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by Ned Rosinsky, M.D.

Why do plants grow in lhe shapes
that they do? ' \
This question has fascinated sci-
entists for thousands of years. Al-
though the shapes of plants can be-
come quite complicated, a great deal
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THE GOLDEN MEAN RATIO
The golden mean is the ratio of
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" y SELF-SIMILAR GROWTH
As the spruce lree grows, its overall shape does not change much, nnlyus
size. This gives it self-similasity in its shape as it grows.
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How Plants Grow n i
The ‘Golden Mean” Ratlo

‘

can be understood simply by consid-
ering what the plarit needs in order
to function. First, it needs to be ex-

posed to sunlight for photosynthe-

sis; so it will tend to grow in a shape
with a large surface area exposed to
the Sun. Second, it needs room to

. grow, so it will tend to grow in such

away that one part of the plant does
not crowd another part.

These simple ideas, if exammed ¢
carefully, lead to interesting conclu- .

sions’about how the plant must be

_shaped and how the plant must grow

into its proper shape. | will show here
that the kind of shapes and growing
forms that best allow the plant to do
its work are all related to a particular
mathematical ratio called the golden
mean, which is approximately 1.62.
The golden mean is the ratio in which
the smaller part of aquantity is to the

larger part of that same quantity as
the larger part isto the whole (Figure
1). The quantity can be just a line you
have drawn on paper and then divid-

. ed, a container full of marbles that

you divide, or something living, like
aplant, . '

To understand the importance of
the golden mean, you must first no-
tice thatliving things usually grow by
multiplication, rather than addition,
For example, if you start with 1 bac-
terium, after about 20 minutes it will
have divided in half and produced 2
bacteria; after another 20 minutes, 4
bacteria, then 8, then 16, and so on.
Every 20 minutes the number of bac-
teria doubles or, in other words,
multiplies by 2.

A series of numbers that grows by
multiplication is called a geometric
series, such as 2, 4, 8, 16, and so on,
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LA SNAILSHELL - i

'The snail grows at a rate propor- . |
o' tional o its size at any particular .
- _time. Therefore, its rate of growth
= Is always increasing. Since the
;_. shellis turming as it grows, it pro-
3 duces a spiral shape.
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In contrast, a series that grows by
addition, such as 2,4,6,8,10, and so
on (here, 2 is added each time), is
called an arithmetic series, The main
point is that plants tend to grow by
Beometric series, and that this kind
of growth causes certain kinds of
shapes in the plants (see Figure2). .

Self-Similar Growth

The reason that plants Brow in
geometric series (for example, dou-
bling in size every six months) is that
the entire plant s Browing as one
overall unit. This means that if it
weighs 1 pound and it takes a month "
to grow another pound, then when
the plant weighs 2 pounds it will take
another month to grow another 2
pounds, and so on. The speed at
which it grows increases, and is re-
lated to the plant’s current size at any
particular time. This causes the size
to increase as shown in Figure 2.
Since the plant is growing overall as
a unit, it tends to keep the same
shape even though it gets bigger.
This is called self-similar growth,

If you look at the shape of a snail
you can see the same pattern of geo-
metric growth, only now since the
shape of the snail is turning as it
Brows, it produces a spiral (Figure 3).
This geometric spiral, also called a
logarithmic spiral, is the main kind
f shape you see in plants. Ifyou can

==X Figure 4
SPIRAL PHYILOTAXIS
in this plant the thoms are arranged
around the stem in a spiral pattemn, If
you start with a particular thoen, can
you see how many thorns you have to
Pass through above that thom untif you

reach one exactly above the thorn you

Started withy? :
Source: Pafams (v Mutars by Peler S Stovens, (Boston;
Litte, Brown anyg Company, 1874), p. 188 > : " '

N . Figure 5 =

.. THEPHYLLOTAXIS RATIO . -
In Figure 4 you saw that two thorns that
grow at the same position on the plant
stem are separated along the stem bya
cerain number of thoms. The phyllo-
laxis ratio is the ratio of the number of

turns in the spiral you had to make to.

getfrom your reference thom to a thomn

growing at the same position on the

stem, divided by the number of thorns
You passed through. Here it is two turns

. and five thons, giving a ratio of /5.

understand how this spiral works in
plants you will begin to see why they
are shaped the way they are, ~

A good example of a spiral in a
plant is the way the leaves or thorns
are located on a plant stem in many
kinds of plants (Figure 4). Look at the
overall shape of a spruce tree, which
is a coné€. The branches of the tree
stick out in a pattern that spirals
around the tree’s cone shape (Figure

2). Now, let us see how this geomet-

ric growth connects to the specific
mioofthegolden mean. -

If you look at various types of
pPlants, you find that the leaves

around the stem are arranged in dif- i

ferent kinds of spiral patterns, If you
Pick any leaf and call it a reference
leaf, and then start counting leaves
above it as they spiral around up the
plant stem, sooner or later you will
find a leaf that is directly above the
reference leaf on the stem, You may
haveto ga a number of times around
the spiral belore you find this leaf.
Now, if you count up the turns
around the spiral you made, and di-
vide it by the number of leaves you
went through, you get a ratio that is
characteristic for each plant species.
For example if you made 5 turns and
passed 13 leaves, the ratio is 5/13.
This is called the phyliotaxis ratio.

- (Phyllotaxis comes from the Greek

- 1,adding another 1, and then getting

- Soon. (See Professor von Puzzle, P-
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words for leal, phyflon, and order,
taxis; the plural of taxis is taxes.) See
Figure 5. ‘
The Phyllotaxis Ratio :
These phyllotaxis ratios form an
interesting series of fractions: 11,1/
2,173, 2/5, 3/8, 5/13, 8/21,13/34, and
50 on, What is interesting is that all
the numbers come from a series
called the Fibonacci series, named
after the 12th-century mathemati-
cian who discovered it. The Fibon-
acci series is formed by starting with

each next new member of the serieg
by adding the previous two mem-
bers:1+1=2,1 +2=3,2+3=5,
3 +5 =8, and 50 on. This forms the
series 1,1, 2,3, 5, 8, 13, 21, 34, and

59.) . :

The plant phyllotaxes are ratios
formed by taking two numbers from
this series that are separated by one
number; for example 3 and 8 or 5
and 13. It g s

This particular series has some in-
leresting geometrical properties.
Take a circle and divide it into 2 num-
ber of parts according to one of the
Fibonacci numbers, say, 13. Then
countoff sections of the circle by the
Fibonacci number that is two num-
bers behind 13, which is 5. This gives
you the pattern shown in Figure 6,
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Binia ' 1° inthis exampre we choose a Fibonacci number, 13, and divide a cnrdc imo :
that number of parts (a). We then begin with one of the sections and start '
"+ counting off sections around the circle according to the number thatistwo |
“numbers back on the Fibonacci series, 5 (b). Call the original point on the
ar‘cle A and the next point B. Noticg that 8 has divided its space of 13
sections into two parts of 5 and the remaining 8. © v & % it
Next we continue the process by counting off another 5 sections to arile
at C (c). Point C divides its space, which is the 8 sections from B back
.. around to A, into two parts of 5 and 3. Next, we go around another five
.4, - sections, passing A and ariving at D (d). Note here that D divides its space,
'+ which consists of the 5 sections baunded byA and 8, mto the two purs of" G
2and 3. SR Lok e 2 o AL |
: . Ine, two more pamts have been added E d:wdes its spaoc into !he parts '
% v 2and 3, and F divides its space of 3 sections bounded by Cand A into the
* parts of Tand 2. In the final figure, f, the  process is. continued for the full -
.\ 13 points, until the spiral returns to A. 27 v o T IE RS o SUT S »;
% Note several interesting things: Farsr all the diwsions are Fibonacci ra-"*
- .. tios, including all of the remaining points after E. Second, each section of |
7 L the original 13-section division of the circle has been used exactiy ance in - 3
. this process. Third, notice that the counting-off process has revolvied around
the circle five times exactly, and has used up 13 spaces, whrch in a pbnt 3
would givea phyﬂotaxm rauo of 5! !3 5
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CALCULATIONS OF FIBONACCIH
RATIOS FOR THE FIRST FEW
TERMS OF THE FIBONACCI SERIES
B 171 = 1.0000
¢ 21 = 2.0000
o 372 = 1.5000
g\, 53 = 1.6666
8/5 = 1.6000
4 13/8 = 1.6500
i C 2113 = 1.6154
321 =

1.6191

Y
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As you can sce, cach new place
counted off on the circle divides its
Space into a fibonacci-type ratio,
either 111,112, 23, 355, 5/8, 8113, and
S0 on. Nolice that these ralios are
thesame asthe ones you would have
produced if you had counted off 8
spaces goingaround the girclein the
opposite direction. The Fibonacci
phyllotaxis can also be oblained by
taking two consecutive Fibonacei
numbers, 13 and & (that is, without

, Skipping a number in the series), and
going around your circle in the op-
posite direction (Figure 7b).

You will obtain a similar picture by
starting out with a circle divided into
equal parts by any other Fibanaccei
number, such as 21. (With the circle
divided into 21 parts, you would then
count off segments in groups of 13.)

Looking Down at the Plant

Now, consider the sectioned-off
circle you have drawn as a diagram
of a plant, looking down at the plant
from the top, with each of the above
countings in the circle representing
a new leaf sprouting out. You can
see thateach leaf is dividing its space
into a Fibonacci ratio. What can you

. tell about these ratios?

First, each place you have marked
off on the circle divides the previous
space marked off on the circle nearly
in half. Thus, each new leaf is almost
evenly placed between two previous
leaves, givingit lots of space in which
fo grow. Second, each leaf also has
lots of space to get sunlight. In these
divisions, the space on one side of &
leaf is never more than twice the
space on the other side.

Now, calculate the ratios you have
marked off as they gel farther along

in the series, dividing the numerator .

by the denominator. You can see that
the ratios get closer and closer to the
ratio 1.62, which is the golden mean
(see table). Some plants, in fact, have
the golden mean ratio as the angle
of the separation of consecutive
leaves (Figure B).

* Whatabout other ratios? Let us try
an experiment with a ratio that is not

-from the Fibondcci series. Keeping
the 13-divided circle, if you count off
by 7 seclors at a time (instead of 8 as
in the Fibonacci series) you get with-
in one section of the first leaf after
justiwo leaves, causing unnecessary
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ina, the 13-sector circle g's_'i‘_ounb
..&d off in groups of five, giving |
the points A, B, and C, In b, the |
\_same -circle js counted off in, -

.-

rection, giving the exac! same lo-
- Cation of the points A, B, and C. .-
We' see, thesefore, "that the 3
. neighboring Fibonacc number to 4
% (13, which js 8, can be used to: 4

.Eive the same results as 5" 774
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23 If you work out this example
¢ . allthe way, as was done in Figure
/. 6, you will see that all 13 sections e
. are used up, Now, however, in-, s
stead of 5 complete 'rotations
around the circle, there are 8, i

 Biving a phyliotaxis ratio of 8131 !
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crowding. If you use 4 to count off,
or rotate, you get again within one
section of the start within three leaves
(Figure 9). You can try this with other
numbers of section divisions and ro-
tations.

Tosee why the Fibonacci numbers
work so well, look more carefully at

groups of 8, in the opposite dif, '
.« two paortions of 5 and 3, which are
. the next numbers counting back-

- - - onw
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GOLDEN MEAN SEP,ARATION_ '? iy
OF LEAF ATTACHMENT- o

, " LOCATIONS ¥ " § a}
. Here the circle is divided by the "
"' golden mean, which is approxi- -
':‘. mately 1,62 or137.5 degrees (out "
" of 360 degrees). Notice that the":
" points are located in positions .

_ that give them ample 0o/ as""
. eachis successively laid down,,
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what happens in the above éxample .

of acircle divided into 13 sections by

counting off 5 (or the equivalent, 8,

in the opposite direction). The first
counting divides the circle into Band
5, which are the two previous terms
in the Fibonacci series. The next

counting, or rotation, of 5 sections '

divides the space of 8 sections be-
tween the first and second leaves into

wards in the Fibonacci series.

Now, the next counting of 5 goes
past the first leaf and divides the
space of 5 sections between the first
two leaves into two portions of 2 and
3. Again, this is done by moving
backwards in the Fibonacci series,
continuing the process (Figure 6).
This is really like an “unpeeling” of
the Fibonacci series by subtraction!

Since the Fibonacci ratios get pro-
gressively closer to a constant value,
the golden mean, the series be-
comes close to a geometric series in
which the golden mean is the con-
stant factor of multiplication. Plants
frequently flip from one phyllotaxis

to another in the course of early de-
- velopment, or in the evolution of

new species of plants. Since the ra-
tios are in a_geometric series, this

The Young Scientist
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ON-FIBONACCI DIVISION OF

& T SATNTHE CIRCLE R
i Usmg !he circle divided into 73
y .mc:x'm,rz;,.l we tfy some counting -

d equmlent 8), such as 4. Here the
first_added leaf, 8, divides rts
. space &p inlo 4 and 9, which is. *
less symmetric than the 5 and 8 b
% division. The second leaf added,
C, divides its space between B
E’ and A of 9 sectlons into4and5, '
v agood dwislon but then ts nexl 3
b leaf, D, divides it.s space of 5 sec- i
“tions into4 and 1, a h:ghly une- >t
» qual division. Similar highly un-. ‘7’5
o equal divisions occdr with other.
. choices of the counhng numbel, :
suchas3or7, . . ‘ :
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aspect of evolution is really a geo-
metric jump, from one ratio to an-

aspect of self-similar growth that is
more easily seen in the overall
growth of the snail or the overall
shape of a tree as it grows.

Next, take the circle on which you
have drawn the leaves and re-draw it
back to its original spiral shape (Fig-

Fibonacci series is “unpeeled,” the
" leaves are spread out vertically, so
that neighboring leaves on the circle
are far away from each other on the
grown plant. The outward growth of
elongalion of the leaf stems makes
sure that the new leaves do not shad-

rectly under them .or near them in
the circle madel,

This completes the overall pic—
ture, showing that the plant is gen-
erally shaped likea cone with a spiral
of leaves coming out of a central

orher than 5 (or ‘the "T'

other similar ratio, This is another

ure 10). Here you can see thal as the

ow the old leaves, which may be di-

o ke
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stém. The plantalways grows insuch
away that it expands into a new size
but keeps a similar conical shape.
- The Question of Crowding

The same question of crowding
applies ta the small piece of plant
tissue at the growing tip of the plant

where the new leaves actually sprout.

"This tissue is called the meristem, and
measures less than 1/32 of an inch
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SPIRAL ARRANGEMENT OF LEAF POSITIONS
Here the c:rde repmsentaﬂon is uncoiled to reveal the underlying splra’ of
-Ieaf afrangement In this example the. 13-section circle becomes a' 13- |
secbon spiral. After5 turns above a given pointin the sprral therefs another !
'pomt at the same angle on the spial.' Again, another spiral cwld haveJ'
been drawn through the same 73 | points but in the opposite d‘rechon. This *
sp;raf would have had to tum 8 times between the matched points. The © £

: tOp wew of this spiral is shown in 4, and the side view ©f the spiral, | boked
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across. The new leaf buds come out
of this tissue at the same angles they
will have on the stem as adult leaves.
Therefore, the crowding question for
growth and sunlight is exactly the
same as itisin the case of starting the
leaves out with room to grow on the
meristerm in the first place (Figure 11).

" This shows that the question of
what the best leaf spacmg is for sun-
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Fugure 1 1
HOW BUDS GROW ON THE MERISTEM
The meristem shuwn here is magnified 250 times, and the outer leaves are cut
away to expose the very youngest feal buds as they begin to form on the surface
of the menstem tissue, Notice how close the young leaf buds are to one anather.

58 FUSION

July-August 1954

The Young Scientist




light, for growth, for growing out in
the meristem, and for evolulion as
well, are all really the same, These
problems require the same solu.
tions, and the best solutions are all
hased on self-similar geomelric
shapes related to the golden mean.
Some Experiments

Inorder to look at these ideas more
clearly you can do several kinds of
experiments. First, do the example
described above of dividing a circle
into a Fibonacci number of sections
and then counting off sequences of
sections according to the next small-
er Fibonacci number. Notice how the
addition of each leaf divides the

space for that leaf in a Fibonacci ra- .

ctio, .

You can try this exercise with oth-
er numbers that are not from the Fi-
bonacci series to see whether the leaf
spacing is as good, '

Second, collect plant samples that
have the various Fibonacci ratios in
their leaf or thorn patterns around
the stem. Examine these specimens
from various angles to see the effect
of the spacing on sunlight exposure
and growth crowding. A few com-
mon examples are the 173 ratio in

eech trees, the 2/5 ratio in oak, the
38 ratio in poplar, and the 5413 ratio
in willows.

Third, dissect the meristem tip of
a plant under'a’low power micro--
scope or strong hand lens, to see the

pattern of leaf buds and how they ’
farm a Fibonacci geometry. Notice

the extremely close crowding of
growth at the meristem tip.

Fourth, take snapshot pictures ot
a growing plant every day at the same
time frem the same place, in order

to visualize the growth patterns that
-follow the self-similar patterns you

have outlined.

Fifth, a more challenging experi-

ment would be to investigate why
some plants that may start out in a
conical shape change to other
shapes. I'll give you a hint; The in-
crease in crowding of the plant (its
population density) may affect its
shape as it attempts to maximize ex-
posure to the Sun or to ground waler.

Forexample alone oak may be wider

at its base, but an oak in a'crowded
~vrest may be wider on top.

The Young Scientist
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Brother Bonac"c‘i’s Rabbits 2o

Filius (Brother) Bonacci, who was
born in Pisa, Italy, in the year 1170
AD, discovered a unique series of
numbers that have ever since borne
his name—the Fibonacci series.
Brother Bonacci is said to have dis-
covered the series observing the re-
production of rabbits. " -

Suppose we want (o raise rabbits,
and we start with a newborn pair—a
male and a female. Let's assume for._
simplicity that each rabbit pair takes

. one month to mature to the point

thatit can produce offspring, and that
the female carries her young for one,.
month. That means it will take two
months from the birth of the first -
rabbit pair to produce the first off-
spring. Let’s also assume for simplic-
ity’s sake that each litter consists of
one male and one female rabbit.
Now let's look at the growth of the

W3 - .

rabbit population by month. In the
first month we have une pair, and so
also in the second. At the beginning
afthe third month a new pairis bormn,
Now we have two rabbit pairs. Atthe -~
beginning of the fourth month, that
new pairis maturing, and the origi-.
nal pair give birth to another pair.'
The total number of pairs now equals
three, ; vt '

What do you think happens in the -
fifth month? Let’s see, The original
pair gives birth to yet another pair,.
making four pairs. But the pair that
was born at the beginning of the third
month also has a pair. So the total
number of pairs equals five. y

The chart helps you to see how
this growth continues, producing the;
series named after Filius Bonacci:

15 e 2 B S BB 2L eaes 1

This series has two very important.
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properties. First, any term in the se-
ries is equal to the sum of the two
previous terms. Forexample:

oy
i 2=1+_1;or13=5+8'

Knowing this, you 'can produce th;:

series just beginning with 1 and 1.
Second, the ratio of any two

neighboring terms of the series is al-

most equal to the number 1,618,

A

Aoy ~
. ®

weanet v
. oty

ing terms in the Fibonacci series

“

converges on the golden section. -

" A Geomelric Construction

~ You can also produce the Fibon-
acci series by a geometric construc-

tion. Start with a square whose sides
we consider to be 1x1. Now, you
need only follow a“simple rule to
generate the Fibonacci series. The

rule is: Always add aSquare lo the” | = ° (TRl d e

‘

which is the ratio of the golden sec- longest side of your figure. Since we N i }e
. lion or golden mean (see “HowPlants  begin with a square, no side is the | ,

Crow," P- 54). The higher we get in  longest; we can addd§quare toiton I 1 " 8 g

the series, the more true this is. Try  any side (Figure 7). : .

it yourself. Use the first property |
have just shown you to write out the

Fibonacci series a few terms beyond

the highest number (21) that | have
given you. Now take any two neigh-
boring numbers and divide them, the
higher by the lower. (For example
21+13=1.615). You may use a cal-
culator to facilitate this long divi-
sion. =

You see that the higher you go in
the series, the closer it gets to the
ratio of the goldensection, which is
approximately 1.618. This is called
convergence. The ratio of neighbor-

. Destruction

Energy Foundation

An Alternative to Nuclear

B'y the Technical Staff of the Fusion 14 ;

For JO years the world has been held hostage to the threat of
nuclear holocaust. The nuclsar-armed ICBM bas bech called the
ultimate offensive weapon, against which there can be na de-
fenae, But now new ditected energy beam technologies make
possible the development of delensive weapons that can kpock
“oul nuclear missiles in the first few minutes of their launch, pres
venting them lram exploding. Beam Defense: An Alternative to ia

’

s
s

&

s
v

L ATA NS Fra DR 1 75'-'
ﬁuzrm 5aslm'c'n%;1

But now we have a figure twice as
long as it is wide (2 x 1). 5o we add a
square to its longest side (Figure 2).

" Nowourfigureis3x 2. Aswe keep
adding squares to the longest side,
we get figures of 53, 8x5, 13 X8,
and 50 on. As the figure grows larg-
er, the propartions of the rectangle
hardly change. This is self-similar
growth. The size increases, but not
the shape, All living things grow this
waY. ¥ - . » S o IS .

Now for the puzzle: What will
happen if you start with any rectan-
gleand constructasquareonitslong
side, making a new, larger rectan-

Nuclear Destruction describes indotatl what these technologies are, how they watk, how fast we can
have them, and how they would change the strategic situation, ending the era of Mutually Assured |
Destruction (MAD]. Equal'y important, the bouk outlines how the development of beam tech.,
-relogies will bring us into the plisnia age wih the unlimited, cheap energy of husion and the
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gl'e? Repeat the process a number of
times, Then make a series of num-
bers from the lengths of the rectan-

—Laurence Hecht
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