

Alex Galea

Get started with the applications

of data science and techniques

to explore and assess data effectively

The

Applied
Data Science
Workshop
Second Edition

The Applied Data Science Workshop
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Alex Galea

Reviewers: Paul Van Branteghem, Guillermina Bea Fernández, Shovon Sengupta,
and Karen Yang

Managing Editor: Anushree Arun Tendulkar

Acquisitions Editors: Royluis Rodrigues and Karan Wadekar

Production Editor: Roshan Kawale

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: October 2018

Second edition: July 2020

Production reference: 1210720

ISBN: 978-1-80020-250-4

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface 	  i

Chapter 1: Introduction to Jupyter Notebooks 	  1

Introduction ... 2

Basic Functionality and Features of Jupyter Notebooks ...................... 2

What Is a Jupyter Notebook and Why Is It Useful? ...................................  3

Editing Notebooks with Jupyter Notebooks and JupyterLab ..................  5

Exercise 1.01: Introducing Jupyter Notebooks ..  7

Exercise 1.02: Introducing the JupyterLab Platform ...............................  16

Jupyter Features ...  25

Exercise 1.03: Demonstrating the Core Jupyter Features ......................  26

Converting a Jupyter Notebook into a Python Script .............................  37

Python Libraries ..  39

Activity 1.01: Using Jupyter to Learn about pandas DataFrames .........  40

Summary ...  41

Chapter 2: Data Exploration with Jupyter 	  43

Introduction ..  44

Our First Analysis – the Boston Housing Dataset ..............................  44

Exercise 2.01: Importing Data Science Libraries
and Setting Up the Notebook Plotting Environment .............................  45

Loading the Data into Jupyter Using a pandas DataFrame ...................  49

Exercise 2.02: Loading the Boston Housing Dataset ..............................  49

Data Exploration ...  58

Exercise 2.03: Analyzing the Boston Housing Dataset ...........................  58

Introduction to Predictive Analytics with Jupyter Notebooks ..............  64

Exercise 2.04: Training Linear Models with Seaborn
and scikit-learn ..  65

Using Categorical Features for Segmentation Analysis .........................  71

Exercise 2.05: Creating Categorical Fields from Continuous
Variables and Making Segmented Visualizations ...................................  73

Activity 2.01: Building a Third-Order Polynomial Model ........................  82

Summary ...  84

Chapter 3: Preparing Data for Predictive Modeling 	  87

Introduction ..  88

Machine Learning Process ..  88

Approaching Data Science Problems ..  90

Understanding Data from a Modeling Perspective ...........................  92

Preparing Data for Modeling ...  95

Exercise 3.01: Data Cleaning for Machine Learning with pandas .........  96

Exercise 3.02: Preparing Data for Machine Learning with pandas .....  110

Introducing the Human Resource Analytics Dataset ......................  118

Activity 3.01: Preparing to Train a Predictive Model
for Employee Retention ...  121

Summary ...  123

Chapter 4: Training Classification Models 	  125

Introduction ..  126

Understanding Classification Algorithms  ..  127

Exercise 4.01: Training Two-Feature Classification
Models with scikit-learn ...  129

The plot_decision_regions Function ...  142

Exercise 4.02: Training k-Nearest Neighbors Classifiers
with scikit-learn ...  146

Exercise 4.03: Training Random Forest Classifiers
with scikit-learn ...  150

Activity 4.01: Training and Visualizing SVM Models
with scikit-learn ...  156

Summary ...  158

Chapter 5: Model Validation and Optimization 	  161

Introduction ..  162

Assessing Models with k-Fold Cross Validation ...............................  162

Tuning Hyperparameters with Validation Curves ................................  165

Exercise 5.01: Using k-Fold Cross Validation
and Validation Curves in Python with scikit-learn ................................  167

Dimensionality Reduction with PCA ..  175

Exercise 5.02: Dimensionality Reduction with PCA ..............................  176

Model Training for Production ..  181

Exercise 5.03: Training a Production-Ready Model
for Employee Turnover ..  182

Activity 5.01: Hyperparameter Tuning and Model Selection ...............  194

Summary ...  196

Chapter 6: Web Scraping with Jupyter Notebooks 	  199

Introduction ..  200

Internet Data Sources ...  200

Introduction to HTTP Requests ..  202

Making HTTP Requests with Python ...  204

Exercise 6.01: Using Python and Jupyter Notebooks
to Make HTTP Requests ...  205

Making API Calls with Python ..  212

Exercise 6.02: Making API calls with Python
and Jupyter Notebooks ..  212

Parsing HTML with Jupyter Notebooks ..  216

Exercise 6.03: Parsing HTML with Python
and Jupyter Notebooks ..  218

Activity 6.01: Web Scraping with Jupyter Notebook .............................  237

Data Workflow with pandas ...  239

Exercise 6.04: Processing Data for Analysis with pandas ....................  239

Exercise 6.05: Merging Data with pandas ..  250

Activity 6.02: Analyzing Country Populations and Interest Rates .......  255

Summary ...  256

Appendix 	  261

Index 	  327

Preface

ii | Preface

About the Book
From banking and manufacturing through to education and entertainment, using
data science for business has revolutionized almost every sector in the modern
world. It has an important role to play in everything from app development to
network security.

Taking an interactive approach to learning the fundamentals, this book is ideal for
beginners. You'll learn all the best practices and techniques for applying data science
in the context of real-world scenarios and examples. 

Starting with an introduction to data science and machine learning, you'll start by
getting to grips with Jupyter functionality and features. You'll use Python libraries
like scikit-learn, pandas, Matplotlib, and Seaborn to perform data analysis and data
preprocessing on real-world datasets from within your own Jupyter environment.
Progressing through the chapters, you'll train classification models using scikit-learn,
and assess model performance using advanced validation techniques. Towards the
end, you'll use Jupyter Notebooks to document your research, build stakeholder
reports, and even analyze web performance data.

By the end of The Applied Data Science Workshop, Second Edition, you'll be prepared to
progress from being a beginner to taking your skills to the next level by confidently
applying data science techniques and tools to real-world projects.

Audience

If you are an aspiring data scientist who wants to build a career in data science or a
developer who wants to explore the applications of data science from scratch and
analyze data in Jupyter using Python libraries, then this book is for you. Although a
brief understanding of Python programming and machine learning is recommended
to help you grasp the topics covered in the book more quickly, it is not mandatory.

About the Chapters

Chapter 1, Introduction to Jupyter Notebooks, will get you started by explaining how to
use the Jupyter Notebook and JupyterLab platforms. After going over the basics, we
will discuss some fantastic features of Jupyter, which include tab completion, magic
functions, and new additions to the JupyterLab interface. Finally, we will look at the
Python libraries we'll be using in this book, such as pandas, seaborn, and scikit-learn.

About the Book | iii

Chapter 2, Data Exploration with Jupyter, is focused on exploratory analysis in a live
Jupyter Notebook environment. Here, you will use visualizations such as scatter plots,
histograms, and violin plots to deepen your understanding of the data. We will also
walk through some simple modeling problems with scikit-learn.

Chapter 3, Preparing Data for Predictive Modeling, will enable you to plan a machine
learning strategy and assess whether or not data is suitable for modeling. In addition
to this, you'll learn about the process involved in preparing data for machine learning
algorithms, and apply this process to sample datasets using pandas.

Chapter 4, Training Classification Models, will introduce classification algorithms such
as SVMs, KNNs, and Random Forests. Using a real-world Human Resources analytics
dataset, we'll train and compare models that predict whether an employee will leave
their company. You'll learn about training models with scikit-learn and use decision
boundary plots to see what overfitting looks like.

Chapter 5, Model Validation and Optimization, will give you hands-on experience
with model testing and model selection concepts, including k-fold cross-validation
and validation curves. Using these techniques, you'll learn how to optimize model
parameters and compare model performance reliably. You will also learn how
to implement dimensionality reduction techniques such as Principal Component
Analysis (PCA).

Chapter 6, Web Scraping with Jupyter Notebooks, will focus on data acquisition from
online sources such as web pages and APIs. You will see how data can be downloaded
from the web using HTTP requests and HTML parsing. After collecting data in this
way, you'll also revisit concepts learned in earlier chapters, such as data processing,
analysis, visualization, and modeling.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"It's recommended to install some of these (such as mlxtend, watermark,
and graphviz) ahead of time if you have access to an internet connection now.
This can be done by opening a new Terminal window and running the pip or
conda commands."

Words that you see on the screen (for example, in menus or dialog boxes) appear in
the same format.

iv | Preface

A block of code is set as follows:

https://github.com/rasbt/mlxtend

pip install mlxtend

New terms and important words are shown like this:

"The focus of this chapter is to introduce Jupyter Notebooks—the data science tool
that we will be using throughout the book."

Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code
is executed, Python will ignore the backslash, and treat the code on the next line as a
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

 validation_split=0.2, shuffle=False)

Comments are added into code to help explain specific bits of logic. Single-line
comments are denoted using the # symbol, as follows:

Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools. In
the following section, we shall see how to do that.

Installing Libraries | v

Installing Python

The easiest way to get up and running with this workshop is to install the Anaconda
Python distribution. This can be done as follows:

1.	 Navigate to the Anaconda downloads page from https://www.anaconda.com/.

2.	 Download the most recent Python 3 distribution for your operating system –
currently, the most stable version is Python 3.7.

3.	 Open and run the installation package. If prompted, select yes for the option to
Register Anaconda as my default Python.

Installing Libraries
pip comes pre-installed with Anaconda. Once Anaconda is installed on your
machine, all the required libraries can be installed using pip, for example, pip
install numpy. Alternatively, you can install all the required libraries using pip
install –r requirements.txt. You can find the requirements.txt file at
https://packt.live/2YBPK5y.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a
Python library and can be installed in the same way as the other Python libraries –
that is, with pip install jupyter, but fortunately, it comes pre-installed with
Anaconda. To open a notebook, simply run the command jupyter notebook in
the Terminal or Command Prompt.

Working with JupyterLab and Jupyter Notebook

You'll be working on different exercises and activities using either the JupyterLab or
Jupyter Notebook platforms. These exercises and activities can be downloaded from
the associated GitHub repository.

Download the repository from https://packt.live/2zwhfom.

You can either clone it using git or download it as a zipped folder by clicking on the
green Clone or download button in the upper-right corner.

In order to launch a Jupyter Notebook workbook, you should first use the Terminal to
navigate to your source code. See the following, for example:

cd The-Applied-Data-Science-Workshop

Once you are in the project directory, simply run jupyter lab to start up
JupyterLab. Similarly, for Jupyter Notebook, run jupyter notebook.

https://www.anaconda.com/
https://packt.live/2YBPK5y
https://packt.live/2zwhfom

vi | Preface

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/2zwhfom. You
can also run many activities and exercises directly in your web browser by using the
interactive lab environment at https://packt.live/3d6yr1A.

We've tried to support interactive versions of all activities and exercises, but we
recommend a local installation as well for instances where this support isn't available.

If you have any issues or questions about installation, please email us
at workshops@packt.com.

https://packt.live/2zwhfom
https://packt.live/3d6yr1A
mailto:workshops@packt.com

Overview

This chapter describes Jupyter Notebooks and their use in data analysis. It
also explains the features of Jupyter Notebooks, which allow for additional
functionality beyond running Python code. You will learn and implement the
fundamental features of Jupyter Notebooks by completing several hands-on
exercises. By the end of this chapter, you will be able to use some important
features of Jupyter Notebooks and some key libraries available in Python.

1
Introduction to Jupyter

Notebooks

2 | Introduction to Jupyter Notebooks

Introduction
Our approach to learning in this book is highly applied since hands-on learning is the
quickest way to understand abstract concepts. With this in mind, the focus of this
chapter is to introduce Jupyter Notebooks—the data science tool that we will be
using throughout this book.

Since Jupyter Notebooks have gained mainstream popularity, they have been one
of the most important tools for data scientists who use Python. This is because they
offer a great environment for a variety of tasks, such as performing quick and dirty
analysis, researching model selection, and creating reproducible pipelines. They allow
for data to be loaded, transformed, and modeled inside a single file, where it's quick
and easy to test out code and explore ideas along the way. Furthermore, all of this
can be documented inline using formatted text, which means you can make notes or
even produce a structured report.

Other comparable platforms—for example, RStudio or Spyder—offer multiple panels
to work between. Frequently, one of these panels will be a Read Eval Prompt Loop
(REPL), where code is run on a Terminal session that has saved memory. Code written
here may end up being copied and pasted into a different panel within the main
codebase, and there may also be additional panels to see visualizations or other files.
Such development environments are prone to efficiency issues and can promote bad
practices for reproducibility if you're not careful.

Jupyter Notebooks work differently. Instead of having multiple panels for different
components of your project, they offer the same functionality in a single component
(that is, the Notebook), where the text is displayed along with code snippets, and code
outputs are displayed inline. This lets you code efficiently and allows you to look back
at previous work for reference, or even make alterations.

We'll start this chapter by explaining exactly what Jupyter Notebooks are and why
they are so popular among data scientists. Then, we'll access a Notebook together
and go through some exercises to learn how the platform is used.

Basic Functionality and Features of Jupyter Notebooks
In this section, we will briefly demonstrate the usefulness of Jupyter Notebooks with
examples. Then, we'll walk through the basics of how they work and how to run them
within the Jupyter platform. For those who have used Jupyter Notebooks before, this
will be a good refresher, and you are likely to uncover new things as well.

Basic Functionality and Features of Jupyter Notebooks | 3

What Is a Jupyter Notebook and Why Is It Useful?

Jupyter Notebooks are locally run on web applications that contain live code,
equations, figures, interactive apps, and Markdown text in which the default
programming language is Python. In other words, a Notebook will assume you are
writing Python unless you tell it otherwise. We'll see examples of this when we work
through our first workbook, later in this chapter.

Note

Jupyter Notebooks support many programming languages through the use
of kernels, which act as bridges between the Notebook and the language.
These include R, C++, and JavaScript, among many others. A list of
available kernels can be found here: https://packt.live/2Y0jKJ0.

The following is an example of a Jupyter Notebook:

Figure 1.1: Jupyter Notebook sample workbook

https://packt.live/2Y0jKJ0

4 | Introduction to Jupyter Notebooks

Besides executing Python code, you can write in Markdown to quickly render
formatted text, such as titles, lists, or bold font. This can be done in combination
with code using the concept of independent cells in the Notebook, as seen in Figure
1.2. Markdown is not specific to Jupyter; it is also a simple language used for styling
text and creating basic documents. For example, most GitHub repositories have a
README.md file that is written in Markdown format. It's comparable to HTML but
offers much less customization in exchange for simplicity.

Commonly used symbols in markdown include hashes (#) to make text into a
heading, square ([]) and round brackets (()) to insert hyperlinks, and asterisks (*) to
create italicized or bold text:

Figure 1.2: Sample Markdown document

In addition, Markdown can be used to render images and add hyperlinks in your
document, both of which are supported in Jupyter Notebooks.

Jupyter Notebooks was not the first tool to use Markdown alongside code. This
was the design of R Markdown, a hybrid language where R code can be written
and executed inline with Markdown text. Jupyter Notebooks essentially offer the
equivalent functionality for Python code. However, as we will see, they function quite
differently from R Markdown documents. For example, R Markdown assumes you are
writing Markdown unless otherwise specified, whereas Jupyter Notebooks assume
you are inputting code. This and other features (as we will explore throughout)
make it more appealing to use Jupyter Notebooks for rapid development in data
science research.

While Jupyter Notebooks offer a blank canvas for a general range of applications, the
types of Notebooks commonly seen in real-world data science can be categorized as
either lab-style or deliverable.

Basic Functionality and Features of Jupyter Notebooks | 5

Lab-style Notebooks serve as the programming analog of research journals. These
should contain all the work you've done to load, process, analyze, and model the
data. The idea here is to document everything you've done for future reference. For
this reason, it's usually not advisable to delete or alter previous lab-style Notebooks.
It's also a good idea to accumulate multiple date-stamped versions of the
Notebook as you progress through the analysis, in case you want to look back at
previous states.

Deliverable Notebooks are intended to be presentable and should contain only
select parts of the lab-style Notebooks. For example, this could be an interesting
discovery to share with your colleagues, an in-depth report of your analysis for a
manager, or a summary of the key findings for stakeholders.

In either case, an important concept is reproducibility. As long as all the relevant
software versions were documented at runtime, anybody receiving a Notebook can
rerun it and compute the same results as before. The process of actually running
code in a Notebook (as opposed to reading a pre-computed version) brings you
much closer to the actual data. For example, you can add cells and ask your own
questions regarding the datasets or tweak existing code. You can also experiment
with Python to break down and learn about sections of code that you are struggling
to understand.

Editing Notebooks with Jupyter Notebooks and JupyterLab

It's finally time for our first exercise. We'll start by exploring the interface of the
Jupyter Notebook and the JupyterLab platforms. These are very similar applications
for running Jupyter Notebook (.ipynb) files, and you can use whatever platform you
prefer for the remainder of this book, or swap back and forth, once you've finished
the following exercises.

Note

The .ipynb file extension is standard for Jupyter Notebooks, which was
introduced back when they were called IPython Notebooks. These files are
human-readable JSON documents that can be opened and modified with
any text editor. However, there is usually no reason to open them with any
software other than Juptyer Notebook or JupyterLab, as described in this
section. Perhaps the one exception to this rule is when doing version control
with Git, if you may want to see the changes in plain text.

6 | Introduction to Jupyter Notebooks

At this stage, you'll need to make sure that you have the companion material
downloaded. This can be downloaded from the open source repository on GitHub at
https://packt.live/2zwhfom.

In order to run the code, you should download and install the Anaconda Python
distribution for Python 3.7 (or a more recent version). If you already have
Python installed and don't want to use Anaconda, you may choose to install the
dependencies manually instead (see requirements.txt in the GitHub repository).

Note

Virtual environments are a great tool for managing multiple projects on the
same machine. Each virtual environment may contain a different version
of Python and external libraries. In addition to Python's built-in virtual
environments, conda also offers virtual environments, which tend to
integrate better with Jupyter Notebooks.

For the purposes of this book, you do not need to worry about virtual
environments. This is because they add complexity that will likely lead to
more issues than they aim to solve. Beginners are advised to run global
system installs of Python libraries (that is, using the pip commands shown
here). However, more experienced Python programmers might wish to
create and activate a virtual environment for this project.

We will install additional Python libraries throughout this book, but it's recommended
to install some of these (such as mlxtend, watermark, and graphviz) ahead of
time if you have access to an internet connection now. This can be done by opening a
new Terminal window and running the pip or conda commands, as follows:

•	 mlxtend (https://packt.live/3ftcN98): This is a useful tool for particular data
science tasks. We'll use it to visualize the decision boundaries of models in
Chapter 5, Model Validation and Optimization, and Chapter 6, Web Scraping with
Jupyter Notebooks:

pip install mlxtend

•	 watermark (https://packt.live/2N1qjok): This IPython magic extension is used for
printing version information. We'll use it later in this chapter:

pip install watermark

https://packt.live/2zwhfom
https://packt.live/3ftcN98
https://packt.live/2N1qjok

Basic Functionality and Features of Jupyter Notebooks | 7

•	 graphviz (https://packt.live/3hqqCHz): This is for rendering graph visualizations.
We'll use this for visualizing decision trees in Chapter 5, Model Validation
and Optimization:

conda install -c anaconda graphviz python-graphviz

graphviz will only be used once, so don't worry too much if you have issues
installing it. However, hopefully, you were able to get mlxtend installed since we'll
need to rely on it in later chapters to compare models and visualize how they learn
patterns in the data.

Exercise 1.01: Introducing Jupyter Notebooks

In this exercise, we'll launch the Jupyter Notebook platform from the Terminal
and learn how the visual user interface works. Follow these steps to complete
this exercise:

1.	 Navigate to the companion material directory from the Terminal. If you
don't have the code downloaded yet, you can clone it using the git
command-line tool:

git clone https://github.com/PacktWorkshops/The-Applied-Data-Science-
Workshop.git
cd The-Applied-Data-Science-Workshop

Note

With Unix machines such as Mac or Linux, command-line navigation can be
done using ls to display directory contents and cd to change directories.
On Windows machines, use dir to display directory contents and use cd
to change directories. If, for example, you want to change the drive from C:
to D:, you should execute D: to change drives. This is an important step if
you wish to enable all commands based on folder structure and ensure they
run smoothly.

https://packt.live/3hqqCHz

8 | Introduction to Jupyter Notebooks

2.	 Run the Jupyter Notebook platform by asking for its version:

Note

The # symbol in the code snippet below denotes a code comment.
Comments are added into code to help explain specific bits of logic.

jupyter notebook –-version

should return 6.0.2 or a similar / more recent version

3.	 Start a new local Notebook server here by typing the following into the Terminal:

jupyter notebook

A new window or tab of your default browser will open the Notebook
Dashboard to the working directory. Here, you will see a list of folders and files
contained therein.

4.	 Reopen the Terminal window that you used to launch the app. We will see the
NotebookApp being run on a local server. In particular, you should see a line like
this in the Terminal:

[I 20:03:01.045 NotebookApp] The Jupyter Notebook is running at:
http:// localhost:8888/?token=e915bb06866f19ce462d959a9193a94c7
c088e81765f9d8a

Going to the highlighted HTTP address will load the app in your browser window,
as was done automatically when starting the app.

5.	 Reopen the web browser and play around with the Jupyter Dashboard platform
by clicking on a folder (such as chapter-06), and then clicking on an .ipynb
file (such as chapter_6_workbook.ipynb) to open it. This will cause the
Notebook to open in a new tab on your browser.

6.	 Go back to the tab on your browser that contains the Jupyter Dashboard. Then,
go back to the root directory by clicking the … button (above the folder content
listing) or the folder icon above that (in the current directory breadcrumb).

7.	 Although its main use is for editing Notebook files, Jupyter is a basic text editor
as well. To see this, click on the requirements.txt text file. Similar to the
Notebook file, it will open in a new tab of your browser.

Basic Functionality and Features of Jupyter Notebooks | 9

8.	 Now, you need to close the platform. Reopen the Terminal window you used to
launch the app and stop the process by typing Ctrl + C in the Terminal. You may
also have to confirm this by entering y and pressing Enter. After doing this, close
the web browser window as well.

9.	 Now, you are going to explore the Jupyter Notebook command-line interface
(CLI) a bit. Load the list of available options by running the following command:

jupyter notebook --help

10.	One option is to specify the port for the application to run on. Open the
NotebookApp at local port 9000 by running the following command:

jupyter notebook --port 9000

11.	Click New in the upper right-hand corner of the Jupyter Dashboard and select
a kernel from the drop-down menu (that is, select something in the
Notebooks section):

Figure 1.3: Selecting a kernel from the drop-down menu

This is the primary method of creating a new Jupyter Notebook.

Kernels provide programming language support for the Notebook. If you have
installed Python with Anaconda, that version should be the default
kernel. Virtual environments that have been properly configured will also be
available here.

10 | Introduction to Jupyter Notebooks

12.	With the newly created blank Notebook, click the top cell and type
print('hello world'), or any other code snippet that writes to the screen.

13.	Click the cell and press Shift + Enter or select Run Cell from the Cell menu.

Any stdout or stderr output from the code will be displayed beneath as the
cell runs. Furthermore, the string representation of the object written in the final
line will be displayed as well. This is very handy, especially for displaying tables,
but sometimes, we don't want the final object to be displayed. In such cases, a
semicolon (;) can be added to the end of the line to suppress the display. New
cells expect and run code input by default; however, they can be changed to
render markdown instead.

14.	Click an empty cell and change it to accept the Markdown-formatted text. This
can be done from the drop-down menu icon in the toolbar or by selecting
Markdown from the Cell menu. Write some text in here (any text will do),
making sure to utilize Markdown formatting symbols such as #, and then run the
cell using Shift + Enter:

Figure 1.4: Menu options for converting cells into code/Markdown

Basic Functionality and Features of Jupyter Notebooks | 11

15.	Scroll to the Run button in the toolbar:

Figure 1.5: Toolbar icon to start cell execution

16.	This can be used to run cells. As you will see later, however, it's handier to Shift +
Enter to run cells.

17.	Right next to the Run button is a Stop icon, which can be used to stop cells from
running. This is useful, for example, if a cell is taking too long to run:

Figure 1.6: Toolbar icon to stop cell execution

18.	New cells can be manually added from the Insert menu:

Figure 1.7: Menu options for adding new cells

19.	Cells can be copied, pasted, and deleted using icons or by selecting options from
the Edit menu:

Figure 1.8: Toolbar icons to cut, copy, and paste cells

12 | Introduction to Jupyter Notebooks

The drop-down list from the Edit menu is as follows:

Figure 1.9: Menu options to cut, copy, and paste cells

20.	Cells can also be moved up and down this way:

Figure 1.10: Toolbar icons for moving cells up or down

There are useful options in the Cell menu that you can use to run a group of
cells or the entire Notebook:

Figure 1.11: Menu options for running cells in bulk

Basic Functionality and Features of Jupyter Notebooks | 13

Experiment with the toolbar options to move cells up and down, insert new
cells, and delete cells. An important thing to understand about these Notebooks
is the shared memory between cells. It's quite simple; every cell that exists on
the sheet has access to the global set of variables. So, for example, a function
defined in one cell could be called from any other, and the same applies to
variables. As you would expect, anything within the scope of a function will not
be a global variable and can only be accessed from within that specific function.

21.	Open the Kernel menu to see the selections. The Kernel menu is useful
for stopping the execution of the script and restarting the Notebook if the
kernel dies:

Figure 1.12: Menu options for selecting a Notebook kernel

Kernels can also be swapped here at any time, but it is inadvisable to use
multiple kernels for a single Notebook due to reproducibility concerns.

22.	Open the File menu to see the selections. The File menu contains options
for downloading the Notebook in various formats. It's recommended to save an
HTML version of your Notebook, where the content is rendered statically and
can be opened and viewed as you would expect in web browsers.

23.	The Notebook name will be displayed in the upper left-hand corner. New
Notebooks will automatically be named Untitled. You can change the name
of your .ipynb Notebook file by clicking on the current name in the upper left
corner and typing in the new name. Then, save the file.

14 | Introduction to Jupyter Notebooks

24.	Close the current tab in your web browser (exiting the Notebook) and go to the
Jupyter Dashboard tab, which should still be open. If it's not open, then reload it
by copying and pasting the HTTP link from the Terminal.

25.	Since you didn't shut down the Notebook (you just saved and exited it), it will
have a green book symbol next to its name in the Files section of the Jupyter
Dashboard, and it will be listed as Running on the right-hand side next to the
last modified date. Notebooks can be shut down from here.

26.	Quit the Notebook you have been working on by selecting it (checkbox to the left
of the name) and clicking the orange Shutdown button.

Note

If you plan to spend a lot of time working with Jupyter Notebooks, it's
worthwhile learning the keyboard shortcuts. This will speed up your
workflow considerably. Particularly useful commands to learn are the
shortcuts for manually adding new cells and converting cells from code into
Markdown formatting. Click on Keyboard Shortcuts from the Help
menu to see how.

27.	Go back to the Terminal window that's running the Jupyter Notebook server and
shut it down by typing Ctrl + C. Confirm this operation by typing y and pressing
Enter. This will automatically exit any kernel that is running. Do this now and
close the browser window as well.

Basic Functionality and Features of Jupyter Notebooks | 15

Now that we have learned the basics of Jupyter Notebooks, we will launch and
explore the JupyterLab platform.

While the Jupyter Notebook platform is lightweight and simple by design, JupyterLab
is closer to R Studio in design. In JupyterLab, you can stack notebooks side by side,
along with console environments (REPLs) and data tables, among other things you
may want to look at.

Although the new features it provides are nice, the simplicity of the Jupyter Notebook
interface means that it's still an appealing choice. Aside from its simplicity, you may
find the Jupyter Notebook platform preferable for the following reasons:

•	 You may notice minor latency issues in JupyterLab that are not present in the
Jupyter Notebook platform.

•	 JupyterLab can be extremely slow to load large .ipynb files (this is an open
issue on GitHub, as of early 2020).

Please don't let these small issues hold you back from trying out JupyterLab. In fact,
it would not be surprising if you decide to use it for running the remainder of the
exercises and activities in this book.

The future of open source tooling around Python and data science is going to be very
exciting, and there are sure to be plenty of developments regarding Jupyter tools in
the years to come. This is all thanks to the open source programmers who build and
maintain these projects and the companies that contribute to the community.

16 | Introduction to Jupyter Notebooks

Exercise 1.02: Introducing the JupyterLab Platform

In this exercise, we'll launch the JupyterLab platform and see how it compares with
the Jupyter Notebook platform.

Follow these steps to complete this exercise:

1.	 Run JupyterLab by asking for its version:

jupyter lab --version

should return 1.2.3 or a similar / more recent version

2.	 Navigate to the root directory, and then, launch JupyterLab by typing the
following into the Terminal:

jupyter lab

Similar to when we ran the Jupyter Notebook server, a new window or tab on
your default browser should open the JupyterLab Dashboard. Here, you will see
a list of folders and files in the working directory in a navigation bar to the left:

Figure 1.13: JupyterLab dashboard

Basic Functionality and Features of Jupyter Notebooks | 17

3.	 Looking back at the Terminal, you can see a very similar output to what our
NotebookApp showed us before, except now for the LabApp. If nothing else is
running there, it should launch on port 8888 by default:

[I 18:37:29.369 LabApp] The Jupyter Notebook is running at:

[I 18:37:29.369 LabApp] http://
localhost:8888/?token=cb55c8f3c03f0d6843ae59e70bedbf3b6ec
4a92288e65fa3

4.	 Looking back at the browser window, you can see that the JupyterLab Dashboard
has many of the same menus as the Jupyter Notebook platform. Open a new
Notebook by clicking File | New | Notebook:

Figure 1.14: Opening a new notebook

5.	 When prompted to select a kernel, choose Python 3:

Figure 1.15: Selecting a kernel for our notebook

The Notebook will then load into a new tab inside JupyterLab. Notice how this
is different from the Jupyter Notebook platform, where each file is opened in its
own browser tab.

18 | Introduction to Jupyter Notebooks

6.	 You will see that a toolbar has appeared at the top of the tab, with the buttons
we previously explored, such as those to save, run, and stop code:

Figure 1.16: JupyterLab toolbar and Notebook tab

7.	 Run the following code in the first cell of the Notebook to produce some output
in the space below by Shift + Enter:

for i in range(10):

 print(i, i % 3)

This will look as follows in Jupyter Notebook:

Figure 1.17: Output of the for loop

Basic Functionality and Features of Jupyter Notebooks | 19

8.	 When you place your mouse pointer in the white space present to the left of
the cell, you will see two blue bars appear to the left of the cell. This is one of
JupyterLab's new features. Click on them to hide the code cell or its output:

Figure 1.18: Bars that hide/show cells and output in JupyterLab

9.	 Explore window stacking in JupyterLab. First, save your new Notebook file by
clicking File | Save Notebook As and giving it the name test.ipynb:

Figure 1.19: Prompt for saving the name of the file

10.	Click File | New | Console in order to load up a Python interpreter session:

Figure 1.20: Opening a new console session

20 | Introduction to Jupyter Notebooks

11.	This time, when you see the kernel prompt, select test.ipynb under Use
Kernel from Other Session. This feature of JupyterLab allows each
process to have shared access to variables in memory:

Figure 1.21: Electing the console kernel

12.	Click on the new Console window tab and drag it down to the bottom half of
the screen in order to stack it underneath the Notebook. Now, define something
in the console session, such as the following:

a = 'apple'

Basic Functionality and Features of Jupyter Notebooks | 21

It will look as follows:

Figure 1.22: Split view of the Notebook and console in JupyterLab

22 | Introduction to Jupyter Notebooks

13.	Run this cell with Shift + Enter (or using the Run menu), and then run another
cell below to test that your variable returns the value as expected; for
example, print(a).

14.	Since you are using a shared kernel between this console and the Notebook,
click into a new cell in the test.ipynb Notebook and print the variable there.
Test that this works as expected; for example, print(a):

Figure 1.23: Sharing a kernel between processes in JupyterLab

Basic Functionality and Features of Jupyter Notebooks | 23

A great feature of JupyterLab is that you can open up and work on multiple
views of the same Notebook concurrently—something that cannot be done with
the Jupyter Notebook platform. This can be very useful when working in large
Notebooks where you want to frequently look at different sections.

15.	You can work on multiple views of test.ipynb by right-clicking on its tab and
selecting New View for Notebook:

Figure 1.24: Opening a new view for an open Notebook

You should see a copy of the Notebook open to the right. Now, start typing
something into one of the cells and watch the other view update as well:

Figure 1.25: Two live views of the same Notebook in JupyterLab

24 | Introduction to Jupyter Notebooks

There are plenty of other neat features in JupyterLab that you can discover and
play with. For now, though, we are going to close down the platform.

16.	Click the circular button with a box in the middle on the far left-hand side of the
Dashboard. This will pull up a panel showing the kernel sessions open right now.
You can click SHUT DOWN to close anything that is open:

Figure 1.26: Shutting down Notebook sessions in JupyterLab

17.	Go back to the Terminal window that's running the JupyterLab server and shut it
down by pressing Ctrl + C, then confirm the operation by pressing Y and pressing
Enter. This will automatically exit any kernel that is running. Do this now and
close the browser window as well:

Figure 1.27: Shutting down the LabApp

Jupyter Features | 25

In this exercise, we learned about the JupyterLab platform and how it compares to
the older Jupyter Notebook platform for running Notebooks. In addition to learning
about the basics of using the app, we explored some of its awesome features, all of
which can help your data science workflow.

In the next section, we'll learn about some of the more general features of Jupyter
that apply to both platforms.

Jupyter Features
Having familiarized ourselves with the interface of two platforms for running
Notebooks (Jupyter Notebook and JupyterLab), we are ready to start writing and
running some more interesting examples.

Note

For the remainder of this book, you are welcome to use either the Jupyter
Notebook platform or JupyterLab to follow along with the exercises and
activities. The experience is similar, and you will be able to follow along
seamlessly either way. Most of the screenshots for the remainder of this
book have been taken from JupyterLab.

Jupyter has many appealing core features that make for efficient Python
programming. These include an assortment of things, such as tab completion and
viewing docstrings—both of which are very handy when writing code in Jupyter. We
will explore these and more in the following exercise.

Note

The official IPython documentation can be found here:
https://ipython.readthedocs.io/en/stable/. It provides details of
the features we will discuss here, as well as others.

https://ipython.readthedocs.io/en/stable/

26 | Introduction to Jupyter Notebooks

Exercise 1.03: Demonstrating the Core Jupyter Features

In this exercise, we'll relaunch the Jupyter platform and walk through a Notebook
to learn about some core features, such as navigating workbooks with keyboard
shortcuts and using magic functions. Follow these steps to complete this exercise:

1.	 Start up one of the following platforms for running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open the platform in your web browser by copying and pasting the URL, as
prompted in the Terminal.

Note

Here's the list of basic keyboard shortcuts; these are especially helpful
if you wish to avoid having to use the mouse so often, which will greatly
speed up your workflow.

Shift + Enter to run a cell

Esc to leave a cell

a to add a cell above

b to add a cell below

dd to delete a cell

m to change a cell to Markdown (after pressing Esc)

y to change a cell to code (after pressing Esc)

Arrow keys to move cells (after pressing Esc)

Enter to enter a cell

You can get help by adding a question mark to the end of any object and running
the cell. Jupyter finds the docstring for that object and returns it in a pop-up
window at the bottom of the app.

2.	 Import numpy and get the arrange docstring, as follows:

import numpy as np

np.arange?

Jupyter Features | 27

The output will be similar to the following:

Figure 1.28: The docstring for np.arange

3.	 Get the Python sorted function docstring as follows:

sorted?

The output is as follows:

Figure 1.29: The docstring for sort

28 | Introduction to Jupyter Notebooks

4.	 You can pull up a list of the available functions on an object. You can do this for a
NumPy array by running the following command:

a = np.array([1, 2, 3])

a.*?

Here's the output showing the list:

Figure 1.30: The output after running a.*?

5.	 Click an empty code cell in the Tab Completion section. Type import
(including the space after) and then press the Tab key:

import <tab>

Tab completion can be used to do the following:

6.	 List the available modules when importing external libraries:

from numpy import <tab>

7.	 List the available modules of imported external libraries:

np.<tab>

Jupyter Features | 29

8.	 Perform function and variable completion:

np.ar<tab>

sor<tab>([2, 3, 1])

myvar_1 = 5

myvar_2 = 6

my<tab>

Test each of these examples for yourself in the following cells:

Figure 1.31: An example of tab completion for variable names

Note

Tab completion is different in the JupyterLab and Jupyter Notebook
platforms. The same commands may not work on both.

Tab completion can be especially useful when you need to know the available
input arguments for a module, explore a new library, discover new modules, or
simply speed up the workflow. They will save time writing out variable names or
functions and reduce bugs from typos. Tab completion works so well that you
may have difficulty coding Python in other editors after today.

30 | Introduction to Jupyter Notebooks

9.	 List the available magic commands, as follows:

%lsmagic

The output is as follows:

Figure 1.32: Jupyter magic functions

Note

If you're running JupyterLab, you will not see the preceding output. A list
of magic functions, along with information about each, can be found here:
https://ipython.readthedocs.io/en/stable/interactive/magics.html.

The percent signs, % and %%, are one of the basic features of Jupyter Notebook
and are called magic commands. Magic commands starting with %% will apply to
the entire cell, while magic commands starting with % will only apply to that line.

10.	One example of a magic command that you will see regularly is as follows. This is
used to display plots inline, which avoids you having to type plt.show() each
time you plot something. You only need to execute it once at the beginning of
the session:

%matplotlib inline

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Jupyter Features | 31

The timing functions are also very handy magic functions and come in two
varieties: a standard timer (%time or %%time) and a timer that measures the
average runtime of many iterations (%timeit and %%timeit). We'll see them
being used here.

11.	Declare the a variable, as follows:

a = [1, 2, 3, 4, 5] * int(1e5)

12.	Get the runtime for the entire cell, as follows:

%%time

for i in range(len(a)):

 a[i] += 5

The output is as follows:

CPU times: user 68.8 ms, sys: 2.04 ms, total: 70.8 ms

Wall time: 69.6 ms

13.	Get the runtime for one line:

%time a = [_a + 5 for _a in a]

The output is as follows:

CPU times: user 21.1 ms, sys: 2.6 ms, total: 23.7 ms

Wall time: 23.1 ms

14.	Check the average results of multiple runs, as follows:

%timeit set(a)

The output is as follows:

4.72 ms ± 55.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops
each)

32 | Introduction to Jupyter Notebooks

Note the difference in use between one and two percent signs. Even when using
a Python kernel (as you are currently doing), other languages can be invoked
using magic commands. The built-in options include JavaScript, R, Perl, Ruby,
and Bash. Bash is particularly useful as you can use Unix commands to find out
where you are currently (pwd), see what's in the directory (ls), make new folders
(mkdir), and write file contents (cat/head/tail).

Note

Notice how list comprehensions are quicker than loops in Python. This can
be seen by comparing the wall time for the first and second cell, where the
same calculation is done significantly faster with list comprehension. Please
note that the step 15-18 are Linux-based commands. If you are working on
other operating systems like Windows and MacOS, these steps might
not work.

15.	Write some text into a file in the working directory, print the directory's contents,
print an empty line, and then write back the contents of the newly created file
before removing it, as follows:

%%bash

echo "using bash from inside Jupyter!" > test-file.txt

ls

echo ""

cat test-file.txt

rm test-file.txt

Jupyter Features | 33

The output is as follows:

Figure 1.33: Running a bash command in Jupyter

16.	 List the contents of the working directory with ls, as follows:

%ls

The output is as follows:

chapter_1_workbook.ipynb

17.	 List the path of the current working directory with pwd. Notice how we needed
to use the %%bash magic function for pwd, but not for ls:

%%bash

pwd

The output is as follows:

/Users/alex/Documents/The-Applied-Data-Science-Workshop/chapter-01

34 | Introduction to Jupyter Notebooks

18.	There are plenty of external magic commands that can be installed. A popular
one is ipython-sql, which allows for SQL code to be executed in cells.

Jupyter magic functions can be installed the same way as PyPI Python libraries,
using pip or conda. Open a new Terminal window and execute the following
code to install ipython-sql:

pip install ipython-sql

19.	Run the %load_ext sql cell to load the external command into the Notebook.

This allows connections to be made to remote databases so that queries can be
executed (and thereby documented) right inside the Notebook.

20.	Now, run the sample SQL query, as follows:

%%sql sqlite://

SELECT *

FROM (

 SELECT 'Hello' as msg1, 'World!' as msg2

);

The output is as follows:

Figure 1.34: Running a SQL query in Jupyter

Here, we connected to the local sqlite source with sqlite://; however, this
line could instead point to a specific database on a local or remote server. For
example, a .sqlite database file on your desktop could be connected to with
the line %sql sqlite:////Users/alex/Desktop/db.sqlite, where
the username in this case is alex and the file is db.sqlite.

After connecting, we execute a simple SELECT command to show how the cell
has been converted to run SQL code instead of Python.

Jupyter Features | 35

21.	Earlier in this chapter, we went over the instructions for installing the
watermark external library, which helps to document versioning in the
Notebook. If you haven't installed it yet, then open a new window and run the
following code:

pip install watermark

Once installed, it can be imported into any Notebook using %load_ext
watermark. Then, it can be used to document library versions and
system hardware.

22.	 Load and call the watermark magic function and call its docstring with the
following command:

%load_ext watermark

%watermark?

The output is as follows:

Figure 1.35: The docstring for watermark

Notice the various arguments that can be passed in when calling it, such as -a
for author, -v for the Python version, -m for machine information, and -d
for date.

36 | Introduction to Jupyter Notebooks

23.	Use the watermark library to add version information to the notebook,
as follows:

Note

The code snippet shown here uses a backslash (\) to split the logic
across multiple lines. When the code is executed, Python will ignore the
backslash, and treat the code on the next line as a direct continuation of the
current line.

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

The output is as follows:

Figure 1.36: watermark output in the Notebook

Note

To access the source code for this specific section, please refer to
https://packt.live/30KoAfu.

You can also run this example online at https://packt.live/2Y49zTQ.

https://packt.live/30KoAfu
https://packt.live/2Y49zTQ

Jupyter Features | 37

In this exercise, we looked at the core features of Jupyter, including tab completion
and magic functions. You'll review these features and have a chance to test them out
yourself in the activity at the end of this chapter.

Converting a Jupyter Notebook into a Python Script

In this section, we'll learn how to convert a Jupyter Notebook into a Python script. This
is equivalent to copying and pasting the contents of each code cell into a single .py
file. The Markdown sections are also included as comments.

It can be beneficial to convert a Notebook into a .py file because the code is then
available in plain text format. This can be helpful for version control— to see the
difference in code between two versions of a Notebook, for example. It can also be a
helpful trick for extracting chunks of code.

This conversion can be done from the Jupyter Dashboard (File -> Download as)
or by opening a new Terminal window, navigating to the chapter-02 folder, and
executing the following:

jupyter nbconvert --to=python chapter_2_workbook.ipynb

The output is as follows:

Figure 1.37: Converting a Notebook into a script (.py) file

38 | Introduction to Jupyter Notebooks

Note that we are using the next chapter's Notebook for this example.

Another benefit of converting Notebooks into .py files is that, when you want to
determine the Python library requirements for a Notebook, the pipreqs tool will
do this for us, and export them into a requirements.txt file. This tool can be
installed by running the following command:

pip install pipreqs

You might require root privileges for this.

This command is called from outside the folder containing your .py files. For
example, if the .py files are inside a folder called chapter-02, you could do
the following:

pipreqs chapter-02/

The output is as follows:

Figure 1.38: Using pipreqs to generate a requirements.txt file

The resulting requirements.txt file for chapter_2_workbook.ipynb will
look similar to the following:

cat chapter-02/requirements.txt

matplotlib==3.1.1

seaborn==0.9.0

numpy==1.17.4

pandas==0.25.3

requests==2.22.0

beautifulsoup4==4.8.1

scikit_learn==0.22

Jupyter Features | 39

Python Libraries

Having now seen all the basics of Jupyter Notebooks, and even some more advanced
features, we'll shift our attention to the Python libraries we'll be using in this book.

Libraries, in general, extend the default set of Python functions. Some examples of
commonly used standard libraries are datetime, time, os, and sys. These are
called standard libraries because they are included with every installation of Python.

For data science with Python, the most heavily relied upon libraries are external,
which means they do not come as standard with Python.

The external data science libraries we'll be using in this book are numpy, pandas,
seaborn, matplotlib, scikit-learn, requests, and bokeh.

Note

It's a good idea to import libraries using industry standards—for example,
import numpy as np. This way, your code is more readable. Try
to avoid doing things such as from numpy import *, as you may
unwittingly overwrite functions. Furthermore, it's often nice to have modules
linked to the library via a dot (.) for code readability.

Let's briefly introduce each:

•	 numpy offers multi-dimensional data structures (arrays) that operations can be
performed on. This is far quicker than standard Python data structures (such as
lists). This is done in part by performing operations in the background using C.
NumPy also offers various mathematical and data manipulation functions.

•	 pandas is Python's answer to the R DataFrame. It stores data in 2D tabular
structures where columns represent different variables and rows correspond to
samples. pandas provides many handy tools for data wrangling, such as filling
in NaN entries and computing statistical descriptions of the data. Working with
pandas DataFrames will be a big focus of this book.

•	 matplotlib is a plotting tool inspired by the MATLAB platform. Those familiar
with R can think of it as Python's version of ggplot. It's the most popular
Python library for plotting figures and allows for a high level of customization.

40 | Introduction to Jupyter Notebooks

•	 seaborn works as an extension of matplotlib, where various plotting tools
that are useful for data science are included. Generally speaking, this allows
for analysis to be done much faster than if you were to create the same things
manually with libraries such as matplotlib and scikit-learn.

•	 scikit-learn is the most commonly used machine learning library. It offers
top-of-the-line algorithms and a very elegant API where models are instantiated
and then fit with data. It also provides data processing modules and other tools
that are useful for predictive analytics.

•	 requests is the go-to library for making HTTP requests. It makes it
straightforward to get HTML from web pages and interface with APIs. For parsing
HTML, many choose BeautifulSoup4, which we'll cover in Chapter 6, Web
Scraping with Jupyter Notebooks.

We'll start using these libraries in the next chapter.

Activity 1.01: Using Jupyter to Learn about pandas DataFrames

We are going to be using pandas heavily in this book. In particular, any data that's
loaded into our Notebooks will be done using pandas. The data will be contained in a
DataFrame object, which can then be transformed and saved back to disk afterward.
These DataFrames offer convenient methods for running calculations over the data
for exploration, visualization, and modeling.

In this activity, you'll have the opportunity to use pandas DataFrames, along with
the Jupyter features that have been discussed in this section. Follow these steps to
complete this activity:

1.	 Start up one of the platforms for running Jupyter Notebooks and open it in your
web browser by copying and pasting the URL, as prompted in the Terminal.

Note

While completing this activity, you will need to use many cells in the
Notebook. Please insert new cells as required.

2.	 Import the pandas and NumPy libraries and assign them to the pd and np
variables, respectively.

3.	 Pull up the docstring for pd.DataFrame. Scan through the Parameters section
and read the Examples section.

Summary | 41

4.	 Create a dictionary with fruit and score keys, which correspond to list values
with at least three items in each. Ensure that you give your dictionary a suitable
name (note that in Python, a dictionary is a collection of values); for example,
{"fruit": ["apple", ...], "score": [8, ...]}.

5.	 Use this dictionary to create a DataFrame. You can do this using
pd.DataFrame(data=name of dictionary). Assign it to the df variable.

6.	 Display this DataFrame in the Notebook.

7.	 Use tab completion to pull up a list of functions available for df.

8.	 Pull up the docstring for the sort_values DataFrame function and read
through the Examples section.

9.	 Sort the DataFrame by score in descending order. Try to see how many times
you can use tab completion as you write the code.

10.	Use the timeit magic function to test how long this sorting operation takes.

Note

The detailed steps for this activity, along with the solutions, are presented
on page 262.

Summary
In this chapter, we've gone over the basics of using Jupyter Notebooks for data
science. We started by exploring the platform and finding our way around the
interface. Then, we discussed the most useful features, which include tab completion
and magic functions. Finally, we introduced the Python libraries we'll be using in
this book.

As we'll see in the coming chapters, these libraries offer high-level abstractions that
allow data science to be highly accessible with Python. This includes methods for
creating statistical visualizations, building data cleaning pipelines, and training models
on millions of data points and beyond.

While this chapter focused on the basics of Jupyter platforms, the next chapter is
where the real data science begins. The remainder of this book is very interactive,
and in Chapter 3, Preparing Data for Predictive Modeling, we'll perform an analysis of
housing data using Jupyter Notebook and the Seaborn plotting library.

Overview

In this chapter, we'll finally get our hands on some data and work through
an exploratory analysis, where we'll compute some informative metrics
and visualizations. By the end of this chapter, you will be able to use the
pandas Python library to load tabular data and run calculations on it, and
the seaborn Python library to create visualizations.

2
Data Exploration with

Jupyter

44 | Data Exploration with Jupyter

Introduction
So far, we have taken a glance at the data science ecosystem and jumped into
learning about Jupyter, the tool that we'll be using throughout this book for our
coding exercises and activities. Now, we'll shift our focus away from learning about
Jupyter and start actually using it for analysis.

Data visualization and exploration are important steps in the data science
process. This is how you can learn about your data and make sure you understand it
completely. Visualizations can be used as a means of discovering unusual records in
datasets and presenting that information to others.

In addition to understanding and gaining fundamental trust in data, your analysis
may lead to the discovery of patterns and insights in the data. In some cases,
these patterns can prompt further research and ultimately be very beneficial to
your business.

Applied knowledge of a high-level programming language such as Python or R will
make datasets accessible to you, from top-level aggregations to granular details.
However, it's also possible to learn a lot from data with tools that are easier to pick up
and use, such as Tableau or Microsoft Power BI.

In addition to learning about the tools to create them, it's important to have a
conceptual understanding of different types of visualizations and their uses. Similarly,
there are a handful of important techniques relating to data exploration, such as
aggregation and filtering for outliers or missing samples.

In this chapter, we'll start out by learning about some of the basics of working with
datasets in Jupyter by using pandas DataFrames. Then, we'll learn about exploring
datasets with the Seaborn visualization library and do basic modeling with scikit learn.

Our First Analysis – the Boston Housing Dataset
The dataset we'll be looking at in this section is the so-called Boston Housing dataset.
It contains US census data concerning houses in various areas around the city of
Boston. Each sample corresponds to a unique area and has about a dozen measures.
We should think of samples as rows and measures as columns. This data was first
published in 1978 and is quite small, containing only about 500 samples.

Our First Analysis – the Boston Housing Dataset | 45

Now that we know something about the context of the dataset, let's decide on
a rough plan for the exploration and analysis stages. If applicable, this plan will
accommodate the relevant questions under study. In this case, the goal is not to
answer a question, but to show Jupyter in action and illustrate some basic data
analysis methods.

Our general approach to this analysis will be to do the following:

•	 Load the data into Jupyter using a pandas DataFrame

•	 Quantitatively understand the features

•	 Look for patterns and generate questions

•	 Answer the questions to the problems

Before we start this analysis, let's take a moment to set up our
notebook environment.

Exercise 2.01: Importing Data Science Libraries and Setting Up the Notebook

Plotting Environment

In this exercise, we'll set the stage so that we're ready to load data into the notebook.
Perform the following steps to complete this exercise:

1.	 If you haven't done so already, start up one of the following platforms for
running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

2.	 Then, open your chosen platform in a web browser by copying and pasting the
URL, as prompted in the Terminal.

3.	 Import pandas and pull up the docstring for a pandas DataFrame, the main
data structure you will use to store tables and run calculations on them. This
should be familiar to you from Activity 1.01, Using Jupyter to Learn about Pandas
DataFrames, from Chapter 1, Introduction to Jupyter Notebooks, where you learned
about some basics of DataFrames:

import pandas as pd

pd.DataFrame?

46 | Data Exploration with Jupyter

The output is as follows:

Figure 2.1: The docstring for pd.DataFrame

4.	 Import seaborn and pull up examples of the plot functions you have access to:

import seaborn as sns

sns.*?

You'll see familiar charts in the list, such as barplot, boxplot, and scatterplot,
as follows:

Figure 2.2: The output of running sns.*?

5.	 Load the library dependencies and set up the plotting environment for
the notebook.

Our First Analysis – the Boston Housing Dataset | 47

Note

You can type these libraries into new cells and play with the Jupyter tab
completion features.

The code for importing the libraries is as follows:

Common standard libraries

import datetime

import time

import os

Common external libraries

import pandas as pd

import numpy as np

import sklearn # scikit-learn

import requests

from bs4 import BeautifulSoup

Visualization libraries

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

Libraries do not need to be imported at the top of the notebook, but it's good
practice to do this in order to summarize the dependencies in one place.
Sometimes, though, it makes sense to load things midway through the notebook,
and that is completely fine.

Note

To access the source code for this specific section, please refer to
https://packt.live/2N1riF2.

You can also run this example online at https://packt.live/37DzuVK.

https://packt.live/2N1riF2
https://packt.live/37DzuVK

48 | Data Exploration with Jupyter

6.	 Set the plot's appearance, as follows:

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

Note

It's easy to run into issues of non-reproducibility when working in a
notebook by running cells out of order. For this reason, you can keep an eye
on the cell run count, which is listed to the left of the cell in square brackets
and increments by one each time a cell is run.

Consider, for example, if you import pandas (import pandas as pd)
halfway down the notebook. Since Jupyter notebooks have shared memory
between cells, you can use pandas in any cell, even those above it. Now,
say you did this and used pandas to write some code above the import
cell. In this case, if you were to rerun the notebook from scratch (or send to
someone else to run), then it will throw a NameError exception and stop
executing when it hits that cell. This will happen because the notebook is
attempting to execute pandas code before importing the library.

A similar issue can appear when transforming data, such as rerunning
charts on data that was transformed later in the notebook. In this case, the
solution is to be careful about the order in which you run things. Try to rerun
your notebook from scratch occasionally if time permits so that you can
catch errors like this before they creep too far into your analysis.

Now that we've loaded our external libraries, we can move on to the analysis. Please
keep the notebook open and carry on to the next exercise to continue running
through the notebook.

Our First Analysis – the Boston Housing Dataset | 49

Loading the Data into Jupyter Using a pandas DataFrame

Often, data is stored in tables, which means it can be saved as a comma-separated
variable (CSV) file. This format, and many others, can be read into Python as
a DataFrame object using the pandas library. Other common formats include
tab-separated variable (TSV), Structured Query Language (SQL) tables, and
JavaScript Object Notation (JSON) data structures. Indeed, pandas has support for
all of these.

We won't need to worry about loading data like this right now, since our first dataset
is available directly through scikit-learn; however, we will see some examples of
loading and saving these types of data structures later in this book.

Note

An important step after loading data for analysis is to ensure that it's clean.
For example, we would generally need to deal with missing data and ensure
that all the columns have the correct data types. The dataset we'll be
using in this section has already been cleaned, so we won't need to worry
about this. However, we'll see an example of data that requires cleaning in
Chapter 3, Preparing Data for Predictive Modeling, and explore techniques
for dealing with it.

Exercise 2.02: Loading the Boston Housing Dataset

To get started with the Boston Housing dataset, you will load the table into a pandas
DataFrame and look at its fields and some summary statistics. Perform the following
steps to complete this exercise:

1.	 Load the Boston Housing dataset from the sklearn.datasets module using
the load_boston method:

from sklearn import datasets

boston = datasets.load_boston()

2.	 Check the data structure type, as follows:

type(boston)

50 | Data Exploration with Jupyter

The output is as follows:

sklearn.utils.Bunch

The output indicates that it's a scikit-learn Bunch object, but you still need to get
some more information about this to understand what you are dealing with.

3.	 Import the base object from scikit-learn utils and print the docstring in
your notebook:

from sklearn.utils import Bunch

Bunch?

The output is as follows:

Figure 2.3: The docstring for sklearn.utils.Bunch

4.	 Print the field names (that is, the keys to the dictionary) as follows:

boston.keys()

The output is as follows:

dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])

5.	 Print the dataset description contained in boston['DESCR'] as follows:

print(boston['DESCR'])

Our First Analysis – the Boston Housing Dataset | 51

Note that, in this call, you want to explicitly print the field value so that the
notebook renders the content in a more readable format than the string
representation (that is, if we just type boston['DESCR'] without wrapping it
in a print statement). By doing this, we can see the dataset information as we
summarized it previously:

Figure 2.4: Description of the Boston dataset

Briefly read through the feature descriptions and/or describe them yourself. For
the purposes of this book, the most important fields to understand are RM, AGE,
LSTAT, and MEDV. Of particular importance, here, are the feature descriptions
(under Attribute Information). You will use this as a reference during
your analysis.

6.	 Now, create a pandas DataFrame that contains the data. This is beneficial for a
few reasons: all of our data will be contained in one object, there are useful and
computationally efficient DataFrame methods we can use, and other libraries,
such as seaborn, have tools that integrate nicely with DataFrames.

In this case, you will create your DataFrame with the standard constructor
method. As a reminder of how this is done, pull up the docstring one more time:

import pandas as pd

pd.DataFrame?

52 | Data Exploration with Jupyter

The output is as follows:

Figure 2.5: The docstring for pd.DataFrame

The docstring reveals the DataFrame input parameters. You want to feed in
boston['data'] for the data and use boston['feature_names'] for
the headers.

7.	 Print the data, as follows:

boston['data']

The output is as follows:

Figure 2.6: Printing the data

Our First Analysis – the Boston Housing Dataset | 53

8.	 Print the shape of the data, as follows:

boston['data'].shape

The output is as follows:

(506, 13)

9.	 Print the feature names, as follows:

boston['feature_names']

The output is as follows:

array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',

 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')

Looking at the output, you can see that your data is in a 2D NumPy array.
Running the boston['data'].shape command returns the length
(number of samples) and the number of features as the first and second
outputs, respectively.

10.	 Load the data into a pandas DataFrame, df, by running the following code:

Load the data

df = pd.DataFrame(data=boston['data'], \

 columns=boston['feature_names'],)

In machine learning, the variable that is being modeled is called the target
variable; it's what you are trying to predict, given the features. For this dataset,
the suggested target is MEDV, which is the median house value in thousands
of dollars.

11.	Check the shape of the target, as follows:

boston['target'].shape

The output is (506,).

You can see that it has the same length as the features, which is expected.
Therefore, it can be added as a new column to the DataFrame.

54 | Data Exploration with Jupyter

12.	Add the target variable to df, as follows:

df['MEDV'] = boston['target']

13.	Move the target variable to the front of df, as follows:

y = df['MEDV'].copy()

del df['MEDV']

df = pd.concat((y, df), axis=1)

This is done to distinguish the target from our features by storing it at the front
of our DataFrame.

Here, you've introduced a dummy variable, y, to hold a copy of the target
column before we remove it from the DataFrame. Then, you used the pandas
concatenation function to combine it with the remaining DataFrame along the 1st
axis (as opposed to the 0th axis, which combines rows).

Note

You will often see dot notation used to reference DataFrame columns. For
example, previously, we could have done y = df.MEDV.copy(). While
this can work well for accessing column data, it cannot be used generally in
place of the square bracket notation, such as when you have column names
with spaces. Additionally, you cannot delete columns using dot notation. For
example, del df.MEDV would raise an error. The correct way to delete
the MEDV column would be to run del df['MEDV'].

14.	 Implement df.head() or df.tail() to glimpse the data and len(df) to
verify that the number of samples is what we expect. Run the next few cells to
see the head, tail, and length of df:

Our First Analysis – the Boston Housing Dataset | 55

Figure 2.7: The first 10 and last 10 rows of the Boston Housing dataset

15.	 Verify that the number of samples is what you expect, as follows:

len(df)

The output is 506.

Each row is labeled with an index value, as seen in bold on the left-hand side of
the table. By default, these are a set of integers starting at 0 and incrementing by
one for each row.

56 | Data Exploration with Jupyter

16.	Check the data type contained within each column, as follows:

df.dtypes

The output is as follows:

Figure 2.8: Data types of each column in the Boston Housing dataset

For this dataset, you can see that every field is a float, including the target.
Looking at a sample of the target (MEDV) specifically, you can clearly see that
it's distributed over a continuous range, as would be expected of a float data
type. This makes sense, considering the field represents the median house value
of each record. Given this information, you can determine that predicting this
target variable is a regression problem.

17.	You can run df.isnull() to clean the dataset as pandas automatically sets
missing data as NaN values. To get the number of NaN values per column,
execute the following code:

df.isnull().sum()

Our First Analysis – the Boston Housing Dataset | 57

The output is as follows:

Figure 2.9: Number of missing records in each column of the Boston Housing dataset

df.isnull() returns a Boolean frame of the same length as df.

For this dataset, you can see that there are no NaN values, which means you
have no immediate work to do in terms of cleaning the data and can move on.

18.	Remove some columns, as follows:

for col in ['ZN', 'NOX', 'RAD', 'PTRATIO', 'B']:

 del df[col]

This is done to simplify the analysis. We will focus on the remaining columns in
more detail when we dive into exploring the data.

Note

To access the source code for this specific section, please refer to
https://packt.live/2N1riF2.

You can also run this example online at https://packt.live/37DzuVK.

https://packt.live/2N1riF2
https://packt.live/37DzuVK

58 | Data Exploration with Jupyter

Data Exploration

Since this is an entirely new dataset that we've never seen before, the first goal
here is to understand the data. We've already seen the textual description of
the data, which is important for qualitative understanding. Now, we'll compute a
quantitative description.

Exercise 2.03: Analyzing the Boston Housing Dataset

In this exercise, you will learn more about the dataset from a top-down perspective,
starting with summary metrics and then digging into more details of particular
columns. You will explore relationships between the various fields, plot out
visualizations to increase our understanding, and look into questions that arise.
Perform the following steps to complete this exercise:

1.	 Check some statistics of the DataFrame, as follows:

df.describe().T

The output is as follows:

Figure 2.10: Summary statistics for the Boston Housing dataset

The preceding command computes various properties, including the mean,
standard deviation, minimum, and maximum for each column. This table gives
us a high-level idea of how everything is distributed. Note that you have taken
the transform of the result by adding a .T suffix to the output; this swaps the
rows and columns.

Our First Analysis – the Boston Housing Dataset | 59

Going forward with the analysis, you will specify a set of columns to focus on.

2.	 Define a specific set of columns, as follows:

cols = ['RM', 'AGE', 'TAX', 'LSTAT', 'MEDV']

3.	 Display this subset as the columns of the DataFrame, as follows:

df[cols].tail()

The output is as follows:

Figure 2.11: A subset of columns from the Boston Housing dataset

Recall what each of these columns represents. From the dataset documentation,
you have the following:

RM: Average number of rooms per dwelling

AGE: Proportion of owner-occupied units built prior to 1940

TAX: Full-value property tax rate per $10,000

LSTAT: Percentage of the population that is classified as "low status"

MEDV: Median value of owner-occupied homes in $1000s

To look for patterns in this data, you can start by calculating the pairwise
correlations using pd.DataFrame.corr.

4.	 Calculate the pairwise correlations for your selected columns, as follows:

df[cols].corr()

60 | Data Exploration with Jupyter

The output of this command is as follows:

Figure 2.12: Pairwise correlation scores between select columns

This resulting table shows the correlation score between each pair of columns.
Large positive scores indicate a strong positive (that is, in the same direction)
correlation. As expected, you can see maximum values of 1 on the diagonal.

By default, pandas calculates the standard correlation coefficient for each pair
of columns, which is also called the Pearson coefficient. This is defined
as the covariance between two variables, divided by the product of their
standard deviations:

Figure 2.13: The Pearson correlation coefficient equation

Here, you should think of X as one column, and Y as another. The standard
deviations are calculated in the usual way, by summing up the squared
differences between each data point and the average for that column.

The covariance, in turn, is defined as follows:

Figure 2.14: The covariance equation

Our First Analysis – the Boston Housing Dataset | 61

Here, n is the number of records (that is, the number of rows in the table), xi
and yi correspond to the individual values of each record being summed over,
and x ̄ and ȳ correspond to the average values of the records for columns X and
Y, respectively.

Returning to the analysis, visualize the correlation coefficients that you
calculated previously, using a heatmap. This will produce a better result for you
to look at, rather than having to strain your eyes to interpret the preceding table.

5.	 Import the libraries that are required to plot a heatmap and set the appearance
settings as follows:

Visualization libraries

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

Setting plot appearance

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

6.	 To create the heatmap using Seaborn, execute the following code:

ax = sns.heatmap(df[cols].corr(), \

 cmap=sns.cubehelix_palette(20, \

 light=0.95, \

 dark=0.15),)

ax.xaxis.tick_top() # move labels to the top

plt.savefig('../figures/chapter-2-boston-housing-corr.png', \

 bbox_inches='tight', dpi=300,)

Note

To save the image using the preceding code, you will need to ensure you
have a figures folder set up in your working directory. Alternatively,
you can edit the path in the code to save the image to a different folder of
your choice.

62 | Data Exploration with Jupyter

The following screenshot shows the heatmap:

Figure 2.15: Heatmap of correlation scores

Call sns.heatmap and pass the pairwise correlation matrix as input. You will
use a custom color palette here to override the Seaborn default. The function
returns a matplotlib.axes object, which is referenced by the ax variable.

The final figure is then saved as a high-resolution PNG to the figures folder.

Note

Each chart is exported as a PNG file using the plt.savefig function.
We set the bbox_inches='tight' and dpi=300 argument in order
to save a high-quality image.

For the final step in our dataset exploration exercise, we'll visualize our data
using seaborn's pairplot function.

Our First Analysis – the Boston Housing Dataset | 63

7.	 Visualize the DataFrame using Sseaborn's pairplot function, as follows:

sns.pairplot(df[cols], plot_kws={'alpha': 0.6}, \

 diag_kws={'bins': 30},)

plt.savefig('../figures/chapter-2-boston-housing-pairplot.png', \

 bbox_inches='tight', dpi=300,)

Here's the output of the visualization:

Figure 2.16: Pairplot visualization of the Boston Housing dataset

64 | Data Exploration with Jupyter

Looking at the histograms on the diagonal, you can see the following:

•	 a: RM and MEDV have the closest shape to normal distributions.

•	 b: AGE is skewed to the left and LSTAT is skewed to the right (this may seem
counterintuitive, but skew is defined in terms of where the mean is positioned in
relation to the max).

•	 c: For TAX, we find that a large amount of the distribution is around 700. This is
also evident from the scatter plots.

Taking a closer look at the MEDV histogram on the bottom right, we can actually see
something similar to TAX, where there is a large upper-limit bin around $50,000.
Recall that, when we used df.describe(), the min and max of MEDV were 5k and
50k, respectively. This suggests that MEDV (which represents the median house values
for each community) has been capped at 5k on the low end and 50k on the high
end. This was likely done for ethical reasons, to help protect the privacy of the
outlier communities.

Note

To access the source code for this specific section, please refer to
https://packt.live/2N1riF2.

You can also run this example online at https://packt.live/37DzuVK.

Now that we have a good start regarding exploring the data, let's turn our attention
to a modeling problem offered by the dataset.

Introduction to Predictive Analytics with Jupyter Notebooks

Continuing our analysis of the Boston Housing dataset, we can see that it presents us
with a regression problem. In regression, we try to predict a numerical target variable,
given a set of features. In this case, we'll be predicting the median house value
(MEDV) using some features seen in the pairplot from the previous exercise.

We'll train models that take only one feature as input to make this prediction. This
way, the models will be conceptually simple to understand, and we can focus more
on the technical details of the scikit-learn API. Then, in the next chapter, you'll be
more comfortable dealing with the relatively complicated models we are going to
train there.

https://packt.live/2N1riF2
https://packt.live/37DzuVK

Our First Analysis – the Boston Housing Dataset | 65

Exercise 2.04: Training Linear Models with Seaborn and scikit-learn

You will now start training the model with Seaborn. Perform the following steps to
do so:

1.	 Take a look at the pairplot that you created in the last step of Exercise 2.03,
Analyzing the Boston Housing Dataset. In particular, look at the scatter plots in the
bottom-left corner:

Figure 2.17: Scatter plots for MEDV and LSTAT

66 | Data Exploration with Jupyter

Note how the number of rooms per house (RM) and the % of the population
that is lower class (LSTAT) are highly correlated with the median house value
(MDEV). Let's pose the following question: how well can we predict MDEV given
these variables?

To help answer this, visualize the relationships using seaborn. You will draw the
scatter plots along with the line of best fit linear models.

2.	 To use the sns.regplot function (which stands for "regression" plot), pull up
that docstring, as follows:

sns.regplot?

The output is as follows:

Figure 2.18: The docstring for sns.regplot

Our First Analysis – the Boston Housing Dataset | 67

Read about the first few arguments and notice how the function can accept a
DataFrame as input.

3.	 Draw scatter plots for the linear models, as follows:

fig, ax = plt.subplots(1, 2)

sns.regplot(x='RM', y='MEDV', data=df, \

 ax=ax[0], scatter_kws={'alpha': 0.4},)

sns.regplot(x='LSTAT', y='MEDV', data=df, \

 ax=ax[1], scatter_kws={'alpha': 0.4},)

plt.savefig('../figures/chapter-2-boston-housing-scatter.png', \

 bbox_inches='tight', dpi=300,)

The output is as follows:

Figure 2.19: Scatter plots with linear regression trends

68 | Data Exploration with Jupyter

The line of best fit is calculated by minimizing the ordinary least squares error
function, which is something seaborn does automatically when we call the
regplot function. Also, take note of the shaded areas around the lines, which
represent 95% confidence intervals.

Note

The 95% confidence intervals that are rendered by the sns.regplot
function, as seen in the preceding plot, are calculated by taking the
standard deviation of data in bins perpendicular to the line of best fit,
effectively determining the confidence intervals at each point along the
line of best fit. In practice, this involves seaborn bootstrapping the data,
a process where new data is created through random sampling with
replacement. The number of bootstrapped samples is automatically
determined based on the size of the dataset or can be manually set as
well by passing the n_boot argument.

4.	 Plot the residuals using seaborn, as follows:

fig, ax = plt.subplots(1, 2)

ax[0] = sns.residplot(x='RM', y='MEDV', data=df, \

 ax=ax[0], scatter_kws={'alpha': 0.4},)

ax[0].set_ylabel('MDEV residuals $(y-\hat{y})$')

ax[1] = sns.residplot(x='LSTAT', y='MEDV', data=df, \

 ax=ax[1], scatter_kws={'alpha': 0.4},)

ax[1].set_ylabel('')

plt.ylim(-25, 40)

plt.savefig('../figures/chapter-2-boston-housing-residuals.png',\

 bbox_inches='tight', dpi=300,)

This will result in the following chart:

Our First Analysis – the Boston Housing Dataset | 69

Figure 2.20: Residual charts for linear regression models

Each point on these residual plots is the difference between the observed value
(y) and the linear model prediction (ŷ). Residuals greater than zero are data
points that would be underestimated by the model. Likewise, residuals less than
zero are data points that would be overestimated by the model.

Patterns in these plots can indicate suboptimal modeling. In each preceding
case, you can see diagonally arranged scatter points in the positive region. These
are caused by the $50,000 cap on MEDV. Both residual charts show data that's
largely clustered around 0, which is an indicator of good fit. However, LSTAT
appears to cluster slightly below 0, indicating that a linear model may not be the
best choice. This same fact can be seen by looking at the scatter chart above
this, where the line of best fit for LSTAT can be seen passing above the bulk of
the points.

70 | Data Exploration with Jupyter

5.	 Define a function using scikit-learn that calculates the line of best fit and mean
squared error (MSE):

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

def get_mse(df, feature, target='MEDV'):

 # Get x, y to model

 y = df[target].values

 x = df[feature].values.reshape(-1,1)

 print('{} ~ {}'.format(target, feature))

 # Build and fit the model

 lm = LinearRegression()

 lm.fit(x, y)

 msg = ('model: y = {:.3f} + {:.3f}x' \

 .format(lm.intercept_, lm.coef_[0]))

 print(msg)

Note

The complete code for this step can be found at https://packt.live/2UIzwq8.

In the get_mse function, you assign the y and x variables to the target MDEV
and the dependent feature, respectively. These are cast as NumPy arrays by
calling the values attribute. The dependent features array is reshaped to the
format expected by scikit-learn; this step is only necessary when modeling a
one-dimensional feature space. The model is then instantiated and fitted on the
data. For linear regression, fitting consists of computing the model parameters
using the ordinary least squares method (minimizing the sum of squared errors
for each sample). Finally, after determining the parameters, you will predict the
target variable and use the results to calculate the MSE. The MSE is simply the
sum of squared errors for each data point, where the error is defined as the
difference between the observed value and the prediction.

https://packt.live/2UIzwq8

Our First Analysis – the Boston Housing Dataset | 71

6.	 Call the get_mse function for both RM and LSTAT, as follows:

get_mse(df, 'RM')

get_mse(df, 'LSTAT')

The output of calling RM and LSTAT is as follows:

MEDV ~ RM

model: y = -34.671 + 9.102x

mse = 43.60

MEDV ~ LSTAT

model: y = 34.554 + -0.950x

mse = 38.48

By comparing the MSE, it transpires that the error is slightly lower for LSTAT
than for RM. Looking back at the scatter plots, however, it appears that we might
have even better success using a polynomial model for LSTAT. In Activity 2.01,
Building a Third-Order Polynomial Model, we will test this by computing a third-
order polynomial model with scikit-learn.

Note

To access the source code for this specific section, please refer to
https://packt.live/2N1riF2.

You can also run this example online at https://packt.live/37DzuVK.

Now that we've had an introduction to modeling data with scikit-learn, let's return to
our exploration of the Boston Housing dataset. In the next section, we'll introduce
some ideas around categorical features in general, and then apply these concepts to
our dataset in order to explore the variable relationships in more detail.

Using Categorical Features for Segmentation Analysis

Often, we find datasets where there is a mix of continuous and categorical fields.
In such cases, we can learn about our data and find patterns by segmenting the
continuous variables with the categorical fields.

https://packt.live/2N1riF2
https://packt.live/37DzuVK

72 | Data Exploration with Jupyter

As a specific example, imagine you are evaluating the return on investment from an
ad campaign. The data you have access to contains measures of some calculated
return on investment (ROI) metric. These values were calculated and recorded daily,
and you are analyzing data from the previous year. You have been tasked with finding
data-driven insights on ways to improve the ad campaign. Looking at the ROI daily
time series, you see a weekly oscillation in the data. Segmenting by day of the week,
you find the following ROI distributions (where 0 represents the first day of the week
and 6 represents the last):

Figure 2.21: A violin plot with ROI on the vertical axis and the day of the week
on the horizontal axis

Since we don't have any categorical fields in the Boston Housing dataset we are
working with, we'll create one by effectively discretizing a continuous field. In our
case, this will involve binning the data into "low", "medium", and "high" categories.
It's important to note that we are not simply creating a categorical data field to
illustrate the data analysis concepts in this section. As will be seen, doing this
can reveal insights from the data that would otherwise be difficult to notice or
altogether unavailable.

Our First Analysis – the Boston Housing Dataset | 73

Exercise 2.05: Creating Categorical Fields from Continuous Variables and

Making Segmented Visualizations

Before you get started with this exercise, take another look at the final pairplot
of Exercise 2.03, Analyzing the Boston Housing Dataset, where you compared MEDV,
LSTAT, TAX, AGE, and RM:

Figure 2.22: Scatter charts comparing AGE to MEDV, LSTAT, TAX, and RM

74 | Data Exploration with Jupyter

Take a look at the panels containing AGE. As a reminder, this feature is defined as
the proportion of owner-occupied units built prior to 1940. We are going to convert
this feature into a categorical variable. Once it's been converted, you will be able to
replot this figure with each panel segmented by color according to the age category.
Perform the following steps to complete this exercise:

1.	 Plot the AGE cumulative distribution, as follows:

sns.distplot(df.AGE.values, bins=100, \

 hist_kws={'cumulative': True}, \

 kde_kws={'lw': 0},)

plt.xlabel('AGE')

plt.ylabel('CDF')

plt.axhline(0.33, color='red')

plt.axhline(0.66, color='red')

plt.xlim(0, df.AGE.max())

plt.savefig('../figures/chapter-2-boston-housing-age-cdf.png',\

 bbox_inches='tight', dpi=300,)

The output is as follows:

Figure 2.23: Plot for cumulative distribution of AGE

Our First Analysis – the Boston Housing Dataset | 75

Here, you use sns.distplot to plot the distribution and set hist_
kws={'cumulative': True} in order to calculate and chart the cumulative
distribution. In these types of distributions, each bar counts how many values
lie in the current x-axis bin and every bin to the left, thereby showing the
cumulative amount at that point.

Note

Various properties of Seaborn charts can be tuned using x_kws, where
x represents an argument name such as hist. Often, these are used to
set aesthetic elements of the chart. For example, in the preceding plot,
we set kde_kws={'lw': 0} in order to bypass plotting the kernel
density estimate, which would have been a smooth line corresponding to
the density.

Looking at the plot, there are very few samples with a low AGE distribution
value, whereas there are far more with a very large AGE. This is indicated by the
steepness of the distribution on the far right-hand side.

The red lines indicate 1/3 and 2/3 points in the cumulative distribution. Looking
at the places where our distribution intercepts these horizontal lines, we can see
that only about 33% of the samples have the value of AGE less than 55, and 33%
of the samples have the value of AGE greater than 90. In other words, a third
of the housing communities have fewer than 55% of their homes built prior to
1940. These would be considered relatively new communities. At the other end
of the spectrum, another third of the housing communities have over 90% of
their homes built prior to 1940. These would be considered very old. You will use
the places where the red horizontal lines intercept the distribution as a guide to
split the feature into categories: Relatively New, Relatively Old, and
Very Old.

2.	 Create a new categorical feature and set the segmentation points, as follows:

def get_age_category(x):

 if x < 50:

 age = 'Relatively New'

 elif 50 <= x < 85:

 age = 'Relatively Old'

 else:

76 | Data Exploration with Jupyter

 age = 'Very Old'

 return age

df['AGE_category'] = df.AGE.apply(get_age_category)

Here, you are using the very handy pandas apply method, which applies a
function to a given column or set of columns. The function being applied—in this
case, get_age_category—should take one argument representing a row of
data and return one value for the new column. In this case, the row of data being
passed is just a single value, that is, the AGE of the sample.

Note

The apply method is great because it can solve a variety of problems and
allows for easily readable code. Often, though, vectorized methods such as
pd.Series.str can accomplish the same thing much faster. Therefore,
it's advised to avoid using it if possible, especially when working with large
datasets. We'll see some examples of vectorized methods in Chapter 3,
Preparing Data for Predictive Modeling.

3.	 Verify the number of samples you've grouped into each age category, as follows:

df.groupby('AGE_category').size()

The output is as follows:

AGE_category

Relatively New 147

Relatively Old 149

Very Old 210

dtype: int64

Our First Analysis – the Boston Housing Dataset | 77

Looking at the result, you can see that two class sizes are nearly equal and
that the Very Old group is about 40% larger. You are interested in keeping
the classes comparable in size so that each is well represented and it's
straightforward to make inferences from the analysis.

Note

It may not always be possible to assign samples to classes evenly, and in
real-world situations, it's very common to find highly imbalanced classes.
In such cases, it's important to keep in mind that it will be difficult to make
statistically significant claims with respect to the under-represented class.
Predictive analytics with imbalanced classes can be particularly difficult. The
following blog post offers an excellent summary regarding the methods for
handling imbalanced classes when performing machine learning:
https://svds.com/learning-imbalanced-classes/.

Now see how the target variable is distributed when segmented by the new
feature, AGE_category.

4.	 Construct a violin plot, as follows:

sns.violinplot(x='MEDV', y='AGE_category', data=df, \

 order=['Relatively New', 'Relatively Old', \

 'Very Old'],)

plt.xlim(0, 55)

plt.savefig('../figures/chapter-2-boston-housing-'\

 'age-medv-violin.png', \

 bbox_inches='tight', dpi=300,)

https://svds.com/learning-imbalanced-classes/

78 | Data Exploration with Jupyter

The output is as follows:

Figure 2.24: Violin plot comparing MEDV distributions by age

The preceding violin plot shows a kernel density estimate of the median house
value distribution for each age category. You can compare the distribution of
each categorical level with a normal distribution, and you can observe that all
three have some degree of skewness. The Very Old group contains the lowest
median house value records and has a relatively large width, whereas the other
groups are more tightly centered on their average. The young group is skewed
to the high end, which is evident from the enlarged right half and the position of
the white dot in the thick black line within the body of the distribution.

This white dot represents the mean, and the thick black line spans roughly 50%
of the population (it fills to the first quantile on either side of the white dot). The
thin black line represents boxplot whiskers and spans 95% of the population.
This inner visualization can be modified to show the individual data points
instead by passing inner='point' to sns.violinplot().

Our First Analysis – the Boston Housing Dataset | 79

5.	 Reconstruct the violin plot by adding the inner='point' argument to the
sns.violinplot call. The code for this is as follows:

sns.violinplot(x='MEDV', y='AGE_category', data=df, \

 order=['Relatively New', 'Relatively Old', \

 'Very Old'], \

 inner='point',)

plt.xlim(0, 55)

plt.savefig('../figures/chapter-2-boston-housing-'\

 'age-medv-violin-points.png',\

 bbox_inches='tight', dpi=300,)

The output is as follows:

Figure 2.25: Including points for individual samples in the violin plot

It's good to make plots like this for test purposes in order to see how the
underlying data connects to the visual. You can see, for example, how there are
no median house values lower than roughly $16,000 for the Relatively New
segment, and therefore, the distribution tail actually contains no data. Due to the
small size of our dataset (only about 500 rows), you can see that this is the case
for each segment.

80 | Data Exploration with Jupyter

6.	 Reconstruct the pairplot visualization from earlier, but now include color
labels for each AGE category. This is done by simply passing the hue argument,
as follows:

cols = ['RM', 'AGE', 'TAX', 'LSTAT', 'MEDV', 'AGE_category']

sns.pairplot(df[cols], hue='AGE_category',\

 hue_order=['Relatively New', 'Relatively Old', \

 'Very Old'], \

 plot_kws={'alpha': 0.5},)

plt.savefig('../figures/chapter-2-boston-housing-'\

 'age-pairplot.png', \

 bbox_inches='tight', dpi=300,)

The output is as follows:

Figure 2.26: Pairplot visualization of the Boston Housing dataset, with AGE segments

Our First Analysis – the Boston Housing Dataset | 81

Looking at the preceding histograms, you can see that the underlying
distributions of each segment appear similar for RM and TAX. The LSTAT
distributions, on the other hand, look more distinct. You can focus on them in
more detail by using a violin plot.

7.	 Reconstruct a violin plot to compare the LSTAT distributions for each AGE_
category segment, as follows:

sns.violinplot(x='LSTAT', y='AGE_category', data=df, \

 order=['Relatively New', 'Relatively Old', \

 'Very Old'],)

plt.xlim(-5, 40)

plt.savefig('../figures/chapter-2-boston-housing-'\

 'lstat-violin.png',\

 bbox_inches='tight', dpi=300,)

The output is as follows:

Figure 2.27: Violin plot comparing LSTAT distributions by age

82 | Data Exploration with Jupyter

Unlike the MEDV violin plot, where each distribution had roughly the same width,
here, you can see the width increasing along with AGE. Communities with primarily
old houses (the Very Old segment) contain anywhere from very few to many
lower class residents, whereas Relatively New communities are much more
likely to be predominantly higher class, with over 95% of samples having less lower
class percentages than the Very Old communities. This makes sense, because
Relatively New neighborhoods would be more expensive.

Note

To access the source code for this specific section, please refer to
https://packt.live/2N1riF2.

You can also run this example online at https://packt.live/37DzuVK.

Activity 2.01: Building a Third-Order Polynomial Model

Previously in this chapter, you used scikit-learn to create linear models for the
median house value (MEDV) as a function of RM and LSTAT, independently. In
particular, with MEDV as a function of RM, you know that modeling would like to build
a third-order polynomial model to compare against the linear one. Recall the actual
problem we are trying to solve: predicting the median house value, given the lower
class population percentage. This model could benefit a prospective Boston House
purchaser who cares about how much of their community would be lower class.

The aim here is to use scikit-learn to fit a polynomial regression model to predict the
median house value (MEDV), given the LSTAT values, and to build a model that has a
lower MSE. In order to achieve this, the following steps have to be executed:

1.	 Load the necessary libraries and set up the plot settings for the notebook.

Note

While completing this activity, you will need to use many cells in the
notebook. Please insert new cells as required.

https://packt.live/2N1riF2
https://packt.live/37DzuVK

Our First Analysis – the Boston Housing Dataset | 83

2.	 Load the Boston Housing dataset into a pandas DataFrame, as you did earlier in
this chapter. Recall that you accessed the data from a built-in scikit-learn dataset.
Don't forget to add the target variable column called MEDV.

3.	 Pull out your dependent feature and target variable from df. Assign the target
to the y variable and the feature to the x variable. Make sure that x that has the
proper shape for training scikit-learn models. It should resemble something like
this: [[x1], [x2], [x3], ...].

4.	 Verify that x has the proper shape by printing the first three samples.

5.	 Import the PolynomialFeatures class from scikit-learn's preprocessing
folder. Then, instantiate it with degree=3. After this has been done, display
your instantiated object in the notebook.

6.	 Transform the LSTAT feature (assigned to the x variable) by running the fit_
transform method. Assign the newly created polynomial feature set to the
x_poly variable.

7.	 Verify what x_poly looks like by printing the first few items. They should each
have a dimensionality of 4, in order to represent polynomials of degrees 0
through 3.

8.	 Import the LinearRegression class from scikit-learn and train a linear
classification model the same way we did while we calculated the MSE. When
instantiating the model, set fit_intercept=False and assign it the
name clf.

9.	 Extract the model coefficients using the coef_ attribute of clf. Use these
coefficients to write out the equation of our polynomial model (that is, y = a + bx
+ cx2 + dx3).

10.	Determine the predicted values for each sample and then use these values to
calculate the residuals.

11.	Print the first 10 residuals. You should see some greater than 0 and some less
than 0.

12.	Calculate the MSE for your third-order polynomial model.

84 | Data Exploration with Jupyter

13.	Create a plot of the polynomial model, as a smooth line, overlaying a scatter
chart of the samples.

14.	Plot the residuals as a scatter chart. Compare this to the linear model residual
chart we plotted earlier for this feature. The polynomial model should yield a
better fit.

Note

The detailed steps, along with the solution to this activity, are presented on
page 266.

Summary
In this chapter, we ran an exploratory analysis in a live Jupyter Notebook
environment. In doing so, we used visualizations such as scatter plots, histograms,
and violin plots to deepen our understanding of the data. We also performed
simple predictive modeling, a topic that will be the focus of the following chapters in
this book.

In the next chapter, we will discuss how to approach predictive analytics and what
things to consider when preparing the data for modeling. We'll use pandas to
explore methods of data preprocessing, such as filling missing data, converting from
categorical to numeric features, and splitting data into training and testing sets.

Overview

In this chapter, you will learn to plan a machine learning strategy and
assess whether or not data is suitable for modeling. You will also perform
operations on data in to prepare it so that it can be used to train models.
This will include filling missing records, converting from categorical to
numeric features, and splitting datasets into training and testing groups. By
the end of this chapter, you will be able to process datasets and make them
ready for predictive analysis.

3
Preparing Data for Predictive

Modeling

88 | Preparing Data for Predictive Modeling

Introduction
Having gone through a fairly involved analysis in the previous chapter, you should
now be feeling comfortable using Jupyter Notebooks to work with data. In addition to
data exploration and visualization, our analysis included a couple of relatively simple
modeling problems, where we trained linear regression models. These lines of best
fit were very easy to create because only two dimensions were involved and the data
was very clean.

As we will see in later chapters, training more advanced models (such as decision
trees) can be just as easy because of the simplicity of open source software such as
scikit-learn. The work involved in preparing data, however, can be significantly
more difficult, depending on the details of the relevant datasets.

The quality of training data is very important for creating a model that will generalize
well to future samples. For example, errors in your training dataset will cause the
model to learn patterns that don't reflect the real-life process behind the data, or act
as noise that lowers its accuracy.

Since data preparation is such a big part of the machine learning process, the
exercises in this chapter will focus on learning methods that we can use for data
processing with Python. We'll continue with our hands-on approach to learning by
running through various examples and activities in a Jupyter notebook.

Instead of jumping right into the details of data cleaning, however, we'll introduce
machine learning itself and summarize how to approach data science problems in
general. Specifically, we will discuss looking at business problems, identifying data
that might be useful, and laying out a plan for training predictive models.

Machine Learning Process
Machine learning (ML) lies at the heart of data science. It is an umbrella term for
a huge set of algorithms that find and model patterns in data. These algorithms
can be broken down into various categories, such as supervised, unsupervised, and
reinforcement learning.

Machine Learning Process | 89

In supervised problems, we have access to a historical view of labeled records and
fit models to predict them—for example, blood test data that's been labeled with the
test result. In unsupervised problems, there is no such data available, and labels may
need to be created using clustering techniques. In later sections, we will break these
down in more detail and work with examples of each.

Reinforcement learning is concerned with maximizing a reward function through
an iterative process, such as a simulation. Similar to the other types of learning
algorithms, there's a wide range of problems that reinforcement learning can be
applied to, such as teaching a robot how to walk on a gravel road by adjusting the
movement algorithm in order to maximize the distance it can get before falling. This
would work roughly as follows:

•	 Define a set of rules for an agent (the robot) to interact with an environment
(gravel road).

•	 Run a simulation and record the scoring metric (distance moved).

•	 Adjust the rules based on the scoring metric and repeat this process until no
further improvements to the scoring metric can be made.

This type of algorithm is conceptually simple and can be very powerful; however, it's
also computationally intense in a large environment with multiple factors to adjust.
A famous example of this is AlphaStar, a program that used reinforcement learning
to become an expert at playing the computer game StarCraft. It is estimated that
AlphaStar has knowledge equivalent to 200 years of human playing time.

Note

Reinforcement learning is outside the scope of this book and will not be
discussed any further.

90 | Preparing Data for Predictive Modeling

The term learning in machine learning represents the system's ability to
automatically select model parameters and designs from the available data. This
process is generally called fitting the model to the training data. Since we are
concerned with applied data science, you will see how easy this process can be using
modern tools from the Python ecosystem.

In contrast, the mathematical and statistical concepts that underpin each modeling
method can be very complicated. Well-rounded data scientists should have a solid
understanding of these algorithmic details for foundational models such as linear and
logistic regression, in addition to anything that's used over the course of a project.

Approaching Data Science Problems
It's important to ensure you have a well-structured plan for your data science project
before you start the analysis and modeling phases. We'll outline some factors to keep
in mind when making this plan, and then go over some technical details regarding
preparing data for modeling in the next section.

Since this book is centered around Jupyter Notebooks, we'll start by highlighting how
useful they are for the planning phase of a data science project. They offer a very
convenient medium for documenting your analysis and modeling plans, for example,
by writing rough notes about the data or a list of models we are interested in training.
Having these notes in the same place as your proceeding analysis can help others
understand what you're doing when they see your work or provide context for you
when you look back after leaving it for a while.

A large part of data science involves the use of machine learning to build predictive
models. When formulating a plan for predictive modeling, you should start by
considering your stakeholder's needs. A perfect model will be useless if it doesn't
solve a relevant problem. Planning a strategy around business needs ensures that a
successful model will lead to actionable insights.

Although it may be possible in principle to solve many business problems, the
ability to deliver the solution will always depend on the availability of the necessary
data. Therefore, it's important to consider the business needs in the context of the
available data sources. When data is plentiful, this will have little effect, but as the
amount of available data becomes smaller, so too does the scope of problems that
can be solved.

Approaching Data Science Problems | 91

Note

Be careful when it comes to spending too much time on parts of your
analysis that are either unrelated to the goals of your project or unlikely to
yield useful insights. It's easy to get lost down the rabbit hole while working
on a small area of the data or trying to implement a specific feature.

You may spend hours trying to get plots looking just right, when, in the
end, nobody except you will end up seeing them. Doing this sort of thing is
certainly not without benefit; for example, you will be able to throw together
nice-looking charts faster in the future. However, we should not forget to ask
ourselves whether the work we're doing is really worth our time with respect
to the current project.

These ideas can be formed into a general process for approaching data science
problems, such as predictive modeling, which goes as follows:

•	 Determine the business needs by speaking with key stakeholders. Generate
ideas for research directions. Seek out a problem where the solution will lead to
actionable business decisions.

•	 Look at the available data and try to connect it with the business' needs. Make
sure you understand the data fields that are available and the time frames they
apply to. Attempt to select a target metric to model (if applicable) and a set of
features that can provide insights into business needs.

These steps should be repeated until a realistic plan has taken shape. At that point,
you will have identified your model inputs and what outputs are expected.

A lack of available data may cause difficulties or prevent you from identifying a
suitable modeling approach. In these cases, keep in mind the possibility of finding
new data sources that suit your specific problems, for example, by generating
samples through a survey or purchasing third-party datasets.

After identifying a list of problems that might be solved with data modeling, along
with the appropriate data sources, we need to lay out a framework for each model.
In the next section, we'll look at a series of questions to ask about the data, and the
implications of each answer for training models with machine learning.

92 | Preparing Data for Predictive Modeling

Understanding Data from a Modeling Perspective
When attempting to understand a business problem in the context of machine
learning, we need to identify whether the problem lends itself to supervised or
unsupervised learning. Can the problem be solved by modeling a target variable? If
yes, then is this variable available in the dataset? Is it numerical or categorical? The
answers to these questions will allow us to identify which modeling algorithms will be
relevant to our problem. The following diagram provides an overview of this process:

Figure 3.1: A flowchart for identifying types of modeling problems

The preceding flowchart describes the various paths we can follow in order to
categorize a dataset for modeling. At the first branch, we are interested in identifying
whether a target variable exists. For example, in a weather forecast model, it could be
a column recording the amount of rainfall historically. Or perhaps the target variable
is a column labeling whether it rained on a given day. The existence of a variable such
as this will determine whether it's a supervised or unsupervised learning problem.

Supervised learning can be either a classification or regression problem. In
regression, variables are numerical—for example, the amount of rainfall in
centimeters. Another situation that could be modeled by regression is movie ratings
that range from 1-5 stars.

Understanding Data from a Modeling Perspective | 93

In classification, the variables are categorical and we predict class labels. The simplest
type of classification problem is binary—for example, if trained or not (yes/no). An
example of multi-class classification is predicting the weather type more generally:
sunny, cloudy, rainy, or stormy.

Unsupervised learning problems can be more difficult to solve reliably, and there
are fewer approaches for doing so compared to supervised learning. A modeling
technique that can be applied to unsupervised problems is cluster analysis, where
groups of records are automatically identified based on the distances between the
metrics in the feature space. Models of this sort can then assign future records to the
nearest cluster.

A good example of unsupervised learning is clustering sets of male or female torso
measurements (height, width, arm length, and so on) in order to determine good
measurements for each size in a clothing line (S, M, L, XL). The training data should
include measurements of people from a random sample of the population so that we
have data on a wide range of body types.

When creating the model, it should be limited to four clusters so that clothing
measurements for S, M, L, and XL sizes can be selected as the center point of each
cluster in the multi-dimensional modeling space. For example, the small size might
end up being (x, y, x) = (65 cm, 45 cm, 43 cm), corresponding to the center of a three-
dimensional cluster where x = "torso length", y = "torso width", and z = "arm length".

Once you understand the type of problem to model, there are other factors to
consider, as follows:

•	 The size of data, in terms of the width (number of columns) and height (number
of rows).

•	 Algorithm selection, depending on the details of the features. Some features
apply themselves to certain algorithms over others. For example, sparse
datasets (lots of zeros) are better modeled with Lasso regression, rather than
standard ordinary least squares regression.

Note

The Lasso algorithm regularizes the model by adding a penalty to the cost
function that depends on the input sample values. This has the effect of
dropping weight parameters to zero, hence hiding certain features from the
model—that is, dimensionality reduction.

94 | Preparing Data for Predictive Modeling

•	 Generally, larger datasets perform better in terms of accuracy, compared to
smaller datasets of the same underlying process.

•	 Training models on large amounts of data can be time-consuming. Sometimes,
it's possible to save time on large datasets by using dimensionality reduction
techniques to reduce the number of features.

•	 A set of various different models should be trained and compared for a given
problem. Combining high-accuracy models using ensemble averaging techniques
can increase overall accuracy, resulting in models that perform better on
unseen data.

These considerations assume that the modeling data exists in a single table. However,
the existence of multiple interconnected datasets will require additional high-level
model design choices.

For example, consider the following situation, where we have two data sources:

•	 A data feed (for example, a table) with the AAPL stock closing prices on a
daily timescale

•	 A data feed (for example, a table) with iPhone sales data on a monthly timescale

The difficulty here is dealing with the different timescales of each dataset.

One approach is to merge them, by adding the monthly sales data to each sample in
the daily timescale table or by grouping the daily data by month.

Another idea would be to build two models, one for each dataset, and use a
combination of the results from each in the final ensemble prediction model.

These early-stage modeling decisions should be considered carefully during the
preparation phase in order to avoid going down the wrong path. Oftentimes,
however, design choices will arise where the best option is not obvious in the
planning phase. In cases such as these (after considering trade-offs such as
accuracy, computational complexity, and interpretability), the best option should
be determined by training multiple models and comparing them using the relevant
scoring metrics.

Now that we've discussed high-level concepts around data modeling, we'll focus our
attention on preparing data for predictive modeling.

Understanding Data from a Modeling Perspective | 95

Preparing Data for Modeling

In order to build models that will perform well on unseen data (that is, that work
well in production), we must train them on carefully processed data. Like the saying
"you are what you eat", the model's performance is a direct reflection of the data
it's trained on. Of course, its performance will also depend on your ability to avoid
overfitting or underfitting models, as will be discussed in Chapter 5, Model Validation
and Optimization, and Chapter 6, Web Scraping with Jupyter Notebooks.

The aspect of data preprocessing for machine learning that usually takes the longest
is cleaning up messy data. Some estimates suggest that data scientists spend around
two thirds of their work time cleaning and organizing datasets. This includes tasks
such as the following:

•	 Merging datasets on common fields to bring all the data into a single table

•	 Feature engineering to improve the quality of the data

•	 Removing or filling incorrect or missing values, for example, by replacing missing
data with the mean or median of the existing values for that field

•	 Dropping duplicate records

•	 Building the training datasets by standardizing or normalizing the required data,
applying feature transformations, and applying train-test splits

Now, let's learn the basics of how these tasks can be done using Jupyter Notebooks
and pandas.

In the following exercise, we will encounter missing (NaN) values for the first time in
this book. So, let's discuss how these work in Python.

You can define an NaN variable by doing, for example, a = float('nan'). This is
the data structure that pandas uses to express missing values.

96 | Preparing Data for Predictive Modeling

One of the tricky things about working with NaNs is testing for equality. You cannot
simply use standard comparison methods as they will behave unexpectedly. Instead,
it's best to make comparisons with a high-level function from a library such as pandas
or NumPy. This is illustrated with the following code:

Figure 3.2: Working with missing values in Python

Some of these results may seem counterintuitive. There is logic behind this behavior,
however, and for a deeper understanding of the fundamental reasons for standard
comparisons returning False, check out this excellent StackOverflow answer:
https://stackoverflow.com/a/1573715/3511819.

Exercise 3.01: Data Cleaning for Machine Learning with pandas

For the remainder of this chapter, we'll explore how data is transformed with the
pandas library by working on a very simple demonstration dataset.

In Activity 3.01, Preparing to Train a Predictive Model for Employee Retention, we'll apply
the techniques from this exercise in practice and clean up a significantly
larger dataset.

https://stackoverflow.com/a/1573715/3511819

Understanding Data from a Modeling Perspective | 97

For now, though, we are going to focus on some basics of the pandas library. We'll
learn how to merge tables, handle duplicated records, and deal with missing values.
Perform the following steps to complete this exercise:

1.	 If you haven't done so already, start up one of the following platforms for
running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open up the platform you chose in your web browser by copying and
pasting the URL, as prompted in the Terminal:

2.	 Load the required libraries and set up your plot settings for the notebook,
as follows:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

3.	 Now, we are going to start by showing off some basic tools from pandas and
scikit-learn. Load the watermark magic extension as shown here:

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

98 | Preparing Data for Predictive Modeling

4.	 Generate two sample datasets and merge them. Display the docstring for the
merge function, as follows:

pd.merge?

The output is as follows:

Figure 3.3: The docstring for pd.merge

As you can see, the function accepts a left and right DataFrame to merge.
You can specify one or more columns to group on, as well as how they are
grouped—that is, to use the left, right, outer, or inner sets of values. Start this
exercise by experimenting with this function so that we can learn how to use it.

Understanding Data from a Modeling Perspective | 99

5.	 Now, define our example datasets:

df_1 = pd.DataFrame({'product': ['red shirt', 'red shirt', \

 'red shirt', 'white dress',], \

 'price': [49.33, 49.33, 32.49, 199.99,],})

df_2 = pd.DataFrame({'product': ['red shirt', 'blue pants', \

 'white tuxedo', 'white dress',], \

 'in_stock': [True, True, False, False,],})

Here, you will build two simple DataFrames from scratch. As can be seen, they
contain a common key (the product column) that has some shared entries
between the two tables.

6.	 Display the first DataFrame as follows:

df_1

The output is as follows:

Figure 3.4: The first product's DataFrame

7.	 Display the second DataFrame as follows:

df_2

100 | Preparing Data for Predictive Modeling

The output is as follows:

Figure 3.5: The second product's DataFrame

8.	 Now, use the merge function from pandas to perform an inner merge and
display the result, as follows:

df = pd.merge(left=df_1, right=df_2, \

 on='product', how='inner')

df

The following screenshot shows the output of the inner merge function:

Figure 3.6: Inner merge on products

Note how only the shared items (that is, red shirt and white dress) are included.
To include all entries from both tables, you can do an outer merge instead, which
you will do in the next step.

Understanding Data from a Modeling Perspective | 101

9.	 Perform an outer merge and display the result, as follows:

df = pd.merge(left=df_1, right=df_2, \

 on='product', how='outer')

df

The following screenshot shows the output of the outer merge function:

Figure 3.7: Outer merge on products

This returns all data from each table where missing values have been labeled
with NaN.

10.	You may have noticed that our most recently merged table has duplicated data
in the first few rows. To handle this, return a version of the DataFrame with no
duplicate rows by using the following code:

df.drop_duplicates()

102 | Preparing Data for Predictive Modeling

The output is as follows:

Figure 3.8: Merged products' table after dropping duplicates

This is the easiest way to drop duplicate rows. To apply these changes
to df, you can either set the inplace=True argument or run
df = df.drop_duplicated().

Now consider another method that uses masking to select or drop
duplicate rows.

11.	Print the True/False series in order to mask duplicate rows, as follows:

df.duplicated()

The output is as follows:

0 False

1 True

2 False

3 False

4 False

5 False

dtype: bool

12.	Sum the result to determine how many rows have been duplicated. Use the
following code to do so:

df.duplicated().sum()

This will return 1.

Understanding Data from a Modeling Perspective | 103

13.	Display this duplicated row as follows:

df[df.duplicated()]

The output is as follows:

Figure 3.9: Displaying a duplicated row

14.	 In the previous step, you used a mask to filter the DataFrame on duplicated
rows. By using the tilde symbol, ~, you can use the same technique to show the
other set of rows from the DataFrame. Use the following code to do so:

df[~(df.duplicated())]

The output showing the use of ~ before the duplicated function is as follows:

Figure 3.10: Displaying non-duplicated rows

15.	Using this masking technique allows for more granular control over how
duplicates can be treated. For example, eliminate duplicate products using the
following code:

mask = ~(df['product'].duplicated())

df[mask]

104 | Preparing Data for Predictive Modeling

The output of the preceding command for removing duplicates is as follows:

Figure 3.11: Merged products' table after dropping duplicate products

By running this line, you do the following:

Create a mask (a True/False series) for the product row, where duplicates are
marked with True.

Take the opposite of that mask, using the tilde symbol (~), so that duplicates are
marked with False and everything else is True.

Use that mask to filter out the False rows of df, which correspond to the
duplicated products.

As expected, we can now see that only the first red shirt row remains, as the
duplicate product rows have been removed.

16.	At this point, you have tested various methods for dropping duplicates, but have
not actually changed df. In order to proceed with this exercise, replace df with a
deduplicated version of itself. This can be done as follows:

df.drop_duplicates(inplace=True)

df

Understanding Data from a Modeling Perspective | 105

The following outputs show df after dropping duplicates:

Figure 3.12: Merged products' table after dropping duplicate rows

As can be seen, the duplicate row has now been permanently dropped from df.

The next aspect of preprocessing you will learn about is handling missing
data. This is important because many models cannot be trained on
incomplete records.

17.	One option is to drop the rows, which might be a good idea if your NaN records
are missing the majority of their values. Use the following code to do so:

df.dropna()

Similar to most of the commands you ran earlier for dropping duplicates, calling
df.dropna() will not alter the DataFrame. Instead, it returns a new DataFrame
that is rendered for you in the notebook, below the cell. As expected, the rows
with missing data for the "blue pants" and "white tuxedo" products are not
present here:

Figure 3.13: Merged products' table after dropping rows with missing values

106 | Preparing Data for Predictive Modeling

18.	 If most of the values are missing for a feature, it may be best to drop that
column entirely. This can be done with the same method as before, by setting
the axes argument to 1, in order to specify columns instead of rows. This can be
done as follows:

df.dropna(axis=1)

The output is as follows:

Figure 3.14: Merged products' table after dropping columns with missing values

Simply dropping the NaN values, just like we did for the last two examples, is
usually not the best option. This is because this causes us to lose training data
that may be valuable.

Instead of dropping them, we can consider filling the missing entries. Pandas
offers a method for filling in NaN entries in a variety of different ways, some of
which we'll illustrate now.

19.	Print the docstring for the pandas NaN-fill method, as follows:

df.fillna?

Understanding Data from a Modeling Perspective | 107

The output is as follows:

Figure 3.15: The docstring for pd.DataFrame.fillna

Note the options for the value parameter; this could be, for example, a single
value or a dictionary/series type map based on the index. Alternatively, you can
leave the value as None and pass a fill method instead. We'll see examples of
each later on.

108 | Preparing Data for Predictive Modeling

20.	Print the DataFrame as follows:

df

The output is as follows:

Figure 3.16: The merged products' table

21.	One strategy for filling missing data is to use the average value for that field. Do
this for the price column by running the following code:

fill_value = df.price.mean()

df.fillna(value=fill_value)

The output is as follows:

Figure 3.17: Merged products' table after filling in the missing prices with the mean

22.	 In some cases, you may want to fill the missing values using the previous
non-null record. Note that this strategy will depend on the sorting order of
the DataFrame.

Understanding Data from a Modeling Perspective | 109

Do this for the price column as follows:

df.fillna(method='pad')

The output is as follows:

Figure 3.18: Merged products' table after filling in the missing prices with the "pad" method

Notice how the white dress price was used to pad the missing values
below it.

23.	Now that you have looked at a couple of the ways in which pandas enables you
to fill missing data, go with the mean value method. Permanently replace the
missing data in df, as follows:

df = df.fillna(value=df.price.mean())

This concludes the first of our exercises on preparing data for machine learning.
We have learned how to merge tables, identify issues such as duplicate rows and
missing values, and then solved those issues using Pandas.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YzXB3j.

You can also run this example online at https://packt.live/2Y3vvi4.

https://packt.live/2YzXB3j
https://packt.live/2Y3vvi4

110 | Preparing Data for Predictive Modeling

Exercise 3.02: Preparing Data for Machine Learning with pandas

In this exercise, we will continue working with the simple table from earlier and
finish preparing it so that it can be used to train a machine learning algorithm. We
won't actually try to train any models on such a small dataset, though! When we start
training models in Chapter 4, Training Classification Models, we'll be using a much more
realistic table that has roughly 15k rows.

We'll start this process by encoding the class labels for the categorical data, and
then complete this exercise by performing train/test splits on the data. Perform the
following steps to complete this exercise:

Note

This exercise is built on top of Exercise 3.01, Data Cleaning for Machine
Learning with Pandas, and should be executed in the same notebook.

1.	 Before learning about label encoding, create a new field that represents the
average product ratings by running the following code:

ratings = ['low', 'medium', 'high']

np.random.seed(2)

df['rating'] = np.random.choice(ratings, len(df))

df

The output is as follows:

Figure 3.19: The table after adding a new column for rating

Understanding Data from a Modeling Perspective | 111

2.	 Now, encode all non-numeric data types present in the table. The simplest
column to handle is the Boolean list called in_stock. This can easily be
mapped to binary numeric values (that is, 0 and 1). Use the following code to
do so:

df.in_stock = df.in_stock.map({False: 0, True: 1})

df

The output is as follows:

Figure 3.20: The table after converting the in_stock column into numeric form

3.	 Another option for encoding feature labels is to use scikit-learn's
LabelEncoder library. This gives you a high-level abstraction to perform
encoding using scikit-learn's API. Test this using the following code:

from sklearn.preprocessing import LabelEncoder

rating_encoder = LabelEncoder()

df.rating = rating_encoder.fit_transform(df.rating)

df

112 | Preparing Data for Predictive Modeling

The output is as follows:

Figure 3.21: The table after converting rating into a numeric form

This might bring to mind the preprocessing you did in the previous chapter,
when building the polynomial model. Here, instantiate a label encoder and then
"train" it and "transform" your data using the fit_transform method:

rating_encoder.inverse_transform(df.rating)

This displays the following output:

array(['low', 'medium', 'low', 'high', 'high'], dtype=object)

4.	 One benefit of using scikit-learn's LabelEncoder is that you can convert the
feature values back into their original form using the inverse_transform
function. Do this by running the following code. Study the output to convince
yourself that they are the proper labels:

df.rating = rating_encoder.inverse_transform(df.rating)

df

Understanding Data from a Modeling Perspective | 113

The output is as follows:

Figure 3.22: The table after performing an inverse transform on the rating column

You may notice a problem here. We are working with a so-called ordinal
feature, where there's an inherent order to the labels. In this case, we should
expect a rating of low to be encoded with a 0, and a rating of high to be
encoded with a 2. However, this is not the result we can see. In order to achieve
proper ordinal label encoding, we should build a mapping dictionary ourselves.

5.	 Encode the ordinal labels properly, as follows:

ordinal_map = {rating: index \

 for index, rating in enumerate(['low', \

 'medium', \

 'high'])}

print(ordinal_map)

df.rating = df.rating.map(ordinal_map)

df

114 | Preparing Data for Predictive Modeling

The output is as follows:

Figure 3.23: The table after mapping the ordinal values for rating

Here, we create the ordinal_map mapping dictionary. This is done using
dictionary comprehension and enumeration, but looking at the result, we can
see that it could just as easily be defined manually instead. Of course, this is
only the case for our example because there are very few unique values in the
rating field. We might expect the number of unique values to be very large, in
which case the dictionary comprehension method would be a lot more useful.

As we did earlier for the in_stock column, we applied dictionary mapping to
the feature. Looking at the result, we can see that rating makes more sense than
before, where low is labeled with 0, medium with 1, and high with 2.

Now that we've discussed ordinal features, let's touch on another type called
nominal features. These are fields with no inherent order, and in our case, we
can see that a product is a perfect example.

Most scikit-learn models can be trained on data like this, where we have strings
instead of integer-encoded labels. In this situation, the necessary conversions
are done under the hood. However, this may not be the case for all models in
scikit-learn, or other machine learning and deep learning libraries. Therefore, it's
good practice to encode these ourselves during the preprocessing stage.

Understanding Data from a Modeling Perspective | 115

6.	 A commonly used technique to convert class labels from strings into numerical
values is called one-hot encoding. This splits the distinct classes into separate
features, and can be accomplished elegantly with pd.get_dummies(). Do this
as follows:

df = pd.get_dummies(df)

df

The output is as follows:

Figure 3.24: The result of calling get_dummies on the table

Here, we can see the result of one-hot encoding: the product column has been
split into four, one for each unique value. Within each column, we find either a 1
or 0, representing whether that row contains a particular value or product.

Note

By one-hot encoding the variables like we did here, where the four unique
values were broken out into four new columns, we have put ourselves at
risk of introducing multicollinearity into our dataset. This occurs when
one or more variables in a dataset can be described by a linear combination
of others. Having a linear dependency such as this can lead to issues when
modeling, so it's best to take efforts to avoid it.

One method that fixes the multicollinearity issue introduced by one-hot
encoding is to drop one of the resulting columns. This can be done with
pd.get_dummies(df, drop_first=True). There are alternate
ways of handling multicollinearity that can also be considered; however,
this topic is beyond the scope of this book and we will not worry about its
consequences here.

116 | Preparing Data for Predictive Modeling

Moving on and ignoring any data scaling (which should usually be done), the final
step is to split the data into training and test sets so that we can use them for
machine learning. This can be done using scikit-learn's train_test_split.
Let's assume we are going to try to predict whether an item is in stock, given the
other feature values.

7.	 Split the data into training and test sets by running the cell containing the
following code:

features = ['price', 'rating','product_blue pants', \

 'product_red shirt','product_white dress', \

 'product_white tuxedo',]

X = df[features].values

target = 'in_stock'

y = df[target].values

from sklearn.model_selection import train_test_split

X_train, X_test, \

y_train, y_test = (train_test_split(X, y, \

 test_size=0.3))

Here, you select subsets of the data and feed them into the train_test_
split function. This function has four outputs, which are unpacked into the
training and testing splits for the features (X) and the target (y).

8.	 Print the shapes of each result that was unpacked from the train_test_
split function by running the following code:

print('Data Shapes')

print('--------------')

print('X_train', X_train.shape)

print('X_test ', X_test.shape)

print('y_train', y_train.shape)

print('y_test ', y_test.shape)

Understanding Data from a Modeling Perspective | 117

The output is as follows:

Data Shapes

X_train (3, 6)

X_test (2, 6)

y_train (3,)

y_test (2,)

Observe the shape of the output data, where the test set should have roughly
30% of the records and the training set should have roughly 70%. Since we only
have five records here, scikit-learn splits the data into two testing records and
three training records. When preparing a proper dataset, however, the splits will
be quite close to the specified threshold.

Note

When we call the values attribute in the preceding code, we are converting
the pandas series (that is, the DataFrame column) into a NumPy array. This
is good practice because it strips out unnecessary information from the
series object, such as the index and name.

This concludes the training exercise on cleaning data so that it can be used in
machine learning applications.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YzXB3j.

You can also run this example online at https://packt.live/2Y3vvi4.

https://packt.live/2YzXB3j
https://packt.live/2Y3vvi4

118 | Preparing Data for Predictive Modeling

Did you notice how effective our Jupyter notebook was for testing various methods of
transforming data? Be sure to keep lab-style notebooks such as this so you can look
back on your work later and understand the data cleaning decisions that were made.

This notebook could also be used to re-process an updated version of the data and,
should we wish to make any changes to the processing, these can easily be tested in
the notebook by altering the appropriate cells. The best way to achieve this would
probably be to copy the notebook over to a new file so that we can always keep a
copy of the original analysis for reference.

In the next section, we'll apply the concepts from this exercise to a large dataset as
we prepare it so that it can be used to train predictive models.

Introducing the Human Resource Analytics Dataset
Having learned about basic data cleaning concepts and seen them implemented
with pandas and scikit-learn, we'll put what we've learned into practice on a diverse
dataset that has real-world context. In the following chapters, we'll model this dataset
with a variety of machine learning techniques, so let's take some time to get familiar
with it now. Let's imagine the following situation:

Suppose you are hired to do freelance work for a company who wants to find insights
into why their employees are leaving. They have compiled a set of data they think
will be helpful in this respect. It includes details of employee satisfaction levels,
evaluations, time spent at work, department, and salary.

The company shares their data with you by sending you a file called hr_data.csv
and asks you what you think can be done to help stop employees from leaving.

Our aim is to apply the concepts we've discussed thus far to a real-life problem. In
particular, we seek to do the following:

•	 Determine a plan for using data modeling to provide impactful business insights,
given the available data.

•	 Prepare the dataset for use in machine learning models.

Having identified that the relevant business problem is employee turnover, we would
generally want to have a big-picture discussion around why that might be happening
and what data would be helpful for generating solutions.

Introducing the Human Resource Analytics Dataset | 119

For the purposes of this example, let's start by looking at the dataset provided by the
company. We need to understand the basic properties of the dataset, such as the
number of samples and column descriptions. The basic properties of this dataset are
as follows:

•	 Rows: 15,000 samples (rows) representing previous or current employees

•	 Columns: The columns and data types are as follows:

left (if employee has left the company or not [bool variable])

satisfaction_level, last_evaluation, average_montly_
hours, time_spend_company, number_project (employee metrics
[float variables])

work_accident, promotion_last_5years, is_smoker (employee
metrics [bool variables])

department, salary (employee metrics [string variables])

After reviewing this information, we can see the existence of a large dataset (15k
rows) with the relevant signals for employee turnover. Namely, these are metrics
such as satisfaction level, time spent working, and department, which may
reveal interesting patterns that shed light on the reasons for employees leaving
the company.

This dataset is labelled with a yes/no (Boolean) variable, indicating whether an
employee has turned over (left). By referencing the data flowchart earlier in this
chapter, we can see that labeled data such as this applies itself well to supervised
learning models. In other words, we could try to predict the yes/no variable left
column, given the other variables. However, would this be helpful for the business?

Let's think again about the business' needs: the company wants to reduce the
number of employees who leave. If we were able to predict how likely an employee is
to quit, the business could selectively target those employees for special treatment;
for example, their salary could be raised or their number of projects could be
reduced. Furthermore, the impact of these specific salary or project changes could be
estimated using our model.

120 | Preparing Data for Predictive Modeling

Given this business-oriented discussion, it seems like we have reached a decision on
how to approach modeling: our goal will be to train a model that can predict whether
an employee has left.

Note

As we discussed previously, we'll be using the Human Resource Analytics
dataset, which was originally found in Kaggle's open source repository.
The link to this book's version of the dataset can be found on GitHub:
https://packt.live/3hEBQIy.

This data has been simulated, meaning the samples are artificially generated and
do not represent real people. We'll ignore this fact and model the data as if it were
generated by real-life processes.

Note that there's a small difference between the dataset we're using in this book and
the original Kaggle version. Our Human Resource Analytics dataset contains some
missing values (NaNs) so that we can illustrate data cleaning techniques. We have
also added a column of data called is_smoker for the same purposes.

We will do this by modeling the left target variable as a function of the other
features (columns) listed previously.

Now that we have an idea of what type of model we wish to create, we need to
become familiar with the details of the dataset and prepare it for modeling. These
two points will be the focus of the following activity, which rounds off this chapter.

https://packt.live/3hEBQIy

Introducing the Human Resource Analytics Dataset | 121

Activity 3.01: Preparing to Train a Predictive Model for Employee Retention

In this activity, you'll start exploring the Human Resource Analytics dataset and
prepare it for modeling. You will load the dataset into a Jupyter notebook and look at
the data types, distribution, and missing values in each column. Then, you'll clean the
data by identifying and fixing issues that would lead to issues when modeling.

1.	 If you haven't done so already, start up one of the following platforms for
running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open up the platform you have chosen in your web browser by copy and
pasting the URL, as prompted in the Terminal.

2.	 The first step is to load the dataset into the notebook. Before doing this, use
bash to print the first 10 or so rows of the table (the head) in your notebook.
If you're unable to use bash with your Jupyter environment, then do this with
Python code.

3.	 Load the table with pandas and assign it to the df variable.

4.	 Print the table columns, followed by the first few rows (the head) and the last
few rows (the tail).

5.	 Open the CSV file with Python (using open instead of pandas) and count the
number of rows in the table.

6.	 Calculate the length of df and compare with the preceding result. Do the
numbers match? If not, why not?

7.	 Check how the left variable is distributed. How many yes values and how
many no values are there? Are there any missing values?

122 | Preparing Data for Predictive Modeling

8.	 Print the data type of each feature.

9.	 Plot histograms/bar charts in order to visualize each feature distribution.

10.	Check how many NaN values there are in each column. For the features with
missing data, think about what you would do to fix them. This could include
filling the missing data, dropping the feature, or dropping samples.

11.	Drop the is_smoker column from df.

12.	 Fill the NaN values in the time_spend_company column with the
median value.

13.	Make a boxplot of average_montly_hours segmented by number_
project. How can this chart help you fill the missing average_montly_
hours data?

14.	Calculate the mean average_montly_hours data of each segment from the
preceding chart.

15.	 Fill the NaN values in average_montly_hours using the means calculated
previously for each segment. This can be done by passing a pandas series
object to df.fillna. This series should have the same shape as df, with the
appropriate values to fill for each NaN entry.

16.	Confirm that df has no more NaN values.

17.	Now that your data has been cleaned, the last step is to transform non-numeric
fields into integer representations. Boolean fields should be mapped to 0 and 1,
while categorical fields should be one-hot encoded.

18.	Print the columns of our transformed dataset. There should be new columns
visible after one-hot encoding.

19.	Save our preprocessed data in a CSV file.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 273.

After completing this activity, the Human Resource Analytics dataset is now ready
to model.

Summary | 123

Before moving on, let's briefly pause here to note how well-suited Jupyter notebooks
are for performing this initial data analysis and cleanup.

Imagine, for example, that we left this project in its current state for a few months.
Upon returning to it, we would probably not remember what exactly was going on
when we left it. However, by referring back to this notebook, we would be able to
retrace our steps and quickly recall what we previously learned about the data.

Furthermore, we could use a fresh dataset and rerun the notebook to prepare
the new set of data for use in our machine learning algorithms. Recall that in this
situation, it would be best to make a copy of the notebook first, so as not to lose the
initial analysis.

Summary
In this chapter, we focused on the steps that come before training machine learning
models. We discussed how to plan a machine learning strategy and learned about
various hands-on methods we can use to prepare a dataset for modeling.

Starting with a high-level view, we focused on approaching data science problems
by looking at available data, determining business needs, and assessing the data for
suitability. Next, we discussed how to understand data from a modeling perspective,
such as being able to identify whether datasets lend themselves to supervised or
unsupervised learning problems.

Having covered these big-picture ideas, we paid particular attention to data
preparation, which should be performed prior to modeling. We saw how to merge
datasets, drop or fill missing values, transform categorical features, and split datasets
into training and testing sets.

Finally, we introduced the Human Resource Analytics dataset and put what we
learned into practice by cleaning it up for modeling. In the following chapters, we will
use this processed dataset to train a variety of classification models. We'll start by
introducing our modeling algorithms and overviewing how they work, and then use
Jupyter to train and compare their predictive capabilities.

Overview

In this chapter, you will learn about algorithms such as Support Vector
Machines, Random Forests, and k-Nearest Neighbors classifiers. While
training and comparing a variety of models, you'll learn about the concept
of overfitting with the help of decision boundary charts. By the end of this
chapter, you will be able to use scikit-learn to apply these algorithms in
order to train models for a real-world classification problem.

4
Training Classification

Models

126 | Training Classification Models

Introduction
In the previous chapters, we walked through the steps that we need to take in a data
science project before we can train a machine learning model. This included the
planning phase, that is, identifying business problems, assessing data sources for
suitability, and deciding on modeling approaches.

Having decided on a general modeling approach, we should be careful to avoid
the common pitfalls of training ML models as we proceed with modeling. Firstly,
remember that training data is very important. In fact, increasing the amount of
training data can have a larger impact than model selection on scoring performance.
One issue is that there may not be enough data available, which could make
patterns difficult to find and cause models to perform poorly on testing data. Data
quality also has a huge effect on model performance. Some possible issues include
the following:

•	 Non-representative training data (sampling bias)

•	 Errors in the record sets (such as recorded weight in kg instead of pounds)

•	 Outliers

•	 Unfilled missing values

•	 Bad features

These issues should bring to mind the work that we did in the previous chapter, when
preprocessing our datasets.

On the modeling side, you should avoid overfitting, which happens when the model
fits too well on the training data so that it fails to generalize to testing samples.
Similarly, you should also try to avoid underfitting, where the model is not able
to capture the interesting patterns that would yield higher accuracy. The solution
to this is trying many different types of models and being careful to follow best
practices such as k-fold cross validation, as will be discussed in Chapter 5, Model
Validation and Optimization. In order to prepare you for that, this chapter will focus on
understanding what overfitting actually looks like, and the general concepts of how
to avoid it.

Near the end of Chapter 3, Preparing Data for Predictive Modeling, we introduced the
Human Resource Analytics dataset (https://www.kaggle.com/giripujar/hr-analytics). We'll
continue to use this dataset in the exercises designed for this chapter, when training
and comparing our models. Whereas previously, we loaded a messy version of the
dataset and cleaned it up using pandas and Jupyter, in this chapter, we will load the
cleaned-up version of the dataset.

https://www.kaggle.com/giripujar/hr-analytics

Understanding Classification Algorithms | 127

This chapter is very hands-on, and the majority of what we'll learn will be from
the exercises we'll perform when it comes to working with Jupyter. We'll do this by
modeling employee turnover by training various classification algorithms using scikit-
learn. First, however, we'll take a moment to briefly introduce how the algorithms
work from a conceptual point of view.

Understanding Classification Algorithms
Recall the two types of supervised machine learning: regression and classification. In
regression, we predict a numerical target variable. For example, recall the linear and
polynomial models from Chapter 2, Data Exploration with Jupyter. Here, we will focus
on the other type of supervised machine learning—classification— the goal of which
is to predict the class of a record using the available metrics. In the simplest case,
there are only two possible classes, which means we are doing binary classification.
This is the case for the example problem in this chapter, where we will try to predict
whether an employee is going to leave. If we have more than two class labels, then
we are doing multi-class classification.

Although there is little difference between binary and multi-class classification when it
comes to training models with scikit-learn, the algorithms can be notably different. In
particular, multi-class classification models often use the one-versus-all method. This
works as follows, for a case with three class labels. When the model is "fit" with the
data, three models are trained, and each model predicts whether the record is part of
an individual class or part of some other class. Then, when making a prediction, each
model is evaluated and the class label with the highest confidence level is returned.

In this chapter, we'll train three types of classification models: Support Vector
Machines (SVMs), Random Forests, and k-Nearest Neighbors classifiers (KNN).
Each of these algorithms is quite different. As we will see, however, they are quite
similar to train and use for predictions, thanks to the simplicity of scikit-learn. Before
opening the Jupyter notebook for this chapter, let's briefly discuss how each of these
algorithms works.

SVMs attempt to find the best hyperplane to divide classes by. This is done by
maximizing the distance between the hyperplane and the closest records of each
class, which are called support vectors.

While the basic implementation works best on linearly separable data, SVMs can
also be used to model nonlinear dependencies by using the kernel trick. In short,
the kernel trick maps dataset features into a higher-dimensional space. Once in this
higher-dimensional space, the data is then assumed to be linearly separable so that a
hyperplane can be found.

128 | Training Classification Models

This hyperplane is also referred to as the decision surface, and we'll visualize it when
training our models in the exercises in this chapter. In fact, we will see examples of
both linear and non-linear (kernel) SVMs.

Random Forests are an ensemble of decision trees, where each has been trained
on different subsets of the training data. For example, a Random Forest classifier
might take the average result of many hundreds of decision trees in order to make
a classification. A classification decision tree predicts the class of a given record
based on a series of cascading decisions. For example, the first decision might be
"if feature x_1 is less than or greater than 0". The data would
then be split on this condition and fed into descending branches of the tree. When
"training" decision trees (that is, when feeding the training data into the algorithm),
the details of each decision are selected based on the feature split that maximizes
the information gain. Essentially, the algorithm attempts to separate the maximum
number of class labels at each branch split so that each bucket at the bottom of the
tree will contain training records with the same target label.

Training a Random Forest consists of creating bootstrapped datasets (that is,
randomly sampled data with replacement so that a record can be duplicated
multiple times in the training dataset) for a set of decision trees. Predictions are
then made based on the majority vote. These have the benefit of less overfitting and
better generalizability.

Note

Decision trees can be used to model a mix of continuous and categorical
data, which make them very useful. Furthermore, as we will see later in this
chapter, the tree depth can be limited to reduce overfitting. For a detailed
(but brief) look into the decision tree algorithm, check out this popular
StackOverflow answer, where the author shows a simple example and
discusses concepts such as node purity, information gain, and entropy:
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-
gain/1859910#1859910.

KNN classification algorithms memorize the training data and make predictions
depending on the k-nearest records in the feature space. With three features, this can
be visualized as a sphere surrounding the prediction sample. Often, however, we will
be dealing with more than three features, and therefore hyperspheres are drawn to
find the closest k records.

Understanding Classification Algorithms | 129

Having introduced the algorithms we'll be using to train models in this book, we are
ready to proceed with the hands-on section of this chapter.

Exercise 4.01: Training Two-Feature Classification Models with scikit-learn

In this exercise, we'll continue working on the employee retention problem that we
introduced in the previous chapter.

Recall the context of this problem, where a company has come to us asking for help
with understanding and preventing employee turnover. To refresh your memory,
you may wish to go back and read through the problem description and modeling
plan from Chapter 3, Preparing Data for Predictive Modeling. As we describe there,
our approach to helping with this problem was to determine the probability of
an employee leaving the company. Using the Human Resource Analytics dataset
provided, we planned out a strategy to model whether an employee is going to leave
the company.

As seen in the dataset, this model can depend on an assortment of information
(features) relating to the employee, such as satisfaction level, the number of projects
they are working on, and their department in the company. To start with, however,
we are going to focus on just two features: the satisfaction level and last evaluation
score. This way, we can focus on the technical details of modeling and illustrate how
different modeling approaches compare. In the next chapter, we will build upon the
work we've done here by training models on the full set of features at our disposal.
Perform the following steps to complete this exercise:

1.	 Create a new Jupyter notebook.

2.	 In the first cell, add the following lines of code to load the necessary libraries and
set up your plot environment for the notebook:

import numpy as np

import pandas as pd

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

130 | Training Classification Models

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (8, 8)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

3.	 In the next cell, enter the following code to print the date, version numbers, and
hardware information:

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

You should get the following output:

Figure 4.1: Screenshot showing all the libraries loaded

We are going to start by taking a closer look at our target variable, left, which
has either of the following values:

1 (True) if the employee has left

0 (False) if the employee is still working at the company

Understanding Classification Algorithms | 131

In the previous chapter, you processed the raw dataset and saved your
transformed table in a CSV file. You can look back to the bottom of the
chapter_3_workbook.ipynb notebook to see when this was done.

4.	 Load the processed dataset by running the following code in a new cell:

df = pd.read_csv('[PATH_TO_THE_data_FOLDER]/hr-'\

 'analytics/hr_data_processed.csv')

Note

It's easy to accidently introduce errors into your processed dataset while
working through the data cleaning stage in Chapter 3, Preparing Data for
Predictive Modeling. To avoid this possibility, or in case you are having
issues working through the exercises in this chapter, make sure you are
using the processed dataset provided in the source material for this book.

The processed dataset is available to download from GitHub at
https://packt.live/3hEBQIy.

In this chapter, we'll be training classification models on two sets of continuous
features: satisfaction_level and last_evaluation. Based on their
histograms, which we charted out in Chapter 3, Preparing Data for Predictive
Modeling (https://packt.live/2YEsiUX), we can see how they are distributed rather
evenly between 0 and 1. Now, let's look at how they are distributed with respect
to one another.

5.	 Draw the bivariate (and univariate) graphs of the two feature variables by
running the following code:

sns.jointplot(x='satisfaction_level', y='last_evaluation', \

 data=df, kind='hex')

plt.savefig('../figures/chapter-4-hr-analytics-jointplot.png', \

 bbox_inches='tight', dpi=300,)

https://packt.live/3hEBQIy
https://packt.live/2YEsiUX

132 | Training Classification Models

You'll get the following output. As you can see, there are some very distinct
patterns in the data:

Figure 4.2: Bivariate and univariate distributions for satisfaction_level and last_evaluation

The preceding density chart is useful, but it would be even more interesting to
see how this distribution differs when comparing employees who have left with
those who have stayed in the company.

6.	 Replot the bivariate distribution, but this time, segment the chart on the target
variable so that each target class is represented by a different color. This can be
done with the following code:

fig, ax = plt.subplots()

plot_args = dict(shade=True, shade_lowest=False)

for i, c in zip((0, 1), ('Reds', 'Blues')):

Understanding Classification Algorithms | 133

 sns.kdeplot(df.loc[df.left==i, 'satisfaction_level'], \

 df.loc[df.left==i, 'last_evaluation'], \

 cmap=c, **plot_args)

ax.text(0.05, 1.05, 'left = 0', size=16, \

 color=sns.color_palette('Reds')[-2])

ax.text(0.25, 1.05, 'left = 1', \

 size=16, color=sns.color_palette('Blues')[-2])

plt.savefig('../figures/chapter-4-hr-analytics-bivariate-'\

 'segmented.png', bbox_inches='tight', dpi=300,)

You will see the segmentation of data. The output will be as follows:

Figure 4.3: Bivariate distribution for satisfaction_level and last_evaluation,
segmented by the target variable

134 | Training Classification Models

Now, you can see how the patterns are related to the target variable. For
the remainder of this exercise, try to exploit these patterns to train effective
classification models.

7.	 Split the data into training and test sets by running the cell containing the
following code:

from sklearn.model_selection import train_test_split

features = ['satisfaction_level', 'last_evaluation']

X_train, X_test, \

y_train, y_test = train_test_split(df[features].values, \

 df['left'].values, \

 test_size=0.3, \

 random_state=1)

As is often the case when it comes to machine learning, the first two models
(the SVM and kNN classifiers) are most effective when the input data is scaled so
that all of the features are in the same order. Accomplish this with scikit-learn's
StandardScaler class

8.	 Load the StandardScaler class and create a new instance, as referenced by
the scaler variable. Then, fit this on the training set and transform it, before
finally transforming the test set:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train_std = scaler.fit_transform(X_train)

X_test_std = scaler.transform(X_test)

Understanding Classification Algorithms | 135

Note

An easy mistake to make when training machine learning models is to fit
the scaler on the whole dataset, when in fact it should only be fit to the
training data. For example, scaling the data before splitting it into training
and testing sets is a mistake.

We don't want this to happen because then, the scaling of our training data
will be affected by the details of our testing set, and we do not want the
model training to be in any way influenced by the test data. By allowing the
model training to be influenced by the test data, we would be giving it the
opportunity to learn about the testing set, thereby causing it to be a poor
representation of true "unseen" data.

9.	 Import the scikit-learn SVM class, SVC, and fit the model on the training data with
the following code:

from sklearn.svm import SVC

svm = SVC(kernel='linear', C=1, random_state=1, gamma='scale')

svm.fit(X_train_std, y_train)

You will get the following output:

SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma='scale',

 kernel='linear', max_iter=-1, probability=False,

 random_state=1, shrinking=True,

 tol=0.001, verbose=False)

136 | Training Classification Models

10.	Compute the accuracy of this model on unseen (test) data by running the
following code:

from sklearn.metrics import accuracy_score

y_pred = svm.predict(X_test_std)

acc = accuracy_score(y_test, y_pred)

print('accuracy = {:.1f}%'.format(acc*100))

This will print the following output:

accuracy = 75.9%

Here, you have used scikit-learn's accuracy_score function, which takes
in two arguments: the correct values of each record in the testing set and
the predicted values of each record in the testing set (y_test and y_
pred, respectively).

The result looks promising at ~75%, which is not bad for our first model.
However, you may recall from Chapter 3, Preparing Data for Predictive Modeling,
that our target class, left, is highly imbalanced, since the majority of the
records in the dataset correspond to employees who are still working at
the company. With this in mind, we need to think about the individual class
accuracies, in addition to the overall accuracy.

11.	To look at the accuracy within each target class, use a confusion matrix.
This is a 2 x 2 table with actual classes on the horizontal axis and predicted
classes on the vertical axis, as follows:

Figure 4.4: Confusion matrix for the linear SVM model

Understanding Classification Algorithms | 137

A perfect classifier would have all predictions as either True Positive or True
Negative, and hence show zeros on the off-diagonal entries for False Positive and
False Negative.

Print the confusion matrix for our model by running the following command:

from sklearn.metrics import confusion_matrix

cmat = confusion_matrix(y_test, y_pred)

This will print the following output:

array([[3416, 0],

 [1084, 0]])

Comparing this with the confusion reference table (Figure 4.4), you can see that
our model is predicting all the test records as class 0, and hence we get over
1,084 False Negatives. This is not good!

12.	Using the preceding confusion matrix, derive the class accuracies by running the
following code:

print('percent accuracy score per class:')

cmat = confusion_matrix(y_test, y_pred)

scores = cmat.diagonal() / cmat.sum(axis=1) * 100

print('left = 0 : {:.2f}%'.format(scores[0]))

print('left = 1 : {:.2f}%'.format(scores[1]))

This will print the following output:

percent accuracy score per class:

left = 0 : 100.00%

left = 1 : 0.00%

As expected, you can see that your model is simply classifying every sample as
0, meaning that it's predicting that no employees in the test set will leave the
company. Clearly, this is not helpful at all.

Let's use a contour plot to show the predicted class at each point in the feature
space. This is commonly known as the decision regions plot.

138 | Training Classification Models

13.	Plot the decision regions using a helpful function from the mlxtend library,
as follows:

from mlxtend.plotting import plot_decision_regions

N_samples = 200

X, y = X_train_std[:N_samples], y_train[:N_samples]

plot_decision_regions(X, y, clf=svm)

Here's what the plot for decision regions looks like in the output:

Figure 4.5: Decision region plot for the linear SVM

Understanding Classification Algorithms | 139

The preceding function plots decision regions, along with a set of records that
are passed as arguments. In order to see the decision regions properly without
too many records obstructing our view, we only pass a 200-record sample of the
test data to the plot_decision_regions function. In this case, of course, it
does not matter. We see the result is entirely red, indicating that every point in
the feature space will be classified as 0.

It shouldn't be surprising that a linear model can't do a good job of describing
these nonlinear patterns. If the dataset was linearly separable, we would be able
to separate the majority of records from each class using a straight line. Recall
the kernel trick for using SVMs to classify nonlinear problems. Let's see whether
doing this can improve the result.

14.	Print the docstring for scikit-learn's SVM by running the cell containing SVC?:

Figure 4.6: The docstring for sklearn.svm.SVC

140 | Training Classification Models

Scroll down and check out the parameter descriptions. This should read
as follows:

kernel : string, optional (default='rbf')

 Specifies the kernel type to be used in the algorithm.

 It must be one of 'linear', 'poly', 'rbf', 'sigmoid',

 'precomputed' or a callable.

Notice the kernel option, which is enabled by default as rbf. This stands for the
radial basis function, the details of which are beyond the scope of this book.

15.	Use the rbf kernel option to train a new SVM by running the following code:

svm = SVC(kernel='rbf', C=1, random_state=1, gamma='scale')

svm.fit(X_train_std, y_train)

In order to continue rapidly building and comparing models, we are going to
wrap the previous few steps into a Python function called check_model_fit,
which will accept a trained model, along with the test data, and produce the
accuracy scores and decision boundary chart we are interested in. Define this
function by running the following code:

chapter_4_workbook.ipynb

from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from IPython.display import display
from mlxtend.plotting import plot_decision_regions

def check_model_fit(clf, X_test, y_test):
 # Print overall test-set accuracy
 y_pred = clf.predict(X_test)
 acc = accuracy_score(y_test, y_pred, normalize=True) * 100
 print('total accuracy = {:.1f}%'.format(acc))

The complete code for this step can be found at https://packt.live/3e6JYPJ.

16.	Call check_model_fit for your newly trained kernel SVM by running the
following command:

check_model_fit(svm, X_test_std, y_test)

https://packt.live/3e6JYPJ

Understanding Classification Algorithms | 141

This will produce the following output:

Figure 4.7: Decision region plot for the kernel SVM

142 | Training Classification Models

This result is much better. We can see an overall accuracy of nearly 90%, where
the class 1 accuracy is now 67%, compared to 0% with the linear SVM! We were
able to capture the non-linear patterns in the data and correctly classify the
majority of the employees who have left.

Note

To access the source code for this specific section, please refer to
https://packt.live/30FSdOZ.

You can also run this example online at https://packt.live/2ACdbUc.

In the remaining exercises for this chapter, we'll continue training models with
scikit-learn and see how they compare to the SVMs from this section. Before doing
this, however, we are going to briefly discuss how the decision boundaries are being
plotted in the preceding charts.

The plot_decision_regions Function

In this section, we'll explore how Jupyter can help us look deeper into external Python
library functions to learn how they work. In particular, we'll focus on the plot_
decision_regions function that's provided by the mlxtend external library.

In the exercises for this chapter, we'll use the plot_decision_regions function
to visualize how our models are learning the training data. It's worth taking a peek
at the source code (which is written in Python) to understand how these plots
are drawn:

from mlxtend.plotting import plot_decision_regions

plot_decision_regions?

https://packt.live/30FSdOZ
https://packt.live/2ACdbUc

Understanding Classification Algorithms | 143

By running the preceding code in a Jupyter notebook, the docstring can be seen
as follows:

Figure 4.8: The docstring for mlxtend.plotting.plot_decision_regions

144 | Training Classification Models

By scrolling to the bottom of the docstring printout in Jupyter, you can find the
location of the file where this function is defined. This will look something like
the following:

Figure 4.9: The file location and type, as seen at the bottom of the docstring in Jupyter

By taking note of the file path from the preceding screenshot, its contents can be
printed in the notebook as follows (if bash is available):

%%bash

cat /anaconda3/lib/python3.7/site-packages/mlxtend/plotting/decision_
regions.py

The bash command gives us the following output:

Figure 4.10: Printing the head of the plot_decision_regions source code

This allows us to view the code, but it's not very easy to look at since there's no
color markup. A good solution is to copy it from the notebook (or copy the file itself)
and open that in your favorite text editor. This can, in fact, be done directly inside
Jupyter if you wish, since Jupyter functions as a plain text editor in addition to a
notebook editor.

Understanding Classification Algorithms | 145

After this has been done, we can find the section of code that's responsible for
creating the decision boundary chart. This is as follows:

Figure 4.11: Interesting parts of the plot_decision_regions source code

146 | Training Classification Models

By studying this code, we can see the following taking place, explained as per the
annotated numbers:

•	 1: A mesh grid generated over the feature space.

•	 2: Predictions are then made at each point using scikit-learn's predict method
on the classification model, clf.

•	 3: Finally, a contour plot is generated based on these predictions. This contour
plot is what we see as output from the function when plotting the decision
boundary charts.

It's not important to study and understand this code in detail. Instead, the purpose
of this discussion was to pull back the curtains and show how to look deeper into the
logic that Python libraries are performing.

In the next exercise, we'll return to modeling the employee retention problem that we
started earlier.

Exercise 4.02: Training k-Nearest Neighbors Classifiers with scikit-learn

When training our first models on the Human Resource Analytics dataset, we saw
how a linear SVM and kernel SVM performed dramatically differently when modeling
two selected features from the dataset. Here, we will continue modeling these
two features, satisfaction_level and last_evaluation, using the KNN
algorithm. For the first time in this book, we'll visualize what overfitting looks like
and learn about a strategy for handling it. Perform the following steps to complete
this exercise:

1.	 Starting at the point in the notebook where the previous exercise ended, load
the scikit-learn KNN classification model:

from sklearn.neighbors import KNeighborsClassifier

KNeighborsClassifier?

Understanding Classification Algorithms | 147

The preceding code will print the docstring:

Figure 4.12: The docstring for sklearn.neighbors.KNeighborsClassifier

The n_neighbors parameter decides how many of the nearest-neighbor
records to use when making a classification. If the weights argument is set to
uniform, then class labels are decided by majority vote.

Another option you could consider for the weights argument is distance,
where closer samples have a higher weight in the voting. Like most model
parameters, the best choice for this depends on the particular dataset.

2.	 Train the KNN classifier with n_neighbors=3, and then compute the
accuracy and decision regions. Since you have built all of this logic into the
check_model_fit function, do this as follows:

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train_std, y_train)

check_model_fit(knn, X_test_std, y_test)

148 | Training Classification Models

Here's the output of the code:

Figure 4.13: Training a KNN classifier with n_neighbors=3

Here, you can see an increase in overall accuracy, which now scores over 90%,
and a significant improvement for class 1 in particular, which scores around 96%.
However, the decision region plot indicates that we are overfitting the data. This
is evident by the hard, choppy decision boundary, and small pockets of class 1
prediction ranges (the orange contours) scattered throughout the feature space.
You can soften the decision boundary and decrease overfitting by increasing the
number of nearest neighbors used to make classifications.

Understanding Classification Algorithms | 149

3.	 To reduce overfitting, train a KNN model with n_neighbors=25 by running the
following code:

knn = KNeighborsClassifier(n_neighbors=25)

knn.fit(X_train_std, y_train)

check_model_fit(knn, X_test_std, y_test)

You will see the following output:

Figure 4.14: Training a KNN classifier with n_neighbors=25

150 | Training Classification Models

As you can see, the decision boundaries are significantly less choppy compared
to the plot for the n_neighbors=3 model, and there are far fewer pockets of
class 1 prediction ranges (the orange contours).

Looking at the metrics, the accuracy for class 1 is slightly less, but we would
need to use a more comprehensive method (such as k-fold cross validation) to
decide whether there's a significant difference between this model and the n_
neighbors=3 model that we trained previously.

Note that increasing n_neighbors has no effect on training time as the model
is simply memorizing the data. The prediction time, however, becomes longer as
n_neighbors is increased.

Note

To access the source code for this specific section, please refer to
https://packt.live/30FSdOZ.

You can also run this example online at https://packt.live/2ACdbUc.

Note

When using machine learning for real-world problems, it's important for the
algorithms to run quick enough to serve their purposes. For example, a
script to predict tomorrow's weather couldn't possibly require more than a
day to run.

Memory limits are also a consideration that should be taken into account
when training models on substantial amounts of data. When this becomes
an issue, you can look into models that can be iteratively trained on smaller
chunks of the data.

Having finished training the KNN classifiers, we'll continue to explore modeling with
scikit-learn by training Random Forests in the next exercise.

Exercise 4.03: Training Random Forest Classifiers with scikit-learn

We'll start this exercise right where the previous one left off. So far, we have trained
SVMs and KNNs and seen what overfitting and underfitting looks like in terms of the
decision boundary and resulting classification accuracy along the way.

https://packt.live/30FSdOZ
https://packt.live/2ACdbUc

Understanding Classification Algorithms | 151

Here, you will learn how to train Random Forests and compare their results for our
modeling problem to those from the preceding algorithms. You will also learn how
to render a decision tree visualization in the notebook, which will provide insights
to the inner workings of our Random Forest models. Perform the following steps to
complete this exercise:

1.	 Starting at the point in the notebook where the previous exercise ended load
the scikit-learn Random Forest classification model and print the docstring by
running the following command:

from sklearn.ensemble import RandomForestClassifier

RandomForestClassifier?

You will see the following output:

Figure 4.15: The docstring for sklearn.ensemble.RandomForestClassifier

152 | Training Classification Models

Here, scikit-learn considers RandomForestClassifier an ensemble
algorithm, as can be seen from the preceding import statement, where
it's loaded from the ensemble folder. Recall that earlier in this chapter we
discussed the fact that Random Forests are actually a collection of other
classifiers called decision trees. When training our Random Forest, we are
actually training a set of decision trees. Similarly, when making predictions, we
are actually feeding records into each decision tree of the Random Forest and
computing the average result.

We will train a Random Forest classification model composed of 50 decision
trees, each with a max depth of 5. Looking at the following code, notice how
the Python commands are exactly analogous to the SVM and KNN models we
trained earlier, despite each algorithm working so differently in scikit-learn. By
setting the max_depth=5 argument, as described by the docstring we printed
out previously, we limit the maximum number of consecutive splits to 5. This will
become clear when we look at a decision tree visualization later in this exercise.

2.	 Train the Random Forest classifier we just described by running the
following code:

forest = RandomForestClassifier(n_estimators=50, \

 max_depth=5, random_state=1,)

forest.fit(X_train, y_train)

check_model_fit(forest, X_test, y_test)

plt.xlim(-0.1, 1.2)

plt.ylim(0.2, 1.2)

plt.savefig('../figures/chapter-4-hr-analytics-forest.png', \

 bbox_inches='tight', \

 dpi=300,)

Understanding Classification Algorithms | 153

You will see a total accuracy of 92.0%. Here's the output:

Figure 4.16: Training a Random Forest with a maximum depth of 5

154 | Training Classification Models

While looking at the decision boundary chart, notice the distinctive axes-parallel
decision boundaries produced by decision tree machine learning algorithms.

We can access any of the individual decision trees used to build the Random
Forest. These trees are stored in the estimators_ attribute of the model. Let's
draw one of these decision trees to get a feel for what's going on.

Note

Producing decision tree graph visualizations with Python and scikit-learn
requires the graphviz dependency, which can sometimes be difficult
to install. If you are having difficulty with this step, you should open the
chapter-4-hr-analytics-tree-graph.png graph file, which
is available in the figures directory of the source code. This file can be
found at the following link: https://packt.live/30IjVuh.

3.	 Build a graph for one of the decision trees from your Random Forest in the
notebook by running the following code:

from sklearn.tree import export_graphviz

import graphviz

dot_data = export_graphviz(forest.estimators_[0], \

 out_file=None, \

 feature_names=features, \

 class_names=['no', 'yes'], \

 filled=True, rounded=True, \

 special_characters=True,)

graph = graphviz.Source(dot_data)

4.	 Then, save the graph as a PNG file by running the following command:

graph.render(filename='../figures/chapter-4-hr-analytics-'\

 'tree-graph', format='png',)

https://packt.live/30IjVuh

Understanding Classification Algorithms | 155

5.	 Finally, render the graph in your notebook by running the graph command. This
will return the following output:

Figure 4.17: A decision tree from a Random Forest ensemble, where max_depth=5

From the preceding graph, we can see that each path is limited to five
consecutive nodes as a result of setting max_depth=5. At each branch, scikit-
learn's decision tree algorithm has decided on the feature split that maximizes
the separability of classes in the training data. Consider the following section of
the tree:

Figure 4.18: A section of the decision tree where a split is made
on the last_evaluation ≤ 0.445 condition

156 | Training Classification Models

Here, we can see that 1,926 training samples from the top node have been split
on the last_evaluation ≤ 0.445 condition, resulting in a child node
that's pure (on the left) with 208 "no" samples, and a child node that's mixed
(on the right) with 1,544 "no" samples and 1,149 "yes" samples. Recall that "no"
corresponds to employees who are still working at the company, while "yes"
corresponds to those who have left.

The orange boxes represent nodes where the majority of samples are labeled
"no", and the blue boxes represent nodes where the majority of samples are
"yes". The shade of each box (light, dark, and so on) indicates the confidence
level, which is related to the purity of that node.

Note

To access the source code for this specific section, please refer to
https://packt.live/30FSdOZ.

You can also run this example online at https://packt.live/2ACdbUc.

This concludes our exercise on Random Forests and takes us to the end of our
initial modeling research on the Human Resource Analytics dataset. In this exercise,
we learned how to train Random Forests and explored how their decision tree
constituents are composed.

Although we trained a variety of models in this section, we only worked through one
end-to-end example where data was loaded, split into training and testing sets, used
to train a model, and then scored. After that, we relied on previous work to make our
modeling process simple.

In the next section, you'll have the opportunity to work through a full modeling
activity, from loading the preprocessed dataset to scoring and comparing the
final results.

Activity 4.01: Training and Visualizing SVM Models with scikit-learn

In this activity, you'll build models in order to predict the same target variable that we
described previously (whether or not an employee is going to leave) using two new
features from the Human Resource Analytics dataset.

You'll select these features from the dataset, split them into training and
testing sets, scale them, train and score some SVMs, and visualize the resulting
decision boundaries.

https://packt.live/30FSdOZ
https://packt.live/2ACdbUc

Understanding Classification Algorithms | 157

It may be tempting to copy and paste code while completing this activity, but you
will learn more effectively by typing out the solutions yourself. Even when referring
back to earlier sections of the notebook, try to avoid copy and pasting. Perform the
following steps to complete this activity:

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 285.

1.	 Start a new Jupyter notebook, load the libraries you used, and set up your
plotting environment for the notebook.

2.	 Load the preprocessed dataset from https://packt.live/2YE90iC
(hr_data_processed.csv) into the notebook, assigning it to the df variable.

3.	 In this activity, you are going to use the number_project and
average_montly_hours features. Filter df on these columns and display
their summary metrics using the pd.DataFrane.describe function.
Compare the mean, min, and max of each.

4.	 Do a train test split, as was done in Exercise 4.01, Training Two-Feature
Classification Models with Scikit-Learn, using these two new features in place of the
old ones.

5.	 Scale the training data using scikit-learn's MinMaxScaler and determine how
this scaler differs from the one we used earlier in the notebook.

6.	 Train an SVM using the rbf kernel. Set the C=1 and
gamma='scale' arguments.

7.	 Identify the classification accuracy of this model for the test set.

8.	 Identify the class accuracies of this model for the test set.

9.	 Use the plot_decision_regions function to visualize the decision regions
of this model.

10.	When instantiating the SVM model, you passed in an argument, C=1. This is a
property of the model that can be adjusted in order to optimize model accuracy.
By increasing C, the SVM will attempt to fit the training data more closely. Train a
new SVM with C=50 and visualize its decision regions. Compare this to the chart
you plotted for the C=1 SVM.

https://packt.live/2YE90iC

158 | Training Classification Models

Summary
In this chapter, we learned about the SVM, KNN, and Random Forest classification
algorithms and applied them to our preprocessed Human Resource Analytics
dataset to build predictive models. These models were trained to predict whether an
employee will leave the company, given a set of employee metrics.

For the purposes of keeping things simple and focusing on the algorithms, we built
models that depend on only two features, that is, the satisfaction level and last
evaluation value. This two-dimensional feature space also allowed us to visualize the
decision boundaries and identify what overfitting looks like.

In the next chapter, we will introduce two important topics in machine learning:
k-fold cross validation and validation curves. In doing so, we'll discuss more advanced
topics, such as parameter tuning and model selection. Then, to optimize our final
model for the employee retention problem, we'll explore feature extraction with
the dimensionality reduction technique PCA, and train models on the full range of
features available in the dataset.

Overview

In this chapter, you will learn how to use k-fold cross validation to test model
performance, as well as how to use validation curves to optimize model
parameters. You will also learn how to implement dimensionality reduction
techniques such as Principal Component Analysis (PCA). By the end
of this chapter, you will have completed an end-to-end machine learning
project and produced a final model that can be used to make
business decisions.

5
Model Validation and

Optimization

162 | Model Validation and Optimization

Introduction
As we've seen in the previous chapters, it's easy to train models with scikit-learn using
just a few lines of Python code. This is possible by abstracting away the computational
complexity of the algorithm, including details such as constructing cost functions and
optimizing model parameters. In other words, we deal with a black box where the
internal operations are hidden from us.

While the simplicity offered by this approach is quite nice on the surface, it does
nothing to prevent the misuse of algorithms—for example, by selecting the wrong
model for a dataset, overfitting on the training set, or failing to test properly on
unseen data.

In this chapter, we'll show you how to avoid some of these pitfalls while training
classification models and equip you with the tools to produce trustworthy results.
We'll introduce k-fold cross validation and validation curves, and then look at ways to
use them in Jupyter.

We'll also introduce the topic of dimensionality reduction and see how it can be
used, along with k-fold cross validation, to perform model selection. We'll apply these
techniques to our models for the Human Resource Analytics dataset in order to build
and present an optimized final solution.

The topics in this chapter are highly practical with regard to real-world machine
learning problems. The information and code presented here will enable you to build
predictive models that perform well on unseen data, which is a crucial property of
production models. To start things off, we'll learn about k-fold cross validation.

Assessing Models with k-Fold Cross Validation
Thus far, we have trained models on a subset of the data and then assessed
performance on the unseen portion, called the test set. This is good practice because
the model's performance on data that's used for training is not a good indicator of its
effectiveness as a predictor. It's very easy to increase accuracy on a training dataset
by overfitting a model, which results in a poorer performance on unseen data.

That being said, simply training models on data that's been split in this way is
not good enough. There is a natural variance in data that causes accuracies to be
different (if even slightly), depending on the training and test splits. Furthermore,
using only one training/test split to compare models can introduce bias toward
certain models and lead to overfitting.

Assessing Models with k-Fold Cross Validation | 163

k-Fold cross validation offers a solution to this problem and allows the variance to
be accounted for by way of an error estimate on each accuracy calculation.

The method of k-fold cross validation is illustrated in the following diagram, where we
can see how the k-folds can be selected from the dataset:

Figure 5.1: Illustration of k-fold cross validation

Note

Image source: CC BY-SA 4.0: https://commons.wikimedia.org/wiki/File:K-
fold_cross_validation_EN.svg.

Keeping the preceding illustration in mind, the k-fold cross validation algorithm works
as follows:

1.	 Split data into k folds of near-equal size.

2.	 Test and train k models on different fold combinations, where each model
includes k – 1 folds of training data and uses the left-out fold as the validation set.
In this method, each fold ends up being used as the test data exactly once.

3.	 Calculate the model accuracy by taking the mean of the k accuracy values. The
standard deviation is also calculated to provide error estimates on the value.

It's standard to set k = 10, but smaller values for k should be considered if you're
using a big dataset.

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg
https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg

164 | Model Validation and Optimization

This validation method can be used to compare model performance with different
hyperparameters in a more reliable way than using a single train-test split on the
data, as we were doing in Chapter 4, Training Classification Models. For example, we
could use k-fold cross validation to optimize the value of C for an SVM or the value of
k (number of nearest neighbors) for a KNN classifier.

Although k-fold cross validation involves splitting the data many times into testing
and validation sets, only a subset of the full dataset should be included in this
algorithm. This can be accomplished by setting aside a random sample of records
from the full dataset and keeping the majority or records for training and validation
with k-fold cross validation. The records that have been set aside will be used for
testing purposes later in model development.

This is our first time using the term hyperparameter. It references a parameter
that is defined when initializing a model, for example, the parameters we mentioned
previously for the SVM and KNN classifier, or the maximum depth of a decision tree.
In contrast, the term parameter in machine learning refers to a model variable that
is determined during training, such as the coefficients on the decision boundary
hyperplane for a trained SVM, or the weights learned by a linear regression model.

Once the best model has been identified, it's often beneficial to retrain on the
entirety of the dataset before using it in production (that is, before using it to make
predictions). This way, we expose the model to all the data that's available so that it
has an opportunity to learn from the full range of patterns in the dataset.

When implementing this with scikit-learn, it's common to use a slightly improved
variation of the normal k-fold algorithm instead. This is called stratified k-Fold. The
improvement is that stratified k-fold cross validation maintains roughly even class
label populations in the folds. As you can imagine, this reduces the overall variance in
the models and decreases the likelihood of highly unbalanced models causing bias.

Assessing Models with k-Fold Cross Validation | 165

Tuning Hyperparameters with Validation Curves

K-fold cross validation naturally lends itself to the use of validation curves for
tuning model parameters. As shown in the following graph, validation curves chart
out the model accuracy as a function of a hyperparameter, such as the number of
decision trees used in a Random Forest or (as mentioned previously) the maximum
depth. By understanding how to interpret these charts, we can make well-informed
hyperparameter selections.

Note

Like most of the scikit-learn documentation, the information provided for
validation curves is very informative and worth a read. This includes the
recipes that we'll use in this chapter for creating and plotting validation
curves. You can read about them at:

https://scikit-learn.org/stable/modules/learning_curve.html.

Consider this validation curve, where the accuracy score is plotted as a function of the
gamma SVM hyperparameter:

Figure 5.2: Validation curve for an SVM model

https://scikit-learn.org/stable/modules/learning_curve.html

166 | Model Validation and Optimization

Note

Image source: https://scikit-learn.org/stable/auto_examples/model_selection/
plot_validation_curve.html.

Starting on the left-hand side of the plot, we can see that both the training data
(orange, top line) and the testing data (blue, bottom line) produce the same score.
This is good, since it means the model is generalizing well to unseen data. However,
the score is also quite low compared to other gamma values; therefore, we say the
model is underfitting the data.

Increasing the value of gamma, we can see a point where the error bars of these two
lines no longer overlap. From this point on, the classifier is failing to generalize well
for unseen data, since it's overfitting the training set. As gamma continues to increase,
we can see the score of the testing data drop off dramatically, while the training data
score continues to increase.

The optimal value for the gamma parameter can be found by looking for a high test
data score where the error bars on each line still overlap.

Keep in mind that a validation curve for some hyperparameters is only valid while
the other hyperparameters remain constant. For example, if training the SVM in this
plot, we could decide to pick gamma as 10-4. However, we may want to optimize the C
parameter as well. With a different value for C, the preceding plot would be different
and our selection for gamma may no longer be optimal.

To handle problems such as this, you can look into grid search algorithms. These
are available through scikit-learn and use many of the same ideas we've discussed
here. Grid search works like a higher dimensional validation curve. For example, a
grid search over gamma = [10-5, 10-4, 10-3] and C = [0.1, 1, 10]
would train and test nine sets of models, one for each combination of gamma and C.
As you can imagine, this is prone to becoming computationally intense as the number
of hyperparameters and their ranges increase.

Now that we've learned the basics of how k-fold cross validation and validation curves
work, it's time to proceed with the hands-on section of this chapter. We'll open up a
Jupyter notebook and continue building models for the employee retention problem.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html

Assessing Models with k-Fold Cross Validation | 167

Exercise 5.01: Using k-Fold Cross Validation and Validation Curves in Python

with scikit-learn

In this exercise, you will implement k-fold cross validation and validation curves
in Python and learn how to use these methods to assess models and tune
hyperparameters in a Jupyter notebook. Perform the following steps to complete
this exercise:

1.	 Create a new notebook using one of the following commands:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open the chosen platform in your web browser by copy and pasting the
URL, as prompted in the Terminal.

2.	 Load the following libraries and set your plot setting for the notebook:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (8, 8)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

numpy,pandas,matplotlib,seaborn,sklearn

168 | Model Validation and Optimization

3.	 Start by loading the preprocessed training data (the same dataset we worked
with in the previous chapter). Load the table by running the cell with the
following code:

df = pd.read_csv('../data/hr-analytics/hr_data_processed.csv')

Note

As a reminder, you can find this file at https://packt.live/2YE90iC.

In this exercise, you will be working with the same two features as in the
previous chapter: satisfaction_level and last_evaluation.

As mentioned previously in relation to k-fold cross validation, you still need to
split the full dataset into a training and validation set and a test set. You will use
the training and validation set during this exercise, and use the test set later
during model selection.

4.	 Set up the training data by running the following command:

from sklearn.model_selection import train_test_split

features = ['satisfaction_level', 'last_evaluation']

X, X_test, \

y, y_test = train_test_split(df[features].values, \

 df['left'].values, \

 test_size=0.15, \

 random_state=1)

5.	 Use a decision tree with max_depth=5 to instantiate a model for k-fold
cross validation

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth=5)

At this point, you have not performed any interesting computation. You have
simply prepared a model object, clf, and defined its hyperparameters (for
example, max_depth).

https://packt.live/2YE90iC

Assessing Models with k-Fold Cross Validation | 169

6.	 To run the stratified k-fold cross validation algorithm, use the
model_selection.cross_val_score function from scikit-learn
and print the resulting score by running the following code:

from sklearn.model_selection import cross_val_score

np.random.seed(1)

scores = cross_val_score(estimator=clf, X=X, \

 y=y, cv=10,)

print('accuracy = {:.3f} +/- {:.3f}'.format(scores.mean(), \

 scores.std(),))

Here, you train 10 variations of our clf model using stratified k-fold validation.
Note that scikit-learn's cross_val_score does this type of validation
(stratified) by default.

You use np.random.seed to set the seed for the random number generator,
thereby ensuring reproducibility with respect to any computation that follows
that depends on random numbers. In this case, you set the seed to ensure
reproducibility of the randomly selected samples for each fold in stratified k-fold
cross validation.

Notice that you printed the average accuracy and standard deviation of each
fold. You can also look at the individual accuracies for each fold by looking at the
scores variable.

7.	 Insert a new cell and run print(scores). You should see the
following output:

[0.92241379 0.91529412 0.92784314 0.92941176 0.9254902 0.92705882

 0.91294118 0.91607843 0.92229199 0.9277865]

Using cross_val_score is a convenient way to accomplish k-fold cross
validation, but it doesn't tell you about the accuracies within each class. Since
your problem is sensitive to each class' accuracy (as identified in the exercises
in the previous chapters), you will need to manually implement k-fold cross
validation so that this information is available to us. In particular, you are
interested in the accuracy of class 1, which represents the employees who
have left.

170 | Model Validation and Optimization

8.	 Define a custom class for calculating k-fold cross validation class accuracies by
running the following code:

from sklearn.model_selection import StratifiedKFold

from sklearn.metrics import confusion_matrix

def cross_val_class_score(clf, X, y, cv=10):

 kfold = (StratifiedKFold(n_splits=cv).split(X, y))

 class_accuracy = []

 for k, (train, test) in enumerate(kfold):

 clf.fit(X[train], y[train])

 y_test = y[test]

 y_pred = clf.predict(X[test])

 cmat = confusion_matrix(y_test, y_pred)

 class_acc = cmat.diagonal()/cmat.sum(axis=1)

 class_accuracy.append(class_acc)

 print('fold: {:d} accuracy: {:s}'.format(k+1, \

 str(class_acc),))

 return np.array(class_accuracy)

You implement k-fold cross validation manually using the model_selection.
StratifiedKFold class in scikit-learn. This class takes the number of folds
as an initialization argument and provides the split method to build randomly
sampled masks for the data. In this instance, a mask is simply an array
containing indexes of items in another array, where the items can then be
returned by running code such as data[mask].

9.	 Having defined this function, you can now calculate the class accuracies with
code that's very similar to model_selection.cross_val_score from
before. Do this by running the following code:

np.random.seed(1)

scores = cross_val_class_score(clf, X, y)

print('accuracy = {} +/- {}'.format(scores.mean(axis=0), \

 scores.std(axis=0),))

Assessing Models with k-Fold Cross Validation | 171

This will print the following output when the folds are iterated over and 10
models are trained:

fold: 1 accuracy: [0.98559671 0.72039474]

fold: 2 accuracy: [0.98559671 0.68976898]

fold: 3 accuracy: [0.98971193 0.72937294]

fold: 4 accuracy: [0.98765432 0.74257426]

fold: 5 accuracy: [0.99074074 0.71617162]

fold: 6 accuracy: [0.98971193 0.72607261]

fold: 7 accuracy: [0.98251029 0.68976898]

fold: 8 accuracy: [0.98559671 0.69306931]

fold: 9 accuracy: [0.98455201 0.72277228]

fold: 10 accuracy: [0.98352214 0.74917492]

accuracy = [0.98651935 0.71791406] +/- [0.00266409 0.0200439]

These outputs show the class accuracies, where the first value corresponds to
class 0 and the second corresponds to class 1.

Having seen k-fold cross validation in action, we'll move on to the topic of
validation curves. These can be generated easily with scikit-learn.

10.	Calculate validation curves with model_selection.validation_curve.
This function uses stratified k-fold cross validation to train models for various
values of a specified hyperparameter. Perform the calculations required to plot a
validation curve by running the following code:

from sklearn.model_selection import validation_curve

clf = DecisionTreeClassifier()

max_depth_range = np.arange(3, 20, 1)

np.random.seed(1)

train_scores, \

test_scores = validation_curve(estimator=clf, \

 X=X, y=y, \

 param_name='max_depth', \

 param_range=max_depth_range, \

 cv=5,);

172 | Model Validation and Optimization

By running this, you've trained a set of decision trees over the range of
max_depth values. These values are defined in the max_depth_range =
np.arange(3, 20, 1) line, which corresponds to the [3, 4, … 18, 19]
array—that is, from max_depth=3 up to max_depth=20, with a step size of 1.

The validation_curve function will return arrays with the cross validation
(training and test) scores for a set of models, where each has a different
max_depth variable.

11.	To visualize the results, leverage a function provided in the
scikit-learn documentation:

Note

The triple-quotes (""") shown in the code snippet below are used to
denote the start and end points of a multi-line code comment. Comments
are added into code to help explain specific bits of logic.

chapter_5_workbook.ipynb

def plot_validation_curve(train_scores, \
 test_scores, \
 param_range, \
 xlabel='', \
 log=False, \
):
 """This code is from scikit-learn docs (BSD License).

 http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_
curve.html
 """
 train_mean = np.mean(train_scores, axis=1)
 train_std = np.std(train_scores, axis=1)
 test_mean = np.mean(test_scores, axis=1)
 test_std = np.std(test_scores, axis=1)

The complete code for this step can be found at https://packt.live/37vgad6.

https://packt.live/37vgad6

Assessing Models with k-Fold Cross Validation | 173

This will result in the following graph:

Figure 5.3: Validation curve for a decision tree

Setting the max depth parameter for decision trees controls the balance
between underfitting and overfitting. This is reflected in the validation curve,
where we can see low accuracies for small maximum depth values (underfitting),
since we are not allowing the decision tree to create enough branches to capture
the patterns in the data.

For large max depth values to the right of the chart, we can see the opposite
happen, as the decision trees here overfit the training data. This is evidenced
from the fact that our validation accuracy (red squares) decreases as the
maximum depth increases.

174 | Model Validation and Optimization

Notice how the training accuracy (blue circles) continues increasing as the
maximum depth increases. This happens because the decision trees are able
to capture increasingly detailed patterns in the training data. By looking at the
validation accuracies, we can see that these patterns do not generalize well for
unseen data.

Based on this chart, a good value for max_depth appears to be 6. At this point,
we can see that the validation accuracy has hit a maximum and that the training
and validation accuracies are agreement (within error).

Note

To access the source code for this specific section, please refer to
https://packt.live/30GTi9a.

You can also run this example online at https://packt.live/2BcG5tP.

To summarize, we have learned and implemented two important techniques for
building reliable predictive models.

The first such technique was k-fold cross validation, where we train and validate a set
of models over different subsets of the data in order to generate a variety of accuracy
measurements for a single model choice. From this set, we then calculated the
average accuracy and the standard deviation. This standard deviation is an important
error metric to gauge the variability of our selected model.

The second technique we explored in this section was validation curves. By
comparing training and validation accuracies (as generated by k-fold cross validation)
over the range of our selected hyperparameter, validation curves allow us to
visualize when our model is underfitting or overfitting and help us to identify optimal
hyperparameter values.

In the next section, we'll introduce the concept of dimensionality reduction and why
it's useful for training models. Then, we'll apply it to the Human Resource Analytics
dataset and revisit the topics from this section in order to train highly accurate
models for predicting employee turnover.

https://packt.live/30GTi9a
https://packt.live/2BcG5tP

Dimensionality Reduction with PCA | 175

Dimensionality Reduction with PCA
Dimensionality reduction can be as simple as removing unimportant features from
the training data. However, it's usually not obvious that removing a set of features
will boost model performance. Even features that are highly noisy may offer some
valuable information that models can learn from. For these reasons, we should know
about better methods for reducing data dimensionality, such as the following:

•	 Principal Component Analysis (PCA)

•	 Linear Discriminant Analysis (LDA)

These techniques allow for data compression, where the most important information
from a large group of features can be encoded in just a few features.

In this section, we'll focus on PCA. This technique transforms the data by projecting
it into a new subspace of orthogonal principal components, where the components
with the highest eigenvalues (as described here) encode the most information for
training the model. Then, we can simply select a set of principal components in place
of the original high-dimensional dataset. The number of principal components to
select will depend on the details of the specific dataset, but it should be a reasonable
percentage of the original set of features.

For example, PCA could be used to encode the information from every pixel in an
image. In this case, the original feature space would have dimensions equal to the
number of pixels in the image. This high-dimensional space could then be reduced
with PCA, where the majority of useful information for training predictive models
might be reduced to just a few dimensions. Not only does this save time when
training and using models, but it allows them to perform better by removing noise
from the dataset.

Similar to the algorithms we've discussed and implemented in this book, it's not
necessary to have a detailed understanding of PCA in order to leverage its benefits.
However, before implementing PCA with scikit-learn, we'll dig into the technical
details a bit further in order to gain some appreciation for the underlying algorithm.

176 | Model Validation and Optimization

The key insight of PCA is to identify patterns between features based on correlations
so that the PCA algorithm calculates the covariance matrix and then decomposes this
into eigenvectors and eigenvalues. The vectors are then used to transform the data
into a new subspace, from which a fixed number of principal components can be
selected. Through this process, we effectively look at a high-dimensional dataset and
find a set of vectors that follow directions of large variance, and thereby can encode
much of the total information in fewer dimensions.

In the following exercise, we'll look at an example of how PCA can be used to reduce
the dimensionality of our Human Resource Analytics dataset.

Exercise 5.02: Dimensionality Reduction with PCA

After training a variety of models for predicting employee turnover with the Human
Resource Analytics dataset, we are still yet to use the majority of the features at our
disposal. In this exercise, we will take the first steps in putting these features to use.

First, you will learn about a modeling technique that calculates which features
are most influential for making predictions. Then, using these so-called "feature
importance", you will create a strategy for selecting good features for dimensionality
reduction. Finally, you will learn how to implement PCA with scikit-learn. Perform the
following steps to complete this exercise:

1.	 Starting at the point in the notebook where the previous exercise ended, load
the preprocessed dataset and print the columns by running the following code.
This is the same table that you used in the previous exercise:

df = pd.read_csv('../data/hr-analytics/hr_data_processed.csv')

df.columns

Here's the output of the preceding command:

Figure 5.4: The columns of hr_data_processed.csv

Dimensionality Reduction with PCA | 177

In order to determine which features are good candidates for reducing with PCA,
you want to calculate how important each of them is for making predictions.
Once you know this information, you can select those that are least important
for PCA and leave the most important features intact.

2.	 Determine feature importance using a decision tree classifier. Select all available
features and train a decision tree on the full dataset (not doing a train-test split),
by running the following code:

features = ['satisfaction_level', 'last_evaluation', \

 'number_project','average_montly_hours', \

 'time_spend_company', 'work_accident', \

 'promotion_last_5years', 'department_IT', \

 'department_RandD','department_accounting', \

 'department_hr', 'department_management', \

 'department_marketing', 'department_product_mng', \

 'department_sales','department_support', \

 'department_technical', 'salary_high', \

 'salary_low', 'salary_medium']

X = df[features].values

y = df.left.values

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth=10)

clf.fit(X, y)

By now, you should recognize exactly what the preceding code is doing. Based
on previous testing, you found max_depth=6 to be a good choice when training
on just two features: satisfaction_level and last_evaluation. When
more features are included in the model, decision trees tend to require more
depth to avoid underfitting (assuming all the other hyperparameters remain
constant). Therefore, select max_depth=10 as an educated guess. Most likely,
this is not the optimal choice, but for our purposes here, this does not matter.

178 | Model Validation and Optimization

3.	 Having trained a quick and dirty model, leverage it to see how important each
feature is for making predictions by using the feature_importances_
attribute of clf. Visualize these in a bar chart by running the following code:

(

 pd.Series(clf.feature_importances_, \

 name='Feature importance', \

 index=df[features].columns,)

 .sort_values()

 .plot.barh()

)

plt.xlabel('Feature importance')

The bar plot for this is as follows:

Figure 5.5: Feature importance calculated by a decision tree model

Dimensionality Reduction with PCA | 179

As shown in the preceding bar plot, there are a handful of features that are of
significant importance when it comes to making predictions, and the rest appear
to have near-zero importance.

Keep in mind, however, that this chart does not represent the true feature
importance, but simply that of the quick and dirty decision tree model, clf. In
other words, the features with near-zero importance in the preceding chart
may be more important for other models. In any case, the information here is
sufficient for us to make a selection on which features to reduce with PCA.

4.	 Set aside the five most important features from the preceding chart so that you
can use them for modeling later, and then select the remainder for use in the
PCA algorithm. Do this with the following code:

importances = list(pd.Series(clf.feature_importances_, \

 index=df[features].columns,)

 .sort_values(ascending=False).index)

low_importance_features = importances[5:]

high_importance_features = importances[:5]

5.	 Print the least of low importance features list as follows:

np.array(low_importance_features)

The output is as follows:

array(['salary_low', 'department_technical', 'work_accident',

 'department_support', 'department_IT', 'department_RandD',

 'salary_high', 'salary_medium', 'department_management',

 'department_accounting', 'department_hr', 'department_sales',

 'department_product_mng', 'promotion_last_5years',

 'department_marketing'], dtype='<U22')

6.	 Print the least of high importance features list as follows:

np.array(high_importance_features)

The output is as follows:

array(['satisfaction_level', 'last_evaluation', 'time_spend_company',

 'number_project', 'average_montly_hours'], dtype='<U20')

180 | Model Validation and Optimization

7.	 Having identified the features to use for dimensionality reduction, run the PCA
algorithm with the following code:

from sklearn.decomposition import PCA

pca_features = ['salary_low', 'department_technical', \

 'department_support','work_accident', \

 'salary_medium', 'department_IT', \

 'department_RandD', 'salary_high', \

 'department_management','department_accounting', \

 'department_hr', 'department_sales', \

 'department_product_mng', 'promotion_last_5years', \

 'department_marketing']

X_reduce = df[pca_features]

pca = PCA(n_components=3)

pca.fit(X_reduce)

X_pca = pca.transform(X_reduce)

First, we define the list of features to use in PCA, which can conveniently by
done by copying and pasting the output of np.array(low_importance_
features) from the preceding cell.

Next, we instantiate the PCA class from scikit-learn with n_components=3,
indicating that we want to keep the first three components returned by the PCA
algorithm. Finally, we fit our instantiated PCA class and then transform the
same dataset.

8.	 Check the shape of the component data by running X_pca.shape. This will
print the following output:

(14999, 3)

This result implies that we have three arrays of length 14,999 – corresponding to
the three principal components for each record in the dataset.

9.	 Insert these principal component features into df by running the following code:

df['first_principle_component'] = X_pca.T[0]

df['second_principle_component'] = X_pca.T[1]

df['third_principle_component'] = X_pca.T[2]

Dimensionality Reduction with PCA | 181

10.	Save the updated dataset by running the following code:

df.to_csv('../data/hr-analytics/hr_data_processed_pca.csv', \

 index=False,)

11.	Finally, save the "fit" PCA class. This will be needed later to process future data
before feeding it into our classifier's prediction method:

import joblib

joblib.dump(pca, 'hr-analytics-pca.pkl')

Note

To access the source code for this specific section, please refer to
https://packt.live/30GTi9a.

You can also run this example online at https://packt.live/2BcG5tP.

This concludes our exercise on PCA. You've learned how to generate feature
importance and use that information to identify good candidates for dimensionality
reduction. Using this technique, we found a set of features from the Human Resource
Analytics dataset to apply the PCA algorithm on and reduced them to create three
new features, representing their principal components.

Model Training for Production

So far in this book, we have trained many models and spent considerable effort
learning about model assessment and optimization techniques. However, we
have primarily focused on training models for instructional purposes, rather than
producing production-ready models with optimal performance.

We have discussed the importance of training data various times in this book.
Generally, we want to have as many training records and informative features
as possible. One downside of having a massive set of records is the additional
work required to clean that data in order to prepare it for use in machine learning
algorithms. The same can be said for the number of features.

An additional problem that presents itself as the number of features grows is the
difficulty in fitting models well. The variation of feature types, such as numerical,
categorical, and Boolean, can restrict the type of models that are available to us and
raise technical considerations around feature scaling during model training. In this
chapter, we were able to avoid feature scaling altogether by using decision trees,
which do not require features to be of a comparable scale.

https://packt.live/30GTi9a
https://packt.live/2BcG5tP

182 | Model Validation and Optimization

More troubling than the preceding concerns, with respect to a growing number of
features, is something known as the curse of dimensionality. This refers to the
difficulty that models encounter when trying to fit a large number of features. As the
number of dimensions in the training data increases, it becomes increasingly difficult
for models to find patterns due to the inherently large distances that appear between
records in a high-dimensional space. The dimensionality reduction techniques we
learned about earlier can be effective for counteracting this effect.

Despite the difficulties outlined here, it still holds true that more training data is
usually beneficial to model performance. So far in this book, we've worked mostly on
training the majority of our models on just two features. In this section, we'll apply
what we learned previously to model assessment and optimization in order to train
a production-ready model that uses information from all of the features that are
available in our dataset.

Exercise 5.03: Training a Production-Ready Model for Employee Turnover

We have already spent considerable effort planning a machine learning strategy,
cleaning the raw data, and building predictive models for the employee retention
problem. Recall that our business objective was to help the client prevent employees
from leaving. The strategy we decided upon was to build a classification model
that would be able to predict employee turnover by estimating the probability of
an employee leaving. This way, the company can assess the likelihood of current
employee turnover and take action to prevent it.

Given our strategy, we can summarize the type of predictive modeling we are doing
as follows:

•	 Supervised learning on labeled training data

•	 Classification with two class labels (binary)

In particular, we are training models to determine whether an employee has left the
company, given a set of numerical and categorical features.

After preparing the data for machine learning in Chapter 3, Preparing Data for
Predictive Modeling, we went on to implement SVM, KNN, and Random Forest
algorithms using just two features. These models were able to make predictions with
over 90% overall accuracy. When looking at the specific class accuracies, however, we
found that employees who had left (class label 1) could only be predicted with
70-80% accuracy.

Dimensionality Reduction with PCA | 183

In this exercise, you will see how much these class 1 accuracies can be improved by
utilizing the full feature space. You will look at a unified example using validation
curves for hyperparameter tuning, k-fold cross validation and test set verification for
model assessment, as well as the final steps in preparing a production-ready model.
Perform the following steps to complete this exercise:

1.	 Starting where you left off in the notebook, load the preprocessed dataset and
print the columns by running the following code. This is the same table that you
completed the previous exercise with:

df = pd.read_csv('../data/hr-analytics/hr_data_processed.csv')

df.columns

This command displays the following output:

Figure 5.6: The columns of hr_data_processed.csv

As a quick refresher, we'll go through a brief summary of the variable
descriptions. You are encouraged to look back at the analysis from Chapter 3,
Preparing Data for Predictive Modeling, in order to review the feature distributions
we generated.

The first two features, satisfaction_level and last_evaluation,
are numerical and span continuously from 0 to 1; these are what we used to
train the models in the previous two exercises. Next, we have some numerical
features, such as number_project and time_spend_company, followed by
Boolean fields such as work_accident and promotion_last_5years. We
also have the one-hot encoded categorical features, such as department_IT
and salary_medium. Lastly, we have the PCA variables representing the first
three principal components of the select feature set from the previous exercise.

184 | Model Validation and Optimization

Given the mixed data types of our feature set, decision trees or Random Forests
are very attractive models since they work well with feature sets composed of
both numerical and categorical data. In this exercise, we are going to train a
decision tree model.

Note

If you're interested in training an SVM or KNN classifier on
mixed-type input features, you may find the data scaling prescription
from this StackExchange answer useful: https://stats.stackexchange.
com/questions/82923/mixing-continuous-and-binary-data-with-linear-
svm/83086#83086.

A simple approach would be to preprocess the data as follows:

Standardize continuous variables, one-hot encode categorical features,
and then shift binary values to -1 and 1 instead of 0 and 1.

This would yield the data of mixed-feature types, which could then be used
to train a variety of classification models.

2.	 Select the features to use for our model as the top five features from the PCA
section, in terms of feature importance, and the first three principal components
of the remaining features. Do this selection and split the data into a training
and validation set (X, y) and a test set (X_test, y_test) by running the
following code:

from sklearn.model_selection import train_test_split

features = ['satisfaction_level', 'last_evaluation', \

 'time_spend_company','number_project', \

 'average_montly_hours', 'first_principle_component', \

 'second_principle_component', \

 'third_principle_component',]

X, X_test, \

y, y_test = train_test_split(df[features].values, \

 df['left'].values, \

 test_size=0.15, \

 random_state=1)

https://stats.stackexchange.com/questions/82923/mixing-continuous-and-binary-data-with-linear-svm/83
https://stats.stackexchange.com/questions/82923/mixing-continuous-and-binary-data-with-linear-svm/83
https://stats.stackexchange.com/questions/82923/mixing-continuous-and-binary-data-with-linear-svm/83

Dimensionality Reduction with PCA | 185

Notice that you set test_size=0.15 for the train-test split, since you want to
set aside 15% of the full dataset for testing the model that you will select after
hyperparameter tuning.

The hyperparameter you are going to optimize is the decision tree's max_
depth. You will do this in the same way you found the validation curves, where
you found max_depth=6 to be optimal for a decision tree model with only
two features.

3.	 Calculate the validation curve for a decision tree with a maximum depth ranging
from 2 up to 52 by running the following code:

%%time

from sklearn.tree import DecisionTreeClassifier

np.random.seed(1)

clf = DecisionTreeClassifier()

max_depth_range = np.arange(2, 52, 2)

print('Training {} models ...'.format(len(max_depth_range)))

train_scores, \

test_scores = validation_curve(estimator=clf, X=X, y=y, \

 param_name='max_depth', \

 param_range=max_depth_range, \

 cv=10,);

Since you are using the %%time magic function, this cell will print a message
similar to the following:

Training 25 models ...

CPU times: user 7.93 s, sys: 29.5 ms, total: 7.96 s

Wall time: 7.98 s

The details of this will depend on your hardware and the other processes
happening on your system at runtime.

By executing this code, you run 25 sets of k-fold cross validation—one for each
value of the max_depth hyperparameter in our defined range. By setting
cv=10, you produce 10 estimates of the accuracy for each model (during k-fold
cross validation), from which the mean and standard deviation are calculated in
order to plot in the validation curve. In total, you train 250 models over various
maximum depths and subsets of the data.

186 | Model Validation and Optimization

4.	 Having run the calculations required for the validation curve, plot it with the
plot_validation_curve function that was defined earlier in the notebook.
If needed, scroll up and rerun that cell to define the function. Then, run the
following code:

plot_validation_curve(train_scores, test_scores, \

 max_depth_range, xlabel='max_depth',)

plt.ylim(0.95, 1.0)

This will result in the following curve:

Figure 5.7: Validation curve for a decision tree with PCA features

Dimensionality Reduction with PCA | 187

Looking at this validation curve, you can see the accuracy of the training set
(blue circles) quickly approach 100%, hitting this mark around max_depth=20.
The validation set (red squares) reaches a maximum accuracy around max_
depth=8, before dropping slightly as max_depth increases beyond this point.
This happens because the models in this range are overfitting on the training
data, learning patterns that don't generalize well to unseen data in the
validation sets.

Based on this result, we can select max_depth=8 as the optimal value to use
for our production model.

5.	 Check the k-fold cross validation accuracy for each class in our model with the
cross_val_class_score function that was defined earlier in the notebook.
If needed, scroll up and rerun that cell to define the function. Then, run the
following code:

clf = DecisionTreeClassifier(max_depth=8)

np.random.seed(1)

scores = cross_val_class_score(clf, X, y)

print('accuracy = {} +/- {}'.format(scores.mean(axis=0), \

 scores.std(axis=0),))

This will print the following output:

fold: 1 accuracy: [0.99382716 0.91118421]

fold: 2 accuracy: [0.99588477 0.91089109]

fold: 3 accuracy: [0.99897119 0.91749175]

fold: 4 accuracy: [0.99588477 0.95379538]

fold: 5 accuracy: [0.99279835 0.91419142]

fold: 6 accuracy: [0.99588477 0.92079208]

fold: 7 accuracy: [0.99485597 0.92409241]

fold: 8 accuracy: [0.99382716 0.9339934]

fold: 9 accuracy: [0.9907312 0.91419142]

fold: 10 accuracy: [0.99176107 0.94059406]

accuracy = [0.99444264 0.92412172] +/- [0.00226594 0.01357943]

As can be seen, this model is performing much better than previous models for
class 1, with an average accuracy of 92.4% +/- 1.4%. This can be attributed to the
additional features we are using here, compared to earlier models that relied on
only two features.

188 | Model Validation and Optimization

6.	 Visualize the new class accuracies with a boxplot by running the following code:

fig = plt.figure(figsize=(5, 7))

sns.boxplot(data=pd.DataFrame(scores, columns=[0, 1]), \

 palette=sns.color_palette('Set1'),)

plt.xlabel('Left (0="no", 1="yes")')

plt.ylabel('Accuracy')

Here's the visualization created by the preceding code:

Figure 5.8: Boxplot of class accuracies for the decision tree model

Dimensionality Reduction with PCA | 189

At this point, having finished the hyperparameter optimization, you should now
check how well the model performs on the test set. This result will give you more
confidence that it will perform well when making predictions in production.

7.	 Train a model on the full set of training and validation data (X, y). Then,
determine the accuracy of each class for the test set (X_test, y_test) by
running the following code:

from sklearn.metrics import confusion_matrix

clf = DecisionTreeClassifier(max_depth=8)

clf.fit(X, y)

y_pred = clf.predict(X_test)

cmat = confusion_matrix(y_test, y_pred)

cmat.diagonal() / cmat.sum(axis=1) * 100

This will print the following output:

array([99.23976608, 93.88888889])

These test accuracies should fall within or very close to the range of the k-fold
cross validation accuracies we calculated previously. For class 0, you can see
99.2%, which falls within the k-fold range of 99.2% – 99.6%, and for class 1, you
can see 93.9%, which falls just above the k-fold range of 91.0% – 93.8%. These
are good results, which give you confidence that your model will perform well
in production.

8.	 You have nearly finished creating your production model. Having selected the
best hyperparameters and tested the accuracy, now train a new model on the
full dataset with the following code:

features = ['satisfaction_level', 'last_evaluation', \

 'time_spend_company', 'number_project', \

 'average_montly_hours', 'first_principle_component', \

 'second_principle_component', \

 'third_principle_component',]

X = df[features].values

y = df['left'].values

clf = DecisionTreeClassifier(max_depth=8)

clf.fit(X, y)

190 | Model Validation and Optimization

9.	 To use this model in production without needing to retrain it each time, save it to
disk. Using the joblib module, dump the model to a binary file by running the
following code:

import joblib

joblib.dump(clf, 'hr-analytics-pca-tree.pkl')

10.	Check that your trained model was saved into the working directory. If your
Jupyter Notebook environment has bash support, this can be done by running
the following code:

!ls .

This will print the contents of the working directory:

chapter_5_workbook.ipynb hr-analytics-pca-tree.pkl

hr-analytics-pca.pkl

11.	 In order to use this model to make predictions, load it from this binary file by
running the following code:

clf = joblib.load('hr-analytics-pca-tree.pkl')

clf

The output of this command is as follows:

Figure 5.9: The decision tree model's representation

Now run through an example showing how this model can be used to make
predictions regarding employee turnover. You will pick a record from the training
data and feed it into the model for prediction.

Dimensionality Reduction with PCA | 191

12.	Select a record from the training data and filter it on the original feature
columns, and pretend this is the employee profile for Bob. Do this by running
the following code:

pca_features = ['salary_low', 'department_technical', \

 'work_accident','department_support', \

 'department_IT', 'department_RandD', \

 'salary_high', 'salary_medium', \

 'department_management','department_accounting', \

 'department_hr', 'department_sales', \

 'department_product_mng', 'promotion_last_5years', \

 'department_marketing']

non_pca_features = ['satisfaction_level', 'last_evaluation', \

 'time_spend_company','number_project', \

 'average_montly_hours']

bob = df.iloc[8483][pca_features + non_pca_features]

bob

This will print the following output, showing Bobs metrics across each
employee metric:

salary_low 1.00

department_technical 0.00

work_accident 0.00

department_support 0.00

department_IT 0.00

department_RandD 0.00

salary_high 0.00

salary_medium 0.00

department_management 0.00

department_accounting 0.00

department_hr 0.00

department_sales 1.00

department_product_mng 0.00

promotion_last_5years 0.00

department_marketing 0.00

192 | Model Validation and Optimization

satisfaction_level 0.77

last_evaluation 0.68

time_spend_company 2.00

number_project 3.00

average_montly_hours 225.00

Name: 8483, dtype: float64

In general, a prediction sample would need to be prepared in exactly the same
way that the training data was, which includes the same method of data cleaning
such as filling missing values and one-hot encoding categorical variables.

In this case (for Bob), this preprocessing has already been done. However, at
this point, assume that PCA transformations have not been done yet. This is a
necessary step in order to produce the proper input that your model requires.

13.	 Load the PCA transformation class that was saved to disk earlier in this exercise
and use it to transform the relevant features for Bob by running the
following code:

pca = joblib.load('hr-analytics-pca.pkl')

pca_feature_values = pca.transform([bob[pca_features]])[0]

pca_feature_values

This will print the following output, showing the principal components that we
need in order to make a prediction for Bob:

array([-0.67733089, 0.75837169, -0.10493685])

14.	Create a prediction vector for Bob that can be input into the prediction method
of your classification model by running the following code:

X_bob = np.concatenate((bob[non_pca_features].values, \

 pca_feature_values))

X_bob

This will print the following output:

array([7.70000000e-01, 6.80000000e-01, 2.00000000e+00,

 3.00000000e+00, 2.25000000e+02, -6.77330887e-01,

 7.58371688e-01, -1.04936853e-01])

15.	You are finally ready to see whether the model is predicting that Bob will leave
the company. Calculate this outcome by running the following code:

clf.predict([X_bob])

Dimensionality Reduction with PCA | 193

This will print the following output:

array([0])

This indicates that our model is predicting that Bob will not leave the company,
since he was assigned to class 0.

16.	You can see what probability the model has assigned to this prediction by using
its predict_proba method. Check this result by running the following code:

clf.predict_proba([X_bob])

This will print the following output:

array([[0.98, 0.02]])

This indicates that our model has assigned 98% probability to Bob remaining at
the company.

Note

To access the source code for this specific section, please refer to
https://packt.live/30GTi9a.

You can also run this example online at https://packt.live/2BcG5tP.

You have now reached the end of our final exercise with the Human Resource
Analytics dataset and successfully trained a model that can predict employee
turnover. In this exercise, you used validation curves for hyperparameter optimization
and k-fold cross validation model assessment to confirm the confidence in the model.

By training a model on the most important features, in addition to those produced
from dimensionality reduction, we were able to build a model that performs much
better than previous ones from Chapter 3, Preparing Data for Predictive Modeling.

Finally, you learned how to persist models on disk and reload them for use in
making predictions.

In the following activity, you will attempt to improve on the model we trained here.
This will give you an opportunity to apply the topics from this chapter and use the
skills you have learned from this book.

https://packt.live/30GTi9a
https://packt.live/2BcG5tP

194 | Model Validation and Optimization

Activity 5.01: Hyperparameter Tuning and Model Selection

In this final activity related to machine learning, we'll take everything we have learned
so far and put it together in order to build another predictive model for the employee
retention problem. We seek to improve the accuracy of the model from the preceding
exercise by training a Random Forest model.

In order to accomplish this, you will need to use the methods you've seen being
implemented throughout this chapter, such as k-fold cross validation and validation
curves. You will also need to confirm the validity of your model on testing data and
determine whether it's an improvement on previous work. Finally, you will apply the
model to a practical business situation. Perform the following steps to complete
this activity:

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 293.

1.	 Start up one of the following platforms for running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open the platform you chose in your web browser by copying and pasting
the URL, as prompted in the Terminal.

2.	 Load the required libraries and set up your plotting environment for
the notebook.

3.	 Start by loading the training dataset you generated earlier in the notebook
(hr_data_processed_pca.csv), assigning it to the df variable.

4.	 Select the same features from the table that were used in the final exercise of
this chapter (when we trained a decision tree with max_depth=8). Then, split
these into a training and validation set and a test set (X, X_test, y,
y_test). The test set should include 15% of the records.

Dimensionality Reduction with PCA | 195

5.	 Calculate a validation curve for Random Forest classification models with
n_estimators=50 over a range of max_depth values from 2 up to 52,
in increments of 2. In the k-fold cross validation step of the validation curve
calculation, assign the value of k to 5 by setting cv=5.

6.	 Draw the validation curve using the plot_validation_curve visualization
that was defined earlier in the notebook. Interpret the chart and note anything
that's different from the validation curve in the previous exercise. What would
you pick as the optimal value for max_depth?

7.	 Perform k-fold cross validation using the cross_val_class_score function
you defined earlier in the notebook, setting the Random Forest hyperparameters
as n_estimators=50 and max_depth=25. Are these results better than the
decision tree we trained in the previous exercise?

8.	 Evaluate the performance of this model on the test set by training it on the full
test and validation set (X, y), and then calculating its accuracy on each class
in the test set (X_test, y_test). Are the scores in an appropriate range to
validate the model?

9.	 Train this model on the full set of records in df.

10.	Save the model to disk, and then check that it is saved properly by reloading it.

11.	Check the model performance for an imaginary employee, Alice, by selecting
the appropriate features from row 573 of df. Make sure you select all of the
features needed to make a prediction, including the first, second, and third
principal components.

12.	Predict whether Alice is going to leave the company. Then, determine the
probability assigned to that prediction by the model.

13.	Adjust the feature values for Alice in order to determine the changes that would
be required to alter the model's prediction. Try setting average_montly_
hours=100 and time_spend_company=2. Then, rerun the model's
prediction probabilities. Was this adjustment enough to sway the model's
prediction on whether or not Alice is going to leave?

196 | Model Validation and Optimization

Summary
In this chapter, we have seen how to use Jupyter Notebooks to perform parameter
optimization and model selection.

We built upon the work we did in the previous chapter, where we trained predictive
classification models for our binary problem and saw how decision boundaries are
drawn for SVM, KNN, and Random Forest models. We improved on these simple
models by using validation curves to optimize parameters and explored how
dimensionality reduction can improve model performance as well.

Finally, at the end of the last exercise, we explored how the final model can be used in
practice to make data-driven decisions. This demonstration connects our results back
to the original business problem that inspired our modeling problem initially.

In the next chapter, we will depart from machine learning and focus on data
acquisition instead. Specifically, we will discuss methods for extracting web data and
learn about HTTP requests, web scraping with Python, and more data processing
with pandas. These topics can be highly relevant to data scientists, given the huge
importance of having good quality data to study and model.

Overview

In this chapter, you will learn to make HTTP requests and parse data
from HTML. Like in previous chapters, you will continue to get hands-on
experience working with datasets in Python, including merging tables and
preparing them for analysis. By the end of this chapter, you will be able to
use Python to make HTTP requests, such as API calls, and create pipelines
to extract data from web pages.

6
Web Scraping with

Jupyter Notebooks

200 | Web Scraping with Jupyter Notebooks

Introduction
So far in this book, we have focused on using Jupyter to build reproducible data
analysis and modeling workflows. We'll continue with a similar approach in this
chapter, but with the main focus being on data acquisition. In particular, we will show
you how data can be acquired from the web using HTTP requests. This will involve
making API requests and scraping web pages by parsing HTML. In addition to these
new topics, we'll continue to use pandas for building and transforming our datasets.

Before we cover HTTP requests and how to use them in Python, we'll discuss
the importance of gathering data from the web in general. The amount of data
that's available online is huge, and it's continuously growing at a staggering
pace. Additionally, it's becoming increasingly important for driving business
growth. Consider, for example, the ongoing global shift from technologies such
as newspapers, magazines, and TV to online content. With customized newsfeeds
available all the time on cell phones, and live news sources such as Facebook, Reddit,
Twitter, and YouTube, it's easy to see why the historical alternatives continue to lose
market share.

Internet Data Sources
As data scientists, the internet helps connect us with any kind of dataset we could
imagine. For instance, governments around the world publish public datasets that are
rich with information. Along the same lines, some companies make certain datasets
public, which can be of huge value within a given industry. One example of this is the
ride-sharing business Lyft, who has released open source data that could be beneficial
for training autonomous vehicles.

In addition to online datasets, Application Programming Interface (API) services
also exist, which provide relevant and fresh data programmatically. For example, a
business that depends on the weather may want an API that provides the current
conditions in a given region, along with updated forecasts. Processes could be set
up to query that API daily and update an internal database that's connected to a
dashboard in order to provide that and other relevant data to business stakeholders.

Internet Data Sources | 201

Web scraping is the process of extracting information from a web page, or set of
pages, using computer programs. This can be useful for pulling information from
websites that have not made their data easily accessible through other means (that is,
structured datasets or APIs).

While APIs are intended to be used programmatically, web scraping involves using
computers to ingest data that was intended for humans to see and understand.
Whereas API data is delivered in machine-readable formats such as XML or JSON,
web pages will generally render data in a human-readable format using HTML.

Thus, web scraping often involves the ability to extract structured data from HTML
text elements.

The exact process of web scraping will depend on the tool you're using, the specific
web page, and the desired content. In this book, we'll learn about web scraping
techniques we can use with Python by requesting and parsing data from Wikipedia.
By focusing on the underlying concepts as we progress through, we'll learn how easy
it can be to extract whatever is needed from an HTML page.

A more difficult aspect of web scraping can be requesting the HTML itself. It's
understandable why companies would not want arbitrary programs to be able to
request pages from their website since sending web pages to users requires their
resources. Unlike humans who browse websites at a reasonable pace, computers are
capable of asking for many web pages in a very small amount of time. Furthermore,
programmatic traffic is not of any value to a website. For example, computers are not
influenced by ads or interested in making a purchase.

Note

There may be legal issues with web scraping, depending on your region
and the terms and conditions of the website. Please do research the rules
and regulations with respect to your local jurisdiction before requesting
web pages programmatically (that is, before doing the exercises and
activity in this chapter). To mitigate ethical concerns, follow the guidelines
mentioned here.

202 | Web Scraping with Jupyter Notebooks

This brings us to an important point about the ethics of web scraping. While it's
not an uncommon practice in the industry, and while it can result in very valuable
data, it should not be done without considerations. For instance, you should be
aware that web scraping can cause businesses to incur costs on your behalf, and
that by requesting many pages in a short period of time, you are using up resources
that were intended for actual users browsing the website. In order to mitigate these
adverse consequences of web scraping, you should do the following:

•	 Limit the rate at which you make requests.

For example, you might sleep the script for at least a few seconds between
successive HTTP requests.

•	 Use a descriptive user agent to identify yourself to the website.

For example, the default user agent for Python's requests library would be
python-requests/2.22.0 (for version 2.22.0 of requests).

Check for a robots.txt file, which would live in the home folder of the website
(for example, www.website.com/robots.txt). Adhere to the rules of
this file by not scraping any page listed under a Disallow wildcard for relevant
user agents.

While web scraping can have negative consequences if done unethically, the ability
to programmatically request and parse information from websites can have very
positive consequences as well. For example, this is how search engines such as
Google are able to index websites, making them accessible via search. Furthermore,
web scraping is very important for testing websites to make sure that things are
functioning as expected, and that users are seeing the appropriate information
across the site.

While some of these concepts may seem abstract right now, such as making HTTP
requests or using web APIs, they will become clear as we continue to discuss them in
the section that follows. In particular, you may learn best by seeing them done with
Python, which is what we'll be doing in the exercises and activity to follow.

Introduction to HTTP Requests
The Hypertext Transfer Protocol, or HTTP for short, is the foundation of data
communication for the internet. It defines how a page should be requested and
how the response should look. For example, a client can request an Amazon page of
laptops for sale, a Google search of local restaurants, or their Facebook feed. Along
with the URL, the request will contain the user agent and available browsing cookies
among the contents of the request header.

Introduction to HTTP Requests | 203

The user agent tells the server what browser and device the client is using, which is
usually used to provide the most user-friendly version of the web page's response.
Perhaps they have recently logged in to the web page; such information would be
stored in a cookie that might be used to automatically log the user in.

These details of HTTP requests and responses are taken care of under the hood
thanks to web browsers. Luckily for us, today, the same is true when making requests
with high-level languages such as Python. For many purposes, the contents of request
headers can be largely ignored. Unless specified otherwise, these are automatically
generated in Python when requesting a URL. Still, for the purposes of troubleshooting
and understanding the responses yielded by our requests, it's useful to have a
foundational understanding of HTTP.

There are many types of HTTP methods, such as GET, HEAD, POST, and PUT. The first
two are used for requesting that data be sent from the server to the client, whereas
the last two are used for sending data to the server.

These HTTP methods can be summarized as follows:

•	 GET: Retrieves the information from the specified URL

•	 HEAD: Retrieves the meta-information from the HTTP header of the
specified URL

•	 POST: Sends the attached information for appending to the resource(s) at the
specified URL

•	 PUT: Sends the attached information for replacing the resource(s) at the
specified URL

A GET request is sent each time we type a web page address into our browser and
press Enter. For web scraping, this is usually the only HTTP method we are interested
in, and it's the only method we'll be using in this chapter.

Once the request has been sent, a variety of response types can be returned from the
server. These are labeled with 100-level to 500-level codes, where the first digit in the
code represents the response class. These can be described as follows:

•	 1xx: An informational response; for example, the server is processing a request.
It's uncommon to see this.

•	 2xx: Success; for example, the page has loaded properly.

•	 3xx: Redirection; for example, the requested resource has been moved and we
were redirected to a new URL.

204 | Web Scraping with Jupyter Notebooks

•	 4xx: Client error; for example, the requested resource does not exist.

•	 5xx: Server error; for example, the website server is receiving too much traffic
and could not fulfill the request.

For the purposes of web scraping, we usually only care about the response class, that
is, the first digit of the response code. However, subcategories of responses within
each class exist that offer more granularity regarding what's going on. For example, a
401 code indicates an unauthorized response, whereas a 404 code indicates a page
not found response. This distinction is noteworthy because a 404 would indicate
we've requested a page that does not exist, whereas 401 tells us we need to log in to
view the particular resource.

In the following exercise, we'll see how HTTP requests can be done in Python using
Jupyter Notebooks.

Making HTTP Requests with Python

Now that we've talked about how HTTP requests work and what type of responses
we should expect, let's see how this can be done in Python. We'll use a library called
requests, which is one of the most popular (if not the most popular) external
libraries for Python. Instead of using requests, it would also be possible to use
Python's built-in tools, such as urllib, for making HTTP requests, but requests is
far more intuitive and generally the best choice, as long as you're willing to add it as a
dependency for your project.

requests allows for all sorts of customization with respect to headers, cookies, and
authorization. It tracks redirects and provides methods for returning specific page
content such as JSON (as we'll see in the API exercise, Exercise 6.02, Making API calls
with Python and Jupyter Notebooks, later on).

One downside of requests is that it does not render JavaScript on the client-side
(that is, on your machine). When requesting pages, servers will usually return HTML
to you that have JavaScript code snippets included. If you're using a web browser
(Chrome, Firefox, and so on), these snippets are automatically run on your machine
during page load. When requesting content with Python using requests, however,
this JavaScript code will not be executed. Therefore, any elements that would be
altered or created by doing so will be missing.

Introduction to HTTP Requests | 205

Often, the lack of JavaScript rendering will not affect the ability to get the desired
information from a page. If you find that rendering JavaScript is required for your
use case, then you could consider doing this with a library such as Selenium. It has
a similar API to the requests library but provides support for rendering JavaScript
using web drivers. It can even run JavaScript commands on live pages, for example,
to change the text color or scroll to the bottom of the page. As you could imagine, it is
very useful for website testing purposes.

Let's dive into an exercise all about using the requests library with Python in a
Jupyter Notebook.

Exercise 6.01: Using Python and Jupyter Notebooks to Make HTTP Requests

Having learned the theory of HTTP requests, let's apply this in Python with Jupyter
Notebooks. In this exercise, you will learn how to make HTTP requests in the
notebook and how to interpret and work with the HTML response data. Follow these
steps to complete this exercise:

1.	 Create a Jupyter Notebook and load the following libraries:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

206 | Web Scraping with Jupyter Notebooks

2.	 Start by showing you a few ways to make HTTP requests with Python. Import the
requests library, as follows:

import requests

3.	 Then, prepare a request by running the following code:

url = 'https://jupyter.org/'

req = requests.Request('GET', url)

req = req.prepare()

You use the Request class to prepare a GET request to the jupyter.org
home page.

4.	 Print the docstring for the req prepared request by running req? in the next
cell. You will get the following output:

Figure 6.1: Printing the docstring for a PreparedRequest object

Looking at its usage, you can see how the request can be sent using a
session. This is similar to opening a web browser (starting a session) and then
requesting a URL.

Introduction to HTTP Requests | 207

5.	 Make the request and store the response in a variable named resp by running
the following code:

with requests.Session() as sess:

 resp = sess.send(req)

The preceding code returns the HTTP response, as referenced by the page
variable. By using the with statement, you initialize a session whose scope is
limited to the indented code block. This means you do not have to worry about
explicitly closing the session, as this is done automatically.

6.	 Run the resp and resp.status_code commands to investigate the
response. The string representation of the page should indicate a 200 status
code response.

The output of the resp command is as follows:

<Response [200]>

The output of the resp.status_code command is 200.

7.	 Assign the response text to the page_html variable and take a look at the first
1,000 characters of the string with the following command:

page_html = resp.text

page_html[:1000]

Here's the output showing first 100 characters:

Figure 6.2: Printing the response HTML content

As expected, the response is HTML.

You can format this output better with the help of BeautifulSoup, a library
that will be used extensively for HTML parsing later in this section.

208 | Web Scraping with Jupyter Notebooks

8.	 Print the head of the formatted HTML by running the following code:

from bs4 import BeautifulSoup

print(BeautifulSoup(page_html, 'html.parser').prettify()[:1000])

This displays the following output:

Figure 6.3: Displaying the response HTML content with indentation

You import BeautifulSoup and then print the output, where newlines are
indented depending on their hierarchy in the HTML structure.

9.	 Take this a step further and actually display the HTML in Jupyter by using the
IPython display module. Do this by running the following code:

from IPython.display import HTML

HTML(page_html)

Introduction to HTTP Requests | 209

Here's the screenshot of the output of this code:

Figure 6.4: HTML rendering without fetching images or running JavaScript

Here, you can see the HTML rendered as well as possible, given that no
JavaScript code has been run and no external resources have been loaded.
For example, the images that are hosted on the jupyter.org server are
not rendered. Instead, we can see the alternate text—that is, circle of
programming icons, jupyter logo, and so on.

210 | Web Scraping with Jupyter Notebooks

10.	Compare this to the live website, which can be opened in Jupyter using an
IFrame, by running the following code:

from IPython.display import IFrame

IFrame(src=url, height=800, width=800)

Here's the screenshot of the IFrame:

Figure 6.5: Loading a live web page in the Jupyter Notebook

Here, you can see the full site rendered, including JavaScript and external
resources. In fact, you can even click on the hyperlinks and load those pages in
the IFrame, just like a regular browsing session.

Note

It's good practice to close the IFrame after using it. This prevents it from
eating up memory and processing power. It can be closed by selecting the
cell and clicking the Current Outputs | Clear from the Cell
menu in the Jupyter Notebook.

Introduction to HTTP Requests | 211

11.	At the start of this exercise, you made a request by preparing it and then used
a session to send it. This is often done using a shorthand method instead, as
seen here.

Make a request to http://www.python.org/ by running the following code:

url = 'http://www.python.org/'

resp = requests.get(url)

resp

This will output the string representation of the page:

<Response [200]>

It should show a 200 status code, indicating a successful response to
your request.

12.	Run the following command to print the URL of your page:

resp.url

The output is as follows:

'https://www.python.org/'

13.	Run the following command to print the history attributes of the page.

resp.history

This will return [<Response [301]>].

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

The URL that's returned is not what we input; notice the difference? We were
redirected from the input URL, http://www.python.org/, to the secured version of that
page, https://www.python.org/. The difference is indicated by an additional s at the
start of the URL, in the protocol. Any redirects are stored in the history attribute;
in this case, we find one page in here with status code 301 (permanent redirect),
corresponding to the original URL that was requested.

http://www.python.org/
https://packt.live/2ACHg63
https://packt.live/2zDrqYu
http://www.python.org/
https://www.python.org/

212 | Web Scraping with Jupyter Notebooks

Making API Calls with Python

API calls can simply be an HTTP request, such as those that we looked at in the
previous exercise. One difference is that API requests are generally expected to
return data in machine-readable format, as opposed to regular web requests, which
are expected to return HTML that browsers can render.

Another difference is that API calls are more likely to require authentication of some
kind, such as passing a token parameter in the request URL or specifying request
headers. Many APIs have more involved authentication methods, such as using
the OAuth 2.0 protocol. These types of API requests are outside the scope of this
book since we'll only be focusing on the simplest cases where no authentication is
required.

In the next exercise, we'll show how to pull article information from Wikipedia using
their free API. We'll use this API to extract data from a wiki table on interest rates by
country. Then, in a later activity, Activity 6.02, Analyzing Country Populations and Interest
Rates, we'll revisit this same table and learn how to extract the same data with HTML
web scraping techniques.

Exercise 6.02: Making API calls with Python and Jupyter Notebooks

API calls allow you to access well-structured data on demand. Knowing how to use
them is a necessary skill for data scientists to have. In this exercise, you will work
with the Wikipedia API in order to learn about how APIs can be used in general. You
will make API requests and ingest the JSON response data. Follow these steps to
complete this exercise:

1.	 Start up one of the following platforms for running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

2.	 Load the following libraries. You will use these to configure your plot settings for
the Notebook:

import pandas as pd

import numpy as np

import datetime

import time

import os

Introduction to HTTP Requests | 213

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

import requests

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

3.	 Run the following code to define your API request URL:

Note

Watch out for the slashes in the string below. Remember that the
backslashes (\) are used to split the code across multiple lines, while the
forward slashes (/) are part of the URL.

url = ('https://en.wikipedia.org/w/api.php' \

 '?action=parse' \

 '&page=List_of_countries_by_central_bank_interest_rates' \

 '§ion=1' \

 '&prop=wikitext' \

 '&format=json')

url

This will result in the following output:

https://en.wikipedia.org/w/api.php?action=parse&page=List_
of_countries_by_central_bank_interest_
rates§ion=1&prop=wikitext&format=json

Here, you are requesting the resource that satisfies a set of parameters, such as
action, page, section, and so on. Notice that you have explicitly requested
a response in .json format by appending &format=json to the URL.
These parameters are specific to the Wikipedia API, but many APIs work in a
similar way.

214 | Web Scraping with Jupyter Notebooks

4.	 Make the API request by running the following code:

resp = requests.get(url)

resp

This will print the following output:

<Response [200]>

5.	 Run resp.text[:100] to print the first 100 lines of the response string. This
should result in the following output:

'{"parse":{"title":"List of countries by central bank interest
rates","pageid":20582369,"wikitext":{"'

Notice how the string appears to represent JSON data, which is what we asked
for when making the request.

6.	 Convert the string into a Python dictionary by running the following code:

data = resp.json()

type(data)

This should output the data object type, as follows:

dict

7.	 Run the data command to print the data object. Take note of some of the
nested fields in the data, such as parse, pageid, and wikitext:

Figure 6.6: The response data in JSON format

8.	 Extract the page title from the API response data by running the
following command:

data['parse']['title']

This should output the following:

'List of countries by central bank interest rates'

Introduction to HTTP Requests | 215

9.	 Extract a row from the table contained in the API response data. This can be
done by running the following code:

row_idx = 16

wikitext = data['parse']['wikitext']['*']

table_row = wikitext.split('|-')[row_idx]

table_row

This should output something similar to the following:

' \n|align="left"| {{flag|Canada}} || 1.75 ||
{{dts|format=dmy|2018-10-24}}<ref name="CentralBankNews"/><ref
name="GlobalRates">{{Cite web|url=http://www.global-rates.com/
interest-rates/central-banks/central-banks.aspx|title=Central banks -
summary of current interest rates|work=global-rates.com|accessdate=13
July 2017}}</ref>\n|1.40\n|0.35\n|1.25\n'

Ideally, the table data returned from Wikipedia's free API would be in a nicer
format for us to ingest programmatically. As you can see, this is not quite the
case. In the preceding output, you extracted the table from the response data as
a wikitext string, and then separated the rows by splitting on |-.

10.	Use regular expressions to parse data from the row. Get the country for the
extracted row by running the following code:

import re

re.findall('flag\|([^}]+)}', table_row)

This should output the country name in a list, for example, the following:

['Canada']

Again, note that APIs would usually make this data easily available to the
application using it. In this case, for Wikipedia, you are still able to access the
data with relative ease by extracting the field in between flag| and }. In this
case, you extracted Canada from {{flag|Canada}}.

11.	 Instead of using regular expressions, some data is easier to extract using Python
string methods, such as split and strip. Get the interest rate for your
extracted row by running the following command:

table_row.split('||')[1].strip()

216 | Web Scraping with Jupyter Notebooks

This should output the interest rate as a string; for example:

'1.75'

By iterating over all of the rows in the API response data, you can apply this
extraction to each and pull out all of the data for the requested table resource.

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

This concludes our section on API calls. In the exercise to follow, we'll be looking
at the same Wikipedia data we used here and show how it can be extracted by
parsing HTML, as opposed to extracting data by using an API call. This is purely for
demonstration purposes, and you should always prefer using APIs as a data source,
when available, compared to getting data from HTML scraping.

Parsing HTML with Jupyter Notebooks

Scraping data from a web page involves making an HTTP request for the HTML
resource, and then extracting data from the response content. An easy way to do
this is by feeding this response content (HTML) into a high-level parsing library such
as Python's BeautifulSoup. This is not to say this is the only way of doing this;
in principle, it would be possible to pick out the data using regular expressions or
Python string methods such as split. However, pursuing either of these options
would be an inefficient use of time and could easily lead to errors. Therefore,
it's generally frowned upon and, instead, the use of a trustworthy parsing tool
is recommended.

In order to understand how content can be extracted from HTML, it's important to
know the fundamentals of HTML. For starters, HTML stands for Hyper Text Markup
Language. Like Markdown or XML (eXtensible Markup Language), it's simply a
language for marking up text.

In HTML, the display text is contained within the content section of HTML elements;
for example:

<p>Here is the text to display!</p>

https://packt.live/2ACHg63
https://packt.live/2zDrqYu

Introduction to HTTP Requests | 217

In this piece of HTML, the content text to display is wrapped by <p> tags. Some
common tag types are as follows:

•	 <p> (paragraph)

•	 <div> (text block)

•	 <table> (data table)

•	 <h1> (heading)

•	 (image)

•	 <a> (hyperlinks)

Tags can have attributes, which specify important metadata. Most commonly, this
metadata is used to control how and where the element text should appear on the
page. This is where CSS files come into play. Consider the following example:

<p id="my-paragraph">Here is the text to display!</p>

In this piece of HTML, we are assigning an id to the <p> tag. This id can be
referenced in a CSS file in order to set the style properties of the tag.

Attributes can store other useful information, such as the href hyperlink in an <a>
tag, which specifies a URL link, or the alternate alt label in an tag, which
specifies the text to display if the image resource cannot be loaded. Consider the
following example:

In this piece of HTML, we're displaying an image that will be sourced from the my_
picture.png resource. If this resource is not found, then the alt attribute text will
be seen instead. This element is then wrapped in an <a> tag, where the href
attribute points to the location of the full-quality image. This will allow the user to
navigate to that page by clicking on the image.

Now that we're properly equipped with some fundamental knowledge of HTML, let's
turn our attention back to the Jupyter Notebook and parse some data. We'll also
be using the developer tools window from the Chrome web browser, since it's very
helpful when it comes to HTML parsing.

218 | Web Scraping with Jupyter Notebooks

Exercise 6.03: Parsing HTML with Python and Jupyter Notebooks

In this exercise, we'll focus on extracting data from HTML documents. You will learn
how to implement Python parsing techniques and see why Jupyter Notebooks are
such a good fit for this task. Follow these steps to complete this exercise:

1.	 Create a new notebook using either of the following commands:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

2.	 Run the following code to load some libraries. You will use these libraries to
configure your plot settings for the notebook:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

import requests

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

Introduction to HTTP Requests | 219

3.	 Scrape the central bank interest rates for each country, as reported by Wikipedia.
Before diving into the code, open up the web page containing the data to
be extracted.

Go to https://en.wikipedia.org/wiki/List_of_countries_by_central_bank_interest_rates in
a web browser. Use Chrome, if possible, as later in this exercise, we'll show you
how to view and search the HTML using Chrome's developer tools.

Looking at the page, you can see very little content other than a big list of
countries and their interest rates. This is the table you'll be scraping.

4.	 Return to the Jupyter Notebook and request the page by running the
following code:

url = 'https://en.wikipedia.org/wiki/List_of_countries_by_'\

 'central_bank_interest_rates'

resp = requests.get(url)

print(resp.url, resp.status_code)

This should output the URL, followed by a 200 status code indicating success:

https://en.wikipedia.org/wiki/List_of_countries_by_central_bank_
interest_rates 200

5.	 Load the HTML as a BeautifulSoup object so that it can be parsed. Do this by
running the following code:

from bs4 import BeautifulSoup

soup = BeautifulSoup(resp.content, 'html.parser')

Note

We're using Python's default html.parser as the parser, but other
parsing libraries, such as lxml, can be installed and used instead. Since
each HTML parser has different logic for interpreting documents, the
resulting BeautifulSoup object may vary, depending on which is used.

https://en.wikipedia.org/wiki/List_of_countries_by_central_bank_interest_rates

220 | Web Scraping with Jupyter Notebooks

6.	 Usually, when working with a new object in Jupyter, such as the
BeautifulSoup object you created previously, it's a good idea to pull up
the docstring.

Do this by running soup?, as shown in the following screenshot:

Figure 6.7: The docstring for a BeautifulSoup object

Introduction to HTTP Requests | 221

As can be seen, it's not particularly helpful in this case because the docstring is
not very informative.

Another tool for exploring Python objects is the built-in dir function, which lists
the attributes and methods of an object. Call this by running dir(soup), as
shown here:

Figure 6.8: The output of dir(soup)

Scrolling through the list, you will see the methods and attributes that
we'll be using later, such as find_all, attrs, and text. Still, this is not
particularly informative.

222 | Web Scraping with Jupyter Notebooks

7.	 There is yet another way of getting information on Python objects, which you
will see here. Install the external library called pdir2 with pip, by running the
following in your Terminal:

pip install pdir2

Once installed, this can be used by running the following code:

import pdir

pdir(soup)

Notice that we import pdir, even though the package is listed on the Python
Packaging Index (PyPI) as pdir2:

Figure 6.9: The output of pdir(soup)

Here, you can see a similar list of methods and attributes that can be called on
soup, but now they are organized into groupings, and descriptions are included
where applicable.

Introduction to HTTP Requests | 223

Since we'll be using the find_all method, let's search for that description in
the list. It should read as follows:

Figure 6.10: Description of the find_all method

8.	 It's time to start parsing data from our HTML. To start with, get the h1 heading
for the page by running the following code:

h1 = soup.find_all('h1')

h1

This should output a list that contains the page title element:

[<h1 class="firstHeading" id="firstHeading" lang="en">List of countries
by central bank interest rates</h1>]

Usually, pages only have one h1 (top-level heading) element, so it's no surprise
that there is only one found here.

9.	 At this point, you have identified the HTML element that contains your data, but
the field still needs to be extracted as a string. To do this, run the next few cells
one by one in the notebook:

h1 = h1[0]

Print the HTML element attributes as follows:

h1.attrs

The output is as follows:

{'id': 'firstHeading', 'class': ['firstHeading'], 'lang': 'en'}

224 | Web Scraping with Jupyter Notebooks

Print the visible text as follows

h1.text

The output is as follows:

'List of countries by central bank interest rates'

The following screenshot shows the output of the preceding code:

First, you assign the h1 variable to the first (and only) list element with h1
= h1[0].

Then, print out the HTML element attributes with h1.attrs. Here, you can see
the id and class elements, both of which can be referenced in CSS stylesheets.

Finally, you get the title as plain text by running h1.text.

10.	Run the following to see the number of image tags you were able to extract:

imgs = soup.find_all('img')

len(imgs)

This should return a number around 100, indicating the number of images on
the page.

11.	 In this case, most of these images correspond to country flags in the table.
This can be seen by printing the source of each image. Do this by running the
following code:

for element in imgs:

 if 'src' in element.attrs.keys():

 print(element.attrs['src'])

This should output the path of each image resource, as shown in the
following sample:

//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.
svg/21px-Flag_of_Albania.svg.png
//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_of_Angola.
svg/23px-Flag_of_Angola.svg.png
//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Flag_of_
Argentina.svg/23px-Flag_of_Argentina.svg.png

Introduction to HTTP Requests | 225

12.	Now, scrape the data from the table. Use Chrome's developer tools to hunt
down the relevant HTML elements.

If you haven't done so already, open the Wikipedia page in Chrome. Then, in
the browser, select Developer Tools from the More Tools menu button,
which is shown with three vertical dots:

Figure 6.11: Opening the developer tools menu

You can also open the Developer Tools by pressing Ctrl + Shift + I on
Windows or Linux, or Ctrl + Option + I on Mac. A sidebar will open where you can
view the HTML. You can do this by clicking on the Elements tab.

13.	Select the arrow icon at the top left of the tools sidebar. This allows us to hover
over the page and see where the HTML element is located. Do this by going to
the Elements section of the sidebar:

Figure 6.12: Arrow icon for locating HTML elements

226 | Web Scraping with Jupyter Notebooks

14.	Hover over the body to see how the table is contained within the div that has
id="bodyContent".

Figure 6.13: The parent div of the table we want to extract

15.	Now, go back to your notebook and select that div by running the
following command:

body_content = soup.find('div', {'id': 'bodyContent'})

Here, you're using the find method, which is identical to the find_all
method you used previously, except that it returns only the first match. When
calling this, you passed a second argument, {'id': 'bodyContent'}, which
follows the form {attribute_name: attribute_value}.

16.	Having narrowed down the content of interest, continue to seek out the table
within this subset of the full HTML.

Usually, tables are organized into headers (<th>), rows (<tr>), and data entries
(<td>). Using this knowledge, attempt to get the table headers by running the
following code:

table_headers = body_content.find_all('th')

table_headers

This should output a list of heading elements, starting with those shown here:

[<th>Country or
currency union</th>,

 <th>Central bank
 interest rate (%)</th>,

Introduction to HTTP Requests | 227

 <th>Date of last
 change

 </th>,

 <th>Average inflation rate 2013-2017 (%)

...

17.	Our next step is parsing the headers as plain text, from this list of HTML
elements. Do this by running the following code:

for i, t in enumerate(table_headers):

 print(i, t.text.strip())

 print('-'*10)

This should output the column names, starting with those shown here:

0 Country orcurrency union

1 Central bank interest rate (%)

2 Date of last change

3 Average inflation rate 2013-2017 (%)

by WB and IMF[1][2] as in the List

...

18.	You will now extract data for the first four columns of the table. Using the
preceding output as a reference, manually set the header names for our table by
running the following code:

table_headers = ['Country or currency union', \

 'Central bank interest rate (%)', \

 'Date of last change', \

 'Average inflation rate (%)']

19.	Now, you are ready to extract the data., first figuring out how this should be
done on a per-row basis.

Select the HTML element for a row in the table by running the following code:

row_number = 8

row_data = body_content.find_all('tr')[row_number]\

 .find_all('td')

228 | Web Scraping with Jupyter Notebooks

Whereas you searched for all the header elements before, here, you are looking
for all the rows and then selecting them at index 8 (selected at random). Then, in
the same line of code, search for all the data elements, td, in that row.

20.	Run the row_data command in the notebook to see the resulting data
elements that make up the row:

Figure 6.14: The data elements in a selected row

21.	Recall when you iterated through the header elements and pulled the text for
each. Here, you will do an analogous operation on the row data.

Run the following code:

for i, d in enumerate(row_data):

 print(i, d.text)

This should output the row data and indices so that they are easy to interpret,
as follows:

0 Bahrain

1 2.50

2 31 July 2019[3]

3 2.40

4 0.10

5 1.04

Introduction to HTTP Requests | 229

Using this row as an example, look at each element of interest and determine
how to best parse the data entry. Recall that you are interested in the following
columns: Country or currency union, Central bank interest
rate (%), Date of last change, and Average inflation
rate (%).

22.	The first entry you are interested in is the country. Assign the d1 variable to the
HTML element for that entry by running the following code:

d1 = row_data[0]

d1

This should output the unparsed element as a string, as shown here:

<td align="left"><img alt=""
class="thumbborder" data-file-height="900" data-file-width="1500"
decoding="async" height="14" src="//upload.wikimedia.org/wikipedia/
commons/thumb/2/2c/Flag_of_Bahrain.svg/23px-Flag_of_Bahrain.svg.png"
srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Flag_of_
Bahrain.svg/35px-Flag_of_Bahrain.svg.png 1.5x, //upload.wikimedia.
org/wikipedia/commons/thumb/2/2c/Flag_of_Bahrain.svg/46px-Flag_of_
Bahrain.svg.png 2x" width="23"/> <a href="/wiki/Bahrain"
title="Bahrain">Bahrain</td>

By looking at the preceding element, you can see that our country name is
embedded in an <a> tag. Therefore, the country can be cleanly parsed by
searching for that <a> tag, and then getting the text content.

23.	 First, run d1.text and notice how the output has a character such as \xa0
before the country. This is clearly not wanted.

24.	Next, run the following three commands, where you will find the <a> tag and
then get its content, which should be the clean country name, as expected:

d1.txt

d1.find('a')

d1.find('a').text

The d1.txt command will return '\xa0Bahrain', d1.find('a') will
return Bahrain,
and d1.find('a').text command returns 'Bahrain'.

25.	Moving on to the second data element, which will correspond to the interest
rate, run the next couple of cells in the notebook to parse the value:

d2 = row_data[1]

d2

230 | Web Scraping with Jupyter Notebooks

This will return <td>2.50</td>.

Note how we leave the number as a string, for now:

d2.text

The output is '2.50'.

26.	 For the next data element, you need to parse the date. Look at the element itself
by running the following code:

d3 = row_data[2]

d3

This should output the unparsed element as a string, as shown here:

<td><span data-sort-value="000000002019-05-24-0000" style="white-
space:nowrap">24 May 2019<sup class="reference" id="cite_
ref-CentralBankNews_3-1">[3]</
a></sup>
</td>

Similar to the country name entry, you can see that the date is embedded within
another HTML element. In particular, it's in a tag.

Like you did previously, first run d3.text and notice how the output has
unwanted characters such as "[3]\n", which follow the date.

Next, run the d3.find_all('span') and d3.find_all('span')[0].
text commands, where you find the tag and then get its content,
which should be the clean date, as expected:

Figure 6.15: Parsing the date from a span element

Introduction to HTTP Requests | 231

27.	The final entry we are interested in is the inflation rate. Look at this element by
running the following code:

d4 = row_data[3]

d4

This should output the unparsed element as a string, as shown here:

<td>2.40

</td>

28.	Run the d4.text and d4.text.strip() commands to parse this data.
Notice how, after running d4.text, we have an unwanted newline character.
This can be removed by calling the strip string method.

Executing d4.text will return '2.40\n' and executing d4.text.strip()
will return '2.40'.

29.	Having written the proper code for parsing a row, you are ready to perform
the full scrape. This is done by iterating over the row elements, <th>, and
attempting to extract the data for each, like you did previously. Do this by
running the following code:

int_rates_data = []

row_elements = body_content.find_all('tr')

for i, row in enumerate(row_elements):

 row_data = row.find_all('td')

 if len(row_data) < 3:

 print('Ignoring row {} because length < 4'.format(i))

 continue

 d1, d2, d3, d4 = row_data[:4]

 errs = []

 try:

 d1 = d1.find('a').text

 except Exception as e:

 d1 = ''

 errs.append(str(e))

232 | Web Scraping with Jupyter Notebooks

 try:

 d2 = d2.text

 except Exception as e:

 d2 = ''

 errs.append(str(e))

 try:

 d3 = d3.find_all('span')[0].text

 except Exception as e:

 d3 = ''

 errs.append(str(e))

 try:

 d4 = d4.text.strip()

 except Exception as e:

 d4 = ''

 errs.append(str(e))

 data = [d1, d2, d3, d4]

 print(data)

 int_rates_data.append(data)

 if errs:

 print('Errors in row {}: {}'.format(i, ', '.join(errs)))

There are a few interesting parts of this loop:

•	 We watch for rows with unexpected qualities – in this case, ones that have a
length of less than 4 – and ignore them.

•	 We use try...except logic to deal with rows that have errors.

•	 We print out data as we iterate.

•	 Errors do not go unnoticed! We print them out as well as we iterate.

Introduction to HTTP Requests | 233

The output should be similar to the following:

Ignoring row 0 because length < 4

['Albania', '1.00', '6 June 2016', '1.75']

['Angola', '15.50', '24 May 2019', '17.54']

['Argentina', '68.00', '15 October 2019', '31.17']

['Armenia', '5.75', '29 January 2019', '2.38']

['Australia', '0.75', '1 October 2019', '1.93']

['Azerbaijan', '8.25', '26 July 2019', '6.51']

['Bahamas', '4.00', '22 December 2016', '0.97']

...

Ignoring row 99 because length < 4

Ignoring row 100 because length < 4

Ignoring row 101 because length < 4

Ignoring row 102 because length < 4

Ignoring row 103 because length < 4

You will notice that some rows raised errors, such as the following message:

Errors in row 26: list index out of range

While this error affected row 26 at the time of writing, this may change in the
future. All you know from this message is that a list index was out of range, so
let's try to understand this by looking at it in more detail.

30.	Pick out the bad row by running the following command:

bad_row_26 = body_content.find_all('tr')[26]

If needed, please adjust the index accordingly to reflect the errors that were
raised in parsing the data for your particular table.

31.	Next, unpack the row entries into the same variables you used previously for
figuring out how to parse our data. Do this by running the following command:

d1, d2, d3, d4 = bad_row_26.find_all('td')[:4]

234 | Web Scraping with Jupyter Notebooks

32.	Now, you can attempt to parse the data from each of these items by using the
same methods as before, until you identify where the error came from. Do this
by running the following few cells:

d1.find('a').text

float(d2.text)

d3.find_all('span')[0].text

Upon running these cells, you will see the following output:

Figure 6.16: Troubleshooting for a row that could not be parsed

As can be seen, the first and second entries parse properly, but the third
entry fails to parse and returns the index out of range error that was
seen initially.

33.	Here, you can see that find_all('span') seems to have returned no match,
and therefore fails to look up the first (position "0") index. Confirm that this is the
case by running the following command:

d3.find_all('span')

This should output an empty list, as expected.

Introduction to HTTP Requests | 235

34.	Now that you have parsed your data, write it to disk.

First, print the table headers that we set earlier using table_
headers command:

['Country or currency union',

 'Central bank interest rate (%)',

 'Date of last change',

 'Average inflation rate (%)']

35.	Next, print the data that we parsed from the page as follows:

int_rates_data

The output is as follows:

Figure 6.17: The data that was extracted from Wikipedia

236 | Web Scraping with Jupyter Notebooks

36.	 In order to write this data to disk, you are going to use the pandas library. Save
the data into a CSV file by running the following code:

f_path = '../data/countries/interest_rates_raw.csv'

pd.DataFrame(int_rates_data, columns=table_headers)\

 .to_csv(f_path, index=False)

37.	Check that the data has been written properly by opening the CSV file with a text
reader or Excel. If your Jupyter environment supports bash, then you can check
the head of the table by running the following code:

%%bash

head ../data/countries/interest_rates_raw.csv

The output displayed is shown here:

Figure 6.18: The first 10 rows of the extracted Wikipedia data in a CSV file

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

That's it for the first web scraping exercise. Hopefully, you enjoyed putting what
you've learned about HTTP requests and HTML into practice by scraping interest
rate data by country. In the following activity, you'll have the opportunity to attempt
the same process on your own, in order to pull a table that lists the population of
each country.

https://packt.live/2ACHg63
https://packt.live/2zDrqYu

Introduction to HTTP Requests | 237

Activity 6.01: Web Scraping with Jupyter Notebook

In this activity, we are going to get the population of each country. Then, in the next
topic, we'll combine this data with the data we pulled from the previous exercise, in
order to create a dataset that can be used for analysis.

Here, we'll look at another Wikipedia page, which is available at
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population.

Our aim is to apply the concepts that we looked at previously to a new web page with
different data.

In order to do this, follow these steps:

1.	 Create a new Jupyter Notebook and load the necessary libraries.

2.	 Run the following code to assign the url as a variable:

url = 'https://en.wikipedia.org/wiki/List_of_countries_and'\

 '_dependencies_by_population'

3.	 Render an IFrame in the notebook with a live version of the web page. Then,
close this by selecting Cell | Current Outputs | Clear.

4.	 Use the requests library to request the page.

5.	 Instantiate a BeautifulSoup object, which we can use to parse the
page HTML.

6.	 Find the h1 of the page. of the page.

7.	 Select the <div> tag with id:bodyContent.

8.	 Search this div element for the table headers and print the element text for
each, along with their index.

9.	 Manually set the table headers in a variable. We are interested in the columns
with indices 1-4, as follows: Country (or dependent territory), Population, %
of World Population, and Date.

10.	 Find all the <tr> elements (rows) of the table. Then, select one of them and find
all the <td> elements (data entries) in that row.

11.	Determine the number of data entries in the row.

https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population

238 | Web Scraping with Jupyter Notebooks

12.	Print out the data entry elements you found.

13.	 Iterate over the data entries and print their text, along with the index number.

14.	Select the elements we are interested in parsing. Recall that this will correspond
to indices 1-4.

15.	Assign the d1, d2, d3, and d4 variables to each index and run through the same
process that we followed in the previous exercise in order to parse clean data
entries for each. For now, leave any numeric field as a string.

16.	Once you have figured out how to parse the data from each entry, iterate over
the rows, just like we did in the previous exercise, and parse the relevant data
for each.

17.	Print out the data you were able to pull for the table. This should have
four columns.

18.	Print out the corresponding headers, all of which were manually set earlier in
this activity.

19.	Write the data into a CSV file using pandas. Use the../data/countries/
populations_raw.csv file path.

20.	Open up your CSV file and make sure it looks as expected.

Note

The solution to this activity can be found on page 301.

To summarize, we've seen how Jupyter Notebooks can be used for web scraping.
We started this chapter by learning about HTTP methods and status codes. Then, we
used the requests library to actually perform HTTP requests with Python and saw
how the BeautifulSoup library can be used to parse response HTML.

Our Jupyter Notebooks turned out to be great for this type of work. We were able to
explore the results of our web requests and experiment with various HTML parsing
techniques, render the HTML, and even load a live version of the web page inside
the notebook!

In the next section of this chapter, we'll process the raw data we've collected thus far
with pandas in order to prepare it for analysis. Then, we'll close out this chapter with
an activity that ties the concepts that we learned about from earlier chapters together
using our new web-scraped data.

Data Workflow with pandas | 239

Data Workflow with pandas
As we've seen time and time again in this book, pandas is an integral part of
performing data science with Python and Jupyter Notebooks. DataFrames offer us a
way to organize and store labeled data, but more importantly, pandas provides time-
saving methods for transforming data. Examples we have seen in this book include
dropping duplicates, mapping dictionaries to columns, applying functions over
columns, and filling in missing values.

In the next exercise, we'll reload the raw tables that we pulled from Wikipedia, clean
them up, and merge them together. This will result in a dataset that is suitable for
analysis, which we'll use for a final exercise, where you'll have an opportunity to
perform exploratory analysis and apply the modeling concepts that you learned
about in earlier chapters.

Exercise 6.04: Processing Data for Analysis with pandas

In this exercise, we continue working on the country data that was pulled from
Wikipedia in the preceding sections. Recall that we extracted the central bank
interest rates and populations of each country, and saved the raw results in CSV
files. We'll load the data from these files and process them to prepare the datasets
for analysis. This will involve renaming columns, dropping missing data, and making
sure the datatypes of each column are appropriate. Follow these steps to complete
this exercise:

1.	 Start up one of the following platforms for running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

2.	 Run the following code to load the libraries that are required for this exercise:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

240 | Web Scraping with Jupyter Notebooks

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

3.	 Load the raw data that you pulled in the previous sections by running the
following code:

df_populations = pd.read_csv('../data/countries'\

 '/populations_raw.csv')

df_int_rates = (pd.read_csv('../data/countries'\

 '/interest_rates_raw.csv'))

Note

This file can also be found in this book's GitHub repository at
https://packt.live/2MYlCvs.

4.	 Run the following command to check the first five rows of df_populations:

df_populations.head()

The output is as follows:

Figure 6.19: First five rows of df_populations

https://packt.live/2MYlCvs

Data Workflow with pandas | 241

5.	 Run the following command to check the head df_int_rates:

df_int_rates.head()

The output is as follows:

Figure 6.20: The head of each table we extracted from Wikipedia

You will now clean up each table by making sure each column has the
appropriate datatype and looking for rows with missing entries. This will give you
the opportunity to do exploratory analysis.

6.	 Set the display limits for pandas DataFrames so that you can see up to 10,000
rows from each table (although there are far less in these datasets). Do this by
running the following command:

pd.options.display.max_rows = 10000

7.	 Print the entire populations table and scan down the rows in your notebook.

Figure 6.21: Displaying the full populations table in Jupyter

242 | Web Scraping with Jupyter Notebooks

8.	 First, deal with the column names. Print these out by running the
following command:

df_populations.columns

This should output the following:

Index(['Country(or dependent territory)', 'Population',

 '% of WorldPopulation', 'Date'],

 dtype='object')

9.	 When working with data in pandas, you want column names to be descriptive
and easy to type. It is good practice to ensure lowercase words are separated by
underscores, as per the Python naming convention.

Manually set the column names by running the following code:

df_populations.columns = ['country', 'population', \

 'population_pct', 'date',]

10.	Print the datatypes of each column by running df_populations.dtypes.
This should output the following:

country object

population object

population_pct object

date object

dtype: object

Each column seems to be of the object type, which can be interpreted as a
string type in pandas.

11.	You would expect populations to be numeric values. Print out a random
sample to try and understand why this is not the case. Do this by running the
following commands:

np.random.seed(0)

df_populations['population'].sample(10)

Here, you have set the random seed so that sampling will be reproducible for a
given dataset. You should see something similar to the following:

110 6,533,500

150 1,902,000

37 38,379,000

75 13,249,924

Data Workflow with pandas | 243

109 6,825,442

71 16,244,513

122 5,009,466

73 15,473,818

154 1,454,789

234 3,198

Name: population, dtype: object

Here, you can see that the existence of commas in each entry is causing them to
be interpreted as strings, instead of integers.

12.	Convert the population column into a numeric datatype by running the
following code:

df_populations['population'] = df_populations['population']\

 .str.replace(',','')

df_populations['population'] = \

pd.to_numeric(df_populations['population'], \

 errors='coerce',)

First, you use a string method to remove any commas and replace them with
empty space. Then, you pass over the data again and use the pd.to_numeric
function to convert each entry into a numeric datatype.

13.	Did you notice that we set errors='coerce' in the preceding code? In order
to understand why this was done, pull up the docstring for that function by
running pd.to_numeric?:

Figure 6.22: The docstring for pd.to_numeric

244 | Web Scraping with Jupyter Notebooks

As can be seen, setting errors='coerce' will cause any parsing errors to
yield NaNs. This is in contrast to the default behavior of pd.to_numeric,
which raises errors when parsing fails for any data entry.

14.	Moving on, the next column to deal with is population percent, which should also
be a numeric datatype. Print out a random sample of that column by running the
following commands:

np.random.seed(0)

df_populations['population_pct'].sample(10)

You should see something similar to the following:

110 0.0838%

150 0.0244%

37 0.492%

75 0.170%

109 0.0875%

71 0.208%

122 0.0642%

73 0.198%

154 0.0187%

234 0.0000410%

Name: population_pct, dtype: object

Here, the existence of percent signs (%) in each entry is causing them to be
interpreted as strings, instead of integers.

15.	Convert the population percent column into a numeric datatype by running the
following code:

df_populations['population_pct'] = df_populations['population_pct']\

 .str.replace('%','')

df_populations['population_pct'] = \

pd.to_numeric(df_populations['population_pct'], \

 errors='coerce',)

16.	The final column to fix is the date column, which was also loaded as a string. It's
very normal for pandas to load dates as strings unless instructed otherwise.

Data Workflow with pandas | 245

Similar to the preceding commands, you can convert the date entries from
string into datetime objects using pd.to_datetime. Do this by running
the following code:

df_populations['date'] = pd.to_datetime(df_populations['date'], \

 errors='coerce',)

17.	Print the datatypes of the table by running df_populations.dtypes.
This should output the following:

country object

population int64

population_pct float64

date datetime64[ns]

dtype: object

18.	 Look for missing records by running the following command:

df_populations.isnull().sum()

The output should be similar to the following:

country 4

population 1

population_pct 1

date 0

dtype: int64

19.	Now, deal with this missing data. Identify the rows that have missing data and
print them out by running the following code:

missing_mask = df_populations.isnull().any(axis=1)

df_populations[missing_mask]

This should display the missing data as follows:

Figure 6.23: Output showing the missing data

246 | Web Scraping with Jupyter Notebooks

20.	You are simply going to drop these missing rows. In order to do this, first select
the indices to drop. Looking back at the row indices displayed in the preceding
table, these appear to be rows 121, 190, and 218. Select these dynamically by
running the following code:

drop_indices = df_populations.index[missing_mask]

drop_indices

This should output the expected list of indices:

Int64Index([0, 123, 219, 242], dtype='int64')

21.	Drop these rows by running the code:

df_populations = df_populations.drop(drop_indices)

Now that it's been cleaned up, you can write our resulting table to file by running
the following command:

f_name = '../data/countries/populations.csv'

df_populations.to_csv(f_name, index=False)

22.	Having processed the populations table, now do the same for the interest rates
table. Start out by making sure the max row limit on pandas is large enough to
view the entire table. Then, print it out by running df_int_rates:

Figure 6.24: Displaying the full interest rates table in Jupyter

Data Workflow with pandas | 247

Look at the column names by running df_int_rates.columns.

You should see the following output:

Index(['Country or currency union', 'Central bank interest rate (%)',

 'Date of last change', 'Average inflation rate (%)'],

 dtype='object')

23.	Now, set these manually by running the following code:

df_int_rates.columns = ['country', 'interest_rate_pct', \

 'date_of_last_change', \

 'average_inflation_rate_pct']

24.	Print the datatypes of each column by running df_int_rates.dtypes.

You should see the following output:

country object

interest_rate_pct object

date_of_last_change object

average_inflation_rate_pct float64

dtype: object

25.	The interest rate column should be a numeric datatype. Print a sample of
the entries to see what might be the problem here. Do this by running the
following code:

np.random.seed(0)

df_int_rates['interest_rate_pct'].unique()

Here's the output showing sample entries:

array(['1.00', '15.50', '68.00', '5.75', '0.75', '8.25', '4.00',

 '2.50', '6.00', '7.00', '9.50', '5.00', '4.25', '0.00',

 '1.75', '5.50', '2.95', '4.20', '2.00', '9.00', '3.00',

 '-0.75', '5.25', '6.50', '13.25', '0.50', '20.00', '0.90',

 '3.25', '5.40', '18.00', '0.25', '-0.10', '3.75', '10.00',

 '2.75', '13.50', '7.50', '8.00', '11.00', '2.25', '12.75',

 '1.50', '0.19', '13.00', '1.25', '7.25', '-0.25', '1.375',

 '9.25', '7.75', '11.25', '-', '16.00', '10.25'],

 dtype=object)

248 | Web Scraping with Jupyter Notebooks

26.	Here, you can see one particular bad value that's made its way into the column:
the - sign. Otherwise, the data looks pretty good. Use pd.to_numeric to
convert this column:

df_int_rates['interest_rate_pct'] = \

pd.to_numeric(df_int_rates['interest_rate_pct'], \

 errors='coerce',)

The bad value you just identified, -, will be converted into a NaN entry because
we have set errors=because.

27.	Convert the date entries into datetime objects by running the following code:

df_int_rates['date_of_last_change'] = \

pd.to_datetime(df_int_rates['date_of_last_change'])

28.	Print the datatypes of our cleaned up table by running df_int_rates.
dtypes. This should output the following:

country object

interest_rate_pct float64

date_of_last_change datetime64[ns]

average_inflation_rate_pct float64

dtype: object

29.	 Look for missing records and deal with them, just like you did for the
populations table. Do this by running the following command:

df_int_rates.isnull().sum()

You should see output similar to the following:

country 1

interest_rate_pct 1

date_of_last_change 2

average_inflation_rate_pct 8

dtype: int64

30.	Again, like you did for the populations table, select any rows that have missing
entries and look at them. Do this by running the following code:

missing_mask = df_int_rates.isnull().any(axis=1)

df_int_rates[missing_mask]

Data Workflow with pandas | 249

The following screenshot shows the table with the missing data:

Figure 6.25: Displaying the rows with missing values

31.	Since many of these rows have good information intact, you would generally
want to keep them around. You may also want to go back to earlier work
and adjust how the data was scraped so that you are able to capture this
missing data.

For the purposes of this book, however, you are going to drop this data. That
way, you will have a very clean dataset to work with in the final activity. Select the
indices of the rows to drop by running the following code:

drop_indices = df_int_rates.index[missing_mask]

drop_indices

This should output the row numbers as expected, based on the preceding table:

Int64Index([16, 20, 22, 25, 27, 35, 77, 88, 89, 91], dtype='int64')

32.	Drop these rows by running the following code:

df_int_rates = df_int_rates.drop(drop_indices)

250 | Web Scraping with Jupyter Notebooks

33.	Now that it's been cleaned up, you can write your resulting table to file by
running the cell containing the following code:

f_name = '../data/countries/ interest_rates.csv'

df_populations.to_csv(f_name, index=False)

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

This concludes the exercise on processing data for analysis with pandas. We loaded
the raw data in the format it was extracted in from Wikipedia, and then processed
the tables in order to clean up the data fields prior to analysis. This involved altering
column names, checking for null values, converting datatypes, and dropping
missing data.

In the next exercise, we'll merge the two tables we processed here.

Exercise 6.05: Merging Data with pandas

We're just about ready to start exploring the data that was cleaned in the previous
exercise. The final step we'll need to do is merge the two tables. This can be done
by joining the rows from each table on the country. We'll load the processed data
from previously saved files and merge them into a single DataFrame that will then be
used as the data source for our final analysis activity. Follow these steps to complete
this exercise:

1.	 Start up one of the following platforms for running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open up the platform you chose in your web browser by copying and
pasting the URL, as prompted in the Terminal.

https://packt.live/2ACHg63
https://packt.live/2zDrqYu

Data Workflow with pandas | 251

2.	 Run the following code to load some of the libraries that you will use to
configure our plot settings for the Notebook:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p numpy,pandas,matplotlib,seaborn

3.	 Reload the processed datasets by running the following code:

df_int_rates = pd.read_csv('../data/countries/interest_rates.csv')

df_populations = pd.read_csv('../data/countries/populations.csv')

4.	 Run the following command to print the columns table of df_int_rates:

df_int_rates.columns

The output is as follows:

Index(['country', 'interest_rate_pct', 'date_of_last_change',

 'average_inflation_rate_pct'],

 dtype='object')

252 | Web Scraping with Jupyter Notebooks

Run the following command to print the columns table of df_populations:

df_populations.columns

The output is as follows:

Index(['country', 'population', 'population_pct',

 'date'], dtype='object')

5.	 Looking at the columns for each table, you can see that they should be joined
on the country key. Perform an outer merge by running the following code:

df_merge = pd.merge(df_populations, df_int_rates, \

 left_on='country', right_on='country', \

 how='outer')

df_merge

This will output a display of the merged table:

Figure 6.26: The merged populations and interest rates table

6.	 When doing this merge, you lost some important context on the date
columns. Fix this by renaming those columns, running the following code:

column_map = {'date': 'date_population_update', \

 'date_of_last_change': \

 'date_interest_rate_last_change'}

df_merge = df_merge.rename(columns=column_map)

Here, you have defined how the columns should be mapped and then executed
the logic by using the rename function on our DataFrame.

Data Workflow with pandas | 253

7.	 Run the df_merge.head() command to print the head of our DataFrame
and confirm the column names have been altered, as expected:

Figure 6.27: The merged table head, showing the updated column names

Since you performed an outer merge, pandas will use all the data from both
tables and insert NaN entries for keys that don't align between the two.

8.	 Print the number of NaN entries in the merged table by running the
following command:

df_merge.isnull().sum()

This should output the following:

country 0

population 1

population_pct 1

date_population_update 1

interest_rate_pct 157

date_interest_rate_last_change 157

average_inflation_rate_pct 157

dtype: int64

9.	 Now, drop these rows. First, run len(df_merge) to print the current
length of the table. Then, print out a few sample records by running the
following command:

df_merge[df_merge.isnull().any(axis=1)].sample(10)

254 | Web Scraping with Jupyter Notebooks

Current length of the table is 240. Here's the output showing our merged tables:

Figure 6.28: A sample of rows with missing values

10.	You can see that many of the rows that contain population data do not have
interest rate data. In order to drop rows that have any missing values, run the
following command:

df_merge = df_merge.dropna()

11.	Then, confirm that all the missing entries have been dropped by running the
following command:

df_merge.isnull().sum()

This should output the following:

country 0

population 0

population_pct 0

date_population_update 0

interest_rate_pct 0

date_interest_rate_last_change 0

average_inflation_rate_pct 0

dtype: int64

12.	Print the new length by running len(df_merge). Note how it's much shorter
than before.

13.	 Lastly, having cleaned up our dataset in preparation for analysis, write the table
to a CSV file by running the following code:

f_name = '../data/countries/country_data_merged.csv'

df_merge.to_csv(f_name, index=False)

Data Workflow with pandas | 255

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

So far in this chapter's exercises, we have gathered country population and interest
rate datasets from Wikipedia and cleaned them up using pandas and Jupyter
Notebooks. This was all done in a reproducible environment that could serve as the
backbone of a data pipeline. A positive implication of this is being able to return to
your analysis after having forgotten about the details, easily understand how it's
working, and debug new issues that may arise as you step through the notebook. In
addition, you could share this work with colleagues who can reproduce your results
from scratch. This notebook could also serve as the foundation for a data pipeline
that you may wish to run periodically to extract and process the most current data.

Activity 6.02: Analyzing Country Populations and Interest Rates

The aim of this activity is to give you an opportunity to apply the analysis techniques
you've learned about in this book, such as data loading, visualization, and
exploratory analysis.

You'll start this activity by loading the processed data that has been gathered and
processed previously. By the end of this activity, you will have a deeper understanding
of some of the key information in the dataset, and an array of different visualizations
of the data. Follow these steps to complete this exercise:

1.	 Create a new Jupyter Notebook and load the necessary libraries.

2.	 Load the table that we processed in the previous exercise into a pandas
DataFrame with a variable name of df. Recall that this data was saved to the
country_data_merged.csv file. Print the head of the table to check that it
looks as you expect it to.

3.	 Print the datatypes of each column. Do you notice any issues?

4.	 Convert the date column datatypes into datetimes.

5.	 Check if there's any missing data in the table.

6.	 Plot and compare the histograms for the date columns, that is,
date_population_update and date_interest_rate_last_change.

https://packt.live/2ACHg63
https://packt.live/2zDrqYu

256 | Web Scraping with Jupyter Notebooks

7.	 What country in the dataset has the oldest date since the last interest
rate change?

8.	 Do any countries in the dataset have negative interest rates? If so, then
which ones?

9.	 Plot a bar chart of the top countries by population.

10.	Plot a scatter chart of population_pct versus interest_rate_pct.

11.	Can you see any outliers along the population axis? If so, then what are they?

12.	Plot a scatter chart of average_inflation_rate_pct versus
interest_rate_pct.

Note

The solution to this activity can be found on page 309. The solution also
includes some bonus material that shows how you can take the analysis
further by fitting a clustering model on the data. Feel free to explore the
bonus material and use it as a starting point for your own further research.

Summary
In this chapter, we worked through the process of pulling tables from Wikipedia using
web scraping techniques, cleaning up the resulting data with pandas, and producing a
final analysis.

We started by looking at how HTTP requests work, focusing on GET requests and
their response status codes. Then, we went into the Jupyter Notebook and made
HTTP requests with Python using the requests library. We saw how Jupyter can
be used to render HTML in the notebook, along with actual web pages that can be
interacted with. In order to learn about web scraping, we saw how BeautifulSoup
can be used to parse text from the HTML, and used this library to scrape tabular data
from Wikipedia.

After pulling two tables of data, we processed them for analysis with pandas. The first
table contained the central bank interest rates for each country, while the second
table contained the populations. We combined these into a single table that was then
used for the final analysis, which involved creating visualizations to find patterns.

Now, let's take a step back from this chapter specifically and review what we have
learned since the start of this book.

Summary | 257

In the first chapter, we walked through an overview of the data science landscape in
order to set the context for the remainder of this book. We learned about the origin
of data science and introduced key concepts in the field, such as being able to plan
out data-driven solutions to business problems and understanding the roles of data
visualization, exploration, and modeling. We also looked at various career paths,
ways to get involved in the community, and discussed some challenges presented by
data science.

Next, we introduced Jupyter Notebooks and learned why they are useful for data
analysis and modeling. We ran through two interfaces for running them: the older
Jupyter Notebook platform and the newer Jupyter Lab. Then, we ran through a
sample notebook to explore how they work and learn about Jupyter features such as
magic functions and tab completion.

Having learned the basic functionality of Jupyter, we started working through a
notebook where we studied the Boston Housing dataset. This was our first time
using Jupyter to study real-world style problems, where we explored the dataset using
the pandas library and created a handful of visualizations and simple models.

After we were finished with the Boston Housing dataset, we turned our attention
to a key component of data science: predictive modeling. We expanded on some
of the ideas we presented in the opening chapter by discussing the steps for
planning a modeling strategy in detail. We also learned about another key step in
modeling data, which is the data preparation stage, which is necessary before using
training algorithms. Among other considerations, this included filling missing data,
converting from categorical into numeric features, and splitting data into training and
testing sets.

At this point, we introduced the Human Resource Analytics dataset for the Employee
Retention Problem. After identifying a modeling strategy around this dataset, we
applied data processing techniques to clean it up so that it was ready to be used
to train machine learning models. We started by focusing on just two features in
the dataset and learned about training simple models such as Support Vector
Machines (SVMs) and k-Nearest Neighbors (KNN) classifiers. In particular, we paid
close attention to the decision boundaries that were formed by such models and the
effects of overfitting.

Having worked through the basics of modeling, we then introduced some more
advanced concepts in machine learning, including k-fold cross-validation and
validation curves. Applying these to our problem, we attempted to increase our
model accuracy by optimizing hyperparameters such as the max depth of our
Random Forest model.

258 | Web Scraping with Jupyter Notebooks

Finally, we learned about the dimensionality reduction technique known as PCA and
applied it to our problem in order to help boost the overall accuracy of our model.

Finally, in the last part of this book, we shifted briefly from data modeling and analysis
to learn about data collection from the web. In particular, we learned about making
web requests with Python in order to call Web APIs or HTML resources and parse
data from the response. We finished up this section by applying what we learned
earlier in this book to explore, visualize, and model the data we collected.

Whether or not you were experienced with Python or Jupyter coming into this book,
hopefully you've learned plenty of useful and applicable skills for approaching and
solving data science problems.

As you move forward on your learning path, you're encouraged to continue building
on the topics that piqued your interest in this book. You may wish to seek out
resources such as those discussed in the article, Data Science at a Glance, and work
through data science projects of your own from start to finish.

As a student of data science or a professional, you will continuously be presented
with difficult problems that must be overcome. Persevering in the face of adversity
is not something that can be taught, but instead must come from within. So, if you
ever feel like giving up, perhaps you can be motivated by the thought that few things
worthwhile are ever easy.

Appendix

262 | Appendix

Chapter 1: Introduction to Jupyter Notebooks

Activity 1.01: Using Jupyter to Learn about pandas DataFrames

Solution:

1.	 Start one of the following platforms to run Jupyter Notebooks:

Jupyter Notebook (run jupyter notebook)

JupyterLab (run jupyter lab)

Then, open the platform in your web browser by copying and pasting the URL,
as prompted in the Terminal.

2.	 Load the numpy library as follows:

import numpy as np

3.	 Import pandas, as follows:

import pandas as pd

4.	 Pull up the docstring for the pandas DataFrame object, as follows:

pd.DataFrame?

The output is as follows:

Figure 1:39: The docstring for pd.DataFrame

Chapter 1: Introduction to Jupyter Notebooks | 263

5.	 Use a dictionary to create a DataFrame with fruit and score columns,
as follows:

fruit_scores = {'fruit': ['apple', 'orange', \

 'banana', 'blueberry'], \

 'score': [4, 2, 9, 8],}

df = pd.DataFrame(data=fruit_scores)

The DataFrame is as follows:

Figure 1.40: A DataFrame with fruits and their scores

6.	 Use tab completion to pull up a list of functions available for the DataFrame by
typing df. and pressing Tab. The list of functions should then appear as a list of
autocomplete options, as follows:

Figure 1.41: Example of the tab help feature in Jupyter

264 | Appendix

7.	 Pull up the docstring for sort_values by running a cell with the
following code:

df.sort_values?

The output is as follows:

Figure 1.42: The docstring for pd.DataFrame.sort_values

8.	 Sort the DataFrame by score in descending order, as follows:

df.sort_values(by='score', ascending=False)

The output is as follows:

Figure 1.43: Sorted fruits DataFrame

Chapter 1: Introduction to Jupyter Notebooks | 265

9.	 This will compute and display the sorted DataFrame; however, the original
sorting on df will remain intact.

10.	See how long it takes to compute the preceding sorting operation, as follows:

%timeit df.sort_values(by='score', ascending=False)

The output is as follows:

349 µs ± 6.43 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

Note

To access the source code for this specific section, please refer to
https://packt.live/3ftGze0.

You can also run this example online at https://packt.live/2Y49zTQ.

https://packt.live/3ftGze0
https://packt.live/2Y49zTQ

266 | Appendix

Chapter 2: Data Exploration with Jupyter

Activity 2.01: Building a Third-Order Polynomial Model

Solution:

1.	 Load the necessary libraries and the dataset from scikit-learn, as follows:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets

boston = datasets.load_boston()

df = pd.DataFrame(data=boston['data'], \

 columns=boston['feature_names'],)

df['MEDV'] = boston['target']

2.	 First, we will pull out our dependent feature and target variable from df,
as follows:

y = df['MEDV'].values

x = df['LSTAT'].values.reshape(-1,1)

This is identical to what we did earlier for the linear model.

3.	 Verify what x looks like by executing the following code:

x[:3]

The output is as follows:

array([[4.98],

 [9.14],

 [4.03]])

Notice how each element in the array is itself an array with length 1. This is what
reshape(-1,1) does, and it is the form expected by scikit-learn.

4.	 Transform x into polynomial features by importing the appropriate
transformation tool from scikit-learn and instantiating the third-degree
polynomial feature transformer:

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=3)

Chapter 2: Data Exploration with Jupyter | 267

The rationale for this step may not be immediately obvious but will be
explained shortly.

The representation of poly is as follows:

PolynomialFeatures(degree=3, include_bias=True,

 interaction_only=False, order='C')

5.	 Transform the LSTAT feature (as stored in the x variable) by running the fit_
transform method, as follows:

x_poly = poly.fit_transform(x)

Here, we have used the instance of the transformer feature to transform the
LSTAT variable.

6.	 Verify what x_poly looks like by using the following code:

x_poly[:3]

The output is as follows:

array([[1. , 4.98 , 24.8004 , 123.505992],

 [1. , 9.14 , 83.5396 , 763.551944],

 [1. , 4.03 , 16.2409 , 65.450827]])

Unlike x, the arrays in each row now have a length of 4, where the values have
been calculated as xº, x¹, x², and x³.

Now, we are going to use this data to fit a linear model. Labeling the features
as a, b, c, and d, we will calculate the coefficients αₒ, α1, α2, and α3 of the
linear model:

Figure 2.28: Linear model equation

We can plug in the definitions of a, b, c, and d to get the following polynomial
model, where the coefficients are the same as the previous ones:

Figure 2.29: Third-order polynomial equation

268 | Appendix

7.	 Import the LinearRegression class and train a linear classification mode by
running the following command:

from sklearn.linear_model import LinearRegression

clf = LinearRegression(fit_intercept=False)

clf.fit(x_poly, y)

The output is as follows:

LinearRegression(copy_X=True, fit_intercept=False,

 n_jobs=None, normalize=False)

8.	 Extract the coefficients and print the polynomial model using the following code:

x_0, x_1, x_2, x_3 = clf.coef_

msg = ('model: y = {:.3f} + {:.3f}x + {:.3f}x^2 + {:.3f}x^3'\

 .format(x_0, x_1, x_2, x_3))

print(msg)

The output is as follows:

model: y = 48.650 + -3.866x + 0.149x^2 + -0.002x^3

Determine the predicted values for each sample and calculate the residuals by
running the following code:

y_pred = clf.predict(x_poly)

resid_MEDV = y - y_pred

9.	 Print the first 10 residual values, as follows:

resid_MEDV[:10]

The output is as follows:

array([-8.84025736, -2.61360313, -0.65577837, -5.11949581,

 4.23191217, -3.56387056, 3.16728909, 12.00336372,

 4.03348935, 2.87915437])

We'll plot these soon in order to compare them with the linear model residuals,
but first, we will calculate the MSE.

Chapter 2: Data Exploration with Jupyter | 269

10.	Run the following code to print the MSE for the third-order polynomial model:

from sklearn.metrics import mean_squared_error

error = mean_squared_error(y, y_pred)

11.	Print the MSE, as follows:

print('mse = {:.2f}'.format(error))

The output is as follows:

mse = 28.88

As can be seen, the MSE is significantly less for the polynomial model compared
to the linear model (which was 38.5). This error metric can be converted into an
average error in dollars by taking the square root. Doing this for the polynomial
model, we find that the average error for the median house value is only $5,300.

Now, we'll visualize the model by plotting the polynomial line of best fit along
with the data.

12.	Plot the polynomial model along with the samples, as follows:

fig, ax = plt.subplots()

Plot the samples

ax.scatter(x.flatten(), y, alpha=0.6)

Plot the polynomial model

x_ = np.linspace(2, 38, 50).reshape(-1, 1)

x_poly = poly.fit_transform(x_)

y_ = clf.predict(x_poly)

ax.plot(x_, y_, color='red', alpha=0.8)

ax.set_xlabel('LSTAT')

ax.set_ylabel('MEDV')

plt.savefig('../figures/chapter-2-boston-housing-poly.png', \

 bbox_inches='tight', dpi=300,)

270 | Appendix

The output is as follows:

Figure 2.30: Plot of the polynomial model for MEDV

Here, we are plotting the red curve by calculating the polynomial model
predictions on an array of x values. The array of x values was created using
np.linspace, resulting in 50 values arranged evenly between 2 and 38.

Now, we'll plot the corresponding residuals. Although we used seaborn for this
earlier, we'll have to do this manually to show results for a scikit-learn model.
Since we already calculated the residuals, as referenced by the resid_MEDV
variable, we simply need to plot this list of values on a scatter chart.

Chapter 2: Data Exploration with Jupyter | 271

13.	Plot the residuals by running the following code:

fig, ax = plt.subplots(figsize=(5, 7))

ax.scatter(x, resid_MEDV, alpha=0.6)

ax.set_xlabel('LSTAT')

ax.set_ylabel('MEDV Residual $(y-\hat{y})$')

plt.axhline(0, color='black', ls='dotted')

plt.savefig('../figures/chapter-2-boston-housing-'\

 'poly-residuals.png', \

 bbox_inches='tight', dpi=300,)

This will result in the following output:

Figure 2.31: Plot of the polynomial model residuals

272 | Appendix

Compared to the linear model's LSTAT residual plot, the polynomial model
residuals appear to be more closely clustered around y - ŷ = 0. Note that y is the
sample MEDV and that ŷ is the predicted value. There are still clear patterns, such
as the cluster near x = 7 and y = -7 that indicates suboptimal modeling.

Note

To access the source code for this specific section, please refer to
https://packt.live/2UIzwq8.

You can also run this example online at https://packt.live/37DzuVK.

https://packt.live/2UIzwq8
https://packt.live/37DzuVK

Chapter 3: Preparing Data for Predictive Modeling | 273

Chapter 3: Preparing Data for Predictive Modeling

Activity 3.01: Preparing to Train a Predictive Model for Employee Retention

Solution:

1.	 Check the head of the table by running the following command:

%%bash

head ../data/hr-analytics/hr_data.csv

Note how we specify paths relative to the notebook's location. In this case, we
need to step back one directory (by using ".." in the file path), which brings us
to the root folder for the project. Then, we look in data/hr-analytics
for hr_data.csv.

This will generate the following output:

Figure 3.25: Printing the head of hr_data.csv with bash

2.	 If you cannot run bash in your notebook, run the following command:

with open('../data/hr-analytics/hr_data.csv', 'r') as f:

 for _ in range(10):

 print(next(f).strip())

The output is as follows:

Figure 3.26: Printing the head of hr_data.csv with Python

274 | Appendix

Judging by the output, convince yourself that it looks to be in standard CSV
format. For CSV files, we should be able to simply load the data with
pd.read_csv.

3.	 Load the data with pandas, as follows:

df = pd.read_csv('../data/hr-analytics/hr_data.csv')

You should write this out yourself and try using tab completion to help type the
file path.

4.	 Inspect the columns as follows:

df.columns

The output is as follows:

Figure 3.27: Columns loaded from hr_data.csv

5.	 Ensure that the data has loaded as expected by printing the head of the
DataFrame, as follows:

df.head()

The output is similar to the following:

Figure 3.28: The head of hr_data.csv in a pandas DataFrame

Note

The preceding DataFrames are cropped for representation purpose.
The complete output can be found here: https://packt.live/2YEsiUX.

https://packt.live/2YEsiUX

Chapter 3: Preparing Data for Predictive Modeling | 275

6.	 Print the tail of the DataFrame, as follows:

df.tail()

The output is as follows:

Figure 3.29: The tail of hr_data.csv in a pandas DataFrame

We can see that it appears to have loaded correctly. Based on the tail index
values, there are nearly 15,000 rows.

Note

The preceding DataFrames are cropped for representation purpose.
The complete output can be found here: https://packt.live/2YEsiUX.

7.	 Check the number of rows (including the header) in the CSV file with the
following code:

with open('../data/hr-analytics/hr_data.csv') as f:

 num_lines = len([line for line in f.read().splitlines()\

 if line.strip()])

num_lines

This will print the following output:

15000

8.	 See how many rows are in the DataFrame:

len(df)

This will print the following output:

14999

https://packt.live/2YEsiUX

276 | Appendix

This number is one less than the number of rows in the file, since it does not
include the header (column names). Therefore, we can conclude that all the
records have been loaded.

9.	 Check how the left target variable is distributed, as follows:

df.left.value_counts()

This will print the following output:

no 11428

yes 3571

Name: left, dtype: int64

10.	This can be visualized as follows:

df.left.value_counts().plot('barh')

plt.show()

The output is as follows:

Figure 3.30: Distribution of the left target variable

Chapter 3: Preparing Data for Predictive Modeling | 277

About three-quarters of the samples are employees who have not left. The
group that has left make up the other quarter of the samples. This tells us we
are dealing with an imbalanced classification problem, which means we'll have to
take special measures to account for each class when calculating accuracies.

11.	Check for missing values, as follows:

df.left.isnull().sum()

This will print the following output:

0

As can be seen, there are no missing values.

12.	Print the data type of each column, as follows:

df.dtypes

Observe how we have a mix of continuous and discrete features:

Figure 3.31: Data types of each column

13.	Display the feature distributions by running the following code:

for f in df.columns:

 fig = plt.figure()

 s = df[f]

 if s.dtype in ('float', 'int'):

 num_bins = min((30, len(df[f].unique())))

 s.hist(bins=num_bins)

 else:

 s.value_counts().plot.bar()

 plt.xlabel(f)

278 | Appendix

The output is as follows:

Figure 3.32: Distribution of values for each column (1/2)

Chapter 3: Preparing Data for Predictive Modeling | 279

The rest of the plots look as follows:

Figure 3.33: Distribution of values for each column (2/2)

For many of the features, we can see a wide distribution over the possible
values, indicating a good variety in the feature spaces. This is encouraging;
features that are strongly grouped around a small range of values may not be
very informative for our model. For example, we can see that this is the case for
promotion_last_5years, where the vast majority of samples are 0.

280 | Appendix

14.	Check how many NaN values are in each column, as follows:

df.isnull().sum() / len(df) * 100

The output is as follows:

Figure 3.34: Percentage of values that are missing in each column

Here, we can see that there are about 2.5% missing for average_monthly_
hours, 1% missing for time_spend_company, and 98% missing for
is_smoker.

15.	Drop the is_smoker column as there is barely any information in this metric.
This can be done as follows:

del df['is_smoker']

16.	 Fill in the NaN values in the time_spend_company column. This can be done
with the following code:

fill_value = df.time_spend_company.median()

df.time_spend_company = df.time_spend_company.fillna(fill_value)

The final column to deal with is average_montly_hours. We could do
something similar to what we did previously and use the median or rounded
mean as the integer fill value. Instead, though, let's try to take advantage of its
relationship with another variable. This may allow us to fill in the missing data
more accurately.

Chapter 3: Preparing Data for Predictive Modeling | 281

17.	Check for the following:

df.isnull().sum() / len(df) * 100

The output is as follows:

Figure 3.35: Boxplot showing how the average monthly hours and number of projects
are related

18.	Make a boxplot of average_montly_hours segmented by number_
project, as follows:

sns.boxplot(x='number_project', y='average_montly_hours', data=df)

plt.savefig('../figures/chapter-3-hr-analytics-hours-num-'\

 'proj-boxplot.png', bbox_inches='tight', dpi=300,)

Note

The path will differ based on where you want to save the image.

282 | Appendix

The output is as follows:

Figure 3.36: Average number of hours worked for each "number of projects" bucket

Here, we can see how the number of projects is correlated with average_
monthly_hours, a result that is hardly surprising. We'll exploit this relationship
by filling in the NaN values of average_montly_hours based on the number
of projects for that record.

Specifically, we'll use the mean of each group.

Chapter 3: Preparing Data for Predictive Modeling | 283

19.	 Calculate the mean of each group, as follows:

mean_per_project = (df.groupby('number_project') \

 .average_montly_hours.mean())

mean_per_project = dict(mean_per_project)

mean_per_project

The output is as follows:

{2: 160.16353543979506,

 3: 197.47882323104236,

 4: 205.07858315740089,

 5: 211.99962839093274,

 6: 238.73947368421054,

 7: 276.015873015873}

Then, we can map this onto the number_project column and pass the
resulting series object as the argument to fillna.

20.	 Fill in the NaN values in average_montly_hours, as follows:

fill_values = df.number_project.map(mean_per_project)

df.average_montly_hours = (df.average_montly_hours\

 .fillna(fill_values))

21.	Confirm that df has no more NaN values by running the following assertion test.
If it does not raise an error, then you have successfully removed the NaN values
from the table:

assert df.isnull().sum().sum() == 0

22.	Transform the string and Boolean fields into integer representations. In
particular, we'll manually convert the left table variable from yes and no into
1 and 0 and build the one-hot encoded features. This can be done using the
following code:

df.left = df.left.map({'no': 0, 'yes': 1})

df = pd.get_dummies(df)

23.	Show the fields as follows:

df.columns

284 | Appendix

The output is as follows:

Figure 3.37: A screenshot of the different fields in the DataFrame

Here, we can see that department and salary have been split into various
one-hot encoded features.

The final step to perform in order to prepare our data for machine learning is to
scale the features, but it's not appropriate to do this now. We'll learn more about
feature scaling when we train our first models on the Human Resource Analytics
dataset in the next chapter.

24.	We have completed the data preprocessing stage and are ready to move
on to training the models. Let's save our preprocessed data by running the
following code:

df.to_csv('../data/hr-analytics/hr_data_processed.csv', \

 index=False)

Note

When saving the pandas DataFrame as a CSV file, notice that we pass the
index=False argument. This is done so that our index is not written to
file. In general, the index might contain multiple fields of information, but in
our case, it's simply a label range spanning from 0 to the length of our data.
Therefore, we should not bother writing this information to the output CSV.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YEsiUX.

You can also run this example online at https://packt.live/2Y3vvi4.

https://packt.live/2YEsiUX
https://packt.live/2Y3vvi4

Chapter 4: Training Classification Models | 285

Chapter 4: Training Classification Models

Activity 4.01: Training and Visualizing SVM Models with Scikit-learn

Solution:

1.	 Create a new Jupyter notebook.

2.	 In the first cell, add the following lines of code to load the libraries we'll be using
and set up our plot environment for the notebook:

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (8, 8)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

3.	 In the next cell, enter the following code to print the date, version numbers, and
hardware information:

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

286 | Appendix

You should get the following output:

Figure 4.19: Output of loading all the required libraries

4.	 Load the preprocessed Human Resource Analytics dataset by running the
following command:

df = pd.read_csv('../data/hr-analytics/hr_data_processed.csv')

Note

The path will vary based on where the data is stored. Provide the absolute
path, in case you are working from a different folder.

Chapter 4: Training Classification Models | 287

5.	 Describe the number_project and average_monthly_hours features by
running the following command:

df[['number_project', 'average_montly_hours']].describe()

This produces the following output:

Figure 4.20: Summary description of values for number_project and average_monthly_hours

Comparing the mean, min, and max of each, notice how number_project is
limited to the range 2 – 7, whereas average_monthly_hours ranges from
96 – 310.

6.	 Split the number_project and average_monthly_hours features into
training and testing sets by running the following code:

from sklearn.model_selection import train_test_split

features = ['number_project', 'average_montly_hours']

X_train, X_test, \

y_train, y_test = train_test_split(df[features].values, \

 df['left'].values, \

 test_size=0.3, \

 random_state=1,)

288 | Appendix

7.	 Scale the data using a MinMaxScaler library by running the following code:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

When training models earlier in the notebook, we used a StandardScaler
library, which scales each feature so that their variance is the same and they are
centered around 0.

The MinMaxScaler library scales each feature to be in a range of 0 to 1. We
can observe this by running the following code:

(X_train_scaled.flatten().mean(),

 X_train_scaled.flatten().min(),

 X_train_scaled.flatten().max())

This will print the following output:

(0.4231614367047082, 0.0, 1.0)

8.	 Train an SVM with the rbf kernel by running the following code:

from sklearn.svm import SVC

svm = SVC(kernel='rbf', C=1, random_state=1, gamma='scale')

svm.fit(X_train_scaled, y_train)

Chapter 4: Training Classification Models | 289

9.	 Calculate the classification accuracy on the test set by running the
following code:

from sklearn.metrics import accuracy_score

y_pred = svm.predict(X_test_scaled)

accuracy_score(y_test, y_pred) * 100

This will print the following output, indicating an overall accuracy of ~88.8%:

88.84444444444445

10.	Calculate the class accuracies on the test set by running the following code:

from sklearn.metrics import confusion_matrix

cmat = confusion_matrix(y_test, y_pred)

cmat.diagonal() / cmat.sum(axis=1) * 100

This will print the following output, indicating an accuracy of ~96% for class 0 and
~66% accuracy for class 1:

array([95.98946136, 66.32841328])

11.	Plot the decision regions for the model by running the following code:

from mlxtend.plotting import plot_decision_regions

N_samples = 200

X, y = X_train_scaled[:N_samples], y_train[:N_samples]

plot_decision_regions(X, y, clf=svm)

plt.xlim(-0.2, 1.2)

plt.ylim(-0.2, 1.2)

290 | Appendix

Here's the output showing the decision regions:

Figure 4.21: Decision region plot for a kernel SVM with C=1

Chapter 4: Training Classification Models | 291

12.	Train an SVM with C=50 and plot the resulting decision regions by running the
following code:

svm = SVC(kernel='rbf', C=50, random_state=1, gamma='scale')

svm.fit(X_train_scaled, y_train)

X, y = X_train_scaled[:N_samples], y_train[:N_samples]

plot_decision_regions(X, y, clf=svm)

plt.xlim(-0.2, 1.2)

plt.ylim(-0.2, 1.2)

Here's the plot of an SVM with C=50:

Figure 4.22: Decision region plot for a kernel SVM with C=50

292 | Appendix

Comparing the two decision region charts, we can see how the C=50 SVM
attempts to fit the patterns in the training data more closely. This is notable with
respect to the point at x, y = (0.4, 1), as denoted by an orange triangle.
The decision surface has been adjusted to properly classify this record in the
training set for the C=50 SVM, but not for the C=1 SVM.

Note

To access the source code for this specific section, please refer to
https://packt.live/3e6JYPJ.

You can also run this example online at https://packt.live/2ACdbUc.

https://packt.live/3e6JYPJ
https://packt.live/2ACdbUc

Chapter 5: Model Validation and Optimization | 293

Chapter 5: Model Validation and Optimization

Activity 5.01: Hyperparameter Tuning and Model Selection

Solution:

1.	 Create a new Jupyter notebook and load the following libraries:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

numpy,pandas,matplotlib,seaborn,sklearn

2.	 Load the preprocessed Human Resource Analytics dataset by running the
following code:

df = pd.read_csv('../data/hr-analytics/hr_data_processed_pca.csv')

df.columns

294 | Appendix

This displays the following output:

Figure 5.10: The columns of hr_data_processed_pca.csv

3.	 Select the features to include in the model and perform a train-test split on the
data by running the following code:

from sklearn.model_selection import train_test_split

features = ['satisfaction_level', 'last_evaluation', \

 'time_spend_company', 'number_project', \

 'average_montly_hours', 'first_principle_component', \

 'second_principle_component', \

 'third_principle_component',]

X, X_test, \

y, y_test = train_test_split(df[features].values, \

 df['left'].values, \

 test_size=0.15, \

 random_state=1)

4.	 Calculate a validation curve for the RandomForestClassifier with n_
estimators=50, over the range 2 up to 52, by running the following code:

from sklearn.ensemble import RandomForestClassifier

np.random.seed(1)

clf = RandomForestClassifier(n_estimators=50)

max_depth_range = np.arange(2, 52, 2)

print('Training {} models ...'.format(len(max_depth_range)))

train_scores, test_scores = \

validation_curve(estimator=clf, X=X, y=y, param_name='max_depth', \

 param_range=max_depth_range, cv=5,);

Chapter 5: Model Validation and Optimization | 295

5.	 Plot the validation curve by running the following code:

plot_validation_curve(train_scores, test_scores, \

 max_depth_range, xlabel='max_depth',)

plt.ylim(0.97, 1.0)

Here's the output of this plot:

Figure 5.11: Validation curve for a Random Forest with PCA features

296 | Appendix

Here, we have an interesting result.

In some ways, this validation curve is very similar to the chart we saw for the
decision tree earlier, which was trained on the same features as this Random
Forest. In particular, we can see the training set (blue circles) quickly approach
an accuracy of 100%, while the validation set (red square) is limited to a lower
maximum accuracy.

Unlike the validation curve from earlier, however, the validation set here appears
to converge to the maximum accuracy as max_depth is increased. This is
not the behavior we saw earlier for the decision tree, where the validation set
accuracy reach a maximum of around max_depth=8, and then dropped off
slightly for higher values of max_depth.

This observed behavior of the validation sets can be explained by the nature of
the modeling algorithms being used. In the case we had earlier, we were training
decision trees, which were overfitting the training data for large max_depth
values, which resulted in lower validation accuracy. On the other hand, the
Random Forest model we are using here is less prone to overfitting for large
max_depth values, because of the way that data is sampled for each of its
component decision trees.

In this case, for our Random Forest model, it's only important to set max_depth
sufficiently high to avoid underfitting, and we should not be concerned with
overfitting at large max_depth values. Given this, and the fact that validation
accuracy appears to converge around 20, we will select max_depth=25 as the
optimal value for this hyperparameter.

6.	 Calculate the k-fold cross validation accuracy of our selected model for each
class by running the following code:

clf = RandomForestClassifier(n_estimators=50, max_depth=25)

np.random.seed(1)

scores = cross_val_class_score(clf, X, y)

print('accuracy = {} +/- {}'.format(scores.mean(axis=0), \

 scores.std(axis=0),))

Chapter 5: Model Validation and Optimization | 297

This will print the following output (or similar, depending on how your random
seeds have been set at each step):

fold: 1 accuracy: [0.99897119 0.94407895]

fold: 2 accuracy: [0.99897119 0.96369637]

fold: 3 accuracy: [0.99897119 0.96039604]

fold: 4 accuracy: [0.99794239 0.98349835]

fold: 5 accuracy: [0.99897119 0.96039604]

fold: 6 accuracy: [0.99691358 0.95379538]

fold: 7 accuracy: [0.99794239 0.95709571]

fold: 8 accuracy: [0.99897119 0.95709571]

fold: 9 accuracy: [0.9969104 0.94059406]

fold: 10 accuracy: [0.99485067 0.97689769]

accuracy = [0.99794154 0.95975443] +/- [0.00130286 0.01239563]

Comparing this to the decision tree result from the previous exercise, we can see
a significant improvement in the accuracy of each class, with class 0 rising from
99.4% to 99.8% and class 1 rising from 92.4% to 95.9%.

7.	 Evaluate the performance of this model on the test set by running the
following code:

from sklearn.metrics import confusion_matrix

clf = RandomForestClassifier(n_estimators=50, max_depth=25)

clf.fit(X, y)

y_pred = clf.predict(X_test)

cmat = confusion_matrix(y_test, y_pred)

cmat.diagonal() / cmat.sum(axis=1) * 100

This will print the following output:

array([99.70760234, 97.03703704])

By comparing these numbers with the k-fold accuracies from before, we can see
that they both lie in the expected range, hence verifying this model.

298 | Appendix

8.	 Train the model on the full set of records in df by running the following code:

features = ['satisfaction_level', 'last_evaluation', \

 'time_spend_company', 'number_project', \

 'average_montly_hours', 'first_principle_component', \

 'second_principle_component', \

 'third_principle_component',]

X = df[features].values

y = df['left'].values

clf = RandomForestClassifier(n_estimators=50, max_depth=25)

clf.fit(X, y)

9.	 Save the model to disk by running the following code:

import joblib

joblib.dump(clf, 'hr-analytics-pca-forest.pkl')

Then, reload the model, as follows:

clf = joblib.load('hr-analytics-pca-forest.pkl')

clf

This should return the string representation of the trained model:

Figure 5.12: Random Forest model representation

Chapter 5: Model Validation and Optimization | 299

10.	Check the model's performance for an imaginary employee, Alice, by selecting
the appropriate features from row 573 of df with the following code:

alice = df.iloc[573][features]

alice

This will print the following output, representing the employee metrics and
derived principal components for Alice:

satisfaction_level 0.360000

last_evaluation 0.470000

time_spend_company 3.000000

number_project 2.000000

average_montly_hours 148.000000

first_principle_component 0.742801

second_principle_component -0.514568

third_principle_component -0.677421

11.	Predict the class label for Alice, as follows:

clf.predict([alice.values])

This will print the following output:

array([1])

Then, calculate the probability assigned to this prediction, as follows:

clf.predict_proba([alice.values])

This will print the following output:

array([[0., 1.]])

These results indicate that the model predicts with 100% probability that Alice
will leave the company.

12.	 In order to improve the chance of the company being able to retain Alice as an
employee, they could try to reduce the amount of time she needs to spend at
work. Using our model, we can test the effect that might have on her likelihood
of leaving.

300 | Appendix

Set average_montly_hours=100 and time_spend_company=2 and
then re-evaluate the prediction probability of the model by running the
following code:

alice.average_montly_hours = 100

alice.time_spend_company = 2

clf.predict_proba([alice.values])

This will print the following output:

array([[0.84, 0.16]])

Predict the new class label with the following command:

clf.predict([alice.values])

This will print the following output:

array([0])

This result suggests that by reducing the number of monthly hours at work to
100 and the amount of time spent at the company to level 2, there's an 84%
chance that Alice will not leave the company.

Note

To access the source code for this specific section, please refer to
https://packt.live/37vgad6.

You can also run this example online at https://packt.live/2BcG5tP.

This is a great example of how predictive modeling can be used by businesses to
make data-driven decisions.

https://packt.live/37vgad6
https://packt.live/2BcG5tP

Chapter 6: Web Scraping with Jupyter Notebooks | 301

Chapter 6: Web Scraping with Jupyter Notebooks

Activity 6.01: Web Scraping with Jupyter Notebook

Solution:

1.	 Run the following code in your notebook to load the necessary libraries:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

import requests

from bs4 import BeautifulSoup

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p \

requests,numpy,pandas,matplotlib,seaborn,sklearn

2.	 After defining the url variable, load that page in the notebook using an IFrame.
This can be done by running the following code:

url = 'https://en.wikipedia.org/wiki/List_of_countries_and'\

 '_dependencies_by_population'

from IPython.display import IFrame

IFrame(url, height=300, width=800)

302 | Appendix

Here's the output displaying IFrame:

Figure 6.29: Running the live web page in Jupyter

When you have finished browsing the page, close it by clicking into the cell and
selecting Cell | Current Outputs | Clear.

3.	 Request the page by running the following code:

resp = requests.get(url)

resp

This should print the following output:

<Response [200]>

4.	 Instantiate a BeautifulSoup object using the response content by running
the following command:

soup = BeautifulSoup(resp.content, 'html.parser')

5.	 Get the h1 of the page by running the following command:

soup.find_all('h1')

This should print the following output:

[<h1 class="firstHeading" id="firstHeading" lang="en">List of countries
and dependencies by population</h1>]

Chapter 6: Web Scraping with Jupyter Notebooks | 303

6.	 Select the div with id="bodyContent" by running the following command:

body_content = soup.find('div', {'id': 'bodyContent'})

7.	 Search this div element for the table headers by running the following code:

table_headers = body_content.find_all('th')

table_headers

Here's the output showing display headers:

Figure 6.30: The table header elements

Then, print the element text for each, along with their index, by running the
following code:

for i, t in enumerate(table_headers):

 print(i, t.text.strip())

 print('-'*10)

304 | Appendix

This loop is displayed as follows:

Figure 6.31: Printing the text of each table header element

8.	 Manually set the table headers by running the following code:

table_headers = ['Country(or dependent territory)', 'Population', \

 '% of WorldPopulation', 'Date']

9.	 Select the data entries from the row element at index 2 by running the following
code:

row_number = 2

row_data = body_content.find_all('tr')[row_number]\

 .find_all(['td', 'th'])

Chapter 6: Web Scraping with Jupyter Notebooks | 305

10.	 Find the number of data entries in the row by running len(row_data).
The result is 6.

11.	Print out the row's data entries by running row_data:

Figure 6.32: The data elements in a selected row

12.	Print the element text for each row data entry, along with their index, by running
the following code:

for i, row in enumerate(row_data):

 print(i, row.text)

The output is seen in the following screenshot:

Figure 6.33: Printing the text for each data element in a selected row

13.	Select the fields we are interested in parsing by running the following code:

row_data = row_data[1:5]

306 | Appendix

14.	 First, assign d1 to the first element and parse the entry value using the
following code:

d1 = row_data[0]

d1.find('a').text

Here, we used the trick of searching for an <a> element in the data entry, before
getting the text.

15.	 	 Next, do the same for the second entry:

d2 = row_data[1]

d2.text

16.	Then, do the same for the third entry:

d3 = row_data[2]

d3.text

17.	 	 Finally, do the same for the last entry:

d4 = row_data[3]

d4.text

For the last three entries, we are happy with simply getting the element text
for now. They can be processed further (for example, by converting strings into
numeric values) at a later time.

18.	Perform the full scrape of country populations by running the following code:

Perform the full scrape by iterating over the rows

pop_data = []

row_elements = body_content.find_all('tr')

for i, row in enumerate(row_elements):

 row_data = row.find_all(['td','th'])

 if len(row_data) < 5:

 print('Ignoring row {} because length < 5'.format(i))

 continue

Chapter 6: Web Scraping with Jupyter Notebooks | 307

 d1, d2, d3, d4 = row_data[1:5]

 errs = []

 try:

 d1 = d1.find('a').text

 except Exception as e:

 d1 = ''

 errs.append(str(e))

 try:

 d2 = d2.text

 except Exception as e:

 d2 = ''

 errs.append(str(e))

 try:

 d3 = d3.text

 except Exception as e:

 d3 = ''

 errs.append(str(e))

 try:

 d4 = d4.text

 except Exception as e:

 d4 = ''

 errs.append(str(e))

 data = [d1, d2, d3, d4]

 print(data)

 pop_data.append(data)

 if errs:

 print('Errors in row {}: {}'.format(i, ', '.join(errs)))

308 | Appendix

19.	Print out the data we parsed previously, by running pop_data. The output is
as follows:

Figure 6.34: Output of the pop_data command

20.	Print out the table headers by running table_headers. The output is
as follows:

['Country(or dependent territory)',

 'Population',

 '% of WorldPopulation',

 'Date']

21.	Save the data in a CSV file by running the following code:

f_path = '../data/countries/populations_raw.csv'

pd.DataFrame(pop_data, columns=table_headers)\

 .to_csv(f_path, index=False)

22.	 If your Jupyter environment supports bash, then you can view the head of your
table by running the following code:

%%bash

head ../data/countries/populations_raw.csv

Chapter 6: Web Scraping with Jupyter Notebooks | 309

The head is displayed as follows:

Figure 6.35: The first 10 rows of extracted Wikipedia data in a CSV file

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

To summarize, we've seen how Jupyter Notebooks can be used for web scraping.
We started this chapter by learning about HTTP methods and status codes. Then, we
used the requests library to actually perform HTTP requests with Python and saw
how the BeautifulSoup library can be used to parse response HTML.

Activity 6.02: Analyzing Country Populations and Interest Rates

Solution

1.	 Start up one of the following platforms for running Jupyter Notebooks:

JupyterLab (run jupyter lab)

Jupyter Notebook (run jupyter notebook)

Then, open up the chosen platform in your web browser by copying and pasting
the URL, as prompted in the Terminal.

https://packt.live/2ACHg63
https://packt.live/2zDrqYu

310 | Appendix

2.	 Run the following code to load some of the libraries that we'll be using to
configure our plot settings for the notebook:

import pandas as pd

import numpy as np

import datetime

import time

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

%config InlineBackend.figure_format='retina'

sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10

sns.set_style("darkgrid")

%load_ext watermark

%watermark -d -v -m -p numpy,pandas,matplotlib,seaborn

3.	 Load the processed country population and interest rate dataset by running the
following code:

df = pd.read_csv('../data/countries/country_data_merged.csv')

df.head()

The output displaying the head is shown in the following screenshot:

Figure 6.36: The head of country_data_merged.csv

Chapter 6: Web Scraping with Jupyter Notebooks | 311

4.	 Print the datatypes of each column by running df.dtypes:

Figure 6.37: The datatypes of each column

5.	 Convert the date column entries into datetimes by running the following code:

df['date_population_update'] = \

pd.to_datetime(df['date_population_update'])

df['date_interest_rate_last_change'] = \

pd.to_datetime(df['date_interest_rate_last_change'])

6.	 Check for missing values by running the following command:

df.isnull().sum()

The following screenshot shows the output of this command:

Figure 6.38: The number of missing values in each column

312 | Appendix

7.	 Plot comparable histograms of the date columns, that is, date_population_
update and date_interest_rate_last_change, by running the
following code:

col = 'date_population_update'

df[col].hist(bins=10, alpha=0.7, label=col)

col = 'date_interest_rate_last_change'

df[col].hist(bins=45, alpha=0.7, label=col)

plt.xticks(rotation=45)

plt.legend()

plt.show()

The histogram plotted from this code is seen here:

Figure 6.39: Histograms for the date fields in the dataset

Chapter 6: Web Scraping with Jupyter Notebooks | 313

8.	 Find the country with the oldest date since the last interest rate change by
running the following code:

min_date = df['date_interest_rate_last_change'].min()

min_date_mask = df['date_interest_rate_last_change'] == min_date

df[min_date_mask]

Here's the output of this code:

Figure 6.40: Country wth the oldest date since last interest rate change

Note

The preceding DataFrame is cropped for representation purpose.
You can refer to the complete DataFrame at https://packt.live/2ACHg63.

9.	 Find any countries that have negative interest rates by running the
following code:

neg_rates_mask = df['interest_rate_pct'] < 0

df[neg_rates_mask][['country', 'interest_rate_pct']]

The countries with negative interest rates are shown here:

Figure 6.41: Displaying the countries with negative interest rates

https://packt.live/2ACHg63

314 | Appendix

10.	Plot a bar chart of the top countries by population, by running the
following code:

df_plot = df.sort_values('population', ascending=False).head(10)

df_plot['population'].plot.bar()

plt.xticks(rotation=45)

plt.ylabel('Population')

ax = plt.gca()

labels = df_plot['country'].values

ax.set_xticklabels(labels)

plt.show()

The bar chart thus plotted is shown as follows:

Figure 6.42: A bar chart comparing the top countries by population

Chapter 6: Web Scraping with Jupyter Notebooks | 315

11.	Plot a scatter chart of population_pct versus interest_rate_pct by
running the following code:

sns.scatterplot(data=df, x='population_pct', y='interest_rate_pct')

plt.show()

The scatter chart plotted using this code is displayed here:

Figure 6.43: A scatter chart showing interest rates as a function of population

12.	Select the rows that correspond to the outlier points along the population axis
shown in the preceding chart by running the following command:

df[df['population_pct'] > 15]

Here's the output showing outliers:

Figure 6.44: The countries that have over 15% of the world population

316 | Appendix

Note

The preceding DataFrame is cropped for representation purpose.
You can refer to the complete DataFrame at https://packt.live/2ACHg63.

13.	Plot a scatter chart of average_inflation_rate_pct versus
interest_rate_pct by running the following code:

sns.scatterplot(data=df, x='average_inflation_rate_pct', \

 y='interest_rate_pct')

plt.show()

The scatter chart displayed is shown here:

Figure 6.45: A scatter chart showing interest rates as a function of average inflation

https://packt.live/2ACHg63

Chapter 6: Web Scraping with Jupyter Notebooks | 317

That concludes this activity. However, we can take this further to demonstrate
the kind of modeling that can be carried out once data has been loaded,
explored, and visualized. Let's see how the preceding data can be used to fit a
k-means clustering model. k-means clustering has not been covered in any of
these chapters, as it is out of scope of this book; however, you are encouraged to
follow the code and use it as a basis for further learning and exploration. Some
of the tools and techniques that we will use here will be unfamiliar, but you can
carry out your own research to develop your understanding. The steps are
as follows:

14.	Use scikit-learn's StandardScaler class to prepare the features for modeling
by running the following code:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

features = ['population_pct', 'interest_rate_pct', \

 'average_inflation_rate_pct']

X = df[features].values

X_scaled = scaler.fit_transform(X)

df['scaled_population_pct'] = X_scaled[:,0]

df['scaled_interest_rate_pct'] = X_scaled[:,1]

df['scaled_average_inflation_rate_pct'] = X_scaled[:,2]

After importing and instantiating the scaler class, we select our feature values
from the DataFrame and feed them into the fit_transform method. By
doing this, the scaler learns what the data looks like and determines how to scale
it properly, according to the underlying algorithm. It returns the scaled version of
our features, which are then mapped back onto the DataFrame.

15.	Now, let's train a clustering model on the population_pct, interest_
rate_pct, and average_inflation_rate_pct features. We'll start with
the following code:

from sklearn.cluster import KMeans

clf = KMeans(n_clusters=5)

clf.fit(X_scaled)

16.	 Label each row of the training data by running the following command:

df['kmeans_cluster'] = clf.predict(X_scaled)

318 | Appendix

17.	Plot a scatter chart of population_pct versus interest_rate_pct, where
colors are assigned according to clusters, by running the following code:

sns.scatterplot(data=df, x='population_pct', \

 y='interest_rate_pct', hue='kmeans_cluster',)

plt.show()

This will display the following scatter chart:

Figure 6.46: Segmenting the interest rate versus population chart with KMeans clusters

18.	Plot a scatter chart of average_inflation_rate_pct versus interest_
rate_pct, where colors are assigned according to clusters, by running the
following code:

sns.scatterplot(data=df, x='average_inflation_rate_pct', \

 y='interest_rate_pct', hue='kmeans_cluster',)

plt.show()

Chapter 6: Web Scraping with Jupyter Notebooks | 319

This will display the following scatter plot:

Figure 6.47: Segmenting the interest rate versus inflation rate chart with KMeans clusters

19.	 For the previous chart, add point sizes corresponding to country populations by
running the following code:

sns.scatterplot(data=df, x='average_inflation_rate_pct', \

 y='interest_rate_pct', size='population_pct', \

 hue='kmeans_cluster', sizes=(20, 500),)

plt.xlim(-1, 15)

plt.ylim(-1, 15)

plt.show()

320 | Appendix

The scatter chart produced is shown here:

Figure 6.48: Overlaying population data of the KMeans segmented chart of interest rates
versus inflation rates

Chapter 6: Web Scraping with Jupyter Notebooks | 321

20.	Create a three-dimensional version of the preceding chart by plotting the scatter
chart of average_inflation_rate_pct versus interest_rate_pct
versus population_pct by defining the following function:

def render_3d_plot():

 from mpl_toolkits.mplot3d import Axes3D

 import matplotlib.pyplot as plt

 plt.rcParams['figure.figsize'] = (9, 9)

 fig = plt.figure()

 ax = fig.add_subplot(111, projection='3d')

 ax.scatter(df['interest_rate_pct'], \

 df['average_inflation_rate_pct'], \

 df['population_pct'], \

 c=df['kmeans_cluster'].values,)

 ax.set_xlabel('interest_rate_pct')

 ax.set_ylabel('average_inflation_rate_pct')

 ax.set_zlabel('population_pct')

When using the Jupyter Notebook platform, a static version of the plot can be
rendered by running the following code:

%matplotlib inline

render_3d_plot()

322 | Appendix

The output of this code is shown here:

Figure 6.49: Visualizing the KMeans clustering model with a three-dimensional scatter chart

Chapter 6: Web Scraping with Jupyter Notebooks | 323

21.	When using the Jupyter Notebook platform, an interactive version of the plot can
be rendered by running the following code:

%matplotlib notebook

render_3d_plot()

In order to get this working in JupyterLab, you may need to install the jupyter-
matplolib extension. You can find the installation instructions on GitHub
at https://packt.live/2UNrzzQ. Once installed, you can run the following code in
JupyterLab to render the interactive chart:

%matplotlib widget

render_3d_plot()

The output is as follows:

Figure 6.50: Visualizing the k-Means clustering model with an interactive
three-dimensional scatter chart

https://packt.live/2UNrzzQ

324 | Appendix

22.	Save the model using joblib by running the following code:

import joblib

joblib.dump(scaler, 'kmeans-5-cluster-scaler.pkl')

joblib.dump(clf, 'kmeans-5-cluster-model.pkl')

In order to use this model for making classifications, we need to save both the
trained model, clf, and the trained scaler. This way, future data can be
scaled properly before we feed it into clf. This final step concludes the bonus
material and full activity solution.

Note

To access the source code for this specific section, please refer to
https://packt.live/2ACHg63.

You can also run this example online at https://packt.live/2zDrqYu.

https://packt.live/2ACHg63
https://packt.live/2zDrqYu

Index

A
access: 2, 6, 13-14,

20, 25, 36, 46, 48,
57, 64, 71-72, 82,
89, 109, 117, 142,
150, 154, 156,
174, 181, 193,
211-212, 215-216,
236, 250, 255

accuracy: 88, 94, 126,
136-137, 140, 142,
147-148, 150, 153,
157, 162-163, 165,
169-171, 173-174,
182, 185, 187-189,
194-195, 257-258

algorithm: 89, 93, 110,
128, 140, 146, 152,
155, 162-164, 169,
175-176, 179-181

alphastar: 89
amount: 64, 75, 90,

92, 126, 200-201
analysis: 1-2, 5, 40-41,

43-45, 48-49, 51,
57, 59, 61, 64,
71-72, 77, 84, 87-88,
90-91, 93, 118,
123, 161, 175, 183,
199-200, 237-239,
241, 250, 254-258

annotated: 146
ascending: 179
assign: 40-41, 70,

77, 83, 93, 121,
195, 207, 224,
229, 237-238

attribute: 51, 70, 83,
117, 154, 178,
211, 217, 226

axhline: 74

B
backslash: 36
barplot: 46
binary: 93, 111, 127,

182, 184, 190, 196
bivariate: 131-133
boolean: 57, 111, 119,

122, 181, 183
boundary: 125, 140,

145-146, 148,
150, 154, 164

boxplot: 46, 78,
122, 188

browser: 8-9, 14,
16-17, 24, 26, 40,
45, 97, 121, 167,
194, 203-204, 206,
217, 219, 225, 250

C
cascading: 128
charts: 46, 48, 69, 73,

75, 91, 122, 125,
142, 146, 165

checkbox: 14
classes: 77, 115,

127, 136, 155
classified: 59, 139
cluster: 69, 93

column: 53-54, 56-58,
60, 76, 83, 92,
99, 106, 108-111,
113-115, 117,
119-122, 227, 239,
241-245, 247-248,
250, 252-253, 255

command: 9, 28,
30, 33-35, 38, 53,
58, 60, 104, 137,
140, 144, 151,
154-155, 168, 176,
183, 190, 207,
211, 214-215, 226,
228-229, 233-235,
240-242, 245-246,
248, 251-254

compute: 5, 43,
58, 136, 147

condition: 128,
155-156

cookie: 203

D
darkgrid: 47, 61, 97,

130, 167, 205, 213,
218, 240, 251

dashboard: 8-9, 14,
16-17, 24, 37, 200

database: 34, 200
dataframe: 39-41,

45-46, 49, 51-54,
58-59, 63, 67, 83,
98-101, 103, 105,
107-108, 117,
188, 236, 250,
252-253, 255

datasets: 5, 44, 49,
71, 76, 87-88, 91,
93-95, 98-99, 123,
126, 128, 199-201,
239, 241, 251, 255

datatype: 241,
243-244, 247

datetimes: 255
declare: 31
decoding: 229
default: 3, 8-10, 16-17,

39, 55, 60, 62, 140,
169, 202, 219, 244

defined: 13, 60, 64,
70, 74, 114, 144,
164, 168, 170, 172,
185-187, 195, 252

delete: 5, 13, 26, 54
developer: 217,

219, 225
distinct: 81, 115, 132
distplot: 74-75
docstring: 26-27, 35,

40-41, 45-46, 50-52,
66, 98, 106-107,
139, 143-144, 147,
151-152, 206,
220-221, 243

dtypes: 56, 242,
245, 247-248

E
ecosystem: 44, 90
encode: 111, 113-114,

175-176, 184
entropy: 128
ethical: 64, 201

evaluation: 119, 129,
131-134, 146,
155-156, 158, 168,
177, 179, 183-184,
189, 191-192

execute: 7, 30, 34,
48, 56, 61

exists: 13, 92, 94

F
feature: 20, 23, 50-53,

64, 70, 74-75, 77,
83-84, 91, 93, 95,
106, 111-114, 116,
122, 128, 131,
137, 139, 146,
148, 154-155,
158, 175-179,
181, 183-184,
191-192, 195

fetching: 209
fields: 49, 51, 58,

71-73, 91, 95, 114,
122, 183, 214, 250

figsize: 47, 61, 97,
130, 167, 188, 205,
213, 218, 240, 251

flowchart: 92, 119
format: 4, 37, 47,

49, 51, 61, 70, 97,
130, 136-137, 140,
154, 167, 169-170,
185, 187, 201,
205, 207, 212-215,
218, 231-232,
239, 250-251

function: 4, 13, 27,
29, 33, 35, 41, 54,
62-63, 66-68, 70-71,

76, 82, 89, 93, 96,
98, 100-101, 103,
112, 116, 120,
135-136, 138-140,
142, 144, 146-147,
157, 165, 169-172,
185-187, 195,
221, 243, 252

G
graphs: 131
graphviz: 6-7, 154

H
hashes: 4
headers: 52, 203-204,

212, 226-227,
235-238

heatmap: 61-62
histograms: 64, 81,

84, 122, 131, 255

I
iframe: 210, 237
import: 26, 28, 39-40,

45-51, 61, 70, 83,
97, 111, 116, 129,
134-138, 140, 142,
146, 151-152, 154,
167-171, 177,
180-181, 184-185,
189-190, 205-206,
208, 210, 212-213,
215, 218-219,
222, 239, 251

integers: 55, 243-244
IPython: 5-6, 25, 30,

140, 208, 210
isnull: 56-57, 245,

248, 253-254

J
JavaScript: 3, 32, 49,

204-205, 209-210
Jupyter: 1-9, 14-18,

23, 25-26, 29-30,
32-34, 37, 39-41,
43-45, 47-49, 64, 84,
88, 90, 95, 97, 118,
121, 123, 126-127,
129, 142-144, 157,
162, 166-167, 190,
194, 196, 199-200,
204-206, 208-210,
212, 216-220,
236-239, 241, 246,
250, 255-258

M
mapped: 111, 122, 252
masking: 102-103
MATLAB: 39
Matplotlib: 30, 36,

38-40, 47, 61-62,
97, 129-130, 167,
205, 213, 218,
239-240, 251

median: 53, 56, 59,
64, 66, 78-79,
82, 95, 122

method: 9, 49, 51,
70, 76, 83, 90,
102, 106-107, 109,
112, 114-115, 127,
146, 150, 163-164,
170, 181, 192-193,
203, 211, 223,
226, 231, 243

models: 6-7, 40-41,
64-67, 69, 82-83,
87-91, 93-95, 105,
110, 114, 118-119,
123, 125-129, 131,
134-135, 140,
142, 146, 150-152,
156-158, 162-164,
166-167, 171-172,
174-176, 179,
181-185, 187, 193,
195-196, 257

N
navigation: 7, 16
notebooks: 1-7, 9,

13-15, 23, 25-26,
38-41, 45, 48, 64,
88, 90, 95, 97, 118,
121, 123, 194, 196,
199, 204-205, 212,
216, 218, 238-239,
250, 255, 257

O
object: 10, 26, 28,

40, 49-51, 62, 83,
112, 117, 122, 168,
206, 214, 219-221,
237, 242-245,

247-248, 251-252

operations: 39, 87, 162
optimize: 157-158,

161, 164, 166,
185, 196

outliers: 44, 126, 256

P
pairplot: 62-65, 73, 80
parameters: 40,

52, 70, 90, 93,
147, 161-162,
164-165, 196, 213

parsing: 40, 200-201,
207, 216-219, 223,
227, 230-231,
233, 238, 244

passing: 68-69, 78,
80, 122, 212

pixels: 175
platform: 2, 5, 7-9,

15-17, 23-26, 39,
41, 45, 97, 121,
167, 194, 250, 257

plotting: 39-41,
45-46, 75, 138,
140, 142-144, 146,
157, 165, 194

predict: 53, 64, 66,
70, 82, 89, 93, 116,
119-120, 127, 136,
140, 146, 150, 156,
158, 170, 182, 189,
192-193, 195

processes: 22,
120, 185, 200

protocol: 202, 211-212
px-flag: 224, 229
pyplot: 47, 61, 97,

129, 167, 205, 213,
218, 239, 251

Python: 1-6, 9, 15,
17, 19, 25, 27,
29, 32, 34-39, 41,
43-44, 49, 88, 90,
95-96, 121, 140,
142, 144, 146, 152,
154, 162, 167, 196,
199-206, 211-212,
214-216, 218-219,
221-222, 238-239,
242, 256, 258

R
rcparams: 47, 61, 97,

130, 167, 205, 213,
218, 240, 251

recall: 59, 64, 82-83,
123, 127, 129,
136, 139, 152,
156, 182, 228-229,
238-239, 255

regplot: 66-68
render: 4, 10, 151,

154-155, 201, 204,
212, 237-238, 256

resolution: 217

S
savefig: 61-63, 67-68,

74, 77, 79-81,
131, 133, 152

scattered: 148
scikit-learn: 38, 44, 70
scraping: 6, 40, 95,

196, 199-204,
212, 216, 219,
236-238, 256

scrolling: 144, 221
seaborn: 36, 38-41,

43-44, 46-47, 51,
61-62, 65-66, 68,
75, 97, 129-130,
167, 205, 213, 218,
239-240, 251

selected: 59, 93, 128,
146, 163, 169, 174,
176, 189, 228

series: 72, 76, 91,
102, 104, 107, 117,
122, 128, 178-179

server: 8, 14, 16, 24,
34, 203-204, 209

sigmoid: 140
skewed: 64, 78
sklearn: 36, 47,

49-50, 70, 97,
111, 116, 130,
134-137, 139-140,
146-147, 151, 154,
167-171, 177, 180,
184-185, 189, 205,
213, 218, 240

software: 5, 88
spyder: 2
sqlite: 34
stderr: 10
stdout: 10
subplots: 67-68, 132
supervised: 88-89,

92-93, 119, 123,
127, 182

T
Tableau: 44
techniques: 44, 49, 89,

94, 96, 118, 120,
161-162, 174-175,
181-182, 201, 212,
218, 238, 255-257

timescales: 94
top-down: 58
trained: 88, 93-95,

105, 114, 127-128,
140, 150, 152, 156,
158, 162, 164,
171-172, 178, 181,
190, 193-196

tree-graph: 154

U
univariate: 131-132
urllib: 204

V
validate: 174, 195
variable: 13, 22, 29,

31, 41, 49, 53-54,
56, 62, 64, 70-71,
74, 77, 83, 92, 95,
119-121, 127, 130,
132-134, 156-157,
164, 169, 172, 183,
194, 207, 224,
229, 237, 255

visualize: 6-7, 61-63,
66, 122, 128, 142,
146, 156-158, 172,
174, 178, 188, 258

W
workflow: 14,

25-26, 29, 239

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Jupyter Notebooks
	Introduction
	Basic Functionality and Features of Jupyter Notebooks
	What Is a Jupyter Notebook and Why Is It Useful?
	Editing Notebooks with Jupyter Notebooks and JupyterLab
	Exercise 1.01: Introducing Jupyter Notebooks
	Exercise 1.02: Introducing the JupyterLab Platform

	Jupyter Features
	Exercise 1.03: Demonstrating the Core Jupyter Features
	Converting a Jupyter Notebook into a Python Script
	Python Libraries
	Activity 1.01: Using Jupyter to Learn about pandas DataFrames

	Summary

	Chapter 2: Data Exploration with Jupyter
	Introduction
	Our First Analysis – the Boston Housing Dataset
	Exercise 2.01: Importing Data Science Libraries and Setting Up the Notebook Plotting Environment
	Loading the Data into Jupyter Using a pandas DataFrame
	Exercise 2.02: Loading the Boston Housing Dataset
	Data Exploration
	Exercise 2.03: Analyzing the Boston Housing Dataset
	Introduction to Predictive Analytics with Jupyter Notebooks
	Exercise 2.04: Training Linear Models with Seaborn and scikit-learn
	Using Categorical Features for Segmentation Analysis
	Exercise 2.05: Creating Categorical Fields from Continuous Variables and Making Segmented Visualizations
	Activity 2.01: Building a Third-Order Polynomial Model

	Summary

	Chapter 3: Preparing Data for Predictive Modeling
	Introduction
	Machine Learning Process
	Approaching Data Science Problems
	Understanding Data from a Modeling Perspective
	Preparing Data for Modeling
	Exercise 3.01: Data Cleaning for Machine Learning with Pandas
	Exercise 3.02: Preparing Data for Machine Learning with Pandas

	Introducing the Human Resource Analytics Dataset
	Activity 3.01: Preparing to Train a Predictive Model for Employee Retention

	Summary

	Chapter 4: Training Classification Models
	Introduction
	Understanding Classification Algorithms
	Exercise 4.01: Training Two-Feature Classification Models with Scikit-Learn
	The plot_decision_regions Function
	Exercise 4.02: Training k-Nearest Neighbors Classifiers with Scikit-Learn
	Exercise 4.03: Training Random Forest Classifiers with Scikit-Learn
	Activity 4.01: Training and Visualizing SVM Models with Scikit-Learn

	Summary

	Chapter 5: Model Validationand Optimization
	Introduction
	Assessing Models with k-Fold Cross Validation
	Tuning Hyperparameters with Validation Curves
	Exercise 5.01: Using k-Fold Cross Validation and Validation Curves in Python with Scikit-Learn

	Dimensionality Reduction with PCA
	Exercise 5.02: Dimensionality Reduction with PCA
	Model Training for Production
	Exercise 5.03: Training a Production-Ready Model for Employee Turnover
	Activity 5.01: Hyperparameter Tuning and Model Selection

	Summary

	Chapter 6: Web Scraping with Jupyter Notebooks
	Introduction
	Internet Data Sources
	Introduction to HTTP Requests
	Making HTTP Requests with Python
	Exercise 6.01: Using Python and Jupyter Notebooks to Make HTTP Requests
	Making API Calls with Python
	Exercise 6.02: Making API calls with Python and Jupyter Notebooks
	Parsing HTML with Jupyter Notebooks
	Exercise 6.03: Parsing HTML with Python and Jupyter Notebooks
	Activity 6.01: Web Scraping with Jupyter Notebook

	Data Workflow with pandas
	Exercise 6.04: Processing Data for Analysis with pandas
	Exercise 6.05: Merging Data with pandas
	Activity 6.02: Analyzing Country Populations and Interest Rates

	Summary

	Appendix
	Index

