2, RSx3, RSx4, RSx5, RSxS, RSz],init5,.1,5): 
> inil6:=subsop(7=1 /1 00,oulput5[5]); 
> outpuIS:=rungekuttahf([RSv1, RSv2, RSv3, RSv4, RSv5, RSvS, RSx1, 

RSx2, RSx3, RSx4, RSx5, RSxS, RSz],initS,.2,88): 

355 

Observation 2 predicts that since more mutations have occurred than Ndiv the 
population will grow without bound. The graphs show this. Here is syntax for 
drawing the graphs. 

> plol( {makelist(output1,1,2), makelisl(oulput2,1,2), makelist(outpul2,1,3), 
makelist(output3,1,2),makelist(output3,1,3),makelist(oulput3,1 ,4), 
makelist(output4,1,2),makelist(output4,1,3),makelist(output4,1,4', 
makelist(output4,1,5),makelist(output5,1,2),makelist(output5,1,3), 
makelist(output5,1,4),makelist(output5,1,5),makelist(output5,1,S), 
makelist(outputS, 1 ,2),makelist(outputS, 1 ,3),makelist(outputS, 1,4), 
makelist(outputS,1,5),makelist(outpul6,1,S),makelist(outputS,1,7)}); 

We now verify Observation 3 for these parameters. First, note that, from 
(10.5.2), the sum of the x;'s satisfies the differential equation 

X' = V * (g - kX) 

where X = XI + X2 + ... + X6 and V = VI + V2 + ... + V6. We could compute the 
solution of this equation and expect that 

lim (XI (t) + X2(t) + ... + X6(t)) = g/k. 
' .... 00 

Or, using the computations already done, add the Xi'S. The level of the Xi'S are 
kept in this syntax in the 8th through 13th positions. Where the computations are 
in the "time" variable is kept in the I st position of the output. We add these Xi'S 

in each output. 

> y1 :=seq([output1 [n][1 J,sum(output1 [nIDi,i=8 .. 13)),n=O .. 5): 
y2:=seq([outpul2[n][1 J,sum(outpul2[nJUJ,i=8 .. 13)),n=1 .. 5): 
y3:=seq([oulput3[n][1],sum(output3[n]UJ,i=8 .. 13)),n=1 .. 5): 
y4:=seq([output4[n][1 J,sum(output4[nlU],i=8 .. 13)),n=1 .. 5): 
y5:=seq([output5[n][1 ),sum(output5[nJUJ,i=8 .. 1 3)),n=1 .. 5): 
yS:=seq([outputS[n][1 ),sum(outpul6[n1UJ,j=8 .. 13)1,n=1 . .40): 
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6 8 10 

Figure 10.5.4 Graph of XI + X2 + ... + Xn 

Here is the plot of the sum of the Xi antigens. 

> plot( {y1,y2,y3,y4,Y5,y6}); 

The plot of the response Z, no matter where you start, should have asymptotic 
limit hlk and should look essentially the same as that for (XI + X2 + ... + X6). 
Here is one way to plot the values of z. What you should see is that the z reaches 
a maximum. 

> plot({ makellst(output1,1,14), makelist(output2,1,14), 

makelist( output3,1,14), makelist( output4 ,1, 14), 

makelist(outputS,1,14), makelist(output6,1,14)}); 

Viral suppression is possible with some parameters. 

It was stated in Observations I and 4 that there are two ways to achieve viral sup­
pression. These are experiments that should be run. One could choose parameters 
so that ok < bh; then the immune system will eventually control the infection. 
No change need be made in the syntax, only a = 4 and b = 5. Other parameters 
could remain the same. 
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Figure 10.5.S quad Graph of 4 

The simple models as presented in these two sections give a good nrst un­
derstanding ofthe progress from infection. to remission. to AIDS. Such an under­
standing provokes further study. 

Section 10.6 

Predicting the Onset of AIDS 

Most diseases have a latency or incubation period between the time of infection 
and the onset of symptoms. AIDS is no exception. The latency period for AIDS 
varies greatly from individual to individual and. so far, its profile has not been 
accurately determined. However, assuming a given form of the incubation pro­
file. we show the onset of symptoms occurs. statistically. as the time of infection 
convolved with this profile. 

AIDS cases can be statistically predicted by a convolution integrat. 

In this chapter we have discussed the epidemiology of the HIV infection and sub­
sequent appearance of AIDS. For most diseases. there is a period of time between 
infection by the causative agent and the onset of symptoms. This is referred to as 
the incubation period; an affliction is asymptomatic during this time. Research is 
showing that the nature of this transition for HIV is a complicated matter. Aiong 
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with trying to learn the mechanism of this process. considerable work is being 
devoted to an attempt to prolong the period between HIV infection and the ap­
pearance of AIDS. This period varies greatly among different individuals and 
appears to involve. besides general health. particular characteristics of the indi­
vidual's immune system. See References [5]-[8] for further details. 

The incubation period can be modeled as a probability density function p{t). 
see Section 2.6. meaning the probability that AIDS onset occurs in a llt time 
interval containing I is 

p(t) ·llt. 

To discover the incubation density. records are made. when possible. of the time 
between contraction of HIV and the appearance of AIDS. See Bacchetti [12] for 
several comments by other researchers. and for a comprehensive bibliography. At 
the present this probability density is not known. but some candidates are shown in 
Figures 1O.6.I(a). (b). (c). (d). Figure 10.6.1 (a) is a uniform distribution overthe 
period of two years to 18 years. This distribution has no preferred single incuba­
tion moment but incubation is guaranteed to occur no sooner than two years after 
infection and no later than 18 (18.0) years afterward. It is unlikely that this is the 
operating distribution but we include it for comparison purposes. Figure I 0.6.1 (b) 
is an exponential distribution. This distribution pertains to many "arrival time" 
processes in biology such as times for prokaryotic cell division (which occurs 
upon the "arrival" of cell maturation). Here again there is no preferred incuba­
tion moment but. unlike the uniform distribution. the incubation period can be 
indefinitely long. (A fraction of those infected with HIV have. so far. remainded 
asymptomatic "indefinitely.") Figure 10.6.1 (c) is a gamma distribution incorpo­
rating both a preferred incubation "window" and the possibility of an indefinitely 
long incubation period. Figure 10.6.1 (d) is a beta distribution. It allows for a pre­
ferred window but. like the uniform distribution. incubation must occur between 
given times. 

The functions we have used to draw Figure 10.6.1 are PI. ~. l'). and P4 as 
defined in the following. 

> cl :=intCf9·expC-t),t=0 .. infinity); 

c2:=evaIfClntCsqr1C(t-2)/16)*(1-(t-2)/16)"4, t=2 .. 20)); 

Pl :=t-> 1/16·CHeaviside(t-2)-HeavisideCt-18»; 

P2:=t->exp(-tl6)16; 

P3:=t->t"9·exp(-t)/cl ; 

P4:=t->sqr1CCt-2)/16)*Cl-Ct-2)/16r 4/c2; 

Their graphs are illustrated in Figure 10.6.1. 
To derive a mathematical relationship for the appearance of AIDS cases. 

we will assume that the probability distribution for the incubation period can be 
treated as a deterministic rate. Let h(t) denote the HIV infection density, that is. 



Chapter 10 I A Biomathematical Approach to HIV and AIDS 359 

> plot( {P1 (t),P2(t),P3(t),P4(t), t=0 .. 20}); 

0.15 

p 

0.05 

5 10 15 20 

Figure 10.6.1 Some HIV incubation probability densities. Graphs of (a) uniform 
distribution, (b) e-t/ 6/6, (c) 19e1 normalized, (d) J(/- 2)/16(1 - (1- 2)/16)4 
normalized. 

the number of new HIV infections during [I, 1+ &) = h(t) . &, 

and let a(t) denote the AIDS density, thus 

the number of new AIDS cases during [t, t + &) = a(t) . Ilt. 

We wish to determine a(t) from h(t). AIDS cases at time t arise according to the 
probability function p(.) from HIV infections which occurred at some time s prior 
to t. Such a time interval is [I - (s + ds),t - s) (see Figure 10.6.2). The number 
of newly infected persons during this interval is h(1 - s) . ds and the fraction of 
them to become symptomatic s time later is p(s). Hence the contribution to a(t) 
here is 

h(t - s) . ds· p(s). 

Since a(t) is the sum of such contributions over all previous times. we get 

a(t) = 10''''' h(t - s)p(s) ds. (10.6.1) 



360 Section 10.6 I Predicting the Onset of AIDS 

This sort of integral is known as a convolution; such integrals occur widely in 
science and engineering. 

Convolution integrals have an alternate form under change of variable. Let 
u = t - s, then s = t - u and ds = -duo Since u = t when s = 0 and u = -00 

when s = 00, the integral of equation (10.6.1) becomes 

a(t) = - 1-00 h(u)p(t - u) duo 

Absorbing the minus sign into a reversal of the limits of integration and replacing 
the dummy variable of integration u by s gives 

a(t) = [00 h(s)p(t - s) ds. ( 10.6.2) 

This equation shows up a striking symmetry between the roles of hand p. Equa­
tion (10.6.2) is sometimes easier to work with than equation (10.6.1). 

h(l-.,) 

f-S 

Figure 10.6.2(a) a(/)::::: r. .. h(/ - s) . ds . p(s) 
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< - - s positive d.t 

Figure lO.6.2(b) a(t):::::I Ish(t - s) . ds· p(s) 

The occurance of symptoms is strongly affected by the incubation distribution. 

In order to determine whether a proposed incubation distribution is the correct 
one, we must use it in conjunction with our newly derived formula, either equa­
tion (10.6.1) or equation (10.6.2), to predict the pattern of cases. To this end we 
track an HIV infected cohort, that is, a group of people infected about'the same 
time, through the calculation. Consider those infected over a two-year period. 
which we take to be t = 0 to t = 2. We will assume there are 1000 cases in each 
of the two years; thus the HIV density we are interested in is 

h(t)={IOOO ifO~~~2 
o otherWise. 

( 1O.6.3) 

The total number of cases is Ii h(s)ds = 2000. With this choice for h, we can 
simplify the factor h(l - s) in equation (10.6.1). Note that 0 :5 t - s :5 2 is the 
same as t - 2 ~ s :5 t. In other words, 

if t - 2:5 s :5 t, then h{t - s) = 1000, otherwise his O. ( 10.6.4) 

Therefore the only contribution to the integral in equation (10.6.1) comes from 
the part of the s axis between t - 2 and t (see Figure 10.6.3). 
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.f=O /-2 

Figure 10.6.3 Contributory subinterval of the s-axis 

There are three cases depending on the position of the interval [t - 2, t] rel­
ative to 0: to the negative side of 0, i.e., t ~ 0, to the right of 0, i.e., t - 2 ;:::: 0, 
or covers 0,0 < t < 2. Consider each case in turn. If t ~ 0, then a(t) = 0 from 
equations (10.6.2) and (10.6.3). If t ;:::: 2, then t - 2 ;:::: 0 and equation (10.6.1) 
becomes, taking into account equation (10.6.4), 

a(t) = 1000f' p(s)ds, 
,-2 

t ;:::: 2. 

Finally for 0 < t < 2, the part of the interval to the left of s = 0 makes no 
contribution and in this case equation (10.6.1) becomes 

a(t) = 1000 fo' p(s) ds, 0< t < 2. 

Putting these three together we have 

{ 
0, t :s: 0 

a(t) = 1000 J~ p(s) ds, 0 < t < 2 

1000 1,'-2 p(s) ds, t;:: 2. 

( 10.6.5) 
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Because it is inconvenient to deal with a function defined by cases, such as 
aCt) is defined by equation (10.6.5), a standard set of "cases" type functions have 
been devised. One of these is the Heaviside function H(r) and another is the 
signum function Set). The first is defined as 

H(t) = {O, t < 0 
I, t ~ O. 

The signum function is just the sign of its argument, that is 

{
-I 

Set) = 0: 
1, 

t<O 
t=O 
t > O. 

Actually there is a relationship between the two, except for t = 0: 

1 
H(t) = 2 (S(t) + 1), Set) = 2H(t) - 1, t:F o. 

(10.6.6) 

(10.6.7) 

(10.6.8) 

The Heaviside function H(2 - t) cuts out at t = 2 while H(t - 2) cuts in at t = 2, 
so in terms of Heaviside functions, equation (10.6.5) can be written as 

aCt) = I000H(2 - t) f' pes) ds + l000H(t - 2) l' pes) ds. 
~ ,-2 

(10.6.9) 

For the simplest example, assume the incubation density is the uniform dis­
tribution, PI, above, Figure 10.6.1 a, 

PI(t) = {01/ 16 if2 ~ t ~ 18 
otherwise. 

Substituting into equation (10.6.9) and integrating gives the onset distribution 
aCt). 

> h:=I-> 1 OOO*(Heaviside(2-1)-Heaviside( -I)); 

> Inl(h(l-s),s=2 .. 18)/16; 

> collecl(collecl(collecl(collecl(" ,signum(20-1)), 

signum(2-1)),signum(4-1)),signum( -1+ 18)); 

> a:=unapply(" ,I); 
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The output of this calculation is 

( 125 1125). aCt) = "4 t - -2- slgnum(18 - t) 

+ (1!5 t _ 125) signum(t - 4) 

( 125 125). + -""4 t + T slgnum(2 - t) 

(10.6.6) 

+ (_1!5 t + 625) signum(20 - t). 

This provides an alternate realization for a formula for aCt). Its form is different 
from that of equation (10.6.5). We can recover the previous one however by 
evaluating the signums with various choices of I. To do this, suppose that 2 < t < 
4, or 4 < t < 18, or 18 < t < 20, respectively, and evaluate equation (10.6.6). 

> (12514·1-112512)+(-125+12514·1)-(-12514·t+12512)+(625-12514·t); 
(12514·'-112512)-(-125+ 12514·1)-(-12514·t+ 12512)+(625-12514·t); 
-(12514·t-112512)-(-125+12514·1)-(-12514·t+12512)+(625-12514·1); 

a(/) 

5 10 15 

-20 

Figure 10.6.4 Graph of aCt) from equation (10.6.6) 
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Eventually, all those infected will contract AIDS, therefore 

1000 a(s)ds = 102 h(s)ds, 

but the first integral reduces to the interval [0,20] (see Figure 10.6.4). That is, the 
total number of people who develop AIDS during the 20-year period is the same 
as the total number of people in the initial two-year cohort. This computation is 
done as 

> Int(a(s), s=0 .. 20); 

which gives 2000. 
Several observations should be made with the graph for each of the other 

distributions. There should be a gradual increase of the number of cases as the 
cohorts begin to develop symptoms of AIDS. Also, there should be a gradual 
decrease that may last past 20 years: Those in the cohorts who were infected near 
the end of the second year may not begin to show symptoms until the 22nd year, 
depending on which of Pz, P3, or P4 is used. 

We leave the computations for the other distributions to the exercises. How­
ever, Figure 10.6.5 shows the graph for the onset of AIDS cases for a two-year 
cohort assuming incubation as with the gamma distribution I')(t). The function 
a(t) defined by 

is evaluated and plotted with 

> int(1000·P3(s),s=0 .. t)·Heaviside(2-t) 

+ int(1000·P3(s),s=t-2 .. t)·Heaviside(t-2): 

> a:=unapply(" ,t); 

> plot(a(t),t=0 .. 22); 

We veri fy that 

1000 a(s)ds = 2000. 

> evalf(lnt(a(s),s=O . .infinity)); 

Comparing these figures we can gauge the effect of the incubation period. Note 
that for research purposes, it would require more than comparing figures like these 
with AIDS epidemiologic data to determine the incubation distribution, because 
one could not separate the AIDS cases into those stemming from a particular 
cohort-all cohort onsets are mixed together. 
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Figure 10.6.5 Onset of AIDS cases for a two-year HIV cohort assuming gamma 
incubation. 

Exercises 

I. Choose each of the four hypothetical incubation densities of Figure 10.6.1 in 
turn. Draw the graph of the number of AIDS cases expected to develop, a(t), 
for the cohort of equation (10.6.2) with the assumption that the one you have 
chosen is correct. The following syntax draws the Figure 10.6.4 and verifies 
equation (10.6.6). 

> int( 1 OOO·P3(s),s=O .. t)·Heaviside(2-t) 

+ int(1000·P3(s),s=t-2 .. t)"Heaviside(t-2): 

> a:=unapply(" ,t); 

> plot(a(t),t=O •. 22); 

> evalf(lnt(a(s),s=O . .infinity»; 

> int(P3(s),s=O .. infinity); 

2. We pose a what if exercise. Suppose that around 20 I 0, a vaccine for HIV is 
developed and, while current cases cannot be cured, HIV is no longer trans­
mitted. The number of reported new cases of HI V, h(t), drops dramatically to 
zero by 2020. Model the reponed cases of HIV with a hypothetical scenario 
such as 

h( ) = (t - 1980) [I _ (t - 1980)6] 
t 40 406' 
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a. Draw a graph of h(t). Observe that h(1980) = 0 and h(2020) = o. 

> h:=t->«t-1980)/40)*(1-(t-1980r6l40·6); 

> plot(h(t),t=1980 .. 2020,xtickmarks=O,ytickmarks=2); 

b. Determine where the maximum value of h occurs. This represents the 
time when the reported new cases of HIV infected individuals peaks if 
this "optimistic scenario" were to happen. 

> sol:=solve(diff(h(s),s)=O,s); 

> evalf(sol[1 J); 

c. Define a "later, rather than sooner" hypothetical incubation density and 
draw its graph. 

> c5:=int(1/16*(t-2)*(1-(1/16*(t-2Jr2),t=2 .. 18); 

P5:=t-> 1/16*(t-2)*(1-( 1/16*(t-2Jr2)/c5; 

> plot([t,P5(t),t.2 .. 18),t=0 .. 20); 

d. Find a(t) as in equation (10.6.1) associated with this distribution. 

> a15:=t->int(h(t-r)*P5(r),r=2 .. t-1980); 

a25:=t->int(h(t-r)*P5(r),r=2 .. 18); 

a:=t->a15(t)*Heavislde(2000-t)+ a25(t)*Heaviside(t-2000); 

e. Sketch the graphs for the hypothetical h(t) and associated a(t}. 

> Oigits:=30; 

plot( {It,h(t),t=1980 .. 2020),lt,a(t),t=1982 .. 20281}, 

xtickrnarks=2,ytickrnar1<s=O); 

Section 10.7 

Questions for Thought and Discussion 

t. What are four suspected ways that HIV kills cells? 
2. Why do viral mutations lead to the development of new antibodies by the 

immune system? 
3. Describe the life cycle of HIV. 
4. Why do we continue to get colds, year after year, but seldom get mumps more 

than once? 
5. Describe clonal selection and clonal deletion. 
6. How does the clonal deletion model explain the fact that a mouse injected 

prenatally with a virus never will raise antibodies against the virus after the 
mouse is born? 

7. Describe three general immunolgic mechanisms. 
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8. How does HIV infection result in the inactivation of both the humoral and 
cell-mediated immune responses? 

9. Most DNA replication includes a proof-reading function that corrects mis­
matched DNA nucleotides during DNA replication. The reverse transcriptase 
of HIV seems to lack this ability, which results in high mutation rates (as 
much as one or more per generation). Discuss this problem in terms of anti­
body production by a host's immune system. 

References and Suggested Further Reading 

I. Blood cells; Immunity: William T. Keeton and James L. Gould, Biological Sci­
ence. W.W. Norton and Company, New York, 5th ed .• 1993. 

2. Immunity: Special issue on the immune system: Scientific American, Vol. 269, 
No.3, September, 1993. 

3. DIV and AIDS: "What Science knows about AIDS" (entire issue), Scientific 
American, Vol. 259, No.4. October, 1988. 

4. DIV and AIDS: Martin A. Nowak and Andrew J. McMichael, "How HIV De­
feats the Immune System," in Scientific American, Vol. 273, No.2, page 58, Au­
gust. 1995. 

5. DIV and T cells: A. S. Perelson. Modeling the Interaction of the Immune Sys­
tem with HIV, in Mathematical and Statistical Approaches to AIDS Epidemi­
ology, edited by C. Castillo-Chavez, pp. 350-370. Lecture Notes in Biomath, 
Vol. 83, New York: Springer-Verlag. 1989. 

6. DIV and T cells: A. S. Perelson. D. E. Kirschner and R. J. De Boer. The Dy­
namics of HIV Infection of CD4+ T Cells. Math. Biosci. 114, pp. 81-125. 1993. 

7. DIV and T'cells: K. E. Kirschner and A. S. Perelson, A model for the immune 
system response to HIV: AZT treatment studies, in Mathematical Popukltion Dy­
namics: Analysis of Heterogeneity and the Theory of Epidemics, O. Arino, D. 
E. Axelrod, M. Kimmel and M. Langlais, eds., Wuerz Publishing, Winnipeg, 
Canada, pp. 295-310. 

8. DIV and T cells: A. S. Perelson. Two theoretical problems in immunology: 
AIDS and epitopes. in Complexity: Metaphors. Models and Reality, G. Cowan, 
D. Pines and D. Meltzer. eds .• Addison-Wesley, Reading. MA, pp. 185-197. 

9. The Immune response: W. C. Greene. AIDS and the Immune System, Scientific 
American 269 #3. Special Issue, September, 1993. 

10. Mutations of DIV: Martin A. Nowak. Robert M. May and Roy M. Ander-
son. The evolutionary dynamics of HIV- I quasi species and the development of 
immunodeficiency disease. AIDS 1990 4. pp. 1095-1103, 1990. 

II. Mutations or DIV: Martin A. Nowak and Robert M. May, Mathematical biol­
ogy of HIV infections: Antigenic variation and diversity threshold, Mathematical 
Biosciences 106. pp. 1-2t. 1991. 

12. Calculations or the time from DIV infection to AIDS symptoms: P. Sacchetti. 
M. R. Segal and N. P. Jewell, "Sackcalculation of HIV Infection Rates," Statisti­
cal Science. Vol. 8. no. 2. pp. 82-119. 1993. 



Chapter 11 

Genetics 

Introduction to this chapter 

In this chapter we will study the ways that genetic information is passed between 
generations and how it is expressed. Cells can make exact copies of themselves 
through asexual reproduction. The genes such cells carry can be turned off and on 
to vary the cells' behaviors, but the basic information they contain can be changed 
only by mutation, a process that is somewhat rare to begin with and usually kills 
the cell anyway. 

Genetic material is mixed in sexual reproduction, but the result of such mix­
ing is seldom expressed as a "blend" of the properties' expressions. Rather, the 
rules for the combination of genetic information are somewhat complex. Sexual 
reproduction thus results in offspring that are different from the parents. Much 
research shows that the ultimate genetic source of this variation is mutation, but 
the most immediate source is the scrambling of preexisting mutations. 

The variations produced by sexual reproduction serve as a basis for evolu­
tionary selection, preserving the most desirable properties in a particular environ­
mental context. 

Section 11.1 

Asexual Cell Reproduction-Mitosis 

Asexual reproduction of a cell results from the copying and equal distribution of 
the genetic material of a single cell. Each resultant daughter cell then possesses 
the same genes as the parent cell. If we are considering a single-celled organ­
ism, an environment for which the parent cell is suited should therefore also be 
suitable for the daughter cells. If we are considering a multicellular organism. 
the daughter cell may take on functions different from that of the parent cell by 
selectively turning genes off. This process creates the various tissues of a typical 
multicellular organism. 
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Eukaryotic mitosis gives each of two daughter cells the same genes that the 
parent cell had. 

The actual process of eukaryotic mitosis is comparable to a movie. with some­
times-complex actions flowing smoothly into one another. without breaks. For 
reference. however. mitosis is usually described in terms of five specific stages, 
named interphase. prophase. metaphase. anaphase and telophase. It is impor­
tant to remember. however, that a cell does not jump from one stage to the next. 
Rather. these stages are like "freeze-frames." or preserved instants; they are guide­
posts taken from the continuous action of mitosis (see Reference (I] for further 
discussion). 

Most of the time a cell's nucleus appears not to be active; this period is called 
interphase. If one adds to an interphase cell a stain that is preferentially taken up 
by nuclei and then examines the cell through a microscope. the nucleus appears 
to have no internal structure over long periods of time. This appearance is actu­
ally quite misleading because. in fact, the nucleus is very active at this time~ Its 
activity, however. is not reflected in changes in its outward appearance. For ex­
ample. the addition of radioactive thymine to an interphase cell often leads to the 
formation of radioactive DNA. Clearly DNA synthesis takes place in interphase. 
but it does not change the appearance of the nucleus. 

Biologists further subdivide interphase into G1• during which preparations 
for DNA synthesis are made. S. during which DNA is synthesized and G2. dur­
ing which preparations are made for actual cell division. (The "G" stands for 
"gap.") If we could see the DNA of a human skin cell during G1 we would find 46 
molecules. Each molecule. as usual. consists of two covalent polynucleotides. the 
two polymers being hydrogen-bonded to one another in a double helix. Genetic 
information is linearly encoded into the base sequence of these polynucleotides. 

When we discussed DNA structure in Chapter 9 we associated a gene with 
the nucleic acid information necessary to code for one polypeptide. Thus, a gene 
would be a string of perhaps a few hundred to a few thousand bases within a DNA 
molecule. It is convenient to define a gene in another way. as afunctional unit of 
heredity. a definition that has the virtue of generality. It can therefore include the 
DNA that codes for transfer RNA or ribosomal RNA. or it can just be a section 
of DNA that determines a particular observable property. such as wing shape or 
flower color. In this general definition. each DNA molecule is called a chromo­
some, where each genetic region (gene; locus). on the chromosome determines a 
particular observable property. 

In Figure 11.1.1 one chromosome is illustrated for a cell progressing through 
mitosis. (A human skin cell. for example. has 46 chromosomes. and each one 
behaves like the one in the figure.) The structure of the chromosome at G2 cannot 
be seen in a microscope. so we must surmise its structure by its appearance in the 
next stage (prophase). 

At prophase the nuclear membrane disappears and the chromosomes become 
visible for the first time. resembling a ball of spaghetti. If we could grab a loose 
end of a chromosome and separate it from the others, we would see that it looks 
like the one shown in the figure beside the prophase cell. It consists of two halves 
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called sister chromatids, lying side by side and joined at a centromere. The two 
chromatids of each prophase chromosome are chemically and physically identical 
to each other because one of each pair was manufactured from the other in the 
preceding S phase. Each chromatid therefore contains a double stranded DNA 
molecule that is identical to the DNA of its sister chromatid. The two chromatids 
are still referred to as a single chromosome at this point. 

As prophase progresses, the chromosome becomes shorter and fatter, and 
it moves to the center of the cell. The stage at which the chromosomes reach 
maximum thickness and are all oriented at the cell's center is called metaphase. 
Chromosomes at metaphase have reached their maximum visibility, and a view 
through a microscope often shows them all arranged neatly in the cell's equatorial 
plane. as shown in the photo in Figure 11.1.1. 

At anaphase each chromosome splits into its two component chromatids, 
which are now referred to as individual chromosomes in their own right. and 
one copy moves toward each end, or pole, of the cell. Recall that the two sister 
chromatids of each chromosome are identical to each other. In summary, what 
happens in anaphase is that identical double-stranded DNA is delivered to each 
pole. 

At telophase the chromosomes collect together at each pole and a new nu­
clear membrane forms around them. The cell then divides its cytoplasm in such 
a way that one new nucleus is contained in each half.' There are now two cells 
where there was only one, but the crucial point is that each of the daughter cells 
now has the same DNA code that the original cell had. Put another way, two cells 
have been formed, each having the same genes as the parent cell. 

One way to look at asexual reproduction is to think of each chromosome as 
a piece of paper, with information written on it. A human skin cell has 46 pages, 
labeled I through 46. At S phase an exact copy is made of each page, and during 
mitosis each daughter cell gets one copy of each page. No new information is 
created, nor is any lost. Each daughter cell gets the same genetic information, i.e., 
each dau~ter cell ends up with 46 pages, labeled I through 46. 

A karyotype is a picture of a cell's chromosomes. 

It is not difficult to obtain a picture of most organisms' chromosomes. For ex­
ample, it is a routine laboratory procedure to take a sample of a person's blood 
and isolate some of their white blood cells (mammalian red blood cells won't do 
because they lose their nuclei as they mature). These white cells are then cultured 
in a test tube and their nuclear material is stained as they enter metaphase. which 
is when chromosomes are most easily visualized. The cell, with its chromosomes, 
is photographed through a microscope. The chromosomes are then cut out of the 
photograph and arranged in a row, according to size. This picture is a karyotype. 
An example is shown in Figure 11.1.2. 

I The actual splitting of the cell is called CYI/lkin~sj .•. 



372 Section 11.1 I Asexual Cell Reproduction-Mitosis 

telophase and cytokinesis 

Figure 11.1.1 The stages of mitosis. The figure shows actual photographs of a di· 
viding cell's chromosomes. The line drawings show how the individual chromosomes 
behave during that stage of division. During mitosis each chromosome replicates 
lengthwise and the two copies go to different daughter cells. Thus, each daughter 
cell ends up with exactly the same genetic complement as the parent cell. (Photos of 
mitosis taken from "Radiation and Chromosomes Biokit," Carolina Biological Supply 
Company, Burlington, North Carolina; #F6-I7-1148. Used with permission.) 
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Figure 11.1.2 A karyotype of a normal human male. The chromosomes were pho· 
tographed at metaphase and images of the individual chromosomes were then cut 
out and arranged by size. The result is a group of 22 chromosome pairs, called ho· 
mologs, each pair of which is matched by length, centromere location and staining 
pattern. Because this is a male's karyotype, the 23rd pair of chromosomes (sex chro· 
mosomes; X and Y) do not match each other. Each of the chromosomes shown in the 
figure consists of two identical daughter chromatids, but they are so closely associated 
that they are often indistinguishable at metaphase. However, note Ihe right hand ho· 
molog of number 18; the two chromotids can be distinguished. (Photo of karyotype 
arranged from "Human Karyotypes, Normal Male," Carolina Biological Supply Com­
pany; Burlington, North Carolina; #F6·17-3832. Used with permission.) 
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There are several interesting features of the illustrated karyotype: 

I. These are metaphase chromosomes and therefore are lengthwise doubled. 
joined at a centromere. Each chromosome consists of two chromatids. a fea­
ture that sometimes confuses students. The problem is that the chromosomes 
must be photographed at metaphase because that is when they are most easily 
visible and distinguishable from one another. This is also the point at which 
they are in a duplex form. You may want to refer to the discussion of Figure 
11.1.1 to clarify the distinction between chromosome and chromatid. 

2. There are 46 chromosomes in this cell. This is the number found in most 
of the cells of the human body. the exceptions being mature red blood cells. 
which lack nuclei. and certain cells of the reproductive system. called germi­
nal cells. to be discussed later in this chapter. Any cells of our body that are 
not germinal are said to be somatic cells. a category that therefore includes 
virtually the entire bulk of our body: skin. blood. nervous system. muscles. 
the structural part of the reproductive system. etc. Our somatic cell chromo­
some number is thus 46. 

3. The chromosomes in the karyotype seem to occur in identical-appearing 
pairs. called homologous pairs. Evidently our human chromosomal comple­
ment is actually two sets of 23 chromosomes. It is very important to under­
stand the difference between a homologous pair of chromosomes and the two 
chromatids of a single metaphase chromosome. The karyotype shows 23 ho­
mologous pairs; each member of each pair consists of two chromatids. Each 
chromatid contains a double-helical DNA molecule that is identical to the 
DNA of its sister chromatid. but different from the DNA of any other chro­
matid. 

Asexual reproduction can generate daughter cells that differ from each other. 

We could imagine an amoeba. a common single-celled eukaryote. dividing by 
mitosis to yield two identical amoebas. We could just as easily imagine a skin cell 
of a human. a multicellular eukaryote. dividing by mitosis to give two identical 
human skin cells. Indeed. this is the way that our skin normally replaces thos.: 
cells that die or are rubbed off. In both cases the daughter cells have the same 
DNA base sequence that the parent cell had. and that is reflected in the identical 
physiology and appearance of the daughter cells. 

There is another possibility: Consider a single fertilized human egg. It di­
vides by mitosis repeatedly to form a multicellular human. but the cells of a de­
veloped human are of many sizes. shapes and physiological behaviors. Liver cells 
look and behave one way. nerve cells another and muscle cells still another. Mi­
tosis seems not to have been conservative. How could cells that have exactly 
replicated their DNA in mitosis and then partitioned it out equally have yielded 
different progeny cells? 

One possibility is that cells in each unique kind of tissue of a multicellular 
organism have lost all their genes except those essential to the proper function-
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ing of that particular tissue. Thus, liver cells would have retained only those 
genes needed for liver functioning and muscle cells would have retained only 
those genes needed for muscle functioning. This possibility is easy to reject by 
a simple experiment: In the cells of a plant stem the genes necessary for stem 
growth and function are obviously /I,ctive, and there is no evidence of genes in­
volving root formation. If the stem is broken off and the broken end inserted into 
soil, within a few weeks the plant will often start to grow roots at the broken stem 
end. Clearly the genes for root growth and function were in the cells of the stem 
all along, but were reversibly turned off. A similar experiment has been done on 
a vertebrate, in which a nucleus from a specialized somatic tissue, the intestinal 
lining of a tadpole, has been used to grow a whole tadpole and the subsequent 
toad. We can conclude that mitosis generates different tissues of multicellular or­
ganisms when selected genes are turned off or on in the course of, or in spite of, 
asexual cell division. 

The process by which unspecialized cells of a multicellular organism take 
up specialized roles-liver, nerve, skin, etc.-is called differentiation. Differ­
entiation is not restricted to embryos, but can occur all our lives, e.g., in bone 
marrow, where unspecialized stem cells can become specialized blood cells. Dif­
ferentiation is only one part of developmellt, which includes all the changes in 
an organism in its life, from conception to death. Other aspects of development 
would include tissue growth and deterioration as described in Section 7.2. 

Some cell types rarely divide. 

Certain cells of multicellular organisms seem to have a very limited, even nonex­
istent, capacity for division. For example, muscle cells don't divide; the muscle 
enlargement associated with exercise comes from cellular enlargement. Fat cells 
get larger or smaller, but their numbers stay the same (which is why cosmetic li­
posuction works-the lost fat cells can't be replaced). Cells of the central nervous 
system don't divide, which explains the seriousness of spinal injuries. Liver cells 
rarely divide unless part of the liver is cut away-in which case the liver cells 
undergo division to replace those removed. Note the implication here: Genes 
controlling liver cell division haven't been lost. They were shut off, and can be 
reactivated. 

Section 11.2 

Sexual Reproduction-Meiosis and Fertilization 

Sexual reproduction involves the creation of an offspring that contains genetic 
contributions from two parents. A type of cell division called meiosis halves the 
chromosome number of germinal cells to produce sperm or eggs. A sperm and an 
egg then combine in fertilization to restore the double chromosome number. The 
new offspring now has genetic information from two sources for every character­
istic. The ways that these two sets of information combine to produce a single 
property is complex, and is the subject of the study of classical genetics. 
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Sexual reproduction provides variation upon which evolutionary selection can 
act. 

Recall the Darwinian model: More organisms are born than can survive. and they 
exhibit variability. Those with favored characteristics survive and may pass the 
favored properties to their offspring. It is tempting to credit genetic mutation with 
this variability and let it go at that. The fact is that all of the ten (non-twin) children 
in a hypothetical large family look different and virtually none of the variations 
among them are the result of mutations in their. or their parents'. generation. This 
fact. surprising at first. seems more reasonable when we consider the accuracy of 
DNA base pairing. the "proof-reading" capability of some kinds of DNA poly­
merase and the existence of repair mechanisms to correct DNA damaged by such 
mutagens as radiation. Thus. DNA sequences tend to be conserved over many 
generations. We can therefore conclude that most of the variations among the ten 
children of the same family are the result of scrambling of existing genes. not the 
result of recent mutation. The cause of this shuffling of the genetic cards is sexual 
reproduction. Of course. the variant genes originated through mutation. but virtu­
ally all of them originated many generations earlier (see Reference [2] for further 
discussion). 

Sexual reproduction involves the combination of genetic material from two 
parents into one offspring. 

Refer to the karyotype in Figure 11.1.2. The human chromosome complement 
consists of 23 homologous pairs or. put another way. of two sets of 23 each. The 
sources of the two sets of23 can be stated simply: We get one set from each of our 
parents when a sperm fertilizes an egg. What is not so simple is how the genetic 
material in those 46 chromosomes combines to make each of us what we are. The 
rules for combination will be the subject of Section 11.3. Our more immediate 
concern. however. is the means by which we generate cells with 23 chromosomes 
from cells having 46. 

Meiosis halves the chromosome number of cells. 

A special kind of reductional cell division. called meiosis. creates gametes having 
half the number of chromosomes found in somatic cells.2 

The chromosomes are not partitioned at random however; rather. every ga­
mete winds up with exactly one random representative of each homologous pair. 
giving it one basic set of 23 chromosomes. Such a cell is said to be haploid. A 
cell that has two basic sets of chromosomes is said to be diploid. We see that 
somatic cells are diploid and germinal cells are haploid. Thus. meiosis in humans 
converts diploid cells. with a chromosome number of 46. to haploid cells with a 
chromosome number of 23. 

Meiosis is diagrammed in Figure 11.2.1 for a hypothetical organism having 
two homologous pairs; its diploid number is 4. Each chromosome is replicated in 

2Gametes are often called lIuminai ct'/I.~ to distinguish them from somatic cells. 
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MeIosIs interphase 

chromosomes replicate 

end of meiosis I 

end of meiosis 1\ 

Figure 11.2.1 The stages of meiosis. The cell shown has two homologous pairs. 
Each chromosome replicates lengthwise to form two chromotids. synapses to its ho­
molog and then two cell divisions ensue. The daughter cells each end up with exactly 
one representative of each homologous pair. Thus. a diploid cell at the start of meio­
sis results in four haploid cells at the end of meiosis. 
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interphase and thus contains two identical chromatids joined at a centromere. In a 
departure from meiosis. homo logs bind together. side by side. in a process called 
synapsis. to fonn tetrads consisting of two chromosomes (four chromatids). The 
homologs then separate to end the first meiotic division. Next, the chromatids 
separate to complete the second meiotic division. The result is four cells, each 
containing two chromosomes. the haploid number for this hypothetical organism. 
Note that the gametes' chromosomes include exactly one representative of each 
homologous pair. 

The process of meiosis (perhaps followed by developmental maturation of 
the haploid cell) is called gametogenesis. Specifically in animals. the formation of 
male gametes is called spermatogenesis and it yields four sperm, all similar in ap­
pearance. The fonnation of female gametes is called oogenesis and it yields four 
cells. but three of them contain almost no cytoplasm. The latter three are called 
polar bodies and they die. Thus. oogenesis actually produces only one living egg, 
and that one contains all the cytoplasm of the diploid precursor. The reason for 
this asymmetry is that, once the egg is fertilized, the first several cell divisions of 
the fertilized egg (called a zygote) remain under the control of cytoplasmic factors 
from the mother. Evidently all the cytoplasm from the egg precursor is needed in 
a single egg for this process. 

The concept of sexual reproduction can be incorporated into The Alternation of 
Generations, 

We can diagram the alternation of the diploid and haploid generations: 

d· I 'd meio~i. h I'd feniliza.lion d' I 'd . , ,--+ Ip 0\ ---t ap 0\ ---t Ip 01 --+ .... 

Note that the diploid and haploid generations are equally important, because they 
form a continuous string of generations. On the other hand, the two generations 
are not equally conspicuous. In humans, for instance, the haploid generation (egg 
or sperm) is microscopic and has a lifetime of hours to days. In other organisms, 
mainly primitive ones like mushrooms and certain algae, the haploid generation 
is the conspicuous one, and the diploid generation is very tiny and short-lived. 

Another way to show the alternation of generations is in the following dia­
gram. 

sperm, , egg 

fertilization 

1 
zygote 

mitosis 1 
/, 

adult adult 

spermatogenesis 1 
sperm 

1 oogenesis 

egg 
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Section 11.3 

Classical Genetics 

379 

Classical genetics describes the many ways that the genetic material of two par­
ents combines to produce a single observable property. For instance, a red­
flowered plant and a white-flowered plant usually produce an offspring with a 
single color in its flower. What that color will be is not predictable unless a ge­
neticist has already studied flower-colors in that plant-because there are about a 
dozen ways that parental genes can combine. We describe many of those ways in 
this section. 

Classical genetics describes the result of interactions in genetic information. 

A diploid human cell carries 23 homologous pairs of chromosomes: One member 
of each pair comes from a sperm cell of the male parent and the other member 
comes from an egg cell of the female parent. Other diploid organisms may have 
chromosome numbers ranging from a few up to hundreds, but the same principle 
about the origin of homologous pairs holds. What we will consider now is how the 
genetic information from the two parents combines to produce the characteristics 
that appear in the offspring and why the latter are so variable. Let us first examine 
a chromosome at GI phase, because that is the usual condition in a cell. 

Genes, defined generally as functional units of heredity, are arranged linearly 
along the chromosome (Figure 11.3.1). Each gene locus affects some property, 
say flower coJor or leaf shape in a plant. The order in which these loci appear is the 
same on each member of the homologous pair. Thus, it is common to refer to the 
"flower color" locus, meaning the section of either member of a homologous pair 
that is the gene that determines flower color. Clearly, each property is determined 
by two such sections. one on each homolog. Each parent, then, contributes to 
each genetic property in the offspring. 

The behavior of chromosomes provides a basis for the study of genetics. 

The pioneering geneticist was Gregor Mendel, who studied the genetics of sweet 
i'Cas, a common flowering plant. Sweet peas, like many flowering plants, have 
male and female reproductive structures in the same flower. The male part makes 
pollen that is carried to the female part of that or another plant; the pollen then 
produces a sperm cell and fertilizes an egg. It a straightforward matter to dissect 
out the male part of a flower to prevent the plant from self-pollinating. Further, it 
is simple to use pollen from the male part of one plant to fertilize an egg of another 
plant and thus to make controlled matings. The seed that results from fertilizing 
an egg can be planted and the appearance of the offspring studied. The principles 
of chromosomal behavior and gene interaction in sweet peas are the same as for 
humans. 

Mendel had two groups, or popUlations, of plants that were true breeding. 
A population is true-breeding if its freely interbreeding members always give rise 
to progeny that are identical to the parents, generation after generation. Members 
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Figure 11.3.1 This shows a simple model of the chromosome. The genes are lined 
up along the length of the chromosome. like beads on a string. A hypothetical flower 
color locus is labelled. 

of a population of true-breeding red-flowered sweet peas fertilize themselves or 
other members of the population for many generations, but only red-flowered 
plants ever appear. Mendel made a cross between a plant from a true-breeding 
red-flowered population and one from a true-breeding white-flowered population. 

Mendel did not know about chromosomes, but we do and we will make 
use of that knowledge, which will simplify our learning task in the discussion to 
follow. We will therefore represent the cross in the following way: The gene for 
flower color is indicated by the labelled arrow in Figure 11.3.1. Note that each of 
the two homologs has such a gene locus.3 The genetic information for red-flower 
color is symbolized by the letter R and the plant has two copies, one from each 
parent. (The reason for the copies being alike will become clear shortly.) Using 
the same convention, the genetic information at the flower color locus of the two 
homologs in the other (white-flowered) parent is symbolized by w. 

Meiosis produces gametes containing one, and only one, representative of 
each homologous pair, as shown in Figure 11.3.2. A gamete from each parent 
combines at fertilization to reestablish the diploid condition. The offspring has 
flower color genetic information Rw. It turns out that this pea plant produces only 

J For learning purposes we will ignore all other chromosomes. as if they do not have loci that 
affect flower color. In actual facl. this may nO! be true. 
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a) parental generation 
red flowers 

b) parents' gametes 

c) offspring (F1 generation) 
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Figure 11.3.2 The behavior of chromosomes and their individual loci during a cross 
between two homozygous parents. The parents (RR and ww) each contribute one 
chromosome from the homologous pair to form gametes. The gametes combine in 
fertilization to restore the diploid number of two. The offspring's flowers will be red. 
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red flowers. indistinguishable from the red parent. Evidently red somehow masks 
white; we say that red information is dominant to white. and white is recessive to 
red. 

At this point we need to define several terms. The variant forms of infor­
mation for one property. symbolized by Rand w. are alleles. in this case flower 
color alleles. The allelic composition is the organism's genotype; RR and ww are 
homozygous genotypes and Rw is the heterozygous genotype. What the organism 
actually looks like. red or white, is its phenotype. Thus, the initial, or parental, 
cross. was between a homozygous red plant and a homozygous white plant. The 
result in the first filial. or FI, generation was all heterozygous, red-flowered plants. 

To obtain the F2 generation, we self-cross the Fl. which is equivalent to 
crossing it with one just like itself. Figure 11.3.3 shows the gametes obtained 
from each parent in the FI generation. They combine in all possible ways at 
fertilization. The result is a ratio of I RR, 2Rw and I ww, which gives a 3: I ratio 
of red-to-white phenotypes. 

An experiment of the sort just described, involving a single property like 
flower color. is called a monohybrid cross. We used the chromosome model, 
whereas Mendel actually ran the experiment; satisfyingly, both give the same 
r(;sults. Let us now make a dihybrid cross, involving the two properties of flower 
color and stem length, which we specify to be unlinked, which means that their 
genetic loci are on different homologous pairs. The cross is diagrammed in Figure 
11.3.4. Note that we have quit drawing in the chromosomes-we understand that 
the genes are on chromosomes and that drawing the latter is redundant. The FI 
self-cross now can be represented as RwLs x RwLs. Note the phenomenon of 
independent assortment: Each gamete gets one, and only, one representative of 
each homologous pair, and the behavior of one pair in meiosis is independent of 
the behavior of the other pair. Thus, meiosis in the FI generation results in equal 
numbers of gametes containing RL, Rs, wL and ws. The outcome of the cross is 
shown in the array, called a Punnell square, at the bottom of the figure. 

The dihybrid cross yields a 9:3:3: I phenotypic ratio of offspring. We should 
ask whether the inclusion of stem length in any way interferes with the 3: I ratio 
of flower color. Among the 16 offspring in the Pun nett square we see 12 red and 
3 white, which gives the 3: I ratio. We might have anticipated this-that the two 
properties would not affect their separate ratios-after all, they are unlinked and 
the two homologous pairs assort independently. 

We must obtain large numbers of progeny in order to get the expected ratios of 
offspring. 

Suppose we make a cross like Rw x Rw in sweet peas (red x red), and get 
only four progeny. We should not expect an exact 3: I ratio of phenotypes in this 
experiment. After all, if we flipped a coin two times we would not be certain to 
get one head and one tail. Rather, we expect to get the I: I ratio only if we flip 
the coin many times, say 2000. The same reasoning holds in genetics-we must 
make enough Rw x Rw crosses to get many offspring, say 4000, and then we 
would obtain very close to 3000 red and 1000 white offspring. 
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a) F1 (self-crossed) 

b) F1 gametes 

c) offspring (F2 generation) 

Figure 11.3.3 A cross between two heterozygotes. Each FI from Figure 11.3.2 
makes gametes having the genes Rand w with equal probability. When the gametes 
combine to make the F2 generation. there results offspring of genotypes RR. Rw and 
ww in the ratio 1 :2: 1. 

.. 
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R = red flowers 
w = white flowers 
L = long stems 
s = short stems 

a) parental generation 

RRLL x WWS5 

b) parental gametes ib.\ C':::\ 
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c) F1 generation Y 
RwLs 

d) self·cross F1 

RwLs x RwLs 

e) F1 gametes 

f) Punnett square to give F2 generation 

RL wL Rs ws 

Rl RRll RwlL RRLs Rwls 

wl RwLl wwlL RwLs wwLs 

Rs RRLs RwLs RRss Rwss 

ws RwLs wwLs Rwss wwss ... .J .... 
9:3:3:1 ratio of phenotypes 

Figure 11.3.4 A complete dihybrid cross between plants whose flower color locus 
and stem length locus are on different homologous pairs, i.e., the two properties are 
not linked. The result is a 9:3:3: I ratio of phenotypes in the Fl. In this figure only 
the allelic symbols are shown; the chromosomes are not drawn. 

The ratios 3: I and 9:3:3: I are often called Melldeliall ratios, because they 
are what Mendel reported. There is a bit of a problem here: Statisticians have 
examined Mendel's data and some have concluded that the experimental data is 
too good, i.e., consistently too close to the 3: I and 9:3:3: I expected ratios. For 
the sample sizes Mendel reported. it would be expected that he would have gotten 
somewhat larger deviations from Mendelian ratios. 
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Sexual reproduction leads to variation in several ways. 

We shall concern ourselves with organisms in which the diploid generation is the 
most conspicuous, e.g., humans, and we will examine the variations introduced 
into the diploid organism by sexual reproduction. It should always be borne in 
mind, however, that haploid organisms are under genetic control also. 

Earlier it was pointed out that, while mutation is the ultimate cause of genetic 
variation, there is only a very small chance that a given locus will mutate between 
two generations, will be unrepaired and subsequently not kill the cell. In spite of 
this, there are great variations among even the offspring of a single mating pair. 
We are now in a position to understand the sources of this immediate variation. 
First, look at the Punnett square of the dihybrid cross in Figure 11.3.4. Note 
that the FI (RwLs) yields the gametes RL, Rs, wL, and ws, and yet the gametes 
of the parental generation were RL and ws. Thus, two new combinations have 
turned up in the gametes of the FI. The reason is that the flower-color locus and 
the stem-length locus are unlinked-they are on different homologous pairs­
and every homologous pair assorts independently of every other pair. Thus, in the 
gametes of the FI, R paired up with L as often as R paired up with s. There were 
therefore 22 = 4 combinations of chromosomes in the gamete. A human has 23 
homologous pairs, all of which assort independently; thus, a person can produce 
223 different combinations of chromosomes in their gametes, using independent 
assortment alone! 

Second, when homologous chromosomes synapse they can exchange pieces 
in a process called crossing over. Let us cross two true-breeding parents, AABB 
x aabb, as shown in Figure 11.3.5. Notice that the two gene loci are linked, i.e., on 
the same chromosome. The FI genotype is AaBb and we test cross it.4 Some of 
the gametes of the Fl are the expected ones, AB and ab, but, as the figure shows, 
crossing over, in which the homologs break and rejoin in a new way, produces 
gametes with two new allelic combinations, Ab and aBo These two new kinds 
of gametes, called recombinant gametes, are different from the gametes of either 
members of the parental generation. When the various gametes are paired up 
with the ab gametes in the test cross, the following phenotypes appear in the F2 
generation: Ab, aB, AB and abo The last two of these are the same phenotypes 
as the parental generation and the first two are recombinant offspring, having 
phenotypes not seen in the previous crosses. We see that crossing over rearranges 
genetic material and presents novel phenotypes upon which selection can act. 

How often does such crossing over occur? Actually, it is not unusual to find 
at least one example in every tetrad. Furthermore, crossing over is predictable: 
The farther apart two loci are, the more likely crossing over is to occur between 
them. The frequency of crossing over, measured by the frequency of recombinant 
offspring, is used by geneticists as a measure of the distance between two loci. 

Note that we could account for an immense number of allelic combinations 
just by using independent assortment and crossing over, without a mention of 

4 A test cross is a cross with a homozygous recessive individual. 
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a) parental cross (A and Blinked) 

b) F1 generation 

d) F2 generation 
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Figure 11.3.5 A complete dihybrid cross, in which loci A and B are on the same 
chromosome, i.e., the two properties are linked. The results are predictable until the 
Fl test-cross at (c), when the chromosomes may break, yielding new combinations of 
the two loci. Notice that the resulting phenotypes at (e) include two (Ab and aB) that 
are unlike either of the two original parents. 
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mutation. Independent assortment and crossing over account for virtually all the 
phenotypic variation seen in members of a single family generation. This varia­
tion, in the main, is what Darwinian selection works on. 

A final point is worth mentioning here: Self-fertilization might be consid­
ered to be a limiting form of sexual reproduction.' Suppose that allele A is com­
pletely dominant to allele a: If we self-cross an individual of genotype Aa, variant 
offspring appear in the ratio of 3:1, a mark of sexual reproduction. Asexual re­
production in the same organism yields only one kind of offspring-Aa. Where 
self-fertilizing organisms might run into evolutionary problems is in continued 
self-fertilization, which minimizes variation. This is shown by the following ex­
ample: Take a population that is 100% heterozygotes (Aa) and self-cross all indi­
viduals. Note that the result is 50% heterozygotes and 50% homozygotes. Now 
self-cross all of that generation and note that 75% of the next generation will be 
homozygotes. After a few more generations of self-fertilization virtually the en­
tire population will be homozygous, either AA or aa. This can create problems 
for the population in two ways; First, suppose that the recessive allele is an un­
favorable one that is usually masked by the dominant allele. As shown above, 
self-fertilization increases homozygosity, and homozygous recessive individuals 
would be selected out. Second, when homozygotes fertilize themselves, indepen­
dent assortment and crossing over can occur, but they cannot generate variation. 
(You should verify this statement by schematically working out the cross.) 

Here is an idea to think about: We sometimes hear about the "rescue" of a 
species that is near extinction. The last few members of the species are brought 
together to be bred in a controlled environment, free from whatever forces were 
causing the extinction in the first place. Suppose now that a particular species 
has been depleted until only one male and one female are left. This mating pair 
must serve to reestablish the species. It is to be expected that each number of 
this pair would be heterozygous for at least a few unpleasant recessive genes. In 
light of the information in the preceding paragraph, what unique problems will 
the reconstituted species face? 

A group of questions for practice and for extending Mendelian genetics 

1. Refer to the definition of "true-breeding" two sections back. In the discussion 
of the monohybrid cross and Figures 11.3.2 and 11.3.3 true-breeding was 
asserted to mean "homozygous." Suppose for a moment that a member of a 
supposedly true-breeding population were a heterozygote. Show that being 
heterozygous is inconsistent with the definition of true breeding. 

2. Suppose you are given a red-flowered sweet pea. A test cross will enable you 
to determine whether this dominant phenotype is a heterozygote (Rw) or a 
homozygote (RR). Cross it with a homozygous recessive individual (ww); 
the cross is therefore either RR x ww or Rw x wW. Note the different results 

'Think of it this way: A self-cross is just like a cross between two separate. but genetically 
identical. parents. 
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obtained, depending on the genotype of the dominant phenotype. How do we 
know that a white-flowered plant is homozygous? 

3. The red flower allele in sweet peas completely masks the white flower allele, 
i.e., red is completely dominant to white. If we cross a true-breeding red snap­
dragon with a true-breeding white one, the FI offspring are all pink. We say 
that dominance is incomplete, or partial, for snapdragon flower color; partial 
dominance is a very common phenomenon. Cross two pink snapdragons to 
get offspring with a phenotypic ratio of I red:2 pink: I white. 

4. Foxes with platinum fur have the genotype Pp and silver foxes have the geno­
type pp. The genotype PP kills the fetus right after conception, i.e., it is lethal. 
Evidently the gene locus for fur color controls other properties as well, among 
them at least one very basic metabolic process. Show that a cross of two plat­
inum foxes gives a 2: I phenotypic ratio of offspring. 

5. There is a notable exception to the statement that every chromosome in a 
mammalian diploid cell has an exact homolog. Mammalian males have one 
chromosome called an X chromosome and one called a Y chromosome. Fe­
males have two XS and no Ys. These sex chromosomes carry a number of 
genes having to do with gender and many others that do not. Despite the 
fact that they are not homologous the X and Y chromosomes in a male can 
synapse over a portion of their length to facilitate meiosis. A well-known re­
cessive gene on the X chromosome is for hemophilia, a blood-clotting disor­
der. Let us represent a heterozygous ("carrier") female as XhX+, where "X" 
indicates X-linkage, "h" indicates the hemophilia allele and "+" represents 
the normal allele. Note that a male of genotype Xhy will show the disorder 
because there is no possibility of a dominant allele on his Y chromosome to 
mask the hemophilia allele on his X chromosome. Cross a carrier female with 
a hemophilic male to show that a female can get hemophilia. Cross a carrier 
female with a normal male to show that no daughters and half the sons would 
be affected. 

6. Often there are more than two choices for the alleles for a property, a phe­
nomenon called multiple alleles. The presence of certain molecules on red 
blood cel,1S is determined by the alleles A, Band O. For example, the geno­
types AA and AO yield the A molecule, the genotypes BB and BO yield the 
B molecule, the genotype 00 yields neither molecule and the genotype AB 
yields both the A and B molecules. The latter case, expression of both alle­
les, is called codominance. Cross an AB parent wit,h an 0 parent; what ratio 
of offspring is obtained? Could an Ootype man be the parent of an AB child? 
Can you conclude that a particular A-type man is the father of an A-type child 
by an A-type mother? 

7. The expression of some genes is determined by the environment. The gene 
for dark pigmentation in Siamese cats is expressed only in cool parts of the 
eat's body-nose, ears and tail tip. The expression of the gene for diabetes 
mellitus, a deficiency in sugar metabolism, is affected by diet and the person's 
age. As an example. environmental effects might cause a dominant allele not 
to be expressed under certain conditions. and an individual with genotype 
AA or Aa might show the recessive phenotype. How might you determine 
that such an individual is actually of the dominant genotype? 
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Section 11.4 

A Final Look at Darwinian Evolution 
We close out our discussion of biology with a last look at the Darwinian model of 
evolution. which we introduced in Section 3.1. Fitness is measured by the persis­
tence of a property in subsequent generations. If a property cannot be inherited. 
it cannot be selected. Thus. acquired properties like facelifts cannot be selected. 
nor can genetic properties of sterile individuals. like a mule's hardiness. 

Populations evolve; individuals do not. An individual is born with a fixed set 
of genes; mutations in somatic cells are not transmitted to offspring and mutations 
in germinal cells can only be seen in the offspring. 

Some organisms do not exhibit sexual reproduction but. rather. reproduce 
only asexually. Their only source of variation is therefore mutation. Nevertheless. 
such organisms have long evolutionary histories. 

Fitness is measured by the ability to project genes into subsequent generations. 

Common phrases like "struggle for survival" and "survival of the fittest" can be 
very misleading because they bring to mind vicious battles to the death between 
two contestants. The fact is that. except arguably among humans. violence is 
rarely the route by which Darwinian fitness is achieved in the biological world. 
Even the noisy. aggressive encounters between male animals seen on television 
nature programs seldom result in serious injury to participants. We must look to 
much more subtle interactions as a source of fitness. 

One group of organisms may be slightly more able than another to tolerate 
heat. to thrive on available food or to elude predators. Subtle pressure is the 
norm in evolution; it works slowly. but there is no hUrry. Drosophila. a common 
fruit fly. is used in many genetic experiments because it is easy to raise. has a 
short life span and has many simple physical properties. like eye color, whose 
modes of genetic transmission are easy to follow. If a large number of red-eyed 
and white-eyed Drosophila are put together in an enclosure and left to their own 
devices. the fraction of flies with white eyes will decrease steadily for several 
tens of generations and finally reach zero. Close observation reveals the reason: 
A female Drosophila. either red-eyed or white-eyed. will generally choose not 
to mate with a white-eyed male if a red-eyed male is available. Thus. there is a 
definite selection for the red-eye genetic trait. 

Humans are not excluded from such subtle pressures: Personals ads in news­
papers contain wish lists of traits people prefer in a mate. Height and affluence 
(control of territory?) are prized male traits. and hour-glass figures and youth 
(ability to bear children?) are valued female traits. 

Regardless of the strength of the selective pressure or the nature of the prop­
erties being selected. there is really only one way to measure the evolutionary 
value of a trait, and that is the degree to which it is propagated into future gen­
erations. A shy. ugly person who has lots of fertile children has a high degree of 
fitness. We see that one generation of propagation is not enough; the trait must be 
persistent. For example. mules are known for their hardiness. but they are sterile 
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offspring of horses and donkeys. As a result. the hardiness of a mule cannot con­
fer any evolutionary advantage.6 A discussion of human sexual selection can be 
found in Reference [3]. 

Populations evolve, individuals do not. 

A population is a group of organisms of the same species. living in the same area. 
As before. we will restrict our discussion here to populations of organisms for 
which the diploid generation is most conspicuous. e.g., humans. 

If we observe a population over many generations, the "average" phenotypic 
property will change. in keeping with our earlier discussion of species formation. 
Thus, the average height may increase. or the typical eye color may darken. We 
now ask and answer two questions: At which points in the alternation of genera­
tions do the changes occur. and what kinds of changes are relevant to evolution? 

The Darwinian model stipulates that favored properties may be transmitted 
to offspring; in any case, they certainly must be capable of transmission for the 
model to apply. A diploid individual is conceived with a set of genes that are 
relatively fixed for that individual's lifetime. Exceptions to this statement might 
involve mutations in somatic cells and infection by lysogenic viruses (See Chapter 
10). As long as these changes do not occur in germinal cells or germinal cell 
precursors they cannot be transmitted to the next generation. and thus they have 
no evolutionary effect. In addition. there are many phenotypic properties that 
favor reproduction but that cannot be transmitted to offspring because they are 
not of a genetic nature. Examples are suntans. exercise-strengthened bodies and 
straightened teeth. 

Genetically transmissible variations must originate via one of at least three 
routes. all of which require sexual reproduction (in other words, an intervening 
haploid generation) for their expression: 

I. independent assortment; 
2. crossing over; 
3. mutation in a sperm. or an egg. or in their precursors in a parent prior to 

conception, or in a zygote at a very early stage of development. The altered 
genetic material in anyone of these cases should turn up in those cells of 
the reproductive system that undergo meiosis to form the next generation of 
gametes. 

We can conclude that. because the Darwinian model requires changes that 
are inheritable. and because the observation of inheritable changes requires 
the observation of more than one generation. it is the population that evolves. 
Changes restricted to the somatic cells of individuals are not genetically transmit-

6There is a peculiar example of a non-inheritable trait-a desire for a large family-lhat might be 
passed from one generation to another by teaching. and which could have a strong positive selective 
value. This was discussed in Section 4. I . 
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ted to offspring; thus. in terms of evolution. an individual is fixed. Over a period 
of time. however. the average. or typical. characteristics of the population evolve. 

Some organisms do not exhibit sexual reproduction. 

Sexual reproduction is unknown (and probably nonexistent) in several kinds of 
organisms. for example. most bacteria, blue-green algae and some fungi. In those 
cases, a\1 reproduction is asexual, which would seem to limit severely the possi­
bilities of variation. Nonetheless, these organisms seem to have gotten along fine 
over long periods of history. We must conclude th.at some combination of three 
things applies: Either these organisms have not been exposed to large fluctuations 
in their environments, or they possess an innate physiological flexibility that per­
mits them to get along in different environments, or their spontaneous mutation 
rates are sufficiently high to generate the variation necessary for adapting to new 
environmental situations.7 

Section 11.5 

The Hardy-Weinberg Principle 

Diploidism and sexual reproduction complicate the calculation of inheritance 
probabilities. But, remarkably, the results are the same as if alleles were balls 
selected for combination from an urn. This is the Hardy-Weinberg principle. 
Although its veracity depends on random mating, among other properties, it con­
tinues to provide good approximations in many other situations as well. 

Mendelian inheritance follows the laws of probability. 

We will be concerned with probabilities associated with Mendelian inheritance 
for a diploid organism. As explained in Section 11.2. meiosis produces 4 haploid 
cells of 2 different kinds each equa\1y likely to participate in fertilization. Then 
the probability is 1/2 that a given kind of gamete will do so. 

Consider first a single locus for which there are only two alleles. say A and 
a. Hence there are three distinct genotypes, the homozygotes AA and aa, and the 
heterozygote Aa (or aA). If one parent is AA and the other Aa. then the possible 
zygote genotypes resulting from a mating may be represented by an event tree as 
follows. 

7There is now good evidence that bacteria. including asexual bacteria. can pass small pieces of 
DNA, called plasmids, to other bacteria. 
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Figure 11.S.1 Probabilities for the offspring of an AA with Aa mating 

Let the first branch point in Figure 11.5.1 correspond to the allele donated 
by the first parent, AA. There are two possible al1eles and so here the diagram 
will have two branches. But for the parent AA both branches lead to the same 
result, namely the contribution of al1e1e A to the offspring. Let the second branch 
point correspond to the allele donated by the second parent. Again there are two 
possibilities, but this time the outcomes are different as indicated. 

Now the resulting probabilities may be calculated in several ways, (see Sec­
tion 2.7). Since all the legs, or edges, of the diagram are equally likely, so are the 
resulting outcomes, each having probability 1/4. Hence 

Pr(AA) = 1/2 and Pr(Aa) = 1/2. 

Alternatively, starting at the top node, the root node, and traversing the two edges 
to the left leading to AA, gives a probability of 1/4 for this outcome by mul­
tiplying the probabilities along each edge of the path (1/2 . 1/2). This way of 
calculating the probabilities is the method of conditional probabilities since the 
probabilities along the branches leading away from any node are conditioned on 
the sequence of events leading to the node. Altogether the probability of an AA 
zygote by this method is ~ . ~ + ~ . ~ = ~ since AA can occur in two different 
ways according to the tree. 

Finally, the probabilities can be calculated by the principle of independence 
(see Section 2.7). The selection of a gamete from the AA parent will result in an 
A with probability I. The selection of a gamete from the Aa parent is independent 
and will result in an A with probability I /2. Therefor~. the probability of an AA 
zygote is I . 1/2. 

The complete list of Mendelian inheritance probabilities are given in Ta­
ble i 1.5.1. The calculation above represents the second line of the table. 

Random allelic combination preserves allelic fractions. 

Let nAA denote the number of AA genotypes in a population and likewise let naa 

denote the number of aa genotypes. For reasons that will shortly become clear, 
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Table 11.5.1 Mendelian Inheritance Probabilities 

Zygote Genotypes 

Parent Genotypes 

AAxAA 
AAxAa 
AAxaa 
AaxAa 
Aaxaa 
aaxaa 

AA Aa aa 

I 
112 

114 

112 
I 

112 
112 

114 
112 
I 
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let nAa denote one-half the number of Aa genotypes. Then the size of the entire 
population N is the sum N = nAA +2nAa+naa. Let nA and nu denote the number of 
A alleles and a alleles. respectively. carried by the population. Thus. nA +na = 2N 
since the population is diploid. 

Similarly let PAA. PAa. Paa. PAt and Pu denote their corresponding fractions 
of the popUlation. Then PA + Pa = 1 and PAA + 2PAa + Paa = I. Moreover 

nA 2nAA + 2nAa 
PA = - = = PAA + PAa 2N 2N 

and similarly 

Pa = PAa + Paa· 

Now imagine all the alleles of the population are pooled and two are selected 
at random from the pool to form a pair. The selection of an A happens with prob­
ability PA while the selection of an a happens with probability PU' (We assume 
the pool is so large that the removal of anyone allele does not appreciably change 
the subsequent selection probability.) Then. for example. the probability of form­
ing an AA pair is pi since we assume the selections are made independently. In 
the same way. the other possible pair selections are calculated with the results 
shown in Table 11.5.2. As always. these probabilities are also the (approximate) 
fractions of the various outcomes in a large number of such pairings. 

Table 11.5.2 Mendelian Inheritance Probabilities 

Female Gametes 
(Frequencies) 

Male Gametes (Frequencies) 
A (PA) a (Pu) 

AA(pi) 
aA (PAPu) 

From the table we can calculate the fraction. P~. of A alleles among the 
resultant pairs. Each pair of type AA contributes two A alleles and. while each 
Aa pair only contributes one. there are twice as many such pairs. Hence 
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In this it is necessary to divide by 2 because each pair has two alleles. Thus 
the fraction of A alleles among a large number of pairings is the same as their 
fraction in the original gene pool, PA. The same is (consequently) true for the a 
allele. p~ = Pa. 

Of course the process of gene maintenance for bisexual diploid organisms is 
much more complicated than the simple random pairing of alleles selected from a 
common pool that we explored here (see Section 11.6). Nevertheless we will see 
in the next subsection that the results are the same if mating is random. 

Random mating preserves allelic fractions. 

Again consider a one-locus two-allele system and suppose mating is completely 
random. Then the probability of an AAxAa mating, for example. is 2pAA(2PAa) 
since the first parent could be AA and the second Aa or the other way around. 
Altogether there are six different kinds of matings; their probabilities are listed in 
Table 11.5.3. 

Table 11.5.3 Mendelian Inheritance 
Probabilities 

Genotype Mating 

AAxAA 
AAxAa 
AAxaa 
AaxAa 
Aaxaa 
aaXaa 

Probability 

(PAA)2 
2pAA(2PAa) 

2PAAP'f 
(2PAa) 

2(2PAa)Pua 
(Puu)2 

Now apply the Mendelian inheritance laws to calculate the probability of the 
various possible zygotes. for example. an AA zygote. First. an AA results from 
an AAxAA parentage with probability I. Next an AA results from an AAxAa 
parentage with probability 1/2 (see Figure 11.5.1). and finally an AA results from 
an AaxAa cross with probability 1/4. Now. by the method of conditional proba­
bilities as discussed at the begining of this section. we have 

2 I 2 I 
Pr(AA) = PM . I + 2PAA(2PAa) . 2: + (2PAa) . 4 

= P~A + 2PAAPAa + P~a 
= (PM + PAa)2 == p~. 

Similarly we leave it to the reader to show that 
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and 

Pr{Aa) = 2{PAA + PAo}{PAu + Poo) = 2pAPo· 

But this shows that the fractions of alleles A and a are again PA and Pu respectively 
among the offspring just as among their parents, assuming the various genotypes 
are equally likely to survive. This is the same result we calculated in the last 
section. In other words, the effect of random genotype mating is indistinguishable 
from that of random gamete recombination. This is the Hardy-Weinberg Principle 
(see Reference [4]). 

Hardy-Weinberg Principle. Under the condition that mating is random and all 
genotypes are equaIly fit, the fractions of alleles will stay the same from genera­
tion to generation. 

A consequence of the Hardy-Weinberg Principle is that after at most one 
generation, the fractions of genotypes also stabilize and at the values 

P~A =p~ 
2P~a =2PAPo 

P:'" =p~. 

For example, suppose initially 70% of a population is AA and the remaining 30% 
is aa. Then the fractions of aIleles in subsequent generations are also 70% and 
30% for A and a respectively. Therefore, after one generation, the fractions of 
genotypes will be 

AA: (.7)2 = .49 

Aa: 2(.7){.3) = .42 

aa: {.3f = .09. 

In some cases the Hardy-Weinberg Principle is applicable even when mating 
is not random. Mating would fail to be random, for example, if the homozygote 
for a recessive gene is impaired or unviable. But, in fact, the homozygote in these 
cases are so rare that the induced error is very small. Keep in mind that, for a 
recessive gene a, the homozygote AA and heterozygote Aa are indistinguishable, 
so that random mating among them is a reasonable assumption. 

The Hardy-Weinberg Principle breaks down when there is migration. in­
breeding. or non-random mating. that is. phenotypes are selected for some at­
tribute. 

Sex-linked loci give rise to different rates of expression between males and 
females. 

In the event that males (or females) have one or more non-homol()gous chromo­
somes, the foregoing derivations must be modified. One consequence of non-
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homologous chromosomes is that there can be a large difference in expression 
of a sex-linked character between males and females. Suppose the male has the 
non-homologous pair XV while the female has the homologous pair XX.S Then 
fractions of alleles for genes on either the X or the Y chromosome are identical 
to genotype fractions for the male. For example, suppose a recessive sex-linked 
allele occurs with frequency p among a population. Then p is also the rate at 
which the allele will occur in males. However the rate at which the homozygous 
condition will occur in females is p2. 

An example of such an allele is color blindness in humans. Through various 
studies it is believed that the frequency of the recessive allele is 8% as derived 
from the incidence rate in males. Therefore the incidence rate in females ought 
to be (.08)2 = .0064 or 0.6%. Actually, the female incidence of the disease is 
about .4%. The discrepancy is an interesting story in its own right and stems from 
the fact that there are four different kinds of color blindness, two of which are red 
blindness and green blindness. The bearer of defective genes for different types, 
such as these two, can still see normally. 

Another possibility that can arise relative to sex-linked genes is that the al­
lelic fractions are different between males and females. This can happen, for in­
stance, when males and females of different geographical backgrounds are bought 
together. Let F be the fraction of allele A in the females and M be its fraction in 
males. Then! = I - F is the fraction of a in females and m = I - M is its frac­
tion in males. Assuming an equal number of males and females, the population 
frequencies work out to be 

M+F 
PA=-2- and 

m+! 
Pil = -2- = I - PA 

and these will remain constant by the Hardy-Weinberg Principle. However, the 
values of M and F will change from generation to generation. 

To follow these fractions through several generations we need only keep 
track of F and M since! and m can always be found from them. Let F" and 
Mn refer: to generation n with n = 0 corresponding to the initial fractions. 

Since a male gets his X chromosome from his mother, the allelic frequencies 
in males will always be what it was in females a generation earlier, thus 

On the other hand the frequency in females will be the average of the two sexes in 
the preceeding generation since each sex contributes one X chromosome, hence 

RThis is a mammalian property. In birds the situation is reversed. 
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In matrix form this can be written 

In the exercises we will investigate where this leads. 
Before leaving this example, there is another observation to be made. We 

used the the matrix T above, 

in conjunction with multiplication on its right to update the column of male/female 
fractions Mn and Fn. But in this example there is a biological meaning to left 
multiplication on the matrix T. In each generation there will be a certain fraction 
of the alleles on the X chromosome in males which originally came from the 
females. It is possible to track that distribution. 

To fix ideas, suppose a ship of males of European origin runs aground on a 
South Seas island of Polynesian females. Further suppose (hypothetically) that 
the alleles for a gene on the X chromosomes of the Europeans, the E-variant, are 
slightly different from those of the Polynesians, the P-variant, in, say, two base 
pairs. So the distribution of E-variant and P-variant chromosomal alleles of the 
emigrating males can be described by the (row) pair 

(I 0) 

where the first element is the fraction originating with the males and the second is 
the fraction originating with the females. The distribution of tl'tese fractions can 
be traced through the generations by a matrix calculation similar to that above, 
only this time using matrix multiplication on the left. In the first generation we 
have 

(I 0) [! l] =(0 I), 

showing that all the alleles in the males in this generation come from the females. 
In the second generation the fraction works out to 

or 50-50. Of course the calculation can be continued to obtain the fractions for 
any generation. 

The same calculation can give the female ratios, by starting with the initial 
female ratio of ( 0 I). 
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Section 11.6 

The Fixation of a Beneficial Mutation 

A beneficial mutation does not necessarily become a permanent change in the 
gene pool of its host species. Its original host individual may die before leaving 
progeny for example. Under the assumption that such a mutation is dominant 
(rather than recessive) and that individuals with the mutation behave indepen­
dently. it is possible to derive the governing equations for calculating the fixation 
probability. One way of measuring the value of a vital factor is the expected num­
ber of surviving offsping. beyond self-replacement. an adult will leave. For an 
r-strategist (see Section 4.1) the chance a beneficial mutation will become perma­
nent is about twice the over-replacement value of the mutation to its holder. 

Probability of fixation of a beneficial mutation is the complement of the fixed 
point of its probability generating function. 

Let Pk be the probability that a chance mutation appearing in a zygote will sub­
sequently be passed on to k of its offspring. A convenient method of organizing a 
sequence of probabilities. such as Pk. k = 0, I, ...• is by means of the polynomial 

f(x) = Po + PIX + P2~ + ... 

in which the coefficient of xk is the kth probability. This polynomial is called the 
probability generating function for the sequence Pk. The probability generating 
function is purely formal. that is. it implies nothing more than a bookkeeping 
device for keeping track of its coefficients. Note that f( I) = I. And f(O) = Po 
is the probability the mutation disappears in one generation. Also note that the 
expected number of offspring to have the mutation is given (formally) by 

00 

L kPk = /'(1) 
k=1 

(see Section 2.7). To say the mutation is beneficial is to say this expectation is 
greater than I. that is. 

00 

L kPk = I + a > I, 
k=1 

for some value a. which is a measure of the benefit in terms of over replacement 
in fecundity. 

Now. if two such individuals with this mutation live and reproduce indepen­
dently of each other (as in a large population). then the probability generating 
function for their combined offspring having the mutation is 

(11.6.1 ) 
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which is proved by considering each possibility in turn. There will be no mutant 
offspring only if both parents leave none; this happens with probability pij by 
independence. There will be one mutant offspring between the two parents if one 
leaves none and the other leaves exactly one; this can happen in two ways. There 
will be two mutant offspring if the first leaves none while the second leaves two, 
or they both leave one. or the first leaves two while the second leaves none; this is 
(2pOP2 + pi). Similarly the other terms of equation (11.6.1) may be checked. 

But note that equation (11.6.1) is exactly the polynomial product f2 (x), 

(PO + PIX + P2x2 + .. . )(po + PIX + P2x2 + ... ) 
= p~ + 2poPlx + (2pOP2 + pi)x2 + .... 

More generally, m independent individuals with the mutation as zygotes will pass 
on the mutation to their combined offspring with probability generating function 
given by the mth power fm(x). 

Now start again with one mutant zygote and consider the probability gen­
erating function, h, for Generation 2. Of course the outcome of Generation 2 
depends on the outcome of Generation I. If there are no mutants in Generation I. 
and this occurs with probability Po, then there are none for certain in Generation 
2. Hence this possibility contributes 

Po· I 

to h. On the other hand, if the outcome of Generation 1 is I, then the probability 
generating function for Generation 2 is f(x); so this possibility contributes 

pJ/(x). 

If the outcome of Generation 1 is two mutant individuals (and they behave in­
dependently), then the probability generating function for Generation 2 is, from 
above, f2(x); so this possibility contributes 

Continuing this line of reasoning yields the result that the probability gener­
ating function for Generation 2 is the composition of the function f with itself, 
h(x) = f(f(x», 

h(x) = Po + pJ/(x) + p2J2(x) + P3f3(x) + ... = f(f(x». 

More generally, the probability generating function for generation n, fn(x), i$ 
given as the composition f 0 f 0 •.• 0 f of f with itself n times or 

fn(x) = f(f(· .. f(x) ... » . .. ~ 

n times 
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Figure 11.6.1 L is the fixed point of f(x) 

Now the probability the mutation dies out by the nIh generation is the con­
stant term of fn(x) or f"(O). Hence the probability the mutation dies out or van­
ishes some time is the limit 

v = lim fn(O) = lim f(f( ... /(O) ... ». 
n-+x n-+OCh ", ... 

n limes 

Applying I to both sides of this equality shows that V is a fixed point of I, 

f{V) = V. 

The fixed point of I{x) is where the graphs y = f(x) and y = x intersect; 
see Figure 11.6.1. Since f (x) and f" (x) are non-negative for x > 0 (having all 
positive or zero coefficients), and since I( 1) = I, we see there can be either 0 or 
1 fixed point less that x = I. If there is a fixed point less than I, then V is that 
value; otherwise V = 1. 

For example, suppose a mutation arose on the Y-chromosome of a human 
female about the time that Lucy walked the earth (3 million years ago). Further, 
suppose the following probabilities of producing surviving (female) offspring per­
tained to the holder of such a mutation, 

probability of leaving no female offspring, Po = .35, 
probability of leaving 1 female offspring, PI = .25, 
probability of leaving 2 female offspring, P2 = .20, 
probability of leaving 3 female offspring, P3 = . I, 
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probability of leaving 4 female offspring. P4 = . I. 
and 0 probability of leaving more than four female offspring. 

Then the probability generating function is 

f(x) = .35 + .25x + .2x'- + .I~ + .lx4. 

Its fixed points can be found by solving the roots of the fourth degree polynomial 

.lx4 + .I~ +.2x'- + (.25 - I)x+ .35 = O. 

With the following code, the appropriate root is found to be 0.62. 

> f:=.1·x"4+.1·x"3+.2·x"2+ (.2S"1 )*x+.3S; 

> fsolve(f,x,O .. 1); 

Hence the probability of fixation is the complementary probability 0.38. 

The chance a mutation will become permanent for an r-strategist is about twice 
its over-replacement benefit. 

Under certain conditions, the probability that an individual will have k offspring 
over its life is bke-h Ik! for some constant b;9 this is known as the Poisson distri­
bution. The conditions are approximately satisfied by many r-strategists. In this 
case. the probability generating function is 

Let the benefit of the mutation be a, then 

I + a = /'(1) = beh(I-I) = b, 

so b = I + a. Now let F be the fixation probability of the beneficial mutation. that 
is the probability the mutation wiIl become permanent; then F = I - V. Since 
V = f(V) (from the previous section), we have 

1- F = e-(I+u)F. 

Taking logarithms, 

F2 F3 
(1 + a)F = -In(\ - F) = F + 2' +"3 + .... 

9The conditions are: (a) the probability of an offspring over a short period of time t:.l is propor­
tional to 61, (b) the probability of 2 or more offspring over a short period of time is essentially O. 
and (c) offspring occur independently of one another. The distribution would also apply if offspring 
occurred in batches; then k counts batches. 
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The infinite series is the Taylor series for the middle term. Divide by F and 
su btract I to get 

If a is small, then approximately 

so the fixation probability is about 2a. 

Exercises 

I. In this problem assume a diploid organism having 3 loci per homologous 
chromosomal pair and two alleles per loci. 
a. If the organism has only one such chromosomal pair, how many different 

genotypes are possible? 
b. Same question if there are two chromosomal pairs? 
c. Suppose there are two chromosomal pairs with genes <x, ~, and "yon one 

of them while genes 0, E, and cjl lie on the other. How many different 
haploid forms are there? 

d. For a given genotype as in (c), how many different gametes are possi­
ble? That is, suppose a particular individual has the homologous chro­
mosomes: (I) (A,b,C) and (A,B,C) and (2) (d,e,F) and (D,e, F). How 
many haploid forms are there? 

e. What is the maximum number of different offspring possible from a 
mating pair of organisms as in (d)? What is the minimum number? How 
could the minimum number be achieved? 

f. Work out a graph showing how the number of haploid forms varies with 
(i) number of chromosomal pairs. or (ii) number of genes per chromo­
somal pairs. Which effect leads to more possibilities? 

2. For a given diploid two allele locus the initial fractions of genotypes are 
AA:p, Aa:q, and aa:r. Recall that the frequencies in the next generation will 
be PM = X, PAa = y, and Pau = z where 

I I 
Y = 2(p + zq)(r + zq), 

I z = (r + _q)2. 
2 

Under the assumption that the various genotypes are neither selected for or 
against, show that these ratios will be maintained in all future generations, 
i.e .. show that 
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Hence, when the Hardy-Weinberg Principle holds, genotype frequencies sta­
blize in one generation. 

> x:=(p+ql2r2; 
> y:=2"(p+1f.!)"(r+ql2); 
> z:=1-x-y; 
> X:=(x+yf.!r2; 
> simplify(X); 
> simpJify(x); 

etc. 
3. In this problem we want to see how many homozygous recessives for a trait 

result from homozygous parents and how many result from heterozygous par­
ents. 

parents/frequency 

AA x Aa Aa x Aa 
2(2PAPa)P~ (2PAPa)2 

AA x aa 
2p~ra 

offspring 

Aa x aa 
2(2PAPa)P~ 

aa 

The question is, given an 00 progeny, what is the probability the parents were 
00 x oo? 

Since the progeny is known to be 00, the universe for this problem are the 
paths of the tree leading to 00 and its frequency is given by 

2 I 2 1 2 2 
U = (2PAPa) • 4 + 2(2PAPa)P" • 2" + (Pa) • I. 
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So the relative frequency this occurs via aa x aa parents is 

a. Calculate the probable parentage of an aa progeny via Aa x Aa genotypes 
and Aa x aa genotypes. 

b. Make three graphs of these probable parentages over the range of fre­
quencies of allele a from .25 to .00 I, say. 

c. If Po = 0.01, then what is the chance that an aa individual had heterozy­
gous parents? Same question for at least one heterozygous parent? 

Hints for part (a) 

> u;= (2°pAopa)"2°(1/4)+2°(2°pAopa)'pa'2°(112)+(pa'2)"2; 

> pA:=1·pa; 

> aaxaa:=Simplify«pa'2f2lu); 

Hints for part (b) 

> plot(aaxaa,pa=O.001 .. 0.25); 

Hints for part (c) 

> pa:=O.01; eval(aaxaa); 

4. This problem refers to the Sex-linked loci subsection of Section I 1.5. 
a. Let the starting fraction of allele a in males be Mo = 0.1 and in females 

be Fo = 0.3. By performing the matrix calculation 

[MI+I]=[? :][MI] 
F,+I 2' 2' F, 

repeatedly, find the limiting fractions Moo and Foo. What is the ratio 
Moo/Foo? 

b. Do the same for the starting ratios Mo = 1 and Fo = O. What is the 
limiting ratio Moo/ Foo? 

c. Let T be the matrix in part (a) 

Show that T satisfies 
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We say this column vector, with both components 1, is a right eigenvec­
tor for T with eigenvalue 1. 

d. As in part (a), iterate the calculation 

this time multiplying the matrix on the left by the vector, to obtain the 
limit. This will represent the ultimate distribution of the original male 
versus female alleles. Show that (! ~) is a left eigenvector for T. 
What is the eigenvalue? 

> wlth(lInalg): 

> T:=matrix(2.2.[0.1.112.1/2]); 

> v:= vector([0.1.0.3]); 
> w:=evalm(T &. v); 

> v:=evalm(T &. w); 

etc. Do this a few times to see the trend. 

> # do ten multiplies at once as follows 

> doten:=proc(v) 

> locall.x.y; 

y:=v; 

for i from 1 to 10 do 

x:=y; 

y:= evalm(T &. x); 

od 
RETURN( eval(y» 

> end: 

> v:= vector([0.1.0.3]); 

> w:= doten(v); 

> v:= doten(w); 

etc. as desired. 

> # the ratio 
> v( 1 )lv(21; 
> # show (1 1) and eigenvector with eigenvalue 1. 

> v(1):= 1; 

> v(2):= 1; 

> evalm(T &. v); 

> # also use built-in routine 

> eigenvals(T); 

> eigenvects(T); 
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In the reply. the first item is the eigenvalue (as above). the second is its 
multiplicity (how many times repeated. should be I here) and the third 
is the eigenvector. Eigenvectors may be multiplied by any constant so if 
(I I ) is an eigenvector. so is (3 3 ). 

5. Two hypothesis that explain the greater incidence of early baldness in males 
than in females are (I) an autosomal dominance that is normally expressed 
only in males and (2) an X -linked recessive. If the first is correct and Q is the 
frequency of the gene for baldness. what proportion of the sons of bald fathers 
are expected to be bald? What proportion are from nonbald fathers? What are 
the corresponding expectations for the X -linked recessive hypothesis. 
Data gathered by Harris (Ann. Eugen. 13. 172-181. 1946) found that 13.3% 
of males in the sample were prematurely bald. Of 100 bald men. 56 had bald 
fathers. Show that this is consistent with the sex-limited dominance hypoth­
esis but not the sex-linked recessive. (Note that it is easier to get data about 
the fathers of bald sons than it is to wait for the sons of bald fathers to grow 
up to get data about bald sons.) 

6. Suppose an organism, which is capable of it, reproduces c fraction of the time 
asexually (by cloning) and I - c fraction of the time sexually with random 
mating. Let P, be the fraction of the genotype AA in generation t and let p be 
the frequency of allele A. Assume c is independent of genotype and conse­
quently p will remain constant from generation to generation. However the 
frequency of genotype AA can change. Using the Hardy-Weinberg Principle, 
show that the change in this fraction is given by 

P,+! = cPt + (I - c)p2. 

Find the limiting fraction Poc;. 

> # First try 

> F:= proc(x); 

RETURN( c·x+(1-c)*p·2); 

> end; 

> x:=O; 

> y:=F(x); 

> x:=F(y); 

and so on to see the trend. 

> # Now try a slight redefine of F. 

> F:=proc(x) 

> local y; 
y:= c·x+(1-c)·p·2; 

RETURN( simplify(y)); 

> end; 
> # and repeat 
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7. Suppose the frequency of a recessive aJlele is p (equal to 1/1000 say) there­
fore the frequency of homozygotes under the hypothesis of random mating 
will be p2. But what if mating is not random? In this problem we want to 
investigate this somewhat. 

First suppose the species is capable of self-fertilization. Then clearly the 
offspring of a homozygous adult will again be homozygous. On the other 
hand, the heterozygous Aa will produce A and a haploid cells in 50-50 mix as 
before. Hence, as before an offspring will be AA with 114 chance, aa with 114 
chance and Aa with 112 chance. We record these observations in the following 
3 x 3 matrix 

- I I I [I 0 0] 
T- ~ 5 1 . 

In this, the rows correspond to the genotypes AA, Aa, and aa in that order and 
so do the columns. 

Next suppose we start out with a mix of genotypes, say their fractions are 
p, q, and r respectively, p + q + r = I. Then after one generation the new 
fractions p', q', and r will be given by the matrix product 

( p' q' r ) = (p q r) T. 

a. Using specific values for the starting fractions, find the limiting fractions 
after many generations. 
Next consider parent/child matings and calculate the probability that a 
homozygous recessive aa will be the result. First condition on the parent 
(free-hand a tree diagram). from the root node, there will be three edges 
corresponding to the possibilities that the parent is AA, Aa, or aa. The 
AA branch cannot lead to a aa grandoffspring so no need to foJlow that 
edge further. The Aa parent occurs with frequency 2p( I - p) as we have 
seen, and the aa parent with frequency p2. 

Next condition on the genotype ofthe child. Use the Hardy-Weinberg 
Principle for probabilities of aJlele A and a. Starting from the Aa node. 
the possibilities are AA with probability HI - p), Aa with probability 
4p + HI - p) = 4, and finally aa with probability 4p. You do the 
possibilities from the aa node. 

Now assign the offspring probabilities using Mendelian genetics. 
From the Aa node along the path from root through the Aa parent the 
probability of an aa offspring is l. From the aa node through the Aa 
parent the probability is ! and so on. 

b. Altogether the result should be 

P(aa offspring) = ~p(~ + ~p _ p2). 
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Finally consider sibling matings. As in part (a) above we want to investi­
gate the trend of the population toward homozygosity. Starting with the 
parents, there are 6 possible matings by genotype. AA x AA. AA x Aa. 
and so on through aa x aa. Consider the AA x Aa parents. Their offspring 
are AA and Aa both with frequency!. Therefore the sibling mating pos­
sibilities are AA x AA with frequency 1. AA x Aa with frequency!. and 
Aa x Aa with frequency 1. 
Justify the rest of the following table. 

Sibling Mating Frequencies 

Parent Genotypes AAxAA AAxAa AaxAa AAxaa Aaxaa aaxaa 

AAxAA I 0 0 0 0 0 
AAxAa 114 1/2 0 1/4 0 0 
AaxAa 1116 114 1/8 1/4 1/4 1/16 

AAxaa 0 0 I 0 0 0 
Aaxaa 0 0 0 114 112 114 
aaxaa 0 0 0 0 0 I 

The corresponding transition matrix T is 

I 0 0 0 0 0 
1/4 1/2 0 1/4 0 0 

T= 1/16 1/4 1/8 1/4 1/4 1/16 
0 0 I 0 0 0 
0 0 0 1/4 1/2 1/4 
0 0 0 0 0 I 

c. Make up an initial distribution of genotypes (p q r stu ). track 
the change in distribution over a few generations. and find the limiting 
distribution. 

Section 11.7 

Questions for Thought and Discussion 

I. Discuss the concept of fitness as it is used in the Darwinian model. What 
kinds of selection factors might be involved in the case of humans? 

2. A woman with type A blood has a child with type 0 blood. The woman al­
leges that a certain man with type B blood is the father. Discuss her allegation 
and reach a conclusion. if possible. 

3. In Drosophila. females are XX and males are XY. On the X chromosome 
there is an eye-color gene such that red is dominant to eosin and to white. and 
eosin is dominant to white. What is the result of crossing an eosin-eyed male 
with a red-eyed female whose mother had white eyes? 
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4. Mitosis is a conservative form of cell replication, because each daughter cell 
gets an exact copy of the genetic material that the parent cell had. How can 
we explain the fact that most of our tissues were formed by mitosis and yet 
are different? 

5. Suppose there is an organism that reproduces only by self-fertilization, which 
is the highest degree of inbreeding. Start with a heterozygote for a single 
property and let it and its descendants reproduce by self-fertilization for three 
generations. Note how the fraction of homozygotes increases with each gen­
eration. What implication does this have if the recessive allele is harmful? Or, 
suppose it is not harmful? 

6. Combining the concepts of the Central Dogma of Genetics with that of meio­
sis, trace the path of hereditary control of cellular chemisty from one genera­
tion to another. 

7. In a hypothetical laboratory animal, solid color allele is dominant to striped, 
and long hair is dominant to short hair. What is the maximum number of 
phenotypes that could result from the mating of a long, solid animal with a 
short, striped animal? 
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