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Introduction

Gabriele Lolli, Marco Panza, and Giorgio Venturi

Integrating Logical, Historical and Philosophical Concerns

When, in the far away 70s of the twentieth century, Reuben Hersh urged for a
revival of the philosophy of mathematics (Hersh 1979), two distinct but for many
reasons converging lines of research predominated in the discipline. On the one side,
attention focused on foundational issues, still connected to the logicism-formalism-
intuitionism debate of the first part of the century. On the other side, Benacerraf’s
papers (Benacerraf 1965, 1973) had, among others, succeeded in grafting onto these
issues a growing interest for a fresh version of traditional metaphysical questions
concerning mathematical ontology and epistemology. In the following years, the
latter line has largely prevailed on the former, which has progressively lost its
centrality, or migrated toward logic, conceived as a related, but largely independent
discipline. Still, Hersh’s plea did not remain unheard.

A number of different studies, like Wilder’s address to the 1950 International
Congress of Mathematicians devoted to “The Cultural Basis of Mathematics”
(Wilder 1950) or Polya’s investigation of the heuristics of mathematics (Polya
1945, 1954, 1962), had preceded Lakatos’s influential claims of mathematical
fallibilism, quasi-empiricism, and dialectical development (Lakatos 1976, 1978).
Though essentially polemical in nature, and addressed against a caricature of
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vi Introduction

formalism that was unrepresented by anyone in the active philosophical arena,
these statements highly contributed to emphasize the importance of a philosophical
inquiry investigating mathematicians’ real work conceived as a collective enterprise,
the historical development of mathematics, and the process of mathematical discov-
ery and construction.

Lakatos’s guidelines were not followed, in fact. His anti-formalism remained
more a polemical slogan than a full-blown philosophical option. His reconstruction
of mathematical methodology and forms of progress stayed largely short of any
requirement both of a faithful historical analysis and of a fruitful philosophical
perspective. His fallibilism and quasi-empiricism resulted in a quite futile negation
both of the axiomatic structure of most mathematical theories and of the essential
stability of mathematical achievements. His legacy contributed, however, together
with other works that came after Hersh’s plea, like Wilder’s 1981 and Kitcher’s 1984
books (Wilder 1981; Kitcher 1984), to set the stage for a philosophical reflection on
mathematical practice, focusing on themes that had been underestimated both in
the discussion on mathematical ontology and epistemology following Benacerraf’s
pivotal papers and in the technical development of logic (notwithstanding the
proliferation of logical systems).

Tackling many of these themes still required resorting to logical and metamath-
ematical tools, certainly indispensable for dealing both with abstract languages
and with computational implementation. Others asked for significant historical
researches or for the help of cognitive sciences and experimental psychology.

For example, historical research, aided by mathematical and logical skills, is
needed for sustaining naturalistic approaches, such as Maddy’s. The idea is that
a philosopher of mathematics should “ask questions typically classified as philo-
sophical” (both ontological and epistemological in nature) not “from some special
vantage point outside of [...][mathematics itself], but as an active participant,
entirely from within” (Maddy 2011, p. 39), and then answer these questions
by giving (philosophical) voice to the autonomous methodological decisions of
mathematicians. Another brand of naturalism considers, instead, that all that one has
do in order to account for mathematics is to look at the cognitive competences and
performances displayed in mathematical knowledge, by revealing their being rooted
in or even their consisting in, cerebral mechanisms that experimental psychology or
cognitive science are to shed light on (Dehaene 1997; Lakoff and Nufiez 2000).

It is not necessary, however, to adhere to these forms of naturalism in order
to advocate the interest of historical and cognitive inquiries for philosophy of
mathematics. It is enough to accept that the latter is, or should be, a study of what
mathematics actually is, that is, a human activity taking place in specific determinate
circumstances and giving rise to general, abstract results only insofar as generality
and abstraction are an outcome of such an activity.

If this is admitted, it becomes quite evident that philosophy of mathematics is
concerned with an ever-changing subject matter. Today mathematics, understood
as the activity of contemporary mathematicians, is, for example, much more
strongly dependent on computational methods and algorithms (often involved in
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specific applications) or, at least, less pervasively going into axiomatic theories
and structures than it was only some decades ago. The use of computers has
brought forth, indeed, unpredictable consequences not only in the power of solving
problems by tackling them from a computational or, more generally, combinatorial
perspective but also in the business of proofs. This requires a fresh reflection on
today’s mathematical practice and on the role that new computational (and computer
assisted) techniques play in it, especially on the very nature of these techniques and
on the way their growing importance is changing the mathematical landscape. At the
end of the 1970s, the computer-assisted proof of the Four-Color Theorem prompted
a lively discussion, calling in questioning the a priori nature of mathematical proofs
(Tymoczko 1979). The phenomenon is today so extensive as to require much more
than the discussion of a single example. It is, perhaps, the very way mathematics is
to be conceived that comes to be at issue, here: is it still appropriate to claim that
mathematics is not, in essence, an experimental science? Or, more cautiously, how
to reconcile the different parts of its multifaceted core?

A large and plural horizon of topics and approaches came thus to the fore.
In 2008, Mancosu’s collective volume The Philosophy of Mathematical Practice
(Mancosu 2008) offered a comprehensive survey and a programmatic orientation
for these sorts of researches, and the subsequent birth of an Association for
the Philosophy of Mathematical Practice (http://institucional.us.es/apmp/) further
contributed to foster them, though avoiding to contrast them with other approaches,
still connected to metaphysical or foundational issues. It seems, indeed, to be a
hopeful outcome of these researches that new approach to this issue could be thought
of, according to which what they promote is less an inquiry about the ultimate
grounds of mathematics, or about the existence of abstract objects, or the possibility
of dispensing with them, both in mathematics itself and in its external applications,
than a questioning about the way mathematics is structured and mathematical
activity is carried on.

Even though the foundations of mathematics and the status of mathematical
objects, if there are any, are still important subjects in the philosophical reflection
on modern mathematics, it is, then, time for such a reflection to take seriously
into account the actual activity of mathematicians and, consequently, the historical
dimension of mathematics itself, as it results from this activity (which is properly a
human activity taking place in historically determined contexts). This is not the same
as rejecting logic as a privileged tool and background for conducting this reflection
nor denying that mathematics is presenting crucial metaphysical problems. It is
rather a way for using logical methods and techniques and metaphysical analysis
to contribute to the obtaining of a more articulated and vivid picture of this activity.

As argued by Mancosu, in the introduction to the collective volume mentioned
above, the philosophy of mathematics is in need of a more comprehensive perspec-
tive, appealing to different tools and methods. What is at issue, however, is not
only the range of topics to be taken into account. It is also, and above all, perhaps,
the nature of the mutual relations between philosophy and mathematics that is to be
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reassessed. That’s because what makes philosophy of mathematical practice original
is the kind of problems that belong to its agenda.

There are, indeed, genuinely philosophical problems that arise in the day-to-day
work of mathematicians or appear when the history of mathematics is submitted
to a critical look: problems that, though intimately connected with present or past
mathematical activity, can be solved or appropriately stated neither through a purely
mathematical treatment nor by a mere historical enquiry. Consider, for example,
questions related to the purity of methods or questions about the philosophical
meaning of well-established, epochal mathematical results.

On the other hand, there are mathematical questions that, though playing an
internal role in the development of a certain field (or of mathematics in general), ask
for a global and historically informed approach. Consider, for example, questions
related to the extension of an axiomatic system—i.e., the justification of new
axioms—or methodological problems that arise in considering “natural” solutions
to a problem.

This is the theoretical framework of the present volume. Since it is within this
framework, or better to reflect on it and to promote this way of conceiving the philos-
ophy of mathematics, that two of us, Gabriele Lolli and Giorgio Venturi, organized
the meeting Filosofia della matematica: dalla logica alla pratica [Philosophy of
Mathematics; from Logic to Mathematical Practice], held at the Scuola Normale
Superiore of Pisa, on 24-26 September 2012. The essays collected in the present
volume constitute the original work of some of the scholars who took part in the
conference.

One purpose was and is that of gathering together young Italian scholars in
philosophy of mathematics, many of whom are working abroad. This is the reason of
the common geographical origin of the authors. Two senior scholars, Paolo Mancosu
and Marco Panza, also coming from Italy, but respectively working in USA and
France, were also invited to the meeting as speakers. Both of them have been pleased
to contribute to the volume, and the latter joined the organizers of the meeting as an
editor of this volume.

Another purpose was and is that of making different analytical and conceptual
tools—Ilogical, historical, and practical in nature—interact, and to show the extent to
which they are complementary in offering a philosophical account of mathematics.

The meeting has shown how active and well rooted within the international
community is the youngest part of the Italian scientific community of the philosophy
of mathematics. The occasion has been such an interesting opportunity to exchange
different points of view and experiences as to lead to the creation of an Italian Net-
work for the Philosophy of Mathematics (FilMat Network: http://filmat-network.
com/) that is now active in promoting meetings and debates inside the Italian
scientific community, strengthening its connections with the international one.

As one can see, already from the table of contents, the book deals with a wide
variety of subjects and themes. Some of the papers have been coauthored by a
philosopher and a mathematician or logician, and almost a third of the authors are
professional mathematicians.
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All papers share a fresh look at the philosophy of mathematics and take into
account its recent developments, in agreement to an interdisciplinary attitude toward
history, logic, and philosophy, and aim, in the very end, to promote a better
understanding of the meaning and scope of a philosophy of mathematical practice.
Still, though all are informed by such a spirit, they can be roughly divided in three
groups, according to their main purpose and topic. Those in the first group mainly
focus on the historical dimension of mathematics. Those in the second make a
deeper and more detailed use of logical tools or even reflect on these tools and
their capacity of contributing to a better understanding of mathematical activity.
Finally, those in the third group are more concerned with questions that are typically
ascribed to philosophy and its tradition.

The Historical Dimension of Mathematics

The papers composing the first part of the volume show how a philosophical
reflection can arise when the history of mathematics is taken into proper account
while investigating the way mathematics is structured (in the descriptions included
in the present and in the two next sections, we avoid bibliographical references,
since they are provided in each of the papers).

The paper by Pietro Milici, “A geometrical constructive approach to infinitesimal
analysis: epistemological potential and boundaries of tractional motion,” concerns
the foundations of infinitesimal analysis. Recent approaches to this topic are
essentially algebraic or computational, whereas the origins of infinitesimal analysis
were essentially geometrical (though related to a reflection on the role of some
algorithms in geometry), and the justification of its methods and results pertained
to geometrical grounds. In some cases, as in that of the “inverse tangent problem,”
mechanical or better instrumental considerations were also at issue. The solutions
to this problem involved certain machines, which could construct transcendental
curves by appealing to “tractional motion.” The main idea of Milici’s paper is to
come back to this idea from a modern mathematical perspective. Tractional motion
is implemented as the motion of a tracing point of some ideal instruments which
are formally defined and constitute the basis of a purely geometrical and finitistic
axiomatic foundation for a class of differential problems. Although this research
requires further development, the role of these instruments in the foundation of both
computation and mathematics is deeply rooted in the history of mathematics. Think
of the early-modern reinterpretation of Euclid’s arguments as based on constructions
by ruler and compass or of Descartes’s extension of them, relying on a class of
special “compasses,” or, again, much more recently, of the Turing machine. Milici’s
paper reappraises this tradition, by suggesting, in the meantime, a new way of
looking at the integral calculus.

The paper by Paolo Mancosu and Andrew Arana, “Plane and solid geometry: a
note on purity of methods,” deals with a methodological principle which is often
at work in mathematics. Spelling out this principle would require defining purity,
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but this is far from simple. On a first approximation, one might say that a proof
of a theorem in mathematics is pure if the conceptual tools used in the proof are
already involved in the content of the theorem itself. So (broadly) conceived, this
notion has played an important role in the history of mathematics—consider, for
instance, the elimination of geometrical intuition from the development of analysis
in the nineteenth century—and, in a way, it underlies all the investigations pertaining
to conservativeness, in contemporary proof theory. A clear example of how much
purity is cherished in mathematical practice is offered by the fact that Erdos and
Selberg were awarded the Fields Medal for their elementary proof of the prime
number theorem, which had already been demonstrated with analytical tools in
the late nineteenth century. But why do mathematicians cherish purity? What is
epistemologically to be gained by proofs that exclude appeal to “ideal” elements?
In this note (which is based on a much longer article published in The Review of
Symbolic Logic), Mancosu and Arana discuss an important case of essential use
of three-dimensional geometry in proving results about planar geometry, namely,
Desargues’ plane theorem on homological triangles in projective geometry, with the
aim of articulating what notion of mathematical content might best be suited for an
analysis of ascriptions of purity in mathematical practice.

In “Formalization and intuition in Husserl’s Raumbuch,” Edoardo Caracciolo
peruses Husserl’s work on geometry that should have led to a treatment of Euclidean
geometry, in the planned but unpublished second volume of the Philosophie der
Arithmetik. Husserl started outlining a formal method that should have allowed a
pure understanding of any spatial manifold; when he discovered that the analogue
work of Bernhard Riemann distorted the essential features of space, inverting the
precedence between flatness and curvity, he opted for dealing with spatial represen-
tation from a psychological point of view, trying to detect the intuitions grounding
geometrical concepts. However, he abandoned this way when he perceived that it
leads to formulating material concepts that do not match with the formal structure
of pure geometry. The relation between representation, intuition, and symbolization
is at the core of these early reflections of Husserl on geometry.

Looking at Mathematics Through Logic

The second part of the volume groups together contributions where a more
technical use of logical tools gives the opportunity to present a detailed analysis
of philosophical concepts or where these very tools are brought under scrutiny for
their capacity to contribute to a philosophical account of mathematics.

The paper by Francesca Boccuni, “Frege’s Grundgesetze and a reassessment
of predicativity,” focuses on the philosophical issues connected with the con-
sistent fragments of the arithmetical system presented in Frege’s Grundgesetze
der Arithmetik, especially with respect to the predicative restrictions placed on
the underlying second-order comprehension principle. Though the main aim of
these consistency results may be technical, one may wonder about their possible
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foundational applications. On the one side, one can prove that the strongest
consistent predicative fragment of Frege’s system is equiconsistent with Robinson’s
Arithmetic Q, which, though not at all mathematically trivial, is still a weak system,
especially if compared with Frege’s original goal. On the other side, Boccuni argues
that the predicative restriction imposed on the principle of comprehension leads to a
radical revision also of Frege’s philosophical stance toward the existence of concepts
as logical entities, thus affecting both Frege’s platonism and logicism all at once.
She also maintains that, in order to justify Frege’s platonism from a predicative
perspective, a reassessment of Godel’s dichotomy between impredicativity and
predicativity is required, in particular by focusing on Godel’s objections to Russell’s
Vicious Circle Principle (VCP). In order to achieve such a reassessment, Boccuni
investigates Godel’s argument against VCP, argues against it, and suggests a
different formulation of it, based on the Thesis of Arbitrary Reference, advanced
by Enrico Martino, to the effect that VCP turns out to be compatible with Frege’s
platonism, whereas his logicism needs to be revised.

Mario Piazza and Gabriele Pulcini, in “A deflationary account of the truth
of the Godel sentence G,” address a topic discussed in recent years by, among
others, Tennant, Ketland, and Shapiro. They give a negative answer to the question
of whether our conviction about the truth of the Godel sentence G involves a
theory of truth beyond the deflationary theories. After discussing and dismissing
Neil Tennant’s deflationary account of incompleteness, based on the application
of the so-called Local Reflection Principle, they show how a new deflationary
construal of the incompletability of formal systems can be framed in the setting of
Peano Arithmetic, so augmented as to include a constructive version of the w-rule,
based on the notion of prototype proof. The term “prototype,” following Michael
Detlefsen, has a meaning that dates back to Jacques Herbrand: “when we say that a
theorem is true for all x, we mean that for each x individually it is possible to iterate
its proof, which may just be considered a prototype of each individual proof.”

The paper by Paolo Pistone, “Rule-following and the limits of formalization:
Wittgenstein’s considerations through the lens of logic,” addresses the question of
the justification of logical rules. In the Tractatus it is stated that questions about
logical formatting (why just these rules?) cannot even be meaningfully formulated,
since it is just the application of logical rules which enables the formulation
of a question whatsoever; analogously, Wittgenstein’s celebrated infinite regress
argument on rule-following (it takes rules to justify rules) seems to undermine any
explanation of deduction that relies on logical rules. On the other hand, important
logical achievements, such as incompleteness and computational complexity, seem
to expose a similar issue on formalization: does this or that proof belong to a
logically correct system? Can we effectively know it? These logically motivated
doubts do not concern indeed the truth of single propositions, but rather, as for
Kant’s celebrated quid iuris argument, the legitimacy of a given system of rules. By
exploiting a dynamical perspective on logic (inspired by Girard’s “transcendental
syntax” program), in which rules are not imposed a priori on proofs but are rather
reconstructed through the symmetries describing the interaction between proofs,
such a “subjective” side of logic (fundamentally, the way we write its rules) can
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be unearthed: this viewpoint, made possible by the Curry-Howard bridge between
proofs and programs, seems to provide technical ground (and a possible answer)
to the philosophical matters on rule-following, as well as an interesting logical
perspective on computational complexity.

The paper by Luca Tranchini, “Paradox and inconsistency: revising Tennant’s
distinction through Schroeder-Heister’s assumption rules,” deals with an old but still
discussed problem in proof theory: Tennant’s distinction, going back to Prawitz,
between paradox and inconsistency. In 1982, Tennant proposed a proof-theoretic
criterion of paradoxicality: a derivation of absurdity in a natural deduction system
is paradoxical whenever any reduction sequence starting from this derivation
eventually loops. Paradoxes are expressions governed by particular inference rules
that trigger paradoxical derivations. Derivations of absurdity that do normalize
are taken by Tennant as showing that the assumptions on which they rely are
inconsistent. Tranchini proposes two examples that show that Tennant’s formulation
of the distinction is problematic. Then he precisifies the issue in terms of the
extension of natural deduction proposed by Schroeder-Heister. In this setting, the
notion of assumption is enriched so that rules are admitted as a special kind
of assumptions alongside with sentences. According to whether the derivation is
normalizable or not, the assumptions involved in the derivations will be said to be
either inconsistent or paradoxical, independently of their being sentences or rules.
Tranchini’s analysis hints at a connection between Ekman’s paradox and the relation
between implications and rules and is an improvement of Tennant’s analysis of
paradoxes in proof-theoretic terms.

The paper by Alberto Naibo, “Costructibility and geometry,” is devoted to
the study of the constructive aspects of Euclid’s geometry, from a formal and
logical point of view. Namely, it investigates whether the intrinsic constructive
nature of Euclid’s geometry is captured by the standard properties of constructive
logical theories, in particular the witness property conceived as the result of some
deterministic computation. Starting from the analysis of concrete examples, a first
negative answer is offered. This allows identifying the specific property that makes a
constructive theory geometric. By focusing on deductive aspects, Naibo shows that,
in such a theory, it is much more natural to work with open proofs (i.e., proofs under
open assumptions), rather than with usual closed ones. But open proofs correspond
to programs that do not necessarily return a value, namely, procedures. Hence,
Naibo argues that one of the essential features of constructive geometry depends on
the set of instructions that have to be carried out in order to perform a construction,
rather than on the final result of the construction itself. In this sense, an ontological
shift is pointed out: contrary to other mathematical theories, for example, arithmetic,
constructive geometry can be characterized according to the actions it allows, rather
than to the objects which it is about.

The paper by Michael Arndt and Laura Tesconi, “A cut-like inference in a
framework of explicit composition for various calculi of natural deduction,” deals
with composition of proofs and the effects of cut-like inferences in various calculi of
natural deduction and throws new light on the phenomenon of composition. An ex-
plicit concatenation rule is proposed, obtained by generalizations and formalization
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of one of the most intuitive principle of abstract reasoning, which governs the
composition of abstract derivations from the left and from the right at the same time,
via the mediation of control clauses that occur in the position of the major premise.
Control clauses are so called because they exercise control over the manner in
which the composition takes place. The sets of control clauses necessary to express
various calculi of natural deduction (standard natural deduction, natural deduction
with general elimination rules, bioriented natural deduction and their variants) are
considered, together with the effects of its addition to these calculi. While the
addition of this rule to a single-oriented control base, regardless of its directionality,
does not open more possibilities of combination of abstract derivations, its addition
to a bioriented control base does. In this latter case, when a formula is introduced
among the assumptions by means of a certain rule, it appears as a leaf in the
derivation tree, but it is not available before the application of the rule itself. Thus,
it is not always possible that it be, at the same time and in that very same point of
the derivation, introduced as a conclusion by some other inference. In other words,
not all formulae of a derivation can be considered to be joining knots of different
fragments of derivations.

In his contribution, “On the distinction between sets and classes: a categorical
perspective,” Samuele Maschio inquires about the relationship between sets and
classes in ZF set theory by means of syntactic categories, internal categories,
and algebraic set theory. He tries to clarify the way proper classes are used in
mathematical practice, by means of categorical tools allowing a useful interaction
between mathematics and metamathematics. Maschio claims that the peculiar nature
of classes, with respect to sets, can be represented using category theory. First,
he defines the category of formal classes as a full (equivalent) subcategory of the
syntactic category of the theory ZF; second, using the global elements of an internal
category to the category of formal classes, he manages to identify, by means of
algebraic set theory, a category equivalent to the one of definable sets.

Philosophy and Mathematics

Finally the papers included in the third part of the volume deal with more classical
philosophical problems that pertain to mathematics from a theoretical, practical or
linguistic point of view.

The paper by Michele Ginammi, “Structure and applicability,” deals with the
general problem of the applicability of formal notions to physical reality and, in
particular, with the issue of the effective representative power of mathematics with
respect to physics. It focuses on the notion of structure and wonders whether this
notions could be appealed to in order to explain mathematical effectiveness. To this
purpose, the author first considers the so-called structural account, then analyzes
its weaknesses, and finally suggests a way to overcome them. What is suggested
is that the representative power of mathematics is strictly related to what Mark
Steiner called “heuristic applicability of mathematics” in his 1998 book, that is,
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the capability of an appropriate mathematical representation of reality of helping in
discovering new physical facts. According to Ginammi, this provides not only an
improvement of the structural account, suitable for settling its difficulties, but also
a clearer account of the applicability of mathematics to physics, underplaying the
often mentioned “unreasonable effectiveness of mathematics.”

The paper by Marina Imocrante, “Defending Maddy’s mathematical naturalism
from Roland’s criticism: the role of mathematical depth,” takes as a starting
point the criticism that Jeffrey Roland moves to Penelope Maddy’s naturalistic
epistemology of mathematics and draws the attention to the notion of mathematical
depth proposed by Penelope Maddy in her 2011 book Defending the Axioms.
After recalling the main features of Maddy’s mathematical naturalism and Roland’s
objections to her account, a considerable portion of the paper is devoted to an
analysis of Maddy’s notion of mathematical depth. Although stressing the need of
certain clarifications of Maddy’s notion, Imocrante suggests a possible interpretation
of the facts of mathematical depth as the historical facts of mathematical practice.
The peculiar role of these facts in Maddy’s account is what allows Imocrante to
reply to Roland’s objections.

The paper by Marco Panza and Andrea Sereni, “On the indispensable premises
of the Indispensability Argument,” questions the often admitted dependence of the
indispensability argument on confirmational holism and naturalism. The argument is
generally ascribed to Quine, though its first codified version is offered by Putnam.
This is, however, only a version, among others, since the term “indispensability
argument” should better be intended as referring to a family of arguments sharing
a common idea: that admitting the indispensability of appealing to mathematical
theories in sciences, especially in physical and natural ones, must depend on
ascribing some epistemic features to these theories, depending on the features
ascribed to the relevant scientific theories. To make a simple example: if a scientific
theory is taken to be true, and it is admitted that a certain mathematical theory
is indispensable to the former, then also the latter should be taken to be true.
A quite widespread opinion is that endorsing an indispensability argument requires
endorsing confirmational holism (concerning the relevant scientific theories) and
naturalism. Panza and Sereni’s paper questions this opinion, by suggesting four
basic schemas for as many subfamilies of indispensability arguments that require no
premise involving any form of confirmational holism and naturalism. The authors
do not intend to endorse these arguments, but to show that their weakness, if any,
must depend on other, more specific assumptions, especially concerned with the
notion of indispensability itself.

The paper by Luca San Mauro and Giorgio Venturi, “Naturalness in mathematics:
on the statical-dynamical opposition,” contains a philosophical analysis of the
notion of naturalness, as it is used in the mathematical discourse. The two authors
show, with the help of statistical evidence, how frequent this use is. The first
part of the paper focuses on methodological issues. It investigates how a vague
notion such as that of naturalness should be analyzed in mathematical contexts.
San Mauro and Venturi propose a third way between an uncritical naturalism and a
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philosophy centered approach to mathematics. They aim to capture the autonomy of
mathematical work while accounting for its truly philosophical aspects. The second
part of the paper is devoted to some case studies taken from the history of set theory
and computability theory, which are meant to elucidate the meaning of naturalness’s
ascriptions in mathematics. The main question is whether the notion of naturalness
should be intended as a static or as a dynamic notion. San Mauro and Venturi favor
the latter option and argue that the evidence for the former is only apparent, but
still deserves a further philosophical inquiry, since it is just the apparent tension
between a static and a dynamical facet of naturalness that justifies most naturalness
ascriptions in mathematics.

Silvia de Toffoli and Valeria Giardino, in their paper “An inquiry into the practice
of proving in low-dimensional topology,” address the issue of visualization in the
mathematical practice of low-dimensional topology. The authors try to clarify the
epistemic value of the use of pictures in the justification of topological results. They
hold that, in general, representation plays an important role in the inferential argu-
ments of a working mathematician and that in low-dimension topology the use of
pictures gains strength by their link with spatial intuition, insofar as this is connected
with a faculty of “manipulative imagination,” which makes mathematicians able to
connect different pictures involved in a single argument. This is, however, workable
only within a specific practice; hence this form of reasoning is context dependent.
For this reason De Toffoli and Giardino give local criteria of validity in order to
insure the soundness of arguments that in low-dimensional topology make use of
forms of representation.

Concluding Remarks

Though each of these papers depends on the particular views, attitudes, interests, and
competences of its authors, when taken as a whole, they illustrate the multifarious
picture of the present state of philosophy of mathematics we have outlined in the
opening section of the present introduction.

In particular, it seems to us that a common orientation toward a philosophy of
mathematical practice is emerging, according to which this is understood not as a
rigid doctrine but as a large horizon of topics and as an interdisciplinary approach.

It remains that, even on this understanding, such an orientation is still hardly
identifiable as such. The danger is still there, when one refers to it, of merely
gathering under a single, evocative name a mere sum, or even a mixture, of different
approaches coming from general philosophy, history, logic, computer science,
sociology, cognitive science, and other disciplines, including mathematics itself.
The way these approaches can be held together is, indeed, an open question that
the recent evolutions of a philosophy of mathematical practice are far from having
settled.
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In particular, it is our common opinion that a mature philosophy of mathematical
practice cannot avoid coming to grips with the same traditional problems that the
philosophy of mathematics has dealt with for centuries, like that of the foundation of
mathematics (variously conceived) or that of the ontological and/or epistemological
status of its subject matter (if there is a specific one, indeed). Being able to suggest
an answer to these problems or, more soberly, a way to look at them different from
those prevailing in the last decades is a crucial challenge that this orientation must
face, if it is to develop into a distinctive approach. Another challenge is that of
providing a unified stance for the different researches that are developing under the
label “philosophy of mathematical practice,” in which this new answer or way of
looking at these problems can harmoniously coexist with more specific contents
and inquiries.

Our volume can have the pretension neither to meet these challenges nor to
dwell with them in their entire complexity. But we hope it could be, at least, a
testimony of the work of a rich community of Italian scholars (many of whom are
still young) working (often outside Italy, for choice or unfortunate necessity) within
the philosophical framework in which those problems arise.
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Chapter 1

A Geometrical Constructive Approach

to Infinitesimal Analysis: Epistemological
Potential and Boundaries of Tractional Motion

Pietro Milici

1.1 Introduction

The role of infinity in modern mathematics is fundamental, but historically (since
Zeno), its use has implied paradoxes. Therefore, it is quite natural to wonder
when its introduction is really unavoidable and when it is possible to answer
the same questions by means of other (more reachable) tools. In particular, in
this chapter, we explore the foundation of (part of) Infinitesimal Analysis without
infinity: from an ancient perspective, we want to consider Infinitesimal Analysis
objects as generated by the motion of geometrical/mechanical ideal machines (such
as the Euclidean straightedge and compass'), an approach adopted by Descartes
to legitimize his algebraic curves (by tracing them with the continuous motion
of appropriate geometric machines). Although some curves beyond circles and
lines have been introduced since the classical period (mainly conic sections, the
conchoid of Nicomedes, the cissoid of Diocles, the Archimedean spiral, and the
quadratrix of Dinostratus), it was Descartes who suggested a widely accepted finer
and general classification of curves, dividing geometrical from mechanical ones

'Even though Euclid’s works never introduced the straightedge and compass, his axioms for planar
geometry include the idea that we can draw a circle of any known radius at any known point and
that we can extend any line indefinitely. These axioms, purely mathematical in nature, can also
be interpreted physically by saying that the geometer has access to a compass and a straightedge,
tools that were used for many purposes even before Euclid.
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4 P. Milici

and considering only the first ones to satisfy the early modern metamathematical
problem of geometrical exactness (algebra, as an analytic tool, introduced new
foundational problems concerning the acceptability of solutions and constructions
in the geometric paradigm) (Bos 2001). However, up to the second half of
the seventeenth century, mathematicians such as Leibniz and Huygens tried to
legitimize curves beyond those considered geometric by Descartes.

This latter attempt raised the following questions:

Ql1- Is it possible to develop Cartesian machines to overtake algebra and deal with
(part of) Infinitesimal Analysis? (foundation)

Q2- Once the allowed tools are defined, what is the class of generable functions?
(construction)

Q3- Can this perspective offer a different (more sensible) visualization for functions
(especially complex ones)? (visualization)

Q4- Can these tools, once actually realized, foster users’ acquisition of the embodied
mathematical contents? (didactics)

Q5- Can the behavior of ideal tools be introduced in an axiomatic theory like
Euclidean geometry, so as to treat Infinitesimal Analysis from a finitistic (non-
numerical) perspective? (synthetic geometry perspective)

The purpose of this chapter is not to answer the previous questions completely, but
to ask them and perform a preliminary investigation.

In particular, while recent foundational approaches to Infinitesimal Analysis (the
classical foundation or Robinson’s Non-standard Analysis, the finitistic approach of
Kronecker and Brouwer’s intuitionism, or the Computational Analysis of Turing and
Weihrauch) are essentially algebraic or computational, one of the first approaches
to these problems was geometrical [Q1]. From this perspective, we may recall
the seventeenth-century consideration of the “inverse tangent problem.” Solutions
to this problem introduced certain machines, intended as both theoretical and
actual instruments, that justified the existence of certain solutions (i.e., curves)
exceeding Cartesian geometry. The first documented curves constructed under
tangent conditions were physically realized by the traction of a string tied to a
load, which is why the study of these machines was named “tractional motion”
(Bos 1988).

The main idea of this work is to deepen and further develop the analysis
of tractional motion, investigating if and how these ideal machines (like the
ancient straightedge and compass) can constitute the basis of a purely geometrical
and finitistic axiomatic foundation (like Euclid’s planar geometry) for a class of
differential problems [QS5] (note that no axiomatization has yet been proposed). In
particular, a model of these machines (i.e., the suggested components) is presented,
followed by some preliminary results about the class of generable functions [Q2].
As an example of the interpretation of functions with these tools [Q3], we propose
a sketch of a “tractional” planar machine embodying the complex exponential
function. Finally, concerning the possible relation between these ideas and their
didactical adoption through the use of concrete artifacts [Q4], we also make a
suitable didactic proposal.
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1.2 Brief History of Tractional Motion

In formalist mathematics, there exists every object that does not generate contra-
dictions. This perspective is somewhat different from the Cartesian vision; in fact,
the Géométrie in the appendix of Descartes (1637) (for a translation see Descartes
1954) legitimized new curves if they could be drawn by kinematic mechanical
devices involving movable arms (algebraic curves).? In the same century, before the
Infinitesimal Analysis paradigm became dominant, some geometrical ideas were
developed concerning curves defined by their tangent properties.’ Mathematicians
like Huygens began to consider instruments that, like the handlebars of a bike,
could guide the tangent of a curve (in analytical mechanics terms, they introduced
“non-holonomic” constraints): this signaled the rise of tractional motion. Tractional
motion suggested the possibility of constructing curves by imposing tangential con-
ditions, generalizing (in a non-Cartesian way) the idea of geometrical objects, and
constructing with new tools not only algebraic curves, but also some transcendental
ones (seen as solutions of differential equations). In this period, the development
of geometrical ideas often corresponded to the practical construction (or at least
conception) of mechanical machines able to embody the theoretical properties and
thus physically draw the curves.

In the early modern period, the use of algebra as an analytic tool for the solution
of geometric problems posed new foundational problems, for example, what does
it mean for a problem to be solved, and which constructions are legitimate? If
these questions about geometrical exactness were so important for the early modern
period, they disappeared in the eighteenth century because of the general affirmation
of symbolic procedures, later considered autonomous from geometry. Hence,
from our point of view, tractional motion missed the chance for its foundational
potential to completely develop into a geometrical/mechanical theory. Furthermore,
because of the change in paradigm, these tractional concepts were forgotten for
centuries, even for practical purposes, and were independently reinvented in the
late nineteenth century, when they were used to build some grapho-mechanical
instruments of integration (integraphs) to analogically compute symbolically non-
solvable problems. But let us start from the first curve described in a tractional way,
the “tractrix.”

On a horizontal plane, consider a small heavy body (subjected to the friction on
the plane) tied with an ideally weightless nonelastic string, and imagine (slowly)
pulling the other end of the string along a straight line drawn on the plane. Because

2In general, not every Descartes scholar would agree about this point. In fact, Descartes never
solved the problem of classifying the admissible curves in an unambiguous and complete way.
However, in accordance with (Bos 2001; Panza 2011), we are adopting the characterization
of Descartes’ geometrical curves as those that can be traced by geometrical linkages, that is,
articulated devices basically working as joint systems, allowing a certain degree of freedom in
movements between the two links they connect.

3This historical reconstruction is essentially based on Bos (1988, 1989) and Tourngs (2007, 2009).
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Ay A A F
Fig. 1.1 The heavy body is B, with initial position By; the string is a; and the other end of the
string is A, with initial position Ay. Moving A along r, B describes the tractrix (obviously, the
movement is not reversible because of the non-rigidity of the string). Note how a is tangent to the
curve at every point

of the friction on the plane, the body offers resistance to the pulling of the string:
if the motion is slow enough to neglect inertia, the curve described by the body is
called a tractrix. The first documented description of the tractrix is associated with
Claude Perrault (Leibniz 1693). Examining Fig. 1.1, we can see how the curve is
traced thanks to the property that the string is constantly tangent to the curve.

Christiaan Huygens (1693) deepened the theory of tractional motion and moved
toward a mechanical description in order to physically build some precise instru-
ments for tracing. In fact, the original description of the tractrix is related to at
least two physical problems: the tracing plane has to be perfectly horizontal, and
the heavy body, when moved, acquires inertial velocity. Huygens suggested that,
abstracting the problem from its physical complexity and considering it solely in
terms of tangent properties, tractional motion can be seen as a pure geometrical
movement, independent from the motion speed (even if through the introduction
of friction). This is exactly the same as the circular motion of the compass, the
straight motion of the ruler, and, in general, the continuous movement considered
by Descartes as the basis of analytic geometry. Furthermore, Huygens introduced
a technological change in the way in which straight segments were considered:
a string only works in the case of traction; on the contrary, a physical rigid bar
satisfies the tangent constraint (avoiding lateral motion) not only in traction, but
even in compression, making the curve realization reversible.

The foundations of tractional motion were laid, and, up to the first half of the
eighteenth century, there was an improvement in related works, both in terms of
practical machines (mechanical devices studied and realized to solve particular
differential equations) and theoretical studies. Concerning practical machines, we
may recall those made by Perks (1706, 1714) (see Fig. 1.2) for the first physical
introduction of the “rolling wheel” to manage the tangent (the same solution was
adopted in the nineteenth century for integraphs), whereas, concerning theoretical
evolutions, we must recollect Leibniz’s “universal tractional machine” (Leibniz
1693). According to him, tractional motion was the concrete realization of his vision
of curves as infinitangular polygons, inextricably mixing the theoretical model with
physical execution, each one validating the other: from a certain point of view,
kinematics forms the basis that mathematics without well-defined infinitesimal
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Fig. 1.2 Reconstruction of Perks’ instruments for the tractrix (left) and for the logarithmic curve
(right) at the Institute for History of Science, Aarhus University. Regarding the tractrix, we can see
the wheel taking the place of the load: in this case, the extreme point of the fixed-length bar can
freely move along a straight line. In the machine for the logarithmic curve, a horizontal fixed-length
plank moves along another horizontal bar to opportunely incline the slope

entities requires. Due to its complexity, the project, so important to a single theory
able to realize the quadrature of any general curve with a continuous movement,
never became a real device.

A unified theory for differential equations was actually developed by Vincenzo
Riccati (1752), the only complete theoretical work ever dedicated to the use of
tractional motion in geometry (Tournes 2009). The Italian mathematician found ge-
ometrical proofs corresponding to those that mathematicians such as Euler derived
using series, arriving at the result that “every” curve (defined in modern terminology
by a differential equation y’ = f(x,y)) can be drawn with tractional motion.*
This result regarding transcendental curves overtook Descartes’ announcement in
relation to algebraic curves and developed the theory of geometric construction
with simple continuous movements. One characteristic of this work is the deep
interaction among algebra, geometry, mechanics, and technology to develop an
abstract unified theory of differential equations based on the conception of material
instruments physically drawing the integral curves. His instruments plot the integral
curve of a differential equation using tractional motion:

On a horizontal plane, one pulls one end of a tense string, or a rigid rod, along a given curve,
and the other end of the string, the free end, describes during the motion a new curve which
remains constantly tangent to the string. At this free end, one places a pen surmounted by
a weight making pressure, or a sharp edged wheel cutting the paper, so that any lateral
motion is neutralized. By suitably choosing the base curve along which the end of the string
is dragged, and by suitably varying the length of the string according to a given law, one can
integrate various types of differential equations. In this way of solving an inverse tangent
problem, one actually materializes the tangent by a tense string and moves the string so that

“4Riccati shows that, adopting modern terminology, it is possible to integrate any differential
equation y’ = f(x, ), but he does not explicitly specify anything about the set of admissible
functions f. According to the equations of the time, it is reasonable to assume that the function
has to be obtained using only a finite number of algebraic operations and quadratures.
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the given property of the tangents is verified at every moment. The length of the tangent is
controlled at every moment by a mechanical system (a pulley or a slide channel) and by a
second curve which is called the directrix of the motion. (Tournes 2004, p. 2738)

Denoting the curves traced by tractional motion as “tractorias,” Riccati’s work
scheme was as follows: beginning from tractorias with a constant tangent (described
with a constant-length string dragged along a base curve), he generalizes by
allowing the integration of more and more extended classes of differential equations.
The generalization supposes that the length of the string varies with the position of
the tractor point (a tractoria with a variable tangent) and finally controls the length
of the string by a variable directrix, whose form varies according to the position of
the tractor point.

By means of such tractorias, Riccati showed that tractional motion allows the
integration of any differential equation having two independent variables x and
y in which the coefficients of the infinitesimal elements dx and dy are obtained
using only a finite number of algebraic operations and quadratures (cf. Note 4).
Under these conditions, all the auxiliary curves used by Riccati (base curves and
directrix curves) are constructible by Cartesian geometry instruments extended with
the possibility of quadrature. Tractional motion is therefore an additional process of
construction that allows us to obtain new curves from previously known ones.

Even though this work overtakes the ancient current of geometrical problem solv-
ing by the construction of curves, and proposes a very general theoretical model to
explain in a unified way the operation of a great number of tractional instruments, it
was neither celebrated nor influential. The book probably arrived too late, at the end
of the period of curve construction. At this time, geometry was giving way to alge-
bra, and series were becoming the principal tool to represent solutions to differential
equations, making Riccati’s work almost immediately outdated (Tournes 2004).

After about 150 years of interruption, during which there was no trace of
tractional motion, engineers in the late nineteenth and early twentieth centuries
rediscovered, independently, the same theoretical principles and technical solutions
of the eighteenth century (Pascal 1914). These solutions involved even more
complicated tractional instruments, with more cutting wheels connected between
them to be able to integrate differential equations beyond the first order. But after
this new blooming, in the second half of the twentieth century, the technological
thirst for equation-solving machines was satisfied by digital computers, which
improved the performance of analog computers with very accurate error control.
Therefore, because of the technological digital revolution, there was another break
in the adoption of this perspective.

1.3 Tractional Motion Machines

The first goal of this study on tractional motion is to clearly define the components
that can be used to obtain devices that implement certain tangent properties on
a plane. We call these ideal devices “tractional motion machines” (or TMMs)
(Milici 2012). As tractional motion was historically used to solve differential
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equations by tracing curves on the plane, we suggest TMMs should be interpreted
as function embodiers (as we will show in Sect. 1.4, this latter interpretation allows
us to make a comparison with other analog computers and to extend the results to
complex values). The passage from curve t