
http://www.cambridge.org/9780521876599

This page intentionally left blank

Dependence Logic

Dependence is a common phenomenon, wherever one looks: ecological systems,

astronomy, human history, stock markets – but what is the logic of dependence? This

book is the first to carry out a systematic logical study of this important concept, giving

on the way a precise mathematical treatment of Hintikka’s independence friendly

logic. Dependence logic adds the concept of dependence to first order logic. Here the

syntax and semantics of dependence logic are studied, dependence logic is given an

alternative game theoretic semantics, and sharp results about its complexity are proven.

This is a textbook suitable for a special course in logic in mathematics, philosophy, and

computer science departments, and contains over 200 exercises, many of which have a

full solution at the end of the book. It is also accessible to readers with a basic

knowledge of logic, who are interested in new phenomena in logic.

LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing editor: Professor J. W. Bruce,

Department of Mathematics, University of Hull, UK

3 Local fields, J. W. S. CASSELS

4 An introduction to twistor theory: Second edition, S. A. HUGGETT & K. P. TOD

5 Introduction to general relativity, L. P. HUGHSTON & K. P. TOD

8 Summing and nuclear norms in Banach space theory, G. J. O. JAMESON

9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER

11 Spacetime and singularities, G. NABER

12 Undergraduate algebraic geometry, MILES REID

13 An introduction to Hankel operators, J. R. PARTINGTON

15 Presentations of groups: Second edition, D. L. JOHNSON

17 Aspects of quantum field theory in curved spacetime, S. A. FULLING

18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN

20 Communication theory, C. M. GOLDIE & R. G. E. PINCH

21 Representations of finite groups of Lie type, FRANCOIS DIGNE & JEAN MICHEL

22 Designs, graphs, codes, and their links, P. J. CAMERON & J. H. VAN LINT

23 Complex algebraic curves, FRANCES KIRWAN

24 Lectures on elliptic curves, J. W. S CASSELS

26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA

27 Hilbert Space: compact operators and the trace theorem, J. R. RETHERFORD

28 Potential theory in the complex plane, T. RANSFORD

29 Undergraduate commutative algebra, M. REID

31 The Laplacian on a Riemannian manifold, S. ROSENBERG

32 Lectures on Lie groups and Lie algebras, R. CARTER, G. SEGAL, & I. MACDONALD

33 A primer of algebraic D-modules, S. C. COUNTINHO

34 Complex algebraic surfaces, A. BEAUVILLE

35 Young tableaux, W. FULTON

37 A mathematical introduction to wavelets, P. WOJTASZCZYK

38 Harmonic maps, loop groups, and integrable systems, M. GUEST

39 Set theory for the working mathematician, K. CIESIELSKI

40 Ergodic theory and dynamical systems, M. POLLICOTT & M. YURI

41 The algorithmic resolution of diophantine equations, N. P. SMART

42 Equilibrium states in ergodic theory, G. KELLER

43 Fourier analysis on finite groups and applications, AUDREY TERRAS

44 Classical invariant theory, PETER J. OLVER

45 Permutation groups, P. J. CAMERON

47 Introductory lectures on rings and modules, J. BEACHY

48 Set theory, A HAJNÁL, P. HAMBURGER

49 K-theory for C*-algebras, M. RORDAM, F. LARSEN, & N. LAUSTSEN

50 A brief guide to algebraic number theory, H. P. F. SWINNERTON-DYER

51 Steps in commutative algebra: Second edition, R. Y. SHARP

52 Finite Markov chains and algorithmic applications, O. HAGGSTROM

53 The prime number theorem, G. J. O. JAMESON

54 Topics in graph automorphisms and reconstruction, J. LAURI & R. SCAPELLATO

55 Elementary number theory, group theory, and Ramanujan graphs, G. DAVIDOFF,

P. SARNAK, & A. VALETTE

56 Logic, Induction and Sets, T. FORSTER

57 Introduction to Banach Algebras and Harmonic Analysis, H. G. DALES et al.

58 Computational Algebraic Geometry, HAL SCHENCK

59 Frobenius Algebras and 2-D Topological Quantum Field Theories, J. KOCK

60 Linear Operators and Linear Systems, J. R. PARTINGTON

61 An Introduction to Noncommutative Noetherian Rings, K. R. GOODEARL & R. B.

WARFIELD

62 Topics from One Dimensional Dynamics, K. M. BRUCKS & H. BRUIN

63 Singularities of Plane Curves, C. T. C. WALL

64 A Short Course on Banach Space Theory, N. L. CAROTHERS

65 Elements of the Representation Theory of Associative Algebras Techniques of Representation

Theory, IBRAHIM ASSEM, ANDRZEJ SKOWRONSKI, DANIEL SIMSON

66 An Introduction to Sieve Methods and Their Applications, ALINA CARMEN COJOCARU,

M. RAM MURTY

67 Elliptic Functions, J. V. ARMITAGE, W. F. EBERLEIN

68 Hyperbolic Geometry from a Local Viewpoint, LINDA KEEN, NIKOLA LAKIC

69 Lectures on Kähler Geometry, ANDREI MOROIANU

LONDON MATHEMATICAL SOCIETY STUDENT TEXTS 70

Dependence Logic

A New Approach to Independence Friendly Logic

JOUKO VÄÄNÄNEN
University of Amsterdam

and
University of Helsinki

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87659-9

ISBN-13 978-0-521-70015-3

ISBN-13 978-0-511-28539-4

© J. Vaananen 2007

2007

Information on this title: www.cambridge.org/9780521876599

This publication is in copyright. Subject to statutory exception and to the provision of

relevant collective licensing agreements, no reproduction of any part may take place

without the written permission of Cambridge University Press.

ISBN-10 0-511-28685-6

ISBN-10 0-521-87659-1

ISBN-10 0-521-70015-9

Cambridge University Press has no responsibility for the persistence or accuracy of urls

for external or third-party internet websites referred to in this publication, and does not

guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521876599

Contents

Preface page ix

1 Introduction 1

2 Preliminaries 5

2.1 Relations 5

2.2 Vocabularies and structures 5

2.3 Terms and formulas 6

2.4 Truth and satisfaction 7

3 Dependence logic 10

3.1 Examples and a mathematical model for teams 11

3.2 Formulas as types of teams 16

3.3 Logical equivalence and duality 29

3.4 First order formulas 37

3.5 The flattening technique 42

3.6 Dependence/independence friendly logic 44

4 Examples 48

4.1 Even cardinality 48

4.2 Cardinality 51

4.3 Completeness 53

4.4 Well-foundedness 55

4.5 Connectedness 56

4.6 Natural numbers 57

4.7 Real numbers 59

4.8 Set theory 60

vii

viii Contents

5 Game theoretic semantics 63

5.1 Semantic game of first order logic 63

5.2 Perfect information game for dependence logic 69

5.3 Imperfect information game for dependence logic 80

6 Model theory 86

6.1 From D to �1
1 86

6.2 Applications of �1
1 90

6.3 From �1
1 to D 94

6.4 Truth definitions 100

6.5 Model existence game 110

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 121

7 Complexity 134

7.1 Decision and other problems 134

7.2 Some set theory 135

7.3 �2-completeness in set theory 140

8 Team logic 144

8.1 Preorder of determination 144

8.2 Dependence and independence 148

8.3 Formulas of team logic 150

8.4 From team logic to L2 158

8.5 From L2 to team logic 161

8.6 Ehrenfeucht–Fraı̈ssé game for team logic 163

Appendix: Solutions to selected exercises, by Ville Nurmi 169

References 220

Index 223

Preface

This book is based on lectures I gave at the Department of Mathematics and

Statistics, University of Helsinki, during the academic year 2005–2006. I am

indebted to the students who followed the course, in particular to Åsa Hirvonen,

Meeri Kesälä, Ville Nurmi, Eero Raaste, and Ryan Siders. Thanks also go to

Ville Nurmi for suggesting numerous corrections to the text, compiling the

solutions to the exercises in the course, and for allowing me to include the

solutions in this book. I am very grateful to Wilfrid Hodges for many useful

discussions on dependence. I thank the Newton Institute (Cambridge, UK)

for inviting me for the five weeks, during which time the final manuscript

was prepared. The preparation of the manuscript was partially supported by

grant 40734 of the Academy of Finland. I wish to thank Peter Thompson of

Cambridge University Press for all the arrangements concerning publishing,

and I am deeply grateful to Juliette Kennedy for her generous help in all stages

of writing this book.

ix

1

Introduction

Dependence is a common phenomenon, wherever one looks: ecological sys-

tems, astronomy, human history, stock markets. With global warming, the

dependence of life on earth on the actions of mankind has become a burn-

ing issue. But what is the logic of dependence? In this book we set out to make

a systematic logical study of this important concept.

Dependence manifests itself in the presence of multitude. A single event

cannot manifest dependence, as it may have occurred as a matter of chance.

Suppose one day it blows from the west and it rains. There need not be any

connection between the wind and the rain, just as if one day it rains and it is

Friday the 13th. But over a whole year we may observe that we can tell whether

rain is expected by looking at the direction of the wind. Then we would be

entitled to say that in the observed location and in the light of the given data,

whether it rains depends on the direction of the wind. One would get a more

accurate statement about dependence by also observing other factors, such as

air pressure.

Dependence logic adds the concept of dependence to first order logic. In

ordinary first order logic the meaning of the identity

x = y (1.1)

is that the values of x and y are the same. This is a trivial form of dependence.

The meaning of

f x = y (1.2)

is that the interpretation of the function symbol f maps the value of x to the

value of y. This is an important form of dependence, one where we actually

know the mapping which creates the dependence. Note that the dependence

1

2 Introduction

may be more subtle, as in

f xz = y.

Here y certainly depends on x but also on z. In this case we say that y depends

on both x and on z, but is determined by the two together.

We introduce the new atomic formulas

=(x, y), (1.3)

the meaning of which is that the values of x and y depend on each other in the

particular way that values of x completely determine the values of y. Note the

difference between Eqs. (1.1), (1.2) and (1.3). The first says that x determines

y in the very strong sense of y being identical with x . The second says that x
determines y via the mapping f . Finally, the third says there is some way in

which x determines y, but we have no idea what that is.

The dependence in Eq. (1.3) is quite common in daily life. We have data

that show that weather depends on various factors such as air pressure and air

temperature, and we have a good picture of the mathematical equations that

these data have to satisfy, but we do not know how to solve these equations,

and therefore we do not know how to compute the weather when the critical

parameters are given. We could say that the weather obeys dependence of the

kind given in Eq. (1.3) rather than of the kind in Eq. (1.2). Historical events

typically involve dependencies of the type in Eq. (1.3), as we do not have

a perfect theory of history which would explain why events happen the way

they do. Human genes undoubtedly determine much of the development of an

individual, but we do not know how; we can just see the results.

In order to study the logic of dependence we need a framework involving

multitude, such as multiple records of historical events, day to day observations

of weather and stock transactions. This seems to lead us to study statistics or

database theory. These are, however, wrong leads. If we observe that a lamp is

lit up four times in a row when we turn a switch, but also that once the lamp does

not light up even if we turned the switch (Fig. 1.1), we have to conclude that the

light is not completely determined by the switch, as it is by the combined effect

of the switch and the plug. From the point of view of dependence, statistical

data or a database are relevant only to the extent that they record change.

In first order logic the order in which quantifiers are written determines the

mutual dependence relations between the variables. For example, in

∀x0∃x1∀x2∃x3φ

the variable x1 depends on x0, and the variable x3 depends on both x0 and

x2. In dependence logic we write down explicitly the dependence relations

Introduction 3

on

off

on

off

on

off

on

off

on

off

Fig. 1.1. Does the switch determine whether the lamp is lit?

between variables and by so doing make it possible to express dependencies

not otherwise expressible in first order logic.

The first step in this direction was taken by Henkin with his partially ordered

quantifiers, e.g. (∀x0 ∃x1

∀x2 ∃x3

)
φ,

where x1 depends only on x0 and x3 depends only on x2. The remarkable

observation about the extension L(H) of first order logic by this quantifier,

made by Ehrenfeucht, was that L(H) is not axiomatizable.

The second step was taken by Hintikka and Sandu, who introduced the

slash-notation

∀x0∃x1∀x2∃x3/∀x0φ,

where ∃x3/∀x0 means that x3 is “independent” of x0 in the sense that a choice

for the value of x3 should not depend on the value of x0. The observation of

Hintikka and Sandu was that we can add slashed quantifiers ∃x3/∀x0 coherently

to first order logic if we give up some of the classical properties of negation,

most notably the Law of Excluded Middle. They called their logic independence
friendly logic.

We take the further step of writing down explicitly the mutual dependence

relationships between variables. Thus we write

∀x0∃x1∀x2∃x3(=(x2, x3) ∧ φ) (1.4)

to indicate that x3 depends on x2 only. The new atomic formula = (x2, x3) has

the explicit meaning that x3 depends on x2 and on nothing else. This results in

a logic which we call dependence logic. It is equivalent in expressive power

to the logic of Hintikka and Sandu in the sense that there are truth-preserving

translations from one to the other. In having the ability to express dependence

on the atomic level it is more general.

4 Introduction

Formulas of dependence logic are not like formulas of first order logic.

Formulas of dependence logic declare dependencies while formulas of first

order logic state relations. These two roles of formulas are incompatible in

the following sense. It does not make sense to ask what relation a formula of

dependence logic defines, just as it does not make sense to ask what dependence

a formula of first order logic states. It seems to the author that the logic of such

dependence declarations has not been systematically studied before.

At the end of this book we introduce a stronger logic called team logic,

reminiscent of the extended independence friendly logic of Hintikka. Team

logic is, unlike dependence logic and independence friendly logic, closed under

the usual Boolean operations and it satisfies the Law of Excluded Middle.

Historical remarks

The possibility of extending first order logic by partially ordered quantifiers was

presented by Henkin [14], where also Ehrenfeucht’s result, referred to above,

can be found. Independence friendly logic was introduced by Hintikka and

Sandu [16] (see also ref. [17]) and advocated strongly by Hintikka in ref. [19].

Hodges [21, 22] gave a compositional semantics for independence friendly logic

and we very much follow his approach. Further properties of this semantics are

proved in refs. [4], [23] and [41]. Cameron and Hodges [5] showed that there

are limitations to the extent to which the semantics can be simplified from the

one given in ref. [21]. Connections between independence friendly logic, set

theory and second order logic are discussed in ref. [40].

2

Preliminaries

2.1 Relations

An n-tuple is a sequence (a1, . . . , an) with n components a1, . . . , an in this

order. A special case is the empty sequence ∅, which corresponds to the case

n = 0. A relation on a set M is a set R of n-tuples of elements of M for some

fixed n, where n is the arity of R. The simplest examples are the usual identity
relations on a set M :

{(x, x) : x ∈ M},
{(x, x, y) : x, y ∈ M},
{(x, y, x) : x, y ∈ M},
{(x, y, y) : x, y ∈ M},
{(x, x, x) : x ∈ M}.

Two special relations are the empty relation ∅, which is the same in any arity,

and the unique 0-ary relation {∅}. We think of a function f : M → M as a

relation {(x, f (x)) : x ∈ M} on M .

2.2 Vocabularies and structures

A vocabulary is a set L of constant, relation and function symbols. We use

c to denote constant symbols, R to denote relation symbols, and f to denote

function symbols in a vocabulary, possibly with subindexes. Each symbol s in

L has an arity #L (s), which is a natural number. The arity of constant symbols

is zero. The arity of a relation symbol may be zero. We use x0, x1, . . . to denote

variables.

An L-structure M is a non-empty set M , the domain of M, endowed with

an element cM of M for each c ∈ L , an #L (R)-ary relation RM on M for

5

6 Preliminaries

R ∈ L , and an #L (f)-ary function f M on M for f ∈ L . The L–structures

M and M′ are isomorphic if there is a bijection π : M → M ′ such that

π (cM) = cM
′

and for all a1, . . . , a#L (R) ∈ M we have (a1, . . . , a#L (R)) ∈ RM

if and only if (π (a1), . . . , π(a#L (R))) ∈ RM′
, and f M

′
(π (a1), . . . , π(a#L (f))) =

π (f M(a1, . . . , a#L (f))). In this case we say that π is an isomorphism from M
to M′, denoted π : M ∼= M′.

If M is an L-structure and M′ is an L ′-structure such that L ′ ⊆ L , cM =
cM

′
for c ∈ L ′, RM = RM′

for c ∈ L ′, and f M = f M
′

for f ∈ L ′, then M′

is said to be a reduct of M (to the vocabulary L ′), denoted M′ = M�L ′,
and M is said to be an expansion of M′ (to the vocabulary L). If M is an

L-structure and a ∈ M , then the expansion M′ of M, denoted (M, a), to a

vocabulary L ∪ {c}, where c /∈ L , is defined by cM
′ = a; (M, a1, . . . , an) is

defined similarly.

2.3 Terms and formulas

Constant symbols of L and variables are L-terms; if t1, . . . , tn are L-terms, then

f t1 . . . tn is an L-term for each f in L of arity n. The set Var(t) of variables
of a term t is simply the set of variables that occur in t . If Var(t) = ∅, then t is

called a constant term. For example, f c is a constant term. Every constant term

t has a definite value tM in any L-structure M, defined inductively as follows:

if t is a constant symbol, tM is defined already. Otherwise, (f t1 . . . tn)M =
f M(tM1 , . . . , tMn).

Any function s from a finite set dom(s) of variables into the domain M
of an L-structure M is called an assignment of M. Set theoretically, s =
{(a, s(a)) : a ∈ dom(s)}. The restriction s�A of s to a set A is the function

{(a, s(a)) : a ∈ dom(s) ∩ A}. An assignment s assigns a value tM〈s〉 in M to

any L-term t such that Var(t) ⊆ dom(s) as follows: cM〈s〉 = cM, xM
n 〈s〉 =

s(xn), and (f t1 . . . tn)M〈s〉 = f M(tM1 〈s〉, . . . , tMn 〈s〉).
The veritas symbol � is an L-formula. Strings ti = t j and Rt1 . . . tn are

atomic L-formulas whenever t1, . . . , tn are L-terms and R is a relation symbol in

L with arity n. We sometimes write (ti = t j) for clarity. Atomic L-formulas are

L-formulas. If φ and ψ are L-formulas, then (φ ∨ ψ) and ¬φ are L-formulas.

If φ is an L-formula and n ∈ N, then ∃xnφ is an L-formula. We use (φ ∧ ψ)

to denote ¬(¬φ ∨ ¬ψ), (φ → ψ) to denote (¬φ ∨ ψ), (φ ↔ ψ) to denote

((φ → ψ) ∧ (ψ → φ)), and ∀xnφ to denote ¬∃xn¬φ. Formulas defined in this

way are called first order. An L-formula is quantifier free if it has no quantifiers.

2.4 Truth and satisfaction 7

M
s

Fig. 2.1. A model and an assignment.

A formula, possibly containing occurrences of the shorthands ∧ and ∀, is in

negation normal form if it has negations in front of atomic formulas only.

The set Fr(φ) of free variables of a formula φ is defined as follows:

Fr(t1 = t2) = Var(t1) ∪ Var(t2),

Fr(Rt1 . . . tn) = Var(t1) ∪ . . . ∪ Var(tn),

Fr(φ ∨ ψ) = Fr(φ) ∪ Fr(ψ),

Fr(¬φ) = Fr(φ),

Fr(∃xnφ) = Fr(φ) \ {xn}.
If Fr(φ) = ∅, we call φ an L-sentence.

2.4 Truth and satisfaction

Truth in first order logic can be defined in different equivalent ways. The most

common approach is the following, based on the more general concept of sat-
isfaction of L-formulas. There is an alternative game theoretic definition of

truth, most relevant for this book, and we will introduce it in Chapter 5. In the

definition below the concept of an assignment s satisfying an L-formula φ in

an L-structure, denoted M |=s φ, is defined by giving a sufficient condition for

M |=s φ in terms of subformulas of φ.

For quantifiers we introduce the concept of a modified assignment. If

s is an assignment and n ∈ N, then s(a/xn) is the assignment which

agrees with s everywhere except that it maps xn to a. In other words,

dom(s(a/xn)) = dom(s) ∪ {xn}, s(a/xn)(xi) = s(xi) when xi ∈ dom(s) \ {xn},
and s(a/xn)(xn) = a.

8 Preliminaries

(φ, s,1)

(φ, s, 0)

Fig. 2.2. Truth and falsity.

We define T as the smallest set such that:

(P1) if tM1 〈s〉 = tM2 〈s〉, then (t1 = t2, s, 1) ∈ T ;

(P2) if tM1 〈s〉 �= tM2 〈s〉, then (t1 = t2, s, 0) ∈ T ;

(P3) if (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM, then (Rt1 . . . tn, s, 1) ∈ T ;

(P4) if (tM1 〈s〉, . . . , tMn 〈s〉) /∈ RM, then (Rt1 . . . tn, s, 0) ∈ T ;

(P5) if (φ, s, 1) ∈ T or (ψ, s, 1) ∈ T , then (φ ∨ ψ, s, 1) ∈ T ;

(P6) if (φ, s, 0) ∈ T and (ψ, s, 0) ∈ T , then (φ ∨ ψ, s, 0) ∈ T ;

(P7) if (φ, s, 1) ∈ T , then (¬φ, s, 0) ∈ T ;

(P8) if (φ, s, 0) ∈ T , then (¬φ, s, 1) ∈ T ;

(P9) if (φ, s(a/xn), 1) ∈ T for some a in M , then (∃xnφ, s, 1) ∈ T ;

(P10) if (φ, s(a/xn), 0) ∈ T for all a in M , then (∃xnφ, s, 0) ∈ T .

Finally we define M |=s φ if (φ, s, 1) ∈ T . A formula ψ is said to be a log-
ical consequence of another formula φ, in symbols φ ⇒ ψ , if for all M and

s such that M |=s φ we have M |=s ψ . A formula ψ is said to be log-
ically equivalent to another formula φ, in symbols φ ≡ ψ , if φ ⇒ ψ and

ψ ⇒ φ.

Exercise 2.1 Prove for all first order φ: (φ, s, 1) ∈ T or (φ, s, 0) ∈ T .

Exercise 2.2 Prove that for no first order φ and for no s we have (φ, s, 1) ∈
T and (φ, s, 0) ∈ T .

Exercise 2.3 Prove for all first order φ: (¬φ, s, 1) ∈ T if and
only if (φ, s, 1) /∈ T .

2.4 Truth and satisfaction 9

We define two operations φ �→ φp and φ �→ φd by simultaneous induction,

using the shorthands φ ∧ ψ and ∀xnφ, as follows:

φd = ¬φ if φ atomic,

φp = φ if φ atomic,

(¬φ)d = φp,

(¬φ)p = φd,

(φ ∨ ψ)d = φd ∧ ψd,

(φ ∨ ψ)p = φp ∨ ψp,

(∃xnφ)d = ∀xnφ
d,

(∃xnφ)p = ∃xnφ
p.

We call φd the dual of φ. The basic result concerning duality in first order

logic is that φ ≡ φp and ¬φ ≡ φd. Thus the dual operation is a mechanical

way for translating a formula φ to one which is logically equivalent to the

negation of φ, without actually adding negation anywhere except in front of

atomic formulas. Note that the dual of a formula in negation normal form is

again in negation normal form. This is important because negation does not, a
priori, preserve the negation normal form, unlike the other logical operations

∧, ∨, ∃, ∀.

Exercise 2.4 Show that φp and φd are always in negation normal form.

Exercise 2.5 Prove (φd)
d = φp and (φp)p = φp.

Exercise 2.6 Compute (φp)d and (φd)
p
.

Exercise 2.7 Prove φ ≡ φp and ¬φ ≡ φd for any φ in first order logic.

Both φ �→ φd and φ �→ φp preserve logical equivalence. Thus if we define

the formula φ∗, for any first order formula φ written in negation normal form, to

be the result of replacing each logical operation in φ by its dual (i.e. ∧ by ∨ and

vice versa, ∀ by ∃ and vice versa), then any logical equivalence φ ≡ ψ gives

rise to another logical equivalence φ∗ ≡ ψ∗. This is the Principle of Duality.

Exercise 2.8 Prove that φ ≡ ψ implies φ∗ ≡ ψ∗.

In terms of game theoretic semantics, which we discuss in Chapter 5, the

dual of a sentence, in being logically equivalent to its negation, corresponds to

permuting the roles of the players.

3

Dependence logic

Dependence logic introduces the concept of dependence into first order logic by

adding a new kind of atomic formula. We call these new atomic formulas atomic
dependence formulas. The definition of the semantics for dependence logic is

reminiscent of the definition of the semantics for first order logic, presented

in Chapter 2. But instead of defining satisfaction for assignments, we follow

ref. [21] and jump one level up considering sets of assignments. This leads us

to formulate the semantics of dependence logic in terms of the concept of the

type of a set of assignments.

The reason for the transition to a higher level is, roughly speaking, that one

cannot manifest dependence, or independence for that matter, in a single assign-

ment. To see a pattern of dependence, one needs a whole set of assignments.

This is because dependence notions can be best investigated in a context

involving repeated actions by agents presumably governed by some possibly

hidden rules. In such a context dependence is manifested by recurrence, and

independence by lack of it.

Our framework consists of three components:

teams, agents, and features.

Teams are sets of agents. Agents are objects with features. Features are like

variables which can have any value in a given fixed set.

If we have n features and m possible values for each feature, we have alto-

gether mn different agents. Teams are simply subsets of this space of all possible

agents.

Although our treatment of dependence logic is entirely mathematical, our

intuition of dependence phenomena comes from real life examples, think-

ing of different ways dependence manifests itself in the real world. Statisti-

cians certainly have much to say about this, but when we go deeper into the

logic of dependence we see that the crucial concept is determination, not mere

10

3.1 Examples and a mathematical model for teams 11

dependence. Another way in which dependence differs from statistics is that

we study total dependence, not statistically significant dependence. It would

seem reasonable to define probabilistic dependence logic, but we will not go

into that here.

3.1 Examples and a mathematical model for teams

In practical examples, a feature is anything that can be in the domain of a

function: color, length, weight, prize, profession, salary, gender, etc. To be

specific, we use variables, x0, x1, . . . to denote features. If features are variables,

then agents are assignments. When we define dependence logic, we use the

variable xn to refer to the value s(xn) of the feature xn in an agent s.

(i) A team of seven agents with features {x0, x1, x2} as domain and Q as

the set of possible values of the features could look like Table 3.1. One

can think of this as a set of seven possible assignments to the variables

x0, x1, x2 in the model (Q, <). Some of the assignments satisfy x0 < x1

and they all satisfy x2 < x1.

(ii) Consider teams of soccer players. In this case the players are the agents.

The number assigned to each player as well as the colors of their

shirts and shorts are the features, denoted by variables x0, x1, x2, respec-

tively. Teams are sets of players in the usual sense of the word “team.”

Table 3.2 depicts a team. If we counted only the color of the players’ shirts

and shorts as features, we would obtain the generated team of three agents

depicted in Table 3.3.

(iii) Databases are good examples of teams. By a database we mean in this

context a table of data arranged in columns and rows. The columns are the

features, the rows are the agents, and the set consisting of the rows is the

Table 3.1.

x0 x1 x2

s0 1.5 4 0.51
s1 2.1 4 0.55
s2 2.1 4 0.53
s3 5.1 4 0.54
s4 8.9 4 0.53
s5 21 4 0.54
s6 100 4 0.54

12 Dependence logic

Table 3.2. Soccer players as a team

(Player) (Shirt) (Shorts)
x0 x1 x2

s0 1 yellow white
s1 2 yellow white
s2 3 yellow white
s3 4 yellow white
s4 5 red white
s5 6 red black
s6 7 red black

Table 3.3. A generated team

(Shirt) (Shorts)
x1 x2

s0 yellow white
s1 red white
s2 red black

Table 3.4. A database

Fields

Record x1 x2 . . . xn

1 52 24 . . . 1
2 68 362 . . . 0
3 11 7311 . . . 1
.
k 101 43 . . . 1

team. In database theory the columns are often called fields or attributes,

and the rows are called records or tuples. Table 3.4 is an example of a

database. If the row number (1 to k in Table 3.4) is counted as a feature,

then all rows are different agents. Otherwise rows with identical values

in all the features are identified, resulting an a team called the generated
team, i.e. the team generated by the particular database. Table 3.5 depicts

a database and the generated team.

(iv) The game history team. Imagine a game where players make moves,

following a strategy they have chosen with a certain goal in mind. We are

3.1 Examples and a mathematical model for teams 13

thinking of games in the sense of von Neumann and Morgenstern’s Theory
of Games and Economic Behavior [43]. Examples of such games are board

and card games, business games, games related to social behavior, etc. We

think of the moves of the game as features. If during a game 350 moves

are made by the players, then we have 350 features. Plays, i.e. sequences

of moves of the game that comprise an entire play of the game, are the

agents. Any collection of plays is a team. A team may arise, for example,

as follows: two players play a certain game 25 times, thus producing 25

sequences of moves. A team of 25 agents is created.

It may be desirable to know answers to the following kinds of questions.

(a) What is the strategy that a player is following, or is he or she following

any strategy at all?

(b) Is a player using information about his or her (or other players’) moves

that he or she is committed not to use? This issue is closely related to

game theoretic semantics of dependence logic treated in Chapter 5.

The following game illustrates how a player can use information that

may be not admitted. There are two players I and II. (For ease of reference,

we always refer to player I as “he” and player II as “she”.) Player I starts

by choosing an integer n. Then II chooses an integer m. After this II
makes another move and chooses, this time without seeing n, an integer

l. So player II is committed to choose l without seeing n, even if she saw

n when she picked m. One may ask, how can she forget a number she

has seen once, but if the number has many digits this is quite plausible.

Player II wins if l > n. In other words, II has the impossible looking task

of choosing an integer l which is bigger than an integer n that she is not

allowed to know. Her trick, which we call the signalling-strategy, is to

store information about n into m and then choose l only on the basis of

what m is. Table 3.5 shows an example of a game history team in this

Table 3.5. Game history and the generated team

Play I II II

1 1 1 2
2 40 40 41
3 2 2 3
4 0 0 1
5 1 1 2
6 2 2 3
7 40 40 41
8 100 100 101

x0 x1 x2

s0 0 0 1
s1 1 1 2
s2 2 2 3
s3 40 40 41
s4 100 100 101

14 Dependence logic

Table 3.6. Suspicious game history and the generated team

Play I II II

1 1 0 2
2 40 0 41
3 2 0 3
4 0 0 1
5 1 0 2
6 2 0 3
7 40 0 41
8 100 0 101

x0 x1 x2

s0 0 0 1
s1 1 0 2
s2 2 0 3
s3 40 0 41
s4 100 0 101

a

a2

a3

a4

x0
x1

Fig. 3.1. Dependence of x1 on x0.

game. We can see that player II has been using the signalling-strategy. If

we instead observed the behavior of Table 3.6, we could doubt whether II
is obeying the rules, as her second move seems clearly to depend on the

move of I which she is not supposed to see.

(v) Every formula φ(x1, . . . , xn) of any logic and structure M together give

rise to the team of all assignments that satisfy φ(x1, . . . , xn) in M.

In this case the variables are the features and the assignments are the

agents. This (possibly quite large) team manifests the dependence struc-

ture φ(x1, . . . , xn) that expresses in M. If φ is the first order formula

x0 = x1, then φ expresses the very strong dependence of x1 on x0, namely

of x1 being equal to x0. The team of assignments satisfying x0 = x1 in a

structure is the set of assignments s which give to x0 the same value as to

x1. If φ is the infinitary formula

(x0 = x1) ∨ (x0 · x0 = x1) ∨ (x0 · x0 · x0 = x1) ∨ . . . ,

then φ expresses the dependence of x1 on x0 of being in the set {x0, x0 ·
x0, x0 · x0 · x0, . . .}. See Fig. 3.1.

3.1 Examples and a mathematical model for teams 15

Fig. 3.2. Picture of a torus team.

(vi) Every first order sentence φ and structure M together give rise to teams

consisting of assignments that arise in the semantic game (see Section 5.1)

of φ and M. The semantic game is a game for two players, I and II, in

which I tries to show that φ is not true in M and II tries to show that φ is

indeed true in M. The game proceeds according to the structure of φ. At

conjunctions player I chooses a conjunct. At universal quantifiers player I
chooses a value for the universally bound variable. At disjunctions player

II chooses a disjunct. At existential quantifiers player II picks up a value

for the existentially bound variable. At negations the players exchange

roles. Thus the players build up move by move an assignment s. When an

atomic formula is met, player II wins if the formula is true in M under

the assignment s, otherwise player I wins. See Section 5.1 for details.

If M |= φ and the winning strategy of II is τ in this semantic game, a

particularly interesting team consists of all plays of the semantic game in

which II uses τ . This team is interesting because the strategy τ can be

read off from the team. We can view the study of teams of plays in this

game as a generalization of the study of who wins the semantic game. The

semantic game of dependence logic is treated in Chapter 5.

(vii) Space team. Let us consider the three-dimensional Euclidean space R
3.

Let S be a surface in R
3, e.g. the torus

S = {(cos v cos u, cos v sin u, sin v) : u, v ∈ [0, 2π]}.

The set S is a team in which the three coordinates x , y, and z are the

features, and the points on the surface are the agents (see Fig. 3.2 and

Table 3.7).

We now give a mathematical model for teams.

16 Dependence logic

Table 3.7. A torus team

x y z

.
0.2919 0.4546 0.8415
0.2829 0.4504 0.8468
0.2739 0.4460 0.8521
0.2650 0.4414 0.8573
0.2563 0.4366 0.8624
0.2476 0.4316 0.8674
0.2390 0.4265 0.8724
0.2305 0.4212 0.8772
0.2222 0.4157 0.8820
0.2139 0.4101 0.8866
0.2057 0.4042 0.8912
0.1977 0.3983 0.8957
0.1898 0.3922 0.9001
0.1820 0.3859 0.9044
0.1744 0.3794 0.9086
0.1669 0.3729 0.9128
0.1595 0.3661 0.9168
0.1522 0.3592 0.9208
.

Definition 3.1 An agent is any function s from a finite set dom(s) of variables,
also called features, to a fixed set M. The set dom(s) is called the domain of
s, and the set M is called the codomain of s. A team is any set X of agents
with the same domain, called the domain of X and denoted by dom(X), and
the same codomain, likewise called the codomain of X. A team with codomain
M is called a team of M. If V is a finite set of variables, we use Team(M, V)

to denote the set of all teams of M with domain V .

Since we have defined teams as sets, not multisets, of assignments, one

assignment can occur only once in a team. Allowing multisets would not, how-

ever, change anything essential in this study.

3.2 Formulas as types of teams

We define a logic which has an atomic formula for expressing dependence. We

call this logic the dependence logic and denote it by D. In Section 3.6 we will

recover independence friendly logic as a fragment of dependence logic.

3.2 Formulas as types of teams 17

X

M

Fig. 3.3. A model and a team.

In first order logic the meaning of a formula is derived from the concept of

an assignment satisfying the formula. In dependence logic the meaning of a

formula is based on the concept of a team being of the (dependence) type of the

formula.

Recall that teams are sets of agents (assignments) and that agents are func-

tions from a finite set of variables, called the domain of the agent into an arbitrary

set called the codomain of the agent (Definition 3.1). In a team the domain of

all agents is assumed to be the same set of variables, just as the codomain of

all agents is assumed to be the same set (Fig. 3.3).

Our atomic dependence formulas have the following form:

=(t1, . . . , tn).

The intuitive meaning of this is as follows:

the value of the term tn depends only on the values of the terms t1, . . . , tn−1.

As singular cases, we have

=(),

which we take to be universally true, and

=(t),

which declares that the value of the term t depends on nothing, i.e. is constant.

Note that =(x1) is quite non-trivial and indispensable if we want to say that all

agents are similar as far as feature x1 is concerned. Such similarity is manifested

by the team of Table 3.6, where all agents have value 0 in their feature x1.

Actually, our atomic formulas express determination rather than depen-

dence. The reason for this is that determination is a more basic

18 Dependence logic

concept than dependence. Once we can express determination, we can

define dependence and independence. Already dependence logic has con-

siderable strength. Further extensions formalizing the concepts of depen-

dence and independence are even stronger, and in addition lack many of

the nice model theoretic properties that our dependence logic enjoys. We

will revisit the concepts of dependence and particularly independence in

Section 8.2

Definition 3.2 Suppose L is a vocabulary. If t1, . . . , tn are L-terms and R is a
relation symbol in L with arity n, then strings

ti = t j ,

=(t1, . . . , tn),

Rt1 . . . tn

are L-formulas of dependence logic D. They are called atomic formulas. If φ

and ψ are L-formulas of D, then

(φ ∨ ψ)

and

¬φ

are L-formulas of D. If φ is an L-formula of D and n ∈ N, then

∃xnφ

is an L-formula of D.

As is apparent from Definition 3.2, the syntax of dependence logic D is very

similar to that of first order logic, the only difference being the inclusion of the

new atomic formulas =(t1, . . . , tn). We use

(φ ∧ ψ)

to denote ¬(¬φ ∨ ¬ψ),

(φ → ψ)

to denote (¬φ ∨ ψ),

(φ ↔ ψ)

to denote ((φ → ψ) ∧ (ψ → φ)), and

∀xnφ

3.2 Formulas as types of teams 19

X(F/xn)

Fig. 3.4. A supplement team.

to denote ¬∃xn¬φ. A formula of dependence logic which does not contain

any atomic formulas of the form =(t1, . . . , tn) is called first order. The veritas
symbol 	 is definable as =(). We call this also first order as we took 	 as a

special symbol in Chapter 2.

The set Fr(φ) of free variables of a formula φ is defined otherwise as for

first order logic, except that we have the new case

Fr(=(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn).

If Fr(φ) = ∅, we call φ an L-sentence of dependence logic.

We define now two important operations on teams, the supplement and

the duplication operations. The supplement operation adds a new feature

to the agents in a team, or alternatively changes the value of an existing

feature.

Suppose a strategy officer of a company comes to a director with a plan for

a team to design a new product. The director asks: “What about the language

skills of the team members?” The strategy officer answers: “No problem, I can

supplement the language skills to the team description, and then you will see

that the team is really of the type we need.” This is the idea of supplementing

a team (see Fig. 3.4).

Definition 3.3 If M is a set, X is a team with M as its codomain and F : X →
M, we let X (F/xn) denote the supplement team {s(F(s)/xn) : s ∈ X}.

A duplicate team is obtained by duplicating the agents of a team until all

possibilities occur as far as a particular feature is concerned.

Suppose a strategy officer of a company comes to a director with a plan for

a team for a company wide committee. The strategy officer says, “I decided we

need a programmer, an analyst, and a sales person. I chose such people from

20 Dependence logic

X M/xn()

Fig. 3.5. A duplicate team.

each of our five departments.” This is the idea of duplicating a team. The team

to be duplicated consisted of three agents with just one feature with values in

the set programmer, analyst, sales person. The duplicated team has 15 agents

corresponding to a programmer, an analyst, and a sales person from each of the

five departments. As this example indicates, in real life examples the features

do not always have values in the same set, as in our mathematical model. We

could rectify this by considering many-sorted structures, but this would lead to

unnecessarily complicated notation.

Definition 3.4 If M is a set and X is a team of M we use X (M/xn) to denote
the duplicate team {s(a/xn) : a ∈ M, s ∈ X}. See Fig. 3.5.

We are ready to define the semantics of dependence logic.

Definition 3.5 Suppose L is a vocabulary and M is an L-structure. We define
the set T , or more exactly TM, called the fundamental predicate ofM, of triples
(φ, X, d), where φ is an L-formula of dependence logic, Fr(φ) ⊆ dom(X) and
d ∈ {0, 1}, as the smallest set such that

(D1) if tM1 〈s〉 = tM2 〈s〉 for all s ∈ X, then (t1 = t2, X, 1) ∈ T ;

(D2) if tM1 〈s〉 �= tM2 〈s〉 for all s ∈ X, then (t1 = t2, X, 0) ∈ T ;

(D3) if tMn 〈s〉 = tMn 〈s ′〉 for all s, s ′ ∈ X such that

tM1 〈s〉 = tM1 〈s ′〉, . . . , tMn−1〈s〉 = tMn−1〈s ′〉,

then (=(t1, . . . , tn), X, 1)) ∈ T ;

(D4) (=(t1, . . . , tn), ∅, 0) ∈ T ;

(D5) if (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM for all s ∈ X, then (Rt1 . . . tn, X, 1) ∈ T ;

(D6) if (tM1 〈s〉, . . . , tMn 〈s〉) /∈ RM for all s ∈ X, then (Rt1 . . . tn, X, 0) ∈ T ;

3.2 Formulas as types of teams 21

(φ, X, 1)

(φ, X, 0)

Fig. 3.6. Truth and falsity.

(D7) if (φ, X, 1) ∈ T , (ψ, Y, 1) ∈ T , and dom(X) = dom(Y), then (φ ∨
ψ, X ∪ Y, 1) ∈ T ;

(D8) if (φ, X, 0) ∈ T and (ψ, X, 0) ∈ T , then (φ ∨ ψ, X, 0) ∈ T ;

(D9) if (φ, X, 1) ∈ T , then (¬φ, X, 0) ∈ T ;

(D10) if (φ, X, 0) ∈ T , then (¬φ, X, 1) ∈ T ;

(D11) if (φ, X (F/xn), 1) ∈ T for some F : X → M, then (∃xnφ, X, 1) ∈ T ;

(D12) if (φ, X (M/xn), 0) ∈ T , then (∃xnφ, X, 0) ∈ T .

Finally, we define

X is of type φ in M, denoted M |=X φ

if (φ, X, 1) ∈ T . Furthermore,

φ is true in M, denoted M |= φ,

if M |={∅} φ, and

φ is valid, denoted |= φ,

if M |= φ for all M.

Note that,

M |=X ¬φ if (φ, X, 0) ∈ T ;

M |= ¬φ if (φ, {∅}, 0) ∈ T . Then we say that φ is false in M.

We will see in a moment that it is not true in general that (φ, X, 1) ∈ T or

(φ, X, 0) ∈ T . Likewise it is not true in general that M |= φ or M |= ¬φ, nor

that M |= φ ∨ ¬φ. In other words, no sentence can be both true and false in a

model, but some sentences can be neither true nor false in a model. This gives

our logic a nonclassical flavor. See Fig. 3.6.

22 Dependence logic

Table 3.8.

x0 x1 x2 x3

s0 0 0 0 1
s1 1 0 1 0
s2 0 0 0 1

Table 3.9.

x0 x1 x2 x3

s0 red yellow white white
s1 white red white white
s2 black red black white

Example 3.6 Let M be a structure with M = {0, 1}. Consider the team given
in Table 3.8. This team is of type =(x1), since si (x1) = 0 for all i . This team
is of type x0 = x2, as si (x0) = si (x2) for all i . This team is of type ¬x0 = x3,
as si (x0) �= si (x3) for all i . This team is of type =(x0, x1), as si (x0) = s j (x0)

implies si (x3) = s j (x3). This team is not of type =(x1, x2), as s0(x1) = s1(x1),
but s0(x2) �= s1(x2). Finally, this team is of type =(x0) ∨ =(x0), as it can be
represented as the union {s0, s2} ∪ {s1}, where {s0, s2} and {s1} are both of type
=(x0).

Example 3.7 Let M be a structure with M = {yellow, white, red, black}.
Consider the team in Table 3.9. This team is of type =(x3), since si (x3) = white
for all i . This team is also of type =(x0, x1), as si (x0) = s j (x0) implies i = j
and hence si (x1) = s j (x1). This team is not of type =(x1, x2), as s1(x1) = s2(x1),
but s1(x2) �= s2(x2).

Definition 3.5 refers to a set T of triples. Such a smallest set T always exists.

For example, the set of all possible triples (φ, X, d) satisfies (D1)–(D12), and

the intersection of all sets T with (D1)–(D12) has again the properties (D1)–

(D12).

We may also construct the minimal T step by step starting from T0 = ∅ and

letting Tn+1 be an extension of Tn satisfying the consequents if Tn satisfies the

antecedents of (D1)–(D12). Then the minimal T is ∪nTn .

Proposition 8 shows that the implications of Definition 3.5 can all be reversed,

making T a fixed point of the inductive definition of truth.

3.2 Formulas as types of teams 23

Proposition 3.8 The set T satisfies:

(E1) (t1 = t2, X, 1) ∈ T if and only if for all s ∈ X we have tM1 〈s〉 = tM2 〈s〉;
(E2) (t1 = t2, X, 0) ∈ T if and only if for all s ∈ X we have tM1 〈s〉 �= tM2 〈s〉;
(E3) (=(t1, . . . , tn), X, 1) ∈ T if and only if for all s, s ′ ∈ X such that

tM1 〈s〉 = tM1 〈s ′〉, . . . ,tMn−1〈s〉 = tMn−1〈s ′〉, we have tMn 〈s〉 = tMn 〈s ′〉;
(E4) (=(t1, . . . , tn), X, 0) ∈ T if and only if X = ∅;
(E5) (Rt1 . . . tn, X, 1) ∈ T if and only if for all s ∈ X we have

(tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM;
(E6) (Rt1 . . . tn, X, 0) ∈ T if and only if for all s ∈ X we have

(tM1 〈s〉, . . . , tMn 〈s〉) /∈ RM;
(E7) (φ ∨ ψ, X, 1) ∈ T if and only if X = Y ∪ Z such that dom(Y) =

dom(Z),
(φ, Y, 1) ∈ T and (ψ, Z , 1) ∈ T ;

(E8) (φ ∨ ψ, X, 0) ∈ T if and only if (φ, X, 0) ∈ T and (ψ, X, 0) ∈ T ;
(E9) (¬φ, X, 0) ∈ T if and only if (φ, X, 1) ∈ T ;

(E10) (¬φ, X, 1) ∈ T if and only if (φ, X, 0) ∈ T ;
(E11) (∃xnφ, X, 1) ∈ T if and only if (φ, X (F/xn), 1) ∈ T for some F : X →

M;
(E12) (∃xnφ, X, 0) ∈ T if and only if (φ, X (M/xn), 0) ∈ T .

Proof Suppose (θ, X, d) is a triple for which one of the claims (E1)–(E12) fails.

Note that we can read uniquely from the triple whose claim it is that fails. Let

T ′ = T \ {(θ, X, d)}. We show that T ′ satisfies (D1)–(D12), which contradicts

the minimality of T . We leave as an exercise the fact that T ′ satisfies (D1)–

(D6). We can see that T ′ satisfies (D7): if (φ, X, 1) ∈ T ′ and (ψ, Y, 1) ∈ T ′,
then ((φ ∨ ψ), X ∪ Y, 1) ∈ T ′, unless ((φ ∨ ψ), X, 1) = (θ, X, 1). Since θ is a

disjunction, (E7) in such a case fails. Thus (φ, X, 1) /∈ T or (ψ, Y, 1) /∈ T . But

this contradicts the assumption that (φ, X, 1) ∈ T ′ and (ψ, Y, 1) ∈ T ′. Also T ′

satisfies (D8): if (φ, X, 0) ∈ T ′ and (ψ, X, 0) ∈ T ′, then ((φ ∨ ψ), X, 0) ∈ T ′,
unless ((φ ∨ ψ), X, 0) = (θ, X, d). Since θ is a disjunction, (E8) in such a case

fails. Thus (φ, X, 0) /∈ T or (ψ, X, 0) /∈ T . But this contradicts the assump-

tion that (φ, X, 0) ∈ T ′ and (ψ, X, 0) ∈ T ′. We leave the other cases as an

exercise. �

Note that

� (φ ∧ ψ, X, 1) ∈ T if and only if (φ, X, 1) ∈ T and (ψ, X, 1) ∈ T ;
� (φ ∧ ψ, X, 0) ∈ T if and only if X = Y ∪ Z such that dom(Y) = dom(Z),

(φ, Y, 0) ∈ T , and (ψ, Z , 0) ∈ T ;
� (∀xnφ, X, 1) ∈ T , if and only if (φ, X (M/xn), 1) ∈ T ;
� (∀xnφ, X, 0) ∈ T if and only if (φ, X (F/xn), 0) ∈ T for some F : X → M .

24 Dependence logic

It may seem strange to define (D4) as (=(t1, . . . , tn), ∅, 0) ∈ T . Why not

allow (=(t1, . . . , tn), X, 0) ∈ T for non-empty X? The reason is that if we

negate “for all s, s ′ ∈ X such that tM1 〈s〉 = tM1 〈s ′〉, . . . , tMn−1〈s〉 = tMn−1〈s ′〉, we

have tMn 〈s〉 = tMn 〈s ′〉,” maintaining the analogy with (D2) and (D6), we get

“for all s, s ′ ∈ X we have tM1 〈s〉 = tM1 〈s ′〉, . . . , tMn−1〈s〉 = tMn−1〈s ′〉 and tMn 〈s〉 �=
tMn 〈s ′〉,” which is only possible if X = ∅.

Some immediate observations can be made using Definition 3.5. We first

note that the empty team ∅ is of the type of any formula, as (φ, ∅, 1) ∈ T holds

for all φ. In fact, we have the following lemma.

Lemma 3.9 For all φ and M we have (φ, ∅, 1) ∈ T and (φ, ∅, 0) ∈ T .

Proof Inspection of Definition 3.5 reveals that all the necessary implications

hold vacuously when X = ∅. �

In other words, the empty team is for all φ of type φ and of type ¬φ. Since the

type of a team is defined by reference to all agents in the team, the empty team

ends up having all types, just as it is usually agreed that the intersection of an

empty collection of subsets of a set M is the set M itself. A consequence of this

is that there are no formulas φ and ψ of dependence logic such that M |=X φ

implies M �|=X ψ , for all M and all X . Namely, letting X = ∅ would yield a

contradiction.

The following test is very important and will be used repeatedly in the sequel.

Closure downwards is a fundamental property of types in dependence logic.

Proposition 3.10 (Closure Test) Suppose Y ⊆ X. Then M |=X φ implies
M |=Y φ.

Proof Every condition from (E1) to (E12) in Proposition 3.8 is closed under

taking a subset of X . So if (φ, X, 1) ∈ T and Y ⊆ X , then (φ, Y, 1) ∈ T . �

The intuition behind the Closure Test is as follows. To witness the failure of

dependence we need a counterexample, two or more assignments that manifest

the failure. The smaller the team, the fewer the number of counterexamples.

In a one-agent team, a counterexample to dependence is no longer possible.

On the other hand, the bigger the team, the more likely it is that some lack of

dependence becomes exposed. In the maximal team of all possible assignments

no dependence is possible, unless the universe has just one element.

Corollary 3.11 There is no formula φ of dependence logic such that for all
X �= ∅ and all M we have

M |=X φ ⇐⇒ M �|=X =(x0, x1).

3.2 Formulas as types of teams 25

Proof Suppose for a contradictionM has at least two elements a, b. Let X con-

sist of s = {(x0, a), (x1, a)} and s ′ = {(x0, a), (x1, b)}. Now M �|=X =(x0, x1),

so M |=X φ. By the Closure Test, M |={s} φ, whence M �|={s} =(x0, x1). But

this is clearly false. �

We can replace “all M” by “some M with more than one element in the

universe” in Corollary 3.11. Note that in particular we do not have for all X �= ∅:

M |=X ¬ =(x0, x1) ⇐⇒ M �|=X =(x0, x1).

Example 3.12 Every team X, the domain of which contains xi and x j , is of type
xi = x j ∨ ¬xi = x j , as we can write X = Y ∪ Z, where Y = {s ∈ X : s(xi) =
s(x j)} and Z = {s ∈ X : s(xi) �= s(x j)}. Note that then Y is of type xi = x j ,
and Z is of type xi �= x j .

The following example formalizes the idea that we can always choose x1

such that it only depends on x0, if there are no other requirements. The most

obvious way to establish the dependence is to choose x1 identical to x0.

Example 3.13 |= ∀x0∃x1(=(x0, x1)). To prove this, fix M. Let X be the
set of s : {x0, x1} → M with s(x1) = s(x0). We use Definition 3.5. By (D3),
(=(x0, x1), X, 1) ∈ T , for if s, s ′ ∈ X and s(x0) = s ′(x0), then s(x1) = s ′(x1).
Let Y be the set of s : {x0} → M. If we let F(s) = s(x0) then by (D11)
(∃x1(=(x0, x1)), Y, 1) ∈ T . Thus (∀x0∃x1(=(x0, x1)), {∅}, 1) ∈ T .

In Example 3.14 there is another variable in the picture, but it does not matter.

Example 3.14 |= ∀x0∀x2∃x1(=(x0, x1)). To prove this, fix M. Let X be the
set of assignments s : {x0, x1, x2} → M with s(x1) = s(x0). We use Defini-
tion 3.5. By (D3), (=(x0, x1), X, 1) ∈ T . Let Y be the set of all s : {x0, x1} → M.
If we let F(s) = s(x0), by (D11) (∃x1(=(x0, x1)), Y, 1) ∈ T . Thus the triple
(∀x0∀x2∃x1(=(x0, x1)), {∅}, 1) is in T .

The following example confirms the intuition that functions convey depen-

dence. If a model has a function f M, then we can pick for every a ∈ M an

element b ∈ M which depends only on a via the function f M.

Example 3.15 Let f be a function symbol of the vocabulary. Then always
|= ∀x0∃x1(=(x0, x1) ∧ x1 = f x0). To prove this, fix M. Let X be the set
of s : {x0, x1} → M with s(x1) = f M(s(x0)). We use Definition 3.5. By
(D1), ((x1 = f x0), X, 1) ∈ T . By (D3), (=(x0, x1), X, 1) ∈ T . Thus by (D7),
((=(x0, x1) ∧ x1 = f x0), X, 1) ∈ T . Let Y be the set of s : {x0} → M. If we let
F(s) = f M(s(x0)) we get from (D11) (∃x1(=(x0, x1) ∧ x1 = f x0), Y, 1) ∈ T .
Thus (∀x0∃x1(=(x0, x1) ∧ x1 = f x0), {∅}, 1) ∈ T .

26 Dependence logic

The following example is another way of saying that the identity x0 =
x1 implies the dependence of x1 on x0. This is the most trivial kind of

dependence.

Example 3.16 |= ∀x0∀x1(x0 = x1 → =(x0, x1)). To prove this, fix M. Let X
be the set of all assignments s : {x0, x1} → M. Let Y = {s ∈ X : s(x0) = s(x1)}
and Z = X \ Y . Now (x0 = x1, Z , 0) ∈ T , i.e. (¬(x0 = x1), Z , 1) ∈ T and
(=(x0, x1), Y, 1) ∈ T . Thus, ((x0 = x1 → =(x0, x1)), X, 1) ∈ T .

It is important to take note of a difference between universal quantification in

first order logic and universal quantification in dependence logic. It is perfectly

possible to have a formula φ(x0) of dependence logic of the empty vocabulary

with just x0 free such that for a new constant symbol c we have

|= φ(c)

and still

�|= ∀x0φ(x0),

as the following example shows. For this example, remember that =(x1) is the

type “x1 is constant” of a team in which all agents have the same value for their

feature x1. Recall also the definition of the expansion (M, a) in Section 2.2.

Example 3.17 Suppose M is a model of the empty1 vocabulary with at least
two elements in its domain. Let φ be the sentence ∃x1(=(x1) ∧ c = x1) of depen-
dence logic. Then

(M, a) |= ∃x1(=(x1) ∧ c = x1) (3.1)

for all expansions of (M, a) of M to the vocabulary {c}. To prove
Eq. (3.1) suppose we are given an element a ∈ M. We can define Fa(∅) = a and
then (M, a) |={{(x1,a)}} (=(x1) ∧ c = x1), where we have used {∅}(Fa/x1) =
{{(x1, a)}}. However,

M �|= ∀x0∃x1(=(x1) ∧ x0 = x1). (3.2)

To prove Eq. (3.2) suppose the contrary, that is

M |={∅} ∀x0∃x1(=(x1) ∧ x0 = x1).

Then

M |={{(x0,a)}:a∈M} ∃x1(=(x1) ∧ x0 = x1),

1 The empty vocabulary has no constant, relation or function symbols. Structures for the empty
vocabulary consist of merely a non-empty set as the universe.

3.2 Formulas as types of teams 27

where we have written {∅}(M/x0) out as {{(x0, a)} : a ∈ M}. Let F : {{(x0, a)} :

a ∈ M} → M such that

M |={{(x0,a),(x1,G(a))}:a∈M} (=(x1) ∧ x0 = x1), (3.3)

where G(a) = F({(x0, a)}) and {{(x0, a)} : a ∈ M}(F/x1) has been written as
{{(x0, a), (x1, G(a))} : a ∈ M}. In particular,

M |={{(x0,a),(x1,G(a))}:a∈M} =(x1),

which means that F has to have a constant value. Since M has at least two
elements, the consequence

M |={{(x0,a),(x1,G(a))}:a∈M} x0 = x1

of Eq. (3.3) contradicts (D1).

Example 3.18 A team X is of type ∃x0(=(x2, x0) ∧ x0 = x1) if and only if every
s ∈ X can be modified to s(as/x0) such that for all s ∈ X

(i) as = s(x1),
(ii) as depends only on s(x2) in X,

if and only if X is of type =(x2, x1).

Example 3.19 A team X is of type ∃x0(= (x2, x0) ∧ ¬(x0 = x1)) if every s ∈ X
can be modified to s(as/x0) in such a way that

(i) as �= s(x1),
(ii) as is dependent only on s(x2) in X.

This means that we have to be able to determine what s(x1) is, in order to avoid
it, only on the basis of what s(x2) is. (See also Exercise 3.15.)

Example 3.20 A team X with domain {x1} is of type ∃x0(=(x0) ∧ Rx0x1) if
every s ∈ X, which is really just s(x1), can be modified to s(as/x0) such that
s(as/x0) satisfies Rx0x1 and as is the same for all s ∈ X. That is, there is one
a such that {s(a/x0) : s ∈ X} is of type Rx0x1.

Exercise 3.1 Suppose L = {R}, #L (R) = 2. Show that every team X, the
domain of which contains xi and x j , is of type Rxi x j ∨ ¬Rxi x j .

Exercise 3.2 Describe teams X ∈ Team(M, {x0, x1}) of type

(i) =(x0, x1),
(ii) =(x1, x0),

(iii) =(x0, x0).

28 Dependence logic

Exercise 3.3 Let L be the vocabulary {c, f }. Depending on the model M,
which teams X ∈ Team(M, {x0}) are of the following types?

(i) =(c, c),
(ii) =(x0, c),

(iii) =(c, x0),
(iv) =(c, f x0).

Exercise 3.4 Let M = (N, +, ·, 0, 1). Which teams X ∈ Team(M, {x0, x1})
are of the following types?

(i) =(x0, x0 + x1),
(ii) =(x0 · x0, x1 · x1).

Exercise 3.5 Let L be the vocabulary { f, g}. Which teams X ∈
Team(M, {x0, x1}) are of the following types?

(i) =(f x0, x0),
(ii) =(f x1, x0),

(iii) =(f x0, gx1).

Exercise 3.6 Let L be the vocabulary { f, g}. Describe teams X ∈
Team(M, {x0, x1, x2}) of type

(i) =(x0, x1, x2),
(ii) =(x0, x0, x2).

Exercise 3.7 Let M = (N, +, ·, 0, 1) and

Xn = {{(0, a), (1, b)} : 1 < a ≤ n, 1 < b ≤ n, a ≤ b}.
Show that X5 is of type =(x0 + x1, x0 · x1, x0). This is also true for Xn for any
n, but is slightly harder to prove.

Exercise 3.8 |= ∀x1 . . .∀xn(=(x1, . . . , xn, xi)), if 1 ≤ i ≤ n.

Exercise 3.9 |= ∀x0∀x1(x1 = c → =(x0, x1)).

Exercise 3.10 |= ∀x0∀x1(x1 = f x0 → =(x0, x1)).

Exercise 3.11 For which of the following formulas φ is it true that for all
X �= ∅: M |=X ¬φ ⇐⇒ M �|=X φ:

(i) (=(x0, x1) ∧ ¬x0 = x1),
(ii) (=(x0, x1) → x0 = x1),

(iii) (=(x0, x1) ∨ ¬x0 = x1)?

3.3 Logical equivalence and duality 29

Exercise 3.12 Show that the set T of all triples (φ, X, d), where φ is an
L-formula of dependence logic, Fr(φ) ⊆ dom(X) and d ∈ {0, 1}, satisfies (D1)–
(D12) of Definition 3.5.

Exercise 3.13 Show that the family of all sets T satisfying (D1)–(D12) of
Definition 3.5 is closed under arbitrary intersections.

Exercise 3.14 Finish the proof of Proposition 3.8.

Exercise 3.15 The following appealing claim is wrong. Why? SupposeM is an
L-structure with ≥ 2 elements. Then a team X is of type ∃x0(=(x2, x0) ∧ x0 =
x1) if and only if it is of type ∃x0(=(x2, x0) ∧ ¬(x0 = x1)).

Exercise 3.16 The following appealing claim is wrong. Why? SupposeM is an
L-structure with ≥ 2 elements. Then a team X is of type ∃x0(=(x0) ∧ x0 = x1)

if and only if it is of type ∃x0(=(x0) ∧ ¬(x0 = x1)).

Exercise 3.17 The following appealing claim is wrong. Why? Suppose L =
{ f }, #(f) = 1, andM is an L-structure. Then a team with domain {x0} is of type
∃x1(=(f x0, x1) ∧ f x1 = f x0) if and only if the mapping s(x0) �→ f M(s(x0))

is one-to-one for s ∈ X.

Exercise 3.18 The following appealing claim is wrong. Why? Suppose L =
{R}, #(R) = 2, and M is an L-structure. Then a team X with domain {x0},
which we identify with a subset of M, is of type ∃x1(=(x0, x1) ∧ Rx0x1) if and
only if RM is a function with domain X.

Exercise 3.19 ([21]) This exercise shows that the Closure Test is the best we
can do. Let L be the vocabulary of one n-ary predicate symbol R. Let M be a
finite set and m ∈ N. Suppose S is a set of teams of M with domain {x1, . . . , xm}
such that S is closed under subsets. Find an interpretation RM ⊆ Mn and a
formula φ of D such that a team X with domain {x1, . . . , xk} is of type φ in M
if and only if X ∈ S.

Exercise 3.20 Use the method of ref. [5], mutatis mutandis, to show that there
is no compositional semantics for dependence logic in which the meanings of
formulas are sets of assignments (rather than sets of teams) and which agrees
with Definition 3.5 for sentences.

3.3 Logical equivalence and duality

The concept of logical consequence and the derived concept of logical equiva-

lence are both defined below in a semantic form. In first order logic there is also

30 Dependence logic

(φ, X, 1)

(ψ, X, 1)

Fig. 3.7. Logical consequence φ ⇒ ψ .

a proof theoretic (or syntactic) concept of logical consequence and it coincides

with the semantic concept. This fact is referred to as the Gödel Completeness

Theorem. In dependence logic we have only semantic notions. There are obvi-

ous candidates for syntactic concepts but they are not well understood yet. For

example, it is known that the Gödel Completeness Theorem fails badly (see

Section 4.6).

Definition 3.21 ψ is a logical consequence of φ,

φ ⇒ ψ,

if for all M and all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ) and M |=X φ we have
M |=X ψ . Further, ψ is a strong logical consequence of φ,

φ ⇒∗ ψ,

if for allM and for all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ) andM |=X φ we have
M |=X ψ , and all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ) and M |=X ¬ψ we have
M |=X ¬φ. Also, ψ is logically equivalent with φ,

φ ≡ ψ,

if φ ⇒ ψ and ψ ⇒ φ. Lastly, ψ is strongly logically equivalent with φ,

φ ≡∗ ψ,

if φ ⇒∗ ψ and ψ ⇒∗ φ. See Figs. 3.7 and 3.8.

Note that φ ⇒∗ ψ if and only if φ ⇒ ψ and ¬ψ ⇒ ¬φ. Thus the funda-

mental concept is φ ⇒ ψ and φ ⇒∗ ψ reduces to it. Note also that φ and ψ

are logically equivalent if and only if for all X with dom(X) ⊇ Fr(φ) ∪ Fr(ψ)

(φ, X, 1) ∈ T if and only if (ψ, X, 1) ∈ T ,

3.3 Logical equivalence and duality 31

(φ, X, 1)

(ψ, X, 1)

(ψ, Y, 0)

(φ, Y, 0)

Fig. 3.8. Strong logical consequence φ ⇒∗ ψ .

and φ and ψ are strongly logically equivalent if and only if for all X with

dom(X) ⊇ Fr(φ) ∪ Fr(ψ) and all d ,

(φ, X, d) ∈ T if and only if (ψ, X, d) ∈ T .

We have some familiar looking strong logical equivalences in propositional

logic, reminiscent of axioms of semigroups with identity. In Lemma 3.22 we

group the equivalences according to duality.

Lemma 3.22 The following strong logical equivalences hold in dependence
logic:

(i) ¬¬φ ≡∗ φ;
(ii) (a) (φ ∧) ≡∗ φ,

(b) (φ ∨) ≡∗ 	;
(iii) (a) (φ ∧ ψ) ≡∗ (ψ ∧ φ),

(b) (φ ∨ ψ) ≡∗ (ψ ∨ φ),
(iv) (a) (φ ∧ ψ) ∧ θ ≡∗ φ ∧ (ψ ∧ θ),

(b) (φ ∨ ψ) ∨ θ ≡∗ φ ∨ (ψ ∨ θ);
(v) (a) ¬(φ ∨ ψ) ≡∗ (¬φ ∧ ¬ψ),

(b) ¬(φ ∧ ψ) ≡∗ (¬φ ∨ ¬ψ).

Proof We prove only Claim (iii) (b) and leave the rest to the reader. By

(E8), (φ ∨ ψ, X, 0) ∈ T if and only if ((φ, X, 0) ∈ T and (ψ, X, 0) ∈ T) if

and only if (ψ ∨ φ, X, 0) ∈ T . Suppose then (φ ∨ ψ, X, 1) ∈ T . By (E7) there

are Y and Z such that X = Y ∪ Z , (φ, Y, 1) ∈ T , and (ψ, Z , 1) ∈ T . By (D7),

(ψ ∨ φ, X, 1) ∈ T . Conversely, if (ψ ∨ φ, X, 1) ∈ T , then there are Y and Z
such that X = Y ∪ Z , (ψ, Y, 1) ∈ T , and (φ, Z , 1) ∈ T . By (D7), (φ ∨ ψ, X, 1)

∈ T . �

32 Dependence logic

Many familiar propositional equivalences fail on the level of strong equiva-

lence, in particular the Law of Excluded Middle, weakening laws, and distribu-

tivity laws. See Exercise 3.21.

We also have some familiar looking strong logical equivalences for quanti-

fiers. In Lemma 3.23 we again group the equivalences according to duality.

Lemma 3.23 The following strong logical equivalences and consequences
hold in dependence logic:

(i) (a) ∃xm∃xnφ ≡∗ ∃xn∃xmφ,
(b) ∀xm∀xnφ ≡∗ ∀xn∀xmφ;

(ii) (a) ∃xn(φ ∨ ψ) ≡∗ (∃xnφ ∨ ∃xnφ),
(b) ∀xn(φ ∧ ψ) ≡∗ (∀xnφ ∧ ∀xnφ);

(iii) (a) ¬∃xnφ ≡∗ ∀xn¬φ,
(b) ¬∀xnφ ≡∗ ∃xn¬φ;

(iv) (a) φ ⇒∗ ∃xnφ,
(b) ∀xnφ ⇒∗ φ.

A useful method for proving logical equivalences is the method of substi-

tution. In first order logic this is based on the strong compositionality2 of the

semantics. The same is true for dependence logic.

Definition 3.24 Suppose θ is a formula in the vocabulary L ∪ {P}, where P
is an n-ary predicate symbol. Let Sb(θ, P, φ(x1, . . . , xn)) be obtained from θ

by replacing Pt1 . . . tn everywhere by φ(t1, . . . , tn).

Lemma 3.25 (Preservation of equivalence under substitution) Suppose
φ0(x1, . . . , xn) and φ1(x1, . . . , xn) are L-formulas of dependence logic such that
φ0(x1, . . . , xn) ≡∗ φ1(x1, . . . , xn). Suppose θ is a formula in the vocabulary L ∪
{P}, where P is an n-ary predicate symbol. Then Sb(θ, P, φ0(x1, . . . , xn)) ≡∗

Sb(θ, P, φ1(x1, . . . , xn)).

Proof The proof is straightforward. We use induction on θ . Let us use Sbd (θ)

as a shorthand for Sb(θ, P, φd).

Atomic case. Suppose θ is Rt1 . . . tn . Now Sbd (θ) = φd . The claim follows

from φ0 ≡∗ φ1.

Disjunction. Note that Sbd (φ ∨ ψ) = Sbd (φ) ∨ Sbd (ψ). Now (Sbd (φ ∨
ψ), X, 1) ∈ T if and only if (Sbd (φ) ∨ Sbd (ψ), X, 1) ∈ T if and only

2 In compositional semantics, roughly speaking, the meaning of a compound formula is
completely determined by the way the formula is built from parts and by the meanings of the
parts.

3.3 Logical equivalence and duality 33

if (X = Y ∪ Z such that (Sbd (φ), Y, 1) ∈ T and (Sbd (ψ), Z , 1) ∈ T).

By the induction hypothesis, this is equivalent to (X = Y ∪ Z such

that (Sb1−d (φ), Y, 1) ∈ T and (Sb1−d (ψ), Z , 1) ∈ T), i.e. (Sb1−d (φ) ∨
Sb1−d (ψ), X, 1) ∈ T , which is finally equivalent to (Sb1−d (φ ∨
ψ), X, 1) ∈ T . On the other hand, (Sbd (φ ∨ ψ), X, 0) ∈ T if and only

if (Sbd (φ) ∨ Sbd (ψ), X, 0) ∈ T if and only if ((Sbd (φ), X, 0) ∈ T and

(Sbd (ψ), X, 0) ∈ T). By the induction hypothesis, this is equivalent

to (Sb1−d (φ), X, 0) ∈ T and (Sb1−d (ψ), X, 0) ∈ T , i.e. (Sb1−d (φ) ∨
Sb1−d (ψ), X, 0) ∈ T , which is finally equivalent to (Sb1−d (φ ∨
ψ), X, 0) ∈ T .

Negation. Sbe(¬φ) = ¬ Sbe(φ). Now (Sbe(¬φ), X, d) ∈ T if and only if

(¬ Sbe(φ), X, d) ∈ T , which is equivalent to (Sbe(φ), X, 1 − d) ∈ T .

By the induction hypothesis, this is equivalent to (Sb1−e(φ), X, 1 −
d) ∈ T , i.e. (¬ Sb1−e(φ), X, d) ∈ T , and finally this is equivalent to

(Sb1−e(¬φ), X, d) ∈ T .

Existential quantification. Note that Sbd (∃xnφ) = ∃xn Sbd (φ). We

may infer, as above, that (Sbd (∃xnφ), X, 1) ∈ T if and only if

(∃xn Sbd (φ), X, 1) ∈ T if and only if there is F : X → M such

that (Sbd (φ), X (F/xn), 1) ∈ T . By the induction hypothesis, this

is equivalent to the following: there is F : X → M such that

(Sb1−d (φ), X (F/xn), 1) ∈ T , i.e. to (∃xn Sb1−d (φ), X, 1) ∈ T , which

is finally equivalent to (Sb1−d (∃xnφ), X, 1) ∈ T . On the other hand,

(Sbd (∃xnφ), X, 0) ∈ T if and only if (∃xn Sbd (φ), X, 0) ∈ T , if and only

if (Sbd (φ), X (M/xn), 0) ∈ T . By the induction hypothesis, this is equiv-

alent to (Sb1−d (φ), X (M/xn), 0) ∈ T , i.e. (∃xn Sb1−d (φ), X, 0) ∈ T ,

which is finally equivalent to (Sb1−d (∃xnφ), X, 0) ∈ T . �

As we did for first order logic in Chapter 2, we define two operations φ �→ φp

and φ �→ φd by simultaneous induction, using the shorthands φ ∧ ψ and ∀xnφ:

φd = ¬φ if φ atomic,

φp = φ if φ atomic,

(¬φ)d = φp,

(¬φ)p = φd,

(φ ∧ ψ)d = φd ∨ ψd,

(φ ∧ ψ)p = φp ∧ ψp,

(∃xnφ)d = ∀xnφ
d,

(∃xnφ)p = ∃xnφ
p.

34 Dependence logic

We again call φd the dual of φ, and φp the negation normal form of φ. The basic

results about duality in dependence logic, as in first order logic, are as given in

Lemma 3.26.

Lemma 3.26 φ ≡∗ φp and ¬φ ≡∗ φd.

Thus the φp operation is a mechanical method for translating a formula

to a strongly logically equivalent formula in negation normal form. The dual

operation is a mechanical method for translating a formula φ to one which is

strongly logically equivalent to the negation of φ.

We will see later (Section 7.3) that there is no hope of explaining φ ⇒ ψ

in terms of a few simple rules. There are examples of φ and ψ such that to

decide whether φ ⇒ ψ or not, one has to decide whether there are measurable

cardinals in the set theoretic universe. Likewise, there are examples of φ and ψ

such that to decide whether φ ⇒ ψ , one has to decide whether the Continuum

Hypothesis holds.

We examine next some elementary logical properties of formulas of depen-

dence logic. Lemma 3.27 shows that the truth of a formula depends only on the

interpretations of the variables occurring free in the formula. To this end, we

define X�V to be {s�V : s ∈ X}.

Lemma 3.27 Suppose V ⊇ Fr(φ). Then M |=X φ if and only if M |=X�V φ.

Proof Key to this result is the fact that tM〈s〉 = tM〈s�V 〉 whenever Fr(t) ⊆ V .

We use induction on φ to prove (φ, X, d) ∈ T ⇐⇒ (φ, X�V, d) ∈ T when-

ever Fr(φ) ⊆ V . If φ is atomic, the claim is obvious, even in the case of

=(t1, . . . , tn).

Disjunction. Suppose (φ ∨ ψ, X, 1) ∈ T . Then X = Y ∪ Z such that

(φ, Y, 1) ∈ T and (ψ, Z , 1) ∈ T . By the induction hypothesis,

(φ, Y �V, 1) ∈ T and (ψ, Z�V, 1) ∈ T . Of course, X � V = (Y �
V) ∪ (Z � V). Thus (φ ∨ ψ, X�V, 1) ∈ T . Conversely, suppose (φ ∨
ψ, X�V, 1) ∈ T . Then X � V = Y ∪ Z such that (φ, Y, 1) ∈ T and

(φ, Z , 1) ∈ T . Choose Y ′ and Z ′ such that Y ′�V = Y , Z ′�V =
Z and X = Y ′ ∪ Z ′. Now we have (φ, Y ′, 1) ∈ T and (ψ, Z ′, 1) ∈
T by the induction hypothesis, Thus (φ ∨ ψ, X, 1) ∈ T . Sup-

pose then (φ ∨ ψ, X, 0) ∈ T . Then (φ, X, 0) ∈ T and (ψ, X, 0) ∈ T .

By the induction hypothesis (φ, X�V, 0) ∈ T and (ψ, X�V, 0) ∈ T .

Thus (φ ∨ ψ, X�V, 0) ∈ T . Conversely, suppose (φ ∨ ψ, X�V, 0) ∈ T .

Then (φ, X�V, 0) ∈ T and (ψ, X�V, 0) ∈ T . Now (φ, X, 0) ∈ T and

(ψ, X, 0) ∈ T by the induction hypothesis. Thus (φ ∨ ψ, X, 0) ∈ T .

3.3 Logical equivalence and duality 35

Negation. Suppose (¬φ, X, d) ∈ T . Then (φ, X, 1 − d) ∈ T . By the

induction hypothesis, (φ, X�V, 1 − d) ∈ T . Thus (¬φ, X�V, d) ∈ T .

Conversely, suppose (¬φ, X�V, d) ∈ T . Then (φ, X�V, 1 − d) ∈ T .

Now we have (φ, X, 1 − d) ∈ T by the induction hypothesis. Thus

(¬φ, X, d) ∈ T .

Existential quantification. Suppose (∃xn, X, 1) ∈ T . Then there is

F : X → M such that (φ, X (F/xn), 1) ∈ T . By the induction

hypothesis, (φ, X (F/xn)�W, 1) ∈ T , where W = V ∪ {n}. Note that

X (F/xn)�W = (X�V)(F/xn). Thus (∃xnφ, X�V, 1) ∈ T . Conversely,

suppose (∃xnφ, X�V, 1) ∈ T . Then there is F : X�V → M such

that (φ, (X�V)(F/xn), 1) ∈ T . Again, X (F/xn)�W = (X�V)(F/xn),

and thus, by the induction hypothesis, (φ, X (F/xn), 1) ∈ T , i.e.

(∃xnφ, X, 1) ∈ T . �

In Lemma 3.28 we have the restriction, familiar from substitution rules of

first order logic, that in substitution no free occurrence of a variable should

become a bound.

Lemma 3.28 (Change of free variables) Let the free variables of φ be
x1, . . . , xn. Let i1, . . . , in be distinct. Let φ′ be obtained from φ by replac-
ing x j everywhere by xi j , where j = 1, . . . , n. If X is an assignment set with
dom(X) = {1, . . . , n}, let X ′ consist of the assignments xi j �→ s(x j), where
s ∈ X. Then

M |=X φ ⇐⇒ M |=X ′ φ′.

Finally, we note the important fact that types are preserved by isomorphisms

(recall the definition of M ∼= M′ in Section 2.2).

Lemma 3.29 (Isomorphism preserves truth) Suppose M ∼= M′. If φ ∈ D,
then M |= φ ⇐⇒ M′ |= φ.

Proof Let T be the fundamental predicate (see Definition 3.5) for M and let

T ′ be the fundamental predicate for M′. Let π : M ∼= M′. For any assignment

s for M , let πs be the assignment πs(xn) = π (s(xn)). For any team X for M ,

let π X be the set of πs, where s ∈ X . We prove by induction on φ that for all

teams X for M with the free variables of φ in its domain, and all d ∈ {0, 1}:

(φ, X, d) ∈ T ⇐⇒ (φ, π X, d) ∈ T ′.

The claim is trivial for first order atomic formulas, and is clearly preserved by

negation.

36 Dependence logic

Case (A) φ is =(t1, . . . , tn). Suppose (φ, X, 1) ∈ T , i.e. for all s, s ′ ∈ X
such that tM1 〈s〉 = tM1 〈s ′〉, . . . , tMn−1〈s〉 = tMn−1〈s ′〉, we have

tMn 〈s〉 = tMn 〈s ′〉. Let πs, πs ′ ∈ π X such that tM
′

1 〈πs〉 =
tM

′
1 〈πs ′〉, . . . , tM

′
n−1〈πs〉 = tM

′
n−1〈πs ′〉. As tM

′
i 〈πs〉 = π tMi 〈s〉

for all i , we have tM1 〈s〉 = tM1 〈s ′〉, . . . , tMn−1〈s〉 = tMn−1〈s ′〉, hence

we also have tMn 〈s〉 = tMn 〈s ′〉, and finally tM
′

n 〈πs〉 = tM
′

n 〈πs ′〉,
as desired. The converse is similar. Suppose then (φ, X, 0) ∈ T .

This is equivalent to X = ∅, which is equivalent to π X = ∅, i.e.

(φ, π X, 0) ∈ T ′.
Case (B) φ is ψ ∨ θ . Suppose (φ, X, 0) ∈ T . Then (ψ, X, 0) ∈ T and

(θ, X, 0) ∈ T , whence (ψ, π X, 0) ∈ T ′ and (θ, π X, 0) ∈ T ′, and

finally (φ, π X, 0) ∈ T ′. The converse is similar. Suppose then

(φ, X, 1) ∈ T . Then X = X0 ∪ X1 such that (ψ, X0, 1) ∈ T and

(θ, X1, 1) ∈ T . By the induction hypothesis, (ψ, π X0, 1) ∈ T ′ and

(θ, π X1, 1) ∈ T ′. Of course, π X = π X0 ∪ π X1. Thus (φ, π X, 1) ∈
T ′. Conversely, suppose (φ, π X, 1) ∈ T ′. Then π X = X0 ∪ X1 such

that (ψ, π X0, 1) ∈ T ′ and (θ, π X1, 1) ∈ T ′. Let Y0 = {s ∈ X : πs ∈
X0} and Y1 = {s ∈ X : πs ∈ X1}. Thus πY0 = X0 and πY1 = X1.

By the induction hypothesis, M �Y0
φ and M �Y1

ψ . Since X =
Y0 ∪ Y1, we have (φ, X, 1) ∈ T .

Case (C) φ is ∃xnψ . This is left as an exercise. �

Exercise 3.21 Prove the following non-equivalences:

(i) (a) φ ∨ ¬φ �≡∗ 	,
(b) φ ∧ ¬φ �≡∗ ¬	, but φ ∧ ¬φ ≡ ¬	;

(ii) (φ ∧ φ) �≡∗ φ, but (φ ∧ φ) ≡ φ;
(iii) (φ ∨ φ) �≡∗ φ;
(iv) (φ ∨ ψ) ∧ θ �≡∗ (φ ∧ θ) ∨ (ψ ∧ θ);
(v) (φ ∧ ψ) ∨ θ �≡∗ (φ ∨ θ) ∧ (ψ ∨ θ).

Note that each of these non-equivalences is actually an equivalence in first
order logic.

Exercise 3.22 Prove the following results familiar also from first order logic:

(i) (a) ∃xn(φ ∧ ψ) �≡ (∃xnφ ∧ ∃xnψ), but ∃xn(φ ∧ ψ) ⇒∗ (∃xnφ ∧ ∃xnψ),
(b) ∀xn(φ ∨ ψ) �≡ (∀xnφ ∨ ∀xnψ), but (∀xnφ ∨ ∀xnψ) ⇒∗ ∀xn(φ ∨ ψ);

(ii) ∃xn∀xmφ �≡∗ ∀xm∃.xnφ. but ∃xn∀xmφ ⇒∗ ∀xm∃xnφ.

Exercise 3.23 Prove Lemma 3.22.

Exercise 3.24 Prove Lemma 3.23.

3.4 First order formulas 37

Exercise 3.25 Prove Lemma 3.26.

Exercise 3.26 Prove Lemma 3.28.

Exercise 3.27 Prove Case C in Lemma 3.29.

3.4 First order formulas

Some formulas of dependence logic can be immediately recognized as first

order merely by their appearance. They simply do not have any occurrences of

the dependence formulas =(t1, . . . , tn) as subformulas. We then appropriately

call them first order. Other formulas may be apparently non-first order, but turn

out to be logically equivalent to a first order formula. Our goal in this section

is to show that for apparently first order formulas our dependence logic truth

definition (Definition 3.5 with X �= ∅) coincides with the standard first order

truth definition (Section 2.4). We also give a simple criterion called the Flatness
Test that can be used to test whether a formula of dependence logic is logically

equivalent to a first order formula.

We begin by proving that a team is of a first order type φ if every assignment s
in X satisfies φ. Note the a priori difference between an assignment s satisfying

a first order formula φ and the team {s} being of type φ. We will show that these

conditions are equivalent, but this indeed needs a proof.

Proposition 3.30 If an L-formula φ of dependence logic is first order, then:

(i) if M |=s φ for all s ∈ X, then (φ, X, 1) ∈ T ;
(ii) if M |=s ¬φ for all s ∈ X, then (φ, X, 0) ∈ T .

Proof We use induction as follows.

(1) If tM1 〈s〉 = tM2 〈s〉 for all s ∈ X , then (t1 = t2, X, 1) ∈ T by (D1).

(2) If tM1 〈s〉 �= tM2 〈s〉 for all s ∈ X , then (t1 = t2, X, 0) ∈ T by (D2).

(3) (=(), X, 1) ∈ T by (D3).

(4) (=(), ∅, 0) ∈ T by (D4).

(5) If (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM for all s ∈ X , then (Rt1 . . . tn, X, 1) ∈ T by

(D5).

(6) If (tM1 〈s〉, . . . , tMn 〈s〉) /∈ RM for all s ∈ X , then (Rt1 . . . tn, X, 0) ∈ T by

(D6).

(7) IfM |=s ¬(φ ∨ ψ) for all s ∈ X , thenM |=s ¬φ for all s ∈ X andM |=s

¬ψ for all s ∈ X , whence (φ, X, 0) ∈ T and (ψ, X, 0) ∈ T , and finally

((φ ∨ ψ), X, 0) ∈ T by (D7).

38 Dependence logic

(8) If M |=s φ ∨ ψ for all s ∈ X , then X = Y ∪ Z such that M |= φ for all

s ∈ Y and M |= ψ for all s ∈ Z . Thus (ψ, Y, 1) ∈ T and (ψ, Z , 1) ∈ T ,

whence ((φ ∨ ψ), Y ∪ Z , 1) ∈ T by (D8).

(9) If M |=s ¬φ for all s ∈ X , then (φ, X, 0) ∈ T , whence (¬φ, X, 1) ∈ T
by (D9).

(10) If M |=s ¬¬φ for all s ∈ x , then (φ, X, 1) ∈ T , whence (¬φ, X, 0) ∈ T
by (D10).

(11) If M |=s ∃xnφ for all s ∈ X , then for all s ∈ X there is as ∈ M such

that M |=s(as/xn) φ. Now (φ, {s}(F/xn), 1) ∈ T for F : X → M such that

F(s) = as . Thus (∃xnφ, X, 1) ∈ T .

(12) If M |=s ¬∃xnφ for all s ∈ X , then for all a ∈ M we have for all s ∈ X
M |=s(a/xn) ¬φ. Now (φ, X (M/xn), 0) ∈ T . Thus (∃xnφ, X, 0) ∈ T . �

Now for the other direction.

Proposition 3.31 If an L-formula φ of dependence logic is first order, then:

(i) if (φ, X, 1) ∈ T , then M |=s φ for all s ∈ X;
(ii) if (φ, X, 0) ∈ T , then M |=s ¬φ for all s ∈ X.

Proof We use induction as follows.

(1) If (t1 = t2, X, 1) ∈ T , then tM1 〈s〉 = tM2 〈s〉 for all s ∈ X by (E1).

(2) If (t1 = t2, X, 0) ∈ T , then tM1 〈s〉 �= tM2 〈s〉 for all s ∈ X by (E2).

(3) (=(), X, 1) ∈ T and likewise M |=s 	 for all s ∈ X .

(4) (=(), ∅, 0) ∈ T and likewise M |=s ¬	 for all (i.e. none) s ∈ ∅.

(5) If (Rt1 . . . tn, X, 1) ∈ T , then (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM for all s ∈ X by

(E5).

(6) If (Rt1 . . . tn, X, 0) ∈ T , then (tM1 〈s〉, . . . , tMn 〈s〉) /∈ RM for all s ∈ X by

(E6).

(7) If (φ ∨ ψ, X, 0) ∈ T , then (φ, X, 0) ∈ T and (ψ, X, 0) ∈ T by E7, whence

M |=s ¬φ for all s ∈ X and M |=s ¬ψ for all s ∈ X , whence finally

M |=s ¬(φ ∨ ψ) for all s ∈ X .

(8) If (φ ∨ ψ, X, 1) ∈ T , then X = Y ∪ Z such that (φ, Y, 1) ∈ T and

(ψ, Z , 1) ∈ T by (E8), whence M |=s φ for all s ∈ Y and M |=s ψ for

all s ∈ Z , and therefore M |=s φ ∧ ψ for all s ∈ X .

We leave the other cases as an exercise. �

We are now ready to combine Propositions 3.30 and 3.31 in order to prove

that the semantics we gave in Definition 3.5 coincide in the case of first order

formulas with the more traditional semantics given in Section 2.4.

3.4 First order formulas 39

Corollary 3.32 Let φ be a first order L-formula of dependence logic. Then:

(i) M |={s} φ if and only if M |=s φ;
(ii) M |=X φ if and only if M |=s φ for all s ∈ X.

Proof If M |={s} φ, then M |=s φ by Proposition 3.31. If M |=s φ, then

M |={s} φ by Proposition 3.30. �

We shall now introduce a test, comparable to the Closure Test introduced

above. The Closure Test was used to test which types of teams are definable in

dependence logic. With our new test we can check whether a type is first order,

at least up to logical equivalence.

Definition 3.33 (Flatness3 Test) We say that φ passes the Flatness Test if, for
all M and X,

M |=X φ ⇐⇒ (M |={s} φ for all s ∈ X).

Proposition 3.34 Passing the Flatness Test is preserved by logical equiva-
lence.

Proof Suppose φ ≡ ψ and φ passes the Flatness Test. Suppose M |={s} ψ for

all s ∈ X . By logical equivalence, M |={s} φ for all s ∈ X . But φ passes the

Flatness Test. So M |=X φ, and therefore, by our assumption, M |=X ψ . �

Proposition 3.35 Any L-formula φ of dependence logic that is logically equiv-
alent to a first order formula satisfies the Flatness Test.

Proof Suppose φ ≡ ψ , where ψ is first order. Since ψ satisfies the Flatness

Test, φ does also, by Proposition 3.34. �

Example 3.36 =(x0, x1) does not pass the Flatness Test, as the team X =
{{(0, 0), (1, 1)}, {(0, 1), (1, 1)}} in a model M with at least two elements 0

and 1 shows. Namely, M �|=X =(x0, x1), but M |={s} =(x0, x1) for s ∈ X. We
conclude that =(x0, x1) is not logically equivalent to a first order formula.

Example 3.37 ∃x2(=(x0, x2) ∧ x2 = x1) does not pass the Flatness Test, as the
team X = {s, s ′}, s = {(0, 0), (1, 1)}, s ′ = {(0, 0), (1, 0)} in a model M with at
least two elements 0 and 1 shows. Namely, if F : X → M witnessesM |=X (F/x2)

=(x0, x2) ∧ x2 = x1, then s(x0) = s ′(x0), but

1 = s(x1) = F(s) = F(s ′) = s ′(x1) = 0,

3 Hodges defines a flattening operation in ref. [21], hence the word ‘Flatness’.

40 Dependence logic

a contradiction. We conclude that ∃x2(=(x0, x2) ∧ x2 = x1) is not logically
equivalent to a first order formula.

Example 3.38 Let L = {+, ·, 0, 1, <} and M = (N, +, ·, 0, 1, <), the stan-
dard model of arithmetic. The formula ∃x0(=(x0) ∧ (x1 < x0)) fails to meet the
Flatness Test. To see this, we first note that if X = {s}, then X is of the type of
the formula, as we can choose as to be equal to s(x1) + 1. On the other hand,
let X = {sn : n ∈ N}, where sn(x1) = n. It is impossible to choose a such that
a > sn(x1) for all n ∈ N.

Exercise 3.28 Finish the proof of Proposition 3.31.

Exercise 3.29 Find in each case a logically equivalent first order formula:

(i) ∃x0(=(x1, x0) ∧ Px0),
(ii) ∃x0(=(x1, x0) ∧ Px1),

(iii) ∃x0((=(x2, x0) ∧ Px0) → Px1),
(iv) ∃x0(=(x1, x0) ∧ Rx0x1),
(v) ∃x0(=(x0) ∧ (Rx1x2 ∨ Rx0x0)).

Exercise 3.30 Find in each case a logically equivalent first order formula:

(i) ∃x0(=(x1, x0) ∧ (f x1 = x1)),
(ii) ∃x0(=(x2, x0) ∧ (P f x0 ∧ ¬Px1)).

Exercise 3.31 Which of the following formulas are logically equivalent to a
first order formula?

(i) =() ∨ ¬ =();
(ii) =(x0);

(iii) =(x0, x0).

Exercise 3.32 Which of the following formulas are logically equivalent to a
first order formula?

(i) =(x0, x1, x2) ∧ x0 = x1;
(ii) (=(x0, x2) ∧ x0 = x1) → =(x1, x2);

(iii) =(x0, x1, x2) ∨ ¬ =(x0, x1, x2).

Exercise 3.33 Which of the following formulas are logically equivalent to a
first order formula?

(i) ∀x0∃x2(=(x0, x2) ∧ x2 = x1);
(ii) ∀x1∃x2(=(x0, x2) ∧ x2 = x1);

(iii) ∀x0∀x1∃x2(=(x0, x2) ∧ x2 = x1).

3.4 First order formulas 41

Exercise 3.34 Which of the following formulas are logically equivalent to a
first order formula?

(i) ∀x0(x0 = x1 → =(x0, x1));
(ii) ∀x0(f x0 = x1 → =(x0, x1));

(iii) ∀x0(x0 = f x1 → =(x0, x1));
(iv) ∀x1∀x0(f x0 = f x1 → =(x0, x1)).

Exercise 3.35 Let L = ∅ and let M be an L-structure with M = {0, 1}. Show
that the following types of a team X with domain {x0, x1, x2} are non-first order:

(i) ∃x0(=(x2, x0) ∧ ¬(x0 = x1)),
(ii) ∃x0(=(x2, x0) ∧ (x0 = x1 ∨ x0 = x2)),

(iii) ∃x0(=(x2, x0) ∧ (x0 = x1 ∧ ¬x0 = x2)).

Exercise 3.36 Let L = {<} and let M be an L-structure (N, <). Show that
the following types of a team X with domain {x0, x1, x2} are non-first order:

(i) ∃x0(=(x2, x0) ∧ ¬(x0 = x1)),
(ii) ∃x0(x0 < x1 ∧ x0 < x2 ∧ =(x2, x0)),

(iii) ∃x0(x0 < x2 ∧ ¬(x0 = x1) ∧ =(x2, x0)).

Exercise 3.37 Let L = {R}, #(R) = 1. Find an L-structure M which demon-
strates that the following properties of a team X with domain {x0, x1, x2} are
non-first order:

(i) ∃x0(Rx0 ∧ =(x1, x0) ∧ ¬x0 = x2),
(ii) ∃x0(=(x2, x0) ∧ (Rx0 ↔ Rx1)),

(iii) ∃x0(=(x2, x0) ∧ ((Rx1 ∧ ¬Rx0) ∨ (¬Rx1 ∧ Rx0))).

Exercise 3.38 Let L = {R}, #(R) = 2. Find an L-structure M which demon-
strates that the following properties of a team X with domain {x0, x1, x2} are
non-first order:

(i) ∃x0(=(x2, x0) ∧ Rx0x1),
(ii) ∃x0(=(x2, x0) ∧ (Rx1x0 ∧ Rx2x0)),

(iii) ∃x0(=(x2, x0) ∧ ((Rx1x0) ↔ (Rx2x0))).

Exercise 3.39 Let L = { f }, #(f) = 1. Find an L-structure M which demon-
strates that the following properties of a team X with domain {x1} are non-first
order:

(i) ∃x0(=(x0) ∧ (f x1 = x0)),
(ii) ∃x0∃x0(=(x0) ∧ (f x0 = x1)),

(iii) ∃x0∃x0(=(x0) ∧ (f x0 = f x1)).

42 Dependence logic

Exercise 3.40 A formula φ of dependence logic is coherent if the following
holds: Any team X is of type φ if and only if for every s, s ′ ∈ X the pair team
{s, s ′} is of type φ. Note that the formula (=(x1, . . . , xn) ∧ φ) is coherent if φ is.
Show that for every first order φ with Fr(φ) = {x1}, the type ∃x0(=(x1, x0) ∧ φ)

is coherent.

Exercise 3.41 Give an example of a formula φ of dependence logic which is
not coherent (see Exercise 3.40 for the definition of coherence).

3.5 The flattening technique

We now introduce a technique which may seem frivolous at first sight but

proves very useful in the end. This is the process of flattening, by which we

mean getting rid of the dependence formulas =(t1, . . . , tn). Naturally we lose

something, but this method reveals whether a formula has genuine occurrences

of dependence or just ersatz ones.

Definition 3.39 The flattening φf of a formula φ of dependence logic is defined
by induction as follows:

(t1 = t2)f = (t1 = t2),

(Rt1 . . . tn)f = Rt1 . . . tn,

(=(t1, . . . , tn))f = 	,

(¬φ)f = ¬φf,

(φ ∨ ψ)f = φf ∨ ψ f,

(∃xnφ)f = ∃xnφ
f.

Note that the result of flattening is always first order. The main feature of

flattening is that it preserves truth.

Proposition 3.40 If φ is an L-formula of dependence logic, then φ ⇒ φf.

Proof Inspection of Definition 3.5 reveals immediately that in each case where

(φ, X, d) ∈ T , we also have (φf, X, d) ∈ T . �

We can use Proposition 3.40 to prove various useful little results which are

often comforting in enforcing our intuition. We first point out that although a

team may be of the type of both a formula and its negation, this can only happen

if the team is empty and thereby is of the type of any formula.

Corollary 3.41 M |=X (φ ∧ ¬φ) if and only if X = ∅.

3.5 The flattening technique 43

Proof We already know that M |=∅ (φ ∧ ¬φ). On the other hand, if M |=X

(φ ∧ ¬φ) and s ∈ X , then M |=s (φf ∧ ¬φf), a contradiction. �

Corollary 3.42 (Modus Ponens) Suppose M |=X φ → ψ and M |=X φ.
Then M |=X ψ .

Proof M |=X ¬φ ∨ ψ implies X = Y ∪ Z such that M |=Y ¬φ and M |=Z

ψ . Now M |=Y φ and M |=Y ¬φ, whence Y = ∅. Thus X = Z and M |=X ψ

follows. �

In general, we may conclude from Proposition 3.40 that a non-empty team

cannot have the type of a formula which is contradictory in first order logic

when flattened. When all the subtle properties of dependence logic are laid bare

in front of us, we tend to seek solace in anything solid, anything that we know

for certain from our experience in first order logic. Flattening is one solace. By

simply ignoring the dependence statements =(t1, . . . , tn), we can recover in a

sense the first order content of the formula. When we master this technique, we

begin to understand the effect of the presence of dependence statements in a

formula.

Example 3.43 No non-empty team can have the type of any of the following
formulas, whatever formulas of dependence logic the formulas φ and ψ are:

φ(c) ∧ ∀x0¬φ(x0),

∀x0¬φ ∧ ∀x0¬ψ ∧ ∃x0(φ ∨ ψ),

¬(((φ → ψ) → φ) → φ).

The flattenings of these formulas are, respectively, given by

φf(c) ∧ ∀x0¬φf(x0),

∀x0¬φf ∧ ∀x0¬ψ f ∧ ∃x0(φf ∨ ψ f),

¬(((φf → ψ f) → φf) → φf),

none of which can be satisfied by any assignment in first order logic. In the last
case one can use truth tables to verify this.

As the previous example shows, the Truth Table Method, so useful in propo-

sitional calculus, also has a role in dependence logic.

Exercise 3.42 Let φ be the formula ∃x0∀x1¬(=(x2, x1) ∧ (x0 = x1)) of D.
Show that the flattening of φ is not a strong logical consequence of φ.

Exercise 3.43 Show that if M |=X (φ → ψ) and M |=X ¬ψ , then M |=X

¬φ.

44 Dependence logic

Exercise 3.44 Show that no non-empty team can have the type of any of the
following formulas:

(i) ¬ =(x0, x1),
(ii) ¬(=(x0, x1) → =(x2, x1)),

(iii) ¬ =(f x0, x0) ∨ ¬ =(x0, f x0),
(iv) ∀x0∃x1∀x2∃x3¬(φ → =(x0, x1)).

Exercise 3.45 Explain the difference between teams of type =(x0, x2) ∧
=(x1, x2) and teams of type =(x0, x1, x2).

Exercise 3.46 Show that if |= φ → ψ , then φ ⇒∗ ψ .

Exercise 3.47 Show that if φ has only x0 and x1 free, then

∀x0∃x1φ ⇒ ∀x0∃x1(=(x0, x1) ∧ φ).

Exercise 3.48 Show that the formulas ∀x0∃x1∀x2∃x3(=(x0, x1) ∧ =(x2, x3) ∧
φ) and ∀x2∃x3∀x0∃x1(=(x0, x1) ∧ =(x2, x3) ∧ φ), where φ is first order, are
logically equivalent.

Exercise 3.49 Prove the following:

(i) ∃xn(φ ∧ ψ) ≡∗ φ ∧ ∃xnψ if xn not free in φ;
(ii) ∀xn(φ ∨ ψ) ≡∗ φ ∨ ∀xnψ if xn not free in φ.

Exercise 3.50 Prove that |= ∃x1(=(x1) ∧ x1 = c) but �|= ∀x0∃x1(=(x1) ∧ x1 =
x0).

Exercise 3.51 (Prenex normal form) A formula of dependence logic is in
prenex normal form if all quantifiers are in the beginning of the formula. Use
Lemma 3.23 and Exercise 3.49 to prove that every formula of dependence logic
is strongly equivalent to a formula which has the same free variables and is in
the prenex normal form.

3.6 Dependence/independence friendly logic

We review the relation of our dependence logic D to the independence friendly

logics of refs. [19]–[21].

The backslashed quantifier,

∃xn\{xi0
, . . . , xim−1

}φ, (3.4)

3.6 Dependence/independence friendly logic 45

introduced in ref. [20], with the intuitive meaning

“there exists xn , depending only on xi0
. . . xim−1

, such that φ,” (3.5)

can be defined in dependence logic by the following formula:

∃xn(=(xi0
, . . . , xim−1

, xn) ∧ φ). (3.6)

Conversely, we can define =(xi0
, . . . , xim−1

, xm) in terms of Eq. (3.4) by means

of the following formula:

∃xn\{xi0
, . . . , xim−1

}(xn = xm). (3.7)

Similarly, we can define =(t1, . . . , tn) in terms of Eq. (3.4), when t1, . . . , tn are

terms.

Dependence friendly logic, denoted DF, is the fragment of dependence logic

obtained by leaving out the atomic dependence formulas =(t1, . . . , tn) and

adding all the backslashed quantifiers (Eq. (3.4)). Dependence logic and DF

have the same expressive power, not just on the level of sentences, but even on

the level of formulas in the following sense.

Proposition 3.44

(i) For every φ in D, there is φ∗ in DF so that, for all models M and all teams
X,

M |=X φ ⇐⇒ M |=X φ∗.

(ii) For every ψ in DF, there is ψ∗∗ in D so that, for all models M and all
teams X,

M |=X ψ ⇐⇒ M |=X ψ∗∗.

We can base the study of dependence either on the atomic formulas t1 = tn ,

Rt1 . . . tn , =(t1, . . . , tn), together with the logical operations ¬, ∨, ∃xn , as we

have done in this book, or on the atomic formulas t1 = tn , Rt1 . . . tn , together

with the logical operations ¬, ∨, ∃xn\{xi0
, . . . , xim−1

}. The results of this book

remain true if D is replaced by DF.

The slashed quantifier,

∃xn/{xi0
, . . . , xim−1

}φ, (3.8)

used in ref. [21] has the following intuitive meaning:

“there exists xn , independently of xi0
. . . xim−1

, such that φ,” (3.9)

which we take to mean

“there exists xn , depending only on variables other than

xi0
. . . xim−1

, such that φ,”
(3.10)

46 Dependence logic

If the other variables, referred to in Eq. (3.10) are x j0 . . . x jl−1
, then Eq. (3.9) is

intuitively equivalent to

∃xn\{x j0 , . . . , x jl−1
}φ. (3.11)

Independence friendly logic, denoted IF, is the fragment of dependence

logic obtained by leaving out the atomic dependence formulas =(t1, . . . , tn)

and adding all the slashed quantifiers from Eq. (3.8) with Eq. (3.9) (or rather

Eq. (3.11)) as their meaning. Sentences of dependence logic and IF have the

same expressive power in the following sense:

(i) For every sentence φ inD, there is a sentence φ∗ in IF so that, for all models

M,

M |= φ ⇐⇒ M |= φ∗.

(ii) For every sentence ψ in IF, there is a sentence ψ∗∗ in D so that, for all

models M,

M |= ψ ⇐⇒ M |= ψ∗∗.

We observed that we can base the study of dependence on D or DF and

everything will go through more or less in the same way. However, IF differs

more from D than DF, even if the expressive power is in the above sense the

same as that of D, and even if there is the intuitive equivalence of Eqs. (3.9)

and (3.11).

Dealing with Eq. (3.10) rather than Eq. (3.5) involves the complication that

one has to decide whether “other variable” refers to other variables actually

appearing in a formula φ, or to other variables in the domain of the team X
under consideration. In the latter case, variables not occurring in the formula φ

may still determine whether the team X is of type φ.

Consider, for example, the following formula:

∃x0/{x1}(x0 = x1). (3.12)

The teams in Table 3.10 are of the type given in Eq. (3.12) as we can let x0

depend on x2. The variable x2, which does not occur in Eq. (3.12), signals

Table 3.10.

x0 x1 x2

1 1 1
1 3 3
1 8 8

x0 x1 x2

1 1 5
1 3 2
1 8 1

3.6 Dependence/independence friendly logic 47

Table 3.11.

x0 x1 x2

1 1 5
1 3 5
1 8 5

what x1 is. However, the team in Table 3.11 is not of the type given in Eq.

(3.12), even though all three teams agree on all variables that occur in Eq.

(3.12). The corresponding formula,

∃x0\{x2}(x0 = x1), (3.13)

of DF avoids this as all variables that are actually used are mentioned in the

formula. In this respect, DF is easier to work with than IF.

Exercise 3.52 Give a logically equivalent formula in D for the DF-formula
∃x2\x1 Rx1x2.

Exercise 3.53 Give for both of the following D-formulas:

(i) ∃x2∃x3(=(x0, x2) ∧ =(x1, x3) ∧ Rx0x1x2x3),
(ii) =(x0) ∨ =(x1),

a logically equivalent formula in DF.

Exercise 3.54 Give for each of the following D-sentences φ:

(i) ∀x0∃x1(¬ =(x0, x1) ∧ ¬x1 = x0),
(ii) ∀x0∀x1∃x2(=(x1, x2) ∧ ¬x2 = x1).

a sentence φ∗ in IF so that φ and φ∗ have the same models.

Exercise 3.55 Give for both of the following IF-sentences:

(i) ∀x0∃x1/{x0}(x0 = x1),
(ii) ∀x0∃x1/{x0}(x1 ≤ x0).

a first order sentence with the same models.

Exercise 3.56 Give a definition of =(t1, . . . , tn) in DF.

Exercise 3.57 Prove Proposition 3.44.

4

Examples

We now study some more complicated examples involving many quantifiers. In

all these examples we use quantifiers to express the existence of some functions.

There is a certain easy trick for accomplishing this which hopefully becomes

apparent to the reader. The main idea is that some variables stand for argu-

ments and some stand for values of functions that the sentence stipulates to

exist.

4.1 Even cardinality

On a finite set {a1, . . . , an} of even size, one can define a one-to-one function

f which is its own inverse and has no fixed points, as in the following picture:

Conversely, any finite set with such a function has even cardinality. In the

following sentence we think of f (x0) as x1 and of f (x2) as x3. So x1 depends

only on x0, and x3 depends only on x2, which is guaranteed by =(x2, x3). To

make sure f has no fixed points we stipulate ¬(x0 = x1). The condition (x1 =
x2 → x3 = x0) says in effect (f (x0) = x2 → f (x2) = x0), i.e. f (f (x0)) = x0.

Let

�even : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0)).

We claim that the sentence �even of dependence logic is true in a finite structure

48

4.1 Even cardinality 49

Table 4.1. The teams X and X (F/x3), when M = {a1, . . . , a4}.

x0 x1 x2

s1 a1 a2 a1

s2 a1 a2 a2

s3 a1 a2 a3

s4 a1 a2 a4

s5 a2 a1 a1

s6 a2 a1 a2

s7 a2 a1 a3

s8 a2 a1 a4

s9 a3 a4 a1

s10 a3 a4 a2

s11 a3 a4 a3

s12 a3 a4 a4

s13 a4 a3 a1

s14 a4 a3 a2

s15 a4 a3 a3

s16 a4 a3 a4

x0 x1 x2 x3

s1(F/x3) a1 a2 a1 a2

s2(F/x3) a1 a2 a2 a1

s3(F/x3) a1 a2 a3 a4

s4(F/x3) a1 a2 a4 a3

s5(F/x3) a2 a1 a1 a2

s6(F/x3) a2 a1 a2 a1

s7(F/x3) a2 a1 a3 a4

s8(F/x3) a2 a1 a4 a3

s9(F/x3) a3 a4 a1 a2

s10(F/x3) a3 a4 a2 a1

s11(F/x3) a3 a4 a3 a4

s12(F/x3) a3 a4 a4 a3

s13(F/x3) a4 a3 a1 a2

s14(F/x3) a4 a3 a2 a1

s15(F/x3) a4 a3 a3 a4

s16(F/x3) a4 a3 a4 a3

if and only if the size of the structure is even. To this end, suppose first M is a

finite structure with M = {a1, . . . , a2n}. Let

X = {{(x0, ai), (x1, f (ai)), (x2, a j)} : 1 ≤ i ≤ n, 1 ≤ j ≤ n},
where f (ai) = ai+1 if i is odd and f (ai) = ai−1 if i is even (see Table 4.1). Let

F : X → M such that

F({(x0, ai), (x1, f (ai)), (x2, a j)}) = f (a j).

Now we note that

M |=X (F/x3) (=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0)),

and therefore

M |=X ∃x3(=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0)).

50 Examples

Table 4.2. The teams Y and Y (G/x1)

x0

s1 a1

s5 a2

s9 a3

s13 a4

x0 x1

s1(G/x1) a1 a2

s5(G/x1) a2 a1

s9(G/x1) a3 a4

s13(G/x1) a4 a3

Let Y = {{(x0, ai)} : 1 ≤ i ≤ n} and let G : X → M be such that

G({(x0, ai)}) = f (ai).

M |=Y (G/x1) ∀x2∃x3(=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0)),

whence

M |=Y ∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0)),

and finally M |={∅} �even. See Table 4.2.

For the converse, suppose X = {∅} and M |=X �even. Thus there are F :

X (M/x0) → M and1 G : X (M/x0, F/x1, M/x2) → M such that

M |=X (M/x0,F/x1,M/x2,G/x3) (=(x2, x3) ∧ ¬(x0 = x1)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x2 → x3 = x0)).

Let F({(x0, a)}) = f (a) for each a ∈ M . Then G({(x0, a), (x1, f (a)),

(2, b)}) = f (b). It follows that f is one-to-one, f (a) 	= a and f (f (a)) = a
for all a. Thus, if M is finite, its cardinality must be even.

Note that even cardinality is not expressible in first order logic, as a sim-

ple application of the Compactness Theorem2 (or Ehrenfeucht–Fraı̈ssé games)

shows.

1 We compose X (M/x0)(F/x1)(M/x2) into X (M/x0, F/x1, M/x2).
2 Suppose a first order φ expresses even cardinality in finite models of the empty vocabulary. By

the Compactness Theorem (see Section 6.2), both φ and ¬φ have an infinite model. By the
Downward Löwenheim–Skolem Theorem (see Section 6.2), φ has a countably infinite model
M, and similarly ¬φ has a countably infinite model N . But since the vocabulary is empty,
M ∼= N . This contradicts M |= φ and N |= ¬φ.

4.2 Cardinality 51

Exercise 4.1 Give a sentence of dependence logic which is true in a finite
structure if and only if the size of the structure is odd. Note that ¬�even would
not do.

Exercise 4.2 Give a sentence of dependence logic which is true in a finite
structure if and only if the size of the structure is divisible by three.

4.2 Cardinality

The domain of a structure is infinite if and only if there is a one-to-one func-

tion that maps the domain into a proper subset. For example, if the domain

contains an infinite set A = {a0, a1, . . .}, we can map A onto the proper subset

{a1, a2, . . .} with the mapping an �→ an+1 and the outside of A onto itself by

the identity mapping. On the other hand, if f : M → M is a one-to-one func-

tion that does not have a in its range, then {a, f (a), f (f (a)), . . .} is an infinite

subset:

In the following sentence we think of f (x0) as x1 and of g(x2) as x3. So

x1 depends only on x0, and x3 depends only on x2, which is guaranteed by

=(x2, x3). The condition ¬(x1 = x4) says x4 is outside the range of the function

f . To make sure that f = g, we stipulate (x0 = x2 → x1 = x3). The condition

(x1 = x3 → x0 = x2) says f is one-to-one. Let

�∞ : ∃x4∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x1 = x4)

∧ (x0 = x2 ↔ x1 = x3)).

We conclude that �∞ is true in a structure if and only if the domain of the

structure is infinite.

Exercise 4.3 A graph is a pair M = (G, E), where G is a set of elements
called vertices and E is an anti-reflexive symmetric binary relation on G called
the edge-relation. The degree of a vertex is the number of vertices that are
connected by a (single) edge to v. The degree of v is said to be infinite if the
set of vertices that are connected by an edge to v is infinite. Give a sentence of
dependence logic which is true in a graph if and only if every vertex has infinite
degree.

52 Examples

Exercise 4.4 Give a sentence of dependence logic which is true in a graph if
and only if the graph has infinitely many isolated vertices. (A vertex is isolated

if it has no neighbors.)

Exercise 4.5 Give a sentence of dependence logic which is true in a graph if
and only if the graph has infinitely many vertices of infinite degree. (The degree

of a vertex is the cardinality of the set of neighbors of the vertex.)

A more general question about cardinality is equicardinality. In this case we

have two unary predicates P and Q on a set M and we want to know whether

they have the same cardinality; that is, whether there is a bijection f from P to

Q. In the following sentence �= we think of f (x0) as x1 and of f (x2) as x3:

�= : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ((Px0 ∧ Qx2) →
(Qx1 ∧ Px3

∧ (x0 = x3 ↔ x1 = x2)))).

Suppose we want to test whether a unary predicate Q has at least as many

elements as another unary predicate P . Here we can use a simplification of �=:

�≤ : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ (Px0 → (Qx1

∧ (x0 = x2 ↔ x1 = x3)))).

On the other hand, the following variant of �= clearly expresses the isomor-

phism of two linear orders (P, <P) and (Q, <Q):

�∼= : ∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ((Px0 ∧ Qx2) →
∧ (Qx1 ∧ Px3 ∧
∧ (x0 <P x3 ↔ x1 <Q x2)))).

An isomorphismM → M is called an automorphism. The identity mapping is,

of course, always an automorphism. An automorphism is non-trivial if it is not

the identity mapping. Below is a picture of a finite structure with a non-trivial

automorphism:

A structure is rigid if it has only one automorphism, namely the identity. Finite

linear orders and, for example, (N, <) are rigid,3 but, for example, (Z, <) is

3 Any automorphism has to map the first element to the first element, the second element to the
second element, the third element to the third element, etc.

4.3 Completeness 53

non-rigid. We can express the non-rigidity of a linear order with the following

sentence:

�nr : ∃x4∀x0∃x1∀x2∃x3(=(x2, x3) ∧ (x0 = x4 → ¬(x1 = x4))

∧ (x0 < x3 ↔ x1 < x2))

Exercise 4.6 Write down a sentence of D which is true in a group4 if and only
if the group is non-rigid.

Exercise 4.7 Write down a sentence of D which is true in a finite structure M
if and only if the unary predicate P contains in M at least half of the elements
of M.

Exercise 4.8 A natural number n is a prime power if and only if there is a finite
field of n elements. Use this fact to write down a sentence of D in the empty
vocabulary which has finite models of exactly prime power cardinalities.

Exercise 4.9 A group (G, ◦, e) is right orderable if there is a partial order ≤
in the set G such that x ≤ y implies x ◦ z ≤ y ◦ z for all x, y, z in G. Write
down a sentence of D which is true in a group if and only if the group is right
orderable.

Exercise 4.10 An abelian group (G, +, 0) is the additive group of a field if there
is a binary operation · on G and an element 1 in G such that (G, +, ·, 0, 1) is a
field. Write down a sentence of D which is true in an abelian group if and only
if the group is the additive group of a field.

4.3 Completeness

Suppose we want to test whether a linear order < on a set M is complete or not,

i.e. whether every non-empty A ⊆ M with an upper bound has a least upper

bound. Since we have to talk about arbitrary subsets A of a domain M , we use

a technique called guessing. This is simply fixing an element a of M and then

taking an arbitrary function from M to M . We call a the “head” as if we were

tossing a coin. The set A corresponds to the set of elements of M mapped to

the head. For simplicity, we take the head to be an upper bound of A, which we

assume to exist anyway.

4 A group is a structure (G, ◦, e) with a binary function ◦ and a constant e such that (1) for all
a, b, c ∈ G: (a ◦ b) ◦ c = a ◦ (b ◦ c), (2) for all a ∈ G: e ◦ a = a ◦ e = a, (3) for all a ∈ G
there is b ∈ G such that a ◦ b = b ◦ a = e. The group is abelian if, in addition, (4) for all
a, b ∈ G: a ◦ b = b ◦ a.

54 Examples

A linear order is incomplete if and only if there is a non-empty initial segment

A without a last point but with an upper bound such that for every element not

in A there is a smaller element not in A. To express this we use the following

sentence:

�cmpl : ∃x6∃x7∀x0∃x1∀x2∃x3

∀x4∃x5∀x8∃x9 (=(x2, x3) ∧ =(x4, x5) ∧ =(x8, x9)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → x0 < x6)

∧ (x0 = x7 → x1 = x6)

∧ ((x0 < x2 ∧ x3 = x6)

→ x1 = x6)

∧ ((¬(x1 = x6) ∧ x0 = x4 ∧ x2 = x5)

→ (x5 < x0 ∧ ¬(x3 = x6)))

∧ ((x0 = x8 ∧ x1 = x6 ∧ x2 = x9)

→ (x8 < x9 ∧ x3 = x6)))

The sentence �cmpl is true in a linear order if and only if the linear order is

incomplete. (�cmpl is not necessarily the simplest one with this property.)

Explanation of �cmpl: The mapping x0 �→ x1 is the guessing function and

x2 �→ x3 is a copy of it, as witnessed by (x0 = x2 → x1 = x3). x6 is the head,

therefore we have (x1 = x6 → x0 < x6). x7 manifests non-emptiness of the

guessed initial segment as witnessed by (x0 = x7 → x1 = x6). The clause

((x0 < x2 ∧ x3 = x6) → x1 = x6) guarantees the guessed set is really an initial

segment. Finally we need to say that if an element x0 is above the initial seg-

ment (x1 	= x6) then there is a smaller element x5 also above the initial segment.

The mapping x8 �→ x9 makes sure the initial segment does not have a maximal

element.

The sentence �cmpl has many quantifier alternations but that is not really

essential as we could equivalently use the universal-existential sentence:

�′
cmpl : ∀x0∀x2∀x4∀x8∃x1∃x3

∃x5∃x6∃x7∃x9 (=(x0, x1) ∧ =(x2, x3)

∧ =(x4, x5) ∧ =(x6) ∧ =(x7)

∧ =(x8, x9)

4.4 Well-foundedness 55

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → x0 < x6)

∧ (x0 = x7 → x1 = x6)

∧ ((x0 < x2 ∧ x3 = x6) → x1 = x6)

∧ ((¬(x1 = x6) ∧ x0 = x4 ∧ x2 = x5)

→ (x5 < x0 ∧ ¬(x3 = x6)))

∧ ((x0 = x8 ∧ x1 = x6 ∧ x2 = x9)

→ (x8 < x9 ∧ x3 = x6))).

Exercise 4.11 Give a sentence of D which is true in a linear order if and only
if the linear order is isomorphic to a proper initial segment of itself.

4.4 Well-foundedness

A binary relation R on a set M is well-founded if and only if there is no sequence

a0, a1, . . . in M such that an+1 Ran for all n; otherwise it is ill-founded. An

equivalent definition of well-foundedness is that there is no non-empty subset

X of M such that for every element a in X there is an element b of X such that

bRa. To express ill-foundedness, we use the following sentence:

�wf : ∃x6∃x7∀x0∃x1∀x2∃x3∀x4∃x5 (=(x2, x3)

∧ =(x4, x5)

∧ (x0 = x2 → x1 = x3)

∧ (x0 = x7 → x1 = x6)

∧ ((x1 = x6 ∧ x0 = x4 ∧ x2 = x5)

→ (x3 = x6 ∧ Rx5x4))).

The sentence �wf is true in a binary structure (M, R) if and only if R is ill-

founded.

The explanation is as follows. The mapping x0 �→ x1 guesses the set X as the

pre-image of x6. The mapping x2 �→ x3 is a copy of the mapping x0 �→ x1, as

witnessed by (x0 = x2 → x1 = x3); x7 manifests non-emptiness of the guessed

initial segment as witnessed by (x0 = x7 → x1 = x6). The clause ((x1 = x6 ∧
x0 = x4 ∧ x2 = x5) → (x3 = x6 ∧ Rx5x4)) guarantees the guessed set has no

R-smallest element.

Exercise 4.12 A partially ordered set is an L-structure M = (M, ≤M) for the
vocabulary L = {≤}, where ≤M is assumed to be reflexive (x ≤ x), transitive

56 Examples

(x ≤ y ≤ z ⇒ x ≤ z), and anti-symmetric (x ≤ y ≤ x ⇒ x = y). We shorten
(x ≤M y & x 	= y) to x <M y. A chain of a partial order is a subset of M which
is linearly ordered by ≤M. Give a sentence of D which is true in a partially
ordered set if and only if the partial order has an infinite chain.

Exercise 4.13 A tree is a partially ordered set M such that the set {x ∈ M :

x <M t} of predecessors of any t ∈ M is well ordered by ≤M and there is a
unique smallest element in M, called the root of the tree. Thus for any t <M s
in M there is an immediate successor r of t such that t <M r ≤M s. A subtree

of a tree is a substructure which is a tree. A tree is binary if every element has
at most two immediate successors, and is a full binary tree if every element has
exactly two immediate successors. Give a sentence of D which is true in a tree
if and only if the tree has a full binary subtree.

Exercise 4.14 The cofinality of a linear order is the smallest cardinal κ such
that the order has an unbounded subset of cardinality κ . In particular, a linear
order has cofinality ω if the linear order has a cofinal increasing sequence
a0, a1, . . . Give a sentence of D which is true in a linear order if and only if the
order is either ill-founded or else well-founded and of cofinality ω.

4.5 Connectedness

A graph (G, E) is connected if for every two vertices a 	= b there is a path

a1 = a, a2, . . . , an = b in the graph so that ai Eai+1 for each i = 1, . . . , n − 1.

Otherwise the graph is called disconnected. Thus the graph is disconnected if

and only if there is a proper subset A of G such that A is closed under E . A

graph is disconnected if and only if it satisfies the following sentence:

�conn : ∃x4∃x5∀x0∃x1∀x2∃x3(=(x2, x3)∧
(x0 = x2 → x1 = x3)∧
(x0 = x4 → x1 = x4)∧
(x0 = x5 → ¬(x1 = x4))∧
((x1 = x4 ∧ x2 Ex0) → x3 = x4)

The explanation is as follows (see Fig. 4.1). The mapping x0 �→ x1 guesses

the set A as the pre-image of x4. The mapping x2 �→ x3 is a copy of the

mapping x0 �→ x1, as witnessed by (x0 = x2 → x1 = x3); x4 itself manifests

non-emptiness of the guessed set A as witnessed by (x0 = x4 → x1 = x4);

x5 manifests non-emptiness of the complement of the A as witnessed by

(x0 = x5 → ¬(x1 = x4)). The clause ((x1 = x4 ∧ x2 Ex0) → x3 Ex4) guaran-

tees the guessed set is closed under E .

4.6 Natural numbers 57

f

x5

x4

Fig. 4.1. Disconnected graph.

Exercise 4.15 Give a sentence of D which is true in a graph if and only if the
graph has an infinite clique. (A clique is a subset in which there is an edge
between any two distinct vertices.)

Exercise 4.16 A cycle of a graph is a finite connected subgraph in which every
vertex has degree 2. Give a sentence of D which is true in a finite graph if and
only if the graph has a cycle.

Exercise 4.17 A path in a graph G is a finite sequence v0, . . . , vn such that for
every i = 0, . . . , n − 1 there is an edge from vi to vi+1. A Hamiltonian path
is a path which passes through every vertex exactly once. Give a sentence of
D which is true in a finite graph if and only if the graph has a Hamiltonian
path.

Exercise 4.18 A graph is 3-colorable if it can be divided into three disjoint parts
so that all edges are between elements from different parts. Give a sentence of
D which is true in a graph if and only if the graph is 3-colorable.

Exercise 4.19 An equivalence relation is an L-structure M for L = {∼} such
that ∼M is symmetric (x ∼ y ⇒ y ∼ x), transitive (x ∼ y ∼ z ⇒ x ∼ z), and
reflexive (x ∼ x). Give a sentence of D which is true in an equivalence rela-
tion if and only if the equivalence relation has infinitely many equivalence
classes.

4.6 Natural numbers

Let P− be the following first order sentence:

∀x0(x0 + 0 = 0 + x0 = x0)∧
∀x0∀x1(x0 + (x1 + 1) = (x0 + x1) + 1)∧
∀x0(x0 · 0 = 0 · x0 = 0)∧

58 Examples

∀x0∀x1(x0 · (x1 + 1) = (x0 · x1) + x0)∧
∀x0∀x1(x0 < x1 ↔ ∃x2(x0 + (x2 + 1) = x1))

∀x0(x0 > 0 → ∃x1(x1 + 1 = x0))∧
0 < 1 ∧ ∀x0(0 < x0 → (1 < x0 ∨ 1 = x0))

and let �N be the following sentence of D, reminiscent of �∞:

¬P− ∨ ∃x5∃x4∀x0∃x1∀x2∃x3(=(x2, x3) ∧ x4 < x5

∧ ((x0 = x2 ∧ x0 < x5) ↔
(x1 = x3 ∧ x1 < x4))).

The sentence �N is of course true in models that do not satisfy the axiom

P−. However, in models of �N where P− does hold, something interesting

happens: the initial segments determined by x4 and x5 are mapped onto each

other by the bijection x0 �→ x1. Thus such models cannot be isomorphic to

(N, +, ·, 0, 1, <), in which all initial segments are finite and of different finite

cardinality.

Lemma 4.1 If φ is a sentence of dependence logic in the vocabulary of arith-
metic, then the following are equivalent:

(i) φ is true in (N, +, ·, 0, 1, <);
(ii) �N ∨ φ is valid in D.

Proof Suppose first |= �N ∨ φ. Since (N, +, ·, 0, 1, <) 	|= �N, we have nec-

essarily (N, +, ·, 0, 1, <) |= φ. Conversely, suppose (N, +, ·, 0, 1, <) |= φ

and let M be arbitrary. If M |= �N, then trivially |= �N ∨ φ. Suppose

then M 	|= �N. Necessarily M |= P−. If M � (N, +, ·, 0, 1, <), we get

M |= �N, contrary to our assumption. Thus M ∼= (N, +, ·, 0, 1, <), whence

M |= φ. �

If Lemma 4.1 is combined with Tarski’s Undefinability of Truth (see

Theorem 6.20), we obtain, using �φ� to denote the Gödel number of φ according

to some obvious Gödel numbering of sentences of D, the following.

Corollary 4.2 The set {�φ� : φ is valid in D} is non-arithmetical.

In particular, there cannot be any effective axiomatization of dependence

logic, for then {�φ� : φ is valid in D} would be recursively enumerable and

therefore arithmetical. We return to this important issue in Chapter 7.

4.7 Real numbers 59

4.7 Real numbers

Let RF be the first order axiomatization of ordered fields:

∀x0(x0 + 0 = x0)∧
∀x0∀x1(x0 + x1 = x1 + x0)∧
∀x0∀x1∀x2((x0 + x1) + x2 = x0 + (x1 + x2))∧
∀x0∃x1(x0 + x1 = 0)∧
∀x0(x0 · 1 = x0)∧
∀x0∀x1(x0 · x1 = x0 · x1)∧
∀x0∀x1∀x2((x0 · x1) · x2 = x0 · (x1 · x2))∧
∀x0(x0 = 0 ∨ ∃x1(x0 · x1 = 1))∧
∀x0∀x1(x0 · (x1 + x2) = x0 · x1 + x0 · x2)∧
∀x0∀x1(x0 < x1 → x0 + x2 < x1 + x2)∧
∀x0∀x1((x0 > 0 ∧ x1 > 0) → x0 · x1 > 0).

The ordered field (R, +, ·, 0, 1, <) of real numbers is the unique ordered field in

which the order is a complete order. The proof of this can be found in standard

textbooks on real analysis. Accordingly, let �R be the sentence ¬RF ∨ �cmpl

of D. Exactly as in Lemma 4.1, we have the following.

Lemma 4.3 If φ is a sentence of D in the vocabulary of ordered fields, then
the following are equivalent:

(i) φ is true in (R, +, ·, 0, 1, <);
(ii) �R ∨ φ is valid in D.

This is not as noteworthy as in the case of natural numbers, as the truth

of a first order sentence in the ordered field of reals is actually effectively

decidable. This is a consequence of the fact, due to Tarski, that this structure

admits elimination of quantifiers (see, e.g., ref. [27]). What is noteworthy is that

we can add integers to the structure (R, +, ·, 0, 1, <), obtaining the structure

(R, +, ·, 0, 1, <, N) with a unary predicate N for the set of natural numbers,

making the first order theory of the structure undecidable, and still get a reduc-

tion as in Lemma 4.3. To this end, let �N be

N0 ∧ ∀x0(N x0 → N x0 + 1)

∧ ∀x0(N x0 → (0 = x0 ∨ 0 < x0))

∧ ∀x0∀x1((N x0 ∧ N x1 ∧ x0 < x1)

→ (x0 + 1 = x1 ∨ x0 + 1 < x1)).

60 Examples

Let �R,N be the sentence ¬RF ∨ �cmpl ∨ ¬�N of D. Then any structure that

is not a model of �R,N is isomorphic to (R, +, ·, 0, 1, <, N). Thus we obtain

the following lemma easily.

Lemma 4.4 If φ is a sentence of D in the vocabulary of ordered fields supple-
mented by the unary predicate N, then the following are equivalent:

(i) φ is true in (R, +, ·, 0, 1, <, N);
(ii) �R,N ∨ φ is valid in D.

4.8 Set theory

The vocabulary of set theory consists of just one binary predicate symbol E . As

a precursor to real set theory, let us consider the following simpler situation. We

have, in addition to E , two unary predicates R and S. Let θ be the conjunction

of the first order sentence:

∀x0∀x1(x0 Ex1 → (Rx0 ∧ Sx1))∧
∀x0(Sx0 → ¬Rx0),

and the axiom of extensionality:

∀x0∀x1(∀x2(x2 Ex0 ↔ x2 Ex1) → x0 = x1).

Canonical examples of models of θ are models of the form (M, ∈, X,P(X)).

Indeed, M |= θ if and only if M ∼= N for some N such that EN = {(a, b) ∈
N 2 : a ∈ RN , b ∈ SN , a ∈ b} and SN ⊆ P(RN). Let

�ext : ¬θ ∨ ∃x6∀x0∃x1∀x2∃x3∀x4∃x5 (=(x2, x3)

∧ =(x4, x5)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → Rx0)

∧ ((Sx4 ∧ x0 = x5) →
(x5 Ex4 � x1 = x6))).

The sentence �ext is true in a structure M if and only if M ∼= N for some N
such that EN = {(a, b) ∈ N 2 : a ∈ RN , b ∈ SN , a ∈ b} and SN 	= P(RN).

The explanation is as follows (see Fig. 4.2). The mapping x0 �→ x1 guesses

a set X as the pre-image of x6. The mapping x2 �→ x3 is a copy of the mapping

x0 �→ x1, as witnessed by (x0 = x2 → x1 = x3). The clause (x1 = x6 → Rx0)

makes sure X is a subset of R. The clause ((Sx4 ∧ x0 = x5) → (x5 Ex4 � x1 =
x6)) guarantees the guessed set is not in the set S.

4.8 Set theory 61

R

S

E

Fig. 4.2. An element coding a subset.

Lemma 4.5 If φ is a sentence of D in the vocabulary {E, R, S}, then the
following are equivalent:

(i) φ is true in every model of the form (M, ∈, X,P(X));
(ii) �ext ∨ φ is valid in D.

The cumulative hierarchy of sets is defined as follows:

V0 = ∅,

Vα+1 = P(Vα),

Vν = ⋃
β<α Vβ for limit ν.

(4.1)

Thus, V1 is the powerset of ∅, i.e. {∅}; V2 is the powerset of {∅}, i.e. {∅, {∅}};
etc. The sets Vn , n ∈ N, are all finite, Vω is countable, and for α > ω the set Vα

is uncountable. For more on the cumulative hierarchy, see Section 7.2.

Let Z FC∗ be a large but finite part of the Zermelo–Fraenkel axioms for set

theory (see, e.g., ref. [26] for the axioms). It follows from the axioms that every

set is in some Vα . Models of the form (Vα, ∈), where α is a limit ordinal, are

canonical examples of models of Z FC∗.

Let

�set : ¬Z FC∗ ∨ ∃x6∃x7∀x0∃x1∀x2∃x3 ∀x4∃x5(=(x2, x3) ∧
∧ =(x4, x5)

∧ (x0 = x2 → x1 = x3)

∧ (x1 = x6 → x0 Ex7)

∧ (x0 = x5 →
(x5 Ex4 � x1 = x6))).

Lemma 4.6 If φ is a sentence of D in the vocabulary {E}, then the following
are equivalent:

62 Examples

(i) (Vα, ∈) |= φ for all models (Vα, ∈) of Z FC∗;
(ii) �set ∨ φ is valid in D.

In consequence, there are
1,
2,
3 and
4 in dependence logic such that

(i) the Continuum Hypothesis holds if and only if
1 is valid in D;

(ii) the Continuum Hypothesis fails if and only if
2 is valid in D;

(iii) there are no inaccessible cardinals if and only if
3 is valid in D;

(iv) there are no measurable cardinals if and only if
4 is valid in D.

These examples show that to decide whether a sentence ofD is valid or not is

tremendously difficult. One may have to search through the whole set theoretic

universe. This is in sharp contrast to first order logic, where to decide whether a

sentence is valid or not it suffices to search through finite proofs, i.e. essentially

just through natural numbers.

By means of the sentence �set it is easy to show that for any first order

structure M definable in the set theoretical structure (Vω·3, ∈), which includes

virtually all commonly used mathematical structures, and any first order φ,

there is a sentence �M,φ such that the following are equivalent:

(i) φ is true in M;

(ii) �M,φ is valid in D.

Moreover, �M,φ can be found effectively on the basis of φ and the defining

formula of M.

Exercise 4.20 Prove Lemma 4.5.

Exercise 4.21 Prove Lemma 4.6.

Exercise 4.22 Give a sentence φ of D such that φ has models of all infinite
cardinalities, and for all κ ≥ ω, φ has a unique model (up to isomorphism)
of cardinality κ if and only if κ is a strong limit cardinal (i.e. λ < κ implies
2λ < κ).

5

Game theoretic semantics

We begin with a review of the well known game theoretic semantics of first order

logic (see, e.g., ref. [17]). This is the topic of Section 5.1. There are two ways

of extending the first order game to dependence logic. The first, presented in

Section 5.2, corresponds to the transition in semantics from assignments to

teams. The second game theoretic semantics for dependence logic is closer to

the original semantics of independence friendly logic presented in refs. [16]

and [19]. In the second game theoretic formulation, the dependence relation

=(x0, . . . , xn) does not come up as an atomic formula but as the possibility to

incorporate imperfect information into the game. A player who aims at securing

=(x0, . . . , xn) when the game ends has to be able to choose a value for xn only

on the basis of what the values of x0, . . . , xn−1 are. In this sense the player’s

information set is restricted to x0, . . . , xn−1 when he or she chooses xn .

5.1 Semantic game of first order logic

The game theoretic semantics of first order logic has a long history. The basic

idea is that if a sentence is true, its truth, asserted by us, can be defended against

a doubter. A doubter can question the truth of a conjunction φ ∧ ψ by doubting

the truth of, say, ψ . He can doubt the truth of a disjunction φ ∨ ψ by asking

which of φ and ψ is the one that is true. He can doubt the truth of a negation ¬φ

by claiming that φ is true instead of ¬φ. At this point we become the doubter

and start questioning why φ is true. This interaction can be formulated in terms

of a simple game between two players, I and II. We call them opponents of

each other. The opponent of player α is denoted by α∗. In the literature these

are sometimes called Abelard and Eloise. We go along to the extent that we

refer to player I as “he” and to player II as “she.” The players observe a formula

φ and an assignment s in the context of a given model M. At the beginning

63

64 Game theoretic semantics

of the game, player II claims that assignment s satisfies φ in M, and player

I doubts this. During the game their roles may change, as we just saw in the

case of negation. To keep track of who is claiming what, we use the notation

(φ, s, α) for a position in the game. Here α is either I or II. The idea is that α

indicates which player is claiming that s satisfies φ in M.

Definition 5.1 The semantic game H (φ) of first order logic in a model M is
the following game. There are two players, I and II. A position of the game is a
triple (ψ, s, α), where ψ is a subformula of φ, s is an assignment, the domain
of which contains the free variables of ψ , and α ∈ {I, II}. At the beginning of
the game, the position is (φ, ∅, II). The rules of the game are as follows.

(i) The position is (t1 = t2, s, α): if tM1 〈s〉 = tM2 〈s〉, then player α wins and
otherwise the opponent wins.

(ii) The position is (Rt1 . . . tn, s, α): if s satisfies Rt1 . . . tn in M, then player
α wins, otherwise the opponent wins.

(iii) The position is (¬ψ, s, α): the game switches to the position (ψ, s, α∗),
where α∗ is the opponent of α.

(iv) The position is (ψ ∨ θ, s, α): the next position is (ψ, s, α) or (θ, s, α), and
α decides which.

(v) The position is (∃xnψ, s, α): player α chooses a ∈ M and the next position
is (ψ, s(a/xn), α).

The above game is a zero-sum game, i.e. one player’s loss is the other player’s

victory. It is also a game of perfect information in the sense that the strategies

of both players are allowed to depend on the whole sequence of previous posi-

tions. By the Gale–Stewart Theorem [10] all finite zero-sum games of perfect
information are determined.1 All the possible positions of this game form, in

a canonical way, a tree, which we call the game tree. The game tree for H (φ)

starts from the position (φ, ∅, II). Depending on φ, it continues in different

ways, as displayed in Figs. 5.1, 5.2, and 5.3. Any (maximal) branch of this tree

represents a possible play of the game. We call proper initial segments of plays

partial plays.

Example 5.2 Consider the game H (∀x0∃x1(x0 Ex1)) in the graph of Fig. 5.4.
The tree first splits according to the first move of player I. Since player I
can pick any of the four elements, the tree splits into four subtrees. Then

1 The idea of the proof is the following. Suppose I does not have a winning strategy. Player II
plays so that always after she has moved player I still does not have a winning strategy. If at
some point she has only moves after which player I has a winning strategy, player I had a
winning strategy already after the previous move of II; a contradiction.

5.1 Semantic game of first order logic 65

(¬φ, s, α)

↓
(φ, s, α∗)

Fig. 5.1. The game tree at negation node.

(φ ∨ ψ, s, α)

↙ ↘
(φ, s, α) (ψ, s, α)

Fig. 5.2. The game tree at disjunction node.

(∃xnφ, s, α)

↙ ↓ ↘
. . . (φ, s(a/xn), α) (φ, s(a′/xn), α) (φ, s(a′′/xn), α) . . .

Fig. 5.3. The game tree at quantifier node.

�
�

�
�

��

�

�
�

�
��

� ��
�
�
�
�
�
�
��
�

�
�

�
�

�
�

�
��

0

1 2

3

Fig. 5.4. A graph for Example 5.2.

player II picks any of the four elements and the tree splits again into four
subtrees. Altogether we end up with 16 branches (see Fig. 5.5). The figure
shows who wins each play. One can see that whatever player I chooses, player
II has a move that guarantees her victory.

Inspection of the game tree is vital for success in a game. It is clear that in

order to be able to declare victory a player has to have a clear picture in his

or her mind what to play in each position. The following concept of strategy

is the heart of game theory. It is a mathematically exact concept which tries to

capture the idea of a player knowing what to play in each position.

Definition 5.3 A strategy of player α in H (φ) is any sequence τ of functions
τi defined on the set of all partial plays (p0, . . . , pi−1) satisfying the following.

66 Game theoretic semantics

0 1 2 3

0 1 2 3 0 1 2 3 0 1 3 0 1 2 3

II I II II I II I II II II II II II I II

2

Fig. 5.5. A game tree for Example 5.2.

� If pi−1 = (φ ∨ ψ, s, α), then τ tells player α which formula to pick, i.e.
τi (p0, . . . , pi−1) ∈ {0, 1}. If the strategy gives value 0, player α picks the
left-hand2 formula φ, and otherwise the right-hand formula ψ .

� If pi−1 = (∃xnφ, s, α), then τ tells player α which element a ∈ M to pick, i.e.
τi (p0, . . . , pi−1) ∈ M.

We say that player α has used strategy τ in a play of the game H (φ) if in each
relevant case player α has used τ to make his or her choice. More exactly,
player α has used τ in a play p0, . . . , pn if the following two conditions hold
for all i < n:

� if pi−1 = (φ ∨ ψ, s, α) and τi (p0, . . . , pi−1) = 0, then pi = (φ, s, α), while
if τi (p0, . . . , pi−1) = 1, then pi = (ψ, s, α);

� if pi−1 = (∃xmφ, s, α) and τi (p0, . . . , pi−1) = a, then
pi = (φ, s(a/xm), α).

A strategy τ of player α in the game H (φ) is a winning strategy if player α wins
every play in which he or she has used τ .

Note that the property of a strategy τ being a winning strategy is defined

without any reference to the actual playing of the game. This is not an oversight

but an essential feature of the mathematical theory of games. We have reduced

2 One may ask why the values of the strategy are numbers 0 and 1 rather than the formulas
themselves. The reason is that the formulas may be one and the same. It is a delicate point
whether it then makes any difference which formula is picked. For first order logic there is no
difference, but there are extensions of first order logic where a difference emerges.

5.1 Semantic game of first order logic 67

the intuitive act of players choosing their moves to combinatorial properties of

some functions. One has to be rather careful in such a reduction. It is possible

that the act of playing and handling formulas may use some property of formulas

that is intuitively evident but not coded by the mathematical model. One such

potential property is the place of a subformula in a formula. We will return to

this point in Example 5.9 and the following discussion.

Theorem 5.4 Suppose φ is a sentence of first order logic. Then M |=∅ φ in
first order logic if and only if player II has a winning strategy in the semantic
game H (φ).

Proof Suppose M |=∅ φ in first order logic. Consider the following strategy

of player II. She maintains the following condition.

(�) If the position is (φ, s, II), then M |=s φ. If the position is (φ, s, I), then

M |=s ¬φ.

It is completely routine to check that II can actually follow this strategy and

win. Note that in the beginning M |=∅ φ, so (�) holds.

For the other direction, suppose player II has a winning strategy τ in the

semantic game starting from (φ, ∅, II). It is again completely routine to show

the following

(��) If a position (ψ, s, α) is reached in the game, player II using τ , then

M |=s ψ if α = II and M |=s ¬ψ if α = I.

Since the initial position (φ, ∅, II) is reached at the beginning of the game, we

obtain from (��) the desired conclusion M |=∅ φ. �

Exercise 5.1 Consider the game H (∃x0∀x1(x0 = x1 ∨ x0 Ex1)) in the follow-
ing graph:

� � �

1 32

Draw the game tree and use it to describe the winning strategy of the player
who has it.

Exercise 5.2 Consider the game H (∀x0∃x1(x1 Ex0 ∧ x0 = x0)) in the graph of
Fig. 5.4. Draw the game tree and use it to describe the winning strategy of the
player who has it.

Exercise 5.3 Draw the game tree for H (φ), when φ is given by

(i) ¬∃x0 Px0 ∧ ¬∃x0 Rx0;
(ii) ∃x0(Px0 ∧ Rx0);

(iii) ∀x0∃x1 Rx0x1.

68 Game theoretic semantics

Exercise 5.4 Sketch the game tree for H (φ), when φ is given by

(i) ∀x0(Px0 ∨ Rx0);
(ii) ∀x0∃x1(Px0 ∧ ∃x2 Rx2x1).

Exercise 5.5 Sketch the game tree for H (φ), when φ is given by

∃x0¬Px0 → ∀x0(Px0 ∨ Rx0).

Exercise 5.6 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in H (φ) if φ is given by the following:

(i) ∃x0(Px0 ∧ Rx0);
(ii) ∀x0∃x1¬(x0 = x1)?

Describe the winning strategy.

Exercise 5.7 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in H (φ) if φ is given by the following:

∀x0(Px0 → ∃x1(¬(x0 = x1) ∧ Px0 ∧ Rx1))?

Describe the winning strategy.

Exercise 5.8 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in H (φ) if φ is given by the following:

∃x0(Px0 ∧ ∀x1((x0 = x1) ∨ Px0 ∨ Rx1))?

Describe the winning strategy.

Exercise 5.9 Suppose M is the binary structure ({0, 1, 2}, R), where R is as
in Fig. 5.6. Who has a winning strategy in H (φ) if φ is given by the following:

∀x0∃x1(¬Rx0x1 ∧ ∀x2∃x3(¬Rx2x3))?

Describe the winning strategy.

Exercise 5.10 Suppose M is the binary structure ({0, 1, 2}, R), where R is as
in Fig. 5.6. Who has a winning strategy in H (φ) if φ is given by the following:

∃x0∀x1(Rx0x1 ∨ ∃x2∀x3(Rx2x3))?

Describe the winning strategy.

5.2 Perfect information game for dependence logic 69

0

1

2

0

1

2

Fig. 5.6. Binary structure.

Exercise 5.11 Show that if τ is a strategy of player II in H (φ) and σ is a
strategy of player I in H (φ), then there is one and only one play of H (φ) in
which player II has used τ and player I has used σ . (We denote this play by
[τ, σ].)

Exercise 5.12 Show that a strategy τ of player II in G(φ) is a winning strategy
if and only if player II wins the play [τ, σ] for every strategy σ of player I.

5.2 Perfect information game for dependence logic

In this section we define a game of perfect information, introduced in ref. [41].

This game is very close to our definition of the semantics of dependence logic.

In this game the moves are triples (φ, X, d), where X is a team, φ is a formula

and d ∈ {0, 1}. If φ is a conjunction and d = 0, we may have an ordered pair

of teams. This game has less symmetry than H (φ). On the other hand, the

game has formulas of dependence logic as arguments, and D does not enjoy the

same kind of symmetry as first order logic. In particular, we cannot let negation

correspond to exchanging the roles of the players, as in the case of H (φ), and

at the same time have sentences which are neither true nor false.

The game we are going to define has two players, I and II. A position in

the game is a triple p = (φ, X, d), where φ is a formula, X is a team, the free

variables of φ are in dom(X), and d ∈ {0, 1}.
Definition 5.5 Let M be a structure. The game

G(φ)

is defined by the following inductive definition for all sentences φ of dependence
logic. The type of move of each player is determined by the position as follows.

(M1) The position is (φ, X, 1), and φ = φ(xi1
, . . . , xik) is of the form t1 = t2

or of the form Rt1 . . . tn. Then the game ends. Player II wins if

(∀s ∈ X)(M |= φ(s(xi1
), . . . , s(xik))).

70 Game theoretic semantics

Otherwise player I wins.
(M2) The position is (φ, X, 0), and φ = φ(xi1

, . . . , xik) is of the form t1 = t2
or of the form Rt1 . . . tn. Then the game ends. Player II wins if

(∀s ∈ X)(M �|= φ(s(xi1
), . . . , s(xik))).

Otherwise player I wins.
(M3) The position is (=(t1, . . . , tn), X, 1). Then the game ends. Player II wins

if M |=X =(t1, . . . , tn). Otherwise player I wins.
(M4) The position is (=(t1, . . . , tn), X, 0). Then the game ends. Player II wins

if X = ∅. Otherwise player I wins.
(M5) The position is (¬φ, X, 1). The game continues from the position

(φ, X, 0).
(M6) The position is (¬φ, X, 0). The game continues from the position

(φ, X, 1).
(M7) The position is (φ ∨ ψ, X, 1). Now player II chooses Y and Z such that

X = Y ∪ Z, and we move to position (φ ∨ ψ, (Y, Z), 1). Then player I
chooses whether the game continues from position (φ, Y, 1) or (ψ, Z , 1).

(M8) The position is (φ ∨ ψ, X, 0). Now player I chooses whether the game
continues from position (φ, X, 0) or (ψ, X, 0).

(M9) The position is (∃xnφ, X, 1). Now player II chooses F : X → M, and
then the game continues from the position (φ, X (F/xn), 1).

(M10) The position is (∃xnφ, X, 0). Now the game continues from the position
(φ, X (M/xn), 0).

At the beginning of the game, the position is (φ, {∅}, 1).

Note that case (M8) generates two rounds for the game: during the first

round, player II makes a choice for Y and Z . We call this round a half-round.

During the next round, player I makes a choice between them. Thus, after the

position (φ ∨ ψ, X, 1) there is the position (φ ∨ ψ, (Y, Z), 1), from which the

game then proceeds to either (φ, Y, 1) or (ψ, Z , 1). Note also that player II
has something to do only in the cases (M7) and (M9). Likewise, player I has

something to do only in cases (M7) and (M8). Otherwise the game goes on in

a determined way with no interaction from the players.

All the possible positions of this game form a tree, just as in the case of the

game H (φ). The tree for G(φ) starts from the position (φ, {∅}, 1). Depending

on φ it continues in different ways as displayed in Figs. 5.7, 5.8 and 5.9. Note

that player II has always a winning strategy in a position of the form (φ, ∅, d).

Example 5.6 Suppose M has at least two elements. Player I has a winning
strategy in G(∀x0∃x1(=(x1) ∧ x0 = x1)). The game tree is in Fig 5.10. Note

5.2 Perfect information game for dependence logic 71

(¬φ, X, 1)

↓
(φ, X, 0)

(¬φ, X, 0)

↓
(φ, X, 1)

(∃xnφ, X, 0)

↓
(φ, X (M/xn), 1)

Fig. 5.7. Game trees do not split.

(φ ∨ ψ, X, 0)

↙ ↘
(φ, X, 0) (ψ, X, 0)

Fig. 5.8. The game tree splits into two.

(φ ∨ ψ, X, 1)

↙ ↓ ↘
. . . (φ ∨ ψ, (Y, Z), 1) (φ ∨ ψ, (Y ′, Z ′), 1) (φ ∨ ψ, (Y ′′, Z ′′), 1) . . .

(∃xnφ, X, 1)

↙ ↓ ↘
. . . (φ, X (F/xn), 1) (φ, X (F ′/xn), 1) (φ, X (F ′′/xn), 1) . . .

Fig. 5.9. The game tree splits into many trees.

that when (M9) is applied, the tree splits into as many branches as there are
functions F. At the end of the game, the winner is decided on the basis of
(M1)–(M4).

We define now what we mean by a strategy in the game G(φ).

Definition 5.7 A strategy of player II in G(φ) is any sequence τ of functions
τi defined on the set of all partial plays (p0, . . . , pi−1) satisfying the following:

� if pi−1 = (φ ∨ ψ, X, 1), then τ tells player II how to cover X with two sets,
one corresponding to φ and the other to ψ , i.e. τi (p0, . . . , pi−1) = (Y, Z)

such that X = Y ∪ Z;
� if pi−1 = (∃xnφ, X, 1), then τ tells player II how to supplement X, i.e.
τi (p0, . . . , pi−1) is a function F : X → M.

We say that player II has used strategy τ in a play of the game G(φ) if in the
cases (M7) and (M9) player II has used τ to make the choice. More exactly,
player II has used τ in a play p0, . . . , pn if the following two conditions hold
for all i < n:

72 Game theoretic semantics

(¬∃x0¬∃x1(=(x1) ∧ x0 = x1), X, 1)

↓ (M5)

(∃x0¬∃x1(=(x1) ∧ x0 = x1), X, 0)

↓ (M10)

(¬∃x1(=(x1) ∧ x0 = x1), X (M/x0), 0)

↓ (M5)

(∃x1(=(x1) ∧ x0 = x1), X (M/x0), 1)

↙ ↓ (M9) ↘
· · · ((=(x1) ∧ x0 = x1), X (M/x0)(F/x1), 1) · · ·

↓ (M5)

· · · ((¬ =(x1) ∨ ¬x0 = x1), X (M/x0)(F/x1), 0) · · ·
↙ ↘ (M8)

(¬ =(x1), X (M/x0)(F/x1), 0) (¬x0 = x1, X (M/x0)(F/x1), 0)

↓ ↓ (M6)

(=(x1), X (M/x0)(F/x1), 1) (x0 = x1, X (M/x0)(F/x1), 1)

Fig. 5.10. The game tree in Example 5.6.

� if pi−1 = (φ ∨ ψ, X, 1) and τi (p0, . . . , pi−1) = (Y, Z), then pi = (φ ∨
ψ, (Y, Z), 1);

� if pi−1 = (∃xnφ, X, 1) and τi (p0, . . . , pi−1) = F, then pi = (φ, X (F/xn),
1).

A strategy of player I in G(φ) is any sequence σ of functions σi defined on the
set of all partial plays p0, . . . , pi−1 satisfying the following.

� If pi−1 = (φ ∨ ψ, X, 0), then σ tells player I which formula to pick, i.e.
σi (p0, . . . , pi−1) ∈ {0, 1}. If the strategy gives value 0, player I picks the
left-hand formula φ, and otherwise he chooses the right-hand formula ψ .

� If pi−1 = (φ ∨ ψ, (Y, Z), 1), then σi (p0, . . . , pi−1) ∈ {0, 1}.
We say that player I has used strategy σ in a play of the game G(φ) if in the
cases (M7) and (M8) player I has used σ to make the choice. More exactly, I
has used σ in a play p0, . . . , pn if the following two conditions hold:

� if pi−1 = (φ ∨ ψ, X, 0) and σi (p0, . . . , pi−1) = 0, then pi = (φ, X, 0), and
if σi (p0, . . . , pi−1) = 1, then pi = (ψ, X, 0).

5.2 Perfect information game for dependence logic 73

� if pi−1 = (φ ∨ ψ, (Y, Z), 1), then pi = (φ, Y, 0) if σi (p0, . . . , pi−1) = 0 and
pi = (ψ, Z , 0) if σi (p0, . . . , pi−1) = 1.

A strategy of player α in the game G(φ) is a winning strategy if player α wins
every play in which he or she has used the strategy.

Theorem 5.8 M |= φ if and only if player II has a winning strategy in G(φ).

Proof Assume first M |= φ. We describe a winning strategy of player II in

G(φ). Player II maintains in G(φ) the condition that if the position (omit-

ting half-rounds) is (ψ, X, d), then (ψ, X, d) ∈ T . We prove this by induction

on φ.

(S1) Position (φ, X, 1), where φ is t = t ′ or Rt1 . . . tn . Since (φ, X, 1) ∈ T ,

player II wins, by Definition 5.5 (M1).

(S2) Position (φ, X, 0), where φ is t = t ′ or Rt1 . . . tn . Since (φ, X, 0) ∈ T ,

player II wins, by Definition 5.5 (M2).

(S3) Position (=(t1, . . . , tn), X, 1). Since (=(t1, . . . , tn), X, 1) ∈ T , player II
wins, by definition.

(S4) Position (=(t1, . . . , tn), X, 0). Since (=(t1, . . . , tn), X, 0) ∈ T , we have

X = ∅, and therefore II wins by definition.

(S5) Position (¬φ, X, 1). Since (¬φ, X, 1) ∈ T , we have (φ, X, 0) ∈ T . Thus

II can play this move according to her plan.

(S6) Position (¬φ, X, 0). Since (¬φ, X, 0) ∈ T , we have (φ, X, 1) ∈ T . Thus

II can play this move according to her plan.

(S7) Position (φ ∨ ψ, X, 0). We know (φ ∨ ψ, X, 0) ∈ T and therefore both

(φ, X, 0) ∈ T and (ψ, X, 0) ∈ T . Thus, whether the game proceeds to

(φ, X, 0) or (ψ, X, 0), player II maintains her plan.

(S8) Position (φ ∨ ψ, X, 1). We know (φ ∨ ψ, X, 1) ∈ T and hence

(φ, Y, 1) ∈ T and (ψ, Z , 1) ∈ T for some Y and Z with X = Y ∪ Z .

Thus we can let player II play the ordered pair (Y, Z). After this half-

round player I wants the game to proceed either to (φ, Y, 1) or to

(ψ, Z , 1). In either case player II can fulfil her plan, as both (φ, Y, 1) ∈ T
and (ψ, Z , 1) ∈ T .

(S9) Position (∃xnφ, X, 1). Thus there is F : X → M such that the triple

(φ, X (F/xn), 1) is in T . Player II can now play the function F , for in

the resulting position (φ, X (F/xn), 1) she can maintain the condition

(φ, X (F/xn), 1) ∈ T .

(S10) Position (∃xnφ, X, 0). We know (φ, X (M/xn), 0) ∈ T . But the triple

(φ, X (M/xn), 0) is the next position, so II can maintain her plan.

74 Game theoretic semantics

For the other direction, we assume player II has a winning strategy τ in G(φ)

and use this to show M |= φ. We prove by induction on φ that if II is using τ

and a position (ψ, X, d) is reached, then (ψ, X, d) ∈ T . This gives the desired

conclusion as the initial position (φ, {∅}, 1) is trivially reached.

(S1′) Position (φ, X, 1), where φ is t = t ′ or Rt1 . . . tn . Since II has been

playing her winning strategy, (φ, X, 1) ∈ T by Definition 5.5 (M1).

(S2′) Position (φ, X, 0), where φ is t = t ′ or Rt1 . . . tn . Since II has been

playing her winning strategy, (φ, X, 0) ∈ T by Definition 5.5 (M2).

(S3′) Position (=(t1, . . . , tn), X, 1). Since II has been playing her winning

strategy, (=(t1, . . . , tn), X, 1) ∈ T , by definition.

(S4′) Position (=(t1, . . . , tn), X, 0). Since II has been playing her winning

strategy, X = ∅, and therefore (=(t1, . . . , tn), X, 0) ∈ T by definition.

(S5′) Position (¬φ, X, 1). The game continues, still following τ , to the posi-

tion (φ, X, 0). By the induction hypothesis, (φ, X, 0) ∈ T , and therefore

(¬φ, X, 1) ∈ T .

(S6′) Position (¬φ, X, 0). The game continues, still following τ , to the posi-

tion (φ, X, 1). By the induction hypothesis, (φ, X, 1) ∈ T , and therefore

(¬φ, X, 0) ∈ T .

(S7′) Position (φ ∨ ψ, X, 0). To prove (φ ∨ ψ, X, 0) ∈ T , we need both

(φ, X, 0) ∈ T and (ψ, X, 0) ∈ T . Let us try to prove (φ, X, 0) ∈ T .

Since II is following a winning strategy, we can let the game pro-

ceed to position (φ, X, 0). By the induction hypothesis, (φ, X, 0) ∈
T . The same argument gives (ψ, X, 0) ∈ T . Thus we have proved

(φ ∨ ψ, X, 0) ∈ T .

(S8′) Position (φ ∨ ψ, X, 1). To get (φ ∨ ψ, X, 1) ∈ T we need (φ, Y, 1) ∈ T
and (ψ, Z , 1) ∈ T for some Y and Z with X = Y ∪ Z . Indeed, the win-

ning strategy τ gives an ordered pair (Y, Z) with X = Y ∪ Z . Let us try

to prove (φ, Y, 1) ∈ T . Since II is following a winning strategy, we can

let the game proceed to position (φ, Y, 1). By the induction hypothesis,

(φ, Y, 1) ∈ T . The same argument gives (ψ, Z , 1) ∈ T . Thus we have

proved (φ ∨ ψ, X, 1) ∈ T .

(S9′) Position (∃xnφ, X, 1). The strategy τ gives F : X → M such that II
has a winning strategy in position (φ, X (F/xn), 1). By the induction

hypothesis, (φ, X (F/xn), 1) ∈ T . Hence (∃xnφ, X, 1) ∈ T .

(S10′) Position (∃xnφ, X, 0). The game continues, still following τ , to

the position (φ, X (M/xn), 0). By the induction hypothesis the triple

(φ, X (M/xn), 0) is in T , and therefore (∃xnφ, X, 0) ∈ T . �

Theo Janssen [24] has pointed out the following example.

5.2 Perfect information game for dependence logic 75

Table 5.1.

(= (x0) ∨ ¬x0 = x1)
(= (x0) ∨ ¬ x0 = x1)

1 2 3 4 5 6 7 8 9 10 11

Example 5.9 The sentence

∀x0∃x1((=(x1) ∧ ¬x0 = x1) ∨ (=(x1) ∧ ¬x0 = x1)) (5.1)

is true in the natural numbers. The trick is the following: for s ∈ {∅}(N/x0)

let F(s) ∈ {0, 1} be such that F(s) �= s(x0). The team {∅}(N/x0)(F/x1) is a
subset of the union of {∅}(N/x0)(F0/x1) and {∅}(N/x0)(F1/x1), where F0 is
the constant function 0 and F1 is the constant function 1. Both parts satisfy
(=(x1) ∧ ¬x0 = x1).

The above example shows that when we play a game that follows the structure

of a formula, we may have to take the formula structure into the game. To

accomplish this, and in order to be sufficiently precise, we identify formulas

with finite strings of symbols. Variables xn are treated as separate symbols.

The other symbols are the symbols of the vocabulary, =,), (, ¬, ∧, ∃, and the

comma. Each string S has a length, which we denote by len(S). We number

the symbols in a formula with positive integers starting from the left, as in

Table 5.1 If the nth symbol of φ starts a string which is a subformula of φ,

we denote the subformula by 	(φ, n). Thus, every subformula of φ is of the

form 	(φ, n) for some n and some may occur with several n. In the case that φ

is the formula in Eq. (5.1), the subformula (=(x1) ∧ ¬x0 = x1) occurs as both

	(φ, 6) and 	(φ, 18). Note that

(i) if 	(φ, n) = ¬ψ , then 	(φ, n + 1) = ψ ;

(ii) if 	(φ, n) = (ψ ∨ θ), then 	(φ, n + 1) = ψ and 	(φ, n + 2 + len(ψ)) =
θ ;

(iii) if 	(φ, n) = ∃xmψ , then 	(φ, n + 2) = ψ .

We let Gplace(φ) be the elaboration of the game G(φ) in which the rules are

the same as in G(φ) but the positions are of the form (ψ, n, X, d), and it is

assumed all the time that 	(φ, n) = ψ . Thus the formula ψ could be computed

from the number n, and it is mentioned in the position only for the sake of

clarity.

76 Game theoretic semantics

Definition 5.10 Let M be a structure. The game

Gplace(φ)

is defined by the following inductive definition for all sentences φ of dependence
logic. The type of the move of each player is determined by the position as
follows.

(M1′) The position is (φ, n, X, 1) andφ = φ(xi1
, . . . , xik) is of the form t1 = t2

or of the form Rt1 . . . tn. Then the game ends. Player II wins if

(∀s ∈ X)(M |= φ(s(xi1
), . . . , s(xik))).

Otherwise player I wins.
(M2′) The position is (φ, n, X, 0) andφ = φ(xi1

, . . . , xik) is of the form t1 = t2
or of the form Rt1 . . . tn. Then the game ends. Player II wins if

(∀s ∈ X)(M �|= φ(s(xi1
), . . . , s(xik))).

Otherwise player I wins.
(M3′) The position is (=(t1, . . . , tn), m, X, 1). Then the game ends. Player II

wins if M |=X =(t1, . . . , tn). Otherwise player I wins.
(M4′) The position is (=(t1, . . . , tn), m, X, 0). Then the game ends. Player II

wins if X = ∅. Otherwise player I wins.
(M5′) The position is (¬φ, n, X, 1). The game continues from the position

(φ, n + 1, X, 0).
(M6′) The position is (¬φ, n, X, 0). The game continues from the position

(φ, n + 1, X, 1).
(M7′) The position is (φ ∨ ψ, n, X, 0). Now player I chooses whether

the game continues from position (φ, n + 1, X, 0) or (ψ, n + 2 +
len(φ), X, 0).

(M8′) The position is (φ ∨ ψ, n, X, 1). Now player II chooses X0 and X1 such
that X = X0 ∪ X1, and we move to position (φ ∨ ψ, n, (X0, X1), 1).
Then player I chooses whether the game continues from position
(φ, n + 1, X0, 1) or (ψ, n + 2 + len(φ), X1, 1).

(M9′) The position is (∃xnφ, m, X, 1). Now player II chooses F : X → M
and then the game continues from the position (φ, m + 2, X (F/xn), 1).

(M10′) The position is (∃xnφ, m, X, 0). Now the game continues from the posi-
tion (φ, m + 2, X (M/xn), 0).

At the beginning of the game, the position is (φ, 1, {∅}, 1).

5.2 Perfect information game for dependence logic 77

The following easy observation shows that coding the location of the sub-

formula into the game makes no difference. However, we shall use Gplace(φ) in

the proof of Theorem 5.16.

Proposition 5.11 If player II has a winning strategy in G(φ), she has a winning
strategy in Gplace(φ), and vice versa.

Proof Assume II has a winning strategy τ in G(φ). We describe her winning

strategy in Gplace(φ). While playing Gplace(φ), she also plays G(φ), maintaining

the condition that if the position in Gplace(φ) is (φ, n, X, d), then the position

in G(φ) is (φ, X, d) while she uses τ in G(φ).

(i) Position is (φ, n, X, d), where φ is t = t ′ or Rt1 . . . tn . Player II wins

since, by assumption, she wins G(φ) in position (φ, X, d).

(ii) Position is (=(t1, . . . , tn), n, X, d). Player II wins since, by assumption,

she wins G(φ) in position (=(t1, . . . , tn), X, d).

(iii) Position is (¬φ, n, X, d). Player II moves to the position (φ, n + 1, X, 1 −
d) in Gplace(φ) and to the position (φ, X, 1 − d) in G(φ). Her strategy is

still valid.

(iv) Position is ((φ ∨ ψ), n, X, 0). Player II proceeds, according to the choice

of player I, to the position (φ, n + 1, X, 0) or to the position (ψ, n + 2 +
len(φ), X, 0) in Gplace(φ) and, respectively, to the position (φ, X, 0) or to

the position (ψ, X, 0) in G(φ). Whichever way the game proceeds, her

strategy is still valid.

(v) Position is ((φ ∨ ψ), n, X, 1). We know that II is using τ in G(φ), so in

the position ((φ ∨ ψ), X, 1) ∈ T she has Y and Z with X = Y ∪ Z , and

she can still win with τ from positions (φ, Y, 1) and (ψ, Z , 1). Thus we

let player II play the ordered pair (Y, Z). After this half-round, player

I wants the game to proceed either to (φ, n + 1, Y, 1) or to (ψ, n + 2 +
len(φ), Z , 1). In either case player II can maintain her plan.

(vi) Position is (∃xnφ, m, X, 1). The strategy τ gives player II a function

F : X → M and the game G(φ) proceeds to the position (φ, X (F/xn), 1).

We let II play this function F . The game Gplace(φ) proceeds to the position

(φ, m + 2, X (F/xn), 1) and II maintains her plan.

(vii) Position is (∃xnφ, m, X, 0). Player II proceeds to the position (φ, ¥m +
2, X (M/xn), 0) in Gplace(φ) and to the respective position (φ, X (M/xn), d)

in G(φ). Player II maintains her plan.

For the other direction, assume II has a winning strategy τ in Gplace(φ).

We describe her winning strategy in G(φ). While playing G(φ) she also plays

Gplace(φ), maintaining the condition that if the position in G(φ) is (φ, X, d),

then the position in G(φ) is (φ, n, X, d) for some n while she uses τ in Gplace(φ).

78 Game theoretic semantics

(i) Position is (ψ, X, d), where ψ is atomic. Player II wins since, by assump-

tion she wins Gplace(φ) in position (ψ, n, X, d) for some n.

(ii) Position in Gplace(φ) is (¬φ, X, d) and in Gplace(φ) it is (¬φ, n, X, d).

Player II moves to the position (φ, n + 1, X, 1 − d) in Gplace(φ) and to the

position (φ, X, 1 − d) in G(φ). Her strategy is still valid.

(iii) Position is ((φ ∨ ψ), X, 0) and in Gplace(φ) it is ((φ ∨ ψ), n, X, 0). Player

II moves to the position (φ, X, 0) or to the position (ψ, X, 0) in Gplace(φ)

and, respectively, to the position (φ, n + 1, X, 0) or to the position (ψ, n +
2 + len(φ), X, 0) in G(φ). Whichever way the game proceeds, her strategy

is still valid.

(iv) Position is ((φ ∨ ψ), X, 1) and in Gplace(φ) it is ((φ ∧ ψ), n, X, 1). We

know that II is using τ in Gplace(φ) so in the position ((φ ∨ ψ), n, X, 1) ∈ T
she has Y and Z with X = Y ∪ Z , and she can still win with τ from

positions (φ, n + 1, Y, 1) and (ψ, n + 2 + len(φ), Z , 1). Thus we let player

II play the ordered pair (Y, Z). After this half-round, player I wants the

game to proceed either to (φ, Y, 1) or to (ψ, Z , 1). Player II moves in

Gplace(φ), respectively, to (φ, n + 1, Y, 1) or to (ψ, n + 2 + len(φ), Z , 1).

In either case, player II can maintain her plan.

(v) Position is (∃xnφ, X, 1) and in Gplace(φ) it is (∃xnφ, m, X, 1). The strategy

τ gives player II a function F : X → M and the game Gplace(φ) proceeds

to the position (φ, m + 2, X (F/xn), 1). We let II play this function F . The

game G(φ) proceeds to the position (φ, X (F/xn), 1), and II maintains her

plan.

(vi) Position is (∃xnφ, X, 0) and in Gplace(φ) it is (∃xnφ, m, X, 0). Player II
proceeds to the position (φ, ¥m + 2, X (M/xn), 0) in Gplace(φ) and to the

position (φ, X (M/xn), d) in G(φ). Player II maintains her plan. �

Lemma 5.12 Suppose player II uses the strategy τ in Gplace(φ) and the game
reaches a position (ψ, n, X, d). Then X and d are uniquely determined by τ

and n.

Proof Let k0, . . . , km be the unique sequence of numbers such that if we denote

	(φ, ki) by φi , then φ0 = φ, φi+1 is an immediate subformula of φi , and φm =
ψ . This sequence is uniquely determined by the number n.

During the game that ended in (ψ, n, X, d), the positions (omitting half-

rounds) were (φi , ki , Xi , di), i = 0, . . . , m. We know that φ0 = φ, X0 = {∅},
and d0 = 1. If φi = ¬φi+1, then necessarily Xi+1 = Xi and di+1 = 1 − di . If

φi+1 is a conjunct of φi , and di = 1, then Xi+1 = Xi and di+1 = 1. If φi+1

is a conjunct of φi = ψ ∧ θ , and di = 0, then τ determines, on the basis

of (φ j , k j , X j , d j), j = 0, . . . , i , two sets Y and Z such that Xi = Y ∪ Z .

Player I chooses whether Xi+1 = Y or Xi+1 = Z . The result is completely

5.2 Perfect information game for dependence logic 79

determined by whether ki+1 = ki + 1 or ki+1 = ki + 2 + len(ψ). If φi =
∃xnφi+1 and di = 0, then Xi+1 = Xi (M/xn) and di+1 = di , both uniquely deter-

mined by Xi and di . If φi = ∃xnφi+1 and di = 1, then τ determines F : X → M
on the basis of (φ j , k j , X j , d j), j = 0, . . . , i . Then Xi+1 = Xi (F/xn) and

di = 1, again uniquely determined by τ and Xi .

�

Exercise 5.13 Draw the game tree for G(φ), when φ is given by

(i) ¬∃x0 Px0 ∧ ¬∃x0 Rx0,
(ii) ∃x0(Px0 ∧ Rx0).

Exercise 5.14 Draw the game tree for G(φ), when φ is given by

(i) ∀x0(Px0 ∨ Rx0),
(ii) ∀x0∃x1(Px0 ∧ ∃x2 Rx2x1).

Exercise 5.15 Draw the game tree for G(φ), when φ is given by

∃x0¬Px0 → ∀x0(Px0 ∨ Rx0).

Exercise 5.16 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in G(φ) if φ is given by the following:

(i) ∃x0(Px0 ∧ Rx0),
(ii) ∀x0∃x1¬(x0 = x1)?

Describe the winning strategy.

Exercise 5.17 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in G(φ) if φ is given by the following

∀x0(Px0 → ∃x1(¬(x0 = x1) ∧ Px0 ∧ Rx1))?

Describe the winning strategy.

Exercise 5.18 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in G(φ) if φ is given by the following:

∃x0(Px0 ∧ ∀x1((x0 = x1) ∨ Px0 ∨ Rx1))?

Describe the winning strategy.

Exercise 5.19 Use the game tree to analyze the formula in Eq. (5.1).

80 Game theoretic semantics

Exercise 5.20 Suppose M is the binary structure ({0, 1, 2}, R), where R is as
in Fig. 5.6. Who has a winning strategy in G(φ) if φ is given by the following:

∀x0∃x1(¬Rx0x1 ∧ ∀x2∃x3(=(x2, x3) ∧ ¬Rx0x3))?

Describe the winning strategy.

Exercise 5.21 Suppose M is the binary structure ({0, 1, 2}, R), where R is as
in Fig. 5.6. Who has a winning strategy in G(φ) if φ is given j by the following:

∃x0∀x1(Rx0x1 ∨ ∃x2∀x3(=(x2, x3) → Rx2x3))?

Describe the winning strategy.

Exercise 5.22 Show that if τ is a strategy of player II in G(φ) and σ is a
strategy of player I in G(φ), then there is one and only one play of G(φ) in
which player II has used τ and player I has used σ . (We denote this play by
[τ, σ].)

Exercise 5.23 Show that a strategy τ of player II in G(φ) is a winning strategy
if and only if player II wins the play [τ, σ] for every strategy σ of player I.

5.3 Imperfect information game for dependence logic

The semantics of dependence logic can also be defined by means of a simpler

game. In this case, however, we have to put a uniformity restriction on strategies

in order to get the correct truth definition. The restriction has the effect of making

the game a game of partial information.

As in Section 5.2, we pay attention to where a subformula occurs in a formula.

This is taken care of by the parameter n in Definition 5.13. It should be borne in

mind that disjunctions are assumed to have brackets around them, as in (ψ ∨ θ).

Then if this formula is 	(φ, n), we can infer that ψ is 	(φ, n + 1) and θ is

	(φ, n + 2 + len(ψ)).

Definition 5.13 Let φ be a sentence of dependence logic. The semantic game
H (φ) in a model M is the following game: there are two players, I and II.
A position of the game is a quadruple (ψ, n, s, α), where ψ is 	(φ, n), s is
an assignment, the domain of which contains the free variables of ψ , and
α ∈ {I, II}. At the beginning of the game the position is (φ, 1, ∅, II). The rules
of the game are as follows.

(i) The position is (t1 = t2, n, s, α): if tM1 〈s〉 = tM2 〈s〉, then player α wins and
otherwise the opponent wins.

5.3 Imperfect information game for dependence logic 81

(¬φ, n, s, α)

↓
(φ, n + 1, s, α∗)

Fig. 5.11. The game tree of H (φ) at negation node.

(φ ∨ ψ, n, s, α)

↙ ↘
(φ, n + 1, s, α) (ψ, n + 2 + len(φ), s, α)

Fig. 5.12. The game tree of H (φ) at disjunction node.

(ii) The position is (Rt1 . . . tm, n, s, α): if s satisfies Rt1 . . . tm in M, then
player α wins, otherwise the opponent wins.

(iii) The position is (=(t1, . . . , tm), n, s, α): player α wins.
(iv) The position is (¬φ, n, s, α): the game switches to the position (φ, n +

1, s, α∗), where α∗ is the opponent of α.
(v) The position is ((ψ ∨ θ), n, s, α): the next position is (ψ, n + 1, s, α) or

(θ, n + 2 + len(ψ), s, α), and α decides which.
(vi) The position is (∃xmφ, n, s, α): player α chooses a ∈ M and the next

position is (φ, n + 2, s(a/xm), α).

Thus (=(t1, . . . , tn), n, s, α) is a safe haven for α. Note that the game is a

determined zero-sum game of perfect information. However, we are not really

interested in who has a winning strategy in this determined game, but in who

has a winning strategy with extra uniformity, as defined below. The uniformity

requirement in effect makes the game into a non-determined game of imperfect

information.

The concepts of a game tree, play, and partial play are defined for this game

exactly as for the game G(φ).

Definition 5.14 A strategy of player α in H (φ) is any sequence τ of functions
τi defined on the set of all partial plays (p0, . . . , pi−1) satisfying the following.

� If pi−1 = ((φ ∨ ψ), n, s, α), then τ tells player α which formula to pick, i.e.
τi (p0, . . . , pi−1) ∈ {n + 1, n + 2 + len(φ)}. If the strategy gives the lower
value, player α picks the left-hand formula φ, and otherwise chooses the
right-hand formula ψ .

� If pi−1 = (∃xmφ, n, s, α), then τ tells player α which element a ∈ M to pick,
i.e. τi (p0, . . . , pi−1) ∈ M.

82 Game theoretic semantics

(∃xmφ, n, s, α)

↙ ↓ ↘
. . . (φ, n + 2, s(a/xm), α) (φ, , n + 2, s(a′/xm), α) (φ, n + 2, s(a′′/xm), α) . . .

Fig. 5.13. The game tree of H (φ) at quantifier node.

We say that player α has used strategy τ in a play of the game H (φ) if in each
relevant case player α has used τ to make his or her choice. More exactly,
player α has used τ in a play p0, . . . , pn if the following two conditions hold
for all i < n:

� if pi−1 = ((φ ∨ ψ), m, s, α) and τi (p0, . . . , pi−1) = m + 1, then pi =
(φ, m + 1, s, α), while if τi (p0, . . . , pi−1) = m + 2 + len(φ), then pi =
(ψ, m + 2 + len(φ), s, α);

� if pi−1 = (∃xkφ, m, s, α) and τi (p0, . . . , pi−1) = a, then pi = (φ, m +
2, s(a/xk), α).

A strategy of player α in the game H (φ) is a winning strategy if player α wins
every play in which she has used the strategy.

Definition 5.15 We call a strategy τ of player II in the game H (φ) uniform if the
following condition holds. Suppose ((φ, m), m, s, II) and ((φ, m), m, s ′, II)

are two positions arising in the game when II has played according to τ .
Moreover we assume that 	(φ, m) is =(t1, . . . , tn). Then if s and s ′ agree about
the values of t1, . . . , tn−1, they agree about the value of tn.

Theorem 5.16 Suppose φ is a sentence of dependence logic. Then M |={∅} φ

if and only if player II has a uniform winning strategy in the semantic game
H (φ).

Proof Suppose M |=X φ. Let τ be a winning strategy of II in Gplace(φ). Con-

sider the following strategy of player II. She keeps playing Gplace(φ) as an

auxiliary game such that if she is in a position (φ, n, X, d) in Gplace(φ) and has

just moved in the semantic game, the following holds.

(�) Suppose the position is (φ, n, s, α). Then II is in a position (φ, n, X, d),

playing τ , in Gplace(φ) and s ∈ X . If α = II, then d = 1. If α = I, then

d = 0.

Let us check that II can actually follow this strategy and win. In the beginning

M |={∅} φ, so (�) holds.

(i) φ is t1 = t2 or Rt1 . . . tn . If α = II, s satisfies φ in M. So II wins. If α = I,

s does not satisfy φ in M, and again II wins.

5.3 Imperfect information game for dependence logic 83

(ii) φ is =(t1, . . . , tn). If α = II, then II wins by definition. On the other hand,

s ∈ X , so X �= ∅, and we must have α = II.

(iii) φ is ¬ψ and the position in Gplace(φ) is (¬ψ, n, X, d). By the rules of

Gplace(φ), the next position is (ψ, n + 1, X, 1 − d). So the game can pro-

ceed to position (ψ, n + 1, s, α∗) and II maintains (�).

(iv) φ is (ψ ∨ θ) and the position in Gplace(φ) is ((ψ ∨ θ), n, X, d). Sup-

pose α = I and d = 0. Then both (ψ, n + 1, X, d) and (θ, n + 2 +
len(ψ), X, d) are possible positions in Gplace(φ) while II uses τ . The

next position is (ψ, n + 1, s, 0) or (θ, n + 2 + len(ψ0), s, 0), and I chooses

which. Condition (�) remains valid, whichever he chooses. Suppose then

α = II and d = 1. Strategy τ gives X0 and X1 such that X = X0 ∪ X1

and II wins with τ both in the position (ψ, n + 1, X0, 1) and in (θ, n +
2 + len(ψ0), X1, 1). Since s ∈ X , we have either s ∈ X0 or s ∈ X1. Let us

say s ∈ X0. We let I play ψ in Gplace(φ). The game Gplace(φ) proceeds to

(ψ, n + 1, X0, 1). We let II play in H (φ) the sentence ψ . Condition (�)

remains valid. The situation is similar if s ∈ X1.

(v) φ is ∃xψ . We leave this as an exercise.

We claim that the strategy is uniform. Suppose s and s ′ are assignments

arising from the game when II plays the above strategy and the game ends

in the same dependence formula =(t1, . . . , tn). Let the ending positions be

((φ, n), s, α) and ((φ, n), s ′, α). Since II wins, α = II. When the game

ended, player II had reached the position (=(t1, . . . , tn), n, X, 1) on one hand

and the position (=(t1, . . . , tn), n, X ′, 1) on the other hand in Gplace(φ) play-

ing, τ . By Lemma 5.12, X = X ′. Suppose s and s ′ agree about the values of

t1, . . . , tn−1. Since II wins in the position (=(t1, . . . , tn), n, X, 1) and s, s ′ ∈ X ,

it follows that s and s ′ agree about the value of tn . This strategy gives one

direction of the theorem.

For the other direction, suppose player II has a uniform winning strategy

τ in the semantic game starting from (φ, 1, ∅, II). Let Xn be the set of s such

that ((φ, n), n, s, α) is the position in some play where II used τ . Note that

α depends only on n, so we can denote it by αn . We show by induction on

subformulas 	(φ, n) of φ that ((φ, n), Xn, dn) ∈ T , where dn = 1 if and

only if αn = II. Putting n = 1, we obtain α1 = II and we get the desired result.

(i) Suppose 	(φ, n) is t1 = t2 or R(t1, . . . , tn). We show that the quadru-

ple ((φ, n), n, Xn, d) is in T . Let s ∈ Xn . Let the quadruple

((φ, n), n, s, αn) be a position in some play where II used τ . Since II
wins with τ , ((φ, n), Xn, d) ∈ T .

(ii) Suppose 	(φ, n) is =(t1, . . . , tn). Suppose first αn = II. Suppose s and s ′

are in Xn and agree about the values of t1, . . . , tn−1. By the definition of

84 Game theoretic semantics

Xn , ((φ, n), n, s, II) and ((φ, n), n, s ′, II) are positions in some plays

where II used τ . Since τ is uniform, s and s ′ agree about the value of tn .

The case αn = I cannot occur since τ is a winning strategy.

(iii) Suppose 	(φ, n) is ¬ψ . Note that Xn = Xn+1. By the induction hypoth-

esis, (ψ, Xn, 1 − d) ∈ T , hence (¬ψ, Xn, d) ∈ T .

(iv) Suppose 	(φ, n) is (ψ ∨ θ). Suppose first αn = I. Then both ((φ, n +
1), n + 1, s, I) and ((φ, n + 2 + len(ψ)), n + 2 + len(ψ), s, I) can be

positions in some plays where II has used τ . By the induction hypothe-

sis, (ψ, Xn+1, 0) ∈ T and (θ, Xn+2+len(ψ), 0) ∈ T . Note that Xn ⊆ Xn+1 ∩
Xn+2+len(ψ). Hence (ψ ∨ θ, Xn, 0) ∈ T . Suppose then αn = II. Now

X = Y ∪ Z , where Y is the set of s ∈ Xn such that ((φ, n + 1), n +
1, s, αn) and Z is the set of s ∈ Xn such that ((φ, n + 2 + len(ψ)), n +
2 + len(ψ), s, αn), By the induction hypothesis, (ψ, Xn+1, 1) ∈ T and

(θ, Xn+2+len(ψ), 1) ∈ T . Hence (ψ ∧ θ, Xn, 1) ∈ T .

(v) Suppose 	(φ, n) is ∃xψ . We leave this as an exercise. �

Exercise 5.24 Draw the game tree for H (φ), when φ is given by

(i) (¬∃x0 =(x0) ∨ ¬∃x0 Rx0),
(ii) ∃x0∃x1(=(x1) ∨ Rx0).

Exercise 5.25 Draw the game tree for H (φ), when φ is given by

(i) ∀x0∃x1(=(x1) ∨ Rx0),
(ii) ∀x0∃x1(Px0 ∨ ∃x2(=(x0, x2) ∨ Rx2x1)).

Exercise 5.26 Draw the game tree for H (φ), when φ is given by

∃x0(¬Px0 → ∀x1(=(x0, x1) ∧ Rx1)).

Exercise 5.27 Let L consist of two unary predicates P and R. Let M be an
L-structure such that M = {0, 1, 2, 3}, PM = {0, 1, 2}, and RM = {1, 2, 3}.
Who has a winning strategy in H (φ) if φ is given by the following:

(i) ∃x0(=(x0) ∧ Rx0),
(ii) ∀x0∃x1(=(x1) ∧ ¬(x0 = x1))?

Describe the winning strategy.

Exercise 5.28 Let M be as in Exercise 5.27. Does II have a uniform winning
strategy in H (φ) if φ is given by the following:

∀x0(Px0 → ∃x1(=(x0, x1) ∧ ¬(x0 = x1) ∧ Px0 ∧ Rx1))?

5.3 Imperfect information game for dependence logic 85

Table 5.2.

x0 x1 ∨
0 0 left
1 1 left
2 2 right

x0 x1 ∨
0 0 left
1 1 right
2 2 right

Table 5.3.

x0 x1 ∨
0 2 left
1 2
2 0 right

x0 x1 ∨
0 1 left
1 2
2 0 right

Exercise 5.29 Let M be as in Exercise 5.27. Does II have a uniform winning
strategy in H (φ) if φ is given by following:

∃x0(Px0 ∧ ∀x1(=(x0, x1) ∨ (x0 = x1) ∨ Rx1))?

Exercise 5.30 Suppose M is the binary structure ({0, 1, 2}, R), where R is as
in Fig. 5.6. Does II have a uniform winning strategy in H (φ) if φ is given by
the following:

∀x0∃x1(¬Rx0x1 ∧ ∀x2∃x3(=(x2, x3) ∧ ¬Rx0x3))?

Exercise 5.31 Suppose M is the binary structure ({0, 1, 2}, R), where R is as
in Fig. 5.6. Does II have a uniform winning strategy in H (φ) if φ is given by
the following:

∃x0∀x1(Rx0x1 ∨ ∃x2∀x3(=(x2, x3) → Rx2x3))?

Exercise 5.32 Show that neither of the winning strategies (shown in Table 5.2)
of player II in H (φ) is uniform, when φ is the sentence ∀x0∃x1((=(x1) ∧ x0 =
x1) ∨ (=(x1) ∧ x0 = x1)) and the universe is {0, 1, 2}.
Exercise 5.33 Which of the strategies (in Table 5.3) of player II in H (φ) can be
completed so that the strategy becomes a uniform winning strategy of II? Here
φ is the sentence ∀x0∃x1((=(x1) ∧ ¬x0 = x1) ∨ (=(x1) ∧ ¬x0 = x1))) and the
universe is {0, 1, 2}.

6

Model theory

Many model theoretic results for dependence logic can be proved by means of

a reduction to existential second order logic. We establish this reduction in the

first section of this chapter. This immediately gives such results as the Compact-

ness Theorem, the Löwenheim–Skolem Theorem, and the Craig Interpolation

Theorem.

6.1 From D to �1
1

We associate with every formula φ of dependence logic a second order sen-

tence which is in a sense equivalent to φ. This is in fact nothing more than a

formalization of the truth definition of φ (Definition 3.5). What is interesting is

that the second order sentence, which we denote by τ1,φ(S), is not just any sec-

ond order sentence but a particularly simple second order existential sentence,

called a �1
1-sentence. Such sentences have a close relationship with first order

logic, especially on countable models. It turns out that their relationship with

dependence logic is even closer. In a sense they are one and the same thing. It is

the main purpose of this section to explain exactly what is this sense in which

they are one and the same thing.

Definition 6.1 Let L be a vocabulary. The class of �1
1 -formulas of L is defined

as follows.

(i) Any first order formula of L is a �1
1 -formula of L.

(ii) If φ is a �1
1 -formula of L ∪ {R}, then ∃Rφ is a �1

1 -formula of L. M |=s

∃Rφ if and only if there is an expansion M′ of M to an L ∪ {R}-structure
such that M′ |=s φ.

86

6.1 From D to �1
1 87

(iii) If φ is a �1
1 -formula of L ∪ { f }, then ∃ f φ is a �1

1 -formula of L. M |=s

∃ f φ if and only if there is an expansion M′ of M to an L ∪ { f }-structure
such that M′ |=s φ.

An equivalent concept is PC-definability. A property O(M) of L-structures

is PC-definable if there is a vocabulary L ′ ⊇ L and a first order φ in the vocab-

ulary L ′ such that an L-structure M has the property O(M) if and only if it

is a reduct of an L ′-structure satisfying φ. Clearly, PC-definable properties are

exactly the �1
1-definable properties of models.

The logic �1
1 is closed under conjunction in the sense that if φ and ψ are

�1
1-formulas then there is a �1

1-formula θ such that

M |=s θ ⇐⇒ M |=s φ and M |=s ψ.

For example, if φ = ∃R∃R′φ′ and ψ = ∃R∃ f ψ ′, then we first change the

relation symbol R in ψ ′ to a new relation symbol R′′, obtaining ψ ′′, and then

take ∃R∃R′∃R′′∃ f (φ′ ∧ ψ ′′) as θ . Similarly, �1
1 is closed under disjunction in

the sense that if φ and ψ are �1
1-formulas then there is a �1

1-formula θ such

that

M |=s θ ⇐⇒ M |=s φ or M |=s ψ.

It is fairly obvious that �1
1 is closed under first order existential quantification

in the sense that if φ is an �1
1-formula then there is a �1

1-formula θ such that

M |=s θ ⇐⇒ there is a ∈ M such that M |=s(a/xn) φ.

For example, if φ = ∃R∃R′ψ , then we can take ∃R∃R′∃xnψ as θ . It is a little

more tricky to see that �1
1 is also closed under first order universal quantification

in the sense that if φ is an �1
1-formula then there is a �1

1-formula θ such that

M |=s θ ⇐⇒ for all a ∈ M we have M |=s(a/xn) φ.

To see why this is so, let us consider a simple �1
1-formula ∃Rψ , where ψ is

first order. Let φ′ be obtained from φ by replacing everywhere Rt1 . . . tm by

R′xnt1 . . . tn , where R′ is a new predicate symbol of arity #L (R) + 1. Now,

M |=s ∃R′∀xnφ
′ ⇐⇒ for all a ∈ M we have M |=s(a/xn) ∃Rφ (6.1)

(see Exercise 6.7).

We adopt the convention of writing a formula φ of dependence logic with

free variables xi1
, . . . , xin as φ(xi1

, . . . , xin), where it is always assumed that

i1 < · · · < in . This notation includes the case that n = 0 which corresponds to

88 Model theory

the case that φ is a sentence. Similarly we write t(xi1
, . . . , xin) for a term built

up from the variables xi1
, . . . , xin . In the following theorem we refer to S as an

n-ary predicate symbol. If n = 0, S is a � or ¬�. In the following theorem,

rel(X) = {(s(xi1
), . . . , s(xin)) : s ∈ X}.

Theorem 6.2 We can associate with every formula φ(xi1
, . . . , xin) of D in

vocabulary L and every d ∈ {0, 1} a �1
1 -sentence τd,φ(S), where S is n-ary,

such that for all L-structures M and teams X with dom(X) = {xi1
, . . . , xin }

the following are equivalent:

(i) (φ, X, d) ∈ T ,
(ii) (M, rel(X)) |= τd,φ(S).

Proof We modify Hodges’ approach (see ref. [22], sect. 3) to fit our setup.

The sentence τd,φ(S) is simply Definition 3.5 written in another way. There is

nothing new in τd,φ(S), and in each case the proof of the claimed equivalence

is straightforward (see Exercises 6.4 and 6.5).

Case (1) Suppose φ(xi1
, . . . , xin) is t1 = t2 or Rt1 . . . tn . We rewrite (D1), (D2),

(D5) and (D6) of Definition 3.5 by letting τ1,φ(S) be

∀xi1
. . . ∀xin (Sxi1

. . . xin → φ(xi1
, . . . , xin))

and by letting τ0,φ(S) be

∀xi1
. . . ∀xin (Sxi1

. . . xin → ¬φ(xi1
, . . . , xin)).

Case (2) Suppose φ(xi1
, . . . , xin) is the dependence formula

=(t1(xi1
, . . . , xin), . . . , tm(xi1

, . . . , xin)),

where i1 < · · · < in . Recall conditions (D3) and (D4) of Defini-

tion 3.5. Following these conditions, we define τ1,φ(S) as follows.

Subcase (2.1) m = 0. We let τ1,φ(S) = � and τ0,φ(S) = ¬�.

Subcase (2.2) m = 1. Now φ(xi1
, . . . , xin) is the dependence formula

= (t1(xi1
, . . . , xin)). We let τ1,φ(S) be the formula

∀xi1
. . .∀xin ∀xin+1 . . . ∀xin+n((Sxi1

. . . xin ∧ Sxin+1 . . . xin+n)

→ t1(xi1
, . . . , xin) = t1(xin+1, . . . , xin+n))

and we further let τ0,φ(S) be the formula ∀xi1
. . . ∀xin ¬

Sxi1
. . . xin .

6.1 From D to �1
1 89

Subcase (2.3) If m > 1 we let τ1,φ(S) be the formula

∀xi1
. . .∀xin ∀xin+1 . . . ∀xin+n((Sxi1

. . . xin ∧ Sxin+1 . . . xin+n

∧ t1(xi1
, . . . , xin) = t1(xin+1, . . . , xin+n)

∧ . . .

tm−1(xi1
, . . . , xin) = tm−1(xin+1, . . . , xin+n))

→ tm(xi1
, . . . , xin) = tm(xin+1, . . . , xin+n)),

and we further let τ0,φ(S) be the formula ∀xi1
. . . ∀xin ¬ Sxi1

. . . xin .

Case (3) Suppose φ(xi1
, . . . , xin) is the disjunction

(ψ(x j1 , . . . , x jp) ∨ θ (xk1
, . . . , xkq)),

where {i1, . . . , in} = { j1, . . . , jp} ∪ {k1, . . . , kq}. We let the sentence

τ1,φ(S) be

∃R∃T (τ1,ψ (R) ∧ τ1,θ (T)∧
∀xi1

. . . ∀xin (Sxi1
. . . xin → (Rx j1 . . . x jp ∨ T xk1

. . . xkq)))

and we let the sentence τ0,φ(S) be

∃R∃T (τ0,ψ (R) ∧ τ0,θ (T)∧
∀xi1

. . . ∀xin (Sxi1
. . . xin → (Rx j1 . . . x jp ∧ T xk1

. . . xkq))).

Case (4) φ is ¬ψ . τd,φ(S) is the formula τ1−d,ψ (S).

Case (5) Suppose φ(xi1
, . . . , xin) is the formula ∃xin+1

ψ(xi1
, . . . , xin+1

). τ1,φ(S)

is the formula

∃R(τ1,ψ (R) ∧ ∀xi1
. . . ∀xin (Sxi1

. . . xin → ∃xin+1
Rxi1

. . . xin+1
))

and τ0,φ(S) is the formula

∃R(τ0,ψ (R) ∧ ∀xi1
. . . ∀xin (Sxi1

. . . xin → ∀xin+1
Rxi1

. . . xin+1
)).

�

Corollary 6.3 For every sentence φ of D there are �1
1 -sentences τ1,φ and τ0,φ

such that for all models M we have

M |= φ if and only if M |= τ1,φ ;

M |= ¬φ if and only if M |= τ0,φ.

Proof Let τd,φ be the result of replacing in τd,φ(S) every occurrence of the 0-ary

relation symbol S by �. Now the claim follows from Theorem 6.2. �

Exercise 6.1 Write down τ1,∃x1 =(x1)(S) and τ0,∃x1 =(x1)(S).

Exercise 6.2 What is τ1,φ(S) if φ is ∃x1(=(x1) ∨ x1 = x0)?

90 Model theory

Exercise 6.3 What is τ1,φ(S) if φ is given by the following:

∀x0∃x1∀x2∃x3(=(x2, x3) ∧ ¬(x1 = x4) ∧ (x0 = x2 ↔ x1 = x3))?

Exercise 6.4 Fill in the details of Case (3) of the proof of Theorem 6.2.

Exercise 6.5 Fill in the details of Case (5) of the proof of Theorem 6.2.

Exercise 6.6 Show that if φ is �1
1 , M |= φ and M ∼= N , then N |= φ.

Exercise 6.7 Prove the claim given in Eq. (6.1).

6.2 Applications of �1
1

The �1
1-representation of D-formulas yields some immediate but nevertheless

very important applications. They are all based on model theoretic properties

of first order logic, which we now review.

Compactness Theorem of first order logic
Suppose T is an arbitrary set of sentences of first order logic such that every

finite subset of T has a model. Then T itself has a model. There are many

different proofs of this classical result due to Gödel and Mal’cev. The proof is

somewhat easier in the case that T is countable. One main line of proof [15]

constructs a sufficiently complete extension T ∗ of T in a vocabulary which has

infinitely many new constant symbols. After this a syntactical (term-) model is

constructed by means of T ∗. In another line of proof a model of T is constructed

by gluing together the models of the finite parts of T into one structure which

models all of T . This is the ultraproduct approach [9].

Löwenheim–Skolem Theorem of first order logic
Suppose φ is a sentence of first order logic such that φ has an infinite model

or arbitrarily large finite models. Then φ has models of all infinite cardinalities

[36], [37], [39]. This is one of the oldest results of model theory of first order

logic. The proof combines the method of Skolem functions and compactness.

Craig Interpolation Theorem of first order logic
Suppose φ and ψ are sentences of first order logic such that |= φ → ψ . Suppose

the vocabulary of φ is Lφ and that of ψ is Lψ . Then there is a first order sentence

θ of vocabulary Lφ ∩ Lψ such that |= φ → θ and |= θ → ψ . There are several

different proofs of this result. The original proof of William Craig [6] was proof

6.2 Applications of �1
1 91

theoretic, based on cut-elimination. Most model theoretic proofs, starting with

ref. [34], use compactness in one form or another.

We can now easily derive similar results for dependence logic by appealing

to the �1
1-representation of D-sentences.

Theorem 6.4 (Compactness Theorem of D) Suppose � is an arbitrary set of
sentences of dependence logic such that every finite subset of � has a model.
Then � itself has a model.

Proof Let � = {φi : i ∈ I } and let L be the vocabulary of �. Let τ1,φi =
∃Si

1 . . . ∃Si
ni
ψi , where ψi is first order. By changing symbols we can assume

that all Si
j are different symbols. Let T be the first order theory {ψi : i ∈ I }

in the vocabulary L ′ = L ∪ {Si
j : i ∈ I, 1 ≤ j ≤ ni }. Every finite subset of T

has a model. By the Compactness Theorem of first order logic, there is an L ′-
structure M′ that is a model of the theory T itself. The reduction M = M′�L
of M′ to the original vocabulary L is, by definition, a model of �. �

Theorem 6.5 (Löwenheim–Skolem Theorem of D) Suppose φ is a sentence
of dependence logic, such that φ either has an infinite model or has arbitrarily
large finite models. Then φ has models of all infinite cardinalities, in particular
φ has a countable model and an uncountable model.

Proof Let τ1,φ = ∃S1 . . . ∃Snψ , where ψ is first order in the vocabulary L ′ =
L ∪ {S1, . . . , Sn}. Suppose κ is an arbitrary infinite cardinal number. By the

Löwenheim–Skolem Theorem of first order logic, there is an L ′-model M′ of

ψ of cardinality κ . The reduction M = M′�L of M′ to the original vocabulary

L is a model of φ of cardinality κ . �

Corollary 6.6 (ref. [31]) A sentence of dependence logic in the empty vocab-
ulary is true in one infinite model (or arbitrarily large finite ones) if and only it
is true in every infinite model.

Proof All models of the empty vocabulary of the same cardinality are isomor-

phic. Thus the claim follows from Theorem 6.5. �

We shall address the Craig Interpolation Theorem in Corollary 6.17 and

derive first a Separation Theorem which is an equivalent formulation in the

case of first order logic.

Theorem 6.7 (Separation Theorem) Suppose φ and ψ are sentences of
dependence logic such that φ and ψ have no models in common. Let the vocab-
ulary of φ be L and the vocabulary of ψ be L ′. Then there is a sentence θ of D
in the vocabulary L ∩ L ′ such that every model of φ is a model of θ , but θ and
ψ have no models in common. In fact, θ can be chosen to be first order.

92 Model theory

Proof Let τ1,φ = ∃S1 . . . ∃Snφ0, where φ0 is first order in the vocabulary L0. Let

τ1,ψ = ∃S′
1 . . . ∃S′

mψ0, where ψ0 is first order in the vocabulary L ′
0. Without loss

of generality, {S1, . . . , Sn} ∩ {S′
1, . . . , S′

m} = ∅. Note that |= φ0 → ¬ψ0 for if

M is a model of φ0 ∧ ψ0, then M�L |= φ ∧ ψ , contrary to the assumption that

φ and ψ have no models in common. By the Craig Interpolation Theorem for

first order logic, there is a first order sentence θ of vocabulary L ∩ L ′ such that

|= φ0 → θ and |= θ → ¬ψ0. Every model of φ is a model of θ , but θ and ψ

have no models in common. �

A particularly striking application of Theorem 6.7 is the following special

case in which φ and ψ not only have no models in common but, furthermore,

every model satisfies one of them.

Theorem 6.8 (Failure of the Law of Excluded Middle) Suppose φ and ψ

are sentences of dependence logic such that for all models M we have

M |= φ if and only if M �|= ψ.

Then φ is logically equivalent to a first order sentence θ such that ψ is logically
equivalent to ¬θ .

Proof The first order θ obtained in the proof of Theorem 6.7 is the θ we

seek. �

Note that it is perfectly possible to have for all finite models M

M |= φ if and only if M �|= ψ

without φ or ψ being logically equivalent to a first order sentence. For example,

in the empty vocabulary φ can say the size of the universe is even while ψ says

it is odd.

Definition 6.9 A sentence φ of dependence logic is called determined in M
if M |= φ or M |= ¬φ. Otherwise φ is called non-determined in M. We say
that φ is determined if φ is determined in every structure.

A typical non-determined sentence (from ref. [2]) is given by

∀x0∃x1(=(x1) ∧ x0 = x1),

which is non-determined in every structure with at least two elements. The fol-

lowing corollary shows that it is not at all difficult to find other non-determined

sentences.

Corollary 6.10 Every determined sentence of dependence logic is strongly
logically equivalent to a first order sentence.

6.2 Applications of �1
1 93

Proof Suppose φ is determined. Thus for all M we have M |= φ or M |=
¬φ. It follows that for all M we have M |= φ if and only if M �|= ¬φ. By

Theorem 6.8 there is a first order θ such that φ is logically equivalent to θ

and ¬φ is logically equivalent to ¬θ . Thus φ is strongly logically equivalent

to θ . �

Thus we can take any sentence of dependence logic, which is not strongly

equivalent to a first order sentence, and we know that there are models in which

the sentence is non-determined.

Example 6.11 The sentence 	wf is non-determined in every infinite well
ordered structure. This can be seen either by a direct argument based on the
truth definition, or by the following indirect argument. Suppose M is an infinite
well ordered linear order in which 	wf is determined. Thus M |= ¬	wf. Let
� be the following set of sentences of dependence logic:

¬	wf,

c1 < c0,

c2 < c1,

· · ·
cn+1 < cn,

· · ·
It is evident that every finite subset of � is true in an expansion of M. By
the Compactness Theorem, there is a model M′ of the whole �. Then M′ is
ill-founded and therefore satisfies 	wf. This contradicts the fact that M′ also
satisfies ¬	wf.

For more examples of non-determinacy, see ref. [42].

Exercise 6.8 Show that the sentence 	wf is non-determined in all sufficiently
big finite linear orders.

Exercise 6.9 Show that 	even is non-determined in every sufficiently large finite
model of odd size.

Exercise 6.10 Show that 	∞ is non-determined in every sufficiently big finite
model.

Exercise 6.11 Show that 	cmpl is non-determined in every complete dense
linear order.

Exercise 6.12 Suppose φn, n ∈ N, are sentences of D such that each φn is true
in some model, and moreover φn+1 ⇒ φn for all n. Show that there is one model
M in which each φn is true.

94 Model theory

Exercise 6.13 Show that if φ is a sentence of D and ψ is a first order sentence
such that every countable1 model of φ is a model of ψ , then every model of φ

is a model of ψ .

Exercise 6.14 Give a sentence φ of D and a first order sentence ψ such that
every countable model of ψ is a model of φ and vice versa, but some model of
ψ is not a model of φ.

6.3 From �1
1 to D

We have seen that representing formulas of dependence logic in �1
1 form is a

powerful method for getting model theoretic results about dependence logic.

We now show that this method is in a sense the best possible. Namely, we can

also translate any �1
1-sentence back to dependence logic.

We prove first a fundamental property of first order and �1
1-formulas. Its

various formulations all carry the name of Thoralf Skolem [36] (see also ref.

[37]), who proved the following result in 1920. The basic idea is that the exis-

tential second order quantifiers in front of �1
1-formulas are so powerful that

they subsume all other existential quantifiers.

Theorem 6.12 (Skolem Normal Form Theorem) Every �1
1 -formula φ is log-

ically equivalent to an existential second order formula

∃ f1 . . . ∃ fn∀x1 . . . ∀xmψ, (6.2)

where ψ is quantifier free and f1, . . . , fn are function symbols. The formula in
Eq. (6.2) is called a Skolem Normal Form of φ.

Proof For atomic and negated atomic φ we choose φ itself as a Skolem Normal

Form. Suppose then φ0 has a Skolem Normal Form,

∃ f 0
1 . . . ∃ f 0

n0
∀x0

1 . . .∀x0
m0

ψ0, (6.3)

and φ1 has a Skolem Normal Form,

∃ f 1
1 . . . ∃ f 1

n1
∀x1

1 . . .∀x1
m1

ψ1. (6.4)

By changing bound variables, we may assume, w.l.o.g., that { f 0
1 , . . . , f 0

n0
} ∩

{ f 1
1 , . . . , f 1

n1
} = ∅ and that {x0

1 , . . . , x0
m0

} ∩ {x1
1 , . . . , x1

m1
} = ∅. Now we obtain

a Skolem Normal Form,

∃ f 0
1 . . . ∃ f 0

n0
∃ f 1

1 . . . ∃ f 1
n1

∀x0
1 . . . ∀x0

m0
∀x1

1 . . . ∀x1
m1

(ψ0 ∧ ψ1),

1 i.e. countably infinite or finite.

6.3 From �1
1 to D 95

for φ0 ∧ φ1 and a Skolem Normal Form,

∃ f 0
1 . . . ∃ f 0

n0
∃ f 1

1 . . . ∃ f 1
n1

∀x0
1 . . .∀x0

m0
∀x1

1 . . . ∀x1
m1

(ψ0 ∨ ψ1),

for φ0 ∨ φ1. For a definition of a Skolem Normal Form for ∀x0φ, suppose φ has

a Skolem Normal Form as given in Eq. (6.2). Let f ′
1, . . . , f ′

n be new function

symbols such that #(f ′
i) = #(fi) + 1 and let x0 be a variable not occurring in

ψ so that also x0 /∈ {x1, . . . , xn}. Let ψ ′ be obtained from ψ by inductively

replacing everywhere fi (t1, . . . , t#(fi)) by f ′
i (x0, t1, . . . , t#(fi)). We define

∃ f ′
1 . . . ∃ f ′

n∀x0∀x1 . . . ∀xmψ ′

to be the Skolem Normal Form of ∀x0φ. Let f0 be a new 0-place function

variable and let ψ ′′ be obtained from ψ by replacing everywhere x0 by f0. We

let

∃ f0∃ f1 . . . ∃ fn∀x1 . . . ∀xmψ ′′

be a Skolem Normal Form of ∃x0φ. For the definition of a Skolem Normal

Form for ∃Rφ, suppose φ has the Skolem Normal Form given in Eq. (6.2). A

Skolem Normal Form of ∃Rφ is simply

∃ f1 . . . ∃ fn∃ fn+1∃ fn+2∀x1 . . .∀xmθ,

where θ is obtained from ψ by replacing everywhere Rt1 . . . tk by the formula

fn+1t1 . . . tk = fn+2. Finally, the construction of a Skolem Normal Form of ∃ f φ

is easy. Suppose φ has the Skolem Normal Form as in Eq. (6.2). We obtain the

Skolem Normal Form

∃ f ∃ f1 . . . ∃ fn∀x1 . . . ∀xmψ

for ∃ f φ. �

Example 6.13 The sentence

∀x1∃x2 Rx1x2

in Skolem Normal Form reads as follows:

∃ f ∀x1 Rx f x1,

and

∀x1(∃x2 Px1x2 ∨ ∀x3∃x4 Rx1x3x4)

reads as follows:

∃ f1∃ f2∀x1∀x3(Px1 f1x1 ∨ Rx1x3 f2x1x3).

96 Model theory

Corollary 6.14 (Skolem Normal Form Theorem for D) For every formula
φ of dependence logic and every d ∈ {0, 1}, there is a �1

1 -sentence τ ∗
d,φ(S) of

the following form:

∃ f1 . . . ∃ fn∀x1 . . . ∀xmψ, (6.5)

where ψ is quantifier-free, such that the following are equivalent:

(i) (φ, X, d) ∈ T ,

(ii) (M, X) |= τ ∗
d,φ(S).

In particular, for every sentence φ of dependence logic there are �1
1 -sentences

τ ∗
1,φ and τ ∗

0,φ of the form (6.5) such that for all models M we have

M |= φ if and only if M |= τ ∗
1,φ.

M |= ¬φ if and only if M |= τ ∗
0,φ.

Corollary 6.14 gives an easy proof of the Löwenheim–Skolem Theorem

for dependence logic (Theorem 6.5). Namely, suppose φ is a given sentence

of dependence logic with an infinite model or arbitrarily large finite models.

By compactness we may assume φ indeed has an infinite model M. Let τ ∗
1,φ

be of the form ∃ f1 . . . ∃ fn∀x1 . . .∀xmψ . Thus there are interpretations f M
′

i of

the function symbols fi in an expansion of M′ of M such that M′ satisfies

∀x1 . . .∀xmψ . Let N be a countable subset of M such that N is closed under

all the n functions f M
′

i . Because ∀x1 . . . ∀xmψ is universal, it is still true in

the countable substructure M∗ of M generated by N . Thus M∗ is a countable

model of φ. This is in line with the original proof of Skolem. If we wanted a

model of size κ for a given infinite cardinal number κ , the argument would be

similar, but we would first use compactness to get a model of size at least κ .

Theorem 6.15 (refs. [7] and [44]) For every �1
1 -sentence φ there is a sentence

φ∗ in dependence logic such that for all M:

M |= φ ⇐⇒ M |= φ∗.

Proof We may assume φ is of the following form:

	 = ∃ f1 . . . ∃ fn∀x1 . . . ∀xmψ, (6.6)

where ψ is quantifier-free. We will perform some reductions on Eq. (6.6) in

order to make it more suitable for the construction of φ.

Step (1) If ψ contains nesting of the function symbols f1, . . . , fn or of the

function symbols of the vocabulary, we can remove them one by one

6.3 From �1
1 to D 97

by using the equivalence of

|= ψ(fi t1 . . . tm)

and

∀x1 . . . ∀xm((t1 = x1 ∧ . . . ∧ tm = xm) → ψ(fi x1 . . . xm)).

Thus we may assume that all terms occurring in ψ are of the form xi

or fi xi1
. . . xik .

Step (2) If ψ contains an occurrence of a function symbol fi xi1
. . . xik with the

same variable occurring twice, e.g. is = ir , 1 < r < k, we can remove

it by means of a new variable xl and the equivalence

|= ∀x1 . . . ∀xmψ(fi xi1
. . . xik) ↔

∀x1 . . . ∀xm∀xl(xl = xr → ψ(fi xi1
. . . xir−1

, xl , xir+1
. . . xik)).

Thus we may assume that if a term such as fi xi1
. . . xik occurs in ψ ,

its variables are all distinct.

Step (3) If ψ contains two occurrences of the same function symbol but

with different variables or with the same variables in different order,

we can remove it using appropriate equivalences. If {i1, . . . , ik} ∩
{ j1, . . . , jk} = ∅, we have the equivalence

|= ∀x1 . . . ∀xmψ(fi xi1
. . . xik , fi x j1 . . . x jk)

↔ ∃ f ′
i ∀x1 . . . ∀xm(ψ(fi xi1

. . . xik , f ′
i x j1 . . . x jk)

∧ ((xi1
= x j1 ∧ . . . ∧ xik = x jk)

→ fi xi1
. . . xik = f ′

i x j1 . . . x jk)).

We can reduce the more general case, where {i1, . . . , ik} ∩ { j1, . . . , jk} �= ∅,

to this case by introducing new variables, as in Step (2). (We are grateful to

Ville Nurmi for pointing out the necessity of this.) Thus we may assume that

for each function symbol fi occurring in ψ , there are j i
1, . . . , j i

ni
such that all

occurrences of fi are of the form fi x j i
1
. . . x ji

mi
and j i

1, . . . , j i
mi

are all different

from each other.

In sum, we may assume the function terms that occur in ψ are of the form

fi x j i
1
. . . x ji

mi
and for each i the variables x ji

1
, . . . , x ji

mi
and their order is the

same. Let N be greater than all the x ji
k
. Following the notation of Eq. (6.6), let

φ∗ be the sentence

∀x1 . . . ∀xm∃xN+1 . . . ∃xN+n (=(x j1
1
, . . . , x j1

m1
, xN+1) ∧

. . .

(=(x jn
1
, . . . , x jn

mn
, xN+n) ∧ ψ ′),

98 Model theory

where ψ ′ is obtained from ψ by replacing everywhere fi x j i
1
. . . x ji

mi
by xN+i .

This is clearly the desired sentence.

�

It is noteworthy that theD-representation of a given �1
1-sentence given above

is of universal-existential form, i.e. of the form

∀xn1
. . . ∀xnk ∃xm1

. . . ∃xml ψ,

where ψ is quantifier-free. Moreover, ψ is just a conjunction of dependence

statements =(x1, . . . , xn) and a quantifier-free first order formula. This is a

powerful normal form for dependence logic.

Corollary 6.16 For any sentence φ of dependence logic of vocabulary L and
for every L ′ ⊆ L there is a sentence φ′ of dependence logic of vocabulary L ′

such that the following are equivalent:

(i) M |= φ′;
(ii) there is an expansion N of M such that N |= φ.

Proof Let ψ be a �1
1-sentence logically equivalent with φ. We assume for

simplicity that L \ L ′ consists of just one predicate symbol R. Let φ′ be a

sentence of dependence logic logically equivalent with the �1
1-sentence ∃Rψ .

Then φ′ is a sentence satisfying the equivalence of the conditions (i) and (ii). �

Corollary 6.16 implies in a trivial way the following strong form of the Craig

Interpolation Theorem.

Corollary 6.17 (uniform interpolation property) Suppose φ is a sentence of
D. Let L be the vocabulary of φ. For every L ′ ⊆ L there is a sentence φ′ of D
in the vocabulary L ′ which is a uniform interpolant of φ in the following sense:
φ ⇒ φ′, and, if ψ is a sentence of D in a vocabulary L ′′ such that φ ⇒ ψ and
L ∩ L ′′ = L ′, then φ′ ⇒ ψ .

Proof Let φ′ be as in Corollary 6.16. By its very definition, φ′ is a logical

consequence of φ. Suppose then ψ is a sentence of D in a vocabulary L ′′ such

that φ ⇒ ψ and L ∩ L ′′ = L ′. If M′′ is an L ′′-structure which is a model of φ′,
then M′′�L ′ is a model of φ′, whence there is an expansion M of M′′�L ′ to a

model of φ. Since φ ⇒ ψ , M is a model of ψ . But M�L ′′ = M′′�L ′′. Thus

M′′ |= ψ . �

For a version of the Beth Definability Theorem, see Exercise 6.23.

6.3 From �1
1 to D 99

Exercise 6.15 Give a Skolem Normal Form for the following first order for-
mulas:

(i) ∀x0∃x1x0 = x1;

(ii) ∃x0∀x1¬x0 = x1;

(iii) (∃x0 Px0 ∨ ∀x0¬Px0).

Exercise 6.16 Give a Skolem Normal Form for the following first order
formula:

∀x0∃x1∀x2∃x3((x0 = x4 → ¬(x1 = x4)) ∧ (x0 < x3 ↔ x1 < x2)).

Exercise 6.17 Write the following �1
1 -sentences in Skolem Normal Form:

(i) ∃x0∃ f ∀x1(¬ f x1 = x0 ∧ ∀x2(f x0 = f x1 → x0 = x1));

(ii) ∃R(∀x0∀x1∀x2((Rx0x1 ∧ Rx1x2) → Rx0x2)

∧ ∀x0∀x1(Rx0x1 ∨ Rx1x0 ∨ x0 = x1)

∧ ∀x0¬Rx0x0 ∧ ∀x0∃x1 Rx0x1).

Exercise 6.18 Give a sentence of D which is logically equivalent to the fol-
lowing �1

1 -sentence in Skolem Normal Form:

(i) ∃ f0∃ f1∀x0∀x1φ(x0, x1, f0(x0, x1), f1(x0, x1));

(ii) ∃ f0∃ f1∀x0∀x1φ(x0, x1, f0(x0, x1), f1(x1));

(iii) ∃ f0∃ f1∀x0φ(x0, f0(x0), f1(x0)).

In each case φ is quantifier-free and first order.

Exercise 6.19 Give a sentence of D which is logically equivalent to the fol-
lowing �1

1 -sentence:

∃ f ∀x0∀x1φ(x0, x1, f (x0, x1), f (x1, x0)),

where φ is quantifier-free.

Exercise 6.20 Express the Henkin quantifier(∀x ∃y
∀u ∃v

)
R(x, y, u, v) ↔ ∃ f ∃g∀x∀u R(x, f (x), u, g(u))

in dependence logic.

Exercise 6.21 Suppose M is an L-structure and P ⊆ Mn. We say that P is
D-definable in M if there is a sentence φ(c1, . . . , cn) of D with new constant
symbols c1, . . . , cn such that the following are equivalent for all a1, . . . , an ∈
M:

(i) (a1, . . . , an) ∈ P;

100 Model theory

(ii) (M, a1, . . . , an) |= φ,

where (M, a1, . . . , an) denotes the expansion of M obtained by interpreting
ci in (M, a1, . . . , an) by ai . We then say that φ defines P in M. Show that if
P and Q are D-definable, then so are P ∩ Q and P ∪ Q, but not necessarily
P \ Q.

Exercise 6.22 Recall the definition of D-definability in a model in
Exercise 6.21. Let L be a vocabulary. Suppose ψ is aD-sentence in a vocabulary
L ∪ {R}, where R is a new n-ary predicate symbol. We say that R isD-definable

in models of ψ if there is a D-sentence φ of vocabulary L ∪ {c1, . . . , cn} such
that φ defines R in every model of ψ . Prove the following useful criterion for
D-undefinability: if ψ has two models M and N such that M�L = N �L but
RM �= RN , then R is not D-definable in models of ψ . (In the case of first order
logic this is known as the Padoa Principle.)

Exercise 6.23 Recall the definition ofD-definability in models of a sentence in
Exercise 6.22. Let L be a vocabulary. Suppose ψ is aD-sentence in a vocabulary
L ∪ {R}, where R is a new n-ary predicate symbol. Suppose any two models
M and N of ψ such that M�L = N �L satisfy also RM = RN . Show that R
is D-definable in models of ψ (In the case of first order logic this is known as
the Beth Definability Theorem.)

Exercise 6.24 (See ref. [3].) Suppose φ and ψ are sentences of D such that no
model satisfies both φ and ψ . Show that there is a sentence θ of D such that

M |= φ if and only if M |= θ

and

M |= ψ if and only if M |= ¬θ.

6.4 Truth definitions

In 1933, the Polish logician Alfred Tarski defined the concept of truth in a

general setting (see, e.g., ref. [38]) and pointed out what is known as Tarski’s

Undefinability of Truth argument: no language can define its own truth, owing

to the Liar Paradox, namely to the sentence

“This sentence is false.”

This sentence is neither true nor false, contrary to the Law of Excluded Middle,

which Tarski took for granted. By 1931, the Austrian logician Kurt Gödel [12],

6.4 Truth definitions 101

working not on arbitrary formalized languages but on first order number theory,

had constructed, using a lengthy process referred to as the arithmetization of

syntax, the following sentence:

“This sentence is unprovable.”

This sentence cannot be provable, for then it would be true, and hence unprov-

able. So it is unprovable and hence true. Its negation cannot be provable either,

for else the negation would be true. So it is an example of a sentence which is

independent of first order number theory. This is known as Gödel’s First Incom-

pleteness Theorem. Gödel’s technique could be used to make exact sense of

undefinability of truth (see below) and to prove it exactly for first order number

theory.

Exercise 6.25 Consider the following: “If this sentence is true, then its nega-
tion is true.” Derive a contradiction.

Exercise 6.26 Consider the following: “It is not true that this sentence is true.”
Derive a contradiction.

Exercise 6.27 (See ref. [28].) Consider the following sentences.

(1) It is raining in Warsaw.
(2) It is raining in Vienna.
(3) Exactly one of the sentences (1)–(3) is true.

Under what kind of weather conditions in Europe is sentence (3) paradoxical?

6.4.1 Undefinability of truth

Even to formulate the concept of definability of truth, we have to introduce

a method for speaking about a formal language in the language itself. The

clearest way of doing this is by means of Gödel-numbering. Each sentence φ is

associated with a natural number �φ�, its Gödel-number, in a systematic way,

described in Section 6.4.2. Moreover, we assume that our language has a name

n for each natural number n.

Definition 6.18 A truth definition for any model M and any formal language
L, such as first order logic or dependence logic, is a formula τ (x0) of some
possibly other formal language L′ such that for each sentence φ of L we have

M |= φ if and only if M |= τ (�φ�). (6.7)

A stronger requirement would be M |= φ ↔ τ (�φ�), but this would be true

only in the presence of the Law of Excluded Middle, as (φ ↔ ψ) ⇒ (φ ∨ ¬φ).

102 Model theory

An even stronger requirement would be the provability of φ ↔ τ (�φ�) from

some axioms, but we abandon this also in the current setup.

By the vocabulary L {+,×} of arithmetic we mean a vocabulary appropriate

for the study of number theory, with a symbol N for the set of natural numbers.

We specify L {+,×} in detail below. We call an L-structure Mω, where L ⊇
L {+,×}, “a model of Peano’s axioms” if the reduct of Mω to the vocabulary

{N , +, ×} satisfies the first order Peano axioms of number theory. The results

on definability of truth are relevant even if we assume that NMω is the whole

universe of the modelMω. Below,Mω denotes such a model of Peano’s axioms.

Theorem 6.19 (Gödel’s Fixed Point Theorem) For any first order formula
φ(x0), in the vocabulary of arithmetic there is a first order sentence ψ of the
same vocabulary such that for all models Mω of Peano’s axioms,

Mω |= ψ if and only if Mω |= φ(�ψ�).

Proof Let Sub be the set of triples 〈�w�, �w′�, n〉, where w′ is obtained from

w by replacing x0 by the term n. Since recursive relations are representable in

models of Peano’s axioms, there is a first order formula σ (x0, x1, x2) such that

〈n, m, k〉 ∈ Sub ⇐⇒ Mω |= σ (n, m, k).

W.l.o.g., x0 is not bound in σ (x0, x1, x2) and x0 and x1 are not bound in φ(x0). Let

θ (x0) be the formula ∃x1(φ(x1) ∧ σ (x0, x1, x0)). Let k = �θ (x0)� and ψ = θ (k).

Then Mω |= ψ if and only if Mω |= φ(�ψ�). �

The above result does not hold just for first order logic but for any extension

of first order logic, the syntax of which is sufficiently effectively given, for

example dependence logic.

Theorem 6.20 (Tarski’s Undefinability of Truth Result) First order logic
does not have a truth definition in first order logic for any modelMω of Peano’s
axioms.

Proof Let τ (x0) be as in Definition 6.18. By Theorem 6.19 there is a sentence

ψ such that

Mω |= ψ if and only if Mω |= ¬τ (�ψ�). (6.8)

If Mω |= ψ , then Mω |= τ (�ψ�) by Eq. (6.7), and Mω |= ¬τ (�ψ�) by Eq.

(6.8). HenceMω �|= ψ . NowMω �|= τ (�ψ�) by Eq. (6.7), andMω �|= ¬τ (�ψ�)

by Eq. (6.8). So neither τ (�ψ�) nor ¬τ (�ψ�) is true in Mω. This contradicts

the Law of Excluded Middle, which says in this case Mω |= (τ (�ψ�) ∨ ¬τ

(�ψ�)). �

6.4 Truth definitions 103

Theorem 6.20 has many stronger formulations. As the almost trivial proof

above shows, no language for which the Gödel Fixed Point Theorem can be

proved and which satisfies the Law of Excluded Middle for its negation can

have a truth definition in the language itself. We shall not elaborate more on

this point here, as our topic, dependence logic, certainly does not satisfy the

Law of Excluded Middle for its negation.

Exercise 6.28 Prove Mω |= ψ if and only if Mω |= φ(�ψ�) in the proof of
Theorem 6.19.

6.4.2 Definability of truth in first order logic

We turn to another important contribution of Tarski, namely that truth is implic-
itly (or even better – inductively) definable in first order logic. In dependence

logic the implicit definition can even be turned into an explicit definition by

means of Theorem 6.15, as emphasized by Hintikka [19]. So, after all, truth is
definable, albeit only implicitly. The realization of this may be an even more

important contribution of Tarski to logic than the undefinability of truth.

We shall carry out in some detail the definition of truth for first order logic.

We shall omit many details, as these are well covered by the literature. For

simplicity, we assume that the vocabulary L {+,×} of arithmetic includes all the

machinery needed for arithmetization. All that we really need is a pairing func-

tion, but the pursuit of such minimalism is not relevant for the main argument

and belongs to other contexts. Another simplification is that we only consider

truth in models Mω of Peano’s axioms.

We consider a finite vocabulary L = {c1, . . . , cn, R1, . . . , Rm, f1, . . . , fk}
containing L {+,×}. When we specify in the following what L {+,×} should contain

we assume they are all among c1, . . . , cn, R1, . . . , Rm, f1, . . . , fk . Let ri =
#(Ri). If w = w0 . . . wk is a string of symbols in the following alphabet:

=, ci , Ri , fi , (,), ¬, ∨, ∃,

the Gödel-number �w� of w is the natural number given by

�w� = p0
#(w0)+1 · . . . · pk

#(wk)+1,

where p0, p1, . . . are the prime numbers 2,3,5,. . . in increasing order and

#(=) = 0, #(() = 1, #()) = 2, #(¬) = 3,

#(∨) = 4, #(∧) = 5, #(∃) = 6, #(∀) = 7,

#(ci) = 4 + 4i, #(xi) = 5 + 4i, #(Ri) = 6 + 4i, #(fi) = 7 + 4i.

104 Model theory

Table 6.1.

Symbol Interpretation in Mω

POS-IDx0x1x2 x0 is �t = t ′�,
where x1 = �t� and x2 = �t ′�

NEG-IDx0x1x2 x0 is �¬t = t ′�,
where x1 = �t� and x2 = �t ′�

POS-ATOMi x0x1 . . . xri x0 is �Ri t1 . . . tri �,
where x1 = �t1�, . . . , xri = �tri �

NEG-ATOMi x0x1 . . . xri x0 is �¬Ri t1 . . . tri �,
where x1 = �t1�, . . . , xri = �tri �

CONJx0x1x2 x0 is �(φ ∧ ψ)�,
where x1 = �φ� and x2 = �ψ�

DISJx0x1x2 x0 is �(φ ∨ ψ)�,
where x1 = �φ� and x2 = �ψ�

EXIx0x1x2 x0 is �∃xnφ�,
where x1 = n and x2 = �φ�

UNIx0x1x2 x0 is �∀xnφ�,
where x1 = n and x2 = �φ�

The vocabulary L {+,×} has a symbol 0 for zero, a symbol 1 for one, and the

names n of the other natural numbers n are defined inductively as terms +n1.

We assume L {+,×} uses the symbols listed in Table 6.1 to represent syntactic

operations:

We assume that among the symbols of L {+,×} are functions that provide

a bijection between elements of the model and finite sequences of elements

of the model.2 Thus it makes sense to interpret arbitrary elements of Mω as

assignments. We also assume that L {+,×} has the symbols given in Table 6.2

(we think of x0 as an assignment).

All the above symbols are easily definable in terms of + and · in first order

logic in any model Mω of Peano’s axioms, if wanted. Now we take a new

predicate symbol SAT, not to be included in L {+,×} (and not to be definable in

terms of + and · in first order logic) with the following intuitive meaning:

SATx0x1 x0 is an assignment s and x1 is �φ� for some

L-formula φ such that Mω |=s φ.

2 In the special case that NMω (i.e. N) is the whole universe of Mω , the encoding of finite
sequences of elements of the model by elements of the model can be achieved by means of the
unique factorization of integers, or alternatively by means of the Chinese Remainder Theorem.

6.4 Truth definitions 105

Table 6.2.

Symbol Interpretation in Mω

TRUE-IDx0x1x2 x0 satisfies the identity t = t ′,
where x1 = �t� and x2 = �t ′�

FALSE-IDx0x1x2 x0 satisfies the non-identity ¬t = t ′,
where x1 = �t� and x2 = �t ′�

TRUE-ATOMi x0x1 . . . xri x0 satisfies Ri t1 . . . tri ,
where x1 = �t1�,. . ., xri = �tri �

FALSE-ATOMi x0x1 . . . xri x0 satisfies ¬Ri t1 . . . tri ,
where x1 = �t1�,. . ., xri = �tri �

AGRx0x1x2 x0 and x2 are assignments that
agree about variables other than x1

The point is that SAT is (implicitly) definable in terms of the others by the first
order sentence θL as follows:

∀x0∀x1(SATx0x1

↔ ∃x2∃x3(POS-IDx1x2x3 ∧ TRUE-IDx0x2x3)

∨∃x2∃x3(NEG-IDx1x2x3 ∧ FALSE-IDx0x2x3)

∨∃x2 . . . ∃xr1+1 (POS-ATOM1x1x2 . . . xr1+1 ∧ TRUE-ATOM1x0x2 . . . xr1+1)

∨ . . .

∃x2 . . . ∃xrm+1(POS-ATOMm x1x2 . . . xrm+1 ∧ TRUE-ATOMm x0x2 . . . xrm+1)

∨∃x2 . . . ∃xr1+1 (NEG-ATOM1x1x2 . . . xr1+1 ∧ FALSE-ATOM1x0x2 . . . xr1+1)

∨ . . .

∃x2 . . . ∃xrm+1(NEG-ATOMm x1x2 . . . xrm+1 ∧ FALSE-ATOMm x0x2 . . . xrm+1)

∨∃x2∃x3(CONJx1x2x3 ∧ (SATx0x2 ∧ SATx0x3))

∨∃x2∃x3(DISJx1x2x3 ∧ (SATx0x2 ∨ SATx0x3))

∨∃x2∃x3(EXIx1x2x3 ∧ ∃x4(AGRx0x2x4 ∧ SATx4x3))

∨∃x2∃x3(UNIx1x2x3 ∧ ∀x4(AGRx0x2x4 → SATx4x3))).

The implicit (or inductive) nature of this definition (known as Tarski’s Truth

Definition) manifests itself in the fact that SAT appears on both sides of the

equivalence sign in θL , and only positively in each case. There is no guarantee

that θ really fixes what SAT is (see, e.g., ref. [26]). However, for the part of the

actual formulas, or their representatives in Mω, the set SAT is unique.

Theorem 6.21 If the L-structure Mω is a model of Peano’s axioms, then:

(i) (Mω, SatN) |= θL , where SatN is the set of pairs 〈s, �φ�Mω〉 such that
Mω |=s φ;

(ii) if (Mω, S) |= θL and (Mω, S′) |= θL , then S ∩ SatN = S′ ∩ SatN.

106 Model theory

Proof Claim (i) is tedious but trivial, assuming that our concepts are correctly

defined. The claim we prove is the second one. To this end, suppose (Mω, S) |=
θL and (Mω, S′) |= θL . We prove

〈s, �φ�Mω〉 ∈ S if and only if Mω |=s φ (6.9)

for all φ. Since the same holds for S′ by symmetry, we obtain the desired result.

Case (1) φ is of the form t = t ′, ¬t = t ′, Ri t1 . . . tn or ¬Ri t1 . . . tn . The claim

in Eq. (6.9) follows from our interpretation of POS-ID, NEG-ID,

POS-ATOM, NEG-ATOM,TRUE-ID, FALSE-ID, TRUE-ATOMi ,

and FALSE-ATOMi in Mω.

Case (2) φ is of the form (φ0 ∧ φ1). The claim in Eq. (6.9) follows from the

conjunction part of the definition of θL and our interpretation of CONJ

in Mω.

Case (3) φ is of the form (φ0 ∨ φ1). The claim in Eq. (6.9) follows from the

disjunction part of the definition of θL and our interpretation of DISJ

in Mω.

Case (4) φ is of the form ∃xnψ . The claim in Eq. (6.9) follows from the part of

the existential quantifier of the definition of θL and our interpretation

of AGR and EXI in Mω.

Case (5) φ is of the form ∀xnψ . The claim in Eq. (6.9) follows from the part of

the universal quantifier of the definition of θL and our interpretation

of AGR and UNI in Mω. �

By means of the satisfaction relation SAT we can define truth by means of

the following formula:

TRUE(x0) = ∃x1SATx1x0.

Corollary 6.22 The following are equivalent for all first order sentences φ in
the vocabulary L and any model Mω of Peano’s axiom:

(i) Mω |= φ;
(ii) (Mω, S) |= (θL ∧ TRUE (�φ�)) for some S ⊆ N

2;
(iii) (Mω, S) |= (θL → TRUE (�φ�)) for all S ⊆ N

2.

Let us call a model Mω of Peano’s axioms standard if the interpretation

of the predicate N of the vocabulary of arithmetic in Mω is the set of natural

numbers, the interpretation of + is the addition of natural numbers, and the

interpretation of × is the multiplication of natural numbers.

Corollary 6.23 Suppose Mω is any standard model of Peano’s axioms. If
(Mω, S) |= θL and (Mω, S′) |= θL , then S = S′.

6.4 Truth definitions 107

First order definable relations on standard Mω are called arithmetical. The

definition of truth given by Corollary 6.22 is not first order, so we cannot

say truth is arithmetical. A definition that has both existential second order

and universal second order definition, as truth in the above corollary, is called

hyperarithmetical. So we can say that first order truth onMω is not arithmetical

but hyperarithmetical. For more on hyperarithmetical definitions, see ref. [33].

Exercise 6.29 Prove Corollary 6.22.

Exercise 6.30 Prove Corollary 6.23.

Exercise 6.31 Show that we cannot remove the word “standard” from
Corollary 6.23.

6.4.3 Definability of truth in D
We now move from first order logic back to dependence logic. We observed in

Corollary 6.22 that the truth definition of first order logic on a model Mω of

Peano’s axioms can be given in first order logic if one existential second order

quantifier is allowed. In dependence logic we can express the existential second

order quantifier, and thus the truth definition of first order logic on Mω can be

given in dependence logic. This can be extended to a truth definition of all of

dependence logic, and this is our goal in this section.

The fact that �1
1 has a truth definition in �1

1 on a structure with enough

coding is well known in descriptive set theory. It was observed in ref. [19] that,

as an application of Theorem 6.15, we have a truth definition for D in D on any

structure with enough coding.

We shall consider below a vocabulary L ⊇ L {+,×} ∪ {c}, where c is a new

constant symbol. If φ is a sentence of D in this vocabulary, we indicate the

inclusion of a new constant by writing φ as φ(c). Then, if d is another constant

symbol, φ(d) is the sentence obtained from φ(c) by replacing c everywhere by

d.

Theorem 6.24 (ref. [19]) Suppose L ⊇ L {+,×} ∪ {c} is finite. There is a sen-
tence τ (c) of D in the vocabulary L such that for all sentences φ of D in the
vocabulary L and all models Mω of Peano’s axioms:

Mω |= φ if and only if Mω |= τ (�φ�).

Proof By Theorem 6.2, every sentence of D is logically equivalent to a

�1
1-sentence of following the form:

∃R1 . . . ∃Rnφ
∗, (6.10)

108 Model theory

where φ∗ is first order. We now replace the second order quantifiers ∃R1 . . . ∃Rn

by just one second order quantifier ∃R0, where R0 is a unary predicate symbol

not in L . At the same time we replace every occurrence of Ri t1 . . . tn in φ∗ by

R0〈i, t1, . . . , tn〉, where (a1, . . . , an) �→ 〈a1, . . . , an〉 is the function in L {+,×}
coding n-sequences. Let the result be φ∗∗. Now the following are equivalent

for any φ in D in vocabulary L and any L-structure Mω, which is a model of

Peano’s axioms:

(i) Mω |= φ.

(ii) (Mω, Z) |= φ∗∗ for some Z ⊆ N.

Let L ′ = L ∪ {R0}. By Corollary 6.22, we obtain the equivalence of (ii) with

(iii) (Mω, Z , Sat) |= (θL ′ ∧ TRUE(�φ∗∗�)) for some Sat ⊆ N
2 and some Z ⊆

N.

By Corollary 6.16, there is a sentence τ0(c) of vocabulary L such that (iii) is

equivalent to

(iv) Mω |= τ0(�φ∗∗�).

Let t(x0) be a term of the vocabulary L {+,×} such that for all sentences φ of D
of vocabulary L the value of t(�φ�) in any L {+,×}-model of Peano’s axioms is

�φ∗∗�. Let τ (c) be the L-sentence τ0(t(c)). Then (i)–(iv) are equivalent to

(v) Mω |= τ (�φ�). �

Now that we have constructed the truth definition by recourse to �1
1-

sentences, it should be pointed out that we could write τ (c) also directly in

D, imitating the inductive definition of truth given in Definition 3.5. This is the

approach taken in a forthcoming publication by Hodges and Väänänen.3

Let us now go back to the Liar Paradox. By Theorem 6.19, there is a sentence

λ of D in the vocabulary L {+,×} such that for all Mω

Mω |= λ if and only if Mω |= ¬τ (�λ�).

Intuitively, λ says “This sentence is not true.” By Theorem 6.24,

Mω |= λ if and only if Mω |= τ (�λ�).

Thus

Mω |= τ (�λ�) if and only if Mω |= ¬τ (�λ�),

3 W. Hodges and J. Väänänen, Dependence of variables construed as an atomic formula; to
appear.

6.4 Truth definitions 109

which is, of course, only possible if

Mω �|= τ (�λ�) and Mω �|= ¬τ (�λ�).

Still another way of putting this is:

Mω �|= τ (�λ�) ∨ ¬τ (�λ�).

Thus we get the pleasing result that the assertion that the Liar sentence is true

(in the sense of τ (c)) is non-determined. This is in harmony with the intuition

that the Liar sentence does not have a truth value.

Exercise 6.32 Suppose

Mω |= ψ0 if and only if Mω |= τ (�ψ1�)

and

Mω |= ψ1 if and only if Mω |= ¬τ (�ψ0�).

Show that τ (�ψ0�) and τ (�ψ1�) are non-determined.

Exercise 6.33 Contemplation of the sentence “This sentence is not true” leads
immediately to the paradox (
): the sentence is true if and only if it is not true.
We have seen that we can write a sentence λ with the meaning “This sentence is
not true” in D. Still we do not get the result that (λ ↔ ¬λ) is true. Indeed, show
that (φ ↔ ¬φ) has no models, whatever φ in D is. Explain why the existence
of λ does not lead to the paradox (
).

Exercise 6.34 Suppose ψ says “If ψ is true, then ¬ψ is true,” i.e.

Mω |= ψ if and only if Mω |= (τ (�ψ�) → τ (�¬ψ�)).

Show that ψ is non-determined.

Exercise 6.35 Suppose ψ says “It is not true that ψ is true,” i.e.

Mω |= ψ if and only if Mω |= ¬τ (�τ (�ψ�)�).

Show that τ (�τ (�ψ�)�) is non-determined.

Exercise 6.36 Show that there cannot be τ ′(c) in D such that for all φ and all
Mω we have

Mω �|= φ if and only if Mω |= τ ′(�φ�).

Exercise 6.37 (See ref. [35].) Suppose Mω is a model of Peano’s axioms, as
above. Let T be the set of sentences of D that are true in Mω. Show that there

110 Model theory

is a model M of T such that for some a ∈ M we have

M |= (τ (a) ∧ τ (¬a)).

6.5 Model existence game

In this section we learn a new game associated with trying to construct a model

for a sentence or a set of sentences. The new game, called the model existence

game, is like H (φ) except that there is no model present. So the game is about

an imagined model. In particular, player II claims she has a model for φ but she

does not tell player I what it is. It turns out that if she has a winning strategy,

then there actually is a model for φ and we can build it from the winning

strategy.

6.5.1 First order case

We first treat the case of first order logic. After this we shall easily extend the

method to all of dependence logic.

In the model existence game we talk about semantics without actually having

any model. Let us take a countably infinite set C of new constant symbols.

Intuitively the new constants c are elements of the imaginary model.

Definition 6.25 The model existence game MEG (T, L) of the set T of first
order L-sentences is defined as follows. Let C be a countably infinite set of new
constant symbols. Let L ′ = L ∪ C. There are two players, I and II. We denote
players by α, and the opponent of α by α∗. A position of the game is a pair
(φ, α), where φ is an L ′-sentence and α ∈ {I, II}. At the beginning of the game
the position is (�, II). The rules of the game are as follows.

(1) Theory move Player I chooses φ ∈ T and the game continues from
the position (φ, II).

(2) Identity move Player I chooses a constant L ′-term t. The game con-
tinues from the position (t = t, II).

(3) Substitution move Player I chooses previous positions (φ(t), α) and (t =
t ′, II), where φ(t) is atomic, and then the game continues
from the position (φ(t ′), α).

(4) Negation move Player I chooses a previous position (¬φ, α). Then the
game continues from the position (φ, α∗).

(5) Disjunction move Player I chooses a previous position (φ0 ∨ φ1, α). Then
player α decides whether the game continues from the
position (φ0, α) or from the position (φ1, α).

6.5 Model existence game 111

Table 6.3.

I II Rule

∃x0¬(Px0 ∨ ¬P f x0) (1)
¬(Pc ∨ ¬P f c) (6)

Pc ∨ ¬P f c (4)
¬P f c (5)

P f c (4)
Pc (5)

f c = c′ (7)
Pc′ (3)
f c′ = c′′ (7)
f c′′ = c′′′ (7)
. . .
II wins

(6) Existential move Player I chooses a previous position of the form
(∃xnφ(xn), α). Player α chooses c ∈ C and the game
continues from the position (φ(c), α).

(7) Constant move Player I chooses a constant L ′-term t. Then player II
chooses c ∈ C and the game continues from the position
(t = c, II).

Player I wins if during the game both (φ, II) and (φ, I) occur as positions for
some atomic L ′-sentence φ. Otherwise II wins.

Example 6.26 Player II has a winning strategy in MEG({∃x0¬(Px0 ∨
¬P f x0)}, {P, f }). Table 6.3 shows a play of the game, when II plays her
winning strategy. The rules would allow I to prolong the game by repeating
previous moves but II would always give the same responses, and in the end II
wins anyway.

Example 6.27 In this example, I has a winning strategy in MEG({¬∃x0 (Pd ∨
¬Px0)}, {P, d}) (see Table 6.4).

A winning strategy of II in MEG(T, L) can be conveniently presented in the

form of a set of sets.

Definition 6.28 Let L be a countable vocabulary, let C be a countable set of
new constant symbols, and let L ′ = L ∪ C. A consistency property is any set �

of finite sets S of pairs (φ, α), where φ is a first order L-formula, and α ∈ {I, II},
which satisfies the following conditions.

112 Model theory

Table 6.4.

I II Rule

¬∃x0(Pd ∨ ¬Px0) (1)
∃x0(Pd ∨ ¬Px0) (4)

d = c (7)
Pd ∨ ¬Pc (6)
Pd (5)
Pc (3)
¬Pc (5)

Pc (4)
I has won

(i) If S ∈ �, then S ∪ {(t = t, II)} ∈ � for every constant L ′-term t.
(ii) If (φ(t), α) ∈ S ∈ �, φ(t) atomic, and (t = t ′, II) ∈ S, then S ∪

{(φ(t ′), α)} ∈ �.
(iii) If (¬φ, α) ∈ S ∈ �, then S ∪ {(φ, α∗)} ∈ �.
(iv) If (φ ∨ ψ, II) ∈ S ∈ �, then S ∪ {(φ, II)} ∈ � or S ∪ {(ψ, II)} ∈ �.
(v) If (φ ∨ ψ, I) ∈ S ∈ �, then S ∪ {(φ, I)} ∈ � and S ∪ {(ψ, I)} ∈ �.

(vi) If (∃xnφ(xn), II) ∈ S ∈ �, then S ∪ {(φ(c), II)} ∈ � for some c ∈ C.
(vii) If (∃xnφ(xn), I) ∈ S ∈ �, then S ∪ {(φ(c), I)} ∈ � for all c ∈ C.

(viii) For every constant L ′-term t there is c ∈ C such that S ∪ {(t = c, II)} ∈
�.

(ix) There is no atomic formula φ such that (φ, II) ∈ S and (φ, I) ∈ S.

The consistency property � is a consistency property for a set T of first order
L-sentences if for all S ∈ � and all φ ∈ T we have S ∪ {(φ, II)} ∈ �.

Lemma 6.29 The following are equivalent.

(i) Player II has a winning strategy in MEG(T, L).
(ii) There is a consistency property � for T .

Proof Suppose σ is a winning strategy of II in MEG(T, L). Suppose the game

MEG(T, L) is played for n rounds and II plays σ . A certain set S of positions

(φ, α) is generated. Let � be the set of all possible such sets S, when n ∈
N. Clearly � is a consistency property and for all S ∈ � and all φ ∈ T we

have S ∪ {(φ, II)} ∈ �. Conversely, if such a consistency property � existed,

player II would win MEG(T, L) by making sure the set of positions played is

in �. �

6.5 Model existence game 113

An extreme case of a consistency property � is the situation in which all the

finite sets in � are actually subsets of one and the same set H , and this set H
has nice closure properties (see below). Such sets are called Hintikka sets and

they were introduced in ref. [18]. In many applications of the model existence

game such a set is all we need. More refined proofs use a consistency property.

Definition 6.30 Let L be a let countable vocabulary, let C be a countable set
of new constant symbols, and let L ′ = L ∪ C. A Hintikka set is any set H of
pairs (φ, α), where φ is a first order L ′-sentence and α ∈ {I, II}, which satisfies
the following conditions.

(i) (t = t, II) ∈ H for every constant L ′-term t.
(ii) If (φ(t), α) ∈ H, φ(t) atomic, and (t = t ′, II) ∈ H, then (φ(t ′), α) ∈ H.

(iii) If (¬φ, α) ∈ H, then (φ, α∗) ∈ H.
(iv) If (φ ∨ ψ, II) ∈ H, then (φ, II) ∈ H or (ψ, II) ∈ H.
(v) If (φ ∨ ψ, I) ∈ H, then (φ, I) ∈ H and (ψ, I) ∈ H.

(vi) If (∃xnφ(xn), II) ∈ H, then (φ(c), II) ∈ H for some c ∈ C
(vii) If (∃xnφ, I) ∈ H, then (φ(c), I) ∈ H for all c ∈ C

(viii) For every constant L ′-term t and every (φ, α) ∈ H there is c ∈ C such
that (t = c, II) ∈ H.

(ix) There is no atomic sentence φ such that (φ, II) ∈ H and (φ, I) ∈ H.

The Hintikka set H is a Hintikka set for a set T of first order L-sentences if
(φ, II) ∈ H for all φ ∈ T .

Lemma 6.31 establishes the basic connection between consistency properties

and Hintikka sets. Roughly speaking, Hintikka sets are unions of increasing

chains in a consistency property, but this is not quite true: the increasing chains

have to be constructed carefully.

Lemma 6.31 Let T be a set of first order L-sentences.

(i) Suppose � is a consistency property for T . Then there is an increasing
sequence of Sn ∈ � such that H = ⋃

n Sn is a Hintikka set for T .
(ii) If H is a Hintikka set for T , then � = {S ⊆ H : S is finite} is a consistency

property for T .

Proof To prove the first claim, let T rm be the set of all constant L ′-terms. Let

T = {φn : n ∈ N};
C = {cn : n ∈ N};

T rm = {tn : n ∈ N}.

114 Model theory

Let {pn : n ∈ N} be a list of all elements of �. We let S0 ∈ � be arbitrary and

define an increasing sequence Sn ∈ � as follows:

(i) If n = 3i , then Sn+1 is Sn ∪ {(φi , II)} ∈ �.

(ii) If n = 2 · 3i , then Sn+1 is Sn ∪ {(ti = ti , II)} ∈ �.

(iii) If n = 4 · 3i · 5 j , pi = (t = t ′, II) ∈ Sn , and p j = (φ(t), α) ∈ Sn with

φ(t) atomic, then Sn+1 is Sn ∪ {(φ(t ′), α)} ∈ �.

(iv) If n = 8 · 3i and pi = (¬ψ, α) ∈ Sn , then Sn+1 is Sn ∪ {(ψ, α∗)}.
(v) If n = 16 · 3i and pi = (θ0 ∨ θ1, II) ∈ Sn , then Sn+1 is Sn ∪ {(θ1, II)} or

Sn ∪ {(θ1, II)}, whichever is in �.

(vi) If n = 32 · 3i · 5 j , j ∈ {0, 1} and pi = (θ0 ∨ θ1, I) ∈ Sn , then Sn+1 is Sn ∪
{(θ j , I)} ∈ �.

(vii) If n = 64 · 3i and pi = (∃xkφ, II) ∈ Sn , then Sn+1 is Sn ∪ {(φ(c), II)} for

such c ∈ C that Sn+1 ∈ �.

(viii) If n = 128 · 3i · 5 j and pi = (∃xkφ, I) ∈ Sn , then Sn+1 is Sn ∪
{(φ(c j), I)} ∈ �.

(ix) If n = 256 · 3i , then Sn+1 is Sn ∪ {(ti = c, II)} for such c ∈ C that Sn+1 ∈
�.

Clearly
⋃

n Sn is a Hintikka set for T .

The second claim is trivial. �

Combining Lemmas 6.29 and 6.31 immediately yields the following.

Corollary 6.32 The following are equivalent.

(i) There is a Hintikka set H for T .
(ii) Player II has a winning strategy in MEG(T, L)

Theorem 6.33 (Model Existence Theorem for first order logic) Suppose L
is a countable vocabulary and T is a set of L-sentences. The following are
equivalent.

(i) There is an L-structure M such that M |= T .
(ii) Player II has a winning strategy in MEG(T, L).

Proof Let us first assume such an M exists. The winning strategy of player

II in MEG(T, L) is to maintain the condition (
) that if the position is (φ, α),

then (φ, ∅, α) ∈ T . Player II defines interpretations of the constants c ∈ C in

M during the game, step by step, as soon as they appear.

(1) Position (φ, ∅, II), where φ ∈ T . Then (φ, ∅, II) ∈ T , since M is a model

of T .

6.5 Model existence game 115

(2) Position (t = t, II). Of course, M |= t = t , if the constants of t are inter-

preted in M. If they are not, we can interpret them in an arbitrary way.

(3) Player I has chosen previous positions (φ(t), α) and (t = t ′, II), and then the

game has continued to the position (φ(t ′), α). By the induction hypothesis,

M |= t = t ′. Thus (φ(t), ∅, α) ∈ T implies (φ(t ′), ∅, α) ∈ T .

(4) Position (¬φ, α). Since (¬φ, ∅, α) ∈ T , we have (φ, ∅, α∗) ∈ T . Thus II
can play this move according to her plan.

(5) Position (φ ∨ ψ, α). We know (φ ∨ ψ, ∅, α) ∈ T . Let us first assume α =
II. By the definition of T , (φ, ∅, II) or (ψ, ∅, II) is in T . Thus player II can

choose one of (φ, II), (ψ, II), and the respective triple (φ, ∅, II) or (ψ, ∅, II)

is in T . Condition (
) remains valid. Let us then assume α = I. Whichever

choice player I makes in position (φ ∨ ψ, I), condition (
) remains valid,

as both (φ, ∅, I) and (ψ, ∅, I) are in T .

(6) Position (∃xnφ(xn), α). We know (∃xnφ(xn), ∅, α) ∈ T . Let us first assume

α = II. By the definition of T , there is a ∈ M such that (φ, {(n, a)}, II)

is in T . Let us choose a new constant symbol c and interpret it in M
as a. Now the game can proceed to (φ(c), II) and condition (
) remains

valid. Suppose then α = I and I chooses c ∈ C . Now (φ, {(n, cM)}, α) ∈ T ,

whatever cM ∈ M is. If cM is defined already, we are done, otherwise we

let cM be an arbitrary4 element of M . Thus condition (
) remains valid.

(7) Player I chooses a constant L ′-term t . If some constants of t are not inter-

preted yet in M, we interpret them in an arbitrary way (it does not matter

which value they are given). Then a = tM is defined. Now player II chooses

any new c ∈ C and the game continues to the position (t = c, II). We let

cM = a, and condition (
) remains valid.

Let us then observe that if II plays according to this plan, she wins, for if she

ends up playing both (ψ, II) and (ψ, I) for some atomic L ′-sentence ψ , then

{(ψ, ∅, II) ∈ T and (ψ, ∅, I)} ∈ T , a contradiction.

On the other hand, suppose player II has a winning strategy in the game

MEG(T, L). By Corollary 6.32, there is a Hintikka set H such that (φ, II) ∈ H
for all φ ∈ T . Define c ∼ c′ if (c = c′, II) ∈ H . The relation ∼ is an equivalence

relation on C . Let us define an L-structureM as follows. We let M = {[c] : c ∈
C}. If d ∈ L is a constant symbol, we choose c ∈ C such that (d = c, II) ∈ H
and define dM = [c]. If f ∈ L and #(f) = n we let f M([ci1

], . . . , [cin]) = [c]

for some c such that (f ci1
. . . cin = c, II) ∈ H . For any term t and any u there is

a c ∈ C such that (t = c, II) ∈ H . It is easy to see that tM = [c]. For a relation

symbol R we let 〈[c1], . . . , [cn]〉 ∈ RM if and only if (Rc1 . . . cn, II) is in H .

4 To be precise, we can choose once and for all an element a0 of M always to be used at this step.

116 Model theory

We prove by induction on φ that if φ is an L-formula then

(

) If (φ, α) ∈ H, then(φ, ∅, α) ∈ T .

(i) φ is an equation t = t ′. If (t = t ′, II) ∈ H , then there are c and c′ in C
such that (t = c, II), (t ′ = c) ∈ H , and hence tM = [c] = [c′] = (t ′)M.

Thus (t = t ′, ∅, II) ∈ T . Similarly, if (t = t ′, I) ∈ H , then (t = t ′, II) /∈
H , whence [c] �= [c′], and (t = t ′, ∅, I) ∈ T follows.

(ii) φ is an atomic sentence Rt1 . . . tn . If (Rt1 . . . tn, II) ∈ H , then there are

c1, . . . , cn in C such that (ti = ci , II) ∈ H for i = 1, . . . , n, whence

(Rc1 . . . cn, II) ∈ H , and hence by the definition of M, ([c1], . . . , [cn]) ∈
RM. Thus (Rt1 . . . tn, ∅, II) ∈ T . If (Rt1 . . . tn, I) ∈ H , then the pair

(Rc1 . . . cn, II) is not in H , and hence by the definition of M,

([c1], . . . , [cn]) /∈ RM. Thus (Rt1 . . . tn, ∅, I) ∈ T .

(iii) Negation: if (¬φ, α) ∈ H , then (φ, α∗) ∈ H , hence by the induction

hypothesis (φ, ∅, α∗) ∈ T , i.e. (φ, ∅, α) ∈ T .

(iv) Disjunction: if (φ ∨ ψ, II) ∈ H , then (φ, II) ∈ H or (ψ, II) ∈ H , hence

by the induction hypothesis (φ, ∅, II) ∈ T or (ψ, ∅, II) ∈ T , i.e. (φ ∨
ψ, ∅, II) ∈ T . If (φ ∨ ψ, I) ∈ H , then (φ, I) ∈ H and (ψ, I) ∈ H , hence

by the induction hypothesis (φ, ∅, I) ∈ T and (ψ, ∅, I) ∈ T , i.e. (φ ∨
ψ, ∅, I) ∈ T .

(v) Quantifier: if (∃xnφ(xn), II) ∈ H , there is a c ∈ C such that the pair

(φ(c), II) is in H . By the induction hypothesis (φ(c), ∅, II) ∈ T . Thus the

triple (φ, {(n, [c])}, II) is inT , whence the triple (∃xnφ(xn), ∅, II) is inT . If

the pair (∃xnφ(xn), I) is in H , and [c] ∈ M is arbitrary, then (φ(c), I) ∈ H .

By the induction hypothesis (φ(c), ∅, I) ∈ T . Thus (φ, {(n, [c])}, I) ∈ T ,

whence (∃xnφ(xn), ∅, I) ∈ T .

In particular, since H is a Hintikka set for T , M |= T . �

Corollary 6.34 Suppose L is a countable vocabulary, T is a set of L-sentences,
and φ is any L-sentence. Then the following are equivalent:

(i) T |= φ;
(ii) player I has a winning strategy in MEG(T ∪ {¬φ}, L).

Proof The game MEG(T ∪ {¬φ}, L) is determined. So, by Theorem 6.33, con-

dition (ii) is equivalent to T ∪ {¬φ} not having a model, which is exactly what

condition 1 says (remember that φ is assumed to be first order). �

In first order logic, condition (i) of Corollary 6.34 is equivalent to φ having

a formal proof from T (see, e.g., ref. [8] for a definition of formal proof). We

can think of a winning strategy of player I in MEG(T ∪ {¬φ}, L) as a semantic

6.5 Model existence game 117

proof of φ from T . In the literature this concept, or its close relatives, occur

under the name of semantic tree or Beth tableaux.

The model existence theorem has many applications in first order logic. We

mention, in particular, the Compactness Theorem, the Omitting Types Theorem

and the Interpolation Theorem.

6.5.2 Model existence game for Skolem Normal Form

Suppose φ is a �1
1-sentence in Skolem normal form,

∃ f1 . . . ∃ fn∀x1 . . . ∀xmψ, (6.11)

where ψ is quantifier-free and f1, . . . , fn are function symbols not in L . We

denote the extension of L by the various new function symbols f1, . . . , fn

occurring in the formulas in Eq. (6.11) by L∗. The model existence game

that we now define for �1
1 is shockingly simple in that its positions involve

quantifier-free sentences only.

Definition 6.35 The model existence game MEG�1
1
(T, L) of the set T of �1

1 -
sentences in Skolem normal form of the vocabulary L is defined as follows.
Let C be a countably infinite set of new constant symbols. Let L ′ = L∗ ∪ C.
A position of the game is a pair (φ, α), where φ is a quantifier-free first order
L ′-formula and α ∈ {I, II}. At the beginning of the game, the position is (�, II).
The rules of the game are as follows.

(1) Theory move. Player I chooses

∃ f1 . . . ∃ fn∀xi1
. . . ∀xim ψ(xi1

, . . . , xim) ∈ T

and c1, . . . , cn ∈ C, and then the game continues from
the position (ψ(c1, . . . , cn), II).

(2) Identity move. Player I chooses an L ′-term t. The game continues from
the position (t = t, II).

(3) Substitution move. Player I chooses previous positions (φ(t), α), φ(t)
atomic, and (t = t ′, II), and then the game continues
from the position (φ(t ′), α).

(4) Negation move. Player I chooses a previous position (¬φ, α). Then the
game continues from the position (φ, α∗).

(5) Disjunction move. Player I chooses a previous position (φ0 ∨ φ1, α). Then
player α decides whether the game continues from the
position (φ0, α) or from the position (φ1, α).

118 Model theory

(6) Constant move. Player I chooses an L ′-term t. Then player II chooses
c ∈ C and the game continues from the position (t =
c, II).

Player I wins if at any point II has played (φ, II) and (φ, I) for some atomic
L ′-sentence φ. Otherwise II wins.

Note that I can play the Theory move several times during the game; indeed,

he typically may play it infinitely many times.

The following result follows immediately from Theorem 6.33.

Theorem 6.36 (Model Existence Theorem for Skolem Normal Form) Sup-
pose L is a countable vocabulary and T is a set of �1

1 -sentences of vocabulary
L in Skolem Normal Form. The following are equivalent.

(i) There is an L-structure M such that M |= T .
(ii) Player II has a winning strategy in MEG�1

1
(T, L).

Since �1
1 is not closed under negation, we do not get a concept of “seman-

tic proof” for �1
1 from MEG�1

1
(T, L∗). It does not make sense to talk about

MEG�1
1
(T ∪ {¬φ}, L∗), since we cannot in general write ¬φ in Skolem Nor-

mal Form, unless it is actually first order. Instead we can view Theorem 6.36

as a useful criterion of consistency of a set of �1
1 sentences. So the model exis-

tence game provides �1
1 a criterion for consistency but no criterion of logical

consequence and no concept of proof.

We know from Theorem 6.15 that every sentence φ of dependence logic

is logically equivalent to a �1
1-sentence τ1,φ . Moreover, also ¬φ is logically

equivalent to a �1
1-sentence τ0,φ . If T is a set of sentences of dependence logic,

let τT be the set of all τ1,φ , where φ ∈ T . Thus we obtain from the above the

following.

Corollary 6.37 Suppose L is a countable vocabulary, T is a set of sentences of
dependence logic of vocabulary L, and φ is any sentence of dependence logic
in vocabulary L. Then the following are equivalent.

(i) No model of T is a model of ¬φ.
(ii) Player I has a winning strategy in MEG�1

1
(τT ∪ {τ0,φ}, L).

Unfortunately, condition (i) in Corollary 6.37 is not equivalent to T |= φ, as

φ may be non-determined in some models of T . Certainly, if T |= φ, condition

(i) holds. So, condition (i) is a weak form of provability for D. It would be

strong enough to give T |= φ if φ was determined, but then φ would be first

order. As it is, condition (ii) gives a complete criterion for deciding whether a

first order sentence is a logical consequence of a set of sentences of D.

6.5 Model existence game 119

Exercise 6.38 Describe a winning strategy of player II in MEG(T, L), when.

(i) T = {∀x0(Px0 ∨ Qx0), ∃x0 Px0, ∃x0¬Qx0};
(ii) T = {∀x Rx f x, ¬∃x∀y¬Rxy}.
Exercise 6.39 Describe a winning strategy of player I in the game MEG(T, L),
when

(i) T = {∀x0(Px → Qx), ∃x0 Px0, ¬∃x0 Qx0};
(ii) T = {∀x Rx f x, ¬∀x∃y Rxy}.
Exercise 6.40 Let L be let a countable vocabulary, let C be a countable set
of new constant symbols and L ′ = L ∪ C. Let � be the set of finite sets S of
L ′-sentences such that for each S there is a model MS in which every element
is an interpretation of some constant c ∈ C, and which satisfies

(φ, II) ∈ S implies MS |= φ, and (φ, I) ∈ S implies MS |= ¬φ.

Show that � is a consistency property.

Exercise 6.41 Let Mω be a model of Peano’s axioms. Let T be the set of first
order L {+,×}-sentences that are true in Mω. Let d be a new constant symbol
and L = L {+,×} ∪ {d}. Let T ′ be the union of T and the sentences n < d for all
n < ω. Show that II can win the game MEG(T ′, L) with the following strategy:
if the played positions are (φi , αi), i = 1, . . . , n, then Mω has an expansion
that is a model of

{φi : αi = II} ∪ {¬φi : αi = I}.
Exercise 6.42 Prove in detail that (i) → (i i) in Lemma 6.29.

Exercise 6.43 Prove in detail that (i i) → (i) in Lemma 6.29.

Exercise 6.44 Suppose H is a Hintikka set. Define c ∼ c′ if (c = c′, II) ∈ H.
Prove that ∼ is an equivalence relation on C.

Exercise 6.45 Suppose S1 and S2 are sets of first order sentences. Let the
vocabulary of S1 be L1 and let the vocabulary of S2 be L2. If L ⊆ Li , we denote
by Si�L the set of φ ∈ Si , the vocabulary of which is contained in L. We say
that an L1 ∩ L2-sentence θ separates S1 and S2 if S1 |= θ and S2 ∪ {θ} has no
models, and that S1 and S2 are separable if some first order θ separates them;
otherwise they are inseparable.

Suppose L1 and L2 are vocabularies consisting (for simplicity) of relation
symbols only. Suppose φ is a first order L1-sentence and ψ is a first order
L2-sentence. Let C be a countably infinite set of new constant symbols. Let �

be the set of all finite sets S of pairs (θ, α) satisfying the following conditions.

120 Model theory

(i) If (θ, α) ∈ S, then θ is an L1 ∪ C-sentence or an L2 ∪ C-sentence and
α ∈ {I, II}.

(ii) If T (S) = {θ : (θ, II) ∈ S} ∪ {¬θ : (θ, I) ∈ S}, then T (S)�(L1 ∪ C) and
T (S)�(L2 ∪ C) are inseparable.

Show that � is a consistency property if conditions (i) and (viii) of Defini-
tion 6.28 are modified to refer only to terms t that are either L1 ∪ C-terms
or L2 ∪ C-terms. (This exercise can be used to prove the Separation Theorem
(Theorem 6.7).)

Exercise 6.46 Let T be a set of sentences of D of a countable vocabulary
L such that every finite subset of T has a model. Describe, without appeal-
ing to the Compactness Theorem (Theorem 6.4), a winning strategy of II
in MEG�1

1
(τT , L). This, combined with the Model Existence Theorem (The-

orem 6.36) gives a proof of the Compactness Theorem (Theorem 6.4).

Exercise 6.47 Give sentences φ and ψ of D such that φ and ψ have no finite
models in common, and, if we denote the vocabulary of φ by L and the vocab-
ulary of ψ by L ′, then there is no first order sentence θ of vocabulary L ∩ L ′

such that every finite model of φ is a model of θ , and θ and ψ have no finite
models in common.

Exercise 6.48 Suppose we have a countable vocabulary L and T is a set of
first order L-sentences. A type of T is a countable sequence ψ0(x0), ψ1(x0), . . .

of formulas with just one free variable x such that for all n: T ∪ {∃x(ψ0(x) ∧
. . . ∧ ψn(x))} has a model. A model M of T satisfies a type p if some element
a of M satisfies M |={(x0,a)} ψ(x0) for all ψ(x0) ∈ p. A model M of T omits

the type p if no element of M satisfies p. A type p of T is principal if there is a
formula θ (x0) such that

� T |= θ (x0) → ψ(x0) for all ψ(x0) ∈ p;
� every finite subset of T ∪ {∃x0θ (x0)} has a model.

Suppose p = {ψn(x0) : n ∈ N} is a non-principal type of T . By Exercise 6.46,
player II has a winning strategy in the game MEG(T, L). Let � be a consistency
property for T . Show that there is a function f : N → N and an increasing
sequence Sn in � such that

⋃
n Sn is a Hintikka set for T ∪ {¬φ f (n)(cn) : n ∈ N}.

Derive the Omitting Types Theorem: if L is a countable vocabulary, T a set of
L-sentences such that T has a model, and p a non-principal type of T , then T
has a countable model which omits p.

Exercise 6.49 (Failure of Omitting Types Theorem inD) This is a continuation
of Exercise 6.48. Give an example of a first order theory T in a countable

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 121

vocabulary L and type p = {ψn(x0) : n ∈ N} of formulas ofD in the vocabulary
L such that

� p is a non-principal type of T in the sense of Exercise 6.48;
� no model of T omits p.

Exercise 6.50 Let us write

T �D φ

if player I has a winning strategy in MEG�1
1
(τT ∪ {τ0,φ}, L), or equivalently, if

no model of T is a model of ¬φ. Show that

(i) if T �D φ and T �D ψ , then T �D (φ ∧ ψ);
(ii) if φ �D θ and ψ �D θ , then (φ ∨ ψ) �D θ ;

(iii) φ ��D ¬φ and ¬φ ��D φ.

Exercise 6.51 Continuation of Exercise 6.50. Show that

(i) T has a model if and only if T ��D ¬�;
(ii) T �D (φ ∧ ¬φ) if and only if φ is non-determined in models of T .

Exercise 6.52 Continuation of Exercise 6.50. Show that φ �D ψ and ψ �D
θ do not necessarily imply φ �D θ .

Exercise 6.53 Continuation of Exercise 6.50. Give T and φ such that T �D φ

but there is no finite T0 ⊆ T such that T0 �D φ.

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic

We define the concept of elementary equivalence of models and give this concept

a game characterization. In this section we assume that vocabularies do not

contain function symbols, for simplicity.

Definition 6.38 Two models M and N of the same vocabulary are D-
equivalent in symbols M ≡D N if they satisfy the same sentences of depen-
dence logic.

It is easy to see that isomorphic structures are D-equivalent and that D-

equivalence is an equivalence relation. However, despite the quite strong

Löwenheim–Skolem Theorem of dependence logic, we have the following neg-

ative result about D-equivalence.

Proposition 6.39 There is an uncountable model M in a finite vocabulary
such that M is not D-equivalent to any countable models.

122 Model theory

M N
s s

Fig. 6.1. A position in the ordinary Ehrenfeucht–Fraı̈ssé game.

Proof LetM = (R, N) be a model for the vocabulary {P}. SupposeM ≡D N ,

where N is countable. It is clear that there is a one-to-one function from N into

PN . Let φ be a sentence of D which says exactly this. Since N |= φ, we have

M |= φ, a contradiction. �

It turns out that the following, more basic, concept is a far better concept to

start with.

Definition 6.40 Suppose M and N are structures for the same vocabulary.
We say that M is D-semiequivalent to N , in symbols M�DN , if N satisfies
every sentence of dependence logic that is true in M.

Note that equivalence and semiequivalence are equivalent concepts if depen-

dence logic is replaced by first order logic.

Proposition 6.41 Every infinite model in a countable vocabulary is D-semi-
equivalent to models of all infinite cardinalities.

Proof Suppose M is an infinite model with a countable vocabulary L . Let T
be the set of sentences of dependence logic in the vocabulary L that are true

in M. By Theorem 6.5 the theory T has models of all infinite cardinalities

(Theorem 6.5 is formulated for sentences only, but the proof for countable

theories is the same). �

We now introduce an Ehrenfeucht–Fraı̈ssé game adequate for dependence

logic and use this game to characterize �D . See Figs. 6.1 and 6.2.

Definition 6.42 Let M and N be two structures of the same vocabulary. The
game EFn has two players and n moves. The position after move m is a pair
(X, Y), where X ⊆ Mm and Y ⊆ N m for some m. In the beginning, the position

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 123

M N
X

Y

Fig. 6.2. A position in the Ehrenfeucht–Fraı̈ssé game for D.

M
N

X0
Y0

X1
Y1

Fig. 6.3. A splitting move.

is ({∅}, {∅}) and i0 = 0. Suppose the position after move number m is (X, Y).
There are the following possibilities for the continuation of the game.

Splitting move. Player I represents X as a union X = X0 ∪ X1. Then
player II represents Y as a union Y = Y0 ∪ Y1. Now
player I chooses whether the game continues from the
position (X0, Y0) or from the position (X1, Y1); see
Fig. 6.3.

Duplication move. Player I decides that the game should continue from the
new position

(X (M/xim), Y (N/xim));

see Fig. 6.4.
Supplementing move. Player I chooses a function F : X → M. Then player

II chooses a function G : Y → N. Then the game
continues from the position (X (F/xim), Y (G/xim)); see
Fig. 6.5.

124 Model theory

M N
X(M/xn)

Y (N/xn)

Fig. 6.4. A duplication move.

M N
X(F /xn)

Y(G/xn)

Fig. 6.5. A supplementing move.

After n moves the position (Xn, Yn) is reached and the game ends. Player II is
the winner if

M |=Xn φ ⇒ N |=Yn φ

holds for all atomic and negated atomic and dependence formulas of the form
φ(x0, . . . , xin−1). Otherwise player I wins.

This is a game of perfect information, and the concept of winning strategy

is defined as usual. By the Gale–Stewart Theorem, the game is determined.

Definition 6.43

(i) qr(φ) = 0 if φ is atomic or a dependence formula.
(ii) qr(φ ∨ ψ) = max(qr(φ), qr(ψ)) + 1.

(iii) qr(∃xnφ) = qr(φ) + 1.
(iv) qr(¬φ) :

(a) qr(¬φ) = 0 if φ is atomic or a dependence formula;
(b) qr(¬¬φ) = qr(φ);
(c) qr(¬(φ ∨ ψ)) = max(qr(¬φ), qr(¬ψ));
(d) qr(¬∃xnφ) = qr(¬φ) + 1.

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 125

Let Fmlmn be the set of formulas φ of D with qr φ ≤ m and with free variables
among x0, . . . , xn−1. We write M �n

D N if M |= φ implies N |= φ for all φ

in Fmln0 , and M ≡n
D N if M |= φ is equivalent to N |= φ for all φ in Fmln0 .

Note that there are for each n and m, up to logical equivalence, only finitely

many formulas in Fmlmn .

Theorem 6.44 Suppose M and N are models of the same vocabulary. Then
the following are equivalent:

(1) player II has a winning strategy in the game EFn(M,N);
(2) M �n

D N .

Proof We prove the equivalence, for all n, of the following two statements.

(3)m Player II has a winning strategy in the game EFm(M,N) in position

(X, Y), where X ⊆ Mn and Y ⊆ N n .

(4)m If φ is a formula in Fmlmn , then

M |=X φ ⇒ N |=Y φ. (6.12)

The proof is by induction on m. For each m we prove the claim simulta-

neously for all n. The case m = 0 is true by construction. Let us then assume

(3)m ⇐⇒ (4)m as an induction hypothesis. Assume now (3)m+1 and let φ be

a formula in Fmlm+1
n such that M |=X φ. As part of the induction hypothesis,

we assume that the claim in Eq. (6.12) holds for formulas shorter than φ.

Case (1) φ = ψ0 ∨ ψ1, where ψ0, ψ1 ∈ Fmlmn . Since M |=X φ, there are X0

and X1 such that X = X0 ∪ X1, M |=X0
ψ0 and M |=X1

ψ1. We let

I play {X0, X1}. Then II plays according to her winning strategy

{Y0, Y1}. Since the next position in the game can be either one of

(X0, Y0), (X1, Y1), we can apply the induction hypothesis to both.

This yields N |=Y0
ψ0 and N |=Y1

ψ1. Thus N |=Y φ.

Case (2) φ = ∃xnψ , where ψ ∈ Fmlmn−1. Since M |=X φ, there is a function

F : X → M such that M |=X (F/xn) ψ . We let I play F . Then II plays

according to her winning strategy a function G : Y → N and the game

continues in position (X (F/xn), Y (G/xn)). The induction hypothesis

gives N |=Y (G/xn) ψ . Now N |=Y φ follows.

Case (3) φ = ¬¬ψ , n = max(n0, n1). SinceM |=X φ, we haveM |=X ψ . By

the induction hypothesis, N |=Y ψ . Thus N |=Y φ.

Case (4) φ = ¬(ψ0 ∨ ψ1), where ψ0, ψ1 ∈ Fmlmn . Since M |=X φ, we have

M |=X ¬ψ0 and M |=X ¬ψ1. By the induction hypothesis, N |=Y

¬ψ0 and N |=Y ¬ψ1. Thus N |=Y φ.

126 Model theory

Case (5) φ = ¬∃xnψ , where ¬ψ ∈ Fmlmn+1. By assumption,M |=X (M/xn) ¬ψ .

We let now I demand that the game continues in the duplicated position

(X (M/xn), Y (N/xn)). The induction hypothesis gives N |=Y (N/xn)

¬ψ . Now N |=Y φ follows trivially.

To prove the converse implication, assume (4)m+1. To prove (3)m+1 we con-

sider the possible moves that player I can make in the position (X, Y).

Case (i) Player I writes X = X0 ∪ X1. Let φ j , j < k, be a complete list (up

to logical equivalence) of formulas in Fmlmn . Since

M |=X0
¬

∨
M|=X0

φ j

¬φ j

and

M |=X1
¬

∨
M|=X1

φ j

¬φ j ,

we have

M |=X

⎛
⎝¬

∨
M|=X0

φ j

¬φ j

⎞
⎠ ∨

⎛
⎝¬

∨
M|=X1

φ j

¬φ j

⎞
⎠ .

Note that

qr

(
¬

∨
M|=X1

φ j

¬φ j

)
= max

M|=X1
φ j

(¬¬φ j) = max
M|=X1

φ j

φ j ≤ m.

Therefore, by (4)m+1,

N |=Y

⎛
⎝¬

∨
M|=X0

φ j

¬φ j

⎞
⎠ ∨

⎛
⎝¬

∨
M|=X1

φ j

¬φ j

⎞
⎠ .

Thus Y = Y0 ∪ Y1 such that

N |=Y0
¬

∨
M|=X0

φ j

¬φ j

and

N |=Y1
¬

∨
M|=X1

φ j

¬φ j .

By this and the induction hypothesis, player II has a winning strategy

in the positions (X0, Y0), (X1, Y1). Thus she can play {Y0, Y1} and

maintain her winning strategy.

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 127

Case (ii) Player I decides that the game should continue from the new position

(X (M/xn), Y (m/xn)). We claim that

M |=X (M/xn) φ ⇒ N |=Y (N/xn) φ

for all φ ∈ Fmlmn+1. From this the induction hypothesis would imply

that II has a winning strategy in the position (X (M/xn), Y (N/xn)).

So let us assume M |=X (M/xn) φ, where φ ∈ Fmlmn+1. By

definition,

M |=X ¬∃xn¬φ.

Since ¬∃xn¬φ ∈ Fmlm+1
n , (4)m+1 gives N |=Y ¬∃xn¬φ and

N |=Y (N/xn) φ follows.

Case (iii) Player I chooses a function F : X → M . Letφi , i < M be a complete

list (up to logical equivalence) of formulas in Fmlmn+1. Now

M |=X ∃xn¬
∨

M|=X (F/xn)φi

¬φi .

Note that

qr

(
∃xn¬

∨
M|=X (F/xn)φ j

¬φ j

)
= qr

(
¬

∨
M|=X (F/xn)φ j

¬φ j

)
+ 1

=
(

max
M|=X (F/xn)φ j

qr(¬¬φ j)

)
+ 1

=
(

max
M|=X (F/xn)φ j

qr(φ j)

)
+ 1 ≤ m + 1,

and hence, by (4)m+1,

N |=Y ∃xn¬
∨

M|=X (F/xn)φi

¬φi .

Thus there is a function G : Y → N such that

N |=Y (G/xn) ¬
∨

M|=X (F/xn)φi

¬φi .

The game continues from position (X (F/xn), Y (G/xn)). Given that

now

M |=X (F/xn) φ ⇒ N |=Y (G/xn) φ

for all φ ∈ Fmlmn+1, the induction hypothesis implies that II has a

winning strategy in position (X (F/xn), Y (G/xn)).
�

128 Model theory

Corollary 6.45 Suppose M and N are models of the same vocabulary. Then
the following are equivalent.

(1) M �D N .
(2) For all natural numbers n, player II has a winning strategy in the game

EFn(M,N).

Corollary 6.46 Suppose M and N are models of the same vocabulary. Then
the following are equivalent.

(1) M ≡D N .
(2) For all natural numbers n, player II has a winning strategy both in the

game EFn(M,N) and in the game EFn(N ,M).

The two games EFn(M,N) and EFn(N ,M) can be put together into one

game simply by making the moves of the former symmetric with respect to M
and N . Then player II has a winning strategy in this new game if and only if

M ≡n
D N . Instead of a game, we could have used a notion of a back-and-forth

sequence.

The Ehrenfeucht–Fraı̈ssé game can be used to prove non-expressibility

results for D, but we do not yet have examples where a more direct proof using

compactness, interpolation, and Löwenheim–Skolem theorems would not be

simpler.

Proposition 6.47 There are countable modelsM andN such thatM �D N ,
but N �≡D M.

Proof Let M be the standard model of arithmetic. Let 	n, n ∈ ω, be the list of

all �1
1-sentences true in M. Suppose

	n = ∃Rn
1 . . . ∃Rn

kn
φn.

Let M∗ be an expansion of M in which each φn is true. Let N ∗ be a countable

non-standard elementary extension of M∗. Let N be the reduct of N ∗ to the

language of arithmetic. By construction,M �D N . On the other hand,N ��D
M as non well-foundedness of the integers inN can be expressed by a sentence

of D. �

Proposition 6.48 Suppose K is a model class5 and n is a natural number. Then
the following are equivalent:

5 A model class is a class of models, closed under isomorphism, of the same vocabulary.

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 129

Table 6.5.

X

x0 x1 x2

0 2 1
1 0 0
2 1 1

(1) K is definable in dependence logic by a sentence in Fmln0;
(2) K is closed under the relation �n

D .

Proof Suppose K is the class of models of φ ∈ Fmln0. If M |= φ and M �n
D

N , then, by definition, N |= φ. Conversely, suppose K is closed under �n
D .

Let

φM = ¬
∨

{¬φ : φ ∈ Fmln0,M |= φ},

where the conjunction is taken over a finite set which covers all such φ up to

logical equivalence. Let θ be the disjunction of all φM, where M ∈ K . Again

we take the disjunction over a finite set up to logical equivalence. We show that

K is the class of models of θ . If M ∈ K then M |= φM, whence M |= θ . On

the other hand suppose M |= φN for some N ∈ K . Now N �n
D M, for if

N |= φ and φ ∈ Fmln∅, then φ is logically equivalent with one of the conjuncts

of φN , whence M |= φ. As K is closed under �n
D , we have M ∈ K . �

Corollary 6.49 Suppose K is a model class. Then the following are equiva-
lent:

(1) K is definable in dependence logic.
(2) There is a natural number n such that K is closed under the relation �n

D .

Corollary 6.49 also gives a characterization of �1
1-definability in second

order logic. No assumptions about cardinalities are involved, so if we restrict

ourselves to finite models we get a characterization of NP-definability.

Exercise 6.54 Suppose L = ∅ and M is an L-structure such that M =
{0, 1, 2}. Consider the team in Table 6.5. List the formulas φ in Fml03 such
that X is of type φ in M.

130 Model theory

Table 6.6.

X

x0 x1 x2

30 30 10
1 1 0
2 2 1
30 30 1

Table 6.7.

X

x0 x1 x2

0 0 0
1 2 0
2 4 1
3 8 1
3 16 1
3 32 1

Exercise 6.55 Suppose L = ∅ and M is an L-structure such that M = N.
Consider the team in Table 6.6. List the formulas φ in Fml03 such that X is of
type φ in M.

Exercise 6.56 Suppose L = {P} and M is an L-structure such that M = N

and PM = {2n : n ∈ N}. Consider the team in Table 6.7. List the formulas φ

in Fml03 such that X is of type φ in M.

Exercise 6.57 Suppose L = ∅ and M and N are L-structures such that
M = {0, 1, 2} and N = {a, b, c, d}, where a, b, c, and d are distinct. The
game EF3(M,N) ends in the position shown in Table 6.8. Who won the
game?

Exercise 6.58 Suppose L = ∅ and M and N are L-structures such that
M = {0, 1, 2} and N = {a, b, c, d}, where a, b, c, and d are distinct. The
game EF3(M,N) ends in the position shown in Table 6.9. Who won the
game?

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 131

Table 6.8.

X Y

x0 x1 x2 x0 x1 x2

0 2 2 a c b
1 0 0 b b c
2 1 1 c a a

d d d

Table 6.9.

X Y

x0 x1 x2 x0 x1 x2

0 1 1 a c b
1 1 0 b c b
2 1 0 c c b

d c a

Table 6.10.

X Y

x0 x1 x0 x1

0 2 a b
1 3 b c
2 3 c d
3 2 d a

Exercise 6.59 Suppose L = ∅ and M and N are L-structures such that M =
{0, 1, 2, 3} and N = {a, b, c, d}, where a, b, c, and d are distinct. The game
EF3(M,N) is in the position shown in Table 6.10. Can you spot a good splitting
move for player I?

Exercise 6.60 Suppose L = {P} and M and N are L-structures such that
M = {0, 1, 2}, PM = {0}, N = {a, b, c}, and PN = ∅, where a, b, and c are
distinct. The game EF3(M,N) is in the position shown in Table 6.11. Can you
spot a good supplementing move for player I?

132 Model theory

Table 6.11.

X Y

x0 x1 x0 x1

0 2 a b
1 1 b b
2 1 c a

Exercise 6.61 Let L = ∅. Show that there is no sentence φ of vocabulary L in
Fml20 such that M |= φ if and only if M is infinite.

Exercise 6.62 Let L = ∅. Show that there is no sentence φ of vocabulary L
in Fml20 such that for finite models M we have M |= φ if and only if |M | is
even.

Exercise 6.63 Show that there is a countable model which is not D-equivalent
to any uncountable models.

Exercise 6.64 Show that (R, N) �D (Q, N).

Exercise 6.65 Show that (ω + ω∗ + ω, <) ��D (ω, <).

Exercise 6.66 Show that if M �D N and N is a connected graph, then so
is M.

Exercise 6.67 Give three models M, M′, and M′′ such that M �D M′ and
M �D M′′, but M′ ��D M′′ and M′′ ��D M′.

Exercise 6.68 Give models Mn such that for all n ∈ N we have Mn+1 �D
Mn, but Mn ��D Mn+1.

Exercise 6.69 Let Part(M,N) be the set of pairs (X, Y), where, for some n,
both X ⊆ Mn and Y ⊆ N n, and, moreover, Y is of the type of any atomic,
negated atomic formula, or atomic dependence formulas, φ(x0, . . . , xn−1) in
N and X is in M. Suppose M and N are L-structures. A dependence back-

and-forth set from M to N is any non-empty set P ⊆ Part(M,N) such that
for all (X, Y) ∈ P:

(i) for any X1 and X2 such that X = X1 ∪ X2 there are Y1 and Y2 such that
Y = Y1 ∪ Y2 and both (X1, Y1) ∈ P and (X2, Y2) ∈ P;

(ii) (X (M/xn), Y (N/xn)) ∈ P;

6.6 Ehrenfeucht–Fraı̈ssé game for dependence logic 133

(iii) for any mapping F : X → M there is a mapping G : Y → N such that
(X (F/xn), Y (G/xn)) ∈ P.

The structureM is said to be partially dependence isomorphic toN , in symbols
M �D N , if there is a back-and-forth set from M to N . Show that M �D N
implies M �D N .

Exercise 6.70 This continues Exercise 6.69. Show that if M ∼= N , then
M �D N .

Exercise 6.71 This continues Exercise 6.69. Show that if M �D M′ and
M′ �D M′′, then M �D M′′.

Exercise 6.72 This continues Exercise 6.69. Give dense linear orders without
end points M and M′ such that M ��D M′.

7

Complexity

7.1 Decision and other problems

The basic problem this chapter considers is how difficult is it to decide some

basic questions concerning the relation M |= φ, when M is a structure and φ

is a D-sentence? Particular questions we will study are as follows:

Decision Problem. Is φ valid, i.e. does M |= φ hold for all M? See

Fig. 7.1.

Non-validity Problem. Is φ nonvalid, i.e. does φ avoid some model, i.e.

does M |= φ fail for some model M?

Consistency Problem. Is φ consistent, i.e. does φ have a model, i.e. does

M |= φ hold for some M?

Inconsistency Problem. Is φ inconsistent, i.e. does φ avoid all models, i.e.

is M |= φ true for no model M at all?

Obviously such questions depend on the vocabulary. In a unary vocabulary

it may be easier to answer some of the above questions. On the other hand, if at

least one binary predicate is allowed, then the questions are as hard as for any

other vocabulary, as there are coding techniques that allow us to code bigger

vocabularies into one binary predicate. We can ask the same questions about

models of particular theories such as like groups, linear orders, fields, graphs,

and so on. Furthermore, we can ask these questions in the framework of finite

models.

By definition,

φ is non-valid if and only if φ is not valid,

φ is inconsistent if and only if φ is not consistent.

So it suffices to concentrate on the Decision Problem and the Consistency

Problem. In first order logic we have the further equivalence

φ is consistent if and only if ¬φ is not valid.

134

7.2 Some set theory 135

Table 7.1.

First order logic

Problem Complexity

Decision Problem �0
1

Non-validity Problem �0
1

Consistency Problem �0
1

Inconsistency Problem �0
1

Is φ valid?

Yes

No

Fig. 7.1. Machine model of complexity.

So, if we crack the Decision Problem for first order logic, everything else

follows. Indeed, the Gödel Completeness Theorem tells us that a first order

sentence is valid if and only if it is provable. Hence the Decision Problem of

first order logic is �0
1 (i.e. recursively enumerable); see Fig 7.2. We obtain

Table 7.1.

The Consistency Problem for dependence logic can be reduced to that of

first order logic by the following equivalence:

φ is consistent if and only if τ1,φ is consistent.

So we obtain Table 7.2.

In Section 7.2 we will replace the two question marks with a complexity

class.

7.2 Some set theory

The complexity of the Decision Problem and of the Non-validity Problem of

dependence logic is so great that we have to move from complexity measures

136 Complexity

Table 7.2.

Dependence logic

Problem Complexity

Decision Problem ?

Nonvalidity Problem ?

Consistency Problem �0
1

Inconsistency Problem �0
1

Σ0
1

recursive

Π0
1

Fig. 7.2. Degrees of decidability.

on the integers to complexity measures in set theory. With this in mind, we

recall some elementary concepts from set theory.

A set a is transitive if c ∈ b and b ∈ a imply c ∈ a for all a and b. The

transitive closure T C(a) of a set a is the intersection of all transitive supersets

of a, or, in other words, a ∪ (∪a) ∪ (∪ ∪ a) . . . Intuitively, T C(a) consists of

elements of a, elements of elements of a, elements of elements of elements of

a, etc. We define Hκ = {a : |T C(a)| < κ}.
A priori it is not evident that Hκ is a set. However, this can be easily proved

with another useful concept from set theory, namely the concept of rank. The

rank rk(a) of a set a is defined recursively as follows:

rk(a) = sup{rk(b) + 1 : b ∈ a}.
Recall the definition of the cumulative hierarchy in Eq. (4.1); see Fig. 7.3. Now,

Vα = {x : rk(x) < α} and we can prove that Hκ is indeed a set.

Lemma 7.1 For all infinite cardinals κ we have Hκ ⊆ Vκ .

7.2 Some set theory 137

Vα

Vα+1

Vν

Fig. 7.3. The V -hierarchy of sets.

Proof Suppose x ∈ Hκ , i.e. |T C(x)| < κ . We claim that rk(x) < κ , i.e.

| rk(x)| < κ . It suffices to show that | rk(x)| ≤ |T C(x)|. This follows by the

Axiom of Choice, if we show that there is, for all x , an onto function from

T C(x) onto rk(x). This function is in fact the function z �→ rk(z). Suppose the

claim that rk �T C(y) maps T C(y) onto rk(y) holds for all y ∈ x . We show

that it holds for x . To this end, suppose α < rk(x). By definition, α ≤ rk(y) for

some y ∈ x . If α < rk(y), then, by the induction hypothesis, there is z ∈ T C(y)

such that rk(z) = α. Now z ∈ T C(x), so we are done. The other case is that

α = rk(y). Since y ∈ T C(x), we are done again. �

The converse of Lemma 7.1 is certainly not true in general. For example,

the set Vℵ1
has sets such as P(ω) which cannot be in Hℵ1

. However, let us

define the Beth numbers as follows: �0 = ω, �α+1 = 2�α , and �ν = limα<ν �α

for limit ν. For any κ there is λ ≥ κ such that λ = �λ, as follows. Let κ0 = κ ,

κn+1 = �κn and λ = limn<ω κn . Then λ = �λ. It is easy to see by induction on

α that |Vω+α| = �α .

Lemma 7.2 If κ = �κ , then Hκ = Vκ .

Proof The claim Hκ ⊆ Vκ follows from Lemma 7.1. On the other hand, if x ∈
Vκ , say x ∈ Vα , where α = ω + α < κ , then |T C(x)| ≤ |Vα| = �α < �κ = κ ,

so x ∈ Hκ . �

We now recall an important hierarchy in set theory.

Definition 7.3 (ref. [30]) The Levy Hierarchy of formulas of set theory is
obtained as follows. The �0-formulas, which are also called �0-formulas,
are all formulas in the vocabulary {∈} obtained from atomic formulas by the

138 Complexity

Σ1 Π1

Σ2 Π2

Fig. 7.4. Levy Hierarchy of formulas.

operations ¬, ∨, ∧, and the following bounded quantifiers:

∃x0(x0 ∈ x1 ∧ φ)

and

∀x0(x0 ∈ x1 → φ).

The �n+1-formulas are obtained from �n-formulas by existential quantification
(see Fig 7.4). The �n+1-formulas are obtained from �n-formulas by existential
quantification.

A basic property of the �1-formulas is captured by the following lemma.

Lemma 7.4 For any uncountable cardinal κ , a1, . . . , an ∈ Hκ and �1-formula
φ(x1, . . . , xn): (Hκ , ε) |= φ(a1, . . . , an) if and only if φ(a1, . . . , an).

Proof The “only if” part is very easy (see Exercise 7.2). For the more dif-

ficult direction suppose φ(x1, . . . , xn) is of the form ∃x0ψ(x0, x1, . . . , xn),

where ψ(x0, x1, . . . , xn) is �0 and there is an a0 such that φ(a0, a1, . . . , an).

Let α be large enough that a0, . . . an ∈ Vα . Then (Vα, ε) |= ψ(a0, . . . , an) by

Exercise 7.2. Thus (Vα, ε) |= φ(a1, . . . , an). Let M be an elementary sub-

model of the model (Vα, ε) such that T C({a1, . . . , an}) ⊆ M and |M | < κ .

By Mostowski’s Collapsing Lemma (see Exercise 7.3) there is a transitive

model (N , ε) and an isomorphism π : (N , ε) ∼= M such that a1, . . . , an ∈ N
and π (ai) = ai for each i . Thus (N , ε) |= φ(a1, . . . , an). Since x ∈ N implies

7.2 Some set theory 139

Table 7.3.

Dependence logic

Problem Complexity

Decision Problem �2

Nonvalidity Problem �2

Consistency Problem �0
1

Inconsistency Problem �0
1

T C(x) ⊆ N , and |N | < κ , we have N ⊆ Hκ , and hence again, by absoluteness,

(Hκ , ε) |= φ(a1, . . . , an). �

An intuitive picture of a �1-statement ∃x0φ(a, x0), where φ is �0, is that

we search through the universe for an element b such that the relatively sim-

ple statement φ(a, b) becomes true. By Lemma 7.4 we need only look near

where a is. This means that satisfying a �1-sentence is, from a set theoretic

point of view, not very complex, although it may still be at least as difficult as

checking whether a recursive binary relation on N is well-founded (which is a

�1
1-complete problem).

In contrast, to check whether a �2-sentence ∃x0∀x1φ(a, x0, x1) is true, one

has to search through the whole universe for a b such that ∀x1φ(a, b, x1) is true.

Now, we cannot limit ourselves to search close to a as we may have to look

close to b, too. So, in the end, we have to go through the whole universe in

search of b. This means that checking the truth of a �2-sentence is of extremely

high complexity. Any of the following statements can be expressed as the truth

of a �2-sentence:

(i) the Continuum Hypothesis, i.e. 2ℵ0 = ℵ1;

(ii) the failure of the Continuum Hypothesis, i.e. 2ℵ0 �= ℵ1;

(iii) V �= L;

(iv) there is an inaccessible cardinal;

(v) there is a measurable cardinal.

We now have the notions at hand for filling in the complexity table

(Table 7.3) for dependence logic, even if we have not yet proved anything.

The proof is given in Section 7.3.

Exercise 7.1 Show that the following predicates of set theory can be defined
with a �0-formula:

140 Complexity

(i) x = y ∪ z;
(ii) x = {y, z};

(iii) x is transitive;
(iv) x is an ordinal (i.e. a transitive set of transitive sets);
(v) x is a function y → z.

Exercise 7.2 (Absoluteness of �0) For any transitive M, a1, . . . , an ∈ M and
�0-formula φ(x1, . . . , xn): (M, ε) |= φ(a1, . . . , an) if and only if φ(a1, . . . , an).

Exercise 7.3 (Mostowski’s Collapsing Lemma) Suppose (M, E) is a well-
founded model of the Axiom of Extensionality: ∀x0∀x1(∀x2(x2 ∈ x0 ↔ x2 ∈
x1) → x0 = x1). Show that the equation π (x) = {π (y) : yEx} defines an
isomorphism between (M, E) and (N , ∈), where N is a transitive set.
Show also that if E = ∈, then π (x) = x for every x ∈ M which is
transitive.

7.3 �2-completeness in set theory

Let us now go a little deeper into details. We identify problems with sets X ⊆ N.

The problem X in such a case is really the problem of deciding whether a given n
is in X or not. A problem P ⊆ N is called �n-definable if there is a �n-formula

φ(x0) of set theory such that

n ∈ P ⇐⇒ φ(n).

A problem P ⊆ N is called �n-complete if the problem itself is �n-definable

and, moreover, for every �n-definable set X ⊆ N there is a recursive function

f : N → N such that

n ∈ X ⇐⇒ f (n) ∈ P.

The concepts of a �n-definable set and a �n-complete set are defined analo-

gously.

Theorem 7.5 The Decision Problem of dependence logic is �2-complete in
set theory.

Proof Without loss of generality, we consider the decision problem in the con-

text of a vocabulary consisting of just one binary predicate. Let us first observe

that the predicate x = P(y) is �1-definable:

x = P(y) ⇐⇒ ∀z(z ∈ x ↔ ∀u ∈ z(u ∈ y)).

7.3 �2-completeness in set theory 141

Let On(x) be the �0-predicate “x is an ordinal,” i.e. x is a transitive set of

transitive sets. We can �1-define the property R(x) of x of being equal to

some Vα , where α is a limit ordinal. Let Str(x) be the first order formula in

the language of set theory which says that x is a structure of the vocabulary

containing just one binary predicate symbol. If φ is a sentence of D, let Satφ(x)

be the first order formula in the language of set theory which says “Str(x) and

φ is true in the structure x .” Let Relsatφ(x, y) be the first order formula in the

language of set theory which says “x ∈ y and if Str(x), then Satφ(x) is true

when relativized to the set y.” Thus |= φ if and only if ∀x(Str(x) → Satφ(x)).

Note that for limit α and a ∈ Vα:

Satφ(a) ⇐⇒ (Vα |= Satφ(a)).

Thus a sentence φ of D is valid if and only if

∀x(R(x) → ∀y ∈ xRelsatφ(y, x)).

We have proved that the Decision Problem of D is �2-definable. Suppose then

that A is an arbitrary �2-definable set of integers. Let ∀x∃yψ(n, x, y) be the

�2-definition. Let φn be the first order sentence ∀x∃yψ(n, x, y), where n is a

defined term. We claim

n ∈ A ⇐⇒|= θ ∨ φn,

where θ is a sentence of D which is true in every model except the models

(Vκ , ∈), κ = �κ . Suppose first n ∈ A, i.e. ∀x∃yψ(n, x, y). Suppose (Vκ , ∈) is

a given model in which θ is not true. We prove Vκ |= ∀x∃yψ(n, x, y). Suppose

a ∈ Vκ . By the above lemmas, there is b ∈ Vκ such that ψ(n, a, b). We have

proved |= θ ∨ φn . Conversely, suppose |= θ ∨ φn . To prove ∀x∃yψ(n, x, y),

let a be given. Let κ be an infinite cardinal such that κ = �κ and a ∈ Hκ . Then

there is b ∈ Hκ with Hκ |= ψ(n, a, b). Now ψ(n, a, b) follows. �

Corollary 7.6 The Decision Problem of dependence logic is not �2-definable
in set theory.

The fact that the Decision Problem of dependence logic is not �m
n for any

m, n < ω follows easily from this. Moreover, it follows that we cannot in gen-

eral express “φ is valid,” for φ ∈ D, even by searching through the whole set

theoretical universe for a set x such that a universal quantification over the sub-

sets of x would guarantee the validity of φ. In contrast, to check the validity of

a first order sentence, one needs only to search through all natural numbers and

then perform a finite polynomial calculation on that number. Figures 7.5 and

7.6 illustrate the difference between categories of validity in first order logic

and dependence logic.

142 Complexity

True in all models False in all models

True in some models and false in some models

Fig. 7.5. Categories of validity in first order logic.

True

True

modelsmodels

models
models

somesome

all
all

False

False

Non-determined

inin

in
in

Fig. 7.6. Categories of validity in dependence logic.

Exercise 7.4 Give a �2-definition of the property of x being equal to some Vκ ,
where κ = �κ .

Exercise 7.5 Show that for limit α and a ∈ Vα:

Satφ(a) ⇐⇒ (Vα |= Satφ(a)).

7.3 �2-completeness in set theory 143

Exercise 7.6 Give a sentence of D which is true in every model except (mod
∼=) the models (Vκ , ∈), κ = �κ .

Exercise 7.7 Use Theorem 7.5 to prove that the Decision Problem of D is not
arithmetical, i.e. not first order definable in (N, +, ·, <, 0, 1). (In fact, the same
proof shows that it is not �m

n -definable for any m, n < ω.)

Exercise 7.8 Show that the problem

“does M |= φ hold for all countable M?”

is not arithmetical and that the problem

“does M |= φ hold for some countable M?”

is a �0
1-property of φ ∈ D.

Exercise 7.9 Show that there is a sentence φ of D such that φ avoids some
model if and only if there is an inaccessible cardinal.

8

Team logic

The negation ¬ of dependence logic does not satisfy the Law of Excluded

Middle and is therefore not the classical Boolean negation. This is clearly

manifested by the existence of non-determined sentences φ in D. In such cases,

the failure of M |= φ does not imply M |= ¬φ. Hintikka [19] introduced

extended independence friendly logic by taking the Boolean closure of his

independence friendly logic. We take the further action of making classical

negation ∼ one of the logical operations on a par with other propositional

operations and quantifiers. This yields an extension TL of the Boolean closure

of D. We call the new logic team logic.

The basic concept of both team logic TL and dependence logic D is the

concept of dependence =(t1, . . . , tn). In very simple terms, what happens is

that, while we can say “x1 is a function of x0” with =(x0, x1) in D, we will be

able to say “x1 is not a function of x0” with ∼ =(x0, x1) in team logic.

While we define team logic we have to restrict¬. The game theoretic intuition

behind ¬φ is that it says something about “the other player.” The introduction

of ∼ unfortunately ruins the basic game theoretic intuition, and there is no

“other player” anymore. If φ is in D, then ∼ φ has the meaning “II does not

have a winning strategy,” but it is not clear what the meaning of ¬ ∼ φ would

be. We also change notation by using φ ⊗ ψ (“tensor”) instead of φ ∨ ψ . The

reason for this is that by means of ∼ and ∧ we can actually define the classical

Boolean disjunction φ ∨ ψ , which really says that the team is of type φ or of

type ψ . Likewise, we adopt the notation !xnφ (“shriek”) for the quantifier that

in D was denoted by ∀xnφ.

8.1 Preorder of determination

Let us consider teams of soccer players as an example. In this case, play-

ers are the agents. We consider only the colors of their outfits as relevant

144

8.1 Preorder of determination 145

Table 8.1. Team 1

Shirt Shorts

1 yellow white
2 yellow white
3 yellow white
4 yellow white
5 red black
6 red black
7 red black

Table 8.2. Team 2

Shirt Shorts Socks

1 yellow white green
2 yellow white green
3 yellow white green
4 red white black
5 red white black
6 red black green
7 red black green

features. We imagine a spectator trying to figure out how the different colors are

determined.

Consider Team 1 of Table 8.1, consisting of seven members. It is clear that

in this team both the shirt color depends on the shorts color and vice versa.

What about Team 2 of Table 8.2? We can observe that the shirt color depends

on shorts color and socks’ color in the sense that it can be computed if both

shorts color and socks color are known. Interestingly, it cannot be computed

from either shorts or socks alone. It seems correct to say that shirt color is

dependent on shorts color, and that shirt color is dependent on socks color.

However, if the team was as in Table 8.3, we could compute shirt color from

socks color alone. It would seem correct to say that shirt color is, in this case,

independent of shorts color, as the only addition that together with the shorts

color would determine shirt color, achieves this by itself. Let us finally consider

Table 8.4. Now shirt color can be computed alternatively from shorts color

alone or from the combination of socks and shoes. We certainly cannot say

146 Team logic

Table 8.3. Team 3

Shirt Shorts Socks

1 yellow white green
2 yellow white green
3 yellow white green
4 red white black
5 red white black
6 red black red
7 red black red

Table 8.4. Team 4

Shirt Shorts Socks Shoes

1 yellow white green yellow
2 yellow white green yellow
3 yellow white green yellow
4 red blue green red
5 red blue green red
6 red black yellow yellow
7 red black yellow yellow

shirt color is independent of shorts color, even if it can be computed without it.

Similarly, shirt color is not independent of socks color, as socks color (together

with shoes color) gives away shirt color, but shoes color alone does not. We can

say that shirt color depends on shorts color, but not so strongly that it could not

be computed without it.

Another example is the human genome “team.” Here an agent is the DNA

sequence of the set of chromosomes of any one individual human being. Thus

there are over 6.5 billion agents from people alive today. A team is any collection

of such agents. Features are any of the 25 000 genes that make up the DNA

sequence of the individual person. Extra features such as diseases (diabetes,

asthma, heart disease, etc.) can be added to genome teams to study how faulty

genes are associated with particular diseases. Then a team would be a patient

database with fields for certain genes and certain diseases. In anticipation of

the discussion in Section 8.2, of the different kinds of dependencies, we may

ask the following kinds of questions.

8.1 Preorder of determination 147

Table 8.5. A team

x1 x2 . . . xn

1 m1
1 m1

2 . . . m1
n

2 m2
1 m2

2 . . . m2
n

3 m3
1 m3

2 . . . m3
n

4 m4
1 m4

2 . . . m4
n

5 m5
1 m5

2 . . . m5
n

.

k mk
1 mk

2 . . . mk
n

(i) Does a certain gene or gene combination (significantly) determine a given

hereditary disease in the sense that a patient with (a fault in) those genes

has a high risk of the disease?

(ii) Is a disease totally dependent on a gene in the sense that every gene com-

bination that (significantly) determines the disease contains that particular

gene?

(iii) Is a gene (merely) dependent on a gene in the sense that the disease is

(significantly) determined by some gene combination with the gene but

not without?

(iv) Is a disease totally independent of a gene in the sense that no gene com-

bination that (significantly) determines the disease contains that particular

gene?

(v) Is a gene (merely) independent of a gene in the sense that some gene

combinations (significantly) determine the disease without containing that

particular gene?

Let X be a team, i.e. a set of assignments (agents) of some finitely many

variables {x1, . . . , xn} into a domain M , as in Table 8.5. Equivalently, X could

be a database with fields {x1, . . . , xn} and values of the fields from a fixed

domain M . There is an obvious partial order in the powerset of {x1, . . . , xn},
namely the set theoretical subset relation ⊆. We now define a new relation,

called the preorder of determination:

V ≤ W W determines V , i.e. features in V can be determined if the

values of the features in W are known. In symbols, ∀s, s ′ ∈
X ((∀y ∈ W (s(y) = s ′(y)) → (∀x ∈ V (s(x) = s ′(x))))).

Equivalently, {w1, . . . , wn} determines V , if, for all y ∈ V , there is a function

fy such that for all s in X : s(y) = fy(s(w1), . . . , s(wn)).

148 Team logic

It is evident from the definition that the preorder of determination is weaker

than the partial order of inclusion in the sense that a set obviously determines

every subset of itself. It is more interesting that sometimes a set determines

a set disjoint from itself, and a singleton set may determine another singleton

set. Some sets may be determined by the empty set (in that case the feature

has to have a constant value). Every set is certainly determined by the whole

universe.

The Armstrong Axioms of functional dependence (see ref. [1]) state exactly

the following lemma.

Lemma 8.1

(i) V ≤ W is a preorder, i.e. reflexive and transitive.
(ii) If V ⊆ W , then V ≤ W .

(iii) If V ≤ W and U is arbitrary, then V ∪ U ≤ W ∪ U.

Moreover,

(iv) If V ≤ W , then there is a minimal U ⊆ W such that V ≤ U.

8.2 Dependence and independence

Now we can define two versions of dependence, by using the preorder of deter-

mination. Suppose W ∩ V = ∅. We define the following.

V is dependent on W There is some minimal U ≥ V such that

U ∩ V = ∅ and W ⊆ U .

V is totally dependent on W For every U ≥ V such that U ∩ V = ∅,

we have W ⊆ U .

V is independent of W There is some U ≥ V such that U ∩
V = ∅ and W ∩ U = ∅.

V is totally independent of W For every minimal U ≥ V such that

U ∩ V = ∅, we have W ∩ U = ∅.

V is non-determined There is no U ≥ V such that U ∩ V =
∅. In the opposite case, V is called

determined.

Note that the above concepts are defined with respect to the features that are

present in the setup. Indeed, it seems meaningless to define what independence

means in a setup where any new feature can be introduced. The presence of new

features can change independence to dependence, as in Team 2 of Table 8.2,

8.2 Dependence and independence 149

Table 8.6. Team for
Exercise 8.3

x1 x2 x3

s1 0 1 0
s2 0 0 1
s3 1 1 1

where shirt color is independent of both shorts and socks if either one of them

is missing, but is dependent on either if both are present.

In the following, we present some immediate relationships between the intro-

duced concepts of dependence and independence.

Lemma 8.2

(i) Every V is totally dependent on and totally independent of ∅.
(ii) If V is (totally) dependent on W , then V is (totally) dependent on every

subset of W .
(iii) If V is dependent on W , it can still be also independent of W , but not

totally, unless W = ∅.
(iv) V is independent of {x} if and only if V is not totally dependent on {x}.
(v) V is totally independent of {x} if and only if V is not dependent on {x}.

Exercise 8.1 Prove Lemma 8.1.

Exercise 8.2 Prove Lemma 8.2.

Exercise 8.3 Consider the team given in Table 8.6. Which W ⊆ {x2, x3} is
{x1} (a) dependent on, (b) totally dependent on, (c) independent of, (d) totally
independent of?

Exercise 8.4 Consider the team given in Table 8.7. Which subsets W of
{x2, x3, x4, x5} is {x1} (a) dependent on, (b) totally dependent on, (c) inde-
pendent of, (d) totally independent of?

Exercise 8.5 Consider the team given in Table 8.8. Find a value for a in natural
numbers such that (a) {x3, x4} determines {x1}, (b) {x3, x4} does not determine
{x1}, (c) {x2, x4} determines {x1}, (d) {x2, x4} does not determine {x1}?
Exercise 8.6 Consider the team given in Table 8.9. Fill in values for x3 and
x4 from the set {0, 1} such that {x4} is (a) dependent but not totally dependent

150 Team logic

Table 8.7. Team for Exercise 8.4

x1 x2 x3 x4 x5

s1 2 3 0 1 0
s2 2 2 4 0 3
s3 8 0 4 0 0
s4 0 3 4 1 1
s5 0 0 0 0 0
s6 2 4 0 1 1

Table 8.8. Team for Exercise 8.5

x1 x2 x3 x4

s1 15 15 3 6
s2 1 1 1 1
s3 6 0 2 a
s4 4 3 2 2
s5 0 0 0 5

Table 8.9. Team for Exercise 8.6

x1 x2 x3 x4

s1 0 0
s2 0 1
s3 1 1

on, (b) totally dependent on, (c) independent but not totally independent of, (d)
totally independent of {x1}.

8.3 Formulas of team logic

In this section we give the syntax and semantics of team logic and indicate some

basic principles.

8.3 Formulas of team logic 151

Table 8.10.

Atomic Name

t1 = tn equation
¬t1 = tn dual equation
Rt1 . . . tn relation

¬Rt1 . . . tn dual relation
= (t1, . . . , tn) dependence

¬ = (t1, . . . , tn) dual dependence

Table 8.11.

Compound Name

φ ⊗ ψ tensor
φ ∧ ψ conjunction
∼ φ negation
∃xnφ existential
!xnφ shriek

Definition 8.3 Suppose L is a vocabulary. The formulas of team logic TL are
of the atomic form, as in Table 8.10, or compound form, as in Table 8.11.

The semantics of team logic is defined as follows.

Definition 8.4

(TL1) M |=X t1 = t2 if and only if for all s ∈ X we have tM1 〈s〉 = tM2 〈s〉.
(TL2) M |=X ¬t1 = t2 if and only if for all s ∈ X we have tM1 〈s〉 �= tM2 〈s〉.
(TL3) M |=X =(t1, . . . , tn) if and only if for all s, s ′ ∈ X such that

tM1 〈s〉 = tM1 〈s ′〉, . . . , tMn−1〈s〉 = tMn−1〈s ′〉,
we have tMn 〈s〉 = tMn 〈s ′〉.

(TL4) M |=X ¬ =(t1, . . . , tn) if and only if X = ∅.
(TL5) M |=X Rt1 . . . tn if and only if for all s ∈ X we have

(tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM.
(TL6) M |=X ¬Rt1 . . . tn if and only if for all s ∈ X we have

(tM1 〈s〉, . . . , tMn 〈s〉) /∈ RM.

152 Team logic

(TL7) M |=X φ ⊗ψ if and only if X = Y ∪ Z such that dom(Y) = dom(Z),
M |=Y φ, and M |=Z ψ .

(TL8) M |=X φ ∧ ψ if and only if M |=X φ and M |=X ψ .
(TL9) M |=X ∃xnφ if and only if M |=X (F/xn) φ for some F : X → M.

(TL10) M |=X !xnφ if and only if M |=X (M/xn) φ

(TL11) M |=X ∼ φ if and only if M �|=X φ.

We can easily define a translation φ �→ φ∗ of dependence logic into team

logic, but we have to assume the formula φ of dependence logic is in negation

normal form:

(t = t ′)∗ = t = t ′,
(¬t = t ′)∗ = ¬t = t ′,
(Rt1 . . . tn)∗ = Rt1 . . . tn,
(¬Rt1 . . . tn)∗ = ¬Rt1 . . . tn,
(=(t1, . . . , tn))∗ = =(t1, . . . , tn),

(¬ =(t1, . . . , tn))∗ = ¬ =(t1, . . . , tn),

(φ ∨ ψ)∗ = φ∗ ⊗ ψ∗,
(φ ∧ ψ)∗ = φ∗ ∧ ψ∗,
(∃xnφ)∗ = ∃xnφ

∗,
(∀xnφ)∗ = !xnφ

∗.

It is an immediate consequence of the definitions that for all M, all φ, and all

X we have

M |=X φ in D if and only if M |=X φ∗ in TL.

So we may consider D a fragment of TL, and TL an extension of D obtained

by adding classical negation.

Logical consequence φ ⇒ ψ and logical equivalence φ ⇔ ψ are defined

similarly as for dependence logic. Lemma 8.5 demonstrates that even though

! xnφ for φ ∈ D acts like what is denoted by ∀xnφ in dependence logic, it is, in

the presence of ∼, not at all like our familiar universal quantifier, as it commutes

with negation.

Lemma 8.5 ∼ !xnφ ⇔ !xn ∼ φ.

Proof

M |=X ∼ !xnφ if and only if M �|=X !xnφ,

if and only if M �|=X (M/xn) φ,

if and only if M |=X (M/xn) ∼ φ,

if and only if M |=X !xn ∼ φ. �

8.3 Formulas of team logic 153

Table 8.12. The intuition behind the logical operations

φ ∨ ψ the team is either of type φ or of type ψ (or both)
φ ∧ ψ the team is both of type φ and of type ψ
φ ⊗ψ the team divides between type φ and type ψ
φ ⊕ψ every division of the team yields type φ or type ψ
∼ φ the team is not of type φ
� any team
⊥ no team
1 any non-empty team
0 only the empty team

We adopt the following abbreviations (see Table 8.12):1

φ ∨ ψ = ∼(∼ φ ∧ ∼ ψ) disjunction;

φ ⊕ ψ = ∼(∼ φ ⊗ ∼ ψ) sum;

φ → ψ = ∼ φ ∨ ψ implication;

φ −◦ ψ = ∼ φ ⊕ ψ linear implication;

∀xnφ = ∼ ∃xn ∼ φ universal quantifier.

Thus,

M |=X φ ∨ ψ if and only if M |=X φ or M |=X ψ.

We have recovered the classical disjunction with the properties

φ ∨ ψ ⇔ ψ ∨ φ,

φ ∨ (ψ ∨ θ) ⇔ (φ ∨ ψ) ∨ θ,

φ ∨ φ ⇔ φ.

Note that

M |=X φ ⊕ψ if and only if whenever X = Y ∪ Z , then M |=Y φ or M |=Z ψ.

Thus a team of type φ ⊕ ψ has in a sense φ or ψ everywhere. We have

φ ⊕ψ ⇔ ψ ⊕φ,

φ ⊕ (ψ ⊕ θ) ⇔ (φ ⊕ψ)⊕ θ,

but

φ ⊕φ � φ.

Note also that

M |=X ∀xnφ if and only if M |=X (F/xn) φ holds for every F : X → M .

1 Note that the symbols ∨ and ∀ have different meanings in D and in TL.

154 Team logic

Table 8.13.

x0 x1

s1 3 8
s2 2 5
s3 1 4
s4 9 1

Table 8.14. Dependence values in D

Sentence Teams of that type

� ∅, {∅}
⊥ (none)
1 {∅}
0 ∅

Thus a team of type ∀xnφ has type φ whatever we put as values of xn . A team of

type ∀x2((x0 + x1) + x2 = x0 + (x1 + x2)) but not of type ∀x2(∼ =(x0, x1, x2))

in the model (N, +) is shown in Table 8.13.

We have

∀xn(φ ∧ ψ) ⇔ (∀xnφ ∧ ∀xnψ),

∀xn∀xmφ ⇔ ∀xm∀xnφ,

but in general (see Lemma 8.5)

∀xnφ � ! xnφ.

Definition 8.6 The dependence values are the following special sentences of
team logic (see Fig. 8.1 and Table 8.14):

� = =(),

⊥ = ∼ =(),

0 = ¬ =(),

1 = ∼ ¬ =().

What about ¬ ∼ =()? This is not a sentence of team logic at all!

8.3 Formulas of team logic 155

1 0

⊥
Fig. 8.1. The diamond of dependence values.

Example 8.7 Here are some trivial relations between the dependence
values:

(i) ⊥ ⇒ 0 ⇒ �;
(ii) ⊥ ⇒ 1 ⇒ �;

(iii) 1 = ∼ 0, ⊥ = ∼ �;
(iv) 0 ⇔ ∼ 1, � ⇔ ∼ ⊥;
(v) 0 = ¬�.

The equation X = X ∪ X yields

(φ ∧ ψ) ⇒ (φ ⊗ ψ),

(φ ⊕ ψ) ⇒ (φ ∨ ψ).

The equation X = X ∪ ∅ yields

φ ⇒ (φ ⊗ 0),

(φ ⊕ ⊥) ⇒ ∼ φ.

The logic TL is much stronger than D. Let us immediately note the failure

of compactness.

Proposition 8.8 The logic TL does not satisfy the Compactness Theorem.

Proof Let φn be the sentence ∀x0 . . . ∀xn∃xn+1(¬x0 = xn+1 ∧ . . . ∧ ¬xn =
xn+1). Then, any finite subset of T = {φn : n ∈ N} ∪ {∼(�∞)∗} has a model,

but T itself does not have a model. �

156 Team logic

Proposition 8.9 The logic TL does not satisfy the Löwenheim–Skolem Theo-
rem. There is a sentence φ of team logic such that φ has an infinite model, but
φ has no uncountable models. There is also a sentence ψ of team logic such
that ψ has an uncountable model, but no countable models.

Proof Recall Lemma 4.1 Let φ be the conjunction of P− and

∼ ∃x5∃x4 ! x0∃x1 ! x2∃x3(=(x2, x3) ∧ x4 < x5

∧ (((x0 = x2 ∧ x0 < x5)

∧ (x1 = x3 ∧ x1 < x4))

∧ ((¬x0 = x2 ⊗ ¬x0 < x5)

∧ (¬x1 = x3 ⊗ ¬x1 < x4)))).

Then φ has the infinite model (N, +, ·, 0, 1, <). But since every model of φ

is isomorphic to (N, +, ·, 0, 1, <), it cannot have any uncountable models. For

ψ , recall the sentence �cmpl from Section 4.3. Let ψ be the conjunction of the

axioms of dense linear order and ∼ �cmpl. Now ψ has models, e.g. (R, <), but

every model is a dense complete order and is therefore uncountable. �

It follows that there cannot be any translation of team logic into �1
1 , as such

a translation would yield both the Compactness Theorem and the Löwenheim–

Skolem Theorem as a consequence. With a translation to �1
1 ruled out, it is

difficult to imagine what a game theoretical semantics of team logic would

look like.

Note that there cannot be a truth definition for TL in TL. Suppose τ ∗(x0)

is in TL and M |= φ is equivalent to M |= τ ∗(�φ�) in all Peano models M.

By using the formula ∼ τ ∗(x0), we can reprove Tarski’s Undefinability of Truth

Theorem 6.20

Despite apparent similarities, team logic and linear logic [11] have very little

to do with each other. In linear logic, resources are split into “consumable” parts.

In team logic resources are split into “coherent” parts.

Exercise 8.7 Show that every formula of TL in which ∼ does not occur is
logically equivalent with a sentence of D.

Exercise 8.8 Prove Example 8.7.

Exercise 8.9 Prove the following equivalences:

φ ∧ � ⇔ φ,
φ ∨ � ⇔ �,
� ⊗ � ⇔ �,
φ ⊕ � ⇔ �.

8.3 Formulas of team logic 157

Exercise 8.10 Prove the following equivalences:

φ ∧ ⊥ ⇔ ⊥,
φ ∨ ⊥ ⇔ φ,
φ ⊗ ⊥ ⇔ ⊥,
⊥ ⊕ ⊥ ⇔ ⊥.

Exercise 8.11 Prove the following equivalences:

φ∗ ∧ 0 ⇔ φ∗ if φ ∈ D,
φ∗ ∨ 0 ⇔ φ∗ if φ ∈ D,
φ ⊗ 0 ⇔ φ,
0 ⊕ 0 ⇔ 0.

Exercise 8.12 Prove the following equivalences:

1 ⊗ 1 ⇔ 1,
1 ⊕ 1 ⇔ 1.

Exercise 8.13 Give an example which demonstrates ∀xnφ � ! xnφ.

Exercise 8.14 Suppose φ is a formula. Give a formula ψ with the property
that a team X is of type ψ if and only if every subset of X is of type φ.

Exercise 8.15 Suppose φ is a formula. Give a formula ψ with the property
that a team X is of type ψ if and only if every subset of X has a subset which
is of type φ.

Exercise 8.16 Give a formula φ with the property that a team X is of type φ if
and only if every subset of X has a subset which is of type φ, but it is not true
that a team X is of type φ if and only if every subset of X is of type φ.

Exercise 8.17 Show that ∼ is not definable from the other symbols in team
logic, i.e show that the sentence ∼ P, where P is a 0-ary predicate symbol,
is not logically equivalent to any sentence of team logic of vocabulary {P}
without ∼.

Exercise 8.18 Show that =(x1, . . . , xn) is definable from the other symbols in
team logic and formulas of the form =(t). That is, show that there is a formula
φ(x1, . . . , xn) in team logic such that =(x1, . . . , xn) and φ(x1, . . . , xn) are log-
ically equivalent and φ(x1, . . . , xn) has no occurrences of atomic formulas of
the form =(t1, . . . , tm), where m ≥ 2.

158 Team logic

Table 8.15.

Atomic Name

t1 = tn equation
Rt1 . . . tn relation

Xm
n t1 . . . tm second order atomic

Table 8.16.

Compound Name

φ ∨ ψ disjunction
φ ∧ ψ conjunction
∼ φ negation
∃xnφ existential first order
∃Xm

n φ existential second order

8.4 From team logic to L2

One of the main features of dependence logic is its equivalence with the �1
1 part

of second order logic, established in Chapter 6. Since �1
1 is not closed under

classical negation, we cannot do the same for the extension TL of D. Instead

we translate team logic into full second order logic L2.

Definition 8.10 Suppose L is a vocabulary. Second order logic L2 has, in addi-
tion to the (individual) variables xn, another type of variable, namely relation

variables Xm
n . The variables Xm

n are said to be m-ary, and will range over m-ary
relations on the domain. The formulas of L2 are of the atomic form as in
Table 8.15 or compound form as in Table 8.16.

The semantics of second order logic for a model M is defined by adopting

the concept of a second order assignment for M. These are functions S such

that, for all m and n, S(Xm
n) ⊆ Mm . If A ⊆ Mm , then the modified assignment

S(A/Xm
n) maps Xi

j to S(Xi
j), if i �= m or j �= n, and Xm

n to A.

Definition 8.11

� M |=s,S t1 = t2 if and only if tM1 〈s〉 = tM2 〈s〉;
� M |=s,S Rt1 . . . tn if and only if (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM;
� M |=s,S Xm

n t1 . . . tm if and only if (tM1 〈s〉, . . . , tMm 〈s〉) ∈ S(m, n);

8.4 From team logic to L2 159

� M |=s,S φ ∨ ψ if and only if M |=s,S φ or M |=s,S ψ ;
� M |=s,S φ ∧ ψ if and only if M |=s,S φ and M |=s,S ψ ;
� M |=s,S ∼ φ if and only if M �|=s,S φ;
� M |=s,S ∃xnφ if and only if M |=s(a/xn),S φ for some a ∈ M ;
� M |=s,S ∃Xm

n φ if and only if M |=s,S(A/Xm
n) φ for some A ⊆ Mm.

The definitions of both the syntax and the semantics of L2 look deceptively

similar to those of first order logic. However, L2 is very different from first

order logic. For example, L2 does not satisfy the Compactness Theorem, nor

the Löwenheim–Skolem Theorem, and its Decision Problem is �2-complete

like that of D. We give in this chapter translations of team logic into L2 and, in

a weaker sense, of L2 into team logic.

Theorem 8.12 We can associate with every formula φ(xi1
, . . . , xin) of team

logic in vocabulary L an L2-sentence ηφ(U), where U is n-ary, such that for
all L-structures M and teams X with dom(X) = {i1, . . . , in} the following are
equivalent:

(i) M |=X φ;

(ii) (M, rel(X)) |= ηφ(U).

Proof Exactly as in the proof of Theorem 6.2.

Case (1) Suppose φ(xi1
, . . . , xin) is t1 = t2 or Rt1 . . . tn . Let ηφ(U) be given by

∀xi1
. . .∀xin (U xi1

. . . xin → φ(xi1
, . . . , xin)).

Case (2) Suppose φ(xi1
, . . . , xin) is the dependence formula

=(t1(xi1
, . . . , xin), . . . , tm(xi1

, . . . , xin)),

where i1 < . . . < in . We define ηφ(U) as follows.

Subcase (2.1) m = 0; we let ηφ(U) = � and η¬φ(U) = ⊥.

Subcase (2.2) m = 1; now φ(xi1
, . . . , xin) is the dependence formula

= (t1(xi1
, . . . , xin)). We let ηφ(U) be the formula

∀xi1
. . . ∀xin ∀xin+1 . . . ∀xin+n((U xi1

. . . xin ∧ U xin+1 . . . xin+n)

→ t1(xi1
, . . . , xin) = t1(xin+1, . . . , xin+n)),

and we further let η¬φ(U) be the formula ∀xi1
. . . ∀xin ¬U xi1

. . . xin .

160 Team logic

Subcase (2.3) If m > 1 we let ηφ(U) be the formula

∀xi1
. . . ∀xin ∀xin+1 . . . ∀xin+n((U xi1

. . . xin ∧ U xin+1 . . . xin+n

∧ t1(xi1
, . . . , xin) = t1(xin+1, . . . , xin+n)

∧ . . .

tm−1(xi1
, . . . , xin) = tm−1(xin+1, . . . , xin+n))

→ tm(xi1
, . . . , xin) = tm(xin+1, . . . , xin+n)),

and we further let η¬φ(U) be the formula ∀xi1
. . .∀xin ¬U xi1

. . . xin .

Case (3) Suppose φ(xi1
, . . . , xin) is the disjunction

(ψ(x j1 , . . . , x jp)⊗ θ (xk1
, . . . , xkq)),

where {i1, . . . , in} = { j1, . . . , jp} ∪ {k1, . . . , kq}. We let the sentence

ηφ(U) be

∃R∃T (ηψ (R) ∧ ηθ (T) ∧ ∀xi1
. . . ∀xin (U xi1

. . . xin

→ (Rx j1 . . . x jp ∨ T xk1
. . . xkq))).

Case (4) Suppose φ(xi1
, . . . , xin) is the conjunction

(ψ(x j1 , . . . , x jp) ∧ θ (xk1
, . . . , xkq)),

where {i1, . . . , in} = { j1, . . . , jp} ∪ {k1, . . . , kq}. We let the sentence

ηφ(U) be ηψ (U) ∧ ηθ (U).

Case (5) φ is ∼ ψ ; ηφ(U) is the formula ∼ ηψ (U).

Case (6) Suppose φ(xi1
, . . . , xin) is the formula ∃xin+1

ψ(xi1
, . . . , xin+1

). τ1,φ(U)

is the formula

∃R(τ1,ψ (R) ∧ ∀xi1
. . . ∀xin (U xi1

. . . xin → ∃xin+1
Rxi1

. . . xin+1
)).

Case (7) Suppose φ(xi1
, . . . , xin) is the formula !xin+1

ψ(xi1
, . . . , xin+1

). τ1,φ(U)

is the formula

∃R(ηψ (R) ∧ ∀xi1
. . . ∀xin+1

(U xi1
. . . xin ↔ Rxi1

. . . xin+1
)). �

Corollary 8.13 For every sentence φ of team logic there is an L2-sentence ηφ

such that for all models M we have M |= φ if and only if M |= ηφ.

Proof Let ηφ be the result of replacing in ηφ(U) every occurrence of the 0-ary

relation symbol U by �. Now the claim follows from Theorem 8.12. �

With the translation φ �→ ηφ we can consider team logic TL a fragment

of second order logic L2, even if the origin of team logic in the dependence

relation =(t1, . . . , tn) is totally different from the origin of second order logic,

8.5 From L2 to team logic 161

and even if the logical operations of team logic are totally different from those

of second order logic.

We can draw many immediate conclusions from Corollary 8.13 and from

what is known about second order logic (see, e.g., ref. [40]).

Corollary 8.14 The Decision Problem of team logic is �2-complete. The Con-
sistency Problem is �2-complete.

Corollary 8.15 If κ is measurable and φ ∈ TL has a model M of cardinality
κ , then φ is true in a submodel N of M of cardinality < κ . If κ is supercompact
and φ ∈ TL has a model M of any cardinality, then φ is true in a submodel N
of M of cardinality < κ .

For the definition of measurable and supercompact cardinals we refer to

ref. [25].

Proof This follows from the similar result for L2 [32]. �

8.5 From L2 to team logic

We have given a translation of team logic into second order logic. Now we give

an implicit translation of second and higher order logic into team logic. The

translation is implicit in the sense that it uses new predicates and an extension

of the universe. However, the new predicates and the new universe are unique

up to isomorphism.

Theorem 8.16 Suppose L is a vocabulary and n ∈ N. There is a sentence � of
TL in the vocabulary L ′ = L ∪ {P, E} such that for all L-structuresM there is
a unique (mod ∼=) N |= � with (N �L)(PN) = M. Moreover, we can associate
with every sentence φ of L2, with second order variables of any arity ≤ n, in
vocabulary L a TL-sentence ξφ in the vocabulary L ′ such that the following
are equivalent for all L-structures M:

(i) M |= φ;

(ii) N |= ξφ for the unique (mod ∼=) N such that N |= � and (N �L)(PN) =
M.

Proof To avoid cumbersome notation, we restrict ourselves to second order

formulas with only the unary second order variables X1
n . We assume, again

for simplicity, that individual variables x0, x2, x4, . . . have not been used in

our second order formulas. Clearly this is harmless as one can change bound

variables. The idea is that x2n is a new “first order” symbol for X1
n .

162 Team logic

Let ξt1=t2 be t1 = t2 and let ξRt1...tn be Rt1 . . . tn . For second order atomic for-

mula, we let ξX1
n t be t Ex2n . Proceeding to compound formulas, let ξφ∨ψ = ξφ ∨

ξψ , ξφ∧ψ = ξφ ∧ ξψ , ξ¬φ = ∼ ξφ , ξ∃xnφ = ∃xn(Pxn ∧ ξφ), and finally ξ∃X1
nφ

=
∃znξφ .

Let θ be the conjunction of the (first order definable) sentence

∀x0∀x1(¬x0 Ex1 ∨ Px0)

and the Axiom of Extensionality

∀x0∀x1(∃x2((x2 Ex0 ∧ ¬x2 Ex1) ∨ (x2 Ex1 ∧ ¬x2 Ex0)) ∨ x0 = x1).

Let � be the following sentence of team logic:

θ ∧ ∼ ∃x6 ! x0∃x1 ! x4∃x5 (= (x4, x5)

∧ (¬x4, x5)

∧ (¬x1 = x6 ⊗ Px0)

∧ (¬x0 = x5

⊗ (x5 Ex4 ∧ ¬x1 = x6)

⊗ (¬x5 Ex4 ∧ x1 = x6))).

The sentence � is true in a structure M if and only if M ∼= N for some N
such that EN = {(a, b) : a ∈ PN , a ∈ b ∈ N } and N = P(PN).

Now one can use induction on φ ∈ L2 to prove that if N is as above then

M |= φ if and only if N |= ξφ.

More precisely, one proves for all formulas φ ∈ L2 and all assignments s and

S the following:

M |=s,S φ if and only if N |=Xs,S ξφ,

where Xs,S = {s ′}, s ′(x2n+1) = s(x2n+1), and s ′(x2n) = S(X1
n). �

Corollary 8.17 A second order sentence φ has a model (of cardinality κ) if
and only if the team logic sentence � ∧ ξφ has a model (of cardinality 2κ).

With the translation φ �→ ξφ we can consider second order logic L2 as an

implicitly defined fragment of team logic TL.

Corollary 8.18 The Decision Problems of team logic and second order logic
are recursively isomorphic.2 They have the same Löwenheim and Hanf numbers.
They have the same �-extension.

2 Two sets of natural numbers are recursively isomorphic if there is a recursive bijection of N

which maps one to the other.

8.6 Ehrenfeucht–Fraı̈ssé game for team logic 163

The method of Theorem 8.16 was used in ref. [29] to prove that second order

logic has an implicit translation into the extension of first order logic by the

Henkin quantifier (see Exercise 6.20). As is apparent from the proof, we do not

need the full power of team logic. It suffices to have the ∼-negated dependence

logic sentence which forms one conjunct of �. This emphasizes the strength of

∼ as compared to ¬. We note without proof that there is also a direct translation

of second order logic into team logic, based on ref. [13].

Exercise 8.19 Suppose κ is a cardinal number with the following property: if
φ ∈ TL, then every model M of TL has a submodel N such that N |= φ and
|N | < κ . Show that κ is inaccessible. (In fact, κ is supercompact.)

8.6 Ehrenfeucht–Fraı̈ssé game for team logic

We now introduce an Ehrenfeucht–Fraı̈ssé game adequate for team logic and

use this game to characterize ≡TL. This game is simply a “two-directional”

version of the Ehrenfeucht–Fraı̈ssé game of D.

Definition 8.19 Let M and N be two structures of the same vocabulary. The
game EFTL

n has two players and n moves. The position after move m is a pair
(X, Y), where X ⊆ Mim and Y ⊆ N im for some im. At the beginning, the position
is ({∅}, {∅}) and i0 = 0. Suppose the position after move number m is (X, Y).
There exist the following possibilities for the continuation of the game.

Splitting move. Player I represents X (or Y) as a union X = X0 ∪ X1.
Then player II represents Y (respectively, X) as a union Y = Y0 ∪ Y1.
Now player I chooses whether the game continues from the position
(X0, Y0) or from the position (X1, Y1).

Duplication move. Player I decides that the game should continue from
the new position,

(X (M/xim), Y (N/xim)).

Supplementing move. Player I chooses a function F : X → M (or
F : Y → N). Then player II chooses a function G : Y → N (respec-
tively, G : X → M). Then the game continues from the position
(X (F/xim), Y (G/xim)).

After n moves, the position (Xn, Yn) is reached and the game ends. Player II is
the winner if

M |=Xn φ ⇔ N |=Yn φ

164 Team logic

holds for all atomic, dual atomic, dependence, and dual dependence formulas
φ(x0, . . . , xin−1). Otherwise, player I wins.

This is a game of perfect information and the concept of winning strategy is

defined as usual. By the Gale–Stewart Theorem, the game is determined.

Definition 8.20

(i) qrTL(φ) = 0 if φ is atomic, dual atomic, dependence or dual dependence
formula.

(ii) qrTL(φ ⊗ψ) = max(qrTL(φ), qrTL(ψ))+1.
(iii) qrTL(φ ∧ ψ) = max(qrTL(φ), qrTL(ψ)).
(iv) qrTL(∃xnφ) = qrTL(φ)+1.
(v) qrTL(!xnφ) = qrTL(φ)+1.

(vi) qrTL(∼ φ) = qrTL(φ)

Let FmlTL,m
n be the set of formulas φ of dependence logic with qrTLφ ≤ m and

with free variables among x0, . . . , xn−1. We write M ≡n
TL N , if M |= φ is

equivalent to N |= φ for all φ in FmlTL,n
0 .

Note that there are for each n and m, up to logical equivalence, only finitely

many formulas in FmlTL,m
n .

Theorem 8.21 Suppose M and N are models of the same vocabulary. Then
the following are equivalent:

(1) player II has a winning strategy in the game EFTL

n (M,N);

(2) M ≡n
TL N .

Proof As in the proof of Theorem 6.44 we prove the equivalence, for all n, of

the following two statements.

(3)m Player II has a winning strategy in the game EFTL

m (M,N) in position

(X, Y), where X ⊆ Mn and Y ⊆ N n .

(4)m If φ is a formula in FmlTL,m
n , then

M |=X φ ⇔ N |=Y φ. (8.1)

The proof is by induction on m. For each m we prove the claim simulta-

neously for all n. The case m = 0 is true by construction. Let us then assume

(3)m ⇐⇒ (4)m as an induction hypothesis. Assume now (3)m+1 and let φ be

a formula in FmlTL,m+1
n such that M |=X φ. As part of the induction hypothesis

we assume that the claim in Eq. (8.1) holds for formulas shorter than φ.

Case (1) φ = ψ0 ⊗ψ1, where ψ0, ψ1 ∈ FmlTL,m
n . Since M |=X φ, there are X0

and X1 such that X = X0 ∪ X1, M |=X0
ψ0 and M |=X1

ψ1. We let

8.6 Ehrenfeucht–Fraı̈ssé game for team logic 165

I play {X0, X1}. Then II plays according to her winning strategy,

{Y0, Y1}. Since the next position in the game can be either one of

(X0, Y0), (X1, Y1), we can apply the induction hypothesis to both.

This yields N |=Y0
ψ0 and N |=Y1

ψ1. Thus N |=Y φ.

Case (2) φ = ∃xnψ , where ψ ∈ FmlTL,m
n−1 . Since M |=X φ, there is a function

F : X → M such that M |=X (F/xn) ψ . We let I play F . Then II plays

according to her winning strategy a function G : Y → N and the game

continues in position (X (F/xn), Y (G/xn)). The induction hypothesis

gives N |=Y (G/xn) ψ . Now N |=Y φ follows.

Case (3) φ = ∼ ψ . Since M |=X φ, we have M �|=X ψ . By the induction

hypothesis, N �|=Y ψ . Thus N |=Y φ.

Case (4) φ = ψ0 ∧ ψ1, where ψ0, ψ1 ∈ FmlTL,m
n . Since M |=X φ, we have

M |=X ψ0 and M |=X ψ1. By the induction hypothesis, N |=Y ψ0

and N |=Y ψ1. Thus N |=Y φ.

Case (5) φ = !xnψ , where ψ ∈ FmlTL,m
n+1 . By assumption, M |=X (M/xn) ψ . We

let now I demand that the game continues in the new position

(X (M/xn), Y (N/xn)). The induction hypothesis givesN |=Y (N/xn) ψ .

Now N |=Y φ follows trivially.

To prove the converse implication, assume (4)m+1. To prove (3)m+1, we

consider the possible moves that player I can make in the position (X, Y).

Case (i) Player I writes X = X0 ∪ X1. Let φ j , j < k, be a complete list (up to

logical equivalence) of formulas in FmlTL,m
n . Since

M |=X0

∧
M|=X0

φ j

φ j

and

M |=X1

∧
M|=X1

φ j

φ j ,

we have

M |=X

⎛
⎝ ∧

M|=X0
φ j

φ j

⎞
⎠ ∨

⎛
⎝ ∧

M|=X1
φ j

φ j

⎞
⎠ .

Note that

qrTL

(∧
M|=X1

φ j

φ j

)
= max

M|=X1
φ j

(φ j) ≤ m.

166 Team logic

Therefore by (4)m+1

N |=Y

⎛
⎝ ∧

M|=X0
φ j

φ j

⎞
⎠ ∨

⎛
⎝ ∧

M|=X1
φ j

φ j

⎞
⎠ .

Thus Y = Y0 ∪ Y1 such that

N |=Y0

∧
M|=X0

φ j

φ j

and

N |=Y1

∧
M|=X1

φ j

φ j .

By this and the induction hypothesis, player II has a winning strategy

in the positions (X0, Y0), (X1, Y1). Thus she can play {Y0, Y1} and

maintain her winning strategy.

Case (ii) Player I decides that the game should continue from the new position

(X (M/xn), Y (m/xn)). We claim that

M |=X (M/xn) φ ⇔ N |=Y (N/xn) φ

for all φ ∈ FmlTL,m
n+1 . From this the induction hypothesis would imply

that II has a winning strategy in the position (X (M/xn), Y (N/xn)).

So let us assume M |=X (M/xn) φ, where φ ∈ FmlTL,m
n+1 . By definition,

M |=X ! xnφ.

Since ! xnφ ∈ FmlTL,m+1
n , (4)m+1 gives N |=Y ! xnφ and N |=Y (N/xn)

φ follows.

Case (iii) Player I chooses a function F : X → M . Let φi , i < M be a

complete list (up to logical equivalence) of formulas in FmlTL,m
n+1 .

Now

M |=X ∃xn

∧
M|=X (F/xn)φi

φi .

Note that

qrTL

(
∃xn

∧
M|=X (F/xn)φ j

φ j

)
= qrTL

(∧
M|=X (F/xn)φ j

φ j

)
+1

=
(

max
M|=X (F/xn)φ j

qrTL(φ j)

)
+1 ≤ m+1

8.6 Ehrenfeucht–Fraı̈ssé game for team logic 167

and hence, by (4)m+1,

N |=Y ∃xn

∧
M|=X (F/xn)φi

φi .

Thus there is a function G : Y → N such that

N |=Y (G/xn)

∧
M|=X (F/xn)φi

φi .

The game continues from position (X (F/xn), Y (G/xn)). Given that

now

M |=X (F/xn) φ ⇔ N |=Y (G/xn) φ

for all φ ∈ FmlTL,m
n+1 , the induction hypothesis implies that II has a

winning strategy in position (X (F/xn), Y (G/xn)). �

Corollary 8.22 Suppose M and N are models of the same vocabulary. Then
the following are equivalent:

(1) M ≡TL N ;

(2) for all natural numbers n, player II has a winning strategy in the game
EFTL

n (M,N).

Proposition 8.23 Suppose K is a model class and n is a natural number. Then
the following are equivalent:

(1) K is definable in team logic by a sentence in FmlTL,n
0 ;

(2) K is closed under the relation ≡n
TL

.

Proof Suppose K is the class of models of φ ∈ FmlTL,n
0 . If M |= φ and M ≡n

TL

N , then, by definition, N |= φ. Conversely, suppose K is closed under ≡n
TL

.

Let

φM =
∧

{φ : φ ∈ FmlTL,n
0 ,M |= φ},

where the conjunction is taken over a finite set which covers all such φ up to

logical equivalence. Let θ be the disjunction of all φM, where M ∈ K . Again

we take the disjunction over a finite set up to logical equivalence. We show that

K is the class of models of θ . If M ∈ K , then M |= φM, whence M |= θ .

On the other hand, suppose M |= φN for some N ∈ K . Now N ≡n
TL
M, for if

N |= φ and φ ∈ FmlTL,n
∅ , then φ is logically equivalent with one of the conjuncts

of φN , whence M |= φ. As K is closed under ≡n
TL

, we have M ∈ K . �

168 Team logic

Corollary 8.24 Suppose K is a model class. Then the following are equivalent:

(1) K is definable in team logic;
(2) there is a natural number n such that K is closed under the relation

MRN ⇐⇒ player II has a winning strategy in EFTL

n (M,N).

We have obtained, after all, a purely game theoretic definition of team logic.

Exercise 8.20 Describe an Ehrenfeucht–Fraı̈ssé game for the fragment of
team logic in which ⊗ does not occur. Give a game theoretic characterization
in the spirit of Corollary 8.24 of this fragment.

Appendix

Solutions to selected exercises, by Ville Nurmi

Chapter 2

Exercise 2.1

Let M be a model and let M be its universe. The task is to prove that for each first

order φ and each assignment s with Fr(φ) ⊆ dom(s) it holds that either (φ, s, 1) ∈ T or

(φ, s, 0) ∈ T . We prove it by induction on φ.

Assume φ is of form t1 = t2. It is a fact that either tM1 〈s〉 = tM2 〈s〉 or tM1 〈s〉 �= tM2 〈s〉.
Thus, by definition of T , either (t1 = t2, s, 1) ∈ T or (t1 = t2, s, 0) ∈ T .

Assume φ is of form Rt1 . . . tn . Again, either (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM or

(tM1 〈s〉, . . . , tMn 〈s〉) �∈ RM. Therefore, by the definition ofT , either (Rt1 . . . tn, s, 1) ∈ T
or (Rt1 . . . tn, s, 0) ∈ T .

For the following inductive steps we assume as our induction hypothesis that the

claim holds for subformulas of φ.

Assume φ is of form ¬ψ . By the induction hypothesis, either (ψ, s, 1) ∈ T or

(ψ, s, 0) ∈ T . By definition of T , we get in the first case that (¬ψ, s, 0) ∈ T , and

in the latter case (¬ψ, s, 1) ∈ T .

Assume φ is of form ψ ∨ θ . If (ψ, s, 0) ∈ T and (θ, s, 0) ∈ T , then by definition of

T also (ψ ∨ θ, s, 0) ∈ T . Otherwise, either (ψ, s, 0) �∈ T or (θ, s, 0) �∈ T , whence, by

the induction hypothesis, either (ψ, s, 1) ∈ T or (θ, s, 1) ∈ T . By definition of T , we

get (ψ ∨ θ, s, 1) ∈ T .

Finally, assume φ is of form ∃xnψ . If there is some a ∈ M satisfying (ψ, s(a/xn), 1)

∈ T , then, by definition of T , we get (∃xnψ, s, 1) ∈ T . Otherwise, for all a ∈ M
we have (ψ, s(a/xn), 1) �∈ T . By the induction hypothesis, for all a ∈ M we have

(ψ, s(a/xn), 0) ∈ T , whence, by definition of T , (∃xnψ, s, 0) ∈ T .

Exercise 2.7

The task is to show φ ≡ φp and ¬φ ≡ φd for all first order φ. We prove both claims

simultaneously by induction on φ. The induction hypothesis is that the claim holds for

subformulas of φ. In the following, the places where the induction hypothesis is used

are marked by IH.

169

170 Solutions to selected exercises, by Ville Nurmi

If φ is atomic, then φp = φ and φd = ¬φ, by definition.

If φ is of form ¬ψ , then (¬ψ)p = ψd IH≡ ¬ψ . Also (¬ψ)d = ψp IH≡ ψ ≡ ¬¬ψ .

If φ is of form ψ ∨ θ , then (ψ ∨ θ)p = ψp ∨ θ p IH≡ ψ ∨ θ . Also, (ψ ∨ θ)d = ψd ∧
θ d IH≡ (¬ψ) ∧ (¬θ) ≡ ¬(ψ ∨ θ).

Finally, if φ is of form ∃xnψ , then (∃xnψ)p = ∃xnψ
p IH≡ ∃xnψ . Also, (∃xnψ)d =

∀xnψ
d IH≡ ∀xn(¬ψ) ≡ ¬∃xnψ .

Chapter 3

Exercise 3.2

Let X ∈ Team(M, {x0, x1}), i.e., let X be some team of assignments s : {0, 1} → M .

For X to be of type φ in M it means that M |=X φ.

Now M |=X =(x0, x1) ⇐⇒ (=(x0, x1), X, 1) ∈ T . By Proposition 3.8, this is

equivalent to the condition that for all s, s ′ ∈ X it holds that if s(x0) = s ′(x0) then

s(x1) = s ′(x1). An alternative characterization can be given in terms of a function

f : A → M for some A ⊆ M . Then a team X of type =(x0, x1) is of the form{{(0, a), (1, f (a))} : a ∈ A
}

for some A and f .

Similarly to the previous case, M |=X =(x1, x0) ⇐⇒ (=(x1, x0), X, 1) ∈ T ⇐⇒
(by Proposition 3.8) for all s, s ′ ∈ X , it holds that if s(x1) = s ′(x1) then s(x0) = s ′(x0).

In other words, such teams X are of the form
{{(0, f (a)), (1, a)} : a ∈ A

}
for some set

A ⊆ M and function f : M → M .

M |=X =(x0, x0) ⇐⇒ (=(x0, x0), X, 1) ∈ T ⇐⇒ (by Proposition 3.8) for all

s, s ′ ∈ X it holds that if s(x0) = s ′(x0) then s(x0) = s ′(x0). But this is a trivial condition,

satisfied by any team X . Thus all X ∈ Team(M, {x0, x1}) are of type =(x0, x0).

Exercise 3.3

The language consists of a constant symbol c and a function symbol f . We consider

teams X ∈ Team(M, {x0}).
M |=X =(c, c) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X it holds that if cM =

cM then cM = cM. This condition is trivially true for all X . Thus all teams X ∈
Team(M, {x0}) are of type =(c, c).

M |=X =(x0, c) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X , it holds that if

s(x0) = s ′(x0) then cM = cM. This condition is also trivially true, so all teams X ∈
Team(M, {x0}) are of type =(x0, c).

M |=X =(c, x0) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X , it holds that if cM = cM

then s(x0) = s ′(x0). As cM = cM always holds, the condition states that there is some

fixed a ∈ M such that all s ∈ X map s(x0) = a. Considering also that dom(s) = {0} for

all s ∈ X , we get that either X = ∅ or it is of the form
{{(0, a)}} for some a ∈ M , i.e.,

there is at most one agent in team X .

M |=X =(c, f x0) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X , it holds that if cM =
cM then f M(s(x0)) = f M(s ′(x0)) ⇐⇒ for all s, s ′ ∈ X : f M(s(x0)) = f M(s ′(x0))

⇐⇒ f M is constant in the set {s(x0) : s ∈ X}.

Solutions to selected exercises, by Ville Nurmi 171

Table A.1.

a b a + b a · b a b a + b a · b

2 2 4 4 3 4 7 12
2 3 5 6 3 5 8 15
2 4 6 8 4 4 8 16
2 5 7 10 4 5 9 20
3 3 9 9 5 5 10 25

Exercise 3.5

Here the language has two function symbols, f and g, and we consider teams X ∈
Team(M, {x0, x1}).

M |=X =(f x0, x0) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X , it holds that if

f M(s(x0)) = f M(s ′(x0)) then s(x0) = s ′(x0) ⇐⇒ the function f M�{s(x0) : s ∈ X}
is one-to-one. One can also characterize this condition by saying, a bit vaguely, that f M

is one-to-one in {s(x0) : s ∈ X}.
M |=X =(f x1, x0) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X , it holds that if

f M(s(x1)) = f M(s ′(x1)) then s(x0) = s ′(x0). This is equivalent to being able to define

a function h :
{

f M(s(x1)) : s ∈ X
} → M by the equation h(f M(s(x1))) = s(x0).

M |=X =(f x0, gx1) ⇐⇒ (by Proposition 3.8) for all s, s ′ ∈ X , it holds that if

f M(s(x0)) = f M(s ′(x0)) then gM(s(x1)) = gM(s ′(x1)). This is equivalent to being

able to define a function h :
{

f M(s(x0)) : s ∈ X
}

by the equation h(f M(s(x0))) =
gM(s(x1)).

Exercise 3.7

Let X5 = {{(0, a), (1, b)}: 1 < a ≤ n, 1 < b ≤ n, a ≤ b
}
. It is possible to prove in

general that, for any natural number n, Xn is of type =(x0 + x1, x0 · x1, x0). When

inspecting just the case n = 5 we can save ourselves the trouble of the general proof

and just check all cases as they are not that many. Thus we list for each element s ={{(0, a), (1, b)}} ∈ X5 the values a, b, a + b, and a · b (see Table A.1).

We can see that for no two s, s ′ ∈ X5 does it hold that s(x0) + s(x1) = s ′(x0) +
s ′(x1) and s(x0) · s(x1) = s ′(x0) · s ′(x1) and s(x0) �= s ′(x0). This proves that X5 is of type

=(x0 + x1, x0 · x1, x0).

Here is an alternative, general proof that Xn is of type =(x0 + x1, x0 · x1, x0),

for any n. Let 1 < x0 ≤ x1 ≤ n. Denote a = x0 + x1 and b = x0 · x1. Then we

have a2 − 4b = x2
0 − 2x0x1 + x2

1 = (x1 − x0)2 ≥ 0. To see that knowing the values

of a and b gives us a unique value for x0, we can continue as follows. Because

x1 = a − x0, we get b = −x2
0 + ax0. This gives the quadratic equation x2

0 − ax0 +
b = 0, which yields x0 = 1

2
(a ± √

a2 − 4b). Because x0 ≤ x1, the only solution is

x0 = 1
2
(a − √

a2 − 4b).

172 Solutions to selected exercises, by Ville Nurmi

Exercise 3.10

In order to show |= φ for some sentence φ, one must show that, for all models M,

M |={∅} φ. Therefore, let M be arbitrary:

M |={∅} ∀x0∀x1(x1 = f x0 → =(x0, x1))

⇔ M |=X ¬x1 = f x0 ∨ =(x0, x1), where X = {s : {0, 1} → M}
⇔ there are teams Y, Z such that X = Y ∪ Z , dom(Y) = dom(Z),

and M |=Y ¬x1 = f x0 and M |=Z =(x0, x1). (A.1)

So, in order to prove the claim, it suffices to find teams Y and Z satisfying the

condition given in Eq. (A.1). We can choose Y = {s ∈ X : s(x1) �= f M(s(x0))} and

Z = X \ Y . Then, clearly, X = Y ∪ Z and dom(Y) = dom(Z). It is easy to check that

M |=Y ¬x1 = f (x0). Also M |=Z =(x0, x1) because, in fact, Z = {s ∈ X : s(x1) =
f M(s(x0))}, so, whenever we have some s, s ′ ∈ Z with s(x0) = s ′(x0), then s(x1) =
f M(s(x0)) = f M(s ′(x0)) = s ′(x1).

Exercise 3.11

First note that for all formulas φ and models M it holds that (φ, ∅, 1) ∈ T and

(¬φ, ∅, 1) ∈ T , i.e.,M |=∅ φ andM |=∅ ¬φ. This means thatM |=X ¬φ ⇒ M �|=X φ

fails for X = ∅. Therefore, when studying the claim M |=X ¬φ ⇔ M �|=X φ for some

model M and team X , we limit ourselves to non-empty teams.

Let φ be the formula =(x0, x1) ∧ ¬x0 = x1. Assume towards contradiction that for all

models M and teams X �= ∅ it holds that M |=X ¬φ ⇐⇒ M �|=X φ. Let us inspect

the model M of the empty language, with universe M = {a, b}, where a and b are

two different elements. (There are also lots of other possible models to consider, but

this is probably the simplest one.) Let X = {s, s ′}, where s = {(0, a), (1, a)} and s ′ =
{(0, a), (1, b)}. Then M �|=X φ because M �|=X =(x0, x1). By assumption, M |=X ¬φ.

By the Closure Test, M |={s′} ¬φ. Again, by assumption, M �|={s′} φ. But this is a

contradiction with the facts that M |={s′} =(x0, x1) and M |={s′} ¬x0 = x1. Thus the

equivalence does not hold for =(x0, x1) ∧ ¬x0 = x1.

Let ψ be the formula =(x0, x1) → x0 = x1, i.e. ¬ =(x0, x1) ∨ x0 = x1. Assume

towards contradiction that for all models M and teams X �= ∅ it holds that M |=X

¬ψ ⇐⇒ M �|=X ψ . Let M and X = {s, s ′} be as earlier. Now M �|=X ψ because for

all X = Y ∪ Z either M �|=Y ¬ =(x0, x1) or M �|=Z x0 = x1. Namely, M �|=Z x0 = x1

can hold only for Z = ∅ and for Z = {s} (assuming that Z ⊆ X), and, by Proposi-

tion 3.8, M �|=Y ¬ =(x0, x1) can hold only when Y = ∅. We cannot have X = Y ∪ Z
with any sets Y and Z satisfying these conditions. Now, by the assumption, M |=X ¬ψ .

By the Closure Test, M |={s} ¬ψ . Again by the assumption, M �|={s} ψ . But this cannot

be true because we can split {s} = ∅ ∪ {s}, and it holds that M |=∅ ¬ =(x0, x1) and

M |={s} x0 = x1. We have ended up in a contradiction, so M �|=X ψ ⇔ M |=X ¬ψ

does not hold for all models M and teams X �= ∅.

Let θ be the formula =(x0, x1) ∨ ¬x0 = x1. By definition, M |=X

¬θ ⇐⇒ (¬θ, X, 1) ∈ T ⇐⇒ (θ, X, 0) ∈ T ⇐⇒ (=(x0, x1), X, 0) ∈ T and

(¬x0 = x1, X, 0) ∈ T ⇐⇒ X = ∅ (by Proposition 3.8, (=(x0, x1), X, 0) ∈ T iff

X = ∅), and we have excluded this case from our investigations. Therefore M |=X ¬θ

fails for all models M and teams X �= ∅. On the other hand, for any model M and team

Solutions to selected exercises, by Ville Nurmi 173

X �= ∅, letting Z = {s ∈ X : s(x0) �= s(x1)} and Y = X \ Z , we see that X = Y ∪ Z ,

dom(Y) = dom(Z), M |=Y =(x0, x1), and M |=Z ¬x0 = x1. Therefore M �|=X θ fails

for all M and X �= ∅. Hereby we have proven the equivalence M �|=X θ ⇔ M |=X ¬θ

for all models M and teams X �= ∅.

Exercise 3.13

Let M be a model. Assume that each Ti for i ∈ I satisfies conditions (D1)–(D12) of

Definition 3.5. Our goal is to show that in that case
⋂

i∈I Ti satisfies the conditions also.

The proof proceeds condition by condition. At each step we consider some arbitrary

X ∈ Team(M, V), where V contains all variable indices that appear in the formula in

question.

(D1) Assume that for all s ∈ X we have tM1 〈s〉 = tM2 〈s〉. Then, because each Ti sat-

isfies (D1), we have (t1 = t2, X, 1) ∈ Ti . Therefore (t1 = t2, X, 1) ∈ ⋂
i∈I Ti , so⋂

i∈I Ti satisfies (D1).

(D2) Assume that for all s ∈ X we have tM1 〈s〉 �= tM2 〈s〉. Then, because each Ti sat-

isfies (D2), we have (t1 = t2, X, 0) ∈ Ti . Therefore (t1 = t2, X, 0) ∈ ⋂
i∈I Ti , so⋂

i∈I Ti satisfies (D2).

(D3) Assume that for all s, s ′ ∈ X it holds that if tMi 〈s〉 = tMi 〈s ′〉 for i <

n, then tMn 〈s〉 = tMn 〈s ′〉. Then, because each Ti satisfies (D3), we have

(=(t1, . . . , tn), X, 1) ∈ Ti . Therefore (=(t1, . . . , tn), X, 1) ∈ ⋂
i∈I Ti , so

⋂
i∈I Ti

satisfies (D3).

(D4) Because each Ti satisfies (D4), we have (=(t1, . . . , tn), ∅, 0) ∈ Ti . Therefore

(=(t1, . . . , tn), ∅, 0) ∈ ⋂
i∈I Ti , so

⋂
i∈I Ti satisfies (D4).

(D5) Assume that for all s ∈ X we have (tM1 〈s〉, . . . , tMn 〈s〉) ∈ RM. Then, because

each Ti satisfies (D5), we have (Rt1 . . . tn, X, 1) ∈ Ti . Therefore the triple

(Rt1 . . . tn, X, 1) is in
⋂

i∈I Ti , so
⋂

i∈I Ti satisfies (D5).

(D6) Assume that for all s ∈ X we have (tM1 〈s〉, . . . , tMn 〈s〉) �∈ RM. Then, because

each Ti satisfies (D6), we have (Rt1 . . . tn, X, 0) ∈ Ti . Therefore the triple

(Rt1 . . . tn, X, 0) is in
⋂

i∈I Ti , so
⋂

i∈I Ti satisfies (D6).

(D7) Assume that (φ, X, 1) ∈ ⋂
i∈I Ti and (ψ, Y, 1) ∈ ⋂

i∈I Ti and dom(X) =
dom(Y). Then (φ, X, 1) ∈ Ti and (ψ, Y, 1) ∈ Ti for each i ∈ I . Because Ti sat-

isfies (D7), (φ ∨ ψ, X ∪ Y, 1) ∈ Ti . Therefore (φ ∨ ψ, X ∪ Y, 1) ∈ ⋂
i∈I Ti , so⋂

i∈I Ti satisfies (D7).

(D8) Assume that (φ, X, 0) ∈ ⋂
i∈I Ti and (ψ, X, 0) ∈ ⋂

i∈I Ti . Then (φ, X, 0) ∈ Ti

and (ψ, X, 0) ∈ Ti for each i ∈ I . As Ti satisfies (D8), (φ ∨ ψ, X, 0) ∈ Ti for

each i ∈ I . Therefore (φ ∨ ψ, X, 0) ∈ ⋂
i∈I Ti , so

⋂
i∈I Ti satisfies (D8).

(D9) Assume that (φ, X, 1) ∈ ⋂
i∈I Ti . Then (φ, X, 1) ∈ Ti for each i ∈ I . Because

each Ti satisfies (D9), (¬φ, X, 0) ∈ Ti . Therefore (¬φ, X, 0) ∈ ⋂
i∈I Ti , so⋂

i∈I Ti satisfies (D9).

(D10) Assume that (φ, X, 0) ∈ ⋂
i∈I Ti . Then (φ, X, 0) ∈ Ti for each i ∈ I . Because

each Ti satisfies (D10), (¬φ, X, 1) ∈ Ti . Therefore (¬φ, X, 1) ∈ ⋂
i∈I Ti , so⋂

i∈I Ti satisfies (D10).

(D11) Let F : X → M , and assume that (φ, X (F/xn), 1) ∈ ⋂
i∈I Ti . Then

(φ, X (F/xn), 1) ∈ Ti for each i ∈ I . Because each Ti satisfies (D11),

(∃xnφ, X, 1) ∈ Ti . Therefore (∃xnφ, X, 1) ∈ ⋂
i∈I Ti , so

⋂
i∈I Ti satisfies

(D11).

174 Solutions to selected exercises, by Ville Nurmi

Table A.2. The teams X and X (F/x0) for Exercise 3.15

X X (F/x0)

x0 x1 x2 x0 x1 x2

s a a s c a a
s ′ b a s ′ c b a

(D12) Assume that (φ, X (M/xn), 0) ∈ ⋂
i∈I Ti . Then (φ, X (M/xn), 0) ∈ Ti for each i ∈

I . Because each Ti satisfies (D12), (∃xnφ, X, 0) ∈ Ti . Therefore (∃xnφ, X, 0) ∈⋂
i∈I Ti , so

⋂
i∈I Ti satisfies (D12).

Exercise 3.15

Denote by ψ the formula ∃x0

(=(x2, x0) ∧ ¬(x0 = x1)
)

and by φ the formula

∃x0

(=(x2, x0) ∧ x0 = x1

)
. To show that M |=X φ ⇐⇒ M |=X ψ does not hold,

let M = {a, b, c}, where a, b, and c are three different elements, and let X =
{s, s ′} ∈ Team(M, {x1, x2}), where s = {(x1, a), (x2, a)} and s ′ = {(x1, b), (x2, a)} (see

Table A.2). Then M |=X ψ and M �|=X φ. We can see this by noting that x2 is con-

stant in X . Because, on the other hand, both φ and ψ contain =(x2, x0), any function

F : X → M that unravels ∃x0 in φ or ψ must be a constant function. We can choose a

constant that avoids both a and b, but we cannot choose a constant that equals both a
and b.

More precisely, let F : X → M map F(s) = c for all s ∈ X . Then M |=X (F/x0)

¬(x0 = x1), and M |=X (F/x0) =(x2, x0). Thus M |=X (F/x0) ¬(x0 = x1) ∧ =(x2, x0), so

M |=X ψ . On the other hand, ifM |=X φ was to hold, there would be some G : X → M
such that M |=X (G/x0) =(x2, x0) and M |=X (G/x0) x0 = x1. From the former we get that

when s, s ′ ∈ X (G/x0) and s(x2) = s ′(x2), then s(x0) = s ′(x0). But s(x2) = s ′(x2) holds

for all s, s ′ ∈ X (G/x0). Therefore G must be a constant function; there is some x ∈ M
such that for all s ∈ X : G(s) = x . But then byM |=X (G/x0) x0 = x1 it must be that x = a,

and x = b, which is a contradiction. Thus M �|=X φ.

Exercise 3.17

Denote by φ the formula ∃x1

(=(f x0, x1) ∧ f x1 = f x0

)
. We want to falsify the follow-

ing claim:

M |=X φ ⇐⇒ f M is one-to-one in {s(x0) : s ∈ X}.
Let M = {a, b}, where a and b are distinct elements, interpret f M(x) = a for all

x ∈ M , and let X = {s, s ′} ∈ Team(M, {x0}), where s = {(0, a)} and s ′ = {(0, b)} (see

Table A.3). Clearly, f M is not one-to-one in {a, b} because it is a constant func-

tion, but M |=X φ; namely, let F : X → M map F(s) = a for all s ∈ X . Then for

all s ∈ X (F/x1) it holds that f M(s(x1)) = f M(s(x0)) simply because f M is a con-

stant function, and thus M |=X (F/x1) f x1 = f x0. Also, when s, s ′ ∈ X (F/x1), it holds

that s(x1) = s ′(x1), so M |=X (F/x1) =(f x0, x1). Then M |=X (F/x1) =(f x0, x1) ∧ f x1 =
f x0, so M |=X φ.

Solutions to selected exercises, by Ville Nurmi 175

Table A.3. The teams X and X (F/x1) for
Exercise 3.17

X X (F/x1)

x0 x1 x0 x1

s a s a a
s ′ b s ′ b a

Table A.4. The teams X and X (F/x1)

for Exercise 3.18

X X (F/x1)

x0 x1 x0 x1

s a s a a

In fact, it is possible to prove that any team is of type φ in any model. Then by simply

defining a model where f M is not one-to-one we can falsify the claim.

Exercise 3.18

Denote by φ the formula ∃x1

(=(x0, x1) ∧ Rx0x1

)
. We want to falsify the following

claim:

M |=X φ ⇐⇒ RM is a function and dom(RM) = {s(x0) : s ∈ X}.
Let M = {a, b} have two distinct elements, let RM = {(a, a), (a, b)}, and let X = {s} ∈
Team(M, {x0}), where s = {(0, a)} (see Table A.4). Clearly, RM is not a function with

domain {a}, but M |=X φ; namely, let F : X → M map F(s) = a. Then M |=X (F/x1)

=(x0, x1) simply because X (F/x1) is a singleton. Also M |=X (F/x1) Rx0x1 because

X (F/x1) = {{(0, a), (1, a)}} and (a, a) ∈ RM. Thus M |=X (F/x1) =(x0, x1) ∧ Rx0x1, so

M |=X φ.

Exercise 3.21

We prove only items (i) and (ii).

(i) Our first goal is to find some D-formula φ such that φ ∨ ¬φ ≡∗ � fails. Let M =
{a, b} be a two-element universe and X = {s, s ′} ∈ Team(M, {x0}), where s : 0 �→ a,

and s ′ : 0 �→ b. Let us investigate the formula =(x0). If a team is of type =(x0), then x0

is constant over the team.

Now, by Proposition 3.8, for a team Y ∈ Team(M, {x0}) it holds that M |=Y =(x0)

iff for all s, s ′ ∈ Y : s(x0) = s ′(x0) iff Y has at most one agent. Also, for a team Z ∈

176 Solutions to selected exercises, by Ville Nurmi

Team(M, {x0}) it holds that M |=Z ¬ =(x0) iff Z = ∅. Therefore we cannot split X into

some Y ∪ Z so that M |=Y =(x0) and M |=Z ¬ =(x0). Thus M �|=X =(x0) ∨ ¬ =(x0).

However, it is the case that M |=X �. Hereby we see that the equivalence

M |=X φ ∨ ¬φ ⇐⇒ M |=X �

fails, when we choose φ to be =(x0). Thus φ ∨ ¬φ ≡ � fails, and furthermore φ ∨
¬φ ≡∗ � fails.

We have, by definition, φ ∧ ¬φ = ¬(φ ∨ ¬φ) and ⊥ = ¬�. Therefore the failure

of φ ∨ ¬φ ≡∗ � gives us the failure of φ ∧ ¬φ ≡∗ ⊥.

Let us then prove φ ∧ ¬φ ≡ ⊥. It is shown simply by letting M be an arbitrary

model, letting X be an arbitrary team, and letting φ be an arbitrary D-formula. Then we

apply Proposition 3.8:

(φ ∧ ¬φ, X, 1) ∈ T ⇐⇒ (φ, X, 1) ∈ T and (¬φ, X, 1) ∈ T
⇐⇒ (φ, X, 1) ∈ T and (φ, X, 0) ∈ T
⇐⇒ (⊥, X, 1) ∈ T .

The final equality holds because both sides are true only when X = ∅.

[Note: When we speak about teams X ∈ Team(M, {x0}), we can use a shorthand

notation and write X ⊆ M . That is, we can think that a team that interprets only one

variable is a subset of the universe. In reality, this is never the case, but the shorthand

notation X ⊆ M would instead mean the team X ′ = {sa : a ∈ X}, where sa = {(x0, a)}
for each a ∈ X . The shorthand notation is okay if we are certain which variable the team

is meant to interpret. When we talk about a formula with one free variable, we can be

certain of the variable.]

(ii) Let us then prove φ ∧ φ ≡ φ. Let M be an arbitrary model, let X be an arbitrary

team, and let φ be an arbitrary D-formula. We apply Proposition 3.8: (φ ∧ φ, X, 1) ∈
T ⇐⇒ (φ, X, 1) ∈ T and (φ, X, 1) ∈ T ⇐⇒ (φ, X, 1) ∈ T .

To show that φ ∧ φ �≡∗ φ it suffices to find some model M, team X , and D-formula

φ for which (φ ∧ φ, X, 0) ∈ T and (φ, X, 0) �∈ T . To this end, let M = {a, b} be a two-

element universe, X = {s, s ′} ∈ Team(M, {x0}), where s = {(0, a)} and s ′ = {(0, b)} (or

with shorthand notation, X = {a, b}), and let φ be the formula ¬ =(x0). Now, because

there are s, s ′ ∈ X with s(x0) �= s ′(x0), by Proposition 3.8 (=(x0), X, 1) �∈ T , and so

(φ, X, 0) �∈ T . But, on the other hand, any team containing at most one agent is of the

type of any determination formula = (t1, . . . , tn). This can be seen from Proposition 3.8.

In particular, (=(x0), {s}, 1) ∈ T , so (φ, {s}, 0) ∈ T , and likewise also (φ, {s ′}, 0) ∈ T .

Thus, by the truth definition, (φ ∧ φ, {s} ∪ {s ′}, 0) ∈ T , so we get (φ ∧ φ, X, 0) ∈ T ,

which completes the proof.

Exercise 3.23

We prove only item (iv). First we will show (φ ∧ ψ) ∧ θ ≡∗ φ ∧ (ψ ∧ θ). Let φ, ψ ,

and θ be D-formulas, let M be a model, and let X ∈ Team(M, V), where V = Fr(φ) ∪

Solutions to selected exercises, by Ville Nurmi 177

Fr(ψ) ∪ Fr(θ). Then(
(φ ∧ ψ) ∧ θ, X, 1

) ∈ T
⇐⇒ (φ ∧ ψ, X, 1) ∈ T and (θ, X, 1) ∈ T
⇐⇒ (φ, X, 1) ∈ T and (ψ, X, 1) ∈ T and (θ, X, 1) ∈ T
⇐⇒ (φ, X, 1) ∈ T and (ψ ∧ θ, X, 1) ∈ T
⇐⇒ (

φ ∧ (ψ ∧ θ), X, 1
) ∈ T .

Also,

(
(φ ∧ ψ) ∧ θ, X, 0

) ∈ T
⇐⇒ (φ ∧ ψ, Y, 0) ∈ T and (θ, Z , 0) ∈ T for some Y ∪ Z = X

⇐⇒ (φ, A, 0) ∈ T and (ψ, B, 0) ∈ T and (θ, Z , 0) ∈ T for some A ∪ B = Y

⇐⇒ (φ, A, 0) ∈ T and (ψ ∧ θ, B ∪ Z , 0) ∈ T
⇐⇒ (

φ ∧ (ψ ∧ θ), A ∪ B ∪ Z , 0
) ∈ T .

Note that A ∪ B ∪ Z = X , so this completes the proof.

Then we will show (φ ∨ ψ) ∨ θ ≡∗ φ ∨ (ψ ∨ θ). We can prove this with a proof

similar to the one above. We can also do it using the Preservation of Equivalence Under

Substitution. The identities below are by definition of ∨ in terms of ¬ and ∧. The strong

equivalences, ≡∗, used in the following proof are based on Lemma 3.22, which we

proved above:

(φ ∨ ψ) ∨ θ = ¬(¬φ ∧ ¬ψ) ∨ θ = ¬(¬¬(¬φ ∧ ¬ψ) ∧ ¬θ
)

≡∗ ¬(
(¬φ ∧ ¬ψ) ∧ ¬θ

) ≡∗ ¬(¬φ ∧ (¬ψ ∧ ¬θ)
)

≡∗ ¬(¬φ ∧ ¬¬(¬ψ ∧ ¬θ)
)

= φ ∨ ¬(¬ψ ∧ ¬θ) = φ ∨ (ψ ∨ θ).

Exercise 3.24

We prove only item (iv), starting from (iv)(a). Let φ be a D-formula. We have to

show φ ⇒∗ ∃xnφ. In the following solution, it is essential to distinguish between two

cases, whether xn appears free in φ or not. As we remember from the definition of

strong consequence, we have to consider all teams X with Fr(φ) ∪ Fr(∃xnφ) ⊆ dom(X).

Because Fr(∃xnφ) ⊆ Fr(φ), the condition reduces to Fr(φ) ⊆ dom(X). The distinction

if xn appears free in φ shows up in the possible domains of the teams.

Let M be a model. Assume that xn appears free in φ. We first show φ ⇒ ∃xnφ, so

let X be a team with Fr(φ) ⊆ dom(X), and assume (φ, X, 1) ∈ T . Because we assumed

that n ∈ dom(X), we can write X = X (F/xn), where F : X → M is defined by F(s) =
s(xn). Thus (φ, X (F/xn), 1) ∈ T , so (∃xnφ, X, 1) ∈ T .

Then we show ¬∃xnφ ⇒ ¬φ, so let X have Fr(φ) ⊆ dom(X), and assume

(∃xnφ, X, 0) ∈ T . Then (φ, X (M/xn), 0) ∈ T , or, in other words, (¬φ, X (M/xn), 1) ∈
T . Because we assumed that n ∈ dom(X), we have X ⊆ X (M/xn), namely we can

write any s ∈ X as s = s(s(xn)/xn). Then, by the Closure Test we get (¬φ, X, 1) ∈ T ,

so (φ, X, 0) ∈ T . This completes the proof that φ ⇒∗ ∃xnφ in the case that xn is free in

φ.

178 Solutions to selected exercises, by Ville Nurmi

Assume now that xn does not appear free in φ. In addition to the proof that we pre-

sented for the previous case, we also have to take into account teams X with xn �∈ dom(X).

With these teams the preceding proof does not work because we cannot write things like

s = s(s(xn)/xn) for all s ∈ X . We need different tricks. First we show φ ⇒ ∃xnφ, so let X
have Fr(φ) ⊆ dom(X), n �∈ dom(X), and assume (φ, X, 1) ∈ T . Let a ∈ M , and define

F : X → M by F(s) = a for all s ∈ X . Then we have (φ, X (F/xn), 1) ∈ T because

of Lemma 3.27 and we can write X = X (F/xn)� dom(X). Now we get (∃xnφ, X, 1)

∈ T .

Then we show ¬∃xnφ ⇒ ¬φ, so let X have Fr(φ) ⊆ dom(X), n �∈ dom(X),

and assume (∃xnφ, X, 0) ∈ T . Then (φ, X (M/xn), 0) ∈ T , or, in other words,

(¬φ, X (M/xn), 1) ∈ T . Now, because of X = X (M/xn)� dom(X) and Lemma 3.27, we

get (¬φ, X, 1) ∈ T , whence (φ, X, 0) ∈ T . This completes the proof for φ ⇒∗ ∃xnφ.

Now we prove (iv)(b). Let φ be a D-formula. We need to show ∀xnφ ⇒∗ φ. We

could write a proof similar to that for (iv)(a), but instead we present a slightly more

interesting (and shorter) proof that is based on the duality between ∃ and ∀. Namely, by

(iv)(a), proved above,

∀xnφ = ¬∃xn¬φ
(iv)(a)⇒ ¬¬φ ≡∗ φ

and

¬φ
(iv)(a)⇒ ∃xn¬φ ≡∗ ¬¬∃xn¬φ = ¬∀xnφ.

Therefore ∀xnφ ⇒ φ and ¬φ ⇒ ¬∀xnφ, so we have ∀xnφ ⇒∗ φ.

Exercise 3.28

We are completing the proof of Proposition 3.31. M is a model and we are in the middle

of an induction on the complexity of a D-formula φ that is first order. Our induction

hypothesis is that for all subformulas ψ of φ, it holds that

(1) if (ψ, X, 1) ∈ T , then M |=s ψ for all s ∈ X ;

(2) if (ψ, X, 0) ∈ T , then M |=s ¬ψ for all s ∈ X .

We only have to complete the proof for the cases where φ is of the form ¬ψ and of the

form ∃xnψ .

If φ is of form ¬ψ for some first orderD-formula ψ , then we get from (¬ψ, X, 1) ∈ T
that (ψ, X, 0) ∈ T . Here we can use our induction hypothesis (2) and get M |=s ¬ψ

for all s ∈ X , which is exactly what we wanted.

If φ is of form ¬ψ , then from (¬ψ, X, 0) ∈ T we get (ψ, X, 1) ∈ T . Here we can

use our induction hypothesis (1) and get that for all s ∈ X , M |=s ψ , which is by first

order logic the same as M |=s ¬¬ψ .

If φ is of form ∃xnψ for some first order D-formula ψ , then from (∃xnψ, X, 1) ∈ T
we get (ψ, X (F/xn), 1) ∈ T for some F : X → M . The elements of X (F/xn) are of

form s(F(s)/xn) for s ∈ X , so by induction hypothesis 1 we get for each s ∈ X that

M |=s(F(s)/xn) ψ , whence M |=s ∃xnψ .

If φ is of form ∃xnψ , then (∃xnψ, X, 0) ∈ T gives (ψ, X (M/xn), 0) ∈ T . Elements

of X (M/xn) are of form s(a/xn) for s ∈ X and a ∈ M , so by induction hypothesis (2) we

get for each s ∈ X that M |=s(a/xn) ¬ψ holds for each a ∈ M , whence M |=s ∀xn¬ψ .

By first order logic, ∀xn¬ψ ≡ ¬¬∀xn¬ψ ≡ ¬∃xnψ , which completes the proof.

Solutions to selected exercises, by Ville Nurmi 179

Exercise 3.29

Before getting into the proper exercise, one might ask why in this exercise we ask for

a first order formula that is only logically equivalent to the given D-formula and not

strongly logically equivalent. The reason is simply that with first order formulas we

always get strong logical equivalence for free if we have logical equivalence. Namely,

assuming φ ≡ ψ and M |=X ¬φ, if M |=X ψ , then M |=X φ, which is a contradiction

(when X �= ∅). Now, because ψ is first order, M |=X ψ ∨ ¬ψ , from which we get

M |=X ¬ψ . Thus we have showed ¬φ ⇒ ¬ψ . With a similar proof we see ¬ψ ⇒ ¬φ,

so we get φ ≡∗ ψ .

(i) We claim that ∃x0(=(x1, x0) ∧ Px0) ≡ ∃x0 Px0. The following chain of equiva-

lences is based on definitions, except for the equivalence marked with (∗):

(∃x0(=(x1, x0) ∧ Px0), X, 1) ∈ T
⇐⇒ (=(x1, x0), X (F/x0), 1) ∈ T and (Px0, X (F/x0), 1) ∈ T

for some F : X → M
(∗)⇐⇒ (Px0, X (G/x0), 1) ∈ T for some G : X → M

⇐⇒ (∃x0 Px0, X, 1) ∈ T .

The implication to the right at (∗) is clear because we can choose G to be F . To show

the implication to the left, first note that if X = ∅ then the claim is clear as the empty

team is of any type. Otherwise take some s0 ∈ X and assume (Px0, X (G/x0), 1) ∈
T for some G : X → M . This means in particular that G(s0) ∈ PM. Now construct

F : X → M by letting F(s) = G(s0) for all s ∈ X . In other words, F resembles G
but has the additional good property of being constant (it is good concerning deter-

mination and dependence). Now (Px0, X (F/x0), 1) ∈ T because if s ∈ X (F/x0)

then s(x0) = G(s0) ∈ PM. Also (=(x1, x0), X (F/x0), 1) ∈ T because when s, s ′ ∈
X (F/x0), we have s(x0) = G(s0) = s ′(x0).

(ii) We claim that ∃x0(=(x1, x0) ∧ Px1) ≡ ∃x0 Px1. The following chain of equiva-

lences is based on definitions, except for the equivalence marked with (∗):

(∃x0(=(x1, x0) ∧ Px1), X, 1) ∈ T
⇐⇒ (=(x1, x0), X (F/x0), 1) ∈ T and (Px1, X (F/x0), 1) ∈ T

for some F : X → M
(∗)⇐⇒ (Px1, X (G/x0), 1) ∈ T for some G : X → M

⇐⇒ (∃x0 Px1, X, 1) ∈ T .

The implication to the right at (∗) is clear because we can choose G to be F . To show

the implication to the left, assume (Px1, X (G/x0), 1) ∈ T for some G : X → M .

Fix a ∈ M and construct F : X → M by letting F(s) = a for all s ∈ X . Then

(Px1, X (F/x0), 1) ∈ T because modifying values s(x0) for s ∈ X does not affect

values s(x1). Also (=(x1, x0), X (F/x0), 1) ∈ T because when s, s ′ ∈ X (F/x0), we

have s(x0) = a = s ′(x0).

Note that we can further refine the result by noticing that in first order logic we

have ∃x0 Px1 ≡ Px1.

180 Solutions to selected exercises, by Ville Nurmi

(iii) We claim that ∃x0

(
(=(x0, x1) ∧ Px0) → Px1

) ≡ ∃x0(Px0 → Px1). First note that,

by Lemma 3.25, Preservation of Equivalence under Substitution,

∃x0

(
(φ ∧ ψ) → θ

) = ∃x0

(¬(φ ∧ ψ) ∨ θ
) ≡∗

∃x0

(¬(¬¬φ ∧ ¬¬ψ) ∨ θ
) = ∃x0(¬φ ∨ ¬ψ ∨ θ).

Now we can deduce as follows (the explanation for (∗) is given in the following

text):

(∃x0((=(x1, x0) ∧ Px0) → Px1), X, 1) ∈ T
⇐⇒ (∃x0(¬ =(x1, x0) ∨ ¬Px0 ∨ Px1), X, 1) ∈ T
⇐⇒ (¬ =(x1, x0) ∨ ¬Px0 ∨ Px1, X (F/x0), 1) ∈ T for some F : X →M

⇐⇒ (¬ =(x1, x0), A, 1) ∈ T and (¬Px0, B, 1) ∈ T and (Px1, C, 1) ∈ T
for some A ∪ B ∪ C = X (F/x0) and F : X → M

(∗)⇐⇒ (¬Px0, B, 1) ∈ T and (Px1, C, 1) ∈ T
for some B ∪ C = X (F/x0) and F : X → M

⇐⇒ (¬Px0 ∨ Px1, X (F/x0), 1) ∈ T for some F : X → M

⇐⇒ (∃x0(Px0 → Px1), X, 1) ∈ T .

The equivalence (∗) is based on the fact that (¬ =(x1, x0), A, 1) ∈ T iff A = ∅.

By first order logic we can further refine the formula by noting that ∃x0(Px0 →
Px1) ≡ ∃x0(¬Px0) ∨ Px1.

(iv) We claim that ∃x0

(=(x1, x0) ∧ Rx0x1

) ≡ ∃x0 Rx0x1. We can deduce (the explana-

tion for (∗) can be found in the following text):

(∃x0(=(x1, x0) ∧ Rx0x1), X, 1) ∈ T
⇐⇒ (=(x1, x0), X (F/x0), 1) ∈ T and (Rx0x1, X (F/x0), 1) ∈ T

for some F : X → M
(∗)⇐⇒ (Rx0x1, X (F/x0), 1) ∈ T for some F : X → M

⇐⇒ (∃x0 Rx0x1, X, 1) ∈ T .

The implication to the right at (∗) is clear. To justify the implication to the left

at (∗), assume (Rx0x1, X (F/x0), 1) ∈ T for some F : X → M . We can assume

that dom(X) = {1} because Lemma 3.27 shows that values of variables that do

not appear in the formula do not matter. Now, if we have s, s ′ ∈ X (F/x0) with

s(x1) = s ′(x1), they are of form s = z(F(z)/x0) and s ′ = z′(F(z′)/x0) for some

z, z′ ∈ X . Because dom(z) = {1} and dom(z′) = {1}, and s(x1) = z(1) and s ′(x1) =
z′(1), we have z = z′. Thus F(z) = F(z′), so s(x0) = F(z) = F(z′) = s ′(x0). There-

fore (=(x1, x0), X (F/x0), 1) ∈ T .

Solutions to selected exercises, by Ville Nurmi 181

(v) We claim that ∃x0

(=(x0) ∧ (Rx1x0 ∨ Rx0x0)
) ≡ ∃x0(Rx1x2 ∨ Rx0x0). We can

deduce as follows (explanation for (∗) can be found in the following text):

(∃x0(=(x0) ∧ (Rx1x2 ∨ Rx0x0)), X, 1) ∈ T
⇐⇒ (=(x0), X (F/x0), 1) ∈ T and (Rx1x2 ∨ Rx0x0, X (F/x0), 1) ∈ T

for some F : X → M
(∗)⇐⇒ (Rx1x2 ∨ Rx0x0, X (G/x0), 1) ∈ T for some G : X → M

⇐⇒ (∃x0(Rx1x2 ∨ Rx0x0), X, 1) ∈ T .

The implication to the right at (∗) is clear. To justify the implication to the

left, assume (Rx1x2 ∨ Rx0x0, X (G/x0), 1) ∈ T for some G : X → M . Then

(Rx1x2, A, 1) ∈ T and (Rx0x0, B, 1) ∈ T for some A ∪ B = X (G/x0). In fact we

have A = Y (G/x0) and B = Z (G/x0) for some Y ∪ Z = X .

Now we examine two cases. The first case is when Z �= ∅. Note that we have

for all s ∈ Z : (G(s), G(s)) ∈ RM. (A.2)

Now pick some s0 ∈ Z and define F : X → M by F(s) = G(s0) for all s ∈ X . Now,

if s, s ′ ∈ X (F/x0), it holds that s(x0) = s ′(x0) because F is a constant function.

Therefore (=(x0), X (F/x0), 1) ∈ T . We also have (Rx1x2, ∅, 1) ∈ T because the

empty team is of any type. Finally, we have (Rx0x0, X (F/x0), 1) ∈ T because if

s ∈ X (F/x0), then s(x0) = G(s0), and by Eq. (A.2) and the fact that s0 ∈ Z , we get

(s(x0), s(x0)) ∈ RM. From these we gather

(Rx1x2 ∨ Rx0x0, ∅ ∪ X (F/x0)︸ ︷︷ ︸
X (F/x0)

, 1) ∈ T .

The second case is when Z = ∅. Then we have, for all s ∈ X , (s(x1), s(x2)) ∈
RM. Let a ∈ M and define F : X → M by F(s) = a for all s ∈ X . Still we have,

for all s ∈ X , (s(x1), s(x2)) ∈ RM. Therefore

(Rx1x2 ∨ Rx0x0, X (F/x0) ∪ ∅︸ ︷︷ ︸
X (F/x0)

, 1) ∈ T .

As in the first case, we have (=(x0), X (F/x0), 1) ∈ T because F is a constant

function, and this completes the proof.

Exercise 3.31

(i) The D-formula =() ∨ ¬ =() is in itself first order, by definition, because =() is the

veritas symbol, �.

(ii) The D-formula =(x0) is not logically equivalent to a first order formula because

it fails the Flatness Test. Let M = {a, b} have two different elements, s = {(0, a)} and

s ′ = {(0, b)}. Then M |={s} =(x0) and M |={s′} =(x0) but M �|={s,s′} =(x0).

(iii) We claim that =(x0, x0) ≡ �. We can prove it by noting that M |=X

=(x0, x0) ⇐⇒ for all s, s ′ ∈ X ; it holds that if s(x0) = s ′(x0) then s(x0) = s ′(x0). This

is of course always true, as is M |=X �.

182 Solutions to selected exercises, by Ville Nurmi

Exercise 3.38

For each of the three given formulas we must find a model and a team that demonstrate

that the formula fails the Flatness Test.

(i) Let φ be ∃x0

(=(x2, x0) ∧ Rx0x1

)
. Let M = (Z, <), X = {sk : k ∈ Z} ∈

Team(Z, {x1, x2}), where sk(x1) = k and sk(x2) = 0 for each k ∈ Z. We have

for each sk ∈ X that
(
φ, {sk}, 1

) ∈ T because
(=(x2, x0) ∧ Rx0x1, {sk}(F/x0), 1

) ∈
T , where F : sk �→ k − 1. But (φ, X, 1) �∈ T because if G : X → M satisfies(=(x2, x0), X (G/x0), 1

) ∈ T then G must be a constant function because X has a con-

stant value for x2, namely 0. That is, there is some n ∈ Z with G(sk) = n for all sk ∈ X .

But now G(sn) = n �< n = sn(x1), so
(
Rx0x1, X (G/x0), 1

) �∈ T .

(ii) Let ψ be ∃x0

(=(x2, x0) ∧ Rx1x0 ∧ Rx2x0

)
. Let M = (N, <), X = {sk : k ∈

N}, where sk are as above. Now we have, for all sk ∈ X ,
(
ψ, {sk}, 1

) ∈ T because(=(x2, x0) ∧ Rx1x0 ∧ Rx2x0, {sk}(F/x0), 1
) ∈ T , where F : sk �→ k + 1. However,

(ψ, X, 1) �∈ T because, as before, if G : X → M satisfies
(=(x2, x0), X (G/x0), 1

) ∈ T ,

then G must be a constant function, mapping G(sk) = n for all sk ∈ X and a fixed n ∈ N.

Then sn(x1) = n �< n = G(sn), so
(
Rx1x0, X (G/x0), 1

) �∈ T .

(iii) Let θ be ∃x0

(=(x2, x0) ∧ (Rx1x0 ↔ Rx2x0)
)
. Let M = (Z, <), X = {sk : k ∈

Z}, where sk are as above. Now, for each sk ∈ X , we have
(
θ, {sk}, 1

) ∈ T because(=(x2, x0) ∧ (Rx1x0 ↔ Rx2x0), {sk}(F/x0), 1
) ∈ T , where F : sk �→ max{k + 1, 1}.

However,
(
θ, X, 1

) �∈ T because if G : X → M satisfies
(=(x2, x0), X (G/x0), 1

) ∈ T ,

G has to be a constant function, as before, mapping G(sk) = n for all sk ∈ X and a fixed

n ∈ Z. If n ≤ 0 then sn−1(x1) = n − 1 < n = G(sn−1) but sn−1(x2) = 0 �< n = G(sn−1).

If n > 0 then sn(x1) = n �< n = G(sn) but sn(x2) = 0 < n = G(sn). In either case we

get
(
Rx1x0 ↔ Rx2x0, X (G/x0), 1

) �∈ T .

Exercise 3.40

In this exercise, we call a set P = {s, s ′} for s, s ′ ∈ X a pair. Note that a pair P may

have one or two elements.

Let ψ be ∃x0

(=(x1, x0) ∧ φ
)
, where φ is first order, and Fr(φ) = {x1}. The goal is

to show that ψ is coherent, i.e.

M |=X ψ ⇐⇒ for all pairs P: M |=P ψ. (A.3)

The implication to the right in Eq. (A.3) is clear by the Closure Test. Then we prove

Eq. (A.3) from right to left. By Lemma 3.27 and the assumption that Fr(φ) = {x1}, it is

sufficient to examine only the case when dom(X) = {1}. So, assume that for each pair

P we have
(
ψ, P, 1) ∈ T . That is, for each pair P we have FP : P → M with

(=(x1, x0) ∧ φ, P(FP/x0), 1
) ∈ T . (A.4)

Define F : X → M by letting F(s) = F{s}(s) for each s ∈ X . We show(=(x1, x0), X (F/x0), 1
) ∈ T . Let s, s ′ ∈ X (F/x0) and assume s(x1) = s ′(x1). We can

write s = z(F(z)/x0) and s ′ = z′(F(z′)/x0) for some z, z′ ∈ X . Then z(1) = z′(1), so

because dom(X) = {1}, z = z′ and s(x0) = F(z) = F(z′) = s ′(x0).

Then we show
(
φ, X (F/x0), 1

) ∈ T . Let s ∈ X (F/x0). Then s = z(F(z)/x0) =
z(F{z}(z)/x0) for some z ∈ X , so {s} = {z}(F{z}/x0). Now, by Eq. (A.4), we get

Solutions to selected exercises, by Ville Nurmi 183

Table A.5. The teams X and X (F/x0) for the Exercise 3.40
counterexample, x ∈ {a, b, c}.

X

x0 x1 x2

s1 a a
s2 a b
s3 a c

X (F/X0)

x0 x1 x2

s1 x a a
s2 x a b
s3 x a c

(
φ, {s}, 1

) ∈ T . Because φ is first order, it passes the Flatness Test. Therefore(
φ, X (F/x0), 1

) ∈ T .

By combining these achievements, we get
(=(x1, x0) ∧ φ, X (F/x0), 1

) ∈ T ,

whence (ψ, X, 1) ∈ T . This completes the proof that ψ is coherent.

Note that if we drop the requirement that Fr(φ) = {x1}, the claim does not hold. We

can then choose a counterexample by letting φ be ¬(x0 = x2), letting M = {a, b, c} have

three different elements, and letting X = {sz : z ∈ M}, where sz = {(x1, a), (x2, z)} for

each z ∈ M (see Table A.5). We have, for each P , M |=P ∃x0(=(x1, x0) ∧ φ) because

for each pair P there is some z ∈ M with sz �∈ P , so we can choose FP : P → M
to map FP (s) = z. Then

(=(x1, x0), P(FP/x0), 1) ∈ T because FP is constant, and(
φ, P(FP/x0), 1) ∈ T . But we do not have M |=X ∃x0(=(x1, x0) ∧ φ) because any

F : X → M satisfying
(=(x1, x0) ∧ φ, X (F/x0), 1

) ∈ T would have to be constant;

i.e. for some z ∈ M we had F(s) = z for all s ∈ X . But then sz(2) = F(sz), whence

(φ, X (F/x0), 1) �∈ T .

Exercise 3.41

Before we get to a straight solution of the exercise, here is an analogy that may help

the student to solve the problem alone. Compare the notions “φ passes the Flatness

Test” and “φ is coherent.” Flatness meansM |=X φ ⇐⇒ ∀s ∈ X : M |={s} φ, whereas

coherence means M |=X φ ⇐⇒ ∀s, s ′ ∈ X : M |={s,s′} φ. The similarity is clear. The

only difference between the two concepts is that one considers singleton teams and the

other considers pair teams. Now we can find an answer to this exercise by recalling a

typical non-flat formula, =(x0), and the fact that disjunction splits teams into smaller

ones, possibly into singletons or pairs.

To solve the exercise, letφ be the formula=(x0) ∨ =(x0). We claim thatφ is not coher-

ent. Let M = {a, b, c} have three different elements, and let X = M (shorthand notation

meaning X = {{(0, x)} : x ∈ M
}
). When s, s ′ ∈ X , we have

(
φ, {s, s ′}, 1) ∈ T because

we can split {s, s ′} = {s} ∪ {s ′} and have
(=(x0), {s}, 1

) ∈ T and
(=(x0), {s ′}, 1

) ∈ T .

But we do not have (φ, X, 1) ∈ T because whenever we split X = Y ∪ Z , either Y or

Z has two different elements that do not agree on x0.

As an afterthought, note that =(x0), while being non-flat, is however coher-

ent. Namely, if M |={s,s′} =(x0) for all s, s ′ ∈ X , then X is constant in x0. Then

M |=X =(x0).

184 Solutions to selected exercises, by Ville Nurmi

Exercise 3.43

Assume M |=X φ → ψ and M |=X ¬ψ . From the first assumption we get M |=X

¬φ ∨ ψ , whence M |=Y ¬φ and M |=Z ψ for some Y ∪ Z = X . Now Z ⊆ X , so by

the Closure Test and the second assumption we also have M |=Z ¬ψ . We can apply

Corollary 3.41 to the fact that now M |=Z ψ ∧ ¬ψ , and we get Z = ∅. Hence Y = X ,

which means that M |=X ¬φ, as we wanted.

Exercise 3.44

A straightforward way to show that no non-empty team is of a given type φ is to apply

the truth definition to the formula and see what conditions it poses on the team. There is

also another way to check this, namely to flatten the formula and then, remembering that

φ ⇒ φf, check for the satisfiability of the resulting first order formula φf. The flattening

technique is sometimes easier, especially if the formula involves determination atoms

=(t1, . . . , tn).

(i)
(¬ =(x0, x1)

)f = ¬�, which is clearly not satisfiable in first order logic. Therefore

no non-empty team is of type ¬ =(x0, x1).

(ii) Let φ be ¬(=(x0, x1) → =(x2, x1)
)
. Then φf = ¬(� → �) ≡ ¬�. As ⊥ is not

satisfiable in first order logic, no non-empty team can be of type φ.

(iii) Let ψ be ¬ =(f x0, x0) ∨ ¬ =(x0, f x0). Then φf = ¬� ∨ ¬� = ⊥ ∨ ⊥ ≡ ⊥. As

before, this is not satisfiable, so no non-empty team can be of type ψ .

(iv) Let θ be ∀x0∃x1∀x2∃x3¬
(
φ → =(x0, x1)

)
, where φ is an arbitrary D-formula.

Then θ f = ∀x0∃x1∀x2∃x3¬(φf → �) ≡ ∀x0∃x1∀x2∃x3¬� ≡ ∀x0∃x1∀x2∃x3⊥ ≡
⊥. Therefore no non-empty team can be of type θ .

Exercise 3.45

First,M |=X =(x0, x2) ∧ =(x1, x2) iff for all s, s ′ ∈ X it holds that if s(x0) = s ′(x0) then

s(x2) = s ′(x2), and if s(x1) = s ′(x1) then s(x2) = s ′(x2). In other words, for all s, s ′ ∈ X
it holds that if s(x0) = s ′(x0) or s(x1) = s ′(x1), then s(x2) = s ′(x2).

On the other hand, M |=X =(x0, x1, x2) iff for all s, s ′ ∈ X it holds that if s(x0) =
s ′(x0) and s(x1) = s ′(x1), then s(x2) = s ′(x2).

Looking at these two observations we can see that the latter is a weaker claim, i.e.

=(x0, x1, x2) ⇒ =(x0, x2) ∧ =(x1, x2), but the converse consequence does not hold.

The team on the left in Table A.6 is of type =(x0, x2) ∧ =(x1, x2) because we have a

function f mapping the values of the feature x0 to the values of the feature x2, and we also

have a function g mapping the values of the feature x1 to the values of the feature x2. These

two mappings are f : {1, 2} → {1, 2}, f (2) = 1, f (1) = 2, and g : {1, 2} → {1, 2, 3, 4},
g(1) = 1, g(2) = 1, g(3) = 2, g(4) = 2.

The team on the right in Table A.6 is of type =(x0, x1, x2) because we have a func-

tion h mapping the value pairs of the features x0 and x1 to the values of the feature

x2. This mapping is h : {(3, 1), (4, 2), (4, 1), (3, 2)} → {1, 2}, h(3, 1) = 1, h(4, 2) = 1,

h(4, 1) = 2, h(3, 2) = 2.

The team on the right in Table A.6 is not of type =(x0, x2) ∧ =(x1, x2) because,

for example, there cannot be a mapping f ′ : {3, 4} → {1, 2} that would map f ′(3) = 1,

f ′(4) = 1, f ′(4) = 2, f ′(3) = 2.

Solutions to selected exercises, by Ville Nurmi 185

Table A.6. Two example teams for Exercise 3.45,
one of type =(x0, x2) ∧ =(x1, x2) and another of

type =(x0, x1, x2)

=(x0, x2) ∧ =(x1, x2)

x0 x1 x2

2 1 1
2 2 1
1 3 2
1 4 2

=(x0, x1, x2)

x0 x1 x2

3 1 1
4 2 1
4 1 2
3 2 2

Exercise 3.48

Assume φ is a first order D-formula. Denote by ψ the formula
(=(x0, x1) ∧ =(x2, x3) ∧

φ
)
. We want to show that ∀x0∃x1∀x2∃x3ψ ≡ ∀x2∃x3∀x0∃x1ψ . We aim to establish the

following chain of equivalences:

∀x0∃x1∀x2∃x3ψ

≡ ∀x0∀x2∃x1∃x3ψ (A.5)

≡ ∀x2∀x0∃x3∃x1ψ (A.6)

≡ ∀x2∃x3∀x0∃x1ψ. (A.7)

The equivalences in Eqs. (A.5) and (A.7) require a long explanation. The equivalence

in Eq. (A.6) is obtained by utilizing Lemma 3.23 twice along with the Preservation of

Equivalence under Substitution. Let us now immerse ourselves into Eqs. (A.5) and (A.7).

To deal with some ample notation in solving this exercise, we improve the shorthand

notation used in the book. Let M be a model, let X be a team, and let s ∈ X . We denote

s(a/xm)(b/xn) by s(ab/xm xn) for a, b ∈ M .

To obtain the equivalence in Eq. (A.5), we need to show, for any model M and team

X , that (∀x0∃x1∀x2∃x3ψ, X, 1) ∈ T ⇐⇒ (∀x0∀x2∃x1∃x3ψ, X, 1) ∈ T . By applying

the truth definition we get that (∀x0∃x1∀x2∃x3ψ, X, 1) ∈ T if and only if (ψ, Y, 1) ∈ T ,

where Y = X (M/x0)(F/x1)(M/x2)(G/x3) for some functions F : X (M/x0) → M and

G : X (M/x0)(F/x1)(M/x2) → M . This is equivalent to the following condition:

(=(x0, x1), Y, 1) ∈ T and (=(x2, x3), Y, 1) ∈ T and (φ, Y, 1) ∈ T . (A.8)

We are heading towards (∀x0∀x2∃x1∃x3ψ, X, 1) ∈ T . Let us unravel it

slightly by the truth definition. It is equivalent to (ψ, Y ′, 1) ∈ T , where

Y ′ = X (M/x0)(M/x2)(F ′/x1)(G ′/x3) for some functions F ′ : X (M/x0)(M/x2)

→ M and G ′ : X (M/x0)(M/x2)(F ′/x1) → M . This is equivalent to the following

condition:

(=(x0, x1), Y ′, 1) ∈ T and (=(x2, x3), Y ′, 1) ∈ T and (φ, Y ′, 1) ∈ T . (A.9)

In order to prove Eq. (A.5), we need to show that Eqs. (A.8) and (A.9) are equivalent.

186 Solutions to selected exercises, by Ville Nurmi

Let us first prove that Eq. (A.8) implies Eq. (A.9). We first need to define F ′ and G ′. Let

z(ac/x0x2) ∈ X (M/x0)(M/x2), where z ∈ X and a, c ∈ M . We of course want to use the

given function F when we define F ′. A natural way to do this is to set F ′(z(ac/x0x2)) =
F(z(a/x0)). We can do so because z(a/x0) is in the domain of F . Let z(acb/x0x2x1) ∈
X (M/x0)(M/x2)(F ′/x1), where z ∈ X , a, c ∈ M , and b = F ′(z(ac/x0x2)). Again we

do the natural thing and set G ′(z(acb/x0x2x1)) = G(z(abc/x0x1x2)). We can do this

because b = F ′(z(ac/x0x2)) = F(z(a/x0)), so z(abc/x0x1x2) is in the domain of G. In

fact, z(acb/x0x2x1) and z(abc/x0x1x2) are the same assignment, so G ′ and G are the

same function, but we are not going to pay attention to this.

Now we check that F ′ and G ′ satisfy Eq. (A.9). Consider first =(x0, x1).

Let s1 = z1(a1c1b1d1/x0x2x1x3) ∈ Y ′ and s2 = z2(a2c2b2d2/x0x2x1x3) ∈ Y ′, where, for

i = 1, 2, zi ∈ X , ai , ci ∈ M , bi = F ′(zi (ai ci/x0x2)), and di = G ′(zi (ai ci bi/x0x2x1)).

Recall that bi = F ′(zi (ai ci/x0x2)) = F(zi (ai/x0)) and di = G ′(zi (ai ci bi/x0x1x2)) =
G(zi (ai bi ci/x0x1x2)). Assume s1(x0) = s2(x0), i.e. a1 = a2. Then

[
z1(a1b1/x0x1)

]
(x0) = a1 = a2 = [

z2(a2b2/x0x1)
]
(x0).

Now, because from Eq. (A.8) we get (=(x0, x1), Y, 1) ∈ T , and because Lemma 3.27

says that satisfaction is unaffected by assignments to variables that do not occur, and

because we can extend the assignments zi (ai bi/x0x1) to some such assignments that are

elements of Y , we find

b1 = [
z1(a1b1/x0x1)

]
(1) = [

z2(a2b2/x0x1)
]
(1) = b2.

Therefore s1(x1) = b1 = b2 = s2(x1), which proves that
(=(x0, x1), Y ′, 1

) ∈ T .

Consider =(x2, x3). Let s1, s2 ∈ Y ′ as above. Assume s1(x2) = s2(x2), i.e. c1 = c2.

Then

[
z1(a1b1c1d1/x0x1x2x3)

]
(x2) = c1 = c2 = [

z2(a2b2c2d2/x0x1x2x3)
]
(x2).

As above, because from Eq. (A.8) we get (=(x2, x3), Y, 1) ∈ T , and because we have

Lemma 3.27, and because we can extend the assignments zi (ai bi ci di/x0x1x2x3) to some

such assignments that are elements of Y , we find

d1 = [
z1(a1b1c1d1/x0x1x2x3)

]
(x3) = [

z2(a2b2c2d2/x0x1x2x3)
]
(x3) = d2.

Therefore s1(x3) = d1 = d2 = s2(x3), which proves that
(=(x2, x3), Y ′, 1

) ∈ T .

Finally, consider φ. Because φ is first order, we can use the Flatness Test. To

show (φ, Y ′, 1) ∈ T it suffices to show that (φ, {s}, 1) ∈ T for each s ∈ Y ′. Let

s = z(acbd/x0x2x1x3) ∈ Y ′ as above. Because b = F ′(z(ac/x0x2)) = F(z(a/x0)) and

d = G ′(z(acb/x0x2x1)) = G(z(abc/x0x1x2)), we have s ∈ Y . Therefore (φ, {s}, 1) ∈
T , by Eq. (A.8) and the Closure Test. This concludes the proof that Eq. (A.8) implies

Eq. (A.9). The other direction is similar. Also the proof of Eq. (A.7) is similar to the

proof of Eq. (A.5).

Solutions to selected exercises, by Ville Nurmi 187

Chapter 4

Exercise 4.1

In order to come up with a D-sentence that would characterize the oddness of the uni-

verse, we can start from the mathematical expression and then modify it into equivalent

forms using an informal second order language. We know that in D we can describe

the existence of a function by writing something like ∀x∃y
(=(x, y) ∧ φ

)
. Here x is

the argument for the function, y is the value the function gives to the argument, and φ

describes any conditions that we want to pose on the function.

So we begin. We proceed from the mathematical expression Eq. (A.10) via the

equivalent intermediate conditions Eqs. (A.11) and (A.12) to the D-sentence Eq. (A.13).

The basic idea for characterizing oddness is similar to that for evenness: a finite set M
is even iff there is a one-to-one function f : M → M that maps no element to itself and

that is its own inverse. Here are the three equivalent conditions:

|M | is odd; (A.10)

there is an element x ∈ M and a function f : M → M such that f ◦ f = id

and for all y ∈ M we have f (y) = y iff y = x ; (A.11)

∃x∃ f
(
∀y

(
f (f (y)) = y

) ∧ ∀y
(

f (y) = y ↔ y = x
))

. (A.12)

Now we bring in the D-way of talking about functions. In Eq. (A.13) (see below),

the variable x1 acts as an argument to the function and the variable x2 carries the value

that the function gives to its argument. Thus we may informally write y for x1 and f (y)

for x2.

Actually we need to specify the function f twice because we need to be able to speak

about mapping two different elements with it at the same time. Thus we think of x3 as

an argument to f and x4 as its image. We can informally write z for x3 and f (z) for x4.

Now, in order to express f (f (y)) we can and must express it as “ f (z) when z = f (y).”

Using this intuition we can note how the subformula x3 = x2 → x4 = x1 in Eq.

(A.13) expresses that x3 = f (x1) → f (x3) = x1, i.e. f (f (x1)) = x1. Also note how

x1 = x3 → x2 = x4 expresses that x = y → f (x) = g(y), i.e. f (x) = g(x), i.e. f = g.

So here is our final D-sentence:

∃x0

∃ f︷ ︸︸ ︷
∀x1∃x2

∃g︷ ︸︸ ︷
∀x3∃x4

(x2= f (x1)︷ ︸︸ ︷
=(x1, x2) ∧

x4=g(x3)︷ ︸︸ ︷
=(x3, x4) ∧

f =g︷ ︸︸ ︷
(x1 = x3 → x2 = x4) ∧

(x3 = x2 → x4 = x1)︸ ︷︷ ︸
f (f (y))=y

∧ (x2 = x1 ↔ x1 = x0)︸ ︷︷ ︸
f (x1)=x1↔x1=x0

)
. (A.13)

Exercise 4.15

Let G = (V, E) be a graph, let V be its vertices, and let E be its edges (a binary relation).

We proceed as in Exercise 4.1, starting from the mathematical expression, proceeding to

equivalent expressions, and ending up with aD-sentence that describes the mathematical

188 Solutions to selected exercises, by Ville Nurmi

expression. Here are the two equivalent conditions:

G has an infinite clique; (A.14)

there is a subset A ⊆ V such that A is a clique and A is infinite. (A.15)

We can describe infinity of A by saying that there is a one-to-one function f : A → A
that is not onto

∃A
(
∀x ∈ A∀y ∈ A(x Ey) ∧ ∃ f : A → A

(
∀x ∈ A∀y ∈ A

(
f (x) = f (y) → x = y

) ∧ ∃z ∈ A∀x ∈ A
(

f (x) �= z
)))

. (A.16)

We need to speak about subsets of the universe. A way to specify a subset, using

functions as the only tool, is to speak of the subset as the pre-image of a fixed element

in a fixed function. Therefore we convert ∃A into ∃g∃w and expressions such as x ∈ A
into f (x) = w. We also allow f to map M → M , and we require it to be one-to-one

only for elements x, y ∈ A:

∃g∃w
(
∀x∀y

(
(g(x) = w ∧ g(y) = w) → x Ey

)

∧ ∃ f
(
∀x∀y

((
g(x) = w ∧ g(y) = w ∧ f (x) = f (y)

) → x = y
)

∧ ∃z
(

g(z) = w ∧ ∀x
(
g(x) = w → f (x) �= z

))))
. (A.17)

Now we convert our informal and vaguely defined second order sentence into a

D-sentence. Note that in order to ensure that w corresponds to a single value, we must

express it by =(w), which says that w is a constant. If we leave it out, w could have

different values for different arguments of function g, i.e. w would be another function.

As in Exercise 4.1, we can think of x0 as x and x1 as its value, g(x). Likewise, think of

x2 as y and x3 as g(y). So, finally, the D-sentence is given by

∃g︷ ︸︸ ︷
∀x0∃x1

∃g′︷ ︸︸ ︷
∀x2∃x3

∃w︷︸︸︷
∃x4

(x1=g(x0)︷ ︸︸ ︷
=(x0, x1) ∧

x3=g′(x2)︷ ︸︸ ︷
=(x2, x3) ∧

x4 constant︷ ︸︸ ︷
=(x4)

∧
g=g′︷ ︸︸ ︷(

x0 = x2 → x1 = x3

) ∧(g(x)=w ∧ g(y)=w︷ ︸︸ ︷
(x1 = x4 ∧ x3 = x4) →

x Ey︷ ︸︸ ︷
x0 Ex2

)

∧
∃ f︷ ︸︸ ︷

∀x5∃x6

∃ f ′︷ ︸︸ ︷
∀x7∃x8

(x6= f (x5)︷ ︸︸ ︷
=(x5, x6) ∧

x8= f ′(x7)︷ ︸︸ ︷
=(x7, x8)

∧ (
(

g(x)=w ∧ g(y)=w︷ ︸︸ ︷
x1 = x4 ∧ x3 = x4 ∧

g and f map same values︷ ︸︸ ︷
x0 = x5 ∧ x2 = x7 ∧

f (x)= f (y)︷ ︸︸ ︷
x6 = x8) →

x=y︷ ︸︸ ︷
x0 = x2

)

∧
∃z︷︸︸︷

∃x9

(
=(x9) ∧ x2 = x9 ∧ x3 = x4∧

(
(x1 = x4 ∧ x5 = x0) → (x6 �= x9)

))))
. (A.18)

Solutions to selected exercises, by Ville Nurmi 189

Exercise 4.18

Let G = (V, E) be a graph. We proceed from Eq. (A.19) via equivalent, informal, second

order expressions to the D-formula Eq. (A.23). We see that the following are equivalent:

G is 3-colorable. (A.19)

G can be partitioned into three subsets, A0, A1, A2,

such that no edge goes from one subset to the same subset; (A.20)

∃A0 ⊆ V ∃A1 ⊆ V ∃A2 ⊆ V
(∧

i< j<3

Ai ∩ A j = ∅ ∧ A0 ∪ A1 ∪ A2 = V

∧ ∀x∀y
(
x Ey →

∧
i<3

¬(x ∈ Ai ∧ y ∈ Ai)
))

. (A.21)

As in Exercise 4.15, we express each subset Ai as the pre-image of a fixed element,

f −1
i {z}. As an aside, we could save some quantifiers and take just one function and

three elements and write f −1{zi } for Ai . We do not do this, however, because then the

resulting formula would work only in models with three different elements. That would

not be a real problem, because we can then write a separate formula that would describe

3-colorability for the cases when the universe has less than three elements. But as it

might look unnecessarily complicated and it would just save us a few quantifiers, we do

not do it now:

∃ f0∃ f1∃x2∃z
(∧

i< j<3

¬∃x
(

fi (x) = z ∧ f j (x) = z
) ∧ ∀x

∨
i<3

fi (x) = z

∧ ∀x∀y
(
x Ey →

∧
i<3

¬(
fi (x) = z ∧ fi (y) = z

)))
. (A.22)

The corresponding D-sentence is given by

∀x0∃x1∀x2∃x3∀x4∃x5∃x6

(
=(x0, x1) ∧ =(x2, x3) ∧ =(x4, x5) ∧ =(x6)

∧
∧

i< j<3

(
x2i = x2 j → ¬(x2i+1 = x6 ∧ x2 j+1 = x6)

)

∧ (
(x0 = x2 ∧ x2 = x4) → (x1 = x6 ∨ x3 = x6 ∨ x5 = x6)

) ∧ ∀x7∀x8(
x7 Ex8 →

∧
i<3

¬(
(x0 = x7 → x1 = x6) ∧ (x0 = x8 → x1 = x6)

)))
. (A.23)

Chapter 6

Exercise 6.1

Because ∃x1 =(x1) is a sentence, we can omit the relation symbol S from τd,∃x1 =(x1) for

both d = 0, 1:

τ1,∃x1 =(x1) τ0,∃x1 =(x1)

= ∃R
(
τ1,=(x1)(R) ∧ ∃x1 Rx1

) = ∃R
(
τ0,=(x1)(R) ∧ ∀x1 Rx1

)
= ∃R

(∀x1∀x2((Rx1 ∧ Rx2) = ∃R
(∀x1¬Rx1 ∧ ∀x1 Rx1

)
.

→ x1 = x2) ∧ ∃x1 Rx1

)
;

190 Solutions to selected exercises, by Ville Nurmi

Exercise 6.2

τ1,∃x1(=(x1)∨x1=x0)(S)

= ∃R
(
τ1,=(x1)∨x1=x0

(R) ∧ ∀x0(Sx0 → ∃x1 Rx0x1)
)

= ∃R∃T1∃T2

(
τ1,=(x1)(T1) ∧ τ1,∨x1=x0

(T2) ∧

∀x0∀x1

(
Rx0x1 → (T1x1 ∨ T2x0x1)

) ∧ ∀x0(Sx0 → ∃x1 Rx0x1)
)

= ∃R∃T1∃T2

(
∀x1∀x2(T1x1 ∧ T1x2→x1 = x2) ∧ ∀x0∀x1(T2x0x1→x1 = x0) ∧

∀x0∀x1

(
Rx0x1 → (T1x1 ∨ T2x0x1)

) ∧ ∀x0(Sx0 → ∃x1 Rx0x1)
)
.

Exercise 6.5

Assume φ(xi1 , . . . , xin) is of form ∃xin+1
ψ(xi1 , . . . , xin+1

). Our induction hypothesis is

that the claim holds for the subformula, namely that (ψ, X, d) ∈ T iff (M, X) |= τd,ψ (S).

Recall the following definitions from Theorem 6.2:

τ1,φ(S) = ∃R
(
τ1,ψ (R) ∧ ∀xi1 . . . ∀xin (Sxi1 . . . xin → ∃xin+1

Rxi1 . . . xin+1
)
)
;

τ0,φ(S) = ∃R
(
τ0,ψ (R) ∧ ∀xi1 . . . ∀xin (Sxi1 . . . xin → ∀xin+1

Rxi1 . . . xin+1
)
)
.

By the truth definition of D, (φ, X, 1) ∈ T is equivalent with the pair

(ψ, X (F/xin+1
), 1) being in T for some F : X → M . By our induction hypothesis this

is equivalent with

(M, X (F/xin+1
)) |= τ1,ψ (S). (A.24)

When we choose X (F/xin+1
) to witness R, we see that Eq. (A.24) implies (M, X) |=

τ1,φ(S) . Namely, letting N be the model with universe N = M and interpretations

SN = X , RN = X (F/xin+1
), we get N |= τ1,ψ (R) and N |= ∀xi1 . . . ∀xin (Sxi1 . . . xin

→ ∃xin+1
Rxi1 . . . xin+1

). The latter comes from the fact that F gives us a suitable value

at ∃xin+1
. On the other hand, assuming (M, X) |= τ1,φ(S) we get some model N with

universe N = M and relation symbols R, S such that SN = X , N |= τ1,φ(R) and N |=
∀xi1 . . . ∀xin (Sxi1 . . . xin → ∃xin+1

Rxi1 . . . xin+1
). The latter gives us a function F : X →

M such that RN = X (F/xin+1
), and (A.24) holds.

Similarly for d = 0.

Exercise 6.6

We solve the exercise by proving a more general claim. The general claim is that when

φ is a �1
1 -formula, M |=s φ for some assignment s, and π is an isomorphism M ∼= N ,

then N |=π◦s φ. We prove this by induction on φ. Our induction hypothesis is that the

claim holds for all subformulas of φ. As the first step of the proof, we can point out that

if φ is first order, then it is well known that the claim holds.

Assume then that φ is of form ∃Rψ . Now M |=s φ implies that there is a rela-

tion S such that (M, S) |=s ψ . By π : M ∼= N we get (N , S′) |=π◦s ψ , where S′ is

{(π (x1), . . . , π(xn)) : (x1, . . . , xn) ∈ S}, the image of S under the isomorphism π . By

the truth definition of �1
1 , we get N |=π◦s φ.

Solutions to selected exercises, by Ville Nurmi 191

Assume finally that φ is of form ∃gψ . Now M |=s φ implies that there is a function

h : Mn → M such that (M, h) |=s ψ . By π : M ∼= N we get (N , h′) |=π◦s ψ , where

h′ is h′ : N n → N , h′(π (x1), . . . , π(xn)) = π (h(x1, . . . , xn)) for all x1, . . . , xn ∈ M , the

image of h under π . By the truth definition of �1
1 , we get N |=π◦s φ.

Exercise 6.12

Let Mn |= φn for each n < ω. From

φn+1 ⇒ φn for all n < ω

we can see with a small inductive proof that

φn ⇒ φk for all k ≤ n < ω. (A.25)

We use the Compactness Theorem. Let T be some finite set of sentences φn . Then there

is a greatest k such that φk ∈ T . We have Mk |= φk , and by Eq. (A.25) this implies

Mk |= φn for all φn ∈ T . Now we have a model for an arbitrary finite set of sentences

φn . By the Compactness Theorem of D there is a model M such that M |= φn for all

n < ω.

Exercise 6.13

Let M be some infinite model of φ. Assume towards contradiction that M �|= ψ . Then

M |= ¬ψ (remember that ψ is first order so negation works in this complementing

way). As M |= φ ∧ ¬ψ , by the Löwenheim–Skolem Theorem of D there is a countable

modelN of φ ∧ ¬ψ . Now we haveN |= φ, and by our assumption we get alsoN |= ψ .

But this is in contradiction with N |= ¬ψ . Therefore we must have M |= ψ . Hereby

all models of φ are models of ψ .

Exercise 6.14

We use the vocabulary {<}, where < is a binary relation symbol. Let θLO be a first order

sentence that lists the axioms of linear order. Let ψ be the first order sentence

θLO ∧ ∀x∀y
(
x < y → ∃z(x < z ∧ z < y)

) ∧ ∃x∃y(x < y).

What ψ says is that the model is a dense linear order with at least two elements. Let φ

be the D-sentence

ψ ∧ 	cmpl.

Recall from Section 4.3 that 	cmpl is true in a linear order iff the linear order is incomplete.

Clearly we have φ ⇒ ψ . To show that M |= ψ implies M |= φ for countable models

M, note first that M |= ψ implies that M is an infinite model. We know that there are,

up to isomorphism, only four countable dense linear orders, namely the rationals with or

without endpoints: Q, Q + 1, 1 + Q, 1 + Q + 1. All of these are incomplete, so we get

M |= φ. However, there are uncountable models that satisfy ψ but not φ, for example

the reals, (R, <).

192 Solutions to selected exercises, by Ville Nurmi

Exercise 6.15

Here are Skolem normal forms for the three given first order sentences. There are also

other solutions. Here f0 is a 0-ary function symbol, so it works as a constant:

∃ f1∀x0(x0 = f1x0),

∃ f0∀x1¬(f0 = x1),

∃ f0∀x1(P f0 ∨ ¬Px1).

Exercise 6.17

These are the Skolem Normal Forms for the two given �1
1 -sentences, obtained by the

process described in the proof of the Skolem Normal Form Theorem:

(i) ∃ f0∃ f ∀x1∀x2

(¬ f x1 = f0 ∧ (f f0 = f x1 → f0 = x1)
)
;

(ii) ∃ f ∃ f0∃ f1∀x0∀x1∀x2∀x3∀x4∀x5∀x6((
(f0x0x1 = f1 ∧ f0x1x2 = f1) → f0x0x2 = f1

)
∧ (f0x3x4 = f1 ∨ f0x4x3 = f1 ∨ x3 = x4) ∧ ¬(f0x5x5 = f1) ∧ f0x6 f x6 = f1

)
.

Exercise 6.18

Since the three given�1
1 -sentences are in Skolem Normal Form and each function symbol

appears in them with only one kind of list of arguments, we may straightforwardly

transform them into D, following the proof of Theorem 6.15:

(i) ∀x0∀x1∃x2∃x3

(=(x0, x1, x2) ∧ =(x0, x1, x3) ∧ φ(x0, x1, x2, x3)
)
;

(ii) ∀x0∀x1∃x2∃x3

(=(x0, x1, x2) ∧ =(x1, x3) ∧ φ(x0, x1, x2, x3)
)
;

(iii) ∀x0∃x1∃x2

(=(x0, x1) ∧ =(x0, x2) ∧ φ(x0, x1, x2)
)
.

Exercise 6.19

The function symbol f appears in the given �1
1 -sentence with two different lists of

arguments. We must therefore first transform the sentence into the following (or similar)

equivalent form:

∃ f ∃ f ′∀x0∀x1

(
φ(x0, x1, f x0x1, f ′x1x0) ∧ (x0 = x1 → f x0x1 = f ′x1x0)

)
.

Now we can apply the process described in the proof of Theorem 6.15. We obtain the

following D-sentence:

∀x0∀x1∃x2∃x3

(=(x0, x1, x2) ∧ =(x1, x0, x3) ∧
φ(x0, x1, x2, x3) ∧ (x0 = x1 → x2 = x3)

)
.

Solutions to selected exercises, by Ville Nurmi 193

Exercise 6.21

Let M be a model, let φ define P ⊆ Mn , and let ψ define Q ⊆ Mn . We claim that

φ ∧ ψ defines P ∩ Q and that φ ∨ ψ defines P ∪ Q. The proofs go as follows:

(a1, . . . , an) ∈ P ∩ Q

⇐⇒ (a1, . . . , an) ∈ P and (a1, . . . , an) ∈ Q

⇐⇒ (M, a1, . . . , an) |= φ and (M, a1, . . . , an) |= ψ

⇐⇒ (M, a1, . . . , an) |= φ ∧ ψ ;

(a1, . . . , an) ∈ P ∪ Q

⇐⇒ (a1, . . . , an) ∈ P or (a1, . . . , an) ∈ Q

⇐⇒ (M, a1, . . . , an) |= φ or (M, a1, . . . , an) |= ψ

⇐⇒ (M, a1, . . . , an) |= φ ∨ ψ.

The final equivalence follows from the truth definition of D-logic, remembering that

M |= φ means M |={∅} φ and that {∅} = ∅ ∪ {∅}.
To see why P \ Q is in general not D-definable even when P and Q are, first assume

the contrary. Let Mω be the standard model of arithmetic. By Theorem 6.24 there is a

sentence τ (c) of D such that for all sentences φ of D we have

Mω |= φ if and only if Mω |= τ (�φ�).

Also, let θ (c) be a sentence of D for which

Mω |= θ (k) if and only if k is the Gödel number of some sentence of D.

The sentence θ (c) defines the set P ⊂ ω of Gödel numbers of sentences of D, and the

sentence τ (c) defines a set Q ⊂ ω that contains the Gödel numbers of true sentences of

D. By our assumption, the set P \ Q of Gödel numbers of sentences of D that are not

true is definable by a sentence π (c) of D. Therefore for all sentences φ of D we have

the following:

Mω �|= φ if and only if Mω |= π (�φ�).

By Theorem 6.19, π has a fixed point which is some sentence λ of D such that

Mω |= λ if and only if Mω |= π (�λ�).

Now we have that

Mω |= λ if and only if Mω |= π (�λ�) if and only if Mω �|= λ.

This is a contradiction, completing the proof.

Exercise 6.22

Let ψ be a D-sentence in language L ∪ {R}. Assume we have models M and

N with M |= ψ , N |= ψ , M�L = N �L , and RM �= RN . Also assume that we

have a D-sentence φ in language L ∪ {c1, . . . , cn} that defines R in every model

of ψ . We can assume w.l.o.g. that there is some (a1, . . . , an) ∈ RM \ RN . Then

194 Solutions to selected exercises, by Ville Nurmi

we have (a1, . . . , an) ∈ RM ⇒ (M, a1, . . . , an) |= φ ⇒ (M�L , a1, . . . , an) |= φ ⇒
(N �L , a1, . . . , an) |= φ ⇒ (N , a1, . . . , an) |= φ ⇒ (a1, . . . , an) ∈ RN , which is a con-

tradiction, proving the claim.

Exercise 6.23

Let ψ be a D-sentence in the language L ∪ {R}. Assume that for all models M and

N , if M |= ψ , N |= ψ and M�L = N �L , then RM = RN . Let ψ ′ be obtained from

ψ by replacing occurrences of R by R′, where R′ is a new relation symbol. From

the assumption we get that when a model (M, A, B) satisfies the sentence ψ ∧ ψ ′ of

the language L ∪ {R, R′}, then A = B. Therefore the D-sentences ψ ∧ Rc1 . . . cn and

ψ ′ ∧ ¬R′c1 . . . cn have no models in common. We can then use the Separation Theorem

and obtain a sentence φ in the language L ∪ {c1, . . . , cn} such that every model of

ψ ∧ Rc1 . . . cn is a model of φ, and that φ and ψ ′ ∧ ¬R′c1 . . . cn have no models in

common. Now we have, for an arbitrary model M |= ψ in the language L ∪ {R}, the

following implication:

(a1, . . . , an) ∈ RM ⇒ (M, a1, . . . , an) |= ψ ∧ Rc1 . . . cn

⇒ (M, a1, . . . , an) |= φ.

Also note that (M, A) |= ψ ⇐⇒ (M, A, A) |= ψ ∧ ψ ′. We obtain the following

implication for all models M |= ψ ∧ ψ ′:

(M, a1, . . . , an) |= φ ⇒ (M, a1, . . . , an) �|= ¬R′c1 . . . cn

⇒ (a1, . . . , an) ∈ R′M ⇒ (a1, . . . , an) ∈ RM.

Exercise 6.26

Denote by S the sentence “It is not true that S is true.” Assuming that truth is two-valued

(which is the case for example in first order logic), S is either true or false. If S is true,

then the contents of S state that S is false, which is a contradiction. On the other hand,

if S is false, then the contents of S say that S is true, another contradiction. There are no

other possibilities, so we have derived the required contradiction.

Exercise 6.27

If it is raining in both Warsaw and Vienna, then sentence (3) is not paradoxical because

it can be false (or true) and still be consistent with sentences (1) and (2). Similarly, when

it is not raining in Warsaw nor in Vienna, we can make (3) consistent by making it false.

However, if it is raining in only one of Warsaw and Vienna, we cannot have (3) true

or false and still have it consistent. Namely, if (3) is false, then exactly one of (1)–(3) is

true, so (3) is actually true, a contradiction. Similarly, if (3) is true, then two of (1)–(3)

are true, so (3) does not state a true condition, another contradiction.

Solutions to selected exercises, by Ville Nurmi 195

Exercise 6.28

As in the proof of Theorem 6.19, let θ (x0) be ∃x1

(
φ(x1) ∧ σ (x0, x1, x0)

)
, let k = �θ (x0)�,

and let ψ be θ (k). Then we have the following equivalence:

Mω |= φ(�ψ�)

⇐⇒ Mω |= φ(�θ (k)�)

⇐⇒ there is a ∈ M with Mω |= φ(a) and (k, a, k) ∈ Sub

⇐⇒ Mω |= ∃x1

(
φ(x1) ∧ σ (k, x1, k)

)
⇐⇒ Mω |= θ (k)

⇐⇒ Mω |= ψ.

Exercise 6.31

Let T be a theory in the language L {+,×} ∪ {c0, c1, c2, c3}, where all the ci are new con-

stant symbols, so that T consists of Peano’s axioms, an axiomatization of our auxiliary

tools such as the relations SAT, POS-ID, NEG-ID, TRUE-ID, etc., and the sentences

SATc0c1 ∧ POS-IDc1c2c3 ∧ TRUE-IDc0c2c3, and ¬(n = ck) for all natural numbers n
and all k = 0, 1, 2, 3. Then T expresses that the defined truth predicate will also say

something about the truth of some non-standard Gödel numbers.

We can satisfy all finite subsets of T by a standard model (Mω, SatN). By the Com-

pactness Theorem of D we get that T has a model (M, S). Because of how we built T it

now holds that even though S agrees with the standard truth predicate SatN about standard

Gödel numbers, there is also a pair of non-standard elements, namely (cM0 , cM1) ∈ S.

That is why S �= SatN , even though (M, S) |= θL and (Mω, SatN) |= θL .

Exercise 6.33

We have the following inference for an arbitrary D-sentence φ to prove the first part of

the exercise. Note that φ ↔ ¬φ is shorthand for (¬φ ∨ ¬φ) ∧ (¬¬φ ∨ φ):

(
(¬φ ∨ ¬φ) ∧ (¬¬φ ∨ φ), {∅}, 1

) ∈ T
⇐⇒ (¬φ ∨ ¬φ, {∅}, 1

) ∈ T and
(¬¬φ ∨ φ, {∅}, 1

) ∈ T

⇐⇒
((¬φ, {∅}, 1

) ∈ T or
(¬φ, {∅}, 1

) ∈ T
)

and((¬¬φ, {∅}, 1
) ∈ T or

(
φ, {∅}, 1

) ∈ T
)

⇐⇒ (¬φ, {∅}, 1
) ∈ T and

(
φ, {∅}, 1

) ∈ T
⇐⇒ (

φ, {∅}, 0
) ∈ T and

(
φ, {∅}, 1

) ∈ T
⇐⇒ {∅} = ∅.

The inference ends in a contradiction.

The reason why we can have a D-sentence λ that states “λ is not true” is that D is a

three-valued logic, and that gives us more freedom. We avoid contradiction because λ is

neither true nor false. Note that in D-logic, saying “φ is false” is different from saying

196 Solutions to selected exercises, by Ville Nurmi

Table A.7.

I II Rule

∃x0 Px0 (1)
Pc0 (6)
∃x0¬Qx0 (1)
¬Qc1 (6)

Qc1 (4)
∀x0(Px0 ∨ Qx0) (1)
Pc0 ∨ Qc0 (4), (6), (4)
Pc0 (5)
Pc1 ∨ Qc1 (4), (6), (4)
Pc1 (5)
...

“φ is not true.” The latter expression is weaker than the former. In other words, when φ

is false it is also not true, but there are cases when φ is not true but still not false.

Exercise 6.36

Assume there was some D-sentence τ ′(c) such that for all D-sentences φ we had

Mω �|= φ iff Mω |= τ ′(�φ�). Then by applying the D-alternative of Gödel’s Fixed

Point Theorem we get a D-sentence ψ such that Mω |= ψ iff Mω |= τ ′(�ψ�). This is

a contradiction with the first assumption.

Exercise 6.38

(i) Player II can always win by playing as shown in Table A.7. Note that even though

we do not have an explicit rule for ∀xnφ, we can play it by rules (4) (for negation),

(6) (for existential quantification), and (4) (for negation again) from Definition 6.25

because ∀xnφ is shorthand for ¬∃xn¬φ. Player II can always choose Pcn from a

disjunction Pcn ∨ Qcn .

(ii) Player II can always win by playing as shown in Table A.8. All atomic sentences

Rtt ′ in the game appear on the side of player II, so no contradiction can occur.

Exercise 6.39

(i) Player I can always win by playing as shown in Table A.9. Note that φ → ψ is

shorthand for ¬φ ∨ ψ . At position (¬Pc0 ∨ Qc0, II), player II could have chosen

¬Pc0 instead of Qc0, but this would have led to an even easier victory for player I.

(ii) Player I can always win by playing as shown in Table A.10.

Solutions to selected exercises, by Ville Nurmi 197

Table A.8.

I II Rule

¬∃x∀y¬Rxy (1)
∃x∀y¬Rxy (4)
∀y¬Rc0 y (6)
¬Rc0c1 (4), (6), (4)

Rc0c1 (4)
∀x Rx f x (1)
Rc0 f c0 (4), (6), (4)
f c0 = c1 (7)
Rc0c1 (3)
...

Table A.9.

I II Rule

∃x0 Px0 (1)
Pc0 (6)
∀x0(¬Px0 ∨ Qx0) (1)
¬Pc0 ∨ Qc0 (4), (6), (4)
Qc0 (5)
¬∃x0 Qx0 (1)

∃x0 Qx0 (4)
Qc0 (6)

Table A.10.

I II Rule

¬∀x∃y Rxy (1)
∀x∃y Rxy (4)
∃y Rc0 y (4), (6), (4)

∀x Rx f x (1)
Rc0 f c0 (4), (6), (4)
f c0 = c1 (7)
Rc0c1 (3)

Rc0c1 (6)

198 Solutions to selected exercises, by Ville Nurmi

Exercise 6.40

Let � be the finite set of sets S of pairs (φ, α) such that α ∈ {I, II}, φ is a sentence

in vocabulary L ′ = L ∪ C , where C are countably many new constants, and L is a

countable vocabulary, and for each S ∈ � there is a model MS such that

(a) the universe consists of constant interpretations, MS = {cMS : c ∈ C};
(b) if (φ, I) ∈ S then MS |= ¬φ;

(c) if (φ, II) ∈ S then MS |= φ.

We show that � is a consistency property by going through conditions (i)–(ix) in the

definition of a consistency property.

(i) If S ∈ � and t is a constant L ′-term, thenMS |= t = t (simply because any model

would satisfy this sentence). Denote S′ = S ∪ {(t = t, II)}. Now let us check if

S′ ∈ �. All we need is to find a model MS′ such that (a), (b), and (c) hold. Choose

MS to be the candidate for MS′ . Clearly (a) holds. To see (b), if (φ, I) ∈ S′, then

(φ, I) ∈ S, so MS |= ¬φ. OK. To see (c), if (φ, II) ∈ S′, then either (φ, II) ∈ S
or φ is t = t . In the first case we get MS |= φ. In the second case we again get

MS |= φ, as we have already seen. This proves condition (i).

(ii) Let S ∈ � such that (t = t ′, II) ∈ S, and let φ(t) be atomic. If (φ(t), II) ∈ S ∈ �,

then MS |= φ(t) and MS |= t = t ′, so MS |= φ(t ′). Thus S ∪ {(φ(t ′), II)} ∈ �.

On the other hand, if (φ(t), I) ∈ S ∈ �, then MS |= ¬φ(t) and MS |= t = t ′, so

MS |= ¬φ(t ′). Thus S ∪ {(φ(t ′), I)} ∈ �. This proves condition (ii).

(iii) If (¬φ, II) ∈ S ∈ �, then MS |= ¬φ, so S ∪ {(φ, I)} ∈ �. On the other hand,

if (¬φ, I) ∈ S ∈ �, then MS |= ¬¬φ, so MS |= φ, so S ∪ {(φ, II)} ∈ �. This

proves condition (iii).

(iv) If (φ ∨ ψ, II) ∈ S ∈ �, thenMS |= φ ∨ ψ , so eitherMS |= φ orMS |= ψ . In the

first case we get S ∪ {(φ, II)} ∈ �, and in the latter case we get S ∪ {(ψ, II)} ∈ �,

which proves condition (iv).

(v) If (φ ∨ ψ, I) ∈ S ∈ �, then MS |= ¬(φ ∨ ψ), so both MS |= ¬φ and MS |=
¬ψ . Thus we get S ∪ {(φ, I)} ∈ � and S ∪ {(ψ, I)} ∈ �, which proves condition

(v).

(vi) If (∃xnφ(xn), II) ∈ S ∈ �, then MS |= ∃xnφ(xn), so there is some a ∈ MS with

MS |={xn �→a} φ(xn). By (a) there is some c ∈ C such that MS |= φ(c). Thus S ∪
{(φ(c), II)} ∈ �, which proves condition (vi).

(vii) If (∃xnφ(xn), I) ∈ S ∈ �, then MS |= ¬∃xnφ(xn), so for all a ∈ MS we have

MS |={xn �→a} ¬φ(xn). By (a), for all c ∈ C we have MS |= ¬φ(c). Thus S ∪
{(φ(c), I)} ∈ � for all c ∈ C , which proves condition (vii).

(viii) If S ∈ � and t is a constant L ′-term, then by (a) we have tMS = cMS for some

c ∈ C . ThusMS |= t = c, so S ∪ {(t = c, II)} ∈ �, which proves condition (viii).

(ix) Assume there was some S ∈ � such that (φ, II) ∈ S and (φ, I) ∈ S. ThenMS |= φ

and MS |= ¬φ, which is a contradiction. Thus the case of the assumption can

never happen, which proves condition (ix).

This concludes the proof that � is a consistency property.

Solutions to selected exercises, by Ville Nurmi 199

Exercise 6.42

Let T be an L-theory. Assume that σ is a winning strategy for player II in MEG(T, L).

We are to prove that there is a consistency property � for T . The idea of the proof is

that we create a set � that imitates plays of MEG(T, L) when player II plays with her

winning strategy σ against all the possible strategies of player I. Since all sets S ∈ �

must be finite in order to � being a consistency property, we cannot take S to be all the

positions in some play (might be infinite). Instead, we take only positions up to some

finite number of moves.

Precisely, let � be the set such that S ∈ � iff there is some strategy τ of player I in

MEG(T, L) and natural number n < ω such that S is the set of positions of the play of

MEG(T, L) when player I plays according to strategy τ and player II plays according

to strategy σ . We prove that � is a consistency property for theory T by going through

conditions (i)–(ix) of the definition of a consistency property.

(i) Let S ∈ �, obtained by some strategy τ for player I by playing up to some move

n, and let t be a constant L ′ = L ∪ C-term. At this point in the game, player I can

make an identity move on term t and the game moves to position (t = t, II). Thus

S ∪ {(t = t, II)} ∈ �.

(ii) Let S ∈ �, corresponding to some play at some phase, and let (φ(t), α) ∈ S, where

φ(t) is atomic, and let (t = t ′, II) ∈ S. Now player I can continue by making a

substitution move, and the game continues from position (φ(t ′), α). Thus S ∪
{(φ(t ′), α)} ∈ �.

(iii) Let S ∈ �, corresponding to some play at some phase. If (¬φ, II) ∈ S, then player

I can make a negation move, and the game continues from position (φ, I). Thus S ∪
{(φ, I)} ∈ �. On the other hand, if (¬φ, I) ∈ S, then player I can make a negation

move such that the game continues from position (φ, II). Thus S ∪ {(φ, II)} ∈ �.

(iv) Let S ∈ �, corresponding to some play at some phase, and let (φ ∨ ψ, II) ∈ S.

Player I can make a disjunction move, and the game continues from position

(φ, II) or (ψ, II), depending on player II’s choice. Thus either S ∪ {(φ, II)} ∈ �

or S ∪ {(ψ, II)} ∈ �.

(v) Let S ∈ �, corresponding to some play at some phase, and let (φ ∨ ψ, I) ∈ S.

Player I can make a disjunction move so that the game continues from position

(φ, I). On the other hand, he can also choose the game to continue from position

(ψ, I). Thus S ∪ {(φ, I)} ∈ � and S ∪ {(ψ, I)} ∈ �.

(vi) Let S ∈ �, corresponding to some play at some phase. Suppose (∃xnφ(xn), II) ∈
S. Player I can make an existential move, and the game continues from posi-

tion (φ(c), II) for some c ∈ C , depending on the choice of player II. Thus

S ∪ {(φ(c), II)} ∈ � for some c ∈ C .

(vii) Let S ∈ �, corresponding to some play at some phase. Suppose (∃xnφ(xn), I) ∈ S.

For each c ∈ C , player I is able to make an existential move so that the game

continues from position (φ(c), I). Thus S ∪ {(φ(c), II)} ∈ � for all c ∈ C .

(viii) Let S ∈ �, corresponding to some play at some phase, and let t be a constant L ′-
term. Player I can make a constant move, and the game continues from position

(t = c, II) for some c ∈ C , depending on the choice of player II.

200 Solutions to selected exercises, by Ville Nurmi

(ix) There cannot be any set S ∈ � and atomic formula φ such that (φ, II) ∈ S and

(φ, I) ∈ S, because S contains exactly the game positions up to some n moves in

some play where player II has followed her winning strategy σ .

Lastly, we check the requirement that the consistency property � is a consistency

property for theory T . Assume φ ∈ T and S ∈ �. Then there is some strategy τ for

player I in MEG(T, L) such that, after some n rounds of playing, the game has produced

the set S of game positions. Certainly there is a strategy τ for player I such that on his

next move he will perform a theory move and choose (φ, II) to become the new game

position. Therefore S ∪ {(φ, II)} ∈ �. This concludes the whole proof.

Exercise 6.44

Let H be a Hintikka set. Define, for c, c′ ∈ C , c ∼ c′ if (c = c′, II) ∈ H . We show that

∼ is an equivalence relation.

Firstly, for any c ∈ C , we have (c = c, II) ∈ H by condition (i) in the definition of

a Hintikka set (Definition 6.30) because c is a constant L ′-term. Thus ∼ is reflexive.

Secondly, assume (c = c′, II) ∈ H . By the above, we have (c = c, II) ∈ H . Now, by

condition (ii) in Definition 6.30 we have (c′ = c, II) ∈ H . Thus ∼ is symmetric.

Thirdly, assume (c = c′, II) ∈ H and (c′ = c′′, II) ∈ H . Again, by condition (ii) we

have (c = c′′, II) ∈ H . Thus ∼ is transitive.

Exercise 6.45

The proof follows conditions (i)–(ix) in the definition of a consistency property

(Definition 6.28). In fact we have to generalize the definition slightly. Namely, in the

original definition, all sentences that appear in � are of some fixed vocabulary L ∪ C . In

this exercise we do not have this situation. All sentences that occur in our � are surely of

the vocabulary L1 ∪ L2 ∪ C , but we avoid considering all such sentences. We have only

L1 ∪ C- and L2 ∪ C-sentences. We must reflect this in the definition by slightly altering

conditions (i) and (viii) which prompt for appearance of some sentence that contains

an arbitrary term. In the following proof, we assume that the proper adjustments to the

definition have been made.

(i) Let S ∈ � and let t be a constant Li ∪ C-term for some i ∈ {1, 2}. Denote

S′ = S ∪ {(t = t, II)}. If there were some L1 ∩ L2-sentence θ that would separate

T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C), then θ would also separate T (S)�(L1 ∪ C)

and T (S)�(L2 ∪ C). Namely, if some model M has M |= T (S)�(L1 ∪ C), then

M |= T (S′)�(L1 ∪ C), so M |= θ . Furthermore, if some M has M |= θ , then

M �|= T (S′)�(L2 ∪ C), so M �|= T (S)�(L2 ∪ C). Therefore we have a contradic-

tion to the fact that S ∈ �, which says that T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C) are

inseparable. Thus S′ ∈ �.

(ii) Let (φ(t), α) ∈ S ∈ �, let φ(t) be atomic, and let (t = t ′, II) ∈ S. Denote S′ =
S ∪ {(φ(t ′), α)}. Assume φ(t) is an L1 ∪ C-sentence or an L2 ∪ C-sentence (it

does not matter in this proof of condition (ii) which one it is). If there were some

L1 ∩ L2-sentence θ that would separate T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C), then

– with a proof similar to that of condition (i) – θ would also separate T (S)�(L1 ∪ C)

and T (S)�(L2 ∪ C), contrary to the fact that S ∈ �. Thus S′ ∈ �.

Solutions to selected exercises, by Ville Nurmi 201

(iii) Let (¬φ, II) ∈ S ∈ �. Assume that ¬φ is an Li ∪ C-sentence for some i ∈
{1, 2} (does not matter which). Denote S′ = S ∪ {(φ, I)}. If it was the case that

T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C) were separable by some L1 ∩ L2-sentence

θ , then also T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C) would be separable by θ . The

basic idea is that both (¬φ, II) and (φ, I) contribute the same sentence to

T (S′). More precisely, if we have a model M with M |= T (S)�(L1 ∪ C), then

M |= T (S′)�(L1 ∪ C), so M |= θ . Furthermore, if some model M has M |= θ ,

then M �|= T (S′)�(L2 ∪ C), so M �|= T (S)�(L2 ∪ C). This is contrary to S ∈ �.

Thus we have S′ ∈ �.

(iv) Let (φ ∨ ψ, II) ∈ S ∈ �. Assume that

φ ∨ ψ is an L1 ∪ C-sentence. (A.26)

Denote S′ = S ∪ {(φ, II)} and S′′ = S ∪ {(ψ, II)}. If it were the case that we

had L1 ∩ L2-sentences θ ′ and θ ′′ such that

T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C) are separable by θ ′, and
(A.27)

T (S′′)�(L1 ∪ C) and T (S′′)�(L2 ∪ C) are separable by θ ′′,

then θ ′ ∨ θ ′′ would separate T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C). Namely, assume

that for some model M we have M |= T (S)�(L1 ∪ C). Then M |= φ ∨ ψ

because of Eq. (A.26). Thus either M |= φ or M |= ψ . Then either M |=
T (S′)�(L1 ∪ C) orM |= T (S′′)�(L1 ∪ C), so by Eq. (A.27),M |= θ ′ orM |= θ ′′.
In both cases we get M |= θ ′ ∨ θ ′′. Assume then that some model M has

M |= θ ′ ∨ θ ′′. Then either M |= θ ′ or M |= θ ′′, so, by Eq. (A.27), either

M �|= T (S′)�(L2 ∪ C) or M �|= T (S′′)�(L2 ∪ C). Because of Eq. (A.26), we have

T (S′)�(L2 ∪ C) = T (S)�(L2 ∪ C) and T (S′′)�(L2 ∪ C) = T (S)�(L2 ∪ C). Thus

we get, in both cases, M �|= T (S)�(L2 ∪ C). This is a contradiction to S ∈ �.

Thus we have either S′ ∈ � or S′′ ∈ �. The other case when φ ∨ ψ is an L2 ∪ C-

sentence can be proved similarly.

(v) Let (φ ∨ ψ, I) ∈ S ∈ �. Assume Eq. (A.26). (The other case is proved similarly.)

Denote S′ = S ∪ {(φ, I)} and S′′ = S ∪ {(ψ, I)}. Assume there was some L1 ∩ L2-

sentence θ such that either Eq. (A.28) or Eq. (A.29) holds:

T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C) are separable by θ, (A.28)

T (S′′)�(L1 ∪ C) and T (S′′)�(L2 ∪ C) are separable by θ. (A.29)

Then θ would separate T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C). For a proof, let us

assume Eq. (A.28). The case for Eq. (A.29) is proved symmetrically. Now, if

M |= T (S)�(L1 ∪ C), then M |= T (S′)�(L1 ∪ C) because of Eq. (A.26) and the

fact that ¬(φ ∨ ψ) |= ¬φ. Thus, by Eq. (A.28), M |= θ . Furthermore, if some

model M has M |= θ , then by Eq. (A.28) we have M �|= T (S′)�(L2 ∪ C). Now,

because of Eq. (A.26), T (S′)�(L2 ∪ C) = T (S)�(L2 ∪ C), so M �|= T (S)�(L2 ∪
C). Therefore we get a contradiction with S ∈ �. Thus we have S′ ∈ � and

S′′ ∈ �.

(vi) Let (∃xnφ(xn), II) ∈ S ∈ �. Assume that

∃xnφ(xn) is an L1 ∪ C-sentence. (A.30)

(The other case is proved similarly.) Let c ∈ C be a constant that does not occur in

S (such constants exist because S is finite). Denote S′ = S ∪ {(φ(c), II)}. If there

202 Solutions to selected exercises, by Ville Nurmi

were some L1 ∩ L2-sentence θ such that

θ separates T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C), (A.31)

then θ would separate also T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C), contrary to S ∈ �.

More precisely, if some modelMhasM |= T (S)�(L1 ∪ C), thenM |= ∃xnφ(xn).

Therefore there is some a ∈ M with (M, a) |= φ(c), so (M, a) |= T (S′)�(L1 ∪
C). By Eq. (A.31), (M, a) |= θ . Because θ does not mention c, we get M |= θ .

Furthermore, if we have a model M such that M |= θ , then, by Eq. (A.31),

M �|= T (S′)�(L2 ∪ C). Because of Eq. (A.30), T (S′)�(L2 ∪ C) = T (S)�(L2 ∪ C),

so we have M �|= T (S)�(L2 ∪ C). This gives a contradiction with S ∈ �. Thus

we have S′ ∈ �.

(vii) Let (∃xnφ(xn), I) ∈ S ∈ �. Assume Eq. (A.30). (The other case is proved simi-

larly.) Denote, for each c ∈ C , Sc = S ∪ {(φ(c), I)}. If there were some L1 ∩ L2-

sentence θ and some c ∈ C such that

θ separates T (Sc)�(L1 ∪ C) and T (Sc)�(L2 ∪ C), (A.32)

then θ would separate also T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C). Namely, if some

model M has M |= T (S)�(L1 ∪ C), then M |= ¬∃xnφ(xn). This gives us M |=
¬φ(c), so we have M |= T (Sc)�(L1 ∪ C). By Eq. (A.32) we get M |= θ . On the

other hand, if some model M has M |= θ , then, by Eq. (A.32), we get M �|=
T (Sc)�(L2 ∪ C). Because of Eq. (A.30), we have T (Sc)�(L2 ∪ C) = T (S)�(L2 ∪
C), so M �|= T (S)�(L2 ∪ C). This is contrary to S ∈ �. Thus we have S′ ∈ �.

(viii) Let S ∈ � and assume that

t is a constant L1 ∪ C-term. (A.33)

Let c ∈ C be a constant that does not occur in S (such constants exist because

S is finite). Denote S′ = S ∪ {(t = c, II)}. Now assume there is some L1 ∩ L2-

sentence θ such that

θ separates T (S′)�(L1 ∪ C) and T (S′)�(L2 ∪ C). (A.34)

We prove that then θ separates also T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C), contrary

to assumption S ∈ �. Then Eq. (A.34) is false, and that gives us S′ ∈ �. So,

assume that some model M has M |= T (S)�(L1 ∪ C). Denote a = tM ∈ M .

Then (M, a) |= t = c, so (M, a) |= T (S′)�(L1 ∪ C). By Eq. (A.34), (M, a) |= θ .

Because θ does not contain c, we get M |= θ . Assume then that some model M
has M |= θ . Then, by Eq. (A.34), M �|= T (S′)�(L2 ∪ C). Because of Eq. (A.33),

T (S′)�(L2 ∪ C) = T (S)�(L2 ∪ C), so M �|= T (S)�(L2 ∪ C).

(ix) Let S ∈ � and assume there is some L1 ∪ C-sentence φ such that (φ, II) ∈ S
and (φ, I) ∈ S. Let θ be the L1 ∩ L2-sentence ¬∀x0(x0 = x0). Now, if some

model M has M |= T (S)�(L1 ∪ C), then M |= θ . This is so because φ is an

L1 ∪ C-sentence, so T (S)�(L1 ∪ C) contains both sentences φ and � φ. Thus

T (S)�(L1 ∪ C) has no models. Similarly, because θ has no models, we get that

θ and T (S)�(L2 ∪ C) have no models in common. This proves that θ separates

T (S)�(L1 ∪ C) and T (S)�(L2 ∪ C), contrary to S ∈ �. The case that φ is an

L2 ∪ C-sentence is similar.

This concludes the whole proof.

Solutions to selected exercises, by Ville Nurmi 203

Table A.11. Team X for
Exercise 6.54

x0 x1 x2

0 2 1
1 0 0
2 1 1

Table A.12. Teams X and Y for
Exercise 6.57

X

x0 x1 x2

0 2 2
1 0 0
2 1 1

Y

x0 x1 x2

a c b
b b c
c a a
d d d

Exercise 6.54

The set Fml0
3 contains infinitely many formulas, but only a finite number of them are

non-equivalent. We confine ourselves to list only one formula from each equivalence

class that X (see Table A.11) satisfies in M:

� ¬(x0 = x1) ¬(x0 = x2)

=(x0, x1) =(x0, x2) =(x1, x0) =(x1, x2).

In addition to these, there are all the conjunctions of any subset of these listed

formulas, such as ¬(x0 = x1) ∧ =(x0, x1) ∧ =(x1, x2). The team X also satisfies trivial

consequences of these listed formulas. For example, because =(x0, x2) is satisfied, then

also =(x0, x1, x2) is satisfied because we have =(x0, x2) ⇒ =(x0, x1, x2).

Remember that formulas such as =(x0, x0), =(x0, x1, x0), =(x0, x0, x0, x0) and so on

are satisfied by any team in any model, thus they are equivalent with �. Also remember

that formulas such as ¬ =(x2, x0) are not satisfied by X in M. In fact, negations of

determination formulas are always false: remember the truth definition! Fml0
3 also does

not contain any disjunctions because their rank would be greater than 0.

204 Solutions to selected exercises, by Ville Nurmi

Table A.13. Teams X = X0 ∪ X1 and Y for
Exercise 6.59

X

x0 x1

0 2
1 3
2 3
3 2

X0

x0 x1

1 3
2 3

X1

x0 x1

0 2
3 2

Y

x0 x1

a b
b c
c d
d a

Table A.14. Teams X, X (F/x2), and Y for
Exercise 6.60

X

x0 x1

0 2
1 1
2 1

X (F/x2)

x0 x1 x2

0 2 0
1 1 0
2 1 0

Y

x0 x1

a b
b b
c a

Exercise 6.57

Player I won the game because, for example, M |=X x1 = x2 and N �|=Y x1 = x2.

Another reason why player I won is that M |=X ¬(x0 = x1) and N �|=Y ¬(x0 = x1).

There may be other similar reasons too. See Table A.12.

Exercise 6.59

A good splitting move for player I is to present X as X0 ∪ X1, as seen in Table A.13.

Then player II must present Y as Y0 ∪ Y1. After this player I necessarily wins, because

M |=X0
=(x1) and M |=X1

=(x1), but whatever Y0 and Y1 are, for one of them we have

N �|=Yi =(x1). You can see this by checking all the relevant 16 different splits Y0 ⊂ Y ,

Y1 = Y \ Y0.

Exercise 6.60

A good supplementing move for player I is to consider the function F : X → M that

maps all s ∈ X as F(s) = 0 (see Table A.14). When player I plays X (F/x2), he wins no

matter which team Y (G/x2) player II plays. Namely, after this move we haveM |=X (F/x2)

Px2 but N �|=Y (G/x2) Px2. The latter comes simply from the fact that PN = ∅.

Solutions to selected exercises, by Ville Nurmi 205

Exercise 6.63

Let N = (N, +, ·, 0, 1, <), the standard model of arithmetic. Recall that there is a sen-

tence 	N that is true in a model iff the model is not isomorphic to N . Now, if M is any

uncountable model, it cannot be isomorphic to N . Thus M |= 	N , but N is isomorphic

to itself, so N �|= 	N . Thus we do not have N ≡D M.

Exercise 6.64

We can in principle show (R, N) �D (Q, N) by giving, for each natural number n, a

winning strategy for player II in EFn((R, N), (Q, N)). However, winning strategies in

the Ehrenfeucht–Fraı̈ssé game for D are in general very difficult to describe. Luckily,

there is an easier proof. First we have to generalize the Löwenheim–Skolem Theorem of

D (Theorem 6.5) so that it speaks about a whole theory instead of just a single sentence.

Löwenheim–Skolem Theorem of D Suppose T is a set of D-sentences such that T
has an infinite model or arbitrarily large finite models. Then T has models of all infinite
cardinalities, in particular T has a countable model and an uncountable model.

Proof Enumerate the theory as T = {φk : k < ω}. For each k < ω, let τ1,φk be the

�1
1 -translation of φk , τ1,φk = ∃Sk

1 · · · ∃Sk
nψk , where ψk is first order in the vocabulary

L ∪ {Sk
1 , . . . , Sk

n }. We can assume that all the relation symbols Sk
i are distinct. Denote

L ′ = L ∪ {Sk
i : k < ω, i < n}. By the Löwenheim–Skolem Theorem of first order logic,

there is an L ′-model M′ of the theory {ψk : k < ω} such that M′ is of cardinality κ .

The reduction M = M′�L of M′ to the original vocabulary L is a model of T of

cardinality κ . �

With this formulation of the Löwenheim–Skolem Theorem, we get that, letting T
denote the D-theory of the model (R, N), T = {φ : (R, N) |= φ}, there is a countable

model M of T . Recall that there is a D-sentence 	∞ that is true in a model N iff N
is infinite. With slight modifications we can also write down a sentence � that is true

in a model N of language {P} iff both PN and N \ PN are infinite. This sentence � is

then in the theory T . Thus M |= �, and hereby M is isomorphic to (Q, N). Thus also

(Q, N) |= T . This shows (R, N) �D (Q, N).

Exercise 6.71

Let P and P ′ be dependence back-and-forth sets for M �D M′ and M′ �D M′′,
respectively. To show M �D M′′, define P ′′ as follows:

P ′′ = {(X, Z) : there is a team Y such that (X, Y) ∈ P and (Y, Z) ∈ P ′}.
We will now show that P ′′ is a dependence back-and-forth set for M �D M′′.

Firstly, P ′′ ⊆ Part(M,M′′) because if (X, Z) ∈ P ′′ then we have some (X, Y) ∈ P
and (Y, Z) ∈ P ′, so there is n such that X ⊆ Mn and Y ⊆ M ′n , and m such that Y ⊆ M ′m

and Z ⊆ M ′′m . This means m = n, so X ⊆ Mn and Z ⊆ M ′′n . Also, ifM |=X φ for some

atomic formula φ, then by assumptions, M′ |=Y φ, and further, M′′ |=Z φ.

To see that P ′′ is non-empty, first show that (∅, ∅) ∈ P and (∅, ∅) ∈ P ′. We know

that P is non-empty, so there is some (X, Y) ∈ P . Because X = X ∪ ∅, there is some

split Y = Y1 ∪ Y2 such that (∅, Y2) ∈ P . Because M |=∅ ⊥, we have M′ |=Y2
⊥. This

206 Solutions to selected exercises, by Ville Nurmi

means that Y2 = ∅. Thus we have (∅, ∅) ∈ P . Similarly for P ′. Thus we get (∅, ∅) ∈ P ′′,
which shows that P ′′ is non-empty.

Condition (i) Let (X, Z) ∈ P ′′ and let X = X1 ∪ X2. By definition of P ′′, we then

have some (X, Y) ∈ P and (Y, Z) ∈ P ′. By properties of P there is some

split Y = Y1 ∪ Y2 such that (X1, Y1) ∈ P and (X2, Y2) ∈ P . Again, by

properties of P ′ there is some split Z = Z1 ∪ Z2 such that (Y1, Z1) ∈
P ′ and (Y2, Z2) ∈ P ′. By definition of P ′′ we get (X1, Z1) ∈ P ′′ and

(X2, Z2) ∈ P ′′.
Condition (ii) Let (X, Z) ∈ P ′′ and let n be a natural number. By definition of

P ′′ we then have some (X, Y) ∈ P and (Y, Z) ∈ P ′. By proper-

ties of P and P ′ we have (X (M/xn), Y (M ′/xn)) ∈ P , and fur-

ther, (Y (M ′/xn), Z (M ′′/xn)) ∈ P ′. By definition of P ′′ we get

(X (M/xn), Z (M ′′/xn)) ∈ P .

Condition (iii) Let (X, Z) ∈ P ′′, let n be a natural number, and let F : M → X be

some function. By definition of P ′′ we then have some (X, Y) ∈ P and

(Y, Z) ∈ P ′. By properties of P there is some function G : M ′ → Y
such that (X (F/xn), Y (G/xn)) ∈ P . By properties of P ′ there is some

function H : M ′′ → Z such that (Y (G/xn), Z (H/xn)) ∈ P ′. Thus, by

definition of P ′′ we get (X (F/xn), Z (H/xn)) ∈ P ′′.

This completes the proof.

Chapter 7

Exercise 7.1

Here are the definitions as �0-formulas. For brevity, we write ∀x ∈ yφ for ∀x(x ∈ y →
φ), and we write ∃x ∈ yφ for ∃x(x ∈ y ∧ φ):

(i) x = y ∪ z

x⊆y∪z︷ ︸︸ ︷
∀v ∈ x(v ∈ y ∨ v ∈ z) ∧

y⊆x︷ ︸︸ ︷
∀v ∈ y(v ∈ x) ∧

z⊆x︷ ︸︸ ︷
∀v ∈ z(v ∈ x),

(ii) x = {y, z} ∀v ∈ x(v = y ∨ v = z) ∧ y ∈ x ∧ z ∈ x ,

(iii) x is transitive ∀y ∈ x∀z ∈ y(z ∈ x),

(iv) x is an ordinal “x is transitive” ∧ ∀y ∈ x(“y is transitive”),

(v) x : y → z

x is a relation between y and z︷ ︸︸ ︷
∀v ∈ x∃u ∈ y∃w ∈ z(v = (u, w)) ∧

every element in y has an image︷ ︸︸ ︷
∀u ∈ y∃w ∈ z∃v ∈ x(v = (u, w)) ∧

images are unique︷ ︸︸ ︷
∀u ∈ y∀r ∈ z∀s ∈ z

(
(∃v ∈ x(v = (u, r))∧

∃v ∈ x(v = (u, s))) → r = s
)
.

Definition (iv) uses definition (iii). For definition (v) we also need to define “v = (u, w)”

as a �0-formula. A suitable formula is z = {u, {u, w}}, which in turn uses definition (ii)

above.

Exercise 7.2

We prove the claim by induction on φ.

Solutions to selected exercises, by Ville Nurmi 207

If φ is an atomic formula, it is of the form xi = x j or xi ∈ x j . In both cases the claim

holds. For example, (M, ∈) |= ai ∈ a j iff ai ∈ a j , simply because the model (M, ∈)

interprets the binary relation symbol as the usual “belongs to” relation.

The cases for negation, disjunction and existential quantifier go as follows:

(M, ∈) |= ¬φ(a1, . . . , an)

⇐⇒ (M, ∈) �|= φ(a1, . . . , an)

⇐⇒ not φ(a1, . . . , an)

⇐⇒ ¬φ(a1, . . . , an);

(M, ∈) |= (φ ∨ ψ)(a1, . . . , an)

⇐⇒ (M, ∈) |= φ(a1, . . . , an) or (M, ∈) |= ψ(a1, . . . , an)

⇐⇒ φ(a1, . . . , an) or ψ(a1, . . . , an)

⇐⇒ (φ ∨ ψ)(a1, . . . , an);

(M, ∈) |= ∃x(x ∈ ai ∧ φ)(x, a1, . . . , an)

⇐⇒ there is a ∈ M such that (M, ∈) |= a ∈ ai ∧ φ(a, a1, . . . , an)

⇐⇒ there is a ∈ M : (M, ∈) |= a ∈ ai and (M, ∈) |= φ(a, a1, . . . , an)

⇐⇒ there is a ∈ M such that a ∈ ai and φ(a, a1, . . . , an) (A.35)

⇒ there is a such that a ∈ ai and φ(a, a1, . . . , an) (A.36)

⇐⇒ there is a such that a ∈ ai ∧ φ(a1, . . . , an)

⇐⇒ ∃x(x ∈ ai ∧ φ)(x, a1, . . . , an).

To achieve the implication Eq. (A.36) ⇒ Eq. (A.35), assume Eq. (A.36). Because

ai ∈ M and M is transitive, also a ∈ M . Thus we get Eq. (A.35).

Exercise 7.3

Let (M, E) be a well-founded model that satisfies the Axiom of Extensionality,

∀x0∀x1(∀x2(x2 ∈ x0 ↔ x2 ∈ x1) → x0 = x1). First of all, just as we have defined the

rank of an element, rk(x) = sup{rk(y) + 1 : y ∈ x}, we will now define the E-rank of

an element x ∈ M by rkE (x) = sup{rkE (y) + 1 : yEx}.
Because (M, E) is well-founded, we can define a mapping π by the equation π (x) =

{π (y) : yEx} by induction on the E-rank of elements x ∈ M . Namely, if rkE (x) = 0,

then there are no y ∈ M with yEx , so we can set π (x) = ∅. Let x ∈ M and assume that

π has been defined for elements with E-rank lower than rkE (x), in particular for y ∈ M
with yEx . Then the equation π (x) = {π (y) : yEx} is well defined, so we can use it for

defining π (x).

Denote by N the image of M under π , N = π ��M . We claim that N is a transitive

set. To prove it, let x ∈ N and y ∈ x . Then y = π (z) for some z ∈ M , so y ∈ N , by

definition of π .

Next we claim that π is one-to-one. As an assumption towards contradiction, assume

π (x) = π (y) for some x, y ∈ M with x �= y. In fact, we can and will pick π (x) and

π (y) so that they are also minimal in respect of their rank, rk(π (x)). Because (M, E) is

extensional, we get from x �= y that there is u ∈ M with u ∈ x and u �∈ y (or u �∈ x and

208 Solutions to selected exercises, by Ville Nurmi

u ∈ y, but that is a symmetric case). Of course π (u) ∈ π (x), and because π (x) = π (y)

we also get that π (u) ∈ π (y). But by definition of π there is some v ∈ y such that

π (v) = π (u). Now we have u �= v and π (u) = π (v), and because π (u) ∈ π (x) we also

have rk(π (u)) < rk(π (x)). This is contrary to our choice of π (x) to be minimal in respect

of rank. Thus π is one-to-one. As N is merely the image of M under π , π : M → N is

even a bijection.

To see that π is an isomorphism, we need to show x Ey ⇐⇒ π (x) ∈ π (y). The

implication to the right is clear from the definition of π . For the other direction, assume

π (x) ∈ π (y). By definition of π , there is some z ∈ M such that zEy and π (z) = π (x).

Because π is one-to-one, we get that z = x . Thus x Ey.

Our final claim is that if E is actually ∈, the usual “belongs to” relation, then for any

transitive set A ⊆ M we have π (x) = x for all x ∈ A. We prove the claim by induction

on the rank of elements. Note: because E is ∈, we can write things like y ∈ x instead of

yEx for elements x, y ∈ M . In general, for all x ∈ M we have yEx iff y ∈ x and y ∈ M
iff y ∈ x ∩ M . In particular, the definition of π becomes π (x) = {π (y) : y ∈ x ∩ M}.
Now, let x ∈ A. Because A is transitive, we get x ⊆ A, and thus x = x ∩ A = x ∩ M . If

rk(x) = 0, then x = ∅, and by definition of π , π (x) = ∅. Otherwise, we assume that the

claim holds for elements y ∈ A with rk(y) < rk(x), in particular all y ∈ A with y ∈ x ,

that is, all y ∈ x ∩ A = x ∩ M . Then we have the following equation:

π (x) = {π (y) : y ∈ x ∩ M} = {y : y ∈ x ∩ M} = x ∩ M = x .

This completes the proof.

Exercise 7.4

Our goal is to find a �2-definition φ(x) for the property of x being equal to Vκ , where

κ = �κ . Let us first express φ(x) as a formula and then explain it in words:

φ := φ1 ∧ φ2 ∧ ∀zφ3 ∧ ∃k∃V ∃ f (φ4 ∧ φ5);

φ1 := Trans(x) ∧ ∃y ∈ x(y = ω);

φ2 := ∀u ∈ x∃y ∈ x(y = Px (u));

φ3 := ∀y ∈ x(z ⊆ y → z ∈ x);

φ4 := ∀y ∈ x
(
Ord(y) → y ∈ k

) ∧ ∀y ∈ k
(
y ∈ x ∧ Ord(y)

) ∧ Bij(f, x, k);

φ5 := Fun(V, k, x) ∧ ∀z ∈ x∃y ∈ k
(
z ∈ V (y)

) ∧
∀y ∈ k

(
y = ∅ → V (y) = ∅) ∧

∀y ∈ k∀z ∈ k
(
z = y+ → V (z) = Px (V (y))

) ∧
∀y ∈ k

(
Limit(y) → (∀z ∈ y(V (z) ⊆ V (y)) ∧
∀u ∈ V (y)∃z ∈ y(u ∈ V (z))

))
.

The formulas Trans(x), Ord(x), and Fun(x, y, z) are �0-definitions for the proper-

ties “x is transitive,” “x is an ordinal,” and “x is a function y → z,” respectively,

as in Exercise 7.1. The other relevant �0-formulas and informal expressions are as

Solutions to selected exercises, by Ville Nurmi 209

follows:

x = ∅ ∀y ∈ x(y �= y);

x ⊆ y ∀u ∈ x(u ∈ y);

y = Px (z) ∀u ∈ x(u ∈ y ↔ u ⊆ z);

x = y+ ∀u ∈ x(u ∈ y ∨ u = y) ∧ y ⊆ x ∧ y ∈ x ;

Limit(x) ¬(x = ∅) ∧ Ord(x) ∧ ∀y ∈ x
(
Ord(y) → ∃z ∈ x(z = y+)

)
;

x = ω Limit(x) ∧ ∀y ∈ x
(
Limit(y) → y = ∅)

;

Bij(x, y, z) Fun(x, y, z) ∧ ∀u ∈ y∀v ∈ y
(
x(u) = x(v) → u = v

)
∧ ∀u ∈ z∃v ∈ y(x(v) = u);

ψ(f (y)) ∃p ∈ f ∃v ∈ p
(

p = (y, v) ∧ ψ(v)
)
.

On the last line, ψ(x) is a �0-formula, and f is a variable symbol for which Fun(f, r, s) ∧
y ∈ r holds for some variable symbols r and s.

We see that φ1, . . ., φ5 are �0-formulas. Therefore φ is equivalent to a �2-formula.

Note that φ itself is not, strictly speaking, a �2-formula because the unrestricted quan-

tification does not appear only at the very beginning of the formula. However, this can

be cured simply by pulling out the unrestricted quantifiers from the conjuncts.

The subformula φ1(x) says that x is transitive and contains ω; φ2(x) says that x
satisfies the power set axiom; ∀zφ3(x) says that x contains all subsets of its elements.

We will need this to ensure that the power sets that x contains are really power sets in the

usual sense. Further, φ4(x) says that k is the set of ordinals in x , and that f is a bijection

between the ordinals of x and x itself; φ5(x) says that V : k → x is a restriction of the

function α �→ Vα for ordinals α, and that x is covered by the values of the function V .

We see that, when κ = �κ , Vκ satisfies φ(x). For example, Vκ satisfies the formula

∃k∃V ∃ f
(
φ4(x)

)
because the ordinals in Vκ are exactly all α ∈ κ , and, on the other hand,

it holds in general (because κ is an ordinal) that |Vω+κ | = �κ . Because ω �= �ω, we have

ω ∈ κ , so ω + κ = κ . Now we have |Vκ | = |Vω+κ | = �κ = κ , so there is a bijection

between Vκ and κ , the ordinals in Vκ .

To see that no other sets satisfy φ(x), assume that φ(M) holds for some set M . From

φ4(M) we get that k is the set of ordinals in M . From φ1(M) we get that M is transitive.

Because also the class ON of ordinals is transitive, the set k = M ∩ ON is transitive,

and thus k is an ordinal itself. From φ1(M) we get ω < k. We also get from φ4(M) that

|M | = |k|.
We claim that for all ordinals α ∈ k we have V (α) = Vα , and prove it by induc-

tion on α. From φ5(M) we get that V (∅) = ∅ = V∅. For a successor ordinal α+ ∈ k,

assuming that V (α) = Vα , we get V (α+) = {z ∈ M : z ⊆ Vα}. From ∀zφ3(M) we get

{z : z ⊆ Vα} ⊆ {z ∈ M : z ⊆ Vα}. Thus we get V (α+) = {z ∈ M : z ⊆ Vα} = {z : z ⊆
Vα} = P(Vα) = Vα+ . For a limit ordinal γ ∈ k, assuming that V (α) = Vα for all α < γ ,

we get from φ5(M) that V (γ) = ⋃{V (α) : α < γ } = ⋃{Vα : α < γ } = Vγ . This com-

pletes the induction.

We show that k is not a successor ordinal. Let α ∈ k. Then Vα ∈ M . By φ2(M) and

∀zφ3(M), Vα+ = P(Vα) = PM (Vα) ∈ M . Because α+ ⊆ Vα+ , we get by ∀zφ3(M) that

α+ ∈ M , whence α+ ∈ k. Hereby k must be a limit ordinal.

210 Solutions to selected exercises, by Ville Nurmi

Now we have Vk = ⋃{Vα : α < k}, and for each α < k we have Vα ⊆ M by the

facts that Vα ∈ M and M is transitive. Therefore Vk ⊆ M . On the other hand, by φ5(M),

M ⊆ ⋃{V (α) : α ∈ k} = ⋃{Vα : α < k} = Vk . Thus M = Vk .

This, combined with the previous results, yields |Vk | = |k|. This in addition to the

fact that ω < k shows that k is an uncountable ordinal. Therefore ω + k = k, whence

�k = |Vω+k | = |Vk | = |k|. Thus k is a cardinal and k = �k . We have shown that M = Vκ

for some κ = �κ .

Exercise 7.5

To solve the exercise it suffices to prove the more general claim that, for all D-formulas

φ, all limit ordinals α, all M ∈ Vα , and all X ∈ Vα , we have

Satφ(M, X) iff Vα |= Satφ(M, X). (A.37)

Here, Satφ(M, X) is the first order conjunction “M is a model” ∧ “X is a team for M”

∧ “Fr(φ) ⊆ dom(X)” ∧ “M |=X φ.”

To be very very precise, we would have to write out Satφ(M, X) explicitly as a first

order formula and prove Eq. (A.37), like we did in Exercise 7.2 for all �0-formulas.

The difference is that this time we will face some formulas that are not �0, but luckily

we also have a stronger assumption, namely that M, X ∈ Vα and α is a limit ordinal.

However, we shall avoid this tedious task for the most part, and show just an outline and

a few excerpts from the proof.

We can express “M is a model (in the language of φ)” as a �0-formula by writing

something like “M is a tuple (a1, . . . , an), where a2, . . . , an are constants, relations and

functions of the correct arities in respect of the language of φ.” From Exercise 7.2, we

get that

“M is a model” iff Vα |= “M is a model.”

Borrowing the formula Fun(x, y, z) from Exercise 7.4, we can express “X is a team

for M” by writing ∃d∀s ∈ X
(
Fun(s, d, M)

)
. This is not a �0-formula, but d corresponds

to dom(X) and we know that rk(dom(X)) ≤ rk(X). Thus from X ∈ Vα we get that if we

find a suitable value for d from the set theoretical universe, we find this value in Vα .

This yields

“X is a team for M” iff Vα |= “X is a team for M .”

We can write “Fr(φ) ⊆ dom(X)” in a similar way. Note that φ is fixed relative to the

formula Satφ(M, X), and so is the finite set Fr(φ). Therefore it is very simple to write a

formula that defines Fr(φ).

The most demanding part is to define, for each D-formula φ, a first order formula

Modφ(M, X) that expresses “M |=X φ.” We can define Modφ(M, X) inductively on φ.

The definitions mimic the truth definition of D. A few examples are as follows:

Mod=(t1,...,tn) := ∀s ∈ X∀s ′ ∈ X
(
(tM1 〈s〉 = tM1 〈s ′〉 ∧ · · · ∧ tMn−1〈s〉 = tMn−1〈s ′〉)

→ tMn 〈s〉 = tMn 〈s ′〉);

Modφ∨ψ := ∃Y∃Z
(
X = Y ∪ Z ∧ Modφ(M, Y) ∧ Modψ (M, Z)

)
;

Mod∃xφ := ∃F∃Y
(
Fun(F, X, M) ∧ Y = X (F/xx) ∧ Modφ(M, Y)

)
.

Solutions to selected exercises, by Ville Nurmi 211

We now proceed to a proof by induction on φ that

Modφ(M, X) ⇐⇒ Vα |= Modφ(M, X). (A.38)

We shall only present the proof for the three cases mentioned above.

If φ is =(t1, . . . , tn), then Modφ(M, X) is a �0-formula as soon as we write out a

�0-formula expressing “x = tM〈s〉” for a term t . It is possible but takes some space and

is therefore omitted here. Now Exercise 7.2 applies, and we get Eq. (A.38).

If φ is ψ ∨ θ , then any suitable values for the variables Y and Z in the formula

Modφ(M, X) are bound to be in Vα because X ∈ Vα , rk(Y) ≤ rk(X) and rk(Z) ≤ rk(X).

Thus we get Eq. (A.38).

Let φ be ∃xψ . We will use the fact that if rk(dom(f)) ≤ β and rk(rng(f)) ≤ β

then rk(f) < β + ω. Because M, X ∈ Vα and α is a limit, there is some β < α such

that rk(M) ≤ β and rk(X) ≤ β. Therefore any suitable value for the variable F in

Modφ(M, X) has rk(F) < β + ω ≤ α. Thus F ∈ Vα . We need also Y = X (F/x) ∈ Vα .

Because dom(s) is a finite collection of variable symbols, we can assume that all

s ∈ Y have rk(dom(s)) = m < ω, where m does not depend on s. We also know that

rk(rng(s)) ≤ β, as rng(s) ⊆ M . Thus rk(s) ≤ β + n, where n < ω does not depend on s.

Combining these facts, we get that rk(Y) = sup{rk(s) + 1 : s ∈ Y } ≤ β + n + 1 < α.

Thus any suitable value for the variable Y in Modφ(M, X) has Y ∈ Vα . Therefore we get

Eq. (A.38).

Exercise 7.6

Our goal is to write down a D-sentence ψ such that, for all models M, M |= ψ iff

M is not isomorphic to a model (Vκ , ∈, K , V, f), where κ = �κ , K = {α : α < κ},
V : K → Vκ maps α �→ Vα , and f : M → K is a bijection. Note that this property is in

close correspondence with the one in Exercise 7.4, where we wrote down a �2-formula

φ(x) that is satisfied only by Vκ , where κ = �κ .

Let us examine deeper the analogy between Exercises 7.4 and 7.6. The variable

symbol x in Exercise 7.4 corresponds to the arbitrary modelM in Exercise 7.6. Bounded

quantification in the formula φ(x) corresponds to picking an element in the model

M. This can be done by first order quantification in the D-sentence ψ . Unbounded

quantification in φ(x) corresponds to picking some object outside the universe M . This

can, in certain cases, be seen as second order quantification, i.e. the use of dependency

statements =(t1, . . . , tn) in ψ . However, we can only express second order existential

quantification in D, and there are both existential and universal unbounded quantifiers in

φ(x). More precisely, we know how to express the existence of functions f : M → M
and subsets A ⊆ M in D. Unbounded universal quantifiers in φ(x) can be expressed

by an extension of the language (i.e. vocabulary) of M. Because M is arbitrary, the

interpretations of any extra non-logical symbols are also arbitrary, so this will correspond

to universal quantification of certain kind of elements outside the universe M , and

those elements are functions f : M → M and subsets A ⊆ M . Luckily, this will be

enough.

This said, we take as a starting point the formula φ(x) from the solution of Exer-

cise 7.4. Remember that ψ is to express practically ¬φ(x). Let the language of ψ be

{E, K , V, f }. The binary relation symbol E shall denote the “belongs to” relation of

M, and the other symbols are as in Exercise 7.4; K is a unary relation symbol, and

212 Solutions to selected exercises, by Ville Nurmi

V and f are unary function symbols. Let ψ be as follows (further explanations can be

found later):

ψ := ¬ψ1 ∨ ¬ψ2 ∨ ψ3 ∨ ¬ψ4 ∨ ¬ψ5 ∨ ¬ψ6 ∨ 	wf;

ψ1 := ∃x(x = ω);

ψ2 := ∀x∃y(y = PM (x));

ψ3 := ∃x∃w∀u∃v
(∀z((u = z → v = w) → zEx)

∧ ∀y∃z
(=(y, z) ∧ ¬((u = z → v = w) ↔ zEy)

))
;

ψ4 := ∀x(K y ↔ Ord(y)) ∧ Bij(f, K);

ψ5 := ∀x∃y
(
K y ∧ x E(V y)

) ∧ ∀x(x = ∅ → V x = ∅)

∧ ∀x∀y
(
(K x ∧ y = x+) → V y = PM (V x)

)
∧ ∀x

(
Limit(x) → (∀y(yEx → V y ⊆ V x) ∧ ∀z∃y(z ∈ V x → z ∈ V y)

))
;

ψ6 := ∀x∀y
(∀z(zEx ↔ zEy) → x = y

)
.

Note that 	wf is the formula that holds in a modelM = (M, E) iff the binary relation

EM is not well-founded. The abbreviations used above are written in D as follows:

x = ∅ ∀y¬(yEx);

x ⊆ y ∀u(uEx → uEy);

y = PM (x) ∀u(uEy ↔ u ⊆ x);

x = y+ ∀u(uEx ↔ (uEy ∨ u = y));

Trans(x) ∀y∀z(zEy → zEx);

Ord(x) Trans(x) ∧ ∀y(yEx → Trans(y));

Limit(x) ¬(x = ∅) ∧ Ord(x) ∧ ∀y
(
(yEx ∧ Limit(y)) → ∃z(zEx ∧ z = y+)

)
;

x = ω Limit(x) ∧ ∀y
(
(yEx ∧ Limit(y)) → y = ∅)

;

Bij(f, P) ∀u(P f u) ∧ ∀u∀v(f u = f v → u = v) ∧ ∀u∃v(Pu → f v = u).

Note that Bij(f, P) expresses that the unary function f M is a bijection M → PM.

The subformula ψ2 is the power set axiom; ψ3 expresses that “M misses a subset,”

i.e. there is an element x ∈ M and a set A ⊆ M of elements z that belong to x in the

sense of the model M, but there is no element y ∈ M such that the elements of A would

be exactly the elements of y in the sense of the model M; ψ4 expresses that KM is the

set of ordinals in M in the sense of M and f M is a bijection M → KM; ψ5 expresses

that M is covered by the values of the function V M and that V M is a restriction of the

function α �→ Vα for ordinals α in the sense of M; ψ6 is the axiom of extensionality.

We see that (Vκ , ∈, K , V, f) �|= ψ when κ = �κ , K = {α : α < κ}, V : K → Vκ

maps α �→ Vα , and f : M → K is a bijection. Let us check, for example, how (Vκ , ∈
, K , V, f) �|= ψ3. Let x, w ∈ Vκ , and let F : Vκ → Vκ choose for each value u ∈ Vκ

some value v = F(u) such that u ∈ x whenever F(u) = w. Let y = {z ∈ Vκ : F(z) =
w}. We have rk(z) < rk(x) < κ for all z ∈ y, whence rk(y) < κ , so y ∈ Vκ . Now, if

z ∈ Vκ , we have F(z) = w iff z ∈ y. This shows that ψ3 fails.

Assume then that M = (M, E, K , V, f) is a model for which M �|= ψ . We want

to show that M is isomorphic to some model (Vκ , ∈, K ′, V ′, f ′) with κ = �κ . Because

formulas ψi for i = 1, 2, 4, 5, 6 are first order, we have N �|= ¬ψi iff N |= ψi for these

Solutions to selected exercises, by Ville Nurmi 213

i . From M |= ψ6 we get that M is extensional, and from M �|= 	wf we get that M
is well-founded. By Mostowski’s Collapsing Lemma, M is isomorphic to a transitive

model N = (N , ∈, K ′, V ′, f ′). From N |= ψ4 we get that K ′ is the set of ordinals in

N , and thus K ′ is an ordinal itself. From N |= ψ1 we get that ω < K ′. We also get from

N |= ψ4 that |N | = |K ′|.
We claim that for all ordinals α ∈ K ′ we have V ′(α) = Vα , and prove it by induction

on α. From N |= ψ5 we get that V ′(∅) = ∅ = V∅. For a successor ordinal α+ ∈ K ′,
assuming that V ′(α) = Vα , we get V ′(α+) = {z ∈ N : z ⊂ Vα}. From N �|= ψ3 we get

that whenever z ⊂ Vα , then z ∈ N . Thus we get V ′(α+) = {z ∈ N : z ⊂ Vα} = {z : z ⊂
Vα} = P(Vα) = Vα+ . For a limit ordinal γ ∈ K ′, assuming that V ′(α) = Vα for all α <

γ , we get fromN |= ψ5 that V ′(γ) = ⋃{V ′(α) : α < γ } = ⋃{Vα : α < γ } = Vγ . This

completes the induction.

We show that K ′ is not a successor ordinal. Let α ∈ K ′. Then Vα ∈ N . By N |= ψ2

and N �|= ψ3, Vα+ = P(Vα) ∈ N . Because α+ ⊆ Vα+ , we get by N �|= ψ3 that α+ ∈ N ,

whence α+ ∈ K ′. Hereby K ′ must be a limit ordinal.

Now we have VK ′ = ⋃{Vα : α < K ′}, and for each α < K ′ we have Vα ⊆ N by

the facts that Vα ∈ N and N is transitive. Therefore VK ′ ⊆ M . On the other hand, by

N |= ψ5, N ⊆ VK ′ . Thus N = VK ′ .

This, combined with the previous results, yields |VK ′ | = |K ′|, which in turn with

the fact that ω < K ′ shows that K ′ is uncountable. Therefore ω + K ′ = K ′, whence

�K ′ = |Vω+K ′ | = |VK ′ | = |K ′|. Thus K ′ is a cardinal and K ′ = �K ′ . We have shown

that M is isomorphic to N = (Vκ , ∈, K ′, V ′, f ′) for some κ = �κ .

Chapter 8

Exercise 8.3

Because (total) independence and (total) dependence are defined in terms of determina-

tion, we must first find the minimal (in respect of ⊆) sets W ⊆ {x2, x3} that determine

{x1}.
First consider {x2}. If {x2} ≥ {x1} was to hold, it would mean the existence of a

function f that maps 1 �→ 0 (as required by agent s1 of the team), 0 �→ 0 (as required by

s2), and 1 �→ 1 (as required by s3). But such a function cannot exist as the requirements

by agents s1 and s3 are contradictory. (By the way, this definition of determination in

terms of functions is equivalent to the one given in the course material, as one can prove.)

Thus {x2} �≥ {x1}.
Now consider {x3}. Because there is no function that maps 0 �→ 0, 1 �→ 0, and 1 �→ 1,

we can conclude that {x3} �≥ {x1}.
Now consider {x2, x3}. To establish {x2, x3} ≥ {x1}, we need to find a function that

maps (1, 0) �→ 0, (0, 1) �→ 0, and (1, 1) �→ 1. But this is possible, so we have {x2, x3} ≥
{x1}.

By these three observations we can now say that {x2, x3} is the only minimal subset

of {x2, x3} that determines {x1}. In fact, it is the only such subset, not only the only

minimal one.

Now we can say that {x1} is dependent on {x2, x3}, {x2}, {x3}, and ∅, i.e. all subsets of

{x2, x3}. This is so because each of these is included in some minimal set that determines

{x1}, namely {x2, x3}.

214 Solutions to selected exercises, by Ville Nurmi

We can see that {x1} is also totally dependent on {x2, x3}, {x2}, {x3}, and ∅, because

each of them is included in all of the minimal determining sets. Well, there was only

one minimal determining set in the first place, namely {x2, x3}.
Note that{x1} is independent of ∅ and nothing else because only for ∅ can we find a

minimal determining set that it avoids. All other W ⊆ {x2, x3} intersect all the minimal

sets that determine {x1}.
Note that {x1} is also totally independent of ∅ and nothing else because of the same

reason why it is independent of only that set, and the fact that {x2, x3} is the only minimal

set that determines {x1}.

Exercise 8.4

By concentrated checking of all possible choices – as in Exercise 8.3 – we can find out

that the only minimal sets W ⊆ {x2, x3, x4, x5} that determine {x1} are W1 = {x2, x3}
and W2 = {x3, x4, x5}. All the other sets either do not determine {x1} or they include W1

or W2. Now to the actual questions.

Note that {x1} is dependent on every set that is included in some minimal set that

determines {x1}; i.e. {x1} is dependent on every W ⊆ W1 and every W ⊆ W2, i.e. {x2, x3},
{x2}, {x3}, {x3, x4, x5}, {x3, x4}, {x3, x5}, {x4, x5}, {x4}, {x5}, and ∅.

Note that {x1} is totally dependent on every set W that is included in all the sets that

determine {x1}. In fact it suffices that this W is included in all minimal determining sets,

because every determining set contains a minimal determining set, which then contains

W . Thus, {x1} is totally dependent on every W ⊆ W1 ∩ W2, that is, {x3}, and ∅.

Note that {x1} is independent of all the sets that do not intersect some set that deter-

mines {x1}. If a set does not intersect some determining set, then it does not intersect some

minimal determining set either. Thus {x1} is independent of every W ⊆ {x2, x3, x4, x5} \
W1 and every W ⊆ {x2, x3, x4, x5} \ W2, i.e. {x4, x5}, {x4}, {x5}, {x2}, and ∅.

Note that {x1} is totally independent of every set that does not intersect any minimal

set that determines {x1}; i.e. {x1} is totally independent of every W ⊆ ({x2, x3, x4, x5} \
W1

) ∩ ({x2, x3, x4, x5} \ W2

)
, i.e. ∅ alone.

Exercise 8.5

If, for example, a = 0 then {x3, x4} determines {x1}. This is verified by the mapping f :

(3, 6) �→ 15, (1, 1) �→ 1, (2, 0) �→ 6, (2, 2) �→ 4, (0, 5) �→ 0.

If a = 2 then {x3, x4} does not determine {x1} because s3 and s4 are identical in {x3, x4}
but different in {x1}. Or, in other words, there is no function that maps (3, 6) �→ 15,

(1, 1) �→ 1, (2, 2) �→ 6, (2, 2) �→ 4, and (0, 5) �→ 0.

If, for example, a = 0 then {x2, x4} determines {x1}. This is verified by the mapping

g : (15, 6) �→ 15, (1, 1) �→ 1, (0, 0) �→ 6, (3, 2) �→ 4, (0, 5) �→ 0.

If a = 5 then {x2, x4} does not determine {x1} because s3 and s5 are identical in {x2, x4}
but different in {x1}. Or, in other words, there is no function that maps (15, 6) �→ 15,

(1, 1) �→ 1, (0, 5) �→ 6, (3, 2) �→ 4, and (0, 5) �→ 0.

Exercise 8.6

In team (a) in Table A.15, {x1} determines {x4}, and so does {x3}. Therefore {x4} is

dependent but not totally dependent on {x1}.

Solutions to selected exercises, by Ville Nurmi 215

Table A.15. Teams (a), (b), (c), and (d) for Exercise 8.6

(a) (b)

x1 x2 x3 x4 x1 x2 x3 x4

s1 0 0 0 0 s1 0 0 0 0
s2 0 1 0 0 s2 0 1 0 0
s3 1 1 1 1 s3 1 1 0 1

(c) (d)

x1 x2 x3 x4 x1 x2 x3 x4

s1 0 0 0 0 s1 0 0 0 0
s2 0 1 1 1 s2 0 1 0 1
s3 1 1 0 1 s3 1 1 0 1

In team (b), {x1} is the only minimal W ⊆ {x1, x2, x3} that determines {x4}. Therefore

{x4} is totally dependent on {x1}.
In team (c), {x2} is a minimal set that determines {x4}, and so is {x1, x3}. Because {x1}

intersects only the latter one of these two, {x4} is independent but not totally independent

of {x1}.
In team (d), {x2} is the only minimal W ⊆ {x1, x2, x3} that determines {x4}, and {x1}

does not intersect in it. Therefore {x4} is totally independent of {x1}.
Note that there exist also other correct answers, not only the ones shown here.

Exercise 8.7

We want to prove for all TL-formulas φ where ∼ does not occur, all models M and all

teams X with Fr(φ) ⊆ dom(X) that there is a D-formula φ∗ such that

M |=X φ ⇐⇒ M |=X φ∗. (A.39)

Note that on the left side of Eq. (A.39) we use TL-semantics and on the right side we

use D-semantics.

We prove the claim by induction on φ by using the following translation from ∼-free

TL-formulas to D-formulas:

(t = t ′)∗ �→ t = t ′, (φ ⊗ ψ)∗ �→ φ∗ ∨ ψ∗,

(¬t = t ′)∗ �→ ¬t = t ′, (φ ∧ ψ)∗ �→ φ∗ ∧ ψ∗,

(Rt1 . . . tn)∗ �→ Rt1 . . . tn, (∃xnφ)∗ �→ ∃xnφ
∗,

(¬Rt1 . . . tn)∗ �→ ¬Rt1 . . . tn, (!xnφ)∗ �→ ∀xnφ
∗.

(=(t1, . . . , tn))∗ �→ =(t1, . . . , tn),

The claim in Eq. (A.39) can now be proved by following definitions because the

TL-semantics of φ is exactly the same as the D-semantics of φ∗.

216 Solutions to selected exercises, by Ville Nurmi

Exercise 8.8

Recall the definitions of the four dependence values:

� is =(); ⊥ is ∼ =(); 0 is ¬ =(); 1 is ∼ ¬ =().

To prove items (i) and (ii) of Example 8.7, first note that M |=X =() holds for all

teams X . This gives 0 ⇒ � and 1 ⇒ �. We also get that M |=X ∼ =() holds for no

teams X . This gives ⊥ ⇒ 0 and ⊥ ⇒ 1.

Then we prove items (iii) and (iv). We see immediately that 1 = ∼ 0 and ⊥ = ∼ �.

It is also the case that M |=X ∼ ∼ φ iff M |=X φ for any TL-formula φ. Therefore we

get 0 ≡ ∼ ∼ 0 = ∼ 1, and � ≡ ∼ ∼ � = ∼ ⊥.

Finally, for item (v), we observe that 0 = ¬� by definition.

Exercise 8.9

Let M be a model and let X be a team for M. Because M |=X � holds (for any team),

we get

M |=X φ ∧ � ⇐⇒ M |=X φ and M |=X � ⇐⇒ M |=X φ.

Recall that φ ∨ ψ that is shorthand for ∼(∼ φ ∧ ∼ ψ) and that φ ⊕ ψ is shorthand

for ∼(∼ φ ⊗ ∼ ψ). We have the following chains of equivalences:

M |=X ∼(∼ φ ∧ ∼ �)

⇐⇒ M �|=X ∼ φ ∧ ∼ �
⇐⇒ M �|=X ∼ φ or M �|=X ∼ �
⇐⇒ M |=X φ or M |=X �
⇐⇒ M |=X �.

Note that when a team X is given, and Y ∪ Z = X holds for some sets Y and Z , then

dom(Y) = dom(Z) necessarily holds. Thus in these cases we can omit this condition.

Now,

M |=X � ⊗ �
⇐⇒ M |=Y � and M |=Z � for some Y ∪ Z = X

⇐⇒ M |=X �.

The last equivalence above holds because both sides are always true. Further,

M |=X ∼(∼ φ ⊗ ∼ �)

⇐⇒ M �|=X ∼ φ ⊗ ∼ �
⇐⇒ for all Y ∪ Z = X : M �|=Y ∼ φ or M �|=Z ∼ �
⇐⇒ for all Y ∪ Z = X : M |=Y φ or M |=Z �
⇐⇒ M |=X �.

The last equivalence above holds because both sides are always true.

Solutions to selected exercises, by Ville Nurmi 217

Exercise 8.10

Let M be a model and X a team for M. Because M |=X ⊥ does not hold (for any

team), we get

M |=X φ ∧ ⊥ ⇐⇒ M |=X φ and M |=X ⊥ ⇐⇒ M |=X ⊥.

Recall that φ ∨ ψ is shorthand for ∼(∼ φ ∧ ∼ ψ) and that φ ⊕ ψ is shorthand for

∼(∼ φ ⊗ ∼ ψ). We have the following chains of equivalences:

M |=X ∼(∼ φ ∧ ∼ ⊥)

⇐⇒ M �|=X ∼ φ ∧ ∼ ⊥
⇐⇒ M �|=X ∼ φ or M �|=X ∼ ⊥
⇐⇒ M |=X φ or M |=X ⊥
⇐⇒ M |=X φ;

and

M |=X φ ⊗ ⊥
⇐⇒ M |=Y φ and M |=Z ⊥ for some Y ∪ Z = X

⇐⇒ M |=X ⊥.

The last equivalence above holds because both sides are always false. Finally,

M |=X ∼(∼ ⊥ ⊗ ∼ ⊥)

⇐⇒ M �|=X ∼ ⊥ ⊗ ∼ ⊥
⇐⇒ for all Y ∪ Z = X : M �|=Y ∼ ⊥ or M �|=Z ∼ ⊥
⇐⇒ for all Y ∪ Z = X : M |=Y ⊥ or M |=Z ⊥
⇐⇒ M |=X ⊥.

The last equivalence above holds because both sides are always false.

Exercise 8.11

Let M be a model and let X be a team for M. Assume first that φ is a D-formula

(that is, φ is a TL-formula, and ∼ does not occur in φ). Then we have the old result

that M |=∅ φ. Also recall that M |=X 0 iff X = ∅. With these observations we get the

following chain of equivalences:

M |=X φ ∧ 0

⇐⇒ M |=X φ and M |=X 0 (A.40)

⇐⇒ X = ∅ (A.41)

⇐⇒ M |=X 0.

218 Solutions to selected exercises, by Ville Nurmi

The implication Eq. (A.41) ⇒ Eq. (A.40) is based on φ being a D-formula. Also,

M |=X ∼(∼ φ ∧ ∼ 0)

⇐⇒ M �|=X ∼ φ ∧ ∼ 0

⇐⇒ M �|=X ∼ φ or M �|=X ∼ 0

⇐⇒ M |=X φ or M |=X 0

⇐⇒ M |=X φ or X = ∅ (A.42)

⇐⇒ M |=X φ. (A.43)

The implication Eq. (A.42) ⇒ Eq. (A.43) is based on φ being a D-formula:

Now we let φ be any TL-formula:

M |=X φ ⊗ 0

⇐⇒ M |=Y φ and M |=Z 0 for some Y ∪ Z = X

⇐⇒ M |=Y φ and Z = ∅ for some Y ∪ Z = X

⇐⇒ M |=X φ;

M |=X ∼(∼ 0 ⊗ ∼ 0)

⇐⇒ for all Y ∪ Z = X : M �|=Y ∼ 0 or M �|=Z ∼ 0

⇐⇒ for all Y ∪ Z = X : M |=Y 0 or M |=Z 0

⇐⇒ for all Y ∪ Z = X : Y = ∅ or Z = ∅
⇐⇒ X = ∅
⇐⇒ M |=X 0.

Exercise 8.13

Let X = {∅} and let M be a model with at least two elements. Choose φ to be the

TL-formula 1 ⊗ 1. Then M |=X !x0φ. To see why, observe that M |=X !x0φ iff M |=Y

φ, where Y = X (M/x0) has at least two elements (as many as M has). We can split

Y = Y1 ∪ Y2 so that both Y1 and Y2 are non-empty, whence M |=Yi 1 for both i = 1, 2.

Thus M |=Y φ.

On the other hand,M |=X ∀x0φ does not hold. To see why, observe thatM |=X ∀x0φ

iff M |=Z φ, where Z = X (F/x0) has only one element (as many as X has). Thus any

split Z = Z1 ∪ Z2 is bound to have Zi = ∅ for one i = 1, 2. For this i we haveM �|=Zi 1,

so we get M �|=Z φ.

Exercise 8.15

Let φ be a TL-formula, let M be a model, and let X be a team for M. We want to

express that for all subsets Y ⊆ X there is a subset Z ⊆ Y for which φ holds. Let ψ be

Solutions to selected exercises, by Ville Nurmi 219

the TL-formula (φ ⊗ �) ⊕ ⊥. Then we have the following:

M |=X ψ

⇐⇒ for all Y ∪ Z = X : M |=Y φ ⊗ � or M |=Z ⊥
⇐⇒ for all Y ⊆ X : M |=Y φ ⊗ �
⇐⇒ for all Y ⊆ X there is Z ∪ V = Y : M |=Z φ and M |=V �
⇐⇒ for all Y ⊆ X there is Z ⊆ Y : M |=Z φ.

References

[1] W. W. Armstrong. Dependency structures of data base relationships. In Informa-
tion Processing 74. Proc. IFIP Congress, Stockholm (Amsterdam: North-Holland,
1974), pp. 580–583.

[2] A. Blass and Y. Gurevich. Henkin quantifiers and complete problems. Ann. Pure
Appl. Logic, 32:3 (1986), 1–16.

[3] J. P. Burgess. A remark on Henkin sentences and their contraries. Notre Dame J.
Formal Logic, 44:3 (2003), 185–188.

[4] X. Caicedo and M. Krynicki. Quantifiers for reasoning with imperfect information
and �1

1 -logic. In W. A. Carnielli and I. M. L. D’Ottaviano, eds., Advances in Con-
temporary Logic and Computer Science (Providence, RI: American Mathematical
Society, 1999), pp. 17–31. 1999.

[5] P. Cameron and W. Hodges. Some combinatorics of imperfect information.
J. Symbolic Logic, 66:2 (2001), 673–684.

[6] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symbolic Logic, 22 (1957), 250–268.

[7] H. B. Enderton. Finite partially-ordered quantifiers. Z. Math. Logik Grundlagen
Math., 16, (1970), 393–397.

[8] H. B. Enderton. A Mathematical Introduction to Logic, 2nd edn. (Burlington, MA:
Harcourt/Academic Press, 2001).

[9] T. Frayne, A. C. Morel, and D. S. Scott. Reduced direct products. Fund. Math.,
51, (1962/3), 195–228.

[10] D. Gale and F. M. Stewart. Infinite games with perfect information. In H. W. Kuhn
and A. W. Tucker, eds., Contributions to the Theory of Games, vol. 2, (Princeton:
Princeton University Press, 1953), pp. 245–266.

[11] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1 (1987), 101 pp.
[12] K. Gödel. Collected Works. Vol. I. (New York: Oxford University Press, 1986),

Publications 1929–1936. Edited and with a preface by Solomon Feferman.
[13] D. Harel. Characterizing second-order logic with first-order quantifiers, Z. Math.

Logik Grundlag. Math., 25:5 (1979), 419–422.
[14] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods.

Proc. Symposium Foundations of Math., Warsaw, (London: Pergamon, 1961), pp.
167–183.

220

References 221

[15] L. Henkin. The completeness of the first-order functional calculus. J. Symbolic
Logic, 14 (1949), 159–166.

[16] J. Hintikka and G. Sandu. Informational independence as a semantical phe-
nomenon. In J. E. Fenstad, I. T. Frolov, and R. Hilpinen, eds., Logic, Methodology
and Philosophy of Science, VIII. Stud. Logic Found. Math., vol. 126 (Amsterdam:
North-Holland, 1989), pp. 571–589.

[17] J. Hintikka and G. Sandu. Game-theoretic semantics. In J. F. A. K. van Benthem
and G. B. A. ter Meulen, eds., Handbook of Logic and Language, vol. 1 (Boston,
MA: MIT Press, 1997), pp. 361–410.

[18] J. Hintikka. Form and content in quantification theory. Acta Philos. Fenn., 8, (1955),
7–55.

[19] J. Hintikka. The Principles of Mathematics Revisited (Cambridge: Cambridge Uni-
versity Press, 1996).

[20] J. Hintikka. Hyperclassical logic (a.k.a. IF logic) and its implications for logical
theory. Bull. Symbolic Logic, 8:3 (2002), 404–423.

[21] W. Hodges. Compositional semantics for a language of imperfect information.
Logic J. IGPL, 5:4 (1997), 539–563.

[22] W. Hodges. Some strange quantifiers. In J. Mycielski, G. Rozenberg, and A. Salo-
maa, eds., Structures in Logic and Computer Science. Lecture Notes in Computer
Sci., vol. 1261 (Berlin: Springer, 1997), pp. 51–65.

[23] T. Janssen and F. Dechesne. Signalling: a tricky business. In J. van Benthem, G.
Heinzmann, M. Rebuschi, and H. Visser, eds., The Age of Alternative Logics:
Assessing Philosophy of Logic and Mathematics Today (Berlin: Springer, 2006).

[24] T. M. V. Janssen. Independent choices and the interpretation of IF logic. J. Logic
Lang. Inform., 11:3 (2002), 367–387.

[25] T. Jech. Set Theory, 2nd edn., (Berlin: Springer-Verlag, 1997).
[26] S. Krajewski. Mutually inconsistent satisfaction classes. Bull. Acad. Polon. Sci.

Sér. Sci. Math. Astron. Phys., 22 (1974), 983–987.
[27] G. Kreisel and J.-L. Krivine. Elements of Mathematical Logic. Model Theory.

(Amsterdam: North-Holland Publishing Co., 1967).
[28] S. Kripke. An outline of a theory of truth. J. Phil., 72 (1975), 690–715.
[29] M. Krynicki and A. H. Lachlan. On the semantics of the Henkin quantifier, J.

Symbolic Logic, 44:2 1999), 184–200.
[30] A. Lévy. A hierarchy of formulas in set theory. Mem. Am. Math. Soc., 57 (1965),

76 pp.
[31] E. G. K. Lopez-Escobar. A non-interpolation theorem. Bull. Acad. Polon. Sci. Sér.

Sci. Math. Astronom. Phys., 17:109–112, 1969.
[32] M. Magidor. On the role of supercompact and extendible cardinals in logic. Israel

J. Math., 10 (1971), 147–157.
[33] Y. N. Moschovakis. Elementary Induction on Abstract Structures. Studies in Logic

and the Foundations of Mathematics, vol. 77 (Amsterdam: North-Holland, 1974).
[34] A. Robinson. A result on consistency and its application to the theory of definition.

Nederl. Akad. Wetensch. Proc. Ser. A. Math., 18 (1956), 47–58.
[35] G. Sandu and T. Hyttinen. IF logic and the foundations of mathematics. Synthese,

126: 1–2 (2001), 37–47.
[36] T. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit

oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte

222 References

Mengen. Videnskapsselskapets skrifter I, Matematisknaturvidenskabelig Klasse,
Videnskappsselskapet i Kristiania, 4 (1920), 1–36.

[37] T. Skolem. Selected Works in Logic (Oslo: Scandinavian University Press, 1970).
[38] A. Tarski. The semantic conception of truth and the foundations of semantics. Phil.

Phenomenol. Res., 4 (1944), 341–376.
[39] A. Tarski and R. L. Vaught. Arithmetical extensions of relational systems. Com-

positio Math, 13 (1958), 81–102.
[40] J. Väänänen. Second-order logic and foundations of mathematics. Bull. Symbolic

Logic, 7:4 (2001), 504–520.
[41] J. Väänänen. On the semantics of informational independence. Logic J. IGPL, 10:3

(2002), 339–352.
[42] J. Väänänen. A remark on nondeterminacy in IF logic. Acta Philosophica Fennica,

78 (2006), 71–77.
[43] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior

(Princeton: Princeton University Press, 1944).
[44] W. J. Walkoe, Jr. Finite partially-ordered quantification. J. Symbolic Logic, 35

(1970), 535–555.

Index

Abelard (player I) 63

abelian group 53

absoluteness 140

agent 16

α∗ 63

α 63

anti-symmetric relation 56

arithmetical relation 107

arity 5

assignment 6

atomic formula 6, 18

automorphism 52

avoiding a model 134

Axiom of Extensionality 60, 162

backslashed quantifier 44

Beth Definability Theorem

100

Beth numbers 137

binary tree 56

bounded quantifiers 138

chain 56

Chinese Remainder Theorem 104

clique 57

codomain 16

cofinality 56

Compactness Theorem 91

completeness 53

compositionality 32

connected graph 56

consistency 118

Consistency Problem 134

consistency property 111

constant symbol 5

constant term 6

Continuum Hypothesis 139

Craig Interpolation Theorem interpolation

98

cumulative hierarchy 61

cycle 57

D 16

D-equivalence 121

D-semiequivalence 122

decision problem 134

definability 100

degree 52

dependence back-and-forth set 132

dependence friendly logic 45

dependence logic 3, 10, 16

dependence values 154

determined game 64, 92

DF see dependence friendly logic

disconnected graph 56

domain 5, 16

duplicate 20

Eloise (player II) 63

equicardinality 52

equivalence relation 57

expansion 6

extended IF logic 144

false sentence 21

feature 16

first order logic 19

Flatness Test 39

flattening 42

free variable 7, 19

function symbol 5

fundamental predicate 20

223

224 Index

Gale–Stewart Theorem 64

game tree 64

generated team 12

Gödel’s Incompleteness Theorem 101

Gödel-number 101

group 53

guessing 53

half-round 70

Hamiltonian 57

Henkin quantifiers 99

Hintikka set 113

hyperarithmetical relation 107

IF see independence friendly logic

ill-founded relation 55

imperfect information 63

inaccessible cardinal 139

inconsistency 134

Inconsistency Problem 134

independence friendly logic 46

independent sentence 101

information set 63

inseparable sets 119

isolated vertex 52

isomorphism 6

#L 5

Löwenheim–Skolem Theorem 91

Law of Excluded Middle 3, 4, 100

Levy Hierarchy 137

Liar Paradox 100, 108

measurable cardinal 139

model class 128

model existence game 110, 117

modified assignment 7

Mostowski’s Collapsing Lemma 140

negation normal form 7

non-determined game 92

non-valid 134

Non-validity Problem 134

normal form 98

omitting a type 120

Omitting Types Theorem 120

opponent 63

Padoa Principle 100

partial dependence isomorphism 132

partial order 55

partial play 64

path 57

PC definition 87

Peano’s axioms 102

perfect information 64

�= 52

�∼= 52

�∞ 51

�≤ 52

�cml 54

�conn 56

�even 48

�ext 60

�nr 53

�N 59

�N 58

�R 59

�R,N 60

�set 61

�wf 55

play 64

prenex normal form 44

principal type 120

principle of duality 9

rank 136

recursively isomorphic sets 162

reduct 6

reflexive relation 55

relation symbol 5

right orderable group 53

rigid structure 53

root 56

satisfaction 7

satisfying a formula 120

second order logic 158

semantic proof 117

sentence 7, 19

separable sets 119

Separation Theorem 91

shriek 151

�1
1 86

signal 46

Skolem Normal Form 94

slashed quantifier 45

standard model 106

strategy 65, 71, 72, 81

use of 67

structure 5

Index 225

subtree 56

supplement 19

tM〈s〉 6

team 16

team logic 144,

151

tensor 151

term 6

3-colorable 57

transitive closure 136

transitive relation 56

transitive set 136

tree 56

true sentence 21

truth-definition 100

truth-table method 43

-tuple 5

type 17, 21, 120

uniform strategy 82

uniform interpolant 98

Uniform Interpolation Property 98

universal-existential formula 98

valid sentence 21

variable 5

veritas symbol 6, 19

vocabulary 5

well-founded relation 55

winning strategy 66, 73, 82

zero-sum 64

	Half-title
	Series-title
	Title
	Copyright
	Contents
	Preface
	1 Introduction
	Historical remarks

	2 Preliminaries
	2.1 Relations
	2.2 Vocabularies and structures
	2.3 Terms and formulas
	2.4 Truth and satisfaction

	3 Dependence logic
	3.1 Examples and a mathematical model for teams
	3.2 Formulas as types of teams
	3.3 Logical equivalence and duality
	3.4 First order formulas
	3.5 The flattening technique
	3.6 Dependence/independence friendly logic

	4 Examples
	4.1 Even cardinality
	4.2 Cardinality
	4.3 Completeness
	4.4 Well-foundedness
	4.5 Connectedness
	4.6 Natural numbers
	4.7 Real numbers
	4.8 Set theory

	5 Game theoretic semantics
	5.1 Semantic game of first order logic
	5.2 Perfect information game for dependence logic
	5.3 Imperfect information game for dependence logic

	6 Model theory
	6.1 From to D to…
	6.2 Applications of…
	6.3 From…
	6.4 Truth definitions
	6.4.1 Undefinability of truth
	6.4.2 Definability of truth in first order logic
	6.4.3 Definability of truth in D

	6.5 Model existence game
	6.5.1 First order case
	6.5.2 Model existence game for Skolem Normal Form

	6.6 Ehrenfeucht–Fraisse game for dependence logic

	7 Complexity
	7.1 Decision and other problems
	7.2 Some set theory
	7.3 …2-completeness in set theory

	8 Team logic
	8.1 Preorder of determination
	8.2 Dependence and independence
	8.3 Formulas of team logic
	8.4 From team logic to L2
	8.5 From L2 to team logic
	8.6 Ehrenfeucht–Fraisse game for team logic

	Appendix Solutions to selected exercises, by Ville Nurmi
	Chapter 2
	Exercise 2.1
	Exercise 2.7

	Chapter 3
	Exercise 3.2
	Exercise 3.3
	Exercise 3.5
	Exercise 3.7
	Exercise 3.10
	Exercise 3.11
	Exercise 3.13
	Exercise 3.15
	Exercise 3.17
	Exercise 3.18
	Exercise 3.21
	Exercise 3.23
	Exercise 3.24
	Exercise 3.28
	Exercise 3.29
	Exercise 3.31
	Exercise 3.38
	Exercise 3.40
	Exercise 3.41
	Exercise 3.43
	Exercise 3.44
	Exercise 3.45
	Exercise 3.48

	Chapter 4
	Exercise 4.1
	Exercise 4.15
	Exercise 4.18

	Chapter 6
	Exercise 6.1
	Exercise 6.2
	Exercise 6.5
	Exercise 6.6
	Exercise 6.12
	Exercise 6.13
	Exercise 6.14
	Exercise 6.15
	Exercise 6.17
	Exercise 6.18
	Exercise 6.19
	Exercise 6.21
	Exercise 6.22
	Exercise 6.23
	Exercise 6.26
	Exercise 6.27
	Exercise 6.28
	Exercise 6.31
	Exercise 6.33
	Exercise 6.36
	Exercise 6.38
	Exercise 6.39
	Exercise 6.40
	Exercise 6.42
	Exercise 6.44
	Exercise 6.45
	Exercise 6.54
	Exercise 6.57
	Exercise 6.59
	Exercise 6.60
	Exercise 6.63
	Exercise 6.64
	Exercise 6.71

	Chapter 7
	Exercise 7.1
	Exercise 7.2
	Exercise 7.3
	Exercise 7.4
	Exercise 7.5
	Exercise 7.6

	Chapter 8
	Exercise 8.3
	Exercise 8.4
	Exercise 8.5
	Exercise 8.6
	Exercise 8.7
	Exercise 8.8
	Exercise 8.9
	Exercise 8.10
	Exercise 8.11
	Exercise 8.13
	Exercise 8.15

	References
	Index

