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Foreword

When we are “at home” in San Antonio, I arrive in the office very early
and the first email I read is the FaxBack, or the statistics relating to the
next opponent and the comparison with the Spurs.

Invariably, I can’t help smiling to myself, remembering that I am
undoubtedly one of the “old school” coaches who has been given a
cleanup in the last few years, learning, with a certain degree of pride,
to converse with our analyst staff. I have learned not only to utilize the
work of this group of five people who provide us daily with a mountain
of data, but also I have devised my own set of criteria which help me to
navigate my way through all the information, selecting those items which
allow me to prepare for the game, studying our opponent’s strengths and
weaknesses. I study the statistics which give me a better understanding of
their “tendencies” and what they are likely to do in the crucial moments
of the game.

In recent years, the National Basketball Association (NBA) teams
have strengthened their analyst staff to prepare in the best way for the
draft, to carry out player exchanges, and to study the most efficient
attack and defense aspects of the game. This is to the point where, in
some teams, the style of game sought by the coaching staff has been
predominantly influenced by numbers. It is no secret that many of the
teams have started requiring their players to aim for a shot from under-
neath the basket or from behind the three-point line, considering the
middle distance shot totally inefficient. I am convinced that this could
be a guideline but not a diktat; in other words, if all those in attack go
for shots from below and shots from the three-point line, the defenders
will do their best not to concede these shots. As a result, they may allow
more shots from the middle. At this point, having some athletes in the
team who can shoot well from this distance will become absolutely a
must in order to win.

Personally, I believe that the human factor is always fundamental:
first of all, speaking of simple things, I am interested in knowing, as well
as the point averages, rebounds, turnovers, assists, how much of all this

xi
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is done against the best teams. Too many players who average ten points
per game for the season score most of those points against average and
poor teams, whereas they are less successful against the top teams. Also,
scoring ten points in the first two quarters of the game is not the same
as scoring them in the final minutes when the outcome of the match is
being decided.

Furthermore, the coach’s decision as to whom to put on the field is
based above all on feelings about the character of the individual players
and their personal chemistry with the teammates, rather than exclusively
on their technical skills, and about their ability to cope with pressure.
Numbers can, and should, help us. However, communication between
coaches and analysts can only be the central point of efficient manage-
ment of resources, which are, before anything else, human.

I am grateful to Paola Zuccolotto and Marica Manisera for sharing
this “philosophical” approach in their valuable work. I think that it is the
correct route for bringing these two worlds closer together and achieving
the maximum pooling of knowledge.

Lastly, I hope that they will let me have a copy of their book soon
so that I can pass it on to the Spurs analysts. Italians do it better!

Ettore Messina
San Antonio, February 2019

Ettore Messina is an Italian professional basketball coach, currently Head
Coach of Olimpia Milano, Italy. From 2014–2019, he has been Lead Assis-
tant Coach of Gregg Popovich with the San Antonio Spurs of the National
Basketball Association (NBA) and, before that, served as an assistant to
the Los Angeles Lakers head coach Mike Brown in the 2011–2012 season.
He previously coached professionally in Europe for more than 20 years.

He has won four Euroleague championships as a head coach, with
Virtus Bologna in 1997/98 and 2000/01 and with CSKA Moscow in
2005/06 and 2007/08.

From 1993–1997 and in 2016–2017, Ettore Messina was the head
coach of the senior men’s Italian national basketball team. He coached
Italy at the EuroBasket 1993, 1995, 1997 and 2017, and he also led Italy
to the silver medal at the EuroBasket 1997.
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Ettore Messina is regarded as one of the best European basketball
coaches of all time, having been named one of the 50 Greatest Euroleague
Contributors in 2008. He was named the Italian League’s Coach of the
Year four times (1990, 1998, 2001 and 2005) and four straight times in
the Russian League (2006, 2007, 2008, and 2009). Furthermore, he has
been named Euroleague Coach of the Year three times (1998, 2006, and
2008). He was inducted into the Italian Basketball Hall of Fame in 2008,
in the Russian VTB League in 2019, and named one of the 10 Greatest
Coaches of the Euroleague in 2008.
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Preface

We began analyzing sports data several years ago with some experi-
ments on soccer. Together with a number of colleagues, we developed
a statistical algorithm aimed at filtering out the random factors due to
alternating fortune and redefining match results based purely on per-
formance on the basketball court. Apart from some results of minor
impact, a slight reordering emerged at the top of the final ranking of the
Italian championship, with the result that, according to Data Science,
the Scudetto (the prize given to the champions of Italy’s top division of
professional soccer) should have been awarded more deservedly to the
team ranked second. Naturally enough, this event ended up in the news-
papers, exacerbating the hostility which already existed amongst soccer
supporters. We did not go any further into the research.

We recommenced work on sports around three years ago focusing
mainly, largely by chance and more than anything for fun, on basketball.
After a few months, we became aware of the existence of an unexpected
variety of directions in which to focus our research, of a limitless number
of questions awaiting a response, and a moderate wealth of interesting
facts which were reasonably easy to access.

Captivated by the idea of pursuing this new avenue, we got in con-
tact with colleagues all over the world who were carrying out scien-
tific research on sports-related subjects and found that we were in good
company. However, it was not enough for us. From the very begin-
ning, it was clear to us that contact with technical sports experts
would allow us to target our efforts better in the right direction and
to assess the results. We therefore came up with the idea of creating a
project, which we have called Big Data Analytics in Sports (BDsports,
https://bdsports.unibs.it), based on the Big & Open Data Innovation
Laboratory (BODaI-Lab, https://bodai.unibs.it) of the University of
Brescia, Italy, and setting up within it a network of individuals con-
cerned with sports analytics with the specific objective of putting the
academic world in contact with the world of sports. BDsports was estab-
lished in the summer of 2016 while the Olympics were being staged in

xv
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Rio de Janeiro and, as of today, numerous activities have been under-
taken by members of the team in the four channels which character-
ize the project’s activities: scientific research, implementation on the
ground, teaching and dissemination. In its mission, BDsports is open
to all sports: today it is working on soccer, volleyball, athletics, ten-
nis, fencing, dancesport, as well as, naturally, on basketball, which we
have both continued to work on exclusively. We have published both
scientific articles in international journals and informative articles in
specialized newspapers and magazines. We have organized workshops
and sessions at scientific conferences, as well as meetings with the public
and industry specialists. We have created our own network of contacts
with the world of basketball which we aim to continue building on, with
the objective of disseminating Data Science culture at all levels; that is,
the ability to extrapolate information from the data and to interpret it,
bearing in mind the potential and limits of the methods used. We have
devoted special attention to young people because, tomorrow, the world
of sports will be in their hands. Thus, we provide 360-degree training:
from teaching to tutoring of master’s theses and PhD dissertations, to
the organization of internships.

At the moment, we are on the eve of another remarkable break-
through: the International Statistical Institute (ISI) delegated to us the
task of constituting a new Special Interest Group on Sports Statistics in
order to further extend our network all over the world under the aegis of
the most authoritative international organization in the field of Statis-
tics operating worldwide since 1885. This mission is a great honor for
us and will hugely help us to build awareness, disseminate and establish
the culture of Sports Analytics.

This book is an important stage in our journey. We have assembled
our experiences in the analysis of basketball data and have tried to talk
about them in a language which is technical but also, where possible,
simple in order to communicate with a wide range of interlocutors.

Simultaneously with the writing of the book, together with our col-
league Marco Sandri, we developed the R package BasketballAnalyzeR,
which has grown alongside the book itself, following the needs of the case
studies that we wanted to describe. A big part of the presented exam-
ples are relative to one single team, the Golden State Warriors (however,
codes can be easily customized to be used with other teams’ data). The
idea behind this choice is that the reader can imagine to be interested
in a given team, perform a huge set of analyses about it and, in the end,
build a deep awareness from a lot of different perspectives by summing
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up all the results in mind. Thanks to BasketballAnalyzeR everyone
is given the ability to reproduce the analyses set out throughout the
book and the possibility of replicating them on other data. The func-
tions of the package have been structured in such a way as to be able
to be used at different levels, from elementary to advanced, with cus-
tomizations and outputs on which to base any subsequent analyses. Each
chapter contains both simple analyses and ideas for more complex in-
depth studies, contained in a final section called FOCUS, which gives a
glimpse of topics relating to scientific research.

A distinctive feature of this book is that it is specifically and exclu-
sively concerned with basketball, although many of the arguments could
be extended by analogy to other sports.

At whom is this book aimed?
As set out above, the whole book has been structured so as to be able
to achieve the ambitious objective of addressing a range of different
audiences. As fundamental statistical concepts are often cited, with the
assumption that they are already known to the reader, a necessary req-
uisite for tackling the issues in this book is good familiarity with the
principal notions of Statistics at the level they are usually taught in
basic university courses. A good knowledge of the R language is also
essential to be able to understand the codes provided and to implement
them to reproduce analyses on their own data. However, a possible lack
of this knowledge does not affect the reading of the book. In detail, this
book is aimed at:

• Students of advanced university courses, PhDs and master’s. For
students in Data Science courses, it could constitute a collection of
fairly simple analyses, aimed at introducing them to, and guiding
them through, the world of basketball analytics, whilst students in
courses aimed at specific sports training could find a useful group
of tools which can be applied immediately on the field.

• Technicians, sports coaches and analysts. The availability of R
codes means that the suggested analyses can be reproduced on
their own data, providing support tools to decisions in terms of
training and definition of game strategies or creative ideas for
match and championship commentary.

• Data Scientists concerned with advanced development of sports
analytics. For Data Scientists, the book could constitute an intro-
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duction to applications in the field of basketball, an initial knowl-
edge base on which to stimulate suggestions and ideas for further
research. The functions of the R package BasketballAnalyzeR
provide outputs of objects and results which could be used for
more in-depth analysis.

How to read this book
Since the range of different audiences is wide, the book is structured
into three levels of complexity from the point of view of the statistical
techniques. Nevertheless, compatibly with each level, the writing always
remains as simple as possible in order to allow everybody to cope with
the essence of the key issues.

• Part I: Introductory level. In this part, only basic statistical meth-
ods and indexes are addressed, also with the detailed explanation
of some fundamental statistical concepts.

• Part II: Intermediate level. In this part, more complex methods are
addressed. For each method, an essential explanation is given in
simple terms, but the most technical details about the statistical
issues are deliberately skipped. For each method, references for
self-study are given.

• FOCUS sections: Expert level. The FOCUS sections in the end
of some chapters report on results contained in scientific papers,
which can be of high complexity. Simple-term explanations are still
given, but a deep understanding is left to highly skilled readers who
can refer to the cited scientific papers.

Exercises can be made by reproducing all the presented analyses on
different datasets that can be bought from data providers, retrieved from
the web or even created ad hoc. Some datasets are available at

https://bdsports.unibs.it/basketballanalyzer/

in the section “Data for exercises”. The last chapter gives some sugges-
tions on how to start from different data sources and adapt them to the
format required by BasketballAnalyzeR.

Acknowledgments
Thanks go to Raffaele Imbrogno, statistician, match analyst, trainer and
technician of the highest level, for the torrent of ideas with which he has

https://bdsports.unibs.it/


Preface ■ xix

stimulated our creativity daily, and for the intensive work he does to
bring the culture of Data Science into the world of basketball.

An enormous thank you to coach Ettore Messina for having written
the Foreword to the book in words which convey all the emotion felt
when great basketball is played on court and the strong passion and
enthusiasm of the NBA world. We thank him also for the confidence that
he has placed in this project: if he believes in it, then we also believe
in it.

Thanks to Marco Sandri, who has been a great friend and companion
in scientific research for 25 years. We have had all sorts of adventures
in the application of Data Science, but this is something we could never
have dreamt of. It is thanks to his skill, precision and dedication that
the R package BasketballAnalyzeR has become a reality.

Thanks to our colleagues/friends: Christophe Ley, Andreas Groll,
Leonardo Egidi, Maurizio Carpita, Nicola Torelli, Francesco Lisi, Luigi
Salmaso, Livio Corain, Stefania Mignani, Alessandro Lubisco, Ron
Kenett, Gerhard Tutz, Maria Iannario, Rosaria Simone, Gunther
Schauberger, Hans Van Eetvelde, Manlio Migliorati, Ioannis Ntzoufras,
Dimitris Karlis, and all the members of BDsports who share with us the
enthusiasm of this venture.

Thanks to Fabrizio Ruggeri for actively involving us in the Interna-
tional Statistical Institute (ISI) and to ISI for entrusting us with the new
challenge of constituting a new Special Interest Group on Sports Statis-
tics. Thanks to all those who have joined the group (in addition to the
already mentioned BDsports members, we’d like to thank Jim Albert,
James Cochran, Philip Maymin and Tim Swartz) or promised us their
support, in particular Luke Bornn, Scott Evans and Mark Glickman.
Scientific research also progresses thanks to these important networks of
scholars.

Thanks to Paolo Raineri, CEO of MYagonism, because he never
stopped believing that Data Science could be brought into basketball,
even when nothing seemed to go the right way. Thanks for the passion
which he puts into it and for the exchange of ideas (and information)
which have helped us to grow.

If the results of the statistical analyses were a special cake made
by a skilled patissier, the data would be the ingredients. Thanks to
Guido Corti, President of AIASP, for the constant commitment to the
theme of data quality in basketball, which is a bit like guaranteeing pre-
mium ingredients to the patissier. Thanks to Serhat Ugur, founder of
BigDataBall, for offering high-quality datasets for basketball analytics



xx ■ Preface

and making them available to us for this book and the R package
BasketballAnalyzeR. We also thank him for his enthusiastic support of
our BDsports project.

Thanks to coach Marco Crespi for our exchange of ideas some
years ago. It was then, for the first time, that with his groundbreak-
ing approach to basketball, he convinced us that a dialogue could and
should be established between the world of scientific research and the
basketball played on court.

Thanks to Roberta Tengattini, Davide Verzeletti, Mael Le Carre,
Gianluca Piromallo and all the other students who we have had the
pleasure of tutoring in their bachelor’s and master’s theses and university
internships, in the master’s courses devoted to Sports, in the PhD courses
on Sports Analytics, in the specialized courses organized for coaches and
technicians, because each time you teach someone something, you learn
it a little better yourself.

Thanks to everyone, including those with whom we have had just a
few chats on the subject of Statistics in basketball, because the wealth
of ideas on which this book is based is like a puzzle in which even the
smallest pieces are essential.

Sincere thanks to David Grubbs, for inviting us to write this book.
We immediately got caught up in all the excitement he conveyed to us
about this enterprise. Many thanks also for his (and the whole CRC Press
team’s) highly professional assistance. In addition, we wish to acknowl-
edge the great efforts of the reviewers, Jack Davis, Patrick Mair, Jacob
Mortensen, Sergio Olmos, Jason A. Osborne, Virgilio G. Rubio and Brian
Skinner, who thoroughly read the book and granted us a multitude of
extremely valuable suggestions that have greatly improved our work.

The workplace merits a special mention because more work is done
and a higher standard of work is achieved when there is a friendly and
calm environment. Therefore, thanks go to all our colleagues, our “work
family”. Warm thanks go to Aride Mazzali and Domenico Piccolo for
everything they taught us and to Eugenio Brentari and Maurizio Carpita
for always being those we can rely on. And an affectionate thought is
given to Livia Dancelli who is no longer there but in truth is always
there.

Last, but not least, heartfelt thanks go to Nicola and Giulio, for so
many reasons that the book is not big enough to list them all, and to
our families for having always given us their support. And now, let our
mothers’ hearts thank our sons, Leonardo and Raffaele, because every
morning at breakfast they update Paola on the most important events



Preface ■ xxi

which have happened overnight in the NBA championship. Many of the
examples shown in the text come from some idea initiated by them,
which are always a great help when it comes to interpreting the results
of some analysis. Alberto is still too young for all of this, but over these
years he has heroically endured Marica’s time being dedicated not com-
pletely to him but to producing the drawings on the computer which are
not even very attractive and certainly not nearly as good as Alberto’s
masterpieces.

Paola Zuccolotto and Marica Manisera



http://taylorandfrancis.com


Authors

Paola Zuccolotto and Marica Manisera are, respectively, Full and
Associate Professors of Statistics at the University of Brescia, Italy.

Paola Zuccolotto is the scientific director of the Big & Open Data
Innovation Laboratory (BODaI-Lab), where she coordinates, together
with Marica Manisera, the international project Big Data Analytics in
Sports (BDsports).

They carry out scientific research activity in the field of Statisti-
cal Science, both with a methodological and applied approach. They
authored/co-authored several scientific articles in international journals
and books and participated in many national and international con-
ferences, also as organizers of specialized sessions, often on the topic
of Sports Analytics. They regularly act as scientific reviewers for the
world’s most prestigious journals in the field of Statistics.

Paola Zuccolotto is a member of the Editorial Advisory Board of the
Journal of Sports Sciences, while Marica Manisera is Associate Editor
of the Journal of Sports Analytics; both of them are guest co-editors of
special issues of international journals on Statistics in Sports.

The International Statistical Institute (ISI) delegated to them the
task of revitalizing its Special Interest Group (SIG) on Sports Statistics.
Marica Manisera is the Chair of the renewed ISI SIG on Sports.

Both of them teach undergraduate and graduate courses in the field
of Statistics and are responsible for the scientific area dedicated to Sports
Analytics in the PhD program, “Analytics for Economics and Manage-
ment” in the University of Brescia. They also teach courses and seminars
on Sports Analytics in University master’s Sports Engineering and spe-
cialized courses in training projects devoted to people operating in the
sports world.

They supervise student internships, final reports and master’s theses
on the subject of Statistics, often with applications to sports data. They
also work in collaboration with high school teachers, creating experimen-
tal educational projects to bring students closer to quantitative subjects
through Sports Analytics.

xxiii



http://taylorandfrancis.com


I
Getting Started Analyzing

Basketball Data

1



http://taylorandfrancis.com


C H A P T E R 1

Introduction

ACCORDING TO Marc Gasol, statistics are killing basketball.
The Spanish big man gave his opinion about statistics almost at

the end of the regular season of the NBA 2016/2017, when, according to
statistics, he had just become the first center to record 300 assists, 100
threes and 100 blocks in a single season.

We’ve got 43 wins. If we win (tonight), we’ll have 44. That’s the only
number you guys (media) should care about. Stats are great, but wins
and losses matter. Stats are killing the game of basketball. Basketball is a
subjective game. A lot of things happen that you cannot measure in stats.
Different things matter. To me, the most important things in basketball
are not measured by stats.

Marc Gasol
#33 Memphis Grizzlies 2016/2017

Let’s start our book on basketball Data Science by providing a dis-
concerting revelation: according to us, Marc Gasol is right. What we are
talking about is Statistics and Data Science in basketball and how to
make it a useful tool but not, as Marc Gasol fears, as a way to reduce
the game to numbers that are not truly able to describe it. So, let’s start
from the wrong way of understanding Sports Analytics. First, the vast
majority of people believe that Statistics in basketball can be reduced
to counting the number of shots, baskets, points, assists, turnovers, ....
And, in a way, this simplification makes sense: every day the special-
ized media report news about these so-called statistics, detected in the
NBA games, and fans are delighted to bet on whom will be the first

3
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player who will exceed this or that record. But these statistics (and we
deliberately continue to write the term with a lowercase initial letter, to
distinguish it from Statistics, which is the science we are dealing with)
don’t say much, and Gasol is right. For a Statistician, these are simply
data that, collected in large quantities and appropriately re-elaborated,
can be transformed into useful information to support technical experts
in their decisions. Surely, to evaluate a performance only on the basis
of these values is not only very reductive but even, in some cases, mis-
leading. In addition, we think that the concept that Marc Gasol tried
to convey is one of the most crucial: the media, with their often sensa-
tionalist claims, spread the statistics as if they were the thermometer of
the players’ skills and success. In this way, players will sooner or later
change their way of playing with the goal of keeping high stats, with
all due respect to teamwork. And the only real goal is to win. Actually,
the opinion of the Spanish player is not limited to this topic, already
fundamental in itself, but adds another aspect that is even more sub-
tle: are the numbers really able to describe the game? How could we
measure aspects such as the way a point guard is able to control the
pace of the game and his decision-making skills, the influence of a leader
on the team’s self-confidence, the cohesion of the players, the extent to
which defense is firm and tough, etc.? Certainly this is not counting the
number of assists, points, and steals. You do not need to be an expert
to understand it. On this point, unexpectedly, Statistics (the one with a
capital S) has a lot to say because there is a well-developed research line
that deals with the study of latent variables, that is all those variables
that are not concretely and physically measurable. The tools invoked by
these methods are sophisticated techniques and algorithms. So, if Big
Marc ever read this book, he would find out that he is right: the most
important facts of basketball are not measured by statistics. But they
could be measured by Statistics and, in general, by Data Science.

1.1 WHAT IS DATA SCIENCE?
Data Science is the discipline aimed at extracting knowledge from data in
various forms, either structured or unstructured, in small or big amounts.
It can be applied in a wide range of fields, from medical sciences to
finance, from logistics to marketing. By its very nature, Data Science
is multidisciplinary: it combines Statistics, Mathematics, Computer Sci-
ence and operates in the domains of multivariate data analysis, data
visualization, artificial intelligence, machine learning, data mining, and
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parallel computing. In fact, several skills and abilities are required for a
Data Scientist: he needs to be familiar with Computer Science, as he has
to handle complex databases in different formats from different sources
and to use or develop codes to run algorithms; Statistics and Mathe-
matics are then necessary, to the aim of extracting knowledge from data
through more or less sophisticated methods and models; furthermore, a
Data Scientist greatly benefits from some expertize in the application
field he is working on, in order to ask the right research questions and
translate them into hypotheses to be tested with statistical methods.

1.1.1 Knowledge representation
There are several different ways for representing the patterns that can
be discovered through Data Science, and each one dictates the kind
of technique that can be used to infer the selected output structure
from data (Witten et al., 2016). A broad spectrum of categorizations
are proposed in the scientific literature.

For example, according to Witten et al. (2016), the structural pat-
terns can be expressed in the form of tables, linear models, trees, rules
(classification rules, association rules, rules with exceptions, more expres-
sive rules), instance-based representation, and clusters.

In Han et al. (2011), the kind of patterns that can be discovered by
data mining functionalities are associations and correlations, classifica-
tion and regression for predictive analysis, cluster analysis, and outlier
analysis.

Similarly, Larose and Larose (2014) states that the most com-
mon tasks that can be accomplished by data mining techniques are
description, estimation, prediction, classification, clustering, and asso-
ciation analysis.

In a book specifically devoted to Data Science for sports analytics,
Miller (2015) states that doing data science means implementing flexible,
scalable, extensible systems for data preparation, analysis, visualization,
and modeling.

A quite different point of view is proposed by Information Qual-
ity (InfoQ, defined by Kenett and Shmueli, 2016), a paradigm con-
cerned with the assessment of the potential of a dataset for achieving
a particular analysis goal. InfoQ proposes three general classes of goals:
description (quantifying population effects by means of data summaries,
data visualization techniques and other basic statistical methods), causal
explanation (establishing and measuring causal relationships between
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inputs and outcomes) and empirical prediction (forecasting future val-
ues of an outcome based on the past and a given set of input variables).
According to InfoQ, the quality of information is determined by eight
dimensions, related to data quality, temporal relevance, causality, gener-
alizability, findings operationalization and communication (Kenett and
Redman, 2019). Such dimensions are founded on a full understanding
of the problem and the context in which it occurs and allow the Data
Scientist to provide useful results and recommendations to the decision
maker and help define how such results are operationalized (that is put
into practice) and communicated. Among the eight dimensions, it is
worth mentioning here the generalizability of results, viewed as statis-
tical and scientific generalizability. Statistical generalizability refers to
issues related to the ability of a sample to represent an entire popula-
tion and the possibility to predict the values of new observations and
forecasting future values, according to a predefined goal. The statistical
literature is very wide on this topic, and always new methodologies are
proposed. On the other hand, a key role is played by scientific gener-
alizability, in the sense of reproducibility, and/or repeatability, and/or
replicability. For example, in basketball studies, it is very important
to keep in mind that results obtained with NBA data are not always
immediately generalizable to Europe (space generalizability), as well as
patterns about relationships among players, or performance or game
strategies can be valid only for some layups, teams, or championships
(type generalizability), or in certain game situations (setting generaliz-
ability) or in some periods of time (time generalizability).

Of course, it is impossible to mention a full list of approaches in this
sense and a unique categorization shared by all scientists. In this book,
we will firstly consider the very general issue of discovering patterns—
dealing with the broad concept of finding hidden regularities in data and
including a wide range of different topics—and we will then focus on the
two more specific problems of finding groups and modeling relationships,
with reference to basketball applications.

1.1.2 A tool for decisions and not a substitute for human intelligence
Statistics is a subject unknown to most, often reduced to statements
concerned with simple counts or percentages or, right in the luckiest
cases, recalling the concept of probability. But very rarely people recog-
nize its true meaning of “science of extracting information from data”
and are aware of its enormously wide range of applications. Data Science
is an even more misunderstood topic; the only difference is that these
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days it is such a fashionable buzzword. But buzzwords and suspicion
often go hand in hand, especially for those topics hard to understand
without a proper skill set. So, we often come across funny quotes about
resorting to Statistics with the aim to lie, to support one’s previous
beliefs and to overshadow feelings and intuitions, replacing them with
cold calculations.

Statistics are used much like a drunk uses a lamppost: for support, not
illumination.

Vincent Edward Scully
American sportscaster

This mistrust of algorithms frequently affects the field of Sports Ana-
lytics, where technical experts may feel marginalized by obscure meth-
ods, unable to give due credit to their expertise.

So, to introduce this book, it is worth clarifying some key concepts
concerning Data Science.

• Data Science aims at extracting knowledge from data.
Starting from a research question, data that are supposed to
contain the information necessary to provide an answer are col-
lected and processed; the final phase consists in interpretation and
deployment.

• Interpretation of results is an extremely delicate phase.
William Whyte Watt stated in his book, “An American Rhetoric,”
that one should not trust what Statistics says without having care-
fully considered what it does not say. This means that the results of
a statistical analysis depend on the assumptions and the available
data, so we should not expect to extend their significance beyond
these boundaries, and attribute to them conclusions that they are
incapable to accredit. In addition, we should always remember that
results are more stable, robust and reliable when the data set on
which they are based is larger.

• Data Science can deal with any field of human knowledge
(medicine, economics, finance, genetics, physics, etc.), so the Data
Scientist needs to have some expertise in the application field he
is working on, but of course he cannot be an expert on anything,
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as well as experts in the application fields cannot also be Data
Scientists. It goes without saying that the Data Scientists must
work side-by-side with the experts, whose task is formulating the
research questions, helping to identify the data that contain the
information and interpreting the obtained results. In other words,
teamwork is essential.

• Potentially, there is no question that Data Science cannot
answer if it has the right data. Sometimes these data exist
and we just need to find a way to recover them. Sometimes, they
do not exist, but an experimental design to collect them can be
programmed: in this case, we must be patient and wait all the
time it takes to generate the data. Sometimes, data do not exist
or collecting them can be impossible, too difficult, expensive or
time consuming. In this case, we must necessarily compromise and
accordingly change the research question (as claimed by Hand,
2008, “Statisticians [...] may well have to explain that the data
are inadequate to answer a particular question.”). Almost always
we face a combination of these situations, so if we ask ourselves
whether Data Science can really answer all the questions, we should
say “yes, in theory, but not in reality”.

• Data Science will never be able to describe everything
of the analyzed topic. This point is a natural corollary of the
previous one: we must be aware of the presence of a broad spectrum
of qualitative and intuitive overtones, not traceable throughout
quantitative approaches (mostly due to the lack of proper data,
not of proper methods).

• Data Science is not a crystal ball. It does not provide certain-
ties (be wary of those who claim to be able to do that!) but likely
scenarios and medium-long period structural indications.

• Data Science alone does not provide decisions, but sup-
port for decisions. Following all the previous remarks, we con-
clude that algorithms can never replace the human brain when it
is necessary to pull the strings of all the evidence and formulate
the final judgment. This is because only the human brain is able
to summarize all the gathered information, bringing together the
quantitative and qualitative issues in a single perception, at the
same time taking into account all the imponderable and uncon-
scious elements that cannot be formalized in a structured way.
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Therefore, Data Science has no ambition to replace basketball experts,
but rather aims to support them in their choices and decisions, trying
to give a quantitative answer to the questions they pose. Figure 1.1
illustrates what we call the virtuous cycle of Sports Analytics, where
basketball experts (stylized men with hats) and Data Scientists (styl-
ized men with glasses) collaborate with a common aim. The basketball
expert, as already mentioned, formulates the problem, by posing the
right research questions, which allow the Data Scientist to understand
the problem and narrow the focus. Then, basketball experts together
with Data Scientists plan the research design. In this step, their cooper-
ation is fundamental to understand which data to consider, along with
their strengths and limitations. Subsequently, the analyst carries out
the analysis, using his statistical competences, and then the ball goes
back to both of them for a joint interpretation of the results. The infor-
mation and knowledge drawn from the data thanks to Data Science is
the support for the basketball experts’ decisions, on whom the decision
responsibility lies. They must summarize all the information available
to them: the quantitative evidences provided by Data Science and the
qualitative ones deriving from their intuitions which, coming from expe-

Figure 1.1 The virtuous cycle of Sports Analytics. Artwork by Gummy
Industries Srl (https://gummyindustries.com/).

https://gummyindustries.com/
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Figure 1.2 Anatomy of a decision. Artwork by Gummy Industries Srl
(https://gummyindustries.com/).

rience, are no less important than the others. The experts’ decisions give
then life to new questions, and the cycle continues. Mark Brunkhart, the
Los Angeles Galaxy Data Scientist, pointed out that Data Science can-
not take credit for wins: the team is the one who wins. But Data Science
gives the team an advantage. The perspective of the coach is right at
90% and it is in that remaining 10% that Mathematics and Statistics
can make the difference. Therefore, Data Science should not be consid-
ered the report card of coaches, teams and players, but an instrument
at their service, with all the potentialities and limits set out above, to
understand strengths and weaknesses. As shown in Figure 1.2, analytics
is just a piece of a complex puzzle composing the final decision, that is up
to the basketball experts: their intuition, expertise and other knowledge
play a key role in composing the final decision in the expert’s head.

1.2 DATA SCIENCE IN BASKETBALL
Data Science applied to sports data is gaining a rapidly growing interest,
as demonstrated by the really huge number of books published on this

https://gummyindustries.com/
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topic in the last years (Albert et al., 2017; Severini, 2014). More and
more coaches, players, scouts and sport managers recognize its value as
a support for decisions, and a quantitative approach to sport is often
found funny and appealing also by fans and sportscasters (Winston,
2012; Alamar, 2013). A comprehensive approach to Sports Analytics
includes an understanding of the whole world centered around a sport,
i.e., the industry, the business, and what happens on the fields and courts
of play. In this book, we focus attention on the latter aspect, concentrat-
ing on the issues related to the players, the playing patterns, the games
and the factors influencing performance. Topics such as managing sports
markets, marketing communications, brand development, finance, also
using modern Data Science approaches concerned with social network
analysis, text and sentiment analysis can be found in Miller (2015).

In the strict context of player and game analysis, there are sets of
basic tools (typically, indexes and charts) that are considered the gold
standard and are more or less (depending on the sport and on the profes-
sional level) commonly used by experts. Often there are websites where
these indexes and graphs are computed, constantly updated and made
available to everybody (at least for the most famous championships,
teams, athletes) or upon registration. In the case of basketball, a mile-
stone of such analytics is Dean Oliver’s pioneering book (Oliver, 2004),
together with his longtime website (www.rawbw.com), Journal of Bas-
ketball Studies. Oliver’s framework for the evaluation of players and
teams is probably the most commonly resorted to by experts and prac-
titioners, thanks to his research into the importance of pace and posses-
sions, the influence of teamwork on individual statistics, the definition
of offensive and defensive efficiency ratings, the development of the Four
Factors of Basketball Success (field-goal shooting, offensive rebounds,
turnovers and getting to the free-throw line, Kubatko et al., 2007). These
analytics are complemented by a wide set of further indexes, which have
become customary in the current basketball analytics jargon (the Total
Basketball Proficiency Score of Kay, 1966; the Individual Efficiency at
Games of Gómez Sánchez et al., 1980; the Magic Metric developed by the
Mays Consulting Group, MVP IBM, just to cite a few). In this context,
Schumaker et al. (2010) identifies five main topics in basketball ana-
lytics: shot zones analysis, player efficiency rating, plus/minus rating,
measurement of players’ contribution to winning the game, and rating
clutch performances. Regarding NBA games and players, a surprisingly
vast spectrum of analytics, both indexes and charts (often customizable
by the user), can be found on several websites, such as, to give but

http://www.rawbw.com
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few examples, NBA.com, ESPN.com, sportingcharts.com (see Kubatko
et al., 2007) and cleaningtheglass.com. It would be impossible to draw
here a complete list of the websites and the (more or less) educational
books dealing with these issues. Nevertheless, to examine and discuss
such well-established tools is outside the scope of this book, whose focus
is, instead, on the use of Data Science to answer specific basketball ques-
tions. Examples of this kind of quantitative approach can be found in
the scientific literature, where several statistical techniques have been
applied to investigate complex problems, with a great variety of differ-
ent aims, such as:

1. predicting the outcomes of a game or a tournament (West, 2008;
Loeffelholz et al., 2009; Brown and Sokol, 2010; Gupta, 2015; Lopez
and Matthews, 2015; Ruiz and Perez-Cruz, 2015; Yuan et al., 2015;
Manner, 2016; Vračar et al., 2016),

2. determining discriminating factors between successful and unsuc-
cessful teams (Trninić et al., 2002; Sampaio and Janeira, 2003;
Ibáñez et al., 2003; De Rose, 2004; Csataljay et al., 2009; Ibáñez
et al., 2009; Koh et al., 2011, 2012; García et al., 2013),

3. examining the statistical properties and patterns of scoring during
the games (Gabel and Redner, 2012; Schwarz, 2012; Cervone et al.,
2016),

4. analysing a player’s performance and the impact on his team’s
chances of winning (Page et al., 2007; Cooper et al., 2009; Sam-
paio et al., 2010a; Piette et al., 2010; Fearnhead and Taylor, 2011;
Özmen, 2012; Page et al., 2013; Erčulj and Štrumbelj, 2015; Desh-
pande and Jensen, 2016; Passos et al., 2016; Franks et al., 2016;
Engelmann, 2017), also with reference to the so-called “hot hand”
effect (Gilovich et al., 1985; Vergin, 2000; Koehler and Conley,
2003; Tversky and Gilovich, 2005; Arkes, 2010; Avugos et al., 2013;
Bar-Eli et al., 2006) and with special focuses on the impact of high-
pressure game situations (Madden et al., 1990, 1995; Goldman and
Rao, 2012; Zuccolotto et al., 2018),

5. monitoring playing patterns with reference to roles (Sampaio et al.,
2006), also with the aim of defining new playing positions (Ala-
gappan, 2012; Bianchi et al., 2017),

6. designing the kinetics of players’ body movements with respect to
shooting efficiency, timing and visual control on the field (Miller

http://NBA.com
http://ESPN.com
http://sportingcharts.com
http://cleaningtheglass.com
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and Bartlett, 1996; Okubo and Hubbard, 2006; de Oliveira et al.,
2006; Aglioti et al., 2008),

7. depicting the players’ movements, pathways, trajectories from the
in-bounds pass to the basket and the network of passing actions
(Fujimura and Sugihara, 2005; Perše et al., 2009; Skinner, 2010;
Therón and Casares, 2010; Bourbousson et al., 2010b,c; Passos
et al., 2011; Lamas et al., 2011; Piette et al., 2011; Fewell et al.,
2012; Travassos et al., 2012; Shortridge et al., 2014; Ante et al.,
2014; Clemente et al., 2015; Gudmundsson and Horton, 2016;
Metulini et al., 2017a,b; Wu and Bornn, 2018; Bornn et al., 2017;
Miller and Bornn, 2017; Metulini et al., 2018), the flow of events
and the connected functional decisions which have to be taken by
players during the game (Araújo et al., 2006, 2009; Araújo and
Esteves, 2010; Perica et al., 2011; Araújo and Davids, 2016),

8. studying teams’ tactics and identifying optimal game strategies
(Annis, 2006; Zhang et al., 2013; Skinner and Goldman, 2017),

9. investigating the existence of possible referee biases (Noecker and
Roback, 2012),

10. measuring psychological latent variables and their association to
performance (Meyers and Schleser, 1980; Weiss and Friedrichs,
1986; Seifriz et al., 1992; Taylor, 1987; Maddi and Hess, 1992;
Dirks, 2000; Heuzé et al., 2006; Bourbousson et al., 2010a).

Although composed of just short of one hundred references, this litera-
ture review is far from being complete, as the number of papers published
on these topics is really huge.

In addition, we did not cite whole research areas that are not fully
relevant to the aims of this book. For example, a wide literature cov-
ers medical issues related to the epidemiology of basketball injuries,
physical, anthropometric and physiological attributes of players, associ-
ation between performance and hematological parameters or other vitals
(heart rate, blood pressure, aerobic capacity, etc.), special training tech-
niques to stimulate muscle strength, jumping ability and physical fitness
in general. Lastly, it is worth mentioning all the literature dealing with
scheduling problems, proposing approaches to solve the myriad of con-
flicting requirements and preferences implied by the creation of a suitable
schedule.
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A comprehensive literature review can be found in Passos et al.
(2016), where a whole chapter is devoted to previous research on basket-
ball data science (other chapters are concerned with soccer, other football
codes, ice hockey, handball, volleyball). Other reviews have been drawn
on specific topics, e.g., on the home advantage (Courneya and Carron,
1992), on knee injury patterns (Arendt and Dick, 1995) or other medical
matters, but only sometimes focused just on basketball and more often
addressing sports in general or, at most, team sports.

Despite this already wide landscape, the range of possible questions
that may be answered by Data Science is going to grow, thanks to the
availability of large sets of data (even from the lowest-level tournaments)
and to the increasing computational power. As a matter of fact, from a
methodological point of view, the huge amount of raw data available on
the actions and strategies, combined with the absence of a sound theory
explaining the relationships between the many involved variables, make
these questions a challenging heat for Data Scientists.

1.3 HOW THE BOOK IS STRUCTURED
This book is structured in three parts: the first one introduces the funda-
mentals of Basketball Analytics (literature review, data description and
basic methods), while the second part is devoted to advanced methods
of Basketball Data Science. All the analyses presented throughout these
two parts are carried out by means of BasketballAnalyzeR, an R pack-
age purposely designed with this book. Relevant commands and codes
are made available to readers, in order to allow everybody to reproduce
the presented analyses. The third part is a technical appendix focused
on BasketballAnalyzeR.

In Chapter 2, after a brief description of the main kinds of basket-
ball data and the datasets that are used for the case studies presented
throughout the book, some descriptive statistical tools are examined and
discussed. In detail, we touch on pace, Offensive and Defensive Ratings,
Dean Olivers’ Four Factors, several kinds of plots such as bar-line, radial,
bubble and scatterplots, variability and inequality analysis, shots charts
with scoring percentages from different areas of the court.

The second part of the book, devoted to advanced methods, follows
the categorization into the three major issues outlined in Section 1.1.1:
discovering patterns in data, finding groups in data, and modeling rela-
tionships in data.

More specifically, Chapter 3 deals with discovering patterns in data
and, after addressing some basic concepts about associations between
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variables and linear correlation, draws attention to displaying maps of
individual cases according to their similarity, visualizing network rela-
tionships among players, estimating the shots’ density with respect to
some exogenous variables such as, for example, time played, play length
and shot distance.

Chapter 4 is devoted to finding groups in data, thus, technically
speaking, to cluster analysis. Two main methods of cluster analysis are
examined, namely the k-means and the hierarchical algorithm, and some
case studies are discussed. Cluster analysis can be used in basketball
studies with several aims; for example, for identifying groups of players
sharing similar performance indicators (also despite different roles) or
groups of matches, according to game final score differences, in order
to find regularities in those indicators that most distinguish between
winning and losing performances within matches, or groups of teams
with similar achievements during a championship, or groups of shots
with similar characteristics, or groups of time instants during a match,
according to the players’ behavior and strategies, etc.

Finally, Chapter 5 is concerned with statistical modeling. Linear
models and nonparametric regression are specifically addressed, with
some case studies with a bivariate setting. Some specific issues are also
considered, namely the problem of estimating the expected points and
the scoring probability of a shot as a function of some specific variables
such as for example, time played, play length and shot distance.

In each chapter of the second part, a FOCUS Section is devoted
to put under the spotlight more complex case studies taken from the
scientific literature and summarize their main findings pruning down
from the most technical details. In Chapter 3, the FOCUS Section deals
with using machine learning algorithms to assess the effects of high-
pressure game situations on the scoring probability; in Chapter 4, the
problem of classifying new playing styles into new roles and positions is
handled with advanced cluster analysis methods based on unsupervised
neural networks; finally, the FOCUS Section of Chapter 5 is concerned
with the use of sensor data recording players’ positions on the court at
high frequency in order to determine the surface area dynamics and their
effects on the team performance.

Whatever the modeling technique or application, Data Science needs
programming tools for data preparation, analysis, visualization, and
modeling. A lot of options are available to this aim, and Data Scien-
tists’ favorite alternatives are open-source tools (Chen et al., 2007; Miller,
2015). In this book, all the presented applications will be developed using
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R, a language and environment for statistical computing and graphics
(Ihaka and Gentleman, 1996; R Development Core Team, 2008), con-
sisting of more than 13,000 packages.

The third part of this book consists of a technical appendix writ-
ten by Marco Sandri about BasketballAnalyzeR. Chapter 6 describes
its main features and data preparation. Finally, some advanced issues
on customizing plots and building interactive graphics are discussed.
Further explanations can be found on the functions’ help pages of the
package, while codes, interactive graphs, news about the package, possi-
ble updates, and discussions about data preparation are made available
in a webpage specifically devoted to it and addressed to the readers of
this book, at

https://bdsports.unibs.it/basketballanalyzer/

This webpage is constantly updated, so it has to be considered a
reference point by all the users of BasketballAnalizeR, who can also
find there contact information for any question they may want to ask
the developers. In addition, the readers of this book will find there the
supplementary material of this book, where the R code is downloadable
allowing to reproduce all the case studies presented throughout the book.

GLOSSARY

Data Science: Interdisciplinary science dealing with methods, tools,
processes, algorithms and systems aimed to extract knowledge or
insights from data in various forms, either structured or unstruc-
tured, in small or big amounts.

Open Source: The open-source venture in software development is
a response of the scientific community to the growing costs and
limitations of proprietary codes. The open-source philosophy pro-
motes a decentralized model for software development, encourag-
ing a collaborative effort of cooperation among peers, who have
free universal access to source codes and documentation and share
changes/improvements within the community.

https://bdsports.unibs.it/


C H A P T E R 2

Data and Basic Statistical
Analyses

BASIC METHODS for the analysis of sports data typically consist
of indexes and charts. In the case of basketball, as already pointed

out in Section 1.2, a wide set of such analytics is available, starting from
the pioneering work of Dean Oliver. The main part of these analytics
can be easily computed and interpreted by practitioners and, apart from
being slightly off topic for a book on Data Science, this subject is too
broad to be discussed in a few pages. Among the countless examples
of such analytics, we will limit ourselves to cite some hugely common
analytics based on the concepts of possession and pace (Oliver, 2004;
Kubatko et al., 2007) in Section 2.2.1. The other basic Statistics this
chapter will be dealing with are tools of descriptive Statistics applied to
basketball data: bar plots (Section 2.2.2) and radial plots (Section 2.2.3)
built using game variables, percentages or other standardized statistics,
scatter plots of two selected variables (Section 2.2.4), bubble plots able to
represent several features of teams or players in a unique graph (Section
2.2.5), variability (Section 2.2.6) and inequality (Section 2.2.7) indexes
and graphs, shot charts with the court split into sectors colored accord-
ing to a selected game variable and annotated with scoring percentages
(Section 2.2.8). All the analyses are carried out using the language R (R
Development Core Team, 2008), and the package BasketballAnalyzeR
(see Chapter 6). The R code provided throughout the book has been
checked under R-3.5.3 for Windows (64 bit) and for Mac OS X 10.11 and
can be fully downloaded in the webpage mentioned few rows below. Gen-
eral references for learning R include Chambers (2008), Matloff (2011)

17
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and Wickham (2014). The package must be preliminarily installed fol-
lowing the instructions at

https://bdsports.unibs.it/basketballanalyzer/

and then loaded by typing

> library(BasketballAnalyzeR)

The introduction on basic statistical analyses shall be preceded by a
brief description of the most common types of basketball data.

2.1 BASKETBALL DATA
Data are the life blood of Data Science; therefore, the procedures for
obtaining and organizing datasets must be structured and validated in
order to guarantee quality, understood as exhaustiveness (presence of
the variables of interest to carry out the required analyses), accuracy
(absence or minimization of errors), completeness (absence or possible
treatment of missing data), consistency (presence of a large number of
observations, necessary for the robustness of statistical analyses), accessi-
bility (possibility to find them easily and quickly, in searchable form), and
timeliness. A complete discussion on the different approaches to assess-
ing data quality can be found in Kenett and Shmueli (2016). Another
important issue about data is context (Cobb and Moore, 1997), that is
all the additional information (definitions, methods, technologies, condi-
tions, environment, etc.) surrounding data and whichever way affecting
how we might interpret them. Data without context are just numbers.

Data are not just numbers, they are numbers with a context.

George W. Cobb and David S. Moore
Distinguished professors of Mathematics and Statistics

Data can be obtained through multiple channels and sources, such
as National and International Federations, sporting organizations, pro-
fessional societies, sport-related associations and other special interest
sources (see Kubatko et al., 2007 and Schumaker et al., 2010 for a brief
review). The web is a massive store of data. Data may be on payment or

https://bdsports.unibs.it/
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freely available on specific websites; therefore, the collecting procedures
are various. Access to open source channels sometimes requires high-
level computer skills, such as knowledge of web scraping procedures. In
addition, datasets can have different characteristics from the point of
view of size, variety and speed of update: we move from small datasets
to big data, so that flexible, scalable and distributed systems are neces-
sary. Variety, on its part, requires to manage relational databases and
data warehousing tools (Golfarelli and Rizzi, 2009) in order to accom-
modate and properly handle data with a broad spectrum of different fea-
tures: traditional datasets arranged on two-dimensional grids with cases
on the rows and variables on the columns, multidimensional data cubes,
unstructured text data, pixels from sensors and cameras, data from wear-
ables, mobile phones, tablets, field-of-play coordinates, geocodes with
latitude and longitude, timestamps showing time to the nearest millisec-
ond, etc.

To attempt a rough classification of data in macro-categories, we can
distinguish:

• Data recorded manually, with or without technological tools
for annotation. This category includes the basic statistics from
box scores, notational analysis data, play-by-play (event-log) data,
reports filled by technical experts and coaches during training ses-
sions, opinions and experts’ evaluations that can be combined with
measurement data.

• Data detected by technological devices. Increasingly, technol-
ogy enters both the training and the games, making large amounts
of data available. Examples are the data recorded by GPS sen-
sors or other player tracking systems, which detect the positions
of the players on the court at very short time intervals (millisec-
onds), the video data coming from cameras, the platforms and all
the wearable technologies that detect postures, body movements,
vitals such as heartbeat and blood pressure.

• Data from psychometric questionnaires administered to ath-
letes, aimed at the measurement of attitudes and personality
traits (group dynamics, interpersonal relations, social-cognitive
processes, leadership, mental toughness, personality, coping strate-
gies, etc.).

• Other data. In this residual category, converge all the different
and heterogeneous data classes that can integrate the analysis from
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different points of view, such as - without pretension of exhaustive-
ness - the market analysis data, the textual data obtained by query-
ing the Social Networks (which can serve for example to measure
the sentiment of fans), data from Google Trends and other tools
able to monitor online searches and popularity of hashtags.

Once gathered, raw data are often unstructured, messy, and some-
times missing. It is the Data Scientist’s duty to organize, clean, and
complete them, pursuing the purpose of data quality. This preliminary
work needs proper skills and tools, which will not be discussed in this
book. Relevant readings in this context are Hernández and Stolfo (1998),
Rahm and Do (2000), Allison (2001), Kim et al. (2003) and Little and
Rubin (2014).

In this book, examples and case studies will be developed using dif-
ferent datasets, all available in the R package BasketballAnalyzeR, as
can be seen from

> data(package="BasketballAnalyzeR")

In detail, we will consider three datasets of box scores, one play-by-play
dataset and a supplementary data frame containing additional qualita-
tive information about the teams:

1. Teams’ box scores. In this data frame, called Tbox, the cases
(rows) are the analyzed teams and the variables (columns) are
referred to the team achievements in the considered games. Vari-
ables are listed in Table 2.1.

2. Opponents’ box scores. In this data frame, called Obox, the
cases (rows) are the analyzed teams and the variables (columns)
are referred to the achievements of the opponents of each team in
the considered games. Variables are listed in Table 2.1.

3. Players’ box scores. In this data frame, called Pbox, the cases
(rows) are the analyzed players and the variables (columns) are
referred to the individual achievements in the considered games.
Variables are listed in Table 2.1.

4. Play-by-play data. In this data frame, called PbP.BDB, the cases
(rows) are the events occurred during the analyzed games and the
variables (columns) are descriptions of the events in terms of type,
time, players involved, score, area of the court. Variables are listed
in Table 2.2.
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TABLE 2.1 Variables of data frames Tbox, Obox, Pbox and Tadd.

Variable Description Tbox Obox Pbox Tadd
Team Analyzed team × × × ×

(long name)
team Analyzed team ×

(short name)
Conference Conference ×
Division Division ×

Rank Rank (end season) ×
Playoff Playoff qualification ×

(Yes or No)
Player Analyzed player ×

GP Games Played × × ×
MIN Minutes Played × × ×
PTS Points Made × × ×
W Games won × ×
L Games lost × ×

P2M 2-Point Field Goals × × ×
(Made)

P2A 2-Point Field Goals × × ×
(Attempted)

P2p 2-Point Field Goals × × ×
(Percentage)

P3M 3-Point Field Goals × × ×
(Made)

P3A 3-Point Field Goals × × ×
(Attempted)

P3p 3-Point Field Goals × × ×
(Percentage)

FTM Free Throws × × ×
(Made)

FTA Free Throws × × ×
(Attempted)

FTp Free Throws × × ×
(Percentage)

OREB Offensive Rebounds × × ×
DREB Defensive Rebounds × × ×
AST Assists × × ×
TOV Turnovers × × ×
STL Steals × × ×
BLK Blocks × × ×
PF Personal Fouls × × ×
PM Plus/Minus × × ×
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TABLE 2.2 Variables of data frame PbP.BDB.

Variable Description
game_id Identification code for the game
data_set Season: years and type

(Regular or Playoffs)
date Date of the game

a1 …a5; h1 …h5 Five players on the court
(away team; home team)

period Quarter (≥ 5: over-time)
away_score; home_score Score of the away/home team

remaining_time Time left in the quarter
(h:mm:ss)

elapsed Time played in the quarter
(h:mm:ss)

play_length Time since the immediately
preceding event (h:mm:ss)

play_id Identification code for the play
team Team responsible for the event

event_type Type of event
assist Player who made the assist

away; home Players for the jump ball
block Player who blocked the shot

entered; left Player who entered/left the court
num Sequence number of the free throw

opponent Player who made the foul
outof Number of free throws accorded
player Player responsible for the event
points Scored points

possession Player whom the jump ball is tipped to
reason Reason of the turnover
result Result of the shot (made or missed)
steal Player who stole the ball
type Type of play

shot_distance Field shots: distance from the basket
original_x ; original_y; coordinates of the shooting player
converted_x ; converted_y original: tracking coordinate system

half court, (0,0) center of the basket
converted: coordinates in feet
full court, (0,0) bottom-left corner

description Textual description of the event
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5. Additional information. In this data frame, called Tadd, the
cases (rows) are the analyzed teams and the variables (columns)
are qualitative information such as Conference, Division, final
rank, qualification for Playoffs. Variables are listed in Table 2.1.

All the data frames contained in the package relate to the whole
regular season of the NBA championship 2017/2018 (82 games); box
scores and additional information are about all the teams and players,
play-by-play data are relative to the 82 games played by the Champions,
Golden State Warriors, during the regular season. Play-by-play data have
been kindly made available by BigDataBall (www.bigdataball.com), a
data provider which leverages computer-vision technologies to enrich
and extend sports datasets with lots of unique metrics. Since its estab-
lishment, BigDataBall has also supported many academic studies and
is referred to as a reliable source of validated and verified stats for
NBA, MLB, NFL and WNBA. The R functions of BasketballAnalyzeR
requiring play-by-play data as input need a data frame with some addi-
tional variables with respect to PbP.BDB. It can be obtained by typing

> PbP <- PbPmanipulation(PbP.BDB)

where PbPmanipulation is a function that adapts the standard file sup-
plied by BigDataBall to the format required by BasketballAnalyzeR.
The resulting data frame PbP is composed of the same variables of
PbP.BDB (when necessary, coerced from one data type to another, e.g.,
from factor to numeric) plus five additional variables listed in Table 2.3.
In the following, we will use the data frame PbP in all the analyses
involving play-by-play data.

Throughout the book, we will show how the functions of
BasketballAnalyzeR work with the above-mentioned datasets. Re-
searchers can replicate the described analyses (or perform new ones)

TABLE 2.3 Additional variables of data frame PbP.

Variable Description
periodTime Time played in the quarter (in seconds)
totalTime Time played in the match (in seconds)
playlength Time since the immediately preceding event

(in seconds)
ShotType Type of shot (FT, 2P, 3P)
oppTeam Name of the opponent team

http://www.bigdataball.com
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on their own data, provided some rules about data preparation are fol-
lowed. The easiest and safest way for a correct replication on an arbitrary
data set of the analyses considered in this book is to build data frames
with the same structure of the Tbox, Obox, Pbox, Tadd and PbP datasets.
Further details on this issue and examples will be discussed in Chapter 6,
Section 6.2.

2.2 BASIC STATISTICAL ANALYSES
In this section some basic tools will be discussed with examples. Virtu-
ally, the analytics that will be described can be computed on any team
or player for which box scores are available and on any play-by-play
dataset, considering a single match or more games grouped together, in
any moment of a championship or a tournament.

2.2.1 Pace, Ratings, Four Factors
This section is based on Kubatko et al. (2007), the first paper that
brought the generally accepted mainstream of basketball analytics to
a scientific journal, thereby establishing a common starting point for
data science research in this field. In detail, we address the concepts
of possession and pace, Offensive/Defensive Ratings and the notorious
Four Factors. We denote variables with the same names of the R data
frame columns in Table 2.1.

Following Kubatko et al. (2007), possessions are computed as

POSS = (P2A + P3A) + 0.44 × FTA − OREB + TOV (2.1)

and the strictly related statistic accounting for the pace of the game is
given by

PACE = 5 × POSS/MIN (2.2)

where MIN are the total minutes played by all the players. Per-
possession efficiency is measured as the points scored or allowed per
100 possessions, called Offensive (ORtg) and Defensive (DRtg) Rating,
respectively:

ORtg = PTST /POSST (2.3)

DRtg = PTSO/POSSO (2.4)

where the subscripts T and O refer to whether the statistic is computed
on the analyzed team or the opponent(s). Finally, the Four Factors -
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TABLE 2.4 Four-Factor formulas (for offense and defense).

Factor Offense Defense

eFG% P2MT + 1.5 × P3MT

P2AT + P3AT

P2MO + 1.5 × P3MO

P2AO + P3AO

TO Ratio TOVT

POSST

TOVO

POSSO

REB% OREBT

OREBT + DREBO

DREBT

OREBO + DREBT

FT Rate FTMT

P2AT + P3AT

FTMO

P2AO + P3AO

Effective Field Goal Percentage (eFG%), Turnovers per possession (TO
Ratio), Rebounding percentages (REB%), Free Throw Rate (FT Rate) -
for each the offense and the defense are computed as in Table 2.4.

The function fourfactors of the package BasketballAnalyzeR,
easily computes and graphically represents all these indexes for one or
more selected teams. For example, if we wish to limit attention to the
Conference finalists (Boston Celtics, Cleveland Cavaliers, Golden State
Warriors, Houston Rockets), we use the following code

> tm <- c("BOS","CLE","GSW","HOU")
> selTeams <- which(Tadd$team %in% tm)
> FF.sel <- fourfactors(Tbox[selTeams,], Obox[selTeams,])

where BOS, CLE, GSW, and HOU are the short names of the four
selected teams. The R object FF (of class fourfactors) contains a data
frame with Possessions, Pace, Offensive/Defensive Ratings and Four Fac-
tors as columns. A plot method is available for this class, so that the
command

> plot(FF.sel)

returns the graphs in Figure 2.1, which allows some important remarks
about the analyzed teams:

• Pace: the pace of the games increases moving from Boston
Celtics to Houston Rockets, Cleveland Cavaliers and Golden State
Warriors.
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Figure 2.1 Pace, Offensive/Defensive Ratings and Four Factors (differ-
ences between the team and the average of the considered teams) - Con-
ference finalists 2017/2018.

• Offensive/Defensive Ratings: The Boston Celtics and Cleve-
land Cavaliers have respectively low and high values for both ORtg
and DRtg; the Golden State Warriors and Houston Rockets have
the best performance from this perspective, as they have high
ORtg and a relatively low DRtg.

• Offensive/Defensive Four Factors: The bars represent, for
each team and each Factor, the difference between the team value
and the average of the four analyzed teams. The positive or neg-
ative value of this difference and the height of the corresponding
bar give a clear idea of strengths and weaknesses of the teams with
respect to each other.

An R object of class list containing the four graphs (generated by
the ggplot2 library Wickham, 2016) of Figure 2.1 can be created (and
customized). Suppose this time we want to analyze all the teams: we first
generate the object FF of class fourfactors, then the object listPlots
of class list
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> FF <- fourfactors(Tbox,Obox)
> listPlots <- plot(FF)

Now the four graphs can be plotted separately or can be arranged in a
single plot, using the R package gridExtra (Auguie, 2017). For example,
the graphs of Pace and Offensive/Defensive Ratings of all the teams can
be displayed together as follows (Figure 2.2):

> library(gridExtra)
> grid.arrange(grobs=listPlots[1:2], ncol=1)

2.2.2 Bar-line plots
A useful graphical tool, often used to visualize comparisons among teams
or players according to some selected statistics, is the bar-line plot. In
this graph, for each analyzed team/player, a bar is drawn, whose height
is determined by one ore more (in the case of stacked bars) variables.
The bars can be ordered according to a selected variable. Furthermore,
relevant information can be added to the chart by means of a line, whose
scale can be read on another axis, conventionally put on the right. There
are no crucial statistical issues in composing this graph, what only mat-
ters is the right choice of the variables, in order to obtain an insight-
ful representation of reality. Some examples follow on how the function
barline can be used to this extent in a very flexible way.

The graph in the top panel of Figure 2.3 is obtained from the follow-
ing code lines

> X <- data.frame(Tbox, PTS.O=Obox$PTS, TOV.O=Obox$TOV,
CONF=Tadd$Conference)

> XW <- subset(X, CONF=="W")
> labs <- c("Steals","Blocks","Defensive Rebounds")
> barline(data=XW, id="Team", bars=c("STL","BLK","DREB"),

line="TOV.O", order.by="PTS.O", labels.bars=labs)

and represents the main defensive statistics of the Western Conference
NBA teams: steals, blocks and defensive rebounds for the bars, ordered
(in decreasing order) according to the points scored by the opponents
(variable PTS.Opp); the gray line represents turnovers of the opponents
(whose scale is on the right vertical axis). The graph does not highlight
any evident relationship between the defensive statistics and the points
scored by the team’s opponents or their turnovers. In fact, the teams
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2017/2018.
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on the left bars (those with the highest values of points scored by the
opponents, e.g., Phoenix Suns PTS.Opp = 9290, New Orleans Pelicans
PTS.Opp = 9054) are not necessarily those with the lowest bars.

Alternatively, player statistics can be represented. Suppose we are
interested in the players of the Houston Rockets who have played at
least 500 minutes in the considered championship, we can draw a bar-line
plot for their shooting percentages (2- and 3-point shots and free throws
percentages in the bars, ordered according to the players’ plus-minus
statistic) with the additional information of the minutes played (line):

> Pbox.HR <- subset(Pbox, Team=="Houston Rockets" &
MIN>=500)

> barline(data=Pbox.HR, id="Player",
bars=c("P2p","P3p","FTp"), line="MIN",
order.by="PM", labels.bars=c("2P%","3P%","FT%"),
title="Houston Rockets")

as displayed in the bottom panel of Figure 2.3. This graph shows that
the players on the left bars (those with the highest values of plus-minus
statistic, e.g., Eric Gordon PM = 589, James Harden PM = 525) tend
to also have the highest minutes played (respectively, MIN = 2154 and
MIN = 2551), but not necessarily the best shooting performance, as
there are players with shooting percentages as good as the top ranked
players, but considerably lower plus-minus statistic and minutes played
(e.g., Gerald Green PM = 93 and MIN = 929, Joe Johnson PM = 18
and MIN = 505).

2.2.3 Radial plots
Another useful chart able to visualize the teams’ and players’ profiles is
the so-called radial plot, where numeric values are plotted as distances
from the center of a circular field in the directions defined by angles
obtained dividing the 360-degree angle as many times as the number
of considered variables. Joining the points representing the numerical
values of the variables, a polygon is obtained, visually describing the
profile of the considered subject (team or player). We must mention here
that some researchers raise criticism about this kind of graph. According
to them, it makes comparisons about data points difficult because it
draws the eye to the area, rather than the distance of each point from
the center. In addition, the area is determined by the arbitrary choice of
the sequence of variables and there is a graphical over-emphasis on high
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numbers. However, it can be very useful when an immediate comparison
of different profiles is necessary, as, for example, in Cluster Analysis (see
Chapter 4). We recommend to be wary in interpreting it, as shown in
the following examples.

The function radialprofile displays radial plots of teams or play-
ers, with a flexible choice of variables and the possibility to standardize
them in order to enhance differences among the analyzed cases. It is
built starting from the R function CreateRadialPlot by Vickers (2006),
freely downloadable from the web.

For example, we may be interested in comparing profiles of nine
point guards, namely Russell Westbrook, Stephen Curry, Chris Paul,
Kyrie Irving, Damian Lillard, Kyle Lowry, John Wall, Rajon Rondo and
Kemba Walker according to 2- and 3-point shots made, free throws made,
total rebounds (offensive and defensive), assists, steals and blocks (per
minute played). The code lines are

> Pbox.PG <- subset(Pbox, Player=="Russell Westbrook" |
Player=="Stephen Curry" |
Player=="Chris Paul" |
Player=="Kyrie Irving" |
Player=="Damian Lillard" |
Player=="Kyle Lowry" |
Player=="John Wall" |
Player=="Rajon Rondo" |
Player=="Kemba Walker")

> attach(Pbox.PG)
> X <- data.frame(P2M, P3M, FTM, REB=OREB+DREB, AST,

STL, BLK)/MIN
> detach(Pbox.PG)
> radialprofile(data=X, title=Pbox.PG$Player, std=FALSE)

We obtain the graph of Figure 2.4, where we note that, although each
player has his own features, there are some similar profiles (Irving,
Walker and Lillard, Rondo and Wall, Curry and Paul). In spite of its
apparent straightforwardness, we have to pay a great deal of attention
while setting up this graph. In fact, the axes have all the same scale,
ranging from the absolute minimum to the absolute maximum (with
the dashed blue line in the midpoint between them) of all the analyzed
variables. For this reason, we should select game features having about
the same scale; otherwise, some variables would be shrinked on axes set
with a scale too wide for them. This would make us unable to assess
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Figure 2.4 Radial plots of nine selected point guards, non-standardized
variables. Dashed blue line: midpoint between minimum and maximum.

differences among players with respect to those variables. In some small
way, this happens in the graph of Figure 2.4, where the axes range
from min(X) (≃ 0.005) to max(X) (≃ 0.313). For example, variable STL
(steals per minute played) ranges from about 0.029 to 0.052 and dif-
ferences among players on this aspect - although considerable - are not
visually detectable in the graph.

In this situation, it is recommendable to complement the analysis
with the graph obtained by setting the option std=TRUE, thanks to which
the analyzed variables are preliminarily standardized. We recall that the
standardization of a variable X with mean µX and standard deviation
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σX is a linear transformation generating a new variable Z given by

Z = X − µX

σX

with mean µZ = 0 and standard deviation σZ = 1. In other words, in
the graph obtained with std=TRUE, all the variables are transformed into
the same scale, and the dashed blue line is drawn at the zero level, cor-
responding, for each variable, to its average. The points in the profiles
can then be interpreted as being, for each variable, above or below the
average of the analyzed players. In Figure 2.5 we see how the profiles
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Figure 2.5 Radial plots of nine selected point guards, standardized vari-
ables. Dashed blue line: zero (average of each variable).
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change as a result of the standardization. Several remarks are possi-
ble: there are point guards who distinguish themselves for a particularly
high (Curry and Lowry) or low (Rondo, Westbrook and Wall) number
of 3-point shots made. The same can be said for 2-point shots (high: Irv-
ing and Westbrook; low: Rondo and Lowry), steals (high: Curry, Paul
and Westbrook; low: Irving, Walker, Lillard and Lowry), and all the
other analyzed variables. Jointly considering all the variables, the most
outstanding profile is that of Westbrook, having all the variables above
average, except 3-point shots made and blocks (but note that the blocks’
average is boosted by the impressive performance of Wall, in the top 20%
of the entire league that year for this variable - even more remarkable
considering his size and that he plays the point guard position). Two
last warnings have to be given about the standardized version of this
graph: firstly, when we interpret a value as being above or below aver-
age, of course that average is computed on the analyzed players and not
on the entire league; secondly, we should avoid standardization if we are
analyzing less than 5-6 players. Finally, consider that in radialprofile
the axes scale can be adjusted thanks to the argument min.mid.max.

2.2.4 Scatter plots
A scatter plot is a graph displaying values for two variables observed on
a set of data using Cartesian coordinates. Each subject of the dataset is
represented as a point having the value of the two variables as x-axis and
y-axis coordinates, respectively. If the points are color-coded, the scatter
plot can display one additional variable (as the coloring variable). Scatter
plots can give a rough idea of the relationships between the analyzed
variables, suggest various kinds of associations and highlight anomalous
cases.

The function scatterplot allows to display scatter plots with a set
of options for color-coding, highlighting selected subjects, and zooming
into a subset of the Cartesian plane. Suppose we are interested to inves-
tigate the relationship between assists and turnovers per minute of all
the players who have played at least 500 minutes during the regular sea-
son, also highlighting, by color codes, the points scored per minute. The
code lines producing the graph in the top panel of Figure 2.6 are

> Pbox.sel <- subset(Pbox, MIN>= 500)
> attach(Pbox.sel)
> X <- data.frame(AST, TOV, PTS)/MIN
> detach(Pbox.sel)
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Figure 2.6 Scatter plots of (per minute) assists versus turnovers with
points colored according to the points scored per minute. Points are
plotted by case numbers (top); by players’ names, with selected players
in evidence (middle); in a selected portion of the plane (bottom).
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> mypal <- colorRampPalette(c("blue","yellow","red"))
> scatterplot(X, data.var=c("AST","TOV"), z.var="PTS",

labels=1:nrow(X), palette=mypal)

Note that for the option palette the common default setting (e.g.,
rainbow, terrain.colors, ...) can be used instead of specifying the
customized palette mypal.

Looking at the graph, we note that the number of turnovers tends
to increase with increasing assist values. This reflects a clear insight:
the more a player moves the ball, the more likely he turns it over. It
is worth noting some cases of players with high turnovers with respect
to assists (case numbers 271, 283, 222), with high assists with respect
to turnovers (case numbers 132, 82, 223), with both high assists and
turnovers (case numbers 62, 127, 240, 357). All these outstanding cases,
except 223, exhibit high values of scored points.

In order to plot players’ names instead of case numbers, we add
the option labels=Pbox.sel$Player in the function scatterplot. In
addition, the positioning in the scatter of a subset of players can be
highlighted thanks to the option subset. Suppose we are interested in
the players of the San Antonio Spurs, the following code lines produce
the graph in the middle panel of Figure 2.6.

> SAS <- which(Pbox.sel$Team=="San Antonio Spurs")
> scatterplot(X, data.var=c("AST","TOV"), z.var="PTS",

labels=Pbox.sel$Player, palette=mypal,
subset=SAS)

Finally, to zoom into a subset of the Cartesian plane, say [0.20, 0.325] ×
[0.05, 0.10] (corresponding to players who exhibit high assist val-
ues associated to moderately low turnovers), we add the option1

zoom=c(0.20,0.325,0.05,0.10) and obtain the graph in the bottom
panel of Figure 2.6.

When three or more variables are considered, the function
scatterplot allows to plot scatter plot matrices, as will be described
later, in Chapter 3, Section 3.2. Several additional options are also avail-
able, that will be considered when appropriate (see Chapter 3, Section
3.5.3 and Chapter 5, Section 5.2).

1Note that when the argument zoom is used, the function generates a warning
message for the impossibility to plot the subjects outside the selected area, which of
course can be ignored when the aim is to zoom.
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2.2.5 Bubble plots
A bubble plot is a scatter plot where individual cases (teams or players)
are plotted in the plane by means of bubbles instead of points. The size
and color of the bubble are defined according to two additional variables,
so that the bubbles’ scatter includes information on four features. The
function bubbleplot easily allows to build such a graph, with variables
selected by the researcher. A bubble plot of the teams with variables
given by the shooting percentages (2- and 3-point shots on the x- and
y-axes, respectively, free throws on a red-blue color scale) and the total
number of attempted shots (the size of the bubbles) can be obtained
with the following code lines (Figure 2.7):

> attach(Tbox)
> X <- data.frame(T=Team, P2p, P3p, FTp, AS=P2A+P3A+FTA)
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Figure 2.7 Bubble plot of the teams according to shooting percentages
and total shots attempted.



38 ■ Basketball Data Science

> detach(Tbox)
> labs <- c("2-point shots (% made)",

"3-point shots (% made)",
"free throws (% made)",
"Total shots attempted")

> bubbleplot(X, id="T", x="P2p", y="P3p", col="FTp",
size="AS", labels=labs)

Note that, in order to improve readability, the bubble size is rescaled
between 0 and 100 (corresponding to the minimum and the maximum
number of total shots attempted, respectively). This rescaling can be dis-
abled setting the argument scale.size to FALSE (it is TRUE by default).
Looking at the graph, we immediately note the outstanding location of
Golden State Warriors, who exhibit the highest shooting percentages
but, surprisingly, a low number of attempted shots.

Another example of bubble plot can be obtained representing the
players of two teams (say, Golden State Warriors and Cleveland Cava-
liers), focusing just on those who have played at least 500 minutes in the
championship, according to their statistics related to defense: defensive
rebounds, steals and blocks per minute played. Let the bubble size rep-
resent the total minutes on the court (Figure 2.8). We set scale=FALSE
in order to represent the real number of minutes played and we also use
the argument text.col, thanks to which the bubbles’ labels are colored
according to the team. With text.size we are allowed to customize the
labels’ size.

> Pbox.GSW.CC <- subset(Pbox,
(Team=="Golden State Warriors" |
Team =="Cleveland Cavaliers") &
MIN>=500)

> attach(Pbox.GSW.CC)
> X <- data.frame(ID=Player, Team, V1=DREB/MIN, V2=STL/MIN,

V3=BLK/MIN, V4=MIN)
> detach(Pbox.GSW.CC)
> labs <- c("Defensive Rebounds","Steals","Blocks",

"Total minutes played")
> bubbleplot(X, id="ID", x="V1", y="V2", col="V3",

size="V4", text.col="Team", labels=labs,
title="GSW and CC during the regular season",
text.legend=TRUE, text.size=3.5, scale=FALSE)
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Figure 2.8 Bubble plot of the Golden State Warriors’ and Cleveland Cav-
aliers’ players according to statistics related to defense (per minute
played).

Interesting evidence can be extracted from the graph of Figure 2.8.
First, in the top-right quadrant (players with both defensive rebounds
and steals above average), we predominantly find Golden State Warriors
players having also excellent values for blocks. In their midst, the only
noteworthy Cleveland Cavaliers player is LeBron James, with quite high
defensive rebounds and steals, and blocks on average, though. It is worth
mentioning David West and Jordan Bell, who exhibit excellent perfor-
mances despite a low value of minutes played. On the other hand, in the
bottom left quadrant (players with both defensive rebounds and steals
below average) there are mainly Cleveland Cavaliers players who tend to
have also low values for blocks. Among them we find one of the Golden
State Warrior Splash Brothers, Klay Thompson. Kevin Durant exhibits
defensive rebounds and blocks above average, but steals below average.
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2.2.6 Variability analysis
In descriptive Statistics, variability is the extent to which data deviate
from the average as well as the extent to which they tend to be different
from each other. An index measuring variability is a nonnegative real
number assuming value zero if all the data are the same and increases as
the data become more diverse. For a given variable X, there are several
indexes of variability, the most commonly used being the range (differ-
ence between maximum and minimum values), the interquartile differ-
ence (difference between third and first quartiles) and the variance σ2

X or
its numerator, called deviance or Total Deviance (TD), used in Chapter
4. Very often, variability is also measured by the variance’s square root,
the standard deviation σX , already mentioned in Section 2.2.3, when
introducing the standardization issue. In detail, σ2

X is obtained averag-
ing the squared deviations of each of the N values xi (i = 1, · · · , N) of
variable X from their mean µX by means of the following formula:

σ2
X =

N∑
i=1

(xi − µX)2

N
,

and we then obtain the standard deviation as

σX =
√

σ2
X .

When different variables have to be compared according to their variabil-
ity, it is recommended to use a normalized index able to take account of
the possibly different averages or unit of measurement of the compared
variables. Typically, to this aim, we may resort to the variation coeffi-
cient (V C), given by the ratio of the standard deviation to the average
(V C = σX/µX). V C can be computed only when the values xi are all
positive2 (min(xi) > 0).

In basketball, variability may concern the extent to which the play-
ers of a team perform differently from each other according to a given
statistic. Variability may be a good thing or a bad thing. For example,
with variables related to specialized tasks (e.g., assists, rebounds, etc.),
high variability may mean that the team is well balanced according to
a given skill, in the sense that there are few players specifically devoted

2As a matter of fact, V C can also be computed with all negative values
(max(xi) < 0), using the formula V C = σX/|µX |. A variable with all negative
values is quite uncommon in practice.
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to that task, who are able to accomplish it much better than other play-
ers, devoted to other tasks. On the other hand, with variables related
to generic performance (e.g., goal percentages), high variability means
that the team depends too much on a few players able to perform well,
while the others are far below the team standards.

Range, variation coefficient and standard deviation, together with
a useful variability diagram, can be obtained thanks to the function
variability, which allows to choose a number of variables whose vari-
ability has to be measured and represented. In the diagram, for each
variable, a vertical axis is drawn, where players are located at the level
corresponding to their value (on the selected variable) and are repre-
sented with a bubble with size proportional to another variable. The
extent to which the bubbles are scattered along the vertical axis gives
an immediate idea of that variable’s variability. In addition, the values
assumed by the range and the variation coefficient are reported on the
graph for each variable.

Suppose we are interested in measuring the variability of the 3-point
shot percentages of the players of Oklahoma City Thunder who have
played at least 500 minutes. Table 2.5 shows the 3-point shots percentage
(P3p) and 3-point shots attempted (P3A) for the selected players. With
the code

> Pbox.OKC <- subset(Pbox, Team=="Oklahoma City Thunder"
& MIN>=500)

> vrb1 <- variability(data=Pbox.OKC, data.var="P3p",
size.var="P3A")

we obtain the R object vrb1 of class variability, a list containing
data frames of range, variation coefficient and standard deviation val-
ues, plus the data frames of the variable(s) whose variability has to be
measured (data.var) and the variables selected for drawing the bubble
size (size.var). The function has also the logical argument VC, that is
TRUE by default. It must be set to FALSE if the analyzed variable is not
strictly positive and the variation coefficient cannot be computed.

The average, standard deviation, variation coefficient and range of
variable P3p result 30.41, 10.37, 0.34 and 40.07, respectively.

When studying variability, averages and standard deviations used to
compute the variation coefficient can be optionally weighted with a vari-
able of interest. This can be done by adding the argument weight=TRUE
to the previous code; the weights will be given by the same variable
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TABLE 2.5 3-point shots percentage
(P 3p) and 3-point shots attempted
(P 3A), Oklahoma City Thunder players.

Player P3p P3A

Russell Westbrook 29.75 326
Paul George 40.07 609
Carmelo Anthony 35.65 474
Steven Adams 0.00 2
Jerami Grant 29.09 110
Raymond Felton 35.22 230
Patrick Patterson 38.60 171
Alex Abrines 38.01 221
Andre Roberson 22.22 36
Josh Huestis 28.70 115
Terrance Ferguson 33.33 120
Corey Brewer 34.33 67

selected for the bubble size (size.var). In detail, the weighted mean
and the weighted standard deviation are computed as

W µX =

∑
xi · wi∑

wi

and

W σX =
√

W σ2
X =

√√√√∑
(xi −w µX)2 · wi∑

wi
,

respectively, where wi is the i-th weight, that is the i-th value of the vari-
able in size.var. The idea is to weigh differently each observation (in
the weighted mean) or each squared deviation from the average (in the
weighted standard deviation), according to the values of the weighting
variable. In our example, we select P3A (see Table 2.5) as the weighting
variable, and obtain weighted average, standard deviation and variation
coefficient equal to 35.35, 4.30, 0.12, respectively. In this situation, since
P3p = P3M/P3A, we note that the denominator equals the weight wi,
so that the weighted mean results to be the 3-point goal percentage of
the whole team.

Extending the example, we focus again on the players of Okla-
homa City Thunder who have played at least 500 minutes and mea-
sure variability of the variables denoting 2-, 3-point shots and free throw
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percentages, weighted by the corresponding number of attempted shots.
With the following code

> vrb2 <- variability(data=Pbox.OKC,
data.var=c("P2p","P3p","FTp"),
size.var=c("P2A","P3A","FTA"),
weight=TRUE)

we first obtain the R object vrb2 of class variability, analogous to the
previous object vrb1. If only one variable is inserted in size.var, that
variable is used to weigh all the variables in data.var. Alternatively,
size.var can be filled in with the same number of variables inserted
in data.var and the weighting variables weigh the analyzed variables
according to their order. A plot method is available for this class, pro-
ducing the above-described variability diagram. So, with the code

> plot(vrb, title="Variability diagram - OKC")

we obtain the graph of Figure 2.9 representing the variability diagram
for the variables denoting 2-, 3-point shots and free throws percentages,
with size of the bubbles proportional, respectively, to 2-, 3-point shots
and free throws attempted.
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Figure 2.9 Variability diagram of the goal percentages (P2p, P3p, FTp),
weighted by the attempted shots (P2A, P3A, FTA), Oklahoma City
Thunder (OKC) players. VC = variation coefficient.
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The most scattered bubbles are those related to free throws that
exhibit the highest variability, as confirmed by range and variation coef-
ficient. Here we even note a couple of outlier players. For 2-point shots,
there are two groups of players with slightly different performance levels.
Finally, 3-point shots exhibit the lowest variability, as confirmed by the
variation coefficient. In this case, the range is not a reliable measure, as
it is heavily affected by a single outlier player (Steven Adams) with only
2 shots attempted and 0 made3.

In general, we note that the players with the best percentages are
not always those attempting the highest number of shots.

2.2.7 Inequality analysis
Inequality is a concept originally born in economics, to represent the
income or wealth distribution of a region or a country. In this context,
inequality is the extent to which a small fraction of the population tends
to own a big share of the total wealth. The extremes are represented
by equal distribution (if everybody has the same wealth) or maximal
inequality (when everybody has no wealth, except for just one person
who owns the total wealth). We may borrow this concept from its native
field and use it to investigate inequality within a basketball team, with
reference to some game variable. In the following, we will refer to inequal-
ity of points made, but the same concept can be extended to any other
variable. Specifically, inequality of points made occurs when there are
few players who score a big part of the total points of the team (with
maximal inequality meaning that all the points are scored by just one
player). Conversely, equal distribution would imply that all the team
members score the same points. High levels of inequality denote a team
that is not well balanced from the point of view of the scored points and
tends to depend too much on a few players.

In practice, both extreme situations are not reached. In order to
measure and graphically represent how far a practical situation is from
totally equal distribution, we use the Gini coefficient and the Lorenz
curve. The Gini coefficient is an index ranging from 0 (equal distribution)
to 100% (maximal inequality). Its mathematical definition is based on
the Lorenz curve, which plots the fraction y of the total variable (the

3This examples gives us the opportunity to open a brief parenthesis about outliers,
anomalous values often present in datasets. They can affect the analyses in different
ways and usually need to be identified and treated. A good reference about this issue
is Hawkins (1980).
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TABLE 2.6 Example of inequality analysis: scored points by 8 players of
the Oklahoma City Thunder.

Player PTS CPl CPTS CPl% CPTS%
Patrick Patterson 318 1 318 12.50 3.98
Alex Abrines 353 2 671 25.00 8.39
Raymond Felton 565 3 1236 37.50 15.46
Jerami Grant 682 4 1918 50.00 23.98
Steven Adams 1056 5 2974 62.50 37.19
Carmelo Anthony 1261 6 4235 75.00 52.96
Paul George 1734 7 5969 87.50 74.64
Russell Westbrook 2028 8 7997 100.00 100.00

scored points in our context) on the y-axis that is cumulatively referred
to the bottom fraction x of the population. Two lines are usually added
to the graph, representing the two distributions with perfect equality and
maximal inequality, respectively. A brief example can help understanding
these two tools. Let us consider the first 8 players of the Oklahoma City
Thunder, in decreasing order of scored points: from the smallest to the
largest number of scored points (Table 2.6, Player and PTS). We first
cumulate players and scored points (CPl and CPTS), then we divide
respectively by the total number of players and the total scored points
in order to obtain the cumulative percentages (CPl% and CPTS%),
informing us about the fraction of total points scored by the first fraction
of players. For instance, we have that the first 25% players (2 over 8)
scored 8.39% of the total points, the first 50% (4 players over 8) scored
23.98% of the total points, and so on.

The Lorenz curve is obtained by joining the points with coordinates
given by CPl% (x-axis) and CPTS% (y-axis), as shown in Figure 2.10,
where the perfect equality and maximal inequality lines are also plotted.
The (blue shaded) area that lies between the line of equality and the
Lorenz curve represents the so-called inequality area: the larger its size,
the higher the inequality. The Gini coefficient can then be obtained as
the ratio of the inequality area to the total area between the line of
equality and the line of maximal inequality and is computed as

G =

N−1∑
i=1

(CPl%i − CPTS%i)

N−1∑
i=1

CPl%i

· 100 = 38.12%
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Figure 2.10 Example of inequality analysis: Lorenz curve.

where the subscript i is for the row number in Table 2.6 and N is the
number of players considered in the analysis.

The function inequality allows us to represent the Lorenz curve and
compute the Gini coefficient of a team, for a given number of players.
Note that it makes sense to include in the analysis at most 8-9 players, in
order to consider just the fundamental lineups. In fact, including players
who don’t play much inflates inequality without a specific interpretative
advantage. For the same reason, comparisons among teams have to be
made considering the same number of player for all the teams. If we
consider 8 players, the teams with the lowest and highest values of the
Gini coefficient are the Brooklyn Nets (9.59%) and Milwaukee Bucks
(38.56%, almost tied with Oklahoma City Thunder), respectively. The
results are shown in Figure 2.11, obtained using the following code:

> Pbox.BN <- subset(Pbox, Team=="Brooklyn Nets")
> ineqBN <- inequality(Pbox.BN$PTS, nplayers=8)
> Pbox.MB <- subset(Pbox, Team=="Milwaukee Bucks")
> ineqMB <- inequality(Pbox.MB$PTS, nplayers=8)
> library(gridExtra)
> p1 <- plot(ineqBN, title="Brooklyn Nets")
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Figure 2.11 Inequality analysis of scored point of Brooklyn Nets and Mil-
waukee Bucks - 8 players.

> p2 <- plot(ineqMB, title="Milwaukee Bucks")
> grid.arrange(p1, p2, nrow=1)

Note that ineqBN and ineqMB are R objects of class inequality
containing the Gini index value and the cumulative distributions used
to plot the Lorenz diagram. A plot method is available for this class,
producing the Lorenz curve with the annotated value of the Gini index.

An interesting further analysis can be carried out by jointly consid-
ering the Gini coefficients and the total points made by the teams. We
write a for cycle in order to compute the Gini coefficients for all the
teams:

> no.teams <- nrow(Tbox)
> INEQ <- array(0, no.teams)
> for (k in 1:no.teams) {

Teamk <- Tbox$Team[k]
Pbox.sel <- subset(Pbox, Team==Teamk)
index <- inequality(Pbox.sel$PTS, npl=8)
INEQ[k] <- index$Gini
}

Then we obtain the scatter plot of the Gini coefficient (x-axis) against
the points made (y-axis) using the scatterplot function presented in
Section 2.2.4:
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> dts <- data.frame(INEQ, PTS=Tbox$PTS,
CONF=Tadd$Conference)

> mypal <- colorRampPalette(c("blue","red"))
> scatterplot(dts, data.var=c("INEQ","PTS"), z.var="CONF",

labels=Tbox$Team, palette=mypal,
repel_labels=TRUE)

The obtained graph - where the teams have been colored according to
the Conference - shows that, in general, teams with higher inequality
indexes tend to score more points (Figure 2.12). Of course this has to
be interpreted just as a general tendency, not as a rule. Indeed, we have
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Figure 2.12 Gini coefficient (INEQ, x-axis) against total points made
(PTS, y-axis) in the Western (red) and Eastern (blue) Conference.
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a counterexample: the two teams with the lowest and the highest Gini
index (Brooklyn Nets and Milwaukee Bucks, respectively) have scored
almost the same number of points.

Another interesting application of the inequality analysis is with ref-
erence to the points scored by a given lineup on the field. For exam-
ple, we may be interested in the lineup composed by Stephen Curry,
Kevin Durant, Klay Thompson, Draymond Green and Zaza Pachulia. In
order to compute the points scored by these players when that particular
lineup was on the field, we need to resort to play-by-play data. We select,
from the play-by-play dataset PbP (obtained by manipulating PbP.BDB
as described on page 23) only the plays by the Golden State Warriors

> PbP.GSW <- subset(PbP, team=="GSW")

then we identify the rows referring to events occurred when the above
mentioned lineup was on the field

> lineup <- c("Stephen Curry", "Kevin Durant",
"Klay Thompson", "Draymond Green",
"Zaza Pachulia")

> filt5 <- apply(PbP.GSW[, 4:13], 1,
function(x) {
x <- as.character(x)
sum(x %in% lineup)==5
})

we count the points scored by the five players in those moments

> subPbP.GSW <- PbP.GSW[filt5, ]
> PTS5 <- sapply(lineup,

function(x) {
filt <- subPbP.GSW$player==x
sum(subPbP.GSW$points[filt], na.rm=T)
})

and we finally perform the inequality analysis

> inequality(PTS5, nplayers=5)

The Gini coefficient results 16.97%, denoting an appreciable tendency
to equality in the points scored by these five players, when exactly this
lineup is on the field. Of course, this may change from a match to another.
The analysis can be repeated for single matches: we just need to select



50 ■ Basketball Data Science

the rows referred to a given opponent and carry out the same analysis.
For example, considering the match against Detroit Pistons, we use the
dataset

> PbP.GSW.DET <- subset(PbP, team=="GSW" & oppTeam=="DET")

and we obtain a Gini coefficient of 48.44%, with Klay Thompson account-
ing for the main part of the points scored by the lineup.

A different approach to study whether the points scored (or another
game variable) is concentrated in the hands of a few players is by com-
puting heterogeneity or diversity indices. In this situation, the different
players are considered as the categories among which the total amount
of scored points are distributed. Each player is responsible for a propor-
tion (relative frequency) of the scored points and heterogeneity indices
measure how much different are such relative frequencies. Examples of
heterogeneity indices are the Gini index (also known as Gini-Simpson
index, that is different from the inequality Gini index) and the Shannon
(also known as Shannon-Wiener) index. Both of them, in their normal-
ized version, equal 0 (minimum heterogeneity) when one single player
scored all the points (one single category has relative frequency equal
to 1) and equal 1 (maximum heterogeneity) when the scored points are
equally distributed among the players (each category has the same rel-
ative frequency).

2.2.8 Shot charts
Shot charts are a useful tool to show shot patterns across the court, in
order to analyze the players’ favorite spots on the court to shoot from,
also with reference to selected game phases. The play-by-play dataset
PbP, obtained from PbP.BDB thanks to the function PbPmanipulation
as described on page 23, contains different types of shot coordinates (see
Table 2.2) that can be graphically analyzed with shot charts.

The R function shotchart creates a customizable plot where each
shot is displayed as a point on the court, possibly colored according to
whether the shot is made or missed. Additionally, the court can be split
into a given number of sectors that can be colored according to some
aggregate statistics (e.g., average scored points, average play length when
the shot is attempted, ...) and annotated with shots made/attempted
and field goal percentages.

The function shotchart is built with reference to the standard 94
by 50 feet NBA court. It requires as input half-court shot coordinates
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expressed in feet, with the origin located in the center of the court. This
format can be obtained by a linear transformation of original coordinates
contained in variables original_x and original_x of PbP measured by
the tracking systems. In detail, suppose we are interested to analyze
Kevin Durant’s shot patterns. We preliminarily select and transform
data as follows:

> subdata <- subset(PbP, player=="Kevin Durant")
> subdata$xx <- subdata$original_x/10
> subdata$yy <- subdata$original_y/10-41.75

where 41.75 is the distance of the hoop center from the center of the
court, as original_x and original_y have (0,0) in the center of the
basket (see Table 2.2). The plot representing only the scatter of shots
(Figure 2.13) can be obtained by

> shotchart(data=subdata, x="xx", y="yy", type=NULL,
scatter=TRUE)

Both the points and the background colors can be customized by means
of the arguments pt.col and bg.col, respectively. Points can be colored
differently according to whether they are made or missed by means of

Figure 2.13 Shot chart (Kevin Durant).
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Figure 2.14 Shot chart with 16 areas colored according to the length of
the play (Kevin Durant).

the option z="result", where z is the argument of shotchart allow-
ing to specify a third variable to analyze, and result is the variable of
PbP containing the information about the result of the shot (an exam-
ple using this feature will be shown later, in Chapter 4, Section 4.2.2,
Figure 4.6). With the option type="sectors", the court is split into
num.sect slices, that can be colored according to the value assumed by
a numerical variable specified by the argument z. In detail, with the code

> shotchart(data=subdata, x="xx", y="yy", z="playlength",
num.sect=5, type="sectors", scatter=TRUE)

we obtain the chart of Figure 2.14, highlighting, for each zone, the
average time elapsed since the immediately preceding event when the
shot is made. From this chart, we note that Kevin Durant’s close-range
shots occur on average in the first 8-9 seconds of the play, while as
the play length increases, he more commonly attempts mid-range shots
from the center or his left-hand side. By setting scatter=FALSE and
result="result", the scatter is replaced by the annotation of shots
made/attempted and field goal percentages (Figure 2.15). In this graph,
we note that close-range shots are the most successful ones and that the
zones where late shots are attempted tend to have lower percentages.
The option type also allows to draw plots of shot density across the
court, as will be discussed in Chapter 3, Section 3.5.2.
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Figure 2.15 Shot chart with 16 areas colored according to the length of
the play and annotated with shooting statistics (Kevin Durant).

GLOSSARY

Box scores: A box score is a summary of the results from a sport com-
petition, structured according to a set of game variables that are
different depending on the sport. The box score data are usually
derived from a statistics sheet recorded manually or with the help of
proper equipments, and are then summarized into frequency tables
or averages, referring to the team or the single players’ achievements.

Data warehouse: Computer archive containing data, designed to
allow easy production of analyses and reports useful for decision-
making purposes. Data are typically cleansed, transformed, listed
and made available for data mining, analytical processing and deci-
sion support.

Distributed system: A system whose components are distributed on
different networked computers, which share resources and interact
with each other in order to achieve a common goal.

Inequality: In Statistics, inequality is a feature of the distribution of
numerical transferable (i.e., whose units can conceptually be moved
from one subject to another) variables and is related to the extent to
which a big share of the analyzed variable tends to be concentrated
in a small fraction of the cases. In basketball, inequality analysis can
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be used to measure the dependence of the team on a small number
of players from the point of view of the scored points or some other
game variable. Traditionally, inequality is analyzed by means of the
Gini coefficient and the Lorenz curve.

Play-by-play data: A play-by-play is a set of data that recounts each
play of a game as it occurs or occurred, along with relevant informa-
tion about the recorded event (e.g., time, player(s) involved, score,
area of the court, etc.).

Relational database: Digital database where data are organized into
one or more tables of columns and rows, with a unique key identifying
each row.

Scalable system: A system, network or process that is capable to man-
age a growing amount of work, or has potential to be enlarged to
handle that growth.

Variability: In Statistics, variability refers to how dispersed or spread
out the data values are. Variability is absent if all values are the
same, and it increases as long as they are more and more different
from each other, or fluctuating around a measure of central tendency.
There are several indexes of variability, the most commonly used
being the (interquartile) range, the variance (or its square root, the
standard deviation, or its numerator, the deviance or Deviance TD)
and the variation coefficient (ratio of the standard deviation to the
average).

Web scraping, web harvesting, web data extraction: Gathering
and extraction of data from websites into a central local database or
spreadsheet, for later retrieval or analysis, both manually and with
automated informatics processes. Web scraping may be against the
terms of use of some websites.
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C H A P T E R 3

Discovering Patterns
in Data

APATTERN is an intelligible regularity discernible in the way in
which something happens. To discover patterns in data is about

using Data Science to reveal the hidden mechanisms governing the ana-
lyzed phenomena. Data Science is able to uncover lots of different pat-
terns such as distributions, associations, similarities, interactions, classi-
fications and trends, that can be described, measured and modelled.

There are only patterns, patterns on top of patterns, patterns that affect
other patterns. Patterns hidden by patterns. Patterns within patterns. If
you watch close, history does nothing but repeat itself.

Chuck Palahniuk
American novelist and freelance journalist

In this chapter, we will discuss some examples of patterns that can
be revealed and many statistical tools that can be exploited to analyze
data. The focus topic in the end of this chapter will be concerned with the
identification of the factors determining high-pressure game situations
and affecting the scoring probability. Two important issues in pattern
discovery, namely finding groups in data and modeling relationships in
data deserve to be treated in two separate specific chapters (Chapters 4
and 5).

57
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3.1 QUANTIFYING ASSOCIATIONS BETWEEN VARIABLES
With the term dependence or association we usually mean any statisti-
cal relationship, whether causal or not, between two or more variables
(Liebetrau, 1983; Merlo and Lynch, 2010). In order to detect any asso-
ciation, all the variables must be jointly measured on the units of obser-
vations. Leaving aside the concept of causality, which would require a
specific discussion, here we refer to the general notion of association that
can be defined in several different ways, according to which conception
of relationship is assumed. In basketball, discovering associations within
a set of variables can be interesting from different points of view. For
example, we may reveal which game variables are most associated with
the scored points, in general or with reference to a single team or player
or we may even detect associations between two specific game variables
that tend, for example, to enhance or undermine each other.

In most statistics textbooks, methods for detecting association
among variables are usually classified according to the nature of the
variables involved. We can distinguish categorical (or qualitative) and
numerical (or quantitative) variables. Categorical variables assign each
unit of observation to a particular group or category on the basis of some
qualitative property; possible values for categorical variables are then
attributes, categories. Examples of categorical variables are the Confer-
ence to which a team belongs (East or West), the result of a shot (made
or missed) or the player’s role (with five possible values given by point
guard, shooting guard, small forward, power forward, and center). On
the contrary, possible levels for numerical variables are numbers (inte-
gers, in the case of discrete numerical variables, or intervals, in the case
of continuous numerical variables). The total number of points made is
an example of discrete numerical variable, while the time played in the
quarter is a continuous numerical variable.

The distinction between categorical and numerical variables is impor-
tant because statistical methods conceived for variables of one kind can-
not be appropriate to analyze the other kind of variables. Actually, there
exists a hierarchy, according to which methods for categorical variables
can be used to analyze numerical variables (the latter having a higher
information content), and not vice versa. Despite this, due to the wide
range of methods available, it is always a better choice to resort to the
statistical methods especially introduced in the literature for treating
with the type of variable at hand.
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Simultaneous examination of relationships among several variables
can be addressed by several methods of multivariate data analysis
(Härdle and Simar, 2015). Focusing now on the bivariate analysis, the
three most common definitions of association between two variables
are statistical dependence (Section 3.1.1), mean dependence (Section
3.1.2) and correlation (Section 3.1.3), which can be evaluated by means
of proper statistical indexes and tests. According to the nature of the
analyzed variables, statistical dependence can be evaluated when vari-
ables are both categorical, or at least one is numerical, or they are
both numerical. Studying the mean dependence requires at least one
numerical variable. Correlation analysis requires that both variables are
numerical. In this book, more space will be devoted to the study of
correlation, because in basketball analytics the variables of interest are
often numerical.

3.1.1 Statistical dependence
Statistical dependence can be studied starting from a two-way cross-
table and investigating the existence of a “general” relationship among
the two variables (see, among others, Fagerland et al., 2017). In particu-
lar, this method compares the observed number of units within the cross-
table cells (observed frequencies) with the number of units one would
expect in the cells if no association exists and the units were randomly
distributed (expected frequencies under the independence hypothesis).
Several association indexes proposed in the literature are based on a sum-
mary of the differences between the observed and the expected frequen-
cies: there is association between the two variables when the observed
and expected frequencies differ statistically (beyond random chance).
Different approaches to measure association can be set up, for exam-
ple by measuring the reduction in the error of prediction for a variable
thanks to the knowledge of a second variable.

The most famous association index based on the differences between
observed and expected frequencies is the Chi-square (X2, sometimes
indicated as χ2). Consider a table with r rows and c columns and let
nij and n̂ij (i = 1, . . . , r; j = 1, . . . , c) the observed and expected
frequency in the generic cell i, j, respectively. X2 can be computed
as

∑
i

∑
j

(nij−n̂ij)2

n̂ij
. Since it measures the intensity of the relationship

between the two variables, but also depends on the sample size N
and the number r of rows and columns c in the table, this statistic
has been adjusted in several ways, giving birth to a number of related
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measures of association (see, among others, Warner, 2013), like Phi or
Φ (Φ =

√
X2/N , also known as M2(D)), the Mean Squared Contin-

gency (Φ2), Pearson’s contingency coefficient P (P =
√

Φ2/(Φ2 + 1)),
Cramer’s V , also known as the normalized index C (V = Φ/

√
k − 1,

where k = min(r, c)). When there is no association between the two
variables, each of these measures has a value of 0. As the intensity of asso-
ciation increases, the value of each of these measures increases. Cramer’s
V is the preferred measure because it is the only one that equals 1 in the
case of a perfect association between the two variables and so can be eas-
ily interpreted as a percentage. In addition, since Cramer’s V formula
considers the dimensions of the table, it can be used for comparisons
among tables of different dimensions. A significance test is usually per-
formed on X2 (called Chi-square test of independence, based on the χ2

distribution) in order to test whether the X2 value can be considered
statistically different from zero, indicating that there exists a significant
association between the two variables. For the other association mea-
sures derived from X2, it can be said that their tests of significance lead
to the same conclusion as it is for the chi square test of independence.

For example, we may be interested in analyzing if some game statis-
tics of the Golden State Warriors depends on the opponent team. To
do this, we can compute some association measures between the two
variables crossed in Table 3.1, which reports the number of free throws,
missed shots, rebounds and attempted shots by the Golden State War-
riors in the matches played against each of the opponent teams shown
in the table rows.

Table 3.1 is obtained by selecting, from the play-by-play dataset PbP
(obtained by manipulating PbP.BDB as described on page 23) only the
plays by the Golden State Warriors

> PbP.GSW <- subset(PbP, team=="GSW")

and then by filtering out some game events into which we are not inter-
ested

>ev <- c("ejection","end of period","jump ball",
"start of period","unknown","violation",
"timeout","sub","foul","turnover")

> event.unsel <- which(PbP.GSW$event_type %in% ev)
> PbP.GSW.ev <- PbP.GSW[-event.unsel,]
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TABLE 3.1 Opponent teams (rows) and event
types (columns), Golden State Warriors play data.

free throw miss rebound shot
ATL 33 88 81 84
BKN 34 80 98 93
BOS 45 95 90 71
CHA 26 91 90 80
CHI 46 80 98 95
CLE 47 88 95 79
DAL 74 155 188 188
DEN 78 172 164 173
DET 34 75 85 83
HOU 56 118 119 131
IND 33 97 90 72
LAC 127 161 166 176
LAL 104 190 202 176
MEM 77 126 128 117
MIA 48 92 92 79
MIL 33 70 74 85
MIN 54 132 142 133
NOP 85 183 175 180
NYK 46 78 79 90
OKC 86 176 179 153
ORL 27 77 92 99
PHI 46 76 88 98
PHX 59 166 178 197
POR 60 123 116 125
SAC 76 165 169 159
SAS 70 175 169 162
TOR 50 68 66 90
UTA 64 190 167 158
WAS 50 83 89 83

The cross-table T (reported in Table 3.1) is given by
> attach(PbP.GSW.ev)
> T <- table(oppTeam, event_type, exclude=ev)
> detach(PbP.GSW.ev)
and some association measures can be directly obtained by resorting
to the function assocstats in the library vcd (Meyer et al., 2017), as
follows:
> library(vcd)
> assocstats(T)
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Results show that the association between the two variables is low
(Cramer’s V equals 0.06) but significantly different from zero (Pearson’s
X2 = 116.25 has a p-value equal to 0.011: association is usually consid-
ered significant when p-value is lower than conventional values 0.05 or
0.10). The other results provided by the function assocstats are the
Likelihood ratio, also known as G-test, that gives here the same indi-
cations as the Chi-square test of independence (details can be found in
Hosmer et al., 2013), the Phi coefficient (available in this function only
for 2 × 2 tables) and Pearson’s contingency coefficient (P = 0.097). We
may conclude that there is a (low) association and the number of game
events (shots, missed shots, rebounds and free throws) in the play of the
Golden State Warriors depends on the opponent team (interpretation
should pay attention to the fact that teams do not play against all other
teams an equal number of times).

Another example of computation of Cramer’s V is reported in Chap-
ter 3, Section 3.4 and concerns the relationship between assists made and
received (Table 3.4).

3.1.2 Mean dependence
The mean dependence method allows us to examine, for example, if the
average number of points scored by all the NBA teams differ between the
East and West Conferences or among the different Divisions, or between
qualified and non-qualified teams for Playoffs, or to study if the average
number of fouls (or assists, rebounds, ...) of one team differs across the
quarters. In those situations, we want to analyze if and how the average
of a numerical variable (e.g., the points made) varies across the classes
defined by another variable, which can be categorical (e.g., Playoff, with
values Yes or No).

In the field of exploratory data analysis1, a variable Y is said to
be mean independent from another variable X if and only if the con-
ditional means of Y (that is, the means computed within each group
or class defined by X) are all equal and, consequently, equal to the
unconditional mean of Y (computed over all the observation units, with-
out considering their classification according to X). A well-known index
able to measure the level of mean dependence of Y with respect to X
is the Pearson’s correlation ratio η2

Y |X , that is the ratio of the between

1In inferential statistics, unlike descriptive or exploratory statistics, mean values
obtained from different groups are usually compared by means of t-tests and ANOVA
tables (see, among others, Hand and Taylor, 1987).



Discovering Patterns in Data ■ 63

deviance over the total deviance (BD/TD). This formulation is based
on the Total Deviance decomposition that will be explained in Chapter
4, Section 4.1. It ranges from 0 (when the conditional means of Y are all
equal and Y is mean independent from X) to 1 (Y perfectly depends, on
average, on X: in other words, for each observation, to know the class
or group defined by X to which the observation belongs is enough to
know also the value of Y ). Pearson’s correlation ratio finds a very useful
application in cluster analysis, where it helps deciding how many clus-
ters to maintain in the solution of a k-means clustering, as explained in
Chapter 4, Sections 4.1 and 4.2.1.

In order to investigate the mean dependence of some game variables
on Playoff qualification, we computed the conditional means of each
game variable, that is averaging over teams qualified (Playoff=Yes) and
not qualified (Playoff=No), separately, and the values of the Pearson’s
correlation ratio η2, in %, as displayed in Table 3.2. The game vari-
ables considered are points made, 2-point and 3-point field goals made,
free throws made, total rebounds, assists, steals, blocks, Defensive and
Offensive Ratings. The values in Table 3.2 are obtained (in the object
eta) running the following code, which depends on the libraries dplyr
(Wickham et al., 2019) and lsr (Navarro, 2015) and makes use of the
pipe operator %>% in the library magrittr (Bache and Wickham, 2014):

TABLE 3.2 Game variables’ averages
(conditional to Playoff) and values of η2

of mean dependence of game variables
on Playoff qualification.

Playoff
No Yes η2%

DRtg 107.90 104.60 42.53
ORtg 104.00 108.10 40.25
STL 601.90 659.60 28.77
PTS 8576.00 8844.80 19.28
BLK 365.60 420.40 18.12
FTM 1328.00 1394.40 5.58
P2M 2353.70 2417.20 3.28
AST 1875.50 1931.60 3.17
P3M 846.90 871.90 1.07
REB 3558.10 3577.50 0.49
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> library(dplyr)
> library(lsr)
> library(tibble)
> FF <- fourfactors(Tbox, Obox)
> attach(Tbox)
> attach(FF)
> X <- data.frame(PTS, P2M, P3M, FTM, REB=OREB+DREB, AST,

STL, BLK, ORtg, DRtg)
> detach(Tbox)
> detach(FF)
> Playoff <- Tadd$Playoff
> eta <- sapply(X, function(Y){

cm <- round(tapply(Y, Playoff, mean), 1)
eta2 <- etaSquared(aov(Y~Playoff))[1]*100
c(cm, round(eta2, 2))

}) %>%
> t() %>%
> as.data.frame() %>%
> rename(No=N, Yes=Y, eta2=V3) %>%
> rownames_to_column('rownm') %>%
> arrange(-eta2)
> column_to_rownames('rownm')

All the conditional means differ between qualified and non-qualified
teams. Therefore, we can conclude that all these game variables are, to
some extent, dependent on the Playoff qualification. However, as shown
by the values of η2, in several cases the degree of the mean dependence is
very low. For example, the number of rebounds and assists or the num-
ber of shots made (2-point, 3-point and free throws) are substantially
not dependent on the Playoff qualification (all η2 lower than 6%). On
the contrary, Defensive and Offensive Ratings are (moderately) highly
dependent on Playoff (η2 = 42.53% and 40.25%, respectively). These
results show that it is the game as a whole that counts, not the game
variables taken individually. Single variables don’t tell the whole story;
for example, the points made are only one side of the coin, the points
taken must also be considered.

3.1.3 Correlation
Correlation is a specific kind of statistical association which refers to the
linear relationship between two numerical variables. When numerical
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variables are available, measuring the degree of association by means of
statistical dependence or mean dependence methods means to degrade
both variables (in the case of statistical dependence) or one of them (in
the case of mean dependence) to fill the role of categorical variables.
Instead, correlation analysis allows the optimal use of the information
available in the numerical variables, which, as already mentioned, in
basketball analytics, and especially in performance analysis, prevail over
categorical ones.

In much detail, correlation analysis is based on concordance indices
that are positive when the highest (lowest) values of one variable are
associated with the highest (lowest) values of the other variable, and
negative when, on the contrary, the highest (lowest) values of one vari-
able are associated with the lowest (highest) values of the other variable.

The most widespread concordance index is Pearson’s correlation coef-
ficient, which is designed to measure both intensity and direction of a lin-
ear relationship between the two variables. The focus is then on a linear
relationship, and we can think of an interdependence between variables.
Other concordance indexes measuring nonlinear association between
variables have been proposed, for example the well-known Kendall’s τ .

Given two variables X and Y , the value of Pearson’s correlation
coefficient ρ between X and Y ranges from −1 to 1, with the extremes
meaning perfect (negative or positive, respectively) correlation and val-
ues near to 0 denoting absence of linear correlation (but not necessarily
absence of any kind of association). Figure 3.1 displays some possible
configurations of scatterplots for some values of ρ. It is clear that the
higher the absolute value of ρ, the higher the intensity of (positive or
negative, according to the sign) linear relationship. It must be said that
there are many other possible configurations associated with a null cor-
relation, which means absence of a linear relationship between X and
Y and this is consistent with the existence of a nonlinear relationship
between the two variables (Matejka and Fitzmaurice, 2017).

The following code computes the value of ρ between the number of
assists, AST, and turnovers, TOV, (per minute played) for players who
have played at least 500 minutes:

> data <- subset(Pbox, MIN>=500)
> attach(data)
> X <- data.frame(AST, TOV)/MIN
> detach(data)
> cor(X$AST, X$TOV)
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ρ = -1 ρ = -0.8 ρ = -0.5

ρ = -0.2 ρ = 0 ρ = +0.2

ρ = +0.5 ρ = +0.8 ρ = +1

Figure 3.1 Configurations of scatterplot with different values of ρ.

The Pearson correlation coefficient equals 0.687: as expected, there exists
a positive linear relationship between assists and turnovers and the
intensity of the association is rather strong.

A very interesting interpretation of Pearson’s correlation coefficient
is given when it is used to measure the association between the rank-
ings of players based on the two analyzed variables. For example, we
first consider the ranking of players based on assists made (per minute
played). The top assistmen are Rajon Rondo (New Orleans Pelicans),
Russell Westbrook (Oklahoma City Thunder), John Wall (Washington
Wizards), while the bottom ranks are occupied by Dante Cunning-
ham (New Orleans Pelicans), Josh Huestis (Oklahoma City Thunder),
and lastly, Semi Ojeleye (Boston Celtics). Another ranking can be
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obtained considering the turnovers (per minute played): here, the top
players are DeMarcus Cousins (New Orleans Pelicans), Russell West-
brook (Oklahoma City Thunder) and James Harden (Houston Rockets),
while on the bottom we find Terrance Ferguson (Oklahoma City Thun-
der), Dante Cunningham (New Orleans Pelicans) and Rodney Hood
(Cleveland Cavaliers).

In order to measure the agreement between the two rankings, we can
proceed with the previous example and compute the Pearson’s correla-
tion coefficients between rankings, as follows:
> cor(rank(X$AST), rank(X$TOV))

This is equivalent to compute Spearman’s correlation coefficient between
the two variables AST and TOV (on which rankings are based). Spear-
man’s correlation coefficient is one of the most common rank-correlation
measures and ranges from −1 to 1: it equals 1 when the players’ positions
are identical in the two rankings (perfect rank-agreement) and −1 when
one ranking is the reverse of the other (perfect disagreement). Values
close to 0 suggest no association between rankings and increasing values
imply increasing agreement between rankings.

In our example, we have
> cor(X$AST, X$TOV, method="spearman")

The rank-correlation measure results 0.668, denoting a positive and
strong association between the two rankings: players on top positions
in the ranking of assists tend to rank high also on turnovers.

If we have more than two variables, we can compute all the Pearson
correlation coefficients between each pair of variables and collect them in
a matrix, called correlation matrix. It is a squared matrix (number of rows
equal to the number of columns), with dimension given by the number
of analyzed variables. Its generic i, j element is the Pearson correlation
coefficient between the i-th and the j-th variable, ρij . Each element on the
principal diagonal of the correlation matrix is the correlation of a variable
with itself, which is always 1. The off-diagonal elements vary between −1
and 1 and, since ρij = ρji, the correlation matrix is said to be symmetric
and usually only the upper (or lower) triangle is shown.

If we give a data frame as input to the cor function (instead of
two single variables, as shown before), we get a correlation matrix. For
example, in the previous example
> cor(X)

returns the following 2 × 2 correlation matrix
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AST TOV
AST 1.000 0.697
TOV 0.697 1.000

Obviously, if X contains more than two variables, cor returns a corre-
lation matrix of higher dimension. Nice representations of the correlation
matrix are available in the R Package BasketballAnalyzeR, as shown
in Section 3.2, where the function corranalysis is introduced.

3.2 ANALYZING PAIRWISE LINEAR CORRELATION AMONG
VARIABLES

A study of the linear correlation between all the pairs of variables in a
given set can be performed thanks to the functions corranalysis and
scatterplot, the latter already introduced in Chapter 2, Section 2.2.4.
The term “pairwise” indicates that, even if more than two variables are
jointly analysed with these two functions, leading to the creation of a
correlation matrix and its related plot, the linear correlation coefficient
remains a measure of bivariate association, as it evaluates direction and
intensity of the linear relationship between all the possible pairs of vari-
ables.

After merging the datasets Pbox and Tadd in order to complete the
players’ boxscores data with some additional variables regarding the
teams (conference, division, qualification for Playoffs, ...), we select those
players who have played at least 500 minutes.

> data <- merge(Pbox, Tadd, by="Team")
> data <- subset(data, MIN>=500)

By way of example, we consider the following variables: scored point,
3- and 2-point shots made, total rebounds (offensive and defensive),
assists, turnovers, steals and blocks (per minute played).

> attach(data)
> X <- data.frame(PTS, P3M, P2M, REB=(OREB+DREB), AST,

TOV, STL, BLK)/MIN
> X <- data.frame(X, Playoff=Playoff)
> detach(data)
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We first compute pairwise linear correlation between the numerical vari-
ables and plot a graphical representation of the correlation matrix thanks
to the function corranalysis and the corresponding plot method2.

> corrmatrix <- corranalysis(X[,1:8], threshold=0.5)
> plot(corrmatrix)

The top panel of Figure 3.2 gives a graphical description of the corre-
lation matrix, a square grid whose i, j entry is the Pearson correlation
coefficient between the i-th and the j-th variable of the list, ρij . In the
lower triangle of the grid, we can read the values of the Pearson correla-
tion coefficients, whereas the upper triangle uses stylized ellipses to give
a rough idea of the shape of the relationship corresponding to each coef-
ficient. A colored blue-red scale is also used and displayed on the right
of the grid, where blue and red denote respectively negative and positive
correlation, with intensity proportional to the correlation strength. The
function corranalysis automatically performs a statistical test on the
null hypothesis ρij = 0, at the significance level 1 − α = 95%, and all
the coefficients that turn out to be not significantly different from zero
are marked with a cross on the grid. In simple words, a cross means that
the correlation coefficient between the two corresponding variables can-
not be considered statistically different from zero. Instead, every value
displayed on the grid is statistically different from zero, even if it is very
close to zero. The significance level of the test can be tuned using the
argument sig.level.

The bottom panel of Figure 3.2 shows the correlation network, where
the pairs of variables whose Pearson’s correlation coefficient is significant
are joined by a blue or red (according to whether the correlation is neg-
ative or positive) edge with color intensity proportional to the absolute
value of the correlation coefficient. The function also allows to set the
argument threshold that deletes from the correlation network all the
edges corresponding to Pearson’s correlation coefficients with absolute
value lower than a given threshold. In the examined example, we display
only correlations higher than 0.5, positive or negative (threshold=0.5).

We detect, as expected, a positive correlation between blocks and
rebounds, with a negative correlation between 3-point shots made

2Note that Figure 3.2 is obtained by setting the argument horizontal=FALSE in
the plot command. If horizontal=TRUE (default option), the two plots appear side
by side.
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Figure 3.2 Linear correlation matrix plot.
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and rebounds. Another well-known evidence is the positive correlation
between assists and turnovers. More subtle remarks concern the positive
correlation between turnovers and scored points, and the low correlation
between 3-point shots made and scored points, which instead turn out to
be much more correlated to 2-point shots. According to these evidences,
we may conjecture that players able to move the ball (even if it entails
the side effect of a higher number of turnovers) and to shoot from within
the 3-point line have been very effective in terms of scored points in the
2017/2018 NBA championship.

Another tool for a graphical correlation analysis is the function
scatterplot that, when three or more variables are given an input,
produces a scatter plot matrix showing in the upper triangle the values
of the Pearson correlation coefficients. With respect to the graph in the
top panel of Figure 3.2, the main differences are that (1) the scatter plots
are displayed in place of the stylized ellipses, (2) a categorical grouping
variable can be added in order to analyze within-group correlations and
(3) no significance analysis is performed. In our example, we may be
interested to separate the players in two groups according to whether
their team qualified for the Playoffs or not.

> scatterplot(X, data.var=1:8, z.var="Playoff",
diag=list(continuous="blankDiag"))

The argument diag is specified so as to produce an empty diagonal,
but other choices are possible, as will be described later, together with
other options available for the arguments upper and lower, allowing to
customize the upper and lower triangle of the scatter plot matrix (see
Chapter 3, Section 3.5 and Chapter 5, Section 5.2). In the graphs of
Figure 3.3 each point is a player, color-coded according to the qualifica-
tion for Playoff (Yes or No, Y/N) of his team. The lower triangle shows
the scatter plots of all the pairs of variables, the upper triangle contains
the Pearson correlation coefficients, separately for the two groups. It is
interesting to note that when a pair of variables has positive correla-
tion, this is almost always higher for players in teams that qualified for
Playoffs and the opposite happens for negative correlations. It seems that
players in the best performing teams tend to strengthen the positive syn-
ergies between their game variables and soften the negative ones. The last
two rows and the last column in Figure 3.3 display univariate analyses of
the game variables: respectively, the histograms (separately for the two
groups) and the boxplots. Through these univariate analyses, we do not
detect relevant differences in game variables between the two groups.
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Figure 3.3 Scatter plot matrix with within-group analysis.
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3.3 VISUALIZING SIMILARITIES AMONG INDIVIDUALS
There exist several methods of multivariate data analysis that allow to
visualize similarities among individuals, for example (multiple) Corre-
spondence Analysis (Greenacre, 2017), Principal Components Analysis
(Jolliffe, 1986), optimal scaling methods (Gifi, 1990; de Leeuw and Mair,
2009). Here we focus on Multidimensional Scaling (MDS), which is a
nonlinear dimensionality reduction tool that allows to plot a map visu-
alizing the level of similarity of individual cases of a dataset. In detail,
the starting point is a dissimilarity matrix ∆ = (δij)i,j=1,...,N , where δij

represents the dissimilarity between case i and case j. Dissimilarities are
distance-like quantities that can be obtained in several ways. When a
distance metric is used, ∆ is a distance matrix and is usually denoted
by Dp = (dij)i,j=1,...,N in order to distinguish it from the more general
case. The superscript p indicates that distances are computed based on
a set of p selected variables X1, · · · , Xp; in the most common case of the
Euclidean distance, we have

dij =

√√√√ p∑
h=1

(xih − xjh)2

with xih and xjh denoting the value assumed by variable Xh for cases i
and j, respectively.

The MDS algorithm aims to display each case in a q-dimensional
space (q << p) such that the distance matrix Dq of the obtained con-
figuration fits as closely as possible the dissimilarity matrix ∆ or the
distance matrix Dp.

Several approaches have been proposed for MDS (Kruskal, 1964a,b;
Kruskal and Wish, 1978; Cox and Cox, 2000; Borg et al., 2017). The
R function MDSmap optimizes the case locations for a two-dimensional
scatter plot (q = 2) and is based on Kruskal’s nonmetric approach,
requiring to minimize the so-called stress index S, a measure of how
good is the match between the matrix Dq of the resulting configuration
and the input matrix ∆ or Dp. S is a normalized index, so it can be
expressed as a percentage. The stress index should be very close to 0.
Some authors give rules of thumb for interpreting its value, but we pre-
fer to mention just that it should not exceed 20%. MDS solutions are
invariant to rotations and reflections, which consist in transformations
of the MDS configuration that leave the distances unchanged. For this
reason, the MDS solution is often rotated or reflected in order to make
the interpretation easier.
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We now show an example of displaying players according to the sim-
ilarity in their achievements in the following set of 8 variables: scored
point, 3- and 2-point shots made, total rebounds (offensive and defen-
sive), assists, turnovers, steals and blocks, limiting attention to those
players who have played at least 1500 minutes in the championship

> attach(Pbox)
> data <- data.frame(PTS, P3M, P2M, REB=OREB+DREB,

AST, TOV, STL, BLK)
> detach(Pbox)
> data <- subset(data, Pbox$MIN>=1500)
> id <- Pbox$Player[Pbox$MIN>=1500]

and obtain the two-dimensional configuration displayed in the top panel
of Figure 3.4 with the following code lines

> mds <- MDSmap(data)
> plot(mds, labels=id)

In the map of Figure 3.4, the players are displayed according to their sim-
ilarity in the selected variables: players close to each other have similar
achievements, while a higher distance means more peculiar character-
istics. In the top panel map, we notice a big group of players having
roughly similar features, some smaller groups of similar players quite
separated from the others (e.g., Paul George, Damian Lillard, Kemba
Walker, Lou Williams, Kyle Lowry, etc. in the top part of the map and
Karl Anthony Towns, Jusuf Nurkic, LaMarcus Aldridge, Rudy Gobert,
etc. in the bottom) and a number of players spread in a radial pattern,
thus denoting very special features (e.g., James Harden, Russell West-
brook, Lebron James, Ben Simmons, Giannis Antetokounmpo, Anthony
Davis, etc.). The goodness of fit is fair (S = 12.97%).

We can highlight some selected players or zoom into specific areas
of the map (respectively, middle and bottom panels of Figure 3.4) with
the following codes:

> selp <- which(id=="Al Horford" | id=="Kyle Korver" |
id=="Myles Turner" | id=="Kyle Kuzma" |
id=="Andrew Wiggins")

> plot(mds, labels=id, subset=selp, col.subset="tomato")
> plot(mds, labels=id, subset=selp, col.subset="tomato",

zoom=c(0,3,0,2))
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Figure 3.4 Two-dimensional MDS configuration (top: map; middle: map
with players highlighted; bottom: map with players highlighted and zoom
lens).
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Finally, in order to interpret the positioning of players or groups of play-
ers in the map with reference to some selected variables (say, P2M ,
P3M , AST and REB), we may resort to color-coding the points in the
map or, alternatively, overlap to the map a colored “level plot”. The
former way needs the following code lines and produces the graphs in
the top panels of Figure 3.5, where the players are represented as points
colored according to the scale reported on the right

> plot(mds, z.var=c("P2M","P3M","AST","REB"),
level.plot=FALSE, palette=topo.colors)

The level plot is obtained by fitting the selected variable with a sur-
face, determined with the method of polynomial local regression (Cleve-
land, 1979; Cleveland and Devlin, 1988) that will be better explained
in Chapter 5, Section 5.2.1, with the MDS coordinates as predic-
tors and using second-degree polynomials. It can be obtained by set-
ting level.plot=TRUE (that is the default option for this argument).
Optionally, we can use contour=TRUE in order to draw contour lines.
The output is represented in the bottom panels of Figure 3.5.

The joint evaluation of all the graphs helps to determine the meaning
of the players’ positioning. For example, 2- and 3-point shots made tend
to increase when moving from right to left and from bottom to top areas,
respectively, so players positioned in the top-left quadrant of the map
are quite good on both the achievements (however, the top-performing
players in 2- and 3-point shots made tend to be separated, on the left
and on the top of the map, respectively). The top-left quadrant is also
characterized by a high number of assists. The bottom-left quadrant,
instead, is marked by high levels of 2-point shots made and rebounds,
but very low levels of 3-points shots made and a rather low number
of assists. In the top-right we find an area with high levels of 3-point
shots made, but very low levels of 2-points shots made and a rather low
performance in assists and rebounds. Finally, the right-bottom quad-
rant denotes low performance in all four game variables. The analysis
can be completed by considering also the other variables, PTS, TOV
and STL.

3.4 ANALYZING NETWORK RELATIONSHIPS
Since basketball is a team sport, an important issue is to analyze interac-
tions between players during the game. To this aim, we need to use play-
by-play or player tracking data, containing information about events
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Figure 3.5 Top: Two-dimensional MDS configuration with subjects
(points) color-coded according to the variables P2M , P3M , AST and
REB. Bottom: Level plots of the variables P2M , P3M , AST and REB

in the MDS two-dimensional configuration.
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occurred during the game. Graphical representations of interactions can
be obtained by means of network analysis, which allows to construct and
analyze graphs composed of nodes and edges with given attributes, able
to represent either symmetric or asymmetric relations between discrete
objects. The analysis of passing sequences can be carried out from dif-
ferent perspectives: with reference to the whole path from the in-bounds
pass to the shot or just to the last passes (assists and/or the so-called
“hockey assists”3).

In this section, we describe the R function assistnet, designed to
investigate the network of assists in a team using play-by-play data. With
reference to the Golden State Warriors, we use the play-by-play dataset
PbP, obtained from PbP.BDB thanks to the function PbPmanipulation
as described on page 23. We start building the network and calculating
some assist statistics.

> PbP.GSW <- subset(PbP, team=="GSW")
> netdata <- assistnet(PbP.GSW)

The object netdata of class assistnet is a list containing the cross-table
of assists made and received by the players (netdata$assistTable),
a data frame of related statistics (called netdata$nodeStats, see
Table 3.3) and an object of class network (Butts, 2008, 2015) that
can be used for further network analyses with specific R packages
(netdata$assistNet).

A plot method is available for this class, so that the command

> set.seed(7)
> plot(netdata)

returns the graphs in the top panel of Figure 3.6, visualizing the net-
work of assists made and received by the Golden State Warriors players
(the arrangement of the nodes can be rotated from one run to another:
set.seed(7) allows to obtain the same display as ours). In each graph,
the players are represented as the network nodes and the oriented edges

3In ice hockey, there can be two assists per goal, attributed to the last two
players who passed the puck towards the scoring teammate. In that context, it has
been recognized that the last pass does not account for each and every single way to
create a shot opportunity for the teammate, as the whole team’s offense has to build
a creative passing sequence in order to find the gaps in their opponent’s defense.
Following this reasoning, also in basketball the idea is taking hold of recording the
secondary assist in order to highlight passing skills that otherwise would remain
hidden.
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TABLE 3.3 Variables of data frame netdata$nodeStats.

Variable Description
FGM Field goals made

FGM_AST Field goals made thanks to a teammate’s assist
FGM_ASTp Percentage of FGM_AST over FGM
FGPTS Points scored with field goals

FGPTS_AST Points scored thanks to a teammate’s assist
FGPTS_ASTp Percentage of FGPTS_AST over FGPTS

AST Assists made
ASTPTS Points scored by assisted teammates

denote the assists made by the player on the startpoint to the team-
mate on the endpoint. The edge color informs on the number of assists,
according to the white-blue-red scale on the right. The default network
layout is determined with the Kamada-Kawai algorithm (Kamada and
Kawai, 1989), but it can be changed and a threshold can be set in order
to display only the edges corresponding to a minimum number of assists
(bottom panel of Figure 3.6):

> set.seed(7)
> plot(netdata, layout="circle", edge.thr=20)

The two nets displayed in Figure 3.6 clearly show that, with respect
to the last pass and shot, the hard core of the team is composed by
the quartet Stephen Curry, Klay Thompson, Kevin Durant and Dray-
mond Green. Not a surprise, considered that, according to many experts,
this foursome has made Golden State Warriors the most recent one of
the fabled superteams that NBA happens to offer from time to time.
In addition, the peculiarity of these four players with reference to the
net assist-shot is the singular way Stephen Curry and Draymond Green
interpret their position, with the point guard assisting much less than
the power forward.

The network graph shows that Draymond Green is the greatest
assist-man of the team, with a clear preference for assisting Thompson
and Durant. To a lesser extent, Stephen Curry both makes and receives
assists, mainly interacting with the other three. Klay Thompson is by
far the most assisted player, not only by the other three of the above-
mentioned quartet, but also by several other teammates. Finally, Kevin
Durant mainly engages with the other three but exhibits an appreciable
number of assists made to Zaza Pachulia, Jordan Bell and JaVale McGee
and received by Andre Iguodala.
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Figure 3.6 Network of assists (layouts without node statistics). Top: basic
layout with nodes arranged with Kamada-Kawai layout. Bottom: layout
in circle with threshold (= 20) on the edges.
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An interesting follow-up on this issue can be obtained by consider-
ing the moments when Draymond Green, the most central player with
respect to assists made, is not on the field. This allows to investigate
how the team reorganizes the balance of its assist-shot passing sequence
in absence of the main “bandleader”. To do that, we select the rows of
PbP that do not contain the name of Draymond Green in the variables
a1, …, a5, h1, …, h5 (see Table 2.2)

> cols <- paste0(c("a","h"), rep(1:5,each=2))
> PbP.GSW.DG0 <- PbP.GSW[!apply(PbP.GSW[,cols], 1, "%in%",

x="Draymond Green"),]
> netdata.DG0 <- assistnet(PbP.GSW.DG0)
> set.seed(1)
> plot(netdata.DG0)

The resulting network, displayed in Figure 3.7, shows that, absent Dray-
mon Green, the other players tend to share out the work of assisting
the teammates. The new central man is Kevin Durant and, to a lesser
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Figure 3.7 Network of assists (layouts without node statistics) of the line-
ups without Draymond Green.
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extent, Andre Iguodala. As mentioned before, although being a point
guard, Stephen Curry seems to take a less prominent role from the point
of view of the assists.

In this respect, we may be interested in computing the average points
and the average play length with and without Draymond Green, in order
to assess which is the most efficient game strategy between the two
depicted by the networks in Figures 3.6 and 3.7. We first compute average
points in 2- and 3-point shots (object p0) and average play length (object
pl0) in the game phases without Draymond Green

> PbP.GSW.DG0 <- subset(PbP.GSW.DG0,
ShotType=="2P" | ShotType=="3P")

> p0 <- mean(PbP.GSW.DG0$points)
> pl0 <- mean(PbP.GSW.DG0$playlength)

Similarly, after selecting the game phases with Draymond Green on the
court, we obtain the objects p1 and pl1

> PbP.GSW.DG1 <- PbP.GSW[apply(PbP.GSW[,cols], 1, "%in%",
x="Draymond Green"),]

> PbP.GSW.DG1 <- subset(PbP.GSW.DG1,
ShotType=="2P" | ShotType=="3P")

> p1 <- mean(PbP.GSW.DG1$points)
> pl1 <- mean(PbP.GSW.DG1$playlength)

The results are

> p0
[1] 1.108733
> pl0
[1] 11.22426
> p1
[1] 1.159812
> pl1
[1] 10.82656

When Draymond Green is on the court, we have on average a shorter
play length (10.8 versus 11.2 seconds) and more efficient field goals (1.16
versus 1.11 points per shot), which means a faster pace with more points
scored.

The plot method allows to specify some statistics (chosen among
those available in the data frame netdata$nodeStats) for the node size
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and color, thus adding relevant information to the graph. For example,
going back to the network built on the complete dataset, the following
code lines allow us to obtain the nets displayed on top and bottom of
Figure 3.8, respectively.

> plot(netdata, layout="circle", edge.thr=20,
node.col="FGPTS_AST", node.size="ASTPTS")

> plot(netdata, layout="circle", edge.thr=20,
node.col="FGPTS", node.size="FGPTS_ASTp")

The top panel of Figure 3.8 shows a net with nodes characterized by
the number of points scored thanks to teammates’ assists (node color)
and the number of points scored by teammates thanks to the player’s
assists (node size). For example, Draymond Green has a large blue circle,
denoting that he creates scoring opportunities for teammates more than
scoring points himself thanks to teammates’ assists. Quite the opposite,
Klay Thompson exhibits a small red circle, due to a high number of
assisted scored points and a low number of assists made. In the bottom
panel of Figure 3.8, the nodes are characterized by the total number of
points scored with field goals (node color) and the percentage of these
points scored thanks to received assists (node size). Here it is interesting
to note the small red circle of Stephen Curry, denoting a player who
scores much but he often creates his own shot (53.7% assisted shots).
Quite the same can be said for Kevin Durant (56.0%). On the other hand,
Klay Thompson’s scored points are for the most assisted by teammates
(84.7%). The other players tend to have mostly large circles, meaning
that the points they score are often assisted (for example, JaVale McGee
82.4%, Zaza Pachulia 81.9%, Omri Casspi 81.6%, Nick Young 81.3%).

The information contained in the object netdata can be used to per-
form further analyses, exploiting the basic functions presented in Chap-
ter 2. We first extract the cross-table of made/received assists and the
data frame of additional statistics,

> TAB <- netdata$assistTable
> X <- netdata$nodeStats

then we merge X with the Pbox data frame in order to incorporate poten-
tially useful available information

> names(X)[1] <- "Player"
> data <- merge(X, Pbox, by="Player")
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Figure 3.8 Network of assists (layouts with node statistics). Top: nodes
with FGPTS_AST (Points scored thanks to a teammate’s assist; node
color) and ASTPTS (Points scored by assisted teammates; node size).
Bottom: nodes with FGPTS (Points scored with field goals; node color)
and FGPTS_ASTp (Percentage of points scored thanks to a teammate’s
assist over points scored with field goals; node size).
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We can resort to the function scatterplot described in Chapter 2, Sec-
tion 2.2.4 in order to investigate more deeply the issue of the percentage
of assisted shots. We generate the scatter plot of players according to
the number of field goals made and the percentage of assisted ones, with
color coding determined by the minutes played (Figure 3.9). It clearly
shows how assisted are the players, how much they score and how long
they play.

> mypal <- colorRampPalette(c("blue","yellow","red"))
> scatterplot(data, data.var=c("FGM","FGM_ASTp"),

z.var="MIN", labels=data$Player,
palette=mypal, repel_labels=TRUE)

Another interesting issue is to investigate, for both assists made and
received, whether a player tends to assist (receive assists from) a small
or a large number of teammates. In other words, we can analyze the
inequality (see Chapter 2, Section 2.2.7) of assists made and received.

We first select the players who have played at least one quarter per
game on average (> 984 minutes)

> sel <- which(data$MIN>984)
> tab <- TAB[sel,sel]

Subsequently, for each selected player, we exploit the function
inequality to draw the Lorenz curve and compute the Gini coefficient

Andre Iguodala

Damian Jones

David West

Draymond Green

JaVale McGee

Jordan Bell

Kevin Durant

Kevon Looney

Klay Thompson

Nick YoungOmri Casspi

Patrick McCaw

Quinn Cook

Shaun Livingston
Stephen Curry

Zaza Pachulia

60

70

80

0 200 400 600

FGM

F
G

M
_A

S
T

p

500

1000

1500

2000

2500
MIN

Figure 3.9 Scatter plot of field goals made (x-axis) vs. percentage of
assisted field goals (y-axis); color = minutes played.
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of assists made and received (respectively, the rows and columns of tab).
To do that, we use the following code lines with a for loop

> no.pl <- nrow(tab)
> pR <- pM <- vector(no.pl, mode="list")
> GiniM <- array(NA, no.pl)
> GiniR <- array(NA, no.pl)
> for (pl in 1:no.pl) {

ineqplM <- inequality(tab[pl,], npl=no.pl)
GiniM[pl] <- ineqplM$Gini
ineqplR <- inequality(tab[,pl], npl=no.pl)
GiniR[pl] <- ineqplR$Gini
title <- rownames(tab)[pl]
pM[[pl]] <- plot(ineqplM, title=title)
pR[[pl]] <- plot(ineqplR, title=title)
}

In the end, we arrange all the plots in a unique frame

> library(gridExtra)
> grid.arrange(grobs=pM, nrow=2)
> grid.arrange(grobs=pR, nrow=2)

The resulting graphs are displayed in Figure 3.10, showing appreciable
differences among players from the point of view of their interactions
with teammates in the last pass and shot. We get an easier understanding
of results by inspecting the values of tab (Table 3.4) in tandem with the
graphs.

For what concerns the assists made (top panel of Figure 3.10),
Stephen Curry is the one with the highest inequality level (Gini index =

TABLE 3.4 Assists made (rows) and received (columns) by the selected players.

AI DW DG KD KT NY SL SC
Andre Iguodala (AI) 0 18 20 30 37 20 9 34
David West (DW) 8 0 21 12 38 15 19 2
Draymond Green (DG) 18 36 0 125 132 21 24 66
Kevin Durant (KD) 7 14 44 0 83 15 13 56
Klay Thompson (KT) 14 31 18 30 0 4 11 17
Nick Young (NY) 0 5 1 3 7 0 1 3
Shaun Livingston (SL) 6 33 19 10 27 18 0 6
Stephen Curry (SC) 14 3 54 65 68 20 1 0
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Figure 3.10 Lorenz curves (with Gini indexes) of players for assists made
(top) and received (bottom).

60.63%), due to the fact that he mostly assists Klay Thompson (68
assists), Kevin Durant (65) and Draymond Green (54). Other play-
ers with high inequality in assists made are Nick Young (Gini index
= 58.57%, but he only made 20 assists), Kevin Durant (56.65%) and
Draymond Green (54.37%). Diametrically opposed to them, Andre Iguo-
dala exhibits the highest balance (Gini index = 35.71%), as he tends to
equally assist all the teammates.
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On the side of the assists received (bottom panel of Figure 3.10) the
highest inequality levels are again up to Kevin Durant (Gini index =
65.61%) and Stephen Curry (64.91%), due to the fact that both of them
are mostly assisted by Draymond Green (125 and 66 assists from Green
to Durant and Curry, respectively) and they also assist each other (65
and 56 assists, respectively). The highest balanced situation is that of
Nick Young (Gini index = 30.97%) who is almost equally assisted by all
the teammates.

The association measures introduced in Section 3.1.1 between assists
made and received, as reported in Table 3.4, can be calculated with the
following code lines

> library(vcd)
> assocstats(tab)

Results show a highly significant association between the variables assists
made and received (X2 = 507.67, with p-value= 0; Cramer’s V equals
0.23 and Pearson’s contingency coefficient is P = 0.512). This suggests
that there is a statistical dependence between assists made and received
and, therefore, there are pairs of players who tend to interact much more
(or less) than what we should expect if the choice of the teammate to
assist was random.

A graphical summary of assists made and received by the selected
players, from the perspective of both number and inequality, can be
obtained thanks to a bubble plot (Chapter 2, Section 2.2.5). We first
compose the data frame XX with all the necessary variables, then we
resort to the function bubbleplot

> XX <- data.frame(X[sel,], GiniM, GiniR)
> labs <- c("Gini Index for assists made",

"Gini Index for assists received",
"Assists received", "Assists made")

> bubbleplot(XX, id="Player", x="GiniM", y="GiniR",
col="FGM_AST", size="AST",
labels=labs, text.size=4)

Remember that, as mentioned in Section 2.2.5, the bubble size is rescaled
between 0 and 100 and the rescaling can be disabled setting the argument
scale.size to FALSE. The graph of Figure 3.11 shows that Kevin Durant
and Stephen Curry interact with a limited number of teammates both
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Figure 3.11 Bubble plot with Gini index of assists made (x-axis) and
received (y-axis), number of assists made (size), number of assists
received (color).

for assists made and received. They make a quite high number of assists,
but Kevin Durant receives much more than Stephen Curry. Draymond
Green is the one with the biggest bubble and he makes more assists, quite
concentrated to a limited number of teammates, than he receives. David
West and Shaun Livingston occupy a middle position for all the variables.
More noticeable is the situation of Klay Thompson, who receives much
more assists than he makes and tends to engage with a high number
of teammates both for assists made and received. The most balanced
player with respect to assists-shot interactions is Andre Iguodala, who,
however, has a quite low number of assists made and received.

Further investigation with network analysis tools such as central-
ity measures (e.g., centrality degree, betweenness centrality, closeness
centrality, etc.) is also possible, thanks to proper R packages, which
require specific objects in input. These objects can easily be derived
starting from the object of class assistnet. For example, we may refer
to the libraries tidygraph (Pedersen, 2019), igraph (Csardi and Nepusz,
2006), and CINNA (Ashtiani, 2019):

> library(tidygraph)
> library(igraph)
> library(CINNA)
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First, the data frame netdata$assistNet is transformed into an object
suitable for network analysis

> net1 <- as_tbl_graph(netdata$assistNet)
> class(net1) <- "igraph"

then, a lot of metrics are available for easy computation

> centr_degree(net1)
> alpha_centrality(net1)
> closeness(net1, mode="all")
> betweenness(net1)
> calculate_centralities(net1)

The correct use and understanding of these metrics require expertise in
network analysis beyond the scope of this manual. To those interested
in deepening this issue, we recommend a good text on this topic (for
example, Newman, 2018).

3.5 ESTIMATING EVENT DENSITIES
3.5.1 Density with respect to a concurrent variable
An important issue for the analysis of games is to determine the fre-
quency of occurrence of some events with respect to some other concur-
rent variable. To this aim, we can resort to density estimation methods,
a wide set of tools such as histograms, naive, kernel, nearest neighbour,
variable kernel, orthogonal series, maximized penalized likelihood and
general weight function estimators (see Silverman, 2018 for a compre-
hensive discussion).

In the Foreword, Ettore Messina claimed that, “... scoring ten points
in the first two quarters of the game is not the same as scoring them in
the final minutes...”. So, we may be interested in assessing the pattern of
the shooting frequency in time or space. The R function densityplot
requires play-by-play data to compute and plot kernel density estimates
of shots with respect to the period time (periodTime, seconds played in
a given quarter), the total time (totalTime, seconds played in total), the
play length (playlength, time between the shot and the immediately
preceding event), the shot distance (shot_distance, distance in feet
from the basket). These variables have been chosen keeping in mind the
importance of investigating, other than average performance, players’
behavior in specific situations, as suggested by coach Messina.
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densityplot uses a Gaussian kernel density estimation procedure
and a bandwidth computed by default as the standard deviation of the
kernel, but adjustable by the researcher. A kernel is a window function
used in nonparametric statistics to define a weighting system for data
lying around a point at which a function is estimated. The bandwidth
allows to control the window width. Several types of kernel functions
are available, the most commonly used are uniform, triangle, Gaussian,
quadratic and cosine. We will deal again with the concept of kernel in
Chapter 5, Section 5.2, in the context of nonparametric regression.

To give an example of density estimation, we may be interested in
the density of 2-point shots of the Golden State Warriors (Figure 3.12)
and all their opponents (Figure 3.13) with respect to all four available
variables (period time, total time, play length, shot distance). First,
we select, from the play-by-play dataset PbP (obtained from PbP.BDB
thanks to the function PbPmanipulation as described on page 23), the
rows describing a shot (PbP$result != "") attempted by the team
(data.team) or its opponents (data.opp).

> data.team <- subset(PbP, team=="GSW" & result!="")
> data.opp <- subset(PbP, team!="GSW" & result!="")

Then, we obtain the graphs with the following code lines, where the
argument shot.type allows to decide which type of shots we wish to
analyze (here 2P, but 3P, FT, field are also available4).

> densityplot(data=data.team, shot.type="2P",
var="periodTime", best.scorer=TRUE)

> densityplot(data=data.team, shot.type="2P",
var="totalTime", best.scorer=TRUE)

> densityplot(data=data.team, shot.type="2P",
var="playlength", best.scorer=TRUE)

> densityplot(data=data.team, shot.type="2P",
var="shot_distance", best.scorer=TRUE)

> densityplot(data=data.opp, shot.type="2P",
var="periodTime", best.scorer=TRUE)

> densityplot(data=data.opp, shot.type="2P",
var="totalTime",best.scorer=TRUE)

> densityplot(data=data.opp, shot.type="2P",
var="playlength", best.scorer=TRUE)

4The option FT is available only with the variables’ total time and period time.
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Figure 3.12 Density estimation of 2-point shots of the Golden State War-
riors, with respect to period time, total time, play length, and shot dis-
tance.

> densityplot(data=data.opp, shot.type="2P",
var="shot_distance", best.scorer=TRUE)

The curve in the plots shows the estimated densities and, with text,
details about three selected areas (by default: number/percentage of
shots and percentage of shots made in the corresponding interval; with
the additional option best.scorer=TRUE: player who scored the highest
number of points in the corresponding interval). The range boundaries
of the three regions have been set to the following values: for period
time and total time in Figures 3.12 and 3.13, they refer to half and
3/4 of time; boundaries for play length are chosen according to results
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Figure 3.13 Density estimation of 2-point shots of the Golden State War-
riors’ opponents, with respect to period time, total time, play length,
and shot distance.

of the FOCUS study (see end of chapter), while for the shot distance
they indicate the restricted area arc (4 feet) and an imaginary line very
close to the 3-point line (18 feet)5. These default settings that can be
adjusted by the researcher with the parameter threshold (see the help
of densityplot).

Comparing Figure 3.12 and Figure 3.13, several insights can be
gained about the 2-point shot behavior of the Golden State Warriors’

5These boundaries are relative to 2-point shots; in the case of 3-point shots, the
boundaries are 25 and 30 feet, while for field shots they are set at 4 and 22 feet.
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players and their opponents. For example, the players of the Golden
State Warriors:

• tend to concentrate their shots in the first half of each quarter
(52% against 49% of the opponents) and in general in the first half
(54% against 52% of the opponents) of the whole game (however,
these percentages do not differ much from 50%, so these evidences
are rather weak)

• tend to shoot very fast (25% of shots in the first 5 seconds after the
previous event, against 23% of the opponents) and quite rarely are
forced to shoot close to the 24-second buzzer sound (8% against
12% of the opponents), but also in this situation they retain a very
high scoring performance (49% against 39% of the opponents)

• “take it to the rim” (shot distance less than 4 feet, i.e., from the
restricted area arc) more rarely than their opponents (45% against
48%), but they retain very high scoring performance when shooting
from higher distance (46% even from very close to the 3-point line,
against 36-37% of the opponents).

Several other remarks can be drawn by considering the best scorers
in the different situations and other kinds of shots, setting the argument
shot.type.

In addition, it can be interesting to inspect single player perfor-
mances. For example, focusing attention on the shot behavior of Kevin
Durant and Stephen Curry with respect to play length and shot distance,
we write

> KD <- subset(PbP, player=="Kevin Durant" & result!="")
> SC <- subset(PbP, player=="Stephen Curry" & result!="")
> densityplot(data=KD, shot.type="field",

var="playlength")
> densityplot(data=KD, shot.type="field",

var="shot_distance")
> densityplot(data=SC, shot.type="field",

var="playlength")
> densityplot(data=SC, shot.type="field",

var="shot_distance")

and obtain the graph of Figure 3.14, showing the very different way of
playing of these two outstanding players. Specifically, we see that Kevin
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Figure 3.14 Density estimation of field shots of Kevin Durant (top panels)
and Stephen Curry (bottom panels), with respect to play length and shot
distance.

Durant tends to shoot more often close to the 24-second buzzer sound
(8% against 5% of Stephen Curry), although he has a significantly lower
performance in this situation (39% against 53%). However, he tends
to perform better in the first 20 seconds of the play (52-53% against
47-50%). For what concerns the shot distance, they both attempt 20%
of shots from the restricted area, with Durant being far more effective
(72% made, versus only 64% for Curry). From the middle distance, Curry
performs better (55% against 50% of Durant), but shoots less (only 21%
of shots against 45%). The majority (58%) of Curry’s shots is from the
long distance, with about the same performance of Durant.



96 ■ Basketball Data Science

3.5.2 Density in space
When the frequency of occurrence of the events is estimated with respect
to variables denoting space coordinates, we resort to spatial analysis
tools and graphical solutions, such as density polygons, raster, and
hexbins. For the estimation of shot density across the court, we can
refer to the function shotchart, introduced in Chapter 2, Section 2.2.8,
that allows to specify different types of shot density charts by oppor-
tunely setting the option type. We need to use play-by-play data with
adjusted shot coordinates, with the same linear transformation used in
Chapter 2, Section 2.2.8:

> PbP$xx <- PbP$original_x/10
> PbP$yy <- PbP$original_y/10 - 41.75

Let us be interested in analyzing the spatial density of Klay Thompson’s
shots. We first select his shots

> KT <- subset(PbP, player=="Klay Thompson")

Then, we can plot spatial density estimates using different options for
the argument type:

> shotchart(data=KT, x="xx", y="yy",
type="density-polygons")

> shotchart(data=KT, x="xx", y="yy", type="density-raster")
> shotchart(data=KT, x="xx", y="yy", type="density-hexbin")

Additional options are also available, in order to customize the color
palette, decide the number of hexbins, add the scatter of shots:

> shotchart(data=KT, x="xx", y="yy",
type="density-polygons", scatter=TRUE)

> shotchart(data=KT, x="xx", y="yy", type="density-raster",
scatter=TRUE, pt.col="tomato", pt.alpha=0.1)

> shotchart(data=KT, x="xx", y="yy", type="density-hexbin",
nbins=50, palette="bwr")

The six graphs obtained with the above code lines are displayed in Fig-
ure 3.15, where we clearly see that Klay Thompson tends to shoot from
both the restricted area and the middle-long distance. In the latter case,
he seems to prefer moving to his left-hand side.
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Figure 3.15 Spatial density estimation of Klay Thompson’s shots with
basic (left panels) and additional (right panels) options.
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3.5.3 Joint density of two variables
A last case of density estimation is related to the correlation analysis
between variables, using the function scatterplot introduced in Chap-
ter 2, Section 2.2.4, and again used in Section 3.2 to analyze pairwise
linear correlation of a set of variables. Let us select those players who
have played at least 500 minutes and consider the following variables:
scored point, 3- and 2-point shots made, total rebounds (offensive and
defensive) and assists (per minute played):

> data <- subset(Pbox, MIN>=500)
> attach(data)
> X <- data.frame(PTS, P3M, P2M, REB=OREB+DREB, AST)/MIN
> detach(data)

We can plot a correlation matrix with univariate density estimates on
the diagonal and contour estimates of the pairwise joint densities in the
lower triangle.

> scatterplot(X, data.var=1:5,
lower=list(continuous="density"),
diag=list(continuous="densityDiag"))

The outcome is shown in Figure 3.16.

3.6 FOCUS: SHOOTING UNDER HIGH-PRESSURE CONDITIONS
A broad set of extremely powerful tools to discover hidden structures
and patterns in data comes from machine learning techniques that make
a large number of algorithms available for both supervised and unsuper-
vised learning. The philosophy behind algorithmic modeling is discussed
by Breiman (2001b) and a number of machine learning algorithms are
well addressed in Friedman et al. (2009) and Witten et al. (2016). In
this section, we show some results obtained by means of CART (Classi-
fication And Regression Trees, Breiman et al., 1984), an algorithm able
to discover the way a set of variables affect a given outcome, taking
into account possibly nonlinear or complex relationships and interac-
tions among the predictors, discussed in a paper aimed at describing the
influence of some high-pressure game situations on the shooting perfor-
mance (Zuccolotto et al., 2018).

In the Foreword, Ettore Messina claimed that “...the coach’s deci-
sion as to who to put on the field is based above all on feelings about



Discovering Patterns in Data ■ 99

Corr:

0.357

Corr:

0.675

Corr:

−0.422

Corr:

0.115

Corr:

−0.518

Corr:

0.506

Corr:

0.278

Corr:

0.0769

Corr:

0.183

Corr:

−0.236

PTS P3M P2M REB AST

P
T

S
P

3M
P

2M
R

E
B

A
S

T

0.3 0.5 0.7 0.00 0.05 0.10 0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3

0

1

2

3

0.00

0.05

0.10

0.1

0.2

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

Figure 3.16 Correlation matrix with univariate density estimates on the
diagonal and joint density contours in the lower triangle.

the character of the individual players and their personal chemistry
with the teammates, rather than exclusively their technical skills, about
their ability to cope with pressure.” Following the necessity to try to
measure players’ ability to cope with pressure, this FOCUS study con-
centrates on shooting performance and moves from the idea that the
shots are not all the same, as they can occur in (relatively) quiet or
high-stress situations. Preliminary discussions about the definition of
high-pressure game situation and its essential meaning, both from a psy-
chological and competition-related perspective, can be found on the cited
paper, which also contains some additional issues concerned with (i) the
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analysis of univariate relations between single variables and scoring prob-
abilities and (ii) the assessment of players’ personal reactions to some
selected high-pressure game situations. Issue (i) makes use of nonpara-
metric regression via Gaussian kernel smoothing and will be discussed
in Chapter 5, Section 5.2.2.

In this section we only deal with the main aim of the paper, consist-
ing in

• identifying the game situations that, generating pressure on the
players (and beyond the obvious fact that different players can
have different reactions to this pressure), turn out to be associated
to lower scoring probabilities,

• showing how these findings can be used to develop new shooting
performance measures, improving upon currently employed shoot-
ing statistics.

The analysis has been performed on play-by-play data of all matches
played during the Italian Serie A2 championship 2015/2016 (the second
tier of the Italian league pyramid, just below the first division, Serie A).
Data contain almost 70,000 shots, so the sample size is large enough to
guarantee robust estimates of the scoring probabilities, even in situations
that may occur only occasionally. To take into account that the reaction
to pressure may be different according to the professional level of the
players (Madden et al., 1990, 1995), the most important results have
then been checked on a smaller play-by-play dataset from the Olympic
Basketball Tournament Rio 2016. Table 3.5 summarizes the main fea-
tures of the two datasets.

TABLE 3.5 Main features of the datasets for the two case studies.

Dataset “Serie A2” “Rio 2016”
Competition Championship - regular season Olympic Tournament

Period 2015, 4th Oct - 2016, 23rd Apr 2016, 6th - 21st Aug
Gender Male Male
Matches 480 38
Teams 32 12
Players 438 144

2-point shots 33682 (50.9% Made) 3101 (52.2% Made)
3-point shots 21163 (34.1% Made) 1780 (33.8% Made)
Free throws 14843 (73.5% Made) 1589 (74.8% Made)

Source: Zuccolotto et al. (2018)
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The authors identified a game situation as being “high-pressure” if it
is for some reason more troublesome and demanding, without trying to
distinguish whether the pressure comes from game-related factors, psy-
chological factors, or both. Following this general definition and consid-
ering the available data, they identified, also following some suggestions
of basketball experts, some main types of situations that may generate
pressure on the player when a shot is attempted: when the shot clock
is going to expire, when the score difference with respect to the oppo-
nent is small, when the team as a whole has performed poorly during
the match up to that particular moment in the game, when the player
who is shooting has missed his previous shot, and when the time left on
the clock is running out. The authors used CART to assess the impact
of these high-pressure situations on the scoring probability by taking
account of all the joint associations among the variables6. The authors
preferred to use categorical covariates instead of numerical ones, as this
prevents trees from growing too deeply (thus protecting from instabil-
ity, the tendency of trees to appreciably change their structure when
little differences are impressed on the learning step) and allows focus-
ing only on the most interesting situations. To convert the numerical
covariates into categorical ones, the authors suggested identifying the
cut-off values by combining the results of a machine learning procedure
and some basketball experts’ suggestions. As for the machine learning
procedure, they proposed a procedure to obtain a threshold importance
measure, computed by growing a preliminary tree using the numerical
covariates and then summing up all the decreases of the heterogeneity
index allowed by each threshold of each covariate in all of the tree nodes.
The results are displayed in Figure 3.17 for the variables denoting the
time seconds until the 24-second buzzer sound (Shot.Clock), the time to
the end of each quarter (Time), the fraction of missed shots for the whole
team up to the moment when each shot is attempted (Miss.T), the score
difference with respect to the opponent when each shot is attempted
(Sc.Diff).

Some remarks can be drawn based on the graphs of Figure 3.17:

• the two datasets, although very different from the point of view of
the players’ professional level, have given very similar results;

• the obtained results are consistent with preliminary experts’ sug-
gestions about what the threshold values should be;

6The analysis with CART can be easily carried out by using the R packages tree
and rpart. Nice plotting options are allowed by the package rpart.plot.
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Figure 3.17 Threshold importance measures, dataset “Serie A2” (top) and
“Rio 2016” (bottom). Source: Zuccolotto et al. (2018).
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• variable Shot.Clock presents some clear thresholds at the extremes
and in the middle (which is consistent with the experts’ suggestions
of isolating the extremes);

• for variable Time, the thresholds’ importance begins to grow in
the last 100 seconds (which is also consistent with the experts’
opinions regarding the relevance of the last 1-2 minutes of each
quarter);

• variable Miss.T presents several thresholds between 0.35 and 0.60,
but we do not recognize peaks that may suggest a possible best
choice within this interval, so the split can be made according to
percentiles;

• variable Sc.Diff also presents several different peaks. Among them,
we recognize the possibility of following the experts’ suggestions to
isolate low score differences (approximately between -5 and 1), but
we also find some possible thresholds at values ≤ −10 and ≥ 6.

On the whole, the authors decided to convert numerical variables into
categorical variables according to the criteria summarized in Table 3.6.

It is worth pointing out that the variable Shot.Clock describes the
seconds until the buzzer sounds (i.e., the value displayed on the shot
clock, regardless of whether the shot clock had been previously reset

TABLE 3.6 Conversion into categorical covariates.

Shot.Clock
early: Shot.Clock > 17
early-middle: 10 < Shot.Clock ≤ 17
middle-end: 2 < Shot.Clock ≤ 10
time-end: Shot.Clock ≤ 2

Time normal: Time ≤ 500
quarter-end: Time > 500

Miss.T
Bad: Miss.T ≤ 25th percentile
Medium: 25th percentile < Miss.T ≤ 75th percentile
Good: Miss.T > 75th percentile

Sc.Diff

less than -15: Sc.Diff ≤ −15
between -15 and -5: −15 < Sc.Diff ≤ −5
between -5 and 1: −5 < Sc.Diff ≤ 1
between 1 and 6: 1 < Sc.Diff ≤ 6
more than 6: Sc.Diff > 6

Source: Zuccolotto et al. (2018)
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to 14 seconds). As a matter of fact, the extra time with respect to the
24 seconds may temporarily modify the pressure of the game and affect
the scoring probability. For this reason, the authors introduced in the
CART an additional categorical predictor (Poss.type) denoting whether
the shot is made during the original 24 seconds on the shot clock or after
the shot clock has been reset to 14 seconds.

The CART model with all the categorical covariates was grown using
the Gini index as the split selection criterion. After pruning, the trees
shown in Figure 3.18 have been obtained.

The trees provide very interesting interpretations about the impact
of high-pressure game situations on the probability of scoring. The first
splits are made according to the variable Shot.Type (2-point and 3-
point shots to the left branch and free throws to the right). After that,
Shot.Clock has the most prominent role for field shots, immediately fol-
lowed by Sc.Diff, Time and Poss.type, which seem to play a role in inter-
actions with Shot.Clock and among them. For free throws, the relevant
variable is Miss.Pl (denoting whether the previous shot of the shooting
player scored a basket or not).

The tree based on the “Serie A2” dataset is the most deeply grown,
thanks to its higher sample size. In detail, this tree reveals the following
relationships:

• for free throws, the only relevant variable is Miss.Pl: the estimated
scoring probability when the previous shot by that player scored a
basket is 0.7481 versus 0.7115 when the previous shot was missed;

• for 3-point shots, the first relevant variable is Shot.Clock: the esti-
mated scoring probability at time-end is 0.2939; otherwise, the
scoring probability is 0.3504 and 0.3844 for middle-end and earlier
shots, respectively, provided the game is not in quarter-end, when
the scoring probability decreases to 0.3119;

• for 2-point shots, the most relevant variable is again Shot.Clock:
the estimated scoring probability is 0.4086, 0.4764, and 0.6580
for time-end, middle-end, and early shots, respectively; for early-
middle shots, we distinguish between the game played after the
shot clock has been reset to 14 seconds (i.e., in the first 4 sec-
onds after the shot clock resetting, when the scoring probability
increases to 0.6035) and 24-second possessions (a scoring proba-
bility of 0.4678 when the score difference is less than -15 and a
probability of 0.5501 otherwise).
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Figure 3.18 Final CART models, dataset “Serie A2” (top) and “Rio 2016”
(bottom). Source: Zuccolotto et al. (2018). Each split is made accord-
ing to variable: threshold indicated (move to the left branch when the
stated condition is true); values in the leaves (terminal nodes) are the
predicted class values, that is the estimated scoring percentages of the
shots belonging to that class.

Very similar remarks, although less detailed since the growth of the
tree is less deep, can be drawn from the second CART, obtained with
the “Rio 2016” dataset.
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According to the evidence identified by the CART models, shots are
not all alike. For this reason, the authors used the trees to develop new
shooting performance measures, taking into account the circumstances
under which each shot has been attempted. For example, a 2-point shot
attempted in the last 2 seconds of the shot clock has a scoring probabil-
ity of approximately 40%, unlike a shot attempted in the first 7 seconds,
which has a scoring probability greater than 65%: a shooting perfor-
mance measure should take into account this evidence and give higher
merit to a basket made when the scoring probability is lower. For each
shot type T (2P: 2-point, 3P: 3-point, FT: free-throw), let JT be the set
of attempted shots of type T and xij the indicator assuming value 1 if
the jth shot of the ith player scored a basket and 0 otherwise. The new
shooting performance of player i for shot type T is given by

Pi(T ) = avj∈JT
(xij − πij) (3.1)

where avj∈JT
(·) denotes averaging over all of the shots of type T

attempted by player i and πij is the scoring probability assigned by
the CART model to the jth shot of the ith player, that is to a shot of
the same type and attempted in the same game situation as the jth shot
of the ith player. For each shot, the difference xij − πij can be used as a
performance measure of the shot. In fact, the difference is positive if the
shot scored a basket (and the lower the scoring probability, the higher its
value) and negative if it missed (and the higher the scoring probability,
the higher its absolute value). For example, a basket is worth more when
the scoring probability of the corresponding shot is low, whereas when a
miss occurs, it is considered more detrimental when the scoring probabil-
ity of the corresponding shot is high. The value of Pi can be interpreted
depending on whether it is positive (meaning a positive balance between
made and missed shots, taking into account their scoring probabilities)
or negative, and considering its absolute value. The highest interpretabil-
ity is reached when players are compared by means of a bubble plot with
Pi(2P ) and Pi(3P ) on the x-axis and y-axis, respectively, and the color
representing Pi(FT ). Figure 3.19 refers to the dataset “Rio 2016” and
displays only players who attempted at least 15 shots for each shot type.

In the bubble plot, we can see which players are better (or worse)
than the average, for each shot type and taking into account the par-
ticular game situation. For example, Rodolfo Fernandez performs better
than the average both on 2-point shots and 3-point shots but worse
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Figure 3.19 Bubble plot of the players’ shooting performance measures
(“Rio 2016” dataset). Source: Zuccolotto et al. (2018).

on free throws. Most importantly, the graph allows us to see some dif-
ference among players who have the same performance, based on the
usual goal percentages, where each shot is considered to be the same
as any other. For example, Bojan Bogdanovic and Andrés Nocioni have
approximately the same 3-point field goal percentages (45% and 45.2%);
however, if we consider the difficulty of the game situations in which
they attempted their shots, Nocioni performs 3-point shots slightly bet-
ter than Bogdanovic. In addition, we can also find some players with
different field goal percentages that receive equal evaluations when the
difficulty of the game situation enters the performance measure. For
example, Nicolás Laprovittola, Carmelo Anthony and Ikechukwu Diogu
receive a very similar performance measure in 2-point shots, although
they have different goal percentages (36.8%, 38.5% and 39.1%, respec-
tively).



108 ■ Basketball Data Science

GLOSSARY

Classification And Regression Trees: Decision Trees are used in
data mining with the aim of predicting the value of a target (out-
come, dependent variable) based on the values of several input (pre-
dictors, independent variables). The CART procedure (Classification
And Regression Trees, Breiman et al., 1984) refers to both Classifi-
cation Trees (designed for categorical outcomes, i.e., taking a finite
number of unordered values, with prediction error usually measured
in terms of misclassification cost) and Regression Trees (designed
for numerical outcomes, i.e., taking continuous or discrete values,
with prediction error typically measured by the squared difference
between the observed and predicted values). The procedure is based
on the concept of heterogeneity of the outcome, broadly referring to
its variability. The models are obtained by recursively partitioning
the data space and fitting a simple prediction model within each par-
tition (e.g., the mode or the average if the outcome is categorical or
numerical, respectively), so the objects are repeatedly split into two
parts according to the criterion of achieving maximum homogeneity
within the new parts or, correspondingly, to impress the maximum
heterogeneity reduction of the outcome through the split. Hetero-
geneity reduction is measured by means of impurity measures such
as the Gini impurity or the variance reduction, according to whether
the outcome is categorical or numerical, respectively. As a result,
this binary partitioning procedure can be represented graphically
as a decision tree. Some data mining techniques, called ensemble
methods (Breiman, 1996; Friedman and Popescu, 2008), improve the
power of trees by constructing more than one decision tree accord-
ing to some randomization rule and then obtain the final prediction
by a linear combination of the predictions of all the trees. Popular
examples are the Random Forest technique (Breiman, 2001a) or the
tree-based Gradient Boosting Machine (Friedman, 2001).

Density estimation: In probability and statistics, the term density
estimation refers to a set of techniques aimed to obtain an esti-
mate of the probability density function according to which a pop-
ulation is distributed; the observed data used to compute estimates
are assumed to be a random sample from that population.

Dissimilarity measure: A dissimilarity δ is a measure computed on
each pair (x, y) of elements of a set S, indicating how different the
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two elements are from each other. Dissimilarities are distance-like
measures (see “Distance metrics” below), in the sense that they are
usually obtained by means of a mathematical function that has to
satisfy relaxed conditions with respect to distance metrics. In the
most common definitions, the conditions to be satisfied are only
non-negativity (δ(x, y) ≥ 0), identity (δ(x, y) = 0 ⇔ x = y) and
symmetry (δ(x, y) = δ(y, x)), but some authors point out than even
symmetry can be relaxed. Given a set S with N elements and a
dissimilarity measure δ, the distance matrix ∆ is a (usually sym-
metric) N × N matrix, with all zero entries on the main diagonal,
whose (non-negative) generic element at row i and column j is the
dissimilarity between i-th and j-th element of S.

Distance metric: A distance metric d is a mathematical function sat-
isfying some given conditions that defines a distance between each
pair (x, y) of elements of a set S. A set with a metric is called
a metric space. Denoted with d(x, y), the distance between x and
y, the conditions to be satisfied, for all x, y, z ∈ S are: non-
negativity (d(x, y) ≥ 0), identity (d(x, y) = 0 ⇔ x = y), symmetry
(d(x, y) = d(y, x)), triangle inequality (d(x, y) ≤ d(x, z) + d(y, z)).
Based on this definition, several distance metrics can be defined.
The most commonly used are the metrics in the Minkowski class,
among which we find the popular Euclidean metric. Given a met-
ric space with N elements, the distance matrix D is a symmetric
N × N matrix, with all zero entries on the main diagonal, whose
(non-negative) generic element at row i and column j is the distance
between i-th and j-th element of S.

Machine learning: Machine learning was born as artificial intelligence
techniques in the fields of pattern recognition and computational
learning theory; it aims at constructing algorithms able to learn from
data and make predictions or uncover hidden insights through learn-
ing from historical relationships and trends in the data. Machine
learning is employed in a range of tasks where defining explicit
models for the relationships present in data is difficult or infeasi-
ble. Today, machine learning is closely related to (and often over-
laps with) computational statistics, which also deal with prediction-
making and data mining by means of algorithms, and takes support
from mathematical optimization. The philosophy behind algorithmic
modeling is discussed by Breiman (2001b) and a number of machine
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learning algorithms are well addressed in Friedman et al. (2009) and
Witten et al. (2016).

Network analysis: Network analysis is concerned with constructing
and analyzing graphs representing either symmetric or asymmetric
relations between discrete objects. In computer science, it is strictly
connected to graph theory, where a network is defined as a graph in
which nodes and/or edges have some given attributes.

Pattern: An intelligible regularity discernible in the way in which some-
thing happens.



C H A P T E R 4

Finding Groups in Data

TO DISCOVER some hidden framework according to which data
could be reorganized and categorized is one of the purposes of Data

Mining. Indeed, very commonly in science great efforts are devoted to
the definition of taxonomies, as it meets the need of the human brain
to identify underlying structures able to shorthand ideas by means of
stylized facts.

From a philosophical perspective, to decide whether taxonomy is art
or science is still an open question.

Is taxonomy art, or science, or both?

Sydney Anderson
Biologist, Curator of the American Museum of Natural History

Data Mining algorithms try to address the issue as scientifically as
possible, defining methods and rules aimed to assign units of observation
into classes, which are not defined a priori, and are supposed to some-
how reflect the structure of the entities that the data represent (Kaufman
and Rousseeuw, 1990; Guyon et al., 2009). The unsupervised classifica-
tion of individual cases into groups whose profile design spontaneously
emerges from data is known as Cluster Analysis, a broad subject which
includes several techniques, which differ significantly in their notion of
what constitutes clusters and how to efficiently find them.

Cluster Analysis in basketball can be used to cluster players, teams,
matches, game fractions, etc.

Examples of players’ clustering can be found in Alagappan (2012),
Bianchi (2016), Bianchi et al. (2017) and Patel (2017), where players are
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classified into groups based on personal performance, with the aim of
defining new roles, as opposed to the traditional five positions that are
quickly becoming outdated. This issue will be more deeply discussed in
Section 4.4.

Classification of matches is extensively used by Sampaio and Janeira
(2003), Ibáñez et al. (2003), Csataljay et al. (2009) and Lorenzo et al.
(2010), a number of works all aimed to investigate the discriminatory
power of game statistics between winning and losing teams, and to iden-
tify the critical performance indicators that most distinguish between
winning and losing performances within matches. The authors carry out
their analyses on different datasets (namely, coming from the Portuguese
Professional Basketball League, the Junior World Basketball Champi-
onship, the European Basketball Championship and the Under-16 Euro-
pean Championships) and in all the cases a preliminary Cluster Analy-
sis is performed on matches, in order to classify them into three types
such as tight games, balanced games and unbalanced games, accord-
ing to game final score differences. Similarly, Sampaio et al. (2010b)
address the issue of quantifying what a fast pace in a game contributes
to point differentials and examining the game statistics that discrimi-
nate between fast- and slow-paced games; Cluster Analysis is then used
to classify game pace using ball possessions per game quarter.

Game fractions clustering can be found in Metulini et al. (2017a) and
Metulini et al. (2017b), where groups of typical game configurations are
identified based on the distance among players, recorded by GPS sensors
with an average frequency of about 80 Hz. Each cluster corresponds to
a specific game configuration and it is possible to assign it to either
one of offense or defense. In addition, transitions between clusters are
examined, highlighting the main tendencies in moving from one game
configuration to another one.

Although out of the scope of this book, it is worth mentioning the
wide use of Cluster Analysis for market segmentation, also in the context
of sport management. For example, Ross (2007) identifies segments of
NBA spectators based upon the brand associations held for a team,
but several examples can be found in the literature on the definition of
customer profiles based on surveys or social network data.

In this chapter, after a brief recall (citing relevant sources for further
reading) of the main Cluster Analysis algorithms (Section 4.1), appli-
cations in basketball with three case studies will be examined (Sections
4.2 and 4.3). Finally a focus topic will be discussed, dealing with new
basketball role definitions (Section 4.4).
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4.1 CLUSTER ANALYSIS
Cluster Analysis is a classification technique aiming at dividing individ-
ual cases into groups (clusters) such that the cases in a cluster are very
similar (according to a given criterion) to one another and very different
from the cases in other clusters.

As mentioned before, Cluster Analysis is unsupervised, and it should
not be confused with supervised classification methods, such as discrim-
inant analysis, where the groups are known a priori and the aim of the
analysis is to create rules for classifying new observation units into one
or an other of the known groups. On the contrary, Cluster Analysis is
an exploratory method that aims to recognize the natural groups that
appear in the data structure. In some sense, Cluster Analysis is a dimen-
sionality reduction technique, because the high (sometimes huge) num-
ber of units observed at the beginning is reduced to a smaller number
of groups that are homogeneous, allowing a parsimonious description
and an easy interpretation of the data. Results can then be used for
several aims, for example to identify outliers or find out some hidden
relationships.

Cluster Analysis is used in many fields, from market research to
medicine, information retrieval, linguistics, biology, astronomy, social
sciences, archaeology, anthropology, geology, insurance, sports, and
many others. It finds several applications in basketball analytics, as
already described in the introduction of this chapter. For example, it
may be interesting to group a large number of players into homogeneous
groups according to their performances and then to examine how the
wages of players belonging to same cluster differ.

In order to perform a Cluster Analysis, first of all the variables to
be included in the analysis must be selected. This choice should be
supported by conceptual considerations and supervised by an expert
of the field (the basketball expert in the case of basketball analytics).
According to the aim of the analysis, the best set of variables should be
chosen. Usually, if available, a plurality of variables is included, in such
a way that the elimination of one of them or the addition of a new vari-
able does not substantially modify the identified structure of groups.
In general, results can be very dependent on the variables included;
therefore, the choice of variables remains a very crucial issue. Once vari-
ables are selected, in most situations they must be standardized, that
is transformed into unitless variables (having zero mean and unit vari-
ance), in order to avoid dependence of results on unit measurement and
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magnitude of the original input variables. Standardization is automatic
in the functions hclustering and kclustering implemented in R pack-
age BasketballAnalyzeR to perform Cluster Analysis.

Homogeneity within each cluster and the degree of separation among
clusters are measured by referring to a distance metric or a dissimilarity
measure (already introduced in Chapter 3, Section 3.3). In general, the
ordering of pairs of units (from the most similar to the most different)
is sensitive to the selected measure of distance or dissimilarity, so an
important step in Cluster Analysis is the choice of the most appropriate
measure, which in practice should be based on the type of data at hand:
for numerical variables, distance-type metrics are appropriate, while for
categorical variables dissimilarity measures should be preferred.

Subsequently, the clustering method must be selected. Usually, we
distinguish (agglomerative and divisive) hierarchical clustering and non-
hierarchical clustering.

In hierarchical methods, the members of inferior-ranking clusters
become members of larger, higher-ranking clusters, so there is a hier-
archical attribution of units to clusters. In agglomerative clustering, the
starting point is given by as many clusters as units. Then, the most sim-
ilar units are grouped together, and these first clusters are then merged
according to their similarities. In the end, all groups are fused into a sin-
gle cluster. On the contrary, in divisive clustering, all objects are initially
together in a single cluster, which is gradually divided into subgroups.
In the end, the procedure results into singleton clusters of individual
data units. In both agglomerative and divisive clustering, a cluster on a
higher level of the hierarchy always encompasses all clusters from a lower
level. The assignment of an object to a certain cluster is irreversible, so
there is no possibility of reassigning this object to another cluster.

Nonhierarchical methods produce a single partition, which is
obtained by optimizing an objective function that describes how well
data are grouped in clusters (typically, this function is expressed in
terms of within-group homogeneity). The most widespread method of
this kind is k-means clustering, which is also probably the most popular
method of Cluster Analysis in general (Hennig et al., 2015). The number
of clusters must be set a priori.

In both hierarchical and nonhierarchical clustering, a very important
step in the analysis is the evaluation of the obtained partition and the
identification of the optimal number of clusters. In general, a partition
is satisfactory when homogeneity within clusters is rather high and clus-
ters are well separated. There exists a trade-off between the number of
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clusters and internal homogeneity: a partition with a smaller number of
clusters is easier to interpret and more useful in practice, but a price
must be paid in terms of lower within-group homogeneity, because units
that are more different from each other are aggregated. In the hierarchi-
cal clustering, the issue is to identify the optimal partition, that is the
optimal number of clusters in the hierarchical series of partitions that
occurred. In the nonhierarchical clustering, the optimal number of clus-
ters is usually identified by running the procedure several times, varying
the number of groups, and then selecting the most satisfactory solution,
based on some criterion.

In some situations, the goodness of fit of the obtained partition is
evaluated resorting to the decomposition of the Total Deviance, TD,
(introduced in Chapter 2, Section 2.2.6) in Between Deviance, BD, and
Within Deviance, WD; TD = BD + WD. In detail, if N subjects are
divided into k clusters, for a given variable X we have

TD =
k∑

h=1

nh∑
i=1

(xih − µ)2

where xih is the value assumed by the i-th subject of cluster h, µ is the
overall mean of X and nh is the number of subjects belonging to cluster
h (n1 + · · · + nk = N),

BD =
k∑

h=1
(µh − µ)2nh

where µh is the mean of X for only those subjects who belong to cluster
h (

∑k
h=1 µhnh = Nµ), and

WD =
k∑

h=1
σ2

hnh

where σ2
h is the variance of X for only those subjects who belong to clus-

ter h. BD gives a measure of the degree of separation among clusters,
while WD is a measure of the internal homogeneity of the clusters (the
higher WD, the lower the homogeneity). The ratio BD/TD is the Pear-
son’s correlation coefficient η2 introduced in Chapter 3, Section 3.1.2
and in this context it is called “explained variance.” It measures the
clusterization quality with respect to variable X because, in practice, it
accounts for the mean dependence of X on the proposed clusterization:
high BD/TD means high BD, that is good separation among clusters
(the difference between the cluster means µh and the overall mean µ is
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high), and, being TD fixed, low WD, that is high within-cluster homo-
geneity (low values of the cluster variances σ2

h). Of course, as will be
detailed in Section 4.2.1, the needs of a high value of BD/TD and an
interpretable (low) number of clusters must be balanced.

The numerous choices that must be made in Cluster Analysis intro-
duce elements of subjectivity in the results. In general, a solution can
be considered good when it remains approximately stable as algorithms
change because, in this situation, the clustering solution reflects a real
grouping structure existing in the multidimensional data. The procedure
of evaluating the results of a clustering algorithm is known as cluster
validity and several indexes and procedures have been proposed in the
literature (see, for example, Milligan, 1996; Milligan and Cooper, 1985;
Hennig et al., 2015).

In the following, we describe two clustering methods followed by
applications to basketball data: the k-means clustering and agglomera-
tive hierarchical clustering (Sections 4.2 and 4.3, respectively). A detailed
description of those methods can be found, for example, in Hennig et al.
(2015), which offers an overview of the traditional Cluster Analysis but
also provides several further developments.

4.2 K-MEANS CLUSTERING
The widespread k-means clustering is a nonhierarchical algorithm and,
in particular, belongs to the so-called partitioning methods. The number
k of clusters must be specified in advance and the procedure runs over
the following steps:

1. choose k initial cluster centers (also called initial seeds),

2. assign each subject to its nearest cluster, after evaluation of the
distance/dissimilarity of that subject to each cluster’s center,

3. compute the centroids of the clusters that have been created (cen-
troids are the geometric centers of the clusters and are computed,
for each cluster, averaging the p clustering variables over the sub-
jects belonging to that cluster; in other words, the coordinates of
a cluster’s centroid are computed by averaging the coordinates of
the subjects in the group),

4. re-calculate the distances subjects-centroids and re-assign each
subject to its nearest cluster (reallocating subjects that are not
in the cluster to which they are closest),
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5. continue until convergence, that is when the centroids (and,
consequently, the clusters’ composition) remain relatively stable,
according to a certain criterion (stopping rule).

Very often, the k-means clustering is used adopting the Euclidean
distance, because this guarantees the algorithm’s convergence. A very
interesting implication is that, in this situation, the algorithm implicitly
aims at identifying the partition of data into k groups that minimize
the within-cluster deviance (WD). The problem cannot be solved by
considering every possible partition of the N subjects into k groups, and
choosing the one with the lowest WD, because complete enumeration of
all the possible partitions is not feasible, even with the fastest computer
(for example, N = 100 subjects can be clustered into k = 5 groups into
6.57×1067 different ways). This explains the necessity to use an iterative
optimization as explained above.

Euclidean distance is appropriate when the p variables in analysis are
numerical. There exist some variants of the k-means clustering suitable
for categorical data (for example, the k-medoids algorithm, see Kaufman
and Rousseeuw, 1990).

k-means clustering can handle larger datasets than hierarchical pro-
cedures. However, the final solution can be affected by outliers and it per-
forms poorly in identifying non-convex clusters (for example, U-shaped
clusters).

A very important issue to underline is that k-means clustering can
be very sensitive to the choice of initial cluster centers. A hierarchical
Cluster Analysis may be used to determine a good number k of clusters
to set in advance and, also, to compute the cluster centers that may
be used as initial seeds in the nonhierarchical procedure. If, as usual,
initial seeds are randomly chosen, a possible solution consists of running
the algorithm a certain number of times and choosing the best solution
according to a given criterion. This solution is the one implemented
in the function kclustering of the package BasketballAnalyzeR as
explained in Section 4.2.1.

4.2.1 k-means clustering of NBA teams
The R function kclustering can be used to perform k-means Cluster
Analysis in a simple and flexible way. It is suited to avoid as much as
possible the possibility of obtaining different clusterizations from one
running to another, because it runs the algorithm nruns times and
chooses the best solution according to a maximum explained variance
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criterion. By default nruns=10, but the argument is customizable by
the researcher. By way of example, we now define groups of NBA teams
based on game variables specifically built to take into account offensive
and defensive skills. To this aim, we also resort to Offensive/Defensive
Ratings and Dean Oliver’s Four Factors (Chapter 2, Section 2.2.1),
focusing attention on the first three Factors, that are usually consid-
ered the most influential (the approximate weights Dean Oliver assigned
to the Four Factor are 40%, 25%, 20%, 15%). The required statistics are
computed thanks to the function fourfactors

> FF <- fourfactors(Tbox,Obox)

We also define ratios of the offensive over the defensive statistics, hav-
ing the meaning of how well the team performed with respect to the
opponents, with better performances corresponding to higher ratios:

• the ratio ORtg/DRtg of the Offensive over the Defensive Rating,
defined in (2.3) and (2.4)

> OD.Rtg <- FF$ORtg/FF$DRtg

• the ratio of the offensive over the defensive first Factor eFG%
(Table 2.4)

> F1.r <- FF$F1.Off/FF$F1.Def

• the ratio of the defensive over the offensive second Factor TO Ratio
(Table 2.4)

> F2.r <- FF$F2.Def/FF$F2.Off

In addition, we consider the third Factor, 3-point shots and steals:

• the offensive third Factor REB% (Table 2.4)

> F3.Off <- FF$F3.Off

• the defensive third Factor REB% (Table 2.4)

> F3.Def <- FF$F3.Def

• the total number of 3-point shots made (P3M)

> P3M <- Tbox$P3M
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• the ratio STLT /STLO of the team over the opponents’ steals.

> STL.r <- Tbox$STL/Obox$STL

Finally, the data matrix we use for Cluster Analysis is built as
> data <- data.frame(OD.Rtg, F1.r, F2.r, F3.Off, F3.Def,

P3M, STL.r)

The function kclustering has to be used in two steps: firstly without
specifying a value for the argument k, in order to decide the number of
clusters, secondly declaring the number of clusters to be defined. In both
cases, objects of class kclustering are generated and a plot method
is available for this class, giving different outputs according to whether
the argument k is specified or not. With the code
> set.seed(29)
> kclu1 <- kclustering(data)
> plot(kclu1)

we obtain the graph in Figure 4.1, displaying the pattern of the explained
variance, the above-mentioned measure of the clusterization quality (the
extent to which the individual cases within the clusters are similar to
each other and different from those belonging to other clusters) with
respect to the number of clusters. In detail, the solid line represents
the (average over all the variables) ratio of the Between over the Total
Deviance BD/TD, which improves as the number of clusters increases.
In general, values higher than 50%, meaning that the clusterization is
able to explain more than half of the total variability, may be considered
as satisfactory. Nonetheless, we have to balance two contrasting needs:
on one hand, we aim to have a high-quality clusterization, on the other
hand, we need to obtain as few clusters as possible, complying with the
general statistical criterion of parsimony and to facilitate interpretation.
To decide the optimal number of clusters, we consider the dotted line,
representing the percentage increase of the ratio BD/TD moving from
a (k − 1)-cluster to a k-cluster solution. We should identify a threshold
below, which the improvement obtained thanks to an additional cluster,
is too low to justify the higher complexity generated by the additional
cluster itself. In general, we may identify this threshold on an elbow of
the dotted line, or considering as worthwhile increments greater than,
say, about 5-10%. In this case, also in view of the low number of subjects
(30 teams), the optimal number of clusters can be identified as 5 clusters,
with a total clusterization quality of BD/BT = 59.13%.
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Figure 4.1 Pattern of the clusterization quality with respect to the num-
ber of clusters (y-axis: percentage increase in the ratio of the Between
over the Total Deviance, BD/BT ).

The code lines to carry out the second step of the analysis are then

> set.seed(29)
> kclu2 <- kclustering(data, labels=Tbox$Team, k=5)
> plot(kclu2)

The R object kclu2 is a list of data frames containing the subjects’
cluster identifiers, the clusters’ composition, the clusters’ profiles (i.e.,
the average of the variables within the clusters) and, for each cluster, the
Cluster Heterogenity Index (CHI), an average measure of the variability
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within the cluster, which should be as low as possible. In detail, the index
CHI for cluster h is computed as

CHIh =
∑p

j=1 σ2
jh

p

where σ2
jh is the variance of the j-th variable Xj within cluster h. More

specifically, CHI = 1 denotes that the cluster has, on average, the same
variability of the entire dataset, so that the clusterization (at least with
reference to that cluster) is undermined. In general, we may consider as
satisfactory values lower than 50%, but when the number of cases to
be classified is high, this threshold has to be raised and it is common
to obtain some highly heterogeneous clusters among the others. The
obtained clusters are summarized in Table 4.1. It is worth pointing out
that, due to the iterative nature of the k-means algorithm, the order
of clusters changes from one running to another, so the interpretation
must be adapted correspondingly (in order to let you obtain the same
order of our analysis, we have added set.seed(29) just before running
the k-means algorithm). In this case, the plot function generates the
graph in Figure 4.2, where a radial plot (see Chapter 2, Section 2.2.3)
of the average profiles of the clusters is visualized, together with the

TABLE 4.1 Clusters’ composition. Note: the order of clusters changes from
one running to another; to obtain the same order, use set.seed(29).

Cluster 1
Atlanta Hawks, Brooklyn Nets, Memphis Grizzlies,
New York Knicks, Orlando Magic, Phoenix Suns
Cluster 2
Charlotte Hornets, Chicago Bulls, Dallas Mavericks,
Detroit Pistons, Sacramento Kings
Cluster 3
Denver Nuggets, LA Clippers, Los Angeles Lakers
Philadelphia 76ers, Portland Trail Blazers, San Antonio Spurs,
Washington Wizards
Cluster 4
Indiana Pacers, Milwaukee Bucks, Minnesota Timberwolves,
Oklahoma City Thunder
Cluster 5
Boston Celtics, Cleveland Cavaliers, Golden State Warriors
Houston Rockets, Miami Heat, New Orleans Pelicans,
Toronto Raptors, Utah Jazz
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Figure 4.2 Radial plots of the average profiles of NBA teams’ clusters.
CHI = Cluster Heterogenity Index; OD.Rtg = ratio ORtg/DRtg of the
Offensive over the Defensive Rating; F1.r = ratio of the offensive over
the defensive first Factor eFG% (Table 2.4); F2.r = ratio of the defen-
sive over the offensive second Factor TO Ratio (Table 2.4); F3.Off =
offensive third Factor REB% (Table 2.4); F3.Def = defensive third Fac-
tor REB% (Table 2.4); STL.r = ratio STLT /STLO of the team’s over
the opponents’ steals.

CHI index. In interpreting the radial plots, we must consider that the
variables used for Cluster Analysis are previously standardized, so that
they are all expressed on the same scale, and the blue dashed line denotes
the overall (zero) mean.

Observing the results, we can draw some interesting remarks. First,
moving from cluster 1 to 5, we also tend to move from the bottom
to the top ranked teams, so that we can identify the game features
corresponding to different achievements in the championship. In detail,
cluster 1 is composed of teams generally bottom ranked, with values
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lower than the average in all the considered variables. In cluster 2 we
find medium-bottom ranked teams, which exhibit, on average, low offen-
sive abilities compared to their opponents, but good defensive skills, as
denoted by high values for the second Factor ratio and the defensive third
Factor. Cluster 3 contains teams that obtained different final ranking
position, including Philadelphia 76ers and Portland Trail Blazers, which
both ranked 3rd in their Conference. The average profile of this cluster
denotes fairly good offensive statistics and values little below the average
in defensive ones. Cluster 4 has very interesting connotations: fairly good
as for the Offensive over Defensive Rating ratio, but lower than the aver-
age in the first Factor ratio; remarkably high values for the second Factor
ratio, the offensive third Factor and the steals ratio, but remarkably low
values in the defensive third Factor and the 3-point shots. In summary,
teams in this cluster seem to exhibit high athleticism (as reflected by
good performance in turnovers, steals, offensive rebounds), but, overall,
have a poorly effective way of playing (low field goal percentages, low
number of 3-point shots made). It is worth noting that the Milwaukee
Bucks and Oklahoma City Thunder are the two top-ranked teams as for
scored points inequality, measured with the Gini coefficient (Chapter 2,
Section 2.2.6). All the teams in this cluster qualified for the Playoffs. The
last cluster is composed of top ranked teams, with the exception of the
Miami Heat, New Orleans Pelicans and Utah Jazz, that ranked 5th and
6th in their Conference. The Boston Celtics, Cleveland Cavaliers, Golden
State Warriors and Houston Rockets are the four Conference finalists.
The average profile in this cluster denotes high values in the Offensive
over Defensive Rating ratio, in the first Factor ratio and in the 3-point
shots; on the average or little above for the defensive skills denoted by
the second Factor ratio, the defensive third factor and the steals; remark-
ably low the value in the offensive third Factor. This seems to indicate
that a good efficacy of possessions, high field goal percentages and a high
exploitation of 3-point shots results in good global achievements for the
team, even in presence of no outstanding values for statistics related to
turnovers, steals, and rebounds. Actually, this cluster is the most hetero-
geneous (CHI = 0.48, a value just about acceptable, considered the low
number of cases in this Cluster Analysis). For this reason, it might be
useful to inspect the single teams’ profiles and consider that the above
remarks, based on the average, have to be taken with a grain of salt.

Further analyses of the obtained clusters can be carried out by resort-
ing to the basic functions described in Chapter 2. For example, we
could deepen the investigation of the different achievements of the teams
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belonging to different clusters, in the considered championship. Firstly,
we evaluate how many teams of each cluster qualified or not for the
Playoffs (kclu2.PO) and compute the average number of wins for the
teams belonging to each cluster (kclu2.W)

> kclu2.PO <- table(kclu2$Subjects$Cluster, Tadd$Playoff)
> kclu2.W <- tapply(Tbox$W, kclu2$Subjects$Cluster, mean)

Secondly, using the function barline, we generate the bar-line plot in
the top panel of Figure 4.3, showing that clusters 1 and 2 are composed
only of teams that did not qualify for the Playoffs, cluster 3 of some
teams that qualified and some others that did not qualify, clusters 4 and
5 only comprise qualified teams. As expected, the number of average
wins increases from cluster 1 to 5.

> Xbar <- data.frame(cluster=c(1:5), N=kclu2.PO[,1],
Y=kclu2.PO[,2], W=kclu2.W)

> barline(data=Xbar, id="cluster", bars=c("N","Y"),
labels.bars=c("Playoff: NO","Playoff: YES"),
line="W", label.line="average wins",
decreasing=FALSE)

In addition, using the function bubbleplot, we may generate a bubble
plot of the teams, displaying the points scored by the team (x-axis)
and by its opponents (y-axis), the number of wins (bubble size) and the
cluster to which the team has been assigned (bubble color)

> cluster <- as.factor(kclu2$Subjects$Cluster)
> Xbubble <- data.frame(Team=Tbox$Team, PTS=Tbox$PTS,

PTS.Opp=Obox$PTS, cluster,
W=Tbox$W)

> labs <- c("PTS", "PTS.Opp", "cluster", "Wins")
> bubbleplot(Xbubble, id="Team", x="PTS", y="PTS.Opp",

col="cluster", size="W", labels=labs)

The outcome is plotted in the bottom panel of Figure 4.3, showing that
the teams of the top-performing cluster 5 tend to be spread in all the
quadrants (except the top-left one). This means that their similar way of
playing (with respect to the variables considered for the Cluster Analy-
sis) can lead to different kinds of achievements, characterized by both a
low and high number of points scored and suffered. The Boston Celtics,
Miami Heat and Utah Jazz score below the average, but they also suf-
fer few points from the opponents. Going back to the graph in the top
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panel of Figure 2.2, we recall that these three teams tend to play at
a low pace, which can justify the low number of scored and suffered
points. The best positioned and top-ranked teams are the Toronto Rap-
tors, Houston Rockets (that score more points and suffer less than the
average) and Golden State Warriors (that has the highest value of scored
points and its opponents scored a little above the average). On the other
hand, the New Orleans Pelicans and Cleveland Cavaliers score and suffer
more points than the average. Similarly, also the teams of clusters 3 and
4 tend to be scattered in the same three quadrants just analyzed, while
the teams of clusters 1 and 2 can be found in the top-left and bottom-left
quadrants. The Charlotte Hornets and Detroit Pistons deserve a com-
ment of their own, as they are positioned amongst the teams of clusters
3, 4 and 5. Evidently, despite the fact that they belong to cluster 2,
their game features considered in the Cluster Analysis are more similar
to those of the teams in cluster 2; they have better achievements than
the other teams of their cluster.

4.2.2 k-means clustering of Golden State Warriors’ shots
Another interesting example of Cluster Analysis can be obtained using
the shots as subjects, with the aim of grouping shots that are similar to
each other. From the play-by-play dataset PbP (obtained from PbP.BDB
thanks to the function PbPmanipulation as described on page 23) we
extract the 6979 field goals attempted by the players of Golden State
Warriors during the regular season 2017/2018

> shots <- subset(PbP,
!is.na(PbP$shot_distance) &
PbP$team=="GSW")

> shots <- dplyr::mutate_if(shots, is.factor, droplevels)

where the last code line drops the unused levels from factors in the
data frame shots. We cluster the shots with respect to points scored,
shot distance, time in the quarter and play length, following the two-
step procedure already described for the example in Section 4.2.1 (in
this case, considered the graph in Figure 4.4, we decide to perform a
6-cluster clusterization, with an overall quality of 58.53%). As in the
previous example, the order of clusters can change from one running to
another, so we suggest to set a seed (to 1) in order to obtain the same
solution we are going to describe hereafter.
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Figure 4.4 Pattern of the clusterization quality with respect to the num-
ber of clusters (y-axis: percentage increase in the ratio of the Between
over the Total Deviance, BD/BT ).

> attach(shots)
> data <- data.frame(PTS=points, DIST=shot_distance,

TIMEQ=periodTime, PL=playlength)
> detach(shots)
> set.seed(1)
> kclu1 <- kclustering(data, algorithm="MacQueen",

nclumax=15, iter.max=500)
> plot(kclu1)
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The function kclustering admits to set some parameters related to the
k-means method and the specific algorithm to be used. In addition to
the above-mentioned nruns, we can tune the maximum value of k in
the first step analysis (nclumax) and the maximum number of allowed
iterations (iter.max). As for the algorithms, all the options of the gen-
eral R function kmeans are available, namely the algorithms proposed
by Hartigan and Wong (Hartigan and Wong, 1979) (default), MacQueen
(MacQueen, 1967), Lloyd (Lloyd, 1982) and Forgy (Forgy, 1965). In this
example, we tuned the parameters nclumax and iter.max and we used
MacQueen’s algorithm.

> set.seed(1)
> kclu2 <- kclustering(data, algorithm="MacQueen",

iter.max=500, k=6)
> plot(kclu2)

The radial plots in Figure 4.5 show that the clusters are moderately
homogeneous (CHI ≤ 0.5) and have well-defined profiles, which can be
easily interpreted in terms of the variables selected for the clusterization.
A better representation can be obtained by resorting to shot charts, using
the function shotchart. We first add the cluster identifiers to the data
frame shot and we adjust the shot coordinates as described in Chapter 2,
Section 2.2.8.

> cluster <- as.factor(kclu2$Subjects$Cluster)
> shots <- data.frame(shots, cluster)
> shots$xx <- shots$original_x/10
> shots$yy <- shots$original_y/10 - 41.75

Subsequently, for each cluster we draw two shot plots: one displaying
the shots according to whether they are missed or made, and one with
sectors colored according to the time in the quarter and annotated with
scoring percentages. To do that, we use the following code lines with a
for loop

> no.clu <- 6
> p1 <- p2 <- vector(no.clu, mode="list")
> for (k in 1:no.clu) {

shots.k <- subset(shots,cluster==k)
p1[[k]] <- shotchart(data=shots.k, x="xx", y="yy",

z="result", type=NULL,
scatter = TRUE,
drop.levels=FALSE)
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Figure 4.5 Radial plots of the average profiles of shot clusters. CHI =
Cluster Heterogeneity Index; DIST = shot distance; TIMEQ = time in the
quarter; PL = play length.

p2[[k]] <- shotchart(data=shots.k, x="xx", y="yy",
z="periodTime",
col.limits=c(0,720),
result="result", num.sect=5,
type="sectors", scatter=FALSE)

}

The shot plots are arranged in a grid and displayed in Figures 4.6 and 4.7:

> library(gridExtra)
> grid.arrange(grobs=p1, nrow=3)
> grid.arrange(grobs=p2, nrow=3)

The shot plots of Figure 4.6 clearly show that 4 clusters out of 6 are
homogeneously composed by shots all made or missed. Only clusters 1
and 2 contain made and missed shots mixed, with a prevalence of made



130 ■ Basketball Data Science

result

made

missed

result

made

missed

result

made

missed

result

made

missed

result

made

missed

result

made

missed

Figure 4.6 Shot plots of the clusters (by row): shots’ scatter and
missed/made color coding.



Finding Groups in Data ■ 131

66%
 (697/1054) 67%

 (14/21)

100%
 (1/1) N

aN
%

 (
0/

0)

62%
 (26/42)

NaN%
 (0/0)

NaN%
 (0/0)

68%
 (65/96)

100%
 (1/1)

NaN%
 (0/0)

68%
 (25/37)

100%
 (1/1)

NaN%
 (0/0)

62%
 (18/29)

NaN%
 (0/0)

N
aN

%
 (0/0)

0

200

400

600

periodTime

49%
 (149/302) 52%

 (23/44)

50%
 (8/16)

0%
 (

0/
16

)

42%
 (37/88)

44%
 (36/81)

0%
 (0/45)

33%
 (59/177)

35%
 (12/34)

3%
 (1/35)

27%
 (19/71)

40%
 (17/43)

0%
 (0/36)

37%
 (13/35)

56%
 (5/9)

0%
 (0/24)

0

200

400

600

periodTime

NaN%
 (0/0) 0%

 (0/2)

0%
 (0/10)

0%
 (

0/
46

)

0%
 (0/18)

0%
 (0/50)

0%
 (0/217)

0%
 (0/21)

0%
 (0/40)

0%
 (0/205)

0%
 (0/12)

0%
 (0/24)

0%
 (0/225)

0%
 (0/7)

0%
 (0/10)

0%
 (0/64)

0

200

400

600

periodTime

0%
 (0/161) 0%

 (0/56)

0%
 (0/22)

0%
 (

0/
48

)

0%
 (0/85)

0%
 (0/124)

0%
 (0/144)

0%
 (0/130)

0%
 (0/86)

0%
 (0/118)

0%
 (0/79)

0%
 (0/80)

0%
 (0/141)

0%
 (0/35)

0%
 (0/21)

0%
 (0/48)

0

200

400

600

periodTime

NaN%
 (0/0) 100%

 (2/2)

100%
 (10/10) 10

0%
 (

69
/6

9)

100%
 (9/9)

100%
 (74/74)

100%
 (273/273)

100%
 (6/6)

100%
 (46/46)

100%
 (255/255)

100%
 (5/5)

100%
 (57/57)

100%
 (228/228)

100%
 (1/1)

100%
 (10/10)

100%
 (86/86)

0

200

400

600

periodTime

100%
 (563/563) 100%

 (44/44)

100%
 (16/16) 10

0%
 (

3/
3)

100%
 (88/88)

100%
 (64/64)

100%
 (2/2)

100%
 (138/138)

100%
 (61/61)

100%
 (2/2)

100%
 (58/58)

100%
 (55/55)

100%
 (2/2)

100%
 (36/36)

100%
 (10/10)

100%
 (4/4)

0

200

400

600

periodTime

Figure 4.7 Shot plots of the clusters (by row): sectors colored according
to the time in the quarter (periodTime) and annotated with scoring
percentages.
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and missed in clusters 1 and 2, respectively. Clusters 1 and 6 tend to
contain close- and mid-range shots, clusters 3 and 5 long-range shots,
and clusters 2 and 3 all kinds of shots from what concerns the distance
from the basket. The additional information of Figure 4.7 is related to
the time in the quarter: the shots in clusters 1, 2 and 3 are attempted on
average in the second part of the quarter, while those in clusters 4 and
6 are attempted in the first part. Since the majority of missed 3-point
shots are concentrated in clusters 3 and 4, we conclude that they tend to
occur respectively late and early in the quarter. Adding the information
about the play length deduced by the radial plots (Figure 4.5), we also
observe that the missed shots of cluster 3 tend also to be attempted in
the early part of the play.

At a second stage, we may investigate the inequality of clusters with
respect to the players attempting the shots. A cluster with perfect equal-
ity would be composed by shots equally distributed among all the play-
ers, while high levels of inequality would mean that a big fraction of
shots has been attempted by a small fraction of players. To do that, we
first obtain a cross-table of the shots attempted by the players in the
6 clusters (shots.pl, Table 4.2), then we arrange it as a data frame
(Xineq)

TABLE 4.2 Cross-table of the shots attempted by the players
in the 6 clusters (C1, …, C6).

Player C1 C2 C3 C4 C5 C6
Andre Iguodala 81 64 45 55 38 37
Chris Boucher 0 1 0 0 0 0
Damian Jones 7 12 1 0 0 2
David West 58 24 9 117 16 154
Draymond Green 133 63 73 167 78 105
JaVale McGee 95 54 8 18 3 41
Jordan Bell 104 38 5 13 2 23
Kevin Durant 194 229 201 198 249 150
Kevon Looney 83 61 6 15 3 24
Klay Thompson 80 93 173 348 273 212
Nick Young 24 69 129 92 128 46
Omri Casspi 72 49 6 23 10 47
Patrick McCaw 48 59 40 36 22 21
Quinn Cook 46 45 47 36 58 20
Shaun Livingston 66 51 9 99 5 113
Stephen Curry 111 115 224 106 242 66
Zaza Pachulia 80 32 2 56 4 89
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> shots.pl <- table(shots$player, shots$cluster)
> Xineq <- as.data.frame.matrix(shots.pl)

Then, for each cluster, we plot the Lorenz curve and compute the Gini
coefficient by means of the function inequality. To do that, we use the
following code lines with a for loop

> no.clu <- 6
> p <- vector(no.clu, mode="list")
> for (k in 1:no.clu) {

ineqC <- inequality(Xineq[,k], npl=nrow(Xineq))
title <- paste("Cluster", k)
p[[k]] <- plot(ineqC, title=title)
}

In the end, we arrange all the plots in a unique frame

> library(gridExtra)
> grid.arrange(grobs=p, nrow=3)

The graphs in Figure 4.8 show that the clusters with the highest levels of
inequality are those where the majority of 3-point shots are attempted
(clusters 3 and 5), both made and missed. On the other hand, the lowest
levels of inequality are in clusters 1 and 2, containing for the main part
close and mid-range shots, both made and missed, and a small part of
3-point shots, all missed. This begs the question, how are the players’
shots distributed among the clusters?

To answer this further question, we resort again to a bar-line plot,
by means of the function barline. We obtain the frequency distribution
of each player’s shots in the clusters (shots.perc, Table 4.3) and we
arrange it as a data frame, with the additional variable of the total
number of shots attempted by each player (Xbar)

> shots.perc <- shots.pl/rowSums(shots.pl)
> Xbar <- data.frame(player=rownames(shots.pl),

rbind(shots.perc),
FGA=rowSums(shots.pl))

> labclusters <- c("Cluster 1","Cluster 2","Cluster 3",
"Cluster 4","Cluster 5","Cluster 6")

Finally, we draw the bar-line plot using the shots attempted in the clus-
ters for the bars and the total attempted shots for the line
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Figure 4.8 Inequality plots of the clusters with respect to the players
attempting the shots.
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TABLE 4.3 Frequency distribution (%) of players’ shots in the 6 clusters
(C1,…,C6).

Player C1 C2 C3 C4 C5 C6
Andre Iguodala 25.31 20 14.06 17.19 11.88 11.56
Chris Boucher 0 100 0 0 0 0
Damian Jones 31.82 54.55 4.55 0 0 9.09
David West 15.34 6.35 2.38 30.95 4.23 40.74
Draymond Green 21.49 10.18 11.79 26.98 12.60 16.96
JaVale McGee 43.38 24.66 3.65 8.22 1.37 18.72
Jordan Bell 56.22 20.54 2.70 7.03 1.08 12.43
Kevin Durant 15.89 18.76 16.46 16.22 20.39 12.29
Kevon Looney 43.23 31.77 3.13 7.81 1.56 12.50
Klay Thompson 6.79 7.89 14.67 29.52 23.16 17.98
Nick Young 4.92 14.14 26.43 18.85 26.23 9.43
Omri Casspi 34.78 23.67 2.90 11.11 4.83 22.71
Patrick McCaw 21.24 26.11 17.70 15.93 9.73 9.29
Quinn Cook 18.25 17.86 18.65 14.29 23.02 7.94
Shaun Livingston 19.24 14.87 2.62 28.86 1.46 32.94
Stephen Curry 12.85 13.31 25.93 12.27 28.01 7.64
Zaza Pachulia 30.42 12.17 0.76 21.29 1.52 33.84

> barline(data=Xbar, id="player", line="FGA",
bars=c("X1","X2","X3","X4","X5","X6"),
order.by="FGA", label.line="Field goals attempted",
labels.bars=labclusters)

The graph displayed in Figure 4.9, read side-by-side with Table 4.3,
informs us about the shooting patterns of the players with respect to
the clusters. The players with the highest number of attempted shots
(Kevin Durant, Klay Thompson, Stephen Curry, Draymond Green and
Nick Young) tend to shoot quite balancedly in the 6 clusters, albeit
with some differences (more than half of Klay Thompson’s shots are in
clusters 4 and 5, while Stephen Curry’s and Nick Young’s shots are for
the main part in clusters 3 and 5). The players with an intermediate
number of shots (from David West to Jordan Bell), instead, tend to be
more concentrated in some specific cluster. For example, more than 85%
of Zaza Pachulia’s and David West’s shots are in clusters 1, 4 and 6,
while Jordan Bell’s shots are highly concentrated in clusters 1 and 2.
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Figure 4.9 Bar-line plot: shots attempted by the players in the clusters.

4.3 AGGLOMERATIVE HIERARCHICAL CLUSTERING
Agglomerative hierarchical clustering aims at building a hierarchy of
clusters. The strategy of the agglomerative hierarchical clustering starts
with all observation units in their own group; then, the two groups that
have the smallest distance or dissimilarity are repeatedly merged, until
there is only one cluster, containing all the observation units together.

In detail, if we want to cluster N subjects based on p variables (for
example, N players based on p performance indicators), we start with
N singleton clusters (each cluster contains only one subject) and a sym-
metric matrix of distances Dp or dissimilarities ∆ (see also Chapter 3,
where Dp and ∆ have been introduced in Section 3.3). Then, the steps
in the agglomerative hierarchical clustering algorithm are the following
(Johnson and Wichern, 2013):

1. search the distance matrix for the nearest pair of clusters, that is
those whose distance or dissimilarity is the lowest. Let the distance
between the nearest clusters I and J be dIJ ,
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2. merge clusters I and J and label this new cluster (IJ). Update the
values in the distance matrix by deleting the rows and columns cor-
responding to clusters I and J and adding new rows and columns
that collect the distances between cluster (IJ) and the remaining
clusters,

3. repeat Steps 1 and 2 for N − 1 times.

In the end, all subjects belong to a single cluster. At each step, it is
useful to record the identity of clusters that are merged and the levels
(distances or dissimilarities) at which the clusters are merged.

The results of hierarchical clustering are usually graphically pre-
sented in a dendrogram or cluster tree, as the one in Figure 4.12, a
tree diagram used to illustrate the sequence of cluster fusions and the
distance/dissimilarity at which each agglomeration took place. A careful
inspection of the dendrogram is needed to identify the best partition,
which should be verified using internal criteria, that is evaluating the
resulting data partition using information obtained from the clustering
algorithm, or even external criteria, using information obtained from
outside the clustering procedure (which, however, is not often available
when, as usual, the true cluster structure is not known a priori).

Results from a hierarchical clustering procedure depend on the choice
of the distance (or dissimilarity) measure used in the procedure as well as
the method defining the distance (or dissimilarity) between two groups.
The most common methods, listed below, compute the distance between
two clusters as:

• Single linkage (nearest neighbor): the shortest distance between
any two members in the two clusters,

• Complete linkage (furthest neighbor): the longest distance between
any two members in the two clusters,

• Average linkage: the average distance between all pairs of the two
clusters’ members.

Other widespread methods, using the original data matrix besides
the distance (or dissimilarity) matrix are:

• Centroid method: the distance between two clusters is given by
the distance between the two centroids, which are the geometric
centers of the clusters, as explained before (Section 4.2),
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• Ward minimum deviance method: The agglomeration is not
obtained by merging the two most similar subjects successively,
but clusters are created by choosing the merging of subjects that
increases the overall within-cluster deviance (WD) to the smallest
possible degree.

Each method has its own characteristics and allows to identify clus-
ters with different peculiarities: for example, the Ward method aims at
finding compact, spherical clusters; single linkage allows to detect clus-
ters that have curvy shapes (instead of spherical or elliptical shapes)
and is robust to outliers; complete linkage is more sensitive to outliers
and tends to produce clusters of the same size and shape. In Section
4.3.1, an agglomerative hierarchical clustering is performed, using the
hclustering function available in the R package BasketballAnalyzeR,
which leans on the hclust function in R. All the above-listed methods
are there available (in particular, there are two versions of the Ward
method, differing on the way distances/dissimilarities are treated before
cluster updating).

4.3.1 Hierarchical clustering of NBA players
The R function hclustering can be used to perform agglomerative hier-
archical clustering, allowing to use all the linkage methods supported
by the general hclust function, on which it is based (default = Ward
method), as mentioned in Section 4.3. Pairwise dissimilarity is based on
the Euclidean distance. We show an example of hierarchical clustering
of a selection of NBA players based on the main game statistics of the
boxscores

> attach(Pbox)
> data <- data.frame(PTS, P3M, REB=OREB+DREB,

AST, TOV, STL, BLK, PF)
> detach(Pbox)

We carry out the analysis on only those players who have played at least
1500 minutes

> data <- subset(data, Pbox$MIN>=1500)
> ID <- Pbox$Player[Pbox$MIN>=1500]

Analogously to kclustering, the function hclustering has to be used
in two consecutive steps: firstly without specifying a value for the argu-
ment k, in order to generate the plot of the ratio BD/TD and decide
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the number of clusters, secondly declaring the number of clusters to be
defined (argument k). In both cases, an R object of class hclustering
is generated. A plot method is available for this class, allowing a lot of
graphical options for the dendrogram. So, in the first step, with the code
line

> hclu1 <- hclustering(data)
> plot(hclu1)

we obtain the graph in Figure 4.10. In this case, considered both the
quite high number of subjects (183 players) and the percentage increase
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Figure 4.11 Radial plots of the average profiles of NBA players’ clusters.
CHI = Cluster Heterogeneity Index.

of 7.16% in the clusterization quality when moving from an 8-cluster to
a 9-cluster solution, we choose to carry out the analysis with 9 clusters,
with an overall clusterization quality of 62.32%. We also display the
radial plots of the cluster profiles (Figure 4.11) through the following
code lines

> hclu2 <- hclustering(data, labels=ID, k=9)
> plot(hclu2, profiles=TRUE)

The radial plots allow us to get an idea of the average playing style of the
players belonging to different clusters. The CHI index warns us about
a low representativity of the profiles for cluster 7 and, to a lesser extent,
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clusters 1 and 9. The other clusters exhibit very satisfactory values, so
we can say that, for example, cluster 3 contains players characterized by
rebounds (defensive and offensive), blocks and personal fouls above the
average. Cluster 6 is distinguished by the high number of 3-point shots
made.

Finally, we produce the dendrogram of the agglomeration, which
shows the sequence of cluster fusions and the distance at which each
fusion took place (Figure 4.12), with rectangles (rect=TRUE) drawn
around colored (colored.branches=TRUE) branches highlighting the
corresponding cluster

> plot(hclu2, rect=TRUE, colored.branches=TRUE,
cex.labels=0.5)

Similarities among players can be evaluated based on the height at which
branches merge. For example, the players of cluster 7 are merged with
long branches, which is consistent with the high values of the CHI index
for that cluster. Looking at the dendrogram, we see that even a further
division of the cluster in two sub-clusters would not completely explain
the heterogeneity among the players in that part of the cluster tree. The
same can be said for cluster 9 that contains just 3 players. Cluster 1
deserves a different comment: it could be divided into 2, 3 or even 4 sub-
clusters with a significant shortening of the branches’ merging height.

A complementary visualization of the cluster profiles can be obtained
using the variability function, described in Chapter 2, Section 2.2.6.
With respect to radial plots, it has the merit of clearly highlighting vari-
ability within the clusters. By way of example, we illustrate its use with
the clusterization in hclu2. We first compose the data frame X with the
cluster identifier and the (standardized) data used for the clustering, and
add the minutes played by the analyzed players to be used as additional
information for the graph

> Pbox.subset <- subset(Pbox, MIN>=1500)
> MIN <- Pbox.subset$MIN
> X <- data.frame(hclu2$Subjects, scale(data), MIN)

Afterwards, for each cluster, we plot the variability diagram, using the
minutes played to set the size of the bubbles. Note that we set weight =
FALSE because in the clustering framework we do not compute weighted
variability measures and VC=FALSE because the variables are not strictly
positive, so the variation coefficient cannot be used. Again, we use a for
loop and then arrange the graphs in a grid
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> dvar <- c("PTS","P3M","REB","AST",
"TOV", "STL","BLK","PF")

> svar <- "MIN"
> yRange <- range(X[,dvar])
> sizeRange <- c(1500, 3300)
> no.clu <- 9
> p <- vector(no.clu, mode="list")
> for (k in 1:no.clu) {

XC <- subset(X, Cluster==k)
vrb <- variability(XC[,3:11], data.var=dvar,

size.var=svar, weight=FALSE,
VC=FALSE)

title <- paste("Cluster", k)
p[[k]] <- plot(vrb, size.lim=sizeRange, ylim=yRange,

title=title, leg.pos=c(0,1),
leg.just=c(-0.5,0),
leg.box="vertical",
leg.brk=seq(1500,3000,500),
leg.title.pos="left", leg.nrow=1,
max.circle=7)

}
> library(gridExtra)
> grid.arrange(grobs=p, ncol=3)

The graphs in Figure 4.13 show the differences between the clusters in
terms of the average values of the variables used for the clusterization.
They provide the same information as the radial plots of Figure 4.11,
but here we have the additional visualization of the subjects’ variabil-
ity within clusters and the minutes played. It is interesting to note,
for example, the high dispersion of all the variables in cluster 7, which
exhibited a high value of the heterogeneity index (CHI = 0.95). Another
important point concerns cluster 1, whose quite high overall heterogene-
ity (CHI = 0.5) seems to be due to the high variability of only a limited
number of variables (namely, STL, PF , P3M , PTS). On the other
hand, there are clusters with a satisfactory heterogeneity index where
we can find anyway one or two variables with high variability: for exam-
ple, variable BLK in cluster 3 (CHI = 0.33). Finally, the additional
information about the minutes played helps give a better understanding
of the analyzed data. We note for example that cluster 8, characterized
by values below the average in all the variables, is composed of players
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Figure 4.13 Variability diagrams within the clusters.
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with small bubbles (anyway, we recall that players in the analysis played
at least 1500 minutes), which could in part explain their low stats.

4.4 FOCUS: NEW ROLES IN BASKETBALL
The five positions normally employed in basketball are the point guard
(PG), the shooting guard (SG), the small forward (SF), the power for-
ward (PF), and the center (C)1. But the way of playing basketball has
profoundly changed since James Naismith invented the game for his
students. One of the most disrupting change in the game was the intro-
duction of the 3-point line in the early 1980s, which deeply changed the
way of playing the game all over the world (Sanders, 1981; Butts, 1986;
Lynch, 1987). The availability of a new kind of shot, rewarded with one
extra point, obviously encouraged to shoot from a higher distance, thus
increasing the importance of long shooting skills and changing the way of
playing far from the basket. Overall, the evolution of the game since its
birth in 1891 led to a consequent evolution of players, who became more
athletic, more skilled, and developed different ways to play the game,
so that today there is general consensus about the fact that it may be
difficult in some cases to assign a player to one of the 5 positions that
have been traditionally used in basketball.

To face changing times is a hot issue in other sports as well. In history,
there are widely acknowledged cases of outstanding players, who defi-
nitely changed the way of thinking to a specific position, or who defined a
new role related to the way they were playing the game. In American foot-
ball, the case of the mobile quarterback is addressed in Monson (2012). In
soccer, Corsello (2016) describes why Manuel Neuer, one of the best goal-
keepers nowadays, plays like no one goalkeeper before him, and Mahmood
(2015) explains how the Makelele role redefined English football. Getting
back to basketball, Flannery (2016) discusses how Draymond Green is
redesigning the concept of NBA basketball superstar.

From an analytic point of view, the first attempt to formalize a
quantitative approach for characterizing the basketball players’ roles is
presented in Alagappan (2012), who exploits Topological Data Analysis

1For the record, we must mention that historically, only three positions were used
(two guards, two forwards, and one center) based on where the player tends to play
on the court. Furthermore, some nonstandard positions were recognized in the 1950s,
such as the point forward (a hybrid PG/SF), the swingman (a hybrid SG/SF), the
big (a hybrid C/PF), and the stretch four (a PF with the shooting pattern of a
typical SG).
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(TDA, see Carlsson, 2009) to create a sort of map, showing differences
between players’ statistical profiles based on game statistics, with the
aim of redefining basketball roles. The result of an analysis on NBA
players’ data is a set of 13 clusters, corresponding to 13 new positions,
based on the three typical roles of guard, forward and center:

1. Offensive Ball-Handler: a cluster of players who handle the ball
and specialize in points, free throws and shots attempted, but per-
form below average in steals and blocks.

2. Defensive Ball-Handler: a cluster of defense-minded players
who handle the ball and specialize in assists and steals, but are
not so good or just on average for points, free throws and shots.

3. Combo Ball-Handler: a cluster of players devoted to both
offense and defense but not remarkably good in either category.

4. Shooting Ball-Handler: a cluster of players with special skills
for scoring, characterized by appreciably above average field goal
attempts and points.

5. Role-Playing Ball-Handler: a cluster of players with a low sta-
tistical impact on the game, who often play a few minutes.

6. 3-Point Rebounder: a cluster of big ball-handlers, above average
in rebounds and 3-point shots.

7. Scoring Rebounder: a cluster of players above average in
rebounds and with a particular attitude for scoring.

8. Paint Protector: a cluster of players above average in rebounds,
blocks and fouls, but usually below average in scored points.

9. Scoring Paint Protector: a cluster of outstanding players both
on offense and defense, with special skills in scoring, rebounding
and blocking shots.

10. NBA 1st-Team: a cluster of players above average in every sta-
tistical variable.

11. NBA 2nd-Team: a cluster of players close to average or a little
above it in every statistical variable.

12. Role Player: a cluster of players slightly less skilled than the
NBA 2nd-Team ones, who usually play a few minutes.
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13. One-of-a-Kind: players that are so good that the algorithm is
not able to classify them in any category; they are considered to
be just outstanding.

Another study on this topic is proposed by Bianchi et al. (2017),
where 5 new positions are defined by means of an integrated approach
based on the joint use of a fuzzy clustering technique and a Self-
Organizing Map (SOM, Kohonen, 1982, 1990), a machine learning tool
consisting of an unsupervised neural network that applies a competi-
tive learning rule (as opposed to error-correction learning, such as for
example backpropagation) based on a neighborhood function aimed at
preserving the topological properties of the input space. The SOM is
fed with 7 selected statistical variables of a set of NBA players, which
constitute the input layer of the neural network: PTS (per game), REB
(OREB + DREB), AST , TOV , STL, BLK, PF . The output layer
defines the map space, a two-dimensional region where neurons are
arranged in a regular hexagonal or rectangular grid. Each neuron is asso-
ciated with a weight vector, which defines its position in the input space
(the multidimensional space defined by the 7 selected variables).Training
consists in moving weight vectors toward the input data, so that the out-
put layer’s shape is automatically adapted to the topology of the input
space. Thus, the SOM can be considered a mapping from a multidimen-
sional input space to a lower-dimensional map space and is therefore a
dimensionality reduction tool. Once trained, an instance from the input
space is classified by finding the neuron with the closest weight vector.
In Bianchi et al. (2017), the number of neurons of the output layer is
set to 900. The output layer is then represented on a plane by Multi-
dimensional Scaling (MDS) and the groups are defined by means of a
fuzzy clusterization with a polynomial fuzzifier function applied to the
output layer of the SOM. A basketball technical analysis of the cluster
profiles, together with the consideration of the membership coefficients
of the players to the different clusters, finally allows to classify all the
players into the following 5 groups, partly overlapping and confirming
the 13 formerly defined by Alagappan (2012):

1. All-Around All Star: a cluster of outstanding players who are
above the average in most of the game statistics. They are usually
elite scorers, but combine the scoring ability with great passing
skills; alternatively, they may have big rebounding numbers or
great defensive skills; in some cases, all these characteristics are
present at the same time.
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2. Scoring Backcourt: a cluster of players who are characterized
by remarkable offensive skills, but usually below the average as for
rebounds and blocks. They tend to perform better when playing
away from the basket.

3. Scoring Rebounder: a cluster of big players who are above the
average in scored points (both in low-post and facing the basket)
and rebounds.

4. Paint Protector: a cluster of players who are not great scorers,
but very good at rebounding and blocking shots, thanks to their
size and excellent defensive skills.

5. Role Player: a cluster of players who are very good but not
excellent in only one variable; they are considered as specialists
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Figure 4.14 Top: positions of four players on the SOM output layer, mov-
ing from Paint Protector to Scoring Backcourt region. Bottom: radial
plots of the four players. Source: Bianchi et al. (2017).
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in one particular aspect of the game. and can be crucial in a team,
although their importance is usually not reflected in their statis-
tics, which are usually lower than other players.

The top panel of Figure 4.14 shows the MDS two-dimensional rep-
resentation of the output layer’s neurons, with four players projected
from the input space (DeAndre Jordan, Karl-Anthony Towns, Carmelo
Anthony, and Damian Lillard), progressively moving from the region
where the Paint Protector cluster has been detected, to the Scoring Back-
court cluster region. The radial plots in the bottom panel of Figure 4.14
clearly show how the profiles change moving on the output layer’s surface.

The two mentioned studies addressing the issue of defining new roles
in basketball make use of complex clustering algorithms, definitely more
sophisticated than the k-means and the hierarchical algorithms exploited
for the examples in Sections 4.2.1, 4.2.2 and 4.3.1. The reason is that
complex algorithms such as the TDA and SOM are able to more effec-
tively explore and preserve the topology of the input space. This allows
to detect the possible presence of small groups that differ from others
for just one or a few variables, and works well also when the shape of
clusters is not hyper-spherical.

GLOSSARY
Cluster Analysis: A classification technique aiming at dividing indi-

vidual cases (subjects) into groups (clusters) such that the subjects
in a cluster are very similar (according to a given criterion) to one
another and very different from the subjects in other clusters.

Dendrogram or Cluster Tree: A tree diagram used to illustrate the
hierarchical arrangement of the clusters produced by an agglomer-
ative (divisive) algorithm; it shows the sequence of cluster fusion
(splitting) and the distance at which each fusion (split) took place.

Explained Variance: A measure for the clusterization quality, under-
stood as the extent to which the individual cases or subjects within
the clusters are similar to each other and different from those belong-
ing to other clusters. It is computed as the ratio of the Between over
the Total Deviance (BD/TD = 1 − WD/TD, Pearson’s correlation
ratio η2), usually multiplied by 100 in order to express it as a per-
centage, where 100% would mean a zero variance within clusters (in
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each cluster, the cases are all exactly equal to each other). In gen-
eral, the value has to be interpreted as the percentage of the total
variance that can be explained by the clusterization.

Hierarchical Clustering Algorithms: A class of clustering algo-
rithms that seek to build a hierarchy of clusters. They work in a
greedy agglomerative or divisive manner by grouping or splitting the
clusters one by one, usually based on a distance metric. The agglom-
erative approach is “bottom up”: each subject starts in its own clus-
ter and, moving up the hierarchy, pairs of clusters are progressively
merged on the basis of the smallest (nearest) pairwise distance. The
divisive approach is “top down”: all subjects start in one cluster and,
moving down the hierarchy, splits are performed recursively on the
basis of the highest (farthest) pairwise distance.

Nonhierarchical Clustering Algorithms: A class of clustering algo-
rithms that seeks to classify subjects into a pre-determined number
of clusters, using an iterative algorithm that optimizes a given cri-
terion or loss function. Starting from an initial arbitrary classifica-
tion, items are moved from one cluster to another, until no further
improvement can be made to the criterion value. In general, the
achieved solution is not guaranteed to be globally optimal and dif-
ferent initial classifications may lead to different solutions. For this
reason, either rules to select how the initial classification is formed
or randomization procedures have to be applied.

Self-Organizing Map: An unsupervised neural network that applies
a competitive learning rule (as opposed to error-correction learn-
ing, such as for example backpropagation) based on a neighborhood
function aimed at preserving the topological properties of the input
space.

Topological Data Analysis: A class of topological and geometric
tools aimed to describe, by means of mathematical, statistical and
algorithmic methods, relevant and possibly complex relationships in
data structures represented on multidimensional spaces.



C H A P T E R 5

Modeling Relationships
in Data

STATISTICAL MODELING is a way to approximate the mecha-
nisms or the rules that govern the functioning of phenomena. It is

founded on the assumption that, for any analyzed phenomenon, a given
outcome Y is determined by the joint action of a (potentially big) num-
ber h of covariates X = X1, . . . , Xh through an unknown function ϕ and
a random innovation ε:

Y = ϕ(X ) + ε. (5.1)

Equation (5.1) represents the so-called “data generating process” (dgp),
as the data we observe about the analyzed phenomenon are assumed to
come from this mechanism. The hidden set of rules formalized by ϕ and
dgp is often referred to by using the metaphor of the “black box”, to
indicate its complexity and inscrutability. In this context, Y is usually
called the dependent variable and the covariates X1, . . . , Xh are explana-
tory or independent variables or predictors. Statistical modeling aims to
set up tools able to mimic the functioning of ϕ by means of the informa-
tion about the dgp contained in a sample of data observed both for the
outcome Y and a set of p covariates X = X1, . . . , Xp as close as possi-
ble to X . In general X and X do not perfectly overlap because it can
occur that (i) not all of the h covariates are known, and/or (ii) for some
covariates data are not available, and/or (iii) there are covariates that
we consider relevant but they are not. Preliminary procedures of variable
selection are usually performed, especially in presence of a big number
of candidate predictors, in order to obtain a set X as representative as
possible of X .

151
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Fundamentally, there are two goals in developing tools able to
approximate the dgp: prediction (to be able to predict what the out-
come is likely to be for given unknown/future values of the covariates)
and information (to extract knowledge about how the outcome and the
covariates are associated).

As for prediction, the accuracy of the model is often measured by the
coefficient of determination R2, representing the proportion of the vari-
ance in the dependent variable that is predictable by the independent
variables. Let y1, y2, . . . , yN be a sample of N observations of the out-
come Y with average µy =

∑N
i=1 yi, and ŷ1, ŷ2, . . . , ŷN the corresponding

predictions supplied by a model based on a set of explanatory variables
X . We have

R2 = 1 − SSR

SST

where

SSR =
N∑

i=1
(yi − ŷi)2

is the residual sum of squares, and

SST =
N∑

i=1
(yi − µy)2

is the total sum of squares. Note that SST corresponds to the Total
Deviance TD of Y . The lower SSR, called Residuals Deviance, the lower
the differences between real and predicted values, so higher values of
R2 denote better fit of the model/algorithm to the observed data. In
some models the coefficient of determination ranges from 0 to 1, and
the goodness of fit can be easily interpreted as the percentage of the
Total Deviance explained by the model. In other cases R2 can yield
negative values. When it is the case, the simple arithmetic average µy is
a better predictor than the model. It these cases, interpretation should
be very cautious. On the other hand, R2 = 1 always means a perfect
fit of predictions to observed data, ŷi = yi ∀i (which is not necessarily
desirable, as it may well be the effect of the so-called overfitting).

Since the dgp is unknown and unknowable, according to the assump-
tions made by researcher about ϕ and ε, several different approaches
to statistical modeling can be adopted. An important distinction was
given by Leo Breiman (Breiman, 2001b), who claimed that the two main
approaches to statistical modeling are the Data Modeling Culture and
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the Algorithmic Modeling Culture, roughly corresponding to the tradi-
tional and the modern concept of modeling.

According to the Data Modeling Culture, ϕ can be represented in an
idealized form by a function f indexed by a set of parameters θ belonging
to a parameter space Θ, so that the expected value of Y is given by

E(Y ) = f(X1, . . . , Xp; θ). (5.2)

In this Culture, statistical modeling is a simplified, mathematically for-
malized way to approximate the elusive black box and the statistical
model is the function f that embodies all the assumptions concerning
the unknown ϕ governing the functioning of the analyzed phenomenon
(see McCullagh, 2002 for a more formal definition). Whilst the math-
ematical form of f is in general assumed by the researcher, statistical
methods are concerned with the estimation of the values of the param-
eters θ, based on the available sample of data.

The Algorithmic Modeling Culture builds on the fundamental crit-
icism of the mathematical formalization f that, arbitrarily assumed by
the researcher, would require more effort to the sophistication of its
math, than to the improvement of the model’s raw ability in explaining or
predicting nature. According to Breiman, the conclusions we draw from
this mathematical formalization are geared more towards the model’s
rather than the nature’s mechanism. The Algorithmic Modeling Culture
takes a different approach and shifts focus from mathematical models
to the properties of algorithms. Instead of developing some elegantly
designed model, algorithms try to recreate the black box mechanism by
automatically and iteratively finding the way to adapt their output to
data. The recent explosion in computing power, the well-known abun-
dance of data and big data, and the creative effort of a big community of
statisticians devoted to this new and fascinating branch of research have
made the Algorithmic Modeling Culture a powerful approach to statis-
tical modeling. Examples of algorithms developed in this field are trees,
ensemble learning algorithms and neural networks, which have been
already mentioned in this book, when talking of machine learning tools.
A criticism moved against the Algorithmic Modeling Culture is that the
mechanisms developed by algorithms to fit data are as inscrutable as
the dgp itself. In other words, the Algorithmic Modeling Culture favors
prediction over information. To make a choice between the Data Mod-
eling and the Algorithmic Modeling Culture means to choose between
interpretabiliy and accuracy, a tangible expression of Occam’s dilemma
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between the lex parsimoniae (Occam’s razor, claiming that simplicity
should be preferred in the scientific method), and the evidence that
complex models are the most accurate predictors.

A third approach, lying in the middle between the Data Modeling and
the Algorithmic Modeling Culture, is the use of nonparametric models,
techniques that do not require to specify a model structure a priori, but
instead determine it from data. The term nonparametric is not meant to
imply that parameters are totally absent but that the parameter space
is flexible and not defined in advance, in both nature and dimension,
and automatically adapts itself to the complexity of the data. Typically,
there can be assumptions about the probability distribution of variables
and the types of connections among them.

“All models are wrong, but some are useful.”

George E. P. Box
One of the great statistical minds of the 20th century

Besides all the statistical and philosophical issues involved in the
debate about the best approach to statistical modeling, it should be
remembered that it is fundamentally impossible to determine precisely
how the conversion from the covariates to the outcome occurs and there
will never be an ultimate answer to it. Whether one follows the Data
Modeling or the Algorithmic Modeling Culture, or whatever else, there
is an inherent limit to the human capacity of explaining nature, due
to both high-dimensionality (and then, the impossibility to have exact
overlap between X and X) and the fact that mechanisms are exceedingly
complex. We will never reach the exact approximation and knowledge of
the dgp, we must settle for continuously improving models able to give
better and better approximations, which, of course, can be extremely
useful.

In the literature, a significant share of the studies dealing with the
analysis of basketball data is concerned with the use of statistical mod-
eling techniques. In fact, statistical modeling can be exploited for nearly
every analytic purpose listed in Chapter 1, Section 1.2. For the moment,
the main part of the proposed models comes from the Data Modeling
Culture, but the use of nonparametric techniques and machine learning
algorithms is rapidly gaining ground.
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In this chapter we will address linear models, the most traditional
statistical models in the Data Modeling Culture, and two nonparametric
regression techniques. Although the main part of modeling methods is
designed to explain multivariate relationships, we will focus on the case
of only one explanatory variable and will exploit the R functions (in
the package BasketballAnalyzeR) simplereg performing three types
of simple regression analysis, expectedpts and scoringprob, designed
to deal with two specific analytics needs with a nonparametric approach.
Some machine learning tools from the Algorithmic Modeling Culture
have already been discussed previously, for example, in the FOCUS stud-
ies in Chapters 3 and 4.

5.1 LINEAR MODELS
In the Data Modeling Culture, the most traditional functional form for
the model is a linear combination of the predictors, implying that a
constant change in one explanatory variable (the others being fixed)
leads to a constant change in the expected value E(Y ) of the outcome:

E(Y ) = β0 + β1X1 + . . . + βpXp, (5.3)

where β0, β1, . . . , βp are the model parameters. The model (5.3), called
multiple linear regression, can be used when Y is a numerical variable for
which we can assume a Gaussian distribution (this assumption is usual
but necessary only for inference purposes).

In the linear regression (5.3), when parameters are estimated via
ordinary least squares, it can be easily proven that SSE ≤ SST , so that
the coefficient of determination R2 ranges from 0 to 1, with higher values
meaning better fit, and can be interpreted as the percentage of the Total
Deviance explained by the models. In the case of only one explanatory
variable (simple linear regression), the coefficient of determination is
equal to the squared Pearson’s linear correlation coefficient, R2 = ρ2

XY .
When linear regression is performed without including an intercept, R2

can yield negative values.
Generalized linear models (GLMs, McCullagh and Nelder, 1989;

Fahrmeir and Tutz, 2013) are a flexible generalization of the multiple
linear regression model, allowing for a Y variable with a probability dis-
tribution other than Gaussian, provided it belongs to the exponential
family. In GLMs the linear combination of predictors is related to the
expected value of the outcome via the so-called link function g:

E(Y ) = g−1(β0 + β1X1 + . . . + βpXp) (5.4)
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and it allows to deal with several interesting cases, such as the prediction
of the probability of a yes/no variable, the number of events occurred for
a counting process, phenomenons where an exponential-response mech-
anism is more appropriate than a linear-response one, etc. Although in
the following we will focus on the case of a single predictor variable, we
want to stress here the importance of multivariate methods, as in prac-
tice variables are always associated to a whole a set of covariates and
the use of only one of them may be simplistic in certain cases. However,
the multiple linear regression model is a straightforward extension of the
simple one that we will describe in the next section. It and its gener-
alizations with GLMs can be very easily applied with R using the glm
function of the stats package.

5.1.1 Simple linear regression model
The model (5.3) with only one predictor variable (p = 1) is called simple
linear regression and consists of fitting data in the two-dimensional plane
by means of a (non-vertical) straight line able to predict, as accurately as
possible, the dependent variable values as a function of the independent
variable:

E(Y ) = β0 + β1X. (5.5)

The accuracy is usually measured by the squared residuals (the vertical
distances between the points of the data set and the fitted line), and
the so-called ordinary least squares method aims to find the line (i.e., to
estimate the parameters β0 and β1) that makes the sum of these squared
deviations as small as possible. When this estimation method is used, the
estimated slope β̂1 of the fitted line is equal to the correlation between
Y and X corrected by the ratio of their standard deviations, and the
estimated intercept β̂0 is such that the line passes through the point
with coordinates given by the averages of the two variables computed
on the data points, (µx, µy):

β̂1 = ρXY × σY

σX
β̂0 = µy − β̂1µx. (5.6)

For model (5.5) we have R2 = ρ2
XY .

The function simplereg allows to fit data with model (5.5) thanks
to the parameter type, which allows to specify different models (type =
"lin" for simple linear regression). Since this model makes sense when
the variables Y and X have revealed a high linear correlation coefficient
ρXY , we start from the analysis described in Chapter 3, Section 3.2,
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where we inspected the pairwise linear correlation of the variables scored
point, 3- and 2-point shots made, total rebounds (offensive and defen-
sive), assists, turnovers, steals and blocks (per minute played), focus-
ing attention on those players who have played at least 500 minutes in
the championship. As shown in Figure 3.2, the variables denoting the
number of assists and turnovers per minute exhibited the highest linear
correlation coefficient (0.69). So, we fit the model (5.5) with Y and X
representing the turnovers and the assists, respectively. It is worth not-
ing that the high correlation between the two variables does not imply
any assumption of causal relationship, because correlation is a symmet-
ric association and is not able to reveal which variable (if any) causes
the other. Therefore, here, the choice of which variable should be treated
as the dependent or the independent one is arbitrary. We perform the
analysis through the following code:

> Pbox.sel <- subset(Pbox, MIN>=500)
> attach(Pbox.sel)
> X <- AST/MIN
> Y <- TOV/MIN
> Pl <- Player
> detach(Pbox.sel)
> out <- simplereg(x=X, y=Y, type="lin")
> xtitle <- "AST per minute"
> ytitle <- "TOV per minute"
> plot(out, xtitle=xtitle, ytitle=ytitle)

The R object out of class simplereg contains information about the esti-
mated model (parameter estimates, coefficient of determination, resid-
uals, etc.). A plot method is available for this class that produces the
graph of Figure 5.1 (top), displaying the scatter plot of the data points,
the fitted line, its equation and the value of the coefficient of determi-
nation. The value β1 = 0.26 indicates that when the number of assists
per minute increases by 1, the number of turnovers per minute tends to
increase, on average, by 0.26. The values R2 = 47.25% denotes a quite
good fitting, with the model explaining almost one half the variance of
Y . Strictly speaking, the simple linear regression model is based on the
assumption that the probability distribution of Y is Gaussian or, at least,
that it is continuous with an unbounded domain. In the analyzed case,
the outcome variable (turnovers per minute) is countable and expected
to be always positive, so that, actually, we ought to avoid the applica-
tion of a simple linear regression model. However, the flexible criterion
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Figure 5.1 Simple linear regression model of assists and turnovers (per
minute).
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usually adopted in these cases is to fit the model and reject it only when
the assumption violation clearly leads to odd results (as happens in the
analysis that will be described in Section 5.2.1), which is not the case in
the presented example. An alternative in this case would be to resort to
some more appropriate generalized linear model.

If needed, we can highlight the position of a specific player (or more
than one) we are interested in (Figure 5.1, middle):

> selp <- which(Pl=="Damian Lillard")
> plot(out, labels=Pl, subset=selp, xtitle=xtitle,

ytitle=ytitle)

The position of Damian Lillard is just on the line, meaning that he per-
forms, on average, exactly how predicted by the model. We can also
require, instead of the position of one or more specific players, the indi-
cation of the most outstanding players, specifying the upper and lower
quantiles of Y and X we are interested in:

> plot(out, labels=Pl, subset="quant",
Lx=0, Ux=0.97, Ly=0, Uy=0.97,
xtitle=xtitle, ytitle=ytitle)

as shown in Figure 5.1 (bottom), where the players with Y or X higher
than the 97th quantile are highlighted. Players lying below the line, e.g.,
Chris Paul, tend to perform better than what is expected based on the
model (in the sense that, for a given number of assists, they have on
average a lower number of turnovers with respect to what is predicted
by the model); on the other hand, players lying above the line, e.g.,
DeMarcus Cousins, tend to perform worse than the average from this
point of view.

5.2 NONPARAMETRIC REGRESSION
As already pointed out, in nonparametric regression, the relationship
between the outcome and the predictor variables is not assumed to take a
predetermined form, but is constructed according to information derived
from the data. Although the parameter space is not fixed a priori and
both its nature and size are worked out simultaneously with the model
fitting, there may be parametric assumptions about the distribution of
model residuals.

Usually nonparametric regression requires a larger sample size than
regression based on parametric models, because the data must provide
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information enough to obtain, alongside the model estimates, the model
structure itself. In addition, carefulness is required in interpreting the
coefficient of determination R2, as in some cases with these models it
can yield negative values.

Nonparametric regression is typically performed by means of smooth-
ing techniques, such as kernel smoothing, k-nearest neighbor estimates
and spline smoothing (Härdle, 1990; Hollander and Wolfe, 1999).

We will focus on kernel smoothing, whose basic idea is to compute
the prediction of the outcome as a real-valued function of neighboring
observed data, with closer points having a higher impact on the esti-
mated value. Let y1, y2, . . . , yn be a sample of n observations of the out-
come Y and x1, x2, . . . , xn the corresponding observed values for the
explanatory variables X, the simplest form of kernel estimate is the
Nadaraya-Watson weighted average

ŷ0 =
∑n

i=1 Kλ(x0, xi)yi∑n
i=1 Kλ(x0, xi)

(5.7)

where ŷ0 is the outcome value predicted at X = x0 and Kλ(x0, xi) is the
so-called kernel, a window function that defines the weights to be given
to the points in the neighborhood of x0 and depends on a smoothing
parameter λ, controlling the width of the neighborhood, that in this con-
text is usually called bandwidth. We already came across the concept
of kernel in Chapter 3, Section 3.5, with reference to density estima-
tion procedures. Different specifications of the kernel lead to different
smoothers, the most popular one being the Gaussian kernel smoother.

A more general approach than the simple Nadaraya-Watson weighted
average is local regression, where the prediction is obtained by means
of some parameterized function, such as a low-order polynomial, with
parameters estimated by minimizing a least squares loss function where
closer points are given higher weights (see Friedman et al., 2009 for
details). When the fitted polynomials have degree 0, the method leads
back to (5.7).

In the following, we will describe some examples where nonparamet-
ric regression is carried out on basketball data using a polynomial local
regression technique and Nadaraya-Watson Gaussian kernel smoothing.

5.2.1 Polynomial local regression
The term “polynomial local regression” is usually referred to a nonpara-
metric technique called LOESS, introduced by Cleveland (1979) and
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Cleveland and Devlin (1988). LOESS fits simple parametric models to
localized subsets of the data so as to obtain a smooth curve. In detail, at
each point of the dataset, a low-degree polynomial is fitted to a subset of
the data in the neighborhood of the point itself. The polynomial param-
eters are determined by a weighted least squares method, giving more
weight to points closer to the point whose outcome is being estimated.
The outcome prediction is then obtained by evaluating the local polyno-
mial using the explanatory variables values for that data point. Although
there are some typical default choices, the researcher can tune the degree
of the polynomials, the weights and the smoothing parameter λ.

With respect to parametric models, LOESS requires a significantly
increased computational burden, so that it would have been practically
unfeasible in the era when least squares parametric regression was being
developed. The improved computational power has made it possible to
design LOESS, as well as many other computationally intensive new
methods, to achieve goals not easily gotten by traditional approaches.

The level plots of Figure 3.5, produced by the function MDSmap
described in Chapter 3, Section 3.3, are obtained by performing a LOESS
bivariate regression with second-degree polynomials, where the explana-
tory variables are the MDS coordinates. In this section, instead, we focus
on the case of only one explanatory variable. The function simplereg
allows to perform simple regressions with LOESS by specifying type
= "pol". When using LOESS, simplereg is based on the R function
loess; therefore, it has all its default settings. The polynomials’ degree
is set to 2 and the smoothing parameter can optionally be tuned by the
researcher using the argument sp, denoting the size of the subset used
to fit each local polynomial, expressed as a fraction of the total number
of data points.

Like in Section 5.1.1, we start from the analysis of the pairwise linear
correlation presented in Chapter 3, Section 3.2, where we detected a
moderately high negative linear correlation coefficient (-0.52) between
rebounds and 3-point shots made (Figure 3.2). We first prepare the data
with the following code

> Pbox.sel <- subset(Pbox, MIN>=500)
> attach(Pbox.sel)
> X <- (DREB+OREB)/MIN
> Y <- P3M/MIN
> Pl <- Player
> detach(Pbox.sel)
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Then, we note that the presence of linear correlation would suggest to
use a linear regression model, which, however, in this case, does not
provide an adequate fit to data, as shown in the top panel of Figure 5.2,
obtained by typing the code

> out <- simplereg(x=X, y=Y, type="lin")
> xtitle <- "REB per minute"
> ytitle <- "P3M per minute"
> plot(out, xtitle=xtitle, ytitle=ytitle)
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Figure 5.2 Top: Simple linear regression model of rebounds and 3-point
shots made (per minute). Bottom: LOESS regression of rebounds and
3-point shots made (per minute).
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It shows that the model turns out to predict negative values for 3-point
shots made for those players having the highest rebound values. This
is a consequence of the above-mentioned (Section 5.1.1) violation of the
assumptions, required by the simple linear regression model, on the prob-
ability distribution of Y . So, we perform a LOESS regression, and require
to specify in the plot the names of the players lying above the 90th and
95th quantile for X and Y , respectively (Figure 5.2, bottom)
> out <- simplereg(x=X, y=Y, type="pol")
> plot(out, labels=Pl, subset="quant",

Lx=0, Ux=0.90, Ly=0, Uy=0.95,
xtitle=xtitle, ytitle=ytitle)

According to the LOESS curve, the expected number of 3-point shots
made is approximately flat or very slowly decreasing for players with less
than about 0.2 rebounds per minute (9.6 rebounds in 48 minutes), and
then tends more rapidly to zero. Players with more than 0.3 rebounds
per minute (14.4 rebounds in 48 minutes) are expected to score very few
3-point shots (less than 0.02 per minute, 0.96 in 48 minutes), but the
data points are very scattered in that area, so that we can recognize a
number of outstanding players. The most noticeable one is Kevin Love
who, although achieving 0.33 rebounds per minute (15.84 in 48 minutes),
scores more than 0.08 3-point shots per minute (3.84 in 48 minutes).
Other players worth mentioning are DeMarcus Cousins, Bobby Portis,
Nikola Jokic and Karl-Anthony Towns. On the other hand, in the top
part of the scatter, we find outstanding players from the point of view
of the 3-points shots made. Among them, the one achieving the highest
number of rebounds is Nikola Mirotic, with reference to the 622 minutes,
25 games, he played with the Chicago Bulls (0.26 rebounds and 0.11 3-
point shots made per minute, corresponding to 12.48 and 5.28 in 48 min-
utes, respectively). The coefficient of determination is rather low (28.36%,
but still better than the value obtained with the simple linear regression,
26.81%), meaning that predictions are affected by high variability.

5.2.2 Gaussian kernel smoothing
In Gaussian kernel smoothing, the kernel Kλ(x0, xi) is given by

Kλ(x0, xi) = 1
λ

exp
{

−||xi − x0||2

2λ

}
(5.8)

where || · || denotes a norm function and the smoothing parameter λ
corresponds to the variance of the Gaussian density. In the case of only
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one explanatory variable, the function simplereg can be used to perform
the Nadaraya-Watson smoothing (5.7) with the Gaussian kernel (5.8),
by specifying type = "ks".

Kernel smoothing is also performed by the function scatterplot,
introduced in Chapter 2, Section 2.2.4, again used in Chapter 3, Sec-
tions 3.2 and 3.5.3 to analyze, respectively, linear correlation and joint
densities of pairs of variables within a given set. Let us select those
players who have played at least 500 minutes and consider the follow-
ing variables: scored point, 3- and 2-point shots made, total rebounds
(offensive and defensive) and assists (per minute played):

> data <- subset(Pbox, MIN>=500)
> attach(data)
> X <- data.frame(PTS, P3M, P2M, REB=OREB+DREB, AST)/MIN
> detach(data)

We can plot a correlation matrix with histograms on the diagonal and
kernel smoothing estimates of the bivariate relationships in the lower
triangle.

> scatterplot(X, data.var=1:5,
lower=list(continuous="smooth_loess"),
diag=list(continuous="barDiag"))

The outcome is shown in Figure 5.3.
The Nadaraya-Watson Gaussian kernel smoothing is also used in the

functions scoringprob and expectedpts, estimating, respectively, the
scoring probability and the expected points of a shot as a function of
a game variable. In detail, given a game variable X (for example, the
distance from the basket, or the time in the quarter when the shot is
attempted, etc.), the scoring probability π(x) denotes the probability
that a shot with X = x scores a basket, while the expected points
E(PTS|x) inform on the number of points scored on average thanks to
a shot with X = x. The fine line between these two concepts can be
explained by a numerical example. Let us consider Kyrie Irving, hav-
ing P2p = 54.12 and P3p = 40.79. Given a distance x such that the
shot is worth 2 points, we have π(x) = 0.5412 because the scoring prob-
ability can be roughly estimated by the scoring percentage at x and
E(PTS|x) = 2 ·0.5412 = 1.0824, as the expected points are given by the
number of points in case of shots made, multiplied by the scoring prob-
ability. Given a distance x such that the shot is worth 3 points, we have
π(x) = 0.4079 and E(PTS|x) = 3 · 0.4079 = 1.2237. This means that,
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Figure 5.3 Correlation matrix with histograms on the diagonal and kernel
smoothing estimates of the bivariate relationships in the lower triangle.

although Kyrie Irving’s scoring probability is higher for 2-point than for
3-point shots, the expected points (i.e., the number of points we expect
he scores on average when the shot distance is x) are higher when he
shoots from behind the 3-point line. With the functions scoringprob
and expectedpts, π(x) is estimated with a Gaussian kernel smoothing
that, with respect to the simple example we have described, is more
accurate and provides point estimates for all the possible values of the
variable X.

Both the functions need play-by-play data in input and the smoother
bandwidth can be controlled with the parameter bw. For the examples,
we use the play-by-play dataset PbP, obtained from PbP.BDB thanks to
the function PbPmanipulation as described on page 23.
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5.2.2.1 Estimation of scoring probability

With scoringprob we assess the scoring probability as a function of the
period time (periodTime, seconds played in a given quarter), the total
time (totalTime, seconds played in total), the play length (playlength,
time between the shot and the immediately preceding event), and the
shot distance (shot_distance, distance in feet from the basket). The
variables are the same used in Chapter 3, Section 3.5.1 to analyze the
pattern of the shooting density. Now, as then, the idea comes from the
words of coach Messina, who remarked in the Foreword that, “... scoring
ten points in the first two quarters of the game is not the same as scoring
them in the final minutes...”, thus pointing out the importance of inves-
tigating players’ performance with respect to some specific situations,
and not only on average.

We now estimate the scoring probability of the Golden State Warriors’
3-point shots with respect to play length and period time (note that for
the latter we need to tune the bandwidth using the argument bw):

> PbP.GSW <- subset(PbP, team=="GSW" & result!="")
> p1 <- scoringprob(data=PbP.GSW, shot.type="3P",

var="playlength")
> p2 <- scoringprob(data=PbP.GSW, shot.type="3P",

var="periodTime", bw=300)
> library(gridExtra)
> grid.arrange(p1, p2, ncol=2)

obtaining the graphs of Figure 5.4. The scoring probability tends to
decrease when the buzzer sound (both for the shot clock and the game
clock) approaches. The estimated patterns are consistent with the evi-
dences found by Zuccolotto et al. (2018), who investigated the effects of
shooting in high-pressure game situations, using data from completely
different championships (the Italian “Serie A2” and the Olympic tourna-
ment Rio 2016). The function also allows to estimate the scoring prob-
abilities of specific players:

> pl1 <- c("Kevin Durant","Draymond Green","Klay Thompson")
> p1 <- scoringprob(data=PbP.GSW, shot.type="2P",

players=pl1, var="shot_distance",
col.team="gray")

> pl2 <- c("Kevin Durant","Draymond Green")
> p2 <- scoringprob(data=PbP.GSW, shot.type="2P",

players=pl2, var="totalTime", bw=1500,
col.team="gray")
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Figure 5.4 3-point shots scoring probability with respect to play length
and period time.

> library(gridExtra)
> grid.arrange(p1, p2, ncol=2)

Observing the graphs of Figure 5.5, we draw the following remarks:

• the scoring probability of 2-point shots decreases as the shot dis-
tance increases;

• Kevin Durant performs better than the team average from all the
distances;

• Draymond Green’s decrease is steeper than the average for dis-
tances higher than about 7 feet;

• Klay Thompson performs appreciably worse than the average from
short distances, but his scoring probability becomes approximately
flat from about 12 feet, and from long distances he achieves the
best performance with respect to both the average and the other
two teammates;

• the team scoring probability of 2-point shots peaks in the third
quarter of the game and then decreases as the end of the game
approaches;

• Kevin Durant tends to perform better in the first half of the game;
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Figure 5.5 2-point shots scoring probability with respect to shot distance
and total time.

• Draymond Green tends to perform better in the second half of the
game.

5.2.2.2 Estimation of expected points

With expectedpts, we can estimate the expected points with respect
to the same game variables usable in scoringprob and compare, in a
unique graph, the performance of single players, also with respect to
the team average. This allows to determine, for each player, the cir-
cumstances when his shots have the maximum efficiency, taking into
account both the points brought by their shots and their scoring proba-
bility. When the game variable is the distance of the shot from the basket
(default), the analysis informs about the best distance (for each player)
to shoot from. For example we may be interested in Stephen Curry and
Kevin Durant: with the following code lines, we obtain the plot in the
top panel of Figure 5.6.

> PbP.GSW <- subset(PbP, team=="GSW")
> pl <- c("Stephen Curry","Kevin Durant")
> mypal <- colorRampPalette(c("red","green"))
> expectedpts(data=PbP.GSW, players=pl,

col.team="gray", palette=mypal,
col.hline="gray")
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Figure 5.6 Expected points of shots from a given distance (dashed line:
team average independently from shot distance). Top: Comparison
between Stephen Curry and Kevin Durant. Bottom: Analysis of all the
Golden State Warriors players who scored more than 500 points.
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By observing the graph, we derive the following remarks:

• for shots attempted from less than about 10 feet, Kevin Durant
performs better and Stephen Curry performs worse than the team
average;

• for shots attempted from more than about 10 feet, Kevin Durant
is still better than the team average, but Stephen Curry is better
than Kevin Durant;

• Stephen Curry achieves his best performance in terms of expected
points when shooting from a distance higher than 22 feet (i.e., with
3-point shots); he should avoid taking it to the rim; nevertheless,
for middle distance 2-point shots (more than about 10 feet) he
performs better than the team average;

• Kevin Durant achieves his best performance in terms of expected
points when shooting from the restricted area (less that 4 feet);
he is nevertheless always better than the team average, except for
shots from very far away (more than 35 feet).

This graph also confirms the well-known inefficiency of shots from the
middle distance, also mentioned by Ettore Messina in the Foreword of
this book. Nevertheless, he also claimed that, “if all those in attack go for
shots from below and shots from the three point line, the defenders will
do their best not to concede these shots. As a result, they may allow more
shots from the middle. At this point, having some athletes in the team
who can shoot well from this distance will become absolutely fundamental
in order to win...”. Suppose we wish to know who could such a player
be in the Golden State Warriors. We first select those players who have
scored at least 500 points in the regular season, then we generate the
plot of expected points (Figure 5.6, bottom), where we find that Stephen
Curry’s efficiency from the middle distance is appreciably higher than
the team average (and even almost the same as his efficiency from behind
the 3-point line), so he could be the one to rely on in case of application
of the strategy suggested by coach Messina.

> Pbox.GSW <- subset(Pbox, PTS>=500 &
Team=="Golden State Warriors")

> pl <- Pbox.GSW$Player
> mypal <- colorRampPalette(c("red","green"))
> expectedpts(data=PbP.GSW, players=pl,
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col.team="gray", palette=mypal,
col.hline="gray")

For the same players, we may investigate the expected points of their
shots with respect to the time in quarter when the shot is attempted. In
this case, the expected points are affected by the specific combination
of 2-point and 3-point shots (that could vary depending on the time in
the quarter), as well as by the scoring probability (separately for 2-point
and 3-point shots, which could also vary in time). Note that in this case
we have to tune the bandwidth by means of the argument bw

> expectedpts(data=PbP.GSW, bw=300, players=pl,
col.team="gray", palette=mypal,
col.hline="gray", var="periodTime",
xlab="Period time")

The result is displayed in Figure 5.7, which suggests several interesting
remarks:

• Stephen Curry exhibits the highest efficiency, with just a slight
decrease in the first half, and definitely the most reliable in the
last minutes;
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Figure 5.7 Expected points of shots with respect to the period time (anal-
ysis of all the Golden State Warriors players who scored more than
500 points).
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• Klay Thompson and Kevin Durant perform better than the aver-
age, but seem to suffer a downswing in the last minutes;

• Draymond Green and Nick Young appreciably improve their
expected points in the second half of the quarter.

Lastly, we would like to address another important point raised by
coach Messina in the Foreword: “Too many players that average ten
points per game, for the season, score most of those points against aver-
age and poor teams, whereas they are less successful against the top
teams”. Along with other methods presented throughout the book, the
estimation of expected points is a good way to investigate the different
performance of players against different opponents. In the following, we
will consider the games played by the Golden State Warriors against
teams who qualified for the Playoffs (object top), separately from those
played against the others (object bot)

> top <- subset(Tadd, Playoff=="Y" & team!="GSW")$team
> bot <- subset(Tadd, Playoff=="N")$team

In order to streamline the operations, we define a function aimed to select
the rows of PbP corresponding to games played against an opponent
belonging to a given set. In addition, we modify the players’ names by
adding a suffix denoting to which set the opponent belongs.

> bot_top <- function(X, k) {
dts <- subset(subset(X, oppTeam %in% get(k)),

team=="GSW")
dts$player <- paste(dts$player, k)
return(dts)
}

Thanks to the function bot_top we extract and label players’ names
with respect to the two sets of teams in top and bot, and we combine
them by rows in order to generate the input data frame for the function
expectedpts, computed in this case with respect to the total time

> PbP.GSW <- rbind(bot_top(PbP, "top"),
bot_top(PbP, "bot"))

> pl <- c("Stephen Curry top","Stephen Curry bot",
"Kevin Durant top", "Kevin Durant bot")

> mypal <- colorRampPalette(c("red","green"))
> expectedpts(data=PbP.GSW, bw=1200, players=pl,
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Figure 5.8 Expected points of shots with respect to total time (against
top- and bottom-ranked opponents).

col.team="gray", palette=mypal,
col.hline="gray", var="totalTime",
xlab="Total time")

The resulting graph (Figure 5.8) shows that both Stephen Curry and
Kevin Durant have an appreciably different performance against top-
and bottom-ranked opponents1. In detail, the number of expected points
against bottom-ranked opponents is outstandingly high, especially for
Stephen Curry. The story is completely different against top-ranked
opponents, which force them to a more ordinary performance.

5.3 FOCUS: SURFACE AREA DYNAMICS AND THEIR EFFECTS
ON THE TEAM PERFORMANCE

Statistical modeling is a hugely wide world, composed of hundreds of
different models, suited to fit specific data or situations. The models

1Note that the different extension of the curves derives from the fact that all the
games against top-ranked opponents lasted 48 minutes (2880 seconds, the regular
time), while against bottom-ranked opponents it happened twice to need overtime
(in both cases against the Los Angeles Lakers). The sharp increase of the curves in
that period suggests a markedly improved effort of the two players in that tricky
situation.



174 ■ Basketball Data Science

examined in the previous sections are but a few examples of the most
traditional and simple ones. A complete listing of all the models that
may be used with basketball data is virtually impossible.

This section is devoted to describe just one approach, proposed by
Metulini et al. (2018), where some very specific statistical models are
used in order to characterize the dynamics of surface areas during a game
and detect their influence on team performance. The distinctive features
of the case study we are going to present lie in (a) the use of sensor
data recorded with GPS technologies, and (b) the transmigration into
this context of statistical models typically employed in other application
fields.

Regarding point (a), data refer to players’ coordinates collected dur-
ing three matches played in February 2017 by Italian professional bas-
ketball teams, at the Italian Basketball Cup Final Eight. The players’
positions (in pixels of 1m2) in the x- and the y-axis of the court, as
well as in the z-axis (i.e., how high the player jumps) were recorded
thanks to microchips worn by each player, with an average frequency of
about 80 Hz. The system recorded a series of 4,733,124 observations for
the first match (hereafter, CS1), 4,072,227 for the second match (CS2)
and 4,906,254 for the third one (CS3), each one referring to one among
positioning, velocity or acceleration in one among x-, y- or z-axis, for a
specific player in a specific time instant. These observations have been
transformed into a time series of convex hulls areas regularly spaced in
time, with a constant frequency of 10 Hz. A convex hull of a set of points
in the Euclidean plane is the smallest convex set that contains all the
points. Roughly speaking, if the points were spikes on a wall, the convex
hull could be visualized as the shape enclosed by a rubber band stretched
around them. As suggested by Passos et al. (2016), the convex hull areas
are used as a measure of the effective playing space, called surface area
in the sports analytics literature.

When it comes to point (b), the basic assumption in the paper is that
the surface areas’ stochastic process is affected by recurrent structural
changes involving its mean. This idea comes from sports technical consid-
erations: it is an established fact that the space among players tends to
switch from narrow to large when moving from defense to offense phases
(Figure 5.9). This is also supported by statistical evidence in the three
examined case studies, where the median values of the surface areas are
found to lie in the range of m2 22-25 and 44-52, for defense and offense,
respectively.
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Figure 5.9 Examples of convex hulls of offense (top) and defense (bottom)
phases. Source: Metulini et al. (2017a).

Nevertheless, we cannot assume a strict matching between the sur-
face area and the game phase. Quite the opposite, we are just inter-
ested in the moments when the surface area is different from what we
would expect on the basis of the game phase, because the most intrigu-
ing game situations are hidden right there. In order to investigate this
issue, the authors needed a tool that is able to detect the switching of
surface areas from large to narrow (and vice versa) without referring to
the game phase. To do that, statistical models were borrowed from the
fairly different context of econometrics, where time series with structural
changes are often analyzed with regime-switching models. In that con-
text, regimes are defined as states involving different parameters for the
stochastic process under study, and they are often found to correspond
to specific economic situations (e.g., expansion or recession). Translating
the idea into basketball, the authors assumed that surface area dynamics
are characterized by different regimes involving different mean levels of
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the process. So, the time series of convex hull areas is fit with a Markov
Switching Model (MSM; see Hamilton, 2010), able to detect if a regime-
switching dynamic is present, and estimate the parameters of the process
in the different regimes and, for each observation time, the probability
of being in one regime or the other. Finally, the authors investigated the
relationship between the regime probabilities and the scored points by
means of Vector Auto Regressive (VAR; see Zha, 2010) models.

In all the tree case studies, the MSM detected a significant presence
of two regimes, characterized by average surface areas in the range of
about m2 21.7-24.7 and 55.7-63.3 for the regime with narrow and large
convex hulls, respectively. In addition, in all the cases, the regimes switch
very quickly from one to another (the average duration is 7-8 seconds),
which suggests that the two regimes do not perfectly match the offen-
sive and defensive game phases. The association between regimes and
game phases is quite strong, as suggested by the Cramer’s V index (see
Chapter 3, Section 3.1.1) ranging from 43.95% to 56.22% in the three
case studies, but not huge. This means that large (narrow) surface areas
occur even during defense (offense) and this could have an effect on the
team performance.

Before turning attention to the measurement of this effect, the paper
investigates whether the presence of a given player or lineup on the court
affects surface areas, separately for offense and defense phases. A set of
preliminary remarks can be drawn by observing the relative frequencies
of the two regimes when each player is on the court or on the bench. Just
by way of an example, in case study CS1 the relative frequency of the
regime with narrow surface area during offense is 0.303 when player p1
is on the bench. When the same player is on the court, the same relative
frequency decreases to 0.207, meaning that, on average, the team tends
to play more spread in offense when player p1 is on the court. Similar
considerations apply to the other players and the other case studies. The
authors introduce two functions, Φ(L)

D (t) and Φ(L)
O (t), obtained by means

of a kernel smoothing procedure applied to the probabilities of being
in the regime with large surface areas, separately for defense (subscript
D) and offense (subscript O) game phases. Plotting these functions with
superimposed gray areas corresponding to the presence on the court of
a specific lineup or player allows to inspect the regime’s patterns during
offense and defense crossed with the selected player or lineup.

In Figure 5.10 we may notice that the offensive play until the first
half of the second quarter (around minute 15) seems to be apprecia-
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Figure 5.10 Case study CS1: pattern of the functions Φ(L)
D (t) (blue) and

Φ(L)
O (t) (red) in time (in minutes, x-axis). For each player, gray areas

denote the moments when he was on the court. Source: Metulini et al.
(2018).

bly different from what follows, as the kernel smoothed probabilities
Φ(L)

O (t) of the regime with large surface areas are considerably lower in
the first 15 minutes than in the rest of the match. In addition, some-
thing happened in the offensive play around minute 30, as the func-
tion Φ(L)

O (t) clearly falls. Similar remarks can be done with reference to
defensive phases: a peak is evident in the function Φ(L)

D (t) in the mid-
dle of the match, around minute 20. These observed fluctuations can be
related to the presence of a specific player on the court by looking at
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the superimposed gray areas. These charts allow a deeper knowledge of
the surface area dynamics during the match and with reference to the
lineups and players. In addition, further relevant game variables (e.g.,
the implementation of playbooks, the coach’s judgments on the technical
performance during the match, etc.) could be added in order to inspect
their association with the surface area dynamics.

At this step, we need to assess whether the observed fluctuations of
the regime probabilities have a positive or negative impact on the overall
team performance. As mentioned above, to this aim, the authors pro-
pose the use of VAR, a class of statistical models used to capture the
linear interdependencies among multiple time series. In VAR models,
each variable has an equation explaining its evolution based on its own
lagged values, the lagged values of the other model variables, and an
error term. Also this class of models is traditionally applied in the field
of macroeconomic econometrics where, in turn, it has arrived, advocated
by Sims (1980), coming from system identification and control theory.
This completely justifies the translating of the VAR models into sports
analytics applications. In the examined case studies, bivariate VAR mod-
els were fitted to data, with variables given by the regime probabilities
and the points scored by the team (in the analysis of offensive phases) or
the opponent (in the analysis of defensive phases). While the evidences
found in the first part of the paper were basically common to all the
three analyzed case studies, the features emerging from this last inves-
tigation are match-specific, which appears to be reasonable because of
the different tactics decided by coaches or the different ways of playing
determined by the interaction of the two specific teams involved in the
match. In two case studies (CS1 and CS3) a significant positive influence
of a large surface area in offense on the points scored by the team was
detected. In CS2 the model revealed a negative correlation between the
points scored during one minute on the points scored in the following
one, probably due to a high reliance of the team on 3-point shots that
are more volatile than other kinds of shots. In CS1 and CS2, emerged a
weak negative effect of the points made by the opponent on the prob-
ability to be in the regime with narrow surface areas in defense, as if
a more efficient game of the opponent (in terms of scored points) had
forced the team to keep the defense spread.

The results presented in the examined paper could be used by bas-
ketball coaches and experts as they relate with tactics, specifically with
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the choice of game strategies, players and lineups. The main findings of
the presented case study can be summarized as follows:

• there are robust evidences of the presence of structural changes in
the average surface area;

• the presence of certain players or lineups is associated to different
probabilities to be in the two regimes;

• there exist some match-specific causal relationships between sur-
face areas and team performance, which have to be interpreted
with reference to the specific characteristics of each match.

GLOSSARY

Black box: In general, the term black box is used to denote a device or
a system which is only evaluated in terms of its inputs and outputs,
without any knowledge of its internal working. In Data Science, it is
usually referred to the data generating process that is being emulated
by a statistical model or the hidden mechanism of some machine
learning algorithms, such as neural networks or ensemble learning
procedures, that make predictions without returning, as a result,
the explicit functional form used to compute them.

Coefficient of determination: In statistical modeling, the coefficient
of determination, usually denoted as R2, is the proportion of the vari-
ance in the dependent variable that is explained by a given model
based on a set of independent variables and provides a measure of
how well that model is able to predict the outcome given the explana-
tory variable values. Roughly speaking, it may also be considered as
a measure of the prediction improvement given by the model with
respect to the poorest predictor, the simple arithmetic average of
Y . In linear regression, when parameters are estimated via ordinary
least squares, it can be easily proven that the coefficient of determi-
nation ranges from 0 to 1, with higher values meaning a better fit. In
the case of only one explanatory variable (simple linear regression),
the coefficient of determination is equal to the squared Pearson’s lin-
ear correlation coefficient. In other cases, such as, for example, when
linear regression is performed without including an intercept, when
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the model implies fitting nonlinear functions to data, with nonpara-
metric models and with many models from the Algorithmic Modeling
Culture, R2 can yield negative values. When it is the case, the simple
arithmetic average ȳ is a better predictor than the model.

Data generating process: A data generating process (dgp) is the hid-
den set of rules, usually complex and inscrutable, governing the way
phenomena occur, with a focus on their observable and measurable
expressions (data) and, specifically, on the mechanism according to
which a specific outcome Y derives from the joint effect of a num-
ber of covariates X1, X2 . . . , Xh. In statistics the dgp is assumed to
involve both a systematic and a random component, according to a
nondeterministic approach to the functioning of Nature.

Overfitting: The term overfitting (or overtraining) describes the par-
ticular situation of a prediction model whose output corresponds too
closely to the data used to build the model itself, and may therefore
fail to fit additional observations or predict future values reliably.
The essence of overfitting is to have modeled the noise as if it was
part of the data generating process. In general, this can occur when
the model contains more parameters than can be justified by the
data (as an extreme example, think to the case when there are as
many parameters as the sample size) and/or it has such a complex
structure to be able to follow very closely even little variations in
data. The risk of overfitting is particularly high with models from
the Algorithmic Modeling Culture, i.e., in the context of machine
learning. In order to avoid overfitting, the model selection should be
done by measuring goodness of fit on a set of different data with
respect to those used for building the model itself. See Sarle (1996),
Sollich and Krogh (1996) and Hawkins (2004) for further discussion.

Smoothing: To smooth a data set means defining an approximating
function aimed at capturing important patterns in the data, while
leaving out noise or other fine-scale effects. In general, smoothing is
used to provide analyses that are both flexible and robust, as usually
it requires neither strong distributional assumptions for data, nor a
priori hypotheses about an explicit function form for the relation-
ships between outcome and predictors. Many different algorithms are
used in smoothing, the most popular classes being kernel smoothing,
k-nearest neighbor estimates and spline smoothing (Härdle, 1990;
Hollander and Wolfe, 1999). From the absence of any functional
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assumption, it follows that the immediate result from smoothing are
the smoothed values, i.e., the expected values for Y corresponding
to the explanatory variables’ values used for smoothing, which can
serve to plot the so-called smoothing curve. Even in the case when
the smoothing procedure itself implicitly arranges some functional
form, it cannot be used later for prediction when the explanatory
variables’ values are outside the range of the observed values used
for smoothing. The smoothing procedure often depends on a tuning
parameter, called smoothing parameter or bandwidth in the con-
text of kernel smoothing, used to control the degree of smoothing,
in the sense that they allow to obtain a more or less regular smooth-
ing curve.
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C H A P T E R 6

The R Package
BasketballAnalyzeR

Marco Sandri
BODaI-Lab (Big & Open Data Innovation Laboratory),
University of Brescia

6.1 INTRODUCTION
BasketballAnalyzeR is an open-source package for the statistical lan-
guage R, designed for the analysis and visualization of basketball data.
The package takes advantage of the powerful graphical abilities added
to R by the ggplot2 package and allows to produce publication-quality
graphics with minimal effort (Murrell, 2016; Wickham, 2016).

The aim of BasketballAnalyzeR is twofold:

• Simplicity. Building some of the advanced graphs presented in
this book can be a difficult task for a novice R user, because it
requires a good understanding of the ggplot2 philosophy and syn-
tax and of other packages that extend ggplot2 graphics capabil-
ities (for example, ggnetwork, ggrepel, GGally). The functions
implemented in our package have been designed to minimize the
effort required to the user in performing the statistical analysis and
the graphical visualizations proposed in the book. The only real
difficulty that must be faced by the reader is formatting the input
dataset(s) according to the structure required by the functions in
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the package. To this purpose, in the next section, we illustrate
with an example how to transform publicly available datasets into
a format suitable to be inputted into the function of our package.

• Flexibility. For each function of our package, we implemented a
set of options that allow partial customization of the analysis
according to the user’s requirements. Many of these options can be
ignored by the standard user who needs only to replicate the anal-
ysis presented in the book. Only more advanced users can take
advantage of these additional settings. In addition, all the plot-
ting commands available in our package return a ggplot graphical
object (or a list of ggplot objects). An experienced user can subse-
quently customize several characteristics of these objects: modify
legend, plot background and border, major and minor grids, axis
text and ticks, and more. Points, lines, text, labels, annotations,
and images can also be added to the original plot and two or more
graphical objects can be arranged into a grid drawing multiple
plots on a single page.

The package must be first installed following the instructions avail-
able at

https://bdsports.unibs.it/basketballanalyzer/

This webpage, specifically devoted to the package and addressed to the
readers of this book, is continuously updated. It has to be considered a
reference point by all the users of BasketballAnalyzeR, who can find
codes, news about the package, possible updates, discussions about data
preparation and contact information for any question they may want to
ask the developers.

The command library(help="BasketballAnalyzeR") shows basic
information and a list of functions and datasets available with the
package. The help() function and ? help operator provide access
to the documentation pages. For example, help("plot.assistnet")
and ?plot.assistnet show the help page of the plot command
for the assistnet objects. Help pages for functions include a sec-
tion with executable examples illustrating how the functions work.
These examples can be executed via the example() command; e.g.,
example("plot.assistnet").

The next sections describe how to prepare data (Section 6.2), cus-
tomize plots (Section 6.3) and build interactive graphics (Section 6.4).

https://bdsports.unibs.it/
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All the analyses involving data or other information downloadable from
websites refer to versions retrieved on 31st March 2019.

6.2 PREPARING DATA
The aim of this section is to show, to readers with only a basic knowl-
edge of the R language, how BasketballAnalyzeR can be used for the
statistical analysis of their dataset(s). The easiest and safest way for a
correct replication on an arbitrary dataset of the analyses considered in
this book is to build a data frame with the same structure of the Tbox,
Obox, Pbox, Tadd and PbP datasets (same variables with the same names
and same characteristics), introduced in Chapter 2, Section 2.1.

To illustrate how datasets can be manipulated for working with
BasketballAnalyzeR, we consider the NBA Enhanced Box Score and
Standings (2012 - 2018) datasets available on the Kaggle online commu-
nity of data scientists (https://www.kaggle.com/pablote/nba-enhanced-
stats). Many excellent packages for data manipulation are available in
R. Here we develop our example using dplyr, a popular package which
is part of the so-called tidyverse, a collection of R packages designed for
data science that share a common underlying design philosophy, gram-
mar, and data structures (Wickham and Grolemund, 2016). With dplyr,
it is possible to perform efficiently complex data manipulation writing
elegant and straightforward code. This package is organized around five
verbs that cover the majority of the most frequently required data manip-
ulations: select certain columns of data, filter data to select specific rows,
arrange the rows of the data matrix into an order, mutate data frame
to contain new columns, and summarise chunks of data in some way.
In addition, dplyr uses the pipe operator %>% of the magrittr package.
Piping considerably improves the readability of the code and represents
a powerful tool for clearly expressing a sequence of multiple operations
(Baumer et al., 2017).

The 2012-18_teamBoxScore.csv file contains box scores data for
each of the 82 games played by the 30 NBA teams in the championships
from season 2012/2013 to 2017/2018. Each game is recorded in two rows
of the dataset, for the home and the away team, respectively. The total
number of rows in the dataset is 6 · 30 · 82 − 2 = 14760 − 2 = 14758 (1
game of the 2012-2013 season is missing). Starting from this dataset, we
can generate two datasets that have the same information and structure
of Tbox and Obox. The first step is to read data with read.csv and to
generate a variable season indicating the NBA season.

https://www.kaggle.com/
https://www.kaggle.com/
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> dts <- read.csv(file="2012-18_teamBoxScore.csv")
> dts$gmDate <- as.Date(as.character(dts$gmDate))
> year <- as.numeric(format(dts$gmDate,"%Y"))
> month <- as.numeric(format(dts$gmDate,"%m"))
> dts$season <- ifelse(month<5, paste0(year-1,"-",year),

paste0(year,"-",year+1))

Then, for each group defined by season and team (group_by func-
tion), we calculate (with summarise) the 22 variables of the Tbox
dataset which, for the most part, are simple sums of columns in
2012-18_teamBoxScore.csv. The code for this data manipulation is
simple and intuitive

> library(dplyr)
> Tbox2 <- dts %>%
> group_by(season, teamAbbr) %>%
> summarise(GP=n(), MIN=sum(round(teamMin/5)),

PTS=sum(teamPTS),
W=sum(teamRslt=="Win"), L=sum(teamRslt=="Loss"),
P2M=sum(team2PM), P2A=sum(team2PA), P2p=P2M/P2A,
P3M=sum(team3PM), P3A=sum(team3PA), P3p=P3M/P3A,
FTM=sum(teamFTM), FTA=sum(teamFTA), FTp=FTM/FTA,
OREB=sum(teamORB), DREB=sum(teamDRB), AST=sum(teamAST),
TOV=sum(teamTO), STL=sum(teamSTL), BLK=sum(teamBLK),
PF=sum(teamPF), PM=sum(teamPTS-opptPTS)) %>%

> rename(Season=season, Team=teamAbbr) %>%
> as.data.frame()

Similarly, we can generate Obox using

> Obox2 <- dts %>%
> group_by(season, teamAbbr) %>%
> summarise(GP=n(), MIN=sum(round(opptMin/5)),

PTS=sum(opptPTS),
W=sum(opptRslt=="Win"), L=sum(opptRslt=="Loss"),
P2M=sum(oppt2PM), P2A=sum(oppt2PA), P2p=100*P2M/P2A,
P3M=sum(oppt3PM), P3A=sum(oppt3PA), P3p=100*P3M/P3A,
FTM=sum(opptFTM), FTA=sum(opptFTA), FTp=100*FTM/FTA,
OREB=sum(opptORB), DREB=sum(opptDRB), AST=sum(opptAST),
TOV=sum(opptTO), STL=sum(opptSTL), BLK=sum(opptBLK),
PF=sum(opptPF), PM=sum(teamPTS-opptPTS)) %>%
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> rename(Season=season, Team=teamAbbr) %>%
> as.data.frame()

The construction of a dataset similar to Pbox requires a different dataset.
Game data for each player are available in 2012-18_playerBoxScore.csv.
Using this dataset, and with minor modifications to the code developed
for Tbox and Obox, we can generate the required data frame
> dts <- read.csv(file="2012-18_playerBoxScore.csv",

encoding="UTF-8")
> dts$gmDate <- as.Date(as.character(dts$gmDate))
> year <- as.numeric(format(dts$gmDate,"%Y"))
> month <- as.numeric(format(dts$gmDate,"%m"))
> dts$season <- ifelse(month<5, paste0(year-1,"-",year),

paste0(year,"-",year+1))
> Pbox2 <- dts %>%
> group_by(season, teamAbbr, playDispNm) %>%
> summarise(GP=n(), MIN=sum(playMin), PTS=sum(playPTS),

P2M=sum(play2PM), P2A=sum(play2PA), P2p=100*P2M/P2A,
P3M=sum(play3PM), P3A=sum(play3PA), P3p=100*P3M/P3A,
FTM=sum(playFTM), FTA=sum(playFTA), FTp=100*FTM/FTA,
OREB=sum(playORB), DREB=sum(playDRB), AST=sum(playAST),
TOV=sum(playTO), STL=sum(playSTL), BLK=sum(playBLK),
PF=sum(playPF)) %>%

> rename(Season=season, Team=teamAbbr,
Player=playDispNm) %>%

> as.data.frame()

It is worth noting that here the groups defined with group_by are the
single players, differentiated by team and season. In addition, we do not
have information about the plus-minus statistics, so the corresponding
variable cannot be created in the data frame. On the other hand, we have
some additional information such as the players’ role and height/weight,
which may be added to the Pbox data frame and used for further analyses
with the BasketballAnalyzeR functions.

6.3 CUSTOMIZING PLOTS
The plots created by BasketballAnalyzeR are objects generated using
the ggplot2 package, an R package which implements, extends and
refines the ideas described in the work of Bertin (1983) and in the “Gram-
mar of Graphics” of Wilkinson (2012). The ggplot2 package represents
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a valuable alternative to the standard R graphics. An introduction to
the ggplot2 grammar is presented in Wickham (2010). From a practi-
cal point of view, one important and distinctive feature of this package
is the possibility to store a plot in a ggplot object for modification
or future recall. In the following, we will examine some examples (the
BasketballAnalyzeR library has to be preliminarily loaded). Let’s start
by considering the following example

> Pbox.sel <- subset(Pbox, MIN>=500)
> attach(Pbox.sel)
> X <- data.frame(AST, TOV, PTSpm=PTS)/MIN
> detach(Pbox.sel)
> mypal <- colorRampPalette(c("blue","yellow","red"))
> p1 <- scatterplot(X, data.var=c("AST","TOV"),

z.var="PTSpm", palette=mypal)
> print(p1)
> class(p1)

Object p1 is of class ggplot and can be manipulated in different ways
to get a customized plot. First, we can add a title plot and change
axes labels (using labs), change x-axis range and set x-axis ticks
(scale_x_continuous with limits and breaks options, respectively),
set panel background color and panel border color (panel.background
inside theme), and remove color legend (using guides)

> p2 <- p1 +
labs(title="Scatter plot", x="Assists",

y="Turnovers") +
scale_x_continuous(breaks=seq(0,0.35,0.05),

limits=c(0,0.35)) +
theme(panel.background=element_rect(fill="#FFCCCC20",

colour="red", size=3)) +
guides(color=FALSE)

> print(p2)

It is possible to annotate a plot created with ggplot by adding straight
lines, arrows, rectangles and text. With the code reported below, we add
an arrow (geom_segment with the arrow option) and text (annotate)
at a specific position in the p1 plot

> p3 <- p1 +
geom_segment(x=0.225, y=0.025, xend=X$AST[143]+0.005,
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yend=X$TOV[143]-0.001, size=1,
color="red",
arrow=arrow(length=unit(0.25, "cm"),
type="closed", angle=20)) +

annotate("text", x=0.225, y=0.025,
label=Pbox.sel[143,"Player"],
color="red", fontface=2, hjust=0)

> print(p3)

To add a colored background rectangle to the plot, one can use
geom_rect

> p3 + geom_rect(xmin=0.2, ymin=0.075,
xmax=Inf, ymax=Inf,
fill="#DDDDDDAA", color=NA)

Using this syntax, the gray rectangle hides the existing points, even if we
use a color with transparency. This is due to the fact that the rectangle
is at the top layer of the plot. We need to first draw the rectangle and
then the points of the scatterplots. This solution can be implemented by
placing the gray rectangle at the bottom layer, as follows

> p3$layers <- c(geom_rect(xmin=0.2, ymin=0.075,
xmax=Inf, ymax=Inf,
fill="#DDDDDDAA", color=NA),

p3$layers)
> print(p3)

We can also easily add an image to our plot. In the example
that follows, based on grid and jpeg packages (R Development Core
Team, 2008; Urbanek, 2014), we download the NBA logo (in jpeg
format) and add it in the left upper area of the original plot using
annotation_custom

> library(grid)
> library(jpeg)
> URL <- "https://goo.gl/WGk6J1"
> download.file(URL,"NBAlogo.jpg", mode="wb")
> NBAlogo <- readJPEG("NBAlogo.jpg", native=TRUE)
> grb <- rasterGrob(NBAlogo, interpolate=TRUE)
> p4 <- p2 +

annotation_custom(grb, xmin=0.025, xmax=0.05,

https://goo.gl/
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ymin=0.1, ymax=0.15) +
guides(color=FALSE)

> print(p4)

Note that https://goo.gl/WGk6J1 is the shortened URL to the link
https://cdn.nba.net/nba-drupal-prod/styles/landscape/s3/2017-07/
NBA%20Primary%20Logo.jpg.

Another interesting customization available with ggplot objects is
the possibility to arrange two or more plots on the same page. For exam-
ple, it is possible to embed one chart within another chart (using the
cowplot library, Wilke, 2019)

> library(cowplot)
> ggdraw() +

draw_plot(p1) +
draw_plot(p2, x=0.55, y=0.06, width=0.3, height=0.325)

where 0.55 and 0.06 are the x and y locations of the lower left corner
of the p3 plot; 0.3 and 0.325 are the width and height of the p3 plot.
Another way to plot multiple charts on the same page is to organize
the plots on a grid using grid.arrange (in the gridExtra package)
or plot_grid (in the cowplot package). Throughout the present book,
multiple plots were combined together using grid.arrange. Below we
consider an example that shows how plot_grid works

> plot_grid(p1, NULL, p2, p4, nrow=2,
labels = c("A","","B","C"))

Here the three plots are arranged on a 2-by-2 grid; the plot placed on
the first row and second column of the grid is set to NULL because we
want an empty space in this area. The three plots can also be combined
in a more complex way; p1 occupies the whole first row, p2 and p3 the
second row. In this case, we can specify locations and different sizes using
draw_plot, as follows

> ggdraw() +
draw_plot(p3, x=0, y=0.5, width=1, height=0.5) +
draw_plot(p2, x=0, y=0, width=0.5, height=0.5) +
draw_plot(p4, x=0.5, y=0, width=0.5, height=0.5)

Some elements of ggplot objects are more difficult to modify, and their
customization requires a deeper knowledge about how ggplot2 works
and about the structure of its objects. In the example below, we show
how one can change the point shape and size in the p1 scatter plot

https://goo.gl/
https://cdn.nba.net/
https://cdn.nba.net/
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> q1 <- ggplot_build(p1)
> q1$data[[1]]$shape <- 17
> q1$data[[1]]$size <- 3
> p1b <- ggplot_gtable(q1)
> plot(p1b)

The ggplot_build function outputs a list of data frames (one for each
layer of the ggplot object), and a panel object (which contain all infor-
mation about axis limits, breaks, etc.). In the p1 scatter plot, there is
only one layer and the corresponding data frame in q1 contains infor-
mation on x and y coordinates of points, their shape, size, border and
fill colors, transparency, etc.

> str(q1$data[[1]])
`data.frame': 361 obs. of 10 variables:
$ colour: chr "#E1E11D" "#FFAA00" "#DFDF1F" "#C7C737"...
$ x : num 0.0869 0.2007 0.1274 0.0549 0.0584 ...
$ y : num 0.0775 0.0881 0.0878 0.0588 0.0558 ...
$ PANEL : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...
$ group : int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
$ shape : num 17 17 17 17 17 17 17 17 17 17 ...
$ size : num 3 3 3 3 3 3 3 3 3 3 ...
$ fill : logi NA NA NA NA NA NA ...
$ alpha : logi NA NA NA NA NA NA ...
$ stroke: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5...

The ggplot_gtable function rebuilds all grobs (graphical objects) nec-
essary for displaying the plot.

An interesting package for interactively editing ggplot2 objects is
ggedit which, in the author’s words, “is a package that helps users bridge
the gap between making a plot and getting all of those pesky plot aesthetics
just right, all while keeping everything portable for further research and
collaboration” (Sidi, 2018). ggedit can be run from an R console or as
a reactive object in any shiny application (Chang et al., 2018).

6.4 BUILDING INTERACTIVE GRAPHICS
The R base graphics engine and the ggplot2 package generate static
visualizations of data. A fixed image is required when publishing to a
static medium like paper, and can be appropriate when alternate views
are not needed. Representing multidimensional data with static images



194 ■ Basketball Data Science

is difficult and often requires to describe a variety of perspectives on
the same chart. A significant improvement in computer technology was
enabling users to interact with computer displays. A statistical graphic
that is either dynamic which means it is capable of smooth motion, or
interactive which means it is capable of reaction to the user’s action,
provides a more natural and more effective way to understand data than
that provided by an ordinary static and noninteractive graphic (Young
et al., 2011).

plotly is a powerful R graphing library for building interactive and
dynamic visualizations (Sievert, 2018; Sievert et al., 2017). There are
two main ways to build a plotly object in R. The plot_ly() function
transforms data into a plotly object, while the ggplotly() function
transforms a ggplot object into a plotly object. When a plotly object
is created, printing it results in an interactive web-based visualization
with tooltips, zooming, and panning enabled by default. The R package
also has special semantics for arranging, linking, and animating plotly
objects.

The code below shows how to generate an interactive scatter plot
with colored points (the BasketballAnalyzeR library has to be prelim-
inarily loaded)

> library(plotly)
> Pbox.sel <- subset(Pbox, MIN>=500)
> attach(Pbox.sel)
> X <- data.frame(AST,TOV, PTSpm=PTS)/MIN
> detach(Pbox.sel)
> mypal <- colorRampPalette(c("blue","yellow","red"))
> p5 <- scatterplot(X, data.var=c("AST","TOV"),

z.var="PTSpm", palette=mypal)
> ggplotly(p5, tooltip="text")

The ggplotly command also works for more complex plots, like a
matrix of scatter plots

> data <- Pbox[1:64, c("PTS","P3M","P2M","OREB","Team")]
> p6 <- scatterplot(data, data.var=1:4, z.var="Team")
> ggplotly(p6)

It is worth mentioning that the conversion performed by ggplotly
from a ggplot static plot to a plotly interactive graphic is often
not perfect and some things might not look exactly the way
ggplot2 does. In addition, sometimes the default interactive properties
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(e.g., tooltips) might not work the way one wants them to or might
take a while to render. Some of these issues can be fixed with
a bit of knowledge about plotly and the underlying plotly.js
library. A good tutorial about how to improve ggplotly conver-
sions is available here: https://moderndata.plot.ly/learning-from-and-
improving-upon-ggplotly-conversions/.

6.5 OTHER R RESOURCES
Several R packages and codes for basketball have been developed in the
last years.
Some of these projects are devoted to scraping basketball data from
sports websites. For example:

• ballr (by Ryan Elmore and Peter DeWitt), an R package that
provides simple functions for accessing data and tables available
on http://www.basketball-reference.com
https://CRAN.R-project.org/package=ballr

• bbr (by Max Joseph), an R package to scrape data from basketball-
reference.com
https://github.com/mbjoseph/bbr

• nbaTools (by Chirag Agrawal), an R package for scraping NBA
related data from NBA.com
https://github.com/ccagrawal/nbaTools

• ncaahoopR (by Luke Benz), an R package for working with NCAA
Basketball Play-by-Play Data
https://github.com/lbenz730/ncaahoopR

Other packages offer R wrapper functions for downloading data from
commercial websites using application program interface (API):

• NBAloveR (by Koki Ando), an interface to the online basketball
data resources such as Basketball reference API https://www.
basketball-reference.com/ and helps R users analyze basketball
data
https://cran.r-project.org/web/packages/NBAloveR/index.html

• NBAr (by Patrick Chodowski), a set of wrapper functions for down-
loading and simple processing of data from http://stats.nba.com
API
https://github.com/PatrickChodowski/NBAr

http://www.basketball-reference.com
https://www.basketball-reference.com/
https://www.basketball-reference.com/
https://moderndata.plot.ly/
https://CRAN.R-project.org/
https://github.com/
https://github.com/
https://github.com/
https://cran.r-project.org/
http://stats.nba.com
https://github.com/
http://basketballreference.com
http://basketballreference.com
http://NBA.com
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• mysportsfeedsR (by @MySportsFeeds), an R wrapper functions
for the MySportsFeeds Sports Data API
https://www.mysportsfeeds.com
https://github.com/MySportsFeeds/mysportsfeeds-r

• stattleshipR (by @stattleship), Stattleship R Wrapper
https://api.stattleship.com/
https://github.com/stattleship/stattleship-r

In addition, a few packages are designed to provide tools for basket-
ball data analysis and visualization. Two interesting examples are:

• BallR (by Todd W. Schneider), Interactive NBA and NCAA Shot
Charts with R and Shiny
https://github.com/toddwschneider/ballr

• NBA_SportVu (by Rajiv Shah), R code for exploring the NBA
SportVu motion data
https://github.com/rajshah4/NBA_SportVu

Many of these resources are available on github.com. A partial list
can be retrieved at this link:
https://github.com/search?q=%22basketball%22+%5BR%5D&type=Repositories

https://www.mysportsfeeds.com
https://github.com/
https://api.stattleship.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
http://github.com
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