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Introduction

Gabriele Lolli, Marco Panza, and Giorgio Venturi

Integrating Logical, Historical and Philosophical Concerns

When, in the far away 70s of the twentieth century, Reuben Hersh urged for a
revival of the philosophy of mathematics (Hersh 1979), two distinct but for many
reasons converging lines of research predominated in the discipline. On the one side,
attention focused on foundational issues, still connected to the logicism-formalism-
intuitionism debate of the first part of the century. On the other side, Benacerraf’s
papers (Benacerraf 1965, 1973) had, among others, succeeded in grafting onto these
issues a growing interest for a fresh version of traditional metaphysical questions
concerning mathematical ontology and epistemology. In the following years, the
latter line has largely prevailed on the former, which has progressively lost its
centrality, or migrated toward logic, conceived as a related, but largely independent
discipline. Still, Hersh’s plea did not remain unheard.

A number of different studies, like Wilder’s address to the 1950 International
Congress of Mathematicians devoted to “The Cultural Basis of Mathematics”
(Wilder 1950) or Polya’s investigation of the heuristics of mathematics (Polya
1945, 1954, 1962), had preceded Lakatos’s influential claims of mathematical
fallibilism, quasi-empiricism, and dialectical development (Lakatos 1976, 1978).
Though essentially polemical in nature, and addressed against a caricature of
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vi Introduction

formalism that was unrepresented by anyone in the active philosophical arena,
these statements highly contributed to emphasize the importance of a philosophical
inquiry investigating mathematicians’ real work conceived as a collective enterprise,
the historical development of mathematics, and the process of mathematical discov-
ery and construction.

Lakatos’s guidelines were not followed, in fact. His anti-formalism remained
more a polemical slogan than a full-blown philosophical option. His reconstruction
of mathematical methodology and forms of progress stayed largely short of any
requirement both of a faithful historical analysis and of a fruitful philosophical
perspective. His fallibilism and quasi-empiricism resulted in a quite futile negation
both of the axiomatic structure of most mathematical theories and of the essential
stability of mathematical achievements. His legacy contributed, however, together
with other works that came after Hersh’s plea, like Wilder’s 1981 and Kitcher’s 1984
books (Wilder 1981; Kitcher 1984), to set the stage for a philosophical reflection on
mathematical practice, focusing on themes that had been underestimated both in
the discussion on mathematical ontology and epistemology following Benacerraf’s
pivotal papers and in the technical development of logic (notwithstanding the
proliferation of logical systems).

Tackling many of these themes still required resorting to logical and metamath-
ematical tools, certainly indispensable for dealing both with abstract languages
and with computational implementation. Others asked for significant historical
researches or for the help of cognitive sciences and experimental psychology.

For example, historical research, aided by mathematical and logical skills, is
needed for sustaining naturalistic approaches, such as Maddy’s. The idea is that
a philosopher of mathematics should “ask questions typically classified as philo-
sophical” (both ontological and epistemological in nature) not “from some special
vantage point outside of [. . . ][mathematics itself], but as an active participant,
entirely from within” (Maddy 2011, p. 39), and then answer these questions
by giving (philosophical) voice to the autonomous methodological decisions of
mathematicians. Another brand of naturalism considers, instead, that all that one has
do in order to account for mathematics is to look at the cognitive competences and
performances displayed in mathematical knowledge, by revealing their being rooted
in or even their consisting in, cerebral mechanisms that experimental psychology or
cognitive science are to shed light on (Dehaene 1997; Lakoff and Núñez 2000).

It is not necessary, however, to adhere to these forms of naturalism in order
to advocate the interest of historical and cognitive inquiries for philosophy of
mathematics. It is enough to accept that the latter is, or should be, a study of what
mathematics actually is, that is, a human activity taking place in specific determinate
circumstances and giving rise to general, abstract results only insofar as generality
and abstraction are an outcome of such an activity.

If this is admitted, it becomes quite evident that philosophy of mathematics is
concerned with an ever-changing subject matter. Today mathematics, understood
as the activity of contemporary mathematicians, is, for example, much more
strongly dependent on computational methods and algorithms (often involved in
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specific applications) or, at least, less pervasively going into axiomatic theories
and structures than it was only some decades ago. The use of computers has
brought forth, indeed, unpredictable consequences not only in the power of solving
problems by tackling them from a computational or, more generally, combinatorial
perspective but also in the business of proofs. This requires a fresh reflection on
today’s mathematical practice and on the role that new computational (and computer
assisted) techniques play in it, especially on the very nature of these techniques and
on the way their growing importance is changing the mathematical landscape. At the
end of the 1970s, the computer-assisted proof of the Four-Color Theorem prompted
a lively discussion, calling in questioning the a priori nature of mathematical proofs
(Tymoczko 1979). The phenomenon is today so extensive as to require much more
than the discussion of a single example. It is, perhaps, the very way mathematics is
to be conceived that comes to be at issue, here: is it still appropriate to claim that
mathematics is not, in essence, an experimental science? Or, more cautiously, how
to reconcile the different parts of its multifaceted core?

A large and plural horizon of topics and approaches came thus to the fore.
In 2008, Mancosu’s collective volume The Philosophy of Mathematical Practice
(Mancosu 2008) offered a comprehensive survey and a programmatic orientation
for these sorts of researches, and the subsequent birth of an Association for
the Philosophy of Mathematical Practice (http://institucional.us.es/apmp/) further
contributed to foster them, though avoiding to contrast them with other approaches,
still connected to metaphysical or foundational issues. It seems, indeed, to be a
hopeful outcome of these researches that new approach to this issue could be thought
of, according to which what they promote is less an inquiry about the ultimate
grounds of mathematics, or about the existence of abstract objects, or the possibility
of dispensing with them, both in mathematics itself and in its external applications,
than a questioning about the way mathematics is structured and mathematical
activity is carried on.

Even though the foundations of mathematics and the status of mathematical
objects, if there are any, are still important subjects in the philosophical reflection
on modern mathematics, it is, then, time for such a reflection to take seriously
into account the actual activity of mathematicians and, consequently, the historical
dimension of mathematics itself, as it results from this activity (which is properly a
human activity taking place in historically determined contexts). This is not the same
as rejecting logic as a privileged tool and background for conducting this reflection
nor denying that mathematics is presenting crucial metaphysical problems. It is
rather a way for using logical methods and techniques and metaphysical analysis
to contribute to the obtaining of a more articulated and vivid picture of this activity.

As argued by Mancosu, in the introduction to the collective volume mentioned
above, the philosophy of mathematics is in need of a more comprehensive perspec-
tive, appealing to different tools and methods. What is at issue, however, is not
only the range of topics to be taken into account. It is also, and above all, perhaps,
the nature of the mutual relations between philosophy and mathematics that is to be

http://institucional.us.es/apmp/


viii Introduction

reassessed. That’s because what makes philosophy of mathematical practice original
is the kind of problems that belong to its agenda.

There are, indeed, genuinely philosophical problems that arise in the day-to-day
work of mathematicians or appear when the history of mathematics is submitted
to a critical look: problems that, though intimately connected with present or past
mathematical activity, can be solved or appropriately stated neither through a purely
mathematical treatment nor by a mere historical enquiry. Consider, for example,
questions related to the purity of methods or questions about the philosophical
meaning of well-established, epochal mathematical results.

On the other hand, there are mathematical questions that, though playing an
internal role in the development of a certain field (or of mathematics in general), ask
for a global and historically informed approach. Consider, for example, questions
related to the extension of an axiomatic system—i.e., the justification of new
axioms—or methodological problems that arise in considering “natural” solutions
to a problem.

This is the theoretical framework of the present volume. Since it is within this
framework, or better to reflect on it and to promote this way of conceiving the philos-
ophy of mathematics, that two of us, Gabriele Lolli and Giorgio Venturi, organized
the meeting Filosofia della matematica: dalla logica alla pratica [Philosophy of
Mathematics; from Logic to Mathematical Practice], held at the Scuola Normale
Superiore of Pisa, on 24–26 September 2012. The essays collected in the present
volume constitute the original work of some of the scholars who took part in the
conference.

One purpose was and is that of gathering together young Italian scholars in
philosophy of mathematics, many of whom are working abroad. This is the reason of
the common geographical origin of the authors. Two senior scholars, Paolo Mancosu
and Marco Panza, also coming from Italy, but respectively working in USA and
France, were also invited to the meeting as speakers. Both of them have been pleased
to contribute to the volume, and the latter joined the organizers of the meeting as an
editor of this volume.

Another purpose was and is that of making different analytical and conceptual
tools—logical, historical, and practical in nature—interact, and to show the extent to
which they are complementary in offering a philosophical account of mathematics.

The meeting has shown how active and well rooted within the international
community is the youngest part of the Italian scientific community of the philosophy
of mathematics. The occasion has been such an interesting opportunity to exchange
different points of view and experiences as to lead to the creation of an Italian Net-
work for the Philosophy of Mathematics (FilMat Network: http://filmat-network.
com/) that is now active in promoting meetings and debates inside the Italian
scientific community, strengthening its connections with the international one.

As one can see, already from the table of contents, the book deals with a wide
variety of subjects and themes. Some of the papers have been coauthored by a
philosopher and a mathematician or logician, and almost a third of the authors are
professional mathematicians.

http://filmat-network.com/
http://filmat-network.com/
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All papers share a fresh look at the philosophy of mathematics and take into
account its recent developments, in agreement to an interdisciplinary attitude toward
history, logic, and philosophy, and aim, in the very end, to promote a better
understanding of the meaning and scope of a philosophy of mathematical practice.
Still, though all are informed by such a spirit, they can be roughly divided in three
groups, according to their main purpose and topic. Those in the first group mainly
focus on the historical dimension of mathematics. Those in the second make a
deeper and more detailed use of logical tools or even reflect on these tools and
their capacity of contributing to a better understanding of mathematical activity.
Finally, those in the third group are more concerned with questions that are typically
ascribed to philosophy and its tradition.

The Historical Dimension of Mathematics

The papers composing the first part of the volume show how a philosophical
reflection can arise when the history of mathematics is taken into proper account
while investigating the way mathematics is structured (in the descriptions included
in the present and in the two next sections, we avoid bibliographical references,
since they are provided in each of the papers).

The paper by Pietro Milici, “A geometrical constructive approach to infinitesimal
analysis: epistemological potential and boundaries of tractional motion,” concerns
the foundations of infinitesimal analysis. Recent approaches to this topic are
essentially algebraic or computational, whereas the origins of infinitesimal analysis
were essentially geometrical (though related to a reflection on the role of some
algorithms in geometry), and the justification of its methods and results pertained
to geometrical grounds. In some cases, as in that of the “inverse tangent problem,”
mechanical or better instrumental considerations were also at issue. The solutions
to this problem involved certain machines, which could construct transcendental
curves by appealing to “tractional motion.” The main idea of Milici’s paper is to
come back to this idea from a modern mathematical perspective. Tractional motion
is implemented as the motion of a tracing point of some ideal instruments which
are formally defined and constitute the basis of a purely geometrical and finitistic
axiomatic foundation for a class of differential problems. Although this research
requires further development, the role of these instruments in the foundation of both
computation and mathematics is deeply rooted in the history of mathematics. Think
of the early-modern reinterpretation of Euclid’s arguments as based on constructions
by ruler and compass or of Descartes’s extension of them, relying on a class of
special “compasses,” or, again, much more recently, of the Turing machine. Milici’s
paper reappraises this tradition, by suggesting, in the meantime, a new way of
looking at the integral calculus.

The paper by Paolo Mancosu and Andrew Arana, “Plane and solid geometry: a
note on purity of methods,” deals with a methodological principle which is often
at work in mathematics. Spelling out this principle would require defining purity,
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but this is far from simple. On a first approximation, one might say that a proof
of a theorem in mathematics is pure if the conceptual tools used in the proof are
already involved in the content of the theorem itself. So (broadly) conceived, this
notion has played an important role in the history of mathematics—consider, for
instance, the elimination of geometrical intuition from the development of analysis
in the nineteenth century—and, in a way, it underlies all the investigations pertaining
to conservativeness, in contemporary proof theory. A clear example of how much
purity is cherished in mathematical practice is offered by the fact that Erdös and
Selberg were awarded the Fields Medal for their elementary proof of the prime
number theorem, which had already been demonstrated with analytical tools in
the late nineteenth century. But why do mathematicians cherish purity? What is
epistemologically to be gained by proofs that exclude appeal to “ideal” elements?
In this note (which is based on a much longer article published in The Review of
Symbolic Logic), Mancosu and Arana discuss an important case of essential use
of three-dimensional geometry in proving results about planar geometry, namely,
Desargues’ plane theorem on homological triangles in projective geometry, with the
aim of articulating what notion of mathematical content might best be suited for an
analysis of ascriptions of purity in mathematical practice.

In “Formalization and intuition in Husserl’s Raumbuch,” Edoardo Caracciolo
peruses Husserl’s work on geometry that should have led to a treatment of Euclidean
geometry, in the planned but unpublished second volume of the Philosophie der
Arithmetik. Husserl started outlining a formal method that should have allowed a
pure understanding of any spatial manifold; when he discovered that the analogue
work of Bernhard Riemann distorted the essential features of space, inverting the
precedence between flatness and curvity, he opted for dealing with spatial represen-
tation from a psychological point of view, trying to detect the intuitions grounding
geometrical concepts. However, he abandoned this way when he perceived that it
leads to formulating material concepts that do not match with the formal structure
of pure geometry. The relation between representation, intuition, and symbolization
is at the core of these early reflections of Husserl on geometry.

Looking at Mathematics Through Logic

The second part of the volume groups together contributions where a more
technical use of logical tools gives the opportunity to present a detailed analysis
of philosophical concepts or where these very tools are brought under scrutiny for
their capacity to contribute to a philosophical account of mathematics.

The paper by Francesca Boccuni, “Frege’s Grundgesetze and a reassessment
of predicativity,” focuses on the philosophical issues connected with the con-
sistent fragments of the arithmetical system presented in Frege’s Grundgesetze
der Arithmetik, especially with respect to the predicative restrictions placed on
the underlying second-order comprehension principle. Though the main aim of
these consistency results may be technical, one may wonder about their possible
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foundational applications. On the one side, one can prove that the strongest
consistent predicative fragment of Frege’s system is equiconsistent with Robinson’s
Arithmetic Q, which, though not at all mathematically trivial, is still a weak system,
especially if compared with Frege’s original goal. On the other side, Boccuni argues
that the predicative restriction imposed on the principle of comprehension leads to a
radical revision also of Frege’s philosophical stance toward the existence of concepts
as logical entities, thus affecting both Frege’s platonism and logicism all at once.
She also maintains that, in order to justify Frege’s platonism from a predicative
perspective, a reassessment of Gödel’s dichotomy between impredicativity and
predicativity is required, in particular by focusing on Gödel’s objections to Russell’s
Vicious Circle Principle (VCP). In order to achieve such a reassessment, Boccuni
investigates Gödel’s argument against VCP, argues against it, and suggests a
different formulation of it, based on the Thesis of Arbitrary Reference, advanced
by Enrico Martino, to the effect that VCP turns out to be compatible with Frege’s
platonism, whereas his logicism needs to be revised.

Mario Piazza and Gabriele Pulcini, in “A deflationary account of the truth
of the Gödel sentence G,” address a topic discussed in recent years by, among
others, Tennant, Ketland, and Shapiro. They give a negative answer to the question
of whether our conviction about the truth of the Gödel sentence G involves a
theory of truth beyond the deflationary theories. After discussing and dismissing
Neil Tennant’s deflationary account of incompleteness, based on the application
of the so-called Local Reflection Principle, they show how a new deflationary
construal of the incompletability of formal systems can be framed in the setting of
Peano Arithmetic, so augmented as to include a constructive version of the !-rule,
based on the notion of prototype proof. The term “prototype,” following Michael
Detlefsen, has a meaning that dates back to Jacques Herbrand: “when we say that a
theorem is true for all x, we mean that for each x individually it is possible to iterate
its proof, which may just be considered a prototype of each individual proof.”

The paper by Paolo Pistone, “Rule-following and the limits of formalization:
Wittgenstein’s considerations through the lens of logic,” addresses the question of
the justification of logical rules. In the Tractatus it is stated that questions about
logical formatting (why just these rules?) cannot even be meaningfully formulated,
since it is just the application of logical rules which enables the formulation
of a question whatsoever; analogously, Wittgenstein’s celebrated infinite regress
argument on rule-following (it takes rules to justify rules) seems to undermine any
explanation of deduction that relies on logical rules. On the other hand, important
logical achievements, such as incompleteness and computational complexity, seem
to expose a similar issue on formalization: does this or that proof belong to a
logically correct system? Can we effectively know it? These logically motivated
doubts do not concern indeed the truth of single propositions, but rather, as for
Kant’s celebrated quid iuris argument, the legitimacy of a given system of rules. By
exploiting a dynamical perspective on logic (inspired by Girard’s “transcendental
syntax” program), in which rules are not imposed a priori on proofs but are rather
reconstructed through the symmetries describing the interaction between proofs,
such a “subjective” side of logic (fundamentally, the way we write its rules) can
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be unearthed: this viewpoint, made possible by the Curry-Howard bridge between
proofs and programs, seems to provide technical ground (and a possible answer)
to the philosophical matters on rule-following, as well as an interesting logical
perspective on computational complexity.

The paper by Luca Tranchini, “Paradox and inconsistency: revising Tennant’s
distinction through Schroeder-Heister’s assumption rules,” deals with an old but still
discussed problem in proof theory: Tennant’s distinction, going back to Prawitz,
between paradox and inconsistency. In 1982, Tennant proposed a proof-theoretic
criterion of paradoxicality: a derivation of absurdity in a natural deduction system
is paradoxical whenever any reduction sequence starting from this derivation
eventually loops. Paradoxes are expressions governed by particular inference rules
that trigger paradoxical derivations. Derivations of absurdity that do normalize
are taken by Tennant as showing that the assumptions on which they rely are
inconsistent. Tranchini proposes two examples that show that Tennant’s formulation
of the distinction is problematic. Then he precisifies the issue in terms of the
extension of natural deduction proposed by Schroeder-Heister. In this setting, the
notion of assumption is enriched so that rules are admitted as a special kind
of assumptions alongside with sentences. According to whether the derivation is
normalizable or not, the assumptions involved in the derivations will be said to be
either inconsistent or paradoxical, independently of their being sentences or rules.
Tranchini’s analysis hints at a connection between Ekman’s paradox and the relation
between implications and rules and is an improvement of Tennant’s analysis of
paradoxes in proof-theoretic terms.

The paper by Alberto Naibo, “Costructibility and geometry,” is devoted to
the study of the constructive aspects of Euclid’s geometry, from a formal and
logical point of view. Namely, it investigates whether the intrinsic constructive
nature of Euclid’s geometry is captured by the standard properties of constructive
logical theories, in particular the witness property conceived as the result of some
deterministic computation. Starting from the analysis of concrete examples, a first
negative answer is offered. This allows identifying the specific property that makes a
constructive theory geometric. By focusing on deductive aspects, Naibo shows that,
in such a theory, it is much more natural to work with open proofs (i.e., proofs under
open assumptions), rather than with usual closed ones. But open proofs correspond
to programs that do not necessarily return a value, namely, procedures. Hence,
Naibo argues that one of the essential features of constructive geometry depends on
the set of instructions that have to be carried out in order to perform a construction,
rather than on the final result of the construction itself. In this sense, an ontological
shift is pointed out: contrary to other mathematical theories, for example, arithmetic,
constructive geometry can be characterized according to the actions it allows, rather
than to the objects which it is about.

The paper by Michael Arndt and Laura Tesconi, “A cut-like inference in a
framework of explicit composition for various calculi of natural deduction,” deals
with composition of proofs and the effects of cut-like inferences in various calculi of
natural deduction and throws new light on the phenomenon of composition. An ex-
plicit concatenation rule is proposed, obtained by generalizations and formalization
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of one of the most intuitive principle of abstract reasoning, which governs the
composition of abstract derivations from the left and from the right at the same time,
via the mediation of control clauses that occur in the position of the major premise.
Control clauses are so called because they exercise control over the manner in
which the composition takes place. The sets of control clauses necessary to express
various calculi of natural deduction (standard natural deduction, natural deduction
with general elimination rules, bioriented natural deduction and their variants) are
considered, together with the effects of its addition to these calculi. While the
addition of this rule to a single-oriented control base, regardless of its directionality,
does not open more possibilities of combination of abstract derivations, its addition
to a bioriented control base does. In this latter case, when a formula is introduced
among the assumptions by means of a certain rule, it appears as a leaf in the
derivation tree, but it is not available before the application of the rule itself. Thus,
it is not always possible that it be, at the same time and in that very same point of
the derivation, introduced as a conclusion by some other inference. In other words,
not all formulae of a derivation can be considered to be joining knots of different
fragments of derivations.

In his contribution, “On the distinction between sets and classes: a categorical
perspective,” Samuele Maschio inquires about the relationship between sets and
classes in ZF set theory by means of syntactic categories, internal categories,
and algebraic set theory. He tries to clarify the way proper classes are used in
mathematical practice, by means of categorical tools allowing a useful interaction
between mathematics and metamathematics. Maschio claims that the peculiar nature
of classes, with respect to sets, can be represented using category theory. First,
he defines the category of formal classes as a full (equivalent) subcategory of the
syntactic category of the theory ZF; second, using the global elements of an internal
category to the category of formal classes, he manages to identify, by means of
algebraic set theory, a category equivalent to the one of definable sets.

Philosophy and Mathematics

Finally the papers included in the third part of the volume deal with more classical
philosophical problems that pertain to mathematics from a theoretical, practical or
linguistic point of view.

The paper by Michele Ginammi, “Structure and applicability,” deals with the
general problem of the applicability of formal notions to physical reality and, in
particular, with the issue of the effective representative power of mathematics with
respect to physics. It focuses on the notion of structure and wonders whether this
notions could be appealed to in order to explain mathematical effectiveness. To this
purpose, the author first considers the so-called structural account, then analyzes
its weaknesses, and finally suggests a way to overcome them. What is suggested
is that the representative power of mathematics is strictly related to what Mark
Steiner called “heuristic applicability of mathematics” in his 1998 book, that is,
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the capability of an appropriate mathematical representation of reality of helping in
discovering new physical facts. According to Ginammi, this provides not only an
improvement of the structural account, suitable for settling its difficulties, but also
a clearer account of the applicability of mathematics to physics, underplaying the
often mentioned “unreasonable effectiveness of mathematics.”

The paper by Marina Imocrante, “Defending Maddy’s mathematical naturalism
from Roland’s criticism: the role of mathematical depth,” takes as a starting
point the criticism that Jeffrey Roland moves to Penelope Maddy’s naturalistic
epistemology of mathematics and draws the attention to the notion of mathematical
depth proposed by Penelope Maddy in her 2011 book Defending the Axioms.
After recalling the main features of Maddy’s mathematical naturalism and Roland’s
objections to her account, a considerable portion of the paper is devoted to an
analysis of Maddy’s notion of mathematical depth. Although stressing the need of
certain clarifications of Maddy’s notion, Imocrante suggests a possible interpretation
of the facts of mathematical depth as the historical facts of mathematical practice.
The peculiar role of these facts in Maddy’s account is what allows Imocrante to
reply to Roland’s objections.

The paper by Marco Panza and Andrea Sereni, “On the indispensable premises
of the Indispensability Argument,” questions the often admitted dependence of the
indispensability argument on confirmational holism and naturalism. The argument is
generally ascribed to Quine, though its first codified version is offered by Putnam.
This is, however, only a version, among others, since the term “indispensability
argument” should better be intended as referring to a family of arguments sharing
a common idea: that admitting the indispensability of appealing to mathematical
theories in sciences, especially in physical and natural ones, must depend on
ascribing some epistemic features to these theories, depending on the features
ascribed to the relevant scientific theories. To make a simple example: if a scientific
theory is taken to be true, and it is admitted that a certain mathematical theory
is indispensable to the former, then also the latter should be taken to be true.
A quite widespread opinion is that endorsing an indispensability argument requires
endorsing confirmational holism (concerning the relevant scientific theories) and
naturalism. Panza and Sereni’s paper questions this opinion, by suggesting four
basic schemas for as many subfamilies of indispensability arguments that require no
premise involving any form of confirmational holism and naturalism. The authors
do not intend to endorse these arguments, but to show that their weakness, if any,
must depend on other, more specific assumptions, especially concerned with the
notion of indispensability itself.

The paper by Luca San Mauro and Giorgio Venturi, “Naturalness in mathematics:
on the statical-dynamical opposition,” contains a philosophical analysis of the
notion of naturalness, as it is used in the mathematical discourse. The two authors
show, with the help of statistical evidence, how frequent this use is. The first
part of the paper focuses on methodological issues. It investigates how a vague
notion such as that of naturalness should be analyzed in mathematical contexts.
San Mauro and Venturi propose a third way between an uncritical naturalism and a
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philosophy centered approach to mathematics. They aim to capture the autonomy of
mathematical work while accounting for its truly philosophical aspects. The second
part of the paper is devoted to some case studies taken from the history of set theory
and computability theory, which are meant to elucidate the meaning of naturalness’s
ascriptions in mathematics. The main question is whether the notion of naturalness
should be intended as a static or as a dynamic notion. San Mauro and Venturi favor
the latter option and argue that the evidence for the former is only apparent, but
still deserves a further philosophical inquiry, since it is just the apparent tension
between a static and a dynamical facet of naturalness that justifies most naturalness
ascriptions in mathematics.

Silvia de Toffoli and Valeria Giardino, in their paper “An inquiry into the practice
of proving in low-dimensional topology,” address the issue of visualization in the
mathematical practice of low-dimensional topology. The authors try to clarify the
epistemic value of the use of pictures in the justification of topological results. They
hold that, in general, representation plays an important role in the inferential argu-
ments of a working mathematician and that in low-dimension topology the use of
pictures gains strength by their link with spatial intuition, insofar as this is connected
with a faculty of “manipulative imagination,” which makes mathematicians able to
connect different pictures involved in a single argument. This is, however, workable
only within a specific practice; hence this form of reasoning is context dependent.
For this reason De Toffoli and Giardino give local criteria of validity in order to
insure the soundness of arguments that in low-dimensional topology make use of
forms of representation.

Concluding Remarks

Though each of these papers depends on the particular views, attitudes, interests, and
competences of its authors, when taken as a whole, they illustrate the multifarious
picture of the present state of philosophy of mathematics we have outlined in the
opening section of the present introduction.

In particular, it seems to us that a common orientation toward a philosophy of
mathematical practice is emerging, according to which this is understood not as a
rigid doctrine but as a large horizon of topics and as an interdisciplinary approach.

It remains that, even on this understanding, such an orientation is still hardly
identifiable as such. The danger is still there, when one refers to it, of merely
gathering under a single, evocative name a mere sum, or even a mixture, of different
approaches coming from general philosophy, history, logic, computer science,
sociology, cognitive science, and other disciplines, including mathematics itself.
The way these approaches can be held together is, indeed, an open question that
the recent evolutions of a philosophy of mathematical practice are far from having
settled.
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In particular, it is our common opinion that a mature philosophy of mathematical
practice cannot avoid coming to grips with the same traditional problems that the
philosophy of mathematics has dealt with for centuries, like that of the foundation of
mathematics (variously conceived) or that of the ontological and/or epistemological
status of its subject matter (if there is a specific one, indeed). Being able to suggest
an answer to these problems or, more soberly, a way to look at them different from
those prevailing in the last decades is a crucial challenge that this orientation must
face, if it is to develop into a distinctive approach. Another challenge is that of
providing a unified stance for the different researches that are developing under the
label “philosophy of mathematical practice,” in which this new answer or way of
looking at these problems can harmoniously coexist with more specific contents
and inquiries.

Our volume can have the pretension neither to meet these challenges nor to
dwell with them in their entire complexity. But we hope it could be, at least, a
testimony of the work of a rich community of Italian scholars (many of whom are
still young) working (often outside Italy, for choice or unfortunate necessity) within
the philosophical framework in which those problems arise.
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Chapter 1
A Geometrical Constructive Approach
to Infinitesimal Analysis: Epistemological
Potential and Boundaries of Tractional Motion

Pietro Milici

1.1 Introduction

The role of infinity in modern mathematics is fundamental, but historically (since
Zeno), its use has implied paradoxes. Therefore, it is quite natural to wonder
when its introduction is really unavoidable and when it is possible to answer
the same questions by means of other (more reachable) tools. In particular, in
this chapter, we explore the foundation of (part of) Infinitesimal Analysis without
infinity: from an ancient perspective, we want to consider Infinitesimal Analysis
objects as generated by the motion of geometrical/mechanical ideal machines (such
as the Euclidean straightedge and compass1), an approach adopted by Descartes
to legitimize his algebraic curves (by tracing them with the continuous motion
of appropriate geometric machines). Although some curves beyond circles and
lines have been introduced since the classical period (mainly conic sections, the
conchoid of Nicomedes, the cissoid of Diocles, the Archimedean spiral, and the
quadratrix of Dinostratus), it was Descartes who suggested a widely accepted finer
and general classification of curves, dividing geometrical from mechanical ones

1Even though Euclid’s works never introduced the straightedge and compass, his axioms for planar
geometry include the idea that we can draw a circle of any known radius at any known point and
that we can extend any line indefinitely. These axioms, purely mathematical in nature, can also
be interpreted physically by saying that the geometer has access to a compass and a straightedge,
tools that were used for many purposes even before Euclid.
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4 P. Milici

and considering only the first ones to satisfy the early modern metamathematical
problem of geometrical exactness (algebra, as an analytic tool, introduced new
foundational problems concerning the acceptability of solutions and constructions
in the geometric paradigm) (Bos 2001). However, up to the second half of
the seventeenth century, mathematicians such as Leibniz and Huygens tried to
legitimize curves beyond those considered geometric by Descartes.

This latter attempt raised the following questions:

Q1- Is it possible to develop Cartesian machines to overtake algebra and deal with
(part of) Infinitesimal Analysis? (foundation)

Q2- Once the allowed tools are defined, what is the class of generable functions?
(construction)

Q3- Can this perspective offer a different (more sensible) visualization for functions
(especially complex ones)? (visualization)

Q4- Can these tools, once actually realized, foster users’ acquisition of the embodied
mathematical contents? (didactics)

Q5- Can the behavior of ideal tools be introduced in an axiomatic theory like
Euclidean geometry, so as to treat Infinitesimal Analysis from a finitistic (non-
numerical) perspective? (synthetic geometry perspective)

The purpose of this chapter is not to answer the previous questions completely, but
to ask them and perform a preliminary investigation.

In particular, while recent foundational approaches to Infinitesimal Analysis (the
classical foundation or Robinson’s Non-standard Analysis, the finitistic approach of
Kronecker and Brouwer’s intuitionism, or the Computational Analysis of Turing and
Weihrauch) are essentially algebraic or computational, one of the first approaches
to these problems was geometrical [Q1]. From this perspective, we may recall
the seventeenth-century consideration of the “inverse tangent problem.” Solutions
to this problem introduced certain machines, intended as both theoretical and
actual instruments, that justified the existence of certain solutions (i.e., curves)
exceeding Cartesian geometry. The first documented curves constructed under
tangent conditions were physically realized by the traction of a string tied to a
load, which is why the study of these machines was named “tractional motion”
(Bos 1988).

The main idea of this work is to deepen and further develop the analysis
of tractional motion, investigating if and how these ideal machines (like the
ancient straightedge and compass) can constitute the basis of a purely geometrical
and finitistic axiomatic foundation (like Euclid’s planar geometry) for a class of
differential problems [Q5] (note that no axiomatization has yet been proposed). In
particular, a model of these machines (i.e., the suggested components) is presented,
followed by some preliminary results about the class of generable functions [Q2].
As an example of the interpretation of functions with these tools [Q3], we propose
a sketch of a “tractional” planar machine embodying the complex exponential
function. Finally, concerning the possible relation between these ideas and their
didactical adoption through the use of concrete artifacts [Q4], we also make a
suitable didactic proposal.
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1.2 Brief History of Tractional Motion

In formalist mathematics, there exists every object that does not generate contra-
dictions. This perspective is somewhat different from the Cartesian vision; in fact,
the Géométrie in the appendix of Descartes (1637) (for a translation see Descartes
1954) legitimized new curves if they could be drawn by kinematic mechanical
devices involving movable arms (algebraic curves).2 In the same century, before the
Infinitesimal Analysis paradigm became dominant, some geometrical ideas were
developed concerning curves defined by their tangent properties.3 Mathematicians
like Huygens began to consider instruments that, like the handlebars of a bike,
could guide the tangent of a curve (in analytical mechanics terms, they introduced
“non-holonomic” constraints): this signaled the rise of tractional motion. Tractional
motion suggested the possibility of constructing curves by imposing tangential con-
ditions, generalizing (in a non-Cartesian way) the idea of geometrical objects, and
constructing with new tools not only algebraic curves, but also some transcendental
ones (seen as solutions of differential equations). In this period, the development
of geometrical ideas often corresponded to the practical construction (or at least
conception) of mechanical machines able to embody the theoretical properties and
thus physically draw the curves.

In the early modern period, the use of algebra as an analytic tool for the solution
of geometric problems posed new foundational problems, for example, what does
it mean for a problem to be solved, and which constructions are legitimate? If
these questions about geometrical exactness were so important for the early modern
period, they disappeared in the eighteenth century because of the general affirmation
of symbolic procedures, later considered autonomous from geometry. Hence,
from our point of view, tractional motion missed the chance for its foundational
potential to completely develop into a geometrical/mechanical theory. Furthermore,
because of the change in paradigm, these tractional concepts were forgotten for
centuries, even for practical purposes, and were independently reinvented in the
late nineteenth century, when they were used to build some grapho-mechanical
instruments of integration (integraphs) to analogically compute symbolically non-
solvable problems. But let us start from the first curve described in a tractional way,
the “tractrix.”

On a horizontal plane, consider a small heavy body (subjected to the friction on
the plane) tied with an ideally weightless nonelastic string, and imagine (slowly)
pulling the other end of the string along a straight line drawn on the plane. Because

2In general, not every Descartes scholar would agree about this point. In fact, Descartes never
solved the problem of classifying the admissible curves in an unambiguous and complete way.
However, in accordance with (Bos 2001; Panza 2011), we are adopting the characterization
of Descartes’ geometrical curves as those that can be traced by geometrical linkages, that is,
articulated devices basically working as joint systems, allowing a certain degree of freedom in
movements between the two links they connect.
3This historical reconstruction is essentially based on Bos (1988, 1989) and Tournès (2007, 2009).
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Fig. 1.1 The heavy body is B , with initial position B0; the string is a; and the other end of the
string is A, with initial position A0. Moving A along r , B describes the tractrix (obviously, the
movement is not reversible because of the non-rigidity of the string). Note how a is tangent to the
curve at every point

of the friction on the plane, the body offers resistance to the pulling of the string:
if the motion is slow enough to neglect inertia, the curve described by the body is
called a tractrix. The first documented description of the tractrix is associated with
Claude Perrault (Leibniz 1693). Examining Fig. 1.1, we can see how the curve is
traced thanks to the property that the string is constantly tangent to the curve.

Christiaan Huygens (1693) deepened the theory of tractional motion and moved
toward a mechanical description in order to physically build some precise instru-
ments for tracing. In fact, the original description of the tractrix is related to at
least two physical problems: the tracing plane has to be perfectly horizontal, and
the heavy body, when moved, acquires inertial velocity. Huygens suggested that,
abstracting the problem from its physical complexity and considering it solely in
terms of tangent properties, tractional motion can be seen as a pure geometrical
movement, independent from the motion speed (even if through the introduction
of friction). This is exactly the same as the circular motion of the compass, the
straight motion of the ruler, and, in general, the continuous movement considered
by Descartes as the basis of analytic geometry. Furthermore, Huygens introduced
a technological change in the way in which straight segments were considered:
a string only works in the case of traction; on the contrary, a physical rigid bar
satisfies the tangent constraint (avoiding lateral motion) not only in traction, but
even in compression, making the curve realization reversible.

The foundations of tractional motion were laid, and, up to the first half of the
eighteenth century, there was an improvement in related works, both in terms of
practical machines (mechanical devices studied and realized to solve particular
differential equations) and theoretical studies. Concerning practical machines, we
may recall those made by Perks (1706, 1714) (see Fig. 1.2) for the first physical
introduction of the “rolling wheel” to manage the tangent (the same solution was
adopted in the nineteenth century for integraphs), whereas, concerning theoretical
evolutions, we must recollect Leibniz’s “universal tractional machine” (Leibniz
1693). According to him, tractional motion was the concrete realization of his vision
of curves as infinitangular polygons, inextricably mixing the theoretical model with
physical execution, each one validating the other: from a certain point of view,
kinematics forms the basis that mathematics without well-defined infinitesimal
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Fig. 1.2 Reconstruction of Perks’ instruments for the tractrix (left) and for the logarithmic curve
(right) at the Institute for History of Science, Aarhus University. Regarding the tractrix, we can see
the wheel taking the place of the load: in this case, the extreme point of the fixed-length bar can
freely move along a straight line. In the machine for the logarithmic curve, a horizontal fixed-length
plank moves along another horizontal bar to opportunely incline the slope

entities requires. Due to its complexity, the project, so important to a single theory
able to realize the quadrature of any general curve with a continuous movement,
never became a real device.

A unified theory for differential equations was actually developed by Vincenzo
Riccati (1752), the only complete theoretical work ever dedicated to the use of
tractional motion in geometry (Tournès 2009). The Italian mathematician found ge-
ometrical proofs corresponding to those that mathematicians such as Euler derived
using series, arriving at the result that “every” curve (defined in modern terminology
by a differential equation y0 D f .x; y/) can be drawn with tractional motion.4

This result regarding transcendental curves overtook Descartes’ announcement in
relation to algebraic curves and developed the theory of geometric construction
with simple continuous movements. One characteristic of this work is the deep
interaction among algebra, geometry, mechanics, and technology to develop an
abstract unified theory of differential equations based on the conception of material
instruments physically drawing the integral curves. His instruments plot the integral
curve of a differential equation using tractional motion:

On a horizontal plane, one pulls one end of a tense string, or a rigid rod, along a given curve,
and the other end of the string, the free end, describes during the motion a new curve which
remains constantly tangent to the string. At this free end, one places a pen surmounted by
a weight making pressure, or a sharp edged wheel cutting the paper, so that any lateral
motion is neutralized. By suitably choosing the base curve along which the end of the string
is dragged, and by suitably varying the length of the string according to a given law, one can
integrate various types of differential equations. In this way of solving an inverse tangent
problem, one actually materializes the tangent by a tense string and moves the string so that

4Riccati shows that, adopting modern terminology, it is possible to integrate any differential
equation y0 D f .x; y/, but he does not explicitly specify anything about the set of admissible
functions f . According to the equations of the time, it is reasonable to assume that the function
has to be obtained using only a finite number of algebraic operations and quadratures.
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the given property of the tangents is verified at every moment. The length of the tangent is
controlled at every moment by a mechanical system (a pulley or a slide channel) and by a
second curve which is called the directrix of the motion. (Tournès 2004, p. 2738)

Denoting the curves traced by tractional motion as “tractorias,” Riccati’s work
scheme was as follows: beginning from tractorias with a constant tangent (described
with a constant-length string dragged along a base curve), he generalizes by
allowing the integration of more and more extended classes of differential equations.
The generalization supposes that the length of the string varies with the position of
the tractor point (a tractoria with a variable tangent) and finally controls the length
of the string by a variable directrix, whose form varies according to the position of
the tractor point.

By means of such tractorias, Riccati showed that tractional motion allows the
integration of any differential equation having two independent variables x and
y in which the coefficients of the infinitesimal elements dx and dy are obtained
using only a finite number of algebraic operations and quadratures (cf. Note 4).
Under these conditions, all the auxiliary curves used by Riccati (base curves and
directrix curves) are constructible by Cartesian geometry instruments extended with
the possibility of quadrature. Tractional motion is therefore an additional process of
construction that allows us to obtain new curves from previously known ones.

Even though this work overtakes the ancient current of geometrical problem solv-
ing by the construction of curves, and proposes a very general theoretical model to
explain in a unified way the operation of a great number of tractional instruments, it
was neither celebrated nor influential. The book probably arrived too late, at the end
of the period of curve construction. At this time, geometry was giving way to alge-
bra, and series were becoming the principal tool to represent solutions to differential
equations, making Riccati’s work almost immediately outdated (Tournès 2004).

After about 150 years of interruption, during which there was no trace of
tractional motion, engineers in the late nineteenth and early twentieth centuries
rediscovered, independently, the same theoretical principles and technical solutions
of the eighteenth century (Pascal 1914). These solutions involved even more
complicated tractional instruments, with more cutting wheels connected between
them to be able to integrate differential equations beyond the first order. But after
this new blooming, in the second half of the twentieth century, the technological
thirst for equation-solving machines was satisfied by digital computers, which
improved the performance of analog computers with very accurate error control.
Therefore, because of the technological digital revolution, there was another break
in the adoption of this perspective.

1.3 Tractional Motion Machines

The first goal of this study on tractional motion is to clearly define the components
that can be used to obtain devices that implement certain tangent properties on
a plane. We call these ideal devices “tractional motion machines” (or TMMs)
(Milici 2012). As tractional motion was historically used to solve differential
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equations by tracing curves on the plane, we suggest TMMs should be interpreted
as function embodiers (as we will show in Sect. 1.4, this latter interpretation allows
us to make a comparison with other analog computers and to extend the results to
complex values). The passage from curve tracer to function embodier is similar
to the passage from curves as equations (zero loci) to parametric curves (defined
as functions of an independent input). In fact, using machines, a geometric curve
(interpreted as the zero locus of an equation) can be considered as the set of all
planar points reachable by tracing the point of an appropriate articulated device,
without the need to identify on the machine a point that generates the motion
(analytically, without the need to define an independent parameter). On the contrary,
to interpret a TMM as a function, we must define at once an input and an output
point on the machine, so that any move in the former causes a specific move in
the latter: in this way, the machine can be considered as an operator that directly
embodies a function.

1.3.1 Components of Tractional Motion Machines

In this section, we define the mechanical components that are allowed in our
interpretation of tractional motion: we adopt these because they seem to give
a good compromise between the simplicity of the components (two instruments
and two constraints) and that of the assembled machines (even if the proposed
components are not minimal (Milici 2012, §2)). The mechanisms obtained from
these components (to be considered on a plane that can be infinitely extended5)
develop appropriate linkages, which Kempe showed to be algebraically complete
(Kempe 1876) (his proof contained some flaws. For a correct proof see Kapovich
and Millson 2002). Now, let us define the components of tractional motion
machines.

We adopt infinitely extensible rods, and assume these have perfect straightness
and negligible width. They are different from the Euclidean straight lines, because
they are not statically traced objects but planar rigid bodies (mechanical entities with
three degrees of freedom, two characterizing the position of a specific point and the
third identifying the slope with respect to a fixed line).

It is possible to put some carts on a rod, each one using the rod as a rail: a cart
has one degree of freedom once placed on a rod (the cart can only move up and
down the rod).

The joint is a constraint between fixed points of two (or more) different objects
(here, an object refers to the plane, a rod, or a cart). Once the joint has been applied,
jointed objects can only rotate around their common point (note that, in general, the
junction point does not have to be fixed on the plane).

5With regard to the plane, in general it can be substituted by any other surface in a space (as usually
made in differential geometry), but the adopted surface has to be considered as given a priori (all
we are going to construct with machines are transformations over a surface, not new surfaces). This
is why we restrict ourselves to the basic case of the plane (at least for the moment).
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Fig. 1.3 A wheel rolling
while following any regular
curve has the property that its
own direction (represented in
the picture by a bar) is always
tangent to the curve

Fig. 1.4 Schematic representation of the components: there are two rods (r and t ) joined atQ. On
r , there is also a cart P (the arrows stand for the possible motions the cart can have) and a wheel
S (the “H” shape ideally represents the projection of a double-wheeled chariot)

Finally, we have the non-holonomic constraint, the wheel: once a rod r and a
point S on r have been selected, we can set a wheel at S that prevents S itself
moving perpendicularly to r (considering the motion of S relative to the plane).
Technically, this is as if we put a fixed caster (oriented like r) at S , with its wheel
rotating without slipping on the plane. As we shall evince, the avoidance of lateral
motion in the rod at a point is strongly related to the tangent. If we consider the
caster wheel as a disk rolling perpendicularly to the base plane, the projection of the
disk surface is always tangent to the curve described by the disk contact point (see
Fig. 1.3). Thus, the rod is tangent to the curve traced by the wheeled point, having
the same direction as the caster wheel.

Like Kempe’s linkages, our tools are assumed to be ideal (we do not care about
physical inaccuracies), and we do not consider problems related to the intersection
of rods or the possible collision of different carts on the same rod. Once we have
specified these details, these components can be used to assemble machines whose
motion on a plane is purely kinematic (just kinematic constraints, with no attention
to other physical interrelations). For a diagrammatic representation of assembled
components, see Fig. 1.4.

1.3.2 Some Remarks on Uniqueness

Before describing some results, it is important to deepen the “non-uniqueness” of
the movement of a machine according to the motion of the input point. In fact,
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Fig. 1.5 A simple TMM (the
input point Z moves along a
line, W rotates around)

Fig. 1.6 Property of the
tangent to the curve traced by
a point fixed on a rolling disk

like the solution to differential equations, the motion of our machines is not always
determined in a single way. In some machines, the general configuration implies
that the motion of the input uniquely defines the motion of the output. However,
there are some “singular” configurations in which the output motion is not uniquely
determined by the input: let us introduce an explicatory machine.

Given the unitary length and an oriented rod to be used as abscissa (so that we
can consider the related Cartesian plane and coordinates), a cart Z D .t; 0/ on the
rod, and the pointN D .t;�1/, consider the rodZW of unitary length (W is free to
turn around Z), and let M be the middle point of ZW . We can place a rod passing
throughM and N 6 and another one perpendicular to MN passing throughM 7: on
the latter rod we can place a wheel corresponding to M , so that the tangent to the
curve traced by M will always be perpendicular to MN (see Fig. 1.5).

While we move Z along the abscissa, if the absolute value of the W ordinate is
strictly less than 1,W has to describe a cycloid, because of the geometrical property
shown in Fig. 1.6 (in particular, we imposed the wheel onM and not onW , because,
while the rod ZW rotates aroundZ,W can become coincident with N , leaving the
rodWN undetermined). On the contrary, whenW assumes coordinates .t;˙1/, the
tangent to M must be horizontal, and so the motion of W can be both a cycloid and

6To constrain a rod r to pass through M and N , we first pivot r in M by a joint, then put a cart on
r , and finally attach the cart with N by another joint.
7Concerning the construction of a rod s perpendicular in P to another rod r , we can obtain the
perpendicularity by imposing the passage of s through the vertex of a right triangle with one leg on
r (the right triangle can be constructed by the junction of a Pythagorean triple as segment lengths).
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purely horizontal, losing the uniqueness. As we are interested (for the moment) in
generating uniquely determined functions, in the following results, we take care to
avoid non-uniqueness of motion when setting the machine. Furthermore, it would
be interesting to find some axioms to handle redundancies and to specify when a
certain machine has constraints that involve fewer degrees of freedom in particular
configurations.

1.4 Results and Examples

In this section, we offer some preliminary results about the potential of TMMs.
In particular, in the first subsection, we describe how to solve any real polynomial
Cauchy problem. Then, we consider an example involving a complex (exponential)
function, before discussing the implications for mathematics education.

1.4.1 How to Solve Real Polynomial Cauchy Problems

In this section, we propose a sketch of the proof of how to solve any real polynomial
Cauchy problem (pCp) (Milici 2012), that is, a Cauchy problem in the form

(
y0 D p.t; y/

y.t0/ D y
0

where t is the free variable, y D .y1; : : : ; yn/ is a vector function in t , and p D
.p1; : : : ; pn/ is a vector polynomial in y and t .

First of all, as an extension of Descartes’ algebraic machines (Descartes 1954),
TMMs can calculate real polynomials (which was an intention of Cartesian
geometry), and we assume we have some TMMs (TMM1, : : :, TMMn) that, given
the values t; y1; : : : ; yn as inputs, are able to calculate the values p1; : : : ; pn.

Once we have defined a “unitary length,” we fix a rod q on the plane and assign
it a direction, so that we can consider it as the abscissa of a Cartesian plane. Then,
we mark on the point with Cartesian coordinates .t0; 0/ on the rod. We place a cart
on q at coordinates .t; 0/, and, by changing t , we construct the point .t C 1; 0/.8

We construct rods r and s that are perpendicular to q and pass, respectively,
through .t; 0/ and .t C 1; 0/. Now, we can put n carts on r . For reasons that will
become clear, we denote yi .i D 1; : : : ; n/ as the ordinate of the i -th free cart.
We apply the TMMi machines to t and to y1; : : : ; yn, then we report the lengths

8Note that, differently from .t0; 0/, t may vary in R. The point .tC1; 0/ can be obtained by linking
at .t; 0/ one end of a unitary length rod, whose other extremity is forced by a cart to move along q.
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Fig. 1.7 Solving pCps with a TMM (we consider y with only two components). Note that the cart
at .t; 0/ is free to move along rod q, and along r the motion of .t; yi / is managed by the wheels
with direction ri , where ri connects .t; yi / to .t C 1; yi C pi / (yi is an abbreviation of yi .t/ and
pi denotes pi .t; y/). In the figure, the TMMs used to compute pi are not represented

Fig. 1.8 A sketch of the real
exponential function TMM
(cf. the right-hand picture in
Fig. 1.2)

resulting from the application of the polynomial by the various TMMi on s.9 To
manage the derivative of yi , we insert rods ri linking .t; yi / with the corresponding
.t C 1; yi C pi /.10 Finally, we place a wheel at .t; yi / on every ri : the wheels
physically implement the condition y0 D p.t; y/.

To complete the construction, we simply set the initial condition y.t0/ D y
0
.

This can be done by moving the cart at .t; 0/ to t D t0 and setting the yi carts on
r to the length of the i -th component of y

0
. Now, changing t through the motion

of the cart at .t; 0/, we obtain the desired length .t; yi .t// (see the illustration in
Fig. 1.7).

A simple example of a function that is generable by TMMs but not by Cartesian
tools is the exponential function (a transcendental curve rather than an algebraic
one), whose related tractional machine was first described in Perks (1706). This
example, shown in Fig. 1.8, is actually simple, because we simply impose the
condition that the subtangent to the exponential curve is constant (for every real
t , the tangent passes through the point .t � 1; 0/).

Furthermore, in Milici (2012) it was proved that a TMM can generate more
functions than just the solution to pCps. In fact, a machine has been constructed
for the real function whose Cartesian graph is the cycloid (which, having cusps, is
not analytic and therefore cannot be the solution to any pCp).

9Specifically, we determine the points .tC1; yiCpi / in function of t and the (still) free y1; : : : ; yn.
10To link .t; yi / with .t C 1; yi C pi /, we place a rod ri at .t; yi /, then we place a cart on ri and
move it to .t C 1; yi C pi /.
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1.4.2 A Machine for the Complex Exponential Function

In this section, we demonstrate some new visual uses of the proposed TMM model.
Although complex functions need a 4D-space to be statically represented, we can
represent them through planar TMMs, merging domain and range in the same 2D-
plane, so that a function is given by a machine that links the motion of the input with
that of the output. A similar purpose was described in Emch (1902), although less
generically, where the author showed how to perform any algebraic transformation
of complex variables using only planar linkages. In this section, we want to see how
TMMs can overtake algebraic operations, and so we will observe how to assemble
a TMM for the complex exponential function. Recall that, in the complex case,
the exponential function is the only solution to the Cauchy problem f 0.z/ D f .z/,
f .0/ D 1.

The first difference from the real case is that we have to allow the input point z to
move not only along the abscissa, but across the whole plane (interpreted in Argand-
Gauss coordinates). Furthermore, to represent the complex value of the function, we
consider the complex value w D z C f .z/ as the output point, so that (for every z)
f .z/ can be seen as the difference vector between w and z.11

In the real case, f .x/ is only 1D, whereas in the complex case we have to deal
with two dimensions. Thus, instead of needing only one tangent property, we must
set two. If the first can be set at the output point w D zCf .z/, we need another point
at which to set the second. We can use Emch’s result (Emch 1902): as the TMM is
an extension of linkages, we can perform any complex algebraic operation, so (for
every value of f .z/) we can dynamically multiply f .z/ by a complex constant k. It
is at pk D z C k � f .z/ that we set the second tangent property to deal with the two
components of the complex function.

Now, to begin handling some complex f .z/, let us consider z.t/, the trajectory
of z as a function of time, adding the condition that z0.t/ is always not null (so z
is a regular function R ! C). To investigate the tangent properties of the point
pk D z C k � f .z/ (where k is any complex constant), we calculate its derivative
(considering z as a function of t). Therefore, we have

p0
k.t/ D z0.t/C k � f 0.z/ � z0.t/

D z0.t/ � .1C k � f 0.z// (1.1)

11We have to deepen the idea of representing zCf .z/ instead of f .z/. If, at first glance, it seems so
different from the representation in the real case, the main condition behind both is that the motion
of the output point has to be determined by that of the input point, so it is necessary that the input
drags the output. Mathematically, this is implemented by a vector sum (input + output), both in the
real and complex cases. In the Cartesian plane, we denote the axes’ unit vectors as O{ and O| , and the
graph is defined as xO{Cy O| (so, as the domain and range axes are linearly independent, the graph of
a real function “statically” represents all the information of the function). In the complex case, the
domain and range have to be merged in the same planar coordinates, losing the property that any
point of the plane identifies a single couple of input/output. In particular, given a real function f in
x, the usual real representation on the Cartesian plane .x; f .x// can be interpreted as xC i � f .x/
on the complex plane (i is the imaginary unit).
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Fig. 1.9 Beginning of the
construction of the complex
exponential function (w? was
constructed by rotating f .z/
90ı anticlockwise). At this
point, no wheel has been
placed and f .z/ does not
have any constraint (it can
freely move across the plane).
If w D z C ez,
w? D z C i � ez, and z0 is
real, the tangent to both w and
w? passes through z � 1

Fig. 1.10 If the direction of z
(while moving on its
trajectory) is inclined at an
angle a to the line parallel to
the abscissa, the tangent at w
and w? has an additional
inclination a from the rod
connecting them with z � 1

Back to the exponential function, if we set the differential condition f 0.z/ D f .z/,
and (for the moment) consider z0 D 1, the tangent to the curve pk.t/ always passes
through the point z � 1 (in Fig. 1.9, we have considered the points w D p1 and
w? D pi ).12

Until now, we have considered the case z0 D 1; this can be extended to any not-
null real value of z0.13 In fact, in general, (1.1) implies that the tangent to pk has
direction .1 C k � f 0.z// rotated by an angle �z0 (so the slope does not depend on
�z0): this can be set by adding the angle �z0 to the inclinations of the rods connecting
w and w? to z � 1, as shown in Fig. 1.10. This addition of angles is possible, for
example, through the linkage constructions named angle adders (Emch 1902). Once
the tangents have been identified, we can set the wheels at w and w?.

12Even though we do not encounter them in this chapter, there are problems when pk D k �f .z/ D
�1 (the tangent is not defined, because pk is not moving). To overcome this, we would need to
construct not only pk1 and pk2 but also pk3 (with ki different from each other), so that there would
be at least two well-defined tangent conditions everywhere.
13As we shall evince, the tangent to pk depends on the argument of z0. Concerning the polar form
.�; �/ of any complex value z, the argument � is determined if and only if z ¤ 0.
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In summary, given z and z0, we set the tangent properties at w and w?. This
defines the exponential function, because we have two constraints guiding the two
components of the complex output value. However, even if the position of z is visible
on the plane, z0 is not accessible: to identify it, or more precisely its inclination �z0 ,
we simply add a rod r at z, and put a wheel on r at point z. The rod r is free to rotate
around z, but the wheel prevents any lateral motion of z with respect to the direction
of r , which means that, when z moves, r is the tangent to the trajectory of z.

In this way, if we move the input point z from the initial condition f .0/ D 1 and
change the inclination of the rod r to make z move along a certain trajectory, then
the complex vector w � z is exactly ez.

1.4.3 Some Educational Implications

Hitherto, we have explored the TMM theoretical model, but can its transposition
into concrete artifacts be useful? We think it can, especially for didactical purposes.
Indeed, the actual manipulation of an artifact can help students to experience
and internalize the underlying mathematical contents, if suitably introduced into
educational pathways (as suggested in “Theory of the Semiotic Mediation” (Bar-
tolini Bussi and Mariotti 1999), which focuses on the use of artifacts to transmit
mathematical knowledge).

As an elementary introduction to tractional machines in mathematics education,
we must mention the pathway described in Di Paola and Milici (2012), which
introduces a very simple concrete artifact to deepen the tangent concept (a TMM
composed of just a rod and a wheel: making the wheel move along a curve, the rod
outputs the tangent to the curve). What we are going to observe in this section is
the possible use of a more complex artifact, one that was ideated and designed by
the author and realized in collaboration with Benedetto Di Paola (this artifact was
presented in a workshop at the 64th Conference of the International Commission
for Study and Improvement of Mathematics Education – CIEAEM 64 (Milici and
Di Paola 2012) and mathematically deepened in Salvi and Milici (2013)). According
to the way we assemble its components, this artifact generates two different curves,
one algebraic and one transcendental,14 as shown in Fig. 1.11.

14In particular, the fact that two functions, one transcendent and the other algebraic, can be
constructed through similar devices of equal complexity is an epistemological point, in contrast
with the Cartesian dualism between the different legitimization of geometrical (algebraic) and
mechanical (transcendental) curves. Concerning this, we may mention the letter that Poleni wrote
to Hermann in September 1728 (published in Poleni 1729), in which the author wondered about the
nature of tractional curves. With a simple modification to the exponential tractional machine (just
changing an angle, which is essentially the same thing we did, as shown in Fig. 1.11), the author
had realized that tractional machines draw curves defined by differential equations in a uniform
way, regardless of their algebraic or transcendental nature.
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Fig. 1.11 The artifact generating a parabola (left) and an exponential curve (right), according to
the inclination of the wheel. It was ideated, designed, and realized by the author and Benedetto Di
Paola for the G.R.I.M. (Research group of teaching/learning mathematics, University of Palermo)

The proposed artifact was designed to permit a double use: a first explorative
approach (from machine to mathematics) and a second constructive one (from
formula to machine). In particular, being interested in developing a pathway
involving the field of Infinitesimal Analysis, instead of focusing on curves, we want
to focus on the generated functions. Thus, we propose the exploration of a machine
embodying the square root and the construction of a machine for the exponential
curve (both machines can be obtained by assembling the same components in a
different manner).

We choose these functions because, though very different from the usual didactic
perspective, they are markedly similar in their TMM interpretation. The real
exponential function has been discussed in both Sects. 1.2 and 1.4.1 (Figs. 1.2 and
1.8), and the choice of the square root function has been made because of its nature,
which, though simple, reveals many significant aspects that can be highlighted in the
geometrical/mechanical interpretation. In particular, the related didactical pathway
focuses on a specific “new” reading of the mathematical concepts of tangents
(geometrical and analytical approach with the derivative), continuity, real function
asymptotic behaviors, and differential equations.

Although the function f .x/ D p
x is algebraic, we do not interpret it as the

inverse of x2. Specifically, the machine (Fig. 1.12) solves the differential equation
f 0.x/ D 1

2f .x/
with the initial condition f .1/ D 1, whose single solution for

positive values is the square root.15

15This definition is solved by the square root only for the real values; it does not apply in the
complex extension.
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Fig. 1.12 The actual artifact (compared to the left picture of Fig. 1.11, the machine has been
rotated 180ı) and the related TMM for f .x/ D p

x. To work, it must be shifted horizontally along
the “basis cathetus” (the segment with extremes .x; 0/ and .x C 1

2
; 0/). The wheel at .x; f .x//

implements the condition that the tangent at .x; f .x// must be perpendicular to the hypotenuse

Table 1.1 Square root function: analytical and geometrical/mechanical properties

Analytical register Geometrical/mechanical register

Domain: RC Here there is a great difference in comparison to the analytical
register. The artifact in Fig. 1.12, if not physically dragged on the
plane, does not allow us to evaluate the domain (because the
abscissa values are used in a dynamic way). On the other hand, it is
possible to realize how the artifact becomes stuck when f .x/ D 0

(the wheel becomes perpendicular to the horizontal motion)

f .x/ � 0 Knowing that the artifact becomes stuck when f .x/ D 0 and that
f .1/ D 1, the function is always nonnegative as a result of its
continuity

f 0.x/ > 0 The tangent has to be perpendicular to the hypotenuse, so the
derivative is positive when f is not negative (in the whole domain)

limx!C1 f .x/ D C1 Since it is increasing, f cannot oscillate. By reductio ad absurdum,
suppose that f converges, so f 0 tends to 0. Mechanically, this
implies that the hypotenuse tends to be parallel to the ordinates (even
if this can never physically happen), and this occurs only if f tends
to infinity. Hence, the absurdum (f had to converge)

limx!C1 f 0.x/ D 0 Once the divergence has been observed, according to the previous
reductio ad absurdum, the tangent tends to be parallel to the abscissa

Considering Table 1.1, we get a sense of the possible translation from the
analytical to the geometrical/mechanical semiotic register16 (Duval 1993) and
the manner in which we dynamically analyze the artifact and its mechanical
components (constraints, rods, and so on).

16TMMs (and real artifacts) are not only able to visualize some properties (like in dynamic
geometry) but also prove them in a specific register. Unfortunately, this register is currently not
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1.5 Conclusions and Future Perspectives

Although this research into TMMs requires further development, the role of
formalized ideal machines in the foundation of both computation and mathematics is
deep rooted: we may think about the Euclidean straightedge and compass, or about
the extension through the Cartesian machines, up to the Turing machine (even if it
is set on a digital/arithmetic paradigm instead of a geometrical/mechanical one). In
this way, after the study of relative boundaries, it would be interesting to construct
an axiomatic system for TMMs to reinterpret (part of) the classical real and complex
analysis from a constructive and geometrical perspective (probably starting with the
axiomatization of the behavior of specific tractional tools, such as the equiangular
compass proposed in Milici and Dawson 2012).

As previously announced, we have not yet been able to define the class of
functions that are generable by the proposed model. At first glance, it seems that,
with these means, we will never be able to generate classical functions such as
the Weierstrass function (continuous but nowhere differentiable) or to draw the
Koch snowflake and fractals. The situation of the Euler �-function (at the basis of
fractional calculus17) appears even more complicated. In fact, being differentiable
but not a solution to any pCp, we do not yet know whether or not � can be generated
by a TMM. In both cases, it would be interesting to know, so that we may understand
the limits and potentials of the proposed geometrical interpretation of the derivative
as tangent (furthermore, if generable, it would also be interesting to investigate the
tractional machine of some functions, such as � and Riemann-�, for both real and
complex values).

Another perspective concerns the comparison with some models of computation.
In particular, in Milici (2012), a comparison with Shannon’s General Purpose
Analog Computer (Shannon 1941) was proposed. This pathway still has to be
deepened, and another long-term aim is to investigate whether and how a relation
between digital and analog computation can be traced (especially in relation to the
Computable Analysis paradigm).

autonomous, and we are still trying to define a suitable theory to highlight the primitive concepts
for the construction and functioning of the machines. Meanwhile, as visible in Table 1.1, we had to
use some analytic properties in the geometrical/mechanical register (properties about continuous or
monotonic functions) to obtain some informal proofs. In addition, the geometrical and mechanical
registers, even if different, have been summarized in the same column for simplicity.
17Fractional calculus is the study of an extension of derivatives and integrals to non-integer orders
(for further reading, see, e.g., Ross 1975).
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Chapter 2
Plane and Solid Geometry: A Note on Purity
of Methods

Paolo Mancosu and Andrew Arana

2.1 Introduction

Traditional geometry concerns itself with planimetric and stereometric
considerations, which are at the root of the division between plane and solid
geometry. When one raises the problem of the relationship between these two
areas, one encounters epistemological, ontological, semantical, and methodological
problems. In addition, other issues related to psychology and pedagogy of
mathematics emerge naturally. In this note (based on Arana and Mancosu 2012),
we will focus on a methodological aspect: purity of methods (see Detlefsen 2008
and Detlefsen and Arana 2011). After a few historical remarks concerning the
role played by solid geometry in the development of plane geometry, we will
move on to the analysis of a specific case, Desargues’ theorem on the plane
(which we will call “Desargues’ plane theorem”). This theorem was proved by
Desargues by making use of metric notions (congruence principles) that were key
to a theorem that played a central role in the demonstration, namely, Menelaus’
theorem. However, the development of geometry in the nineteenth century led
to the analysis of the foundations of projective geometry and to the attempt to
eliminate as much as possible from this discipline non-projective notions such as
congruence or measure. Desargues’ theorem played a crucial role in this type of
investigation. A purely projective proof of this theorem had already been given in
1822 by Poncelet. Poncelet had shown how a version of Desargues’ theorem in
space (we will call it “Desargues’ solid theorem”) provided, as a simple corollary,
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a projective demonstration of Desargues’ plane theorem. The appeal to congruence
in Desargues’ original proof for the plane theorem was thus eliminated through
the introduction of spatial notions. One can however ask whether this appeal
to space is legitimate and necessary. The legitimacy question originates from
considerations related to purity of methods. The issue about necessity is tied to
logical considerations. One had to wait until the works of Peano and Hilbert to
obtain an (affirmative) answer to the latter question. Moreover, these results are at
the basis of a more articulate discussion of the legitimacy problem (namely, the
purity problem). These considerations will be developed in the final part of the note.

2.2 Historical Notes on the Relationship Between Plane
and Solid Geometry

In ancient geometry, we encounter few interesting applications of solid geometry
to plane geometry (of course, solid geometry requires plane geometry). Euclid’s
Elements present us with a sharp separation between plane geometry and solid
geometry (with the latter relegated to the last books of the Elements), a division that
will have a lasting impact on the presentation of elementary geometry until the end
of the nineteenth century. There are however, already in Greek times, some advanced
directions of research in which techniques of solid geometry are applied to the study
of problems in plane geometry. We can mention, for instance, the quadrature of the
circle provided by (Pappus 1876–1878) which is obtained generating the quadratrix
curve on the plane through a projection of the cylindrical helix. It is also important to
note that the distinction between plane, solid, and linear problems given by Pappus
is orthogonal to that between plane and solid geometry. Pappus’ taxonomy concerns
the types of curves required for the solution of problems (line and circle for plane
problems, conic sections for solid problems, and “more complex” curves for the
linear problems). Euclid’s solid geometry ends up classified as “plane” in Pappus’
taxonomy, and conversely, problems stated in plane geometry, such as the trisection
of an arbitrary angle, are classified as “solid.” While Pappus criticizes the use of
curves that do not correspond to the nature of the problem (such as the use of
conic sections for solving “plane” problems), we are not aware that any Greek
mathematician (or philosopher) ever raised objections to the use of solid geometry
in investigations of problems of plane geometry.

In the seventeenth century, one notices a lively interest for the application of
solid geometry in the solution of problems in plane geometry. Consider for instance
the example of Evangelista Torricelli. In his treatise, De quadratura parabolae
(1644; see Torricelli 1919–1944), Torricelli presented 20 different proofs of the
quadrature of the parabola (a theorem of plane geometry proved for the first time
by Archimedes) and classified them according as to whether they were proved
by “classical” demonstrations (using techniques by reductio ad absurdum) or
with demonstrations obtained through the geometry of indivisibles of Cavalierian
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inspiration. What is striking in this treatise is Torricelli’s attention vis-à-vis the
use of solid geometry in the proofs of theorems of plane geometry. All the most
important results of Euclidean and Archimedean stereometry are appealed to and
Torricelli showed how one can obtain the quadrature of the parabola from each
one of these stereometric theorems, either using exhaustion techniques (reductio
ad absurdum) or indivisibilist arguments. Of course, not a single one of these
stereometric results can be considered necessary for the proof of this plane theorem,
for Archimedes had already given a proof that only appeals to concepts and results of
plane geometry. Torricelli does not raise any methodological problems concerning
the use of solid geometry in investigating problems of plane geometry.

With the development of projective geometry in the nineteenth century, the use
of spatial techniques in the study of problems of plane projective geometry begins
to show its fruitfulness. Monge’s school, in particular, made extensive use of the
interaction between planar and spatial notions. In his famous 1837 Aperçu, Chasles
described the school of Monge by means of its propensity towards the use of three
dimensions in the proof of plane theorems.

We conclude these brief historical remarks by recalling that within elementary
geometry, the separation between plane and solid geometry was challenged seri-
ously for the first time in the work of the Italian geometer Riccardo de Paolis in
Elementi di geometria (1884). In this book, de Paolis emphasized the importance of
analogies between plane and solid geometry (angles-diedra, polygons-polyhedra,
etc.) as well as the importance of using space for the understanding and the
simplification of theorems of plane geometry. This “fusionist” position, namely, the
request that plane and solid geometry be developed together, was at a source of the
debate known as “fusionism” which saw the involvement of Italian, French, and
German geometers. The debate between those who advocated “fusionism” and their
opponents led to discussions concerning the legitimacy as well as the necessity of
using space in proofs of theorems in plane geometry. But in order to seriously tackle
such issues, one had to wait for the foundational works of Peano and Hilbert, which
we will discuss below.

2.3 The Foundations of Projective Geometry

In the early nineteenth century, geometers set out to develop the foundations of
projective geometry, independently of Euclidean geometry. Some, for instance,
Möbius and Plücker, sought to develop an analytic projective geometry, analogous
to Cartesian analytic geometry for Euclidean geometry. Others, for instance, Steiner,
sought a coordinate-free development of projective geometry that had the same
power as the new analytic projective geometry. In these research programs, these
geometers freely used metric considerations. They appealed either to the Euclidean
distance metric or to principles of proportionality or congruence. However, these
are not projectively invariant.
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Beginning with his Geometrie der Lage (1847), von Staudt sought to eliminate
these metric considerations from projective geometry, on purity grounds:

I have tried in this work to make the geometry of position into an independent science that
does not require measurement.

Though there were gaps concerning continuity that were later filled by others,
von Staudt’s work yielded a means of defining projective coordinates by purely
projective means. The key to his accomplishment was a particular construction
(“quadrilateral construction”), which provides a way, given any three collinear
points, to find uniquely a fourth point on that line with a certain relation to the other
three points; it is then said that the four points together form a “harmonic range”
(a notion that we do not need to define here). The uniqueness of the fourth harmonic
point can be shown by metric considerations. Following his aim of purifying
projective geometry of metric considerations, von Staudt proved the uniqueness of
the fourth harmonic point by purely projective means, in particular by appealing to
Desargues’ theorem whose statement does not involve any metric notion.

Desargues’ Plane Theorem If two triangles lying in the same plane are such
that the lines connecting their corresponding vertices intersect at a point, then the
intersections of their corresponding sides are collinear.

As we have already mentioned, Desargues’ original proof appeals to metric
notions, since it appealed to congruence by way of Menelaus’ theorem. Von Staudt’s
aim was to purify projective geometry of metric considerations and, in particular, to
define projective coordinates by purely projective means. The key to doing so was
Desargues’ theorem.

His aim would only have been satisfied if he had a nonmetrical proof of
Desargues’ theorem. However, Desargues had also stated a solid version of the
result.

Desargues’ Solid Theorem If two triangles lying in different planes are such
that the lines connecting their corresponding vertices intersect at a point, then the
intersections of their corresponding sides are collinear.

The planar Desargues’ theorem can be proved by “projecting” the solid version
into the plane, as Poncelet showed in his Traité des propriétés projectives des
figures (1822). This proof is purely projective, avoiding metrical considerations (all
one needs to observe is that two planes intersect at a line and that the lines that
connect the vertices of the triangles lying on different planes can only meet in the
line of intersection of the two planes). Hence, von Staudt was able to achieve his
aim by using this proof. However, this proof draws on considerations from solid
geometry, despite the fact that Desargues’ theorem concerns just triangles in the
plane.

We have thus reached the point where the fusionist debate began. That fusionism
had to be a necessity in the foundations of projective geometry was also the
conclusion reached by Felix Klein in his article Über die sogenannte Nicht-
Euklidische Geometrie (1873).
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In an influential 1891 lecture (Wiener 1892) remarked, without proof, that
Desargues’ theorem cannot be proved by purely planar projective considerations,
observing that “this area of geometry is not self-contained.” Peano and Hilbert took
up this metamathematical question shortly thereafter.

2.4 Peano and Hilbert

The key to Klein’s observation on the necessity of appealing to space in the
foundations of projective geometry is Beltrami’s theorem (1865), which says that a
“smooth” (i.e., Riemannian) surface has constant curvature if and only if it can be
mapped to a plane so that the geodesics of that surface are mapped to straight lines
in that plane. The result applies to the Euclidean plane and even to the projective
plane. Klein understood Beltrami’s theorem as asserting that a Riemannian surface
of nonconstant curvature cannot be represented on a plane so that the geodesics of
that surface “behave” like straight lines in the plane.

In 1894 Peano developed this suggestion, sketching a proof that his axioms
of planar geometry have models in which Desargues’ theorem fails by appealing
to Riemannian surfaces of nonconstant curvature. Hence, his planar axioms are
provably insufficient for proving Desargues’ theorem. Once solid axioms are added,
Peano’s axioms prove Desargues’ theorem as expected.

In lectures delivered in 1898–1899, Hilbert developed his own axiomatization for
geometry, dividing his axioms into classes I (incidence), II (order), III (parallel), IV
(congruence), and V (continuity). He observed that Desargues’ theorem is provable
in this system using spatial axioms, or alternately using axioms of congruence. He
then showed that Desargues’ theorem cannot be proved in plane geometry (in fact,
from axioms I 1–2, II, III, IV 1–5, and V), by presenting explicitly a model in which
these axioms are satisfied but Desargues’ theorem is not. Hence, it follows that his
planar axioms (I 1–2) are provably insufficient for proving Desargues’ theorem.

In his lectures of 1898–1899 (Lectures on Euclidean Geometry), Hilbert com-
mented upon the result by emphasizing the importance for the issue of purity of
methods:

This theorem gives us an opportunity now to discuss an important issue. The content [Inhalt]
of Desargues’ theorem belongs completely to planar geometry; for its proof we needed to
use space. Therefore we are for the first time in a position to put into practice a critique
of means of proof. In modern mathematics such criticism is raised very often, where the
aim is to preserve the purity of method [die Reinheit der Methode], i.e. to prove theorems if
possible using means that are suggested by [nahe gelegt] the content of the theorem. (Hallett
and Majer 2004, pp. 315–316)

What is critical for a proof’s being pure or not, then, is whether the means it
draws upon are “suggested by the content of the theorem” being proved. Since
the “content of Desargues’ theorem belongs completely to planar geometry,” solid
considerations would not appear to be “suggested by the content of the theorem,”
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and therefore, it would seem that Hilbert judged solid proofs of Desargues’ theorem
impure. Hilbert also showed that if a planar geometry satisfies axioms I 1–2 (the
planar incidence axioms), II (the order axioms), and III (the parallel axiom), then
Desargues’ theorem is necessary and sufficient for that planar geometry to be an
element of a spatial geometry satisfying all the incidence axioms I in addition to the
axioms of II and III. That is, a plane satisfying axioms I 1–2, II, and III, and also
satisfying Desargues’ theorem, will also satisfy the spatial incidence axioms I 3–7.
Hilbert proved this by showing, firstly, how, in a planar geometry satisfying axioms
I 1–2, II, III, and Desargues’ theorem, to construct an algebra of segments that is
an ordered division ring and, secondly, how this ordered division ring can be used
to construct a model of axioms of I, II, and III, that is, a model of spatial geometry.
(Order is inessential here.)

Here is how Hilbert summarized the situation in his 1898–1899 lectures:

Then the Desargues Theorem would be the very condition which guarantees that the plane
itself is distinguished in space, and we could say that everything which is provable in space
is already provable in the plane from Desargues. (Hallett and Majer 2004, p. 240)

In other words, Desargues’ theorem can be used as a replacement for Hilbert’s
solid axioms: it has the same provable consequences as those axioms in Hilbert’s
axiomatic system (see Hilbert 1899, 1971).

2.5 The Problem of Content

In a recent article (Hallett 2008) and in his introductions to the Hilbert’s lectures on
geometry published in the first volume of the Hilbert Editions (Hallett and Majer
2004), Michael Hallett has drawn some interesting consequences, which in our
opinion are questionable, on the notion of the content of Desargues’ theorem and on
the issue of purity of methods. Hallett writes:

What this shows is that the Planar Desargues’s Theorem is a sufficient condition for the
orderly incidence of lines and planes, in the sense that it can be used to generate a space.
We thus have an explanation for why the Planar Desargues’s Theorem cannot be proved
from planar axioms alone: the Planar Desargues’s Theorem appears to have spatial content.
(Hallett 2008, p. 229)

Moreover, in his introduction to Hilbert’s 1898–1899 lectures, Hallett writes that
Hilbert’s work “reveals that Desargues’ planar Theorem has hidden spatial content,
perhaps showing that the spatial proof of the Planar Theorem does not violate
‘Reinheit’ after all” (pp. 227–228). Thus, Hallett believes that Hilbert’s work should
cause us to revise our judgments of what counts as a pure proof of Desargues’
theorem. While solid considerations would seem “at first sight” to be impure for
proving Desargues’ theorem, Hallett infers from Hilbert’s work reveals that they are
not, for Desargues’ theorem is in fact a theorem with (hidden) solid content.

This position defended by Hallett appeals to the notion of “hidden higher-
order content” developed by Dan Isaacson in the context of some articles aimed at
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providing an interpretation of Gödel’s incompleteness results for Peano arithmetic
(Isaacson 1987). In our paper (Arana and Mancosu 2012), we develop a detailed
analysis both of Isaacson’s notion of “hidden higher-order content” as well as the
consequences drawn from it by Hallett with respect to the issue of purity of methods.

The central aspect of the issue is that the notion of content proposed by Hallett, on
the basis of the Hilbertian analysis of Desargues’ theorem, is based on the deductive
role played by this theorem with an axiomatic context. This notion is very close
to that of content as deductive equivalence (within an axiomatic system) that had
been proposed by Carnap. Hallett sees in Desargues’ plane theorem a statement
with (hidden) solid content exactly because, within a certain axiomatic theory,
Desargues’ theorem plays the same inferential role as the space incidence axioms.

Our criticism to Hallett’s position is based on the following five objections, which
we simply state here without giving any arguments (for which we refer to Arana and
Mancosu 2012):

(a) If the content of Desargues’ theorem were spatial, it would seem to follow that
an investigator with no beliefs or commitments concerning space (such as a
character of Flatland) could not understand Desargues’ theorem, which seems
implausible.

(b) To claim that Desargues’ plane theorem has a solid content on account of the
inferential role it plays in Hilbert’s axiomatic system requires a deep metathe-
oretical analysis such as the one carried out by Hilbert. But what to say then
of statements that have not yet been subjected to such a deep metatheoretical
analysis or, worse, for which we don’t know whether they are true or false (such
as the twin prime conjecture)? Intuitively, we understand the content of the twin
prime conjecture even though we have no metatheoretical analysis of it.

(c) Hallett’s view implies a radical contextualism regarding the content of
statements like Desargues’ theorem. The inferential role of Desargues theorem
within metrical geometries is quite different than its inferential role within
projective geometry; in the former, spatial considerations are unnecessary,
while in the latter they are necessary. If Hallett were correct, the content of
Desargues’ theorem would change dramatically depending on which axiomatic
context we use it in, without its formulation changing at all.

(d) Hallett infers that the spatial content “revealed” by Hilbert’s work belongs
specifically to Desargues’ theorem, when Hilbert’s work shows only that
Desargues’ theorem added to the planar axioms of classes I, II, and III has the
same spatial consequences as the spatial axioms of those classes. Even if it is
reasonable to maintain that the planar axioms plus Desargues’ theorem have
tacit spatial content on account of their shared inferential role (which we have
contested), it is illicit to single out that content as belonging to Desargues’
theorem. For those spatial consequences belong only to the axiomatic system
as a whole, not to Desargues’ theorem alone. While it is true that without
Desargues’ theorem these spatial consequences are not ensured, it is also true
that Desargues’ theorem alone does not ensure them. Hence it would be more
accurate to say that these spatial consequences are partly the result of the planar
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axioms and partly the result of Desargues’ theorem. Indeed, Hallett’s argument
would just as well establish that one of the planar axioms, say I.1, has tacit
spatial content.

(e) From the analysis of the notion of content defended by Hallett, it follows that
every theorem has a pure proof. It seems to us implausible that this can be
true a priori, simply as a consequence of the analysis of the notion of content.
Purity would end up being trivialized.

We conclude that the notion of content offered by Hallett can be of interest
for other theoretical goals but not for the clarification of the ascription of purity
that are often found in mathematical practice. The notion of content that in our
opinion is useful for clarifying judgments about purity of proofs must be tied to the
understanding of the meaning of the statement of a theorem and not to its inferential
role within an axiomatic system. Moreover, our position on Desargues’ theorem
seems to us to be identical to the one defended by Hilbert: Desargues’ plane theorem
does not have a pure proof in a projective context.
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Chapter 3
Formalization and Intuition in Husserl’s
Raumbuch

Edoardo Caracciolo

3.1 The Philosophie der Arithmetik and the Origins
of the Raumbuch

The Philosophie der Arithmetik was published in 1891, but it marks the convergence
point among contrasting theoretical issues dating from 1886, when Husserl moved
to Halle and started collaborating with Carl Stumpf in order to obtain his Habil-
itation. During this time, Husserl’s ideas start to diverge from those inherited by
his former master Karl Weierstrass.1 Husserl, indeed, declares his intention to carry
on Weierstrass’ work using the theoretical tools that he inherited from his second
master, Franz Brentano.2 So Husserl dedicated the first part of the Philosophie der

This paper deals with the methodological issues that Husserl encountered when he was developing
his first space theory. In particular, the present paper tries to throw some light on the impact of
intuition and formalization on early Husserl’s geometrical studies. In Il problema dello spazio nel
primo Husserl (“Rivista di Filosofia,” vol. CIV, n. 2. agosto 2013), instead, I offer an historical
overview on the Raumbuch, mostly focusing on the psychological issues, like Husserl’s critique of
Helmholtz’s space theory.
1Cf. Miller, J.P. 1982. Number in presence and absence. A study of Husserl’s philosophy and
mathematichs, 11. The Hague/Boston/London: Nijhoff.
2Cf. HUA XII pp. 294–295. The Philosophie der Arithmetik reflects on the foundation of arithmetic
that, in the first part of the book, is defined as “science of number,” a subject based on the concept of
positive integer. Indeed, this definition is originated from Weierstrass’s studies. Claudio Majolino
explains in which way Brentanian psychology answers to an exigency of intuitive researches that
Weierstrass left unfulfilled. Cf. Majolino, C. 2004. Declinazioni dello spazio, sul rapporto tra
spazialità percettiva e spazialità geometrica nel primo Husserl. Paradigmi XXII(64/65): 223–238.
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Arithmetik to develop a set of psychological analysis aiming to discover the intuitive
roots of the concept of number. Actually, after a few chapters, it appears obvious
that this inquiry layout rests on a theory of representation that cannot handle those
numbers lacking of corresponding intuition (e.g., imaginary and irrational numbers).

After the failure of this first research trend, the second part of the Philosophie
der Arithmetik contains the ideas that Husserl developed during his lectureship as
Privatdozent in Halle.3 Here, the arithmetical method is presented as a computa-
tional technique (Rechenkunst) that “can break completely free of the conceptual
substrata” focusing on the mode of relation (in der Weise der Beziehung). In this
sense, it is a “formal processing method, i.e., algorithmic,” that is

a system of formal rules by means of which mathematical problems can be solved in purely
mechanical operations, i.e. we can find unknown numbers and numerical relations starting
from known ones.4

The Rechenkunst is a valuable method because, filtering all kinds of numbers
within the same algorithmic system, it can deal with all conceivable types of
numbers: so, it avoids the impasse affecting the first section of the book.5

In the preface to Philosophie der Arithmetik, Husserl alludes to a second
volume that should contain logical researches on the arithmetical algorithm and
a philosophical theory of Euclidean geometry, both sharing the same principles
(Grundgedanken).6 It is possible that he devises to study the applicability of al-
gorithms to the geometrical field, being interested in a frame of research connecting
theory of geometry, formal arithmetic, and manifold theory.7

In the same time, Husserl plans “[ : : : ] to communicate more detailed investiga-
tions concerning symbolic representations and the methods of cognition grounded
thereon”8 in an appendix to the second volume. Both algorithms and general
psychological representation fall within the domain of symbolic representations

For an overall view on Husserl’s juvenile years cf. Rollinger, R.D. 1999. Husserl’s position in the
school of Brentano, Phaenomenologica, 15–21. Dordrecht: Kluwer.
3Douglas Willard hypothesize that this second perspective was influenced by Schröder’s algebra
of logic: indeed, Husserl was writing a (negative) review on his Vorlesungen über die Algebra der
Logik during the composition of the Philosophie der Arithmetik, last chapter. (cf. D. Willard, D.
1984. Logic and the objectivity of knowledge. A study in Husserl’ early philosophy, 109. Athens:
Ohio University Press.).
4HUA XII p. 132; cf. also pp. 258, 346. For example, numbering is a mechanical operation that
“[ : : : ] substitutes the names for the concepts, and then by means of the systematic of names and
a purely external process, derives names from names, in the course of which there finally issue
names whose conceptual interpretation necessarily yelds the result sought” (HUA XII p. 239). On
this matter, cf. also Sinigaglia, C. 2000. La seduzione dello spazio, 64–66. Milano: Unicopli.
5Cf. HUA XII p. 283.
6Cf. HUA XII pp. 7–8.
7Cf. HUA XXI pp. 244–249, 396. Cf. also Sinigaglia, C. La seduzione dello spazio, 61, op. cit.
8HUA XII p. 193.
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because they are both inauthentic representations.9 The link between arithmetic and
psychology becomes even more clear considering that arithmetica universalis is part
of formal logic; the latter is still conceived as a Brentanian Kunstlehre – the art that
detects the proper judgment on the base of psychological categories.10

The convergence between arithmetical and psychological studies appears quite
clearly in geometry because space can be described by special algorithms or
analyzed as a psychological representation. At first, Husserl will deal with the
formal side of the space problem elaborating a critique of analytical geometry.
The psychological perspective, instead, will be developed in the later Raumbuch.
For these reasons, the Raumbuch can be regarded as the last outcome of the
philosophical theory of Euclidean geometry that should have been presented in the
second volume of the Philosophie der Arithmetik.11

3.2 The Raumbuch Affair

Before the nineteenth century, geometers believed that Euclidean geometry was
based on intuitive space: they only argued on the origin of space representation.
Husserl gives a brief account of the old Raumproblem (space problem) in some
notes dated back to 1893: he distinguishes the apriorist faction – according to
which space concepts are already present before any experience (i.e., Kant, König,
Baumann, Sigwart), from the empiricist one, according to which space concepts are
abstractions or idealizations of empirical spatial figures (i.e., Comte, Mill, Taine,
Beneke).12

Then, the spread of non-Euclidean geometries complicated the connection
between geometrical and intuitive space, showing that geometrical concepts may
not be grounded on intuition.13 This situation urged to perform a new philosophical

9In Zur Logik der Zeichen, Husserl explores the wide range of symbolic representations. Among
them he numbers the artificial signs (Künstliche Zeichen) of general arithmetic and those
conceptual second class signs (symbolichen Vorstellungen der Zweiten Klasse) standing for things
that cannot be properly represented; cf. HUA XXI pp. 349–350, 354–356.
10Cf. HUA XXI p. 248. On the relation between Husserl and the brentanian logic, cf. De Boer, T.
1978. The development of Husserl’s thought, 91–93. Den Haag: Nijhoff.
11Cf. Argentieri, N. 2008. Matematica e fenomenologia dello spazio. In Forma e materia dello
spazio, dialogo con Edmund Husserl, ed. P. Natorp, 246, edited by N. Argentieri. Napoli:
Bibliopolis, Corrado Sinigaglia proposes a close analysis of the relations between the Philosophie
der Arithmetik and the Raumbuch; cf. Sinigaglia, C. 2001. La libera variazione delle forme. Husserl
lettore di Riemann. In Logica e politica. Per Marco Mondadori, Fondazione Arnoldo e Alberto
Mondadori, edited by M. D’Agostino, G. Giorello, and S. Veca, 377–403. Milano: il Saggiatore.
12Cf. HUA XXI pp. 285–286.
13Non-Euclidean geometries deny the parallel postulate. This postulate states that if a straight line
falling on two straight lines makes the interior angles on the same side less than two right angles,
then the two straight lines, if produced indefinitely, meet on that side on which the angles are less
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foundation of geometry, since it offered new perspectives on the issue, therefore
updating the classical dispute on the Raumproblem. Indeed, non-Euclidean ideas
were born within a mathematical frame of discussion but reverberated through the
scientific world stimulating new interpretation of space representation from bio-
logical, psychological, and philosophical points of view. Thus, some philosophers
dealt with non-Euclidean geometries, opening the way to a common research field
for geometry and philosophy. For example, both Hermann Lotze’s and Hermann
von Helmholtz’s investigations conclude that our space representation does not
reflect the external space. According to Lotze, space is the form through which
mind perceives the external space acting upon the mind itself: since that form
coincides with Euclidean space, a non-Euclidean intuition is just impossible.14

According to Helmholtz too, space representation is consistent with Euclidean law
since it originates from the properties of an Euclidean world affecting our nerves.
Nevertheless, we can suppose that a stimulus generated by a non-Euclidean world
could induce a non-Euclidean intuition.15

Having this debate in the background, Husserl has been interested in geometry
at least since 1886, when he writes a note on homogeneous and heterogeneous
continua. During the 1889–1890 winter semester, he also delivers lectures on the
Grundproblem der Geometrie, so at the time, he is already dealing with space
from a mathematical point of view.16 Between 1892 and 1894, he writes down a
collection of notes in which he deals with the psychological/philosophical side of
the Raumproblem, outlining his first theory of space. This work is approximately
planned in a brief draft called “Spacebook diary” (das Tagebuch zum Raumbuch);
following this clue, Ingeborg Strohmeyer gathered the recommended passages and
shaped them in a quite organic treatise that has been published in Husserliana XXI
volume.17

than the two right angles. Cf. M. Kline, M. 1972. Mathematical thought from ancient to modern
times, vol. I, p. 59, vol. III, p. 865. New York/Oxford: Oxford University Press. On non-Euclidean
geometries paternity, cf. Kline, M. Mathematical thought from ancient to modern times, vol. III,
869–870, op. cit.
14Cf. Torretti, R. 1984. Philosophy of geometry from Riemann to Poincaré, 285–291. Dordrecht:
Reidel. On the fracture between things and representation, cf. Lotze, H. 1899. Microcosmus: An
essay concerning man and his relation to the world, 344–353, 573–578. Edinburgh: T. & T. Clark.
15Cf. Helmholtz, H. 1867. Handbuch der Physiologischen Optik, 194. Leipzig: Voss; Helmholtz,
H. 1876. The origin and the meaning of geometrical axioms. Mind 1(3): 316–318. On the relation
between Lotze and Helmholtz, cf. Gehlhaar, S. 1991. Die Frühepositivistsche (Helmholtz) und
phänomenologische (Husserl) Revision der Kantischen Erkenntnislehre, 30. Cuxhaven: Junghans-
Verlag.
16The note can be found in Ms. K I 50/47a. The Grundproblem der Geometrie is published in HUA
XXI pp. 312–347.
17Cf. HUA XXI pp. 262–311. The Raumbuch structure is presented in a note published in HUA
XXI pp. 402–404. For an historical panorama on the Raumbuch birth and on the Tagebuch zum
Raumbuch, cf. the Textkritische Anmerkungen published in HUA XXI pp. 469, 485–486; HUA
D. I pp. 36–37; Mohanty, J. N. 1999. The development of husserl’s thought. In The Cambridge
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Actually, Husserl never finishes nor publishes the Raumbuch. Moreover it is
impossible to find a direct reference to the Raumbuch in later published books,
whereas private notes and letters only report indirect quotes.18 Probably, obscure
concepts and contradictions condemned the Raumbuch to a damnatio memoriae
and distracted the attention of scholars from a juvenile work that, instead, deserves
a careful investigation. In the Raumbuch, in fact, Husserl deals with some core
themes of the forthcoming phenomenology, giving answers that will be a (negative)
paradigm for future investigations.

This paper tries to clarify how the relation between intuition and formalization
changes in the context of the first Husserlian space theory. This would also throw
light on the reasons that led Husserl to modify his approach to space representation
in mature phenomenology.

3.3 Non-Euclidean Geometries: Husserl Against
the Analytical Way

In the early 1890s, Husserl opts for a formal approach to geometry. In his
expectation, it should have granted a deep understanding of both Euclidean and
non-Euclidean spaces, because it should have highlighted spatial structures instead
of material qualities. This approach was originally developed by Descartes’ ana-
lytical geometry – a science that solves geometrical problems reducing them to
algebraic equations. It actually translates the intuitive properties of figures into
a formal/algorithmic language that describes space within the quantitative frame
of coordinates.19 Here emerges a connection between what is formal and what is
analytical that will be further developed in the Logische Untersuchungen and in
the Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie.
In these works, Husserl defines “formalization” (Formalisierung) as the procedure
eliminating any material content from the proposition. In the end, we obtain a
formal structure such that we can replace all material contents with an empty
formal “whatever” without altering the logical form of the proposition.20 Despite
the early notion of “formal,” still overlaps the notion of “algorithmic” inherited by
the Philosophie der Arithmetik, and despite the word “formalization” has not been
coined yet, Husserl already conceives the first step towards a formal representation

companion to Husserl, edited by B. Smith and D. W. Smith, 51. Cambridge: Cambridge University
Press.
18For example, cf. HUA D. III/5 p. 80.
19Husserl uses the expression “analytical geometry” in a standard geometrical way; cf. HUA XXI
pp. 232, 323.
20Cf. HUA XIX p. 259. On the opposition between analytical and synthetical truths, cf. HUA 3-1
pp. 22, 30.
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as an elimination of any material content. He describes the geometrical structure
resulting from this process in a letter to Paul Natorp:

I also conceived the plane as a peculiar double continuous series, the space as a peculiar
triple continuous series. [ : : : ] Anyway, in my opinion too, distance and direction were
essential elements of the topoidal manifold.21

He remembers that at the time he was looking among complex numbers for
arithmetic expressions (arithmetische Ausdrucke) properly describing the order of
the relations in a plane surface (Ordnungsverhaltnisse der Ebene). Although Husserl
left no coherent and complete treatise on the matter, we can find some interesting
hints in notes, lectures, and letters.22 In the abovementioned letter, for instance, he
pays homage to Hermann Grassmann’s Ausdehnungslehre (extension theory), a sort
of geometrical calculus that, without coordinates and intuition, deals with space
as an ndimensional vector space.23 He also acknowledges the influence that Carl
Friedrich Gauss’ study on complex numbers exerted on him.

Gauss, indeed, plays an important role in Husserl’s mathematical formation.
An early Husserl’s lecture on the history of geometry presents Gauss’ theory of
curvature as the “handhold” (Handhabe) of Bernhard Riemann’s geometry.24 In
Gauss’ geometry, surface properties are determined in an analytical and intrinsic
way, i.e., without considering the surrounding space. Thus, instead of conceiving
the surface as an outline of a body, this approach studies surface as a body with one
indefinite small dimension. Surface metric (lengths, angles, areas) is determined
only by its curvature that, in turn, is defined by an equation describing a geodetic
line. Riemann and Beltrami deduced from Gauss’ studies that since surface metric is
not affected by the surrounding (Euclidean) metric, then such a surface can possibly
display a non-Euclidean metric.25

In Über die Hypothesen, welche der Geometrie zugrunde liegen, Riemann
formulates a concept of space that, according to him, should grant an ultimate
understanding of space. The multiply extended magnitude is a totally abstract
concept “in which space magnitudes are included”26 as lower order concepts.

21HUA XXI pp. 396–397.
22Cf. HUA XXI p. 396. Cf. Hartimo, M.H. 2007. Towards completeness: Husserl on theories of
manifolds 1890–1901. Synthese 283; Hartimo, M.H. 2008. From geometry to phenomenology.
Synthese 162: 226–227. Selected manuscripts have been published in HUA XXI pp. 234–243,
312–347.
23Husserl reads carefully and annotates his 1878 reprint of the 1844 version of the Aus-
dehnungslehre (Grassman, H. 1878. Die lineale Ausdehnungslehre. Leipzig: Otto Wigand). Cf.
Hartimo, From geometry to phenomenology, op. cit., pp. 225–233.
24Cf. HUA XXI p. 323. For an historical account on non-Euclidean geometry, cf. HUA XXI
pp. 322–347.
25On this matter, cf. Sinigaglia, C. La seduzione dello spazio, 24–25, op. cit.
26Cf. Riemann, B. 1868. Über die Hypothesen, welche der Geometrie zugrunde liegen. In
Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, Vol. XIII, 133.
Göttingen.
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By a process of mathematical determination, we can shape a multiply extended
magnitude according to Euclidean or non-Euclidean metrics: in the first case, we
produce a specific Euclidean magnitude, and in the second case, we obtain a non-
Euclidean space configuration. In this sense, Euclidean space is “only a particular
case of a triply extended magnitude,” and therefore, it has no logical priority over
other spatial configurations.27

Husserl expresses ambivalent opinions on Riemann’s work: although in the
Prolegomena zur reinen Logik he recognizes Riemann’s theory as a preliminary
step towards pure logic, he raises doubts about that same theory in notes dated
back to 1890–1891.28 For instance, he states that flat manifolds have a logical
priority over curved ones because we think curvity as a variation of flatness and,
therefore, we can think flatness without thinking curvity.29 So, if non-Euclidean
systems are artificial constructions and mere variations of Euclidean geometry, then
Riemann’s theory inverts premise (flatness) and consequence (curvity).30 Moreover,
it has no philosophical nor descriptive value since it does not acknowledges that
the logical priority of Euclidean geometry is founded on an ontological priority:
Euclidean plane geometry perfectly describes real space because it embodies the
logical structure organizing real space.

In 1892, Husserl still lingers on Riemannian theories: he now focuses on the
Riemann-Helmholtz’s definition of a rigid body as an ideal system of moving points
described by a fixed equation.31 According to Husserl, this definition implicitly
reduces the distance between two points to the equation describing the distance, to
numbers.32 Such a definition mistakes “intrinsic” (innere) relations for “extrinsic”
(äußere) ones. In the latter, connections are mediated by a third element whose
genus (Gattung) differs from the genus of the two terms (e.g., the mathematical
expression that binds together two geometrical points): according to Riemann and
Helmholtz, geometrical distance belongs to this kind of relation. In intrinsic or
continuous relations, instead, all the elements belong to the same genus: according
to Husserl, geometrical distance belongs to this kind of relation, because both the

27Ibidem. On this matter, cf. Kaiser-El-Safti, M. Fenomenologia trascendentale versus iletica. Psi-
cologia e fenomenologia in Husserl e Stumpf. In Carl Stumpf e la fenomenologia dell’esperienza
immediata, edited by S. Besoli and R. Martinelli, Discipline Filosofiche, Anno XI, numero 2, 247.
Macerata: Quodlibet.
28HUA XVIII p. 252. Cf. also HUA D. III/1 p. 11. Cf. Parrocchia, D. 1994. La forme générale de
la philosophie husserlienne et la théorie des multiplicités. Kairos 5: 137–140.
29Cf. HUA XXI p. 345.
30Cf. HUA XXI p. 344. For a deeper examination of Husserl’s remarks on Riemann’s argu-
ments, cf. L. Boi, Le problème mathèmatique de l’espace, Springer, Berlin/Heidelberg, 1995,
pp. 241–243; Sinigaglia, C. La libera variazione delle forme. Husserl lettore di Riemann, 387–388,
op. cit.; Hartimo, M. H. From geometry to phenomenology, op. cit., p. 228.
31Cf. Helmholtz, H. 1921. Über die Thatsachen, die der Geometrie zu Grunde liegen (1868). In
Schriften zur Erkenntnistheorie, edited by M. Schlick and P. Hertz, 55. New York: Springer. Cf.
also Torretti, R. Philosophy of geometry from Riemann to Poincaré, 156–157, op. cit.
32Cf. HUA XXI p. 409.
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mediating term (i.e. the distance) and the points are spatial elements. To be more
precise, distance is a “magnitude moment” (Gröˇenmoment), a spatial aspect of a
continuous relation: space, in fact, is a continuous manifold, a “manifold in which
each couple of elements is connected by a continuous relation.”

So, Riemann-Helmholtz’s analytical description of space totally misses the
essential features of space and reduces it to a numerical manifold � that is a
mere analytical analogue of a spatial manifold.33 Husserl seems actually to agree
with Nicolaj Lobačevsky who, in his New foundations of geometry, wished that
an extensive deploy of intuition supplanted the formal approach of the analytic
way, reestablished the role of intuition in geometry, and opened a new synthetic
way.34 As Husserl explains in Geschichtlicher Überblick über die Grundprobleme
der Geometrie, synthetic geometry has been developed by Lobačevsky as an
empirical Naturwissenschaft relying on intuition.35 Similarly, in the early nineties,
Husserl starts to develop psychological studies concerning spatial intuition: he aims
to throw light on those spatial sensations grounding geometrical concepts.36 At
this point, Husserl’s investigations can no longer remain within the mathematical
domain because “mathematicians are satisfied when they can calculate or build. The
philosopher wants to understand too.”37 And the analytical method does not grant
such a philosophical understanding of space.

Then, after a season of studies approaching space from a formal/analytical point
of view, Husserl starts a new kind of analysis inspired by Brentano’s descriptive
psychology and by synthetic geometry: he leaves the analytical way and he takes
the “other way,”38 the one focusing on the intuitive contents of space representation.

33Cf. HUA XXI pp. 348, 407–410. Leaving aside the debate about Husserl’s theory of manifold, it
would be useful to refer to the other definitions of manifold proposed in the Prolegomena (cf. HUA
XVIII p. 249) and in the Philosophie der Arithmetik (cf. HUA XII p. 81). Husserl himself, in a
footnote of the Ideen, provides a brief historical-critical examination of the concept of manifold in
his former works: cf. HUA III/1. On the riemannian Zahlenmannigfaltigkeit, cf. Brisart, R. 2003.
Le Général et l’abstrait: sur la maturation des Recherces Logiques de Husserl. In Aux origines de
la phénoménologie, edited by D. Fisette e S. Lapointe, 39. Paris: Vrin; Majolino, C. Declinazioni
dello spazio, sul rapporto tra spazialità percettiva e spazialità geometrica nel primo Husserl,
228–229, op. cit.; Sinigaglia, C. La seduzione dello spazio, 57–58n, op. cit.
34Lobačevsky, N. 1898. Neue Anfangsgründe der Geometrie mit einer vollständigen Theorie der
Parallellinien. In Zwei geometrische abhandlungen aus dem russischen uebersetzt, mit anmerkun-
gen und mit einer biographie des verfassers, edited by F. Engel and P. Stäckel, 80–82. Leipzig:
Teubner.
35Cf. HUA XXI pp. 312–314, 322–323.
36This last perspective represents the core idea of the Raumbuch and seems to echoes Lobačevsky’s
opinion about the importance of synthesis in mathematics, whose “constructive procedure”
has to clarify “those representations that are directly connected to the early concepts of our
mind” (Lobačevsky, N. Neue Anfangsgründe der Geometrie mit einer vollständigen Theorie der
Parallellinien, 80–81, op. cit.).
37HUA XXI p. 411.
38HUA D. III/1 p. 11.
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3.4 Mereology, Material a Priori, and Idealization:
The Other Way

Several passages of the Raumbuch witness the essential role that intuitive qualities
play in the descriptive analysis of space – an aspect shared with Stumpf’s Über den
psychologischen Ursprung der Raumvorstellung.39 And just like Stumpf, Husserl
conceives space as a multisided whole.

Husserl, in fact, notices that the “space of the world” (Weltraum) is composed
by a variety of places connected through a network of symbolic cross-references40:
for instance, the observation of the wall naturally leads to perceive the room; the
exploration of the room reminds that this last one is part of the flat that, in turn, is a
portion of the house located in the neighborhood and so on until the process reaches
the space that contains every places, i.e., the space of the world. This connection
between places is not only possible but also necessary because each place neither
can be, nor can be perceived, nor can be thought without surrounding places.
Therefore, each intuitive representation of space contains a symbolical reference
to the surrounding space.41

The smallest part of this spatial mosaic is “spatiality” (das Räumliche), a basic
extent that is the “abstract substratum” of every intuitive quality.42 This argumenta-
tion was previously deploid by Stumpf against the Kantian thesis according to which
space would be the form of sensibility organizing phenomenical multiplicity.43

According to Stumpf and Husserl, the concept of space simply highlights the
structure of real space, the organization of raw empirical data instead of shaping it.
For instance, both extent and visual/tactile qualities display their own configuration:
they are “abstract elements” or “grounded contents” because we cannot conceive

39C. Stumpf, C. 1873. Über den psychologischen Ursprung der Raumvorstellung. Leipzig: Verlag
von S. Hirzel.
40Cf. HUA XXI p. 281.
41This argument may remind a Kantian thesis, but, actually, the Raumbuch displays an anti-Kantian
perspective on space. Kant wanted to prove the priority of spatial form over spatial object showing
that object cannot be displayed without a surrounding space, whereas space itself can be conceived
as object-free. Instead, Husserl speaks in terms of extension: the single fraction of space is an
extension as well as the world space. Obviously, the first extension is part of the second one,
but – here it is the difference from kantianism – the single place cannot be conceived without
conceiving its surrounding places as well as the world space cannot be conceived without its
composing parts. On this subject, cf. Kant, I. Kritik der reinen Vernunft, A24, B39. This thesis
anticipates, in a different theoretical context, an idea that Husserl will elaborate in the Logischen
Untersuchungen. There he notices that every representation has both intuitive and symbolical sides,
each one contributing in a different degree to the whole representation. Cf. HUA XIX pp. 610–614.
42HUA XXI p. 276.
43Cf. Kant, I. Kritik der reinen Vernunft, A 99, 107, 120n; B 201-2n, 218-9, 129–130, 134–135.
Victor Popescu highlights the subtle differences between Stumpf’s and Husserl’s mereologies: cf.
Popescu, V. 2003. Espace et mouvement chez Stumpf et Husserl, une approche méréologique.
Studia Phaenomenologica III(1–2): 115–133.
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extent without color in such a way “that the suppression of the former implies
the suppression of the latter.”44 Besides, extent and qualities are connected in a
subtle way. For example, colors fade or shine depending on surface illumination
and according to a priori material laws; on the other hand, when color is obscured,
surface disappears as well. These relations do not concern formal consistence
between parts (contra Kant) and they are neither grounded on habits (contra
Empiricism). Instead, they express an objective configuration that does not change
depending on the intentional subject.45

At this basic stage of perception, we can only sense sides of things. In order
to perceive an object, we have to synthesize the separated extent into a stable
composition of visual sides. Each perceived side contains symbolical references
pointing to the other side; the synthetic act binds these symbolic references to
the first intuition and crystallizes them into an object (e.g., the room is composed
following the references to the adjacent walls that are contained in the perception of
the first wall). This gradual composition is a “teleological process” because it aims
to give a complete representation of the object, i.e., to “accomplish” this object
perception linking all its sides into a complete whole.46

Sensible objects exhibit intuitive qualities in a greater or lesser degree of
perfection: e.g., a straight line could be more or less straight and a point could
have more or less extent. We can appreciate qualitative differences because each
quality value is disposed on a teleological scale leading to an ideal perfection, to an
unperceivable “limit” (straightness, redness). As Husserl will point out in the Ideen
� within a different theoretical context – geometrical concepts as “ideas in a Kantian
way” express “something invisible.”47 In order to conceive these concepts, we
should execute an “idealization” (Idealisierung) – a process that reiterates endlessly
an “almost induction” (Quasi-Induktion) and accentuates a material content until
perfection.48 Indeed, idealization “starts from what is intuitively given and implied

44Cf. HUA XXI pp. 281, 307. Cf. also Stumpf, C. Über den psychologischen Ursprung der
Raumvorstellung, 107–109, op. cit. This distinction will be further developed in the Psychologische
Studien zur elementaren Logik (cf. HUA XXII pp. 97–98) and in the Logische Untersuchungen
(cf. HUA XIX pp. 231–240, 272–274). Cf. Kaiser-El-Safti, M. Fenomenologia trascendentale
versus iletica. Psicologia e fenomenologia in Husserl e Stumpf, 236, op. cit.; Majolino, C.
Declinazioni dello spazio, sul rapporto tra spazialità percettiva e spazialità geometrica nel primo
Husserl, 230–231, op. cit.
45According to Stumpf, those judgments describing objective relations are necessary by nature and
universally valid. Starting from those judgments, we can develop a set of a priori material laws. Cf.
Stumpf, C. 1982. Psychologie und Erkenntinistheorie. In Abhandlung der Königlich Bayerischen
Akademie der Wissenschaften, I Classe, 19, 2, München, 494–495. On this subject cf. De Palma,
V. 2001. L’a priori del contenuto. Il rovesciamento della rivoluzione copernicana in Stumpf e
Husserl. In: Carl Stumpf e la fenomenologia dell’esperienza immediata, edited by S. Besoli and
R. Martinelli, Discipline Filosofiche, XI, 2, 316–318. Macerata: Quodlibet.
46HUA XXI p. 284. Pursuing this strand of research, in the Dingvorlesung, Husserl will deal with
the problem of the tridimensional circularity of the real object.
47Cf. HUA III/1 p. 138.
48Cf. HUA XXI p. 286.
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into the nature of a thing”49 and simply enhances the material content. This happens,
for example, when we detect a median point between two points that are gradually
getting closer: when these two points became indistinguishable, the process can be
further protracted beyond “the limits of the operating potentiality of our measuring
instruments.”50 In this way, we gain the “best conditions of sight,”51 and since
our intentional activity has been freed from any subjective defect, we can finally
conceive the geometrical concept in its ideal and universal objectivity. Thus, for
instance, we conceive the concept of point subtracting extent to the point until it
becomes a dimensionless geometrical entity. The real point and the concept of point
are both dimensionless to different degree: the real object is linked to the concept
through a shared content (e.g., being dimensionless). This shared content legitimizes
the bond of continuity between object and concept, and therefore, it highlights the
intuitive roots of the concept. This kind of link is further confirmed by the continuity
of the idealization process: indeed, idealization connects concept to intuition by an
uninterrupted and iterative induction. For example, the concept of point is a product
of an uninterrupted process that subtracts extent to the point.52 Thanks to this double
line of continuity, intuition and concept are so “similar” that “intuitions symbolize
concepts, the former are not the object of concepts but symbols, more precisely
hieroglyphs of the concepts.”53

The symbolic relation between concept and intuition makes conceptual work
simpler since it allows to translate a conceptual problem into intuitive terms.
Nevertheless, intuitive evidence is not exact as formal evidence and an intuitive
demonstration is not as rigorous as a formal demonstration: by interpreting topics
of pure geometry in terms of intuitive figures we may oversimplify the issue.54 Thus,
in notes dated 1894, Husserl reconsiders the differences between the analytic and the
“other way,” and this time, he underlines the merit of the analytic side. According
to the “other way,” intuition and concept should be reconnected by idealization –
a procedure enhancing similarities: actually, many passages clearly deny there is
such a similarity. For instance, as noted down in 1893, sensible space and ideal
space have totally different features since, while we can perceive the former, we
can only think the latter. To be more precise, pure geometry is a formal domain of
contentless objects that “has to expels errors from the same foundations by a purely

49HUA XXI p. 308.
50HUA XXI p. 296. This passage reminds Lobačevsky’s New principles of geometry: “[ : : : ] it
will be possible to form any body by means of composition, reaching an identity degree beyond
which our senses stop perceiving imperfections. [ : : : ] although we get our first concepts from it
[the nature] we owe the rigor of the former to our senses imperfection” (Lobačevsky, N. Neue
Anfangsgründe der Geometrie mit einer vollständigen Theorie der Parallellinien, p. 81, op. cit.).
51HUA XXI p. 287.
52Ibidem.
53Cf. HUA XXI pp. 289–290, 294. Not only single objects but the entire intuitive space may be
used as a symbolic surrogate of pure geometrical space.
54Cf. HUA XXI p. 295.
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formal procedure and rigorous axioms and [has to] show the intuitive procedure in
its own limits [ : : : ].”55 It deals with a pure concept of space that shares almost
nothing with the empirical concept of space studied by physical geometry: we
cannot subsume the latter under the former because there is no continuity between
a formal concept, devoid of any contents, and a sensible concept, still characterized
by material contents.56 Husserl further develops this idea, and in a letter he writes to
Natorp in 1897, he numbers three concepts of space differing in formal purity. The
spatial manifold is the most formal concept; from it we deduce the tridimensional
Euclidean manifold by formal determination. The third and less formal concept
is the concept of intuitive space that cannot be derived by formal determination
because it is enriched by material contents. Thus, there are two kinds of space
concept – the formal one and the material one. Moreover, these two kinds of concept
cannot be linked through a single act of mind – neither formal determination nor
idealization.57 This last process, in fact, reveals its uselessness when it pretends to
conceive formal concept – devoid of any content – by a continuous enhancement of
intuitive contents.

3.5 Representation, Intuition, and Symbolization

Such a methodological issue implies that when Husserl was planning the Raumbuch,
he did not clearly distinguish between formal and material concepts.58 First, he
needed to clarify which kind of intellectual act could conceive concepts, that is he
needed to discover that we can visualize some kinds of concepts through an intuition
(Anschauung).59 In the Raumbuch, instead, he still relies on a slightly modified
version of the theory of representation introduced in the Philosophie der Arithmetik:
he makes a few distinctions, but he still contrasts concept and intuition.

[ : : : ] we should ask ourselves if the real representation that each time we have, has the
character of intuition or symbolization (Repräsentation) and, in this last case, if it has the
character of an intuitive or non-intuitive symbolization (proper or improper) of what we call
space. In the case of non-intuitive representations we have to investigate if they have [ : : : ]
the character of conceptual representation, which relation they have with corresponding
intuitions, if they can be grounded on these last ones or if [ : : : ] they necessarily lack of
corresponding intuition.60

55HUA XXI pp. 271, 295–296.
56Cf. HUA XXI p. 296. This passage anticipates the distinction between physical and pure
geometry in the Prolegomena; cf. HUA XVIII p. 251.
57Cf. HUA D. III/5 pp. 53–54.
58Cf. Brisart, R. Le Général et l’abstrait: sur la maturation des Recherces Logiques de Husserl,
39–40, op. cit.
59This idea shows up in the Psychologische Studien zur elementaren Logik, cf. HUA XXII p. 104.
60HUA XXI p. 262.
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Husserl still defines intuition and symbolization according to the guidelines of
the Philosophie der Arithmetik:

If a content is not directly given that which it is, but it is only indirectly given through signs
that univocally characterize it, then, instead of having an authentic representation, we have
a symbolic representation of it [ : : : ].61

So, because of symbolization mechanics, we can represent concepts through
intuitions standing for them: for example, a real point may stand for the concept
of point because watching the former we catch a symbolic link to the latter. This
connection implies that intuitions and concepts are both different and similar in a
way that Husserl does not further clarify.

Furthermore, symbolization (whose content is not directly given to us) is defined
as a mere negation of intuition (whose content is directly given to us), and therefore,
its representational domain is reduced to what is not intuitive. As a consequence,
symbolization has not an autonomous representational status.62 Such a feeble
demarcation of the conceptual domain can be interpreted as a symptom of veiled
and impending psychologism. If “what is intuitive” is determined by subjective
configurations and if symbolization is simply “what is not intuitive,” then these
psychological faculties will define “what is not intuitive” too. Thus, psychological
faculties circumscribe the symbolical domain (and the conceptual one within it) by
defining what they are not. For example, empirical concepts are presented as what
is beyond “the limits of the operating potentiality of our measuring instruments.”63

Leaving aside the classical debate about Husserl’s supposed psychologism, it seems
that the domain of symbolization shrinks depending on the extent of the intuition
domain.64 Nevertheless, we find various Raumbuch passages implying that concepts
have an objective and defined status. For instance, an impossible concept cannot be
represented, no matter the subject; in another note, he says that a concept of space
based on material a priori determines the conditions of possibility of experience;
elsewhere, idealization is presented as a procedure purifying the psychic process
from subjective defects.65 In the end, it seems that the Raumbuch representational
theory is quite fuzzy.

61XII p. 193. This definition has many similarities with the one that Husserl gives in HUA
XXI p. 272. It is worth noticing a minor semantic sliding: the “proper representations” in the
Philosophie der Arithmetik are named “intuitions” in the Raumbuch.
62Cf. HUA XXI pp. 295–296. Husserl will define the representational status of concepts when he
will deal with the categorial intuition in the Logische Untersuchungen. There he also dismantles
the intuition/symbolization dichotomy that structures the Raumbuch representational theory.
63HUA XXI pp. 295–296.
64That reminds an idea from the Philosophie der Arithmetik, where arithmetic is presented as a
tool dealing with sets that cannot be intuited because of subjective inability; consequently, since
powerful subjectivities, like angels or God, need not to develop arithmetic to handle large sets, then
their arithmetical domain (objects and procedures) is almost empty. At the end, “results” are the
same: both man and angel represent the same large sets, but the former uses a tool (arithmetic),
whereas the latter need it not. Cf. HUA XII pp. 191–192.
65Cf. HUA XXI pp. 262, 296, 287.
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Moreover, the internal distinctions between the various kinds of symbolization
are not even always respected, at least not during the psychological analysis of
the “everyday life space.” According to Husserl, the “everyday life space” is an
ideal formation: a everyday life object, in fact, is an “ideal object” formed by an
intellectual synthesis binding together all the sides of the object.66 No object, indeed,
can show us all its sides at the same time, but, nevertheless, we intend the complete
object with all its sides when we conceive the object. For example we know that a
dice has six faces but we cannot see six faces at the same time. We know, however,
that the three manifest faces hide other three faces and that all those faces together
form the dice. When Husserl says that every real object is an ideal object, Husserl
confuses the symbolic link between the intuitive symbol (the manifest three sides)
and the symbolized object (the hidden three sides) with a symbolic link between
the intuitive symbol (the three sides) and the symbolized concept (the concept
of dice).

In general, this theory lacks of balanced composition of its founding concepts.
For instance, non-intuitive symbolization (concept) is defined as alternative to
intuition, despite non-intuitive symbolization (concept) has a direct contrary, i.e.,
intuitive symbolization (intuitive signs). Such a definition has two consequences.
First, we do not know what symbolization is per se, but we only know that it is not
intuition. Second, the various species of symbolization are not defined as reciprocal
alternatives but, all together, as alternatives to intuition.

The conceptual representation depends on intuition because Husserl tries to
ground concepts into sensible experience relying on immature psychological meth-
ods. This effort becomes evident when he analyzes real bodies following a method
inspired by solid geometry. He adopts the technical terminology of geometry when
he explains how “division” (Teilung) decomposes the “physical body” (Körper)
into geometrical entities as “surfaces” (Flächen), “lines” (Linien), and “points”
(Punkte).67 The transition from the esthetical to the geometrical dimension is
witnessed by a synonymical overlap of the terms “physical body” and “figure”
(Gebilde) – an overlap justified by the fact that we can extract “forms” (Formen)
and “corporeal figures” (körperlichen Figuren) from every physical body.68 At the
base of this consideration, there is a major confusion between external experience
(physical/esthetical body) and internal one (geometrical form). Thus, the Raumbuch
betrays the first rule of immanentism according to which, since external experience
data are untrustworthy, analysis should be focused only on the immanence of
conscience – where the features of intentional objects can be ascertained once

66Cf. HUA XXI pp. 281–283.
67Cf. HUA XXI pp. 278–279.
68Cf. HUA XXI pp. 278–279, 286. Stumpf explains that many space theories of his time incorrectly
mix two strands of research that should be kept separated: epistemology, focusing on immediately
evident truths, merges with descriptive psychology, focusing on the genesis of concepts. Thus, the
researches on the origin of spatial representation overlap the studies on the nature of geometrical
axioms. For this reason, the spatial analysis of the early Husserl displays a geometrical nuance.
Cf. Stumpf, C. Psychologie und Erkenntinistheorie, 484, op.cit.
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for all.69 In order to achieve an optimal description of the spatial representation,
analysis should keep spatial sensations and spatial things separated; moreover,
this separation should be actively maintained. Husserl will satisfy these two
requisites by developing the epoché in the Ideen. This procedure neutralizes the
presuppositions threatening the purity and the independence of phenomenological
analysis: for instance, we should “put between brackets” the belief in the existence
of the natural world in order to focus on sensations rather than on things, unlike
what happen within the Raumbuch frame.70 Moreover, a radical philosophical
investigation should avoid concepts, methods, and practices that have been derived
from other sciences. A pure psychological analysis should also start from the
bottom, highlighting those primordial structures that ground the edifice of science:
in this sense, we should not aim to justify a scientific idea since that would adjust
analysis and distort results. Actually, the Raumbuch analysis is influenced both
by implicit geometrical categories and by a previously established aim, i.e., the
justification of Euclidean geometry.71

Thus, because of a methodological immaturity, the first Husserlian theory of
space collapses within a few years. The Raumbuch is one of those experiences
pushing Husserl to conceive the epoché – a phenomenological method that will
redefine the relations between space, geometry, and experience:

If the province of phenomenology were presented with such an immediate obviousness
as the province pertaining to the natural attitude in experiencing, or if it became given in
consequence of a simple transition from the latter to the eidetic attitude as, for example, the
province of geometry becomes given when one starts from what is empirically spatial, then
there would be no need of circumstantial reductions with the difficult deliberations which
they involve.72

3.6 Conclusion

Although just after the publication of the Philosophie der Arithmetik Husserl plans
to develop a formal approach to geometry, in the notes from the early 1890s, he
criticizes the formal method of analytical geometry for not being able to grasp the
essence of space. So he chooses to investigate the intuitive side of space through

69Husserl inherits immanentism from Brentano, and when he is working on the Raumbuch, he still
adopts this intentional theory. For example, he stresses the distinction between immanent object
(immanente Objekt) and real object; he defines the metaphysical space – i.e., the real space – as
transcendent space (transzendent Raum). Cf. HUA XXI pp. 262, 265–266, 270, 305. Paradoxically,
he makes the same mistake that he highlights in Helmholtz’s empiricist space theory: according to
him, Helmholtz confuses the inner psychological experience with the real external one. Cf. HUA
XXI p. 309.
70Cf. HUA III/1 pp. 59–60, 108, 115–116.
71Cf. HUA III/1 pp. 112–115. It is no accident that several sciences presuppose the axiomatic
method called mathesis universalis � whose first model was Euclidean geometry.
72HUA III/1 pp. 115–116.
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the Raumbuch psychological analysis; anyway, in the Raumbuch last notes, he
approves formalization again. Such a theoretical mutability may be explained if we
consider that in the early 1890s, Husserl is still defining the representational status
of conceptual representations; as a consequence, he has not conclusively established
if geometry is a formal or a material science or both. For these reasons, he cannot
formulate an ultimate description of the geometrical method.

The first step towards a solution can be found in the Prolegomena where Husserl
clarifies the relation between intuitive geometry as “phenomenical space science”
and formal geometry as “categorial form of geometrical theory.”73 Although this
distinction has already been sketched in the Raumbuch note dealing with the dif-
ferences between physical and pure geometries, in the Prolegomena, it is associated
with a pondered reflection about methods that redefine the various kinds of concepts.
This process is completed in the Ideen, where Husserl coins two procedures that
elaborates formal and material concepts, each one within its own research field. The
first procedure is “formalization” and replaces contents with contentless variables
in order to reduce a material field to a manifold whose formal objects are defined
solely by the form of their connections with other objects.74 The second procedure
is called “generalization” and explores all the possible manifestations of a material
content by means of imagination; it investigates which features are essential and
which ones are not, until the eidetic essence of the content emerges as the invariable
core of every possible manifestation.75

This methodological reorganization redefined the relations between geometry
and space theory. The phenomenological space theory, as developed in the Dingvor-
lesung, abandons geometrical categories and adopts esthetical ones: it primarily
focus on the transcendental constitution of the real space rather than on our
geometrical representations. In the same time, geometry deals no more with intuitive
space, contents and qualities: as specified in the Ideen, geometry should be an
axiomatic-deductive system dealing with exact concepts. Once its proper object has
been detected, geometry finally finds a place among the other sciences as an “exact
science” based on formalization.76
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Looking at Mathematics Through Logic



Chapter 4
Frege’s Grundgesetze and a Reassessment
of Predicativity

Francesca Boccuni

It is well known that Frege’s Grundgesetze der Arithmetik is inconsistent. The
inconsistency is due to the coexistence of two assumptions within Frege’s formal
system, namely, the impredicative second-order comprehension axiom and unre-
stricted Basic Law V.1 Still, it is also known that there are consistent fragments of
Grundgesetze. In the 1980s, Peter Schroeder-Heister and Terence Parsons provided,
respectively, a syntactic and a semantic proof of consistency for the first-order
fragment of Frege’s Grundgesetze. At the time, Parsons conjectured that any
extension of the first-order fragment to some second-order system of Grundgesetze
would result in an inconsistent set of axioms. Nevertheless, in 1996, Richard
Heck proved that the predicative second-order fragment of Grundgesetze has a
model. A few years later, Kai Wehmeier proved the consistency of the �1

1-fragment
of Grundgesetze.2 This article will concern mainly Heck (1996). Heck’s result
shows that the fragment of Grundgesetze resulting from predicatively restricting the
comprehension axiom,3 while maintaining Basic Law V unrestricted, is consistent.
Though Heck (1996) focuses on achieving a technical goal, one may wonder what
the possible foundational applications of his result are. In particular, one may be

1In Grundgesetze, one finds the so-called substitution rule, which is nevertheless equivalent
to the usual second-order unrestricted comprehension axiom from second-order logic. For a
matter of perspicuity, I will discuss the unrestricted comprehension axiom. Basic Law V is the
renowned Frege’s axiom according to which extensions ˛ and ˇ are identical if, and only if, their
corresponding concepts F and G are coextensive.
2See also Burgess (2005) and Ferreira and Wehmeier (2002).
3By this restriction, no bound second-order variables are allowed on the right-hand side of the
axiom’s biconditional.
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interested in whether such a consistent fragment could provide a formal core for
revising Frege’s foundational programme.

Nevertheless, in order to be feasible at all, any such revision of Frege’s logicism
has to deal with two important issues: first, the issue of what the mathematical
strength of such a revision is as compared to Frege’s original programme of a logicist
foundation of arithmetic; secondly, the issue of whether such a revision implies
some radical modifications of Frege’s philosophical assumptions.

As far as mathematical strength is concerned, the predicative fragment of
Grundgesetze is known to be quite weak, since it is equi-interpretable with Robinson
arithmetic Q.4 Provided that Frege’s logicism really is the claim that arithmetic
is derivable from purely logical basis, such a system should be strengthened so
that it recovers, in the best case scenario, full second-order Peano arithmetic.
Nevertheless, my main interest in what follows will concern the issue of the possible
revisions of Frege’s philosophical assumptions in a predicative setting. In particular,
since the predicative restriction on the comprehension axiom affects, first and
foremost, Frege’s view on concepts, I will investigate whether there is some possible
interpretation of predicativity that is compatible with Frege’s philosophical view
on them.5 This will be achieved through a general reassessment of the notion of
predicativity, as it is first motivated by Gödel (1944). Gödel’s objection to the use of
predicativity in mathematics relies on ontological considerations. The reassessment
of predicativity I propose detaches the acceptability of a predicative approach from
ontological preferences and connects it to logico-mathematical reasoning. On these
grounds, I will finally investigate where things stand as for Frege’s philosophical
view on concepts in a predicative setting, and I will conclude that such a view may
be at least partially retained.

4.1 Predicativity and Predicativism: Russell’s VCP

Predicativity is just a syntactic means by which the definition of a mathematical
entity by quantification over a totality it belongs to is disallowed and some large
portions of mathematics can or cannot be recovered. Predicativity in mathematics
has to be distinguished from predicativism, which is the cluster of philosophical

4See Burgess (2005), Ferreira and Wehmeier (2002), Ganea (2007), and Heck (1996).
5Ferreira and Wehmeier (2002) shows that the �1

1-comprehension axiom augmented by unre-
stricted Basic Law V is consistent. �1

1-comprehension allows only for second-order existential
formulæ that are provably equivalent in the system to second-order universal formulæ to appear
on the right-hand side of the biconditional. Still, in what follows I will focus on Heck (1996). �1

1-
comprehension with Basic Law V, in fact, though very interesting mathematically because of its
consistency proof, is still mathematically quite weak, since it is taken to interpret just Robinson
arithmetic Q, like Heck (1996). So, if we take the recovery of portions of mathematics larger than
Q as one of the two important issues any revisions of Frege’s logicism should tackle, then �1

1-
comprehension with Basic Law V falls short of being an alternative to Heck (1996) as for broader
foundational purposes.
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claims motivating predicativity.6 These claims are usually taken to be captured
by Russell’s vicious circle principle (VCP). Gödel (1944) is possibly the most
classical article where a detailed discussion about VCP takes place. It has also been
possibly the most influential view ever since on the divide between predicativity and
impredicativity, and their philosophical implications. It is just fair, then, that VCP
and Gödel’s criticism are among the main topics of this article. In particular, I will
defend a form of VCP against Gödel’s criticisms as they are presented in Gödel
(1944).

It is well known that Russell offers several formulations of VCP.7 Gödel (1944)
points out that these formulations boil down to three VCPs, respectively, formulated
in terms of definability, presupposition, and involvement:

Definability VCP If, provided a certain collection had a total, it would have
members only definable in terms of that total, then the said collection has no
total.8

Presupposition VCP Given any set of objects such that, if we suppose the set to
have a total, it will contain members which presuppose this total, then such a set
cannot have a total.9

Involvement VCP Whatever involves all of a collection must not be one of the
collection.10

Famously, Gödel (1944) focuses mainly on a critical appraisal of Definability
VCP. Nonetheless, Jung (1999) shows that Presupposition VCP is the most basic
formulation of the principle,11 and it is quite plausible that Russell had this
formulation in mind all along. Also, Gödel (1944) points out that Presupposition
VCP (as well as Involvement VCP) is a more plausible principle than Definability
VCP. In the reminder of this section, then, I will focus on Presupposition VCP, and
in closing I will provide further motivation for viewing Definability VCP just as a
formulation of it.

In order to spell out Presupposition VCP, the notion of presupposition has to be
tackled. Nevertheless, such a notion is admittedly rather vague. In the literature,
different notions of presupposition may be found.12 Each of them gives rise to a

6See, for instance, Hellman (2004).
7See, for instance, Jung (1999) for a detailed survey on them.
8Russell (1908, 63).
9Russell B. and Whitehead A., Principia Mathematica, vol. 1, p. 37.
10Russell B. and Whitehead A., Principia Mathematica, vol. 1, p. 63.
11In fact, Jung (1999, 69–74) shows that both Definability and Involvement VCPs follow from
Presupposition VCP.
12See, for instance, Fine (1995) and Correia (2008). See also Linnebo (forthcoming). Hellman
(2004) claims that there is also an epistemic justification for predicativism, namely, that rational
beliefs in mathematics extend only to predicatively definable objects. Epistemic predicativism is
indeed a possible interpretation of Russell’s VCP. Nevertheless, I will not investigate it in this
article, though it is worth mentioning that epistemic VCP may be interesting to anyone working on
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formulation of Presupposition VCP. These notions of presupposition, and the related
formulations of VCP, may be formulated as follows:

Presupposing for existence: An entity A existentially presupposes an entity B just
in case A cannot exist unless B does. Consider, for instance, sets. A non-empty
set x exists only if its members exist.13

Ontological VCP: No entity can presuppose for its existence a totality it
belongs to.

Presupposing for essence: An entity A essentially presupposes an entity B just in
case A cannot be what it is unless B is. For instance, what set x is presupposes
what members it contains.14

Metaphysical VCP: No entity can essentially presuppose a totality it
belongs to.

Presupposing for specification: An entity A presupposes an entity B for its
specification just in case A cannot be specified unless B is. For instance, whether
we can specify a set x presupposes that we are able to specify its members.15

Specifiability VCP: No entity can presuppose for its specification a totality it
belongs to.

Both essential presupposition and presupposition for specification are tightly con-
nected with identity (or at least equivalence). It may be argued that, after all, they
come down to the same notion. Nevertheless, even though they both indeed involve
some requirements for identity, I believe they should be carefully separated. We may

some Platonist response to Benacerraf’s dilemma. Benacerraf’s dilemma claims that the Platonist
has to face severe epistemic problems as for the accessibility of the entities she takes to exist
mind-independently. To this extent, epistemic predicativism seems to support Benacerraf’s view.
13On existential presupposition, see Fine (1995) and Correia (2008).
14On essential presupposition, see Fine (1995) and Correia (2008).
15See, for instance, Linnebo (forthcoming), which is nevertheless focused on investigating first-
order impredicativity in abstraction principles. An abstraction principle has the form �F D
�G $ RE.F;G/, where � is an abstraction operator mapping a given collection of entities into
a collection of entities of different sort and RE is an equivalence relation. Well-known examples
are the so-called Hume’s Principle and Basic Law V. The impredicativity Linnebo investigates
concerns the fact that the entities introduced on the left-hand side of the biconditional can be among
the values of the first-order variables appearing on the right-hand side (consider, for instance,
Basic Law V: fx W Fxg D fx W Gxg $ 8x.F x $ Gx/). Thus, if abstraction principles
serve the purpose of individuating or specifying the entities introduced on the left-hand side by
the equivalence relation on the right-hand side, their impredicativity would imply that the entities
the terms on the left-hand side refer to are individuated or specified on the basis of a totality they
belong to. Nevertheless, I am here analysing the impredicativity underlying second-order logic,
which originates from the comprehension axiom and concerns the specification of the second-order
entities the left-hand side of the biconditional refers to.
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in fact argue that there are examples of essential presupposition that do not apply to
specifiability. Consider, for instance, the power set of !. We may argue that such a
set is the set it is, exactly because of the members it contains. Nevertheless, not all
subsets of ! are specifiable. To this extent, should the power set of ! be specifiable
at all, it would not be so on the basis of the presupposition of the specifiability of
its members, even though it would still be the set it is because of the members it
contains.

There is a further notion of presupposition I would like to mention, namely,
referential presupposition. It is worth mentioning that referential presupposition,
and its related VCP, will be the main focus of the paper. It may be surprising that
in this section I set it aside right after I state it, but I will profusely come back
to it in Sects. 4.4 and 4.5. All that is in between is propaedeutic to a motivation
for referential presupposition and its related VCP, and their relation to the issue of
second-order predicativity in a Fregean setting.

Presupposing for reference: The possibility of referring to an entity A presup-
poses the possibility of referring to an entity B just in case the possibility of
referring to A makes ineliminable use of the possibility of referring to B. Let me
mention one example to illustrate what I have in mind. Consider tropes. If I say
‘Your smile is like no other’, I am apparently referring to your smile. Now, could
I refer to it, in case I were not able to refer to you in the first place? Hardly so. To
this extent, the possibility of referring to your smile presupposes the possibility
of referring to you.

Referential VCP: No entity can presuppose for its reference to a totality it
belongs to.

In the opening of this section, I mentioned the three formulations of VCP available
in Russell’s writings, and in passing I mentioned Gödel’s article on Russell’s
mathematical logic. In that article, Gödel claims that it is Definability VCP that
is of interest in mathematics, since it disallows impredicative definitions and thus
undermines the derivation of most of classical mathematics16:

(. . . ) the vicious circle principle (. . . ) applies only if the entities involved are constructed
by us. In this case, there clearly must exist a definition (namely the description of a
construction) which does not refer to a totality to which the object defined belongs, because
the construction of a thing can certainly not be based on a totality of things to which the
thing to be constructed itself belongs. If, however, it is a question of objects that exist
independently of our constructions, there is nothing in the least absurd in the existence of
totalities containing members, which can be described (i.e., uniquely characterized) only by
reference to this totality.17

A clear example of this is the definition of the set of the natural numbers, which is
provided in terms of all inductive sets. If impredicative definitions are claimed to

16See Gödel (1944, 455–459).
17Gödel (1944, 456).
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be impermissible, such a definition cannot be recovered. Nevertheless, according to
Quine (1969, 242–3, emphasis added):

No question of legitimacy can arise in connection with definition, so long as a mechanical
procedure is provided for expanding the new notation in all cases uniquely into old notation.
Now what Poincaré criticized is not the definition of some special symbol as short for ‘fx W
x … xg’, but rather the very assumption of the existence of a class y fulfilling ‘.x/.x 2 y $
x … x/’. We shall do better to speak not of impredicative definitions but of impredicative
specification of classes, and, what is the crux of the matter, impredicative assumptions of
class existence.

Here, definability plays no role at all, since, independently of the possible under-
lying ontological assumptions concerning mathematical entities, definitions are just
a matter of introducing a new notation that is always eliminable in terms of the
old one. The best way to see this is to consider comprehension axioms, which are
actually what Quine seems to have in mind in the quotation above. Comprehension
axioms are not definitions, but they indeed provide a means to specify entities
through predicative or impredicative formulæ. But if definitions are unproblematic,
independently of the underlying ontology, how are we to make sense of Gödel’s
objection to Definability VCP? One possible way out is the one envisaged by Quine
in the previous quotation, namely, to leave definability out of the picture and rather
consider specifiability and thus rephrase Definability VCP as Specifiability VCP.18

To this extent, specifiability may be considered as the rather general notion of
‘singling out’ an entity from other entities. A further formulation of VCP can be
provided in terms of individuation. Interestingly, Quine (1985, 166–7) disallows
impredicative individuation. In connection with individuation of events, he says:

For my own, I welcome impredicative definitions. I have remarked that there is nothing
wrong with identifying the most typical Yale man by averaging measurements and tests
of all Yale men including him. But now we observe that impredicative definitions are no
good for individuation. Here a difference between the impredicative and the predicative
emerges which is significant quite apart from any constructivist proclivities. We can define
impredicatively but we cannot individuate impredicatively.

This quotation calls for a distinction between impredicative individuation as im-
permissible, as opposed to impredicative specification as permissible. What would
be Quine’s reasons for allowing impredicative uses of the latter, while banning
impredicative uses of the former? I take it that in Quine’s view individuation goes
through some identity criterion. Impredicative individuation has to be disallowed
since if individuation presupposes identity, then the individuation of an object
must not be performed by any identity statements concerning that very object. On
the other hand, impredicative specification might be allowed since it is a weaker
notion than individuation. In particular, it does not require an identity criterion: for
instance, in the case of impredicative second-order comprehension for concepts,
the singling out of a concept by a condition does not require, at least prima facie,
an identity criterion for concepts. Though I acknowledge the different import of

18See also Jung (1999, 59) on this point.
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impredicative individuation, on the one hand, and impredicative specification, on
the other, I believe that none of them is permissible, at least as far as concepts are
concerned. In Sect. 4.3, I provide reasons for equating specification of concepts to
reference to them, on the grounds that, because of their intensional nature, their
specification can only be performed by language. To this extent, specifiability of a
concept and reference to it are equivalent notions. By bearing on this equivalence, in
Sects. 4.4 and 4.5 I will provide motivations for banning, pace Quine, impredicative
specification of concepts on the basis of Referential VCP.

4.2 Gödel’s Criticism of VCP

VCP was subjected to some radical criticisms, especially by Gödel (1944) but also
by Quine and Ramsey. So, it is quite important to go through these criticisms, and
try to provide some counter-objection, to the aim of making the use of predicativity
compatible with Frege’s view on concepts. In this section, I will sum up Gödel’s (or
some broadly Gödelian) criticism of VCP.

Gödel’s main objection to Russell’s VCP is based on some philosophical
considerations he puts forward: if a Platonist view of mathematical entities holds,
then one is entitled to impredicativity, since VCP in a Platonist perspective is either
easily rejected or trivial; on the other hand, if VCP holds and by this one has solid
motivation for predicativity, one is also committed to some form of mathematical
Constructivism. Thus, in Gödel’s view, the divide between predicativity and impred-
icativity, and the acceptance or the rejection of VCP, ultimately hinges on ontology.

Let us see how Gödel’s argument may be reconstructed. Consider a Platonist
attitude towards the existence of the entities of a certain domain. To this extent,
these entities exist mind-independently, and none of them presupposes the totality it
belongs to for its existence, because they are just there from the start. Consequently,
in a Platonist framework, Ontological VCP is trivial:

Such a state of affairs19 would not even contradict (. . . ) the third form20 if ‘presuppose’
means ‘presuppose for the existence’.21

Let us consider now Specifiability VCP, which, under the revision of Gödel’s
objections to Definability VCP, is the real target of a Gödelian objection. From a
Platonist perspective, Specifiability VCP is false, since ‘there is nothing in the least
absurd in the existence of totalities containing members, which can be described

19That is, Platonism.
20That is, Presupposition VCP.
21Gödel (1944, 456). The same argument goes as for Metaphysical VCP. Consider, for instance,
sets. A set x is the set it is because of the members it contains, not because of the totality it belongs
to. Thus, we may argue against Metaphysical VCP that it is trivial as much as Ontological VCP,
under a Platonist stance of the universe of sets. In such a view, in fact, Metaphysical VCP would
hold by default. From now on, then, I will not consider Metaphysical VCP anymore.
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(i.e., uniquely characterized) only by reference to this totality’.22 And in fact Quine’s
quotation from above continues:

And what now of the vicious circle? (. . . ) [I]mpredicative specification of classes (. . . ) is
hardly a procedure to look askance at, except as one is pressed by the paradoxes to look
askance at something or other. For we are not to view classes literally as created through
being specified - hence as dated one by one, and as increasing in number with the passage
of time. (. . . ) The doctrine of classes is rather that they are there from the start. This being
so, there is no evident fallacy in impredicative specification. It is reasonable to single out a
desidered class by citing any trait of it, even though we chance thereby to quantify over it
along with everything else in the universe. Impredicative specification is not visibly more
vicious than singling out an individual as the most typical Yale man on the basis of averages
of Yale scores including himself.23

Finally, if the Platonist view on the entities of a given domain holds, also Referential
VCP is false. Gödel, in fact, claims that

[i]t is demonstrable that the formalism of classical mathematics does not satisfy the
vicious circle principle in its first form,24 since the axioms imply the existence of real
numbers definable in this formalism only by reference to all real numbers. Since classical
mathematics can be built up on the basis of Principia (including the axiom of reducibility),
it follows that even Principia (. . . ) does not satisfy the vicious circle principle in its first
form (. . . ).

I would consider this rather as a proof that the vicious circle principle is false than that
classical mathematics is false, and this is indeed plausible on its own account. For, first of
all one may, on good grounds, deny that reference to a totality necessarily implies reference
to all single elements of it or, in other words, that ‘all’ means the same as an infinite logical
conjunction.25

If Platonism is the best ontological account of classical mathematics on the market
and we hold it, then we may indeed quantify over all the entities of a totality without
presupposing reference to each and every one of them. Consider, for instance, real
numbers. If we help ourselves to a Platonist view of the reals, we think of their
collection as a totality of some sort. But quantifying over the totality of the real
numbers does not imply that we have as many individual constants as the reals (and
in fact we have not) and that we can attach referents to them.

Even more so, a further criticism of Referential VCP may target the principle
on the basis of the relation between reference, on the one hand, and existence and
specifiability, on the other. In fact, without existence, we may not specify, let alone
refer. But even if we grant existence with no specification, can we actually refer
to an entity without being able to single it out by some means? According to a
common intuition, in order to refer by a term, the referent of that term must exist
and it has to be, at least, specifiable in some way. In particular, Referential VCP may
be criticised from a further angle, which is connected with its relation to Ontological

22Gödel (1944, 456).
23Quine (1969, 242–3).
24That is, Definability VCP.
25Gödel (1944, 454–455).
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and Specifiability VCPs. It may be argued, in fact, that Referential VCP is hardly
news as compared to Ontological and Specifiability VCPs. These objections will be
addressed in a few sections.

4.3 Predicativity and Presupposition Versus Frege’s Platonist
Logicism About Concepts

If Gödel’s argument holds, prima facie none of the aforementioned formulations of
VCP is compatible with Frege’s Platonist view on concepts. Accordingly, if we try
to motivate a predicative restriction on second-order comprehension in a Fregean
setting and we take predicativity to be motivated by some notion of presupposition,
the consistent predicative fragments of Grundgesetze do not seem to provide a
philosophical basis to revive Frege’s foundational programme.

Previously, I claimed that specifiability and reference may be seen as distinct
though connected notions. As for concepts, however, the situation is different.
Whether the underlying ontological assumption for either of those principles is
Platonism or Constructivism, Specifiability VCP and Referential VCP boil down
to the very same principle. Specification means to single out a concept from the
other concepts. But then again, how can we specify an intensional entity such as
a concept? Given their intensionality, a rather natural way to specify a concept is
via some linguistic expression expressing it, like a predicate. To this extent, the
specification of a concept comes down to providing a way to refer to it via an
appropriate linguistic means. To this, it may be objected that a possible alternative
way of specifying a concept is via thought. For instance, in order to specify the
concept ‘being red’, we can picture red things or maybe just think ‘red’. In this
case, specifiability presupposition would not come down to referential presuppo-
sition. Nevertheless, consider that I am interested in second-order languages in a
Fregean setting and in Frege’s view on concepts. In Frege’s perspective, mental
representations are to be avoided in the philosophical investigation on mathematics
and logic. The Fregean, thus, would not be troubled with the above objection to
the equivalence between specifiability presupposition and referential presupposition
for concepts. In a Fregean perspective, it is quite natural to view concepts as
specified by language.26 But then again, to this extent, specifiability presupposition
and referential presupposition turn out to be equivalent notions. If then a Platonist
view of Fregean concepts holds, Specifiability and Referential VCPs will be both
rejected, on the grounds that on that view Referential VCP is false.

There seems to be a further difficulty with predicativity in a Fregean perspective.
In Frege’s view, concepts are logical entities whose existence is guaranteed by the
laws of thought alone, i.e. the laws of the True. According to Frege, these laws are

26Consider, for instance, the Fregean view that predicates, i.e. the linguistic items standing for
concepts, are obtained by extrapolation of singular terms from sentences.
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rigorously formalised in classical logic as it is presented in the Begriffsschrift as
a higher-order logical system. Frege is not just a Platonist about concepts; he is a
logicist Platonist: if we grant Frege that the very laws of thought are exhaustively
captured by higher-order logic, then in his view higher-order logic is the logic of
the laws of thought. In a Fregean perspective, conceptual Platonism is not just an
ontological stance on concepts independent of his logicism; it is instead strongly
motivated by, or at the very least deeply connected with, his logicism. In this view,
unrestricted comprehension for concepts is both motivated by Frege’s Platonist
view on concepts, but even more so it entails, given his logicism, that unrestricted
comprehension is a fundamental tool to capture the laws of the True.

In what follows, I will argue that there is a motivated way to make the
consistent predicative fragment of Grundgesetze compatible with Frege’s view.
This motivation hinges on a revision of Gödel’s dichotomy between predicativity
and impredicativity and their philosophical implications. To this aim, in the
following sections, I will propose to detach the acceptance of predicativity from
ontological considerations and to connect it to considerations concerning logical and
mathematical reasoning. On these grounds, I will finally claim that, in the light of
these considerations, it is possible to make Frege’s Platonist logicism about concepts
compatible with a predicative revision of his foundational programme. A word of
caution is here needed, though. I will argue that Frege’s conceptual Platonism is
indeed compatible with second-order predicativity. As for Frege’s logicism, it will
turn out that Frege’s claim that arithmetic can be reduced to logic alone has to
be revised. Nevertheless, this revision will not necessarily make Frege’s original
view a complete nonstarter. It will turn out that a predicative restriction on second-
order comprehension will indeed provide a starting point for a revision of Frege’s
logicism. Before that, though, I will have to take a slight detour through the notion
of arbitrary reference.

4.4 TAR

Let us recall the formulation of referential presupposition from above: the possibility
of referring to an entity A presupposes the possibility of referring to an entity B just
in case the possibility of referring to A makes ineliminable use of the possibility of
referring to B. First of all, in order to make sense of it and provide some counter-
objections to Gödel’s arguments against Referential VCP, the notion of possibility
of reference needs to be clarified.

According to Martino (2001, 2004), the possibility of directly referring, at least
ideally, to any entity of a universe of discourse is presupposed both by logical
and mathematical reasoning, even when non-denumerable domains are concerned.
Martino (2001) labels this claim the Thesis of Arbitrary Reference (TAR).27 Such

27More suggestively, Martino (2004) calls this claim the Thesis of Ideal Reference. In what follows,
it will become clear why.
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a possibility of direct reference is very well expressed by the crucial role arbitrary
reference plays both in formal and informal reasoning. Its cruciality lies in that
arbitrary reference exhibits two different logical features that make it essential for
performing proofs, i.e. arbitrariness and determinacy. Through arbitrary reference,
we may consider any object a of a universe of discourse. Consequently, the
arguments about a retain their general validity. At the same time, though, within
the arguments about it, ‘a’ is required to denote a determinate object, distinct from
all the other objects in the domain it belongs to. Typically, when a derivation is
completed, we may detach ‘a’ from the individual we attached it to and reuse it in
a different derivation. But within a derivation on a, ‘a’ has to refer to a determinate
individual. The same argument holds, mutatis mutandis, also for reference to
concepts via second-order free variables. In fact, every argument in favour of the
genuine referentiality of arbitrary reference put forward in this section applies both
to first- and second-order arbitrary reference.

In order to motivate TAR, an account of the genuine referentiality of arbitrary
reference and its directness has to be provided. It may be argued, in fact, that
arbitrary reference is not genuinely referential, since parameters and free variables
do not refer at all.28 Evidence in favour of the genuine referentiality of arbitrary
reference may be found in Breckenridge and Magidor (2012) and Martino (2001,
2004). In this section, I will provide a more general argument to this aim. My claim
is that the soundness of arguments in mathematical and logical reasoning requires
the underlying assumption of the genuine referentiality of arbitrary reference. The
relation between soundness and referentiality will be accounted for in terms of
sameness and determinacy of reference. Though my argument will be spelled out
in terms of reference to individuals, nothing will prevent its application to reference
to concepts as well.

Usually, a parameter ‘a’ is used to refer to the same individual a within a
derivation on a. A crucial reason for this is to be found in the requirement of
soundness we want to impose on some valid argument schemas. If sameness
of reference were not a basic ingredient of derivations, soundness would be in
jeopardy.29 Consider the rule of existential elimination in natural deduction. When
we pass from a premise of the form 9x�x to the auxiliary assumption �.a/, ‘a’ has
to be an unused parameter, or at least it has not to appear in any of the assumptions
which 9x�x depends upon. Consider now the following (invalid) deduction:

(1) 9xHx A
(2) 9x:Hx A
(3) Ha A
(4) :Ha A
(5) Ha ^ :Ha 3,4 intr. ^

28See, for instance, Pettigrew (2008).
29A further argument to this aim, from the uniformity of substitution of predicate and individual
letters in argument schemas, may be found in Boccuni (2010).
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Invalidity stems out from that, in eliminating the existential quantifiers, respectively,
from (1) and (2), we use the very same parameter in (3) and (4).30 Say that H
is the property of being even and x varies over the natural numbers: (1) and (2)
say, respectively, that there is at least a number which is even and there is at least
a number which is not. Both these sentences are true in the standard model of
Peano arithmetic. Nevertheless, if we use the same parameter to perform existential
elimination in the derivation above, in (3) and (4) we, respectively, say that a number
is even and that the very same number is not, from which the contradiction in (5)
arises. For this reason, using an already used parameter in (4) cannot be allowed.

In order to explain the invalidity of the derivation (1)–(5), ‘a’ must be referring
to the same, though arbitrary, individual both in lines (3) and (4). Thus, in order to
achieve soundness in the previous example, in line (4) we have to use a different
parameter than ‘a’, because we need to express that a different individual than
a is :H within the same derivation, in accordance with the restrictions imposed
on universal introduction and existential elimination. But then again, in order to
distinguish between a and any other arbitrary individual that is :H , we have to
assume that a is a determinate, though arbitrary, individual of the domain. A similar
argument can be provided as for second-order existential elimination. Say, for
instance, that you have two second-order existential assumptions such as 9F�F and
9F:�F , which are both true in second-order arithmetic, for � being the formula
‘is finite’. Indeed, there are finite concepts in second-order arithmetic as there are
infinite ones, so the two existential assumptions are true. But now if we use the same
parameter to eliminate both of them, we incur in the contradictory conclusion that
the same concept satisfies a formula and its negation.

The motivation for this requirement is very nicely explained by Suppes:

(. . . ) ambiguous names,31 like all names, cannot be used indiscriminately. The person who
calls a loved one by the name of a former loved one is quickly made aware of this. (. . . )
Such a happy-go-lucky naming process is bound to lead to error, just as we could infer
a false conclusion from true facts about two individuals named ‘Fred Smith’ if we did not
somehow devise a notational device for distinguishing which Fred Smith was being referred
to in any given statement. The restriction which we impose to stop such invalid arguments
is to require that when we introduce by existential specification an ambiguous name in a
derivation, that name has not previously been used in the derivation.32

30See Suppes (1999, 82) for this example.
31That is, parameters like ‘a’.
32Suppes (1999, 82). Of course, it is not always the case that using the same parameter leads
to invalidity nor that different parameters always have to refer to different entities. For instance,
consider using ‘a’ for eliminating the quantifiers both from 8xFx and 8xGx in the same
derivation, where x varies over the natural numbers and both formulæ have a model in Peano
arithmetic. Or consider using ‘a’ and ‘b’ for eliminating, respectively, the first quantifier and
the second, where a and b may be the same individual. In none of these examples, sameness
of reference seems to lead to invalidity, but such an innocuousness does not by itself speak against
the genuine referentiality of ‘a’ or the importance of sameness of reference to derivations. It rather
testifies that there are contexts in which the co-referentiality of all the occurrences of ‘a’ (or of ‘a’
and ‘b’, for that matter) is not problematic.
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The reasons for restricting the rules of introduction and elimination of quantifiers in
natural deduction are semantic: in derivations, we perform a semantic reasoning that
we want to be captured by deductive rules and restrictions on them. Such a reasoning
is crucially based on sameness and determinacy of reference of parameters. But
then again, in order to make sense of sameness and determinacy and consequently
of the requirements we impose on deductive rules for the sake of soundness, we
have to assume the genuine referentiality of parameters. Genuine referentiality is a
necessary condition for soundness. This relation can be highlighted by investigating
the role that sameness and determinacy of arbitrary reference have in derivations.
In fact, if ‘a’ were not referential at all, how could we account for a being the
same individual throughout an argument? Those who support the non-referentiality
of arbitrary reference should provide some argument for explaining how formal and
informal reasoning functions in the way it does (for instance, by certain constraints
on introduction and elimination of quantifiers).33

A further issue concerns the connection of arbitrary reference with existence.
In fact, arbitrary reference may be used within derivations in which one of the
assumptions leads to contradiction. Consider the example ‘Let r be the set of all
the sets that are not members of themselves’. It is well known that a contradiction
is derived from the assumption of the existence of the Russell set. We readily
conclude that r does not exist. But then again ‘r’, under the assumption of the
genuine referentiality of arbitrary reference, has to genuinely refer to an (arbitrary)
individual throughout the derivation on it. Is then ‘r’ genuinely referential after all,
i.e. in the derivation of Russell’s paradox does it refer to an individual that does
not exist? Reference in arguments by reductio ad absurdum may be explained as
follows. Throughout the derivation leading to the contradiction, we temporarily
assign an individual as the value of ‘r’. But then we find out that the individual
we picked does not, and in fact cannot, satisfy the condition ‘set of all the non-
self-membered sets’. Since the individual chosen is an arbitrary individual, that the
Russell condition is not satisfied holds of all the individuals of the domain. But in
the process, ‘r’ has indeed been referential: it referred to an arbitrary individual that
does not satisfy the Russell condition. The derivation of the contradiction does not
just say that there is nothing ‘r’ refers to, but that for every assignment of a referent
to ‘r’, r does not satisfy the defining formula.

The directness of arbitrary reference may be appreciated by considering its
relation with quantification. Consider once again the rule of existential elimination.
As Martino (2004) points out, the possibility of passing from a purely existential
assumption such as 9x�x to the consideration of an arbitrary object a such that �a

33A further issue concerns the semantics that better captures the genuine referentiality of arbitrary
reference. To the best of my knowledge, there are two competing options on the market: Kit
Fine’s view according to which arbitrariness is a property of some special kind of objects, namely,
those referred to by parameters, and an epistemic view, championed by Breckenridge and Magidor
(2012) and Martino (2001, 2004), according to which arbitrariness is an epistemic feature of our
reasoning – a is a determinate individual, and ‘a’ determinately refers to it, but we do not know
which individual a is.
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is guaranteed by the rule of elimination of the existential quantifier which allows to
substitute the given existential assumption with the auxiliary assumption �a. If the
rules of inference that govern the use of the logical constants in natural deduction are
justified by the meaning of the constants themselves, the meaning of the existential
quantifier presupposes the possibility of singularly referring, at least ideally, to
any individual of a domain, and consequently existential quantification logically
presupposes such a possibility of reference.34 Thus, before we simultaneously
consider several entities through quantification, we are required to be able to refer
to each of them, at least ideally: quantification logically presupposes the ideal
possibility of referring to each and every element of a domain, before we consider
those elements through generalisation.35 In this perspective, no individual can be
referred to only on the basis of reference to a totality it belongs to, as an ideal way
to directly refer to it is required in order not to violate TAR: Referential VCP is a
corollary of TAR.36

4.5 Gödelian Criticism to Referential VCP

Let us recall that Referential VCP may be criticised with respect to two issues: (1)
the fact that quantification does not imply an infinite conjunction or disjunction and
(2) Referential VCP being hardly news over Ontological and Specifiability VCPs.
In this section, I will tackle these two issues.

According to TAR, quantification presupposes arbitrary reference: if the meaning
of the quantifiers is governed by their rules of introduction and elimination in
natural deduction, then quantification presupposes the possibility of reference, at
least in principle. In this respect, under certain restrictions, we may pass from the
consideration of an arbitrary individual a such that � to the generalisation that
every x is such that �.37 In this regard, one is reminded of Gödel’s objection to
quantification as presupposing reference to each and every member of a domain.
Nevertheless, Gödel’s objection apparently does not take into consideration the
cruciality of arbitrary reference, but is limited to considering that quantification

34Analogously as far as the rule of introduction for universal quantification is concerned. See
Martino (2004, 110).
35For further justification and applications of arbitrary reference, see also Breckenridge and
Magidor (2012).
36See Martino (2004, 119). Notice that Referential VCP follows from TAR also when non-
denumerable domains are concerned. Even though a language cannot display non-denumerably
many names, TAR still holds, as the ideal possibility of directly referring to each and every
individual in a non-denumerable domain may be performed via arbitrary reference, as in the case
of, e.g. ‘let a be an arbitrary real number’. Also, Martino (2001, 2004) provides a special semantics,
the acts of choice semantics, in order to make sense of how the directness of arbitrary reference
should work.
37And analogously as for existential quantification.
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does not imply infinite conjunctions or disjunctions of formulæ where the bound
variables is substituted by a constant. Referential VCP as implied by TAR, though,
does not necessarily concern reference through constants, either first- or second-
order, but at the very least concerns arbitrary reference. The restriction to arbitrary
reference is really all that is needed to make a case for predicativity concerning
Fregean concepts, because the predicativity that is employed to that aim is motivated
by a reflection on the relation between quantification and the ideal possibility of
reference. To this extent, TAR does imply that quantification involves arbitrary
reference, but it does not imply that quantification involves reference to each
member of a totality by an infinite conjunction or disjunction.38 According to
TAR, quantification implies reference to any individual of that totality, by arbitrary
reference: if we refer to a totality, then we must be able, at least ideally, to refer to
each and every member of it through arbitrary reference prior to the consideration
of the totality itself. In this respect, the first objection to Referential VCP is a
nonstarter.

What now of the criticism that, given the relation between reference, on the one
hand, and existence and specifiability on the other, Referential VCP is hardly news
over Ontological and Specifiability VCP? I take this objection to come down to
whether there are cases in which specifiability and ontological presupposition do not
hold, whereas referential presupposition does. As for Specifiability VCP, arbitrary
reference is such that specification and reference are detached. In order to fix the
reference of ‘a’, we do not need to be able to specify a. In a sense, our ignorance of
which individual a is justifies the possibility of introducing universal quantification
in reasoning (given the appropriate restrictions on universal introduction). For
instance, we are not required to specify an arbitrary real number r , in order to
genuinely refer to it via an arbitrary name ‘r’. Furthermore, there are also cases in
which ontological presupposition does not hold, whereas referential presupposition
does. Consider, for instance, the empty set fx W x ¤ xg. Its existence does not
depend upon the existence of non-self-identical individuals, as in fact there are
none. Nevertheless, the possibility of referring to fx W x ¤ xg seems to depend
upon the possibility of referring to the individuals of the domain through x in the
formula x ¤ x, if only to acknowledge that no individual is non-self-identical. This
holds on the grounds of TAR and in particular on the grounds that parameters and
free variables are genuinely referential. Consider, furthermore, a view on concepts

38What if we wanted to extend Referential VCP to reference via individual constants? In this
case, the relation between reference as involved in Referential VCP and arbitrary reference in
TAR should be further motivated. Brandom (1996) suggests a way to deal with this issue. While
arbitrary reference – which he calls ‘parametrical’ – and reference via individual constants are both
genuinely referential, we may explain their relation by saying that (i) either they convey different
notions of reference (ii) or arbitrary reference embodies the only notion of reference there is, and
either reference via individual constants is built up from it or it is reducible to it. I discuss option
(i) in the main text. In the case of (ii), arbitrary reference would be primitive, so Referential VCP
would concern it by default and would easily follow from TAR. I sincerely thank an anonymous
reviewer for pressing me on this issue.
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quite like Frege’s. In such a view, the existence of concepts does not depend upon
the existence of predicates expressing them. Nevertheless, since concepts can be
specified and referred to only via language, the possibility of referring to a concept
depends upon the possibility of referring to a predicate expressing it. At least a
few cases, in which referential presupposition holds, are not covered by ontological
presupposition. To this extent, referential presupposition and Referential VCP are
indeed news.

4.5.1 Frege’s Platonist Logicism About Concepts

I shall now turn to the issue of whether there is a way to make the use of predicativity
compatible with Frege’s view on concepts. I mentioned earlier that concepts are
intensional entities and, as such, the only way to specify and refer to them is via
language, i.e. through formulæ which express them. I also claimed that specification
of and reference to concepts boil down to the very same notion. Consider the
impredicative comprehension principle in second-order logic: 9F8x.F x $ �/.
Considering the concept F means considering the formula �, under the intended
interpretation. But then again, the concept F cannot be referred to by quantification
over the domain it belongs to, since quantification would require that we are able to
refer to F prior to specifying it through a predicate. In �, therefore, there cannot be
any bound second-order variables, on pain of violating TAR and Referential VCP.

Now, what about ontology and in particular Frege’s Platonism on concepts? The
relation of logical presupposition of quantification from arbitrary reference provides
a motivation for formulating Referential VCP independently of the underlying
ontology. Such a relation in fact holds no matter what ontological preferences one
has. It is just a matter of a relation between two crucial logical tools, i.e. (arbitrary)
reference and quantification, and as such it is impervious to ontological consider-
ations. One thing is the ontological assumptions underlying the consideration of a
domain of entities; another matter is the consideration of how reference works. The
underlying ontological assumptions, though inevitably connected with reference,
are not the only considerations playing a role in the referential picture. TAR provides
independent reasons for the dependence of quantification on reference, to which the
underlying ontological preferences are irrelevant. TAR is a claim concerning how
language works logically: ontology entering the picture is merely accidental. To this
extent, holding a Platonist stance towards the existence of the entities of a certain
domain does not affect Referential VCP. Given that Referential VCP is based on
TAR and TAR just embodies a claim of logical dependence of quantification from
arbitrary reference, a rejection of Referential VCP does not follow from a Platonist
attitude towards existence. To this extent, the Fregean may still be a Platonist about
concepts, even though she holds Referential VCP. Moreover, all concepts may exist:
the only restriction TAR imposes is on the concepts which are expressible within a
language. These latter may well exist, depending on the ontological preferences one
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has; as for the ones which are not expressible, they too may well exist, even though
the language cannot talk about them.

What about logicism, finally? As for Frege’s idea that impredicative higher-order
logic captures the very laws of thought, it has to be drastically revised. Since TAR
is a claim concerning logic and in particular the relation between arbitrary reference
and quantification, I here hold the strong claim that logic as the body of the laws
of thought should be inherently predicative. Frege’s logicism has to be restricted to
the extent that it finally takes into account the relation of logical presupposition of
quantification from arbitrary reference. Is this bad news to the Fregean? Yes and
no. It is bad news to the extent that a predicative second-order fragment of Frege’s
Grundgesetze like Heck (1996) cannot interpret more than Robinson arithmetic Q,
which is a rather poor, though not trivial, fragment of mathematics, especially as
compared to Frege’s original attempt to found (full second-order) arithmetic on
pure logic. In this respect, the objection from mathematical strength to a predicative
revision of Frege’s logicist programme hits the target.

The limitation that TAR imposes on the underlying logic, though, may still be
good news to the Fregean. First of all, TAR provides some independent motivation,
other than the mere search for consistency, for restricting the underlying second-
order logic. Secondly, given its compatibility with a Platonist stance towards the
existence of concepts, TAR provides some room to manœuvre for claiming that the
predicative fragments of Grundgesetze may indeed provide a consistent formal core
for reviving Frege’s foundational programme. Most of all, the limitation may just
imply that higher-order logic as the Fregean might interpret it, namely, as a theory
of concepts, has to be revised, but there may be further extensions of Heck (1996)
that may both count as logic and recover second-order Peano arithmetic.39

4.6 Concluding Remarks

In this paper, I tried to show that the consistent predicative fragments of Grundge-
setze, though prima facie at odds with Frege’s philosophical stance on concepts,
may indeed provide some philosophical grounds for revising Frege’s programme. I
proceeded through an independent reassessment of the very notion of predicativity,
not on ontological grounds as Gödel does, but on some logical basis. It turns out
that this reassessment is compatible with Frege’s Platonist view on the existence
of concepts but requires a drastic revision of his logicist view. In spite of this
pessimistic conclusion, I suggest to look on the bright side of the matter: once both
consistency and Frege’s conceptual Platonism are secured by TAR on independent
philosophical grounds, the predicative fragments of Grundgesetze may provide
a stepping-stone for further investigations towards a (possibly partial) revival of
Frege’s philosophical views on mathematics.

39See, for instance, Boccuni (2010).
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Chapter 5
A Deflationary Account of the Truth
of the Gödel Sentence G

Mario Piazza and Gabriele Pulcini

5.1 Introduction

According to deflationism, truth is a metaphysically thin property, redundant and
dispensable, but useful as generalisation device as in ‘whatever the oracle told you
is true’. Philosophers of course disagree whether deflationism about truth is true.
Some objections to it are more penetrating than others, but none of them seems to be
decisive. Yet some authors such as Stewart Shapiro and Jeffrey Ketland have argued
that the refutation of deflationism can be, to some extent, a mathematical task: it is a
matter of showing that our conviction about the truth of the independent Gödel
sentence G involves ‘a theory of truth which significantly transcends the deflationary
theories’ (Ketland 1999, p. 88; Shapiro 1998). More specifically, Shapiro and
Ketland maintain that a truth-theoretic extension of a given arithmetical formal
system such as Peano Arithmetic PA is deflationarily licit only when it satisfies the
conservativeness requirement, i.e. when ‘[it does] not allow us to prove anything in
the original language that we could not prove before we added the truth predicate’
(Shapiro 1998, p. 497). Thus, as G is independent of PA albeit expressed within its
language—so the anti-deflationary argument goes—any truth-theoretic extension
allowing us to prove the truth of G must be nonconservative and so deflationarily
illicit.
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This view has provoked Neil Tennant’s reply on behalf of deflationism, according
to which the Gödel sentence G can actually be recognised to be ‘true’, in the sense of
‘assertable’, without deploying or invoking a ‘thick’ concept of truth, i.e. avoiding
the semantical notion of model or a Tarski’s style truth predicate. In particular,
Tennant proposes a way of deflationarily achieving the proposition G by means of
reflective extensions of formal arithmetic which augment the deductive apparatus
of PA with a suitable version of the reflection principle (Tennant 2002, 2010). In
this way, much current debate about deflationism and Gödel phenomena has been
subsumed under the discussion about the justificatory status of reflective statements
without appeal to nonconservative truth-theoretic extensions of PA (Field 1999;
Halbach 2001, 2011; Ketland 2005; Tennant 2005, 2010; Cieśliński 2010).

Generally speaking, a natural way to be deflationist in mathematics is to equate
truth with proof. However, the received view of incompleteness is spontaneously
inflationary holding that the constitutive element of the First Incompleteness
Theorem is the independence of truth from proof in PA, so that this theorem
would prove the existence of arithmetical sentences which are true but unprovable.
The current orthodoxy therefore favours an anti-deflationary stance: truth can be
easily conceived of as a substantial, not a deflationary, property of some sentences,
if there is a discontinuity between their truth and their proof. As the anti-deflationist
Ketland puts it, our understanding of the significance of the First Incompleteness
Theorem is primarily a matter of sensitivity to the proof-transcending truth of G
(Ketland 1999, p. 91).

Admittedly, the inflationary reading of incompleteness is as old as Kurt Gödel’s
own informal argument in the very first paragraph of his 1931 article. This argument,
indeed, incorporates a commitment to a ‘thick’, primitive, concept of truth. Let PA
denote the formal system of first-order arithmetic and let

G , G is not provable in PA

Let us now ask whether G is provable or not in PA:

• Suppose that G is provable in PA. Then, for what it literally says of itself, it is
a false statement. This means that PA is unsound inasmuch as it allows a false
statement to be proved. Hence, if PA is sound, then G is unprovable in it.

• Suppose instead that G is unprovable in PA. Then, it is a true statement and its
negation :G is false. Again, if PA is sound, then :G is unprovable.

Therefore, PA is syntactically incomplete: there exists a statement G such that
neither G nor its negation :G is provable in PA. Moreover, since G is a true
statement, it follows that PA is also semantically incomplete, i.e. there exists a true
statement that PA cannot prove (Gödel 1965).

Yet this semantical argument that Gödel launches as a sort of guide for the
perplexed performs the function of a heuristic insight. (It should also be noted in
passing that Gödel qualifies the independent statement as ‘richtig’ not as ‘wahr’.)
The insight in question, engaging as it is, departs from the effective logical meaning
of `PA G $ :TheorPA.�G�/, which states that G and :TheorPA.�G�/ are mutually



5 A Deflationary Account of the Truth of the Gödel Sentence G 73

interchangeable with regard to provability within PA. So the gap between G and its
supposed translation in terms of natural language cannot by any means be filled by
a precise logical argument. However, in the sequel of his article Gödel sets the scene
for incompleteness in purely syntactical (and moreover intuitionistic) terms so that
the core of his construction properly involves a syntactical sensitivity rather than a
semantical one.

On the other hand, the fact that proof and arithmetical truth in PA do not co-
travel should be viewed only as a consequence of the First Incompleteness Theorem
under a classical view of truth: insofar as �PA G and �PA :G, one grants that either
G or :G must be true. But the irrelevance of bivalence from a mathematical point
of view suggests a rationale for a deflationary approach to incompleteness. This
point can be illustrated by means of an example. Consider †1-completeness in its
contraposed form: since :G is a †1-statement such that �PA :G, then :G is false
in the standard model N and, therefore, G is true in N (see Corollary A.19). In
other words, the†1-completeness allows us to achieve the truth of G in the standard
model by the very independence of G from PA. Now take Goldbach’s conjecture:
for all n 2 N, if n is greater than 2, then it can be expressed as the sum of two
primes. Like G, Goldbach’s conjecture is a…1-statement. Let 	.x/ be the predicate
of being a prime number; the conjecture can actually be formalised as follows:

.GC/ 8x.x > 2 ! 9y < x 9z < x.x D y C z ^ 	.y/ ^ 	.z///:

Imagine then that someone were to prove that GC is independent from PA and so, by
an argument analogous to that for G, that GC is true in the standard model N ; again,
the truth of GC is yielded by its independence proof. We think it is safe to notice
that mainstream number theorists would feel inclined to seek a counterexample
of Goldbach’s statement in elementary number theory (or a proof of it in higher
systems).

Another source of epistemological worries about inflationary (model-theoretical)
demonstrations of N � G concerns the inegalitarianism about models, that is, the
choice of the standard model N as the official platform for establishing the truth of
G. A general line of reasoning runs as follows:

1. The central aim of a formal system of arithmetic is to give a formal account for
elementary number theory as faithful as possible.

2. But any model of the expanded theory PA [ f:Gg (i.e. the theory where :G is
assumed to be true) must be a non-standard one.

3. Therefore, the exclusion of the standard model N from the range of possible
mathematical structures verifying the axioms of the theory would flout our
intuition, because N expresses the intended structure of natural numbers, i.e.
it does not include heterogeneous entities like non-standard numbers.

As Michael Dummett points out in his famous paper on Gödel’s Theorem, this
argument is epistemologically plagued by the puzzling loop caused by the notion
of standard model (Dummett 1963). In Crispin Wright’s words, ‘as soon as it is
granted that any intuitively sound system of arithmetic merely partially describes
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the subject matter to which it answers, an explanation is owing of how the subject
matter in question can possess a determinacy transcending complete description’
(Wright 1994). In practice, the intended structure of elementary number theory N
is the theory we want to show as being free from contradictions, and to this end
we try to characterise faithfully the class of its truths by means of the property of
being a theorem of PA. But our judgement that G is true though unprovable in PA
depends for its acceptability on the assumption that the structure N is clear enough
to regulate the deductive behaviour of PA.

In this chapter, we articulate a new deflationary construal of incompleteness
where the concept of truth has no substantial role to play in our conviction that
the independent sentence G should be asserted. Moreover, we focus on the actual
conceptual core of the Gödelian construction, namely, the deductive inexhaustibility
of PA. Indeed, whereas inflationary theories of truth tend to ‘complete’ PA while
provingG, current deflationary accounts dismiss the problem of the incompletability
of formal systems. Our syntactical path leading to the achievement of G avoids
the heavy commitment to reflection principles, so transparently ad hoc. As a
consequence, we deny the thesis about the mathematical refutability of deflationism
about truth via Gödel’s Theorem while bypassing as inessential the anti-deflationary
demand for the derivability of the reflection principles without truth-theoretic
principles (Feferman 1991).

The plan of the chapter is as follows. In the next section, we discuss a whole set
of problems emerging from the deflationary approach to incompleteness proposed
by Tennant in Tennant (2002). In Sect. 5.3, we indicate a syntactical, deflationary
route to G. In particular, we pursue a reading of incompleteness in terms of the
(constructive)!-rule and the notion of prototype proof in Jacques Herbrand’s sense
of the term. The constructive !-rule is shown to have a deflationary character,
so as not only to avoid (necessarily nonconservative) semantical justifications but
also to overcome the very inexhaustibility phenomenon. Finally, we briefly discuss
our deflationary proposal in relation to the procedure sketched by Dummett for
achieving the truth of G. In order to make the chapter as self-contained and readable
as possible, the appendix provides notations and basic notions as well as the proofs
of the theorems involved.

5.2 Against Tennant’s Deflationary Reading
of Incompleteness

In order to provide a proof for G in an augmented formal theory including PA,
Tennant suggests extending PA with a reflection principle in Feferman’s spirit
(Feferman 1962)—i.e. an axiom schema that disquotes the truth-predication coming
from theoremhood. Under this principle, called the principle of uniform primitive
recursive reflection, he intends to show ‘that there is a ‘deflationary way’ of
faithfully carrying out the semantical argument for the truth of the independent
Gödel sentence’ (Tennant 2002, p. 557).
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For ease of exposition, we sketch his argument by taking into account the formal
system PARf n, that is, PA expanded to include the local reflection principle:

Rfn W8˛;TheorPA.�˛�/ ! ˛:

PARf n is called the soundness extension of PA for the reason that the Rfn
principle is taken into account to represent the formal counterpart to the metalogical
property of soundness. Now, from the soundness of PA with regard to the standard
model N , follows in particular a proof of N � G, so that it is possible to formalise
a PARf n proof of G. We clearly have both

`PARf n TheorPA.�G�/ ! G

and

`PARf n :TheorPA.�G�/ ! G:

Therefore, by stressing the classical tautology

..˛ ! ˇ/ ^ .:˛ ! ˇ// ! ˇ

we can easily conclude

`PARf n G:

The following three questions introduce as many objections that can be brought
against Tennant’s deflationism:

1. Does the reflection principle actually express the soundness property?
2. Does the consistency extension lack good philosophical motivations?
3. Does the reflection principle enable us to fill the gap between provability and

truth?

Let us approach these questions in turn.

5.2.1 Does the Reflection Principle Actually Express the
Soundness Property?

Tennant’s argument depends on the assumption that the Rfn axiom schema ex-
presses a syntactical, and so genuinely deflationary, rendition of the metatheoretical
property of soundness within PA. Such a translation is meant to preserve at least
the intensional meaning of the soundness property, that is, the fact that if ˛ is a
theorem of PA, then ˛ can be accepted as an arithmetical truth; this allows us to
derive the epistemological justification for it from the very belief in the soundness
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of the theory. Now, the soundness of PA with respect to the standard model yields a
model-theoretical proof of the inflationary truth of G (Dummett 1963). Analogously,
Tennant claims that a deflationary rendition of the soundness property will allow the
achievement of a proof of G in a deflationary way.

But a fundamental difficulty comes into view by acknowledging that PA is
sufficiently strong to prove the so-called provable†1-completeness (see Rautenberg
2000), i.e. the fact that

8˛ 2 †1;`PA ˛ ! TheorPA.�˛�/:1

†1-completeness brings with it the fact that any independent …1-formula is
recognised to be true by N . Specifically, it is possible to provide an easy proof for
N � G. Indeed, G 2 …1 and consequently :G 2 †1; hence, by the contrapositive
of the †1-completeness, we obtain N � :G, i.e. N � G. Accordingly, such
a proof undermines the above defence of deflationism. Indeed, if the provable
†1-completeness actually represented its metatheoretical counterpart, then the
sentence G would be provable within PA itself! So, the fact that the provable †1-
completeness can be understood on a disquotational parallel with the Rfn principle
erases any trust in the intensional character of the correspondence between Rfn and
the soundness property.

5.2.2 Does the Consistency Extension Lack Good
Philosophical Motivations?

Tennant quickly dismisses the consistency extension of PA, obtained by adding
to PA axioms the sentence asserting the syntactical consistency of PA, ConsPA.
The motivation for this dismissal lurks in the cryptic metaphor that consistency
extension is ‘an uninformative hammer with which to crack the independent walnut’
(Tennant 2002, p. 573). But it is hard to make sense of this from the very perspective
he embraces. First of all, as Dummett points out in his contribution on the Gödel’s
Theorem (Dummett 1963), the truth of G is a truth under the assumption of the
consistency of PA. Now, it is well known that through the Second Incompleteness
Theorem, this dependency can be strengthened and formalised within PA, G
and ConsaPA being two provably equivalent propositions: `PA ConsPA $ G.
In this way, a proof of G can be very simply obtained as the result of a modus
ponens with the new axiom ConsPA. Secondly, the consistency extension takes

1Note that this formulation can be depurated from any residual metatheoretical feature, simply
by individuating a recursive predicate S.x/ such that `PA S.n/ if and only if n is the Gödelian
coding of a †1-formula. In such a way, the provable †1-completeness turns to be condensed into
the following axiom schema:

8˛;`PA S.�˛�/ ! .˛ ! TheorPA.�˛�//:
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advantage of being weaker than the soundness extension. In general, the soundness
of an arithmetical theory T implies its consistency (otherwise T would prove
false statements), but the converse does not hold given the existence of unsound
consistent theories (Isaacson 2011). Indeed, since ConsPA is provably equivalent to
G, PA[fConsPAg is a minimal deductive extension allowing us to prove G (similarly
to Tennant’s extension based on the uniform primitive recursive reflection). From
an epistemological standpoint, belief in the soundness of our arithmetical theory
implies belief in its consistency to the extent that the cognitive act of recognising
a certain cluster of axioms as intuitively true runs under the implicit assumption
of their reciprocal consistency. Could anyone recognise as evidently true a pair of
axioms contradicting each other? In this way, belief in consistency turns out to be the
very first step towards belief in the soundness of the theory. This is the real reason
why the proof of the soundness of PA is regarded as uninformative with respect to
the consistency of the system: it cannot prove a property silently assumed by the
proof itself (Piazza & Pulcini 2013). To conclude, the point is not the lack of good
reasons for setting aside the consistency extension in favour of the local reflection
principle. Rather we say that an allegation against the consistency extension cannot
be justified without compromising the acceptance of the soundness extension itself.

5.2.3 Does the Reflection Principle Enable Us to Fill the Gap
Between Provability and Truth?

The First Incompleteness Theorem establishes much more than the syntactical
incompleteness of PA: it shows that any first-order formal system capable of
faithfully representing a certain amount of elementary number theory is deductively
inexhaustible. In the specific case of PA, if we attempt to fill the deductive hole
G by extending its deductive power, the deductive hole replicates itself through a
new independent proposition G0. Such a phenomenon is due to the fact that the
undecidable proposition G constructed by Gödel involves the predicate TheorPA.x/

which is, by definition, strictly dependent on the set of axioms of PA, so that it gives
rise to an independence phenomenon which is intrinsically insurmountable.2

In the case of the specific extension PARf n studied by Solomon Feferman
and advocated by Tennant, we can iterate Gödel’s construction so as to produce
another independent proposition G0 such that `PARf n G0 $ :TheorPARf n.�G0�/
and G0 ¤ G. Now there is surely something pretty dubious about the relation
between Tennant’s deflationary proposal and the inexhaustibility phenomenon.
The soundness extension, of course, is a recipe for the incompleteness of any formal

2It is worth recalling here that the notion of ‘deductive inexhaustibility’ can be fully characterised
in plain recursion theoretic terms by means of both the well-known notions of creative set
and productive set (Rogers 1987). Such a kind of characterisation turns out to be completely
independent of classical model theory.
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system; this means that as we decide G by expanding PA to include the soundness
principle TheorPA.�˛�/ ! ˛, we can in turn expand PARf n with the principle
TheorPARf n.�˛�/ ! ˛ in order to decide G0 and so on. But now the question raises
an epistemologically subtle point: the extension which allows us to fill the present
deductive hole is the very cause of replication of the deductive hole itself. Thus, as
soon as we decide G, the achievement of its truth proves a mere fig leaf because
the process itself of deciding G launches the question of deflationarily achieving the
truth of the new independent proposition G0.

From an epistemological standpoint, the situation would be radically different if
at each deductive extension step we decided one (or finitely many) of the infinitely
many independent propositions G1;G2; : : :, so as to avoid a new deductive hole.
Although this would be another case of deductive inexhaustibility, the mechanism of
filling the deductive holes step by step would not give real cause for concern. On the
contrary, the relation between Gödelian incompleteness and Tennant’s deflationary
strategy re-enacts the sort of regress exposed in Zeno’s paradox of Achilles and
the tortoise: decidability will always remain behind with respect to the independent
proposition which is under focus at each step.

To sum up, the real lesson of the case is that we must be careful not to take heuris-
tic insights too seriously from a logical point of view—what the Rfn principle states
is nothing but the fact that a proof of `PARfn TheorPA.�˛�/ makes it possible a proof
of `PARfn ˛ by means of a modus ponens application between `PARfn TheorPA.�˛�/
and Rfn instantiated with ˛. On this view, Tennant’s strategy for achieving the truth
of G happens to be surprisingly close to the naive argument outlined in Sect. 5.1
whereby the sentence G is true for it declares that ‘I’m unprovable’ and in fact
it is unprovable. However both the soundness and the consistency extensions are
at odds with the need to stem new independent propositions. This is to conclude
that any reliable approach to the problem of deflationarily recognising G as a true
statement has to focus attention on the main concern of Gödel’s work, which is the
inexhaustibility of formal arithmetic. This is what we will do in the next section.

5.3 An Alternative Deflationary Proposal: The Constructive
¨-Rule

5.3.1 The Unrestricted !-Rule

The shift from PA to the so-called !-logic (henceforth indicated by PA!) gives us
our starting point for proving G while avoiding the surfacing of another independent
proposition. Let us recall that PA! is obtained from PA by adding the !-rule in place
of the rule of induction: we can infer that 8x˛.x/, provided we can prove ˛.n/ for
each natural number n. Formally,
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�PA
ω α(0) �PA

ω α(1) �PA
ω α(2) . . .

ω-rule.�PA
ω ∀xα(x)

The above rule was first described in a published work by David Hilbert in 1931.3

PA! does not only decide both the Gödelian propositions G and ConsPA but has
the capacity for providing a syntactically complete characterisation of first-order
arithmetic (see Corollary A.21).

The inclusion of a new inference rule has the advantage over the axiomatic
extensions of allowing us to avoid any cumbersome philosophical commitment on
the capacity of a certain axiom schema to syntactically reproduce a metatheorical
property. From an epistemological point of view, moreover, the !-rule needs no
particular justification: the inferential device it expresses is largely supported by our
intuition about the structure of natural numbers so as to be straightforwardly sound
when one refers to the standard model.

Yet, of course, this route to G via the infinitely many premisses of the !-rule
corresponds to the collapse of the Hilbertian notion of formal system, and this fact
is just another way of stating the First Incompleteness Theorem. The best we can
say is that PA! makes a virtue out of the very ineffectiveness of the notion of
proof by circumventing the phenomenon of deductive inexhaustibility of formal
arithmetic, given that the predicate TheorPA.x/ cannot be upgraded to TheorPA! .x/.
Anyway, we are driven back to a notion of truth which is symmetric with respect
to the thin version sponsored by the advocate of deflationism: a thick absolute
as the upshot of an infinitary nonconstructive reasoning. In effect, why not say
that the movement from PA to PA! is anything but a semantical transition? The
infinitary nature of !-rule suggests that the rule intervenes as an external device
to stretch syntactically the Tarskian definition of truth for the universal quantifier
within arithmetical theories:

8x˛.x/ is true if ; and only if ; ˛.n/ is true for all n 2 N:

This is why PA! succeeds in achieving completeness (see the proof of
Theorem A.20), while the semantical completeness of PA with respect to the
standard model N does not exceed the level of †1-formulas.

The present situation is puzzling for a deflationary approach to incompleteness:
on the one hand, the First Incompleteness Theorem pulls any epistemologically
well-founded attempt to decide G away from the notion of formal system; on
the other hand, any deductive strategy involving non-formalisable devices like the
!-rule is a semantical strategy in disguise. To be more precise, the question now
before us is whether there is room between formal arithmetic and its classical
semantics for a genuine syntactical manoeuvre able to achieve the provability of G.

3For an accurate history of the !-rule, see Isaacson (1991).
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5.3.2 The Constructive !-Rule

A path for an affirmative answer to this question is provided by the constructive
!-rule:

if ˛.n/ admits a prototype proof w:r:t: n 2 N; then conclude `PA 8x˛.x/:

Following Michael Detlefsen (1979), the term ‘prototype’ assumes the meaning
attached to it by Jacques Herbrand in ‘Sur la non-contradiction de l’Arithmetique’
(1931): ‘when we say that a theorem is true for all x, we mean that for each
x individually it is possible to iterate its proof, which may just be considered a
prototype of each individual proof’ (Herbrand 1931). In other words, a prototype
proof provides ‘a reasoning which uniformly holds for all arguments, and this
uniformity allows (and it is guaranteed by) the use of a generic argument’ (Longo
2011).

Alan Bundy and his co-workers regard the constructive !-rule as a device for
capturing the notion of schematic proof:

The constructive !-rule is a refinement of the !-rule that can be used in practical proofs.
It has the additional requirement that the '.n/ premises be proved in a uniform way, i.e.
that there exists a recursive program, proof' , which takes a natural number n as input
and returns a proof of '.n/ as output. [. . . ] The recursive program proof' formalises our
notion of schematic proof (Bundy et al. 2005).4

Perhaps the most articulated mathematical approach to prototype proofs has been
devised by Giuseppe Longo with regard to impredicative type theory (Longo 2000).
As far as the epistemological nature of the constructive !-rule is concerned, he
observes:

[. . . ] the proof of a universally quantified statement is not understood by following the naif
(Tarskian style) interpretation of “8x : : :” as “for all x . . . ”: in no way “8x : : :” is used in a
proof in the sense of the inspection of “all instances” in the intended model, yet its meaning
and use refer to x as generic in a prototype proof (Longo 2000).

Henceforth, we indicate by !# and PA!# , respectively, the constructive version
of the !-rule and the deductive system obtained by weakening PA! through the
replacement of the unrestricted !-rule with !# and the consequent reintroduction

4Yet, this definition tends to blur the distinction between the constructive and the recursive versions
of the !-rule. Following Shoenfield (1959), Torkel Franzén writes: ‘A proof of � in a system
incorporating the recursive !-rule is either a pair h�; 0i where � is an axiom, or a sequence
h�; e1; : : : ; eni where ei is a proof of  i , and � follows from  1; : : : ;  n by some ordinary
inference rule, or, if � is 8x , a pair h�; ei, where e is the index of a total recursive function
such that feg.n/ is a proof of  .n/ for every n’ (Franzén 2004). Indeed, the constructive !-rule
turns out to be a particular kind of recursive !-rule insofar as its implementation requires the
specification of a recursive function able to return a proof of  .n/ for every n 2 N in input. On
the other hand, the specification of a recursive function able to return a proof for each one of the
numerical instances does not necessarily induce uniformity in demonstrative reasoning.
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of the induction principle. Both proofs of `PA! G and `PA! ConsPA are based on
prototype arguments. Let us produce, for instance, the proof of `PA!# G. Its crucial
prototype juncture is displayed in detail below:

1. `PA DemPA.n; �G�/ hypotheses by absurd
2. `PA 9xDemPA.x; �G�/ 9-introduction
3. `PA TheorPA.�G�/ definition of TheorPA.x/

4. `PA :G Diagonalisation Lemma
5. �PA :G First Incompleteness Theorem
6. �PA DemPA.n; �G�/ absurd from 4,5
7. `PA :DemPA.n; �G�/ �0-decidability.

Clearly, for any m 2 N, this argument allows the generation of a proof of `PA

:DemPA.m; �G�/ just by replacing n with m. As PA is a subsystem of PA!# , we
straightforwardly have, for any m 2 N, that `PA!# :DemPA.m; �G�/; finally, by a
step of the !#-rule, we can conclude that `PA!# 8x:DemPA.x; �G�/ � G. Along
similar lines, we can obtain a proof of `PA!# ConsPA by the Second Incompleteness
Theorem.5

The epistemological cleavage produced through this process of ‘constructivisa-
tion’ is remarkable. The epistemological dividend that this process can pay may be
fully appreciated when it is realised that the unrestricted !-rule can be viewed as
a sort of general pattern from which one can specify some different constructive
versions. In this respect, the induction principle may be conceived of as a specific
constructive instance of the !-rule, where the infinitely many premisses for the
universal quantification are generated by a well-defined recursive function which
consists in the proof by induction itself. On the other hand, the infinite premisses of
!# are generated by a certain prototype proof through successive replacements.6

Both these constructive versions succeed in capturing a widespread pattern of
reasoning in mainstream number theory, even in the most radically constructive
contexts. As regards the !#-rule, it is worth mentioning a family of diagrammatic
proofs of basic arithmetical facts (Jamnik 2001). But, whereas the inductive
mechanism can be compressed into a single axiom of a formal system like PA, the
notion of ‘prototypicality’ seems to present intrinsic intensional features far from
being formally reproducible (Longo 2011).

5In general, the provability of the Gödelian propositions is due to the fact that the enriched theory
PA!# enjoys the following additional derivability condition:

D! W for any formula ˛;�PA!# ˛ )`PA!# :TheorPA.�˛�/:

Clearly, D! does not hold true in PA, otherwise G would be provable and unprovable at the same
time. As far as the validity of D! in PA!# is concerned, the reader can find all the technical details
by looking at Theorem A.22 and Corollary A.23.
6Specific implementations of constructive !#-rule, especially in view of automatic deduction
treatments, are afforded in Baker et al. (1992) and Bundy et al. (2005).
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The !#-rule radically diverges from its unrestricted ancestor in the very logical
way it introduces the universal quantifier. When the unrestricted !-rule is applied,
the inferential step leading from the infinitely many premisses ˛.0/; ˛.1/; ˛.2/; : : :
to the conclusion 8x˛.x/ actually expresses, we might say, a synthetic inference
inasmuch it abridges the infinity of its premisses into a finite syntactical expression.
On the contrary, the constructive !-rule introduces the universal quantifier in an
analytical way, for the infinitary information about premisses is already finitarily
encompassed into the logical structure of the prototype argument. This means that
it is the whole prototype argument that accomplishes the synthetic task of enclosing
the infinite into a finite demonstrative device. This is the reason why !#-rule has a
double logical nature: finitary and non-formalisable at the same time.

An immediate consequence of such an epistemological reversal is that, unlike the
unrestricted pattern of inference conveyed by the !-rule, !# does not lie within the
province of classical semantics. In fact, in the process of constructive specification
leading to !#, the !-rule loses its unconditional generality, so that it can no
longer faithfully reproduce the Tarskian definition for the universal quantifier. In
epistemological terms, the constructive requirement divorces the !#-rule from the
nonconstructive semantics grounded on bivalence.

The notion of uniformity underlying the constructive !-rule clearly recalls the
first-order logical principle of universal generalisation (GU) which licenses the
inference from '.t/ to 8x'.x/ provided the absolute genericity of the term t

(technically, x does not appear as a free variable in A.t/ and A.x/ is the result of
replacing all occurrences of t in A.t/ by x) (Cellucci 2009). Of course GU and !#
cannot coincide; otherwise G would be provable against the First Incompleteness
Theorem. Since their difference lies in the fact that !# is restricted to natural
numbers, one might object that the adoption of !# entails a strong semantical
commitment to them. Our reply is that a prototype proof do not presuppose the
set of natural numbers, but characterises it as the set of all the numerical entities
to which the schematic argument at issue applies. In other words, when a prototype
argument is turned into a universal quantification, the quantifier is meant to range
over all the numerical objects capable of instantiating the argumentative schema. So,
we may say that any prototype argument implicitly defines a set of numbers. This
aspect highlights another important difference with the unrestricted !-rule which
actually enjoins us to assume a numerical ontology in order to achieve to whole
set of its premisses. Once that the relation between semantics and syntax has been
reversed, the constructive !-rule can save its deflationary skill.7

7For similar reasons, this rule cannot be expressed by means of the Uniform Reflection Scheme:

Urs W 8xTheorPA.�˛.x/�/ ! 8x˛.x/:
Indeed, PAUrs—i.e. PA with Urs added as a new axiom—is still an incomplete formal system by
the First Incompleteness Theorem, whereas PA!# is syntactically complete. This fact, of course,
cannot be avoided when our principle is formulated as a rule: if `PA 8xTheorPA.�˛.x/�/, then
`PA 8x˛.x/.
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5.3.3 Deconstructing Dummett’s Argument

To test our deflationary proposal, let us accept the challenge raised by Tennant when
he claims that ‘in so much as stating the philosophical crux of Gödel’s theorem,
Dummett has furnished the kind of use of the truth-predicate that any deflationist
would wish to deconstruct’ (Tennant 2002, p.552).

In 1963, Dummett sketched a procedure for achieving the truth of G:

The argument for the truth of ŒG
 proceeds under the hypothesis that the formal system in
question is consistent. The system is assumed, further, to be such that, for any decidable
predicate B.x/ and any numeral n, B.n/ is provable if it is true, — :B.n/ is provable
if B.n/ is false (the notions of truth and falsity for such a statement being, of course,
unproblematic). The particular predicate A.x/ [i.e., :Dem.x; �G�/] is such that, if A.n/
is false for some numeral n, then we can construct a proof in the system of 8xA.x/. From
this it follows — on the hypothesis that the system is consistent — that each of A.0/, A.1/,
A.2/, . . . is true’. (Dummett 1963, p. 192)

As is so often the case, the fortune of a certain idea profits from a certain
vagueness in its formulation, so that many authors have tried to make Dummett’s
hint more specific. However, it is rather surprising that it has never been detected
here the offices of a prototype argument. It is because Dummett’s argument has
a prototypical nature, indeed, that the shift from PA to PA!# yields a deflationary
reduction of it. Specifically, two logical circumstances make this reduction possible.
The first refers to the ‘analytical’ way in which the !#-rule introduces the universal
quantifier. This epistemological feature matches Dummett’s claim that ‘[. . . ] the
transition from saying that all the statements are true to saying that 8x˛.x/ is true
is trivial’ (Dummett 1963, p. 192). The second circumstance concerns the fact that
‘the argument for the truth of ŒG
 proceeds under the hypothesis that the formal
system in question is consistent’ (Dummett 1963, p. 192). Indeed, the!#-rule allows
us to cut the Gordian knot of the consistency hypothesis, for ConsPA turns out to
be (deflationarily) provable within PA!# . In this way, we can get rid of the most
cumbersome inflationary commitment, namely, the resort to the soundness of PA.

5.4 Concluding Remarks

The problem addressed in this chapter is that of showing that a deflationary view of
incompleteness (incompletability, indeed) is possible, so that the Gödel phenomena
are not disastrous for deflationism about truth. We do not mean to argue in favour
of a reappraisal of Hilbert’s foundational programme through the constructive !-
logic as, for instance, Detlefsen does (Detlefsen 1979). What we claim is that the
introduction of the constructive !-rule for achieving G is in tune with a deflationary
point of view: the path leading to G consists of a proof of G which drops any
reference to a genuine property of ‘truth’. The fact that the proofs of G and ConsPA

within PA!# are not relevant to a foundational point of view need not worry us, as
these proofs exploit the First and Second Incompleteness Theorems which assume
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the consistency of PA. But such a foundational irrelevance pinpoints the deflationary
nature of the present proposal, by spelling out the irrelevance of the truth value of G
to the grasp of incompleteness phenomena.

Moreover, the deflationary character of our proposal can also be stressed from a
broader perspective. If we look at the historical development of number theory—
and so assuming the point of view of the mathematical practice—the prototypical
reasoning turns out to be a very weak arithmetical demonstrative strategy. It seems
indeed that only trivial arithmetical statements can be proved through pure prototype
arguments.8

This is the case, to pick one example, of the proof of the transitivity of the
divisibility property: for all a; b; c 2 N, if ajb and bjc, then ajc. On this view,
the weakness of the !#-rule has to be read in opposition to the stronger number
theoretical methods of induction and infinite descent employed for proving relevant
arithmetical properties (Weil 1984). This aspect can be fully grasped by observing
that both mathematical induction and infinite descent presuppose a prototype argu-
ment. Consider, for instance, the demonstrative method of mathematical induction.
As remarked by Longo, an implicit prototypical passage is silently at work when
one proves that the inductive step ˛.n/ ! ˛.n C 1/ holds for all n 2 N (Longo
2011). Similarly, any proof by descent is built over prototypical assumptions. On
the one hand, this leads to the conclusion that one of the favourite inflationary
tenets—the idea that any demonstrative method non-formalisable within PA has to
be epistemologically stronger than the methods encompassed by PA—is shown to be
flawed. On the other hand, we get a strong epistemological reason for deflationarily
accepting the !#-rule: its refusal would imply the refusal of the induction principle
itself.

In conclusion, what emerges from our proposal is a notion of deflationism which
clearly sponges on the epistemological authority of the mathematical practice,
specifically that of number theory. Indeed, the deflationary licitness of the con-
structive !-rule has been supported by stressing its undeniable status of universally
accepted method in the practice of number theory: explicitly used through pure ap-
plications of prototype arguments, implicitly at work as a hidden basic subprinciple
in proofs by induction or descent. The same epistemological move provides one
further reason for discarding the unrestricted !-rule to the extent that it expresses a
purely semantical principle, too much abstractly shaped for exhibiting any kind of
paradigmatic application in corpore vili.

8The situation seems to be radically different in geometry. Indeed, the very recognition that a
deduction about particular constructions produces knowledge of general validity is at the heart
of the emergence of Greek deductive mathematics. For example, the proof of the statement that
in every triangle the sum of the three angles is equal to 180ı considers a generic triangle while
holding uniformly for all triangles. There is considerable plausibility in Reviel Netz’s idea that the
feeling of generality that Greek mathematicians gain at the end of a proof arises from the conviction
that the proof concerned with a particular object is repeatable for any similar object (Netz 2003,
p. 256, 269). This explanation makes Greek proofs prototype proofs avant la lettre.
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Appendix: Technical Backgrounds and Proofs

A.1 Peano Arithmetic: Theory and Models

Definition A.1 (Peano Arithmetic). The language of PA is given by the language
of first-order logic with identity enriched with the individual constant 0, the unary
functional symbolSucc._/ (the successor) and the two binary functional symbols C
and �. Moreover, the specific deductive apparatus of PA is defined by the following
nine proper axioms:

(1) x D y ! .x D z ! y D z/
(2) x D y ! Succ.x/ D Succ.y/
(3) 0 ¤ Succ.x/
(4) Succ.x/ D Succ.y/ ! x D y

(5) x C 0 D x

(6) x C Succ.y/ D Succ.x C y/

(7) x � 0 D 0

(8) x � Succ.y/ D .x � y/C x

(9) For every formula ˛.x/ of PA such that x occurs free in ˛,
`PA ˛.0/ ! .8x.˛.x/ ! ˛.Succ.x// ! 8x˛.x//.

We abridge with n the numeral Succ.Succ : : : Succ.0/ : : :/ resulting from n

applications of the successor function to the constant 0. For any pair of terms t and
s, t ¤ s is intended to be defined as :.t D s/.

Definition A.2 (Structure N ). The structure N D .N; 0;CN ; �N ; SuccN / is
formed by the set of non-negative integers N D f0; 1; 2; : : :g, the distinguished
number 0 2 N (which interprets the constant 0), the functional symbols CN and
�N , respectively, corresponding to the familiar sum and product and the successor

function SuccN .x/
def:D x CN 1.

Theorem A.3 (Soundness). N is a model of PA and, moreover, PA is sound
w.r.t. N .

Proof. For establishing that N is a model of PA (in symbols N � PA), we have
to show that each of the PA axioms is interpreted in N as a true statement. It is
immediate to check that N satisfies axioms 1–8. As far as the induction principle
is concerned (axiom 9), since the domain of N exactly coincides with the set of
naturals N, the inductive mechanism is indeed able to cover the totality of the
elements of N , so as to justify the introduction of the universal quantifier.

As far as the soundness property is concerned, the proof consists in showing that,
for any formula ˛, if `PA ˛, then N � ˛. We proceed by induction on the length
of the PA proof ending with `PA ˛. The base is clearly provided by the fact that
N � PA. Then, it is easy to see that the logical inference rules transmit the truth
from premisses to conclusions. ut
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Remark A.4 (Soundness and Consistency). Due to the strict bivalence of classical
semantics, if a theory is sound w.r.t. a certain model, it is consistent (otherwise the
theory would prove a false statement).

Remark A.5 (Standard Model). The structure N is said to be the standard model
for PA.

A.2 The Incompleteness Theorems

Definition A.6 (Deductive Independence). A formula ˛ is said to be independent
of PA if �PA ˛ and �PA :˛.

Definition A.7 (¨-Consistency). A certain arithmetical theory T is said to be
!-consistent if the following two conditions are mutually excluding:

• For all n 2 N, `T ˛.n/,
• `T 9x:˛.x/.
Remark A.8 !-consistency is stronger than consistency so like any !-consistent
theory is also consistent.

The proofs of the incompleteness theorems are here merely sketched; for the
technical details the reader is referred to Rautenberg (2000).

Theorem A.9 (First Incompleteness Theorem). There exists a formula G such
that if PA is !-consistent, then G is independent of PA.

Proof. The proof is developed through the following five points.

(1) There exists a 1–1 assignment of natural numbers to formulas and demonstra-
tions of PA. �˛� and �˛�, respectively, indicate the number associated with ˛
(its Gödelian code) and its corresponding numeral: if �˛� D n, then �˛� D n.
In the same way, �	� and �	�, respectively, denote the Gödelian code of the
proof 	 and the corresponding numeral.

(2) It is possible to define a �0-formula DemPA.x; y/ such that `PA DemPA.n;m/

if, and only if, n encodes a PA demonstration of the formula ˛ with �˛� D m.

(3) Consider the predicate TheorPA.y/
def:D 9xDemPA.x; y/. Its negation admits a

formula G as a fixed point, i.e.

`PA G $ :TheorPA.�G�/:

(4) `PA G implies `PA :G and so, if PA is consistent, �PA G.
(5) If PA is !-consistent, then �PA G implies �PA :G.

Finally, G is independent of PA. ut
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Theorem A.10 (Second Incompleteness Theorem). Consider the formula

ConsPA � :TheorPA.�0 D 1�/

asserting the consistency of PA: it is independent from PA as well as G.

Proof. The proof consists in showing that ConsPA is provably equivalent to G, i.e.
`PA ConsPA $ G. In such a way, `PA ConsPA and `PA :ConsPA would, respectively,
imply `PA G and `PA :G, against the First Incompleteness Theorem. ut

A.3 †1-Completeness and Related Results

Definition A.11 (Logical Complexity).

• A formula ˛ belongs to the set �0 if it is equivalent to a closed formula ˛0 in
which all the quantifiers, if any, are bounded.

• A formula ˛ belongs to †1 (resp. …1) if it is equivalent to a closed formula
˛0 � 9xˇ.x/ (resp. ˛0 � 8xˇ.x/) such that ˇŒt=x
 2 �0.

• A formula ˛ belongs to †nC1 (resp.…nC1) if it is equivalent to a closed formula
˛0 � 9xˇ.x/ (resp. ˛0 � 8xˇ.x/) such that ˇŒt=x
 2 …n (resp. ˇŒt=x
 2 †n).

Example A.12 Both the Gödelian propositions G and ConsPA are …1-statement.

Remark A.13 Whereas ˛ 2 †n if, and only if, :˛ 2 …n, the set of �0-formulas is
closed under negation.

Proposition A.14 Let t; s be two closed arithmetical terms:

(1) If N � t D s, then `PA t D s,
(2) If N � t ¤ s, then `PA t ¤ s,
(3) `PA n � m ! .n D 0 _ n D 1 _ : : : _ n D m/.

Proof. The reader can find all the proofs in Rautenberg (2000). ut
Theorem A.15 (�0-Decidability). If ˛ is a closed �0-formula, then either `PA ˛

or `PA :˛.

Proof. Let ˛ 2 �0; we proceed by induction on the number of logical connectives
occurring in ˛.

Base. If no logical connective occurs in ˛, then ˛ � t D s with t; s closed terms.
It is either N � t D s or N � t ¤ s and so Proposition A.14 gives us the basis.

Step. Proposition A.14 enables us to stress the following conversions

9x � k˛.x/ , ˛.0/ _ ˛.1/ _ : : : _ ˛.k/
8x � k˛.x/ , ˛.0/ ^ ˛.1/ ^ : : : ^ ˛.k/;
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for turning any quantified �0-formula into an equivalent one without quantifiers.
Then it is easy to see that any Boolean composition of decidable propositions is, in
turn, decidable. ut
Corollary A.16 (�0-Completeness). For any closed ˛ 2 �0, if N � ˛, then
`PA ˛.

Proof. Let N � ˛, but �PA ˛. For ˛ 2 �0, by Theorem A.15, it would be `PA :˛
against the soundness of PA w.r.t. N . ut
Theorem A.17 PA is †1-complete w.r.t. N if, and only if, it is �0-decidable.

Proof. ()) Let �PA ˛, with ˛ closed and in �0. By the †1-completeness, we
obtain N � ˛ and so N � :˛. Since :˛ 2 �0, we perform a further step of
†1-completeness so as to obtain `PA ˛.

(() We proceed by absurd: let 9x˛.x/ be a closed †1-formula such that N �
9x˛.x/, but �PA 9x˛.x/. For N � 9x˛.x/, there is an n 2 N such that N � ˛.n/.
Since ˛.n/ 2 �0, we can apply the just proved �0-completeness and obtain `PA

˛.n/. As a matter of logic, we finally obtain `PA 9x˛.x/ which contradicts our
assumption that �PA 9x˛.x/. ut
Corollary A.18 (†1-Completeness). PA is †1-complete w.r.t. N .

Proof. Straightforwardly by Theorems A.15 and A.17. ut
Corollary A.19 If ˛ 2 …1 is independent of PA, then N � ˛. In particular, we
have that N � G and N � ConsPA.

Proof. By the †1-completeness, we obtain N � :˛ from �PA :˛, and so N � ˛.
Both the Gödelian propositions G and ConsPA instantiate the case just explained so
that N � G and N � ConsPA. ut

A.4 !-Logic, Constructive !-Logic and Some Related Results

Theorem A.20 For any formula ˛, N � ˛ if, and only if, `PA! ˛.

Proof. (Soundness) It is a matter of extending the proof of Theorem A.3 so as to
include the !-rule. In order to show that any instance of the !-rule transmits the
truth from premisses to the conclusion, it is sufficient to remark that the !-rule just
provides a syntactical rendition of the Tarskian definition of the universal quantifier:
if N � ˛.0/, N � ˛.1/, N � ˛.2/ and so on, then N � 8x˛.x/.
(Completeness) We proceed by induction on the logical complexity of ˛. The �0-
completeness provides the base of our induction. Then, we distinguish two cases:

• Let ˛ � 9xˇ.x/ 2 †nC1. N � 9xˇ.x/ means that there is an n 2 N such that
N � ˇ.n/ with ˇ.n/ 2 …n. By inductive hypothesis `PA! ˇ.n/ and so we can
introduce the existential quantifier for finally achieving `PA! 9xˇ.x/.
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• Let ˛ � 8xˇ.x/ 2 …nC1. N � 8xˇ.x/ means that for all n 2 N, N � ˇ.n/
with ˇ.n/ 2 †n. By inductive hypothesis we have that for all n 2 N, `PA! ˇ.n/.
Finally, the !-rule enables us to introduce the universal quantifier so as to obtain
`PA! 8xˇ.x/. ut

Corollary A.21 PA! is syntactically complete, namely, for any formula ˛, either
`PA! ˛ or `PA! :˛.

Proof. We show that �PA! ˛ implies `PA! :˛. Let �PA! ˛; by Theorem A.20 it is
N � ˛ and so N � :˛. Then another application of Theorem A.20 allows us to
conclude that `PA! :˛. ut
Theorem A.22 For any formula ˛, if �PA!# ˛, then `PA!# :TheorPA.�˛�/.
Proof. Suppose by absurd that there is an n 2 N such that `PA DemPA.n; �˛�/.
This latter would imply the existence of a PA proof 	 of ˛ such that �˛� D n.
This is in contrast with our hypothesis that �PA!# ˛ and so we conclude �PA

DemPA.n; �˛�/. Then, the �0–decidability allows us to turn �PA DemPA.n; �˛�/
into `PA :DemPA.n; �˛�/. The argument just explained is clearly prototypical w.r.t.
n (being, in turn, the proof of Theorem A.15 prototypical w.r.t. the formula ˛)
so as, by a step of !#-rule, we can conclude `PA!#8x:DemPA.x; �˛�/, that is,
`PA!# :TheorPA.�˛�/. ut
Corollary A.23 PA!# decides both the Gödelian propositions G and ConsPA.

Proof. Suppose by absurd that G is not provable in PA!# . By Theorem A.22, we
would obtain `PA!# :TheorPA.�G�/ from �PA!# G. Now, we know that `PA!# G $
:TheorPA.�G�/ and so we would be able to deduce `PA!# G against the fact that
we assumed �PA!# G. Such an argument leads us to reject �PA!# G, that is, to affirm
`PA!# G.

The proof of `PA!# ConsPA proceeds in an analogous way. ut
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Chapter 6
Rule-Following and the Limits of Formalization:
Wittgenstein’s Considerations Through the Lens
of Logic

Paolo Pistone

6.1 Introduction

The justification of logical rules stumbles upon a celebrated remark by Wittgenstein:
it takes rules to justify the application of rules. This inner circularity affecting logic
makes it difficult to explain what by following a rule (typically, by endorsing the
alleged compulsion of deduction) is inexorably left implicit.

Loosely following Searle’s revision (see Searle 1969) of Kant’s vocabulary, I’ll
style “constitutive” those conditions (if any) on which the existence of the activity of
(correctly) applying a given rule depends. Then, a series of well-known arguments
(that I briefly recall in Sect. 6.2) seem to undermine the possibility to provide
logical rules with such constitutive conditions, since the description of the latter
would involve the use of the same rules they should be constitutive of; it would be
indeed patently circular to explain the existence of a successful practice of correctly
applying the rule of, say, modus ponens by relying on the existence of the practice
of modus ponens!

On the other hand, in Sect. 6.3, I’ll try to show that by exploiting the advances
made by proof theory on the dynamics of logic, a different approach to rules is
possible: my thesis is indeed that the focus on the concrete syntactic manipulation
which underlies the application of logical rules within formal systems can represent
a fertile direction where to look for a way out from the “blind spot” of circular
explanations.

The formalization of logical inference, as it is clear from the developments of
mathematical logic from Frege’s Begrisschrift to most recent programming lan-
guages, may carry some arbitrariness: for instance, we know that Frege’s formalism,
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natural deduction and sequent calculus actually code exactly the same notion of
classical provability, though in quite different ways. Yet, the apparently superficial
differences between these formal systems hide relevant structural information: for
instance, Gentzen was able to show that, among those three, only sequent calculus
exposes in a clear way the symmetries underlying classical inference, leading to his
celebrated Hauptsatz.

It seems quite tempting to call those aspects regarding logical formatting the
subjective side of logic, for at least two reasons: first, since they are generally
considered as inessential to the characterization of “objective” logic (in our example,
classical provability) and, second, since they are directly related to the way logic is
actually written, that is, to the most significative observable form of access to logical
inference. In particular, since writing is an activity concretely happening in space
and time, it is quite natural to expect this syntactic dimension to be subject to the
results and perspectives coming from computational complexity theory. Just to give
an idea, taking �-calculus or Turing machines as our favourite formalism for cal-
culus will produce exactly the same “objective” class of computable functions, but
with a very remarkable difference of grain: the single, atomic step of computation
in �-calculus (called ˇ-reduction) requires a polynomial time to be simulated on a
Turing machine; so to say, what appears on one side as the immediate application
of a rule takes quite a long time to be executed on the other.

Finally, in the last section, one will find a technical sketch of the mathematical
perspective of Girard’s transcendental syntax, which reconstructs logic in the
algebra and geometry of linear operators, building on proof-theoretic results coming
from linear logic: such a reconstruction provides mathematical content to the
philosophical reflections motivating this article, so as a concrete connection with
computational complexity and its theoretical open questions (concerning the space
and time in which formal devices evolve).

6.2 The Blind Spot of Rules

In Wittgenstein’s Tractatus, it is stated that matters about logical formatting, i.e.
about the choice of rules and notations for logic, cannot even be meaningfully for-
mulated: these matters would indeed say something on the logical form, that is, on
the way in which logical languages are involved in referential practices, i.e. some-
how attached to the world; since the logical form plays a normative role, the one of
assuring the indisputability of deduction, then it cannot be the object of discussion
and challenge, since any challenge should presuppose it as a constitutive condition.

Logical conventionalism, with Carnap’s distinction between internal and exter-
nal questions (see Carnap 1950), was intended to save the theory of the logical form,
eliminating at the same time all reference to “the mystic”: “what one should be silent
of” (Wittgenstein 2001), with Wittgenstein’s words, became in Carnap’s work the
object of purely pragmatical considerations.

On the other hand, the celebrated criticism of conventionalism contained in
Quine (1984), where it is stated that
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[. . . ] if logic is to proceed mediately from conventions, logic is needed for inferring logic
from the conventions. Quine (1984)

seems to show that the theory contained in the Tractatus cannot be reduced to a
conventionalist one1; that criticism was indeed grounded on the remark that, in the
description of logical rules, the explicitation of what is required in order to correctly
apply those rules inexorably eludes the description: as Wittgenstein would say, it is
shown but cannot be said; Quine’s argument is just a variation on a theme published
by Lewis Carroll forty one years before (see Carroll 1895). To make the long story
short, Carroll’s (and a fortiori Quine’s) argument is based on the remark that in
order to describe how to follow the rule of modus ponens

A A ) B

B
.MP/

(6.1)

one is naturally led to produce an inflated argument which is nothing but another
form (rather, a sequence of instances) of the rule of modus ponens, whose major
premise is a formula expressing the content of the schema (6.1):

A ) B

A A ) ..A ) B/ ) B/

.A ) B/ ) B
.MP/

B
.MP/

(6.2)

which leads naturally to a more inflated argument and so on. . . the attempt at
justifying our tentative to follow the logical convention expressed by the modus
ponens schema, in definitive, ends up in an infinite regress.

A similar argument is notoriously part of Wittgenstein’s discussion on rule-
following in the Philosophical Investigations, where he observes that in order to
act in accordance with what a given rule, say modus ponens, requires him to do
( i.e. in order to apply the rule), one has to interpret a certain schema (e.g. the
schema (6.1)); on the other hand, if a person were asked to justify, or simply to
explain, his course of actions as an interpretation of the schema or, as one would
say, as somehow compelled by the associated rule, then he would end up picking up
another schema (think of (6.2)) to be interpreted, giving rise to an infinite regress.
Wittgenstein claims, however, that in practice mutual comprehension takes place
without any regress of that kind:

§201 It can be seen that there is a misunderstanding here from the mere fact that in the
course of our argument we give one interpretation after another; as if each one contented us
at least for a moment, until we thought yet of another standing behind it. [. . . ]

1This way of reading the Tractatus presupposes the thesis that there is a theoretical unity tying
together the theory of the logical form and what Wittgenstein writes later on the following rules:
in both cases, one indeed finds that constitutive conditions of “saying” cannot be expressed
linguistically without falling into circularity or regress.
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§217 If I have exhausted the justifications I have reached bedrock, and my spade is turned.
Then I am inclined to say: ‘This is simply what I do’. Wittgenstein (2009)

Again, in the infinite regress, one would find himself trying to say, continuously
missing the point, what is implicit in the adoption of the rule, that is, what he should
content himself to show in his linguistic practice.

As we have already remarked, the appeal to the distinction between internal and
external questions (so as to the more familiar distinction between object language
and metalanguage) does not constitute a viable way out of the presented arguments
for the regress: to assert that a rule is justified at the meta-level by an argument which
employs the alter ego of the rule itself cannot indeed constitute a proper justification
of the rule, since practically every rule could be justified in that way: choose a rule
R, and then write a semantics forR, by exploiting a rule meta-R; with few technical
work, soundness and completeness (for instance, if R enjoys a kind of subformula
property, enabling thus an inductive argument) will be proved. There would be thus
no difference in principle between the rule of modus ponens, the most unassailable
of deductive rules, and the worst rule one can imagine!

On one side, as a consequence, rules, meta-rules and meta-languages dramat-
ically fail to provide constitutive conditions for deduction; on the other, it seems
quite natural to expect that logically correct rules must be somehow explained, since
otherwise they would simply be arbitrary ones.2

The alternative conclusion that logical deduction is fundamentally ungrounded,
since we cannot discursively express what the validity of its rules consists in, is
discussed in epistemological terms in On certainty: Wittgenstein maintains that
grammatical rules are in charge of establishing what is constitutively exempt from
doubt, in the sense that one could not make sense of what a doubt whatsoever about
it could mean, since he could not display nor imagine any use of it:

§314. Imagine that the schoolboy really did ask: “And is there a table there even when I turn
around, and even when no one is there to see it?”

§315 [. . . ] The teacher would feel that this was only holding them up, that this way the
pupil would only get stuck and make no progress.[. . . ] this pupil has not learned how to ask
questions. He has not learned the game that we are trying to teach him. Wittgenstein (1969)

The idea conveyed by these examples is that the activity of rule-following,
and thus, in the case of logic, the alleged normativity of deduction, is one whose
constitutive conditions, when we try to grasp them, inexorably slip out of our hands,
hiding themselves behind the mirror effects of interpretations (semantics and meta-
languages) obsessively reproducing the same questions at higher levels: we cannot
say what underlies any form of saying, so as we cannot see the blind spot which
enables any form of seeing.

The point at the heart of the work of the late Wittgenstein is that if we cannot
say anything about conditions of possibility of rules, then we cannot even raise

2This expectation clearly goes well beyond Wittgenstein’s view on rules and logic, since he
believed that logical rules are truly arbitrary ones, though enjoying a special position in language.
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meaningful doubts concerning them: in the course of our infinite interpretative
regress, “doubt gradually loses its sense” Wittgenstein (1969).

§307. And here the strange thing is that when I am quite certain of how the words are used,
have no doubt about it, I can still give no grounds for my way of going on. If I tried I could
give a thousand, but none as certain as the very thing they were supposed to be grounds for.
Wittgenstein (1969)

This is to say that whereas the adoption of a given system of rules (a linguistic
game, so to say) commits to a structured arrangement of referential claims, its
“semantic ascent”, with Quine’s words, nothing can be said about the legitimacy to
impose such a structure on experience. This remark revives the “mystical” question:
why just these rules? To make an example, the adoption of a certain system of rules
for modal logic (say S5) naturally leads to the acceptance of truth claims regarding
propositions on possible worlds (“Is water the same as H2O in every possible
world?” “Is gold the same as goodness only knows what in some possible world?”),
but what is to assure us, not about the truth-value of those sentences but rather
about the right by which we are authorized to take such sentences as demanding
for a definite truth-value? In a word, to quote a celebrated passage from Kant,
quid iuris?

The moral to be drawn from the problem of the logical form would be thus that
no serious questioning of logical formatting can be raised: entitlement to consider
“logic” this or that system of rules would thus reduce to a matter of mere convention
or to Wittgenstein’s Promethean attitude (the “mystic”). In definitive, logic would
be thus simply incapable to answer to a matter of right.

6.3 Proofs as Programs, Rules as Behaviours

The aim of this section is to discuss the significance of logical formatting (“why
just these rules?”) from a more specifically logical (loosely technical) viewpoint:
this will be achieved by privileging an approach directed to the dynamics of
logic, heritage of the so-called Curry-Howard correspondence, which establishes
a connection (indeed an isomorphism) between logical proofs and programs written
in a functional language like �-calculus: a proof, as isomorphic with a program, is
considered not only as a mathematical object to be constructed but also as a program
to be executed; for instance, a proof of 8x 2 AB.x/ corresponds to a program
which, when taken as input an element t 2 A, produces, once executed, a proof of
B.t/.

Through the mathematical analysis of cut-elimination algorithms, directly corre-
sponding to the normalization of terms in �-calculus, the rules of logic, as we’ll
sketch, are characterized by the symmetries which discipline the use (i.e. the
dynamics) of proofs/programs. Particular attention is given to the problem of the
termination of executions, i.e. of the computations that represent the interaction
between proofs and programs: a program can indeed be of some use only when
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its execution achieves a certain goal within a finite amount of time and, on the
other side, that logicalness constitutes an answer to the question “does this program
actually do what it is designed for?” is well known by computer scientists.

That logical syntax is in charge to tame the dynamics of programs by forcing
termination,3 is best seen from the viewpoint of the so-called formulas-as-types
correspondence: by this, formulas become sets of proofs/programs satisfying the
norms associated by logical rules to formulas. For instance, a program 	 is typed
A ) B (and it is indeed a proof of A ) B) when, for every proof/program
�-typed A, the execution of the application .	/� of 	 to � terminates producing a
proof-/program-typedB .

In this way, the static viewpoint which individuates rules by their schemas, for
instance, the modus ponens schema, is replaced by a dynamic one, in which proofs
manifesting the correct application of a rule are those whose execution satisfies
opportune behavioural (i.e. observable through interaction) norms: rules are then
not imposed a priori on proofs, but rather different proofs manifesting the same
behaviour can be “typed” in the same way. The input of computer science is
crucial here: a program is a source code written in a given language (�-calculus,
for instance); it is thus a “subjective” (in the sense explained) device; yet, one is
generally only interested in what the program does when it is run. The behaviour of
the program can in fact be largely independent from its code, and programs written
in different languages can behave exactly in the same way. These considerations
prompt the search for a behavioural explanation of rules, that is, one in which
the “objective” content of a rule is expressed as a problem of interface between
proofs (more detailed, though informal, descriptions of this bridge between logic
and computer science can be found in Joinet (2009, 2011)).

From the viewpoint of sequent calculus, resolving a problem of interface
corresponds to eliminate cuts: let’s see, through an easy example, how properties of
rule-schemas can be derived from the behaviour of proofs through cut-elimination.
Let’s suppose to cut an arbitrary proof …4 of conclusion A ^ B with a cut-free
proofƒ:

.... …
` A ^ B

.... ƒ
�;A;B ` �
�;A ^ B ` � .L^/

� ` � cut
(6.3)

3And by that logical correctness, since the eliminability of cuts (which implies the termination of
all reductions) has as a corollary the logical coherence of the calculus: since no introduction rule is
given for the absurdity ?, if a proof of ? existed, then it would reduce to a proof whose last rule
is an introduction for ?, thus no such proof can exist.
4In this section, I’ll adopt the convention to name sequent calculus proofs with capital Greek letters
…;ƒ; : : : and with small letters 	; �; : : : the programs, respectively, associated.
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In order not to let interaction fail, … must be reduced to a proof that we can split
into a proof…1 of conclusion A and a proof…2 of conclusion B:

.... …1

` A
.... ƒ

�;A;B ` �
�;B ` � cut

.... …2

` B
� ` � cut

(6.4)

that is, by cut-elimination, the request that … interfaces with ƒ has two conse-
quences: first, the rule-schema for ^ must have the form one might expect5

` A ` B
` A ^ B .L^/

(6.5)

Second, it must be possible to transform a proof of conclusionA^B into one whose
last rule is expressed by the schema (6.5). Behavioural norms impose thus, through
cut-elimination, syntactical constraints on the form of rules and proofs.

A crucial remark in the argument above is that the rule-schema for ^ has been
derived by taking into consideration an arbitrary cut-free proof dual to an arbitrary
proof of A ^ B; more generally, let’s say that two proof-programs are polar each
other when they can be cut together giving rise to a terminating execution (i.e. cut-
elimination converges); given a set T of proofs-programs, we can define the set T ?
as the set of all proof-programs polar to every element of T . A set of this form
will be called an “abstract type” (remark that these definitions make no use of rule-
schemas). A simple argument shows that an abstract type T satisfies the equation

T D T ?? (6.6)

this equation asserts that T is complete in the sense that an arbitrary proof-program
polar to an arbitrary proof-program in T ? is already in T .

Let now S be the set of proofs/programs of a given formulaA built following the
rules of a certain logical syntax. By embedding the programs in S in a more general
functional language, we can ask the nontrivial question: is S an abstract type? If we
recognize the abstract type S? as a set of tests for S and thus S?? as the smallest
abstract type containing S, our question can be rephrased as

S?? � S‹ (6.7)

This way of embedding syntactic proofs into abstract types defined by their bipolar
is reminiscent of the notion of completion in topology and functional analysis. It
can easily be acknowledged that what (6.7) expresses is a form of completeness

5We neglect for simplicity matters regarding the discipline of contexts, which would require a more
sophisticated argument to reach exactly the same conclusion.
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(usually styled internal completeness; see Girard 2001) which makes no reference to
semantics, that is, radically internal to syntax: it is a query on the internal properties
of the logical format, that is, on the symmetries between rules: is anything missing?
Is there anything syntax cannot see?

It is to be observed that a test for A isn’t but a proof/program of A ` � , what,
in the case in which � D ;, means a possibly incorrect proof of A `, that is, a
possibly incorrect proof of :A: the interaction between a proof and a test can thus
be interpreted as a dispute between two players (this perspective is made explicit in
ludics; see Girard 2001). The focus on the dynamics of logic, so as the interest in
wrong proofs, after all, is just a way to bring dialectics back at the heart of logic.

In definitive, what the view briefly sketched tries to achieve is an exposition of
logic in which rules and their schemata are not primitive notions, but are derived
from the recognition of the normative requirements necessary to avoid divergence,
i.e. lack of mutual communication: if you want to sustain A ^ B and you want
your proof to be accepted by others (i.e. your program to interface successfully),
then (6.3) tells you that the principal rule of your proof ought to be a splitting
between A and B .

A similar deconstruction of logical rules can be found in the tradition of proof-
theoretical semantics based on Gentzen’s Hauptsatz (see Prawitz 1973; Dummett
1991). For instance, Dummett describes the dynamics between proofs as the interac-
tion between the proponent of an introduction rule (that he calls the “verificationist”)
and the proponent of an elimination rule (that he calls the “pragmatist”); the search
for an equilibrium between the expectations of both leads to his notion of “logical
harmony”, corresponding to the requirement of eliminability of cuts.

In Dummett’s and Prawitz’s theories, though, the building blocks of logical
proofs are rule-schemata (for instance, introduction rules); as a consequence, the
recognition of something as being obtained through the correct application of a rule
(be it harmonious or not) remains a precondition for their interactive explanation of
logic, so that Wittgenstein’s rule-following infinite regress still applies (see Cozzo
(2004) for a brief discussion): Dummett himself, in Dummett (1978), declares that
a satisfying justification of logical rules imposes to reject Wittgenstein’s point about
rule-following (e.g. by endorsing his proposal of a molecularist theory of meaning).

In the approach here sketched (which builds on Girard’s transcendental syntax
program, as it will be made more precise in the next section), on the contrary,
rule-schemata do not constitute primitive notions, since proofs are represented by
“pure” programs: this means that proofs, like programs in �-calculus, can be written
independently of logical rules; behavioural constraints are then used to retrieve
rule-application through the notion of “last rule” (remark that the example (6.3)
discussed above clearly recalls Dummett’s “fundamental assumption” (Dummett
1991)). Explaining rules through the notion of polarity with respect to a given set of
tests, i.e., again, pure programs, yields then a completely behavioural description of
logic.

This strategy appears prima facie as providing a way out of the mirror effects,
i.e. the infinite regress arguments; let’s see how, for instance, in the case of Carroll’s
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argument on the modus ponens, the step leading to the regress is due to the
possibility to pass from the rule-schema of modus ponens

A A ) B

B
.MP/

(6.8)

to the logical formula expressing it:

A ) ..A ) B/ ) B/ (6.9)

which is used as premise of the inflated argument. Notably, the conclusion that
Carroll himself and many others (Dummett included) have drawn from the argument
is that this passage is somehow to be forbidden: a rule should not be expressed by
a logical sentence. The typical argument (a good recognition can be found in Engel
(2005)) is that a rule represents a dynamic pattern of linguistic practice, whereas a
logical sentence expresses a static content. Dummett (1973) makes appeal to Frege’s
notion of “assertoric force” to distinguish the assertion (a piece of concrete linguistic
practice) of the sentenceA as premise of a rule of inference from its mere occurrence
in the formula A ) ..A ) B/ ) B/:

[. . . ] it cannot be the same, because then “Peter is a Jew; if Peter is a Jew, Andrew is a Jew;
therefore Andrew is a Jew” would be the same as “If both Peter is a Jew and if Peter is a Jew,
then Andrew is a Jew, then Andrew is a Jew” and it was precisely Lewis Carroll’s discovery
(in ‘What the Tortoise said to Achilles’) that it was not. Dummett (1973)

In contrast with such a diagnosis, in what follows I’ll accept to pass from the
rule-schema (6.8) to the inflated schema, but with the remark that, in the latter, the
formula expressing the schema must occur as conclusion of a proof/program
; here
is a sequent calculus proof that could be associated to 
:

A ` A B ` B
A;A ) B ` B

A ` .A ) B/ ) B

` A ) ..A ) B/ ) B/ (6.10)

My thesis is that one is not compelled to go on inflating the argument: an explanation
of modus ponens is given by showing that, given arbitrary correct proofs/programs
�; � of conclusions, respectively, A and A ) B , the interaction .
/�� is con-
vergent, what amounts, essentially, to a (strong) normalization argument. Remark
that, by representing a rule by a proof-program of a logical sentence, its dynamic
content (so as the assertoric force of its premises and conclusions) is not lost, since
the application of the rule (6.8) is translated into the execution of the program

. Questioning (6.8) amounts then to ask for an argument which asserts the
compatibility of 
 with the interface induced by the introduction rules for A and
A ) B: in other words, Dummett’s argument for logical harmony is retrieved
without presupposing that proofs are built following rules-schemata.
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Furthermore, one could well imagine to invert the process, namely, to accept 

as representing a correct rule and to adopt it as a test for proofs of A and A ) B:
one will say that � and � are correct when .
/�� is convergent. This isn’t but a way
to pose the issue of internal completeness: do all correct �; � actually come from
your favourite syntax?

Summing up, the strategies just presented have the following form:

1. Start by 
 and prove that correct proofs of A and A ) B are polar to 
: � and
� are thus tests for 
, i.e. the rule is tested.

2. Take arbitrary �; � polar to 
 and prove that they come, respectively, from proofs
of A and A ) B: 
 becomes here a test for � and � , i.e. the rule is the tester.

If a blind man were to ask me “Have you got two hands?” I should not make sure by looking.
If I were to have any doubt of it, then I don’t know why I should trust my eyes. For why
shouldn’t I test my eyes by looking to find out whether I see my two hands? What is to be
tested by what? Wittgenstein (1969)

Regress is then translated into the balance between introduction and elimination
rules, that is, in the acknowledgement of the inner symmetries of (good) syntax.

A fundamental objection to the argument just presented is that it is at least
implausible that an argument for normalization can be carried over without appeal
to some instance of modus ponens, so that circularity would not be eliminated. This
is tantamount to saying that it is at least implausible that a serious argument for
justifying logic be carried over without using logic somewhere (this remark was
indeed the starting point of our discussion). It must be conceded then that such a
form of circularity impedes any form of definitive foundation for logic.

By the way, this indirect form of circularity is not the same as the plain circularity
exposed by Carroll’s argument, since, as we are going to see, it puts on the
foreground the syntactical complexity of normalization arguments: these are indeed
usually very complex logical arguments and may heavily depend on the formalism
chosen. Thus, if one were somehow sceptic about the normalization argument (for
defendable reasons, as we’ll point out), then he would find himself in the situation
hypothesized by Carroll in his article, namely, that of accepting the premises of the
modus ponens, accepting the schema of the rule and yet remaining perplexed about
the conclusion.

If A and B and C are true, Z must be true,“ the Tortoise thoughtfully repeated. That’s another
Hypothetical, isn’t? And, if I failed to see its truth, I might accept A and B and C, and still
not accept Z, mightn’t I?” Carroll (1895)

Suppose indeed to have laid down a normalization proof for .
/�� , where †;T
vary among all the proofs of A and A ) B in a given formalism, which establishes
a hyper-exponential run time for normalization (this is actually the case for classical
and intuitionistic propositional logic): to accept such a proof would mean to accept
that by composing � and � , a program representing a proof of B can be obtained
by execution. By the way, can we reasonably expect to see the reduction of .
/��
terminate? What the normalization proof asserts is indeed the existence of a normal
form, without providing a viable procedure to produce one (in a reasonable time).
In the case of (6.3), to make another example, the theorem asserts the existence
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of a tower of exponentials bounding the time necessary to split the proof … of a
conjunction into a conjunction of proofs: our universe could not plausibly assist to
such an event!

One could thus well imagine a “strict finitistic” tortoise accepting the schema
expressed by 
 but questioning the application of the rule, since the latter depends
on an argument which provides no concrete mean to show that whose existence it
asserts. Again, why not to imagine a “Turing-tortoise” refusing ˇ-reduction since it
takes too much time to be implemented on the tape of a Turing machine?

These examples are not meant to motivate the endorsement of a more or less
strictly finitistic view on mathematics, but only to show how a (more or less)
legitimate doubt could be raised on formats disciplining the use of deductive rules,
a doubt that could not be raised from a purely rule-theoretic standpoint. A somehow
Kantian issue on legitimation is recovered by observing that by adopting sequent
calculus or �-calculus, one is led to accept as valid something he cannot actually
see as valid. Again: by what right?

Gödel’s incompleteness enables us to push the matter even farther: it is well
known that since cut-elimination implies coherence, normalization proofs for sys-
tems enabling inductive/recursive constructions (and more generally, impredicative
second-order constructions) cannot be performed within those systems themselves.
This can be read in terms of ordinal run times for normalization: the so-called
proof-theoretic ordinal number is associated to every proof as a measure of the
computational cost of its normalization. A worst-case run time, which embodies
the general normalization proof, is then obtained as the least not proof-theoretic
ordinal (usually, a limit ordinal): such a proof cannot be a proof in the system.

What this argument shows is that by incompleteness, in no way one can be certain
of the logical correctness of a given format: in no way, one will satisfy once for
all the demands by a sceptic tortoise, since normalization arguments must employ
principles whose logical correctness is even harder to justify.

Here we stumble again on the already discussed circle of logic presupposing
logic, but with a significant quality/price advantage: in his remarks, Wittgen-
stein clearly stated that all questioning must stop somewhere, namely, when the
“bedrock” is reached, i.e. the practice of a given “grammar” and all that is
implicit in it. Now, the proof-theoretical and/or computational complexity of strong
normalization proofs fills the gap between what can be directly seen and what must
be left implicit in the use of formal proofs.

In this sense, the reformulation of Kant’s quid iuris question in the preceding
section reduces to a question on the implicit complexity of syntactic manipulation:
can we actually write this? Can we do that in a reasonable time and space?

Summing up, if the argument presented is right (or at least, not drastically wrong,
given its quite informal and sketchy description), then the infinite regress of logical
rules interpreting themselves must stop at the level of formats, namely, at the level
of syntactical prescriptions. As a consequence, a rigorous mathematical exposition
of these preconditions of logic (which demands for more sophisticated techniques
than the one sketched here; see the next section) might replace the Wittgensteinian
“thereof we must be silent” and open the way for an exploration of what lies behind
the apparently unquestionable evidence of the practice of logic and its rules.
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6.4 Linearity and Logical Syntax

The search for an internal explanation of logical rules, through a profound mathe-
matical investigation of formal systems, represents the core of the transcendental
syntax program (see Girard 2011b), launched in 2011 by Jean-Yves Girard as
the foundational counterpart to the refinement of proof-theoretical tools obtained
through linear logic and its developments (for instance, ludics and geometry of
interaction). In what follows, I’ll try to give a hint at how, through the mathematical
treatment of linearity in logic, it is possible to give ground to the discussions of the
previous sections and to develop a promising framework to reconstruct logic.

From the viewpoint of syntax, linearity is obtained when the structural rules of
weakening and contraction

` �
` �;A .W /

` �;A;A
` �;A .C /

(6.11)

are eliminated; logically speaking, this amounts to reject the logical principles
? ) A and A ) A ^ A. This choice, which could seem at first rather arbitrary, is
explained by observing that, in sequent calculus, the structural rules .W / and .C /6

form an independent group with respect to identity rules (axiom and cut) and logical
rules (introduction and elimination of connectives).

Historically, the first reason for styling “linear” the fragment of logic without
weakening and contraction7 was a semantical one: linear logic proofs could indeed
be interpreted as linear maps between coherent spaces, that is, stable maps on
cliques (see Girard 1987a) satisfying

f

 
kX
i

ai

!
D

kX
i

f .ai / (6.12)

where the sum is intended as a disjoint union of sets. However, it was only with the
development of proofnet theory and geometry of interaction (GoI in the following)
that it was realized that linear proofs could be represented as linear operators in
the traditional, matricial, sense. These operators act on the (usually complex) linear
space generated by the occurrences of atomic formulas in the formulas to be proved:
more precisely, to every occurrence of an atomic formula A, a finite linear space

6Along with the rule .Ex/ of exchange which allows to permute the order of appearance of
occurrences of formulas in a sequent and whose rejection leads to non-commutative logic NL,
see Abrusci and Ruet (2000).
7Which happens to be very well organized, with classical connectives splitting into a multiplicative
and an additive version, and with modalities (known as exponentials) reintroducing, in a linear
setting, controlled versions of weakening and contraction.
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jAj is associated; to the general formula F.A1; : : : ; An/, where the Ai denote the
occurrences of atomic formulas in F , the linear space jF j D Ln

i jAi j is associated.
Remark the locativity of this approach: every occurrence of formula is assigned a
distinct location (i.e. an independent linear space); for instance, to construct the
occurrence space of .A ) A/ ) .A ) A/, one first has to distinguish the four
distinct occurrences of A as .A1 ) A2/ ) .A3 ) A4/ and then to associate to the
formula the linear space jA1j ˚ jA2j ˚ jA3j ˚ jA4j.

Now, if we have a look at how structural rules are reflected in cut-elimination, we
notice that they cause the dimension of the “occurrence space” not to be preserved
during the computation: for instance, in the case of contraction, this dimension is,
in the worst case, multiplied by the number of contracted occurrences:

.... …
` �;A;A

` �;A .C /

.... ƒ
` �;:A

` �;� cut �

.... …
` �;A;A

.... ƒ
` �;:A

` �;�;A cut

.... ƒ
` �;:A

` �;�;� cut

` �;� .C /

(6.13)

In case of nested contractions, this phenomenon is responsible for the hyper-
exponential growth rates of reductions in classical logic.

On the other hand, in the absence of those principles, the dimension of the
occurrence space is preserved (the space of all the occurrences of formulas strictly
shrinking during reduction), as shown in the following example: selectfont

.... …1

` �1; A

.... …2

` �2; B
` �;A ^ B

.... ƒ
` :A;:B;�

` :A _ :B;�
` �;� cut �

.... …2

` �2;B

.... …1

` �1;A

.... ƒ
` :A;:B;�

` :B;�1;� cut

` �;� cut

(6.14)

The matricial representation of a linear proof in GoI is given by the symmetry
(called wire) on the occurrence space representing the exchange between the dual
occurrences of formulas in the axioms of the proof; for instance, to the following
proof…8

` A;� A ` B;� B

` A˝B;� A;� B

` A˝ B;� A` � B (6.15)

8Where �;˝;` denote, respectively, linear negation, multiplicative conjunction (tensor) and
multiplicative disjunction (par).



104 P. Pistone

one straightforwardly associates the symmetry below, acting on the space generated
by A1;B1;� A2;� B2 (isomorphic to C

4),9 which exchanges, respectively, jA1j
with j � A2j and jB1j with j � B2j:

	 D

0
BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA (6.16)

Not every symmetry on the occurrence space comes from a proof of the formula
associated; this is because the representation of proofs as wires radically forgets
about rules (except axiom rules): it erases all sequentiality (i.e. rule-application)
from the proofs.

In order to characterize the wires which represent correct sequent calculus proofs,
the elegant solution, coming from proofnet theory, is to represent rules as tests to
be performed on the wires: every logical rule is interpreted as a set of permutation
matrices on the occurrence space, so that inductive composition of rules produces a
set of general permutations �i (which can still be seen as wires) on the occurrence
space, that can interact with the wire. In GoI, interaction (cut-elimination) can be
directly implemented on wires: the intuition behind that is that the interaction of two
wires is obtained by “plugging” them together to produce another wire:

A1 A2 A3 A1

becomes

A3

(6.17)

In geometrical terms, this means to go through all the paths produced alternating
the two wires. Let’s see a little more in detail how to use this idea to interpret cut-
elimination in sequent calculus: the cut rule (in locative form)

.... …
` �;A1

.... ƒ
`� A2;�

` �;� cut
(6.18)

is represented (as every rule) as a test given by the following symmetry on the
occurrence space which is the direct sum of the occurrence spaces of 	 and �:

� D

0
BB@
I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I

1
CCA (6.19)

9In this section, I’ll adopt the convention to name sequent calculus proofs with capital greek letters
…;ƒ; : : : and with small letters 	; �; : : : the wires, respectively, associated.
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� acts as the identity on the subspace j�j ˚ j�j and as a symmetry on the space
jA1j ˚ j � A2j exchanging every atomic occurrence in A1 with its dual one in
� A2.

We interpret the cut-elimination algorithm as follows: suppose to start in a point
in j�j and to reach, by the symmetry 	 , a point in jA1j; then, by the symmetry � ,
you are sent to a point in jA2j, and two distinct possibilities arise:

• The symmetry � sends you into j�j, and you’re done, since you’ve exited the
“combat zone”.

• � sends you to another point in jA2j; by � , you are sent back into jA1j. Again,
two distinct possibilities arise. . . .

Strong normalization (i.e. logical correctness) warrants that you will always exit
jA1j ˚ jA2j (towards j�j ˚ j�j) in a finite amount of time, that is, that you won’t
get into a cycle in jA1j ˚ jA2j.

To simplify things, let’s suppose� D ;; then, given the block decomposition,

	 D
�
	�� 	�A
	A� 	AA

�
(6.20)

the general algorithm can be translated into the expression

	�� C 	�A
�
� C �	AA� C �	AA�	AA� C � � � C �.	AA�/

n C : : :
�
	A� (6.21)

which, if the series
P1

n .	AA�/
n converges, corresponds to the algebraic

expression10

	�� C 	�A�
�
I � 	AA�

��1
	A� (6.22)

Strong normalization is then translated into the nilpotency (corresponding to
acyclicity) of 	AA� , namely, the existence of an integer N , the order of nilpotency,
such that .	AA�/N D 0, what trivially implies convergence: nilpotency reduces
indeed the expression (6.22) to the finite one below

	�� C 	�A
�
� C �	AA� C �	AA�	AA� C � � � C �.	AA�/

N
�
	A� (6.23)

corresponding to a finite computation.
It is now possible to implement typing through tests: let’s say that two wires

�; � on the same occurrence space are polar (notation, �?�) when �� is nilpotent,
and let S? WD f� 2 M.X /j�?�; � 2 Sg for every set S of wires on a given
occurrence space X . We recover thus logical types as the “abstract types” of the
previous section: they are polar to sets of tests induced by logical rules, that is, as

10A simple calculation shows that, for u a linear operator, .I � u/�1 D P
1

n un, given the
convergence of the series on the right or, equivalently, the invertibility of I � u.
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the sets of all the wires following a given sequence of rules. The concrete translation
of the rules of logic into tests follows the ideas in Girard (1987b), but I won’t enter
here into the details.

Notice that this framework enables the issue of internal completeness: do
all wires in a given logical type come from actual sequent calculus proofs?
A fundamental result, giving substance to the whole theory at the end of the eighties,
was the theorem establishing completeness in the case of multiplicative linear logic
(see Girard 1987b).

The justification for modus ponens we gave in the previous section can now be
translated in the vocabulary of GoI as follows: given a wire � on the occurrence
space jAj representing a proof of A and a wire � on the occurrence space jAj C
jBj representing a proof of A ) B , we can obtain a wire Œ�
� (intuitively, the
application of � to �) on the occurrence space jBj representing a proof of B; in fact
� can be pictured as the block matrix

� D
�
�AA �AB
�BA �BB

�
(6.24)

where �XY represents a linear operator from jX j to jY j. Following (6.22), Œ�
� is
defined as follows:

Œ�
� D �BB C �BA�.I � �AA�/�1�AB (6.25)

what can be done only in case the series
P1

i .�AA�/
n converges (i.e. I � �AA�

is invertible). As expected, for wires coming from logical syntax, convergence is
assured by the proof that �AA� is nilpotent (this constituted in fact the main theorem
of GoI – see Girard (1989)).

Remark that the nilpotency orderN can be arbitrarily big, and it can be read as a
measure of the complexity involved in the computation: it provides indeed a bound
on the number of iterations necessary to reach convergence. Consider the following
(linear) proof

A3 ` A1 A2 ` A4
A1 ) A2;A3 ` A4
A1 ) A2 ` A3 ) A4 (6.26)

represented by the wire

� D

0
BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA (6.27)

Let’s call � the simple wire . 0 11 0 / on the occurrence space corresponding to the first
two occurrences of A in the previous proof, representing the axiom A ) A; we
can easily compute Œ�
� and find that the nilpotency order is bounded by 2, the
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dimension of the occurrence space in which � and � actually “meet”. Again, no
room for doubt, no room for the Tortoise.

The wire � corresponds to the �-calculus term �f:�x:.f /x, usually taken as
the Church numeral 1. On the other hand, the general Church numeral n D
�f:�x:.f /nx requires the encoding in GoI of n contractions. This means that we
must transform, in a linear way, a space of dimension k C n into a space of
dimension n. This is done by means of a linear isomorphism ˆ W X 2 ! X .
The existence of these isomorphisms requires the adoption of infinitary operator
algebras, like C �-algebras. To give an example, if we consider an operator algebra
acting over the Hilbert space `2.N/, we can take

ˆ

 X
n

.˛nen ˚ ˇnen/

!
D
X
2n

˛2ne2n C
X
2nC1

ˇ2nC1e2nC1 (6.28)

which follows the coding of pairs of integers into integers known as “the Hilbert
Hotel”. Concretely, the Hilbert Hotel is what is required in order to double a wire �
into two distinct isomorphic copies � 0; � 00: here is a typical feature of GoI, namely,
the exposition of the procedures implicit in the manipulation of formal systems
(introducing superscripts may indeed require to “make space on the blackboard”).

The subjectivity of notations is thus eventually recovered: the Hilbert Hotel by no
means constitutes a canonical choice for the isomorphism ˆ, and different choices
are not warranted to agree, i.e. to interact without producing interferences;ˆ can be
written as ˆ D P CQ with the property that for every u; v 2 X ,

P �uPQ�vQ D Q�vQP �uP

P �Q D Q�P D 0
(6.29)

it can thus be used to produce commutations between arbitrary operators, by sending
them into disjoint copies of the same universe. Remark that, when interpreting
logic, this doubling of the universe has the effect to enlarge the dimension of the
occurrence space (without violating linearity). On the other hand, any P and Q
satisfying (6.29) will do the job, so that we can imagine infinite many different
possibilities to implement an apparently simple task. By the way, the nilpotency
order of computations (and thus the complexity involved in normalization proofs),
as I’m going to make a bit more clear, will be highly sensible to the choice of P and
Q, since the latter discipline the growth of the occurrence space during computation.

We can represent, for instance, the numeral 2, associated to the following proof
(where Af.2;4/; Ag.3;5/ denote fresh locations, respectively, depending on 2; 4 and
3; 5),

A1 ` A2 A3 ` A4 A5 ` A6
A2 ) A3;A4 ) A5;A1 ` A6
Af.2;4/ ) Ag.3;5/; A1 ` A6 .C /

Af.2;4/ ) Ag.3;5/ ` A1 ) A6 (6.30)
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as follows: from the 6 � 6 wire,11 representing the axioms,

0
BBBBBBB@

0 0 0 0 1 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

1
CCCCCCCA

(6.31)

we pass, through two linear isomorphisms P W jA2j ˚ jA4j ! jAf.2;4/j and Q W
jA3j ˚ jA5j ! jAg.3;5/j satisfying (6.29), to the 4 � 4 contracted wire

�.2/ D

0
BB@

0 PQ� P � 0

QP � 0 0 Q�
P 0 0 0

0 Q 0 0

1
CCA (6.32)

We can verify now that Œ�.2/
� still verifies nilpotency, but its order is now bounded
by 4, meaning that the occurrence space of � has been doubled by P and Q during
interaction (or, equivalently, that � has been doubled in P�P � CQ�Q�, that is, in
what we would naturally write � 0; � 00): in order to use �.2/, one has “made space
on the blackboard” to create new copies.

On the other hand, suppose one makes the two distinct copies of integer
representations interact, i.e. to represent the computation .m/n, which in �-calculus
leads to an exponential growth:

.n/m � .�f:�x:.f /nx/�g:�y:.g/my

�ˇ �x:.�g:�y:.g/my/n�k�y:.x/mky

D �x: .�g:�y: .g/ : : : .g/„ ƒ‚ …
m times

y/ : : : .�g:�y: .g/ : : : .g/„ ƒ‚ …
m times

y/

„ ƒ‚ …
n�k times

�x: .x/ : : : .x/„ ƒ‚ …
mk times

y

�ˇ �x:�y: .x/ : : : .x/„ ƒ‚ …
mn times

y � mn (6.33)

From the viewpoint of formal systems, this poses strictly no problem
(since variables and terms can be copied as many times as desired), but, in GoI,
where every occurrence must receive a distinct location, one needs isomorphisms

11To be precise, the wire corresponds to a linear operator u whose support is a projection 	 of
dimension 6, i.e. such that u D 	u	 , and which can thus be thought of as a 6 � 6 matrix. In the
following, I’ll freely use matrices to represent linear operators of finite support.
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whose composition (inducing a group structure) provides enough space to
implement the computation (6.33). In this manner, time and space requirements
are translated into the algebraic properties of the group of isomorphisms chosen
(see Girard 2007 for a discussion).

Now, we can well imagine a tortoise accepting modus ponens and demanding for
more instructions for its application: since lacking the relevant – though logically
arbitrary – isomorphisms, she simply does not know how to write something
which would conform to the rule, and so she asks for further explanations. For
instance, in (6.33) she could well question the convergence of reductions, since the
possibility to write (6.33) undermines the validity of what (6.33) expresses: in order
to show convergence of a notation for exponentials, one has to adopt an explicitly
exponential notation (look at the underbraces)!

By inflating the argument, as relying on higher forms of the modus ponens
schema (or some schema defining exponential functions), still the tortoise would
not know how to accept the conclusion, since she would find herself in a completely
isomorphic situation: the instructions she needs are inexorably left implicit in the
description of logical rules; in order to investigate what it is to follow the rules of
logic, then, one has to take into consideration the concrete manipulation of symbols
in time and space.

To conclude, I add that, from a purely mathematical perspective, the purpose
to characterize in purely algebraico-geometrical terms the subjectivity of formal
systems and to describe logically their interactions has already led to some
considerable results (concerning the implicit characterization of complexity classes
like ELEMENTARY, P or NL, see for instance Girard (2012), Girard (2011a), and
Aubert and Seiller (2012)) and constitutes one of the most promising technical
aspects of research on transcendental syntax.
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Chapter 7
Paradox and Inconsistency: Revising Tennant’s
Distinction Through Schroeder-Heister’s
Assumption Rules

Luca Tranchini

In natural deduction systems (Prawitz 1965), negation is usually governed by the
following rules and reduction:

ŒA


? :I:A
A :A :E? D1

A

ŒA


D2

? :I:A :E?

:�RED
�

D1

A

D2

?

A sentence � equivalent to its negation—a sort of proof-theoretic liar—can be
characterized as follows (Prawitz 1965; Tennant 1982; Schroeder-Heister 2012):

:�
�I

�
�

�E:�

D
:�
�

:�

��RED
� D

:�

Using the rules of �, it is possible to produce a closed derivation ƒ of ?:

.1/

�

.1/

�
:�

? :I (1):�
�I

�

.2/

�

.2/

�
�E:� :E? :I (2):� :E?

(ƒ)
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The derivation ƒ is not normal because the major premise of :E that yields the
conclusion of the derivation is obtained by :I. The result of applying the negation
reduction (:-RED) to ƒ is the derivation ƒ0:

.1/

�

.1/

�
:�

? (1):�
�

.2/

�

.2/

�
:�

? :I (2):�
�I

�
�E:� :E?

(ƒ0)

The major premise of the last application of :E is the conclusion of two
consecutive applications of �I and �E. Hence, the derivationƒ0 is not normal either.
By applying �’s reduction (�-RED) to ƒ0, we obtain ƒ again. That is, the reduction
sequence enters what Tennant (1982) called an ‘oscillating loop’.

Prawitz (1965, appendix B) and in a more systematic way Tennant (1982)
proposed to take this feature as the proof-theoretic characterization of paradoxes:
namely, that they give rise to derivations of ? all reduction sequences of which
enter a loop.

More precisely, what deserves the attribute ‘paradoxical’ is, for Tennant, the
set of sentences figuring in the special inference rules—called by Tennant id est
inferences—which make it possible to derive ?.

Tennant’s id est inferences for the liar (and for other paradoxes as well) are
formulated using the truth predicate:

:T ���
�

�

:T ���
Consequently, the inference rules governing the truth predicate

A

T �A�
T �A�
A

are also needed in order to derive ?. Here I am not interested in the conditions at
which a paradoxical sentence like � is definable in a language (for instance, that the
language contains a truth predicate satisfying the above rules and some quotation
device to construct in the language names for its expressions). For this reason, the
use of the truth predicate is here avoided and � (which can just be viewed as a
nullary operator) is directly characterized in terms of rules which encode its negative
self-reference. Rather than speaking of id est inference, I will speak of ‘special’
inference rules, with which I simply mean any rule not belonging to those of the
natural deduction system for intuitionistic logic NI.

In ƒ these are the rules of �. The loop in the reduction sequence of ƒ thus shows
that � is a paradoxical sentence.
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7.1 Paradox, Inconsistency, and Open Assumptions

Tennant (1982) distinguishes between ƒ, the derivation of ? generated with the
rules of �, and other, far more innocuous, derivations of ?, such as the following
(we call it I):

A ^ :A
A

A ^ :A
:A

?
(I)

Let us compare ƒ and I. The derivation ƒ is not normal and cannot be
normalized because of the loop arising in its reduction sequence. On the other hand,
the derivation I is already normal.

For Tennant, a derivation of ? with looping reduction sequences shows that the
sentences involved in its id est inferences are paradoxical. On the other hand, a
normalizable open derivation of ? shows the inconsistency of its assumptions. Thus
I simply shows the inconsistency of A ^ :A.

Whereas in ƒ all assumptions are discharged, I is an open derivation. However,
being closed is not an essential feature of paradoxical derivations of ?. It is the
distinctive trait only of what Tennant calls pure paradoxes.

One of Kripke’s (1975) lessons is that in particularly unfavourable circumstances
virtually any sentence that expresses semantic facts can turn out to be paradoxical.
That is, in general ‘paradoxicality [. . . ] is relative to the empirical facts’ (Tennant
1982, p. 282).

For Tennant, this is reflected in Kripke’s approach to paradoxes, in which a
sentence is paradoxical if and only if it receives no truth value at any fixed point
of his semantic construction. Since this construction starts from a fully interpreted
language, being paradoxical is relative to the interpretation with which one started.

To recast this idea in proof-theoretic terms is not a trivial matter.
Tennant’s proposal is roughly the following. Among the derivations of ? whose

reduction sequences loop, he distinguishes those in which the conclusion depends
on no assumptions (the pure paradoxes), from those in which some assumptions are
undischarged. In the latter case, the set of sentences involved in id est inferences is
said to be paradoxical relative to the class of models in which the assumptions are
true.

So Tennant (1982, p. 283): ‘A set of sentences is paradoxical relative to M if and
only if there is some proof of ? from ‚.M/, involving those sentences in id est
inferences, that has a looping reduction sequence’, where a proof from ‚.M/ is ‘a
proof from assumptions that are truths in (every member of ) M , and by means of
rules for the logical operators and the truth predicate, as well as the id est rules of
inference that are legitimate by every member of M ’.

This generalization leaves untouched what ‘paradoxical’ is ascribed to: it is the
set of sentences figuring in the id est inferences which is paradoxical and not the
open assumptions on which the derivation depends.

On the other hand, the role played by open assumptions in a derivation of
? depends on whether the derivation normalizes. If all reduction sequences of
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the derivation enter a loop, the open assumptions constitute an empirical basis
relative to which the sentences involved in the id est inferences are paradoxical.
If the derivation normalizes, they constitute a set of propositions which is shown to
be inconsistent. As an aside, for Tennant the assumptions of a normal derivation
of ? are beliefs which the derivation shows to be false. In this way, Tennant
most probably wants to avoid the need of negative facts and the like. These would
otherwise be called into questions, were assumptions taken as expressions of states
of affairs, facts, or some other ontologically loaded correlate of propositions.

Summing up, it looks as if Tennant is conceiving three kinds of cases.

1. Non-normalizing derivations of ? from no undischarged assumptions. An
example is ƒ, which uses special rules of inference in which the sentence �
figures. The derivation shows the (pure) paradoxical nature of �.

2. Normal derivations of ?. Tennant presupposes that in these derivations, such as
I, the conclusion ? depends always on one or more open assumption. These may
be viewed as beliefs about empirical facts, and the derivation shows them to be
(collectively) false.

3. Non-normalizing derivations of ? depending on a set of undischarged assump-
tions �. Tennant presupposes that special rules are used in the derivation which
involve a set of sentences, say � . The derivation shows that the set of sentences
� is paradoxical relative to the class of models in which the assumptions � are
true.

I will show that the presuppositions made by Tennant in the second and third case
are not correct. In particular:

(i) Thanks to special inference rules, we can generate normal derivations of ? from
no open assumptions;

(ii) Under a very natural generalization of the notion of reduction, we have non-
normalizing derivations of ? which do not use special inference rules.

Thereby, Tennant’s distinction between the roles played, respectively, by open
assumptions and sentences figuring in id est sentences faces two distinct problems.

In case (i), there are no assumptions to which inconsistency is to be ascribed. In
case (ii), there are no special rules which allow the identification of a set of sentences
as paradoxical.

Hence, a sharp distinction between (possibly inconsistent) assumptions and
(possibly paradoxical) sentences which figure in id est inferences turns out not to
be always appropriate.

I propose to discuss the issue in terms of the extension of natural deduction
proposed by Schroeder-Heister (1981). In this setting, the notion of assumption
is enriched so that rules are admitted as a special kind of assumptions alongside
with sentences. As a result, all derivations of ? will depend on some assumptions.
According to whether the derivation is normalizable or not, the assumptions
involved in the derivations will be said to be either inconsistent or paradoxical,
independently of their being sentences or rules.
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7.2 From tonk to ?
Let us consider Prior’s tonk:

A
tonkI

AtonkB
AtonkB

tonkE
B

By means of the rules of tonk, one can easily produce a closed derivation of
?. Given any closed derivation of any logically valid sentence, such as A � A, we
extend it by tonkI to a closed derivation of .A� A/ tonk ? and then by tonkE
to a closed derivation … for ?:

.1/

A �I .1/
A� A

tonkI
.A� A/tonk?

tonkE?

(…)

What is special about tonk is the impossibility of specifying a reduction
procedure to get rid of consecutive applications of tonkI and tonkE rules (as it
is often said, the rules of tonk are not in harmony). Hence, the derivation … is
normal simply because there is no reduction procedure that can be applied to it.
Thus, given Tennant’s analysis, … does not display the distinguishing feature of
being paradoxical.

Incidentally, one could argue that a normal derivation should not be defined
as one to which no reduction can be further applied, but as one which does not
contain consecutive application of introduction and elimination rules. It is true
that, on this definition, … would not count as normal.1 However, this is irrelevant
as to whether … passes Tennant’s test for being paradoxical. For Tennant, the
characteristic of paradoxes is their giving rise to derivations with looping reduction
sequence. Thus, irrespective of its counting as normal or not, … does not count as
paradoxical: Its reduction sequence does terminate, since it does not even start!

Not being paradoxical, the derivation should show the inconsistency of its
open assumptions. However, in … there are no open assumptions at all to which
inconsistency can be ascribed.

One way of responding to this problem could simply be that of denying that
Prior’s connective has nothing whatsoever to do with the phenomenon of semantic
closure and hence with Tennant’s analysis thereof.

However, this is not a viable answer for an inferentialist whose aim is that of
characterizing the meaning of logical constants in terms of the rules governing their
behaviour in deduction.

Since its very tentative formulations, the challenge for proof-theoretic semantics
was that of giving criteria for excluding tonk-like connectives from the realm

1The two alternative definitions of ‘normal’ are discussed in detail in Tranchini (n.d.).
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of meaningful expressions. Furthermore, a solution to (or at least a diagnosis of)
paradoxes is in the agenda of whoever pursues any semantic program.

Thus, the development of a theoretical framework in which both paradoxical
connectives (such as �) and non-harmonious ones (such as tonk) could be
uniformly investigated is of the greatest interest for proof-theoretic semantics.2

As a final remark in this section, I want to point out that Tennant himself
discusses a normal derivation of ? from no assumption. This derivation results by
formalizing Chihara’s Sec Lib setting:

in which many clubs have hired secretaries but have established rules excluding such
secretaries from membership. Suppose that these secretaries form their own club, Secretary
Liberation (or “Sec Lib” for short), the rules of which state: “A person is eligible to join
this club if, and only if, he (she) is secretary of a club which he (she) is not eligible to join.”
All goes well for the club until it hires itself a secretary, a certain Ms Fineline, who has the
misfortune of being a secretary of no other club. (Chihara 1979, p. 593–594)

The assumptions are elicited by Tennant in terms of inference rules which allow
to produce a normal derivation of ? from no assumptions. As the derivation of ? is
normal, Tennant’s opinion is that the Sec Lib setting should be considered as merely
inconsistent and not (as in Chihara’s opinion) paradoxical. The derivation … is thus
analogous to the one resulting by the Sec Lib case.

Also in this case, the derivation contains no open assumptions, and hence one
may ask to what should inconsistency be ascribed. In Sect. 7.5, Tennant’s distinction
between paradox and inconsistency will be reformulated in a way that provides a
natural answer to this question.

7.3 Ekman’s Paradox

Take A $ B Ddef .A�B/^ .B �A/. Now replace each application of �I and �E
in ƒ with two consecutive applications of ^E and �E as follows:

D
:�

�I
�

⇢

D
:�

� $ :� ^E:�� � �E
�

D
�

�E:� ⇢

D
�

� $ :� ^E
�� :� �E:�

2In Tranchini (2014), I suggest a way in which Tennant’s ideas can be used to extend Dummett-
Prawitz-style proof-theoretic semantics so that it can be applied to paradoxical phenomena as well.
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Furthermore, replace all occurrences of � with occurrences of a propositional
variable A. Like the original ƒ, also this derivation, call it ƒ$, is not normal, since
the major premise of the concluding application of :E is the conclusion of a :I:

.1/

A

.1/

A

A $ :A ^E
A� :A �E:A

? :I (1):A
A $ :A ^E:A�A �E

A

.2/

A

.2/

A

A $ :A ^E
A� :A �E:A :E? :I (2):A :E? (ƒ$)

We call ƒ0
$ the derivation resulting by applying :-RED to ƒ$:

.1/

A

.1/

A

A $ :A
^E

A� :A
�E:A

?
(1):A

A $ :A
^E:A� A
�E

A

.2/

A

.2/

A

A $ :A
^E

A� :A
�E:A

?
:I (2):A

A $ :A
^E:A�A

�E
A

A $ :A
^E

A� :A
�E:A

:E?
(ƒ0

$)

As first observed by Ekman (1998), although ƒ0$ is formally speaking normal,
it still contains a redundant chunk.

This corresponds to the one constituted by the two consecutive applications of
�I and �E that was contained in ƒ0. Replacing the applications of �-rules with
applications of ^E and �E does not help in getting rid of the redundancy:

:�
�I

�
�E:�

⇢

:A
A $ :A ^E:A� A �E
A

A $ :A ^E
A� :A �E:A

The redundancy constituted by the consecutive applications of �I and �E can be
get rid of using �-RED. It is thus natural to enrich the set of reduction procedures,
by introducing a new one to get rid of the redundancy resulting by going back and
forth between the antecedent and the consequent of a bi-implication:3

D

:A
A $ :A ^E:A� A �E
A

A $ :A ^E
A� :A �E:A

$�RED
� D

:A

3‘I shall always assume that eliminating detours such as the one mentioned, that lead from a
sentence occurrence to another occurrence of the same sentence, is an acceptable part of any
procedure of normalising proofs’. (Tennant 1982, p. 270)
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Once this reduction procedure is introduced, the reduction sequence of the
derivation ƒ$ behaves exactly like that of ƒ, namely, it enters a loop. (By applying
$-RED to ƒ0$, one obtains ƒ$ again.)

However, there are two differences between ƒ and ƒ$. Whereas ƒ is closed,
ƒ$ depends on the undischarged assumptionA $ :A. Furthermore (and crucially
for showing the limits of Tennant’s analysis), ƒ$ does not contain any id est
inference.

Hence, whereas Tennant’s analysis tells us that ƒ shows � to be a pure paradox,
it is not clear what it has to tell about ƒ$.

The reduction sequence of ƒ$ does not terminate. Thus, according to Tennant’s
analysis, some paradoxical sentence is involved in the derivation. In spite of
this, there is no way of identifying the paradoxical sentences. For Tennant, the
paradoxical sentences are those involved in the id est inferences used in the
derivation. But in ƒ$ there are no such inferences.

Furthermore, since the conclusion of ƒ$ depends on an open assumption, the
paradoxical sentences supposedly involved in the derivation would not be pure
paradoxes, but paradoxical relative to the models in which the open assumption
of the derivation is true. Since the open assumption A $ :A fails to be true in any
model, following Tennant one would reach the rather awkward conclusion that the
supposedly paradoxical sentence contained in ƒ$ would be paradoxical relative to
no model at all.4

7.4 Rules as Assumptions

In natural deduction, the set of rules that can be applied in derivations is usually
taken to be fixed in advance. A derivation begins by assuming some sentence and
then it proceeds by applying one of the available rules first to the assumptions and
then to the conclusions of the previously applied rules. A generalization of natural
deduction is achieved by allowing one to assume not only sentences but also rules.
To assume a rule simply means to suppose that the rule in question is available, that
is, to suppose that one is allowed to pass over from the premises of the rule to its
conclusion. Following Schroeder-Heister (1981), we use � ) A to refer to the rule
allowing to pass over from the set of sentences � to A.

Given the possibility of assuming rules, the conclusion of a derivation will not
only depend on the undischarged assumptions but also on the rules assumed in the
course of the derivation. These are just the rules that do not belong to the basic
reserve of rules (in our case, the rules of the intuitionistic natural deduction system).

4For the problems that Tennant’s analysis of paradox has to face when confronted with the
phenomenon observed by Ekman, see also Schroeder-Heister and Tranchini (n.d.).
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For example, in the following derivation, the conclusion C _D depends on two
assumptions, the formulas A and B and the rule A;B ) C :

A B
A;B ) C

C _I1
C _D

Although a rule A)B and the corresponding implication A � B are formally
distinct, they are strongly related. In particular, to assume the implication is
essentially the same as to assume the rule (Schroeder-Heister 2011). Like an
application of the assumption rule, an application of modus ponens entitles one to
pass over from A to B:

A�B A �E
B

A
A ) B

B

Furthermore, we can always derive the implication A � B from the sole
assumption of the rule A ) B:

.1/

A
A ) B

B �I .1/
A� B

Once the notion of assumption is enriched so to admit also rules and not only
formulas to be assumed, the notion of rule can be enriched as well, by allowing rules
to discharge not only formulas but also assumption rules. In this way, a hierarchy
of rules of increasing complexity is achieved. Formulas are taken as rules of level
0 and constitute the basis of the hierarchy. A rule of level nC 2 is one discharging
rules of level n. The rule �I is thus of level 2, since it discharges formulas, i.e. rules
of level 0.

Usual natural deduction systems are constituted by rules whose level is not
greater than 2. One of the reasons for introducing rules of higher level (i.e. of level
3 or higher) is that they allow to formulate introduction and elimination rules for
propositional operators in a uniform manner (see Schroeder-Heister 1984).

We will not tackle here this issue. Rather, we suggest that a general framework
in which rules as much as formulas are treated as assumptions allows to clarify the
two problematic cases for Tennant’s analysis of paradoxes.

7.5 Assumption Rules, Inconsistency, and Paradox

According to Tennant, a paradox is identified by looking at the inference rules
used in derivations of ? with looping reduction sequences. Assumptions provide
always empirical information: in normalizable derivations of ?, this information
is shown to be inconsistent; in derivations of ? with looping reduction sequences,
this information selects the models relative to which the sentences figuring in id est
inferences are paradoxical.
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The adoption of the rule assumption setting suggests to revise the way in which
the distinction of roles between assumptions and rules is formulated by Tennant. I
propose that the whole set of assumptions (sentences and rules) of a derivation of
? should be viewed as either paradoxical or inconsistent depending on whether the
reduction sequences of the derivation terminate.

The revision of Tennant’s picture provides a better account of the two problem-
atic cases discussed in the previous sections.

In Sect. 7.2, using the rules of tonk, we produced the derivation … that has ?
as conclusion. The derivation … is normal and thus bears the mark of inconsistency
rather than that of paradox. However, it contains no undischarged assumption to
which, in Tennant’s analysis, inconsistency can be ascribed.

In the revised picture suggested, the problem disappears since the conclusion of
… does depend on assumptions: the rules for tonk. The derivation thus shows the
inconsistency of the rules of tonk. (The notion of inconsistency here discussed
is clearly not to be confused with those introduced by Belnap (1962) and Read
(2010) in the context of criteria of admissibility of the rules governing a connective.
Contrary to the notion of inconsistency here discussed, both are meant to apply as
much to tonk as to �.)

For the inferentialist, the meaning of a connective is given by laying down the
inference rules governing it. In this perspective, to assume the rules of tonk is to
assume that there is an expression whose meaning is characterized by these rules.
This assumption is reduced ad absurdum. That is, the rules of tonk fail to endow
tonk with meaning.

Analogously, the Sec Lib case shows the inconsistency of the Sec Lib club’s
eligibility rule together with the club’s hiring of Ms Fineline. Therefore, one can
conclude either that the eligibility rule is not valid (as Tennant does in his own
analysis) or that at least one of the assumptions (possibly viewed as beliefs) about
Ms Fineline is false.

Whereas the derivation of ? using tonk forces one to ascribe inconsistency to
rules, Ekman’s derivation of ? forces one to look for the paradox not in the rules
but in the assumptions. According to Tennant, those sentences are paradoxical that
are used in the rules by means of which a non-normalizable derivation of ? can be
produced. No rules other than those of intuitionistic logic are used in the derivation
of Ekman’s paradox. If we do not want to view them as the source of paradox, we
must reject Tennant’s view that the role of assumptions in paradoxes is at best to
provide only a material base for paradoxes. That is, we have to admit that the source
of paradox lays in the assumptions as well as in the rules.

In the revised picture suggested, rules are assumptions no more and no less than
sentences. In this view it is very natural to view Ekman’s derivation as paradoxical.
In the setting allowing rule assumptions, to assume an implication is the same as
assuming a rule to pass over from the antecedent to the consequent. Hence, the
assumption A $ :A in the proof of Ekman’s paradox ƒ$ is the same as the
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assumption of �-rules inƒ. It is therefore desirable that both assumptions are treated
as paradoxical, since the two assumptions are essentially the same.5

Beside providing a smooth analysis of the problematic cases, the alternative
formulation of the distinction between paradox and inconsistency has also the
advantage (at least for the inferentialist) of not mentioning any notion of model
whatsoever.

Thus it can be viewed as a welcomed improvement of Tennant’s analysis of
paradoxes in proof-theoretic terms.
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Chapter 8
Constructibility and Geometry

Alberto Naibo

8.1 Introduction

The purpose of this work is to investigate the possibility of capturing a somehow
intuitive idea of geometrical constructivity by means of logical notions of construc-
tivity. The motivation does not simply consist in providing a conceptual analysis
of an allegedly loose notion by making appeal to others which are supposed to
be clearer and better understood. What we are interested in is also suggesting an
account of geometry that respects some epistemic constraints and that can eventually
be compatible with a mechanization of geometrical practice.

Two more preliminary comments should be made before entering into a dis-
cussion of these topics. The first one is that, for simplicity, we will restrict our
analysis exclusively to plane geometry. The second one is just to acknowledge our
intellectual debts: fundamental sources of inspiration for this work have been Vesley
(2000), von Plato (1995, 2010a), and Beeson (2010).

8.1.1 Constructivity in Geometry

In the traditional Euclidean sense, geometry is usually reckoned to be a science
of constructions, as it studies the production of certain objects, i.e., figures, or
configurations of objects, once a given set of rules or instruments has been fixed
(e.g., the possibility of appealing only to the ruler and the compass). In general,
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we could say that the aim of geometry is to study those actions performable by an
abstract human geometer once certain constraints have been previously imposed.

It is not difficult to see how this situation shares many similarities with Turing’s
analysis of the so-called human computor (Gandy 1988; Sieg 1994).1 In this case,
the definition of computable function is based on the analysis of those possible
actions that a human agent can perform during the calculation of the values of a
function, supposing that certain limitations have been previously imposed, such as
the locality of the moves or the finitude of the number of symbols and internal
states of the computor (Turing 1937, pp. 231–232). But, as this behaviouristic and
quasi-physical analysis of the human computor finally leads to the abstract and
linguistic formal definition of Turing machine, or, equivalently, of recursive function
or �-definable function, we may wonder in the same way whether the analysis of
the human geometer can be fixed at some linguistic formal level. In other words,
we would like to understand if there exists a syntactic formal manner with which
to capture the idea of geometrical constructivity. And because syntactic formal
considerations usually fall under the scope of logic, it is quite natural to look at
logical constructivity as a reasonable candidate for playing that role.

8.1.2 Constructivity in Logic

Turning now to logic, we can see that in this domain, the notion of constructivity
is essentially polymorphic, in the sense that it can be declined in many different
ways (cf. Troelstra 1991; Troelstra and van Dalen 1988, §1.1; Rathjen 2005, §3). In
particular, the term “constructive” is basically used as synonymous for:

C1. Intuitionistically admissible (Brouwer, Heyting, Dummett).
C2. Provable by finitistic, direct, or effective means (Hilbert, Brouwer, Bishop,

Martin-Löf).
C3. Algorithmically executable or executable by a program (Markov, Engeler,

Bishop, Martin-Löf).

These features are not independent and definitely separated from each other. On the
contrary, they frequently overlap, and keeping them distinguished is neither easy nor
very sensible in the final analysis. In what follows we will try to understand which
of these possible overlaps are needed in order to capture the notion of geometrical
constructivity.

It is worth noting that the previous list is not exhaustive. There are in fact other
important features that will not be considered in this work, e.g.:

C4. Predicativity (Poincaré, Weyl).
C5. Resource sensitivity (Lemoine, Lambek, Girard).

1A similar analogy is drawn in Beeson (2010, §1).
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The reason is that, on the one hand, we will not be confronted with issues requiring
quantification over sets (e.g., the continuity axiom), while on the other hand, we
will limit here our analysis of the notion of constructivity to the abstract point
of view. In order to clarify this latter point, a further comparison with the notion
of computable function becomes fruitful. The notion of computable function is
based on the analysis of a human computor, whose actions abstract from contingent
limitations like a lack of attention or a lack of paper on which to perform the
calculation. In the same way, the notion of logical constructivity only concerns
what can be constructed in principle by an ideal mathematician and not what can
be practically done by some particular agent in certain specific situations. In fact,
according to Brouwer, ideal mathematicians are not agents totally freed from any
kind of contingent constraints; on the contrary, they have the very same epistemic
capacities that any other concrete human beings possess, the only difference being
that their capacities are perfect. More precisely, like every concrete human being,
they can deal with only a finite amount of resources and information, and their
actions can be performed only in a finite amount of time and space; however, unlike
concrete human beings, their finite capacities are not subject to any fixed bound.2

8.1.3 The Geometrical Space

The considerations we made on the ideal mathematician are essential also for
understanding an implicit assumption standing behind the presentation of Euclidean
geometry that we adopt in this work, and that would be difficult to justify if
our analysis of Euclidean geometry simply reduced to a study of mathematical
(algebraic) structures. Our idea is in fact to take seriously the parallelism we have
sketched between Turing’s human computor and the abstract human geometer. As
the former works on a finite but indefinitely extensible string along its length, the
latter works with a finite but indefinitely extensible sheet of paper along its length
and height. If both of them worked instead with an infinite string or paper, then we
would not be considering only an idealization of a concrete situation, but we would
be considering a situation in which from the very beginning, agents are supposed to
possess features going beyond human epistemic capacities: since human agents are
by definition finite beings, they cannot have a full access to what is infinite.

In geometry, this shift from a finite potentially extensible space to an actual
infinite space is far from trivial. A finite sheet of paper corresponds to a normed
space and thus to a space equipped with a metric. The idea is that if a point is fixed
with respect to a set of coordinates, given in this case by the borders of the sheet,

2The fact that we do not consider actions performed within a limited amount of resources should
not be construed as deeming this aspect irrelevant for the discussion of the relation between
geometry and logic. For further information about the connections between geometrical proofs
and resource-sensitive logics, see Pambuccian (2004).
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then the point will possess specific coordinates as well, determined by its distance
from the borders of the sheet. This means that whenever the human geometer puts
the tip of a pencil on the sheet, a specific point of that sheet has been identified.
This entails two consequences. First, it becomes possible to ask which coordinates
correspond to the point determined by the acts of the geometer (cf. Weyl 1949,
p. 75), which means that the identity problem between two points can be reduced
to the problem of knowing if the two points have the same coordinates. Secondly,
if every position in space can possibly correspond to a point, then it becomes
reasonable to think that we are working with a continuous space (cf. Poincaré 1902,
p. 78), and the most natural mathematical representation of this kind of space is
the field of real numbers.3 More precisely, as Mumma (2012, p. 118) remarks,
the activity of abstract human geometers is performed with a special medium: the
spatial continuum. Hence, geometrical constructions involve parameters that can
vary continuously, and the analysis of geometrical constructivity corresponds to
isolating those properties and those constructions that are invariant with respect to
these variations in the continuum. In Sect. 8.5.3 and in the conclusion, we will see
that this assumption concerning the continuity of the space will play a fundamental
role in our analysis. In particular, we will try to understand in which sense this
assumption is compatible with the constructivist approach adopted here.

It should be noted that if we had considered the sheet of paper as actually infinite,
there would be no norm on it. In this case, when a point is fixed on that paper,
it would be aimless to ask which are the coordinates corresponding to that point,
since there is no preconceived grid of coordinates. Hence, the system of points
is not something that is already there, and to which we can refer, but instead it
can be generated from a freely fixed point, around which to construct a system of
coordinates from scratch. More precisely, starting from this point, and using only
ruler and compass operations, it is possible to obtain a set of points forming what
is called a Euclidean field, that is, a field where every nonnegative element can be
represented as a square. But a Euclidean field does not necessarily coincide with the
field of real numbers. In particular, it can have a countable cardinality, which could
allow its elements to be generated in an algorithmic way and decide the equality
relation between two elements of the field (cf. Rybowicz 2003).

Do we have then to conclude that this second manner of conceiving geometrical
space is more constructive than the first one?4 We do not think so. The problem

3Note that starting from the first French translation of the Grundlagen der Geometrie, in 1900,
Hilbert adds the axiom of completeness in order to force the models of Euclidean geometry to be
maximal, that is, isomorphic to the field of real numbers, thus obtaining categorical results (cf.
Awodey and Reck 2002, §§3.2, 3.3). For further details, see Hallett (2008, §§8.2, 8.3) and Venturi
(2011).
4The two ways of conceiving the geometrical space presented here reflect the two ways in
which, according to Kreisel (1981), mathematical concepts are traditionally analyzed. Borrowing
Pascal’s terminology, these two ways can be called the esprit de géométrie, “where we think
of arbitrary points, not only those constructed by use of Euclid’s operations, a ruler and a pair
of compasses” (1981, p. 70), and the esprit de finesse, where, as in algebra, the set of objects
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with the second conception is that it assumes from the beginning that the space
is infinite, and this risks obliterating any reference to a human agent supposed to
realize the geometrical constructions. In this manner, Euclidean geometry would
be considered just one algorithmic theory among many others. Of course, it can be
objected that in this case the axioms of Euclidean geometry would identify a set
of structures which would not necessarily exceed our epistemic capacities, since
they could be generated in an algorithmic way, as is done, for example, by Seeland
(1978).5 However, this would not yet explain how we have been able to single out
these structures. The problem is that they are stipulated in an axiomatic way, and
what counts is only the alethic relation linking them to the axioms, that is, the
characterization of these structures by referring to those sets of sentences which
they render true and from which other true sentences can be inferred by purely
logical reasoning. But, in this way, the analysis of Euclidean geometry becomes
an abstract model-theoretical analysis, where the attention is focused only on the
logical relation between the axioms and theorems by reference to some abstract
structures, and not to the concrete observable activity of the geometer. On the other
hand, the analysis of space that we propose takes into consideration this activity,
but, as we have seen, in order to do this, an assumption regarding the continuity
of geometrical space has to be made, and this assumption could be incompatible
with the above constructivist approach. Our analysis will show that this is not the
case and that such an assumption is not incompatible with a formal reconstruction
of geometrical constructive activity capable of taking into account the epistemic
constraints which go with a constructive interpretation of mathematics.

8.1.4 What Is Constructed?

After this very first general glance at what is intended by constructivity in geometry
and in logic, respectively, a question naturally arises: On which entities is the notion
of constructivity predicated? By taking into consideration what has been said in
the two previous sections, it seems natural to think that geometrical constructivity
applies to objects, while logical constructivity mainly acts at the level of a formal
language. But this is not compulsory and thus, by a pure combinatorial analysis,
four possible answers should be considered:

O1. Objects. For example, the construction of a specific triangle ABC possessing
certain well-determined properties and a particular position in the plane; the
algorithmic identification of the values of a specific given function.

considered is any set which is closed under a given list of operations, and in particular the smallest
of these sets (1981, p. 71; cf. the difference from what has been said in Note 3).
5For a survey of this kind of algorithmic study of Euclidean structures, see Pambuccian (2008).
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O2. Types of objects. For example, the construction of lines given distinct points;
the identification of those computable functions that are definable exclusively
by means of a given set of primitive functions.

O3. Sentences. For example, the verification that a certain sentence A is provable
in a direct way or by using only intuitionistically acceptable inference steps.

O4. Types of sentences. For example, the verification that sentences of the form…n,
for any given n, are decidable or provable with direct means.

It is quite evident that these distinctions are at the moment still excessively general
and imprecise; the examples that we will present later will play an essential role in
clarifying them.

8.2 Axiomatic Presentations

As already mentioned, the principal aim of this work is to understand whether
the previous characterizations of logical constructivity are enough to capture the
constructive features proper to geometrical practice. In order to do that, we will take
into account different syntactic formal presentations of geometrical theories. The
first to be analyzed is an axiomatic one: Tarski’s theory of elementary geometry,
EG for short (Tarski 1959).

From a purely morphological point of view, EG is formulated in a first-order
language (with identity) of signature † D fˇ; ıg, where ˇ is a ternary predicate
expressing the betweenness relation and ı is a quaternary predicate expressing the
equidistance relation. The formula ˇ.x; y; z/ is read as “the point y lies between the
point x and the point z,” (the case where y coincides with x or z is not excluded),
while ı.x; y; z;w/ is read as “x is distant from y as z is from w.” The logical
deductive framework underlying EG is classical first-order logic.6

Apart from being a consistent theory, the main peculiarity of EG is to be
syntactically complete: for every closed formula (i.e., sentence) A formulated in
the language of EG, by starting from the axioms of EG, either A is derivable or
:A is derivable, i.e.,

for all A 2 SenL .EG/; `EG A or `EG :A:
The proof is given using the method of quantifier elimination, where sentences
are syntactically reduced to Boolean combinations of atomic (open) formulas. In
the case of EG, these atomic formulas are then reduced to tautologies (>) or
contradictions (?). What is relevant is that this type of reduction can be performed
algorithmically (see Quaife 1989) so that the following result holds.

6An axiomatic presentation of Euclidean geometry based instead on an intuitionistic framework
can be found in Lombard and Vesley (1998). This system is toEG as Heyting arithmetic is to Peano
arithmetic: when its axioms are interpreted classically, one gets a theory equivalent to classical
Euclidean geometry.
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Proposition 1 EG is decidable: For every sentence A 2 L .EG/, it is possible to
establish algorithmically whether A is a theorem or not.

An immediate consequence is that EG can be considered as constructive in the
sense of C3. The validity of a sentence can be verified in every situation and in
every moment within a finite amount of time and without any appeal to ingenuity
(Vesley 2000, p. 291). In this sense, constructivity coincides with mechanizability:
a procedure is constructive when it can be executed following always the same
rule and without being affected by variations in the context of application. On the
contrary, a non-constructive procedure lacks this universal applicability and requires
some ingenuity in order to be adapted to each specific situation.

Another interesting aspect of EG is that its constructive character seems to be
compatible with a realist position, at least if, following Dummett (1963), realism is
understood in a semantical rather than ontological sense; each sentence of L .EG/

is derivable or not and thus (by the soundness theorem) possesses a well-determined
truth value independently of the strategies and methods that we can conceive in order
to establish it. It is a property of the theory in itself to decide about the derivability
of all its sentences, and this property is exclusively due to its syntactic form, so
that in principle no appeal to the capacities of a human subject is needed in order
to explain the attribution of a specific truth value to each sentence of the theory.
This form of constructivism is thus quite distant from the Brouwerian and, more
generally, intuitionistic one. The reason is that its attention is focused only on an
algorithm acting on a rather “superficial” level, that is, the level of the (preorder)
derivability relation between sentences (cf. O3), while no analysis is made of the
epistemic properties of the objects guaranteeing this relation to hold (e.g., the
proofs). Moreover, the decidability of the derivability relation is not a constructive
feature peculiar to geometry; there are plenty of other theories that are decidable.
Thus, if we want to make our investigations more precise, we must focus on two
aspects that have been omitted from the previous analysis of the constructivity of
EG:

P1. Nothing is said about the objects of the theory. No constructions are performed
on the objects the theory speaks about. In particular, no constructions on them
are needed in order to prove the syntactic completeness of the theory. The
decision algorithm is “blind” with respect to the objects of the theory, in the
sense that there is no relation between what is done at the level of the sentences
and what is done at the level of the objects.

P2. Nothing is said about the derivational structure of the proofs of the theorems. It
is possible to mechanically decide that a sentence is derivable without knowing
anything about how its derivation is made. It is not necessary to effectively
construct a proof, thus making its inferential structure explicit, in order to
determine whether a sentence is derivable or not. In other words, the decision
algorithm does not provide any explicit information concerning the inference
steps linking the axioms to the theorems.
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What follows will be essentially devoted to examining which strategies can be
established in order to recover these two aspects and to understand whether they are
sufficient in order to capture the notion of geometrical constructivity.

8.3 Constructivity and Objects

Let us start with the analysis of P1. Focusing on the language of the theory seems
to us a reasonable way to understand which are the objects this theory commits to
and, eventually, to introduce constructive features at the level of these objects.

8.3.1 A Purely Relational Theory

According to the language of EG, there is a unique universe of objects, and
this universe contains only one sort of object: points. Moreover, as we already
mentioned, this language is completely relational: there are no functions acting on
points. Therefore, what the axioms of EG do is only to describe how these points
are mutually organized. More precisely, the existence of a nonempty set of objects is
implicitly assumed, and the axioms fix, at the linguistic level, the relations holding
between them. This is exactly the picture coming out of the axiomatic method as it
is conceived in the Hilbertian tradition:

[. . . ] contemporary axiomatics proceeds from the idea of a system of objects fixed from
the outset. In geometry, for example, one considers the points, straight lines, and planes in
their totality as such a system of things. Within this system one thinks of the relationship of
incidence (a point lies on a straight line, or on a plane), of betweenness (a point lies between
two others), and of congruence as being determined from the outset (Bernays 1930, p. 236).7

Hence, the role played by axioms consists exclusively in identifying “what might
be called a relational structure” (Bernays 1967, p. 497). In this respect, EG is not
different from other axiomatic theories that can be presented in a purely relational
language, such as the theory of linear orders or lattice theory. But then, what is lost
with this kind of presentation of Euclidean geometry is the very natural idea of the
possibility of constructing new types of objects starting from other previously given
ones. Let us give an example. In EG, lines, or similarly, segments, do not belong
to the initially given system of objects, nor are they obtained as the result of an
operation performed on points. In fact, their construction is replaced by the addition
of an axiom establishing the existence of a point satisfying certain properties with
respect to other given points, namely:

8x8y8u8v9z.ˇ.x; y; z/ ^ ı.y; z; u; v//:

7In the same vein, according to Mueller (1981, p. 14), “For Hilbert geometric axioms characterize
an existent system of points, straight lines, etc. At no time in the Grundlagen is an object brought
into existence, constructed. Rather its existence is inferred from the axioms.”
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More prosaically, we can say that lines are never really traced, but only ideally
conceptualized. What the axiom does is to stipulate the existence of a particular
point in order to prevent a concept from being empty. A segment l is nothing else but
the concept under which two given points a and b fall, as well as every other point z
satisfying one of the three relations ˇ.a; b; z/, ˇ.a; z; b/, ˇ.z; a; b/ and being located
at a certain (positive) distance from a and b (cf. Tarski and Givant 1999, p. 178). A
consequence is that once a and b are given, the extension of (the concept) l contains
at least one element different from a and b themselves. Therefore, in purely exten-
sional terms, lines are nothing but sets of points satisfying certain given properties.
This means that, in principle, Euclidean geometry can be considered as a branch of
set theory: given the set of points, it is sufficient to have a separation axiom in order
to define, or, better, to reduce, every geometrical object to a particular set of points.8

Which kinds of changes in the formal presentation of Euclidean geometry should
be carried out in order to avoid this kind of set-theoretical reductionism and restore
the intuitive idea that an essential character of Euclidean geometry is to carry out
constructions on objects? Or even more generally, how is it possible to give a
presentation of Euclidean geometry where the constructive aspects of the theory
are detectable at the level of the objects?

8.3.2 Functions as Constructions

A first immediate reaction could be to change the signature of the theory by
replacing relations with operations on objects. The underlying motivation is that
geometrical constructions can be seen to be analogous to the calculation of the
solutions of certain equations built up from a set of given primitive functions. This
is the idea proposed by Moler and Suppes (1968).9 Their theory is still one-sorted,
but the relational predicates ˇ and ı are replaced with the two functions:

S.x; y; u; v/ D w I.x; y; u; v/ D w:

The first function corresponds to the laying out of lines, while the second one is
used in order to construct the intersection point of two distinct lines. However, the
two functions S and I can be explicitly defined in the language of EG.

8It is worth noting that what we said is not in contrast with Tarski’s claim according to which
his presentation of elementary geometry concerns “that part of Euclidean geometry which can be
formulated and established without the help of any set theoretical notions” (Tarski 1959, p. 16).
Actually, what Tarski wants to say here is simply that his formalization of geometry does not
make any appeal to a higher-order language allowing quantification over sets (cf. Tarski 1959,
p. 17, Szczerba, L.W. 1986, p. 908). But, evidently, this is a problem concerning the complexity
of the language and it does not mean that there is no use at all of set-theoretical machinery as a
background theory.
9Similar proposals have been developed by Engeler (1968, 1993) and the already mentioned
Seeland (1978). For a survey of these positions, see Pambuccian (2008).
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Let us consider the case of the first function. The following biconditional

S.x; y; u; v/ D w $ .:.u D v/_ .u D v ^ x D y// ! .ˇ.u;w; v/ ^ ı.u;w; x; y//

represents a correct definition of the function S , since the uniqueness of w can be
proved, i.e., since we have that

`EG 8x8y8u8v9Šw..:.u D v/_.u D v^x D y// ! .ˇ.u;w; v/^ı.u;w; x; y///:

Now, thanks to the soundness and completeness theorem, for every model M of
EG,

M � 8x8y8u8v9Šw..:.u D v/_.u D v^x D y// ! .ˇ.u;w; v/^ı.u;w; x; y///:

This means that the function S can be explicitly defined in the theory and behaves
exactly like a set of 5-tuples of the form ha; b; c; d; ei, that is, as a subset of the
Cartesian productM5, where M is the universe of the model M.

The functionS is thus a completely extensional object, identifiable with its graph.
Therefore, once again, what we are doing is just a mere stipulation of the manner in
which the objects of the domain, i.e., the set of points, are mutually related; no new
objects are constructed and no essential difference with the Tarskian approach can
be established.

8.3.3 The Intuitionistic and Finitistic Proposal

A second proposal comes from a part of the intuitionistic tradition (Heyting 1925)
which is strongly influenced by those types of requirements characterizing points
C2 and C3. Roughly speaking, the guiding principle standing behind this position
consists in the substitution of ideal or infinitely precise concepts with effective and
finitely precise ones. In the case of geometry, this proposal becomes specific in the
following sense.

A rather natural assumption is to consider two points on a line as two elements
of the ordered set of real numbers: in other words, real numbers are generally
considered as the elements on which the intended models of geometry are based.
But this assumption is far from being harmless, because in order to speak of real
numbers, a crucial passage from finitary to infinitary considerations has to be
made: real numbers are defined indeed in terms of infinite sets of rational numbers
satisfying certain specific properties (e.g., real numbers are represented as Cauchy
sequences or Dedekind cuts of rational numbers). However, this step towards forms
of infinitary reasoning is not the only problematic aspect. Another difficulty is that
some of the properties used to characterize real numbers are proved by making
appeal to non-predicative concepts (cf. C4). For instance, the standard proof of the
least upper bound principle, i.e., the existence of a least upper bound for every
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subset S of R, is based on the definition of a particular Dedekind cut X as the
intersection of a given set S� D fDx j x 2 Sg itself constituted by Dedekind cuts
of the form Dx D fa j a 2 Q ^ x < ag. By the continuity of R, every Dedekind
cut corresponds to a real number and, in particular, the real number corresponding
to X is the least upper bound of S (Feferman 2005, pp. 597–598). The crucial
point is that this purely set-theoretical definition leaves open the possibility forX to
already belong to S�, so that X would be defined in terms of itself, generating
a circularity in the definition. In general, axiomatic definitions of sets (like the
comprehension principle, the power set operation, or the axiom of choice), as well
as impredicative definitions, stipulate in a single stroke the existence of infinite sets
of objects without at the same time providing a method for specifying one by one the
objects contained in these sets. But even if we change the definition of real numbers,
by imposing a control on the generation of the infinite series of rational numbers
(e.g., by generating real numbers using choice sequences in Brouwer’s sense), or
we restrict the operations on sets only to predicative ones (Weyl 1918; Feferman
1964), a problem still remains. Namely, when we assert that it is true that two real
numbers are equal, we are asking that we be capable of identifying two infinite series
of rational numbers, and, in principle, this task consists of an infinite verification. In
particular, suppose a real number a to be defined as an infinite sequence of rational
numbers faigi2ZC such that for all m; n 2 Z

C, jam � anj � m�1 C n�1. In order to
verify that a D b is true, we have to verify that for all k 2 Z

C, jak � bk j � 2k�1
(Bishop 1967, p. 15). But this amounts to testing the property for an infinite number
of elements and thus the verification remains purely ideal, never executable in
concreto.

The intuitionistic solution is to abandon equality as a primitive relation and to
replace it with the new primitive relation of apartness (Brouwer 1924), which can
be defined in the following manner (obtained by rephrasing the definitions present
in Bishop 1967, §2.2):

a # b if and only if there exists k 2 Z
C; such that ja2k � b2kj > k�1: (8.1)

According to this definition,10 if it is true that a # b, then it is possible to
recognize this in an algorithmic way: starting with n D 1, put k D n and test if
the property is satisfied for all i � n. If this is not the case, put k D n C 1 and
repeat the procedure until an integer is found that satisfies the property, and then
stop. Note that at every step, the number of positive integers for which the property

10Note that the definition (8.1) cannot be obtained simply via the negation of equality. On the one
hand, the negation of a universal sentence cannot be in general intuitionistically transformed into
an existential sentence. On the other hand, not even making appeal to classical negation would be
sufficient: although the definiens of (8.1) entails the classical negation of equality, i.e., the existence
of k 2 Z

C, such that jak � bk j > 2k�1, the converse does not hold (at least using the definitions
present in Bishop 1967, §2.2).
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has to be tested is a finite one and the operations of subtraction and comparison
between rational numbers are both executable in a finite number of steps as well.11

Let us now take a closer look at the apartness relation. Axiomatically, it is
characterized in the following way:

8x:.x # x/ Irreflexivity
8x8y8z.x # y ! x # z _ y # z/ Split

The first axiom has an immediate reading. The second one is less intuitive. A
possible explanation is the following. Suppose we fail to decide whether y # z (resp.
x # z)12 but we have already verified that x # y holds, then we are also able to verify
that x # z (resp. y # z) holds.

From a theoretical point of view, the principal interest in the apartness relation
results from the fact that an algorithm, acting directly on objects, is built inside one
of the primitive relations of the theory. However, this is not yet sufficient in order
to fully extend the satisfaction of decidability from the level of sentences to the
level of objects. The reason is that apartness is just a semidecidable relation, not a
decidable one. From the intuitionistic point of view, to recognize that a # b is false
corresponds to possessing a procedurep such that, given any proof of a # b, it entails
a contradiction. By definition, this is equivalent to proving that for any k 2 Z

C, we
possess a procedure p showing that it is impossible for ja2k � b2k j > k�1 to hold.
But this requires an infinite number of cases to be tested and thus we fall again into
the same troubles we came across with equality considered as a primitive relation.
For this reason it is quite natural to define equality as the negation of apartness:

a D b �df :.a # b/ �df a # b ! ?:

It is worth noting that the negation of this defined equality is weaker than apartness.
The latter implies the former, but in general the converse does not hold: the proof
that a D b leads to a contradiction does not a priori give any lower bound for
ja � bj. In particular, Brouwer showed that defining real numbers on the basis of

11It has to be mentioned that in Tarski (1959, p. 17), among the primitive relations of the language
of EG, there appears a relation of “diversity.” Unfortunately, Tarski does not explain how this
relation should be intended; thus we cannot say if it corresponds to the apartness relation or not.
Due to this lack of specification, as well as the fact that none of Tarski’s collaborators paid any
attention to this diversity relation, we have decided to present EG along the lines of Givant and
Tarski (1999), where equality is a primitive relation and diversity is defined simply as its negation.
12This failure is not strictly due to some necessary epistemic limitations, as it could be the case
that the two points are indeed the same: in this case an ideal precision would be required for the
verification, and such capacity is not possessed by human beings. On the other hand, the failure
could also be due to some contingent epistemic limitations. For instance, the computation could be
so long that, after a certain amount of time, we become too tired to continue it and we thus decide
to abandon it.
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free choice sequences13 allows the proof of :8x.:.x D 0/ ! x # 0/ and thus to
conclude that negation of defined equality and apartness do not coincide (Heyting
1971, pp. 121–122). This result is not surprising because it agrees with the fact
that in intuitionistic logic, double negation is not involutive. However, if some more
restrictive definitions of real numbers are assumed, in particular those involving the
Markov principle, then it can be proved that :.a D b/ and a # b are equivalent
(Troelstra and van Dalen 1988, pp. 205–206).

Leaving aside these technical considerations, what should actually be retained
for our discussion of geometrical constructivity is that the introduction of apartness
entails an at least partial satisfaction of C3, and this satisfaction not only concerns
the level of sentence (O3) but is also deeply rooted at the level of the objects of
the theory (O1). Nonetheless, what is still missing is the possibility of creating new
objects starting from already given ones. In other words, the presentation of geom-
etry based on apartness is still a relational one, basically grounded on an axiomatic
presentation. This relational character can be well detected in Heyting’s presentation
of intuitionistic geometry (Heyting 1959), where lines are taken exclusively as
primitive objects, without any possibility of constructing them starting from points.
In particular, the relations holding between points and lines are guaranteed by the
constructive relation of outsideness, i.e., !.14 In analogy with apartness, a point x
lies outside a line u, i.e., x ! u, when there is a positive distance separating these
two elements. The axiom describing the behavior of outsideness with respect to
apartness is fixed by the constructive axiom of substitution for points:

8x8y8u.x ! u ! x # y _ y ! u/ Csub

Moreover, in analogy with equality, the incidence of a point on a line, denoted by 2,
becomes a defined notion15:

a 2 l �df :.a ! l/ �df a ! l ! ?:

13With the adjective “free,” we want simply to point out that the subject generating a sequence
can freely decide the degree of restrictions in the selection of each element of the sequence. At one
extreme of the range each element is completely determined in advance by a law (see p. 154, infra),
so that the choice of this element is temporally independent. On the other extreme, the choice is
totally unrestricted, in the sense that there is no kind of a priori fixed rule guiding the generation of
the sequence, so that each element is undetermined in advance but depends on the particular point
in time at which the choice is made.
14The language used in Heyting’s presentation of intuitionistic geometry is thus a two-sorted first-
order language. In this work, we will not adopt any particular notation to distinguish between the
two sorts of variables for points and lines, respectively; it will be the presence of relations that
disambiguates the reading of formulas. However, in general, we will use the letters x, y, z to
indicate (eigen)variables and a, b, c to indicate parameters for points, while for lines, u, v will be
used to indicate (eigen)variables and l , m the parameters.
15The use of the membership symbol is due to the intuitive idea that a line is nothing else but a
set of points. As we have seen, this idea is literally followed by the Tarskian approach, while in
Heyting it is simply a façon de parler; it is in fact contradicted by taking points and lines to be
two distinct sets, irreducible one to the other. A much more interesting aspect is that, historically,
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To sum up, from the analysis of Tarski’s and Heyting’s presentations of geometry,
we realize that if we do not want to reduce geometry to a mere relational theory, we
have to introduce some kind of constructors operating on the objects of the theory
itself. And since we have decided to work on a purely syntactic formal level, we
need to find some syntactic entities that can play the role of such constructors. Now,
according to the intuitionistic tradition, and in particular to the BHK explanation of
logical connectives, a reasonable candidate for playing such a role are the proofs
themselves. The possibility of finding a positive solution to problem P2 is thus a
crucial point to analyze, and it constitutes the core of our investigation.

8.4 Constructivity and Proofs

A possible way to attack the problem stated in P2 is to answer the following
question: Can EG be considered as constructive in the sense of C1, when evaluated
with respect to the class of its theorems? At first sight, the answer seems to be
absolutely trivial: having been formalized in a classical logic framework,EG cannot
satisfy C1. Nonetheless, trying to point out which of the intuitionistic properties are
concretely infringed by EG is far from trivial; moreover, as we will see, this kind
of investigation sheds light also on the analysis of C2 and C3.

The first step to be done is to make explicit the conditions used for judging a
theory T as intuitionistically acceptable. An intuitive idea could be to list all the
proofs of every theorem of T , verify when an appeal to classical principles is made,

Heyting (1959) did not consider the outsideness relation as a primitive relation, but as defined from
incidence and apartness, namely, a ! l 	df 8x.x 2 l ! x # a/. However, as was noticed by von
Plato (2010b), this definition is too weak from the intuitionistic point of view. If we understand it
correctly, this means that when it is imposed to use the previous definition in conjunction with the
axiom of substitution for points

8x8y8u.x 2 u ^ x D y ! y 2 u/ Sub

then the formula x # a is no longer intuitionistically derivable from x 2 l . Actually, what can be
derived is :.x D a/, which is equivalent to ::.x # a/, and, as we have seen, double negation
elimination is not in general admissible in the intuitionistic theory of apartness (cf. pp. 134–135,
supra):

Sub
8x8y8u.x 2 u ^ x D y ! y 2 u/

x 2 l ^ x D a ! a 2 l
8E

x 2 l Œx D a
1:

x 2 l ^ x D a
^l

a 2 l
!E

a ! l

8x.x 2 l ! x #a/
df

a 2 l ! a #a
8E

a #a
!E

Irr
8x:.x #x/

:a #a
8E

? !E

:.x D a/
!I 1:

::.x #a/
df
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and decide if it is eliminable or not. The problem of such a “generate and test”
method is its never ending nature: not only is the number of theorems infinite, but
also the number of possible proofs for each theorem is a priori unbounded. Usually,
a more manageable way for testing whether a theory T is genuinely intuitionistic is
to verify that T satisfies the two following properties:

Proposition 2 (Disjunction property). Let A;B 2 SenL .T /. If `T A _ B , then
`T A or `T B .

Proposition 3 (Witness property). Let 9xA.x/ 2 SenL .T /. If `T 9xA.x/, then
`T AŒt=x
, for some term t 2 L .T /.

It is quite evident that focusing on these two properties implies a shift of
attention to the level of O4. Consider now EG. It is not difficult to see that, thanks
to its syntactic completeness, it trivially satisfies the first property. The proof is
straightforward. Suppose that `EG A _ B and �EG A and �EG B . By syntactic
completeness, we have that `EG :A and `EG :B; this implies `EG :A ^ :B ,
which is (intuitionistically) equivalent to `EG :.A _ B/. Hence, we obtain a
contradiction. But EG is a consistent theory (see Friedman 1999); therefore, we
can classically conclude that `EG A holds or `EG B holds.16

Looking closer at Proposition 2, we can see that it has the form of an admissibility
result: if A _ B is valid (in T ), then A is valid (in T ) or B is valid (in T ).
Nonetheless, it is not made explicit how the validity condition is defined. Now, when
an intuitionistic point of view is adopted, proofs17 are the objects that guarantee the
validity of the sentences. Thus, an intuitionistically faithful reading of Proposition 2
should be the following: if we possess a proof 	 of A _ B , then it is possible to
extract from 	 a proof 	 0 ofA or a proof 	 00 ofB; this extraction is usually obtained
by a manipulation of the proof 	 , as it could be detours elimination (see p. 140,
infra) or the permutation of the inference rules (see p. 141, infra). This situation
seems not to be guaranteed by the proof that passes through syntactic completeness,
because that proof does not establish any explicit link between the proof of A _ B

and the proofs of A and of B .

16The last step of the proof corresponds to the reductio ad absurdum. This means that when
we reason about the properties of the derivability relation in EG, we are reasoning classically.
However, this does not yet preclude the possibility of a BHK reading of disjunction in EG. The
reason is that some clauses of BHK semantics already induce forms of non-constructive meta-level
reasoning (cf. von Plato 2013, p. 103). In particular, interpreting ? as a proposition which is never
realized, i.e., for which no proof can be exhibited, already entails classical forms of meta-level
reasoning on the properties of the derivability relation in a purely intuitionistic logical setting. For
instance, consider the proof that the 0-ary rule L? of G3i is valid, i.e., that ?; � ` � is valid.
By assuming that ? is never realized, the antecedent is always false and therefore the sequent is
vacuously valid. In other words, assuming that ? is never realized induces proving the validity of
the previous sequent in the same way as the validity of a material implication is classically proved.
17By the term “proof,” we here indicate a closed derivation, that is, a derivation having all
the assumptions discharged. When we want to speak of derivations having non-discharged
assumptions, we will call them open proofs (see p. 152, infra).
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If we move now to the analysis of Proposition 3, we note that it is not possible to
apply the same procedure we used for proving Proposition 2. The reason is that if we
suppose `EG 9xA.x/ and �EG A.t/ for all terms t , then there are two possibilities:
either t is a variable, let us say y, or it is a closed term. In the first case we cannot
appeal to the completeness ofEG in order to get `EG :A.y/ because completeness
applies only to sentences, i.e., closed formulas. In the second case, even if we get
`EG :A.t/, we cannot conclude `EG 8x:A.x/, for the rule of 8-introduction
would be violated.18

The failure of the witness property seems to be confirmed by the fact that the
proof of the existence of at least three non-collinear points is obtained simply by
stating the correspondent axiom,19 i.e.,

9x19x29x38u:.x1 2 u ^ x2 2 u ^ x3 2 u/ NC

The proof is then a zero-step derivation: no inferential passages are needed, just the
appeal to the axiom. A consequence is that there is no way to extract from this proof
the witnesses of the three existential quantifiers. We have thus no guarantees that
there is indeed (at least) an object that we can exhibit and that falls under the concept
expressed by the axiom and stipulated as nonempty. In other terms, if the existence
of certain specific objects is stipulated in a categorical way (i.e., without resting on
any kind of assumptions), then there is no information that can be exploited in order
to extract the desired witnesses. More generally, we are in a situation where what the
axiom states is that certain objects are organized in a well-determined configuration,
and where the coherence of the axiomatic systems guarantees that this configuration
is logically possible and thus a priori not empty. But this is not yet sufficient for
being guaranteed that this configuration can be effectively realized by some objects
to which we have an authentic epistemic access.

18Some clarifications have to be made at this point. Actually, in the presence of some kind of
infinitary rule, it could be possible to conclude `EG 8x:A.x/ from the infinite number of
premisses :A.ti /, where every ti denotes an object of the intended model ofEG. But the use of an
infinitary rule would be in conflict with C2. However, the problem de facto does not hold because
the language of EG does not contain any kind of individual constants or function operators;
therefore, it is not possible to form any closed term in EG. The second case analyzed is thus
only a purely theoretical exercise, since it would be excluded from the very nature of the language
of EG.
19Although a different language is used, namely, the one introduced in Sect. 8.3.3, our presentation
of the axiom of non-collinearity closely follows that of the lower-dimensional axiom adopted by
Tarski in EG, i.e.,

9x19x29x3.:ˇ.x1x2x3/^ :ˇ.x2x3x1/^ :ˇ.x2x1x2//:
It should be noted that sometimes this axiom is formulated by specifying that the three points
are different, that is, by adding to the propositional matrix the conjunction

V
1�i;j�3 xi ¤ xj .

However, this condition is not really necessary for our analysis. It is thus dropped in order to
simplify the use of this axiom and NC as well.
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More generally, we come up here against the distinction between proving that
certain objects enjoy some specific properties and proving that this set of objects is
actually not empty. More specifically, the problem is that even if a set of definitions
for these objects is available, we still have no guarantee that they can be effectively
reached. As Proclus states, geometry not only asks the question “What sort of thing
is this object?” but also “Does the object exists as defined?” (Proclus 1970, p. 158).
The answer to the first one is given by the proof of what Proclus calls a theorem, i.e.,
the proof that starting from the definition of this object, some of its intrinsic but non-
evident properties can be inferred. The answer to the second one is given, instead,
by the solution to what Proclus calls a problem, i.e., the setting of a procedure that
allows to exhibit the object defined, once certain conditions are satisfied (Proclus
1970, p. 66). The solution of a problem is thus a way to guarantee that what is
expressed in the consequences of a theory remains not only logically possible but
also epistemically accessible.

8.4.1 Formalization of Geometrical Problems

The idea that geometrical problems correspond to the request for an effective
existence proof of certain objects, once other objects are supposed to be given, has
induced identifying their logical structure with that of …2 sentences (cf. Mäenpää
and von Plato 1993; Avigad et al. 2009). More precisely, in the language of type
theory, a problem is a sentence of the form20:

8x W S:9y W T:A.x; y/:

The solution of a problem consists in the exhibition of an object of type T , once
other objects of type S and a fixed set of construction procedures are given. This idea
is in complete accordance with the intuitionistic reading of …2 sentences provided
by the BHK explanation of quantifiers; in particular, it is very close to Kolmogorov’s
reading (Kolmogorov 1932, p. 328):

A solution of 8x W S:9y W T:A.x; y/ consists in the possession of an effective
procedure p of type S ! T , such that for any object a of type S , it gives both
an object p.a/ of type T and solution of A.a; p.a//.

A full comprehension of this given reading depends on the possibility of making
explicit what the effective procedure p is. Only when this procedure is clearly
identified can we constructivize the existential quantifier and extract the desired
witness.

20For simplicity, we limit ourselves here to the case in which only one variable is universally
quantified and no type dependencies are involved. We will see later some more specific examples
which need an appeal to dependent types.
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8.4.2 A Parallel with Arithmetic

In order to better understand what it means to constructivize the existential
quantifiers of …2 sentences, let us concentrate on arithmetic. In particular, we will
show how in this context the role of effective procedures is played by proofs, in
conjunction with some algorithmic manipulations of their structure.

A first peculiar aspect of arithmetic is that a certain class of theorems, valid in
a classical setting, is not altered when the logical framework is changed into an
intuitionistic one. This class of theorems is exactly that of the …2 theorems.

Theorem 1 (Kreisel–Friedman). Let A be a primitive recursive formula.
If `PA 8x9yA.x; y/, then `HA 8x9yA.x; y/.

This means that classical arithmetic,PA, is a conservative extension of intuition-
istic arithmetic,HA, with respect to …2 sentences having a decidable propositional
matrix A.21

A second fundamental aspect is that in HA, the validity of Proposition 3 is
preserved.

Theorem 2 . Let 9xA.x/ 2 SenL.HA/. If `HA 9xA.x/, then `HA A.n/, for some
numeral n.

What we are interested in is the way in which Theorem 2 is proved. One
possibility is to proceed in three steps (Prawitz 1971, pp. 264–266; von Plato
2006):

(i) Transform the axioms of HA into an (provably) equivalent set of natural
deduction inference rules, HAR for short.

(ii) Prove the normalization theorem forHAR .
(iii) Prove the last rule lemma22 for HAR.

For the presentation of a system of inference rules for arithmetic, we refer to von
Plato (2006, p. 160). Actually, what is particularly relevant for our discussion is
point ii. In a purely logical system, the normalization of a proof consists in the
elimination of those formulas that are first introduced and subsequently eliminated.
Two cases are possible. The first case is when the application of the elimination rule
immediately follows the application of the introduction rule; we call this sequence

21The decidability of the propositional matrix A is a direct consequence of the fact that A is
a primitive recursive formula, that is, a formula constituted by relations which are themselves
primitive recursive. And if a relation is primitive recursive, then its characteristic function is a
primitive recursive function, that is, a function computable in a mechanical way.
22The expression “last rule lemma” (or “last rule property”) comes from the French word lemme
de la dernière règle (or propriété de la dernière règle) that we have learned from G. Dowek’s
lectures on proof theory, but this terminology is not very standard in the proof-theoretical literature.
An alternative formulation could be “introduction form property,” as can be found in Schroeder-
Heister (2014, §1.3). However, neither does this expression have a large diffusion. See below for
the explanation of this property.
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of rules a detour.23 The second case is when the introduced formula is the minor
premiss of a _-elimination (_E) or of an 9-elimination rule (9E ), then remains the
same throughout a sequence of applications of these rules, and finally is eliminated
(cf. Troelstra and Schwichtenberg 2000, p. 178). Actually, this latter case can be
reduced to the first one modulo upward permutations of the elimination rule with
respect to _E and 9E . But when we consider HAR instead of a purely logical
system, we also have to take into consideration new permutations that can be
generated by arithmetical rules. For instance, the induction rule Ind may produce
new types of permutations, namely,

....
AŒ0=x


ŒAŒy=x

1:....
AŒs.y/=x


ŒAŒt=x

2:....
C

C
Ind 1:; 2:

....
D

E
ıE

converts to‚ …„ ƒ� : : : �

....
AŒ0=x


ŒAŒy=x

1:....
AŒs.y/=x


ŒAŒt=x

2:....
C

....
D

E
ıE

E
Ind 1:; 2:

where ı is an arbitrary logical connective, y is an eigenvariable not free in any
assumptions of the derivation, and t is any term.

A fundamental aspect is that the operations of elimination of detours and
of permutation conversion for HAR can be performed algorithmically. Proving
normalization consists then in providing an algorithm that converts every non-
normal proof of HAR into a normal one, that is, a proof where each major premiss
of an elimination rule is either an assumption or a conclusion of an application of
an elimination rule different from _E , 9E and Ind.

As to point iii, the last rule lemma can be proved as a corollary of the
normalization theorem. This lemma affirms that if a certain non-atomic sentence A
is provable, then there exists a derivation of A, the last rule of which is an instance
of the introduction rule of the principal connective of A. This lemma is extremely
powerful: when it applies, it allows transforming any proof of A into a direct proof
of A (cf. C2).24

23Here we are working in a natural deduction setting. When natural deduction proofs are translated
into a sequent calculus setting, then the status of detours becomes clearer: the use of detours
corresponds to cuts, and cuts correspond to the use of lemmas. A proof without detours is thus
a proof where every inferential passage has been made completely explicit.
24The claim that every theory, in order to be meaningful, has to satisfy this property is known under
the name of Dummett’s fundamental assumption.
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Suppose now that 8x9yA.x; y/ is derivable in HAR. By the normalization
theorem, there exists a normal proof 	 of 8x9yA.x; y/ such that, according to
the last rule lemma, it terminates with a 8I rule. This proof 	 can be seen as a
program having 8x9yA.x; y/ as specification and such that when an input a is given
via an application of 8E , then the normalization algorithm provides a procedure
for computing the value of the variable y and eventually producing an output b.
Graphically, we have that

	
:::

8x9yA.x; y/ 8I

9yA. a„ƒ‚…
Input

; y/
8E

Normalization‚ …„ ƒ� : : :�

	 0
:::

A.a;

Output‚…„ƒ
b /

9yA.a; y/ 9I

For instance, a proof of 8x9y.x D 2y _ x D 2y C 1/, when combined with the
normalization algorithm, corresponds to a program that divides any given natural
number by two.

To sum up, when Theorems 1 and 2 are put together, the following result holds: if
a PA sentence of the form 8x9yA.x; y/ withA primitive recursive has been proved
classically, and the universal quantifier has been afterwards particularized, it is
possible to algorithmically extract the value of y using only intuitionistic passages.25

In other words, certain classical sentences can be constructivized in the sense of C3
as well as in that of C1 and C2, since the value of y is obtained by providing an
algorithm that finds the direct intuitionistic proof of 9yA.a; y/. Moreover, although
this algorithm acts primarily at the level of O4 (being applied to …2 sentences), its
execution concerns also the level of O2: given objects of a certain type as inputs, it
transforms them into objects of another type as outputs. If it were possible to have
such a result for geometrical theories, then we could have a syntactic formal manner
of expressing the idea that geometry effectively constructs its objects.

25It is worth noting that if the propositional matrix A of a …2 sentence is not primitive recursive,
the procedure we have just described cannot be carried out. Consider, for instance, the sentence
8x9y..y D 0 ^ B.x// _ .y D 1 ^ :B.x///, where B is an undecidable predicate. It can be
shown that this sentence could be derivable in PA, without being derivable in HA. In effect, if it
was derivable in HA, we could instantiate the universal quantifier with a numeral n, eliminate all
possible detours in the proof, and obtain then a witness t for the existential quantifier, so that

`HAR .t D 0^B.n// _ .t D 1^ :B.n//:
Since this last sentence is a closed one, and the proof does not contain open assumptions, we could
then apply Proposition 2 and obtain one of the two disjoints. But this is impossible, because it
amounts to rendering B decidable.
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A crucial step in this direction seems to be the shift from the level of mere
derivability to that of proofs. This shift entails also a move from a purely extensional
setting to an intensional one: modulo normalization, i.e., modulo the algorithmic
dynamics with which proofs are equipped, two different proofs of the same sentence
represent two different manners of achieving the same result. More precisely, two
non-normal proofs of the same sentence, not reducing to the same normal form,
represent two programs taking the same inputs and giving back the same outputs but
computing in different ways. This aspect is extremely important because it allows
capturing, at a purely syntactic level, the intuitive idea that there exist different
manners of constructing the same object starting from the same data and using the
same instruments.

8.5 The Case of Geometry: A Troublesome Situation

For simplicity, let us abandon here the theory EG and restrict ourselves to a very
elementary part of Euclidean geometry, namely, incidence geometry. In a nutshell,
we will study the relationship between points and lines only with respect to the
incidence relation, leaving aside the affine property of betweenness and the metrical
one of equidistance (for more details, see Greenberg 1993, p. 50). The language
considered will be composed of two sorts of variables, one for points and another
for lines, and one binary multisorted relation of incidence between points and lines,
denoted by 2. The logical framework is classical logic.

Consider the following…2 sentence:

8u9x:.x 2 u/: (8.2)

For brevity, we will use the infix notation for the negation of the membership
relation, i.e., write 8u9x.x … u/. Its informal reading is that for every line, there
exists a point lying outside it. According to what we said in the previous section,
our expectation is that, given a certain line l , there exists an effective procedure for
constructing, or at least exhibiting, a point c lying outside l . In particular, we expect
that this procedure can be given by a mechanical manipulation of proofs.

Usually, the proof of (8.2) rests on the non-collinearity axiom we mentioned
before. Consider the derivation

NC
9x19x29x38u:.x1 2 u ^ x2 2 u ^ x3 2 u/

9x19x29x38u.x1 … u _ x2 … u _ x3 … u/
DM

Œ8u.x1 … u _ x2 … u _ x3 … u/
4:

x1 … l _ x2 … l _ x3 … l

Œx1 … l 
1:

9x.x … l/
9I

Œx2 … l 
2:

9x.x … l/
9I

Œx3 … l 
3:

9x.x … l/
9I

9x.x … l/
_E 1:; 2:; 3:

9x.x … l/
9E 4:

The terminating step is 9E and not the desired rule 9I . Actually, 9I is used in the
proof, but there is no way to let it commute downward at the end of the proof,
because the presence of axioms prevents the permutation of the order of application
of the rules. Hence, it is not possible to have a direct proof of 9x.x … l/. Once
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again, the presence of axioms seems to oppose a constructive account of geometrical
practice. Nevertheless, we could still try to constructivize the existential quantifier
by proceeding in an analogous way as we did for arithmetic. Two preliminary steps
are then necessary.

1. The transformation of the classical theory into an intuitionistic one.26

2. The transformation of the axioms into inference rules.

It is worth noting that the first step is crucial if we want to obtain the same
initial conditions used in the formulation of the Kreisel–Friedman theorem. In this
theorem, the propositional matrix of …2 sentences is decidable. In geometry,
instead, if the working space is that of the real numbers, it is unusual to work
with decidable relations. The best we can do is to work with semidecidable
relations, as intuitionistic relations are. Thus, the type of …2 sentences that we are
going to consider are those whose propositional matrices do not contain negation.
In this manner, when these sentences are provable, their propositional matrix
can always be verified. Let us focus on NC. In order to transform it into an
intuitionistically admissible axiom, we could follow what we said in Sect. 8.3.3 and
replace the primitive incidence relation with that of outsideness, in order to obtain
the following:

9x19x29x38u.x1 ! u _ x2 ! u _ x3 ! u/ CNC

However, replacing NC with CNC does not induce any substantial change: with
respect to the previous proof, nothing happens but the avoidance of the classical
rule DM , which corresponds to one of De Morgan’s laws, namely, :.A ^ B/ !
.:A _ :B/.

Much more interesting is the attempt to transform CNC into an inference rule. A
first idea could be to appeal to the method proposed by Negri and von Plato (2001,
p. 209; 2011, §2.3) which allows transforming, in a deterministic and mechanical
way, certain classes of axioms into sets of provably equivalent rules of inference.
For example, if the propositional matrix of a universal axiom can be decomposed
into a conjunction of sentences of the form

P1 ^ : : : ^ Pm ! Q

26For the sake of the argument, we assume, without actually proving it, that the transformation
of the classical theory into the intuitionistic one is sound at least with respect to …2 sentences:
if A is a …2 sentence formulated in the language of the classical theory T and provable in T ,
then its intuitionistic translation I.A/ is provable in I.T/ as well. For further details about the
relation between classical theories and their corresponding intuitionistic ones, see Negri and von
Plato (2005).
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where Pi andQ are atomic formulas, then each of the conjuncts can be transformed
into the rule-scheme:

P1 : : : Pm
Q

Reg

In this manner, only inference rules acting on atomic formulas are generated, so
that their adjunction to the standard set of logical rules remains compatible with the
normalization procedure defined for the latter. Moreover, properly speaking, these
inference rules are neither introduction nor elimination rules,27 thus no new detours
are created (cf. Troelstra and Schwichtenberg 2000, pp. 197–198). More precisely, it
is possible to show that when natural deduction rules are translated into the sequent
calculus, no sequence of Reg rules is translated by making appeal to the Cut rule.
The idea is that Reg rules are translated either as right rules of the form

� ` P1 : : : � ` Pm
� ` Q

or as left rules of the form

�;Q ` C
�;P1; : : : ; Pm ` C

but not into both of them, so that no cuts between two Reg rules can be created.
Obviously, the problem is that CNC is not a universal axiom; hence, the trans-

formation cannot be applied. Should we then abandon the idea of constructivizing
geometrical problems along the lines of what we have done for arithmetic, or are
there other methods for getting out of this impasse?

8.5.1 A Partial Solution: Skolemization

A first solution could be to perform a Skolemization on the axioms containing
existential quantifiers. Suppose we do this for CNC. Roughly speaking, the idea
is to substitute the existential quantifiers appearing in head position with individual
constants. We thus obtain28:

8u.c1 ! u _ c2 ! u _ c3 ! u/:

27Using a terminology borrowed from Skolem, we could say that these rules are just principles
of derivation (Erzeugungsprinzipien; cf. von Plato 2007, p. 199) representing specific kinds of
mathematical reasoning.
28Note that here we are reasoning in a purely hypothetical way. Skolemizing inside an intuitionistic
setting is far from being trivial, in particular, because the derivability relation could be affected (as
is the case for intuitionistic logic with equality; cf. Mints 2000). However, reasoning as if this
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But the form of this new axiom is still not fit for the application of the afore-
mentioned transformation, and thus it cannot be converted into an inference rule.
Nonetheless, its propositional matrix is in disjunctive form, and a finite sequence of
disjunctions is nothing else but an existential operator ranging over a finite domain.
With an abuse of notation, we could rewrite the previous sentence as

8u9y 2 fc1; c2; c3g.y ! u/

and, Skolemizing again, obtain

8u.f .u/ ! u/

where f .u/ 2 fc1; c2; c3g. The propositional matrix of this new sentence is in the
desired form

P1 ^ : : : ^ Pm ! Q

with m D 0 and Q � f .u/ ! u. After the application of the transformation, we
obtain the 0-ary rule

f .u/ ! u
Coll

and the proof of 8u9y.y ! u/ becomes

f .u/ ! u
Coll

9y.y ! u/
9I

8u9y.y ! u/
8I

Suppose we now proceed as in arithmetic, using this proof and the normalization
procedure in order to extract the witness of the existential quantifier. Let a line l be
the input for the algorithm. We thus obtain

f .u/ ! u
Coll

9y.y ! u/
9I

8u9y.y ! u/
8I

9y.y ! l/ 8E
Normalization‚ …„ ƒ� : : :�

f .u/ ! l
Coll

9y.y ! l/ 9I

kind of Skolemization was not only possible, but even free from pernicious consequences, is not
problematic for our argumentative goals: what we want to show is just that even if it were possible
to accomplish this kind of Skolemization, we would still not be able to reach the desired result,
namely, to exploit normalization for constructing geometrical objects.



8 Constructibility and Geometry 147

The existential sentence has been finally inferred using the introduction rule for
the existential quantifier: its proof is a direct one. Nonetheless, we cannot consider
ourselves fully satisfied by this proof, since it remains uninformative about the
object which it is supposed to have constructed. Even if we can extract the witness
for the existential quantifier, namely, f .u/, we still do not know which point, c1,
c2, or c3, lies outside the line l . In other words, the proof gives us the witness
only in the form of a syntactic term, but it does not provide a way to identify
the object corresponding to this term, because the Skolemization procedure is non-
constructive: it gives us no information about the behavior of f , which remains
instead a sort of black box. It is only when we provide a model of the theory that
the function f takes a well-determined interpretation and a specific value for the
argument u, eventually selecting one and only one of the three possible points.
Hence, it is only in the presence of a semantical interpretation that the witness can
be really exhibited.29 However, the appeal to a model seems to be a solution vitiated
by circularity: it is possible to exhibit a witness because, by possessing the model,
we implicitly already possess it. The function f simply serves to denote this object
in the model, but the problem of justifying how we got in possession of the model
itself still remains open. An immediate consequence is that the possession of a direct
proof is not a sufficient condition for the construction of certain objects.

8.5.2 An Alternative Solution: Primitive Object Constructors

Properly speaking, appealing to Skolem functions is a kind of solution based on
the enrichment of the language in order to create a new theory which is “nearly the
same” as the initial one, namely, a conservative extension of the initial one. As we
have already seen, the problem is that when Skolem functions are introduced, we do
not know a priori whether they correspond to computable functions or not. Thus,
there are no guarantees that extracting the values of the function could be done in
an algorithmic way. The appeal to a semantic interpretation, i.e., the exhibition of a
model, is not a good solution either, because usually there is no way to generate a
model in an effective way, unless we restrict the analysis to finitary models (cf. Van
Bendegem 2010). We will discuss this point in Sect. 8.5.3. For the time being, if we
want to avoid both Skolemization and the appeal to any semantic interpretations, we
should find an alternative way to constructivize not only the existential quantifiers
of CNC, but also the disjunctions present in its propositional matrix. In order to
achieve this, it seems that the only viable way consists in the reformulation of the

29In fact, it could be objected that the witness can be obtained by executing the algorithm inscribed
in the relation !. This algorithm could give as a result a certain ci (1 � i � 3) such that ci ! l , and
thus, it would be possible to conclude 9y.y ! l/ by a 9I . The problem is that, taken as syntactic
objects, individual constants do not possess any kind of structure; hence, the algorithm inscribed
in ! cannot be used, since there is no data (structured) on which to operate. Once again it seems
necessary to interpret constants on numerical values.
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axiom CNC, so as to avoid any appeal to disjunction. Again, a way to do this is
to change the language of the theory. In particular, we could enrich the language
by adding a line constructor ln. More precisely, ln is a primitive object constructor
operating in the following manner: given two distinct objects x and y of type “point”
(P t), it transforms them into a new object of type “line” (Line). Formally speaking,
this means that the typing rule governing ln is

x W P t; y W P t 	 W x # y
ln.x; y/ W Line (8.3)

where 	 is an object standing for a proof establishing that x and y are distinct. The
other inference rules governing the behavior of ln have to assure the derivability of
a 2 ln.a; b/ and b 2 ln.a; b/ for any a and b.

At first sight, ln behaves exactly like a function taking points as arguments and
giving back lines as values. But in fact it is definitely not a function in the usual
extensional and set-theoretical sense: ln cannot be represented as a set of ordered
pairs of points. On the contrary, ln behaves like a program, in the sense that it is an
intensional object. Let us explain what this means through an example. Suppose that
four distinct points are given: let us say a, b, c, and d . Suppose we have established
that a 2 ln.c; d/ and b 2 ln.c; d/. Then, thanks to the uniqueness axiom (von
Plato 2010a, p. 146)

8x8y8u8v.x 2 u ^ x 2 v ^ y 2 u ^ y 2 v ! x D y _ u D v/

we can conclude that ln.a; b/ D ln.c; d/. But this does not mean that ln.a; b/ and
ln.c; d/ are identical in the sense that they are the same line. On the contrary, it
just means that they lie in the same place. In other words, even if they occupy the
same position on the plane, ln.a; b/ and ln.c; d/ are still different because they
have been traced in a different way: drawing a line passing through a and b is an
intensional act completely different from drawing the line passing through c and
d .30 Notice that a similar situation occurs in computability theory: it can be the case
that two programs take the same arguments and give back the same values, but do it
according to different algorithmic strategies.

More generally, the idea is that ln simulates a human geometer in the act of
drawing a line through two distinct points in the same way as Turing’s human
computor can be simulated by a (closed) �-term in the act of calculating the value of
a given function; in particular, notice that �-terms are just abstract representations of
programs, and, like the latter, they are intensional objects par excellence (cf. Hindley
and Seldin 2008, p. 76).

30More prosaically, the idea is that ln can be seen as a non-injective way to map points to lines, in
the sense that there can be different ways to get the same line as a certain particular position on the
plane.
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Another essential feature of ln is that its introduction into the language of the
theory imposes a change of the logical order of the theory itself. More precisely,
we pass from a theory expressed in a multisorted first-order language to a theory
expressed in a typed language, where the types not only depend on the objects but
also on the other types.31 For instance, the type of ln is…x W P t:…y W P t:.x # y !
Line/; this type not only depends on the two chosen objects of type P t , call them
a and b, but also on the capacity of establishing that a # b is an inhabited type.

Now, thanks to ln, we can reformulate CNC without using any disjunctions
(Negri 2003, p. 399; von Plato 2007, p. 220):

9x9y9z.x # y ^ z! ln.x; y// ET

The form of ET leads us to devise its corresponding rule along the lines of
the elimination rule for the existential quantifier, with assumptions containing
eigenvariables. More precisely, we can follow Negri (2003) and Negri and von Plato
(2011, §8) and transform axioms of the form

8Ex.P1 ^ : : : ^ Pm ! 9 Ey.Q1 ^ : : : ^Qs//

where none of the variables in the vector Ey are free in the Pi , into the rule-scheme

P1 : : : Pm

ŒQ1ŒEz= Ey
; : : : ;QsŒEz= Ey

1:....
C

C
GR 1:

where the variables in the vector Ey have been replaced by the eigenvariables Ez not
occurring free in C nor in any other assumptions. In this manner the axiom ET can
be transformed into the rule

Œx # y; z! ln.x; y/
1:....
C
C

ET 1:

where the eigenvariables x, y, and z are not free in C nor in any other assumptions.
In analogy with what we have just done with the rule GR, an axiom of the form

8Ex.P1 ^ : : : ^ Pm ! Q1 _ : : : _Qn/

31In Barendregt’s cube, which is a way of classifying theories in terms of their type dependencies,
such a theory would be considered as belonging to the system �P!. Cf. Hindley and Seldin (2008,
pp. 194, 200).
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can itself be transformed into the rule-scheme (Negri and von Plato 2001, p. 209)

P1 : : : Pm

ŒQ1

1:

....
C : : :

ŒQn

n:

....
C

C
GR� 1:; :::; n:

For instance, the constructive axiom of substitution for lines

8x8u8v.x ! u ! u # v _ x ! v/ Csub

is transformed into the rule

x ! u

Œu # v
1:....
C

Œx ! v
2:....
C

C
Csub 1:; 2:

Note that a GR� rule-scheme can be used in place of Reg, the latter being just a
particular instance of the former, namely, when n D 1 and C � Qn.

As Reg rules, neither GR nor GR� rules create new types of detours; neverthe-
less, they induce new permutative conversions. For instance, given a GR rule and
an elimination rule for a certain logical connective ı, we have that

P1 : : : Pm

ŒQ
1:....
C

C
GR 1:

....
D

E
ıE

converts to‚ …„ ƒ� : : : �
P1 : : : Pm

ŒQ
1:....
C

....
D

E
ıE

E
GR 1:

Normalization for logical systems extended with GR and GR� rules still holds but
has to be adapted in order to take into consideration these new kinds of permutative
conversions.

Exploiting the new rules, the proof of the existence of a point lying outside a
given line l becomes

z! ln.x; y/ Œz! l
2:

Œln.x; y/ # l
1: ln.x; y/ D l

? !E

z! l
efq

z! l
Csub 1:; 2:

It is now possible to apply 9I , so to obtain 9w.w! u/, and successively add
the hypothesis x # y by weakening. But this does not yet allow applying ET ,
because the variable condition is not respected: x and y are free in the hypothesis
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ln.x; y/ D l . Moreover, the term playing the role of the witness is a variable
and thus we have no relevant information for identifying its corresponding object.
Finally, the proof remains hypothetical: it depends on the hypothesis that l lies on
the same place as the line passing through two distinct points x and y and not
incident with a third point z.

Certainly, we could think of a more favorable situation in which ln.x; y/ D l

depends on x # y, namely,

z! ln.x; y/ Œz! l
2:

Œln.x; y/ # l
1:

x # y....
	....

ln.x; y/ D l

? !E

z! l
efq

z! l
Csub 1:; 2:

As before, we can continue the proof by applying 9I . And, unlike the previous case,
we are now entitled to apply the rule ET , so that the derivation can be closed.
However, in this manner it would no longer be a direct proof, because it would not
end with an introduction rule for the principal operator of the conclusion, i.e., 9I ,
but with the rule ET . Moreover, even if all the assumptions have been discharged,
the derivation still remains hypothetical: it depends on the hypothesis of having a
proof 	 of ln.x; y/ D l from x # y, and since ln.x; y/ D l is not a theorem, this
will depend in turn on the particular choice of x, y, and l .

In both cases, the possibility of closing the two derivations, and eventually
finding the object corresponding to the witness of the existential quantifier, seems to
depend on the possibility of having available certain objects possessing very specific
properties. Evidently, the exhibition of a model could provide these objects and lead
to the identification of the desired witness. In particular, once the model is given,
there is no longer the need to appeal toET , because all the assumptions of the proof
would be satisfied; thus, the proof would be considered as closed and terminating
with 9I . Moreover, all the free variables would be assigned to objects of the model,
so that the witness could be exhibited: it would consist of the object corresponding
to the interpretation of the variable z. However, this model cannot be a standard
relational set-theoretical one. First of all, in the intuitionistic type theory that we
used to present geometry, use is made of terms corresponding to proofs; therefore,
the model has to contain objects that codify proofs. Secondly, the interpretation
of ln cannot be a set of couples of objects; otherwise, ln would be interpreted as
the graph of a function and its intensional character would be lost.32 Nevertheless,
even if such a model was at our disposal, those problems of circular explanation

32To be more precise, we should say that the model contemplated here is something like a
realizability model.
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that we already mentioned in the previous section would still remain open: the two
given proofs operate as guides in the identification of the witness, but in fact, the
witness was already there in the model and thus we cannot properly say that we
have constructed it by the exclusive means of the proofs themselves. If we are not
able to explain how the model has been given, or better, if we cannot provide an
effective method for generating it, then the pure syntactic manipulations of (formal)
proofs will not be sufficient to capture the notion of geometrical constructivity. But
is this negative conclusion the only way to interpret the previous results?

We claim that this is not the case: in particular, by liberalizing the notion of proof
considered hitherto, an alternative positive interpretation is possible. More precisely,
if instead of working exclusively with closed proofs, we also accept open proofs, i.e.,
proofs having non-discharged assumptions, then the usual normalization procedures
still apply.33 However, if we do not want to work with a completely trivial notion
of proof, we have to impose some limitations on the kind of open assumptions that
can be allowed. Now, since we have reduced geometrical operations to syntactic
rules acting on atomic sentences, it would be reasonable to limit open assumptions
to atomic sentences and, possibly, to their duals, i.e., to the negations of atomic
sentences. Under these conditions, it could be still possible to obtain open direct
proofs of existential sentences. In particular, suppose we have a closed proof of
an existential sentence terminating with a GR rule, e.g., ET . If we avoid the
application of theGR rule, then some atomic premisses would remain undischarged,
but, according to what we have just said, we would still possess a proof. Moreover,
when there are no other GR rules appearing in the proof, it is possible to transform
this open proof into a proof terminating with 9I . The fundamental idea is to show
thatGR� rules do not represent an obstacle to this enterprise. In particular, if all the
occurrences of the premiss C in a GR� rule coincide with an existential sentence
obtained by the same instances of 9I ,34 then it is always possible to permute this
introduction rule downward with respect to the GR� rule, namely,

33Roughly speaking, the idea is that the reduction steps for detours involving logical connectives
are defined on open proofs and not closed ones (cf. Schroeder-Heister 2006, §§3.1, 3.2). Moreover,
as was said on p. 145, no new detours are created by mathematical rules. It remains to analyze the
permutations between logical and mathematical rules, but we will see this on p. 150. It should be
noticed that putting open proofs on the same level as closed ones, at least with respect to their
semantic role, is far from trivial. Usually, in proof-theoretical semantics, the priority is given to
closed proofs because the semantic key concept is that of validity, rather than that of computation,
as it is in the case under analysis (cf. Schroeder-Heister 2006, §3.3; Schroeder-Heister 2014,
§§2.2.2, 2.2.3).
34In order to obtain this kind of situation, some non-trivial work might be required. The main
problem is that the term appearing as a premiss of the 9I rules may not always be the same;
in particular there could be a term ti for each application of 9I . However, if a subterm property
can be proved (cf. von Plato 2010a, §3), then each term ti would appear in Qi or in some other
assumptions of the subtree concluding with AŒti=x
. Thus, by means of appropriate substitutions,
it would be possible to identify all the ti . Note that this does not create captures of eigenvariables,
because by hypothesis there are no more GR rules. In some special cases, it would be simply
sufficient to add a sequence of equalities ti D tj in the assumptions.
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P1 : : : Pm

ŒQ1

1:

....
AŒt=x


9xA.x/ 9I
: : :

ŒQn

n:

....
AŒt=x


9xA.x/ 9I

9xA.x/ GR�1:;:::;n:

converts to‚ …„ ƒ� : : : �

P1; : : : Pm

ŒQ1

1:

....
AŒt=x
 : : :

ŒQn

n:

....
AŒt=x


AŒt=x

GR�1:;:::;n:

9xA.x/ 9I

However, working under open assumptions allows the witness to be an open
term, namely, a term in which there appear variables already contained in these
very same assumptions. Hence, if on the one hand we can say that proofs of this
kind still provide means, via the normalization algorithm, for obtaining certain
objects with well-determined characteristics, on the other hand, these means remain
essentially hypothetical: they can be concretely exploited only when the open
assumptions are satisfied. But, because we have a priori no certainty that these
assumptions can really be satisfied, the methods assured by hypothetical proofs are
only potential: they depend on the possibility of performing certain constructions
in order to satisfy the hypothesis. To sum up, if we abandon any appeal to models,
our formal reconstruction of geometrical practice is characterized by hypothetical
and potential constructions: although the witnesses of existential quantifiers are
not always concretely constructed, they remain nonetheless constructible. More
precisely, when Euclidean geometry is studied from the point of view of the formal-
logical analysis proposed in Sects. 8.1.2 and 8.1.3, then we are led to conceive
geometrical objects not as constructed, but only as constructible.

8.5.3 Arithmetical vs Geometrical Objects

An immediate response to this kind of consideration may be to wonder what does
determine the emergence of hypothetical and potential features inside geometrical
activity. A possible answer can be given by drawing a comparison with arithmetic.

First, it has to be noticed that in arithmetic, the witness of the existential quantifier
of a …2 sentence never remains undefined, in the sense that it can always be
univocally identified without having to appeal to any notion of model external to
the syntax. In particular, the method presented in Sect. 8.4.2 can always be used
in order to extract a witness that corresponds to a closed term: it is sufficient to
particularize the universal quantifier on a closed term and then apply the described
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procedure. And this is always possible, because in arithmetic each element of the
intended model can already be constructed in the syntax itself by means of a finite
set of signs and a finite set of algorithmic operations acting on them, namely,
the primitive recursive functions of constant zero and successor, i.e., 0, s.0/, . . . ,
s.s.: : : s.0/ : : ://, etc. The syntactic objects thus obtained are objects for which
we have cognitive evidence and for which we can decide whether the primitive
relations holding among them are satisfied or not. In other words, these objects “can
immediately be recognized as being equal or different” exactly because they are
“concrete objects [. . . ] existing in time and space” (Martin-Löf 1970, p. 9) and
for which we have then an immediate sensible access. A direct consequence of
this is that the normalization algorithm can always be concretely used for finding
the witness, because the elements expected as inputs can themselves be effectively
provided by means of algorithmic finitary methods. In other words, in the case of
provable…2 sentences, their corresponding proofs can be used as programs because
we can always have access to the data to let the algorithm run and terminate, giving
other data as outputs.35

If we now turn to the analysis of the actions performable by a human geometer,
as we noticed in Sect. 8.1.3, they are traditionally considered to take place in
a continuous space, and not in a discrete one, as was the case for the human
computor performing arithmetical calculations. The intended model of geometry
seems then to be based on real numbers. But in general, independently of adopting
either a classical or an intuitionistic definition, we have no guarantees of epistemic
access to all real numbers. In particular, it is not the case that for all of them,
a syntactic representation based on algorithmic finitary means is available, as is
the case for arithmetical objects. A quite obvious solution would be to restrict the
analysis exclusively to those real numbers that can be represented as sequences
of rational numbers36 generated by “effective rules for calculating each term” of
these sequences (Dummett 1977, p. 37). The real numbers are then associated to
a particular type of choice sequence usually called lawlike sequences, because the
selection of each element is “wholly determined in advance by some effective rule”
(Dummett 1977, p. 418). In this manner, even if composed of an infinite number of
elements, a real number remains a syntactically presentable object, the properties
of which do not go beyond the scope of our finite cognitive capacities. The reason
is that according to the aforementioned definition, a real number comes along with
an algorithmic method that allows exhibiting each of its elements in a finite number

35In fact, in this case, inputs and outputs are in the form of data structures, since they are given in
a canonical normal form (see Martin-Löf 1984, p. 71), i.e., they are in the form

s.: : : s„ƒ‚…
n times

.0/ : : :/:

36Notice that rational numbers can be reduced to natural numbers by the usual techniques, such as
Cantor’s anti-diagonal argument. It follows that in order to speak of real numbers, we do not need
to substantially expand the set of primitive signs we already used for arithmetic.
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of steps and that uses only the set of signs already adopted for natural numbers, so
that potentially none of the elements remains out of reach. It becomes then natural
to think of this kind of real number as nothing else but a program, having natural
numbers as data inputs and rational numbers as data outputs. Consequently, proofs
of …2 sentences applied to real numbers are programs acting on other programs.
Hence, the ontology of the theory reduces to a particular kind of object which by
definition does not transcend our epistemic capacities: programs can be seen as
finite texts composed of sequences of instructions, and thus, they can be reduced
to nothing else than finite linguistic objects. The latter are not only cognitively
accessible almost by definition (as they are composed of a finite set of signs), but
they are also epistemically transparent because, given a certain language (i.e., a set
of signs plus a grammar37), someone in the presence of a finite text is always in a
position to know that they are in such a situation.

However, this solution seems not to be compatible with the type of analysis we
considered in Sect. 8.1.1. On the contrary, it seems to correspond to the adoption
of a revisionist position. Instead of describing the activity performed by a human
geometer, and fixing it at the syntactic level, this solution imposes a reformulation
of the geometer’s activity: new limitations and constraints are imposed, which can
be justified only by shifting attention from the actions performed by the geometer to
the modelization of the environment in which they are performed. More precisely,
certain constructions are rejected not because they violate the set of the allowed
actions, established before starting the production of figures, but because it is
successively realized that some of these a priori permitted actions have been in fact
performed on points not corresponding to algorithmically generated real numbers.
Hence, the legitimacy of these constructions is not determined on the basis of a
pure behaviouristic analysis, i.e., on the basis of the analysis of those human actions
which are performable in a somehow intuitively conceived continuous space. On
the contrary, their legitimacy is judged only a posteriori, after having made a well-
determined choice concerning the form of the continuous space and after some
actions have already been performed.38

Our initial proposal, on the other hand, was completely different. The idea was to
give a linguistic-syntactic account of the actions performable by a human geometer
by taking them basically at face value and not to (re)define this class of actions
in a way depending on the particular representation of the continuum that has been
chosen. In order to achieve such a syntactic representation of the geometer’s actions,
and at the same time leaving aside any commitment to the nature of the objects
constituting the continuous space in which these actions take place, a valuable
solution might be to work with hypothetical proofs. With this approach, it is indeed

37We should indeed assume this finite text to be correct from a grammatical point of view;
otherwise, it could not convey any kind of contentful instruction.
38For instance, in the case under analysis, the principles leading to the choice of a particular form
of the continuum consist both in its epistemic accessibility and in its syntactic representability,
while structural properties, as, for example, cardinality or compactness, are left aside.
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possible to deal with any kind of situation, even with those for which we lack an
epistemic access to the objects involved. The idea is that if there are objects going
beyond our cognitive capacities, we can nonetheless describe them by mentioning
those specific characteristics in which we are interested in order to perform certain
particular constructions. In this manner, even if we cannot have a direct access to
such objects, nor a fortiori to the objects constructed starting from them, nonetheless
we are still somehow directed towards them. In a nutshell, by making specific
assumptions on certain variables (namely, the eigenvariables mentioned at the end
of Sect. 8.5.2), via linguistic means we are pointing to some objects possessing
well-determined characteristics, even if these objects are not, and never will be,
epistemically accessible to us. Speaking in phenomenological terms, we could say
that the open assumptions of hypothetical proofs can be seen as intentional acts that
are not yet, or that can never be, fulfilled. By adopting such a perspective, we do not
lose the constructive character of proofs, but only their general applicability: proofs
of …2 sentences still codify algorithms for the extraction of a witness, but these are
a sort of partial algorithms, because we are not always able to find the data to let
them run and eventually terminate. In this sense, a geometrical construction can be
seen in analogy to what in programming language is called a procedure, that is, a
program (or a function) that does not necessarily return a value (Dowek 2009, p. 24).
This means that the attention is focused on the instructions that must be carried out
in order to perform a (geometrical) construction, rather than on the final result of
this construction.39 And this is nothing but another way of formulating the idea that
what counts is the constructibility of geometrical objects rather than their actual
constructions, as we already stated at the end of Sect. 8.5.2.

8.6 Conclusion: An Ontological Shift

By way of conclusion, we would like to attempt a radicalization of the positions
discussed in Sects. 8.5.2 and 8.5.3, in order to sketch some possible philosophical
consequences that can be drawn from the formal-logical reconstruction of geomet-
rical activity we proposed.

We have argued that an axiomatic presentation of geometry represents an
obstacle to the characterization of geometrical constructivity in terms of O1

39A similar comparison between geometry and arithmetic is drawn by Mumma (2012, §3). Roughly
speaking, his idea is that while in arithmetic the arguments and values of constructions (functions)
can always be put into canonical normal form (see note 35, supra), in geometry this is not the case,
since this kind of data can vary continuously. Thus, while in arithmetic the study of the identity
between constructions concerns also the identity between their respective values, in geometry such
identities concern only the constructions, but not their objects (Mumma 2012, p. 117). Indeed, as
noticed by Panza (2011, p. 48), in Euclidean geometry, questions about the identity of geometrical
objects are ill-posed, since “there is no clear sense in which one could fix the reference of a singular
term” for geometrical entities, like, for example, equilateral triangles, “in such a way that it be taken
to refer to the same equilateral triangle in any one of its occurrences.”
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or O2. We want now to suggest that abandoning the axiomatic point of view
goes with abandoning a referentialist position with respect to the understanding
of mathematical theories. According to what we said in Sect. 8.3.1, if the role of
axioms consists in the identification of certain specific mathematical structures, and
if these structures are specified by set-theoretical means, then they can play the
role of interpretational structures, i.e., of models. It follows that axioms themselves
would be always interpreted as true in those structures that they identify; hence,
an axiomatic proof can be seen as nothing but a manner to transmit the truth
of the axioms to the conclusion. In contrast, when axioms are transformed into
inference rules, a radical change takes place. No longer having axioms, there are
no longer true sentences from which to start, neither are there implicit stipulations
concerning the existence of some set of objects satisfying the axioms and playing
the role of truthmakers. More precisely, transforming an axiom into an inference
rule corresponds to transforming it into a postulate, that is, into the requirement
that a certain action can be executed if certain conditions hold.40 Following Proclus
once again, we can say that the difference between axioms and postulates reflects
the one between theorems and problems we analyzed in Sect. 8.4 (Proclus 1970,
pp. 140–142): axioms convey a knowledge about the properties of certain objects
considered as already existing, while postulates provide methods for producing
these objects (Proclus 1970, p. 143). For example, the rule (8.3) gives a method
for obtaining a line and thus of assuring that the domain of lines is not empty,
once two distinct points are given. But nobody guarantees the nonemptiness of the
domain of points. This shows how postulates do not rest on any kind of existential
stipulations: when working with postulates, the initial domain of discourse does not
need to be assumed as nonempty. Thus, if postulates are intended as the linguistic-
inferential representations of the actions performable by a geometer, it follows that
geometry itself must not be conceived of as an activity performed on an already
given “receptacle” from which geometrical objects are made to emerge.

According to this conception, the assumption that a geometer’s actions are
performed on a continuous space can eventually be dispensed with.41 In the end,
geometry would consist in the stipulation of a set of algorithmic procedures that
can be performed in principle, but for which the specific context in which they
have to take place is not a priori established.42 This entails a shift concerning

40The word “postulate” comes indeed from the Latin verb postulare, which means to demand, to
require. Note that the Greek word used by Euclid, i.e., ������� has basically the same meaning.
41The idea is that this assumption plays a similar role to Wittgenstein’s ladder of §6.54 of the
Tractatus. Assuming the geometrical space to be continuous is essential in order to ground our
formal and logical reconstruction of Euclidean geometry on the analysis of the activity of an
idealized human geometer, as described in Sect. 8.1.3. But once this reconstruction has been
achieved, this assumption can finally be dropped, and the system obtained can be used as a non-
interpreted formal system.
42A similar position is endorsed by von Plato (1995, p. 192), when he describes his system of
constructive geometry as a system that “does not stipulate what the basic objects are, or how their
basic relations are proved. In this sense it belongs to abstract mathematics, rather than to traditional
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ontological questions. Unlike other mathematical theories, arithmetic in particular,
geometry can be characterized by considering the actions that it allows and not the
objects to which it commits. In this sense, if we accept the traditional Quinean idea
that quantification is that through which one expresses ontological commitments,
then we should conclude that in Euclidean geometry, questions about quantification
become somehow meaningless, as is shown by the possibility of working under
open assumptions containing eigenvariables (see Sect. 8.5.2). A similar idea is
advocated by Panza (2011), when he says that the objects of Euclidean geometry
“do not form a fixed domain of quantification and individual reference” (2011,
p. 52) but “are merely objects that fall under some concepts and enter into
particular arguments insofar they are represented, or supposed to be represented,
by appropriate diagrams” (2011, p. 53). From this point of view, a property like
the one expressed by Proposition 3 may lose sense, as it no longer represents a
way to get access to the domain of interpretation and identify a particular object
of this domain, since there is nothing such as this domain. We could thus sum up
these ideas and say that Euclidean geometry can be seen as a theory the ontology of
which is not composed of a set of extensional objects playing the role of references
of language expressions but is composed instead of intensional objects represented
by constructive actions corresponding to the algorithmic procedures mentioned in
Sect. 8.5.3.
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Chapter 9
A Cut-Like Inference in a Framework
of Explicit Composition for Various Calculi
of Natural Deduction

Michael Arndt and Laura Tesconi

9.1 Introduction

9.1.1 A Fundamental Principle of Abstract Reasoning

According to Paul Hertz, reasoning is concerned with relationships between (sets
of) elements and a (single) element. More [conventionally], we shall here deal
with symmetric relationships between formulae1: an abstract derivation from any
number of assumptions � to any number of assertions � will be represented by the
notation � � � (which is suited to refer both to a derivation in natural deduction as
well as to sequents2). An act of reasoning is, then, to obtain a previously unavailable
(unknown) relationship of this kind by drawing on one (or several) of such that are
already available (known).

One of the most fundamental principles of abstract reasoning is represented by
the possibility of connecting different objects of reasoning by means of intermediary
elements:

1Collections �;� are always considered to be multisets, that is, the multiplicity of formula
occurrences is always accounted for, but not the order of those occurrences.
2About natural deduction, we refer to Prawitz (1965) explication of how to obtain deduction rules
from inference rules by considering them as rules operating on pairs h�;Ai.
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This step amounts to the realization that A mediates between the relationships
expressed by the abstract derivations � � �;A and A;‚ � ƒ, used as premises,
and that by way of some generalized notion of transitivity, the relation expressed by
the inferred abstract derivation �;‚ � �;ƒmay be obtained. Another way to put it
is if some formulaA occurs both as an assertion in an abstract derivation and also as
an assumption in another abstract derivation, a new abstract derivation is obtained
by joining the assumptions and the assertions of the premises and removing either
references to A.

Whereas this principle is included in the sequent calculus as a proper rule—
the cut rule—the calculus of natural deduction does not contain a formal inference
rule that has this effect. Instead, the following (implicit) principle of substitution—
indispensable for the meta-theory of natural deduction—is commonly employed as
a notational convenience for the composition of derivations:

is composed to

Actually, only a single occurrence of A is considered in the antecedent and succe-
dent of the premises of cut, whereas this notation of substitution conventionally
relates a single derivation of a formula A to multiple assumptions of that formula,
so cut should rather be likened to a principle of linear substitution, that is, the
composition of two abstract derivations on a single occurrence of a formula in the
succedent of one and the antecedent of the other.

The cut rule and the substitution principle have been compared very often. They
bear striking similarities, but also some significant differences. Firstly, substitution
in natural deduction affects the composition of the two derivations by means of
fusing the two occurrences of A into a single occurrence, which is retained in the
resulting derivation, even though it no longer has the status of either assumption or
assertion. Secondly, in no way can the principle of substitution can be stated as a
proper rule of natural deduction, because it composes arbitrary derivations, whereas
proper inference rules of the systems always add a single formula as new conclusion.
However, when considering abstract derivations, implicit composition of derivations
and cut become indistinguishable: thus, we shall consider cut as fundamental
principle of reasoning corresponding to the joining of abstract derivations on
complementary occurrences of the same formula.3

3It is for this reason that inference rules have to be taken to a different level of abstraction when
talking about abstract derivations. Otherwise, the fundamental fact that cut is a rule of one calculus
but not of the other could not be represented.
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9.1.2 From Cut to Bidirectional Multicut

We shall now formulate a rule multicut that expresses the effect of subsequent
applications of cut addressed to different elements of the antecedent in turn:

The abstract derivations on the left are the minor premises of multicut, and the
abstract derivation on the right is its major premise. The particular notation serves to
emphasize how the minor premises are related to the cut formulae in the antecedent
of the major premise.4 The major premise acts as an accumulator for all of the
minor premises by means of these cut formulae. Technically, it is a rule that has
k C 1 premises, that is, it is schematic in that instances depend on the number of
minor premises.

Moreover, in addition to the possibility to choose multiple cut formulae from
the antecedent of the major premise, the possibility is open to choose multiple cut
formulae also from the succedent of an abstract derivation. These generalizations
are merged in a single rule called bidirectional multicut:

This rule singles out an intermediary derivation that acts as major premise in
both directions, that is, several elements of both the antecedent and the succedent
can be used as cut elements. Correspondingly, there are two groups of minor
premises, left minor premises and right minor premises. As in the case of the
unidirectional multicut, the conclusion of bidirectional multicut can be obtained
by k C l applications of the symmetric cut rule. The rule’s unique feature lies in
its ability to have a single abstract derivation mediate between two sets of abstract
derivations by accumulating them from the left and from the right by means of cuts.

4Historically, the inference rule “syllogism”, introduced by Paul Hertz in 1923, is the first
formulation of multicut, see Hertz (1923). Apart from an additional side effect that contracts
multiple occurrences of formulae in the antecedents of the major premise and the conclusion,
it looks exactly as the rule that is presented here. Thus, multicut precedes the formulation of
the cut rule. In fact, Gentzen introduced the cut rule in Gentzen (1932) and demonstrated how
syllogism can be decomposed into a sequence of cuts. Moreover, see also Paul Bernays’ definition
of “Syllogismus” in Bernays (1965).
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9.1.3 From Bidirectional Multicut to Explicit Composition

Bidirectional multicut expresses the mere idea of composing multiple derivations
into a single one and is an absolutely generic rule; otherwise, its action depends
exclusively on the choice of what is to be used as a main premise. For this reason,
we shall use it as a foundation for a rule that will be called explicit composition.

Principles like that, governing abstract reasoning, are often employed in order
to talk about consequence relations, and cut is usually just one of many means
by which new pairs can be obtained. Instead, we shall take bidirectional multicut
as the only reasoning principle that is to be employed on the level of abstract
derivations so—since we wish to model reasoning steps by inference steps—explicit
composition will be the only inference rule of the framework that we shall build.5

As a consequence, whatever has to do with logical constants will have to enter in the
manner of (instances of) very simple abstract derivations that address only logical
constants and the constituents they are used with, insomuch as their configuration of
formulae specifies the properties of the constants themselves. These simple abstract
derivations are to play the role of major premises, which will accordingly exercise
control over the manner in which the minor premises are to be composed.

The ultimate formulation of the explicit composition principle in the general case
consists of a modification of bidirectional multicut, in which the major premise
is required to be a clause, that we shall call the control clause, which expresses
a relationships of formulae, whereas the minor premises are arbitrary abstract
derivations. Specifically, it expresses a local relationship, in the sense that it is free
of contextual formulae: only those formulae that are immediately relevant for the
rule occur in the control clause, whereas all the contextual formulae reside in the
abstract derivations that are composed by means of it. In its most general—though,
as we shall see, very naive still—form, it is schematically given as

We shall divide the minor premises into those that are composed from the left and
those that are composed from the right. A minor premise belonging to the former
is called an antecessor, whereas one belonging to the latter is called a successor. In
view of this terminology, the major premise can also be called the intercessor.

5An attempt of defining a most general rule of “composition” is already to be found in Gentzen
(1936), where a chain rule is defined that, together with a specific set of basic logical sequents,
allows one to reproduce almost all of the inference rules of the original system of natural deduction
(in sequent style). See also the forthcoming Moriconi (2014).
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It is allowed that k, l , j‚j or jƒj (and combinations thereof) are 0, the former
two resulting in an empty antecessor or, respectively, an empty successor. Since this
inference rule is the only rule of this framework for composing abstract derivations,
we will usually omit the label (EC).

9.2 The Rule of Explicit Composition

Explicit composition, as it is given above, is powerful enough to express some of
the rules of both natural deduction and the sequent calculus by means of control
clauses. But still, in order to accurately give account of all the effects that occur in
the various rules of the calculi we are considering, additional features have to be
available for the control clauses. We shall restrict ourselves to mentioning the limits
of the formulation proposed so far and define the generalizations that will make up
for them, together with some example for natural deduction. We refer to Arndt and
Tesconi (2014) for details and examples for the sequent calculus.

9.2.1 Effective and Ineffective Formulae

Observe that natural deduction rules always compose abstract derivations from the
left by means of their assertions: for this reason, for example, the control clause for
natural deduction rule (�E)

uses A and A � B as substitution formulae, whereas a substitution on B should be
explicitly forbidden.

The given example stresses the necessity to distinguish which formulae of a
control clause are available for composition and which are not. For this purpose,
we shall employ the following notation6:

A1
:::

Ak

9>=
>;‚ 	 ƒ

8̂<
:̂
C1
:::

Cl

6We are indebted to Peter Schroeder-Heister for suggesting this extremely succinct and elegant
notation.
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The position of ‚ and ƒ on the inside of the clause indicates that the formulae
they contain are protected against composition, whereas formulae A1; : : : ; Ak are
cut formulae for compositions of abstract derivations from the left, and formulae
C1; : : : ; Cl are cut formulae for compositions of abstract derivations from the right.
We call the formulae in ‚ and ƒ ineffective and the Ai and Cj effective in as far as
their purpose to compose abstract derivations is concerned. The ineffective formulae
are carried over into the conclusion of (EC), whereas the effective formulae will
usually not reoccur in the conclusion, unless there are multiple occurrences thereof
in the minor premises.

9.2.2 Near and Far Effects

It is now possible to express by means of control clauses all the inference rules
that do not affect the assumptions of the derivations that are composed. However,
there are inference rules that affect the antecedent of their premise in addition to its
succedent. For example, in defining a control clause for rule (!I),

one wants to express the fact that the assertion A ! B is obtained and the
assumption A is contextually discharged. In order to fulfill this requirement, a
conceptual extension of (EC) is needed in as far as it must also allow for the
cancellation of assumptions in abstract derivations. Specifically, it must allow for
a control clause to cut a formula occurring in the succedent of an antecessor, the
near side of some abstract derivation, and simultaneously remove another formula
that occurs on the far side of the very same abstract derivation. A combination of
such a far effect on a formula A in the antecedent of an antecessor and a near effect
on a formulaB in its succedent is expressed by the effective pair hAjBi. Moreover,
even though the standard calculi feature nothing like cancellation of assertions, we
allow for the dual combination of near and far effects on the right-hand side of a
control clause.7

The notation for control clauses is extended correspondingly:

hA1 jB1i
:::

hAk jBki

9>=
>;‚ 	 ƒ

8̂<
:̂

hC1jD1i
:::

hCl jDl i

7Such a notion is indeed present in the refutationistic calculus defined in Tranchini (2010).
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Any of the Ai and any of the Di can be vacuous, and the default cases that there
should be no far effect are expressed by leaving the corresponding part of the
combined effect empty, as in h�jBi and hC j�i.

9.2.3 Iterated and Compound Effects

The additional features introduced above are not yet enough to define a correct

control clause for the rule (!I). Whereas control clause hAjBi
o
	 A ! B appears

to embody all the desired features, hAjBi expresses the removal of a single formula
on each side of the abstract derivation it affects, whereas the cancellation expressed
by the rule (!I) is seen as merely allowing the removal of selected occurrences.
This is accommodated by allowing effects to be marked by a Kleene star that
indicates their iteration. The combined effect hA� jBi on the left-hand side of a
control clause can compose an abstract derivation � � �;B from the left by means
of a near effect on B , that is, a cut with cut formula B, but at the same time any
number of occurrences of A (even none at all) may be removed8 from � . Using this
generalized far effect, the natural deduction rule of (�I) may be finally expressed
by the control clause fhA� jBig 	 A � B which allows any instance (for n 	 0) of
the following inference:

In a dual way, the combined effect hC jD�i on the right-hand side of a control
clause can compose an abstract derivation C;� � � from the right by means of
a near effect on C , but at the same time, any number of occurrences of D (even
none at all) may be removed from�. With a simple generalization, combinations of
iterated near and far effects become available as well, as in hA� jB�i, though they
are not required for the present purpose.

A specialization of the general notion of iterated effects is that of compound
effects. Instead of using the Kleene star, we use superscript letters to specify some
exact multiplicity of formula occurrences. Thus, hAn jBmi expresses a compound
effect resulting in the removal of n occurrences of the formulaA from the antecedent
of some abstract derivation andm occurrences of the formula B from its succedent.
Analogously, hCn jDmi expresses a compound effect resulting in the removal of n
occurrences of the formula C from the antecedent of some abstract derivation and

8Note that the Kleene star is not a logical symbol, but results from the omission of multiset
parentheses for antecedent and succedent and also for effects. Indeed, if those were not omitted,
hA� jBi would have to be written hfAg� jfBgi.
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m occurrences of the formula D from its succedent. Whereas the superscript n of
far effects is 	0—the case of n D 0 will yield the same result as an empty effect—
the superscriptm of near effects must be >0. A compound effect can be considered
as a mixing-style cut (in the case of a near effect) or as a multiple cancellation (in
the case of a far effect). It corresponds to the simultaneous consideration in a single
inference step of several occurrences of a formula, or even two or more different
formulae: for example, the control clause

h�jA ^ Bi
hA�; B� jC i

)
	 C

yields the general elimination rule (^E), in which an arbitrary number of occur-
rences of assumptions A and B are simultaneously cancelled from one of the two
minor premises. Thus, compound effects are not only limited to purely structural
issues but also to a particular structural issue that is covered implicitly in certain
logical rules.

9.2.4 Explicit Composition, Revisited Formulation

The various generalizations that were introduced so far can be summarized in the
following formulation of explicit composition:

All the multisets occurring in the abstract derivations—the �i , �i , „i and …i as
well as the †ı

i , ˆ
ı
i , ‰

ı
i and �ı

i —are multisets of formulae, as are the ineffective
formulae of ‚ and ƒ of the control clause, whereas multisets †


i , ˆ


i , ‰



i and �


i

may also contain superscripted formulae. The relationship between ı-ed and 
-ed
multisets is given as follows:

1. Each occurrence of a formula A in †

i relates to exactly one occurrence of A in

†ı
i .

2. Each occurrence of a superscripted formula An in †

i relates to exactly n occur-

rences of A in †ı
i .

3. Each occurrence of an asterisked formulaA� in†

i relates to an arbitrary number

of occurrences of A in †ı
i that is not otherwise accounted for.

That is to say, every ı-ed multiset is a specific instance of a 
-ed multiset that may
contain superscript specifications.
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A control clause

h†

1 jˆ


1i
:::

h†

k jˆ


ki

9>=
>;‚ 	 ƒ

8̂<
:̂

h‰

1 j�


1i
:::

h‰

l j�


l i

will be called bidirectional when k; l 	 1, that is, when it allows composition both
from the left- and the right-hand side; analogously, it will be called bioriented when
j‚j; jƒj > 1, and if j‚j D jƒj and k D l D 0, then ‚ 6D ƒ, that is, when it allows
the addition of formulae both in the antecedent and the succedent of the conclusion
of explicit composition, except for the trivial case of the same multiset of formulae.
It will be called left (right) directed when k 	 1; l D 0 (l 	 1; k D 0), that is, when
it allows composition only from the left (right)-hand side; analogously, it will be
called left (right) oriented when j‚j 6D 0; jƒj D 0 (j‚j D 0;ƒ 6D 0), that is, when
it allows addition of formulae only in the antecedent (succedent) of the conclusion
of explicit composition. A set of control clauses is bidirectional (bioriented), when
some of its control clauses are bidirectional (bioriented) or when some of its control
clauses are left directed (left oriented) and some of its control clauses are right
directed (right oriented).

Whereas the final formulation of (EC) no longer bears a close semblance
to the original simple reasoning principle, we obtained it through successive
generalizations, not only in the sense of simply allowing for multiple and
bidirectional compositions, each focussing on a single formula, but instead allowing
a much wider range of cut-like effects in each of the compositions that contribute to
the conclusion of the rule. All of these effects were obtained from a close inspection
of the rules of natural deduction and the sequent calculus.

With anything that specifically affects the premises or the conclusion being
specified in the control clauses, the rule (EC) is much more general than, say, a
logical or structural inference rule. Instead, it should be seen as a purely com-
binatorial operation that takes some number of abstract derivations and produces
the composition thereof—with some minor but significant modifications that are
determined by the control clause through its effective and ineffective formulae.

9.3 Control Bases

By allowing the wide spectrum of effects described in the previous section, control
clauses can mimic, emulate, produce, generate, obtain? all the rules of the calculus
of natural deduction (and all the structural and logical rules of the sequent calculus,
using the multiplicative formulation of its rules, but this would lead us too far from
the purposes of the present work) in the sense that (EC) has the premises of those
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Fig. 9.1 Control base BND for standard natural deduction

rules as minor premises and their conclusions as its conclusion. The set of control
clauses that correspond to the rules of a given system shall be called the control base
for that system.

In this section, the control bases for standard natural deduction, natural deduction
with general elimination rules and “bioriented” natural deduction9 shall be defined
in Figs. 9.1–9.3, respectively. The inherent properties of the calculi are reflected in
the specific features of the corresponding control base, and this enables a direct
comparison between the calculi that is based on the simple direct comparison of
the control bases, rather than a comparison effected by some translation function.
The advantages provided by this aspect of the framework will be fully appreciated
once the control base for sequent calculus is defined as well (see Arndt and Tesconi
2014). In particular, the compared analysis of these control bases will emphasize
that only the control base for the sequent calculus is bidirectional and bioriented,
whereas an essential feature of control bases for the most conventional versions of
natural deduction seems to be the left directionality—but modified versions will be
defined already in the present work that show different properties.

9With “bioriented” natural deduction, we shall here refer to the calculus of bidirectional natural
deduction proposed by Peter Schroeder-Heister in Schroeder-Heister (2009). The calculus of
natural deduction with general elimination rules, instead, was first defined as such by Jan von
Plato in von Plato (2001).
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Fig. 9.2 Control base BGND for natural deduction with general elimination rules

Fig. 9.3 Control base BBND for “bioriented” natural deduction
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9.3.1 Some Properties of Control Clauses

We shall now give an overview of some general features of control clauses that
concern the relationship between near and far effects and the bidirectionality that is
intrinsically expressed in the explicit composition rule.

The first observation is that the combined effect hAjBi is directionally neutral in
the sense that an abstract derivation A;� � �;B can either be composed from the
left to a control clause via a combined effect hAjBi on its left-hand side or from the
right via hAjBi on its right-hand side:

and

It is to be noted that “directional neutrality” holds with respect to the relation of
premises and conclusion, but, as regarding abstract derivations, the two control
clauses refer to two different compositions.

The second observation requires the condition that succedents of abstract deriva-
tions never be empty—this is trivial when dealing with all of the control bases given
so far. Then, when a combined effect hA� jBi and an ineffective formula B both
occur in the right side of a control clause, the same conclusion could be rendered by
a control clause that does not employ combined effects.10 In the derivation,

the far effect of the control clause removes B from the antecedent of the abstract
derivation, but at the same time, the ineffective formula B is retained in the
conclusion. The same effect is obtained by a control clause that leaves the
conclusion B intact:

These observations imply that a combined effect hA� jBi on the left side of a
control clause (in BND, BGND or BBND) that also has an ineffective formula B on its
right side amounts to a near effect hA� j�i on the right side of the control clause:

10A dual phenomenon could be observed on the left-hand side, provided the fulfillment of the
condition that antecedents of abstract derivations never be empty, but this obviously does not hold
in any of the control bases defined in the present work.
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and

However, these control clauses are not at all equivalent to each other, as they
exercise different controls over the premises that are to be composed by (EC).
In fact, regardless of the fact that they obtain the same abstract derivation as a
conclusion, they express different rules with different directionality.

9.3.2 Modified Control Bases

We shall now exploit these properties in order to “invert” the directionality of control
clauses for elimination rules ofBGND andBBGND —except for the case of disjunction
that we shall not consider here because it would require a limitation of (EC), in
order to prevent that more than one formula appear in the succedent of a conclusion
(further details will be included in an already mentioned following work). The
“modified” control bases BMGND and BMBND are shown in Figs. 9.4 and 9.5,
respectively, and, opposite to the original control bases, are both bidirectional.

Fig. 9.4 Control base BMGND for modified natural deduction with general elimination rules
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Fig. 9.5 Control base BMBND for modified “bioriented” natural deduction

9.4 Co-Identity and Its Effects on Control Bases for Natural
Deduction Systems

9.4.1 The Control Clause for Co-Identity

All of the control bases defined so far share the control clause for identity

A 	 A;

which trivially introduces the formula A both in the antecedent and the succedent
of the conclusion. This corresponds to the initial sequent A ) A, in the sequent
calculus, or the derivation of A by its assumption in natural deduction.

Its “dual”, the control clause for co-identity

h�jAi
o
	
n
hAj�i

instead has the effect of restoring the restriction performed by ineffective formulae
on the character of bidirectionality.

This clause forces (EC) to simply connect the antecessor to the successor, which
in this case are just two abstract derivations:
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thus expressing in the setting of abstract derivations the principle of linear substi-
tution: in fact, in the context of the sequent calculus this control clause renders the
cut rule. However, it is not included in the control bases for any of the versions of
natural deduction considered.

Co-identity recovers the possibility of composition on formulae that were
introduced by means of ineffective formulae in previous inference steps. Compare
how the following two derivations yield the same conclusion from the premises
� � �;A and C;„ � …:

and

In the first derivation, the upper application of (EC) employs the schematic control
clause A 	 fhC j�ig to compose C;„ � … on formula C , which—by means of
the ineffective formula A—introduces A into the antecedent of its conclusion. The
subsequent composition that uses co-identity has the effect of a simple cut with cut
formula A. In contrast to this, the second derivation first composes � � �;A on
A through a schematic control clause fh�jAig 	 C , thereby introducing C , and the
second composition, employing co-identity, then acts as cut on the formula C .

9.4.2 The Addition of Co-identity to Given Control Bases

Although the observations up to this point might seem to suggest a substantial
correlation between co-identity and bidirectionality, there are other aspects to
consider. It is indeed true that co-identity confers an explicit feature of bidi-
rectionality to a given control base it is added to, but—as a first thing, and
trivially enough—there are bidirectional control bases that do not contain co-
identity among their control clauses: consider, for instance, the control base BMGND

which contains the bidirectional control clauses for conjunction elimination and
implication elimination. Then, on the one hand, we shall see that the addition of co-
identity to a unidirectional control base does not necessarily imply that the resulting
system has more compositional possibilities than the original one—this is the case,
for example, of control bases BND, BGND and BMGND, as we shall demonstrate
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shortly. On the other hand, the addition of co-identity to a control base that already
enjoys bidirectionality may imply that the resulting system has more compositional
possibilities than the original one. This is the case for control bases BBND and
BMBND.

Control bases BND and BGND are strictly unidirectional and right oriented. That
is, control clauses in BND and BGND always compose abstract derivations from the
left and all of the ineffective formulae occur in their right-hand sides. In these
systems, all formulae might be considered “joining knots” of different derivation
fragments, so the addition of co-identity to the corresponding control bases will
not actually add the possibility of the join itself but rather the possibility of giving
information about which formula we want to be considered as “joining knot”. In
the framework of explicit composition for the mentioned control bases, co-identity
may perform a cut on the same formula, in different points of the derivation or even
on different formulae, without altering neither the conclusion nor the order of the
other inferences. We shall now show that, in the framework of explicit composition
for BND, adding the possibility of using co-identity does not add the possibility
of new combinations of derivation fragments. In other words, any two derivation
fragments on which co-identity could be applied could be combined, with the same
result, without resorting to co-identity, via the control clauses of BND alone. In fact,
consider a derivation that ends with

Inferences leading toB;� � C may as well be performed, one by one, starting from
� � B instead of B � B—which results from identity—without any application of
co-identity. This is proved by a trivial induction on the length of derivation D2, and
we will only provide some representative examples of the cases. In particular, only
for the most trivial case described below, we will give the example of a derivation
that does not end with co-identity, in order to show how the procedure affects—or
better: does not affect—the subsequent applications of explicit compositions.

If the co-identity is performed on a derivation of minimal length, as in

then it can be simply eliminated:
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This case corresponds to composing on an assumption:

Here the notation �B� emphasizes that the composition takes place on the derivation
ending with B , that is, B itself.

If the co-identity is performed on a derivation of non-minimal length, as in

then it can be permuted over the last inference of its successor in order to be able to
apply the induction hypothesis:

This case corresponds to composing on an assumption of a derivation:

Here the notation �D� and �E _ F � emphasizes that the compositions take place
on the fragments of derivation ending with D and E _ F , respectively. We have
thus proved that any derivation of BND plus co-identity can be transformed into a
derivation of BND of the same conclusion where the order of the other inferences is
not altered.11

11Without going into details of a formal definition, we chose to give the inferences a leftmost,
topmost order.
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The case of BGND is completely analogous and we shall only demonstrate a single
example:

first becomes

and eventually becomes

This case corresponds to

first being considered as

which may be transformed in to (???)
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Here the notation �C � and �E ! F � emphasizes that the compositions take place
on the fragments of derivation ending with C and E ! F , respectively.

The modified control base BMGND is still right oriented, but it is bidirectional
already in the absence of co-identity. As for its conventional version, the addition
of this control clause has no other real effect than providing information about the
exact point in a derivation where a composition takes place. Consider, for example,
the derivation

Because of bidirectionality, co-identity can always be permuted over the last
inference of its successor, as in the procedure exploited before, or its antecessor,
provided that the control clause of its last inference admits a successor, as in the
following derivation:

Both possibilities decrease the length of premises of co-identity; the latter is
obviously never available for BND, BGND and BBND because their control clauses
do not admit any successors.

Control base BBND, instead, is unidirectional, and it is bioriented as well. That
is, control clauses in BBND always compose abstract derivations from the left, but
ineffective formulae occur in both sides. In this case, adding the possibility of
using co-identity truly adds the possibility of new combinations of fragments of
derivation. In other words, it is not the case that any two fragments of derivation
on which co-identity could be applied could be combined together, with the same
result, already without resorting to co-identity, via the control clauses of BBND.
Specifically, the addition of co-identity allows composition on ineffective formulae
on the left-hand side of control clauses for elimination rules, something that would
not be possible otherwise.

In fact, observe that a derivation A;� � � cannot be a successor of any other
control clause than co-identity, since they all have ineffective formulae on their
right side; this is true for control bases BND and BGND as well, but whereas in
the this latter case co-identity can be permuted without altering the order of other
inferences until it reaches the point where it is performed on an abstract derivation
obtained from the identity, it is not always the case for control base BBND, where
some control clauses have ineffective formulae on the left-hand side that introduce
elements in to the antecedent of the conclusion. The following derivation will serve
as a counterexample:
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The same obstacle arises for the modified control base BMBND which is both
bidirectional and bioriented. That is, when the last inference of co-identity’s
successor is left oriented, it is not possible to permute co-identity over it. As it
happens for the modified control bases BMGND, because of the gained feature of
bidirectionality, in some cases co-identity can be permuted over the last inference
of its antecessor (namely, when the last inference of its control clause admits a
successor) instead, but not always, as the following example shows:

9.4.3 Conclusions

The examples proposed suggest that the addition of co-identity to a single-oriented
control base, regardless of its directionality, does not open more possibilities of
combination of abstract derivations, whereas its addition to a bioriented control base
does. In this latter case, in fact, when a formula is introduced among the assumptions
by means of a certain rule, it appears as a leaf in the derivation tree, but it is not
available before the application of the rule itself. Thus, it is not always possible
that it is (???), at the same time and in that very same point of the derivation,
introduced as a conclusion by some other inference. Another way to put it is that
in bioriented systems not all formulae of a derivation can be considered “joining
knots” of different fragments of derivations.

As a conclusion, explicit composition turns out to provide a framework that
proves to be very suited to compare the effects of a cut-like inference, embodied by
co-identity, on various calculi of natural deduction. In particular, it becomes evident
that the absence of such inferences in single-oriented systems, like natural deduction
or natural deduction with general elimination rules, does not entail an absence of
“detours”, whereas it does for bioriented systems—indeed, absence of co-identity
in bioriented systems entails the very impossibility of even expressing “detours”
(in the same way as the impossibility of expressing “detours” is entailed by the
absence of cut in the sequent calculus). This observation provides evidence against
a quite hasty account of the cut rule, according to which it can be matched either to
a redundancy or to composition of derivations, indiscriminately (thus, sometimes,
erroneously establishing a link between the two notions). Instead, the cut rule should
be rather read as a principle of reasoning, whose potential depends very much on
the formal context within which it is employed and whose correspondence to the
idea of redundancy is only a—very interesting indeed—particular case of a much
broader range of effects.
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Chapter 10
On the Distinction Between Sets and Classes:
A Categorical Perspective

Samuele Maschio

10.1 Introduction

10.1.1 The Thorny Relation Between Categories and Sets

The relation between sets and categories is a thorny and intriguing topic (see, e.g.,
Blass 1984). The set-theoretical foundations of category theory were discussed by
some mathematicians, e.g., by Feferman (1977), Engler (1969), and Lolli (1977).
On the contrary, the categorical foundation of set theory is not yet a completely
clear matter. Categorical logic allows us to talk about the categorical models of
mathematical theories; in particular, it makes possible to talk about the categorical
models of set theories, for example, IZF, CZF, and ZF. In 1995, Joyal and Moerdijk
in their algebraic set theory (Joyal and Moerdijk 1995) proposed a technique to
ensure the existence of internal models of ZF and IZF in a category. Before this,
mathematicians had proposed categorical models of set theory within categories.
However, these categories were still built using a model of set theory. Joyal and
Moerdijk’s approach has thus two main advantages:

1. It allows to prove the existence of a model of IZF inside a category by simply
checking some purely categorical properties of a family of arrows.

2. It works for a relatively large family of categories.

Their book led to the large spread of several works (see, e.g., Awodey et al. (2007)
or Simpson (1999)). Algebraic set theory was expected to be not only a useful tool
for mathematics but also something interesting for foundational studies.
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Category theory provides a foundation for mathematics: this is maybe one of
the most striking and imprecise sentences (see, e.g., Marquis 1995; Landry and
Marquis 2005). In fact this is not necessarily wrong, but it is indispensable to clearly
explain the meaning of the words foundation for mathematics. Kreisel observed
(see e.g., Kreisel 1971) that category theory provides a powerful tool to organize
mathematics; this is also what many mathematicians interested in category theory
think, considering it as a foundation.

However, there are also some proposals to use category theory to build a theory
of sets based on functions. On such a theory, it is possible to found the whole
mathematical building: the typical examples are the axiomatic systems proposed by
Lawvere (2005) and philosophically analyzed by McLarty, for example, in McLarty
(2004).

This paper is in accordance with the first vision of category theory as a
foundation: we think that category theory describes mathematics in a very effective
way. In the following pages, this descriptive power will be shown by using category
theory to explain the role of classes in the practice of ZF set theory. Category
theory—both in its usual and in its internal version—will be used to represent the
relation between mathematics and metamathematics.

10.1.2 A Nontrivial Question

The original title of this paper was What is the real category of sets?. Since it was
a little pretentious and too vague, we changed it into the present one. However, the
question What is the real category of sets? is strongly connected with the content
of the paper and has been the motivation for the work. In fact, in the practice of
mathematics, we often refer to the category of sets, even if we use a category of
sets. Actually we typically use categories of sets which are built starting from a
given model of ZF set theory. So the question should be rephrased as follows: Is
there anything that is uniquely determined and that can be called the real category
of sets? If such a category exists, then it must be the common core of all the different
categories of sets. This is why we chose to propose an answer considering the
syntactic category of definable classes ofZF and its internal category of sets (which
are in fact mere syntactical constructions). This is motivated by a fundamental
correspondence between functors defined on the syntactic category of a theory with
values in a category equipped with appropriate structures and models of the same
theory in it. This particularly applies to ZF .

10.1.3 Classes and ZF

Set theory is mainly ZF (or—in other words—most set theorists study ZF ). ZF
is a classical first-order theory with equality, and its language has (countably many)
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individual variables, no functional symbols, and a binary relational symbol 2; its
specific axioms are the following ones:

1. 8x8y.8t.t 2 x $ t 2 y/ ! x D y/;
2. For every formula P with free variables p1; : : : ; pk; t ,

8p1 : : :8pk8x9y8t.t 2 y $ .t 2 x ^ P//I

3. 8x8y9z8t.t 2 z $ .t D x _ t D y//;
4. 8x9z8t.t 2 z $ 9y.t 2 y ^ y 2 x//;
5. 8y9z8x.x 2 z $ x � y/;
6. For every formula F with free variables p1; ::; pk; x; y,

8p1 : : :8pk8z.8x.x 2 z ! 9ŠyF / ! 9z08x.x 2 z ! 9y.y 2 z0 ^ F ///I

7. 9x.0 2 x ^ 8t.t 2 x ! �.t/ 2 x//;
8. 8x.x ¤ 0 ! 9z.z 2 x ^ 8t.t 2 x ! t … z///;

where, as usual, x � y is a shorthand for 8t.t 2 x ! t 2 y/, �.t/ stays for t [ ftg,
and 0 is a shorthand for the empty set. In detail, for every formula P D P.x/,

P.�.t// means 8x.8s.s 2 x $ ..s D t/ _ .s 2 t/// ! P.x// and

P.0/ means 8x.8t.t … x/ ! P.x//:

Set theorists work with sets, but they also talk about classes. However, classes do
not exist in ZF . In practice, set theorists consider classes as shorthands or formal
writings. If P is a formula with a distinguished variable x, then a class is a formal
writing fxjP.x/g, and the expression

t 2 fxjP.x/g

is simply a shorthand for P Œt=x
. For example, set theorists write t 2 V , as a
shorthand for t 2 fxjx D xg, which is a shorthand for t D t . They also write
t 2 ON as a shorthand for t 2 fxjON.x/g, which is a shorthand forON.t/, where
ON.x/ is the formula expressing that x is an ordinal:

8s8s08s00..s 2 t ^ s0 2 t ^ s00 2 t ^ s 2 s0 ^ s0 2 s00/ ! s 2 s00/^
^8s8s0..s 2 t ^ s0 2 t ^ s ¤ s0/ ! .s 2 s0 _ s0 2 s// ^ 8s.s 2 t ! s � t/:

It is clear that classes are not mathematical, but metamathematical objects. However,
these shorthands share some properties with sets. For instance, the notion of inter-
section of classes or the notion of subclass can be given a meaning. This accidental
fact leads of course to some confusion! As a matter of fact, the metamathematical
level is often mixed up with the mathematical one. As a consequence, impressive
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(but at the same time highly incorrect) assertions are not uncommon. This is a typical
example:

Sets are exactly those classes for which the comprehension axiom is true..�/

Sentences like this can be used as a sort of convincing arguments to give students
a hint of the notion of set. Nonetheless, in the context ofZF , these statements sound
quite dangerous rather than useful.

Set theorists easily use classes, which are formal objects, as quasi-sets, for
two reasons. Firstly, we have already seen that their syntactical structure (and
in particular the use of connectives and quantifiers) makes this legitimate for
many operations. Secondly, set theorists know that the theory of classes NBG is
a conservative extension of ZFC. Nevertheless, in this context, classes are nothing
more than syntactical objects.

In the following sections, we will see how the use of category theory can help
to describe the relation between metamathematics and mathematics. Furthermore,
category theory makes easier the distinction between real sentences about sets and
external (naïve) ones.

10.2 The Syntactic Category of ZF

In this section, we will study the category of ZF definable classes and its relevant
subcategories. First of all, we want to define the syntactic category of ZF (see
Johnstone (2002) for the general construction). We will indicate it with ZF. Its
objects are formulas in context, i.e., the following formal writings:

fx1; : : : ; xnjP g ;

where x1; : : : ; xn is a (possibly empty) list of distinct variables and P is a formula
which has free variables among x1; : : : ; xn. An arrow from a formula in context
fxjP g to another formula in context fyjQg is an equivalence class of formulas in
context

Œ
˚
x0; y0jF �
	;

where x0 is a list of variables having the same length as x and y0 is a list of variables
having the same length as y, which satisfies the following requirements:

1. F `ZF P Œx0=x
 ^QŒy0=y
.
2. F ^ F Œy00=y0
 `ZF y0 D y00.
3. P Œx0=x
 `ZF 9y0F .
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The equivalence relation is given by

˚
x0; y0jF � � ˚

x00; y00jF 0� iff `ZF F $ F 0Œx0=x00; y0=y00
:

For the composition, it is enough to consider the composable arrows Œfx0; y0jF g
	
and Œfy0; z0jF 0g
	 with all distinct variables (this doesn’t determine a loss of
generality). In this case, the composition is given by

Œ
˚
x0; z0j9y0.F ^ F 0/

�

	:

For very general reasons, the category we obtain is regular and Boolean (see
Johnstone (2002) for a proof). In particular we recall the fact that the product of
two objects fxjP g and fyjQg is given by

fx; yjP ^Qg ;

where we have supposed (without loss of generality) that all variables involved are
distinct. Moreover, terminal objects are given for example by

f j8x.x D x/g ; either fxj8t.t … x/g :

We can also easily prove that ZF is extensive, thanks to the fact that

`ZF 0 ¤ 1;

where 1 stays for �.0/.
Initial objects are given, for example, by

f j9x.x ¤ x/g ; either fxjx ¤ xg :

ZF is also an exact category; the proof of it is based on Scott’s trick (see Rosolini
2011; Maschio 2012). Finally, ZF has also a subobject classifier that is given by

Œ
˚
x; x0jx D 0 ^ x0 D 1

�

	 W fxjx D 0g ! fxjx D 0 _ x D 1g :

10.2.1 Definable Classes

The category of definable classes of ZF , which we denote with DCLŒZF 
, is the
full subcategory of ZF which is determined by all those objects having a list of
variables with length 1. This is clearly conceived of as the category of classes, in the
context of the practice of ZF .
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Although DCLŒZF 
 is a subcategory of ZF, it is provable to be equivalent to it.
This results from the possibility to represent ordered pairs in ZF :

x D< x1; x2 >�def x D ffx1g ; fx1; x2gg :

An arbitrary object of ZF, fx1; ::; xnjP g, is isomorphic to

fxj9x1 : : : 9xn.x D<< : : : < x1; x2 >; : : : >; xn > ^P/g ;

where x is a variable not included in x1; : : : ; xn.

10.2.2 The Categorical Side of Class Operations

At this point, we would like to give an example of the categorical interpretation
of the practical operations between classes. Our aim is to prove how adequate
DCLŒZF 
 is for the description of the category of formal classes. On this purpose,
we will focus on intersection. We consider two definable classes fxjP g and fyjQg
(we can assume that x and y are distinct without loss of generality); we usually
consider their intersection as fxjP ^QŒx=y
g. However, this operation can be
expressed in mere categorical terms. In fact fxjP ^QŒx=y
g is isomorphic in
DCLŒZF 
 to the object we obtain by considering the following pullback.

10.2.3 Definable Sets

Now we will consider the full subcategory DSTŒZF 
 of DCLŒZF 
 determined by
the objects fxjP g for which

`ZF 9z8x.x 2 z $ P/:

This is the category of sets we have in mind, when we think sentence .�/ is true.
We obtain the following result:

Theorem 10.2.1. DSTŒZF 
 is a Boolean topos.
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Proof. Finite limits exactly correspond to finite limits in ZF: a terminal object is
given by fxjx D 0g, equalizers are exactly equalizers in ZF, while the product of
two definable sets fxjP g, fyjQg is given by

fzj9x9y.z D< x; y > ^P ^Q/g

with the obvious projections (we are assuming x and y to be distinct without loss of
generality). The subobject classifier is exactly the subobject classifier of ZF, while
exponentials fyjQgfxjP g are given by

˚
f jFun.f / ^ 8s.s 2 dom.f / $ P.s// ^ 8s0.s0 2 ran.f / ! Q.s0//

�
;

with the evaluation arrow given by

ŒfF; yj9f 9x.F D< f; x > ^ Fun.f / ^ 8s.s 2 dom.f / $ P.s//^
^8s0.s0 2 ran.f / ! Q.s0//^ < x; y >2 f /g
	:

ut

10.3 Algebraic Set Theory in the Syntactic Category of ZF

In order to better understand the relation between formal classes, definable sets, and
sets, we are now going to talk a little about algebraic set theory and the syntactic
category of ZF following Rosolini’s example in Rosolini (2011); in fact the notion
of definable sets is strictly connected with a specific notion of small maps in ZF.

10.3.1 Simpson’s Axioms for Algebraic Set Theory

In this section, we will introduce a list of axioms for algebraic set theory proposed
by Simpson (see Simpson 1999). Every axiomatization of algebraic set theory is
based on a pair .C;S/ in which C is a category and S is a family of arrows of C
(called family of small maps). The axioms are the following ones:

1. C is a regular category.
2. The composition of two arrows in S is in S.
3. Every mono is in S.
4. (Stability) If f 2 S and f 0 is a pullback of f , then f 0 2 S.
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5. (Representability) For every X , there exists an object PS.X/ and an arrow
eX W2X! X �PS.X/ with 	2 ı eX 2 S so that, for every  W R ! X �Z with
	2 ı  2 S, there exists a unique arrow � W Z ! PS.X/ that fits in a pullback
as follows:

6. (Power Set) vX W�X! PS.X/ � PS.X/ satisfies 	2ı vX2 S,
where vX is determined by the following property:
An arrow f D< f1; f2 >W Z ! PS.X/ � PS.X/ factorizes through vX if

and only if considering the following pullbacks

the arrow 	 factorizes through 	 0.

We also want to recall some definitions:

Definition 10.3.1. An object U in a category C is universal, if for every object X
in C, there exists a mono j W X ! U .

Definition 10.3.2. An object U in a regular category C with a class of small maps
S is a universe if there exists a mono j W PS.U / ! U .

Definition 10.3.3. A ZF -algebra for a regular category C with a class of small
maps S is an internal sup-semilattice .U;�/ together with an arrow � W U ! U ,
so that for every � W B ! U and for every j W B ! A 2 S, there exists supj .�/ W
A ! U so that for any j 0 W B 0 ! A and �0 W B 0 ! U , once we consider the
following pullback

we have that

supj .�/ ı j 0 � �0 if and only if � ı 	2 � �0 ı 	1:
The morphisms of ZF -algebras are the morphisms between internal sup-
semilattices that preserve supj .�/ along j 2 S and commute with the arrows
� . An initial ZF -algebra is an initial object in the category of ZF -algebras and
morphisms between them.
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10.3.2 Small Maps in ZF

We now want to define a class SZF of small maps in DCLŒZF 
. An arrow

is in SZF if and only if

`ZF 8y9z8x.F.x; y/ $ x 2 z/:

The class SZF is a class of small maps, as Simpson means (Simpson 1999):

Lemma 10.3.4. Every mono is in SZF .

Proof. This is obtained by using axiom 2 to obtain the existence of an empty set
and axiom 3 to prove the existence of singletons, once we notice that an arrow

Œfx; yjF g
	

is mono if and only if

F ^ F Œx0=x
 `ZF x D x0

ut
Lemma 10.3.5. Every composition of arrows in SZF is in SZF .

Proof. This is obtained by using axioms 6 and 4 ut
Lemma 10.3.6. The stability axiom is satisfied by SZF .

Proof. This is obtained by using axiom 6. ut
Lemma 10.3.7. The representability axiom is satisfied by SZF .

Proof. A definable class X D fxjP g is fixed. Then, the definable class PSZF .X/ is
given by

fyj8x.x 2 y ! P/g ;

while the definable class 2X is given by

fzj9x9y.z D< x; y > ^8t.t 2 y ! P.t// ^ x 2 y/g ;

and the arrow eX : 2X! X � PSZF .X/ is given by

Œ
˚
z; z0j9x9y.z D< x; y > ^8t.t 2 y ! P.t// ^ x 2 y/ ^ z D z0�
	:
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Now if the following arrow

satisfies R.x; y/ `ZF P.x/ ^ Q.y/ and `ZF 8y9y08x.R.x; y/ $ x 2 y 0/,
which means that it represents (without loss of generality) a relation with the second
component in SZF , then its representing arrow from fyjQg to PSZF .X/ is given by

Œ
˚
y; y0jQ ^ 8x.R.x; y/ $ x 2 y 0/

�

	:

ut
Lemma 10.3.8. The power set axiom is satisfied by SZF .

Proof. The subset relation for fxjP g is given by the following arrow:

Œ
˚
z; z0j9y9y0.z D< y; y0 > ^y � y 0 ^ 8x.x 2 y0 ! P.x/// ^ z D z0�
	

from fzj9y9y0.z D< y; y0 > ^y � y0 ^ 8x.x 2 y0 ! P.x///g to PSZF .X/ �
PSZF .X/.

This relation is in SZF by virtue of axiom 5. ut

10.3.3 An Algebraic Set-Theoretical Light on Definable Sets

First of all, the small definable classes are exactly those classes fxjP g for which the
unique arrow to 1, which is Œfx; yjP ^ y D 0g
, is small. This means that

`ZF 8y9z8x.x 2 z $ .P.x/ ^ y D 0//:

Now we know that

`ZF 9y.y D 0/

and so the previous condition is equivalent to

`ZF 9z8x.x 2 z $ P.x//:

This means that the small definable classes are exactly the definable sets. Further-
more, fxjN.x/g is a small definable class, where N.x/ is the formula saying that x
is a finite ordinal: this follows from axioms 7 and 2.

Finally, fxjx D xg is a universal definable class (and so also a universe), because,
for every definable class fxjP g, the arrow Œfx; x0jP ^ x D x0g
	 is a mono from
fxjP g to fxjx D xg.
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Last but not least, there exists an explicit (and obvious) representation for an
initial ZF -algebra: this is given by

.fxjx D xg ;vfxjxDxg; Œfx; zjz D fxgg
	/:

If

Œ
˚
z; z0jF.z; z0/

�

	 W fzjP g ! ˚

z0jQ�
is small in DCLŒZF 
, and Œfz; xj�.z; x/g
	 is an arrow from fzjP g to fxjx D xg,
then

supŒfz;z0jF.z;z0/g
.Œfz; xj�.z; x/g
	/

is given by the arrow

Œ
˚
z0; xjQ ^ 8t.t 2 x $ 9z.F.z; z0/ ^ �.z; t///�
	:

10.4 The Internal Category of Sets

In this section, we will introduce internal category theory to build an internal
category of sets in ZF. This will be the internal topos induced by the initial ZF -
algebra for SZF .

10.4.1 Internal Category Theory

First of all, we need to recall the notion of internal category, which is the
generalization of the notion of small category. Although we can define an internal
category in an arbitrary category (requiring the existence of certain pullbacks), we
prefer considering the case of a category C with all finite limits.

Definition 10.4.1. An internal category of C is a 6-ple

.C0; C1; ı0; ı1; ID;
/

in which C0; C1 are objects of C and ı0; ı1 W C1 ! C0, ID W C0 ! C1,


 W C1 �� C1 ! C1
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are arrows of C, where C1 �� C1 fits in the following pullback.

The 6-ple C must satisfy the following requirements:

1. ı1 ı ID D ı0 ı ID D idC0 .
2. ı0 ı 
 D ı0 ı p0 and ı1 ı 
 D ı1 ı p1.
3. 
 ı dID ı ı0; idC1e D 
 ı didC1; ID ı ı1e D idC1 .
4. 
ıd
ıp0; p1e D 
ıdp0;
ıp1eıdp0ıp0; dp1ıp0; p1ee W .C1��C1/��C1 !
C0.

Here we denote with df; f 0e the unique arrow that exists for the definition of
pullback, and .C1 �� C1/ �� C1 is the pullback of ı1 ı 
 and ı0.

Before going to the next section, we show a way to externalize internal categories.
This is done in a very natural way by means of global elements.

Proposition 10.4.2. If C D .C0; C1; ı0; ı1; ID;
/ is an internal category of C and
I is an object of C, then

Hom.I; C/ WD.Hom.I; C0/;Hom.I; C1/; ı0ı.�/; ı1ı.�/; IDı.�/;
ıd.�/1; .�/2e/

is a category.

Proof. Every point of the definition of category follows immediately because of the
relative point in the definition of internal category. This is possible as the functor
Hom.I; 
/ preserves all finite limits. ut
We will denote by �.C/ the category Hom.1; C/, where 1 is a (selected) terminal
object of C.

Remark 10.4.3. We should notice that an internal category in a category C with all
finite limits is nothing more than a model of the first-order theory of categories (see
Johnstone 2002) in C.

10.4.2 The Real Category of Sets: SET

We will now define an internal category of ZF (or equivalently of DCL.ZF /),
called SET , which is built on the initialZF -algebra for SZF . This category is given
by the following assignments:

1. SET 0 WD fxjx D xg.
2. SET 1 WD fF j9f 9z.F D< f; z > ^Fun.f / ^ ran.f / � z/g.
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3. ı0 WD ŒfF; xj9f 9z.F D< f; z > ^Fun.f / ^ ran.f / � z ^ dom.f / D x/g
	.
4. ı1 WD ŒfF; zj9f .F D< f; z > ^Fun.f / ^ ran.f / � z/g
	.
5. ID WD Œfx; F j9f .F D< f; x > ^8t.t 2 f $ 9s.s 2 x ^ t D< s; s >///g
	.
6.


 WD ŒfJ;Gj9f 9f 09z9f 00.J D< f;< f 0; z >> ^Fun.f / ^ Fun.f 0/

^ran.f / � dom.f 0/ ^ ran.f 0/ � z ^G D< f 00; z > ^
^8t.t 2f 00 $ .9s9s09s00.< s; s0 >2f ^ < s0; s00 >2f 0 ^ tD< s; s00 >////g
	;

once we easily realized that the object of composable arrows is given by

fJ j9f 9f 09z.J D< f;< f 0; z >> ^Fun.f /^
^Fun.f 0/ ^ ran.f / � dom.f 0/ ^ ran.f 0/ � z/g:

We obtain that

Theorem 10.4.4. SET is an internal category.

Proof. See Johnstone (1977). ut
We also derive that this is an internal topos, as every construction for a topos can be
done in ZF. This follows from a well-written proof of the fact that sets and functions
form a topos formalized in ZF .

Moreover, we should notice that this internal category exactly corresponds to
the canonical interpretation (according to model theory) of the first-order theory of
categories in ZF set theory.

10.5 Definable Sets and Global Elements

We have just well explained what we mean by the internal category SET ; we now
would like to study the category �.SET /. Following in detail the definition, the
objects of �.SET / are the equivalence classes ŒfxjP.x/g
	 of definable classes
with the property that `ZF 9ŠxP.x/. The arrows of �.SET / are the classes of
equivalence Œff jP.f /g
	 which satisfy `ZF 9ŠfP.f /, and

P.f / `ZF 9f 09z.f D< f 0; z > ^Fun.f 0/ ^ ran.f 0/ � z/:

As a consequence, we have the following theorem:

Theorem 10.5.1. DST.ZF / and �.SET / are equivalent.
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Proof. We need to consider the following functors:

1. P W DST.ZF / ! �.SET / is given by
P.fxjP.x/g/ WD Œfzj8x.x 2 z $ P.x//g
	
P.Œfx; yjF.x; y/g
	/ WD
WD Œff 0j9f 9z.f 0 D< f; z > ^8t.t 2 f $ 9x9y.t D< x; y > ^F.x; y///^
^8y.y 2 z $ Q.y///g
	

2. P0 W �.SET / ! DSTŒZF 
 is given by
P0.ŒfzjP.z/g
	/ WD fx0j9z.P.z/ ^ x0 2 z/g
P0.Œff 0jQ.f 0/g
	/ WD Œfx; x0j9f 0.Q.f 0/ ^ 9z9f .f 0 D< f; z > ^ < x; x0 >
2 f //g
	
where x0 is a fixed variable. (We can think of it as the first variable. The condition
for this is that the variables of the language of ZF are presented in a countable
list.)

We can then immediately see that P ı P0 is the identity functor for �.SET /, while
there is a natural isomorphism from the identity functor of DCLŒZF 
 to P0 ı P,
which is given by the arrows

Œ
˚
x; x0jP.x/ ^ x D x0�
	 W fxjP.x/g ! fx0j9z.x0 2 z ^ 8x.x 2 z $ P.x///g

ut
We can think about objects of �.SET / as sets with a name, because they are exactly
determined by a class of formulas ŒP 
 with one free variable; the name of the object
of �.SET / determined by ŒP 
 could be, for example, ŒŒP 

.

10.6 Final Remarks

In our attempt to clarify the relation between (formal) classes and sets and
between metamathematics and mathematics, by means of a unique mathematical
structure, we started by introducing the syntactic category ZF (that we proved to
be equivalent to the category of definable classes of ZF ). This category shapes the
metamathematical level: its objects are classes as are usually (see, e.g., Jech 2003)
introduced in the set theorists’ practice. Moreover, this category has an important
full subcategory: the category of definable sets, whose objects are those definable
classes fxjP g for which

`ZF 9z8x.x 2 z $ P/:

This corresponds to the naïve category of sets. Obviously, this is not the real
category of sets. In this context, the real category of sets is SET . However, this is not
a category: it is an internal category in ZF. The relation between metamathematics
and mathematics in this context exactly corresponds to the relation between
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categories and internal categories. Mathematical concepts are represented through
internal categories, and external (or metamathematical) concepts are expressed on
the categorical level. In our opinion, the most interesting result described in the
previous sections is the equivalence of the two most (at least in our opinion) natural
ways to give an external account of the notion of set. We proved that the category
of definable sets is equivalent to the category obtained by global sections on SET :
the classes that satisfy the comprehension axiom are exactly those classes that can
be named.

Acknowledgements The author would like to acknowledge G. Rosolini and T. Streicher for very
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Chapter 11
Structure and Applicability

Michele Ginammi

11.1 Introduction

In this article I am going to discuss the possibility of solving the applicability
problem of mathematics by means of the notion of structure. First of all, what is the
applicability problem? As Steiner (1998) points out, there is not one single problem
that may be called ‘the applicability problem’, but many problems that must be faced
in different ways.1 I am going to focus on what could be called the problem of the
representative effectiveness of mathematics: how is it possible that we can employ
mathematics to represent physical systems? Or, better, how does mathematics play
a part in making descriptive claims about the world?2

Based on the talk for the conference ‘Filosofia della matematica: dalla logica alla pratica. Giovani
studiosi a confronto’, held in Pisa at the Scuola Normale Superiore, 24–26 September 2012.
I would like to thank all the conference participants for their valuable and stimulating contributions
and particularly Marina Imocrante for her precious bibliographical suggestion. I would also like
to thank Gabriele Lolli, Christopher Pincock, Sorin Bangu, Gabriele Galluzzo, Giulia Felappi,
Roberto Gronda, Gian Maria Dall’Ara and two anonymous referees, who read the previous drafts
of this paper and helped me with insightful comments.
1Steiner distinguishes four applicability problems: (1) a semantic problem, (2) a metaphysical
problem, (3) a descriptive problem and (4) a heuristic problem. The specific problem I am going
to discuss in this paper would fall into (3), but I will consider a wider problem than Steiner’s.
2A bit of terminological clarification is needed. Let us say that A mathematically represents B when
A is a mathematical model such that by observing it we can draw conclusions that are reasonably
true in B. Following Pincock (2012, pp. 25–26), I will mean by ‘model’ an entity (either concrete
or abstract) by means of which we aim to represent a physical domain and by ‘representation’, a
model with a content, where the content is what provides us with the conditions under which the
representation is accurate.
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One of the most interesting accounts of this problem appeals to the notion
of structure. According to it, the representative effectiveness of mathematics can
be satisfactorily accounted for if we say that, when a mathematical structure
satisfies certain conditions, it can be considered as a good description of a physical
system. A very naive formulation of this structural account is the following:
mathematics is so useful and effective as a representative tool in science because
(A) mathematics studies structures and (B) these structures can be found in nature
and their description is hence part of the scientific picture of reality.3 We can find an
example of this structural account in Shapiro (1997), when he says that:

the contents of the nonmathematical universe exhibit underlying mathematical structures
in their interrelations and interactions. According to classical mechanics, for example, a
mathematical structure much like the inverse-square variation of real numbers is exem-
plified in the mutual attraction of physical objects. In general, physical laws expressed in
mathematical terms can be construed as proposals that a certain mathematically defined
structure is exemplified in a particular area of physical reality. (see also Shapiro 1983,
p. 248)

Further and more sophisticated examples can be found in French (2000), Pincock
(2004), van Fraassen (2008) and others.4 The key idea of this account is that the
conditions that a mathematical representation has to satisfy in order to properly
describe a physical system are structural; namely, a mathematical scientific repre-
sentation presupposes the existence of a structural relation between a mathematical
structure and the arrangement of some properties, quantities and entities in a
given scientific domain. The representation is appropriate if there is a ‘structural
similarity’ between the target (the physical domain) and the representing tool
(the mathematical structure).

Such an account can be variously stated. For example, one may focus, as
Pincock (2004) does, on the conditions that a statement of applied mathematics
(a ‘mixed’ statement) must satisfy in order to be considered as true: ‘According to
the mapping account of applications, the truth of a statement of applied mathematics
(or ‘applied statement’) depends on the existence of a mapping of a certain kind

3This formulation suggests that the structural account of applicability implies in some sense some
version of mathematical structuralism. This is nevertheless false, since it simply implies that we can
consider mathematics as the study of abstract structures, but it does not imply that this is the only
way to understand mathematics, or that it is the best. Analogously, this formulation also suggests
that the structural account implies in some sense some version of structural scientific realism. To
see whether this other implication holds is a more complicated problem, which depends on what
one means by ‘structural scientific realism’, but in general this implication does not hold, either,
since the structural account implies only that structures are part of the scientific picture of reality.
4Also Steiner (1998) mentions a ‘distressingly common “explanation” for the effectiveness of
mathematics in physics’ according to which ‘mathematics studies ‘structures’, and these structures
are displayed in nature where they can be studied by physics’ (p. 6), but he rejects this account
since he thinks the currency of this explanation just stems from a confusion among different senses
of the term ‘applicability’. I think the way in which Steiner gets rid of the structural solutions to the
applicability problems is offhand. In this paper I will not take care of replying to Steiner’s claim,
but I hope to show that the structural account can offer a valuable contribution to the solution of
(if not all the problems, at least) the problem of the representative effectiveness of mathematics.
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from a physical situation to a mathematical domain’ (p. 69). Thus, if such a mapping
exists, we are entitled to say that our ‘applied statements’ are true. However, my
focus in this article will be on the epistemic conditions that enable us to consider
a mathematical structure as a good representation of a given physical system
(the target). In other words, how do we come to know that a certain mathematical
structure can be used to represent a physical system in such a way that we can
employ that mathematical structure to gain (possibly new) knowledge about the
physical domain at issue?

However, before facing these epistemic problems, it is important to understand
what this ‘structural similarity’ consists in. The mathematical representation has
obviously to preserve the structure of the physical domain, but this is not something
that can be easily done when we do not completely know the target or when our
knowledge of it is still tentative. Actually, several problems arise when we observe
that these mathematical scientific representations are frequently effective not only in
describing a physical domain but also in broadening our knowledge of that domain.
Thus, the structural account we have just considered should be able to account also
for a possible ‘heuristic’ role of mathematics.

In this article I will take into consideration the actual effectiveness of this
structural account to make these questions clearer. As I will try to show, the
structural account needs to be improved in several senses in order to be considered
a satisfactory account.

11.2 The Structural Account

11.2.1 Setting Out the Problem

The first problem to solve is to understand how to define this ‘structural relation’ in
a rigorous manner. As a first attempt, let us say that M is a mathematical structure
and S a structured physical domain or a ‘physical structure’.5 We will say that S is
homomorphic to M iff there exists a � W S ! M such that:

1. For any function fA in S , there exists a correspondent fB inM such that, for any
x1; : : : ; xn 2 dom.S/,

�.fA.x1; : : : ; xn// D fB.�.x1/; : : : ; �.xn//:

5I take a mathematical structure to be defined, as usually, as an ordered quadruple

M D hdom.M/; fRigi2I ; ffj gj2J ; fckgk2Ki;
where dom.M/ is a non-empty set of objects (this is our ‘universe’; it must be noted that the nature
of these objects is absolutely irrelevant); fRigi2I is a non-empty set of ni -ary relations defined
on dom.M/; ffj gj2J is a set of functions defined on dom.M/; and fckgk2K is a set of special
elements belonging to dom.M/ (including, the unity element). I; J;K are three disjoint sets of
indices. I will leave open, for the moment, the question concerning what a ‘physical’ structure is.
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2. For any relationRa in S , there exists a correspondentRb inM such that, for any
.x1; : : : ; xm/ 2 dom.S/, .x1; : : : ; xm/ 2 Ra iff .�.x1/; : : : ; �.xm// 2 Rb .

3. For any constant c˛ in S , there exists a cˇ in M such that �.c˛/ D cˇ .

With this definition in mind, we can now say that when � is injective we have a
monomorphism, when � is surjective we have an epimorphism and when � is both
injective and surjective we have an isomorphism.

11.2.2 Minimal Condition

All these structural relations guarantee some kind of structure preservation. The
problem now is to understand whether there is a ‘minimal’ structural relation that
an applied mathematical structure has to satisfy in order to guarantee its descriptive
effectiveness. At a first glance it seems that isomorphism is the best situation to work
with, since it grants a perfect correspondence between the two domains. Of course
it is, but it is also a very tight condition to be imposed as a minimal request. It is
not difficult to find a case of mathematical representation which does not meet this
condition and nevertheless is effective in representing a physical domain.6 On the
other side, the loosest condition we can impose is the homomorphic one. However,
in this way we run the risk that the condition we impose does not suffice to secure
the representation with a content. Namely, given a fixed physical domain, there
will always exist a homomorphism from it to a mathematical structure that has
no representative content. Let us take, as an example, the trivial homomorphism
that collapses all the elements in dom.S/ to one element in dom.M/ (the unity
element, if it exists) and all the relations in RS to the identity relation. This is
a homomorphism, but we all agree that this would not be a good mathematical
representation. It seems that a minimal condition should be found between these
two extreme cases, isomorphism and (trivial) homomorphism, and that the way to
articulate such a minimal condition is by taking into consideration the notion of
‘content’ of a representation.

Let us take the example of a city map. What we desire is that the map reproduces
the relevant aspects of the geographical area at issue, where by ‘relevant aspects’
I mean those peculiarities (streets, distances, corners, eventually altitudes and so
on) that we are interested in knowing and that make the map effective for the aims
it has been created for. Also in this case we have to avoid the case of the trivial
homomorphism; namely, we want that every relevant aspect of the represented area

6A typical example is offered by the Navier-Stokes equations. Here we use a set of equations
to successfully model the behaviour of a fluid substance. These equations implicitly assume that
the substance at issue is continuous, although our best theories say that the ultimate composition
of matter is not continuous. So, assuming that our best theories are true, it does not seem to
be possible to set up an isomorphism between the mathematical structure and the physical one,
since the former seems to be ‘richer’ than the latter. Nonetheless, these equations are effectively
employed in representing the behaviour of the phenomenon at issue.
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be distinctly represented by a mark (a line, a dot, or whatever else) on the map.
One might think that this amounts to demanding that the map be such that there is
a monomorphic relation from the land to the map.7 But the monomorphism is such
only when we have fixed what we mean by ‘relevant aspect’. If we are interested
only in distances, we can reasonably avoid any indication about the altitude; but
if we want to know also how much exertion we will have to bear in going from
point A to point B, we will need in addition an indication of the altitudes and of
the differences in elevation. Similarly, the same considerations can be made for
the case of a mathematical representation. Also in this situation we want that the
mathematical representing structure be able to grasp univocally and distinctively
every single relevant element of the physical domain we are going to represent.
We want that the mathematical structure be able to grasp all the relevant elements
and all the relevant facts and relations in the physical system, without any loss of
information—and it seems that the only way to grant this is to impose that the
homomorphism is injective, i.e. that it is a monomorphism. Thus, it seems that the
minimal condition we are searching for is the monomorphism condition—but such
a monomorphic relation can be defined only when we have clearly in mind what the
relevant aspects of the physical domain are.

Bueno and Colyvan (2011) consider the same problem, although under a different
perspective. As they say, ‘It would seem that the mapping employed will depend on
the richness of the two structures in question’ (p. 348), S and M . If S is richer
than M (i.e. there are more objects or more structural relations between them in
the physical domain than can be represented in the mathematical structure), then �
can be a simple homomorphism (neither injective nor surjective) or an epimorphism.
But ifM is richer than S , then we must consider a third possibility, monomorphism.
But we also want, in order for mathematics to be useful, that � be invertible so that
we can ‘move freely into and out of the mathematics, just as we can move freely
between our street directory and the city’ (pp. 348–349)—and this implies that �
must be a monomorphism, with the further consequence that it is apparently not
possible for the physical structure to be richer than the mathematical one. Although
Bueno and Colyvan (2011) bring forward examples of mathematical representations
in which this is exactly what seems to be the case, it seems to me that this is
the consequence of their overlooking the fact that, when we represent a physical
domain, we are interested only in some relevant aspects of that domain. If we
keep this point into consideration, cases in which S is structurally richer than M
are simply ruled out. For if we admit that M is a good representation of S and
nevertheless S is richer than M , this means that there are objects or relations in S
that simply are irrelevant for the aims for which we made the representation: if the
mathematical representation is not able to grasp them and remains effective, then
these elements cannot be considered as relevant. But the question is much more
complicated than this.

7Injective homomorphisms are also usually called ‘embeddings’, but in this paper I will continue
talking of monomorphisms instead, since in the literature on the argument ‘embedding’ is often
used as a generic term (see, e.g. Pincock 2004).
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11.2.3 Some Remarks on the Structural Account

First of all, we said that the minimal condition should be articulated around the
notion of ‘content’ of a representation, but this notion immediately leads us to the
highly pragmatic (and highly problematic) notion of ‘relevant aspects’ of a physical
domain. The representation is made with a certain aim in view, and it is this aim that
determines which is the relevant content of the representation. This is a very delicate
point. For example, if I want to give a mathematical representation of the kinematics
of a system of bodies, I will ignore the colours of the bodies, since they are irrelevant
to my representation. So, I will consider a physical structure S that has no colours
among its objects (or among its relations).8 The problem is: how can I select the
relevant aspects of the piece of nature that I am trying to represent? It seems that
this task should precede the application of mathematics, but it often happens that
it is just mathematics that helps us in selecting the relevant aspects of a physical
system.9 This is a very complicated issue which is not possible to discuss extensively
here, but I will shortly try to say something more. However, this remark seems to
suggest that there is no hope to articulate an account of representative effectiveness
of mathematics in purely structural terms, since the pragmatic component seems to
be irreducible.10

That an account of the representative effectiveness of mathematics cannot be
achieved in purely structural terms is also shown by the fact that (whatever be the
minimal condition to be prescribed) the mathematical structure can be richer than
the targeted physical domain (and that is what usually happens). So, as Bueno and

8An anonymous referee made me notice that in this case the physical domain (the bodies of
the system and the relations among them) is (non-trivially) homomorphic to the mathematical
structure (the additive structure of real numbers), but is not injective, since two bodies can
correspond to the same mass-number—and hence the monomorphism rule seems to be infringed.
However, in this case the monomorphism should be not from the physical system to the additive
structure of real numbers, but rather from the physical system to a vector space, whose number
of dimensions depends on the number of bodies composing the system (in the Euclidean space,
for each body we will have three dimensions for its position, three for its velocity and one for
its mass), on which a relation of correspondence between these vectors is fixed. In this way
the monomorphism is preserved. I recall I am dealing only with the representative effectiveness
of mathematics and that the monomorphism condition I am trying to defend as the proper
minimal request refers just to this particular effectiveness of mathematics. Measuring is surely
an important way in which we ‘apply’ mathematics, but it is different from representation—even if
representation, of course, subsumes measuring practices. Even if measuring can be accounted for
in structural terms as much as mathematical representations can, it will satisfy different conditions.
9Batterman (2002), for example, stresses the importance of ‘asymptotic reasoning’ in removing
explanatory non-relevant aspects. The problem is here interwoven with mathematical explanatory
power in science.
10Bueno and Colyvan (2011) come to the same conclusion. They also say that Pincock (2004) aim
was precisely to account for the applicability of mathematics in purely structural terms, but I must
disagree with them on this point, since in no place does Pincock make such a claim. The same
remark is made by Batterman (2010, p. 8n).
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Colyvan (2011) rightly point out, we may be confronted with situations in which
our mathematical structure predicts more than one possible solution and not all
these solutions have an empirical counterpart. Let us take the case of a quadratic
equation used to predict where a projectile will land. Such an equation will have
two solutions, and it may happen that these two solutions will not coincide. If,
for example, we want to predict the landing of a projectile launched from the
cliff of a mountain, one of the two solutions will be negative and will have no
physical interpretation. In other cases, however, mathematical solutions previously
considered as physically meaningless are suddenly and unexpectedly reassessed in
virtue of a new interpretation of them. A typical example of this is the postulation of
the existence of antielectrons (or positrons), made by the physicist Paul A.M. Dirac
on the basis of an original interpretation of his relativistic version of the Schrödinger
wave equation for electrons. Now, the problem is: how can we distinguish, within
a mathematical structure, its representing from its non-representing parts? The
problem is quite simple for the case of a projectile, but what about more complex
and intricate cases? According to Bueno and Colyvan (2011):

such crucial information required to solve this physical problem is not part of the mapping
between mathematical structure and physical structure. In short, the mapping account of
mathematical applications is incomplete.

[. . . ]. Moreover, the incompleteness of the mapping account is seen clearly as a result of
problems relating to the specifications of the mappings in question. (pp. 349–350)

The structural account is not able, by itself, to tell us which of the possible choices
is the right one (or are the right ones) and which is not. What is more, it is even
unable to justify why, in the projectile example, the positive solution is the right one,
while the negative one is not. From a purely structural perspective, both of them are
indistinguishable as far as their rightness is concerned. The lesson to be learned is
our account cannot avoid taking nonstructural components into consideration.

Secondarily, this way to set out the issue presupposes that we already have a
structured physical domain. That is just what permits us to say that the mathematical
description of that domain is effective because the mathematical structure employed
is a ‘good copy’, or a ‘good representation’, of the physical structure underlying the
physical domain. But what is this ‘physical’ structure, and in which sense is the
physical domain ‘already structured’? Moreover, that the physical domain has to
be in some sense pre-structured seems to suggest that we already know at least
what elements compose this domain. But in many contexts this is not the case, and
nevertheless mathematics helps us to deepen our knowledge of the elements of the
domain. For example, in particle physics mathematical models play a very valuable
role in discovering new particles.11 How is that possible? I will try to say something
more about this aspect in Sect. 11.3.

11An interesting case in this regard is the discovery of the omega minus particle, made by
Gell-Mann and Ne’eman in 1963. For a historical and philosophical reconstruction of the episode,
see Bangu (2008, 2012, cap. 5).
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Thirdly, the considerations presented until now justify us in saying that, whatever
the minimal structural condition be, this condition is just necessary, but not sufficient
in order to account for the representative effectiveness of mathematics. In other
words, if M is effective in representing S , then we can say that there is a
monomorphism from S to M—but the converse is not true. In order to prove the
converse, we should prove that any monomorphism from S to M makes of M an
effective representation of S . But we have already noticed that the monomorphism
must go from the relevant elements and relations in S to the elements and relations
in M . So, in order to prove the converse, we should already know what the relevant
aspects of a physical domain are.

Finally, the structural account, as we have seen, says that a mathematical
representation is effective only if there exists a preserving structure relation
(whatever it be: monomorphism, homomorphism or anything else) from the physical
domain to the mathematical structure. But how do we come to say that such a
structure-preserving relation really subsists? To say that we have to know in advance
how the physical domain is structured—we have at least to know what elements
compose it and how they interact. However, as I have already noted, mathematical
representations are usually employed to discover new entities or new relations in
the physical domain.12 In this case, there is a difficulty about how we can come to
know that a particular monomorphism really subsists.13

To sum up, we saw that a mathematical structureM seems to be successfully ap-
plicable only if there exists a monomorphism from the (relevant) physical structure
S to M . This seems to be a necessary condition, since, if such a monomorphism
does not exist, some elements of S (objects or relations) will be identified by the
representing mathematical structureM and this would be a loss of information. Yet,
this cannot be taken to be a sufficient condition, for the reason I have just pointed
out. Moreover, the structural account suffers from different problems that must be
solved in some way. In the next sections I will try to give my modest contribution
to make the structural account more satisfying, but it seems clear since now that
it will be impossible to exclude from the account some nonstructural, pragmatic
component.

12I have already mentioned the discovery of the omega minus particle. Other cases that could
exemplify this kind of situation are the discovery of the planet Neptune and the discovery of the
neutrino.
13It must be noted that it is not sufficient that there is a monomorphism: we must be able to spell it
out in order to make the representation effective—i.e. in order to make the representation a useful
tool to make verifiable predictions and hypotheses.



11 Structure and Applicability 211

11.3 Physical and Mathematical Structures

11.3.1 The Problem of the Coordination Revised

In the previous section, I have pointed out that the physical domain has to be already,
in some sense, ‘structured’ in order to define a structure-preserving relation from it
to a mathematical structure. Namely, on the physical side we should already have
something like a ‘physical’ structure. But what does this expression mean? What is
a physical structure? One might say that a physical structure is just a mathematical
structure embedded in nature so that the only difference between the two is that
the first is abstract and the second is a model for it. Well, but how do we know that
the latter is just a model for the former? What we have not considered, up to now,
is the fact that the physical structure is something that we do not know, something
hidden in the phenomena of nature. The mathematical structure is often just a ‘tool’
by means of which we manage to grasp this hidden physical structure. But, given
that the monomorphic relation is the only way for us to be sure that the mathematical
structure can be effectively and successfully used to know the physical structure,
how can we set up such a monomorphic relation if one of the two terms of the
relation is unknown? And how can we know that such a relation really subsists?

Actually, there are two problems here that we should keep distinct: the former
concerns how we can set up a relation between physical and mathematical struc-
tures; the latter concerns how we can understand that such a relation is actually a
monomorphism. Let us start with the first problem. The point is: how can we fix a
relation (whatever it is: isomorphism, homomorphism or monomorphism) between
a mathematical structure and a physical structure that we do not know? Or, to use a
different terminology, how can we compare a structure to a (alleged) model of it if
we do not know the proper interpretation that links the former to the latter—and we
do not even know the structure?14

The problem just sketched can be seen as a variation of the well-known problem
of the coordination raised by Reichenbach (1965).15 ‘The mathematical object of
knowledge — he says — is uniquely determined by the axioms and definitions of
mathematics’ (p. 34). On the contrary:

The physical object cannot be determined by axioms and definitions. It is a thing of the
real world, not an object of the logical world of mathematics. Offhand it looks as if the
method of representing physical events by mathematical equations is the same as that

14This point is strictly linked to the fact that a mathematical representation can be (and often is)
useful also in fostering new discoveries. Bueno and Colyvan (2011) do not pay any attention to this
point, and it seems to me that an account of the representative effectiveness of mathematics which
fails in accounting for it should be considered unsatisfying.
15On this parallelism with Reichenbach’s problem of coordination, see also van Fraassen (2006,
2008).
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of mathematics. Physics has developed the method of defining one magnitude in terms of
others by relating them to more and more general magnitudes and by ultimately arriving at
“axioms”, that is, the fundamental equations of physics. Yet what is obtained in this fashion
is just a system of mathematical relations. What is lacking in such system is a statement
regarding the significance of physics, the assertion that the system of equations is true for
reality. (p. 36)

If, in a certain sense, mathematical truths are granted by the internal coherence of
a mathematical structure, the same cannot be said for the physical relations. In this
case we need something like a ‘coordination’: ‘physical things are coördinated to
equations. Not only the totality of real things is coördinated to the total system of
equations, but individual things are coördinated to individual equations’ (p. 37). Of
course, one might say that what we are looking for is just a function (a mapping,
an interpretation) between mathematical objects (and operations, and relations) and
physical objects (and operations and relations)—so, what is the problem? Well, in
the specific case of the physical coordination, the matter is much more complex than
this:

[. . . ], if two sets of points are given, we establish a correspondence between them by
coordinating to every point of one set a point of the other set. For this purpose, the elements
of each set must be defined; that is, for each element there must exist another definition
in addition to that which determines the coordination to the other set. Such definitions are
lacking on one side of the coordination dealing with the cognition of reality. Although the
equations, that is, the conceptual side of the coordination, are uniquely defined, the “real”
is not. (p. 37)

In short, baldly stated, the problem is that if the target of the representation is not a
mathematical object, then we do not have a well-defined range for the function.

The situation is restated and analysed by van Fraassen (2006) as follows:

a function that relates A [the phenomenon] and B [the mathematical structure] must have
a set as its domain. If A is, for example, a thunderstorm or a cloud chamber — a physical
process, event, or object — then A is not a set. Fine, the realist answers, but A has parts and
the function’s domain is the set of these parts. Moreover, there are specific relations between
these parts, and these relations have as their extensions sets of sequences in that domain.
The function provides a proper matching provided that the images of these relations are
relevant relations in the model. (p. 540)

So, we have A (the phenomenon at issue), B (the mathematical representation of it)
and something that we could call S.A/ D hSA1; SA2i, where SA1 is the set of parts
of A and SA2 is the family of sets that are extensions of relations on these parts.
In this account, S.A/ is actually a mathematical structure, and the Reichenbach
problem in comparingS.A/withB is ruled out, for both are abstract (mathematical)
structures. But in this way we are just pushing the problem one step back; now the
problem is: how can we compare A with S.A/? But that is not all. We have several
ways to divide up A. Which of these is the right one? Realist might answer that the
right one is that ‘carves nature at joints’, but this sounds more like beating about the
bush, since we do not know what the proper way is to ‘carve nature at joints’.
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11.3.2 Phenomena, Data Models and Theory Models

So, let us take one step back, and try to find a way out. There are some points that
should be noted and that may permit us to deflate (at least part of) the problem.
The problem at hand is clearly a problem of representation: how can we represent a
concrete physical system by means of an abstract structure such as a mathematical
one? Now, as van Fraassen properly points out:

The question of how a specific mathematical object can be used to represent some specific
phenomena makes sense only in a context in which some description of the latter is at hand.
Reichenbach, it seems to me, mistakenly pursues the ‘profound’ ‘foundational’ question of
how such use is possible outside any such context — as if theories are received by babies or
primitives before the acquisition of language.

[ : : : ].

He is explicitly addressing a situation in which there is no description at hand for what is to
be represented. (van Fraassen 2006, pp. 541–542)

But we actually have a description at hand for physical entities, and this is just
that offered by our own language. All this, evidently, involves a large amount of
pragmatic elements, but it is quite obvious that mathematics is not an instrument
that we apply in an aseptic context. Therefore, all things considered, the question
of how we can represent a physical phenomenon by means of abstract objects such
as mathematical ones is not really problematic. At least, it is no more problematic
than the problem of denotation in philosophy of language. In other words, there
is nothing problematic in using mathematical objects in order to denote parts of a
physical phenomenon.

However, there are still two problems to solve: (1) since there are several ways
to divide up a phenomenon into parts, which of these ways is the right one, and
how can we recognize it? (2) How can we understand that a certain mathematical
structure has a monomorphic relation to the target phenomenon (so that we can say
that such a mathematical structure is a suited and effective representation of it)?

Questions (1) and (2) are particularly tangled up. As van Fraassen (2008)
interestingly points out:

[. . . ] the assertion or denial of isomorphism depends on a certain selection on our part.
In the case of two mathematical objects we can make the selection in a straightforward
way, since they are already ‘given’ in a format which lends itself to us. Given a particular
Hilbert space and a family of operators on it singled out by some equations, the relevant
questions can obviously be formulated: for example, does this family contain an element I
such that for all its members X , IX D XI D X? But how do I formulate questions of this
sort for a part of nature, without using a selective description of it that already rests on a
‘mathematization’? (p. 366, note 7)

Now, van Fraassen analyses the issue as follows. In concrete settings, the
structure-preserving relation intervenes not between the phenomenon and the theory
model but between the data model and the theory model. When we collect the data,
what we have is already a mathematical structure, and the mathematical structure
of the theory model tries to embed the mathematical structure of the data model.
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However, according to van Fraassen, this does not push the problem one step back.
Why? Because the ‘construction of a data model is precisely the selective relevant
description (by the user of the theory) required for the possibility of representation
of the phenomenon’ van Fraassen (2006, p. 544). The point that van Fraassen
emphasizes is that:

There is nothing in an abstract structure itself that can determine that it is the relevant
data model, to be matched by the theory. That is why our talk of data models ‘between’
the theoretical model and the phenomena does not simply push Reichenbach’s question one
step back, to be faced all over again in the same way. [. . . ].

That is, the phenomenon, what it is like, taken by itself, does not determine which structures
are data models for it. That depends on our selective attention to the phenomenon, and our
decisions in attending to certain aspects, to represent them in certain ways and to a certain
extent. (pp. 544–545)16

In representing a phenomenon, there is an ineliminable indexical component: the
representation is a representation of something (as thus and so) by somebody. The
data model is the phenomenon as represented by someone, and when we want
to check a claim of adequacy, we will compare the theory model with the data
model. But to say that the theory is adequate to the phenomena as represented
by us (viz. our data model) is the same, for us, as to say that the theory is
adequate to the phenomenon tout court. This last point is, on van Fraassen’s point
of view, a pragmatical tautology, and ‘Appreciating that this equivalence for us
is a pragmatical tautology removes the basis for the challenge’ (p. 545)—that is,
removes the necessity to push Reichenbach’s question one step back.

11.4 In Search of a Way Out

11.4.1 A Proposal of Integration for the Structural Account

Van Fraassen’s solution, by appealing to the notion of ‘pragmatical tautology’,
sounds quite tricky, and not many would follow him on this road. Nevertheless,
there are two points in van Fraassen’s analysis that I want to retain and emphasize:
(A) there is nothing in the phenomenon that determines which structures are data
models for it, namely, which mathematical structures are able to capture its relevant
aspects, and (B) when we want to check a claim of adequacy for a theory, we
compare the theory model with the data model (and not with the phenomenon itself).
So, the effectiveness of mathematics is not simply a matter of conditions that we
have pre-emptively to satisfy for its application. What we need is a system that
permits us to check the adequacy of a mathematical representation in the double
sense of: (I) checking the adequacy of the model theory as properly embedding

16Italics and bolds are in the text.
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(viz. monomorphically, as we saw) the data model and (II) checking the adequacy
of the data model in representing the relevant aspects of the phenomenon at issue.
Moreover, all these considerations show that the structural account—as presented
so far—is not enough in order to account for the applicability of mathematics. It
can constitute, at best, a good starting point, but it needs an integration, and such an
integration has to consider the pragmatical elements that intervene in the realization
of a mathematical model for a physical phenomenon.

In this section I am going to propose an integration of the structural account
that, I think, can solve part of these problems and can also answer questions (2),
which I left open (‘how can we understand that a certain mathematical structure
has a monomorphic relation to the target phenomenon so that we can say that such
a mathematical structure is a suited and effective representation of it?’). My idea
aims to fuse together the structural account with the DDI model account proposed
by Hughes (1997), in a fashion that resembles the ‘Inferential Account’ proposed
by Bueno and Colyvan (2011), yet different from it on some important points. The
DDI model is a general account of modelling in physics. According to it, modelling
is conceived as consisting of three main components: denotation, demonstration and
interpretation (from which the name “DDI”). As Hughes clarifies, he is:

not arguing that denotation, demonstration and interpretation constitute a set of speech
acts individually necessary and jointly sufficient for an act of theoretical representation
to take place. [He is] making the more modest suggestion that, if we examine a theoretical
model with these three activities in mind, we shall achieve some insight into the kind of
representation that it provides. Furthermore, we shall rarely be led to assert things that are
false. (p. 329)

In short, I can sum up the DDI account as follows. A model denotes a physical
phenomenon; it is a symbol for it and stands for it. In this manner, denotation plays
the fundamental representative role, in accordance with Goodman’s (1968) dictum
that ‘denotation is the core of representation and is independent of resemblance’
(p. 5). Such a representation has also an internal dynamics, which permits us to
make demonstration within it and make novel predictions. But the predictions that
we draw in the model remain predictions about the model if we do not intervene
with a process of interpretation that permits us to move back from the model to the
phenomenon at issue.

Now, my idea consists in integrating this account by means of our previous
considerations about the structural account and the data models, plus some extra
considerations about the way in which we can recognize the existence of a
monomorphism between a mathematical structure and the structure of a data model.
The following figure gives a visual representation of my proposal (Fig. 11.1).

The DDI account is preserved, as evident by the presence of the denotation-
demonstration-interpretation triad. Yet, whereas in the DDI scheme, denotation and
interpretation occurred between the phenomenon and the model; here the ‘model’
is composed by two parts: the data model and the theory model. According to
van Fraassen’s considerations, the phenomenon is represented by the data model
(and only derivatively, or secondarily, by the theory model), and this representative
role is centred on the notion of denotation. Still, we have to add an important
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Fig. 11.1 Integration of the structural account

remark: such a denotation is only ‘partial’; namely, the denotation does not give
a complete coordination between elements of the phenomenon and terms of the
data model. The only elements for which we give a denotation are those that appear
in the data model. So, for example, if we are trying to describe the interrelations
among pressure, volume and temperature in a thermic system, we will register the
value for each of these values in different situations, and we will associate a number
for any measurement. So, in our data model, we will denote pressure, volume and
temperature by means of positive numbers. But this denotation is only ‘partial’:
nothing is said about, for example, the denotation of negative numbers. We do not
know if the structure that we are delineating in this way will be defined only on
positive numbers or also on negative numbers. It will be a matter of interpretation to
understand whether and how we will have to interpret negative numbers appearing
in the mathematical structure as values for temperature, or pressure, or volume.

The data model, obviously, is not a complete mathematical structure. It is rather
a clue, or a trace, of mathematical structure. Our task consists in finding the
proper mathematical structure according to which the consequents in the physical
phenomenon—as represented by the data model—are always a consequence in our
mathematical structure, which corresponds to the monomorphic condition.17 Now,
the problem is that, given this condition, we cannot take for granted any consequence
that we can demonstrate in the mathematical structure. For the monomorphic
condition guarantees that if something is part of the hidden structure of the data
model, then such a part will be surely deducible within our mathematical structure;

17On this regard, I think that the famous quotation from Hertz (1956)—‘the necessary consequents
of the images in thought are always the images of the necessary consequents in nature of the things
pictured’ (p. 1)—should be revised in the following way: the necessary consequents of the things
pictured should always be the necessary consequents of the images. The original claim corresponds
to the isomorphic condition, but we saw that such a condition is too restrictive.
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but it does not guarantee that every consequence deducible from our mathematical
structure is a consequence in the data model (and, hence, also in the phenomenon
represented by it). So, what can we do? The answer is that every consequence that
we can demonstrate in the mathematical structure must be empirically checked by
means of an interpretation that permits us to go from the mathematical side to
the empirical one. But this leads to two possibilities. Let us suppose that � is a
mathematical term deduced from the mathematical structure M , and suppose that
we do not know how to interpret such a term. The two possibilities are either to
hazard an interpretative guess at � and then check its correctness or, if we have
no idea concerning how such a term could be interpreted, to say that � is just a
mathematical sign having no interpretation, depending on the fact that the structure-
preserving relation is not an isomorphism but a monomorphism.

Let me make a toy example to better explain this point. Let us take the following
puzzle: five men find themselves shipwrecked on an island, with nothing edible in
sight but coconuts, plenty of these, and a monkey. They agree to split the coconuts
into five equal integer lots, any remainder going to the monkey. Man 1 suddenly
feels hungry in the middle of the night and decides to take his share of coconuts
at that very moment. He finds the remainder to be one after division by five, so he
gives this remaining coconut to the monkey and takes his fifth of the rest, lumping
the coconuts that remain back together. A while later, man 2 also wakes up hungry
and does exactly the same thing: takes a fifth of the coconuts, gives the monkey the
remainder, which is again one, and leaves the rest behind. So do men 3, 4, and 5,
too. In the morning they all get up, and no one mentions anything about his coconut
affair on the previous night. So they share out the remaining lot in five equal parts
finding, once again, a remainder of one left for the monkey. Find the initial number
of coconuts.18 There are in fact an infinite number of solutions to this problem, but
obviously we are asked to find the smallest number of coconuts that satisfies the
condition. The answer is 15,621 (the reader may check by himself the correctness
of this solution). However, a story says that it was Paul Dirac who notes that such a
puzzle may have also another solution: �4 coconuts! This answer is right: each time
a man arrives at the heap of coconuts, he finds �4 coconuts; since �4 � 5 D �1
with a reminder of C1,19 he takes away the remainder from the heap and gives it
to the monkey (i.e. he gives C1 to the monkey); what remains in the heap is �5
coconuts; his one-fifth share is �1, which he takes, leaving �4 coconuts behind for
the next man and so on, till the final division.20 The point is that when we set up
the equation for the solution of the problem, we have a linear diophantine equation.

18Reported in Barrow (1988, p. 254).
19Typically, quotient and remainder functions are defined only for natural numbers; hence, such an
expression makes no sense until we define these functions for negative numbers too. Alternatively,
one can check the validity of this negative solution by substituting �4 in the diophantine equation,
assuming that the equation is defined also on negative numbers.
20The story also says that, by thinking about this problem, Paul Dirac came to the idea of the
anti-matter. Such a story is quoted also by Barrows, but I was not able to check its reliability.
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Now, in a problem like this we are obviously led to search positive solutions, since
we are interpreting numbers as set of coconuts, and intuitively we do not handle
sets of coconuts having negative cardinality. We know that there could be negative
solutions, but we consider this only as a mathematical fact without interpretation
against reality. However, if we can find a possible interpretation for such negative
numbers, there is nothing to stop us to check this interpretation in reality and
to examine whether it could be fruitful. In the case of the coconut puzzle, our
experience of the macroscopic world suggests that such a negative interpretation
will not be very fruitful; but in more abstract physical contexts (e.g. quantic world),
this fact could be less obvious, and by giving credit to this interpretation, we could
be led to new interesting discoveries.

I think there is nothing ‘miraculous’ here, as Wigner (1960) alleged. It is just a
matter of interpretation: some interpretations could be entirely unproductive, some
other interpretations could be very fruitful; but whether it is the first or the second
case that occurs, it is not (only) a matter of which mathematical structure we adopt
but also of whether the interpretation that we stick to the mathematical structure
passes the empirical test or not.21

The way in which we set up our interpretation is quite complex and involves
different aspects. The basis is obviously given by the initial denotation on which
we have built up our data model. As far as the terms, for which we have given a
denotation, are concerned, the interpretation is simply the inverse of the denotation.
But then we have to extend this initial, partial denotation. In general, empirical
verification is the main judge for interpretation; so, there are no tight prescriptions
to be rigorously followed.22 However, we usually extend the interpretation in
conformity with a general principle of ‘coherence’. It is hard to precisely clarify
what this principle is; perhaps an example can be more helpful. Let us suppose we
denote the velocity of a body along a certain direction by means of a vector v1. If,
very trivially, this vector is then transformed into a different vector v2 in virtue of
a certain relation describing the kinematics of that body in the system at issue, we
will coherently interpret this new vector as the velocity of that body at a later instant

21As it has been often noted, Wigner’s analysis seems to have been led astray by an overestimation
of successful over unsuccessful cases of mathematical application in physics (see, e.g. Azzouni
2000; Pincock 2012). A closer attention to unsuccessful cases would have probably pointed out
that the apparent ‘miracle’ of applied mathematics is often just the result of a long chain of failure
in finding the proper interpretation for the suitable mathematical structure.
22In some cases, the theory model can refer to the past. In these cases it would be impossible to
empirically test the ‘predictions’ of such a theory, because the initial conditions cannot be recreated
at this time. The evaluation of this question is quite complex and cannot be examined in this paper.
I would say that in these cases, all we can do is to rely on an inference to the best explanation or
hope that some other experiment could offer an indirect confirmation of the theory. Thanks to an
anonymous referee for bringing this point to my attention.
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of time. We will not interpret it as, for example, the mass, or the acceleration of the
body, since this interpretation would be incoherent with the original one.23

Moreover, the extension of the original interpretation will have to be made
so as to maintain a certain coherence also with our experience. In the previous
coconut case, for example, experience suggests that it is meaningless to extend
the interpretation for negative numbers, because in our empirical experience we
never meet with a set of �4 objects. However, in some cases, what we need for
advancement is just the breaking of such an apparent coherence—and the more we
go far from our immediate experience, the less problem we will have to ‘force’ this
coherence in order to explore new possibilities.

It is important to note that the nonexistence of coherent interpretations for some
statements about a mathematical structure does not invalidate the whole structure
as a suitable representation. We can abandon a mathematical structure for several
reasons. We can do it because the mathematical structure is too complicated and
we are not able to handle it; or, we can abandon it because it is not complicated
enough and we are not able to draw interesting predictions from it; or, we can
abandon it because, at a certain point, we realize that a relevant fact or a relevant
property of the phenomenon at issue is not (properly) represented by it. However,
the fact that a mathematical structure, in a sense, represents more than what it is
asked to represent is not a real problem; potentially, it is rather a source of richness
and novelty which we should keep into consideration. If our mathematical structure
makes a prediction which is not verified, we can try to shuffle off the guilt of such
a failure upon the interpretation. If we can do it in a coherent way, we can continue
working with that mathematical structure; but if we cannot do it, then we have to
revise our mathematical structure and find a more suitable one.

11.4.2 How Do We Detect the Monomorphism?

There is still a question I left open: the question concerning how we understand
that a mathematical structure is monomorphic to a data model. Indeed, if we do
not know the structure that the data model partially represents, how can we say
that such a structure is actually monomorphic to the mathematical structure under

23A less trivial and more interesting example of the ‘principle of coherence’ is offered, once again,
by the previous mentioned case of the discovery of the omega minus particle. Here we have that
each particle belonging to a particular class (the spin- 3

2
baryons), along with its properties, is

represented by means of a position in the S � I3 (strangeness-isospin) plane (according to the
SU.3/ formalism). Given that the nine already known (in 1962) spin- 3

2
baryons determined that

this class of particles would have formed a decuplet scheme in such a plane, a tenth position
was still vacant. So, since all the other ‘positions’ in the scheme represented a certain particle
of the class, a general principle of coherence led Gell-Mann and Ne’emann to think that this
position represented a particle too—a new particle still to be discovered. The new particle was
then effectively detected 1 year later.
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scrutiny? We know the mathematical structure, but we do not know the structure
partially revealed by the data model (which, in our intentions, should represent the
phenomenon). In some cases we know in advance that the mathematical structure
we are going to adopt is richer than the phenomenon we aim to represent, and we test
the mathematical structure assuming that the data model is at least monomorphic to
it. This is the case, for example, of the Navier-Stokes equations, where we know in
advance that the continuous mathematics we are going to apply is richer than the
ultimate discrete dynamic of the phenomenon at issue. In some cases, yet, we have
no idea about it. So, what can we do?

In these cases, it seems to me, there is no alternative but to suppose that
the mathematical structure we want to adopt is actually isomorphic to the data
model structure. If this hypothesis were true, then it would be true that—to repeat
Hertz’s words—‘the necessary consequents of the images in thought are always the
images of the necessary consequents of the things pictured’. In other words, if this
hypothesis were true, we could be sure that any consequence in the mathematical
structure has some correspondence in the data model structure and hence that it
represents a fact in the phenomenon. So, if we run into a difficulty (e.g. when my
mathematical structure tells me that a possible solution for the coconut puzzle is
�4), we can shuffle off the guilt of such a failure upon the isomorphism hypothesis:
the solution suggested by the mathematical structure does not take place in the real
world because our mathematical structure is too rich, and the data model is only
monomorphic (not isomorphic) to it. We do not have to abandon the mathematical
structure, since we can simply abandon the hypothesis of isomorphism. We have
thus a proof that the mathematical structure is not isomorphic to the data model, but
in spite of this we can still rely on the hypothesis that the data model is monomorphic
to our mathematical structure. Of course, not all the difficulties can be settled in this
way. In the coconut example, we can proceed in this way because the mathematical
structure gives us also a valid solution (i.e. 15,621). But if the only solution given
by our mathematical structure were not valid, then we could not shuffle off the guilt
upon the hypothesis of isomorphism, but directly upon the mathematical structure
itself. In that case the mathematical structure would not be suitable, and we would
have to find a more suitable one.

The following diagram, showing the possible working flow of a scientist engaged
in representing a physical domain by means of a mathematical structure, should
help in clarifying the previous considerations. At the beginning of the process, the
scientist has a mathematical structure M that she thinks is a good candidate for
representation, but she does not know whether it perfectly (viz. isomorphically)
represents the data model or not. So, she initially supposes that the data model
is isomorphic to the mathematical structure.24 This could turn out to be a good
hypothesis, and then she can go on working with such an assumption. But such a
hypothesis may bring to a failure. In that case, depending on the kind of failure

24I am not saying that this hypothesis is always necessary. In some cases she already knows that
M does not perfectly represent the phenomenon, and then the isomorphism hypothesis need not to
be assumed, of course.
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Fig. 11.2 Working flow of a
scientist engaged in
representing a physical
domain by means of a
mathematical structure

at issue, she can shift to a different assumption, i.e. that the data model is rather
monomorphic to the mathematical structure; otherwise, she can shift to a different
interpretation; or she can shift to a completely different mathematical structure to
work with. Also the monomorphism hypothesis can turn out either satisfying or not.
Again, just like before, depending on the kind of failure, she can attempt to shift to
a different interpretation or to a different mathematical structure. In different words,
she makes a strong hypothesis (isomorphism), and if this hypothesis turns out to
be too strong, she tries to come to a compromise, by weakening the hypothesis,
by modifying the interpretation or by shifting to a different mathematical structure
(Fig. 11.2).

11.5 Conclusions

In this paper, I presented the structural account for the representative effectiveness
of mathematics, and I took into consideration some difficulties related to it. Part
of these difficulties can be settled, as we saw; but some criticalities remain. This
shows that the structural account needs to be integrated in order to better explain
the representative applicability, especially where mathematical representations seem
to play an active role in making new discoveries and to foster new advancements
in scientific research. I tried to provide the required integration, by considering
the problems and the deficiencies emerged by means of the DDI model proposed
by Hughes’s (1997) and van Fraassen’s considerations. It seems to me that the
resulting account is in a better condition to make the applicability of mathematics
less mysterious and miraculous than it is often presented. In this integrated account,
a major role is played by a certain number of pragmatical and contextual elements.
Such a role is not always schematizable in a rigorous manner, but I think this
is not an imperfection. Rather, I think that all these bestow upon the account an
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amount of dynamism and plasticity, which is good for understanding, for example,
the evolution of different theories and theory changes.
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Chapter 12
Defending Maddy’s Mathematical Naturalism
from Roland’s Criticisms: The Role
of Mathematical Depth

Marina Imocrante

12.1 Maddy’s Mathematical Naturalism

A naturalistic approach generally rejects the possibility of a priori philosophical
inquiries. In Quine’s words, naturalism is “the recognition that it is within science
itself, and not in some prior philosophy, that reality is to be identified and described”
(Quine 1981, p. 21).

Following Quine, Maddy’s naturalism1 does not extend to posing philosophical
questions “from some special vantage point outside of science, but as an active
participant, entirely from within” (Maddy 2011, p. 39). Maddy’s naturalism “takes
the correctness of successful scientific practice as a datum for philosophical
theorizing rather than something susceptible to philosophical challenge” (Linnebo
2012, p. 134).

From this perspective, philosophical positions defined as naturalistic must state
their theories not only as a matter of a simple deference to authoritative scientific
statements but also for internal scientific reasons, which means grounding them on
experiment and well-confirmed scientific theories (Maddy 2011, p. 39).

According to Maddy’s naturalism, the appropriate method of investigating a
particular domain of reality is by means of the science which specifically addresses

1Penelope Maddy’s approach to the philosophy of mathematics has evolved from early cognitive
realism (Maddy 1997) to her present mathematical naturalism. In this chapter, I focus on her
present naturalistic account as presented in (Maddy 2007a, 2007b, 2011).
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this domain. With regard to mathematics, first and foremost it is worth highlighting
that Maddy understands mathematics “as a human practice” (Maddy 2007b, p. 361).
From this practical perspective, Maddy affirms the autonomy of mathematics from
both philosophical and scientific considerations:

My naturalist [: : :] begins, as Quine’s does, within empirical science, and eventually turns,
as Quine’s does, to the scientific study of that science. She is struck by two phenomena: first,
most of her best theories involve at least some mathematics, and many of her most
prized and effective theories can only be stated in highly mathematical language; second,
mathematics, as practice, uses methods different from those she’s turned up in her study
of empirical science. She could, like the Quinean, ignore those distinctive methods and
hold mathematics to the same standards as natural science, but this seems to her misguided.
The methods responsible for the existence of the mathematics she now sees before her are
distinctively mathematical methods; she feels her responsibility is to examine, understand,
and evaluate those methods on their own terms; to investigate how the resulting mathematics
does (and doesn’t) work in its empirical applications; and to understand how and why it is
that a body of statements generated in this way can (and can’t) be applied as they are.
(Maddy 2007a, p. 448)

Maddy’s suggestion is that mathematical objects and practice should be investi-
gated with methods derived from mathematical practice itself.

In the same manner, the ontological questions concerning mathematical objects
and statements must be answered within mathematics itself. Indeed, mathematical
objects should not receive the same epistemological treatment reserved for physical
objects. While for physical objects we need higher introduction and confirmation
standards (e.g., identification through empirical instruments), standards for intro-
ducing mathematical objects are different: their role in successful mathematical
theories is the only element we ought to use in confirming their existence.

Due to this epistemic disanalogy between mathematical and scientific objects,
and due to the constitutive autonomy of mathematics with respect to philosophical
concerns, Maddy does not think that a naturalistic investigation into the foundations
of mathematics necessarily leads to a realist ontological position:

[: : :] for my naturalist natural science is the final arbiter of what there is, and it doesn’t
seem to support its mathematical ontology [: : :]. Mathematics itself offers no ontological
guidance beyond the minimal “mathematical things exist” [: : :]. In fact, I suspect that a
decision on these matters will have more to do with the theory of truth than with the
methodological or naturalized philosophical facts about mathematics or natural science.
(Maddy 2007a, pp. 456–457)

It is for this reason that the second philosophy proposed by Maddy (2007b) ceases
to give prominence to the defense of a particular position in the ontology of
mathematics:

Does mathematics have a subject matter like physics, chemistry, or astronomy? Are
mathematical claims true or false in the same sense? If so, by what means do we come
to know these things? What makes our methods reliable indicators of truth? The answers to
these questions will not come from mathematics itself - which presents a wonderfully rich
picture of mathematical things and their relations, but tells us nothing about the nature of
their existence [: : :]. (Maddy 2007b, p. 361)

In considering mathematical objects and theories by looking at their role in
mathematics as practiced by working mathematicians, her methodological naturalist
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focuses more on epistemological issues (how do we build mathematical theories?
How do we account for them? “How can we properly determine if a new sort of
entity is acceptable or a new method of proof reliable?” (Maddy 2011, p. 31)), than
on ontological and semantical ones (do mathematical objects exist? Are mathemat-
ical theories true?). Maddy’s only proviso is that, no matter which ontological posi-
tion we endorse, it should not contradict second-philosophical methods of inquiry.

This is why, regarding the ontology of mathematics, Maddy “does not address
alternative theories of ontology she does not find in that practice” (McLarty
2013, p. 390), that is, the day-to-day practice of mathematics, and adopts quite
indifferently what she calls Thin Realism (the thesis that mathematical objects
exist, but they only have the properties ascribed to them by mathematical theories,
any other question about their nature being irrelevant) or Arealism (the thesis that
mathematical objects do not exist).2 These two ontological positions are taken
to be “equally accurate, second-philosophical descriptions of the nature of pure
mathematics” (Maddy 2011, p. 112).

12.2 Roland’s Objections

Before Maddy (2011) appeared, Jeffrey W. Roland (2007) charged Maddy’s account
of mathematics with failing to be naturalistic: in his opinion, Maddy would be
unable to explain the reliability of mathematical beliefs without breaking one of
the main principles of naturalism.

As I have explained above, Maddy’s latest position with respect to mathematics
is compatible with “there being no fact of the matter regarding the truth and falsity
of mathematical claims” (Roland 2007, p. 425). But, in Roland’s opinion, “if there is
no fact of the matter with respect to truth and falsity in mathematics, that undermines
the project of giving an epistemology of mathematics” (Roland 2007, p. 425).

Roland writes:

Epistemology is centrally concerned with systematic connections between justification and
truth. If there is no fact of the matter as to whether claims concerning Fs are true or false,
then there simply is no question of systematic connections between what justifies our F-
beliefs and the truth about Fs. (Roland 2007, p. 425)

In Roland (2009), arguing for the impossibility of naturalizing any epistemology
of mathematics, Roland explains in the following manner what, in his opinion,
is essential for the possibility of an epistemology of any discipline, including
mathematics, that is, the “truth-conduciveness” of beliefs:

Suppose we have an epistemology E that ratifies our acceptance of pure mathematics as
justified. [: : :] The notion of justification endorsed by E must be truth directed; i.e. it must
be such that beliefs justified according to that notion tend to be true. [: : :] What makes a

2Arealism is taken as different from nominalism: Maddy states the difference in Maddy (2011,
pp. 96–98), claiming that “[: : :] if Arealism is to be considered a version of nominalism, it certainly
isn’t the ‘stereotypical’ variety” (Maddy 2011, pp. 97–98).
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conception C of justification a conception of epistemic justification is at least in large part
that beliefs which are justified according to C tend to be true, i.e. that there is some sort of
systematic connection between beliefs justified according to C and what is actually the case.
Moreover, endorsing the truth-directedness of epistemic justification [: : :] is to recognize a
widely accepted conviction that an epistemic notion of justification must be systematically
connected to truth, i.e. truth-conducive. (Roland 2009, p. 71)

Roland claims that a naturalistic account is able to answer the epistemological
question of “how we are justified in believing what we (justifiably) do about the
world?” (Roland 2007, p. 430) because of the two positions it entails: disciplinary
holism and ontological realism.

What Roland calls disciplinary holism is the “cross-discipline criticism and
support allowed for” by naturalism (Roland 2007, p. 431):

[: : :] the family of disciplines that fall under the heading ‘science’ is large enough and
varied enough that meaningful criticism of one discipline can be mustered in another while
remaining within science (broadly construed to include natural and social sciences plus the
mathematics and logic applied in the practice of these sciences). [: : :] While science as a
whole is insulated from outside criticism on the naturalist’s view, individual branches of
science [: : :] are not insulated from each other. (Roland 2007, p. 430)

As to the naturalist’s ontological realism, Roland explains why he thinks that the
epistemology of naturalism is linked to realism in the following terms:

Naturalism has it that our inductive practices are underwritten by our appreciation,
conscious or not, of natural kinds. Successful inductions are those done on projectible3

properties of (predicates applied to singular terms denoting) objects, and the naturalist,
following Quine, holds that ‘a projectible predicate is one that is true of all and only the
things of a natural kind’ (Quine 1969, p. 116). Thus, our ability to successfully engage in
induction is linked to our ability to tell projectible predicates from nonprojectible ones,
which is in turn linked to our ability to track general features of the world [: : :]. So
since naturalists are generally realists about natural kinds, naturalism, in its account of our
inductive practices, takes a realist stance toward the general prima facie subject matter of
the sciences. (Roland 2007, p. 431)

In particular, Roland claims that a causal form of realism is essential to a
naturalistic epistemology:

[: : :] An account of the reliability of perception [in the case of natural science] must bridge
theory and the world. This bridge is provided by a causal theory of detection [: : :]. (Roland
2007, p. 433)

A causal theory of perception is “the ground level of detection” (Roland 2007,
p. 433), and, due to disciplinary holism, all sciences are rooted in this ground level:

This is the sense in which it is reasonable to say that physics and physiology, in addition to
biology, chemistry, psychology, neuroscience - even sociology and economics - ultimately
depend on perception. The experience on which empirical science depends is perceptual

3According to Roland, projectibility is a property of predicates that measures the degree to which
past instances can be taken as guides to future ones.
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experience, broadly construed to include detection (indirect perception) by instruments, but
empirical science only fulfills its primary mission, i.e. to tell us about the world, if that
experience is causally connected to the world. (Roland 2007, p. 433)

So, the naturalist’s account of the reliability of scientific beliefs requires the
commitment to a realist conception of causation.

Reliability has to do with truth [: : :]. An adequate explanation of the reliability of certain
types of interactions in terms of causation (i.e. causal powers, processes, or structure) must
give us reason to think that beliefs formed as a result of the right types of interactions are true
in a robust sense. A realist conception of causation can do this [: : :]. (Roland 2007, p. 435)

These two features of naturalism, that is, disciplinary holism and ontological
realism, enable us to explain the reliability of scientific beliefs and also to account
for the accuracy of the naturalist’s epistemic norms and standards4 (Roland 2007,
p. 431).

With regard to Maddy’s mathematical naturalism, Roland points out that, ac-
cording to Maddy, mathematics should be regarded as being detached from natural
sciences (and from philosophy), which fails to meet his requirement for disciplinary
holism, and that she does not think that a naturalistic investigation of mathematics
necessarily leads to ontological realism, which in turn disregards his requirement
for causal realism. Judging Maddy’s epistemology for mathematics in light of his
own conception of scientific naturalism, Roland puts forth two criticisms of Maddy.

The first is what I call ‘‘reliability criticism’’. Roland claims that Maddy’s ac-
cordance of autonomy to mathematics is the equivalent of a rejection of disciplinary
holism (Roland 2007, p. 436). But in Roland’s view disciplinary holism, as we have
seen, is essential to providing naturalism with an epistemology for science which
is able to guarantee the accuracy of its epistemic norms and standards. The same
goes for mathematics: in Roland’s view, disciplinary holism is necessary in order to
provide an epistemology for mathematics which is able to guarantee the accuracy
of its epistemological standards. So, by rejecting disciplinary holism, Maddy’s
mathematical naturalism disqualifies itself from the possibility of being considered
as a genuine naturalistic position:

[: : :] An account of the reliability of the method of mathematical naturalism analogous to
the account of the reliability of scientific practice available to the naturalist is out of reach
for the mathematical naturalist. (Roland 2007, p. 437)

The second objection, strictly connected to the first, is what I call ‘‘ontological
criticism’’. We have seen that, in Roland’s view, in order to provide an adequate
epistemology for both science and mathematics it is essential to rely on causal
realism. But, as we have seen, Maddy’s mathematical naturalism leaves the question
of the existence of mathematical objects and of the truth of mathematical statements
substantially open, considering it to be an extra-mathematical question, and as
such without interest for her naturalist. In order for a naturalistic epistemology for

4In Roland’s words, this means providing a “dissident epistemology” for science (Roland 2007,
p. 432).
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mathematics to be adequate, Roland requires the identification of “truth-makers”
for mathematics, “in virtue of which mathematical beliefs (statements, etc.) have
the truth values they do” (Roland 2009, p. 72). Given her ontological agnosticism,
Maddy cannot rely on existing mathematical objects as truth-makers of this kind:

[: : :] The mathematical naturalist can countenance nothing to play a role in the epistemology
of mathematics analogous to that of the causal order in naturalistic epistemology. (Roland
2007, p. 439).

Therefore, in Roland’s view, since she ultimately refuses to ground her position
on ontological realism, Maddy should not define her second philosophy as a form
of naturalism with regard to mathematics.

It is worth noting that Roland’s objections to Maddy only hold if we also
accept Roland’s conception of naturalism for mathematics, that is, if we think about
mathematical naturalism as modeled on his conception of scientific naturalism,
described in Roland (2007) as a position committed to disciplinary holism and to
causal realism. A way to challenge Roland’s criticisms would thus be to show that
there are other conceptions of naturalism available5 and that, in particular, Maddy’s
view of naturalism is different from Roland’s.

But even if for the sake of argument we accept Roland’s epistemic requirement
of reliability for mathematical beliefs, defined as the need for a link of truth-
conduciveness between mathematical beliefs and some objective facts (“what is
actually the case,” in Roland’s words (Roland 2009, p. 71)), I argue that a concept
introduced by Maddy in 2011 could be used to provide an answer to Roland’s
criticisms: namely, the concept of “mathematical depth.”

In the following I shall present this notion and try to show how, within Maddy’s
(Maddy 2011) framework, mathematical depth could deliver the sort of reliability
of mathematical beliefs that Roland demands.

12.3 Maddy’s Mathematical Depth

Maddy (2011) uses the term “mathematical depth” to refer to the capacity for
fruitfulness of mathematics. Mathematical notions, theories, and statements are
ultimately fruitful both internally, in mathematics itself (e.g., the foundational
role of set theory), and externally in the applications of mathematical concepts to
empirical sciences (e.g., Maxwell’s equations which established the foundation of
classical electrodynamics).6

Indeed, I shall distinguish the depth of mathematics from its fruitfulness tout
court. To this purpose, it could be useful to consider Godfrey Harold Hardy’s

5As an example, consider that the requirement of a causal link between the world’s facts and
beliefs, in the case of mathematical knowledge, is certainly not common among naturalists.
6Maxwell’s equations are the usual example given by Maddy (1997, p. 114, 2007b, p. 332, 2011,
p. 19), but we could mention any other successful case of application.
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attempt to define the notion of depth. After claiming that “there are two things at
any rate which seem essential [to make a mathematical idea significant], a certain
generality and a certain depth; but neither quality is easy to define at all precisely”
(Hardy 2005, p. 24), Hardy attempts to characterize depth as follows:

It has something to do with difficulty; the ‘deeper’ ideas are usually the harder to grasp: but
it is not at all the same. The ideas underlying Pythagoras’s theorem and its generalization
are quite deep, but no mathematicians now would find them difficult. [: : :] It seems that
mathematical ideas are arranged somehow in strata, the ideas in each stratum being linked
by a complex of relations both among themselves and with those above and below. The
lower the stratum, the deeper (and in general more difficult) the idea. Thus the idea of an
‘irrational’ is deeper than that of an integer; and Pythagoras’s theorem is, for that reason,
deeper than Euclid’s. (Hardy 2005, pp. 27–28)

On the other hand, Hardy clearly separates the idea of depth from that of fruitfulness,
since he does not think that mathematics must be judged in terms of its utility (Hardy
2005, pp. 32–33).

Nevertheless, for the purpose of the present work, I shall focus on Maddy’s
proposal and take the viewpoint that despite the depth of a mathematical notion,
statement or theory does not have to be identified with its fruitfulness; it could
undeniably be seen as the encoding of a set of virtues (to be further specified) which
constitute a fundamental part of its fruitfulness and then a condition for it.

In Maddy (2011), Maddy suggests that mathematical practice is grounded in the
phenomenon of mathematical depth:

[: : :] What guides our [mathematical] concepts formation, beyond the logical requirement
of consistency, is the way some logically possible concepts track deep mathematical strains
that the others miss. (Maddy 2011, p. 79)

Maddy continues by saying:

[: : :] Judgments of mathematical depth are not subjective [: : :]. [: : :] mathematical fruitful-
ness isn’t defined as ‘that which allows us to meet our [mathematical] goals’, irrespective
of what these might be; rather, our mathematical goals are only proper insofar as satisfying
them furthers our grasp of the underlying strains of mathematical fruitfulness. [: : :] there
is a well-documented objective reality underlying Thin Realism [or Arealism], what I’ve
been loosely calling the facts of mathematical depth. The fundamental nature of sets (and
perhaps all mathematical objects) is to serve as means for tapping into that well. (Maddy
2011, pp. 81–83)

It is in light of this notion of mathematical depth that Thin Realism and Arealism
are ultimately equivalent positions:

[Thin Realism and Arealism] are equally well-supported by precisely the same objective
reality: those facts of mathematical depth. [: : :] They are alternative ways of expressing the
very same account of the objective facts that underlie mathematical practice. (Maddy 2011,
p. 112)

Maddy provides the reader with some examples of mathematical depth. Her
examples refer to concept formation in set theory and group theory and to the
different formulations and applications of the axiom of choice (Maddy 2011,
pp. 78–81). Unfortunately, these examples do not seem to be clear enough to shed
light on the concept we are seeking. Let me briefly show why.
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Let us begin with the example of the axiom of choice: the axiom states that for
every set of nonempty sets there is a choice function which selects one element
within each set. Maddy’s description of the fruitfulness of this axiom is not as
complete as one might have wished: she references a few applications of the axiom
of choice but only makes explicit reference to its application in geometry, connected
to the Banach-Tarski paradox (Maddy 2011, pp. 34–35). She does not cite the
axiom’s other applications, such as in algebra (the existence of bases in vector
spaces); topology (Tychonoff’s theorem about the product of compact topological
spaces); or analysis (Hahn-Banach theorem and the existence of non-Lebesgue
measurable sets of reals). Maddy restricts herself to reminding us, in a note, of the
“internal mathematical considerations in favor of the axiom” (Maddy 2011, pp. 35–
36, note 74) she described in Maddy (1997, pp. 54–57).

In her presentation, which I have sketched out above, Maddy does not provide
any real insight into the fruitfulness of the axiom nor does she with regard to the
connection between the axiom and the discovery of mathematical depth.

The example of group theory appears more promising. The concept of group
turns out to be essential in several mathematical domains: originally used to study
permutations and the solvability of algebraic quintic equations, group theory went
on to be recognized as the appropriate tool to study the concept of symmetry. Today,
group theory is an indispensable tool in mathematics: it essentially occurs in model
constructions within different scientific contexts.

Faced with this variety of use, Maddy states that group theory’s fruitfulness lies
in its capacity to unify different structures which share several properties (Maddy
2011, p. 79) (e.g., a mathematical structure and a physical one), by representing
them with the same model. For this reason, the example of the concept of group
seems particularly well suited to demonstrating what mathematical depth is through
the study of its applications.

Despite all of this, Maddy (2011) does not elaborate about group theory and
its applications, leaving the reader without a clear explanation of the connection be-
tween its fruitfulness and the phenomenon of mathematical depth we are examining.

Maddy examines the case of set theory more closely. In fact, much of Maddy’s
work is devoted to set theory, in particular to answering the following questions
(Maddy 2011, p. 37): what are the methods of set theory? And according to what
criteria must we choose new axioms to adopt in order to increase the deductive and
explanatory power of set theory?

Through analysis of the history of mathematics and the evolution of the
connection between mathematics and the study of the empirical word (Maddy
2011, pp. 3–27), Maddy establishes that set theory is essential to the unification
of mathematical structures and their languages. Indeed, according to Maddy’s
naturalism, it follows from the autonomy of mathematics that the unified model
allowing us to study different mathematical structures and methods, if one exists,
must come from mathematics itself. That unified model is now represented by set
theory.
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It is worth highlighting that set theory can be seen as providing us with a theoretic
framework that could be used as a model in which it is possible to represent numbers
and functions without being forced to make specific claims about the existence
of those objects. In addition, given Gödel’s incompleteness theorems, set theory
does not even give what Maddy calls, quoting Saunders MacLane (1986, p. 406), a
“parachute” against the risk of incompleteness (Maddy 2011, p. 133). However, in
spite of these ontological remarks that do not have much importance for Maddy’s
naturalist, set theory has a unifying role within mathematics. Maddy then states
that set theory provides us with a shared framework within which every single
mathematical problem concerning consistency and proof may be treated:

What set theory does is provide a generous, unified arena to which all local questions of
coherence and proof can be referred. In this way, set theory furnishes us with a single tool
that can give explicit meaning to questions of existence and coherence; make previously
unclear concepts and structures precise; identify perfectly general fundamental assumptions
that play out in many different guises in different fields; facilitate interconnections between
disparate branches of mathematics now all uniformly presented; formulate and answer
questions of provability and refutability; open the door to new strong hypotheses to settle
old open questions; and so on. In this philosophically modest but mathematically rich sense,
set theory can be said to found contemporary pure mathematics. (Maddy 2011, p. 34)

Maddy’s explanation of the depth of the concept of set ends here. She confines
herself to saying that, due to their foundational role, we are allowed to consider
sets as “maximally effective trackers of mathematical depth” (Maddy 2011, p. 82).
But the connection between the meaning of the concept of set and the emergence
of the concept of mathematical depth is not analyzed in detail. The concept of
mathematical depth is thus left rather unclear.

On one hand, and consistently with her peculiar form of naturalism, Maddy
claims:

[: : :] I doubt that an attempt to give a general account of what mathematical depth really
is would be productive; it seems to me the phrase is best understood as a catch-all for the
various kinds of special virtues we clearly perceive in our illustrative examples of concept-
formation and axiom choice. (Maddy 2011, p. 81)

This is why I spend so much time rehearsing these various cases, to give the reader a feel
for what ‘mathematical depth’ looks like. (Maddy 2011, p. 81, note 39)

From the examples presented in Maddy (2011), the reader is therefore supposed to
obtain a satisfying understanding of what mathematical depth is. Unfortunately, the
examples are not discussed thoroughly enough in order to obtain the “feel for what
mathematical depth looks like” that Maddy is seeking to impart.

As already highlighted by previous quotes, mathematical depth is presented by
Maddy as something objective:

[: : :] the topography of mathematical depth [: : :] stands over and above the merely logical
connections between statements, and furthermore, it is entirely objective. (Maddy 2011,
p. 80)

Maddy claims that the phenomenology of mathematical practice itself guarantees
the objectivity of mathematical depth. In her opinion, anyone who does even a little
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mathematics can easily come to recognize this objectivity: in Maddy’s words, the
first sensation which strikes anyone who does mathematics is “the immediate recog-
nition” that it is “an objective undertaking par excellence” (Maddy 2011, p. 114).

It is worth underlining that the form of the fruitfulness of mathematical depth is
an extrinsic justification for mathematical theories and statements. The justification
of a statement of a mathematical theory is intrinsic if the truth of the statements
follows from the properties ascribed to its objects by the theory in question; on the
other hand, an extrinsic justification of a statement is a justification in terms of its
consequences, inside or outside the theory.7 Maddy writes:

We’re out to explain what underlies the justificatory methods of set theory [: : :]. Part of
the answer, for intrinsic justifications, may be that they spell out what’s implicit in our
“concept of set,” but the bulk of the justifications that interest us are extrinsic. (Maddy
2011, pp. 78–79)

In Maddy’s opinion, the use of a mathematical theory that has certain consequences
on the improvement of our knowledge, inside or outside mathematics, is in itself
a good justification to use the theory in question. In favor of this conception of
fruitfulness as an extrinsic justification of theories, Maddy quotes a number of
selected passages of Zermelo’s defense of the axiom of choice (Zermelo 1967,
pp. 187–189), specifically insisting on its fruitfulness:

[This axiom] has frequently been used, and successfully at that, in the most diverse fields
of mathematics, especially in set theory. (Maddy 2011, p. 46)

Moreover:

So long as [: : :] the principle of choice cannot be definitely refuted, no one has the right
to prevent the representatives of productive science from continuing to use this hypothesis.
[: : :] Principles must be judged from the point of view of science, and not science from the
point of view of principles fixed once and for all. (Maddy 2011, p. 47)

This is what allows Maddy to conclude in favor of her hypothesis of the importance
of the capacity for fruitfulness in the evaluation of each mathematical notion,
statement, or theory. Like Zermelo, Maddy’s naturalist counts the fruitfulness of a
mathematical statement as a point in its favor – indeed, as the most important point.

12.3.1 Problems with the Notion of Mathematical Depth

Maddy names her conception of the phenomenon of mathematical depth “post-
metaphysical objectivism” (Maddy 2011, p. 116): with this term, Maddy refers to a
form of objectivity which has nothing to do with the metaphysical and ontological
level and which is constituted by the practice-oriented reality of the depth of certain
mathematical theories.

7For references and discussion on the distinction between intrinsic and extrinsic mathematical
explanation, see, for example, Mancosu (2008).
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I have already quoted Maddy talking about the “facts” of mathematical depth
(Maddy 2011, pp. 83, 112), stating that they represent a level of objectivity which,
from an ontological point of view, could be acceptable by Thin Realism as well as
by Arealism (Maddy 2011, pp. 102–112). Here one could legitimately ask what
exactly these “facts of mathematical depth” are and more broadly what exactly
“mathematical depth” is.

Indeed, Maddy’s concept of mathematical depth is appealing to us because it
provides an answer to Roland’s objections, insofar as mathematical notions and the
methods which are able to identify mathematical depth seem to represent in and of
themselves the connection between objective facts (the facts of mathematical depth)
and the corresponding mathematical beliefs. Nevertheless, we cannot ignore that
Maddy’s notion of mathematical depth has several problems, engendered by the
lack of precision with which the notion is presented.

First of all, consider that Maddy (2011, p. 114) introduces the idea that in
order to account for the phenomenon of mathematical depth one could appeal to
some sort of intuition that would be shared by anyone who practices mathematics,
though she does not clarify what exactly she means by this. The suggestion that the
mathematical depth could best be explained in terms of the concept of intuition8

is certainly intriguing and should be further explored. Let me stress only that
we are not dealing here with a mathematical intuition conceived as a rational
faculty, somehow à la Gödel; as mentioned above, the intuition of the depth
of mathematics that Maddy is talking about is rather the psychological intuition
that, when practicing mathematics, we enter a domain where our methods and
conclusions are to a certain extent imposed or forced, not arbitrary.

However, accepting the favorable intuitions of mathematicians as a sufficient
criterion to judge of the depth of a concept would seem to clash with the naturalistic
principles sketched above, which require grounding concepts on experiment and on
well-confirmed scientific theories, or, in the specific case of mathematics, on proofs
and mathematical theories. Mathematicians could be wrong in their intuitions; this
explains why, even if we could use the shared intuitions of mathematicians as a
clue of the depth of a mathematical concept, one should hope that the depth of a
mathematical notion, theory, or statement would count as an objective feature of it
and not as a psychological sensation subjectively associated with it.

Moreover, Maddy frequently uses a metaphorical language, without clearly
defining the words she employs; again, it would, for example, be legitimate to ask
what exactly these “facts of mathematical depth” are. Furthermore, what does it
mean exactly that sets and set-theoretic methods “track strains” of mathematical
depth? And what is the exact definition of “post-metaphysical objectivism”?

Thirdly, and more generally, not only does Maddy not provide us with a
sufficiently clear explanatory definition of what mathematical depth is, but she also
presents examples which are not explored in enough detail. If it is not possible to

8The role of intuition in philosophy is a topic of debate: for references and discussion, see, for
example, the essays in Gendler (2010).



234 M. Imocrante

formalize a strict definition of the facts of mathematical depth, consistent with the
naturalistic attitude Maddy emphasizes, we should at least be given more clarifying
examples.

Nevertheless, it is true that Maddy (2011) does not pretend to have provided
a satisfactory definition of mathematical depth: her sole intention is to focus our
attention on the challenge of understanding the phenomenon that is supposed to
drive the practice of pure mathematics in her latest account.

Maddy uses the metaphor of the “black box” (Maddy 2011, p. 85) to describe
the effectiveness of mathematics. This lexical choice provides an idea of something
that contains all the information we need, but which we do not know how to read in
order to have complete knowledge of the issue. Beyond the metaphor, at present the
only thing that seems clear is that in Maddy’s account (Maddy 2011) the goal of any
epistemological inquiry concerning mathematics ends in those facts of mathematical
depth.

In order to provide a satisfactory answer to Roland’s challenge – and even in a
general sense, to make Maddy’s new account stronger – clarifications are needed
regarding the concept of depth in mathematics.

12.3.2 A Possible Direction Toward Clarifying the Notion
of Mathematical Depth

In light of the previous analysis of Maddy’s notion of mathematical depth and the
related problems thereof, I suggest that in order to clarify Maddy’s account we
should see those “facts” of mathematical depth not as mathematical theoretic facts,
but rather as the historical facts of the fruitful use of particular notions, statements,
and theories during the history of mathematical practice.

A simple reference to the history of mathematical practice would probably not be
sufficient because not all the history of mathematics is a history of success casting
light on the depth of the concepts involved. Moreover, we should distinguish fruitful
developments from the unfruitful ones. Nevertheless, I suggest that we should think
about the history of mathematics as a gradual process akin to a sort of natural
selection that promotes the development of fruitful mathematical notions and makes
the unfruitful ones short-lived. Although I will not develop this suggestion here, it
is useful to bear it in mind in order to see the facts of mathematical depth as the
occurrences of certain uses of mathematical notions, statements and theories which
turn out to be fruitful when we survey the history of mathematical practice.9

Defined in this manner, the facts of mathematical depth are beyond a doubt
empirical facts, being part of the history and the current practice of mathematics.

9Note that we are not denying our initial distinction between depth and fruitfulness, since we
clearly stated that, despite this distinction, the depth of a mathematical notion, statement, or theory
could be seen as constituting a condition for its fruitfulness.
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Maddy’s depth could be defined as the capacity for fruitfulness of mathematical
notions, statements, and theories, inside and outside mathematics itself. Mathe-
matical notions, statements, and theories could then be seen as “tracking strains”
of mathematical depth when their use in mathematical practice produces a useful
insight or progress in the practice itself.

Even if Maddy does not explicitly express things in this way, her examples,
discussed above, of notions and statements that point to the phenomenon of
mathematical depth do not seem to conflict with this practice-oriented direction of
clarifying the concept of mathematical depth.

Since historical facts are empirical, it is no longer necessary to explain why
these facts of mathematical depth are objective. Fruitful uses of certain notions,
statements, and theories in the history of the practice of mathematics stand out
a posteriori and independently from the subjective intuitions of mathematicians.10

This constitutes another reason to not base the judgments concerning depth on
intuitions: the facts of mathematical depth are best understood as what turns out to
be fruitful in the history of mathematics, independently from any subjective beliefs.

The definition of Maddy’s objectivism with respect to mathematical depth as
“post-metaphysical” would thus become clearer: the objectivity of the facts of
mathematical depth is not a theoretic objectivity, depending on the ontological
existence of mathematical objects, but is grounded on the empirical reality of the
practice of mathematics11 and is objective in this empirical sense.

Essentially, what was missing in Maddy’s presentation of mathematical depth
was a clarification of the definition of the concept, the nature of the facts it relates
to, and the reasons why we should take them as objective; my suggestion indicates
a possible direction toward solving these issues.

At this point, I put forward that looking at the facts of mathematical depth in
the manner I proposed, that is, as the empirical, historical facts of mathematical
practice, may allow us to answer to Roland’s objections concerning the reliability
issue and his request to link our mathematical beliefs to objectively existing facts.

12.4 Answers to Roland’s Objections

In order to accept an epistemology for mathematics that ratifies our acceptance of
mathematical beliefs as justified, Roland demands the existence of a connection
between justification and truth, ultimately stated as “some sort of systematic

10Maddy’s description of the objectivity of the mathematical depth seems to be robustly consistent
with this sense of objective: see, for example, Maddy (2011, pp. 80–81).
11As McLarty clearly explains: “Maddy calls the existence claim [about sets] mathematical, since
mathematicians routinely affirm it. She calls claims about possible existence, which do not occur in
mathematics and are prominent in metaphysical discussion, metaphysical. She never argues against
pursuing metaphysics and even the metaphysics of mathematics. She argues that we can understand
what mathematics is and how it is justified by looking at mathematics and other sciences which
mathematicians routinely do address, and not metaphysics.” (McLarty 2013, p. 386)
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connection between beliefs justified [: : :] and what is actually the case” (Roland
2009, p. 71). Roland identifies this “what is actually the case” with “truth sim-
pliciter” (Roland 2007, p. 435), endorsing ontological realism and thus denying
the possibility of including Maddy’s ontologically agnostic account in his definition
of naturalistic epistemology.

But if, with the aim of providing an epistemology for mathematics in a
naturalistic manner, we take the facts of mathematical depth as “what is actually
the case,” in the sense of what is empirically the case, instead of the theoretic notion
of truth simpliciter, then I argue that we might be able to find a connection between
our mathematical beliefs and an objective reality, as Roland demands, while staying
within Maddy’s account.

As I have proposed, the facts of mathematical depth could be seen as the
empirical facts of mathematical practice, objectively existing in the history of
mathematics and in its current practice. Considering these facts in this light allows
us to state the existence of a connection between mathematical beliefs we take to be
justified and “what is actually the case,” that is, the objectively existing facts of the
fruitful use of mathematical notions, statements, and theories. In Maddy’s approach,
the fact on the basis of which to judge the reliability of beliefs in mathematics are
these facts of mathematical depth and not the alleged ontology of mathematical
objects that is commonly posited as grounding the truth of mathematical statements.

In order to have an adequate explanation of the reliability of mathematical beliefs
in Maddy’s mathematical naturalism, we needn’t “think that beliefs [: : :] are true in
a robust sense” (Roland 2007, p. 435), as Roland believes, but only that they are
linked in a robust sense to the objective, empirical facts of mathematical depth.

The “truth-makers” of mathematical statements (i.e., “that in virtue of which
mathematical beliefs (statements, etc.) have the truth values they do” (Roland 2009,
p. 72)), which Roland requires for Maddy’s epistemology of mathematics to be
considered naturalistic, could now be seen as corresponding to the empirical facts of
the successful use of mathematical notions and statements in mathematical practice.

With the facts of mathematical depth in place of ontological truth, we have the
“bridge” between “theory and the world” that Roland’s conception of epistemology
calls for (Roland 2007, p. 433) without being compelled to endorse a causal form of
realism.12

We are now able to answer Roland’s question about the reliability of math-
ematical beliefs without being forced to adopt a form of ontological realism,
which means we can offer an answer to the two objections he raised against
Maddy’s epistemological account for mathematics. We find this answer to Roland’s
criticisms within Maddy’s account itself, thanks to the introduction of the concept of

12Even the projectibility of predicates Roland (2009, p. 431) applied to terms denoting objects in
mathematical statements could still be there, because in Maddy’s account the successful use of
a mathematical notion, statement, or theory may be taken as a guide to future uses of the same
notion, statement, or theory in mathematical practice. In Maddy’s view, successful mathematical
practice relies on the knowledge of the history of mathematics and of the patterns of mathematical
depth that we discover studying and practicing mathematics.
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mathematical depth and through seeing its “facts” as the empirical, historical facts
of mathematical practice. This is why Maddy’s account can continue to be seen as
guaranteeing the reliability of mathematical beliefs in a deeply naturalistic way.

Maddy’s work shows that, in regard to mathematics, it is indeed possible to be a
naturalist without being a realist. For in Maddy (1997) and completely in Maddy
(2007b, 2011), Maddy applies to mathematics the radical naturalistic approach
that Quine applied to science. This is why I think Roland’s ontological criticism
is misplaced. I agree with Rosen (1999, p. 407) that Maddy’s naturalism rectifies
Quinean asymmetry: while Quine expects science to be completely autonomous
from any philosophical considerations, he still views mathematics as dependent
on empirical sciences, considering that mathematical statements need empirical
support to be proven. Maddy on the other hand extends Quinean naturalism to
mathematics, bestowing upon it methodological autonomy and independence from
any extra-mathematical considerations, be they philosophical or scientific.

I do not agree with Roland that a naturalistic approach, adopted within Quinean
tradition, forces us toward ontological realism with respect to mathematics. With
regard to the philosophy of mathematics, a naturalistic account surely commits us to
certain methodological Quinean (Quine 1969) standards (e.g., rejection of a priori
philosophical inquiries, a claim of continuity between philosophy and sciences,
employment of proper methods of inquiry for different scientific subjects), but it
does not seem to force us to choose a realist ontological position.

Maddy’s account does not in fact consider the ontological issue as being essential
to her approach to the philosophy of mathematics; what really matters is the
methodological statement of inquiry. This chapter’s attempt to clarify the concept
of mathematical depth moves in this practice-oriented direction, consistent with
Maddy’s naturalistic approach.

With regard to the disciplinary holism that Roland demands for any form of
naturalism, I should emphasize that the autonomy accorded to mathematics by
Maddy, criticized as not naturalistic, does not prevent her from establishing a fruitful
connection between mathematical work and the results of other scientific subjects.
Her frequent references to studies in psychology and cognitive sciences13 to support
her theory of mathematical reasoning demonstrate this. This is why I think that
Roland’s concern about the separation between mathematics and other sciences in
Maddy’s view is simply not grounded.

Recall, moreover, that in Roland’s argument disciplinary holism is essential to
naturalism in order to justify the possibility of espousing a causal form of realism
in any scientific domain. But now that we have argued for the possibility of a link
between mathematical beliefs and an empirically objective reality which assures
their reliability without being grounded on causal realism, disciplinary holism no
longer seems to be essential.

13Maddy (1997) referred to cognitive studies made by Hebb, Piaget, Phillips, and Gelman (Maddy
1997, pp. 58–67). On the other hand, Maddy (2007b) refers to more recent neuroscientific works
of Dehaene, Spelke, Wynn, and others (Maddy 2007b, pp. 264–269, 319–328).
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12.5 Conclusions

I briefly recalled the main features of Maddy’s mathematical naturalism in order to
present Roland’s reliability and ontological criticisms of her account.

Thanks to the introduction of the concept of mathematical depth and seeing its
“facts” as the empirical, historical facts of mathematical practice, I proposed an
answer to Roland’s objections that does not force us to abandon naturalism, as
Roland stressed. In light of this answer, Maddy’s account can continue to be seen as
guaranteeing the reliability of mathematical beliefs in a naturalistic way.

However, I submitted that the concept of mathematical depth needs some
important clarifications. In this respect, I suggested a possible manner in which the
notion could be developed further, also through future investigations.
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Chapter 13
On the Indispensable Premises
of the Indispensability Argument

Marco Panza and Andrea Sereni

13.1 Introduction

The recent debate on the indispensability argument (henceforth, IA) in the
philosophy of mathematics features an impressive number of versions of the
argument, all somehow pointing back to what is referred to as ‘the Quine-Putnam
indispensability argument’, that is to Quine’s several scattered remarks on the
subject and to Putnam’s (1971) first proper formulation of a version of IA. It is thus
legitimate to wonder whether all (or, at least, most of) the versions available on the
market can be really traced back to some minimal shared structure.

After rehearsing the most common stances towards IA, the main aim of this paper
is to offer four minimal versions of IA, minimal in so far as they feature, according
to classifications that will be explained below, the fewest or least controversial
premises needed to gain the desired conclusion(s). We will submit that different
formulations of IA on the market, related to the common stances to be discussed,
could be retrieved from the minimal arguments to be offered.1

1This paper builds on the analysis of indispensability arguments presented in Panza and Sereni
(2013), Chaps. 6–7; some of its conclusions, together with the four versions of the minimal
indispensability argument discussed in Sect. 13.3, have thus been anticipated in that work.
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Despite its methodological character, the following inquiry will have as a sub-
stantive conclusion that, in order to obtain the desired conclusions, some commonly
required assumptions—namely, confirmational holism and naturalism—will prove
dispensable.

Since it is not our intention in this occasion to take a stance in the debate on
indispensability, many of the criticisms or defences of IA will not be discussed.

The structure of the paper is as follows. Section 13.2 introduces the issue by
reference to the debate by considering some representative versions of the argument.
Section 13.3 offers a taxonomy of four minimal versions of IA. Section 13.4
focuses on the notion of (in)dispensability. Section 13.5 considers in details which
assumptions and notions are really needed if one wishes to endorse the minimal
arguments. Section 13.6 indicates how the representative versions considered in
Sect. 13.2 can be retrieved from the minimal arguments. Section 13.7 offers
concluding remarks on the bearing of the present inquiries for the philosophical
significance of IA.

13.2 The Indispensability Argument: Four Common Stances

A few expository remarks will help us to single out four common stances concerning
the structure and significance of IA that we take as representative of the ongoing
debate.

Putnam’s (1971) well-known passage is commonly assumed as the reference
formulation:

So far I have been developing an argument for realism roughly along the following lines:
quantification over mathematical entities is indispensable for science, both formal and
physical, therefore we should accept such quantification; but this commits us to accepting
the existence of the mathematical entities in question. This type of argument stems, of
course, from Quine : : : (Putnam 1971, p. 347)

Putnam wavers, at different places, between considering the conclusion of
the argument to be a form of platonism and rather a conclusion in favour of
mathematical realism.2 For our present purpose, it suffices that the two theses are
acknowledged as distinct and both plausible: by platonism we mean the thesis that
there exist objects of a certain sort, namely, such that our current mathematical
theories can be taken to be about them, in short that there exist mathematical
objects3; by mathematical realism we mean a particular form of semantic realism,

2Cf. Liggins (2008) for a reconstruction.
3In fact, we believe that other possible (and possibly more plausible) forms of platonism could
be fashioned, and that the thesis just mentioned should then be more correctly called ‘ontological
platonism’. However, insofar as it is not part of our present aims to argue for such distinction,
we avoid this specification and call it ‘platonism’ tout court. Nothing in this thesis mandates that
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i.e. the thesis that the statements encompassed by our current mathematical theories,
or better its theorems or consequences, are true (without specific commitment to
what makes them true).4

Putnam’s own views apart, his quotation above is commonly seen as a paradig-
matic example of an argument for platonism. Prima facie, the Putnam’s version
of the argument appeals only to two notions, indispensability and quantification.
However, many believe that beside these notions, IA relies on some additional theses
of Quinean provenance: confirmational holism and naturalism.5 The most debated
formulation of IA that is faithful to this conception has been advanced by Mark
Colyvan6:

i) We ought to have ontological commitment to all and only those entities that are
indispensable to our best scientific theories;

ii) Mathematical entities are indispensable to our best scientific theories;
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iii) We ought to have ontological commitment to mathematical entities

According to Colyvan, ‘the crucial first premise follows from the doctrines of
naturalism and holism’.7 Naturalism would be required in order to justify the only-
direction of the implication, which, as Colyvan himself acknowledges,8 is, in fact,
redundant for drawing the conclusion, and confirmational holism to justify the all-
direction. Whether this is so hinges on how the notions involved are defined.

So far, we are confronted with representatives of two different stances on IA.
On the one hand, Putnam is concerned with logico-syntactical features of scientific
theories and their expressive power: what is at stake is whether some particular
vocabulary is necessary in order to state some given scientific laws.9 On the other
hand, Colyvan’s formulation widens the scope by taking into account general
concerns in the philosophy of science, especially as regards the relation between
philosophy and science and the way in which empirical evidence is meant to confirm
scientific theories.

mathematical objects are abstract, and indeed, though this is generally (or at least, often) admitted,
IA can support the thesis without going into details about the nature of mathematical objects.
4Semantic realism as conceived here is distinct from what Michael Dummett called ‘realism’
(see, e.g. Dummett 1978): the latter is a thesis about statements possessing an objective, mind-
independent truth value, whereas the former is the claim that the relevant statements are true
(possibly in a mind-independent way, but not necessarily).
5For Quine’s endorsement of these theses, cf. for instance Quine (1951), and Quine (1975),
respectively.
6Colyvan (2001, p. 11). Cf. also Resnik (1995, p. 430).
7Colyvan (2001, p. 12).
8Cf. Colyvan (2001, p. 12): ‘[ : : : ] I should point out that the first premise, as I’ve stated it, is a
little stronger than required. In order to gain the given conclusion all that is really required in the
first premise is the ‘all,’ not the ‘all and only, ’ I include the ‘all and only, ’ however, for the sake
of completeness and also to help highlight the important role naturalism plays in questions about
ontology, since it is naturalism that counsels us to look to science and nowhere else for answers to
ontological questions’.
9Cf. §§ V to VIII of Putnam (1971).
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There is yet a third stance on IA. Hartry Field first suggested that a particular
version of IA involves indispensability ‘for explanations’ (1989, p. 14): if we
have a theory that we take to be our best explanation of a given set of (arguably
empirical) phenomena, and this theory includes some statements to the extent that
certain (sorts of) objects exist, then we ‘have a strong reason to believe’ (ibid.,
p. 15) in the truth of the statements in question and consequently (pending a
clarification of the ontological import of existential statements) in the existence of
the relevant (sorts of) objects. This requires that inference to the best explanation
(IBE) is considered a reliable principle. This third stance on IA thus equates (faithful
to some of Quine’s remarks, as well as to Putnam’s overall picture) arguments
for mathematical (ontological) realism and arguments for scientific realism about
unobservable entities, where IBE is often appealed to. As a result of the recent
vast debate on explanation, and mathematical explanation in particular,10 Alan
Baker (2009, p. 613) has claimed that ‘for the purposes of establishing platonism
[ : : : ] it needs to be shown that reference to mathematical objects sometimes plays
an explanatory role in science’. He has thus offered the following ‘Enhanced
Indispensability Argument’ (ibid.):

i) We ought rationally to believe in the existence of any entity which plays an indispens-
able explanatory role in our best scientific theories;

ii) Mathematical objects play an indispensable explanatory role in science;
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iii) Hence, we ought rationally to believe in the existence of to mathematical objects.

Finally, we have a fourth stance, represented by arguments that build on
pragmatic considerations, or generally considerations concerned with scientific
practice and its needs. The most representative argument in this case has been
presented by Resnik (1995, pp. 169–171, 1997, pp. 46–47)11:

i) In stating its laws and conducting its derivations science assumes the existence of many
mathematical objects and the truth of much mathematics.

ii) These assumptions are indispensable to the pursuit of science; moreover, many of the
important conclusions drawn from and within science could not be drawn without
taking mathematical claims to be true.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iii) So we are justified in drawing conclusions from and within science only if we are

justified in taking the mathematics used in science to be true.
iv) We are justified in doing science.
v) The only way we know of doing science involves drawing conclusions from and

within it.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
vi) So, we are justified in taking that mathematics to be true.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

vii) So, mathematics is true.

10Cf. Hafner and Mancosu (2005), Baker (2005, 2009), Mancosu (2008)
11The argument is presented in slightly different terms in the two occasions. We are here using the
one in Resnik (1995).
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Setting apart any consideration about the validity of this version of IA, let us just
notice that it differs from the previous versions to the extent that, as Resnik himself
claims, it does not depend on the claim that ‘the evidence for science (one body
of statements) is also evidence for its mathematical components (another body of
statements)’, but merely requires that ‘the justification for doing science (one act)
also justifies our accepting as true such mathematics as science uses (another act)’.12

More recently, Azzouni (2009) has offered a reading of IA that is also based,
though in rather different terms, on pragmatic considerations. More specifically,
in a vein similar to ours (cf. footnote 17 below), Azzouni offers the following
enthymematic ‘blueprint’ for IA:

Premise: Certain statements that quantify over mathematical entities are indispensable to
science.

Conclusion: Those statements are true.

as underlying a family of arguments usually referred to as ‘Quine-Putnam indis-
pensability argument’. He then proposes to expand on this blueprint in order to
offer what he labels the ‘Assertoric-use QP’, a version of IA based on the fact that
what he calls the ‘assertoric use’ of mathematical statements is indispensable to
science and that this use commits speakers to the truth of the statements in question.
We will consider Azzouni’s proposal, together with what we take to be a plausible
reconstruction of his Assertoric-use QP, in more details below in Sect. 13.6.

For the time being, it is important to acknowledge that four major stances
emerge when looking at the different versions of IA actually on the market, hinging,
respectively, on logico-syntactic considerations related to expressive power (as in
Putnam), on general views on science and confirmation (as in Colyvan), on the
notion of explanation (as in Baker) and on features of scientific practice (as in
Resnik or Azzouni). It is relevant to emphasize this point, since if minimal versions
of IA are to be offered, they should at least be compatible with these common
stances. It is not our intention to offer a minimal formulation corresponding to each
argument representative of these stances. However, we will discuss to which extent
and how it is possible, from the minimal versions to be offered, to retrieve something
very close to them, or at least as close as to fit with the same stances.

13.3 The Minimal Indispensability Argument(s)

Since our aim is to establish, with respect to available versions of IA, what a minimal
argument needs retain and what it can let go, we better start by considering the
features of Colyvan’s argument, which appears to be the most theoretically loaded
version among the ones reviewed above. Here are some of its essential features.
Firstly and obviously, it appeals to some notion of indispensability. Secondly, it is an

12Resnik (1995, p. 171).
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argument for platonism, and not just for semantic realism. Thirdly, it is an argument
stated in epistemic terms on two scores: on the one side, its premises and conclusions
deal with what we ‘ought to’ believe, or what entities we ‘ought to’ be ontologically
committed to; on the other side, it deals with the notion of justification, since ‘best’,
in ‘best scientific theories’, should be understood as ‘best justified’.13 Fourthly, it
appeals to the notion of ontological commitment; here, as in most cases, Quine’s
criterion ([QC]) is the relevant one.14 Fifthly, it is claimed to rely, for the justification
of its first premise, on naturalism and, sixthly and finally, on confirmational
holism.

Are all of these features essential in order to obtain a version of IA? Obviously,
any such version needs to retain the first feature: it requires appeal to some notion
of indispensability. But things are different with the other features.

Clearly, some criterion is needed for selecting those scientific theories to which
the argument is meant to apply. One can, however, either appeal here to epistemic
notions or to non-epistemic notions, such as truth. We thus get a first broad
distinction between arguments stated in epistemic or in non-epistemic terms.

Further, as already remarked, IA can be an argument for mathematical realism,
rather than platonism, and we need to keep the two possibilities apart.

We thus end up with four possible varieties of IA: as an epistemic argument for
mathematical realism, as an epistemic argument for platonism and, respectively, as
a non-epistemic variety of each.

Let us begin with epistemic versions of IA for mathematical realism. As regards
the selection criterion for theories, the most natural choice is for a criterion based
on justification.15 Justification, however, comes in many forms. For the time being,
our appeal to it will be independent of any particular theory of justification. We
could even not assume that justification for a theory is justification in believing
the theory true: having justification for a scientific theory could be understood as

13Though Colyvan does not explicitly equate ‘best’ with ‘best justified’, the list of scientific virtues
he considers in Colyvan (2001, pp. 78–79) for a scientific theory to count as good—among which
are empirical adequacy, consistency, simplicity and parsimony, unificatory and explanatory power,
boldness and fruitfulness and formal elegance—makes clear that he (like other supporters of IA)
has much more in mind than simply currently accepted theories. Notice, in passing, that the ‘ought
to’, as opposed to the ‘best justified’, has both a permissive and a prescriptive component. We will
not put much weight on the latter.
14Cf. Colyvan (2001, pp. 22–24) for some qualifications. Briefly, [QC] states that the ontological
commitment of a theory T is given by the objects that must be counted in the range of the
objectual quantifiers in the existential theorems of (the canonical reformulation of) T. [QC] plays
in Colyvan’s argument the same role that quantification plays in Putnam’s argument. Cf. Quine
(1948).
15Notice that a weaker notion, like that of acceptance of a scientific theory, modelled, for example,
on the lines suggested by Van Fraassen (1980), will not be strong enough to deliver the required
mathematical realist or platonist conclusion. We will consider later the possibility of appealing
merely to confirmation rather than justification.
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simply having reasons, even only pragmatic ones, for adopting a scientific theory in
ordinary scientific practice—e.g. because it is instrumentally helpful, or predictively
accurate, or the like. This would lead to an argument along the following lines:
we have a justification for some scientific theories; among them, some are such
that some mathematical theories are indispensable to them; we have a justification
for these scientific theories only if we a have a justification for the mathematical
theories that are indispensable to them; therefore, we have a justification for the
mathematical theories indispensable to these scientific theories.

No mention of truth is made here. This is prima facie consistent with Colyvan’s
argument, where no mention of truth is made either. Admittedly, however, in the
debate on IA—and in Colyvan’s discussion too—justification is understood as
justification for the truth of a theory. We can, then, specify the argument accordingly
and get the following version of IA:

Realism, epistemic [RE]

i) We are justified in believing some scientific theories to be true;
[We are justified in believing T is true]

ii) Among them, some are such that some mathematical theories are indispensable to them;
[M is indispensable to T]

iii) We are justified in believing true these scientific theories only if we are justified in
believing true the mathematical theories that are indispensable to them;

[We are justified in believing T true only if we are justified in believing M true]
[RE]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iv) We are justified in believing true the mathematical theories indispensable to these scientific

theories.
[We are justified in believing M true]

In what follows, we will take [RE] as the reference formulation for a minimal
epistemic version of IA for semantic realism. [RE] is nothing but a specification
of the more general argument sketched above, in which justification need not be
justification for truth. Should we rest content with that more general argument,
however, we could hardly obtain an argument for mathematical realism, for we
would lack, unless further premises are added, any link between the justification
of a theory and its truth (this is why we do not consider that version of the argument
as one of our minimal versions of IA).

Since no mention of mathematical objects is made in [RE], [QC]—as any
alternative criterion—is needed neither in the formulation nor in the justification of
its premises. [RE] is neutral as to whether it is the existence of mathematical objects
that makes the relevant mathematical theories true. [RE] would be a desirable
version of IA for all those who believe in the objectivity and truth of mathematics,
but would not by this fact alone qualify themselves as platonists.16

16Putnam’s (1967) equivalent descriptions and Hellman’s (1989) modal structuralism are two well-
known candidates. [RE] seems also to respect the basic ideas underlying the criticisms that Pincock
(2004), Azzouni (2004), and Paseau (2007) move against the standard platonist versions of IA.
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Despite this, from [RE], an epistemic version of IA for platonism can be easily
obtained by adding a premise introducing some appropriate criterion of ontological
commitment:

Platonism, epistemic [PE]

i) We are justified in believing some scientific theories to be true;
[We are justified in believing T is true]

ii) Among them, some are such that some mathematical theories are indispensable to them;
[M is indispensable to T]

iii) We are justified in believing true these scientific theories only if we are justified in
believing true the mathematical theories that are indispensable to them;

[We are justified in believing T true only if we are justified in believing M true]
iv) We are justified in believing true a mathematical theory only if we are justified in believing

the objects it is about to exist;
[We are justified in believing M true only if we are justified in believing the objects it

is about to exist]
[PE]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
v) We are justified in believing the objects which the indispensable mathematical theories are

about to exist
[We are justified in believing the objects M is abOut to exist]

Indispensability arguments are most of the time cast in epistemic terms. As
Colyvan himself stresses, this epistemic character is due to a conception of ontology
as a prescriptive and normative discipline: it tells us what we ought to believe to
exist, or, in other terms, what we are justified in believing to exist.17 However, one
might rather conceive of ontology as a descriptive discipline and ask for arguments
whose conclusions tell us that certain (sorts of) objects do exist, not just that we
are justified in believing them to exist. Let us then formulate the arguments in a
non-epistemic fashion:

Realism, non-epistemic [RnE]

i) There are true scientific theories;
[T is true]

i) Among them, some are such that some mathematical theories are indispensable to them;
[M is indispensable to T]

iii) These scientific theories are true only if their indispensable mathematical theories are
themselves true;

[T is true only if M is true]
[RnE]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iv) The mathematical theories indispensable to these scientific theories are true18

[M is true]

17Cf. Colyvan (2001, p. 11). Cf. also footnote 8 above.
18Those who believe the first premise to be too harsh can still accept a weaker formulation in which
that premise is discharged and the conclusion is conditional in form, i.e. ‘If there are true theories,
then : : : ’.
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Platonism, non-epistemic [PnE]

i) There are true scientific theories;
[T is true]

ii) Among them, some are such that some mathematical theories are indispensable to them;
[M is indispensable to T]

iii) These scientific theories are true only if their indispensable mathematical theories are
themselves true;

[T is true only if M is true]
iv) A mathematical theory is true only if the objects it is about exist;

[M is true only if the objects M is about exist]
[PnE]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
v) The objects which the indispensable mathematical theories are about exist

[The objects M is about exist]

All these four minimal versions of IA are schematic, in more than one sense.
First of all, ‘T’ and ‘M’, in the bracketed version of each premise, can be substi-
tuted, respectively, with names of particular scientific and mathematical theories.
Furthermore, the meaning of ‘indispensable’, ‘justification’ and ‘true’ in all four
arguments can be specified in different ways, so as to get strictly different arguments
according to which specification is chosen. What is relevant is that the notions of
justification and truth, however specified, must be such that justification in believing
a theory true and truth itself are preserved under indispensability, however the latter
is specified on its turn. In arguments for platonism, moreover, premise (iv) can be
further qualified according to any preferred specification of the intuitive notion of
aboutness (in Quinean terms, that premise would be specified, according to [QC],
by reference to quantifiers and their domain).19

Prima facie, no such theses as naturalism and confirmational holism (or other)
seem to be explicitly involved in the minimal arguments. But it remains open
whether these (or other) theses are required, even as background assumptions, for
the soundness of these arguments; this must be discussed in more details, especially
if the relations between the minimal versions and the four arguments representative
of the stances discussed in Sect. 13.2 must be spelled out. We will first pause
to discuss the notion of (in)dispensability in the next section and then consider
which assumptions and notions are really involved in the minimal arguments. The
following discussion concerning both (in)dispensability and other relevant notions
will also help clarifying how several versions of IA can be retrieved from our
suggested minimal versions (cf. Sect. 13.6 below).

19Also Azzouni’s blueprint reported in Sect. 13.2 above could be thought to be schematic.
However, this is so in a different sense. Whereas our arguments are schematic in that they can
be turned into strictly different versions of IA by further specifying some of the notions involved,
Azzouni’s blueprint is rather a matrix from which explicit and logically valid versions of IA can
be obtained through the addition of other assumptions.
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13.4 The Relational Character of (In)dispensability

Despite its obvious relevance for IA, the notion of (in)dispensability has undergone
little specific analysis in the debate. What is exactly taken to be indispensable? And
to what? And what does it mean to be indispensable?

As regards the first question, different aspects or ingredients of mathematics
can and are taken into account in formulations of IA: the quantification over
mathematical ‘entities’ or (putative) ‘objects’ (like in Putnam (1971)); mathematical
entities or objects themselves, like in Colyvan (2001, p. 11) or Baker (2005) or
many others; the apparent reference to such entities or objects, like in Colyvan
(2001, p. 7); the assumption of the truth of some mathematical statements (viz.,
statements involving mathematical vocabulary), like in Resnik (1995, pp. 169–171,
1997, pp. 46–48); mathematical vocabulary (which we take to be what is often
implicitly intended when authors use ‘apparent reference’), like in Colyvan (2001,
p. 16); some appropriate use of mathematical statements, like in Azzouni (2009); or
finally, mathematical theories.

It is possible to maintain that there are significant differences stemming from
these allegedly alternative choices. Those who believe so should also consider
minimal schematic versions of IA in which what is taken to be indispensable is
left unspecificed. We will not dwell here on this matter, as well as on other possible
parameters that fully schematic version of IA can involve (for instance, parameters
specifying whether indispensability is constrained by certain goals we want our sci-
entific theories to achieve), since we consider this at length elsewhere (cf. Panza and
Sereni forthcoming). Here, we rather assume that there is a common idea underlying
all the mentioned options regarding what is to be taken as indispensable, namely,
that the relevant scientific theories have an essential recourse to a vocabulary fixed
by some mathematical theories and then to the notions that this vocabulary is sup-
posed to convey. As far as what is taken to be indispensable is some appropriate use
of mathematical statements, we take it that what is relevant is that of the statements
of a mathematical theory, or statements involving the mathematical vocabulary fixed
by this theory, it is possible to make this appropriate use—while (appropriately)
using (the statements of) a scientific theory. So also this option seems to reduce,
with this proviso, to the option according to which it is the use of theories to be
indispensable (to other theories; see below the answer to the second question).20

Moreover, it seems to us that by literally accepting the option that what is indispens-
able are mathematical entities or objects themselves, one is open to an obvious risk
of circularity (unless one is ready to concede that these entities or objects could be
indispensable as such without existing). Here, thus, we will rest content with taking
mathematical theories as what is said to be indispensable in IA, though leaving open
the possibility of understanding this, when more details are given, in different ways.

20A different issue is whether an argument based on the indispensability of the use of theories can
be retrieved from arguments based on the indispensability of theories tout court: we will come
back to this in Sect. 13.6.
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Parallel considerations also apply to the second question. We will thus rest
content with taking other theories, typically scientific ones, to be that for which
mathematical theories are said to be indispensable in IA, although we leave open,
again, the possibility of understanding this, when more details are given, in different
ways.21

The third question seems to us much more relevant. Let us focus on that, then.
As will be clear, this will also help explain how some common versions of IA can
be retrieved from the minimal versions through appropriate specifications of this
notion.

What does it really mean that a theory is indispensable to another? Let T be a
scientific theory and M a mathematical theory employed in the formulation of T. Let
us call, for short, a statement employing the vocabulary of a theory M an ‘M-loaded
statement’. It seems to us obvious to take M to be indispensable to T if it is not
possible to obtain from T a theory T0, equivalent to T according to some specified
equivalence relation, in which M-loaded statements do not occur. But, then, given
any version of IA, in order to specify the indispensability condition involved in it,
one has to choose the appropriate equivalence relation according to which T0 is to
be taken as equivalent to T. In most cases, it seems to be tacitly admitted that the
relevant equivalence relation is such that if T0 is equivalent to T according to it, then
T0 preserves the descriptive and predictive power of T. This suggests taking this
relation to be something like the relation of having the same empirical adequacy or
that of having the same observational consequences. Still, other choices could be
pertinent.

Making this choice will not be enough, however, since it is also important
to make sure that the equivalence between T and T0 is not obtained by merely
formal gerrymandering. This requirement captures Field’s suggestion that T0 has
to be ‘reasonably attractive’ (1980, p. 8) or Colyvan’s suggestion that it must be
‘preferable’ to T (2001, p. 77). Craig’s Theorem is, for example, a well-known
example of a purely formal method for obtaining from any (recursively enumerable
theory) theory T involving M-loaded statements a (recursively axiomatizable theory)
theory T0 that involves no such statement and has the same observational content.22

Attractiveness and preferability are aim-specific notions, to be decided on
broadly scientific criteria case by case. We can express this point in full generality

21Whether we should consider a mathematical theory M indispensable to a theory T when only
some parts of M are as a matter of fact used for the formulation of T depends, among other things,
on whether the employed part of M is such that it can be considered an independent (sub-)theory
of M. This is what Peressini (1997) labels ‘the problem of the unit of indispensability’.
22According to Craig’s Theorem (1956), given a recursively enumerable theory T, and a partition
of its vocabulary into an observational one, o, and a theoretical one, t, then there exists a recursively
axiomatizable theory T0, whose only non-logical vocabulary is o, comprising all and only the
consequences of T expressible in o. Craig himself warned against the philosophical import of his
result, claiming that the theorems of T0 obtained by his re-axiomatization method are not more
‘psychologically or mathematically [ : : : ] perspicuous’ than those of T, this being ‘basically due to
the mechanical and artificial way in which they are produced’ (p. 49).
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by saying that T0 has to be equally or even more scientifically virtuous than T, where
the appropriate criterion of virtuosity will be fixed considering common scientific
virtues, according to our specific purpose.

We can thus offer the following general clarification of the notion of
(in)dispensability:

[IND] (In)dispensability
A theory M is dispensable from a given scientific theory T if and only if there is

a scientific theory T0 that does not include M-loaded statements and that:

a) is ©-equivalent to T, where © is an appropriate equivalence relation;
b) is equally or more virtuous than T according to an appropriate criterion of virtuosity ’.

If T includes M-loaded statements, and there is no scientific theory T0 satisfying
the above conditions, then M is indispensable to T.

A noteworthy consequence of this definition is that common talk of
(in)dispensability is partly inaccurate. No theory is (in)dispensable tout court
to another theory, but only relative to a certain equivalence relation and a
criterion of virtuosity. We should better speak of ©-’-(in)dispensability, rather
than (in)dispensability simpliciter. (In)dispensability is an essentially relational
notion.23

According to which equivalence relation is selected, IA can have different
philosophical significance. Some minimal notion of indispensability can be thought
of, if the equivalence relation © is chosen on logico-syntactical grounds (e.g. if it
is taken to be the relation of having the same expressive power, i.e. of including
either the same theorems or definitional paraphrases of them). But more demanding
notions can be thought of. For instance, one could suggest using an equivalence
relation such as that of having the same explanatory power, or cognate ones. Should
theorists such as Field and Baker, building on the third of the four stances mentioned
in Sect. 13.2, be willing to endorse any of the minimal IA suggested above, they
could easily obtain a specification of them based on the notion of explanatory power:
once © is appropriately specified in this way, it will straightforwardly follow that M

is indispensable to T only if it plays an indispensable explanatory role in T. We will
come back to this below.24

23Colyvan’s discussion of ‘the role of confirmation theory’ in his (2001, pp. 78–81) hints to the
relational character of the notion of preferability. We take our clarification of (in)dispensability to
improve on that suggestion.
24As pointed out to us by an anonymous referee, our schematic definition of (in)dispensability
assigns no special role to the notion of applicability of a mathematical theory. It goes without
saying that we acknowledge the greatest importance to the problem of the applicability of
mathematics and to its role within the debate concerning IA, although it is impossible to discuss
these issues here. We do believe, however, that, although the two notions will be certainly
connected eventually, they can be beneficially treated separately at a general level of analysis as
ours. Whether and how a particular conception of applicability affects a given version of IA—either
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13.5 What Does It Takes to Be an Indispensability
Argument?

In this section we explore which assumptions or theoretical ingredients generally,
beyond the notion of (in)dispensability, are required in order either to formulate
or to endorse one of the minimal versions of IA presented above. We begin by
considering the role of doctrines such as naturalism and confirmational holism.
On a fairly common understanding—and in accordance with working definitions
to be given below—these doctrines are only relevant for epistemic argument, being
concerned as they are with the justification of scientific theories. Other assumptions
will turn out as involved in non-epistemic arguments too.

13.5.1 Confirmational Holism and Naturalism

Nothing—and a fortiori naturalism and holism—is required, in [RE] or [PE], to
justify an all-and-only clause like that in Colyvan’s argument, simply because there
is no such clause to be justified at all. However, these doctrines may still be thought
to be necessary conditions for justifying some of the premises of those arguments.
A related concern is whether either doctrines might represent sufficient conditions.

Apart from some aspects to be considered shortly, we will take for granted a
general understanding of the notions involved (and of the vast debate concerning
their proper characterization) and will merely state them in a convenient form
for future reference, taking it that these formulations are those that philosophers
concerned with IA have most commonly in mind:

[CH Confirmational Holism:][Since the appreciation of empirical evidence is in no way
a matter of comparing a single fact with a single hypothesis,] the confirmation of a
single hypothesis or of a system of hypotheses comes together with (or entails) the
confirmation of a larger net of hypotheses (possibly of the whole net of hypotheses that
our knowledge consists in).

[NAT Naturalism:][Since scientific theories are the only source of genuine knowledge,]
we are justified in believing to be true only scientific theories, or other theories (or
statements) whose truth follows from the truth of some scientific theories.

In what follows, we assume that it is legitimate to talk about the justification of
mathematical and scientific theories independently of whether [CH] or [NAT] turns
out to be necessary or unnecessary assumptions for the justification of any premise
in the minimal arguments: [NAT], by itself, tells us only which sort of theories can
be true, but is not taken as constitutive of the notion of justification; and whereas

by facilitating its conclusion or by preventing it—is, indeed, something that we believe will have
to be considered case by case, according to versions of the argument appropriately specified so
to involve, for instance, one’s preferred notion of applicability in the specification of either the
equivalence relation © or the criterion of virtuosity ’.
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confirmation could be seen as constitutive of the justification of empirical theories,
the way in which confirmation is accrued need not be such: even if confirmation
is holistic, the claim that a scientific theory is justified does not presuppose by
itself [CH].

If one wishes, [CH] and [NAT] could be specified further in order to have a dis-
tinctive focus on ontology and would thus state, respectively, that the confirmation of
a single hypothesis or of a system of hypotheses comes together with (or entails) the
confirmation of the existence of all the entities that are quantified over in a larger net
of hypotheses (possibly in the whole net of hypotheses that our knowledge consists
in) and that we are justified in acknowledging the existence only of those entities
that are quantified over in our scientific theories. In these particular formulations,
naturalism and holism could be taken to be explicitly stated—not just posited as
background assumptions—in the first premise of Colyvan’s argument.

As stated, [NAT] entails the thesis that our scientific theories are our only source
of genuine knowledge about the world. Many versions of naturalism are available,
but in order to make it both plausible and relevant to IA, one should steer clear from
at least two readings.

On the one reading, naturalism is the too strong thesis, almost indistinguishable
from nominalism, that only non-abstract entities can be acknowledged to exist. Both
what Colyvan (2001, Chap. 3) calls ‘Eleatic Principle’ and the version of naturalism
endorsed by, for example, Weir (2005) and Armstrong (1997, p. 5) are cases in point.
We agree with Colyvan that if naturalism is involved in IA at all, it cannot be of this
kind, since it stands in clear contradiction with the latter’s conclusion.

On another reading, naturalism can be too weak to be relevant to IA. In discussing
Quinean naturalism, Colyvan (2001, pp. 23–24) distinguishes two strands: the ‘No
First Philosophy Thesis’, this being the (normative) thesis that in approaching
‘certain fundamental questions about our knowledge of the world’ we should ‘look
to science (and nowhere else) for the answers’, and the ‘Continuity Thesis’, this
being the (descriptive) thesis that ‘philosophy is continuous with science and that
together they aim to investigate and explain the world around us’. Colyvan himself
argues that these two theses are intimately related in a complex way. One thing, how-
ever, should be clear, beyond Quinean exegesis. If the Continuity Thesis is meant
to claim that both science and philosophy, where this involves a priori methods of
inquiry, are our only legitimate sources of knowledge about the world, the ensuing
version of naturalism will not be suitable to the formulation of any empiricist
argument. It can be suitable only in so far as one also adds that philosophy should
abandon its traditional a priori methods and become a genuinely scientific (in the
sense of empirical sciences) enterprise. But once this is added, empirical science and
philosophy become utterly indistinguishable, and we come back to [NAT], with the
only difference that in this new framework there is no philosophy left to be opposed
to empirical sciences. The claim expressed in [NAT] seems to us to represent the
most plausible reading of naturalism adequate for the formulation of an empiricist
argument, as IA has been traditionally understood by Quine and his heirs. Notice,
in passing, that we do believe that the ‘only’ in the formulation of [NAT] is crucial
in order to distinguish naturalism from scientific realism (more on this below).
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It now remains to be seen whether [CH] or [NAT] is either necessary or sufficient
in order to justify any of the premises in [RE] and [PE]. Premises (ii) of each
argument, as well as [PE]’s premise (iv), are beyond any suspect of guilty here.25 So
we better concentrate on premises (i) and (iii), common to both arguments. Premise
(i) is liable to the charge of surreptitiously appealing to naturalism, whereas premise
(iii) is liable to the charge of surreptitiously appealing to holism. Let us consider the
latter first.

13.5.2 Can We Dispense with Confirmational Holism?

One could maybe advance a simple way to settle the question whether endorsing
holism is necessary for endorsing premise (iii) of [RE] or [PE]. It would consist
in suggesting that the relevant form of holism we are to consider in connection
with [RE] or [PE] is not, properly speaking, confirmational holism, but some sort
of holism concerning justification, and that this form of holism just consists in
the claim that justification of a theory T whatsoever transmits to any other theory
indispensable to T. In this case, the very claim that the justification of a scientific
theory S transmits to a mathematical theory M indispensable to S would reduce to a
mere instance of such a version of holism, so that the latter would be sufficient, yet
not necessary, for endorsing this claim and, then, premise (iii) of [RE] or [PE].

Moreover, such a form of holism would not only be different from that which
is usually at stake when the relation between holism and IA is discussed, which is
confirmational holism proper, that is, a form of holism specifically concerned with
confirmation, rather than with justification in general; it would also be a quite Pick-
wickian form of holism, since it would merely require that justification transmits
from a theory T to another theory so intimately connected to it as the indispensability
of the latter for the former implies. Of course, in order to admit that this is so, one
should maintain that indispensability is so specified as to warrant this transmission.
Still, this is not the point here. What is relevant is rather that such a form of holism
would restrict the transmission of justification from theory to theory to a case in
which the relevant theories are related by a certain sort of intimate connection.
But, if a proper form of holism of justification should be defended, it should rather
consist in claiming that justification transmits much more widely, along a larger
net of theories or hypotheses (possibly along the whole web of hypotheses that our
knowledge consists in), without constraints such as indispensability.

The situation would be even more outlandish if one argued that the relevant
form of holism consists in the claim that justification of a scientific theory S

transmits to a mathematical theory M indispensable to S (since it would be odd to
maintain that a sort of holism concerned with justification, in general, is restricted

25But cf. footnote 30, below.
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to the consideration of scientific and mathematical theories), or that confirmational
holism, as such, consists in the claim that justification of a scientific theory S

transmits to a mathematical theory M indispensable to S (since it would be odd
to maintain that confirmational holism generally concerns justification, rather than
confirmation). In this latter case, premise (iii) of [RE] or [PE] would just be the same
as confirmational holism, and it would be beyond doubt that endorsing the latter is
necessary for endorsing the former. It seems however plain to us that confirmational
holism is a different and wider thesis: not only it is concerned with confirmation
rather than with justification, but also it is not merely limited to the case in which
confirmation is transferred from a scientific theory S to a mathematical theory M

that is indispensable to S.
All these considerations lead us to discard from the very beginning the simple

possibilities just evoked and to focus on confirmational holism proper, conceived as
the very claim [CH].

A first, preliminary, difficulty is the following. Apparently, there is a striking
asymmetry between the condition expressed in premise (iii) and that expressed in
[CH]: the latter seems to express an inference from a part to the whole, whereas
premise (iii) seems to express an inference from the whole to a part. We need
therefore to understand how the two might be related in any way relevant (either
sufficiently or necessarily) for lending support to premise (iii).

Under a quite weak reading of it, [CH] states that when a single hypothesis
h of a theory S is confirmed, the whole S is confirmed, which we express in
symbols by ‘C(h) ! C(S)’, where ‘C(x)’ stands for ‘x is confirmed’. If we admit
that a mathematical theory M involved in a scientific theory S counts as a cluster
of hypotheses of S, one can replace here ‘C(h)’ with ‘C(M)’, so as to get the
new implication ‘C(M) ! C(S)’. It is however clear that this implication (be it
admissible or not) is hardly useful in an argument whose purpose is that of building
on considerations about some scientific theories in order to draw conclusions about
some mathematical theories appropriately connected to the former. At most, the
reciprocal implication ‘C(S) ! C(M)’ could be relevant. But if a mathematical
theory M involved in a scientific theory S counts as a cluster of hypotheses of S,
and we take confirmation to be cumulative, i.e. to be such that a conjunction of
hypothesis (or of other items susceptible of confirmation) can only be confirmed by
confirming all its conjuncts (which entails, of course, that confirmation is d’emblée
also distributive: if a conjunction of hypothesis is confirmed, its conjuncts are so),
this implication is trivial, since, whatever confirmation might come to in details, it
is immediate to see that under this conception a theory cannot count as confirmed
as a whole if some of its hypothesis are not so. Hence, in this case, arguing for
this implication requires no appeal to any strong and/or controversial thesis, as
confirmational holism appears to be.

Things change, however, if a mathematical theory M involved in a scientific
theory S is rather taken to count as an auxiliary theory that S appeals to, without
encompassing it, or if confirmation is not taken to be cumulative (so that it cannot be
granted that it is distributive, d’emblée), namely, if it is admitted that a conjunction
of hypothesis (or of other items susceptible of confirmation) can be directly
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confirmed as a whole (i.e. without going through a confirmation of all its conjuncts).
Under both scenarios the implication ‘C(S) ! C(M)’ becomes far from trivial: it
asserts that confirming (in one way or another) a scientific theory S goes with (or
is sufficient for) confirming either an auxiliary mathematical theory M, which S ap-
peals to, but that is not included in S (under the former scenario), or a mathematical
theory M that S encompasses, even if the confirmation of M is not, as such, involved
in that of S (under the latter scenario). It seems to us that it is only under one of these
scenarios that there is room for plausibly considering the possibility that [RE] and
[PE] be somehow related with [CH], provided, of course, that a reading of [CH] be
adopted, according to which this thesis entails that confirming a scientific theory S

goes with (or is sufficient for) confirming an auxiliary mathematical theory M, which
S appeals to, but that is not included in S, or a mathematical theory M that S encom-
passes, within a framework in which confirmation is not taken to be cumulative.

It is not our purpose here to argue in favour either of one of these two possible
scenarios or of this reading of [CH]. We merely suppose, for the sake of the
argument, that both one of the former and the latter are admitted, while contending
that if this is not so (i.e. either both of the former or the latter are rejected), there
is no plausible reason for connecting [RE] and [PE] with [CH]. In other terms, we
admit, for the sake of the argument, that [CH] entails ‘C(S) ! C(M)’, provided that
S and M are, respectively, a scientific and a mathematical theory and that either S

appeals to M, without encompassing it, or S encompasses M but confirmation is not
taken to be cumulative. For short, in what follow we shall call ‘weak condition’ (for
reasons that will become clear below) the condition involved in this supposition,
namely, that either S appeals to M, without encompassing it, or S encompasses M,
provided that confirmation is not taken to be cumulative.

Now, also admitting, under this same condition, that ‘C(S) ! C(M)’ entails [CH]
would be quite implausible, since, however it might be conceived, confirmational
holism can certainly not be reduced to a thesis about the confirmational relation
between scientific and mathematical theories under some condition whatsoever. The
possibility still remains open, however, of admitting—for the sake of the argument,
again, but without falling into an evident oddity—that, when confronted with a
scientific theory S and a mathematical theory M, under the weak condition, one has
no other ground than [CH] for arguing that C(S) ! C(M). This is just what we admit.
For the purpose of our following discussion, we can then suppose that, under the
weak condition, endorsing [CH] is necessary for endorsing premise (iii) of [RE] and
[PE] if endorsing the implication ‘C(S) ! C(M)’ is necessary for this. As regards
the issue whether [CH] is sufficient for endorsing this same premise, things are
much simpler. Since, if [CH] entails ‘C(S) ! C(M)’ and ‘C(S) ! C(M)’ entails this
premises, then [CH] entails this premise. We can then limit our enquiry to this
question: is endorsing the implication ‘C(S) ! C(M)’, under the weak condition,
necessary or sufficient for endorsing premise (iii) of [RE] and [PE]?

Let us come back, then, to this premise. It states that justification to believe
a mathematical theory M, indispensable to a scientific theory S, to be true is a
necessary condition for having justification to believe that S is true. Let us call
this the ‘S-M justificatory connection under indispensability’. We can express it in
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symbols by: ‘IND(M, S) ! [J(S) ! J(M)]’, where ‘J(x)’ stands for ‘we are justified
in believing x true’. What we have to investigate is, then, whether the implication
‘C(S) ! C(M)’ (which, for the sake of the argument, we take as a consequence of
[CH]) is either necessary or sufficient to motivate the S-M justificatory connection
under indispensability, under the weak condition.

13.5.2.1 Is Confirmational Holism Necessary for Premise (iii)?

That confirmational holism might be unnecessary for IA has been already suggested,
on different grounds, by several authors (e.g. Resnik 1995; Dieveney 2007; Azzouni
2009), including Colyvan himself.26 Taking much of this discussion for granted,
what we are interested here is, as we have said, simply whether the implication
‘C(S) ! C(M)’ needs to be assumed in order to defend our minimal (epistemic)
versions of IA, especially whether it is required for upholding premise (iii) of [RE]
and [PE]. In order for this to be the case, there must be no way of supporting the
S-M justificatory connection without appealing to this implication. We shall argue
that it is not so.

A first problem arises straightaway. Both our admissions that [CH] entails
the implication ‘C(S) ! C(M)’ and that one has no other ground than [CH] for
arguing that C(S) ! C(M) have been conditioned by the weak condition. This last
condition is, however, much weaker than that involved in the S-M justificatory
connection under indispensability, namely, that M is indispensable to S. Hence, one
could contend that, in the case where the latter condition obtains, i.e. when M is
indispensable to S, one should rely on grounds other than [CH] for arguing that
C(S) ! C(M). Insofar as we are not at all willing to discard this possibility (that
we rather consider favourably, as we shall see later), we suggest to abstract from
the supposition that M is indispensable to S, by resting content with the weaker
supposition that S and M are, respectively, a scientific and a mathematical theory and
that the weak condition obtains. We want then, firstly, to argue against the view that,
under this condition, endorsing the implication ‘C(S) ! C(M)’—and then [CH]—
is necessary for endorsing that justification to believe M is a necessary condition
for having justification to believe that S is true. Let us call this last claim the ‘S-M

justificatory connection’, tout court. We can express it in symbols by: ‘J(S) ! J(M)’.

26Cf. Colyvan (2001, p. 37): ‘As a matter of fact, I think that the argument can be made to stand
without confirmational holism: it’s just that it is more secure with holism. The problem is that
naturalism is somewhat vague about ontological commitment to the entities of our best scientific
theories. It quite clearly rules out entities not in our best scientific theories, but there seems room for
dispute about commitment to some of the entities that are in these theories. Holism helps to block
such a move since, according to holism, it is the whole theory that is granted empirical support’.
For discussion of this passage and other issues connected with holism in Colyvan’s framework, cf.
Peressini (2003, pp. 220–222).
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We shall come back later to the question whether, under the weak condition,
the implication ‘C(S) ! C(M)’ (taken as a consequence of [CH]) is necessary to
motivate the S-M justificatory connection under indispensability.

Our first point is as follows. Under some conceptions of science, like falsifica-
tionism, the link between the confirmation of a scientific theory and its justification
is severed. In such conceptions, empirical confirmation of the (testable) hypotheses
of a scientific theory S, whatever advantages it may deliver and whatever it might
be considered to consist in, will not essentially contribute to the justification of S.
Still, even if one endorsed such views, one may of course still maintain, under the
weak condition, the S-M justificatory connection and, a fortiori, the S-M justificatory
connection under indispensability. Even if it is conceded that confirmation is
holistic, i.e. that [CH] is true, the fact that C(S) ! C(M) will simply play no role, in
these views, to support the claim that J(S) ! J(M), under whatever supplementary
condition.

Another way of showing that endorsing the implication ‘C(S) ! C(M)’ is
unnecessary for endorsing that the S-M justificatory connection, under the weak
condition, consists in noticing that this connection could be (vacuously) endorsed by
anyone considered to have reasons for taking M to be justified independently of any
consideration about its role in or with respect to S (and, then, a fortiori, of M’s being
indispensable to S). This would be the case, for example, for anyone that maintained
to have a priori reasons for believing in the necessary truth of M (and would then,
at most, take its indispensability to S together with S’s being justified as a welcome
by-product): the S-M justificatory connection (and, a fortiori, the S-M justificatory
connection under indispensability) will be motivated without appealing to holism,
nor to confirmation at all. This would make whatever empirical confirmation we can
have for S (be its nature holistic or not) immaterial to the justification of M. Such
an option will certainly not be welcomed by many supporters of IA. On the one
hand, many of them also adopt a form of naturalism that ban a priori arguments. On
the other hand, and most importantly, such an option seems to make IA pointless.
Still nothing prevents one from accepting IA even under these circumstances.27 In
any case, what all this shows is that the S-M justificatory connection is, in general,
conceptually independent of the notion of confirmation (and a fortiori of [CH]) and
is then so also under the weak condition. More generally, one of the basic idea
underlying IA (cf. e.g. Putnam 1975a, p. 74) that one cannot be a realist about
science and at the same time an antirealist about mathematics needs not be supported
by confirmational holism.28

27See Sereni (2013) for a way in which Frege may be taken to have reasons—based on consid-
erations on applicability—for endorsing premise (iii), despite being alien to a holist conception
of confirmation and to the idea that confirmation is relevant for the justification of mathematical
theories.
28Putnam would clearly endorse premise (iii). But he has recently dispelled any doubt that his
endorsing it hinges on holism: ‘I have never claimed that mathematics is ‘confirmed’ by its
applications in physics’ (cf. Putnam (2012, p. 188)).
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Le us concede, now, both that (against the first point) empirical confirmation is an
essential ingredient to the justification of a scientific theory (i.e. that J(S) ! C(S))
and that (against the second point) we are after a defence of the S-M justificatory
connection, under the weak condition, which is not based on having reasons
independent of M’s role in, or with respect to, S (possibly a priori ones) to believe in
the necessary truth of M. Since the S-M justificatory connection only consists in the
implication ‘J(S) ! J(M)’, for the other implication ‘C(S) ! C(M)’ to be necessary
for this connection, it must be the case that (J(S) ! J(M)) ! (C(S) ! C(M)). But
once one explores ways of defending this implication, it becomes apparent that it is
unmotivated.

Insofar as we have conceded that confirmation of S is a necessary ingredient
of its justification, what we have to consider is whether, under the weak condition,
[(J(S) ! C(S)) & (J(S) ! J(M))] ! (C(S) ! C(M)). Suppose that S is justified. Then,
for the premise of this implication, it follows that S is also confirmed and that also M

is justified. If this were enough for concluding that M is confirmed, under the weak
condition, our implication would be verified. But, why should be so? It would be so
if, once S is justified and then confirmed, the only way in which its justification could
be transferred to M, under the weak condition, were that S’s confirmation transferred
to M and that M’s confirmation were sufficient for its justification. But this is clearly
unmotivated. Why should the only way in which justification of S transfers to M,
under the weak condition, be through the transfer of S’s confirmation to M? We
have assumed that confirmation of S is necessary for its justification, not that it
is also sufficient; so it could well be the case that M’s justification be due, under
the weak condition, to ingredients of S’s justification other than its confirmation.
Moreover, why (both under the weak condition or not) should M’s confirmation be
sufficient for its justification? And why, anyway, should one be forced to admit that a
mathematical theory is open to confirmation, in order to conclude that M is justified
provided that S is so and the weak condition obtains?

The situation does not change essentially if the supposition that the confirmation
of S is a necessary ingredient of its justification is replaced by the other supposition
that the confirmation of S is sufficient of its justification. In this case, what we
would have to consider is whether, under the weak condition, [(C(S) ! J(S)) &
(J(S) ! J(M))] ! (C(S) ! C(M)). Suppose that S is confirmed; then, for the premise
of this implication, it follows that M is justified. Again, if this were enough for
concluding that M is confirmed, under the weak condition, our implication would
be verified. But, again, this is unjustified, and equally unjustified is the claim that
from these suppositions it follows that a mathematical theory is open to confirmation
(both under the weak condition or not).

All in all, the only way of claiming that [CH] is necessary for the justification
of the S-M justificatory connection under the weak condition is to assume that,
under this condition, the confirmation of S and the justification of M are sufficient
for the justification of S and for the confirmation of M, that is, that C(S) ! J(S)
and J(M) ! C(M), since it is easy to see that ‘[(C(S) ! J(S)) & (J(M) ! C(M))
& (J(S) ! J(M))] ! (C(S) ! C(M))’ is a tautology. Still, supposing that the con-
firmation of S is sufficient for its justification is utterly implausible, since it
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results in disregarding the well-known issue that empirical confirmation will not
distinguish between incompatible and still empirically equivalent theories, and that
in most cases what bestows justification on a theory is, besides confirmation, a
combination of many other virtues (some of which being even a priori), such
as simplicity, unificatory power, explicatory power, ontological parsimony and
fruitfulness. Moreover, supposing that the justification of M is sufficient for its
confirmation requires admitting that a mathematical theory is open to confirmation,
which is something that does seem to be required neither by the weak condition
nor by the S-M justificatory connection under this same condition. Of course, if this
were admitted and were also admitted that the justification of M is sufficient for its
confirmation, one could add a supplementary conclusion to [RE] to the effect that
the relevant mathematical theories are not merely justified but also confirmed, but
this is far from mandatory for [RE] to work.

Up to here, we have avoided considering M as indispensable to S, by merely
supposing that the weak condition obtains and investigating whether endorsing [CH]
could be taken as necessary for endorsing the S-M justificatory connection under
this condition. Let us now suppose that M is indispensable to S, as any version of
AI requires, and investigate whether endorsing [CH] could be taken as necessary
for endorsing the S-M justificatory connection under indispensability, that is, the
premise (iii) of [RE] and [PE]. It seems to us that, in this case, even if one accepts
that confirmation is relevant, necessary or even sufficient for the justification of M,
it becomes still more evident that [CH] is not required for the purpose. Indeed,
if we take M as indispensable to S, it is reasonable to expect that the grounds
for arguing that C(S) ! C(M) should be sought in that very fact, i.e. in whatever
intimate connection is established between S and M by the very fact that the latter
is indispensable to the former. This is not to take for granted that the notion of
indispensability, under whatever specification, together with the admission that M is
indispensable to S (under the relevant specification), will be able by itself to deliver
these grounds. As a matter of fact, arguing that it is so does should be one of the
main tasks of a supporter of IA. The point is just that, once the indispensability of
M to S is assumed, it is reasonable to expect that it, and it alone, would allow one
to claim that C(S) ! C(M), without requiring the help of [CH], which is, in fact, a
much wider claim not constrained by an indispensability condition.29

The unpalatable consequences of the assumption of [CH] in IA when compared
to actual mathematical practice—especially with the conscious use by scientists of
false assumptions and idealizations—has been stressed by Maddy (1992).30 Apart
from this, the main point, for us, is that [CH] is either irrelevant for AI (in the case

29Cf. the observation made at the very beginning of the present Sect. 13.5.2.
30Hellman (1999) attempts at avoiding these and others unpalatable consequences by suggesting
that even though confirmation is holistic and it is conceded that it is transferred from the testable
hypotheses of a theory to its inner parts, it should not be taken to transfer equally, so that different
parts of a theory, like those expressing idealized conditions or mathematical hypotheses, could be
taken to be confirmed to different degrees. Even if Hellman is right, his suggestion does not affect
our present points concerning the non-necessity of confirmational holism for endorsing IA.
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in which no clear appropriate connection between justification and confirmation is
admitted) or it is an overkill (in the case in which this appropriate connection is
admitted), since it delivers much more than it is actually required to defend IA, thus
being an unnecessarily strong thesis.31

Indeed, the mere fact that an appeal to indispensability is thought to be relevant—
which is already emphasised by the very expression ‘indispensability argument’
usually chosen to denote the argument under consideration—seems to be an
indicator that such an argument is essentially grounded on that notion, and not on
the much wider one of confirmational holism.

True, holism is usually required to rule out the possibility that statements about
theoretical or mathematical objects might be confirmation resistant, as opposed
to observational statements. However, if in [PE] one endorses, following Quine,
a criterion for ontological commitment that is uniform across statements—i.e.
based on the logical form of statements and content neutral—one will have as a
consequences that all entities whose existence is entailed by one’s criterion will
be said to exist, observational and theoretical alike. If one believes in the truth of
premises (i)–(iii) of [PE] and has a uniform criterion of ontological commitment,
confirmational holism, again, is not needed, for this purpose.32

13.5.2.2 Is Confirmational Holism Sufficient for Premise (iii)?

As regards the sufficiency of endorsing [CH] for endorsing premise (iii) of [RE] and
[PE], things are by far simpler. Since, if one supposes both that M is indispensable
to S and, merely, that the weak condition obtains, in order to draw the implication
‘J(S) ! J(M)’ from the other implication ‘C(S) ! C(M)’, it is then necessary and
sufficient to admit that J(S) ! C(S) and C(M) ! J(M). Hence, for premise (iii) of
[RE] and [PE] to follow from [CH] it is sufficient that confirmation for the relevant

31We shall come back in Sect. 13.5.2.2 to the sufficiency of [CH] and the conditions it requires in
terms of the connections between justification and confirmation.
32One could claim, however, that some form of holism (presumably non-confirmational in nature)
is somehow presupposed by any criterion of ontological commitment uniform across statements,
namely, in order to ensure that such a criterion uniformly applies both to scientific and to
mathematical theories. Against this latter supposition, one could argue, for example, that the notion
of aboutness employed in premise (iv) cannot be given a content-neutral characterization and does
not apply to mathematical objects. A case in point is Azzouni’s (1998, 2004) suggested alternative
to [QC]. One could think, then, that an appropriate form of holism is required for rejecting this
possibility. Notice, however, that this is far from necessary: even if some understanding of [QC]
or, better, some specification of the schematic notion of aboutness employed in premise (iv) of
[PE] and [PnE] (or of other schematic notions employed in some of our versions of IA) turned
out somehow to presuppose some form of holism, this would leave untouched that an epistemic
version of IA and, then, a fortiori, IA as such, do not necessarily require any appeal to it; at most
this thesis would be involved in some particular instances of such an argument (just as it happens
for IBE: cf. footnote 35 below).
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scientific theories is taken to be necessary for their justification, and confirmation
for the relevant mathematical theories is taken to be sufficient for their justification.
Moreover, if we suppose that, when confronted with the relevant theories S and
M, one has no other ground than [CH] for arguing that C(S) ! C(M), these two
conditions (taken together) are also necessary. Under this supposition, wondering
whether endorsing [CH] is sufficient for endorsing premise (iii) of [RE] and [PE]
reduces to wondering whether confirmation for the relevant scientific theories is
necessary for their justification and confirmation for the relevant mathematical
theories is sufficient for their justification.

The former of these conditions could be questioned, but it seems to us to be
safely admissible in general, that is, for most of our scientific theories.33 For it is
plausible to grant that, in general, any virtue a scientific theory may have will not
confer justification to it in absence of confirmation.

The latter condition is more questionable, instead. One reason for this has already
been mentioned: consenting to it requires admitting that mathematical theories are
open to confirmation, which could be plausibly questioned (and is, in any case, nor
required for endorsing IA). Another reason is that contending that confirmation of
a mathematical theory, whatever it might be taken to be, is sufficient for its justifi-
cation results in disregarding any a priori virtue that such a theory could have as a
necessary ingredient of its justification. Finally, even someone, presumably endors-
ing a proto-empiricist view on mathematics, who is ready to admit that mathematical
theories are open to confirmation and that no a priori virtue of a mathematical
theory is required for it to be justified (when it is well supported by a posteriori or
empirical evidences) could face that the same difficulty raised above (Sect. 13.5.2.1)
for the thesis that confirmation of a scientific theory is sufficient for its justification,
since this thesis also applies, mutatis mutandis, in the case of mathematical
theories.

13.5.3 Can We Dispense with Naturalism?

What about now premise (i) of [RE] and [PE]? Do we need to assume naturalism, in
any form, in order to claim that we are justified in believing some scientific theory

33One could, however, question this condition in some quite particular cases, as those involving
highly theoretical physical theories, for example, string theory. One could indeed maintain that in
cases like these, the relevant scientific theories can be justified and are actually considered to be so,
independently of any empirical confirmation they may receive or have received. It is more likely,
however, that in the complete absence of empirical confirmation, we would not take ourselves to be
justified, however weakly, in taking a scientific theory to be true; rather, such a scientific theory will
be said to enjoy a number of virtues that will merely make it acceptable in the scientific community
for many practical and theoretical purposes. Nonetheless, this form of acceptance, it goes without
saying, will not be strong enough to support the conclusion(s) of IA, in any of the versions we have
discussed here.
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to be true? What seems clear is that some form of scientific realism will have to be
assumed. For a fairly standard characterization, we can describe scientific realism as
the thesis that our mature scientific theories are true or, at least, approximately true
descriptions of an external, mind-independent reality, that their statements should
be interpreted at face value (both when they speak of observable entities and when
they speak of theoretical ones) and that the objects of which they speak do inhabit
the world (cf. Psillos (1999, p. xix) for a more extended definition on these lines). In
order to defend premise (i) in [RnE] and [PnE], we need to maintain that there are
true scientific theories, and this implies a form of scientific realism. Moreover, some
arguably milder form of scientific realism will be needed also for defending premise
(i) in [RE] and [PE]. This milder form of realism should at least accept that we are
justified in believing that there are true scientific theories (without necessarily taking
the further step of claiming that there are, or were, or will be some).34

Now, scientific realism, in one form or other, is likely to be a basic assumption
underlying naturalism. Quine himself listed ‘unregenerate realism’ among the
sources of naturalism (Quine 1975, p. 72). But in order to justify premise (i) of [RE]
and [PE], only some form of scientific realism is needed, and whereas naturalism
implies (or might imply, depending on the chosen formulation) scientific realism,
the latter does not imply the former. Where naturalism hinges on endorsing that
scientific theories are the only source of genuine knowledge, with the result that
we are justified in believing to be true only these theories or those whose truth
follows from the latter’s truth, scientific realism only implies that scientific theories
are a kind of theories in whose truth we are allowed to be justified. This is not to
deny that realism can be fruitfully combined with a naturalist position. It can even
be maintained that the adoption of naturalism facilitates—since it implies it—the
adoption of scientific realism. However, nothing prevents someone who believes,
for example, that genuinely philosophical a priori arguments are a reliable source
of knowledge, from believing, provided that conflicting results are avoided and
that (mature, predictively successful, well-confirmed, etc.) scientific theories are
sufficiently reliable sources too. It is not difficult to think of scientific realists that
are not naturalists. For an illustrious case, consider Frege, who had realistic views
about scientific inquiry but surely was not a naturalist, as his views on mathematics
show.

34Notice that scientific realism, as formulated here, entails that (we are justified to believe that)
the entities (both observable and theoretical) which are spoken of in mature scientific theories
exist (at least, if we admit that a statement of a scientific theory cannot be true if these entities
does not exist). Some remarks are in order. First, one may adopt forms of realism—e.g. structural
realism—where the existence of these individual entities is not entailed; this version of realism
would still be adequate to motivate premise (i) in all minimal arguments. Second, it would be odd
to assume that scientific realism entails either the existence of the mathematical entities mentioned
in mathematical statements or that the mathematics used in science is true; assuming scientific
realism does not beg the question with regards to the conclusion of neither platonist or realist
versions of IA and can be safely assumed in both.
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It then seems that insofar as endorsing [NAT] requires (entails) endorsing
scientific realism, the former could thus well be a sufficient for endorsing premise
(i) of [RE] and [PE], but clearly it is not necessary.35

This being established, one could still wonder whether endorsing [NAT] is
necessary or sufficient for endorsing any other premise of [RE] and [PE]. The only
plausible candidate for this is premise (iii), which plays in these arguments the
role that premise (i) of Colyvan’s argument plays in this latter argument. As we
have mentioned in Sect. 13.2, Colyvan indeed argues that naturalism is required in
order to justify the only-direction of this latter premise. Still, we have also already
observed that this direction is, in fact, useless for drawing the argument’s conclusion
and has, accordingly, no correlate in premise (iii) of [RE] and [PE].

At most, then, one can argue that the endorsement of [NAT] is necessary for
endorsing a strengthened variant of this premise that would state that we are justified
in believing true all and only the mathematical theories that are indispensable
to scientific theories that we are justified in believing to be true. This variant
would still be involved only in variants of [RE] and [PE] whose conclusions
are, in turn, strengthened variants of the conclusions of these arguments, giving
conditions which are also necessary and not merely sufficient for our being justified,
respectively, in believing true the relevant mathematical theories and in believing the
objects which these are about to exist.

13.6 Retrieving Common Arguments from the Minimal
Arguments

It is easy to see how the suggested minimal versions of IA could serve as a basis
for the stances on IA represented by Putnam’s, Colyvan’s and Baker’s arguments,
respectively (cf. Sect. 13.2). Putnam’s argument is nothing but a variant of [PnE]
(or, depending on the reading of Putnam’s text, [PE]). Colyvan’s argument is a
variant of the epistemic version of IA that results from adding to premise (iii)
of [PE] the redundant assumption that we are justified in believing true only
the mathematical theories that are indispensable to scientific theories that we are
justified in believing to be true.36 Finally, as anticipated at the end of Sect. 13.4,
Baker’s Enhanced Indispensability Argument, can be retrieved from [PE] once an

35To our knowledge, the only other version of IA which is explicitly claimed by its proponent to
dispense with naturalism is the one offered by Azzouni (2009). We’ll discuss this below.
36Together with what we have said in Sect. 13.5.2.1, this entails that Colyvan’s argument is, in fact,
independent of confirmational holism, despite his own initial claim in Colyvan (2001, p. 12) (cf.
the quote relative to footnote 5; but cf. also footnote 24).
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appropriate equivalence relation © is selected in the specification of the notion of
(in)dispensability, e.g. the relation of having the same explanatory power.37

Things are more complex with arguments in the pragmatic stance.
Let us begin with Resnik’s. This is very different in form from all other

representative versions of IA that we have reviewed. It seems clear that it dispenses
with confirmational holism.38 It is instead not clear whether it also dispenses with
naturalism. According to Resnik himself the passage from its premise (vi) to (vii)
is justified by naturalism, which he briefly defines as the thesis that ‘natural science
is our ultimate arbiter of truth and existence’,39 and considers as suitable for ruling
out scepticism about the justification and truth of our scientific theories. Still, it is
not clear how naturalism can warrant the passage from the justification of some
theories, and particularly of mathematical ones, to their truth, a passage which is
surely hard to secure. More generally, it is far from clear that Resnik’s argument
is valid (or admit, at least, a valid rephrasing). It is thus not surprising that it is
hard to retrieve it from our minimal versions, which are clearly valid. This remains,
however, a unicum with respect to the ongoing debate.

Notice, on the other hand, that it is not clear whether the role played by the notion
of justification in Resnik’s argument is in any sense cognate to that played by it in
our minimal arguments. We take justification as applying to statements or bodies of
statements and as being justification for their truth, and not just for their adoption
for whatever practical reasons. Resnik does firstly conceive justification as applying
(if not uniquely, also) to acts, rather than bodies of statements; and secondly he
bases our ‘accepting as true such mathematics as science uses’ on the pragmatic
ground that ‘we are justified in doing science’ and that science, when considered in
its practice, proceeds through various mathematical assumptions—and not rather on
the fact that any scientific theory is even approximately true. If Resnik’s argument
were (valid and) sound, this could be seen as an advantage, since it would make
the argument independent of the supposition that some scientific theories are true.
If (valid and) sound, this argument would thus dispense with scientific realism, as
Resnik (1997, pp. 46–47) suggests (and this should be so despite Resnik’s quite
doubtful claim that the passage from conclusion (vi) to conclusion (vii) depends on
naturalism, understood as the thesis that ‘natural science is our ultimate arbiter of

37Discussion of the Enhanced Indispensability Argument often pertains to the alleged role that
inference to the best explanation (IBE) may have in IA. Still, insofar as the minimal version of this
argument, provided by [PE] under the mentioned specifications, is concerned, no appeal to IBE is
required, and its validity need then not be presupposed. This does not mean that IBE cannot be
involved in any specification of the minimal versions of IA. Indeed, it could be involved in some
such specifications in two ways: the equivalence relation © in the schematic definition of the notion
of (in)dispensability could be specified through the notion of explanation in a way that presupposes
the validity of IBE or the criterion of virtuosity ’ in that same definition could itself presuppose
the validity of IBE.
38This is what Resnik himself seems to imply in the quote relative to footnote 11.
39Resnik (1995, p. 166, 1997, p. 45)
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truth and existence’, a thesis which could hardly be taken as independent from a
form of scientific realism).

Let us consider now Azzouni’s argument, namely, his Assertoric-use QP.40 This
deserves more careful consideration, since it is the one that comes closest to
resembling, at least in spirit, some of our suggested minimal versions, at least insofar
as it is, as we said in Sect. 13.2, explicitly meant to avoid presupposition of either
holism or naturalism.41 Also the distinction between arguments for mathematical
realism and for platonism is suggested by Azzouni (2004), who questions [QC] and
argues at length that IA can at most be an argument for the truth of mathematical
theories, but that it falls short of supporting platonism.42

The first thing to be noticed is that Azzouni’s Assertoric-use QP stems from an
interpretation of the ‘enthymematic blueprint’ quoted above in Sect. 13.2, but is
not regimented in the form of a codified non-enthymematic (valid) argument with
enumerated and explicitly stated premises and conclusion(s). Enquiring whether
it can be retrieved from one of our minimal versions of IA requires, then, some
reinterpretation of Azzouni’s proposals.

Prima facie, given that there is no mention of epistemic notions like justification
in Azzouni’s blueprint, the relevant minimal version of IA with which his argument
should be compared seems to be [RnE]. However, the way in which Azzouni
motivates the passage from the blueprint to the Assertoric-use QP suggests another
option.

Azzouni’s strategy for obtaining the Assertoric-use QP depends, firstly, on
the specification of the single premise of the former, i.e. ‘certain statements that
quantify over mathematical entities are indispensable to science’, as the claim that
the ‘assertoric use’ of the relevant statements, which quantify over mathematical
entities, is indispensable to science. According to Azzouni,43 it is an empirical fact
that people use certain statements assertorically while doing science, for the two
aims of presenting statements as following from other statements previously made
(‘deductive use’) and of describing state of affairs (‘representational use’). A second
empirical fact is said to be44 that given our ordinary understanding of the word
‘true’, the assertoric use of a statement p entails, via Tarksi’s biconditionals, the
commitment of those who assertorically use p to the truth of p. From this second
empirical fact, it follows that the conclusion of the blueprint should be intended as
the claim that we are committed to the truth of those statements whose assertoric
use is indispensable to science. Although different readings can be given to the
expression ‘we are committed to the truth of p’, we take it that the more plausible
one, consistent with Azzouni’s discussion, is as ‘we are justified in believing

40Cf. § Sect. 13.2, above.
41Azzouni (2009), especially p. 147, footnote 11
42Cf also Azzouni (2009), p. 140, note 2; p. 147, note 11.
43Cf. Azzouni (2009, pp. 140–141).
44Ibidem, p. 141
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p true’.45 Assuming that this is so, it follows that the most appropriate among our
minimal versions of IA to be compared with Azzouni’s Assertoric-use QP is [RE].

Two questions arise here: whether Azzouni’s version of IA is eventually to be
considered more minimal than [RE] and whether his version can indeed be retrieved
from [RE].

As to the first question, a clue for a positive answer could come from the
fact that [RE] appeals to the notion of truth (thought of as a schematic notion,
variously specifiable), whereas Azzouni’s argument doesn’t explicitly appear to do
so. Still, the latter relies on the fact that assertoric use of mathematical statements
is indispensable to scientific practice, and this is taken to entail commitment to
the truth of these statements just in virtue of the Tarskian biconditionals which
‘transform assertoric uses into truth commitments’.46 Moreover, Azzouni argues47

that ‘if I assertorically use a sentence,48 I recognize myself as bound by implication
to the original sentence prefixed by ‘It’s true that : : : ”, which results in maintaining
that there is a rather intimate connection between assertion and truth. But if this is
so, then truth, if not explicitly used in the premises of the argument, is presupposed
by the very notions of assertion and assertoric use by means of which the argument
is built up. It may even well be explicitly mentioned in a premise of the argument
once all its underlying assumptions are brought to the fore.49 Hence, if the issue is
the appeal to some notion of truth, then, it is far from clear that Azzouni’s argument
is in any sense more minimal than [RE].

A second related clue for a positive answer to the first question is that the
conclusion of Azzouni’s Assertoric-use QP appears to be derived without explicitly
assuming that we are justified in believing some scientific theories to be true.

45The sense in which we are justified in believing a mathematical statement true is meant,
however, to be in some sense ‘stronger’ (cf. Azzouni 2009, p. 147) than that licensed by Resnik’s
argument on pragmatic grounds: as Azzouni claims, ‘it isn’t that we’re ‘justified’ in describing
an assertorically used sentence as true; Tarski biconditionals make the use of the truth predicate
nonnegotiable’. Whatever this distinction comes to in details, it does not seem that from the
assertoric use of a statement p, the truth itself of p can follow, over and beyond our commitment
to take p as true. Even if this entails that the conclusion of the Assertoric-use QP will be, as a
matter of fact, a different, epistemic version of the conclusion of Azzouni’s proposed blueprint
(i.e. ‘Those statements are true’), we still see this as the most reasonable outcome of Azzouni’s
discussion; we acknowledge, however, that this reading can be subject to controversy depending
on how our ‘commitment’ to the truth of a statement is understood.
46Azzouni (2009, p. 142)
47Azzouni (2009, p. 141)
48Azzouni seems to indifferently use in his paper the terms ‘sentence’ and ‘statement’. While
maintaining the term ‘sentence’ in all our quotations from Azzouni’s paper where it occurs, we
shall, instead, invariably use the terms ‘statement’, as we do throughout our paper.
49Notice that no particular conception of truth is presupposed in our minimal versions, so that
one is at liberty to use whatever notion one prefers in the specification of the schematic arguments
(included a disquotational one). Hence, the question here is not whether we, as opposed to Azzouni,
make use of some particular conception of truth but whether any notion of truth is involved at all
in the relevant versions of IA.
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However, as Azzouni himself acknowledges,50 his argument has as accompanying
premise: ‘the au-indispensability of the scientific sentences themselves (given a
commitment to the scientific project)’, where the term ‘au-indispensability’ is a
shortened form of ‘indispensability of the assertoric use’. It seems, moreover,
plausible, in the light of our previous discussion, to understand the commitment
to the scientific project as a justification in the truth of these scientific statements
and then, presumably, in some scientific theories.

Be that as it may, these considerations suggest that Azzouni’s argument is
possibly not to be considered more minimal than [RE], but rather very close to
it, at least in spirit. We should then move to our second question.

What we have said so far suggests that both the single premise and the conclusion
of Azzouni’s blueprint should be specified by making explicit the assumption of our
commitment to the scientific project intended as a commitment to (the truth) of those
statements whose assortoric use is indispensable to this project, and by stating the
conclusion in an epistemic form. The ensuing formulation will thus be this:

Assertoric-use QP (I)

i) We are committed to (the truth of) those statements that are au-indispensable to the
scientific project;

ii) Some statements that quantify over mathematical entities are au-indispensable to the
scientific project;

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iii) We are committed to (the truth of) these statements.

Above we have mentioned the accompanying premise of Azzouni’s argument
concerning the ‘au-indispensability of the scientific sentences themselves’. The
whole passage where this premises is put forward seems to suggest that the
indispensability of the assertoric use of the relevant statements that quantify over
mathematical entities is to be, as it were, split into the au-indispensability of both
some scientific and some mathematical statements. It goes as follows51: ‘I [ : : : ] read
the premise of the ethymemic blueprint of the QP as stating that many sentences
of mathematics are au-indispensable to science. Accompanying this premise is the
assumption of the au-indispensability of the scientific sentences themselves (given a
committed to the scientific project)’. The statements that quantify over mathematical
entities and are au-indispensable to the scientific project mentioned in Assertoric-
use QP (I) seem here to be those that in this passage are referred to as ‘sentences
of mathematics [that] are au-indispensable to science’.52 This suggests that the
statements here referred to as ‘the scientific sentences themselves’ do not quantify
over mathematical entities, but are such that they can be assertorically used only
if some mathematical statements (which rather do) are so used (e.g. insofar as the
former involve individual or predicate constants defined through the latter). It would

50Azzouni (2009, p. 144)
51The reference is, of course, the same as in footnote 50.
52Cf. footnote 46 above.
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follow that the au-indispensability to the scientific project of the mathematical
statements mentioned in Assertoric-use QP (I) just depends on this, namely, on their
being such that those scientific statements whose assertoric use is indispensable
to the scientific project are such that they can be assertorically used only if these
mathematical statements are so used. If we express this condition by saying that the
latter statements are au-indispensable to the former, Assertoric-use QP (I) can then
be restated and further expanded as follows:

Assertoric-use QP (II)

i) We are committed to (the truth of) those statements that are au-indispensable to the
scientific project;

ii) Some mathematical statements are au-indispensable to some statements that are au-
indispensable to the scientific project;

iii) We are committed to the truth of those statements that are au-indispensable to the
scientific project only if we are committed to the truth of those mathematical statements
that are au-indispensable to them;

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
iv) We are committed to (the truth of) these mathematical statements.

This latter version of IA is clearly similar, in structure and content, to [RE]. Once
it is conceded that ‘being committed to the scientific project’ can be interpreted
as ‘being justified in believing some scientific theories to be true’, premise (i)
of Assertoric-use QP (II) can, indeed, be conceived as a specification of premise
(i) of [RE]. Following Azzouni, one may say that the former is justified by the
empirical fact that when we assertorically use a statement p, we are committed (via
Tarski biconditionals) to the truth of it. If premise (ii) of [RE] is then specified
by employing the notion of assertoric use in the specification of the © equivalence
relation involved in the schematic notion of indispensability—so that the assertoric
use of certain mathematical statements turns out to be indispensable to the assertoric
use of those scientific statements that we must assertorically use if we are committed
to the scientific project—what one gets is just premise (ii) of Assertoric-use QP
(II). As regards premise (iii), it is easy to see that the S-M justificatory connection
can be specified by considering that the commitment to the truth of the statements
of S, following via Tarski biconditionals from their assertoric use, can be granted
only in presence of a similar commitment, via the same route, for the mathematical
statements of M that are au-indispensable to S: this does not seem to add nothing
that Azzouni would not consider as implicit in his own argument.53 Premise (iii) of

53Notice also that Azzouni explicitly objects to forms of fictionalism that constitute the most
obvious strategies for rejecting premise (iii). In the following passage (Azzouni 2009, p. 143),
it is easy so read something very close to the suggested specification of premise (iii) of [RE]:

One issue to be explored in this paper is whether the assertoric use of many statements of
ordinary science is compatible with one or another construal of the mathematical statements
utilized in science as not assertorically used (and therefore, as either not true-apt or as false).
I’ll show that a position that takes us as truth-committed to statements in any area where
mathematics is applied, while assuming that we aren’t simultaneously truth-committed to
that mathematics, is unstable.
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Assertoric-use QP (II) just results from this specification of premise (iii) of [RE],
with the implicit assumption that assertoric use of p entails commitment to the truth
of p. Once [RE] is appropriately specified, then, the conclusion of Assertoric-use
QP (II) is nothing by an alternative though equivalent formulation of the conclusion
of [RE], as one may expect by alternative versions of an argument that are meant to
support a common conclusion.

If we are correct, and Assertoric-use QP (II) is a plausible reconstruction, in
explicit non-enthymematic form, of the version of IA that Azzouni has in mind, then
it seems susceptible of being retrieved from [RE] through appropriate specifications
of the notions involved.54

13.7 The Philosophical Significance of the Indispensability
Argument

Much of the recent discussion on IA has focused on holism and naturalism. Many
authors have either criticized IA, taking Colyvan’s as the most relevant formulation,
or offered alternative versions of it. Both supporters and critics, with few exceptions
we have mentioned above, take naturalism and holism to be essential to this
argument or, more generally, to what is usually referred to as ‘the Quine-Putnam
Indispensability Argument’ and discuss the alleged dependence of the argument
on these doctrines. For example, Maddy (1992, 2007) claims that IA fails because
of inescapable clashes between the notions of holism and naturalism (as Quine
conceived of it) and essential features of mathematical and scientific practice and
methodology; relying on a non-holistic notion of confirmation, Sober (1993) argues
that empirical evidence cannot even indirectly justify mathematical theories.

As it turns out, minimal versions of IA can be devised that are far less demanding
than the so-called Quine-Putnam Indispensability Argument. Only scientific realism
(beyond, obviously, a proper characterization of (in)dispensability) will be an
essential ingredient in justifying premise (i) in [RE] and [RnE]. In order to obtain a
platonist conclusion, thus to support [PE] and [PnE], only an appropriate criterion

This, if needed, seems to be another piece of evidence that premise (iii) can be upheld without
appealing to confirmational holism.
54This is, of course, not intended to suggest that Azzouni’s Assertoric-use QP is already included,
in nuce, in [RE]. What we argue is rather that [RE] is schematically general enough in order
to provide an argument form that Azzouni’s Assertoric-use QP (which, as a matter of fact, has
been offered beforehand and independently of [RE]) can be taken to instantiate via appropriate
specifications.
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for ontological commitment—arguably, Quine’s55—needs to be further assumed
(together with what is needed to justify the remaining premises).

It is often thought that IA is especially suited for those mathematical (semantical
or ontological) realists working in a broadly empiricist framework. As Shapiro
claims:

Indispensability arguments are anathema to those, like the logicists, logical positivists, and
neologicists, who maintain the traditional views that mathematics is absolutely necessary
and/or analytic and/or knowable a priori.56

This is an obvious philosophical outcome for versions of IA that proceed under the
assumption of naturalism and deliver necessary conditions for their conclusions (cf.
the end of Sect. 13.5.3). But this need not be so: when naturalism is left out of the
picture, the argument only gives sufficient conditions for either semantic realism or
platonism.

Clearly, if we espouse a naturalist ideology, we will better make our argument
for mathematical (semantic or ontological) realism rely, more or less explicitly,
on naturalism and thus secure (semantic or ontological) realism in a way that is
consistent with our naturalist viewpoint. But it is not, as it were, in the very nature
of IA to give sufficient and necessary conditions for its conclusions. It might just be
our particular interest to have a version of it giving both.

IA is not a naturalist argument per se. We see no ban in principle, for those
who believe in the a priori character of mathematical truths, against the acceptance
of indispensability arguments.57 Modest antinaturalists of this sort58 will claim at
most that IA is superfluous, or ancillary, since they can offer reasons for the same
conclusion(s) that are by far more certain than the contingent grounds on which IA
hinges. But this is definitely different from rejecting the argument.

The point is that the real anathema for all those philosophers listed by Shapiro in
his quotation is not IA itself: it is naturalism. Any argument relying on naturalism
will be anathema for them: IA can, but need not, be a good candidate.

55[PE] or [PnE] can be seen as instances of a general way in which Quine would draw ontological
conclusions. One might object that the minimal formulation would make nothing of the special
subject matter of mathematics (thanks to Matti Eklund for raising this). However, we don’t find
anything, in Quine’s reluctant acceptance of platonism, like assuming something special about
mathematics and building a form of IA on this (contrary to what is suggested by Steiner’s (1978, pp.
19–20) ‘transcendental’ interpretation of IA). The special character of mathematics seems rather
to be proved by the very fact that we cannot dispense with it in science. All posits are ontologically
on a par until we are faced, as Quine would call it, with an unabridged language of science. Not all
posits will come out as indispensable. Propositions and meanings don’t. Mathematics does.
56Shapiro (2005, pp. 13–14). Shapiro remarks is only cursorily made, and nothing special hinges
on it in his discussion; we just take it as an indication of a widespread feeling.
57Some of Frege’s remarks (1893–1903, §91) have sometimes be taken as a statement of a form
of IA in nuce (but see Garavaso (2005) and Sereni (2013)). But it would be utterly implausible
to claim that anything like IA was Frege’s main argument for believing in the existence of
mathematical objects.
58Radical antinaturalists, like sceptics, would deny that science is any source of knowledge at all.
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On this respect, it is remarkable that, after long time, Putnam himself recently
felt the need of making his voice heard again in this debate. Commenting on
Colyvan’s argument, Putnam clearly remarks that the ‘only’ direction of premise (i)
of this argument—the one committing a supporter of the argument to naturalism—
expresses a thesis he ‘never subscribed to in [his] life’.59 He stresses that his
adoption of IA was meant to show—as already suggested in Putnam (1971,
1975b)—that it is incoherent to adopt scientific realism and at the same time reject
(semantic) realism about mathematics. Moreover, he is explicit in claiming that:

nevertheless, there was a common premise in my argument and Quine’s [ : : : ] That premise
was “scientific realism”, by which I meant the rejection of operationalism and kindred forms
of “instrumentalism”. I believed (and in a sense Quine also believed) that fundamental
physical theories are intended to tell the truth about physical reality, and not merely to
imply true observation sentences.60

At the very least, our conclusions can be seen as a way of setting the debate straight
to its origin and showing that the minimal versions of IA are more closely related
than others to Putnam’s argument.

If IA is meant as delivering only sufficient conditions for its conclusions, there
is a clear sense in which it is being revisionary with respect to Quine’s original
views. In a number of different passages Quine makes controversial claims about
parts of mathematics (e.g. higher set theory) that have no applications in empirical
sciences and are a fortiori not indispensable to scientific theories. Quine denies
that the mathematical objects to which those parts of mathematics are committed to
deserve any ontological rights (he famously spoke of ‘mathematical recreation’61).
This attitude has engendered quite a wide debate.62 If indispensability (in versions
of IA for platonism) is, as it were, the mark of existence for mathematical objects,
then the objects of unapplied mathematics are banned from our ontology.

It is indeed possible to maintain a version of IA for which naturalism is necessary.
This argument delivers the sort of platonism that Quine endorsed. But this argument
is in tension with many forms of platonism, which would not distinguish among
the ontological rights of different parts of mathematics, not at least on grounds
of applicability and indispensability (Maddy has long insisted on this; see e.g.

59Cf. Putnam (2012, p. 183).
60Ibid. The ‘in a sense’ qualification concerns Quinean themes (indeterminacy of translation,
differences with a standard realist view of language) discussed in Putnam (1988). They do not
affect our present point.
61Quine (1986, p. 400). In later writings, Quine admitted that this would create an unjustifiable
asymmetry between different parts of mathematics; hence, he resorted to the idea that we cannot
completely deny meaningfulness to unapplied parts of mathematics, but that we can arbitrarily
decide whether to call those parts true or false (cf. Quine 1995, pp. 56–57).
62Cf. Parsons (1983), Maddy (1992), Leng (2002, 2010), and Colyvan (2007). Putnam (1971,
pp. 346–347) suggests a view similar to Quine’s on unapplied mathematics. His is however a
milder position (unapplied mathematics ‘should today be investigated in an ‘if-then’ spirit’), and
he is wary of restricting his claims to ‘the case for ‘realism’ developed in the present section’.



274 M. Panza and A. Sereni

Maddy (2005)). It could even be argued that such an argument is not an argument
for platonism (as standardly conceived), but rather for the proto-empirical (or ‘quasi-
empirical’, to borrow from Putnam (1975b, p. 62)63) character of mathematics.

Versions of IA giving only sufficient conditions leave open the possibility that
we are justified in believing that unapplied mathematical theories are true or that
the objects they are about exist, wholly independently of IA: IA is understood as an
argument for mathematical (semantic or ontological) realism among others, not as
the only argument.

If Quine suggests that a proper indispensability argument hinges on naturalism,
then, it is only because he was a naturalist on independent grounds in the first place.
Nothing in the argument mandates that this is so. That is just an example of the
philosophical use of the argument (in a non-minimal version) that can be made in
an empiricist framework. It is not a philosophical outcome that the argument can
secure by itself.
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Chapter 14
Naturalness in Mathematics

Luca San Mauro and Giorgio Venturi

Is perhaps the right way of tackling the question just this – to
write down a long list of actually observed uses, taking note of
the frequency of each use and distilling the whole into a
statistical table? But is this the sort of a thing a philosopher
wants to do? Is he interested in the random fluctuations of
speech, that sea with its endless waves and ripples?

F. Waismann, Analytic-Synthetic IV

14.1 Introduction

This article consists of two parts.1 In the first one, we aim to propose a philosophical
characterization of the notion of naturalness in mathematics. First of all, we have to
acknowledge that this is not an easy task for many historical, methodological, and
intrinsic reasons. To start with, there is not a wide and well-structured literature
on this topic,2 thus every step in this direction will be almost like groping in the

1The paper is the product of the intellectual collaboration of the two authors and originated from
discussions that took place in Gargnano del Garda, Paris, Pisa, and Rome. Both from a conceptual
and a practical point of view, it is hard to attribute each of the ideas or parts of this work to one
of the two authors; indeed, they are the result of objections, mediations, and syntheses. A previous
and different version of this paper, except Sect. 14.4.2.3, appeared as a chapter in the PhD thesis
of the second author. The two authors would like to thank Gabriele Lolli, Chris Pincock, and two
referees for useful comments on early drafts of this paper.
2We list here all the relevant works, according to our knowledge, that address directly the problem
of naturalness in mathematics: Tappenden (2005, 2008a,b), Corfield (2004), Koepke (2009), and
Bagaria (2000).
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dark. On the contrary, there is an important philosophical tradition that is labeled
as naturalism, and this latter will make our investigation even harder, because it
is quite far from the position expounded here. We will mainly discuss Penelope
Maddy’s position, in the attempt to clarify our view of a dialectical relationship
between mathematics and philosophy.

On the methodological side, our analysis pertains to the philosophy of mathe-
matical practice. This leads us to face the difficulty that such a fairly new branch
of philosophy encounters, that is to say the absence of a well-established method
of inquiry. As a matter of fact, the first part of this work will be concerned with
explaining our argumentative line. Once shown that the concept of naturalness
deserves an analysis, we will claim that its most suitable philosophical treatment
belongs exactly to this new wave of the philosophy of mathematics. While doing
so, we hope at the same time to shed some light on the general methodology of
the latter. Moreover, although every work that can be labeled as philosophy of
mathematical practice brings within itself an inevitable attention to concrete cases,
we will distinguish the relevance we give to mathematical and historical examples
from the one that is normally given by naturalism.

Our analysis will start from the statistical evidence that the use of the word
“natural” has noteworthy increased in the last 70 years. The presence of linguistic
tools in a philosophical work may be, at first sight, surprising: we will ground
them on some methodological considerations. However, a statistical overview does
not exhaust our analysis, since the descriptive temptation is rather a pernicious
solution that has to be avoided at both the linguistic and the conceptual level. On
the other hand, we will also reject a philosophy-first approach, looking instead for a
sufficiently neutral starting point for our study. Hence, we will outline a general
method, in a semiformal shape, for dealing in a philosophical way with vague
concepts.

In the second part, we will take advantage of the literature on mathematical
explanation, that is already enough structured to help us in the search for the proper
philosophical context where to place our initial comprehension of the notion of
naturalness. Following our method, we will test some working hypotheses thanks
to chosen case studies. Through the analysis of two historical examples, we will
conclude that the object of our study manifests both a dynamic component, as
opposed to a static one,3 and a prescriptive component, as opposed to a descriptive
one.

In the end we will take a stand with respect to the role of common sense
meaning in the philosophical inquiry on the semantics of words. When calling
something natural, we rhetorically evoke the idea of “pertaining to nature,” even
if such causal context may not apply to mathematics. The semantic ambiguity
of the notion of naturalness leads to a third difficulty, that is to say its intrinsic
tension toward different poles. Indeed, the fast development of a more and more
abstract and artificial mathematics, in the last century, seems to diverge from a

3We will clarify the meaning we assign to the dynamic-static dichotomy in a moment.
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natural perspective. Then how to fit this historical phenomenon with the increasing
appeal of natural components in the mathematical discourse? Also, if – as we
claim – dynamical, referential, and contextual aspects are fundamental in forming
judgments of naturalness, how is it possible to harmonize them to something
apparently as static and objective as nature?

Just to counter some trivial criticism that can possibly arise, we acknowledge
that there are pieces of mathematics so clearly stable in their naturalness that any
attempt to give a philosophical account of their natural character would necessarily
deal with some sociological, or cognitive, or transcendental aspect of our ways of
doing mathematics – as, for instance, the natural numbers. On the same par, we
maintain that there are phenomena so unnatural that they would always exceed any
reasonable account of naturalness in mathematics. Instead, our main interest is not
related to the stable components we can find at the extremities of the dichotomy
natural-unnatural, but we would rather focus on the different nuances of gray that
we can find in between. We believe that it is exactly here that the reference of
naturalness diverges more substantially from the common use of this notion, thus
deserving a specific philosophical investigation. To these concerns, we sympathize
with Friedrich Waismann:

In all these cases you notice that expressions which have a trivial use in everyday life,
when made part of a certain trains of thought, lose their triviality, become, as it were
trascendentalized, and acquire metaphysical status.4

Far from arguing for a truly metaphysical component of the mathematical work,
we will try to make sense of an inner tension within the concept of naturalness,
showing that the increasing reference to natural components in mathematics is not
philosophically innocent. At this level, we will find one of the most relevant points
of distance between our position and Maddy’s. To refrain a famous Quinean slogan,
the notion of naturalness is philosophy in mathematical clothing.

The paper is organized as follows: it is a joint product of both authors,
but Sects. 14.4.2.1 and 14.4.2.2 have been written by the second author, and
Sects. 14.4.2.3 and 14.4.2.4 have been written by the first author.

14.2 A Methodology

14.2.1 How to Deal with This Concept?

When facing a new conceptual problem, as this is the case, where to begin if not
from the literal evidences that such concepts produce in their use? We shall not
argue for a holistic point of view toward mathematics and natural language, but it

4Weismann (1951), p. 56.
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seems just appropriate to start from what is more certain and secure, in order to
explore what is less known and more obscure.

Let us begin with the primary definition of the word “natural”5 from the Oxford
Dictionary: “Existing in or derived from nature; not made or caused by humankind.”
By hinting at this possible answer to the question “what is naturalness?” we just
want to stress that aside from what we will find in our analysis, there is also a
commonsense meaning of this word that needs to be considered. But is this reference
to the dictionary’s meaning enough to grasp the whole semantic of naturalness in
mathematics? We doubt it. Consider, for instance, these few occurrences of the
term6:

The proof presented in Section 4.1 is similar to Kruska’s original proof in (5). However, we
add more clarification to it in order to show that the proof is natural and intuitive.7

Since the operations TC are commutative, associative, monotonic, continuous in the
topology of weak convergence, etc., this shows that there are very natural operations on
distribution functions that do not correspond in any simple fashion to operations on random
variables.8

Semirings, in the general setting as described above or with more restrictive assumptions,
arise naturally in such diverse areas of mathematics as combinatorics, functional analysis,
topology, graph theory, Euclidean geometry, ring theory including partially ordered rings,
optimization theory, automata theory: : :9

To claim that the use of naturalness in these examples is fully captured by our
dictionary entry is by no means conceptually easy. If that were the case, what does
it mean for semirings to exist in nature? What kind of nature are we talking about?
Also, in which sense a class of operations on a topology is not made or caused by
humankind? Any of these questions implies a certain number of well-known and
challenging philosophical issues; thus, it is simply unrealistic to consider them to be
solved by every person who uses the term “natural” in her mathematical practice. On
the contrary, one may simply acknowledge that, although its use is well understood,
every such appeal to naturalness in mathematics contains a semantic that is not
philosophically trivial to clarify. In this inquiry, our feeling is quite similar to that
of Augustine about time: “Quid est ergo tempus? Si nemo ex me quaerat scio;

5We agree with Bertrand Russell that “The study of grammar, in my opinion, is capable of throwing
far more light on philosophical questions than is commonly supposed by philosophers. Although
a grammatical distinction cannot be uncritically assumed to correspond to a genuine philosophical
difference, yet the one is prima facie evidence of the other and may often be most usefully
employed as a source of discovery” (in Russell 1903, p. 42).
6We deliberately chose these examples randomly from the mathematical literature.
7Stegeman and Sidiropoulos (2007), p. 542.
8Sklar (1973), p. 457.
9Weinert (2004), p. 314.
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si quaerenti explicare velim, nescio.10” Indeed any appeal to naturalness is perfectly
understood by the mathematical community, with almost no attempt to define and
formalize this concept.

But up to now, we have neglected the basic question “why dealing with natural-
ness in mathematics?”. A first clear answer comes from a random inspection of any
contemporary mathematical journal: the presence of the words “naturalness” and
“natural” is ubiquitous in mathematical literature. In order to support this evidence,
we shall follow Wittgenstein’s remark: “Don’t think, but look!” (Philosophical
investigations 66). Thus, we propose an informed statistics of the phenomenon,
thanks to the American Mathematical Society database (MathSciNet).11 Our work
does not pertain to sociology: we employ this evidence in order to draw attention on
a wide phenomenon that we aim to analyze with philosophical tools.

The following table provides data about the frequency of the use of “natural” and
“naturalness” between 1940 and 2009:

Decade Total articles .T / Occurrences .N / Rate
�
N
T

�
1940–1949 40;538 602 0.014
1950–1959 89;158 1;935 0.021
1960–1969 168;567 4;802 0.028
1970–1979 327;427 11;500 0.035
1980–1989 483;143 21;026 0.043
1990–1999 617;522 34;032 0.055
2000–2009 841;470 47;056 0.056

The table shows that during the last decades, there has been an increasing appeal
to this concept. However, these data need to be handled with particular care. The
term “natural” includes various and heterogeneous meanings that might be divided
in two (absolutely non-exhaustive) classes:

10“What then is time? If no one asks me, I know what it is. If I wish to explain it to him who asks,
I do not know.”, Augustine, Confessions, XI, 14.
11Few words concerning our corpus: the MathSciNet database entirely consists of mathematical
reviews. However, we believe that there is not much difference between the typical prose of a
review and that of an article. Moreover, the wideness of the phenomenon we will describe is such
that a possible small distortion of the data cannot hide the manifest emergence of the use of the
notion of naturalness of the mathematical literature. Finally, we would like to stress the absence of
a wide corpus of mathematical texts ready for a corpus linguistics analysis. Indeed, the Corpus
of Contemporary American English (COCA) counts more than 450 millions words, whereas
MathSciNet consists of 2,949,420 reviews. The other attempt to perform a similar linguistic
analysis in a mathematical context known to the author has been presented by Lorenz Demey
at the ILLC’s Logic Tea, on April 21, 2009, and it makes use of a small corpus of less than three
millions words. In conclusion, we believe that our starting point, even if partial, is representative
enough for the described phenomenon, although a more detailed analysis would need a much larger
corpus. Nonetheless, as it will be evident later, we do not feel that the absence of such a linguistic
tool should be a limitation for our work.
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1. Natural number, natural deduction, natural proof, natural transformation, natural
isomorphism, natural topology. . .

2. Natural method, natural way, natural solution, natural explanation, natural
argument, natural example. . .

Items from the first list are formal definitions in which “natural” gains some
technical meaning. On the contrary, the second list reflects an informal use of
the term, showing a strong inclination to assign an appearance of naturalness to
mathematical practice. The term occurs on both formal and informal sides, spanning
a wide semantic domain from rigid contexts (list 1: once a formal definition is given,
the whole meaning of the expression is fixed) to some other relaxed and variable
uses (list 2). We argue that these two kinds of occurrences are not equivalent and
that they exhibit a twofold aspect of the concept. In formal definitions, naturalness
is involved only in some initial stages: e.g., there are relevant reasons why Gentzen
called the system of natural deduction “natural,” but almost every further use of
the term is actually unrelated to any consideration about naturalness.12 Moreover,
if we want to understand the meaning of these terms, there is not much more to
do than looking for some equivalence results, since their semantics is fixed by
deduction rules. Attempts in this direction have been made, for example, by Shelah
and Hodges, who describe their intentions as follows:

Eilenberg and Mac Lane [: : :] explained the notion of a “natural” embedding by giving a
categorical definition. Starting from their examples, we argue that one could equally well
explain natural as meaning “uniformly definable in set theory.” But do the categorically
natural embeddings coincide with the uniformly definable ones?13

On the contrary, the picture of informal occurrences is messy and dynamic. To
call a portion of a mathematical work “natural” is a rather meaningful operation that
consists in assigning to a definition (an axiom, a proof, a construction, etc.) an infor-
mal feature – we may already hint that such operation is somehow metalinguistic,
because it expresses a sort of comment on the margin of formalization. But there is
something more. Statistically, the use of the items from the first list remains almost
stable during the decades – or sometimes it even decreases. For example, this is the
table concerning the string “natural number.”14

12The same can be said for the use of the term “natural” in Category theory.
13Hodges and Shelah (1986), p. 1.
14In the case of the other formal uses, the situation is even less significant toward a general picture.
“Natural deduction”: (decade) 40–49, (occurrences) 0; 50–59, 15; 60–69, 37; 70–79, 150; 80–89,
148; 90–99, 295; 00–09, 254. “Natural transformation”: (decade) 40–49, (occurrences) 0; 50–59,
3; 60–69, 112; 70–79, 231; 80–89, 171; 90–99, 241; 00–09, 283. “Natural isomorphism”: (decade)
40–49, (occurrences) 4; 50–59, 32; 60–69, 49; 70–79, 111; 80–89, 113; 90–99, 180; 00–09, 177.
“Natural topology”: (decade) 40–49, (occurrences) 11; 50–59, 27; 60–69, 73; 70–79, 113; 80–89,
143; 90–99, 147; 00–09, 195.
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Decade Total articles .T / Occurrences .N / Rate
�
N
T

�
1940–1949 40;538 92 0.0023
1950–1959 89;158 401 0.0045
1960–1969 168;567 1;182 0.0070
1970–1979 327;427 2;456 0.0075
1980–1989 483;143 2;565 0.0053
1990–1999 617;522 2;740 0.0044
2000–2009 841;470 3;269 0.0039

This is the one for the term “naturally”:

Decade Total articles .T / Occurrences .N / Rate
�
N
T

�
1940–1949 40;538 106 0.0026
1950–1959 89;158 305 0.0034
1960–1969 168;567 702 0.0041
1970–1979 327;427 1;768 0.0053
1980–1989 483;143 3;172 0.0065
1990–1999 617;522 5;187 0.0083
2000–2009 841;470 7;670 0.0091

Therefore, if one wants to consider the growth highlighted by the tables, to
focus on the informal side is quite an Hobson’s choice. Moreover, it seems
reasonable that a good theory of the informal uses of the notion of naturalness
(where “good theory” means something fairly different from a conclusive answer
to the question “what is naturalness in mathematics?”) would also shed light on
the formal uses. However, speaking of naturalness remains somehow obscure,
because this concept lies in a wobbly geography of informal notions. Indeed,
the dichotomy natural/unnatural overlaps and maybe gathers a collection of a
series of classical oppositions: pure/artificial, simple/complex, primitive/derivative,
general/particular, direct/indirect, easy/difficult, essential/contingent, and intrin-
sic/extrinsic. The boundaries are rough: in most cases, there is no particular reason
for choosing one of these notions over the others, and the preference is often settled
by habit. However, there is something peculiar in the case of naturalness, since the
statistical weight of the other notions and their rates provide a fairly different picture.
Two interesting examples are that of “simple”:

Decade Total articles .T / Occurrences .N / Rate
�
N
T

�
1940–1949 40;538 2;688 0.066
1950–1959 89;158 6;128 0.068
1960–1969 168;567 10;379 0.061
1970–1979 327;427 19;380 0.059
1980–1989 483;143 28;408 0.058
1990–1999 617;522 35;032 0.056
2000–2009 841;470 44;648 0.053
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and that of “essential”:

Decade Total articles .T / Occurrences .N / Rate
�
N
T

�
1940–1949 40;538 439 0.0108
1950–1959 89;158 935 0.0104
1960–1969 168;567 1;702 0.0100
1970–1979 327;427 3;459 0.0105
1980–1989 483;143 5;258 0.0108
1990–1999 617;522 6;464 0.0104
2000–2009 841;470 8;340 0.0099

Fig. 14.1 Graphic Google ngram

In the latter two tables, we can see a constant decrease of the use of “simple” and
an alternating trend in the case of “essential” that ends up with a substantial drop
of its use. Our guess is that in both cases, the reason is a partial semantic erosion
accomplished by the term “natural.”

We may wonder if this trend is limited to mathematical language or if it is rather
a general tendency of natural language. Figure 14.1 supports the former option.

In principle, this kind of analysis might proceed with more and more refined
tools – indeed researchers did so for the expression “it is easy to see that”.15 But
this approach brings within itself a radical form of naturalism, one that we may call
“linguist naturalism,” as suggested by Maddy:

Mathematics is a form of human activity, a distinctive linguistic practice, and as such it can
be studied like any other such practice [e.g.] by linguistics [: : :]. Here the naturalist will
face questions about the similarities and dissimilarities between mathematical and natural
scientific language.16

As far as we are concerned, we do not pursue a purely syntactic analysis; thus,
we shall conclude here our statistical overview. We developed it only in order to

15This analysis has been pursued by Lorenz Demey at the ILLC’s Logic Tea, on April 21, 2009.
However, his starting point is quite different from ours, because it follows the same path as
Corfield’s approach, that is to say trying to avoid the “foundational filter.”
16Maddy (2005), p. 453. Of course this is not the ultimate result of Maddy’s inquiry. Indeed
her naturalism also focuses on mathematical practice, but it sympathizes with every descriptive
philosophical enterprise.
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sketch the problem, in fact we believe that such a methodology is not sufficient for
the philosophical solution we are looking for, and this for three distinct reasons:

1. First of all, a merely linguistic description of the occurrences of the term “natu-
ral” is too inclusive, because it groups together different motivations that might
have led an author to refer to the notion, including stylistic or idiosyncratic ones,
rather than conceptual. But once engaged in a linguistic analysis, how can we
discern between the relevant and proper use of a term and the inappropriate ones?
This problem is what we may call “the problem of relevance.” It is not a merely
methodological difficulty, because it regards a crucial conceptual constraint for
every inquiry that aims to have its feet grounded on a philosophically neutral
position – as many form of naturalism aim.

In brief, the problem of relevance consists in discerning what is relevant and
what is not in the choice of the data under examination, without imposing on
the bare facts the structure we would like to find within the data. Indeed, the
process of identifying some uses as canonical and others as deviant presupposes
a framework in which concepts have already been embedded. Therefore, this very
framework comes to shape the results of our analysis. In other words, the result
of an inquiry is somehow determined by its own setting. Thus, to what extent can
we recognize a statistical discovery as authentic within a philosophical study?
This is a meta-theoretical problem when engaged in the analysis of the notion
of naturalness, because this is exactly the task accomplished by naturalness
judgments in a mathematical work.

2. On the other hand, a purely linguistic analysis can also be regarded as too limited,
because it fails to acknowledge the implicit uses of naturalness in mathematics.
This aspect has been suggested by Harvey Friedman in 2006, within a discussion
about this topic on the Foundation of Mathematics (FOM) list:

One can attempt to formally justify the constant and pervasive use [of naturalness] by
taking some major Journals and textbooks, and counting up the number of uses, or
counting up the number of implied uses.

But while trying to do so, we end up in a loop, and we have to deal with
the problem of relevance again. Indeed, in order to take into consideration the
implied uses of the term, one would need some general criteria apt to establish
which kind of uses do refer to naturalness and which do not. In other words, it
is necessary to have a conceptual frame in which the notion of naturalness can
be embedded, and this is necessary prior to the analysis itself that should have
defined the very same notion.

Once formulated this frame, one could theoretically use it as the answer to the
starting problem. We may call this a philosophy-first approach that accepts a sort
of unsolvability for the problem of relevance. Thus, a supporter of this kind of
approach, instead of attempting to shape a philosophical account on the base of
the concrete uses of the term, would claim that to describe a preliminary version
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of this very same account would be somewhat inescapable. In other words, she
would argue in favor of a substantial priority of philosophical attitudes over
concrete case studies.

We reject such a solution, because in our opinion it is exactly the vagueness of
the concept and the irregular geography of its semantics that call for an analysis.

3. Finally, we believe that a purely linguistic analysis does not explain the historical
increase in the use of the term “natural.” As a matter of fact, a perfectly detailed
linguistic analysis of the notion can provide, at best, a tautological description of
the phenomenon itself – nothing more than pointing at what mathematicians call
“natural.”

Moreover, it is common practice to call something “natural” in relation to
other pieces of mathematics already partaking in the notion, hence without giving
any critical account of it. It seems to us that this is a pivotal indication of the
fact that a purely linguistic approach is too local, for it frequently misses the
role played by global relations when defining the notion of naturalness. This
recursive feature is well expressed by Chow, in the same thread from where the
above quotation by Harvey Friedman was taken:

I would incline towards modeling the space of mathematical statements as something
like a graph, with vertices being known theorems and conjectures, and edges represent-
ing “similarity” or “relatedness” or some such. Then a statement would be natural if it
has high degree and is near the center of a giant connected component, or something
like that.

In other words, a statement is likely to be natural if it is similar to many other statements
that have been considered before, and/or if it is conceptually linked with many other
natural statements. In contrast, a statement that is easily stated but has a strange form
and is not related to other known statements is probably unnatural.17

Thus, a context-dependent and dynamic character of naturalness needs to be
taken into account. Furthermore, it seems to us that this dynamicity addresses
toward some qualitative and global philosophical considerations for a good
description of the phenomenon. However, a mere quantitative proposal – such
as counting the number of edges connecting two different natural objects –
can hardly shed any light on what naturalness is. Indeed, if the predicate of
naturalness is gained in virtue of some connection between different portions of
mathematics, then it follows that this connection somehow rests on some peculiar
quality of the mathematical objects. In other words, we would like to give an
answer not only to the question “what is naturalness in mathematics?” but also
“why mathematicians call a piece of mathematics natural?”

Therefore, if we reject this form of linguistic naturalism, we are left with the
following problem. On the one hand, we wish not to decide from the outset which
cases are relevant; on the other hand, we necessarily need to recognize some specific
charter of naturalness in concrete cases.

17Chow, FOM-list on Jan 28, 2006.
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In order to solve the impasse, a philosophical step is needed. This is what we shall
try to do in the next section. Since the beginning, it is important to acknowledge that
there is no painless way out, if not a slight shift of the problem.

14.2.2 A Tentative Methodology

So far, we have taken a stance against a linguistic naturalistic approach, while
maintaining that a weak form of naturalism is implicit in the methodology of
philosophy of mathematical practice. However, we have not excluded some refined
form of naturalism, such as the one of Penelope Maddy. It shall then be fruitful to
explain our methodology by means of confronting it with – and taking distance from
– Maddy’s position. This juxtaposition will allow us to define our proposal about the
role played by philosophy in this kind of analysis.

The first attempt to find a solution to the relevance dilemma could consist in
looking for concrete examples and in extracting a moral out of them, without
imposing a philosophical prejudice on our scrutiny but instead relying only on
the methodology established by the practice of the mathematical community –
this is precisely Maddy’s strategy. However, even assuming a consistent and
Well-organized attitude, within the mathematical community, toward the issue of
naturalness, two problems arise.

Firstly, Maddy’s position forces us to accept a methodological naturalism that,
because of its programmatic absence of any philosophical posture, depends on
others’ prejudice. Moreover, it runs into the trouble of deriving a philosophical
lesson from a finite number of cases without any hope of reaching a significant
approximation to the general problem. This drawing of a philosophical lesson
from partial examples is simply too ambitious. In the present case, the situation
of naturalness is even worse, because a sufficiently clear conceptual analysis of the
notion of naturalness is missing also from the side of the mathematical community.

Secondly, Maddy’s work argues for a form of naturalistic holism that defends
a strong autonomy of mathematics. This thesis claims that philosophical consider-
ations do not find place within a mathematical enterprise. While maintaining that
those latter might have a role in the inspirational moment of discovery of a theorem
– as in the case of Gödel’s realism in the occasion of his discovery of the coherence
of the continuum hypothesis – she discards their role in the process of justification.18

However, when dealing with naturalness, a concept that exhibits a strong informal
character, are we allowed to discard so easily a philosophical component in the
mathematical work? Maddy refuses any exception:

After uncovering corresponding methodological argumentation in a range of cases,
the Second Philosopher concludes that though metaphysical theories on the nature of
mathematical truth and existence undeniably do turn up in such debates, they are not

18cf. Maddy (2007), p. 366.
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in fact decisive, they are in fact distractions from the underlying purely mathematical
considerations at work. Actual methodological decisions, she sees, are based on a perfectly
rational style of means-ends reasoning: the most effective methods available toward
the concrete mathematical goals in play are the ones endorsed and adopted. Acting
on her assumption that the actual methods of mathematics are the ones that should be
followed, she resolves to apply such typically mathematical methodological reasoning to
any contemporary debates she might face.19

Then, should we only look for “mathematical methodological reasoning” to
address the problem of naturalness, in spite of its intrinsic vague character? In the
light of our position, Maddy’s suggestion is difficult to maintain. Mathematicians
make more and more use of a term that has a strong philosophical flavor – and
clearly each of those uses, pertaining to the informal side of mathematical work,
may be possibly omitted without a significant loss in terms of strictly mathematical
reasoning. Moreover, naturalness can be assumed as a surface detector of some
much deeper theoretical phenomenon that a Second Philosopher would always
miss. In this respect, we think that our case is even more compelling than those of
“simplicity” and “fruitfulness” that motivated the following defense by Tappenden
of a philosophy of mathematical practice:

The assessments of simplicity or fruitfulness we make would no doubt be different if our
brains were wired differently, and this would affect the mathematics and science that we
produced, but still the judgments we actually make are too systematically embedded in our
actual practices to be simply shrugged off in studies of either scientific or mathematical
method.20

Then we are left with our dilemma. If our goal is to avoid possible philosophical
prejudices and at the same time we aim to call into question the appropriateness of
every argumentative step, then how to proceed?

Let us step back for a moment and ask a more general question than “what
is naturalness in mathematics?”; that is to say, let us address the following issue:
which form are we expecting from an answer to the question “what is naturalness in
mathematics?”

In order to answer this latter question, the context of the philosophy of mathe-
matical practice seems to be too wide and too vague. We need to narrow it through
an inspection of its different methodologies and then choose the most convenient
ones. This strategy is also motivated by the absence of a related literature structured
enough to provide any general methodological guidelines.

In doing so, two aspects deserve particular attention. First of all, for importing
other methodologies, we have to justify why we consider them related to the
problem of naturalness. Secondly, we need to preserve our point of view as neutral
as possible, dismissing the risk of distorting the concrete uses of the term just for
the sake of our argumentative line. A possible solution to this second concern could
be to import into the framework not a single methodology but a debate (if possible

19Maddy (2007), p. 349.
20Tappenden (2005), p. 154.
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already well developed) between different alternative methodologies. In this light,
our proposal will be to make reference to two possible approaches to the notion of
mathematical explanation.

For the moment, let use sharp this argument in outlining a methodology that can
be used in order to analyze vague notions, such as that of naturalness.

14.3 A Semiformal Method (For a Philosophical Analysis
of a Mathematical Term)

1. Look for empirical evidence of concrete uses of the term in the mathematical
literature. If its frequency is marginal, then stop. If it calls for an explanation,
then proceed. If the term has a common sense, look for its definition in the
dictionary.

2. (If necessary) Enforce your analysis with tools from corpus linguistics.
3. Find the right philosophical context where to place your analysis and give

convincing philosophical reasons to support why it is relevant for a proper
understanding of the term.

4. Inspect the possible methodologies of the context you found in (2) and look for
the philosophical ideas that motivate them.

5. Formulate a (possibly binary) dichotomy, in accordance with the philosophical
ideas you found in (3).

6. List historical examples in which the term is involved in some explicit form, or
add contexts clearly connected to the dichotomy, where the role of the term is
relevant.

7. Test items from (4) using items from (5).
8. Verify plausibility with previous outputs of the method.
9. Connect the horn of the dichotomy, to which the examples point, with the

philosophical idea that motivated its proposal.
10. If the term has a common sense, compare your results with the common sense

and see if it informs the philosophical ideas you found in (3).
11. Go to (1).

Remark 14.3.1. Point 7 is needed in order to allow the possibility that the various
appeals to naturalness do not refer to any precise notion. Indeed, even if our goal
is to show that there are philosophical ideas shaping mathematical practice, we
do not argue that every informal notion that is extensively used in mathematics is
philosophically meaningful or that it deserves a particular explanation.

Remark 14.3.2. Point 10 is just a device that goes back to the statistical evidence
whenever it is needed. For instance, if the outcome of this method points to some
similitude between the notion of naturalness and a different one, a statistical analysis
can be used to support this fact.

We believe that this method proposes a third way between a naturalistic approach
and a philosophy-first approach.
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Against naturalism, while providing reasons for the use of a term, the method is
not limited to intra-mathematical ones. Rather, since the beginning (point 2, 3), it
asks for a philosophical frame in which the analysis has to be embedded in order
to be pursued. Thus, according to the method, the looking at mathematical practice
prescribed is by no means uncritical, since the very setting of the problem, within
any conceptual analysis, cannot be completely neutral.

Against a philosophy-first approach, the method requires (point 4) to formulate
a choice between opposite methodologies, in order to keep a balanced point of view
through a dichotomy. In this way, it will be the analysis of mathematical practice
that will solve this dichotomy, by means of tipping the balance in favor of one side
or the other.

In sum, in the continuation of this work, we will make use of the proposed
method of inquiry.

14.4 On the Static vs. Dynamic Opposition

14.4.1 Applying the Method

In the first part of this work, we have developed a method to study some vague
notions, such as naturalness, widely used in mathematical practice. Our aim was
to establish a method safe from both naturalism and philosophy-first approaches.
According to the proposed method, what we need now is an appropriate context,
conceptually close to that of naturalness, from which we can import a dichotomy
between two different features that a naturalness account might exhibit.

This strategy is known. Indeed, Tappenden suggests to look at how the notion of
naturalness has been used in the contemporary metaphysical debate:

It’s unlikely that mathematical and non-mathematical reasoning are so disjoint as to exclude
interesting points of overlap. In recent decades there has been a revival of old-fashioned
metaphysical debates about the reality of universals, the artificial/natural distinction, and
cognate topics. It might seem initially promising to draw on these debates to illuminate the
questions appearing in the survey essay.21

Nonetheless, he proceeds with showing through convincing arguments that the
debate on metaphysical natural properties is not the right context. While considering
Sider’s paper Naturalness and Arbitrariness (Sider 1996), Tappenden argues that
often mathematical debates cannot be settled by means of appealing only to
metaphysical intuitions, (e.g., Benacerraf problem of What numbers could not be);
on the contrary, they can find a solution thanks to intra-mathematical, pragmatical
reasons (e.g., Von Neumann’s identification between sets and numbers show22).
Tappenden then hints to a partial coincidence between the notion of naturalness and

21Tappenden (2008b), p. 3.
22See Steinhart (2002) in this respect.
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that of fruitfulness. Thus, he seems to agree with Maddy’s suggestion to consider
only intra-mathematical reasons without any independent philosophical analysis of
the problem.

We cannot consider this analysis to be satisfactory. The main reason for this
is that arguments proposed in Tappenden (2008a,b) do not address the problem
of “why mathematicians call something natural?” But this latter question become
absolutely relevant once a study of this notion is conducted within the context of the
philosophy of mathematical practice – as Tappenden himself seems to admit.

Considering that metaphysics is not the proper context of analysis, Tappenden
indicates an alternative route:

It will help us sharpen the issues23 to look for a philosophical niche served up by treatments
of explanation and understanding in the natural sciences, since these have been extensively
addressed.24

We propose to develop this hint. There are significant similarities between
the notion of naturalness and that of mathematical explanation, and these call
for a similar treatment. First of all, they both belong to the informal side of a
mathematical work. Indeed, one of the main contributions provided by these two
notions is to witness the fact that results, in mathematics, are the outcome of
a process of discovery involving many informal components. Furthermore, this
process can be only partially formalized in the proof of a theorem. Thus, these two
notions play a role that significantly resists to any attempt to reduce mathematical
practice to a mere iteration of three basic formal components: definitions, theorems,
and proofs. Of course, naturalness and explanation share such a role with various
other notions, such as pureness, simplicity, generality, and so on.

However, at least one of these similarities is peculiar: the expression “it is
natural” sometimes just means “it is self-explanatory.” So, one might employ
naturalness judgments as a means of relieving the need of explanation. This latter
use of naturalness is at times referred to as some sort of end-of-the-argumentation.

Let us then consider what happens in the field of mathematical explanation. What
we encounter are two different and antithetical approaches: the so-called bottom-up
and top-down methodologies.25

It should be obvious from the above that mathematicians seek explanations. But what form
do these explanations take? It is here that two possibilities emerge. One can follow two
alternative approaches: top-down or bottom-up. In the former approach one starts with a

23In this work, Tappenden is not addressing primarily the problem of naturalness, but many
problem related to it. This quotation is taken after the presentation of a case study where
visualization seems to be a fundamental character of the representation of the multiplication table
for octonions. At this point, he is discussing the naturalness of the formulation of a problem,
the essentiality of its presentation, and its fruitfulness. Then, also considering the relevance that
fruitfulness plays, for him, in the context of naturalness – as one sees in Tappenden (2008b) – we
believe that this passage is relevant and well placed in this discussion.
24Tappenden (2005), p. 158.
25See for example Mancosu and Hafner (2005), or Molinini (2011).
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general model of explanation (perhaps because of its success in the natural sciences) and
then tries to see how well it accounts for the practice. In the latter approach one begins
by avoiding, as much as possible, any commitment to a particular theoretical/conceptual
framework.26

The main methodological opposition called into question by these two alternative
approaches evoke is the one between a monistic account vs. a pluralistic account.
A top-down attitude, as outlined in Mancosu and Hafner (2005), begins with a
general model and proceeds with attempting to conform the case studies to its
standards. The outliers are just discarded as non-pertinent: there is not much room
for dissimilarities. This approach forces to ignore anything that diverges from the
description provided by the general model chosen as a starting point – in Hegel’s
words “Desto schlimmer fur die Tatsachen.”27 So monistic attitudes has a strongly
static character, since the burden of relevance is left on the kind of arguments that
an author presents in order to defend her theoretical point of view.

A bottom-up approach, instead, does not accept to sacrifice the complexity of a
phenomenon for a solid but strict frame. On the contrary, it aims to provide a detailed
picture of the use of a concept, even at the risk of discovering that behind such uses
do not lie a single separate idea but a cluster of different ones. So a bottom-up
approach is highly context dependent: while attempting to identify a general pattern
for a notion, it also attempts to register every modification that occurs in the use of
a term. Thus, a pluralistic stance focuses on the dynamic side of the notion.

Of course there are differences between the concept of naturalness and that of
explanation. As a matter of fact, explanation evokes the idea of a process, while
– as we hinted before – naturalness points at a more non-processual phenomenon.
This dissimilarity rests on theoretical grounds. Indeed, to some extent, explanation
pertains more to epistemology and naturalness to ontology. In this respect, it is
useful to recall that the common sense meaning of naturalness calls into play an
objective – realist – character.

Shall be now clear that the theoretical dichotomy we want to test is the one
between static and dynamic accounts. This division echoes the two alternative
positions expressed by Friedman and Chow on the FOM list in 2006.

We call static any approach according to which naturalness is an inherent and
stable property (or class of properties) of the “object” or “action” that we call natural
– even if it is not possible to characterize it properly.

We call dynamic any approach according to which naturalness rests on some
contextual properties (as those relations that the “object” has with similar objects in
mathematical discourse or its position in the development of a mathematical theory)
such that it is not possible to determine what is naturalness without appealing to
these very same properties.

26Mancosu and Hafner (2005), p. 221.
27“So much worse for the facts [if they do not fit the theory]”, attributed to Hegel as an answer to
those who noticed that new observations did not fit in the theory formulated in his PhD thesis. See
Lask (1914) for this anecdote.
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A similar fluctuation between a dynamic and a static account of naturalness
already appears, somewhat implicitly, in Corfield’s book Towards a philosophy of
real mathematics. Corfield claims that naturalness might carry various different
meanings – thus promoting a bottom-up approach, as one would expect from his
naturalistic attitude.

In sum, a full analysis of the use of the term ‘natural’ by mathematicians through the
ages would require a book-length treatment. As used today it possesses several shades of
meaning, which blend into each other to some extent, relying as they do on a sense of
freedom from arbitrariness and artificiality.28

However, Corfield proves himself to be in some ways divided between a dynamic
and a static approach. On the one hand, he argues that to call a mathematical object
natural is a process whose validity is grounded on the properties that the object
shares with other similar ones – thus supporting a dynamic view. On the other hand,
while discussing the concept of groupoid, he maintains that “another way of arguing
for the naturalness of a concept is in terms of the inevitability of its discovery.”29

This latter position is clearly connected with a more static view, since the naturalness
of the concept of groupoid is granted by some inherent properties that made its
discovery unescapable.

These examples are meant to show that the dichotomy we are proposing fits well
with the different approaches available for the notion of naturalness. Hence, we take
them as a hint that we are on the right path. Our final question, then, will be the
following: is naturalness a static or a dynamic notion?

14.4.2 Case Studies

In this section, we will test this static/dynamic dichotomy through the lens of three
case studies taken from set theory and computability theory. In doing so, we will
follow our method (point 5).

14.4.2.1 The Concept of Set

We start with the literal evidence that naturalness is normally assumed as a property
of the concept of set.

Faced with the inconsistency of naive set theory, one might come to believe that any decision
to adopt a system of axioms about sets would be arbitrary in that no explanation could be
given why the particular system adopted had any greater claim to describe what we conceive
sets and the membership relation to be like than some other system, perhaps incompatible
with the one chosen. One might think that no answer could be given to the question: why
adopt this particular system rather than that or this other one? One might suppose that any

28Corfield (2004), p. 230.
29Corfield (2004), p. 225.
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apparently consistent theory of sets would have to be unnatural in some way or fragmentary,
and that, if consistent, its consistency would be due to certain provisions that were laid down
for the express purpose of avoiding the paradoxes that show naive set theory inconsistent,
but that lack any independent motivation. One might imagine all this; but there is another
view of sets: the iterative conception of set, as it is sometimes called, which often strikes
people as entirely natural,30 free from artificiality, not at all ad hoc, and one they might
perhaps have formulated themselves.31

We see, in this quotation by George Boolos, a clear reference to the so-called
iterative conception, influentially discussed also by Parsons (1977) and Wang
(1974). This conception stems from the idea of a cumulative hierarchy for the
universe of set theory and it is here linked directly to the problem of naturalness.
Then following our method, we should ask: is the naturalness of the notion of set a
static or a dynamic one?

As it is clear from Boolos’ quotation and well known from the history of the
discipline, the notion of set changes through history and thus it is a dynamic
one. Indeed its first appearance in the history of mathematics was shown to be
inconsistent, and moreover, it was linked with a different idea, widespread and
common in the mathematical community at that time: that of a set as determined
by a law. We will now analyze these two notions of sets – the original Cantorian one
and the iterative one – trying to understand if the dynamic character of this concept
determines a similar aspect of the notion of naturalness.

In Cantor’s work, the first definition of set is in 1882, in the third paper of the
series of six from the period 1978 to 1984, bearing the title Über unendliche, lineare
Punktmannichfaltigkeiten.

I call a manifold (an aggregate [Inbegriff], a set) of elements, which belong to any
conceptual sphere, well-defined, if on the basis of its definition and in consequence of the
logical principle of excluded middle, it must be recognized that it is internally determined
whether an arbitrary object of this conceptual sphere belongs to the manifold or not, and
also, whether two objects in the set, in spite of formal differences in the manner in which
they are given, are equal or not. In general the relevant distinctions cannot in practice be
made with certainty and exactness by the capabilities or methods presently available. But
that is not of any concern. The only concern is the internal determination from which in
concrete cases, where it is required, an actual (external) determination is to be developed by
means of a perfection of resources.32

However, the first relevant one for a conscious history of set theory is the one
in the Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-
philosophischer Versuch in der Lehre des Unendlichen, from 1883.

By a “manifold” or “set,” I understand any multiplicity which can be thought of as one,
i.e., any aggregate [Inbegriff] of determinate elements which can be united into a whole by
some law.33

30My italics.
31Boolos (1971) p. 218.
32Zermelo (1932), p. 150.
33Zermelo (1932), p. 204.
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The idea of a set as a mathematical object determined by a law explains the
reason why set theory is commonly considered as a part of logic – where logic
is intended to be the general science of the law of thought. As a matter of fact,
we find here expounded the notion of set as extension of a concept that, properly
formalized, will bring Frege to the failure of its logistic program. However, Cantor’s
idea of general law – naïve as it may be – is not limited to some repertory of tools
of definition, but it seems opened to any possible, and future, means.

This same idea of sets as concept extension is also what guided Dedekind in his
work on the foundation of number theory: Was sind und was sollen die Zahlen? –
which will influence Zermelo, together with Cantor’s work, in the axiomatization of
set theory.

It very frequently happens that different things a, b, c . . . considered for any reason under a
common point of view, are collected together in the mind, and one then says that they form
a system S; one calls the things a, b, c . . . the elements of the system S, they are contained in
S; conversely, S consists of these elements. Such a system S (or a collection, a manifold, a
totality), as an object of our thought, is likewise a thing; it is completely determined when,
for every thing, it is determined whether it is an element of S or not.34

Then the question we should ask is: was the first conception of set thought
as natural? Cantor had the idea that his notion of set was instrumental for the
development of his theories of ordinal numbers and infinite cardinal numbers. Then,
in trying to justify the former, he says that the extension from the finite to the infinite
was natural and helped him to develop set theory.

I am so dependent on this extension of the number concept that without it I should be
unable to take the smallest step forward in the theory of sets [Mengen]; this circumstance
is the justification (or, if need be, the apology) for the fact that I introduce seemingly exotic
ideas into my work. For what is at stake is the extension or continuation of the sequence of
integers into the infinite; and daring though this step may seem, I can nevertheless express,
not only the hope, but the firm conviction that with time this extension will have to be
regarded as thoroughly simple, proper, and natural.35

Moreover, Cantor, talking about the properties and laws of the infinite, says that
they depends “on the nature of things.36;37” But then, how it is possible that a natural
notion was transformed in another different natural notion?

34Ewald (1996), p. 344.
35My emphasis. In Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-
philosophischer Versuch in der Lehre des Unendlichen, see Ewald (1996), p. 883.
36Zermelo (1932), pp. 371–372.
37By the way, this opinion may be questioned by the modern development of set theory. Indeed,
it is important to stress that Cantor’s theory of cardinals is not as “natural” as it could be seen; as
a matter of fact, it hides an important choice behind it. There are two conflicting ideas: Cantor’s
Principle, two sets have the same size if there is a bijection between them, and Aristotle’s Principle,
if a set A is a proper subset of another set B , then the size of A is smaller than the size of B . As
the development of a theory of numerosity has shown Benci and Di Nasso (2003) and Benci et al.
(2006), the formalization of the infinite does not involve necessarily Cantor’s theory of cardinal
numbers.
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The change in the notion of set comes from Zermelo’s axiomatization in 1908,
where the explicit attempt was to keep as ample as possible the concept of set,
without running into the paradoxes.

This discipline [set theory] seems to be threatened by certain contradictions, or “anti-
nomies,” that can be derived from its principle - principles necessarily governing our
thinking, it seems - and to which no entirely satisfactory solution has yet been found.
In particular, in view of the “Russell antinomy” of the set of all sets that do not contain
themselves as elements, it no longer seems admissible today to assign to an arbitrary
logically definable notion a set, or class, as its extension. Cantor’s original definition of a set
(1895) therefore certainly requires some restrictions; it has not, however, been successfully
replaced by one that is just as simple and does not give rise to such reservations. Under these
circumstances there is at this point nothing left for us to do but to proceed in the opposite
direction and, starting from set theory as it is historically given, to seek out the principles
required for establishing the foundations of this mathematical discipline. In solving the
problem we must, on the other hand, restrict these principles sufficiently to exclude all
contradictions and, on the other, take them sufficiently wide to retain all this valuable in this
theory.38

Few comments are needed after this quotation. Zermelo says explicitly that he
wants to axiomatize the “theory created by Cantor and Dedekind,” but he likewise
explicitly says that the theoretical framework that motivated the founding fathers
is not tenable anymore because of the antinomies. The problem is found exactly
in the main definition of set that came so naturally from Cantor’s analysis of well-
order sets and infinite cardinalities: a too loose use of the idea of sets as concept
extension is dangerous. Then Zermelo’s proposal, in the line of Hilbert’s school, is
to start from an historically given theory and try to arrange its main theorems in a
logical order, while implicitly defining the basic notion of the theory. This style of
reasoning is very far from Cantor’s deduction – in a kantian sense – of the principles
of set theory, as he attempted to do in a letter to Hilbert, dated October 10, 1898.

It should also be noted that Zermelo does not appeal to the naturalness of the
concept of set as defined by his axioms. Indeed, his system is not justified in
terms of the concepts involved – even less in terms of Cantor’s notion of set – but
motivated by pragmatic reasons, with the explicit goal to avoid paradoxes. Then, in
1930, Zermelo, while engaged in the search for a consistency proof for set theory,
proved a quasi-categoricity theorem for second-order ZF. The context of Zermelo’s
work is quite far from our modern treatment of the subject,39 but the main idea
was to shape a model of ZF thanks to a cumulative hierarchy: a division in levels
where the elements of a set lay in levels of the hierarchy that come before the
one the set belongs to. These stages were ordered by ordinal numbers and the
first level that formed a model for all ZF was indexed by a strong inaccessible

38Zermelo (1967).
39Zermelo’s work was in the in the context of second-order logic, and moreover, he thought that the
definition of a model of set theory had two degrees of freedom: height and width – with respect of
the urelemente to be considered as primitive. While the former stems from the idea of a cumulative
hierarchy – and then it is still actual – the latter is not anymore a concern for the mainstream
modern research in set theory, which abandoned a theory of sets with urelemente.
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cardinal. Subsequently, the adoption of the idea of a cumulative hierarchy by Gödel
in his proof of the coherence of the Axiom of Choice – where he developed the
Constructible Universe – helped in spreading the idea that “set” is an iterative
notion.

This concept of set (: : :) according to which a set is anything obtainable from the integers
(or some other well-defined objects) by iterated application of the operation “set of”40 and
not something obtained by dividing the totality of all existing things into two categories, has
never led to any antitomy whatsoever; that is, the perfectly “naïve” and uncritical working
with this concept of set has so far proved completely self-consistent.41

From that moment on, we could see a progressive shift from the idea of a
cumulative hierarchy, for a model of ZF, to an iterative notion for the concept of
set. Indeed, this idea became so linked with the concept of set that people started
to inverse the process that lead from ZF to the cumulative hierarchy, trying to
justify the axioms in terms of an iterative notion: the conceptual counterpart of the
structural, model theoretic conception of a cumulative hierarchy. This is exactly
the case of Boolos’s arguments in favor of the naturalness of the axioms of ZF.
Moreover, notice that this argument can be proposed only after it was possible to
give a clear and intuitive picture of the theory that formalizes the notion of set. In this
way, the axioms that inspired and shaped Zermelo’s model(s), in the search of their
consistency, are justified in terms of the model(s) itself; but what does this mean,
really? It is important to remember that Zermelo’s theorem is a quasi-categoricity
theorem: it says that a model of second-order ZF has just two degrees of freedom, its
height and the width, for what concerns the urelemente. Then, since all the possible
models of these axioms are built as a cumulative hierarchy, it would seem that there
was no need to justify the axioms in terms of their iterative character. To makes
sense of this operation, we have to accept that what needs a justification is not the
fact that these are axioms for set theory but the fact that they capture the essence
of the concept of set. What is at work here is a hidden thesis that fixes a concept.
We could call it the Zermelo-Gödel thesis: being a set means being an object that
belongs to a cumulative hierarchy – and, after Zermelo quasi-categoricity theorem:
being a set means to be a set in a model of ZF. As in the case of Church-Turing
thesis (CTT), what seems to be the natural choice is, in reality, the stipulation of a
relevant aspect of a concept. Then arguments as Boolos’ or Parsons’ or Wang’s are
at par with the attempt to prove or justify CTT.42

40My italics.
41Gödel, CW II p.180, 1947 what is the continuum problem.
42In this discussion, we implicitly assumed that the cantorial notion of set, at least the one proposed
in the Grundlagen, is different from the iterative one. For what concerns the strongest claim that
it is not possible to find this notion in Cantor’s work, we do not take a stand, even if we believe
that even the definition presented in the Beiträge cannot be considered as cumulative, if not forcing
it from our modern perspective. See Frapolli (1991) and Jané (2005) in this respect. However, it
is fare to say that the iterative conception is not entirely incompatible with the latest reflections
of Cantor, even if we believe that it had different conceptual motivations, as it is well shown in
Hallet (1984). The main possibility of a specification of Cantor’s notion of set in terms of an
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Then we can conclude that the dynamic character of the notion of set informs
the notion of naturalness, shaping the latter with a dynamic component – in the
diachronic sense we proposed. Moreover, our analysis also showed that a normative
component is hidden in the natural character of a mathematical concept.43

14.4.2.2 Natural New Axioms for ZFC

A second easier example is the discussion on the naturalness of the axioms that
extend ZFC. For this case, we start from a quotation by Joan Bagaria, who gave a
mathematical characterization of the bounded forcing axioms in terms of generic
absoluteness (Bagaria 2000) and then tried to argue for their naturalness (Bagaria
2004).

All together, the criteria [Maximality, Fairness, Consistency and Success] may be regarded
as an attempt to define what being a natural axiom of set theory actually means.44

Let us analyze these criteria, in search for static or dynamic elements in the
characterization of naturalness in the context of new axioms for ZFC.

Maximality. This principle is considered useless in the absence of further specifica-
tions.45 Then it is exemplified with some of the criteria proposed by Goödel –
Reflection, Extensionalization, and Uniformity – whose program is presented
as the program “of finding new natural axioms which, added to the ZFC
axioms, would settle the continuum problem.” After discussing the issues related
to these principles – and acknowledging that the criterion of maximality is
not sufficient, alone, to settle CH – Bagaria concludes saying that “Gödel’s
principles of Reflection, Extensionalization, and Uniformity arise naturally from
the systematic application of the criterion of maximality.46”

iterative conception does, indeed, sustain our thesis of the prescriptive character of the notion of
naturalness.
43Notice that this opinion was proposed quite early, in the development of set theory, contrary to
the general idea of a naturalness of the notion of set – as this quote from König shows clearly:
“That the word ‘set’ is being used indiscriminately for completely different notions and that this
is the source of the apparent paradoxes of this young branch of science, that, moreover, set theory
itself can no more dispense with axiomatic assumptions than can any other exact science and that
these assumptions, just as in other disciplines, are subject to a certain arbitrariness, even if they
lie much deeper here – I do not want to represent any of this as something new.” Van Heijenoort
(1967) p. 147.
44Bagaria (2004), p. 6.
45Notice that also Maddy says something similar: “In both cases, the structure of the counterex-
amples suggests that the formal criterion will need supplementation by informal considerations of
a broader character” (in Maddy (1997), p. 255). These supplementation are comments like: “This
last [ADL.R/] is a particularly natural hypothesis, stating that AD is true in the smallest model of
ZF containing all ordinals and all reals”, p. 226.
46Bagaria (2004), p. 9.
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Fireness. This criterion is explained as advising his promoters not to discriminate
between sentences of the same complexity. Then, the reasons for considering
classes of sentences pertaining to sets with the same rank, or to sets with the
same hereditary cardinality, are the following: “Now the complexity of a set may
be defined in different ways, but the most natural measures of the complexity of
a set are its rank and its hereditary cardinality.47”

Success. This criterion is easily explained in terms of solutions to natural problems.
“A new axiom should not only be natural, but it should also be useful. Now,
usefulness may be measured in different ways, but a useful new axiom must
be able at least to decide some natural questions left undecided by ZFC. If, in
addition, the new axiom provides a clearer picture of the set-theoretic universe,
or sheds new light into obscure areas, or provides new simpler proofs of known
results, then all the better.48”

For what concern consistency, this principle is explicitly considered as a regu-
lative idea that acts only as a necessary condition for new axioms. As a matter of
fact, once we are in the context of classical first-order logic, this principle can be
subsumed under the one of success, because if an axiom is not consistent, it allows
the proof of every proposition. Hence, it is not useful.

In light of these consideration, it is clear that the definition of a natural axiom
is not statical but dynamical – in the synchronic sense we proposed – because it
depends on the context, on other attempts to define naturalness, on natural ways
to consider sentences of the theory, and on the naturalness of other pieces of
mathematics.

However, how to make sense of an attempt to define – as Bagaria argues – natural-
ness in terms of naturalness in a meaningful way? The appeal to “natural questions”
and “natural measures” is sustained by qualitative judgments, on the subject matter
of the theory, that pertain to considerations of relevance and of importance that, far
from being objective and necessary, gain strength in connection to other naturalness
considerations. Here again, we find at work normative judgments that stem from
subjective or intrasubjective – read scientific community – considerations that aim
to shape mathematical work, pointing to what is relevant and what deserves attention
and commitment.

14.4.2.3 Naturalness and c.e. Intermediate Degree

This section is devoted to the study of the role of naturalness in the solution of Post’s
problem, one of the main classical problems in computability theory. This is a quite
technical topic. To present it exhaustively, or to any formal degree, largely exceeds
our general interest. However, we chose it as a significant case study, because the

47Bagaria (2004), p. 9.
48Bagaria (2004), p. 10.
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notion of naturalness appears here in a very explicit form and also because there is
already a large (but absolutely nonconclusive) debate, among leading researchers of
the field, on how such notion has to be intended. Our main attempt is essentially to
reformulate this debate in the frame of our static vs. dynamic opposition. We aim
to show that in order to properly capture naturalness in computability, one needs a
dynamic account in which normative components play a decisive role.

We proceed as follows. Firstly, we recall a few classical definitions in order to
give an informal description of the problem (for a full exposition, the reader is
referred to any standard textbook on computability theory, e.g., Soare 1987). Then,
we mainly focus on a couple of thesis – that we will call “lack of naturalness thesis”
– whose consequences, at least in the version defended by Friedman, originated
a huge and intricate thread of discussion in the FOM list, consisting in two non-
consecutive waves, that of 1999 and that of 2005. Rather than giving a philological
presentation of the cluster of positions expressed in the debate, which is sometimes
very unstructured, we shall organize them in a conceptual laboratory in which
different answers to the lack of naturalness thesis can be used to test different
perspectives on naturalness.

Some Background

Let us begin rather schematically. In this section, we aim to give, in a quite informal
fashion, a brief collection of some preliminary definitions.49 All the sets we will
consider are � !.

We take as known the following notions: Turing machine, computable function,
computable set, computable enumerable (c.e.50) set, and Halting set. We denote the
Halting set with K .

• An oracle Turing machine is a standard Turing machine equipped with an extra
“read-only” tape on which is written the characteristic function of a set A (�A),
called the oracle. Informally, a Turing program for an oracle Turing machine is
a standard Turing program that may also contain instructions to read the oracle
tape.

• Given an effective list Pe of all the Turing programs (encoded with natural
numbers), we denote with 'Ae the function executed by Pe with oracle A.

• For any set A; we denote with A0 the following set:
˚
e j 'Ae .e/ #�.

• Let A;B be two sets. We say that A is Turing-reducible to B (A 
T B), if
�A D �Be for some positive integer e. Informally, a set A is Turing-reducible
to B if there is an algorithm for deciding whether x 2 A given answers to any
question of the form x 2 B‹

49We stress again that any of the multiple formal gaps that we leave behind can be filled reading a
very initial segment of Soare (1987).
50We follow the current use to convert any single occurrence of the word “recursive” (or derivates)
in classical recursion theory in the word computable.
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• If A 
T B and B 
T A, we say that A and B are Turing-equivalent (A �T B).
Turing equivalence is an equivalence relation. Its classes of equivalence are called
Turing-degrees. We denote with 0 the degree of computable sets and with 00 the
degree of K .

• We recall that 00 is Turing-complete among c.e. set, i.e., for any c.e. set A, A 
T

00.
• We call a degree d intermediate if d is c.e. and 0 <T d < 00.

Then, we can state Post’s problem as follows: are there any intermediate degrees?
This is how Post, in 1944, presented for the first time his problem:

As a result we are left completely on the fence as to whether there exists a recursively
enumerable set of positive integers of absolutely lower degree of unsolvability than the
complete set K, or whether, indeed, all recursively enumerable sets of positive integers
with recursively unsolvable decision problems are absolutely of the same degree of
unsolvability.51

The importance of Post’s problem lies in the fact that its solution gives us infor-
mation not only about the structure of c.e. Turing-degrees but also (through some
proper coding) about any sort of c.e. problems that could appear in mathematics. In
Rogers’ words:

Post’s problem was significant in two respects: (1) it concerned the variety of structures
possible among the nonrecursive, recursively enumerable sets; (2) it therefore concerned
the variety possible among axiomatizable theories and among other sorts of recursively
enumerable problems. [. . . ] If all theories were 	T K , then reducibilities from K would be
a general method for demonstrating the undecidability of axiomatizable theories.52

Lack of Naturalness Thesis

Post’s problem has positive answer: intermediate degrees exists. Moreover, far from
being trivial, the degree structure generated by Turing-reducibility among c.e. sets
– whose standard notation is R – is a very complex and rich one. For decades,
studying its properties, both on logical and algebraic side, has been one of the main
research projects in computability theory. For the record, it has been proved that
every finite distributive lattice can be embedded into R and that its first-order theory
is equivalent to the theory of true first-order arithmetic. So, where does naturalness
appear?

Typically, speaking of naturalness about Post’s problem and its solution concerns
two different claims (frequently overlapped in the FOM debate, as we will see):
(1) that there is no natural example of intermediate degrees outside computability
theory and (2) that almost every known solution to the problem significantly
diverges from Post’s original approach, in most cases, making use of a class of

51Post (1944), p. 314.
52Rogers (1967), p. 144.
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methods (i.e., priority arguments, spread everywhere in computability theory) that
are to some extent unnatural, or artificial. We call these claims “lack of naturalness
thesis” (from now on:, LoN1 and LoN2).

This is the presentation that Harvey Friedman made of LoN1:

Usually, when mathematicians undertake an intensive investigation of some specific
structure or class of structures, the need for such an investigation has already been motivated
by a set of specific, natural examples showing the richness and interest of the subject.
For instance, group theory was motivated by a wealth of examples such as matrix groups,
permutation groups, symmetries of geometrical figures, etc. Contrast this with the r.e. sets
and degrees that are so much beloved by recursion theorists. The only natural examples
known to date are the original ones, i.e. the halting problem and the complete r.e. degree.
Thus there is really only one example, and that example is highly atypical of the way the
subject has developed. It is reasonable to wonder whether this lack of examples may indicate
some sort of defect or imbalance in the subject.53

Thus, the lack of naturalness is motivated by a very contextual consideration:
being natural (in this case, for a degree) is a property that can be evaluated only in
relation with some other mathematical theories. In this view, naturalness consists
in a sort of familiarity: you can call a degree natural only if you have already
met it before (no matter where). It is important to notice that in order to satisfy
this condition, it is not enough to just prove some general existence result, but
one has rather to show precisely the intermediate degree or possibly a set that can
be naturally coded in it. Otherwise, LoN1 may be immediately discarded as false.
Indeed, Cooper noticed:

It is true that all the known canonical c.e. sets (e.g. those associated with standard first-
order axiomatic theories, the halting problem, etc) turn out to be computable or of complete
c.e. degree, and that for a pure mathematician that is very significant. [: : :] However, there
are mathematical criteria according to which *all* c.e. sets and Turing-degrees potentially
contain “natural” information content which may be encountered in specific contexts -
just to mention two well-known examples: 1) (Feferman, Hanf) All c.e. degrees contain
(finitely) axiomatisable theories, and 2) (Matiasevich) All c.e. sets are diophantine54

To our concern, the emphasis should be on the following words: “which may be
encountered in specific contexts.” Firstly, let us spend a few words on this kind of
images. Such an expression is not isolated in the FOM debate. Indeed, its language is
frequently shattered by spatial metaphors. Taken together, they may define a global
image: that of different mathematical contexts forming a well-defined geography,
in which naturalness (at least in the form expressed by LoN1) consists in a quite
stable presence of a concept in more than one single region. There can be something
profound: if the common meaning of natural overlaps some form of spatiality, than
its use in mathematics may suggest a hidden realistic stance, that of mathematical
theories located somewhere (we will focus on this point in our conclusions).

In any case, there are many ways in which the familiarity condition of LoN1

(i.e., asking for the presence of the degree in other mathematical contexts) can be

53H. Friedman, FOM list: Jul 28, 1999.
54Cooper, FOM list: Jul 29, 1999.
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intended; Cooper’s objection lies on a very relaxed one: it is sufficient to prove
the existence of the degree outside the theory of Turing-degrees. To prevent these
objections, it may be reasonable to ask for a stronger version of LoN1, such as the
one entailed in this response by Shipman:

For example, consider the result of Hanf (cited by Cooper): for every RE degree there is a
finitely axiomatizable theory of that degree. This is one of my favorite papers; I recommend
it to all of you. But it does not really tell us anything about degrees; it tells us about the
nature of finitely axiomatizable theories. This nature is still somewhat of a mystery, despite
interesting results by Kleene and model theorists such as Zilber. But I do not see how Hanf’s
finitely axiomatizable theory (which, roughly speaking, describes a non-standard Turing
machine) can be considered as natural.55

This refinement of LoN1 is less innocent than it may sound: how can we possibly
distinguish between natural and unnatural finitely axiomatizable theories? The only
available answer here is a sort of generalization of LoN1: a finitely axiomatizable
theory is natural if it appears outside its own theory. Moreover, given a class of
objects that ground naturalness on finitely axiomatizable theories, we can ask what
grounds their own naturalness – and so on. In sum, LoN1 seems to fit perfectly in
our dynamic view: there is no single property shared by a class of mathematical
objects (in this case, intermediate degrees) that implies naturalness, but this notion
can rather be considered as part of a dynamic and cumulative process, transmitted
by a relation of familiarity. For the moment, we can stop here for LoN1.

In order to understand the role of the term “natural” in LoN2, let us begin
with a brief exposition of Post’s original approach. In 1944, in the same article
in which the problem has been formulated for the first time, Post was able to prove
the existence of an intermediate degree for m-reducibility (a notion stronger than
Turing’s one). In doing so, Post introduced a new property for c.e. sets, whose
definition is quite easy: a c.e. set S is simple if (1) S is co-infinite; (2) for every
infinite c.e. set We, We \ S ¤ ; (informally, the idea lying behind this definition is
that S is large enough to meet every infinite c.e. set – and so that its complement is
somehow thin, with respect to c.e. sets). Post devoted considerable effort in studying
various refinements of the notion of simplicity, strengthening his original intuition
of making the complement of the set as thin as possible. In this way, he hoped
that he could have found a good candidate for solving the problem in the context
of Turing-reducibility (for instance: introducing hypersimplicity, he was able to
find intermediate degrees for tt-reducibility, a reducibility lying strictly betweenm-
reducibility and Turing one). Thus, in general, he aimed to formulate a property
for a set that would have implied both noncomputability and noncompleteness of
its Turing-degree; these kinds of properties are indeed called Post’s properties.
Unfortunately, all these attempts failed: the problem was eventually solved with
a completely different approach.

55Shipman, FOM list: Aug 12, 1999.
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In 1956–1957, Friedberg and Muchnick (independently from each other, see56)
solved Post’s problem by means of using similar strategies, namely, adapting
Kleene-Post theorem to the c.e. context. In 1954, Kleene and Post had proved the
existence of a pair of incomparable degrees (not c.e.) below 00 (see Kleene and Post
(1954)). They built two sets A;B 
T K , such that A �T B and B �T A. Their
innovative strategy was to split these conditions between two infinite lists of easier
requirements of the form:

Re W �A ¤ 'Be I Se W �B ¤ 'Ae ;

so that every requirement prevents some function e from being a Turing-reduction
of one of the two sets into the other. Kleene and Post satisfied all these requirements
by making reference, infinitely many times, to K . Thus, their construction was not
absolutely computable, but only relatively to K , while A and B were not c.e. but
just 
T 00. Now, Friedberg-Muchnick’s proof is a reformulation of Kleene-Post
construction, in which – in order to produce two c.e. sets – no noncomputable
step is admitted. Of course, in lack of the information given by K , to satisfy the
requirements is more complex. The key idea is to associate any requirement to
multiple strategies ordered to accomplish it, without knowing a priori which one
will eventually succeed. But the situation is delicate, because, in pursuing a strategy,
a requirement may interfere with some other requirements.

Friedberg-Muchnick’s solution to face these odds is based on the idea of giving
to requirements a priority ordering. So, any requirement with higher priority may
interfere with one with a lower priority, forcing it to replace its current strategy with
a new one (in this case, the requirement with lower priority is said to be injured).
However, every requirement is injured only finitely many times, and then all the
requirements are eventually met.

Nonetheless, such solution does not describe a Post’s property. Furthermore,
while establishing the existence of intermediate degrees (no one contests its formal
validity), it requests to any possible Post’s property to show a further feature, that
of naturalness; otherwise, one may just trivially solve Post’s problem by means of
taking as a property the following:A is c.e. and 0 <T A <T 00. In this light, Cooper
recently presented naturalness as fundamental component of Post’s problem: “Find
some natural property57 P of computable enumerable sets such that if A satisfies
P , then 0 <T A <T 0.58”

To sum it up, asking for a natural solution of Post’s problem – in view of LoN2 –
essentially consists in looking for a natural Post’s property, whose proof of actually
being a Post’s property is, to some extent, natural too. Everything is very circular,
of course; we will try to gain some meaningful insights, thanks to a recasting of

56See Friedberg (1957) and Muchnik (1956).
57Our italics.
58Cooper (2004), p. 226.
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our static vs. dynamic opposition. In particular, our belief is that almost every real
approach to LoN2 (i.e., every attempt to solve it, thanks to the formulation of a
Post’s property with alleged reasons to count it as natural) embeds a static notion
of naturalness. This is not a forced path: in theory, one could think that the natural
feature of a Post property may depend on contextual aspects (such as the web of
familiarities implied by LoN1), but practically this is not the case. Most of the
replies to LoN2 incorporate (in one case, at least, in a very explicit form) a general
criterion for separating natural and unnatural properties. Clearly, the existence of a
convincing criterion of this kind would also partially dismiss LoN1, because in order
to judge naturalness of a degree, it would be sufficient to see if its Post’s property
would fall among the natural ones or not. However, we aim to show that none of
these proposals – even though mathematically relevant – do philosophically grasp
the way in which the term natural is commonly used and intended in computability
theory or in mathematics. In doing so, we proceed giving a short catalogue of these
proposals, mainly discussing the principal limitations of a static account. Then, we
will take LoN1 seriously.

Staticity

In standard textbooks on computability theory, the first solution usually presented
of Post’s problem is that of the existence of a low simple set. Apparently, it contains
a Post property, namely, being simple and low. We already know what simplicity is,
so the only missing ingredient here is lowness: a set A is low, if A0 < 00 (intuitively
A is, in some sense, computationally weak; indeed, since for every set A, A < A0
holds, then among c.e. sets, lowness implies noncompleteness). Unfortunately, this
is not very informative. It just says where the set is in the hierarchy of Turing-
degrees. Thus, considering it as a natural Post’s property would be an analogue of
our previous example of a trivial case: 0 <T A <T 00. Furthermore, the usual
construction of a low simple set contains injurities, and its lowness requirements
have a rather artificial shape. To use Nies’s words:

Post may have hoped for a different kind of a solution to the problem he posed, one that is
more natural. [: : :] In mathematics, to be natural an object must be more than a mere artifact
of arbitrary human-made definitions (for instance, the particular way we defined a universal
Turing program). Natural properties should be conceptually easy. Being a simple set is such
a property, satisfying the requirements in the proof of Theorem 1.6.459 is not.60

Similar considerations also appear in the FOM debate, but clearly they are not very
illuminating: what does it mean to be conceptually simple? We recall that in LoN2,
there is a double request of naturalness: one that lies on the side of proofs and
the other one concerning the definition of the Post property. It seems reasonable to
expect a good characterization of conceptual simplicity, in this context, to meet both.

59Theorem 1.6.4 stases: “There is a low simple set A”
60Nies (2009), p. 34.
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With respect to the former aspect, a condition frequently taken under consideration
is that of being injury-free. This is not surprising. After all, the topic of priority
arguments is the general frame in which the FOM debate on naturalness emerged.
Nonetheless, arguing that injury-free solutions coincide with natural ones is an hard
claim.

Let us consider, for instance, the case ofK-triviality. This is a quite recent notion
that appears in the context of algorithmic randomness. Its formal definition requires
a certain amount of preliminary technicalities that rapidly lead us far from our
present scope. However, to describe its intuitive meaning is much more feasible.
Firstly, recall that any c.e. set A can be viewed as the final outcome of an algorithm
that runs at stages. So, at any stage s, only a finite portion of the set is given. For
this reason, we can always properly refer to its first n bits of information. Now, a
set A is K-trivial if, for every n, the information encoded in the first n bits of A is
not bigger (up to an additive constant) than the information encoded in its length.
In other words, the informational content of every initial segment of A is as low as
possible. To our concerns,K-triviality has two noteworthy features: (1) its definition
may claim to be conceptually simple (at least in its informal presentation) and (2)
the construction of a c.e. noncomputable K-trivial set takes only few lines and is
injury-free. Is it enough to consider it a natural Post’s property? There are a couple
of significant constraints to a positive answer.

Firstly, proving that each K-trivial set is Turing-noncomplete is a very challeng-
ing task. It was firstly demonstrated, in 2003, by Downey, Hirschfeldt, Nies, and
Stephan through the introduction of a new technique, the so-called decanter method,
whose explanation lasts several pages and is by no means “simple.” Can we still
consider it conceptually simple? Here the problem is that, even in the presence of
a very relaxed semantic of conceptual simplicity, there seems to be a gap between
what we are willing to consider as conceptually simple (or natural) and what is
characterized as conceptually simple by a formal condition. For instance, being
injury-free gives us, formally, a certain information on the complexity of a proof, but
on the other hand, the same property does not always enlighten us on its conceptual
simplicity.

On the side of definitions, the situation is even more desperate. It is not clear what
a naturalness condition wants to discard (in the context of proofs, “being injury-
free” was at least an initial hint for a possible solution), and moreover, there is
apparently no way to establish – through a static account – which set of positive
features transforms a definition in a natural one. Once again, the case ofK-triviality
can be fruitfully used. As we said, its definition may be regarded as conceptually
simple (so, maybe, even as natural). Then, a pure static approach has to explain this
fact singling out some feature of K-triviality responsible for conceptual simplicity
and without referring to any contextual property. Yet, a deeper look shows that its
form of simplicity lies in the fact that K-triviality can be easily described in the
general frame of randomness (in Kolmogorov complexity, it is exactly the opposite
of randomness; thus, informally, K-triviality means “being far from random,” i.e.,
its information is very easy to compress). Such scenario is highly contextual: what
grounds conceptual simplicity forK-triviality is its relation with some other notions
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and even its position within the general frame of computability. Furthermore, most
of the notions involved in this definition reinforced their meaning in the last decades.
In this direction, a good thought experiment may consist in asking if notion like
K-triviality would have been viewed as conceptually simple, or natural, in the same
way in a period in which computational aspects were less considered in mathematics
– say, anytime before 1930. According to this view, the main deficit of a static
approach is that of being totally blind with respect to any of these contextual and
dynamic observations and then unable to capture the phenomenon of naturalness in
its fullness.

We conclude this section with a brief discussion of a radical version of a static
view of naturalness, that of Friedman. Supporting the idea of a strong analogy
between naturalness and simplicity, in the FOM debate, Friedman proposed to tackle
the problem in the following way:

I now wish to move to some precise conjectures.
For some time now, I have been very interested in “simplicity.” The crudest approxima-

tion to simplicity is tiny.
Yes, I hear from the some readers that this is too crude for them, that this is beneath them.

But even the first 500 obvious questions in f.o.m. in terms of “tiny” are more than enough
in technical depth to occupy 1 billion people for 1 billion years.

Now let’s relate this to “naturalness” in recursion theory.
1. It has been a well known occupation of some to try to find the “tiniest” Turing machine

whose behavior is nonrecursive, in terms of the accepted inputs. A pretty much generally
accepted standard has emerged for talking about how “tiny” these TM’s are. I think one
measures the number of states and symbols used in the set of quadruples.

[: : :] The numbers are very very small, if I recall, and the accepting strings of the TM’s
written down are COMPLETE RE SETS.

CONJECTURE: There is no tiny TM whose acceptance set is an r.e. set of intermediate
degree. There is no TM with at most 10 symbols and 10 states whose acceptance set is an
r.e. set of intermediate degree.

Of course, negative results are going to be excruciatingly hard in this direction. But
CHALLENGE. Write down the smallest sized TM you can whose acceptance set is an

r.e. set of intermediate degree61

Even if such proposal would probably be mathematically interesting, the claim
for which it would offer any conclusive insight about the notion of naturalness can be
strongly disputed. Indeed, which kind of relation Friedman does establish between
tininess (of a TM) and naturalness (of its acceptance set)?

Firstly, saying that tininess is a sufficient condition for naturalness is in direct
contrast with the fact that there exist many tiny TMs, whose behaviors are typically
considered as profoundly unnatural. Consider, for instance, the so-called busy
beaver. On an alphabet† D f0; 1g, a TM of n states is called a n-busy beaver if, on
input 0, it produces the maximum number of 1 in its output tape, among all the other
TMs with n states. The busy beaver function – namely, the function assigning to n
the output of a busy beaver with n states, started on n – grows extremely fast; indeed,
it grows faster than any computable function. For example, a 5-states busy beaver,

61H. Friedman, FOM list: May 24, 2003.
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produces (at least) 4098 “1,” after 47176870 steps.62 It is very difficult to label any
n-busy beaver as natural (even for little value of n). Furthermore, one cannot just
escape by means of arguing that the result is counterintuitive, because the general
aim of Friedman’s proposal is exactly to clarify what naturalness in mathematics
means; there is no room here for the Hegel’s motto we cited before.

On the other hand, taking tininess as a necessary condition for naturalness means
defending the following thesis: that any function we would count as natural may
be executed by a TM with few states. As a philosophical consequence for this
stance, we would have a sort of computationalist dream: a clear mirroring between
parameters of naturalness for human beings and simplicity in the architecture of
TMs. Once again, the practice unveils a rather different landscape. For instance, the
search for optimal algorithm (in terms of the number of states) is often anything but
a trivial task.

In light of these difficulties, one may ask for a weaker interpretation of
Friedman’s proposal. Instead of looking at tininess (or other formal features) as
something that fixes our concept of naturalness in a rigid way, we can maybe just
take it as indicators of a much more general and quite incompressible phenomenon.
This is precisely our belief. So, in order to gain a wider point of view, it is time to
go back to the dark side of naturalness: the dynamic one.

14.4.2.4 Dynamicity and the Missing Ingredient: Normativity

As we tried to show, any attempt to formulate a static account for naturalness leaves
out various contextual aspects that profoundly characterize the phenomenon in its
generality. Indeed, the (possible) lack of naturalness of intermediate degrees cannot
be fully explained without considering contextual relations, like the intercourse with
some other mathematical theory, or the construction of a notion of admissibility (in
terms of naturalness) of mathematical proofs, on which we can evaluate the priority
arguments. Furthermore, one has to admit that this large class of contextual relations
exceeds the pure mathematical domain. For instance, in order to describe why K-
triviality may be regarded as natural, it is necessary to consider the evolution and the
relevance of some mathematical concepts in time (like the notion of randomness),
while the simplicity of TMs does not always reflect our feelings on what makes a
function’s behavior natural or unnatural.

All of this may lead to the formulation of the thesis, according to which
naturalness of a mathematical object depends on the sum of all the contextual
relations that an object has with respect to other pieces of mathematics. This
definition is not completely new. It recalls Chow’s image of a graph of similarities
that we quoted in our methodological section, and also, a graph structure for
naturalness (formulated in order to take into account its dynamic components) is
sometimes evoked in the FOM debate.

62The function values are known exactly only for n < 5. This lower bound is given in Marxen and
Burntrock (1990).
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Nonetheless, such a solution is at the same time persuasive and frustrating.
Indeed, this kind of graph has to admit among its edges a gigantic class of different
notions of similarity. But if mathematical ones are extremely hard to classify, most
of the other ones are simply too vague to be embedded in a coherent model.
Moreover, to establish how these multiple notions of similarities interact with each
other is by no means clear. For example, once granted that Turing-reducibility is
a natural notion, how is it possible that a notion completely based on it, that of
intermediate degree, appears to be unnatural (as argued by supporters of LoN1 and
LoN2)? To solve these complications, a possible hint may be found in this comment
by Shoenfield:

There is one common feature of the above uses of natural: the assumption that whatever
natural means, what is natural is good. I see some signs of this assumption in some of the
communications to FOM, which seem to argue that if there is no natural intermediate r.e.
degree, then there is something wrong or deficient in the study of r.e. degrees. To justify
such a claim, it is not merely necessary to explain the meaning of natural; it is necessary to
explain why lack of this type of naturalness is a deficiency in a theory.63

We assist, here, to a shift analogue to something we already assist to. In
our methodology, while debating which kind of tools could prevent preserved us
from both naturalism and Philosophy-first approaches, we proposed a subtle but
significant change to our main question: from “What is naturalness?” to “What
is naturalness for?” Or, rather, “Why mathematicians make use of naturalness?”
Shipman’s formulation of this very same question can be stated as follows: “Why
do we ask for naturalness in our mathematical theories?”

Brought to the extreme conclusion, Shipman’s suggestion, depurated of its
provocative aspects, is very poignant. In this perspective, naturalness might be
considered as a request posed to our theories, rather than an attribute of the elements
of the theories themselves. As we can see, even in the presence of our graph,
judgments on naturalness are, most of all, requests about the ways in which we do
mathematics.64 Consequently, a graph of similarities in which the edges are stably
given would be deprived of a crucial element for the comprehension of naturalness,
namely, normativism.

It is now clear, after this tour de force, that our proposal is precisely to
consider the normative aspects as decisive. If we admit that to refer to a portion
of mathematics or a mathematical object as “natural” is an operation that includes
an element of normativity in itself, then any general request for a criterion to
distinguish, once for good, between natural and unnatural characteristics would
become meaningless. Thus, even though some very local border of the geography
given by our graph comes to be persuasive and accepted enough to be considered
stable – recall what we said about natural numbers in the introduction – most

63Shoenfield, FOM list: November 3, 1999.
64This aspect of naturalness is also linked with a commonsense meaning of naturalness that points
to our habits and the familiarity we have, in this context, with some pieces of mathematics. As we
will see in the last section of this chapter, this temptation to reduce unfamiliar to familiar aspects
of our mathematical work goes hand in hand with an even stronger attitude towar mathematics.
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of the judgments of naturalness are still the outcome of a continuous process
of negotiation; a negotiation that takes place fully inside the practice. Thus, this
geography is, essentially, in movement.

Therefore, we might conclude that to call a piece of mathematical discourse
“natural” is a normative operation that consists in connecting it with something
already labeled as “natural.” It is important to notice that this kind of operation is, to
some extent, a sort of baptism – i.e., neither inherent properties of the object that we
call “natural” (i.e., static aspects) nor the relations it establishes with similar ones
(i.e., dynamic aspects) can be taken as full justifications for its naturalness. In other
words, the process of labeling something as “natural” is not purely descriptional.

Whenever this process becomes critical, as in the case of intermediate degrees,
we have a crisis of naturalness. So naturalness is not to be intended as a specific
attribute of our mathematical objects but rather as an issue about our mathematical
practice. Then these crises cannot be solved, thanks to the elaboration of a “stable”
theoretical frame. If we want to fix these contradictions, then we have to go back to
the practice.

In conclusion, we suggest that naturalness should be considered as a device of
self-regulation within mathematical practice, a device that through a dynamic and
communitarian process informs us of the ways in which we want this practice
to be performed. At this point, one may believe that we are fallen back into
a form of naturalism, for which a mathematical problem, such as the one of
naturalness, cannot be solved in a philosophical dimension. But it would be a
wrong interpretation, since what we tried to show, with the particular analysis of
naturalness, is instead precisely that mathematical practice is continuously exposed
to philosophical issues that address it and shape it. This latter aspect is what we want
to elucidate in the conclusion of this chapter.

14.4.3 Philosophy in Mathematical Clothing

By means of testing our case studies on the static-dynamic dichotomy, we showed
that the notion of naturalness has a mostly dynamic character. Moreover, as a by-
product of our analysis, we highlighted a normative component in the judgments
of naturalness. This is to say that a piece of mathematics is natural when it fits
with a background idea that is chosen to be relevant. In the case of the concept of
set, the background ideas were the logical principle of comprehension (according
to Cantor and Dedekind) and, later on, Zermelo’s quasi-categoricity theorem in
terms of a cumulative hierarchy (according to Gödel and Boolos). In the case of
Bagaria’s criteria for natural axioms, the naturalness of the bounded forcing axioms
is guaranteed by some background ideas that inform set theoretical practice and
that, focusing on the ongoing research, determine the relevant problems. Finally,
in the case of c.e. intermediate degrees, the naturalness conditions can be properly
understood only through a dynamic scenario, in which the (possible) existence of
these degrees is considered with respect to other mathematical theories already
labeled as natural.
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In conclusion, it might be interesting to reconsider the meaning of the word
“natural,” as defined by the Oxford dictionary, in the light of our analysis: if
“natural” is something “existing in or derived from nature; not made or caused
by humankind,” can we fit this definition with the use of the word that emerges
in mathematical practice? In other words, how to harmonize such a reference to a
given and independent existence, that is something conceptually close to a realistic
stance, with the dynamic and normative components that we have unveiled in the
concept of naturalness as used within the mathematical discourse?

These two meanings seem hard to reconcile. This apparent incompatibility,
though, can be solved if we consider the philosophical aim for defining something
as natural in mathematics. We believe that this aim is orthogonal to the features we
described. Indeed, the dynamic and prescriptive characters of naturalness on which
we have been focusing point in the direction of a nontransparent character of the
notion. In other words, when something is labeled as “natural,” the reasons are to be
found in rational arguments, and these latter do not gain strength by the inevitability
of a definition or by the evidence of a concept but rather on the ground of the
context where the appeal to naturalness is given. Of course, success and fruitfulness
play a role, but to put it in Cantor’s words: “every mathematical concept carries
within itself the necessary corrective: if it is fruitless or unsuited to its purpose, then
that appears very soon through its uselessness and it will be abandoned for lack of
success.65” Hence, which are the rational arguments and the philosophical reasons,
besides success, that might satisfactorily explain the widespread use of the notion
of naturalness within the mathematical discourse?

We believe that the answer to this question might reconcile the opposition
between mathematical naturalness and commonsense naturalness. Nonetheless, in
order to properly tackle the issue and develop it fully, another article would be
needed; thus, we chose to leave these conclusions in the form of a suggestion that
may trigger further research.

In the end, it seems important to us to reassert that the philosophical ideas that we
found in the analysis of the use of “naturalness,” far from being metaphysical non-
sense, consistently inform mathematical practice. They show that a wide conceptual
framework is essential to mathematics, and they call for a global philosophical
approach.
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Chapter 15
An Inquiry into the Practice of Proving
in Low-Dimensional Topology

Silvia De Toffoli and Valeria Giardino

15.1 Introduction

Philosophy of mathematics has recently become more attentive to the practice of
mathematics and in particular to the everyday work of mathematicians. One reason
behind this “practical turn” is that mathematics should be acknowledged not only
as an abstract science, but also as a human enterprise with its own dynamics that
still need to be investigated in depth. Accordingly, it is common today to refer to the
“philosophy of mathematical practice” (Mancosu 2008).

Setting our research in this context, our starting point is the analysis of some
of the material representations used in the practice of mathematics. In Thurston’s
words, mathematicians

use wide channels of communication that go far beyond formal mathematical language.
They use gestures, they draw pictures and diagrams, and they make sound effects and use
body language. (Thurston 1994, p. 166, emphasis added)

Among the wide variety of externalizations used by experts to convey and
practice mathematics, only some of them are material and therefore easily shared,
inspected and reproduced. Such material representations are introduced in a specific
practice, and once they enter into the set of the available tools, they have in turn
an influence on the very same practice. This process plays a significant role in
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the practice of mathematics. One of the aims of this article is to investigate the
conditions for its manifestation. Moreover, we will analyze what kind of cognitive
abilities are triggered by the use of pictures in low-dimensional topology. In
fact, we claim that a specific kind of imagination comes into play when dealing
with visual representations in this field, which we label manipulative imagination.
This notion will be used to characterize what it means to “see” in topology. We
will propose that reasoning in low-dimensional topology is based on preexisting
cognitive capacities—mathematicians imagine a series of possible manipulations
on the representations they use—and is modulated by expertise: representations
are cognitive tools whose functioning depends in part from preexisting cognitive
abilities and in part from specific training.

Moreover, the actual practice of proving in low-dimensional topology involves
a kind of reasoning that cannot be reduced to formal statements without loss
of intuition. In this sense, visualization plays a specific epistemic role in this
practice. We will show several examples of reasoning which are representationally
heterogeneous, i.e. neither entirely propositional nor entirely visual.1 This form
of reasoning is shared by experts: it is the kind of reasoning that one has to
master to become a practitioner. Moreover, the manipulations allowed on the
representations—what we will define as permissible actions—as well as the rep-
resentations themselves are epistemologically relevant. This is because they are
integral parts both of the reasoning and of the justification provided. Inferences
involving visual representations are permissible only within a specific practice and
in this sense context dependent: this leads to the establishment of local criteria of
validity.

In Sect. 14.2.2, we will introduce simple examples of reasoning in topology
involving pictures and text in order to make the reader acquainted with various
representations. In Sect. 14.4.1, we will focus on a specific proof in low-dimensional
topology: Rolfsen’s demonstration of the equivalence of two presentations of
the Poincaré homology sphere. To do so, we will introduce the mathematical
background only to the extent needed in this context. In Sect. 14.4.2, we will analyze
our case study. We will discuss the form of topological arguments, in particular
the role of pictures in topological reasoning. Moreover, we will consider how
the notion of “seeing” in topology depends on our spatial-motoric intuitions of
three-dimensional space and can be characterized using the notion of manipulative
imagination. Lastly, we will analyze the reliability of this specific practice. In
Sect. 14.4.3, we will sum up our conclusions and present possible lines of further
research.

1Examples of representationally heterogeneous arguments can be found also in other areas. For
example, Shin (2004) describes the project of funding a heterogeneous logic by Barwise and
Etchemendy (1996) as a very fruitful one.



15 Proving in Low-Dimensional Topology 317

15.2 Reasoning in Topology

Topology is a branch of geometry that focuses on qualitative properties of objects,
while ignoring quantitative ones. In order to represent a topological object, we have
to choose one of its particular geometric shapes. Low-dimensional topology focuses
on the study of objects of dimension four or less. It is particularly interesting to
investigate the practice of proving in this subfield because, as we will see, it is
deeply influenced by our intuition of space.

Let us start with an example in dimension two. Representations of surfaces can
be “manipulated in space” by exploiting our familiarity in manipulating concrete
objects, as if the objects of topology were made of modeling clay. For example,
in topology the surface of a cup and that of a doughnut are equivalent: they
are both homeomorphic to a torus. (In topology, objects are considered up to
homeomorphism, i.e. continuous transformations whose inverse is also continuous.)
To prove this, we have only to exhibit an appropriate deformation that takes
the surface of a cup into the one of a doughnut. Students are trained to “see”
transformations such as this and to move freely among different geometric shapes
of the same topological object without need to justify these equivalences in other
ways. More sophisticated arguments could be used by introducing the machinery of
algebraic topology, but this is often not requested by the practice.

For example, the torus can be defined as a square with its sides identified. In
order to explain how this is possible, let us first analyze a simpler example. Given
a square with boundary, that is, a surface homeomorphic to a disk D

2, we glue (i.e.
identify) two of its opposite sides in order to obtain another surface. If the two sides
are glued in the same direction, as indicated by the arrows in Fig. 15.1a, we will
obtain a cylinder (Fig. 15.1b). If the two sides are glued in the opposite direction, as
indicated in Fig. 15.2a, we will obtain a Möbius band (Fig. 15.2b).

In order to obtain the torus from a square, we identify all its four sides in pairs.
First, we identify two of them in the same direction, as in the case of the cylinder

Fig. 15.1 Constructing the
cylinder

Fig. 15.2 Constructing the
Möbius band
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Fig. 15.3 Constructing the torus

(Fig. 15.3b), and then the other two again in the same direction (Fig. 15.3c).2 In
Fig. 15.3c, one can see the torus with two marked curves, where the gluings, i.e. the
identifications, were made.

In discussing the role of notation in mathematics, Colyvan takes into considera-
tion these square diagrams with arrows indicating the gluings:

This algebraic topology notation is something of a halfway house between pure algebra and
pure geometry. It is both notation and a kind of blueprint for construction of the objects in
question. The first seems to belong to algebra, while the second is geometric. But whichever
way you look at it, we have a powerful piece of notation here that does some genuine
mathematical work for us. (Colyvan 2012, Ch. 8)

This visual presentation of the torus can be formalized as a quotient of the unit
square D

2= �. We consider the square in a coordinate system such that the edges
are situated in the points .0; 0/, .0; 1/, .1; 0/, and .1; 1/ and the equivalence relation
� identifies points .x; y/ and .x0; y0/ according to the following (see Fig. 15.3a):

.x; y/ � .x0; y0/ ,

8̂̂
<
ˆ̂:
.x; y/ D .x0; y0/ or

fx; x0g D f0; 1g and y D y0 or

fy; y 0g D f0; 1g and x D x0

Without visualizing the transformations from Fig. 15.3a to Fig. 15.3c, which
are simplified by the particular notation, one can hardly topologically understand
what the above formula defining the equivalence relation is about. In this sense,
visualization is essential to the specific kind of understanding proper to topology.
The same holds for more complex examples.

For instance, consider, the decomposition of the 3-sphere (the equivalent of the
sphere in one more dimension) as the union of two solid tori.3 Jones uses this

2If we identify two sides in the same direction and the other two in the opposite direction, we
obtain the Klein bottle.
3A solid torus is a torus that is filled. While a torus is a surface without boundary homeomorphic to
S
1 � S

1 (i.e. the product of two circles), a solid torus is homeomorphic to D
2 � S

1 (i.e. the product
of a disk and a circle), and its boundary is a torus.
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Fig. 15.4 A circle is
homeomorphic to a line plus
a point

example to emphasize the importance of visualization in low-dimensional topology.
He compares a visual presentation with the following formal one: S3 D T1[T2, with

T1 D f.x1; x2; x3; x4/ 2 R
4 W x21 C x22 C x23 C x24 D 1; x21 C x22 
 1=2g

T2 D f.x1; x2; x3; x4/ 2 R
4 W x21 C x22 C x23 C x24 D 1; x23 C x24 
 1=2g

Let us now “see” how the 3-sphere can be filled up by two solid tori beginning
with two preliminary remarks.4

1) The 1-sphere S
1 can be decomposed into a line R and point at infinity:

Fig. 15.4 illustrates that each point in a circle except one (point P ) can be put
in correspondence to a point in a line. Point a goes to the point a0, b to b0, etc.
Then, point P will be sent to infinity. Through this map, we get an homeomorphism
between the circle S

1 and the line R with a point at infinity added to it R [ 1.
Analogously, a sphere S

2 can be obtained from a plane R
2 by adding a point at

infinity; and the 3-sphere S3 can be obtained from R
3 by adding a point at infinity.

2) Given a line, we can rotate it around one of its points, e.g. the origin, and
obtain the plane. We can also take a half-line, the one with the origin as its endpoint,
and still obtain a plane after the same rotation. Similarly, we can start with a plane
or a half-plane and rotate it around a line. For example, the xy plane in the standard
coordinates if rotated around the y axis gives rise to the three-dimensional space R3.

In Fig. 15.5, the 3-sphere is represented as R
3 [ 1 and R

3 is the result of the
rotation of the plane of the paper (the xy plane) along Ry , the y axis. Let D1 be a
disk (with boundary) in the half-plane x < 0; after the rotation of the plane around
Ry , it will form a solid torus, intersecting the xy plane in another disk: D2. In this
way we get a representation of the 3-sphere with a solid torus inside it. Now, in order
to prove that the 3-sphere can be decomposed as the union of two solid tori, we want
to prove that also the complementary space of this solid torus is a solid torus.

Each of the segments depicted in Fig. 15.5 connecting a point of the boundary of
D1 to the corresponding point of the boundary in D2 will give rise to a disk after the
rotation. These disks can be parametrized by the line Ry plus the point at infinity
since each intersects Ry [ 1 in its midpoint (we can choose all these segments
to intersect the circle Ry [ 1 orthogonally). Thus, the complementary space is
homeomorphic to D

2 � S
1, a disk times a circle, which is a solid torus.

4The following argument can be found in Fomenko (1997, pp. 123–124).
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Fig. 15.5 Decomposition of
S
3 in two solid tori

Jones, considering a formal and a visual way of presenting the 3-sphere as the
union of two solid tori, claims that

[the] formal picture [: : :] is complete but inadequate. If one does not ‘see’ the other picture
[: : :] one is not ready to take the next step in low-dimensional topology. Of course this is
just the beginning. There are more complex things to ‘see’ and sequences of such visions
are compounded one upon another in the same way as the elementary logical steps in a
formal argument. If one ‘sees’ the pictures, then one understands, but otherwise one cannot
follow. In principle one could formalize the whole argument, but that would add nothing.
(Jones 1998, p. 213, emphasis added).

In Jones’ view, an argument in this domain can be broken down into units,
no matter if they are elementary logical steps or pictures. As we will later see,
a formalization of an argument whose units are pictures would often not be
relevant for the practice. This is characteristic of topology in general: often such
formalizations would hide the relevant (topological) reasoning that is externalized
by the pictures.

In the following, we will illustrate a proof in topology as an example of an
argument composed of a sequence of pictures plus textual instructions on how to
interpret them.

15.3 Rolfsen’s Proof

We will now present the core of our case study: a proof of the equivalence
of two presentations of the Poincaré homology sphere, taken from a popular
graduate textbook: Knots and Links by Rolfsen (1976). The first presentation of
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this 3-manifold5 is a surgery code, while the second one is a Heegaard diagram.
In order to explain this proof, we will briefly define the representations and
techniques used to obtain them.

15.3.1 Dehn Surgery and Heegaard Diagrams

First, let us consider Dehn surgery on the 3-sphere. To do so, we introduce
mathematical knots, which are smooth simple closed curves in the 3-sphere.6 Knots
are considered up to smooth deformations, i.e. we are not interested in their specific
geometric shape, but in the way they are knotted.

In Dehn surgery, first we take a knot in the 3-sphere, then we thicken the knot to
a tube in order to obtain a knotted solid torus. Next, we cut it out from the 3-sphere
and glue it back in a different way to obtain another 3-manifold. The way in which
the tube is glued back in can be coded by a rational number. Any closed compact
3-manifold can be obtained by Dehn surgery on some knot, i.e. it can be coded by a
knot plus a rational number.7 For example, a code for the Poincaré homology sphere
is represented in Fig. 15.6.

To give a hint of the reasons why Dehn surgery is possible at all, consider
an analogous process in lower dimension: in Fig. 15.7 we start with a circle (i.e.
a 1-sphere, which corresponds to the 3-sphere in our example) and two points on
it (i.e. a 0-sphere, which corresponds to the knot, i.e. a 1-sphere); then, we thicken
these two points (this corresponds to thicken the knot) and get two segments (instead
of a tube). After that we cut them out from the circle and glue them in a different
way. We obtain two circles, which is a different topological manifold from one
circle, the manifold we started with.

Let us now consider another way to present manifolds: Heegaard diagrams.
To do so, we introduce handlebodies of genus g, which are balls with g handles
attached. For example, a solid torus is, a handlebody of genus 1. A handlebody of
genus g has g holes.

Fig. 15.6 The surgery code
for the Poincaré homology
sphere

5A 3-manifold is the equivalent of a surface in one more dimension. It is a three-dimensional
topological space which is locally homeomorphic to R

3, the Euclidean space.
6In a previous study, we considered the use of knot diagrams in relation to knot types. We claimed
that the key feature of knot diagrams is their “dynamicity”: experts manipulate them according to
different sets of possible transformations (De Toffoli and Giardino 2014).
7See Fomenko (1997, Ch. 9) for details.
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Fig. 15.7 Surgery in lower dimension

Fig. 15.8 A system of
meridians of a genus 2
handlebody

It is possible to construct closed compact 3-manifold by gluing two handlebodies
H1 and H2 of the same genus along their boundaries @H1 and @H2, which are two
orientable closed surfaces of the same genus.

Let us focus on the case of genus two, which is the one that interests us for the
proof which we will later analyze. To describe the gluing, i.e. a homeomorphism
between the two boundaries, we consider a and b, the meridian loops of the first
handlebody, which are two curves in @H1, and the boundary of the first handlebody,
as in Fig. 15.8. Then, in order to specify the result of the gluing, it is enough to know
f .a/ and f .b/, the images of these curves under the attaching homeomorphism on
@H2, the boundary of the second handlebody. So, all we need to know in order
to construct a 3-manifold from two handlebodies of genus two is a pair of simple
closed curves in the boundary of a handlebody (these curves are interpreted as
coding the gluing, since they are the images of the meridian loops of the first
handlebody on the surface of the second.) This information, however, cannot be
so easily conveyed, since it would require drawing curves on pictures of three-
dimensional objects. To overcome this problem, Heegaard diagrams are introduced,
which are two-dimensional diagrams containing all the relevant information. Their
two dimensionality makes the presentation easier to draw and can be effective in a
sense that we will explore later.

To construct a Heegaard diagram, we imagine cutting open @H2, the boundary of
the second handlebody, so that it lays flat on the plane and then we trace the image
under this transformation of the curves determining the gluing (these curves were
on @H2 and thus will still be represented on this “flat” presentation of @H2). First,
we consider the meridian loops of @H2 (call themA andB); then, we cut the surface
@H2 along them in order to create a surface with four circles as boundary (for genus
g, we will have 2g circles), as in Fig. 15.9a. This is equivalent to a sphere with four
holes, as in Fig. 15.9b: we imagine “inflating” the object represented in Fig. 15.9a
so that it becomes a sphere.
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Fig. 15.9 Constructing a Heegaard diagram

Fig. 15.10 “Flat”
presentation of the boundary
of a genus two handlebody

Fig. 15.11 The Heegard
diagram taken from Rolfsen
representing the Poincaré
homology sphere

Then, from one boundary hole, we stretch the surface onto the plane, obtaining a
disk with three holes. In Fig. 15.10, we stretched from the hole labeled CA.

While applying these transformations, we have to keep track of where the
curves f .a/ and f .b/ defining the gluing are going, i.e. their image under this
transformation. After the modification of the boundary of the second handlebody,
these curves will be lying in the planar disk with holes. Then, a Heegaard diagram of
genus two is a diagram of a disk with three holes endowed with a set of curves; see
Fig. 15.11 for an example. Note that the set of lines in this diagram is actually to be
interpreted as two closed curves, since the boundary circle are pairwise identified:
CA with �A and CB with �B , the signs denoting the opposite orientations which
we need in order to glue them correctly.8 In particular, there is a solid curve and
a dotted one. Let us follow the solid one. We can start from .1;CA/, the point
marked 1 in the external circle CA; then, we reach 2 in �A, but �A is identified

8See Fomenko (1997, Ch. 5) for details.
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with CA, so we arrive at 2 in CA; then for similar reasons, we reach in the order
.3;�A/ D .3;CA/; .4;�A/ D .4;CA/; .1;CB/ D .1;�B/; .5;CA/ D
.5;�A/; .2;CB/ D .2;�B/; .1;�A/ D .1;CA/. At the end we have returned
at the starting point: the curve is indeed closed.

The information about these closed curves, so encoded, is enough to uniquely
determine the gluing of the two handlebodies.

15.3.2 Two Presentations of the Poincaré Homology Sphere

In 1900 Poincaré, in the second supplement to his Analysis Situs (Poincaré 1900),
had conjectured that a compact 3-manifold with the same homology groups as the
3-sphere would be homeomorphic to it. Five years later, he gave a counterexample
constructing a manifold now known as the Poincaré homology sphere. This is a com-
pact 3-manifold with the same homology as the 3-sphere but not homoeomorphic to
it, because its fundamental group9 is not trivial.

In Fig. 15.12, we present Rolfsen’s direct proof of the equivalence of a surgery
code and a Heegaard diagram of the Poincaré homology sphere by reporting the
pictures and the accompanying text with the instructions on how to interpret them.10

This proof (Rolfsen 1976, pp. 249–250) is accepted as a valid argument and, to our
knowledge, is the only direct proof of the equivalence of these two presentations.
We will discuss this proof in the next section.

We start with Dehn surgery, considering a trefoil knot with associated rational
number C1; see Fig. 15.6. In the first picture of the proof, we see a thick trefoil
forming a knotted tube with a curve indicating Dehn surgery to which another tube
with a curve has been added.

The main idea of the proof is to continuously deform this object in order to obtain
another known presentation of the same 3-manifold. The transitions between the
first four pictures are topologically interpreted as homeomorphisms. While applying
these transformations, we are going to keep track of the two curves. Training is
normally required to follow these deformations, but we nevertheless hope to convey
an idea of what a proof in topology might look like (it is not necessary to be able to
follow all the transformations in order to get the gist of the proof).

We have to follow the instructions given in the text in order to identify the various
transitions connecting the pictures. For example, to move from the fourth to the last
picture, as the knife suggests, we cut the surface open and lay it flat on the plane.
This is “almost” a Heegaard diagram: we just have to pick one of the holes and
stretch it “outside” in order to obtain one. If we choose the hole labeled CA, we get
the Heegaard diagram in Fig. 15.11.

9The fundamental group is a very important algebraic invariant used to study the shape of
topological spaces. See Massey (1991, Ch. 2) for details.
10We sincerely thank Professor Rolfsen who gave us permission to reuse the material from his
book.
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Fig. 15.12 Rolfsen’s proof (Rolfsen 1976, pp. 249–250)
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15.4 Discussion of the Case Study

What is striking about Rolfsen’s proof is that even if it is clearly very far from a
formal proof, and also far from a non-formal proof written in natural language, it is
nonetheless (accepted as) valid. In this specific example, a formal description of the
topological deformations would be beside the point.11

However, this should not be surprising, since, as Thurston writes,

: : :we should recognize that the humanly understandable and humanly checkable proofs
that we actually do are what is most important to us, and that they are quite different from
formal proofs. For the present, formal proofs are out of reach and mostly irrelevant: we have
good human processes for checking mathematical validity. (Thurston 1994, p. 171)

The question is: which “human processes” would make mathematicians conclude
that this proof is valid? This issue is also crucial to determine what makes low-
dimensional topology so special as a subfield of mathematics.

In the following, we consider some of the features of this proof.

15.4.1 Heterogeneous Arguments

One evident feature of Rolfsen’s proof is that it consists of pictures and text.
The sequence of pictures is accompanied by a set of instructions given in natural
language. Without the pictures, it would be impossible to understand the text;
conversely, without the text, it would be very hard to correctly interpret the pictures:
neither one is complete without the other. The argument requires both for its
cogency.12 Thus, the proof is not purely visual, for the same reason for which it
cannot be considered as purely syntactic: it is representationally heterogeneous. In
order to understand it, one has to be guided by the text on how to imagine the
continuous transformations whose discrete steps are represented by the pictures.

The interdependence of pictures and text is not an exclusive feature of proofs
in low-dimensional topology. Manders (2008) has discussed in depth how dia-
grammatic and propositional content are interacting and are both essential in the
case of Euclidean geometry. Nevertheless, there are some differences between
this proof (and others) in topology and most proofs in Euclidean geometry. For
example, in the case of Rolfsen’s proof, once the context, which is linguistically
defined, is understood and the goals are set, then the text becomes superfluous

11This is not an isolated case. Similar phenomena can be observed also in research articles, for
example, in the subfield connecting low-dimensional topology and hyperbolic geometry. See, for
reference, Adams and Reid (1993).
12In our view, pictures do not always have to be physically drawn: it is sometimes sufficient to
imagine them. Nonetheless, we will also argue that the fact that they can be physically drawn has
cognitive advantages, since it makes inspection and reconfiguration easier and is the condition for
sharing content with other practitioners.
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for our understanding. That is to say that once we know what to do with the
pictures—and this can only come along with expertise—we can concentrate on them
exclusively. As Sullivan (2013) writes about this same proof: “you can’t say you
really understand the proof until you reach the stage where the pictures alone would
suffice.” The only place where we would still need instructions in words would be
to go from the fourth to the fifth picture, but in this case, the instruction “cut” is
substituted by the icon of a knife. This does not happen in Euclidean proofs, where
the text guides us through the interpretation of the diagrams step by step and gives
us necessary information that the picture alone does not provide (the text describes
the articulated construction required to draw and work with Euclidean diagrams).

Let us now return to the argumentative form of Rolfsen’s proof. Recall Jones’
quotation in Sect. 15.2, where he claimed that “sequences of [. . . ] visions are
compounded one upon another in the same way as the elementary logical steps
in a formal argument.” Accordingly, we have seen that the majority of the steps
into which Rolfsen’s proof can be broken down are transformations that lead from
one picture to another, as the text giving the instructions on how to interpret
the pictures clarifies. Therefore, the representations give a material form to the
transformations (and in this sense they “externalize” them) because they allow
experts to perform “epistemic actions” (and in particular to draw inferences) on
them. By epistemic actions, we mean actions that are performed with an epistemic
aim.13 Moreover, these actions are controlled by the shared practice: the set of
legitimate transformations is limited and determined by the context.

As Larvor explained in a recent article by comparing different forms of mathe-
matical arguments:

: : : if an argument includes an inferential action that manifests or manipulates the subject-
matter, or a representation thereof, then formalising this argument in a general logical
language must either misrepresent or fail to include this action. Moreover, we can say
something in the direction of explaining how informal arguments work as arguments: they
are rigorous if they conform to the controls on permissible actions in that domain. (Larvor
2012, p. 724, emphasis added)

Through an inferential action, it is possible to manipulate the representation
itself for epistemic purposes. In Rolfsen’s proof, the inferential actions consist in
manipulating pictures; for this reason, any formalization would fail to capture the
inferential actions performed. Moreover, we can proceed from one representation to
another by applying actions that are permissible, i.e. allowed and controlled by the
shared practice of the subfield. These epistemic actions are inferential actions: they
constitute the units of a mathematical argument.

The commented pictures in Rolfsen’s proof—in sequence—are thus the argu-
mentative form of the proof. The representations constituting the argument are
heterogeneous and yet adequate to its mathematical context: pictures thus play a

13Epistemic actions have been characterized by Kirsh and Maglio (1994) as “actions performed to
uncover information that is hidden or hard to compute mentally” in contrast to pragmatic actions,
which are “actions performed to bring one physically closer to a goal.”
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relevant epistemic role. This is in line with the actual practice of mathematics, as
the first words of the proof makes clear: “The argument is contained in the series of
pictures on the next page. . . ”

15.4.2 Representations Externalizing Reasoning

We propose to consider the pictures in Rolfsen’s proof as externalizing part of the
reasoning: in order to grasp the validity of this proof, it is necessary to imagine the
manipulation that leads from one to the other. Moreover, it is the very use of these
external representations that triggers manipulative imagination, which is, as we will
argue, crucial in topology.

This supports an approach to mathematics, according to which mathematical
representations and symbols are intimately linked to the concepts they represent.
De Cruz and De Smedt (2013, p. 4) claim that “symbols are not merely used to
express mathematical concepts” but are “constitutive of the concepts themselves.
Mathematical symbols enable us to perform mathematical operations that we would
not be able to do in the mind alone, they are epistemic actions.”

In Rolfsen’s proof, the sequence of pictures externalized the reasoning, allowing
us to “see” the transformations involved. These pictures follow some convention, but
their pictorial features are also relevant. For this reason, they cannot be considered
as purely symbolic, but can be recognized as hybrid representations presenting
symbolic as well as visual elements, which are both to be taken into account by
the experts. For example, in the last picture of the proof, the curves are represented
as lines on the diagram that are the images of the lines of the previous pictures under
the applied transformations, but at the same time, they must be interpreted as codes
for gluings.

Not only in topology, but also in different mathematical fields, visual and
symbolic elements come in different and often complementary degrees. A notation
for which a syntax is explicitly defined can reach a higher degree of abstraction
and therefore allow for wider generalization. Nonetheless, most of the times, this
happens at the cost of losing a straightforward intuitive interpretation and in some
cases the very possibility of exploiting intuition.14

A paradigmatic example of this is the use of closed curves to represent syllogistic
reasoning in its development from Euler to Shin. Peirce’s (as well as Shin’s)
introduction of new conventions has increased the diagrams’ expressive power,
but at the expense of the visual clarity and the intuitive interpretation of Euler’s
original diagrammatic system. The new conventions are more arbitrary and the new
representations more confusing (Shin, Lemon and Mumma 2013).

14Of course, as Giaquinto suggests, it could be that we develop more sophisticated forms
of intuition and imagination allowing us to manipulate also arrays of symbols, or syntactic
expressions in general (Giaquinto 2007, Ch. 12). We tend to agree with this claim.
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Let us go back to Rolfsen’s proof, taking into account this balance between visual
and symbolic elements. The topological pictures represent geometric objects that
are straightforwardly interpreted as topological objects. On the contrary, in the case
of Heegaard diagrams, the representation of a topological object is more codified,
so as to allow for a stronger syntactic control. As a notation,15 Heegaard diagrams
have the potential to allow for generalizations: we can code all closed compact 3-
manifolds with them. Nonetheless, the price for this is that the interpretation of the
representations cannot be driven anymore mainly by intuition. We have to be aware
of the conventions introduced in order for the diagram to “make sense”.

Two examples will help to better clarify how these degrees of intuitive and
conventional elements converge in different mathematical diagrams and how alge-
braic and symbolic reasoning can interact. (1) Knot diagrams present clear visual
elements because they “intuitively” represent geometric objects, but at the same
time, they allow for a syntactic control (through local moves specifically defined on
them) (De Toffoli and Giardino 2014). (2) Commutative diagrams of homological
algebra display a more evident syntactic component: these diagrams no longer
describe geometric objects but abstract structures and relations. Nevertheless, their
arrangement in space is essential and thus visual features also characterize them and
allow us to “manipulate” them effectively (De Toffoli, Diagrams in homological
algebra, manuscript).

Furthermore, it is clear that not all representations of the same topological object
would have the same degree of effectiveness in giving a material form to the relevant
reasoning and thus in promoting inference: specific conditions have to be met.
First of all, different presentations are suitable for different purposes. Not only
we do observe different degrees of symbolic and visual elements, but for a given
mathematical object there can be more or less effective representations.

Let us consider a specific example to clarify: diagrams representing the torus. We
can choose among various possibilities. On the one hand, Fig. 15.3c is a classical
diagram of a torus (in this specific picture two curves are added to it), where just
a few lines are easily interpreted as a three-dimensional object. A more detailed
picture, for example, depicting thickness or shadows, would make the representation
more similar to the corresponding material object, but would be less useful since
it would distract the viewer from the essential topological features of the object
by adding “noise.”16 The connection between topological and material objects is
crucial in topology, but only in so far as it stimulates topological imagination that
takes inspiration from the one used to manipulate concrete objects but afterwards
develops independently. The similarity with concrete objects has its limits: we must
be able to detach ourselves from this analogy and perform an abstraction in order
to extract relevant topological features. On the other hand, Fig. 15.3a is definitely

15Two features of mathematical diagrams allow for an interpretation of them as a notational
system: (i) they follow certain conventions and are a codified way to present different mathematical
concepts and (ii) they can be used in sequences and constitute a system through which it can be
possible to “calculate” effectively.
16See Sullivan (2013) for a survey of different mathematical, in particular topological, pictures.
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more complicated for novices (e.g., one must know what the arrow signifies to
correctly interpret the diagram), but nevertheless it can be useful. As Colyvan (2012,
Ch. 8) claims, this notation presents both geometric and algebraic features (which
can be exploited in different ways). A side remark is that the consideration of
such representations leads to a rejection of a sharp distinction between algebraic
and geometric reasoning in mathematics (Giaquinto 2007, Ch. 12). The abstract
character of this hybrid notation opens the way to new discoveries; in fact, it leads to
generalizations: not only does the same notation allow us to present the cylinder, the
Möbius band, the torus, and the Klein bottle, but if we generalize the notation and
instead of a square we take a polygon with n sides, then we can present every closed
compact surface (see, for instance, Massey 1991, Ch. 1). Moreover, Colyvan points
out at the construction of the Klein bottle. The Klein bottle is straightforwardly
presented with the square diagrams (we just have to invert one arrow in the diagram
of the torus) and in a sense it is the very notation that drives us toward the study of
a surprising new object that is two dimensional, but cannot be embedded in three-
dimensional space and does not have an outside or inside.

This example illustrates how for topological diagrams, by adding more syntactic
elements we often get a more powerful notation from an expressive point of view
and at the same time we lose the analogy with material objects.17 This is not to say
that some diagrams are better than others in principle: it depends on the specific
context and on the particular purpose for which they are used. The possibility of
choosing among a wide variety of representations enriches the set of tools available
to the mathematician.

A final remark about representations concerns their materiality. To avoid confu-
sion, we have to keep in mind the distinction between the material pictures and the
imagination process, which, especially in the case of trained practitioners, tends to
vanish. Actual topological pictures trigger imagination and help us see modifications
on them, but experts may not find it necessary to actually draw all the pictures. The
same holds for algebra, where experts skip transitions that non-trained practitioners
cannot avoid writing down explicitly. This does not mean that experts do not need
pictures to grasp the reasoning, but only that, thanks to training and thus to their
familiarity with drawing and manipulating pictures, they are sometimes able to
determine what these pictures would look like even without actually drawing them.
More generally, for each subfield it would be possible to define a set of “background
pictures” that are common to all practitioners. This set of pictures determines what
Thurston calls a “mental model” for a group of mathematicians in a subdiscipline
(Thurston 1994, pp. 174–175). For instance, any knot theorist knows without need
for material pictures what a diagram of the trefoil knot or of the figure-eight knot
looks like. To give a more sophisticated example, the original proof by Alexander
of his famous theorem about the possibility of representing any knot as a braid is a
visual argument that requires the use of this type of imagination but does not contain
a single picture (Alexander 1923).

17Of course, these syntactic elements are not arbitrary introduced, but according to specific aims.



15 Proving in Low-Dimensional Topology 331

15.4.3 “Seeing” in Topology Through Manipulative
Imagination

We have just claimed that in order to understand Rolfsen’s proof, we need to “see”
topological transformations. As the text says, “The isotopic transformation (1) – (4)
shows that this outer part is also a handlebody.” To “see” what is “shown” by the
picture is crucial. Even in simpler cases, instructions are useful in making us grasp
the transformations, as for example going from Fig. 15.9a to Fig. 15.9b.

Therefore, in low-dimensional topology, following an argument, let alone be-
ing able to construct one, often requires “seeing” certain transformations. This
method of proving, different from the standard one in other areas of mathematics,
which is entirely propositional, consists in providing pictures plus instructions
for their interpretation. Yet, what does “seeing” actually mean in this context?
We can connect it with intuition. Heinzmann, writing about Poincaré’s Analy-
sis Situs, traces the need for three distinct types of intuition in what is now
topology:

Defining it as the science of classification of closed surfaces, called later manifolds, with
respect to continuous deformations, it requires geometric intuition concerning the quali-
tative property of a n-dimensional manifold, arithmetic intuition insofar as he introduced
computing with the topological object ‘manifold’ and, insofar as the strongest classification-
criterion is the fundamental group, one needs algebraic intuition, too. (Heinzmann 1999,
p. 55, emphasis added)

Even if the term “intuition” is vague, we can specify what it means in the
present context: for low-dimensional topology, it is possible to point at some of
the “intuitive” capacities involved. Our proposal is that topologists use a special
kind of imagination that does not only involve vision but also spatial-motoric
intuition of three-dimensional space. In fact, in Rolfsen’s proof, one finds no difficult
calculations—at least in the standard meaning of the term—and nonetheless the
argument is not easy to follow. In order to understand the proof and check its
validity, practitioners have to use their ability to imagine topological transformations
correctly. For example, they have to interpret the transitions between the pictures
as homeomorphisms. As a result, “seeing” in topology means first to interpret the
representations coherently with the shared practice and then performing epistemic
actions on them. In the case of Rolfsen’s proof, these actions take the form of
continuous deformations. The interaction with the representations is thus pivotal:
mathematicians have to activate this form of imagination in order to use the
representations as inferential tools.

Consequently, “seeing” is here to be intended as much more than simple vision
for at least two reasons. First, because it exploits some of our spontaneous cognitive
abilities such as vision, but has nevertheless to be properly trained inside the practice
in order to be correctly applied. Secondly, because mathematicians do not only see
particular representations, but also the possible actions that could be performed on
them, i.e. the possible transitions between pictures. We chose to label this capacity
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manipulative imagination18 as a sophisticated form of imagination that derives from
our preexisting manipulative capacities with concrete objects and our motor agency
in three-dimensional space: it seems to have a spatial-motoric and not a specifically
visual nature.19 An important feature of this form of imagination is that it is not
exclusively innate or a priori; on the contrary, it needs to be specifically trained
by experimenting with the available representations. This is in line with Poincaré’s
view that “intuition” has to be trained:

The main goal in teaching mathematics is to develop some faculties of the mind, and among
these, intuition is not the least precious.20 (Poincaré 1889, p. 160)

Moreover, it is crucial to highlight that it is the massive use of this form of
imagination that is responsible for the peculiar development of low-dimensional
topology, which has been so different from that of other mathematical fields. As
Jones (1998, p. 212) writes, in low-dimensional topology, we do not need to
formalize every argument for the very reason that we can rely on our intuition.
In other fields, this intuition is unavailable, just as it would be unavailable in low-
dimensional topology if we were two-dimensional creatures without the imagination
of three-dimensional space. In this case, we would have to formalize each argument
and low-dimensional topology would be more similar to more abstract areas of
mathematics.

15.4.4 Justifications and Criteria of Validity

As we have already discussed, the practitioners of low-dimensional topology “see”
the transformations and check whether they are permissible: the representations
embody their reasoning and provide at the same time evidence for their conclusions.

Of course, as in any proof, not everything has to be justified. The background
knowledge, amounting to the mental models shared by the members of the
community to which the proof is addressed, is assumed as already established.
Moreover, particular standards of justification and criteria of validity are provided:
the permissible actions on the representations are already defined, and they are part
of the background material.

In Rolfsen’s proof, we saw that among the permissible actions on the pictures are
continuous transformations. These are part of the background material in the sense
that any topologist knows immediately that these transformations can be interpreted

18We already used the expression “manipulative imagination” when studying knot diagrams
(De Toffoli and Giardino 2014).
19Think of the blind mathematician Morin who contributed to the understanding of one of the first
actual sphere eversions (Morin and Petit 1980).
20We have translated from the original: “Le but principal de l’enseignement mathématique est de
développer certaines facultés de l’esprit, et parmi elles l’intuition n’est pas la moins précieuse.”
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in terms of homeomorphisms. The validity is thus based on the “practice”: it is the
practice itself that integrates a way of controlling the actions on the representations
used, which results in the establishment of local criteria for validity. The responsibil-
ity is shared among experts: since in low-dimensional topology different forms of
reasoning are employed, some of which are specific to it, purely external criteria
of validity cannot exhaust all the criteria actually adopted. As Brown suggests,
we should acknowledge the existence of non-formal reasoning in mathematics:
“first-order logic may be well understood, but what passes for acceptable proof in
mathematics includes much more than that” (Brown 1999, p. 164). If this is true,
then, as Larvor has exhaustively discussed, “the cost is that we have to abandon the
hope of establishing a general test for validity” (Larvor 2012, p. 723).

In our view, what Thurston refers to as “good human processes for checking
mathematical validity” (Thurston 1994, p. 171), are context-dependent processes
that in low-dimensional topology rely on our manipulative imagination and more
generally on our intuition of three-dimensional space, duly trained according to the
specific practice. Furthermore, formal proofs are “out of reach,” because in order
to obtain reliable formalizations, mathematicians would have to spend all of their
time to rewrite already known results and conform them to general standards. As
Thurston notes, on a small scale, this is easy to do, but on a large scale, where results
are interconnected, we would have to check for the coherence of all the arbitrary
local choices of formalization. To do so would require a huge amount of time, and
topologists are not willing to undertake such a project.

This does not mean that in principle any proof in topology could not be translated
so as to assume a propositional and more formal form – even if to do so would be
a “nightmare,” in Jones’ words (Jones 1998, p. 212).21 The point is that it is not
usually done. Nevertheless, as we have mentioned already, part of the confidence of
the practitioners is based on the knowledge of how to convey visual modifications
in more formal expressions. For example, “gluing” in topology is straightforwardly
interpreted in terms of quotient spaces and “deforming continuously” in terms of
homeomorphisms. In Thurston’s words:

When people are doing mathematics, the flow of ideas and the social standard of validity is
much more reliable then formal documents. People are usually not very good in checking
formal correctness of proofs, but they are quite good at detecting potential weaknesses or
flaws in proofs. (Thurston 1994, p. 169)

We would also like to mention that once we accept that the argumentative form
is based on such externalizations of reasoning, given by the specific representations
used and the control of the practice, then the process of discovery and that of
justification seem to occur at the same time.

Let us now turn to the issue we addressed at the end of the previous section,
that is, to the reasons why low-dimensional topology is such a special subfield
of mathematics. We have analyzed Rolfsen’s proof as a paradigmatic example of

21Jones is taking the example of formalizing a proof in knot theory.
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an informal argument that can be given in low-dimensional topology, where the
sequence of pictures embodies and at the same time justifies the reasoning. Any
version of the proof without the pictures, let alone a formal version, would not
be able to externalize the reasoning and trigger manipulative imagination and thus
would completely obscure the topological permissible actions. By this feature, the
case of low-dimensional topology seems to be quite distant from other areas of
mathematics. Moreover, this form of reasoning is epistemologically relevant, as
Jones makes clear:

One of the interesting consequences of the use of three-dimensional intuition is that the field
of low-dimensional topology has advanced in a way that is significantly different from other
branches of mathematics. One is expected to “see” results in this field, and once the result,
or partial result, has been “seen,” it requires no further discussion. (Jones 1998, p. 212)

At this point, we can interpret Jones’ claim in the light of the proposed interpre-
tation. First, manipulative imagination is the cognitive process that modulates our
three-dimensional spatial-motoric intuition in relation to the particular mathematical
context. Second, thanks to manipulative imagination, we have at our disposal
a set of permissible actions.22 Pictures indicating the stages of transformations,
plus instructions explaining how to interpret them, can count as justifications.
Exclusively linguistic proofs, and formal proofs are thus just a small portion of the
proofs accepted as valid. Of course, it is still possible to translate visual arguments
into formal ones. Nevertheless, as Jones and Larvor suggest, the formal version
might be complete, but it remains inadequate. As a consequence, once we accept the
existence of arguments structured in sequences of pictures, we realize that although
there might be good reasons to reduce the reasoning to formal statements, this move
would add nothing to the topological reasoning behind the argument.

A practitioner of low-dimensional topology uses material representations, which
are the condition for sharing content among the experts. These representations must
be adequate to externalize reasoning and to trigger manipulative imagination so as
to allow performing permissible and effective inferential actions. To establish the
validity of an argument, a low-dimensional topologist shares the responsibility with
other practitioners. That is, the community defines criteria of validity specific to
their subfield: this is part of the normative structure of this practice.

15.5 Conclusions

In this article, we aimed to show that attention to how low-dimensional topology is
practiced gives new insight on the use of mathematical representations. In particular,
we unveiled some of the reasons why reasoning with these representations can be
seen as an essential part of doing mathematics.

22It would be misleading to conceive this set as fixed once and for all, since it varies according to
the context of use.
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Mathematicians rely on an astonishing variety of proving practices, beyond
the one analyzed here. As Larvor suggests (Larvor 2012, p. 723), philosophers
should work in the direction of completing the list of all objects involved in
mathematical argumentations that are found in the practice. We have also shown
that in low-dimensional topology, a proof can take the form of a sequence of
pictures accompanied by instructions. The transformations of pictures are the result
of permissible epistemic actions. Moreover, the choice of specific representations
plays a pivotal role, because it triggers different cognitive skills and externalizes
reasoning. In fact, the mathematical practice is characterized by a continuous
feedback between specific forms of reasoning and particular representations.

In further research, we aim at comparing different practices from the point of
view of the relation between the cognitive abilities triggered, the representations
introduced and the argumentative form employed. Another development of the
present project will be compiling a taxonomy of topological pictures, which
would identify the specific features that are responsible for prompting manipulative
imagination through different representational conventions. Moreover, we aim at
developing the present framework in order to appreciate the effectiveness of hybrid
notations and visual representations, with respect to their possible generalizations
and their power to trigger specific kinds of imagination. As Giaquinto claims
(Giaquinto 2007, p. 265): “Visual thinking in mathematics is extensive, diverse,
familiar, and yet little understood. Here is abundant terrain for research.” With the
present study, we hope to have given an initial contribution.
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