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CHAPTER I 

I N T R O D U C T I O N  

There exists quite a variety of statements which are in some sense 
'subjunctive'. The best known of these are the so-called 'counterfactual 
conditionals' which state that if something which is not the case had been 
the case, then something else would have been true. An example is 'If 
Kennedy had been president in 1972, the Watergate scandal would not 
have occurred'. Ordinary people use counterfactuals all the time, and 
philosophers use them freely in ordinary situations. However, when 
they are being careful, philosophers have traditionally felt uncomfort- 
able about counterfactuals and eschewed their employment in 
philosophical analysis. Such philosophical squeamishness is on the 
whole meritorious and results from the recognition that counterfactual 
conditions have themselves stubbornly resisted philosophical analysis. 

Although counterfactual conditionals constitute the kind of subjunc- 
tive statement which comes most readily to the mind of a philosopher, 
it is far from being the only philosophically important kind of subjunc- 
tive statement. Philosophers have long recognized that laws of nature 
cannot really be formulated using universally quantified material con- 
ditionals, but they have not usually been prepared to go the extra 
distance of admitting that statements expressing such laws are really 
subjunctive. It turns out that laws of nature must be formulated using a 
special kind of subjunctive statement, herein called a 'subjunctive 
generalization'. Subjunctive generalizations prove to be of pre-eminent 
importance in discussing inductive confirmation. 

Causal statements constitute another category of statements which 
are in the requisite sense 'subjunctive'. The analysis of causal state- 
ments has always been recognized to be an extraordinarily difficult 
philosophical problem, but I think it has rarely been appreciated that 
the main source of this difficulty lies in the subjunctive nature of causal 
statements. 
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A traditional philosophical problem is the analysis of probability 
statements. There are in fact a number of different concepts equally 
deserving of being called 'probability'. There is not just one legitimate 
concept of probability. Philosophers have succeeded in sorting out and 
distinguishing between a number of different probability concepts, 
including 'degree of confirmation', 'degree of belief', 'degree of ra- 
tional belief', and others. However, there are many probability state- 
ments which cannot be formulated using any of these recognized 
'indicative' probability concepts. It will turn out that there are some 
extremely important probability concepts that are in essential ways 
'subjunctive' and which have been almost entirely overlooked by 
philosophers bent upon the avoidance of suspicious (to them) subjunc- 
tive reasoning. 

A problematic concept which has usually been recognized to have a 
subjunctive core is that of a disposition. Dispositions constitute an 
important tool of philosophical analysis. Particularly in the philosophy 
of mind, philosophers have felt that through the use of dispositions 
they could clarify the structure of interesting concepts. But, of course, 
the extent of such clarification has been strictly limited by the apparent 
need for clarifying dispositions themselves. 

These various subjunctive concepts map out areas of what might be 
called 'subjunctive reasoning'. Subjunctive reasoning in general has 
been deemed philosophically problematic because it seems to presup- 
pose a strange metaphysically suspicious sort of logically contingent 
necessity. To  say that the Watergate scandal would not have occurred 
had Kennedy been president in 1972, seems to be to assert some kind 
of necessary connection between those two states of affairs. If there 
were no such connection, how could the occurrence of the one possibly 
effect the occurrence of the other? This same kind of necessity rears its 
ugly head repeatedly throughout subjunctive reasoning. The necessity 
in question is clearly not logical necessity, but what other kind is there? 
Surely this is a very suspicious notion, and philosophers would be well 
advised to avoid subjunctive concepts at all cost! But upon sober 
reflection, it must be admitted that this attitude is preposterous. 
Subjunctive concepts do make sense - we use them all the time. The 
problem cannot be whether they make sense, but what sense they 
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make. The real issue must be how they are to be analyzed, and not 
their legitimacy. We cannot in good conscience deny that there is this 
logically contingent kind of necessity which is involved in subjunctive 
reasoning. We cannot expunge it from our conceptual framework 
without leaving that framework seriously impoverished. What we 
must seek is an understanding of subjunctive reasoning, an analysis of 
subjunctive concepts in terms of other clearer concepts. Thus the task 
of this book will be to provide an analysis of the above subjunctive 
concepts in terms of relatively less problematic indicative concepts. If 
successful, such analyses will free philosophers to use subjunctive 
concepts with impunity in the course of philosophical analysis. There 
can be no doubt that subjunctive concepts, clearly understood, would 
constitute an extremely powerful logical tool. 

It will turn out that, in important respects, the key to understanding 
subjunctive reasoning in general is to understand subjunctive condi- 
tionals. There are a number of reasons why subjunctive conditionals 
have so stubbornly resisted philosophical analysis, not the least of 
which is that our language systematically conflates two importantly 
different kinds of subjunctive conditionals. However, in recent years 
the first chinks have appeared in the armor protecting subjunctive 
conditionals from philosophical understanding. These chinks have re- 
sulted in large part from the philosophical onslaughts of Robert 
Stalnaker (1968, 1972) and David Lewis, (1972, 1973, 1973a). Build- 
ing upon the insights which they have wrought, I believe that it may 
prove possible to achieve a con~plete understanding of subjunctive 
conditionals, and thereby of subjunctive reasoning in general. 

Historically, there have been two popular approaches to the analysis 
of subjunctive conditionals. These are the older 'linguistic' approach, 
and the more recent 'possible worlds' approach initiated by Stalnaker 
and Lewis. In the rest of this introductory chapter I will examine 
briefly both of these approaches and use this examination to set the 
stage for my own analysis which builds upon them both. The plan of 
the book will then be to complete the analysis of subjunctive condi- 
tionals, in the course of which I will propose an analysis of subjunctive 
generalizations, and then to apply our results on subjunctive condition- 
als to the analysis of causes, probabilities, and dispositions. 
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This is a traditional approach to the analysis of subjunctive condition- 
als according to which they are to be explained ultimately in terms of 
physical laws. Let us symbolize the subjunctive conditional 'If it were 
true that P, then it would be true that Q1 as " P >  Q1. Then according 
to the linguistic theory, " P >  Q1 is true just in case there is a physical 
law, or conjunction of physical laws L, and there are true cir- 
cumstances C, such that the conjunction " C  & L & P1 logically entails 
Q. For example, suppose we have a dry match under ordinary cir- 
cumstances. If it were struck ( P ) ,  it would light (0). The reason 
P >  0"' is true, according to this theory, is that there are physical laws 
regarding the chemical structure of  the match which, when taken 
together with the circumstances in which we find the match (e.g., the 
match is dry, there is plenty of oxygen, etc.), and taken together with 
the match's being struck, entail that the match will light. 

As we have stated it, the linguistic theory would make too many 
subjunctive conditionals true. Without some restriction on what we can 
put into the circumstances C, it would turn out that whenever the 
material conditional r P ~  Q 1  is true, so is the subjunctive conditional 
P  > 0'. This is because if r P  =1 Q1 is true, we could put it among the 
circumstances C, and then C together with P  (without even making use 
of any laws) would automatically entail 0. Thus some restrictions must 
be put upon the contents of C. It is surprisingly difficult to see what 
restrictions are called for. 

One popular view regarding what restrictions should be placed on C 
is that it is entirely a matter of convention. This was advocated by 
Chisholm (1955). Chisholm suggested that we are free to select any 
true statements we want to put into C, calling the selected ones our 
'presuppositions', and maintained that the subjunctive conditional is 
correspondingly ambiguous. He supported his contention as follows: 

Let us suppose a man accepts the following statements, taking the universal statements to 
be law statements: (1) All gold is malleable; (2) No cast-iron is malleable; (3) Nothing is 
both gold and cast-iron; (4) Nothing is both malleable and not malleable; (5) That is 
cast-iron; (6) That is not gold; and (7) That is not malleable. We may contrast three 
different situations in which he asserts three different counterfactuals having the same 
antecedents. 

First, he asserts, pointing to an object his hearers don't know to be gold and don't 
know not to be gold, 'If that were gold, it would be malleable'. In this case, he is 
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supposing the denial of (6); he is excluding from his presuppositions (S), (6), and (7); and 
he is concerned to emphasize (1). 

Secondly, he asserts, pointing to an object he and his hearers agree to be cast-iron, 'If 
that were gold, then some gold things would not be malleable'. He is again supposing the 
denial of (6); he is excluding (1) and (6), but he is no longer excluding (5) or (7); and he 
is concerned to emphasize either (5) or (2). 

Thirdly, he asserts, 'If that were gold, then some things would be both malleable and 
not malleable'. He is again supposing the denial of (6): he is now excluding (3) and no 
longer excluding (1). (5), (6), or (7); and he is now concerned to emphasize ( I ) ,  (2). or 
(5). 

Still other possibilities readily suggest themselves (Chisholm, 1955, p. 103). 

Chisholm is certainly right that the first two conditionals he mentions 
are both true. But the third cannot be true. There are no circumstances 
under which one could reasonably assert, 'If that were gold, then some 
things would be both malleable and not malleable.' Similarly, one 
could not reasonably assert of the cast-iron. 'If that were gold, it would 
not be malleable' (emphasizing (7) and excluding (1) from our presup- 
positions). Apparently there have to be some constraints on what goes 
into C. It cannot be entirely a matter of convention. 

But the view that the contents of C are at least partly conventional is 
one that has recurred many times in the discussion of counterfactuals. 
Stalnaker (1968) calls the ambiguity stemming from this supposedly 
conventional aspect of C 'pragmatic ambiguity'. The view that sub- 
junctive conditionals are subject to pragmatic ambiguity seems to be 
supported by the fact that one could assert either of Chisholm's first 
two conditionals: 

(A) If that were gold, it would be malleable. 

(B) If that were gold, then some gold things would not be 
malleable. 

It seems that the set C must differ from (A) to (B). But, popular 
though this view is, I think it is wrong. Although (A) and (B) look, at 
least at first, like they have the same antecedent, they do not. The 
antecedents consist of the same words in the same order, but there is a 
difference in what word is emphasized, and that difference in emphasis 
makes a difference in meaning. It seems eminently reasonable to 
paraphrase (B) as follows: 

(B*) If some gold things were like that (i.e., had the properties 
that has), then some gold things would not be malleable. 
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The antecedent of (B*) is quite different from that of (A), and it is not 
unreasonable to maintain that (B*) is what we mean when we write (B). 

There are many other pairs of conditionals which have traditionally 
been thought to illustrate the pragmatic ambiguity of subjunctive 
conditionals. One fruitful source consists of what have been called 
'counter-identicals', which are conditionals whose antecedents are false 
identity statements. For example, the following two conditionals ap- 
pear to have logically equivalent antecedents and incompatible conse- 
quents: 

(c) If Richard Nixon were Golda Meir, he would be a woman. 

(D) If Golda Meir were Richard Nixon, she would be a man. 

But these conditionals do not really have equivalent antecedents. 
Contrary to initial appearance, they are not counter-identicals at all. 
This can be seen by contrasting them with the following conditional 
which really is a counter-identical: 

(E) If Richard Nixon and Golda Meir were really one and the 
same person (who had been fooling us by flying back and 
forth between countries and wearing makeup, etc.), then 
the United States would be less friendly towards the Arab 
nations. 

Unlike (El, it seems-that (C)  and (D) can be paraphrased roughly as 
follows: 

(C*) If Richard Nixon had the non-relational properties pres- 
ently possessed by Golda Meir, he would be a woman. 

(D*) If Golda Meir had the non-relational properties presently 
possessed by Richard Nixon, she would be a man. 

It is worth noting that not all putative counter-identicals can be 
paraphrased in the same way. For example, 

(F) If I were Gerald Ford, I would be athletic. 

can be paraphrased as: 

(F*) If I had the non-relational properties presently possessed 
by Gerald Ford, I would be athletic. 
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But 

(G) If I were Gerald Ford, I would sign the education bill. 

is paraphrased differently as: 

(G*) If I were in the role of Gerald Ford, I would sign the 
education bill. 

That (F) and (G) really do  have different antecedents is indicated by 
the fact that they do not jointly imply: 

(H) If I were Gerald Ford, I would be athletic and sign the 
education bill. 

which they would imply if their antecedents had the same meaning. 
Another pair of examples is provided by Goodman (1955): 

(1) If New York City were in Georgia, then New York City 
would be in the South. 

(J) If Georgia included New York City, then Georgia would 
not be entirely in the South. 

Initially, (I) and (J) appear to have equivalent antecedents, but they 
can be paraphrased in such a way that it is evident they do  not: 

(I*) If New York City were included within the present bounds 
of Georgia, then New York City would be in the South. 

(J*) If Georgia included the area presently occupied by New 
York City, then Georgia would not be entirely in the 
South. 

Many subjunctive conditionals are ambiguous. The above examples 
illustrate this. But what is important is whether subjunctive condition- 
als are subject to a special kind of 'pragmatic' ambiguity arising out of 
a conventional element in their meaning, or whether the ambiguity in 
subjunctive conditionals is just the normal kind of ambiguity present in 
all natural language which arises naturally from our tendency to say 
less than we mean. The availability of the above paraphrases suggests 
that the latter is the case. The ambiguity can be resolved simply by 
being more careful and saying precisely what we mean. 
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However, it must be admitted that some of the paraphrases em- 
ployed above are not as clear as we might desire. This is primarily true 
of those which proceed in terms of the 'non-relational properties' of an 
object. Just what properties are these? I believe that the above 
paraphrases are essentially correct, but they do not tell the whole 
story. In particular, they suggest that the ambiguity in subjunctive 
conditionals is simply a matter of ambiguity in their antecedents, 
because in all of the above examples, the ambiguity is resolved in that 
way. If we allow ourselves to talk without further elucidation about the 
non-relational properties of an object, then the ambiguity in the above 
examples can be resolved in this way. But it will be found in Chapter 
IV that some of these examples are really special cases of a more 
general phenomenon which I will call 'subject preference'. Subject 
preference generates a kind of ambiguity in subjunctive conditionals 
which is often resolved in oral communication through the use of 
emphasis, e.g., by saying 'If that were gold. . .' rather than 'If that were 
go ld . .  .'. It will be found that not all examples of ambiguity arising 
from subject preference can be resolved so simply as that in the above 
examples. In some cases we must regard the conditional itself as 
genuinely ambiguous. However, this ambiguity is rule-governed and 
has nothing to do with any supposedly conventional element in the 
meaning of subjunctive conditionals. Thus it will turn out that there is 
still no reason to regard subjunctive conditionals as pragmatically 
ambiguous in the sense of Chisholm and Stalnaker. 

Having allowed ourselves the freedom to paraphrase subjunctive 
conditionals as much as we have, it might be supposed that we can 
resolve the problem of counterfactuals altogether through the use of 
paraphrase. It might be supposed that counterfactuals are really just 
enthymematic conditionals. Or  to be more precise, it might be sup- 
posed that when we assert a subjunctive conditional like 'If this match 
had been struck, it would have lit', we do not completely express our 
meaning - what we write is short for a longer conditional whose 
antecedent contains as explicit conjuncts those statements in the set C 
which we use in getting from the supposition 'This match is struck' to 
the conclusion 'It lights'. This proposal is very much in the spirit of 
Chisholm's proposal. According to this proposal, the set C consists 
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merely of statements that were implicitly part of our meaning in 
formulating the antecedent of the conditional but which we did not 
bother to state precisely because we assumed that outaudience would 
understand what we had in mind. This implies that there is really no 
problem regarding what we can put into C and what'we cannot put 
into C. Membership in C is simply a matter of what we mean when we 
assert the conditional. 

This account would be very attractive if it worked, but it doesn't 
work. Although it seems indisputable that in many cases paraphrase is 
required to make explicit what a conditional means, such paraphrase 
cannot resolve the proplem of membership in C. This can be seen by 
coming down heavily on the requirement that the paraphrase must 
really mean what the original conditional meant. For example, con- 
sider the conditional, 'If this match had been struck, it would have lit'. 
The set C must contain whatever conditions are necessary for a match 
to light when struck. Among these are its being dry, there being plenty 
of oxygen present, etc. The difficulty is that I do not know how to fill 
out the 'etcetera'. I am confident that there are conditions present 
which would result in the match's lighting if it were struck, and because 
of this I am confident that the match would light if struck, but I cannot 
enumerate those conditions. If I cannot enumerate them, they certainly 
cannot be part of my meaning when I say, 'If this match were struck it 
would light'. Consequently, membership in C cannot be simply a 
matter of what one means when he asserts a conditional. 

I have argued that subjunctive conditionals are not subject to the 
kind of pragmatic ambiguity philosophers have often supposed. Thus 
there must be precise conditions determining what is included in C and 
what is not. Membership in C does not consist merely of implicit 
premises enthymematically omitted from the antecedent in formulating 
the conditional. Rather, our problem is one of understanding a prin- 
ciple of detachment for subjunctive conditionals. When r(P & R. ^> Q)' 
expresses a lawlike connection (obtained by instantiation in a law), 
under what conditions can we detach R from the antecedent to infer 
the conditional ^ P >  Q1? It is not enough to require that R be true, but 
it is not clear what more should be required. 

Goodman (1955) has made a suggestion regarding the solution to 
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this problem. His observation is that in deciding.what would be the 
case if some proposition P were true, we cannot put just any true 
statement R into C - at the very least we must require that R would 
not be false if P were true. So Goodman defines R to be cotenable 
with P just in case ^-(P > - R y  is true, and then his proposal is that C 
consists of the set of true statements cotenable with P. 

Goodman has certainly found a necessary condition for a statement 
to be included in C, but it is not a sufficient condition. It is not enough 
to require that R would not be false if P were true - we must require 
that R would be true if P were true. Perhaps Goodman was supposing 
that these are the same thing - that ^-(P> - R)' is logically equivalent 
to ^ ( P  > R)'. It is probably true that most philosophers have supposed 
the negation of a subjunctive conditional to be equivalent to the 
subjunctive conditional which results from negating the consequent. 
For example, at first it seems that to deny that if my car had a full tank 
of gas I could drive all the way to Boston is to affirm that if my car had 
a full tank of gas I still could not drive all the way to Boston. But I 
think that this is wrong. It is quite possible for both ^ ( P >  -R)' and 
r(P> R)' to be false. For example, suppose there were two kinds of 
gasoline, long-mileage-gasoline (LMG) and short-mileage-gasoline 
(SMG), and that a tankful of LMG would get me to Boston but a 
tankful of SMG would not. Then there are two ways in which the 
antecedent 'My car has a full tank of gas' could be true, and there need 
be no way to choose between them and say that if my car had a full 
tank, it would definitely be full of one of these kinds of gas rather than 
the other. Under these circumstances we can conclude neither that if 
my car had a full tank of gas I could drive all the way to Boston, nor 
that if my car had a full tank I still could not drive all the way to 
Boston. Rather, we are forced to say that if my car had a full tank I 
might be able to drive to Boston, and also if my car had a full tank I 
might not be able to drive to Boston. 

This introduces a new kind of subjunctive conditional that I have not 
mentioned before - the 'might be' conditional. Let us symbolize "It 
might be true that Q if it were true that P1 as "QMP1. Perhaps it is not 
obvious how 'might be' conditionals are related to 'would be' condi- 
tionals, but I think it is at least clear that "QMP1 and "(P> -QV are 
incompatible. If 0 would be false if P were true, it cannot be that Q 
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might be true if P were true. Thus ^QMP1 entails ^-(P > - Q)', and 
similarly ^(-Q)MP1 entails ^-(P> 0)'. Hence if we have both 
QMP1 and "(-Q)MP1, it follows that ^P> Q1 and ^P>  -C1 are both 
false. And we have seen an example in which we do have both "QMP1 
and r(-Q)MP1 true. Therefore there is a difference between requiring 
that '--(P > -0)' be true and requiring that ^P > Q1 be true. 

Given this difference, I think it is clear that Goodman's requirement 
of cotenability is too weak. This is demonstrated by seeing that it 
would lead us right back to a special case of the principle that if 
- ( P >  -Q)l is true then ^ P >  Q1 is true. More precisely, Goodman's 
proposal implies that whenever P is false and "-(P>-Q)' is true, 
then ^ P >  Q1 is true. This implication is established as follows. First, 
we need two obvious principles regarding subjunctive conditionals: 

(2.1) If ^P>  Q1 is true and Q entails R, then ^P > R1 is true. 

(2.2) If rP > (P 3 0)"  is true, then ^P > Q1 is true. 

2.1 is so obvious as to need no defense. 2.2 holds because if rP 2 Q1 
would be true if P were true, then both P and ^P =1 Q1 would be true if 
P were true, and hence Q would have to be true if P were true. Given 
these principles, let us suppose, with Goodman, that truth and cotena- 
bility are all that is required for inclusion in C. Suppose P is false, and 
- ( P >  -0)' is true. Then by 2.1 '-(P> (P & -0))" is true, and so 
- ( P >  - ( P 3  Q))l is true. But as P is false, "PI Q1 is true', and it 
follows from Goodman's proposal that ^P>(P=> Q)' is true. Then 
from 2.2 it follows that ^ P >  Q1 is true. But the example regarding the 
two kinds of gasoline is a counter-example to this conclusion just as 
much as it is a counter-example to the more general principle which 
does not assume that P is false. Thus Goodman's proposal is unaccept- 
able. 

What is required for inclusion in C is not merely that "-(P> -R)' 
be true, but rather that R would still be true even in P were true, i.e., 
that "P> R1 is true. If we do have ^ P >  R1, then it seems clear that we 
are safe in including R in C. This results directly from the intuitive 
validity of the following principle regarding subjunctive conditionals: 

But it is equally clear that once we have made this our condition for 
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inclusion in C, we are no longer giving an analysis of subjunctive 
conditionals. This is because we are now using subjunctive conditionals 
to define the class C. Thus the linguistic theory runs into a rather 
severe stumbling block. This is not to say that the linguistic theory 
cannot be salvaged, but if salvage is to be accomplished, membership 
in C must be characterized in a very different way. In effect, this is the 
task that will be undertaken in Chapter IV. 

There are two fundamental problems for the linguistic theory. The 
first is that of membership in C, which we have been discussing. But 
even if we could solve this first problem, there would remain another 
problem. The linguistic theory proposes to characterize subjunctive 
conditionals partly in terms of physical laws, but the latter concept 
seems just as problematic as the concept of a subjunctive conditional. 
Philosophers have sometimes supposed that any true universally quan- 
tified material conditional (henceforth: 'material generalization') is a 
law, but that is rather obviously unsatisfactory. There is a clear 
intuitive difference between what philosophers have often called acci- 
dental and non-accidental generalizations. The material generalization 
'All three thousand pound human beings have wings' is true, because 
there are no three thousand pound human beings. But a generalization 
that is true simply because it is vacuous will certainly not support 
subjunctive conditionals. Nor will it suffice merely to rule out those 
material generalizations that have vacuous antecedents. For example, 
if there were just one eleven-toed English- mathematician whose 
mother is from Dublin, and he were named 'Charlie', then it would be 
true that all eleven-toed English mathematicians whose mothers are 
from Dublin are named 'Charlie', but this generalization would be true 
'purely by accident' and no one would want to count it as a law. To be 
contrasted with this are generalizations like 'All pulsars are neutron 
stars' or 'All creatures with hearts are creatures with kidneys' which, if 
true, are in some sense 'nomic' and would be considered laws. The 
problem is to say what distinguishes laws from accidental generaliza- 
tions. 

I think that a partial answer to this question is that it is a mistake to 
suppose that laws can be adequately formulated using material condi- 
tionals. On the contrary, laws are fundamentally subjunctive in nature. 
A law tells us not just that all actual pulsars are neutron stars, but also 
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that any pulsar there could be would be a neutron star. Similarly, the 
law is not just that all actual creatures with hearts are creatures with 
kidneys, but also that any creature with a heart would be a creature 
with a kidney. Let us call generalizations of the form "Any A would be 
a B' subjunctive generalizations. Then it seems to be the case that laws 
must be formulated using subjunctive generalizations. This may suffice 
to distinguish laws from accidental generalizations, but it makes it all 
the more difficult to give an adequate analysis of the concept of a law. 
It now appears that even if we could analyze subjunctive conditionals 
in terms of laws, we would only have succeeded in analyzing one class 
of subjunctive statements in terms of another class of subjunctive 
statements, whereas the basic problem is to analyze subjunctive state- 
ments in terms of non-subjunctive statements. 

This makes the prospects for the linguistic theory look rather bleak. 
Fortunately, I do not think they are as bleak as they look. Although 
laws are subjunctive, it will turn out that they are a much simpler 
variety of subjunctive statement than are subjunctive conditionals. In 
Chapter 111 I will argue that it is possible to give an analysis of 
subjunctive generalizations in terms of non-subjunctive statements. 
Once that is accomplished, there will be no circularity in using sub- 
junctive generalizations in analyzing subjunctive conditionals. So the 
only remaining problem for the linguistic theory will be to characterize 
membership in the class C. I think that the key to the solution to this 
problem lies in the 'possible worlds' approach to the analysis of 
subjunctive conditionals, so let us turn now to that approach. 

This approach is due originally to Robert Stalnaker (1968). Stalnaker 
constructed a formal semantics for subjunctive conditionals based upon 
the well known formal semantics for modal logic. The idea behind 
Stalnaker's semantics is that "(P > Q)^ is true just in case, if we add P 
to our stock of truths and modify them so as to make them consistent 
with P, but make the modification as small as possible, then the 
resulting sets of statements entails 0. Putting this in terms of possible 
worlds, we look at that world in which P is true which is most like the 
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real world, and we see whether Q is true in it. Formally, we suppose 
we have a two-place function f such that for each sentence P and 
possible world a ,  f (a ,  P )  is that world containing P which is most like 
the world a. Then r(P> Q)' is true in a iff Q is true in f (a ,  P).  In case 
P is logically inconsistent, and so true in no possible world, f (a ,  P) 
would be undefined, so we pick an arbitrary object 7, which we 
designate 'the impossible world', to be the value of f (a ,  P)  in this case. 
Generating a formal semantics, we can take a model to be an ordered 
quadruple (a ,  K, f, y) where K represents the set of all possible worlds, 
a e K, and f is the selection function which, to each p in K and 
sentence P assigns a member of K 2 .  We will want to put some 
constraints on the selection function, but subject to those constraints 
we will say that a sentence involving conditionals is valid iff it is true in 
every model. 

Intuitively, not just any function f will constitute a reasonable 
selection function. It seems clear that the following three requirements 
should be placed upon f :  

(3.1) For any P and a ,  P is true in f(a ,  P) .  

(3.2) For any P and a ,  f (a ,  P )  = y only if there is no possible 
world in which P is true. 

(3.3) For all P and a ,  if P is true in a then f (a ,  P)  = a. 

Principle 3.3 reflects the fact that if P is already true, then we do not 
have to make any changes to the set of truths in order to accommodate 
P. Stalnaker proposes that f is based upon a simple ordering of 
possible worlds with respect to their resemblance to a .  This leads him 
to add the following: 

(3.4) For all P, 0, and a ,  if P is true in f(a,'Q) and Q is true in 
f (a ,  P),  then f(a ,  P )  = f ( a ,  0). 

It might be felt that if one is going to defend a possible worlds 
analysis of subjunctive conditionals, he should first defend an ontology 
which contains possible worlds. Stalnaker (1972) and David Lewis 
(1973, p. 84) both endorse platonistic views of possible worlds. I d o  
not want to say that such a view is wrong, but I do find it somewhat 
mysterious and I would prefer not to commit myself to it. There are 
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other alternatives. I prefer to identify a possible world with the set of 
propositions true in it; or more precisely, to define a possible world to 
be a maximal consistent set of propositions. Lewis argues that the only 
way to make sense of 'consistent' here is in terms of possible worlds, 
but I would hope that he is wrong. I have suggested an alternative 
account in Pollock (1974), but even if that account is found wanting, I 
suspect that some account can eventually be given. My point here is 
not to defend any particular account of possible worlds, but merely to 
argue that ontological questions about possible worlds can be safely 
separated from the question how to analyse subjunctive conditionals. 
The philosopher who approaches the latter question in terms of 
possible worlds is not auton~atically subject to criticism for doing so. 

The conditions that Stalnaker has placed upon f are clearly not 
sufficient to pick it out uniquely. There will be many different functions 
satisfying these conditions. Stalnaker allows for the possibility that 
there might be additional formal constraints that could plausibly be 
imposed on f, but he denies that we could ever have conditions which 
would determine f uniquely. He maintains that there are going to be 
many different equally good selection functions, and that the choice 
between them is not determined by semantical considerations, but 
rather by the pragmatics of language. Here Stalnaker is harking back 
to the traditional view that subjunctive conditionals are subject to 
some kind of thorough-going ambiguity. It is supposed that the mean- 
ing of the conditional cannot resolve the ambiguity; rather, it is to be 
resolved by pragmatic considerations having to do with the occasion of 
utterance. Thus Stalnaker calls this kind of ambiguity 'pragmatic 
ambiguity'. 

It is noteworthy that Stalnaker gives no new examples of ambiguity. 
He bases his view that conditionals are pragmatically ambiguous on the 
discussions of Chisholm, Goodman, and others which were considered 
in Section 2. I have urged that those discussions were unconvincing. 
Thus Stalnaker's position on pragmatic ambiguity is subject to rebuttal 
on the same grounds. Those grounds do not constitute an argument to 
the effect that subjunctive conditionals are not pragmatically ambigu- 
ous, but rather consist of an attempt to undercut the reasons that have 
been given for thinking that they are pragmatically ambiguous. Claims 
of pragmatic ambiguity were based upon an appeal to certain kinds of 
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examples, and I have argued that those examples are more plausibly 
interpreted as illustrating an ambiguity in the antecedent of the condi- 
tional rather than a kind thoroughgoing ambiguity in the conditional 
connective itself. 

Perhaps the main reason Stalnaker is led to his doctrine of pragmatic 
ambiguity is that, on his semantics, the following principle is valid: 
'[(P > Q) v ( P  > - Q)]'. According to this principle, for any P and Q, 
either Q would be true if P were true, or Q would be false if P were 
true. But there are many choices of P and Q for which we seem unable 
to decide which of these alternatives is correct. Stalnaker's answer is 
that the choice is to be determined by pragmatic considerations. I 
believe that this is manifestly false. Let P be 'The temperature outside 
is not 30'' and let Q be 'The temperature outside is 40''. Is it true 
that if it weren't 30' out now then it would be 40Â¡,o is it true that if it 
weren't 30Â out now it would not be 40Â° I should think that neither of 
these is true. Nor will it help to bring in pragmatic considerations. 
Pragmatic considerations are irrelevant in deciding whether it would be 
40' out now. Rather than affirm either r ( P >  Q)' or ^(P> -Q)', we 
should deny both and say that if it weren't 30' out now then it might 
be 40' out, but also it might be something else. 

Stalnaker's analysis ignores 'might be's'. The principle '[(P> Q ) v  
( P  > -Q)F should not be valid. I argued in Section 1 that "0 might be 
true is P were true1 is incompatible with ^(P > -Q)^, and there are 
cases like the above in which we want to say that Q might be true if P 
were true, and also that Q might be false if P were true. Rather than 
an appeal to pragmatic considerations to resolve those cases where we 
cannot decide which of ^ ( P >  Q)' and ^(P > -0) '  should be true, we 
should deny that one of them always has to be true. What is required is 
a modification of the semantics so that ^[(P > Q) v (P > -@)I1 is no 
longer valid. As we will see, this is precisely what David Lewis has 
accomplished. 

There are further difficulties for Stalnaker's semantics. Stalnaker 
suggests that his semantical rules (possibly augmented slightly) exhaust 
the semantical features of subjunctive conditionals, and that the choice 
of a selection function within these constraints is a matter of pragma- 
tics. But most such selection functions would be totally preposterous. 
By judicious choice of a selection function, we could make virtually 
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any conditional either true or false as we wish. For example, we could 
choose a function which selects the closest world in which I drop a 
piece of chalk (which in fact I did not drop) to be one in which Richard 
Nixon jumps over the moon. Then it would be true that if I had 
dropped that piece of chalk, Richard Nixon would have jumped over 
the moon. But that conditional just isn't true. In general, given any 
sentences P and 0 ,  if P is false and does not logically entail "-Q1, 
there will be a selection function satisfying Stalnaker's formal con- 
straints which will make r(P> Q)"' true. But this is absurd. It might 
possibly be true that there is some ambiguity built into subjunctive 
conditionals, but no one can believe that they are subject to this kind 
of rampant ambiguity which would result from Stalnaker's position. 

Perhaps part of the difficulty is that in talking about pragmatics, 
Stalnaker's words (but not Stalnaker himself) suggest that this is just a 
matter of "pragmatic considerations" - appeals to practicality or some 
such thing. But the examples Stalnaker gives of the pragmatics of 
language are not at all like that. Pragmatics is supposed to govern such 
things as the reference of indexical expressions. Pragmatics, so con- 
strued, has nothing to do with practicality. It functions according to 
definite rules of language having to do with, for example, pointing to 
fix the referent of 'he'. There is nothing hit or miss about this, and 
nothing 'to be decided' by considerations of practicality. It would not 
be unreasonable to include pragmatics as part of semantics. Whether 
we do that or not would seem to be nothing more than a matter of 
terminology. But however we choose to classify pragmatic rules, there 
is no reason to think that there are no precise linguistic rules which 
uniquely determine the selection function. The fact that most potential 
selection functions are obviously ruled out by our understanding of the 
conditional (which presumably means they are ruled out by the rules of 
language governing conditionals) suggests that all but one may be ruled 
out, and it certainly indicates that there are many more constraints on 
the selection function than indicated by ~ t a l n a k e r . ~  

Regardless of whether there is just one selection function or many 
selection functions, Stalnaker's semantics requires revision to rid it of 
the offending theorem " [ ( P  > Q) v (P > - Q)]'. Such revision has been 
provided by Davis Lewis, (1972, 1973, 1973a). Lewis begins by 
proposing that the selection function be understood in terms of our 
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ordinary notion of comparative similarity. What is at issue is whether a 
world a is more similar to a given world than is a world 8. Lewis writes 
that he means precisely the same relation of comparative similarity as 
when we judge the comparative similarity of cities or people or 
philosophies. Thus not just any old selection function will do. A proper 
selection function has to be built out of this notion which we take as 
basic for the sake of the analysis. This is certainly a step in the right 
direction, although as I will urge, it will not quite do. 

Starting with this notion of comparative similarity, Lewis observes 
that Stalnaker's semantics assumes there will always be just one world 
making P true which will be more like a given world than will any 
other world in which P is true. But this is implausible. Why couldn't 
there be ties? This seems to be just what happens when we judge that 
if Bizet and Verdi were compatriots they might both be French, and 
they might both be Italian. A world in which they are both French is 
just as much like the real world as one in which they are both Italian. 
Thus, rather than having f(a, P) be a single world, it should be a whole 
set of worlds. This leads Lewis to the analysis he numbers 'Analysis 2' 
according to which, if f(a, P )  is the set of all worlds in which P is true 
which are at least as similar to a as are any other worlds in which P is 
true, then r(P > Q)' is true iff 0 is true in every world in f(a, P) .  This 
analysis embodies the 'limit assumption' according to which there are 
worlds in which P is true which are maximally similar to a. This rules 
out the possibility that worlds might get indefinitely closer to a without 
limit. 

Lewis rejects the limit assumption on the basis of examples like the 
following. He draws a line slightly less than an inch long, and then he 
says 

Suppose we entertain the counterfactual supposition that at this point there appears a 
line more than an inch long.. . . There are worlds with a line 2" long; worlds presumably 
closer to ours with a line I$'' long; worlds presumably still closer to ours with a line l$' 
long; worlds presumably still closer. . . . But how long is the line in the closest worlds 
with a line more than an inch long? If it is 1 + x "  for any x however small, why are there 
not other worlds still closer to ours in which it is 1 +&", a length still closer to its actual 
length? The shorter we make the line (above I"), the closer we come to the actual length; 
so the closer we come, presumably, to our actual world. Just as there is no shortest 
possible length above I", so there is no closest world to ours among the worlds with lines 
more than an inch long (Lewis, 1973, pp. 20-21). 
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This leads Lewis to propose the following analysis: 

( P >  Q)' is true in a iff there is some world in which r(P & Q)' is true which is more 
like a than is any world in which '(PA -0)' is true. 

Lewis' argument seems quite persuasive, but it leads to a most peculiar 
result. On his diagnosis, for each x greater than zero there are worlds 
in which the length of the line is between 1" and 1 + xt' which are closer 
to the actual world than are those worlds in which it is 1 + x t f .  It follows 
that the conditional 'If the line were more than an inch long, it would 
not be 1 + x  inches long' is true for each x  greater than zero. But if the 
line would not be 1 +x" long for any x, it follows that the line would 
not be more than an inch long (if it is more than an inch long, then it is 
more by some non-zero amount x). That is, if the line were more than 
an inch long, then it would not be more than an inch long. But that is 
certainly false. What has happened? 

First it should be pointed out that the above informal argument 
employs a principle which is not valid on Lewis' semantics. Unfortu- 
nately, this does not help Lewis because the principle ought to be 
valid. Let us define, where F is a set of sentences and P and Q are 
sentences: 

(3.5) (a) FÃ‘ P iff every possible world making all of the sen- 
tences in I' true makes P true. 

' is the entailment relation. Entailment by a single sentence may or 
may not be represented by an operator in the object language, but of 
course the general concept of entailment by a set of sentences cannot 
be represented in that way. The following Consequence Principle is 
valid on Lewis' semantics: 

(3.6) If r(P> Q)' is true and Q -  ̂R, then r(P> R)' is true. 

It seems clear intuitively that this principle ought to hold, so it is 
gratifying that it does. Because adjunctivity also holds (that is, if 
( P >  0)' and r(P> R)" are true, so is " P > ( Q  & R)'), we can 
generalize the consequence principle to obtain the Finite Consequence 
Principle : 

(3.7) If F is a finite set of sentences, and for each QeF, 
( P  > 0)' is true, and F + R, then r ( P  > R)" is true. 
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On intuitive grounds, it seems that the following Generalized Conse- 
quence Principle should also hold: 

(3.8) If f is a set of sentences, and for each 0 e F, "(P> 0) '  is 
true, and F-+ R, then r (P  > R)' is true. 

The generalized consequence principle seems just as obvious as either 
the original consequence principle or the finite consequence principle, 
and indeed should be true for exactly the same reason. It is surprising 
then that on Lewis' semantics this principle does not hold. The 
example about the length of the line can be turned into a proof of this 
fact. 

As the generalized consequence principle ought to be valid, what 
happens if we impose on the similarity relation the condition that it is 
valid? Surprisingly enough, this is equivalent to the limit assumption.4 
Thus we are led back to Analysis 2. This might seem surprising. What 
are these closest worlds? They are the worlds that might be the actual 
world if P were true. We can make this precise as follows. Where a is 
a world, let us define 

(3.9) a M P  iff -(3Q)[^P> -Q1 is true & Q is true in a ] .  

We then prove two theorems: 

(3.10) If 3.8 holds and " - ( P >  -R)' is true, then (3a}(aMP & R 
is true in a) .  

Proof: Let F = {R} U {S; "(P > S)' is true}. Suppose there is no possible 
world a in which all the sentences in f are true. Then F is inconsis- 
tent, i.e., {S; r (P>  S)' is true} + ̂R1. Then by 3.8, ^ (P> -R)l is 
true, contrary to supposition. Therefore there is a world a in which all 
the sentences in F are true. For any sentence Q, if ^(P > - 0)' is true 
then "-Q1e F, so "-Q1 is true in a ,  and hence Q is not true in a .  
Thus aMP. And as R e F, R is true in a .  

(3.11) If 3.8 holds, then "(P > Q)' is true iff (Va)[aMP 3 Q is true 
in a]. 

/N/ 

Proof: Suppose r ( P >  0 ) '  is true. Suppose aMP. Then (̂P>/--Q)' is 
true (by 3.8), so "-Q' is not true in a ,  and hence Q is true in a. 
Conversely, suppose " (P> Q)l is not true. By theorem 3.10, (3a) (aMP 
& Q is not true in a ) .  Hence -(Va)(aMP=i Q is true in a ) .  
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Theorem 3.1 1 tells that the closest worlds in which P is true are those 
worlds that might be actual if P were true. 

Thus the generalized consequence principle leads us inexorably back 
to Analysis 2. What went wrong with Lewis' argument which led him 
to reject Analysis 2 and adopt his more complicated analysis instead? 
I think that the error lies in supposing that the relation we use in 
selecting possible worlds is our ordinary relation of comparative simi- 
larity. Lewis' own example about the line illustrates this nicely. He  is 
surely right in supposing that a world in which the line is I$' long is 
more like the real world than one in which the line is 2" long. If 
comparative similarity were the relation that is operative in generating 
counterfactuals, it would follow that if the line were more than an inch 
long then it would not be two inches long. But that is false. On the 
contrary, if the line were more than an inch long then it might be two 
inches long. It might also be three inches long, or four inches long, etc. 
None of these alternatives is ruled out, although they clearly do 
generate worlds that differ in their similarity to the real world. 

Apparently comparative similarity is not the relation that is involved 
in determining which worlds we must look at in deciding whether 
( P >  0)' is true. This can be seen more directly by considering what 
the operative relation is. What is involved in counterfactuals is the 
notion of a minimal change being made to the actual world in order to 
accommodate the counterfactual supposition. We must change the 
world in some way in order to make the antecedent true, but we are 
constrained to make the change as small as possible. The operative 
notion here is that of the minimality of change. Two different minimal 
changes can result in worlds that differ in their similarity to the real 
world. For example, a change yielding a world in which the line is 2" 
long is no greater than a change yielding a world in which the line is 
ly long. Each change is minimal, because each amounts .merely to 
changing the length of the line to accommodate the counterfactual 
supposition and then making whatever additional changes are required 
for the sake of consistency. But the resulting worlds differ in their 
degree of similarity to the real world. 

Apparently the notion of the magnitude of a change is not the same 
as that of the comparative similarity of worlds. Once this is recognized, 
we can build our semantics on the former notion rather than the latter. 



2 2 C H A P T E R  I 

Does this make any difference to the formal structure of the seman- 
tics? Lewis made the reasonable assumption that comparative similar- 
ity relative to any particular world constituted a simple ordering." 
Unfortunately, if we consider the ordering of worlds in terms of the 
magnitude of change required to generate them from the real world, it 
seems that we do not have a simple ordering but only a partial 
ordering. That is, the ordering is not connected. Sometimes it makes 
perfectly good sense to say that one change is greater than another, 
i.e., when the one change contains the other. But it is not true in 
general that we can compare changes in worlds and say either that they 
are the same magnitude or that one is greater than the other. This can 
be illustrated as follows. Let T, R, and 5 be three unrelated false 
sentences, e.g., the sentences 'My car is painted black', 'My maple tree 
died', 'My garbage can blew over'. Let P be ^ T v ( R  & S)', and let Q 
be " T v  R1. Now consider what happens when we entertain P and Q as 
counterfactual suppositions. In general, if we have a disjunction whose 
disjuncts are unrelated, then if the disjunction were true, either dis- 
junct might be true - neither disjunct would have to be false. In the 
case of P and Q we have (1) that ^-(P > - T)' and "-(P > -(R & S))^ 
are true, and (2) that "-(Q > -T)^  and "-(Q > -R)' are true. By (1) 
and Theorem 3.11, there are worlds a and 0 such that a M P  and /3MP 
and T is true in a and '(R & S)' is true in 6. a results from making 
minimal changes to the real world so as to make T true, and /3 results 
from making minimal changes so as to make ^ ( R  & S)' true. But then 
we will also have aMQ, because making T true is also a way of making 
Q true by making minimal changes. If connectedness holds, so that it 
always makes sense to compare the magnitudes of two changes, as we 
have both a M P  and BMP, a and 6 must result from changes of the 
same magnitude. But then as aMQ, the magnitude of change involved 
in a must be the minimal change possible in making Q true. But (on 
the assumption of connectedness), Q involves the same amount of 
change, and Q is true in 6 (because R is true in f i ) ,  so we must also 
have PMQ. But we should not have PMQ. In constructing p we have 
changed the real world more than necessary to make 0 true, because 
we have made both R and S true when we only needed to make R 
true. Although a and p both involved minimal changes relative to the 
counterfactual supposition P, only a and not 6 involves a minimal 
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change relative to the counterfactual supposition 0. Thus connected- 
ness fails. It does not make sense to ask whether a and involve 'the 
same amount of change'. It only makes sense to ask whether they 
involve minimal changes necessary to make a certain counterfactual 
supposition true. 

The picture that emerges from this is that although it makes per- 
fectly good sense to say that one change is larger than another when 
the first contains the second as part of it, it does not in general make 
sense to try to compare the magnitudes of changes. Changes form a 
lattice rather than a simple ordering. To say that a change is minimal 
relative to making a certain antecedent true is to say that we cannot 
make the antecedent true by making just part of that change. Two 
changes may each be minimal relative to making a certain antecedent 
true, but only one of them minimal with respect to making another 
antecedent true. 

Thus we cannot assume that the ordering of worlds which is gener- 
ated by our selection of minimally different worlds is a simple ordering. 
It is only a partial ordering. As I will argue in Chapter 11, Lewis' 
assumption to the contrary leads him to embrace as valid certain 
theorems which should not be valid. 

I have argued that there are some serious problems for the possible 
worlds approach as it has been developed to date. But, by Theorem 
3.11, it follows that the basic insights are correct. As long as we agree 
that the Generalized Consequence Principle holds, it follows that the 
possible worlds approach can be made to work. But one may wonder 
whether the possible worlds approach really involves any advance over 
the linguistic theory. The possible worlds theory proceeds in terms of 
the notion of the minimal change to the real world necessary to make a 
certain sentence true. No one would hold this notion up as a model of 
clarity. Before we can regard the possible worlds theory as giving us 
anything that deserves to be called an 'analysis' of counterfactual 
conditionals, we must have an analysis of this notion of a minimal 
change. And upon reflection, the latter task seems to involve all of the 
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problems that arose for the linguistic theory. First, it seems that laws 
must play an important role in the notion of a minimal change. Most 
people's intuitions seem to agree that in making a counterfactual 
supposition true, we change laws only as a last resort. For purposes of 
counterfactuals, laws are more immutable than particular facts .  Thus a 
clear account of the notion of a minimal change must presuppose an 
account of what a law is. Second, the question which particular facts 
can be changed and which cannot in a minimal change seems to be the 
same as the question what truths can be put into the set C in the 
linguistic theory. At this point, it may look as if the possible worlds 
approach has accomplished nothing. The same problems have arisen 
all over again in different guise. But this is misleading. As we will see 
in Chapter IV, the possible worlds approach provides a helpful new 
perspective on the problem which, in the end, facilitates its solution. 

However, before we can attempt to provide that solution, we must 
return to some of the same old problems. In Chapter I1 we will 
undertake to sort out various logical facts about subjunctive condition- 
als which have obscured the solution to the general problem of 
providing an adequate analysis. In Chapter 111 we will examine the 
notion of a law, and we will attempt to provide an analysis of it. Then 
in Chapter IV, having laid the groundwork, we will return to the task 
of analyzing the notion of a minimal change and will provide what I 
hope is an adequate analysis, and thereby provide an analysis for 
counterfactual conditionals. 

NOTES 

I If it is agreed that ^ P  & O1 entails rP>Q', a principle which will be defended later, 
then -(P>-Q)-' entail:> "P*' all by itself and we do not need the assumption 
that P is false. 

Stalnaker also included an alternativeness relation, but I omit it for the sake of 
simplicity. It has no direct effect on the logic of conditionals. 

Of course, these constraints are most likely not 'formal' in the same sense as are those 
which Stalnaker lists. 

More precisely, it is equivalent given the assumption that comparative similarity 
relative to any world is at least a partial ordering. 

More precisely, he assumed a simple ordering of the equivalence classes of worlds 
equally similar to the given world. 
D a v i d  Lewis denies this, but I think that his denial stems from his supposing that 
comparative similarity is the notion operative in generating counterfactuals. 



CHAPTER I1  

F O U R  K I N D S  O F  C O N D I T I O N A L S  

There are certain logical problems that must be discussed prior to 
undertaking the analysis of subjunctive conditionals. The discussion of 
these problems will clarify the nature of these conditionals and thereby 
facilitate their analysis. The problem o f  analyzing subjunctive condi- 
tionals has been exacerbated by'the fact that there are actually several 
different kinds of subjunctive conditionals, with different properties 
and correspondingly different analyses, and philosophers have not 
been sufficiently careful in distinguishing between them. In this chapter 
I will distinguish between four main kinds of subjunctive conditionals 
and explore their interrelations. It will turn out that these conditionals 
are all interdefinable, so an analysis of one will yield analyses of all the 
others. 

Let us say that a simple subjunctive is a conditional of the form "If it 
were true that P then it would be true that Q1. We will symbolize this 
as ^ P >  Q'. It is the simple subjunctive that has been discussed most 
frequently in the literature and which was under discussion in Chapter 
I. There is a more or less traditional assumption about subjunctive 
conditionals that has been uniformly rejected in the recent literature. 
This is the assumption that a subjunctive conditional asserts the 
existence of a connection between the antecedent and consequent. 
Certainly, some simple subjunctives are true because such a connection 
exists, but this is not invariably the case. The existence of such a 
connection is a sufficient, but not a necessary, condition for the truth of 
a simple subjunctive. This is easily seen by considering examples. 

First, there are obvious examples of a simple subjunctive being true 
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because of the existence of such a connection. We say, 'If this match 
were struck, it would light', because we believe that, in some sense, 
striking the match would bring about its lighting. Similarly, we say 'If 
the bird you saw had been a raven, it would have been black', because 
a bird's being a raven in some sense requires (without logically 
entailing) its being black. In each of these examples, the truth of the 
antecedent in some sense makes the consequent true, or requires the 
consequent to be true. Let us say that in these cases the antecedent 
necessitates the consequent. Notice that necessitation is not always 
causal necessitation. We cannot say that the bird's being a raven 
causes it to be black. It might conceivably be true that all (contingent) 
necessitations are ultimately explicable in terms of causes, but it is 
clear that there are cases in which we cannot say simply that the truth 
of the antecedent causes the truth of the consequent. 

No one is inclined to doubt that simple subjunctives are often true 
because the antecedent necessitates the consequent. But it has not 
always been recognized that a simple subjunctive can also be true 
when there is no such necessitation. For example, we might say of a 
witch doctor, 'It would not rain if he did not do a rain dance, but it 
would not rain if he did either.' This conjunction of two simple 
subjunctives expresses the lack of a connection rather than the pres- 
ence of one. 

Contrary to the traditional assumption, it seems clear that simple 
subjunctives do not express a relation of necessitation between their 
antecedent and consequent. Rather, the presence of such a connection 
is just one ground for asserting a simple subjunctive. It seems that 
there are basically two ways that a simple subjunctive can be true. On 
the one hand, there can be a connection between the antecedent and 
consequent so that the truth of the antecedent would bring it about, 
i.e., necessitate, that the consequent would be true. On the other hand, 
a simple subjunctive can be true because the consequent is already true 
and there is no connection between the antecedent and consequent 
such that the antecedent's being true would interfere with the conse- 
quent's being true. The latter case is typically expressed by 'even if' 
subjunctives: 'Even if the witch doctor were to do a rain dance, it 
would not rain'. 
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There is a special kind of English conditional - the 'even if7 subjunc- 
tive - whose function is to express the second way in which the simple 
subjunctive can be true. It would be convenient if there were also a 
special subjunctive conditional whose function is to express the first 
way in which the simple subjunctive can be true - i.e., conditionals 
which express necessitation. If there weren't such conditionals, it 
would be worthwhile to introduce them. However, I believe that there 
are several locutions in English which can be used to express these 
conditionals. The most straightforward way of expressing necessitation 
is with the locution, "If it were true that P, then it would be true that Q 
since it was true that P1. For example, we might say of the match, 'If it 
were struck, it would light since it was struck', but deny of the witch 
doctor, 'If he did a rain dance, it would fail to rain since he did the 
dance'. In using this locution, one must not fall into the common error 
of supposing that 'since' statements are always causal. For example, 
the bird is black since it is a raven. We might say that these statements 
are always 'necessitory', but there are kinds of necessitation which are 
at least not directly causal. 

Another locution which can often be used to express necessitation 
consists of using 'couldn't' in place of 'wouldn't': 'If it were true that P, 
it couldn't be false that Q1. Thus, for example, the simple subjunctive 
'If the witch doctor were to do a rain dance, it wouldn't rain' is true, 
but 'If the witch doctor were to do a rain dance, it couldn't rain' is 
false. The latter is false because it expresses necessitation, and there is 
no necessitation in this case. On the other hand, both 'If this match 
were struck, it wouldn't fail to light' and 'If this match were struck, it 
couldn't fail to light' are true, because here the antecedent does 
necessitate the consequent. Let us symbolize these necessitation condi- 
tionals as ' P  Ã 0'. 

It is not invariably the case that the English locution "If P were true, 
0 couldn't be false1 expresses necessitation. For example, suppose we 
have a match which has been soaked in water. We could reasonably 
say of such a match, 'If this match were struck, it couldn't light', but 
certainly its being struck would not necessitate its not lighting. What is 
happening here is that the modal statement 'This match couldn't light' 
is true, and the above conditional really has the force of an 'even if' 
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conditional: 'Even if this match were struck, it couldn't light'. The 
'couldn't' attaches to the consequent rather than, as in necessitation 
statements, expressing a relation between antecedent and consequent.' 

To further confuse matters, we sometimes use the English locution 
"If it were true that P then it would be true that Q1 to express 
necessitation rather than the simple subjunctive. For example, suppose 
we have a broken-down old car whose engine is beyond repair. We 
might reasonably assert of this car (and equally of any car), 'Its engine 
would not run if it had a broken piston, but it is not the case that its 
engine would not run if the car had a flat tire'. But, shifting gears 
mentally, we may also affirm, 'The engine would not run if the car had 
a flat tire', because we know that the engine will not run no matter 
what, and hence would not run even if the car had a flat tire. We seem 
to be contradicting ourselves here. We are both affirming and denying 
'The engine would not run if the car had a flat tire'. But we are not 
really contradicting ourselves. What we are saying is that (1) the engine 
would not run even if the car had a flat tire, but (2) the engine's not 
running would not be necessitated by the car's having a flat tire. 
Apparently the English words 'If it were true that P, then it would be 
true that Q' are used ambiguously, most often to express simple 
subjunctives, but sometimes to express necessitation. 

These ambiguities in the English locutions used to express subjunc- 
tive conditionals have, I suspect, contributed significantly to the 
difficulties in analyzing subjunctive conditionals. They mean, in par- 
ticular, that we cannot introduce '>' and '>>' as simple paraphrases of . 

the English locutions If it were true that P then it would be true that 
Q1 and "If it were true that P, it could not be false that Q1. This is no 
particular hardship, because the concepts themselves seem to make 
good intuitive sense. We have no difficulty recognizing that the English 
words do on occasion mean different things. 

We have distinguished between simple subjunctives, 'even i f  condi- 
tionals and necessitation conditionals. These are three of the four 
kinds of conditionals referred to in the title of the chapter. The 
remaining kind of conditional is the 'might be' conditional: "If it were 
true that P, it might be true that Q1. In the following sections each of 
these conditionals will be discussed in turn, and the attempt will be 
made to make each clearer and explore its relation to the others. 
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Let us begin with 'even if subjunctive conditionals. Let us symbolize 
Q even if P1 as '"QEP1. What does it mean to say that Q would be 
true even if P were true? At the very least, this implies that Q is true 
now. One might think it also implies that P is false, because we would 
not ordinarily say '0 would still be true even if P were true' if we 
knew that P is true. But this is one of Grice's conversational implica- 
tures rather than a logical implication. We frequently have occasion to 
judge that "QEP1 is true in cases in which we do not know whether P 
is true. If we later discover that P was true, this does not show that we 
were wrong in thinking that Q would still be true even if P were true. 
On the contrary, this would seem to show that we were right. Conse- 
quently, "QEP1 does not entail "-P1. 

Q E P 1  entails 0, but obviously it entails much more besides. To get 
at what else it entails, consider some examples: 

(1) My car would still be white even if the maple tree in my 
front yard died. 

(2) Match m would still be dry even if it were struck. 

(3) -Match m would not light even if it were struck. 

(4) -This bird would still be black even if it were not a raven. 

( 5 )  -The Japanese current would still run alongside Japan 
even if Japan were only fifty miles from Alaska. 

The reason my car would still be white even if my maple tree were to 
die is that the death of the tree does not enter into anything which 
would necessitate my car's not being white. Analogously, match m 
would still be dry even if it were struck, because striking it does not 
enter into anything which would necessitate its not being dry. On the 
other hand, striking match m does enter into something which would 
necessitate its not being the case that it does not light, so it is false that 
match m would not light even if struck. These examples suggest, as a 
first approximation, that "QEP1 is equivalent to 

But this is surely too strong. It is always possible to find some R which, 
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together with P, would necessitate "-0'. For example, R could be 
"(P 2 -Q)'. A natural suggestion to remedy this would be to require 
that R is something that would be true if P were true: 

Q & -(3R)[(P & R. >>-Q) & ( P >  R)]. 

But this does not work for cases (4)-(6). If I point to a raven and say 
'This bird would still be black even if it were not a raven', I am wrong. 
If it were not a raven, it might be a cardinal, or a bluejay, or all sorts of 
non-black birds. But there is nothing that would be true of the bird 
which, together with its not being a raven, would necessitate its not 
being black. On the contrary, it would be black if, for example, it were 
a crow. The reason it is false that the bird would still be black even if it 
were not a raven is that there are all sorts of things that might be true 
of it (e.g., being a cardinal) which, together with its not being a raven, 
would necessitate its being non-black. Analogously, it need not be the 
case that the Japanese current would still run alongside Japan even if 
Japan were only fifty miles from Alaska, because there are different 
ways in which Japan might be only fifty miles from Alaska. If this 
resulted from the Pacific Ocean's being only fifty miles wide, then 
perhaps the Japanese Current would still run alongside Japan (this 
would depend upon general oceanographic laws which are probably 
unknown at this time). But if Japan were only fifty miles from Alaska 
but a thousand miles from Asia, then the Japanese current would not 
run alongside Japan. In both of these cases, we infer "-(QEP)' 
because "(3R)[(P & R. Ã -Q) & (R might be true if P were true)]' is 
true. These examples support the following equivalence, which I think 
is correct: 

(3.1) rQEP' is equivalent to "Q & -(3R)[(P & R. >> -Q) & (R 
might be true if P were true)]'. 

There are certain example which appear to be counter-examples to 
this analysis. For example, we might say of a person 'He would be fired 
even if he drank just a little' without meaning to imply that he will be 
fired. This appears to be an example in which '^QEP1 does not entail 
Q . ~  However, I do not think that this is a real counter-example. 'He 
would be fired even if he drank just a little' is a shortened form of 'If 
he drank, he would be fired even if he drank just a little'. The latter 
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can be symbolized as " D  > (FEL)'. Of course, one might reply that this 
doesn't make any difference. Whether 'He would be fired even if he 
drank just a little' is short for something else or not, it is not in accord 
with our analysis. If one wishes to take that line, then the reply is 
simply that we are not attempting to analyze all possible uses of 'even 
if'. We are merely analyzing what is in some sense 'the standard use' of 
'even if'. 

Now let us consider the logical properties of 'even if'. It seems clear 
that all of the following principles ought to hold: 

(3.2) Q E P & ( Q - ^ R ) . 3 R E P .  

(3.3) QEP & REP. 3 (0 & R)EP.  

(3.4) Q E P & R E ( P & Q ) . = R E P .  

(3.5) PEQ & PER. 3 P E ( Q  v R ) .  

(3.6) ( P & Q ) - > Q E P .  

However, these cannot be proven until we know something about the 
logical properties of 'might be'. 

We were forced to use conditionals of the form " 0  might be true if P 
were true1 in analyzing "QEP1, so let us turn to their analysis next. We 
can symbolize them as "QMP1. To say that 0 might be true if P were 
true seems to be the same as saying that it is not the case that 0 would 
definitely be false if P were true, which suggests the following analysis: 

(4.1) ( Q M P )  = - (P > -0). 

This would be unexceptionable were it not that many philosophers 
have thought that from the falsity of ' ^Q would be true if P were true1 
it follows that Q would be false if P were true: 

Certainly "QMP1 does not entail " ( P >  Q)', so either 4.1 fails, or 4.2 
does not hold. Which is the culprit? 

I think it is fairly easy to see that 4.2 is false. If 4.2 were true, then 
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( P  > 0)  v ( P  > - Q ) l  would be a truth of logic. Clearly, ^QMP1 is 
incompatible with " ( P >  -a)-'. If Q would be false if P were true, then 
it is not the case that Q might be true if P were true: 

Consequently: 

Thus if 4.2 were true, it would be impossible to have both "QMP1 and 
' ( - Q ) M P 1  true. But as we have seen, this is not impossible. For 
example, it is true both that if the temperature outside now were not 
30' then it might be 40Â° and that it might be something other than 40'. 
Thus 4.2 cannot be true. 

It is not difficult to see why 4.2 fails. What ^ P >  Q1 says is, roughly, 
that whatever might be the case if P  were true, Q would be true.3 
Insofar as there are different things that might be the case if P were 
true, it can happen that neither 0 nor r-Q1 would be true in all the 
circumstances that might occur if P were true. 

Should we conclude then that 4.1 is true? 4.1 seems right except 
possibly for one case. It seems that the following entailment should 
hold: 

This will result from 4.1 except in the case where we have both 
P >  Q1 and " P > - Q 1  true. It will be seen later that this can happen 
only when P  is logically impossible. My intuitions fail me in this case. 
We could ensure the truth of 4.5 by analyzing "QMP1 as: 

(4.6) ( Q M P )  = [ ( P  > 0) v - (P > - Q ) ]  

rather than as in 4.1, but I see no clear way to decide which analysis is 
correct. I suspect that our use of the English phrase 'might be' is 
simply undetermined in the case where both " P  > Q1 and ^ P  > -Q1  
are true, in which case it makes no difference which way we analyze 
^QMP1.  Furthermore, it will result that it makes no difference to the 
analysis of 'even if which analysis of 'might be' is adopted. Conse- 
quently, I propose to adopt the simpler analysis and take 4.1 as 
defining ^QMP1. 
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Now let us turn to conditionals expressing necessitation. How can we 
analyze ^P Ã Q1? Clearly, this entails ^P > Q1, but equally clearly, this 
is not a sufficient condition for the truth of ^P Ã Q1. This is due to the 
fact that ^P > Q1 may be true just because Q is already true and P's 
being true is irrelevant to the truth of Q and hence would not interfere 
with the truth of Q. This suggests that what is required for the truth of 
P Ã Q1 is not just that "P > Q1 is true, but that "P > Q1 would still be 
true even if Q weren't already true: 

However, this is too strong a requirement. The difficulty arises in the 
case in which P and Q are both true. Characteristically, P only 
necessitates Q because certain other propositions are true and satisfy 
whatever other conditions are required for the validity of detachment 
in necessitation conditionals. For example, consider a match which lit 
(L) since it was struck (S). So "S Ã L1, S, and L are all true. However, 
a necessary condition for the match to light when struck is (we can 
suppose) its being dry. Consequently, if the match had not lit, this 
could be either because it was not struck or because it was not dry. 
That is, ^(-D)M-L1 is true. But had the match not been dry, then it 
would not have lit if struck, i.e., rS  > L1 would have been false. Thus 
there is something (^-p) which might have been true if the match 
hadvt  and which is such that had it been true then "S > L1 would have 
been false. So ^(S> L)E-L1 is false, and hence this is too strong a 
requirement for the truth of "S Ã L1. 

The reason that ^ (P  > Q)E -Q1 will not in general be true if ^ P  Ã Q1 
is true is that r P  > Q1 is only true because certain other propositions 
are also true which, in collaboration with P, bring about the truth of Q. 
On the hypothesis that Q is false, all that we can conclude is that 
either P is false or one of these collateral truths is false, and in the 
latter case ^P> Q1 would not normally remain true. We can handle 
this difficulty by, in effect, building into our counterfactual hypothesis 
an explanation for why Q is false. My proposal is that our analysis 
should be: 
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Whereas the hypothesis '-Q1 leaves open whether it is P or one of 
the collateral truths that is false, the hypothesis '-P & -Q1 tells us 
which is false. For example, if the match were not struck and did not 
light, then it would still have been dry, and so had it been struck it 
would have lit. Thus it seems to me that 5.1 captures precisely what is 
meant by the necessitation conditional. Notice that what 5.1 requires is 
just that '"P> Q1 would be true even if it were a counterfactual. 

There appears to be a certain circularity in the analyses of necessita- 
tion conditionals and 'even if' conditionals. We have analyzed necessi- 
tation conditionals in terms of 'even if' conditionals and the simple 
subjunctive, but in analyzing 'even if' conditionals we used necessita- 
tion conditionals. Fortunately, this circularity can be untangled. It will 
be shown in Section 6 that the above analyses entail simpler analyses 
that use only the simple subjunctive, thus avoiding the circularity. 

Next let us consider what logical inferences ought to be valid for 
necessitation conditionals. Logical entailment is a special case of 
necessitation. If P entails 0 ,  then certainly P's being true would 
necessitate Q's being true: 

(5.2) ( P - ^ ( ' ? ) ~ ( P Ã ˆ ~ )  
Obviously a necessitation conditional entails a simple subjunctive: 

(5.3) ( P Ã ˆ Q ) ~ ( P > Q )  

It will be a consequence of this analysis that all counterfactual 
conditionals express necessitation: 

This is in accord with the intuition that there are just two ways for a 
simple subjunctive to be true: (1) the conclusion may be true already, 
and the antecedent's being true would not interfere with that; (2) the 
antecedent's being true would necessitate the conclusion's being true. 
If the conditional is counterfactual, so that the conclusion is false, then 
possibility (1) is eliminated and the only way the conditional can be 
true is if the antecedent necessitates the consequent. 

A surprisingly wide variety of standard principles fail for necessita- 
tion conditionals. To begin with, transitivity fails: 

(5.5) It is not true in general that if '"(P Ã 0 )  & ( 0  Ã R)' is true 
then ^(P Ã R)l  is true. 
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For example, suppose we have a stick of old dynamite which would 
explode (E) if dropped (D), but which would not explode if first 
soaked in water (W). Then we have "(W & D. >> D)' and "(D >> E)', 
but we do not have "(W & D. ÃˆE)' 

Nor do we have the Consequence Principle that if P necessitates 0 ,  
then P necessitates anything entailed by 0 :  

(5.6) It is not true in general that if "(P  Ã 0 )  & ( 0  + R)' is true 
then "(P >> R)' is true. 

For example, it is presumably true that my car would still be white 
even if the maple tree in my front yard were to die. Thus if that maple 
tree were to die, the conjunction 'My car is white and the maple tree in 
my front yard died' would be true. This is a counterfactual conditional, 
so it is an instance of necessitation. The consequent entails 'My car is 
white', but clearly this is not necessitated by the maple tree's dying. 
The problem is that P may necessitate a conjunction (i.e., bring it 
about that the conjunction is true) by making one conjunct true, where 
the other conjunct is already true and would still be true even if P 
were true; but just because P necessitates the conjunction, it does not 
follow that P necessitates each conjunct. 

In light of 5.6, it might be objected that our analysis of necessitation 
is defective. It may be felt that insofar as P necessitates a conclusion, it 
must necessitate all of that conclusion. One can certainly define such a 
notion of 'strong necessitation' in terms of our present notion of 
necessitation: 

(5.7) (P>>>Q)=(R)[(Q+ R)^(P>> R)]. 

However, I suspect that strong necessitation is not a useful concept. 
For example, it is not the case that if the truth of P would cause the 
truth of 0 ,  then P strongly necessitates 0 .  This is because 0 will 
characteristically entail all sorts of things to which P is irrelevant. For 
example, my pushing a button may cause a certain stick of dynamite to 
explode. The statement 'Stick d of dynamite explodes' entails 'There is 
dynamite in the world', but the latter is certainly not necessitated by 
my pushing the button. 

The notion of necessitation that I am trying to analyse here is that of 
the truth of one statement 'bringing it about' that another statement is 
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true. Characteristically, the truth of the second statement will be 
brought about by making true whatever parts of it are not already true 
and leaving unchanged those parts that are already true. Then the 
latter parts will not be necessitated by the first statement. 

In connection with 5.6, one should realize that necessitations are not 
'necessary connections', except perhaps in a very weak sense. It can be 
completely accidental that one statement necessitates another, because 
it is accidental that the unnecessitated part of the second statement is 
true. Perhaps the term 'necessitation' is inappropriate for the notion I 
have in mind here, but I have been unable to find a better term. 

Contraposition fails for the same sort of reason that the Conse- 
quence Principle fails: 

(5.8) It is not true in general that if " ( P Ã  Q)' is true then 
( - 0  Ã -P)' is true. 

For example, although my tree's dying ( D )  would necessitate the 
conjunction that my tree died and my car is white ( r D  & W ) ,  its being 
false that both my tree died and my car is white would not necessitate 
that my tree did not die, i.e., " - ( D  & W) Ã - D l  is not true. This is 
because if ^D & W were true, then if the conj~~nction 'My tree died 
and my car is white' were false, it might be false in either of two ways: 
it might be false that my tree died, and it might be false that my car is 
white. Only the first of these requires that my tree did not die, so the 
falsity of the conjunction does not necessitate that my tree did not die. 

Surprisingly, adjunctivity fails: 

(5.9) It is not true in general that if '"(P Ã 0) & ( P Ã  R)' is true, 
then " P  >> ( Q  & R)' is true. 

The best way to muster intuitions against the principle of adjunctivity is 
to concentrate on those instances of necessitation which are causal. 
Our intuitions seem to be clearest in those cases. Those cases occur 
when P's being true would be causally sufficient for Q to be true. 
Making this precise, P is causally sufficient for Q iff P's being true 
would cause Q to be true if P and Q weren't already true. There is a 
wide variety of cases in which P would necessitate Q iff P would be 
causally sufficient for 0. The following counterexample to the principle 
of adjunctivity is such a case. Suppose we have a button and two lights 
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A and B. If light A is off, pushing the button results in light A's being 
on and light B's being off; if light A is on, pushing the button results in 
light A's remaining on and light B's being on. Suppose both lights are 
on. The button's being pushed is causally sufficient for light A to be 
on. Furthermore, because light A is on, pushing the button is also 
causally sufficient for light B to be on - that is, if light B were not on, 
pushing the button would cause it to come on. But pushing the button 
is not causally sufficient for both lights to be on; if they were not both 
on, then light A might be off, in which case pushing the button would 
cause only light A to be on. 

Although adjunctivity fails, it will turn out later that a weakened 
version of adjunctivity does hold: 

The principle of dilemma also fails for necessitation conditionals: 

(5.11) It is not true in general that if >> R )  & (Q Ã R) l  is true 
then "(P v Q) >> R1 is true. 

For example, consider a complicated circuit consisting of a light and 
three switches A, B, and C. If switches A and B are both closed then 
the light is on, and if switch C is closed then the light is on. Switches A 
and B can be operated independently of one another, however there is 
an interlock system which prevents switch C from being closed unless 
switch A is already closed. Suppose in fact that all three switches are 
closed and the light is on. Switch C's being closed necessitates that the 
light is on, i.e., "C >> L1 is true. Because switch A is closed, switch B's 
being closed also necessitates that the light is on, i.e., ^B  Ã L1 is true. 
But " ( B  v C) >> L1 is false. This is because if the light were off and 
switches B and C were both open (i.e., if ^-(B v C) & -L1 were true), 
then as switch C would be open, switch A would also have to be open, 
making "B > L1 false, and hence r(B v C) > L1 would be false. 

Once again, it will turn out that a weakened version of the principle 
of dilemma is true: 
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It is apparent that 'Ãˆ is a peculiar kind of conditional. We must be 
quite careful about assuming that it satisfies standard logical laws when 
it does not. 

We analyzed necessitation in terms of 'even if7 and simple subjunc- 
tives, we analyzed 'even if in terms of necessitation and 'might be', 
and we analyzed 'might be' in terms of the simple subjunctive. I have 
promised to untangle the circularity between necessitation and 'even 
if', so what remains is to give an analysis of simple subjunctives. That 
task will be relegated to the next three chapters. In the meantime, and 
preparatory to giving a full-fledged analysis, we can state some princi- 
ples regarding when simple subjunctives are true and when they are 
false, but these principles merely relate simple subjunctives to one 
another rather than defining them in terms of something new. Thus, in 
effect, all we are doing is providing some axioms for simple subjunc- 
t i v e ~ . ~  Nevertheless, I think that these axioms will throw considerable 
light on simple subjunctives, and will yield some interesting results 
concerning the relations between our four kinds of conditionals. Fur- 
thermore, the axioms will provide a condition of adequacy against which 
a putative analysis of simple subjunctives can be tested. If such an 
analysis does not make the axioms true, this is a reason for doubting 
the analysis. 

It is possible to say a great deal about the circumstances under which 
simple subjunctives are true. First, suppose someone asserts ^ ( P  > Q)', 
and upon investigation we find that P  and 0 are both true. This 
verifies the assertion that if P  were true, 0 would be true; because P  is 
true, and sure enough, 0 is true too. For example, we might affirm of a 
political candidate, 'If he were elected, he would end the war'. If the 
candidate is subsequently elected, and does end the war, this shows 
that we were right. So we have: 

Admittedly, there is something odd about asserting a subjunctive 
conditional when we already know that the antecedent and consequent 
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are true. If we already know that they are true, there is no good reason 
to use the subjunctive mood. But, to paraphrase Grice, this is a remark 
about conversation and not about logic. And I suspect that a further 
source of reluctance to accept 6.1 results from confusing the simple 
subjunctive with necessitation conditionals. 6.1 clearly fails for the 
latter. 

It seems evident that entailments generate subjunctive conditionals: 

And it seems clear that adjunctivity ought to hold for simple subjunc- 
tives: 

(6.3) ( P  > Q )  & ( P >  R ) .  ̂ [P > ( Q  & R)].  

Dilemma ought to hold too: if R would be true if P were true, and R 
would be true if Q were true, then R would be true if either P or Q 
were true: 

(6.4) ( P  > R )  & ( Q  > R ) .  3 [ ( P v  Q )  > R ] .  

If Q would be true if P were true, then anything logically entailed by 
Q would be true if P were true: 

(6.5) ( P  > Q )  & ( Q  -+ R ) .  2 ( P  > R).  

Obviously: 

(6.6) ( P >  Q ) 3 ( P 3  0). 

Taking '-' to symbolize logical equivalence: 

Simple subjunctives are 'defeasible' in the sense that we can have 
( P >  0)' true, but for some R ,  ̂ ( P  & R .  > Q)' false. However, there is 
at least one case in which conjoining R with P cannot defeat the 
conditional. If R would be true if P were true, then, in some sense, '"(P 
& R)' being true is not a different circumstance from P being true, so 
if 0 would be true if P were true, then Q would also be true if " ( P  & 
R)' were true: 
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There are some natural laws that do not hold for simple subjunc- 
tives. Transitivity fails. Consider our stick of old dynamite again. If it 
were dropped, it would explode; and if it were soaked in water and 
then dropped, it would be dropped; but it is not the case that if it were 
soaked in water and then dropped, it would explode. Similarly, con- 
traposition fails. It might be true that it would not rain if the witch 
doctor did a rain dance, but false that if it were to rain he would not 
have done a rain dance. 

From 6.1-6.8 we can derive a series of interesting theorems. First, 
we obtain theorems which enable us to disentangle the circularity in 
the definitions of 'E '  and 'Ãˆ' 

Proof: Suppose "P Ã Q1 is true. Then "(P> Q)E(-P & -Q)' is true, 
so "P>Q1 is true. 

Proof: Suppose ^P & Q. > R1 is true. R entails " 0  3 R1, so by 6.5, "(P 
& Q )  > (0 =i R)" is true. " ( P  & -Q)l  entails "Q  3 R1, so by 6.2, "(P & 
-0) > (0 3 R)' is true. Thus by 6.4, "(P & -Q. v .P & Q )  > ( Q  ̂ R)" 
is true. So by 6.7, "P> .Q ^R  ̂is true. 

Using '0' to symbolize logical necessity: 

Proof: Suppose 'UQ1 is true. Then Q is true. Suppose "(P & R )  Ã 

-Q1 is true. Then by 6.9, "(P & R)>-Q1 is true. As "DQ1 is true, 
- Q 1  entails "-R1, so by 6.5, "(P & R)>-R1 is true. By 6.10, 
"P> .R 3 -R1 is true, so by 6.5, "P> -R1 is true. Therefore, "QEP1 
is true. 

Proof: " P  + Q1 entails "P > Q1, so "(P + Q )  ̂D(P > Q)' is true ( I  
assume that logical necessity satisfies the axioms of S4), By 6.11, 
D ( P  > Q )  3 (P > Q)E  - Q' is true, so "(P + Q )  2 (P >> Q)' is true. 

(6.13) (QEP) s[Q & (P > Q)] .  
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Proof: Suppose "QEP1 is true. Then Q is true. and (VR)'T(P & 
R. >> -Q)^(P> -R)I1 is true. But "P & -Q1 entails '-Q', so by 
6.12, ^(P & -0) >> -Q1 is true. Thus "P> --Q1 is true, and hence by 
6.5, ^P> Q1 is true. 

Conversely, suppose "Q  & (P> Q)' is true. Suppose " ( P  & R )  >> 
-Q1 is true. By 6.9, "(P & R ) >  -Q1 is true. So by 6.10, ^P> .R 3 

-Q1 is true. By 6.3, "P>[Q & ( R  3-Q)]' is true, so by 6.5, 
P > -R1 is true. Thus "QEP1 is true. 

Theorem 6.13 allows us to break the circle between necessitation and 
'even if and define both in terms of the simple subjunctive. 6.13 gives 
us the definition of 'even if', and consequently we have: 

It is now a simple matter to derive principles 5.2-5.5, 5.10 and 5.12 
which were listed above for necessitation conditionals, and principles 
3.2-3.6 for 'even if'. 

Although we introduced the simple subjunctive in terms of axioms 
rather than by giving a definition of it, we can now prove that it is 
definable in terms of our other kinds of conditionals: 

Proof: Suppose "P > Q' is true. Then "P 3 Q1 is true, and as Q entails 
P 3 Q1, rP > (P =3 Q)l  is true. Thus by 6.13, " ( P  =3 Q)EP1 is true. And 
"P & (P 3 0)' entails Q, so by theorem 6.12, '"[P & (P 3 Q ) ]  >> Q1 is 
true. 

Conversely, suppose "REP & (P & R. Ã Q)l  is true. By (6.13), 
P >  R1 is true, By 6.9 and 6.10, "P>(R  =3 Q)' is true, so by 6.3 and 
6.5, "P> Q1 is true. 

From 6.14 we immediately obtain: 

This means that a counterfactual always expresses necessitation. This, 
together with the fact that counterfactuals are those subjunctive condi- 
tionals that philosophers have most often thought about, explains the 
pervasive view that subjunctive conditionals always express necessita- 
tion. 
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From 6.13 and 6.16 we can see that the simple subjunctive is just 
the disjunction of necessitation and 'even if': 

Thus there are just these two ways that the simple subjunctive can be 
true. Either Q is made true by P, or Q is already true and P would not 
disrupt this. This is a very illuminating theorem. It explains why the 
logic of '>' is so peculiar, being, as it is, a mixture of two such different 
concepts. 

Each of our four kinds of conditionals is explicitly definable in terms 
of each of the others. This follows from the fact, already established, 
that each kind of conditional is definable in terms of the simple 
subjunctive, together with the following theorem according to which 
the simple subjunctive is definable in terms of each of the other kinds 
of conditionals: 

(6.18) " P >  Q1 is equivalent to each of the following: 

(i) "-[(- Q)MPll; 

(ii) "(P 3 Q)EP1; 

(iii) "P >> (P 3 0)'. 

Consequently, if we can provide an analysis of any of these kinds of 
conditionals, analyses of the others will follow. 

Principles 6.1-6.8, in effect, constitute an axiomatization of simple 
subjunctives. However, principles 6.2, 6.5, and 6.7 employ the concept 
of entailment, and thus require a modal logic for the underlying logic 
rather than just the propositional calculus. We can instead replace 
those principles by rules of inference in a more restrictive language in 
which entailment cannot be expressed. Let SS be the formal theory 
whose axioms and rules are as follows: 

A1 All tautologies. 

4 2  ( P > Q ) & ( P > R ) . ^ [ P > ( Q & R ) ] .  

A3 ( P > R )  & ( Q > R ) . ^ [ ( P v Q ) > R ] .  
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R 1 If P and "(P 10)' are theorems, so is 0 .  

R2 If "(P 2 Q)' is a theorem, so is " ( P >  Q)'. 

R3 If "(Q 3 R)' is a theorem, so is '(P > Q) 2 ( P  > R)'. 

R4 If '(P = Q)' is a theorem, so is "(P > R )  (0 > R)'. 

I conjecture -that SS contains as theorems all true principles regarding 
simple subjunctives that can. be formulated in this language. 

It is of interest to compare SS with other well known theories of 
subjunctive conditionals. The best known such theories are C l  of 
Lewis (1972) and CQ of Stalnaker (1968). SS is contained in C l  
which is contained in CQ. CQ contains the theorem " ( P > Q ) v  
( P >  -Q)l, which we have rejected. SS is weaker than Cl .  C l  can be 
obtained from SS by adding the following axiom: 

Unfortunately, this axiom is false. This axiom would be valid only if 
the ordering of possible worlds according to magnitude of change were 
connected, and we saw in Chapter I that it is not. We can construct 
counterexamples to 7.1 using the same constructions that showed the 
ordering not to be connected. Let S, T, and U be any three unrelated 
false statements, e.g., 'My car is painted black', 'My garbage can blew 
over', and 'My maple tree died'. The following is a substitution 
instance of 7.1: 

From 7.2 we readily obtain the principle: 

The color of my car and the state of my garbagecan are irrelevant (we 
can suppose) to the state of my tree, so my tree would not die even if 
either my car were painted black or my garbage can blew over; hence 
U M ( S v  T)' is false. But the antecedent of 7.3 is true. Disjunctions 
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whose disjuncts are unrelated to one another cannot necessitate either 
disjunct. If we know that the disjunction is true, that leaves open which 
disjunct is true. In particular, it is not true that if either my car were 
painted black or my garbage can blew over then my car would be 
painted black; and it is not true that if either my car were painted 
black and my maple tree died, or my garbage can blew over, then my 
garbage can would have blown over. Thus 7.3 is false. Consequently, 
as we would expect from its semantics, C l  is too strong. 

We have seen that the stronger brethren of SS contain invalid 
axioms. Is it true then that SS is complete? We are not really in a 
position to answer this question, because we do not have a satisfactory 
semantics for subjunctive conditionals. However, it is possible to 
construct a semantics for SS based upon the Stalnaker-Lewis seman- 
tics. Stalnaker has pointed out5 that SS is complete on a semantics 
which is identical to Lewis' 'Analysis 2' except that the ordering of 
equivalence classes of worlds is only a partial ordering rather than a 
simple ordering. In light of the discussion of the ordering of worlds in 
Chapter I, this is at least suggestive of the 'real completeness' of SS. 

We have distinguished between four different kinds of subjunctive 
conditionals and explored their logical properties. Of these, it is 
particularly important to distinguish between the simple subjunctive 
and the necessitation conditional. Philosophers have often rejected 
theses about the simple subjunctive by appealing to intuitions only 
appropriate to necessitation. It has been shown that our other kinds of 
conditionals are definable in terms of the simple subjunctive, so if we 
can provide an analysis of the simple subjunctive we will have an 
analysis of them all. And we have a set of axioms for the simple 
subjunctive. These will be of importance in testing any putative 
analysis. If such an analysis does not make these axioms valid, this is at 
least a reason for being suspicious of the analysis. 

N O T E S  

' The modality expressed here by 'couldn't', as in 'The match couldn't light', is an 
intriguing one. Although, as is well known, a modality can be defined in terms of 
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subjunctive conditionals (as rP>(Q & -Q)'), this modality is not the same as 'couldn't'. 
It will result from the discussion of Chapter IV that if rP > (Q & W Q ) ~  is true, then P is 
necessarily false. Thus this cannot be a correct analysis OF 'couldn't' as it occurs in this 
context. A different analysis will be proposed in Chapter I11 in terms of 'actual 
necessity'. 
* I  am indebted to David Lewis for this example. 

Or  more precisely, Q is true in every world that might be actual if P were true. 
In the choice of these axioms, I have been influenced by the work of David Lewis. 
In correspondence. 
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S U B J U N C T I V E  G E N E R A L I Z A T I O N S  

An understanding of laws is fundamental to an understanding of 
subjunctive conditionals. I argued in Chapter I that laws are them- 
selves subjunctive. A law says not just that all actualA's are B's, but 
that any A would be a B. Statements of this latter form will be called 
subjunctive generalizations. They are to be contrasted with material 
generalizations which have the form ^(x)(Ax 3Bx)'. Our problem in 
this chapter is to understand subjunctive generalizations. 

Subjunctive generalizations look initially like universally quantified 
subjunctive conditionals of some sort. There is more than one kind of 
subjunctive conditional, but the most obvious candidate is the simple 
subjunctive. According to this proposal, the subjunctive generalization 
"Any A would be a B1 is equivalent to "(x)(Ax > BX)'.' 

There are several difficulties for this proposal. The first difficulty is 
that the simple subjunctive is automatically true if both antecedent and 
consequent are true, i.e., ' ( P  & Q)' entails ^ ( P >  0)'. It would seem to 
follow that ^(x)(Ax & Bx)' entails "(x)(Ax > Bx)l. But it is quite clear 
that "(x)(Ax & Bx)' does not entail "Any A would be a 6'. For 
example, consider Black Bart who dislikes everything except red- 
headed women who like him. Regrettably, there are no redheaded 
women who like Black Bart, although were there any he would like 
them. If we let A be a tautological predicate and B be the predicate 'is 
disliked by Black Bart', then ^(x)(Ax & Bx)' is true. But it is certainly 
not true that anything at all would be disliked by Black Bart. On the 
contrary, we know of something that would not be disliked by Black 
Bart - namely, redheaded women who like him. Thus it appears that 
this analysis of subjunctive generalization fails. 

Apparently a subjunctive generalization cannot be expressed as 
"(x)(Ax > Bx)'. We have a genuinely different subjunctive here. It is 
still natural to symbolize it as a universally quantified conditional, but 
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we must use some conditional other than the simple subjunctive. Let 
us use '$' to symbolize "Any A would be a B1 as "(^(Ax 3 Bx)'. 
But this leads to unexpected difficulties. What do the quantifiers range 
over? They cannot be taken as ranging over just existent objects, 
because rAny A would be a B1 entails the simple subjunctive '(Aa > 
Ba)1 even for non-existent objects. For example, if I know that any 
raven would be black, I can conclude that if there were a raven in the 
next room, it would be black. This is connected with the problem 
just discussed for symbolizing the subjunctive generalization as 
(x ) (Ax  > B X ) ~ .  The problem seems to be in part that the subjunctive 
generalization is not just about all actual objects, and hence it cannot 
be symbolized as r(x)(Ax3Bx)' because the quantifier in this formula 
does range only over actual objects. 

A natural suggestion is that the quantifier in a subjunctive generaliza- 
tion ranges over all physically possible objects. For example, when we 
say that any raven would be black, we are claiming not just that any 
actual object would be black if it were a raven, but that any possible 
raven would be black. Putting the suggestion this way makes it sound 
metaphysically outrageous. What is this domain of possible objects 
over which the quantifiers are supposed to range? However, the 
suggestion can be rephrased in a way that makes it appear much more 
reasonable. Let us say that a proposition is physically possible, and 
symbolize this as ^OPT, just in case there is no physical law that is 

P 

inconsistent with it. We then define physical necessity, rUP', as 
P 

meaning r-O-P1. Talk about quantification over physically possible 
P 

objects can then be replaced by talk about the physical necessity of the 
result of quantifying over actual objects. In other words, the proposal 
is that "Any A would be a B1 can be analyzed as rO(x)(Ax 3 Bx)l. 

P 

A serious difficulty for this proposal is that we have defined physical 
necessity in terms of the notion of a physical law, but physical laws are 
subjunctive generalizations, and so it may (and in fact will - see below) 
turn out that this proposal is ultimately circular. However, there is 
another more serious difficulty - even if we could ignore the circularity, 
the proposed analysis is false. This can be seen by considering subjunc- 
tive generalizations whose antecedents are physical impossible. Let us 
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call these counter-legals, following Nelson Goodman (1955). For ex- 
ample, suppose it is true, as has been conjectured, that any pulsar 
would be a neutron star. Then it is true (non-vacuously) that any pulsar 
which is not a neutron star would emit periodic bursts of radiation, but 
it is false that any pulsar which is not a neutron star would be a 
neutron star. In other words, we distinguish between true and false 
counter-legals. They are not all vacuously true merely because the 
antecedents are false of all physically possible objects. Furthermore, 
such counter-legals entail subjunctive conditionals about physically 
impossible objects. For example, the above generalization entails 'If 
there were a pulsar just to the left of Alpha Centauri which was not a 
neutron star, it would emit periodic bursts of radiation'. This seems to 
indicate that these subjunctive generalizations are not just about 
physically possible objects after all. What they are about seems to be a 
function partly of the nature of the antecedent. 

I think that the attempt to analyze subjunctive generalizations in this 
way as universally quantified subjunctive conditionals is essentially 
bankrupt, for the reasons just outlined. I believe it will prove more 
fruitful to turn directly to an examination of the way subjunctive 
generalizations work rather than trying to reduce them to something 
else. Once we have an account of the way subjunctive generalizations 
work, it will prove possible to characterize them in terms of physical 
necessity and quantification in ways more complicated than those 
considered above. However, such characterizations will still not consti- 
tute analyses because of the circularity involved in appealing to physi- 
cal necessity. 

To simplify our writing tasks, let us symbolize "Any A would be a B1 
as "Ax 3 Bxl. This is intended merely as a symbolization, and in no 
way reflects an analysis of these subjunctive generalizations., Notice 
that in this symbolization, '3' is not a conditional - it connects 
predicates, or more generally open formulas, rather than sentences. It 
is actually a binary variable-binding operator, binding, as it does, the 
free variables in "Ax1 and "Bxl. More generally, whenever (p and (// 
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are open formulas containing the same n free variables, "(p 3 says 
that any n-tuple satisfying <p would satisfy +. In r(p 3 I)', '9' binds 
the n free variables. A s  an additional piece of jargon, we will read 
( p  3 +^ as saying that something's satisfying (p implicates its satisfying 
I). Our  problem is now to clarify the way this operator works. 

I t  is simple to give a rather vague general picture of how subjunctive 
generalizations work. W e  start by confirming a number of generaliza- 
tions inductively. Let us call the set of these basic generalizations N. 
Then we derive new generalizations from those in N using various 
logical inferences. Obviously, we d o  want to be able to derive generali- 
zations from those we confirm directly, but there is a more important 
reason than simple expediency for having this two step procedure. 
Many generalizations (in fact, I think most) fail to be "projectible" in 
the sense of Goodman ( 1 9 5 5 ) .  The only way to  confirm non- 
projectible generalizations is 'indirectly' by deriving them logically from 
projectible conditionals that have been confirmed directly. Conse- 
quently, this two step pattern of confirmation for subjunctive generali- 
zations is fundamental to the whole concept of inductive confirmation. 

In explaining how subjunctive generalizations work, it suffices to say 
(1) how projectible generalizations are confirmed directly by induction, 
and (2) how we derive new generalizations from those we have 
confirmed already. (1) is a familiar problem. I discussed it at length in 
Pollock (1974), where I claimed to give a complete account of such 
confirmation. I have nothing new to add to that account, so let us 
proceed to (2). I believe that once we have an account of both (1) and 
2 ) ,  we can claim to have a complete analysis of subjunctive generaliza- 
tions. This will not be an analysis of the familiar truth-condition sort, 
but I seriously doubt whether that sort of analysis is possible here. 
Instead, what we will have is a complete account of how to operate 
with the concept of a subjunctive generalization, and that suffices to 
characterize the concept just as much as a truth-condition analysis 
would. In the jargon of Pollock (1974), I am proposing that we give an 
analysis of subjunctive generalizations in terms of their justification 
conditions.' 

Before turning to  the task of elucidating the inferences that allow us 
to derive new generalizations from those in N,  we must make a 
distinction which has generally been overlooked. There are really two 
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different kinds of subjunctive generalizations. When we think of sub- 
junctive generalizations, we think most naturally of laws. Those laws 
that we confirm inductively must have physically possible antecedents 
(otherwise there would be no confirming instances for them), so the 
problem of interpreting the apparent quantifiers in them is greatly 

simplified. Insofar as "0('3x)Ax1 is true, we can think of "A 3 B1 as 
P 

saying simply that any physically possible A would be a B. These law 
statements, which are in some sense about all physically possible 
objects, constitute one kind of subjunctive generalization. But 
philosophers have often overlooked the fact that there is another kind 
of subjunctive generalization. For example, Chisholm (1955) g' ives as 
an example of a law, 'Anyone who drank from that bottle would be 
poisoned', said of a certain bottle containing.poison. But this is 
obviously not a law. It is not the least bit plausible to regard 
Chisholm's generalization as saying that laws of nature dictate that any 
person who drank from that bottle would be poisoned. It would be 
quite possible to have someone drink from the bottle without being 
poisoned - all we would have to do would be to wash the bottle out 
first and fill it with water. And although we are well aware of this, we 
still regard Chisholm's generalization as true. 

We have distinguished between the subjunctive generalization 

'^(Ax^Bx)^ and the universally quantified subjunctive conditional 
^(x)(Ax >Bxy .  It might be supposed that Chisholm's generalization 
actually has the latter form rather than being a true subjunctive 
generalization. That it does not can be seen as follows. Suppose there 
were no living creatures. Under these circumstances, there would be 
nothing which logically could be a person who drinks from the bottle. I 
am supposing here that it is a necessary feature of a non-living thing 
that it not be a person. The basic sortals under which non-living things 
fall are such as to logically preclude their being persons. This is not to 
say that a non-livingthing could not turn into a person, but this would 
be a substantial change and would involve the original object ceasing 
to exist and the person coming into existence. If a person is created out 
of clay, the clay ceases to exist. We do not say that the clay 'is now a 
person7. Assuming this is correct, in a world in which there are no 
living creatures, r(x)\Z\-Axl is true (where "Ax1 is 'x is a person who 
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drinks from this bottle1). It is a consequence of our previous account of 
subjunctive conditionals that the following is valid: ' 0 - P  2 (P > Q)'. 
Presumably then, we also have ^(x)D-Ax =i (x)(Ax > Bx)' for any 
predicate B at all. But this would make both 'Anyone who drank from 
this bottle would be poisoned' and 'Anyone who drank from this bottle 
would fail to be poisoned' vacuously true in a world in which there are 
no living things. However, they would not be vacuously true; the first 
would be true, and the second false. Consequently, Chisholm's 
generalization does not have the form ' (x)(Ax > Bx) l .  It is a genuine 
subjunctive generalization. Therefore, there are true subjunctive 
generalizations that are not laws. 

Although the generalization 'Anyone who drank from this bottle 
would be poisoned' is not about all physically possible persons who 
might drink from this bottle, it is in some sense about all 'actually 
possible' persons who might drink from that bottle. The reason we 
regard the generalization as true is that although we know a way to 
enable a person to drink from the bottle without being poisoned - 
namely, wash the bottle out - we also know that that is not going to 
happen. The bottle is our container for rat poison, and it is where we 
are going to continue to keep the rat poison. It is because of these facts 
that anyone who drank from the bottle would be poisoned. And it is 
because of these facts that, although it is physically possible for a 
person to drink from the bottle without being poisoned, it is not 
'actually possible' for a person to do so. This notion of actual possibil- 
ity is not a modality with which philosophers are very familiar. It has 
been largely overlooked, although I suspect that it may be of some 
importance in explaining various locutions that philosophers have 
always found puzzling. And I think that, although it is less familiar, it is 
no more yspect  than the notion of physical possibility. As we will see 
in section f%: it can be clearly defined in a manner which should make 
it philosophically respectable. 

Apparently there are these two distinct kinds of subjunctive 
generalizations, one kind being, in some sense, about all physically 
possible objects, and the other being only about all actually possible 
objects. Let us reserve '3' for symbolizing the first kind, and let us 
calllthem strong subjunctive generalizations; let us use '3' to symbolize 
the second kind, and call them weak subjunctive generalizations. In 
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analyzing subjunctive generalizations, we would like to analyze both of 
these kinds of subjunctive generalizations. The basic scheme for 
analyzing them would seem to be the same. In each case we begin by 
confirming a basic set of generalizations inductively, and then others 
are derived logically from the basic ones. It will be apparent below that 
the inferences employed in deriving new generalizations from the basic 
ones are the same for both kinds of generalizations. Thus the differ- 
ence between them must arise ultimately from the way the basic ones 
are inductively confirmed. We do not have to look far to find the 
source of that difference. 

Inductive confirmation is defeasible. A statement of evidence E may 
confirm a generalization H, and yet when an additional statement E' 
(e.g., one containing a counter-example to H )  is conjoined with E, the 
resulting conjunction may no longer confirm H. We say that E' is a 
defeater, and that it defeats the confirmation of H by E. Explaining 
how confirmation works is a matter of explaining both what statements 
constitute evidence and what statements constitute defeaters4. I think 
that the difference between strong and weak generalizations lies in 
what statements are defeaters for their inductive confirmation. There is 
a simple defeater for the confirmation of "A 3 B1 which is not a 
defeater for "A+B1. The former is about all physically possible 
objects, but the latter is not. Consequently, a defeater for "A 3 B1 
which is not a defeater "A ^> B1 is "It is physically possible for there to 
be an A which is not a B1. 

To define the difference between '9' (law statements) and '^>' in 
terms of this defeater as I have just stated it is circular, because we 
defined physical possibility in terms of laws. But the circularity can be 
avoided by restating this defeater in terms of the grounds we have for 
thinking that it is true. These grounds are basically inductive. We 
discover inductively that certain kinds of things are always possible. 
For example, we might confirm inductively that the 9:  14 train from 
Boston is always late. This is a weak subjunctive generalization rather 
than a strong subjunctive generalization. It is certainly not physically 
impossible for a 9 :  14 train from Boston to arrive on time. For 
example, suppose the reason the train is always late is that the railroad 
has only old broken-down equipment. If the equipment were replaced 
by new equipment, the train would be on time. These observations 
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constitute a defeater for the strong generalization according to which it 
would be a law that the 9 :  14 train from Boston is always late, and it is 
because of this defeater that we only affirm the weak generalization. 
The way in which this defeater works is the following. We begin by 
ascertaining that it is always physically possible to replace old broken- 
down equipment with new equipment. We can ascertain this because it 
follows from our definition of physical possibility that whatever is true 
is possible. Thus if we know of a number of cases in which broken- 
down equipment has been replaced, we also know of a number of cases 
in which it is physically possible to replace broken-down equipment. 
So we have a number of confirming instances for the generalization 
that it is always physically possible to replace broken-down equipment. 
Of course, we also know of many cases in which broken-down equip- 
ment has not been replaced, but this is irrelevant to the induction. The 
only thing that would be relevant to the induction as a counter- 
example to what is being confirmed (that it is always physically possible 
to replace broken-down equipment) would be a case in which we know 
it is physically impossible to replace broken-down equipment. To have 
such a case, we would have to have confirmed a law which entails that 
the equipment could not be replaced in some particular case. We do 
not know of such a law, so we have confirmation for the generalization 
that it is always physically possible to replace broken-down equipment. 
This entails that it is physically possible to replace the broken-down 
equipment used on the 9 :  14 train from Boston. We are supposing we 
know that if the equipment were replaced, the train would be on time. 
And I assume the following principle regarding simple subjunctives: 

Thus we can conclude that it is physically possible for the 9 :  14 train 
from Boston to be on time. Hence we have a defeater for the strong 
generalization that the 9 :  14 train is always late, and are left with only 
the weak generalization. 

This illustrates the basic scheme by which we defeat strong generali- 
zations by having physically possible counter-examples. I will not 
attempt to give a general characterization of this scheme here, but that 
should not be too difficult to do. What has been said should be 
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sufficient to indicate the source of the difference between strong and 
weak subjunctive generalizations. 

Now let us turn to the task of elucidating the inferences that allow us 
to derive new generalizations from those that we confirm directly by 
induction. Let us begin with strong generalizations. Those confirmed 
directly constitute the set N. Then additional generalizations are de- 
rived from these. There are inferences valid in the predicate calculus 
that are not valid here. For example, although ^(x)(Ax & Bx)' entails 
( x ) ( A x  =1 Bx)', we have seen that it does not entail '""(A 3 B)'. Upon 
reflection, however, it may seem that all those inferences in the 
predicate calculus which proceed exclusively from universally quan- 
tified conditionals to universally quantified conditions are valid. In 
other words, letting "Vip' stand for the universal closure of the open 
formula ip, it might be supposed that the following principle holds: 

(3.1) If the universally quantified material conditionals 'V(P, => 

Q& . . , rV(Pn 3 Q x  imply rV(R 3 S)' in the predicate 
calculus, then the strong generalizations 
Ql)', . . . , '""(P,, 3 On)' entail ' ( R  3 S)'. 

It can be shown that a necessary and sufficient condition for 3.1 to hold 
is for the following to hold: 

At first, it may seem that 3.2-3.7 are unexceptionable. But they 
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cannot all hold. Jointly they entail: 

(3.8) ( P ^ Q ) 3 ( P & - Q . ^ > R ) .  

Principle 3.8 says that a physically impossible antecedent implicates 
anything at all. There are clear counterexamples to 3.8. For example, 
suppose it is a law of nature that no human being can live for more 
than 200 years, and also (probably contrary to fact) that a human being 
acquires more and more knowledge the longer he lives. From this we 
can conclude: 

A three hundred year old human being would know more 
than a 100 year old human being. 

On the other hand, we cannot conclude: 

A three hundred year old human being would know less 
than a 100 year old human being. 

And yet both of these inferences would be licensed by 3.8. Thus 3.8 
must be false. 

It is rather obvious what is wrong with 3.8. Principles 3.2-3.7 all 
hold as long as the antecedents of the generalizations are physically 
possible, i.e., are compatible with all physical laws. But if the antece- 
dent of a generalization is incompatible with some physical law, then 
we cannot use that law in deciding what would happen if the antece- 
dent were true. For example, if ' ( P 3  0)"' is true, we cannot assume 
this law in deciding what characteristics would be possessed by some- 
thing satisfying '(P & -0)'. In particular, we cannot conclude that 
'[(P & - 0 )  3 QI1is true. In deciding what an antecedent implicates, 
we must rule out all laws incompatible with that antecedent. For example, 
let us suppose that it is a law that all white dwarf stars must have radii 
smaller than that of the sun. We cannot conclude from this that any 
white dwarf larger than the sun would be smaller than the sun. On the 
other hand, we can non-vacuously conclude that a white dwarf having 
a radius larger than that of the sun would have a mass greater than that 
of the sun. This is because the laws used in deriving the latter 
conclusion are compatible with the supposition of a white dwarf having 
a radius larger than that of the sun. 

More generally, an antecedent may conflict with several laws con- 
jointly but none individually. To illustrate, suppose we have the law 
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statements 

For example (to compound our tale of science fiction) these might be 
the laws, 'Any white dwarf is a stellar object of radius smaller than the 
sun', 'Any stellar object of radius smaller than the sun is of luminosity 
less than Lo' (where Lo is some fixed luminosity), 'Anything of 
luminosity less than Lo cannot be seen at a distance greater than one 
billion light years', and 'Any white dwarf would be more massive than 
the sun'. Then "(P & -R)' does not conflict with any of these 
statements individually. Assuming these laws, we can conclude "(P & 
-R. 3 T)' (i.e., 'Any white dwarf of luminosity no less than Lo would 
be more massive than the sun'). This comes directly out of the law 
( P  ̂> T)', which is compatible with the antecedent "(P & -R)'. But 
we cannot conclude " ( P  & -R. (i.e., 'Any white dwarf of 
luminosity no less than Lo could not be seen at a distance greater than 
one billion light years'). This is because, in order to get this, we must 
use all three of '(P 3 Q)', "(Q 3 R)', and "(R 9 SIT, and although 
( P  & -R)' is compatible with each of these individually, it is 
incompatible with the set of them. 

How do we characterize which of these inferences are valid? We 
begin with the set N of basic laws that we confirm directly by 
induction. Then we want to obtain derivative laws from those in N. 
The above picture suggests that '(P 3 0) '  follows from N just in case 
there is some subset N p  of N which is consistent with P and which, by 
some reasonable principles of inference, implies '(P 3 0)'. However, 
this is still not quite right. The difficulty is that there may be more than 
one such set Np, and different such sets might lead to different 
conclusions. For example, suppose we have in N the two laws "(A 3 
B)' and " ( C a  -B)l. The above principle would allow us to derive 
both '(A & C. 3 B)' and '(A & C. 3 -B)' from N. But this is clearly 
wrong. Under these circumstances, we should not be able to derive 
either conclusion from N. Or to take another example, suppose N is 
the set 

We want to know whether '(P & T. 9 S)l  follows from this. For 
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example, the first three laws might be as before, and the fourth might 
be 'Any pulsar is of luminosity at least Lo'. Intuitively, we cannot 
conclude that any white dwarf which is a pulsar could not be seen from 
a distance of one billion light years. This is because, although its being 
a white dwarf favors that conclusion, its being a pulsar blocks the 
normal way of inferring this conclusion from the fact that the object is 
a white dwarf. What is required for a conditional "(P 3 Q)' to be 
inferrable from N is not for there to be some subset Np consistent with 
P from which we can infer r (P  3 Q)l, but for every maximal subset of 
N consistent with P to be such that we can infer "(P 3 QY from it. In 
other words, there may be different ways to render N consistent with P 
by omitting minimally many things from N. The supposition that P is 
true amounts to supposing that one of those minimally altered subsets 
of N constitutes the actual set of basic laws, but no particular such 
subset is favored over any other. Any of them might constitute the 
actual set of laws, and so it is only when every such set allows us to 
infer ^(P 3 Q) l  that we can conclude that "(P 3 0)"' is true given N as 
it actually is. 

Let us say that a set is P-consistent just in case it is logically 
consistent with "(SxI), . . . (3xn)P1 (supposing P to have n free vari- 
ables). If X is a set of sentences, and Y is a subset of X, let us say that 
Y is a maximal-P-consistent subset of X just in case (i) Y is P -  
consistent, and (ii) there is no Z such that Y Ã § = Z c  and Z is 
P-consistent. Thus the maximal-P-consistent subsets of N are those 
sets that result from making minimal deletions in N so as to render it 
consistent with P. Then the above account of strong generalizations 
amounts to saying that "(P 3 Q)' is true iff "(P 3 Q)' can be inferred 
from every maximal-P-consistent subset of N. 

But we have not yet explained what sorts of inferences are allowable 
in inferring r(P 3 Q)' from the maximal-P-consistent subsets. Sup- 
pose N* is such a subset. As P is consistent with N*, there would seem 
to be nothing wrong with using 3.2-3.7 in making such inferences. 
These would seem to constitute a minimal set of rules of inference 
allowable here. But there is also a rather obvious upper bound to what 
inferences are allowable. It seems clear that no inference from strong 
generalizations to strong generalizations is valid when the correspond- 
ing inference from material generalizations to material generalizations 
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is invalid in the predicate calculus. The actual set of allowable infer- 
ences must lie somewhat between what is derivable from 3.2-3.7 and 
this upper bound. But, as was remarked earlier, 3.2-3.7 are conjointly 
equivalent to principle 3.1, which is the strongest principle that does 
not transgress this upper bound. Consequently, the upper bound limits 
us exactly to 3.2-3.7, or equivalently, to 3.1. The inferences that are 
allowable in getting from N* to "(P 3 Q)' are precisely those infer- 
ences that are allowable in the predicate calculus in going from 
material generalizations to material generalizations. 

This means that we can give a very simple characterization of what 
strong generalizations are true in terms of the set N. Let VN be the set 
of material generalizations corresponding to the strong generalizations 
in N. Then we have: 

(3.9) "(P 3 Q)^ is true iff every maximal-P-consistent subset of 
VN entails "V(P 2 Q)'.' 

Before proceeding further, we must be a bit more precise about the 
basic generalizations that make up the set N. So far all we have said 
about them is that they must be projectible, but some additional 
restrictions are required if our account of the way in which laws are 
derived from N is to work. The difficulty is that projectible laws need 
not be; in the Appropriate sense, 'basic'. For example, if "(A 3 B)', 
"(B 3 C)'e N, then "(A 3 C)' which is derivable from them is also 
projectible.6 However, we should not count "(A 3 C)' as basic for the 
purposes of deriving additional generalizations. If we did treat "(A 3 
C)' as basic, then we could infer the truth of "(A & -B. 3 C)'. But 
we should not be able to infer this because part of the reason 
"(A 3 C)' is true is that "(A 3 B)"' is true, and the antecedent "(A & 
- B)' conflicts with the latter law. Thus we should require that in order 
for "(A 3 C)' to be in N, there cannot be open formulas Bo, . . . , Bn 
such that "(A 3 Bo)", "(Bo 3 B,)', . . . , "(a,, 3 C)'e N. Similarly, we 
should preclude the case in which "(A 3 Bo)"', "(A 3 Bi)', . . . , "(A 3 
Bn)', "(Bo & . . . & B,,. 3 C)'e N. Combining these restrictions we 
obtain the general constraint: 

(3.10) If "(A 3 C ) ' e  N, then there cannot be finite sets 
Qo, . . . , Qn of predicates such that: 
(i) for each <p e <Po, "(A 3 <p)'e N ;  



S U B J U N C T I V E  G E N E R A L I Z A T I O N S  59 

(ii) for each i < n and <p e there is a F c  U , ,  such 
that ' ( Z I r 3  # e  N ; ~  

(iii) there is a F G IJ <?, such that either "(HF 3 C)'e 
N or r entails C. 

Let N+ be the set of all true projectible strong subjunctive generali- 
zations. Then N is a subset of N^ which satisfies constraint 3.10 and 
which also satisfies the condition that if "(A ^B)'E N+ then VN 
entails "V(A =J B)'. Can we take this as defining N? Almost, but not 
quite. In general, there may be more than one subset of N+ satisfying 
these conditions. For example, suppose N+ contains the three subjunc- 
tive biconditionals "(A * B)', "(B C)', and "(C e A)-'.' Any one of 
these is derivable from the'other two, so (if these are not derivable 
from other generalizations in N+) there will be three different subsets 
of N+ satisfying the above conditions, each one containing a different 
pair of these subjunctive biconditionals. Which of these subsets of N+ 
is N?  In fact, there is no way to choose between these subsets, because 
there is no basis for choosing between the three biconditionals. They 
all have an equal claim to be regarded as basic, and so they should all 
be regarded as basic. This indicates that N should be the union of all 
the subsets of N +  satisfying these two constraints: 

(3.11) N = \J {X; X c  N+ and X satisfies constraint 3.10 and for 
any generalization " (A3B)"  in N+, VX entails 'V(A 2 B)'} 

Given this definition of N, I believe that our account of derived 
subjunctive generalizations, and hence our definition of ^ ( P +  Q)', 
works correctly. 

Given our definitions, we can explore the logical properties of strong 
generalizations. We have been saying that a sentence is physically 
possible just in case it is consistent with all physical laws. But by 3.9, 
this is the same thing as being consistent with VN. Thus: 

(3.12) ^OPT is true iff P is consistent with VN. 
P 

Let us also define, in case P is an open formula: 

(3.13) "OPT is true iff "O(Sx,). . . (3xn)P1 is true. 
P P 
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We define in the conventional way: 

(3.14) "UP1 is true iff VN entails P. 
P 

Our definitions of physical possibility and physical necessity make 
reference to N. It would be nice to be able to define these modalities 
simply in terms of strong generalizations without referring to N. It 
follows from 3.9 that most of the.natura1 ways of defining modalities in 
terms of conditionals yield logical necessity rather than physical neces- 
sity: 

(3.15) ( P 3  .Q & - Q ) e D - P .  

(3.16) ( P 3  - P ) - 0 - P .  

However, there is one normal way of defining a modality which does 
give us physical necessity: 

We can list a number of theorems that result from our definition of 
'3' and the physical modalities: 

(3.18) ( P  3 Q )  & ( Q  + R ) .  3 ( P  ̂ > R ) .  

(3.19) ( P  + 0)  => ( P  3 0). 

Certain normal principles hold only with the additional assumption 
\ 

that antecedents of generalizations are physically possible: 
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Now that we have an account of the way in which strong subjunctive 
generalizations work, we can return to the task of characterizing them 
in terms of physical necessity and quantification. A natural proposal 
was that "(A 3 B)' is equivalent to "UV(A => B)'. This seemed to be 

P 

correct for non-counter-legal generalizations, but it failed for counter- 
legals. It is now easy to see both that it is correct for non-counter- 
legals and why it fails for counter-legals. In the non-counter-legal case, 
VN itself is the only maximal-A-consistent subset of VN, so 3.9 gives 
us the result that "(A 3B)' is true iff "V(A 3 B)' is entailed by VN, 
i.e., iff rV(A => B)' is physically necessary: 

(3.28) O A  =>[(A 3 B)  = DV(A 3 B)]. 
P P 

But if "(A 3 B)' is counter-legal, then what is required is not that 
V ( A  => B)" be entailed by VN, but rather that "V(A 2 B)' be entailed 
by every maximal-A-consistent subset of VN. Thus 'UV(A 3 B)' does 

P 

not entail "(A 3 B)'. However, there is a natural way of thinking of 
the different maximal-A-consistent subsets of VN. If, contrary to fact, 
it were physically possible for there to be an A, then N could not be 
the actual set of basic strong generalizations. Instead, the set of basic 
strong generalizations would have to be consistent with there being an 
A. The different maximal-A-consistent subsets of VN represents the 
the different ways of minimally modifying N in order to make it 
consistent with there being an A, and as such it is reasonable to think 
of them as representing the sets of basic strong generalizations in the 
different worlds that might be actual if it were physically possible for 
there to be an A. Then to say that every such maximal-A-consistent 
subset of VN entails 'V(A 3 B)' is the same as saying that "V(A 3 B)' 
is physically necessary in every world that might be actual if it were 
physically possible for there to be an A, i.e., 

(3.29) (A 3 B) = [OA > DV(A 3 B)]. 
P P 

The above reasoning is, I think, persuasive, but we cannot assert 3.29 
as a theorem because we do not yet have an analysis of subjunctive 
conditionals. However, when we finally do get a complete analysis of 
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subjunctive conditionals in Chapter VI, we will be able to prove 3.29. 
Thus this is a correct characterization of strong subjunctive generaliza- 
tions. Of course, it is not an analysis because it employs the notions of 
physical possibility, physical necessity, and the simple subjunctive, all 
three of which are ultimately defined in terms of strong subjunctive 
generalizations. 

Now let us turn to weak generalizations. Their characterization is 
rather obvious given our treatment of strong generalizations. Once 
again, we begin with a set W of basic weak generalizations that have 
been confirmed directly by induction, and then we derive new generali- 
zations from those in W. The set W is constructed from the set W  ̂of 
true projectible weak subjunctive generalizations in just the way N was 
constructed from N+.  If we had no strong generalizations to contend 
with, we could define "(P =^> Q)' in a way completely analogous to 
principle 3,9: 

( P  => 0)' is true iff every maximal-P-consistent subset of 
W entails "V(P 3 Q)'. 

However, our characterization is made more complicated by the pres- 
ence of strong generalizations. The difficulty is that it is not sufficient to 
render VN and VW each consistent with P individually. We must 
render them jointly consistent with P. For example, if VN contains the 
single generalization "V(P 2 R)', and V W contains the single generali- 
zation "V(Q => -R)', then both VN and V W are consistent with r(P & 
0)'. But V(N U W) is not consistent with "(P & Q)'. If we ignored this 
inconsistency, we would be able to infer both "(P & Q. 3 R)' and "(P 
& 0.3 -R)l .  This should obviously be prohibited. However, it is not 
sufficient to just require that V(N U W) be consistent with P. Laws take 
precedence over weak generalizations. For example, it is a law that any 
object released in a vacuum at the earth's surface would fall towards 
the center of the earth. We also have the weak generalization that any 
helium filled balloon released at the surface of the earth would rise. 
Given these two generalizations, we can conclude that any helium 



SUBJUNCTIVE GENERALIZATIONS 63 

filled balloon released in a vacuum at the surface of the earth would 
fall towards the center of the earth; and we cannot conclude that such 
a balloon would rise. When a strong generalization conflicts with a 
weak generalization, we make our inferences on the basis of the strong 
generalization. 

To say that laws take precedence over weak generalizations is to say 
that in rendering V(NU W) P-consistent through deletion, we first 
render VN P-consistent by making as few deletions as possible, and 
then we delete whatever we must from VW to render V(NU W) 
P-consistent. Or, more precisely, we first find a maximal-P-consistent 
subset Np of VN, and then we find a maximal-P-consistent subset Wp 
of V(NU W), subject to the restriction that N p s  Wp. This yields the 
following analysis: 

(4.1) '(P 3 Q)l is true iff for every maximal-P-consistent subset 
Np of VN, and every maximal-P-consistent subset Wp of 
V(N U W) such that Np G Wp, Wp entails 'V(P 3 0)'. 

Having explicated '^>', it seems that we can now define 'actual 
possibility' in a manner completely analogous to the definition of 
physical possibility: 

(4.2) "OPT is true iff P is consistent with V(NU W). 
a 

If P is an open formula: 

(4.3) 'OPT is true iff 'O(3xI) . . . (3x,,)P1 is true. 
a a 

'Actual necessity' is defined in the normal way: 

(4.4) 'UP1 is true iff '-0- P1 is true. 
a a 

We can easily obtain a number of theorems about weak generaliza- 
tions, most of them analogous to theorems about strong generaliza- 
tions: 

(4.5) D P = ( Q v - 0 . 3  P). 
a 
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We have explained weak subjunctive generalizations in a way pre- 
cisely analogous to the way in which we explained strong subjunctive 
generalizations, and we have defined actual possibility and actual 
necessity in a way precisely analogous to the way in which we defined 
the better known modalities of physical possibility and physical neces- 
sity. Despite all this, one is apt to have the lingering feeling that he 
does not really understand actual possibility and actual necessity. I 
think that the lack of understanding here is more of a psychological 
lack than a logical lack. Given our examples, it becomes completely 
obvious that there are weak subjunctive generalizations, and in fact 
that most of the subjunctive generalizations we affirm are weak 
generalizations rather than strong generalizations. Furthermore, the 
characterization of weak subjunctive generalizations in terms of the 
way in which they are confirmed seems to me entirely adequate, and 
given that, the formal definitions of actual possibility and actual 
necessity cannot be faulted. What is lacking is not a logical characteri- 
zation of these concepts, but rather an intuitive feel for how they fit 
into our ordinary thinking and reasoning and how they are related to 
other concepts. 

We can provide a bit of intuitive feel for actual possibility and actual 
necessity by showing that these concepts really are employed in our 
ordinary reasoning despite the fact that logicians appear to have 
completely overlooked them. We often have occasion to assert that 
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something might be the case, or that something else just wouldn't be 
the case. For example, in talking about the 9 :  14 train from Boston, I 
could assert that, on the one hand, it might show up with all the cars 
painted fluorescent pink (they do strange things like that on this 
railroad), but on the other hand, it just wouldn't show up on time. The 
English language puts a bit of a strain on us here. In talking about an 
actual 9 :  14 train (e.g., the one this morning), it is not entirely 
appropriate to use the subjunctive 'wouldn't' and say 'It just wouldn't 
show up on time'. Instead, we say 'It just won't show up on time'. But 
notice that this is intended to be stronger than a prediction. Part of the 
purpose of the 'just' in the sentence is to indicate that 'won't' is 
functioning as a modality rather than in its purely indicative sense. In 
saying that the train just won't show up on time, we are saying that it is 
in some sense necessary that it won't show up on time. In these 
sentences 'might', 'wouldn't', and 'won't' are functioning as singulary 
modal operators, and not as parts of conditionals. We use these 
modalities all the time, and they are precisely the operators of actual 
possibility and actual necessity. 

Additional feel for weak subjunctive generalizations can be provided 
by seeing how they are related to other concepts. As in the case of 
strong subjunctive generalizations, it will turn out that they can be 
expressed in terms of actual possibility, quantification, and the simple 
subjunctive: 

This principle should seem plausible for the same reasons principle 
3.28 did, and we will be able to prove it in Chapter VI. 

But perhaps 4.17 is not very helpful, because it expresses '+' in 
terms of actual possibility, which if anything is a less familiar concept 
than '3' itself. A much more helpful characterization of weak subjunc- 
tive generalizations can be obtained in another way. Weak subjunctive 
generalizations are true because of physically contingent facts about 
the world. The 9 :  14 train from Boston is always late because the 
railroad has only old broken-down equipment; anyone who drank from 
Chisholm's bottle would be poisoned because the bottle contains rat 
poison. In general, a weak generalization "(Ax Bx)' is true only 
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when there is a true statement P such that r (Ax  & P. 3 Bx)' is true. 
However, it is quite clear that P's merely being true is not enough to 
ensure the truth of the weak generalization. What other constraints are 
required? In the case of Chisholm's bottle, P is the statement that the 
bottle contains rat poison. It is at least required that P would still be 
true even if someone were to drink from the bottle: 

(4 .18)  ( A x  3 Bx) 2 ( 3 P ) [ ( A x  & P. 3 Bx)  & PE(3x)AxI.  

However, 4.18 cannot be turned into a biconditional. The requirement 
' P E ( 3 x ) A x 1  is not yet strong enough to ensure the truth of ' ( A x  + 
B x ) ~ .  This is because if the bottle does contain poison and someone 
has in fact drunk from it, then ' P E ( 3 x ) A x 1  is automatically true. This 
follows from our analysis of 'even if' in Chapter 11. But this is not 
enough to make r ( A x  + Bx)' true. We must require that P would still 
be true even if someone else drank from the bottle. It seems that the 
general requirement should be that P would still be true even if there 
were a new A ,  i.e., an A which does not now exist: 

(4 .19)  ( A x  + Bx) = ( 3 P ) [ ( A x  & P. 3 Bx)  & P would be true even 
if there were an A which does not now exist]. 

How can we make the final clause of 4.19 precise? The only way I can 
see to do this is by talking about sets of objects. There are no generally 
accepted conventions regarding the behavior of sets across possible 
worlds, so we are free to make up our own. It seems reasonable to 
regard a set in one world as the same set as a set in another world just ' 

in case they contain the same objects. In other words, we identify sets 
across possible worlds in terms of their members, just as we identify 
sets within a world. This will be our convention. It will be discussed in 
more detail in Chapter VI. Then to talk about there being an A which 
does not now exist is to talk about there being an A which is not a 
member of the set of all objects existing in this world: 

( A x  & P. 3 B x )  & PE(3x) (Ax  & x& XI] .  

This seems to me to capture exactly what we mean by the weak 
subjunctive generalization. Given our full analysis of subjunctive con- 
ditionals in Chapter VI, 4.20 will be equivalent to the simpler charac- 
terization: 
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(x)(Ax 2 Bx)E(3x)(Ax & x& X)]. 

This also seems to be a very intuitive characterization of the weak 
subjunctive generalizations. r(Ax 3 Bxy certainly entails r ( ~ ) ( A ~  2 BX)' 
and it is plausible to suppose that what more is required for 
the truth of r(Ax + Bx)' is that if there were a new A (one that does 
not now exist)? it would be a B too. This is just what 4.21 requires. 

However? if 4.21 is to be acceptable, we must somehow ensure that 
a certain kind of counter-example cannot occur. Let X be the set of all 
the objects existing in this world. If the generalization r(Ax 3 x E X)' 
were true and logically contingent (i.e., r(x)(Ax += x E X y  is false)? this 
would constitute an immediate counter-example to 4.21. Can a sub- 
junctive generalization of this form ever be true? In order for it to be 
true, our generalizations would somehow have to dictate that there 
could not be any A's that do not already exist. This would be very odd. 
Certainly our generalizations might dictate the total number of A's 
there are in the universe (in particular, a physical law might dictate 
that there is just one A),  and hence they might preclude there being 
additional A's, but this is not what r(3x)(Ax & x&X)' requires. The 
latter does not require that there be more A's than there are now, but 
just that there be a difierent A. 

In fact, I think it is logically impossible to have a true subjunctive 
generalization of the form r(Ax 3 x E Y)' for any set Y (except in the 
trivial case where rAx' entails rx E Y1). This results from the fact that 
subjunctive generalizations must either be projectible or else entailed 
by projectible generalizations. In order for any generalization of the 
form r(Ax 3 X E  Y)' to be true, some generalization of that form 
would have to be projectible. But it is quite obvious that no such 
generalization could be projectible. If rx E Y1 were a projectible predi- 
cate, then we would find ourselves immediately confirming, for every 
projectible predicate rAx', that nothing could be an A other than 
what is already an A. Clearly, such conclusions are not automatically 
confirmed, so rx E Y1 cannot be a projectible predicate. Consequently, 
no contingent generalization of the form r(Ax 3 x E Y)' can ever be 
true? and by virtue of principle 4.17, this implies the validity of the 
following principle: 
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(4.22) U(x ) (Ax  2 x E X )  & O(3x)Ax. 2 (x)(Ax + x E X) .  
a a 

For the same reason, we should have 

(4.23) U(x ) (Ax  2 .x  = al v . . . v x = a,,)& 0(3x)Ax.> 
a a 

U(x) (Ax  2 .x = al v . . . v x = a,,). 

Given these principles (whose validity will be built into the semantics 
of Chapter VI), it will become possible to prove the correctness of 4.20 
and 4.21. Thus the latter principles do constitute a correct characteri- 
zation of weak subjunctive generalizations, and derivatively of actual 
possibility and actual necessity. Of course, principles 4.20 and 4.21 
cannot be regarded as providing analyses of these concepts, because 
4.20 and 4.21 employ subjunctive conditionals which are themselves 
analyzed in terms of weak subjunctive generalizations. However, the 
purpose of 4.20 and 4.21 was not to provide an analysis anyway, but to 
provide more of an intuitive feel for the way weak subjunctive 
generalizations are related to other concepts. We already have a 
logically adequate analysis of weak subjunctive generalizations in 
terms of the way they are confirmed. 

In this chapter I have proposed what I believe to be a logically 
adequate analysis of both strong and weak subjunctive generalizations 
in terms of non-subjunctive statements. This should free us to use the 
notion of a subjunctive generalization in the analysis of subjunctive 
conditionals without feat of circularity. We have, in fact, got a tentative 
solution to one of the two major problems facing the traditional 
linguistic theory of subjunctive conditionals. 

N O T E S  

' This is suggested by Stalnaker (1968). 
See Pollock (1974) for a precise definition of projectibility and an argument to the 

effect that most subjunctive generalizations fail to be projectible. 
' A complete defense of the position that an account of the justification conditions of a 
concept constitutes an analysis of that concept is provided by Pollock (1974). 
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A fuller discussion of this can be found in Pollock (1974). 
As will be seen in Chapters IV and VI, this analysis must be made a bit more 

complicated. However, the present version of the analysis is sufficient for the time being. 
'A  defense of this can be found in Pollock (1974). 
' rIIrl is the conjunction of r. 
' 'A @ B1 is defined to be '(A 3 B) & (B 3 A)7. 
'1 am indebted to Rolf Eberle for this observation. 



C H A P T E R  IV 

T H E  B A S I C  A N A L Y S I S  O F  
S U B J U N C T I V E  C O N D I T I O N A L S  

Having laid the groundwork, we can now attempt to construct an 
analysis of subjunctive conditionals. The basic tool for this analysis is 
provided by Theorem 3.11 of Chapter I. According to that theorem, a 
subjunctive conditional "(P> Q)' is true iff Q is true in every possible 
world that might be actual if P were true. That is, assuming the 
Generalized consequence Principle, we have: 

(1.1) "(P > 0 ) '  is true in the actual world iff for every possible 
, world a ,  if a M P  then Q is true in a ;  "QMP1 is true iff for 

some a such that aMP, Q is true in a 

This is not yet a philosophically satisfactory definition of the simple 
subjunctive, because the relation M was defined in terms of '>', but if 
we can provide an alternative analysis of M, principle 1.1 will consti- 
tute an analysis of '>'. That will be our strategy here. Let us say that a 
is a P-world when ~ M P . '  Thus our task is to analyze the notion of a 
P-world. 

In this chapter we will restrict our attention to subjunctive condi- 
tionals whose antecedents and consequents are indicative, and we will 
identify a possible world with the set of its indicative truths. In the next 
two chapters we will generalize the analysis to handle non-indicative 
antecedents and consequents. 

The basic idea underlying my analysis of M was introduced in Chapter 
I. This is that a P-world is one that is obtained from the real world by 
making minimal changes which suffice to make P true. In constructing 
P-worlds, we make changes in the real world only insofar as we are 
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forced to do so in order to accommodate P's being true. Truths of the 
actual world that are in the appropriate sense 'irrelevant' to P must 
also be truths of any P-world. Gratuitous changes are disallowed. The 
problem is to say just what constitutes a non-gratuitous change. 

Let us begin with the case in which P is an indicative statement 
which is consistent with all true subjunctive generalizations. In this 
case, it seems clear that any P-world must preserve all of those 
subjunctive generalizations. If P is, for example, 'I dropped this piece 
of chalk five minutes ago', then if in constructing a world, we alter the 
law of gravity instead of concluding that the chalk would have fallen to 
the ground, that would be a gratuitous change. Such a world would not 
be a P-world. Subjunctive generalizations take precedence over other 
truths in the construction of P-worlds. Let G be the set of universally 
quantified material conditionals corresponding to those subjunctive 
generalizations that are true in the actual world. Then if P is consistent 
with G and a is a P-world, we must have G c a. 

Most changes are ruled out as gratuitous. What changes are not 
gratuitous? The most obvious case occurs when Q is true in the actual 
world, but G entails '^(P 3 -Q)^. Then we must make Q false in any 
P-world. On our assumption that P is consistent with G (i.e., P is 
'actually possible'), it follows that G entails ^(P^R)" iff P weakly 
implicates R, i.e., iff "(P=>R)^ is true. Let us say that P counter- 
implicates R when '^P^>-R1 is true. So if P counter-implicates 0 ,  Q 
must be false in any P-world. 

But, this cannot be the only time that a change is allowed. For 
example, we may have two true propositions 0 and R such that the 
conjunction " ( 0  & R)' is counter-implicated by P, but neither 0 nor R 
by itself is counter-implicated. We cannot have both Q and R true in a 
P-world, so some change is required. For example, let P be 'Bizet and 
Verdi were compatriots', and let 0 be 'Verdi was Italian' and R be 
'Bizet was French'. Then "P+-(Q & R)" is true, but P does not 
counter-implicate either Q or R. How do we decide whether to change 
the truth value of 0 or that of R ?  There is no way to decide. There is 
no basis for giving preference to one over the other. The situation is 
rather that either Q or R might be false - there is a P-world in which 
Q is false (but R true), and another in which R is false (but Q true) - 
but we cannot conclude of either Q or R that it would be false. If 
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Bizet and Verdi were compatriots, they might both be French, and 
they might both be Italian, but it is not true that they would both be 
French, or that they would both be Italian. 

This suggests that in constructing P-worlds, we simply take the set of 
actual truths a n d  then make minimal changes so as to render it 
P-consistent. The result of any such set of minimal changes describes a 
P-world. As there may be more than one way of minimally changing 
the actual world in order to achieve P-consistency, there may be more 
than one P-world. Making this precise, if a. is the set of actual truths 
i .e . ,  no is the real world), and a is a possible world, the proposal is: 

(2.1) ANALYSIS I: a M P  iff G c a and a D a. is a maximal P-  
consistent subset of an. 

In other words, it is required that a preserve as many of the actual 
truths as possible while still making P true. 

Although I believe that Analysis I is on the right track, there are 
immediate difficulties for it. As it stands, it would lead to the result 
that if P is false then absolutely no truth is preserved in every P-world: 
that is, given any truth 0 ,  there would be a P-world in which Q is 
false. This is because if P is false, then both Q and r ( P 3  -Q)' are 
true. Thus in making minimal changes to a. so as to accommodate the 
truth of P, we have a choice between preserving Q and preserving 
" ( P 3  -Q)', and in the latter case we will be forced to make 0 false. 
For example, if P is 'My maple tree died' and Q is 'My car is painted 
white',. Q should be preserved in every P-world. But according to 
Analysis I, we have a choice between preserving 'If my maple tree 
died, my car is not painted white' and 'My car is painted white', and in 
those P-worlds in which we preserve the former, it is not true that my 
car is painted white. 

Evidently not all truths are equally good candidates for being 
preserved in P-worlds. In the above example, 0 is a candidate for 
preservation, but ^(P=>-Q)' is not a candidate. Let us call those 
propositions which are candidates for preservation stable propositions. 
It appears that there is a class S of stable propositions, and in deciding 
whether a change is minimal or gratuitous, we only look at what 
happens to the members of S. In making minimal changes, we seek to 
make minimal changes in the stable propositions, and we ignore what 



S U B J U N C T I V E  CONDITIONALS 73 

happens to other propositions. This leads to: 

(2.2) ANALYSIS 11: If S is the class of all stable propositions, then 
a M P  iff P e a and G <= a and S ("I a ("I an is a maxima1-P- 
consistent subset of S ("I an. 

We have seen that not all propositions are stable. Which ones are? 
As we have just seen, conditionals, and hence disjunctions, generally 
fail to be stable. On the other hand, a conjunction of stable proposi- 
tions is automatically stable: If Q and R are both stable, they will both 
be preserved (and hence their conjunction will be preserved) in any 
P-world unless there is some set A of stable propositions true in the 
actual world whose conjunction with P is counter-implicated by either 
0 or R ;  but then the conjunction of A with P would also be 
counter-implicated by "(0 & R)'. Thus a conjunction of stable propos- 
itions is automatically preserved unless it comes into conflict with some 
other true stable propositions, which is to say that the conjunction is 
stable. 

The fact that conjunctions of stable propositions are stable provides 
some insight into just which propositions are stable. Conjunctions of 
stable propositions are stable, but only derivatively so because their 
conjuncts are stable. Those conjuncts might themselves be conjunc- 
tions which are stable because their conjuncts are stable, and so on. 
However, this cannot go on indefinitely. Eventually we must reach 
conjuncts that are stable in their own right. These conjuncts are still (as 
a matter of logic) equivalent to  conjunction^,^ but those conjunctions 
are conjunctions of disjunctions, and hence there is no reason to 
expect their conjuncts to be stable. 

In examining stable propositions, we may in the above manner be 
able to take them apart into simpler and simpler components from 
which they inherit their stability, but eventually this can no longer be 
done and at that point the stability is basic. The stable propositions 
which are in this way basic are in a certain sense 'simple'. They are 
those which cannot, except artificially, be regarded as conjunctions, 
disjunctions, or in general as compounds or logical constructions out of 
simpler propositions. 

These simple propositions would seem to be propositions ascribing 
'simple states' to objects. These are non-contrived and not explicitly 
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compound states like colors, dispositions, shapes, etc. Other proposi- 
tions, e.g., those describing events, are not simple. For example, an 
event always involves a change of state, and hence is compound (saying 
that the state is one way at one time and another way at another time). 

I feel that these notions of a simple proposition and a simple state 
make good intuitive sense. However, any endorsement of simple 
propositions is bound to meet with suspicion in light of the recent 
history of philosophy. The logical atomists built outlandish theories 
around simple propositions, and the notion of a simple proposition 
thereby acquired a stigma. However, this is guilt by association. Just 
because logical atomism was a bad theory which made use of the 
notion of a simple proposition is no reason to think that there is 
something wrong with simple propositions themselves. Talk about 
simple propositions is just a matter of taking logical form seriously. We 
do distinguish, for example, between those propositions which really 
are conjunctions, and those which are only equivalent to conjunctions. 
The proposition that my car is white is not a conjunction, although it 
is, as a matter of logic, equivalent to a conjunction. 

All of this is going to be repugnant to many recent philosophers who 
have supposed that logical form really does not make sense as applied 
to propositions. They have supposed that although sentences have a 
structure, with the result that one can be contained in another, one can 
be a conjunction while another is only equivalent to a conjunction, and 
so forth, propositions have no such structure. This comes from looking 
only at the properties of propositions which can be constructed out of 
the purely logical relations of entailment and equivalence. Using only 
these relations, there is no way to order propositions in terms of logical 
complexity, and no sense can be made out of a putative difference 
between, for example, a proposition being equivalent to a conjunction 
and really being a conjunction. But propositions do have a structure of 
a different sort - they have an epistemological structure. Certain 
propositions are epistemologically basic. These basic propositions pro- 
vide grounds for believing others, which in turn provide grounds for 
believing still others, and so on. There is a kind of natural epistemolog- 
ical order h e r e .  It is on this basis that we can make sense of simple 
propositions. We must not make the mistake of supposing that they are 
to be identified with the epistemologically basic ones. Rather, they are 
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those which are not logically complex in the sense of being conjunc- 
tions, disjunctions, etc. The notion of a proposition being a conjunc- 
tion or a disjunction is reflected in (and, I would propose, reducible to) 
what possible grounds one can have for believing it. For example, what 
distinguishes a conjunction is that the two conjuncts provide a conclu- 
sive reason for believing the conjunction, and the denial of either 
conjunct provides a conclusive reason for rejecting the conjunction. 
One might suppose that this is also true of a proposition which is 
merely equivalent to a conjunction, but that would be a mistake. If P is 
merely equivalent to '^Q & R', then r-Q' does not by itself constitute 
a reason for rejecting P. One must also have reason to believe that P is 
equivalent to '^Q & R1. If one does not know that such an equivalence 
holds, then clearly, knowing things about Q and R gives him no reason 
for believing or disbelieving P. I think that by appealing to epi- 
stemological considerations of this sort, it will prove possible to give a 
precise definition of the notion of a simple proposition. This will be 
undertaken in section three. However, given the epistemological way 
of thinking of logical form, I think it must be admitted that even 
without a precise definition, the notion of a simple proposition makes 
sense and that we do talk about the logical forms of propositions 
despite our not having an adequate theory of what logical form is all 
about. Thus for now I will make free use of the notion of a simple 
proposition without attempting further clarification. 

Stable propositions form a broader class than just the simple propos- 
itions. For example, conjunctions of simple propositions are stable. 
However, this results directly from the notion of stability and does not 
have to be built into our analysis. Can we then just replace the class of 
stable propositions in Analysis I1 by the class of simple propositions? 
Almost, but not quite. Although this does not follow from the defini- 
tion of stability, it is rather obvious that what we may call the 'internal 
negations' of simple propositions are also stable. In constructing P- 
worlds, we do not just try to preserve those simple states that an object 
has - we attempt to preserve whether or not it has a given simple state. 
For example, if an object is insoluble, this is something that would be 
preserved just as much as its solubility were it soluble. An unnecessary 
change in either direction would be judged gratuitous and disallowed 
in the construction of P-worlds. The proposition 'x  is insoluble' is not 
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what would ordinarily be called the negation of 'x is soluble'. This is 
because both 'x is soluble' and 'x  is insoluble' entail the existence of x. 
Logicians have traditionally distinguished here between 'internal' and 
'external' negation. The external negation is ordinary negation. The 
internal negation of a proposition of the form ^x is F1can be defined in 
terms of external negation as rx exists but -Fxl. Thus to preserve 
whether or not an object has a particular simple state is to preserve the 
truth value of the corresponding simple proposition and its internal 
negation. 

Apparently, then, what we seek to preserve are those truths in the 
class consisting of all simple propositions and internal negations of 
simple propositions. Thus we are led to: 

(2.3) ANALYSIS in: If S is the class of all simple propositions and 
their internal negations, then a M P  iff P E a and G G a ,  and 
S D a D an is a maximal-P-consistent subset of S D ao. 

However, a difficulty arises for Analysis 111. The only changes 
countenanced by this analysis consist of deleting truths from a (replac- 
ing them by their negations). However, a subjunctive hypothesis may 
force us to add new propositions too. For example, suppose ^(3x)Fx1 is 
false in ao. Taking this as our subjunctive hypothesis may force us to 
introduce a new object not existing in %. This may constitute a smaller 
change than making one of the objects already in a. an F when it is 
not now an F. Then if aMP, a will contain simple propositions or the 
internal negations of simple propositions which were not true in 0.0. 
Thus the total change in going from a. to a may consist of the deletion 
of some members of a. and the addition of some new propositions. 
This change has two parts: the deletion of some propositions in ao, 
represented by ( a o - a ) ;  and the addition of some new propositions, 
represented by ( a  -ao).  It will be algebraically convenient to represent 
this change as a set of propositions indexed by 0 and 1. The proposi- 
tions indexed by 0 will be those deleted, and the propositions indexed 
by 1 will be those added. To this end, let us define: 

(aAl3)  = [ ( a  -B)x{oIlU [03 - a )x{ l I l .  

The algebraic point of defining 'a A p '  in this way is that the inclusion 
of one change in another is now represented by ordinary class- 
inclusion. 
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In minimizing the change from a" to a ,  what we want to minimize is 
[(S f l  ao)i^(S n a)]. Letting Sa = S f l  a ,  we are led to: 

(2.4) ANALYSIS IV: If S is the class of all simple propositions and 
their internal negations, then a M P  iff P e a and G c a ,  and 
there is no world fi such that P e p  and G c f i  and 
(Sai^SJc(SaASa,,). 

Analysis IV still suffers from some rather grave shortcomings. Thus 
far I have been pretending that when '^P+ -(Q & R)' is true, but 
neither rP+ -Q1 nor "P^> -R1 is true, then there is no basis for 
choosing between Q and R, and hence "(-Q)MP1 and r(-R)MP1 are 
both true. But this is not always the case. For example, suppose for the 
sake of simplicity that dry matches always light when struck. Then 
consider a particular match I had five minutes ago which was dry (D) 
and in normal surroundings. If I had struck it (S), it would have lit (L).  
But this cannot be accommodated on our present account of subjunctive 
conditionals. We have "(S & D )  => L' true, and hence ̂ S ̂ > -(D & -L)' 
is true. But neither "S + - D l  nor '^S + --L1 is true. Thus our 
account would lead us to conclude that the match might not have been 
dry if it had been struck ("(-D)MS1 is true), which is clearly mistaken. 
On the contrary, we would actually conclude that the match would still 
have been dry even if it were struck, and hence that '^S > L1 is true. 
What is our basis for concluding this? 

We are looking for a basis for choosing between two propositions Q 
and R when their conjunction is counter-implicated by P but neither 
proposition individually is counter-implicated by P. When do we 
preserve Q in preference to R ?  Sometimes the answer is, 'When part 
of the reason R is now true is that P is false'. To illustrate, consider 
the match case again. We preserve D ('The match is dry') in prefer- 
ence to "-L1 ('The match did not light'), because part of the reason 
the match did not light is that it was not struck, but this is not part of 
the reason it was dry. More precisely, there was a chain of antecedent 
circumstances implicating that the match was dry, and another chain 
implicating that it did not light. These chains of circumstances repre- 
sent the-way in which it actually came about that the match was dry and 
did not light. But among the circumstances implicating the match's not 
lighting was the fact that it was not struck. If we remove that from the 
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antecedent circumstances, the remaining circumstances are no longer 
sufficient to implicate that the match did not light. 

Consider another case. Suppose we have a metal cylinder of volume 
vo filled with an ideal gas (one obeying the Boyle-Charles law) under 
pressure po and temperature to. If we had heated the cylinder, the 
pressure of the gas would have increased. We conclude this because we 
know the Boyle-Charles law (the pressure equals a constant times the 
ratio of the temperature and volume), and we believe that the volume 
would remain unchanged even if the cylinder were heated (let us 
pretend there is no thermal expansion in the metal). Why, in construct- 
ing P-worlds (where P =  'The cylinder was heated'), do we preserve 
the volume of the gas at the expense of the pressure of the gas? 
Because part of the reason the pressure was po is that the cylinder was 
not heated, but that is not part of the reason the volume was vo. More 
precisely, the historically antecedent circumstances implicating that the 
pressure was po contained in an essential way the fact that the cylinder 
was not heated, but this is not true of the circumstances implicating 
that the volume was VO. 

The above two examples have the characteristic that there are 
circumstances historically antecedent to R which implicate R, and then 
others preceding those circumstances and implicating them, and so on. 
This chain of circumstances represents the way in which it actually 
came about that R was true. If we trace out this chain of historically 
antecedent circumstances, we find that they contain '̂ -P1, so that by 
adopting the counterfactual hypothesis that P is true, we 'undercut' the 
reason R is true. Then given a conflict between one proposition R 
which is undercut and another Q which is not, we preserve Q at the 
expense of R. In order for P to undercut R, it is not necessary for the 
historically antecedent circumstances implicating R to actually contain 
-P1 ;  more generally, P might counter-implicate some part of those 
circumstances. To illustrate this, consider an oak tree standing in a 
field. If a tree of this structure were subjected to a 200 mph wind for a 
period of five minutes, it would break: ( W  & S. =?> B). Furthermore, let 
us suppose that if certain meteorological conditions M were to occur 
over terrain of this structure, there would be 200 mph winds for a 
period of at least five minutes: ( M  & T.+W). As "W & S. =?> B' is 
true, we have ^ W 3 -(S & -B)" true. W does not undercut S, but W 
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does undercut "-B1: the historically antecedent circumstances im- 
plicating "-B1 include that the tree has not been subjected to certain 
forces, and the circumstances implicating the latter include that there 
have not been 200 mph winds. Thus we are led to conclude that 
W > B 1  is true. Furthermore, as "M & T . 3  W is true, we have that 
"(M & T )  3 -(S & -B)' is true. " M  & T1 does not undercut S, but it 
does undercut ^-B1 because it implicates W which undercuts "-B1. 
Thus we should conclude that r M  & T.>B1 is true, and sure enough, 
that is precisely what we would conclude. 

As a further illustration of my diagnosis of how these conditionals 
arise out of undercutting, it is worth noting that in the above example 
we would actually go further and draw the stronger conclusion that 
M >  B1 is true. Intuitively, this is because we are confident that the 
terrain would retain its structure even if the meteorological conditions 
were to occur. Formally, this results once more from undercutting. As 
we have both "W & S. 3 B1 and ^ M  & T . W ,  we have 
M & T & S. 3 B1, and hence "M 3 -(T & S & -B)'. M does not 
undercut either T or S: no matter how far we trace out their historical 
antecedents, we find nothing counter-implicated by M. But M does 
undercut "-B1, because we have seen that the historical antecedents 
of "-B1 include that the tree has not been subjected to 200mph 
winds, and the circumstances implicating the latter include that condi- 
tions M have not obtained. So once again, we can explain the truth of 
the counterfactual in terms of undercutting. 

Let us contrast these examples with the BizetIVerdi case. If Bizet 
and Verdi had been compatriots, then Bizet might have been Italian, 
and Verdi might have been French. Here we do not preserve either 0 
('Bizet was French') or R ('Verdi was Italian') at the expense of the 
other. This is because their not being cornpatriots does not undercut 
the reason that either man had the nationality he did. For each of 0 
and R, there is a chain of historical antecedents going back indefinitely 
far in time which at no point is counter-implicated by P (although P 
does, of course, counter-implicate the combined historical antecedents 
of 0 and R).  

I would urge that in this notion of undercutting lies the solution to 
understanding how counterfactuals work. But how do we capture in a 
precise way this notion of P undercutting R ?  I believe that this can be 
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done by preserving simple propositions with early dates in preference 
to those with laterdates. I argued that simple propositions are proposi- 
tions ascribing 'simple states' to objects. As such, simple propositions 
are dated. That is, they ascribe a state to an object at  a  time. For a 
possible world a and time t, let us define Sa{t) to be the set of simple 
propositions or  internal negations of simple propositions true in a with 
date no later than t. Then I suggest that we impose the following 
requirement on a in order to have aMP:  

(2.5) REQUIREMENT OF TEMPORAL PRIORITY: If aMP, then for 
each time t, S a ( t ) A S a o ( t )  is minimal, i.e., there is no (3 such 
that P e (3 and G i= (3 and ( S P  ( t )  A San( t ) )  <= ( S a  ( t )  A Sa,,(t)). 

This requirement has the effect that in deciding what is true in a at a 
t,ime t, we must first decide what is true for all prior times. We cannot 
modify a truth with a late date t  and then set about modifying 
propositions with earlier dates just to accommodate it, because that 
would lead to gratuitous changes in S a ( t ) ,  the set of truths preceding 
the one in question. We can only modify S a ( t )  in response to 'internal 
stresses', and not just to bring about some change later than t. 

It is not obvious how this requirement relates to the notion of one 
proposition undercutting another, so let me try to establish the connec- 
tion. We ordinarily suppose that states have 'historical antecedents', 
i.e., combinations of earlier states of objects which implicate them. 
This is, essentially, the traditional assumption that every event has a 
cause. Regardless of whether this is always true, consider two simple 
propositions, Q and R which do have historical antecedents, and 
whose historical antecedents have historical antecedents, and so on 
indefinitely. Suppose rP => - (Q & R)l is true, but neither " P  => -Q1 
n'or "P + - R1 is true. What does the requirement of temporal priority 
tell us to preserve. We cannot just alter one or the other of Q and R 
without also altering its historical antecedents, and the requirement of 
temporal priority tells us that we must take things in temporal order, 
so we must decide which of the historical antecedents to preserve 
before we decide which of Q and R to preserve. Two possible cases 
can arise: 

First, it may happen that at no point in the past are the historical 
antecedents of either 0 or R counter-implicated by P. This is like the 
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Bizet/Verdi case. In constructing a P-world, we have a choice between 
including the historical antecedents of Q and those of R. Either choice 
is possible, because in either case we can construct the set of truths so 
that for each t, (Sa(t)ASa.,(t)) is minimal and contains the historical 
antecedents to that point of Q or R (whichever is chosen to be 
preserved in a ) .  Thus there will be P-worlds containing Q and 
P-worlds containing R, and so we conclude of either that it might be 
true if P were true, but not of either that it would be true to the 
exclusion of the other. 

Second, it may happen that at some point t in time, the historical 
antecedents of one of Q or R (let us suppose it is R )  are counter- 
implicated by P. In other words, P undercuts R. As those historical 
antecedents are counter-implicated, they cannot be included in Sa(t). 
But given that the historical antecedents of R are precluded from 
Sa(t), there is nothing in Sa{t) with which the historical antecedents of 
Q conflict, and hence the historical antecedents of Q must be included 
in Sa(t) - to omit them would be a gratuitous change and is ruled out 
by the requirement of minimal change. The historical antecedents of Q 
implicate Q, so Q must be included in a ,  and hence R must be 
precluded. Thus we are led to conclude that Q would be true if P were 
true, and R would be false. Thus the requirement of temporal prece- 
dence seems to correctly capture the idea that if P counter-implicates a 
conjunction and undercuts one of the conjuncts but not the other, then 
the conjunct that is undercut is sacrificed and the other preserved. 

This can be illustrated by returning to the match example. The 
historical antecedents of the match's being dry include such things as 
that it has not recently been rained upon or dunked in a bucket of 
water. These in turn have historical antecedents having to do with the 
location of the match, local climatic conditions, the actions of nearby 
agents, etc. ~ h e s e  historical antecedents themselves have historical 
antecedents (presumably), but at no point in tracing out this chain of 
historical antecedents do we encounter anything counter-implicated by 
the match's being struck. On the other hand, the-historical antecedents 
of the match's not having lit include such things as its not having been 
heated to a certain temperature, or exposed to certain chemicals, or 
struck. This is immediately counter-implicated by the match's being 
struck. Hence we conclude that the historical antecedents of the 
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match's being dry would still have been true even if the match had 
been struck (as they conflict with nothing not counter-implicated by 
the match's being struck); and hence that the match would still have 
been dry if it had been struck; and thereby we are forced to conclude 
that the match would have lit if it had been struck. 

The requirement of temporal priority seems to give the right answer 
when applied to states all of which have historical antecedents. But it is 
not obviously a necessary truth that all states have historical antece- 
dents, and it has actually been proposed at various times that certain 
kinds of states (quantum mechanical states, miracles, etc.) do not have 
historical antecedents. How does the requirement of temporal priority 
fare in connection with these states, if indeed there are such states? 
First, suppose that neither Q nor R have historical antecedents. 
Suppose further that the date of Q is earlier than that of R. Then the 
requirement of temporal priority tells us to preserve Q at the expense 
of R. This seems reasonable: if P were true, then at the time Q 
occurred, nothing would yet have happened to preclude Q's being 
true, so to make Q false would be a gratuitous change; but then once 
Q is true, when the date of R comes up, something has occurred - 
namely Q in conjunction with P - to preclude R's being true. Thus it 
seems correct to give preference to the earlier state. On the other 
hand, if Q and R have the same date, there is no reason to give 
preference to either - either might be true - and this is just what the 
requirement of temporal priority tells us. Finally, let us suppose R has 
no historical antecedents, but Q does, and the historical antecedents of 
Q extend back in time prior to the date of R. Once more, if P were 
true, then prior to the date of R there would be nothing to preclude 
the occurrence of the historical antecedents of 0 ,  and hence they 
would still occur even if P were true. But those historical antecedents 
implicate 0 ,  and hence together with P they implicate -R. Therefore, 
there is something to preclude R's being true when its date comes up. 
Once again, the requirement of temporal priority gives what seems to 
be the correct answer. 

I believe that in the requirement of temporal priority lies virtually 
the entire solution to the problem of relating the truth conditions of 
subjunctive conditionals to the notion of a minimal change. At least in 
the case in which P is consistent with G, this requirement seems to be 
sufficient to account for all of the judgments we make regarding 
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subjunctive conditionals. This leads to the analysis: 

(2.6) ANALYSIS v: a M P  iff P E  a and G c a and for every time t, 
there is no world /3 such that PE  /3 and G G /3 and 

(Sao(t)ASp(0) <= (S<JOAsa(t)). 

There remains a surprising difficulty for Analysis V. In order to 
appreciate the nature of this difficulty, it must be recognized that 
Analysis V incorporates two distinct elements - an account of how 
minimal changes enter into the truth conditions of subjunctive condi- 
tionals, and an analysis of minimal change. Up to this point all of our 
torturous twistings and turnings have been concerned with the first 
element and we have just assumed that a quite simple characterization 
of minimal change is adequate. That assumption must now be ques- 
tioned. The two elements of our analysis can be separated as follows. 
Where X is a set of propositions and Y is a set of propositions indexed 
by 0 and 1, let us define: 

(2.7) X +  Y=(XU{Q;(Q,  l ) e  Y})-{Q; (0 ,O)e  Y}. 

Thus X +  Y is the result of deleting from X those propositions in Y 
indexed by 0, and adding those propositions indexed by 1. In con- 
structing P-worlds, we want to make minimal changes which will result 
in P being true along with all of the members of G. Thus we are 
interested in changes to worlds which result in certain sets of proposi- 
tions (in particular, G U{P}) being true. So let us define: 

(2.8) If F is a set of propositions, a set X of indexed propositions 
is a F-change to a. at time t iff there is a world a such that 
Sa(t)= Saa(t)+X, and r<= a .  

For simplicity, let us also say that X is a P-change (relative to G )  iff X 
is a G U {P} change. 

Definition 2.8 defines the notion of a F-change, but does not tell us 
what is required for a F-change to be minimal. However, ignoring this 
oversight for the moment, we can restate that part of Analysis V which 
relates subjunctive conditionals to minimal changes as follows: 

(2.9) a M P  iff P e  a and G c.a and for every time t, 
(Sao(t)ASa(t)) is a minimal P-change (relative to G )  to a. 
at time t. 
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I believe that this much of Analysis V is correct, at least for the non- 
counter-legal case in which P is consistent with G. 

Turning next to the notion of a minimal change, we can define: 

(2.10) X is a strictly minimal F-change to a0 at time t iff there is 
no F-change Y to a. at time t such that Y <= X. 

Analysis V embodies the apparently reasonable identification of mini- 

mal F-changes with strictly minimal F-changes. However, this initially ) 

reasonable identification is ultimately indefensible. The difficulty arises 
from the fact that there can be P-changes which do not contain strictly 
minimal P-changes. For example, suppose there are finitely many F's 
in ao, and let P be the counterfactual hypothesis that there are 
infinitely many F's. Any P-change must result in our adding infinitely 
many F's. But given any such change, there is always a smaller 
P-change - one adding one fewer F. Thus there are no strictly minimal 
P-changes in this case. If we identify the minimal P-changes with the 
strictly minimal P-changes, this leads to the conclusion that all sub- 
junctive conditionals having P as their antecedent are vacuously true. 
But this conclusion is clearly incorrect. It is not true, for example, that 
if there were infinitely many F's then there would be finitely many F's. 
Or to take a concrete example, suppose the universe contains only 
finitely many stars. It is certainly not true that if there were infinitely 
many stars in the universe then my car would be painted black. Thus 
there being no strictly minimal P-changes cannot be adequate to make 
vacuously true all subjunctive conditionals having P as their antece- 
dent. 

If a P-change X does not contain a strictly minimal P-change, then 
there must be an infinite sequence Xi, X z ,  . . . , X,,, . . . of progressively 
smaller P-changes such that Xi <= X and for each \ X,+, c Xi. Set- 
theoretically, these P-changes constitute a nest whose lower limit (the 
intersection of all the P-changes in the nest) is not itself a P-change. In 
such a case, how do we evaluate a counterfactual whose antecedent is 
P?  A natural suggestion would be that rP> Q1 is true iff for every 
such sequence there is an i such that for every j 2 i, the P-change X,  
makes Q true. This would be analogous to David Lewis' analysis which 
we discussed in Chapter I . ~  Unfortunately, it is subject to similar 
difficulties. Most important, it would lead us to affirm subjunctive 
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conditionals which it seems ought not to be affirmed. For example, if 
there are infinitely many F's in the real world, then for each natural 
number n, this proposal would make true the conditional 'If there 
were only finitely many F's, then there would still be more than n F'sl. 
But this cannot be correct. For at least some natural numbers n it must 
be true that if there were only finitely many F's, then there might be 
nF's. This example also shows that the Generalized Consequence 
Principle would fail on the present proposal, and it still seems that 
that principle should be true. Thus I think that this cannot be the 
correct way to analyze the truth conditions of subjunctive conditionals. 

When we have such an infinite descending sequence of P-changes 
not containing any strictly minimal P-change, then at least some of the 
P-changes in the sequence must constitute minimal changes them- 
selves. For example, if P is the proposition that there are finitely many 
F's, then any change which consists merely of changing the set of F's 
so as to make it finite and altering other truths minimally to accommo- 
date this change must be considered a minimal change, although as we 
have seen, such a change will not be a strictly minimal change. In order 
to avoid the above sorts of difficulties, our conception of a minimal 
change must be such that every P-change contains a minimal P -  
change. This can be considered a criterion of adequacy for any analysis 
of the notion of a minimal P-change. 

How can we construct an analysis of the notion of a minimal 
P-change which will satisfy our criterion of adequacy? Let us say that a 
descending sequence (a nest) of P-changes is unbounded when there is 
no P-change which is contained in every member of the sequence. 
Then we might be tempted to suppose that every member of any 
unbounded sequence of P-changes is minimal. This would accommo- 
date our observation that any change which 'just' makes the set of F's 
finite would be considered a minimal P-change when P is the proposi- 
tion that there are finitely many F's. Unfortunately, this proposal errs 
in the direction of being too inclusive. It does not allow us to 
discriminate between gratuitous and non-gratuitous changes. Given 
any unbounded sequence of P-changes, we can construct a new 
unbounded sequence of P-changes by adding a new first member 
which results from making all sorts of gratuitous changes to the first 
member of the original sequence. On the present proposal, this new 
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first member would have to be considered minimal, but it clearly 
should not be. 

In order to sort this out we must consider how the necessity for 
unbounded sequences of P-changes arises. Let us say that P itself is 
unbounded (in a world a at time t )  when there are unbounded 
sequences of P-changes. Unbounded propositions frequently arise as 
limits of sequences of progressively stronger or progressively weaker 
bounded propositions. For example, consider the unbounded proposi- 
tion "There are infinitely many F'sl. This can be regarded as the limit of 
the sequence of progressively stronger propositions of the form "There 
are more than n F'sl. This limit can be thought of as the infinite 
conjunction of the propositions in the sequence. 

This can be made precise as follows. I do not really want to commit 
myself to there being propositions which are infinite conjunctions, but 
the effect of infinite conjunctions can be captured unobjectionably as 
follows. Let us define: 

(2.11) P *->UP iff for every possible world a, P is true in a iff 
every member of F is true in a. 

Intuitively, 'P <->ZIP means that P is equivalent to theconjunction of 
all the propositions in F. However, what is being defined is the entire 
relation '<-> n ' ,  and we are not employing the expression 'HF' as a 
term purportedly denoting an infinite conjunction. 

If P is unbounded in a, then there is often a sequence {Qi; i e w }  of 
bounded propositions such that (i) P <-> H{Qi; i e w } ,  and (ii) for each 
i e w, Qi+i + Qi. In this kind of case, a minimal P-change should 
be one that 'just' makes all of the 0 , ' s  true. Such minimal P-changes 
can be regarded as the upper limits of sequences of minimal changes 
making the 0; 's  true for progressively larger i. Precisely: 

(2.12) If {Qi; i e w }  is a sequence of bounded propositions such 
that ?or each i e w, Qi+i + Qi, and P <-Ã H{Qi; i w } ,  and 
{Xi; i e w }  is a sequence such that for each i e w, Xi is a 
strictly minimal 0,-change and Xi G Xi+i, then 
[I {Xi ; i e w }  is a minimal P-change. 

There is a second way that a proposition can be unbounded by virtue 
of being the limit of a sequence of bounded propositions. We have 
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seen that an unbounded proposition may be the upper limit (conjunc- 
tion) of a sequence of progressively stronger propositions. It can also 
be the lower limit (disjunction) of a sequence of progressively weaker 
propositions. For example, if there are infinitely many F's to begin 
with, then "There are finitely many F'sl is unbounded and can be 
regarded as the lower limit of the sequence of propositions of the form 
"There are no more than n F'sl. Let us define: 

(2.13) P<-> XT iff for every possible world a ,  P is true in a iff 
some member of F is true in a. 

Then P can be unbounded by virtue of there being a sequence 
{Qi; i a)} of bounded propositions such that P <-> S{Qi ; i e a)}, and for 
each i e a), Qi + Qi+i. 

If P is the limit (i.e., disjunction) of such an infinite sequence of 
progressively weaker bounded false propositions Qi, then it seems 
initially that for any i a), a strictly minimal Qi-change should be 
considered a minimal P-change. However, this will not work. The 
difficulty is that we could gratuitously strengthen the first member of 
the sequence by conjoining it with an unrelated proposition R. P 
would still be the disjunction of the resulting sequence of propositions, 
but a minimal "(Qo & R)'-change should not be considered a minimal 
P-change. The solution to this difficulty seems to be to turn things 
around. If P <-> S{Qi; i e w}, then "-P1- H{"-Qil; i e a)}. Then we 
can rule out gratuitous changes by saying that a minimal P-change is a 
P-change which results in a world a which is such that we can get back 
to our original world q, by making a minimal "-P1-change to a .  
Precisely: 

(2.14) If {Qi; i e a)} is a sequence of false bounded propositions 
such that for each i e w, Qi + Qi+i, and P @ S{Qi; i e a)}, 
then X is a minimal P-change (relative to G) to a. at time t 
iff there is a world a such that Sa(t)= S a ( t ) + X  and 
G U{P}c a ,  and there is a Y which is a minimal "-P1- 
change (relative to G )  to a at time t such that Sno(t) = 

Sa (t) + Y. 

Unbounded propositions can be either upper limits (conjunctions) or 
lower limits (disjunctions) of sequences of progressively stronger or 
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weaker bounded propositions. However, we cannot stop there. We can 
also have propositions which are unbounded by virtue of being limits 
of other unbounded propositions which are themselves limits of 
bounded propositions. For example, if there are now finitely many F's 
but infinitely many G's, then the proposition "There are infinitely 
many F's and finitely many G'sl is unbounded, but it is not a limit of a 
sequence of bounded propositions. However, it can be regarded as the 
upper limit of the sequence of propositions "There are at least n F's, 
and there are finitely many G'sl, and the latter propositions are 
themselves lower limits of the sequences of propositions of the form 
T h e r e  are at least n F's, and there are no more than m G'sl. This 
indicates that we must generalize our account and make it recursive. 
We first define the notion of a minimal "There are at least n F's, and 
there are finitely many G'sl-change as above, and then by repeating 
our constructions we define the notion of a minimal T h e r e  are 
infinitely many F's and finitely many G'sl-change. 

But before making the above precise, we must note a further 
difficulty. This is that P may be unbounded not because of its own 
logical character, but because of the limit nature of propositions which 
follow from the combination of P with G. Thus we must generalize all 
of the above to talk about the case where the whole set G U { P }  is the 
upper or lower limit of a sequence of progressively stronger or weaker 
sets of propositions. To this end we first define: 

(2.15) If F is a set of propositions and V is a collection of sets of 
propositions, then: 
(a) F ++ ST iff for every possible world a, all of the 

members of F are true in a iff all of the members of 
some element of V are true in a ;  

(b) F ++ U^ iff for every possible world a,  all of the 
members of F are true in a iff all the members of every 
element of V are true in a. 

Let us also generalize our notion of entailment to hold between sets of 
propositions: 

(2.16) If F and A are sets of propositions, then F +  A iff for 
every possible world a,  if all the members of F are true in a 
then all the members of A are true in a. 
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We can now formulate three principles regarding minimal changes: 

(2.17) If X is a strictly minimal F-change then X is a minimal 
F-change. 

(2.18) If T is a sequence {T i ;  i e w} of sets of propositions, and 
F <-> IIV, and for each i e w, Ti+1 -+ Ti, and y is a se- 
quence {xi; i e w} such that for each i e w, x, is a minimal 
^,-change and xi c xi+l,  then \J ,y is a minimal F-change. 

(2.19) If T is a sequence {T i ;  i OJ} of sets of propositions, and 
F- S T ,  and for each ie w, Ti -+ Ti+1, and there is a Y 
such that if Neg F is the set of negations of members of F 
then Y is a minimal Neg F-change to a at t and Sa,(t) = 

Sa(t) + Y, then X is a minimal F-change to at time t. 

My conjecture is now that these three principles completely charac- 
terize the notion of a minimal change. In other words, proceeding 
recursively, for each natural number k we define the notion of a 
minimal); change as follows: 

(2.20) X is a minimalk F-change to a. at time t iff either: 
(a) X is a strictly minimal F-change; or 

(b) there is a sequence T such that F <-Ã I lT ,  and for each 
i e w, !Pi+, + Ti, and there is a sequence ,y such that for 
each i e w, xi c and for some j <  k ,  xi is a minimal, 
T, -change, and X = (J x; or 

(c)  there is a sequence T such that F <-> S^ and for each 
i e w, V, -+ Ti+i ,  and there is a world a such that S,,(t) = 

Sa( t )  + X and FC a, and for some j < k ,  there is a mini- 
mal Neg F-change Y to a at time t such that S%(t) = 

Sa (t) + Y. 

Then my conjecture is: 

(2.21) X is a minimal F-change iff for some natural number k ,  X 
is a minimalk F-change. 

Principle 2.21 constitutes my proposed analysis of the concept of a 
minimal change. Several remarks must be made about this analysis. 
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Two undefended assumptions are built into principle 2.21 and defini- 
tion 2.20. First, it is assumed that limit propositions are always limits 
of (it-sequences rather than limits of sequences of longer transfinite 
length. Second, it is assumed that a minimal change is always a 
minimalk change for some finite k. The form of definition 2.20 is such 
that it could trivially be extended to a definition by transfinite recur- 
sion of 'minimalo for all ordinals /3. My reason for adopting these 
'finiteness' assumptions is simply that appeal to examples has not 
convinced me of the necessity of making the analysis more complicated 
than it already is. However, should we become convinced of that 
necessity, the required amendment to definition 2.20 is of a trivial 
nature, and it is quite obvious how to make the amendment. 

I have defended a criterion of adequacy for any analysis of the 
notion of a minimal change. This is that every .T-change ought to 
contain a minimal F-change. Is this criterion satisfied by the above 
analysis? Unfortunately, I do not know. My only evidence on this point 
is the negative evidence of not having found any counter-examples to 
the satisfaction of the criterion of adequacy. I do not know how one 
could give a general proof that the criterion of adequacy is satisfied. 
This is because of the extreme generality of the question (it is about all 
propositions) and uncertainties regarding the notion of a proposition. 
In Chapter VI, where we restrict our attention to propositions formul- 
able in a certain kind of formal language, the question becomes, at 
least in principle, more readily answerable, although even there I am 
unable to supply a proof of the sort desired. Nevertheless, the lack of 
counter-examples to the satisfaction of the criterion of adequacy leads 
me to conjecture that it is satisfied. 

Principles 2.9 and 2.21 constitute what will be called 'Analysis VI'. 
This is my analysis for non-counter-legal conditionals, and I believe 
that it is correct at least for the restricted case it is intended to capture. 
However, before we can claim to have a full fledged analysis of 
subjunctive conditionals, we must accomplish three more things. First, 
our analysis turns upon the notion of a simple proposition, so we must 
examine that notion more carefully and, hopefully, provide an analysis 
of it. This will be undertaken in the next section. Second, we must 
extend the analysis of subjunctive conditionals to include the case in 
which the antecedent is inconsistent with the set of true subjunctive 
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generalizations. This is the case of counter-legal conditionals, and it is 
the topic of section four. Third, we must extend the analysis still 
further to encompass the case in which the antecedent and consequent 
of the conditional are not indicative. We want to be able to deal with 
conditionals whose antecedents and consequents are themselves sub- 
junctive conditionals or subjunctive generalizations. This task will be 
undertaken in the next two chapters. 

Our analysis of subjunctive conditionals turns rather heavily upon the 
notion of a simple proposition. Simple propositions will also play 
important roles when we turn to the analysis of causes and prob- 
abilities. The important role which simple propositions play in these 
analyses is unfortunate. Contemporary philosophers do not like simple 
propositions, and even if we can succeed in giving an adequate analysis 
of the notion of a simple proposition, their use here is going to be 
repugnant to many philosophers. Perhaps, then, we.should review how 
we got into this fix. The basic idea lying behind our analysis of 
subjunctive conditionals is that they have to do with making minimal 
changes to accommodate the truth of the counterfactual hypothesis. 
But upon inspection, it seems that the notion of a minimal change only 
makes sense given a notion of a simple proposition. In making minimal 
changes we cannot treat all propositions on an equal footing, because 
that would have the result that virtually all changes would be minimal. 
Given any finite set of false proposition which we want to make true, 
we could always form their conjunction and then regard making that 
conjunction true as a single change. The only way to rule this out is to 
somehow rule out conjunctions and disjunctions from the propositions 
we look at in deciding whether a change is minimal. But supposing that 
this can be done is just to suppose that there is a class of propositions 
which are not conjunctions, disjunctions, etc., i.e., it is to suppose that 
there is a class of simple propositions. Thus it seems that the only way 
to make sense of minimal changes is in terms of simple propositions. It 
appears we have no option but to try to make sense of simple 
propositions. 
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In fact, I think that the notion of a simple proposition makes 
perfectly good sense when viewed from an epistemological point of 
view. There is an intuitive distinction between those propositions 
which one can know 'in one fell swoop' and those propositions which 
one knows by first knowing pieces of them. More precisely, we want to 
rule out conjunctions, disjunctions, and in general logical compounds 
as not being simple. It is clearly not satisfactory to rule out all 
propositions equivalent to conjunctions, disjunctions, and the like, 
because that would rule out all propositions. We want to rule out 
those propositions that are, in some sense, really conjunctions or 
disjunctions. I suggest that what characterizes such propositions is that 
the only non-inductive way of coming to know their truth is by 
ascertaining the truth of their conjuncts or disjuncts and then perform- 
ing the appropriate logical inference. For example, the only non- 
inductive way of knowing the truth of 'Either the car is white or it has 
four wheels' is to know the truth of one of the d i s j ~ n c t s . ~  But although 
'The car is white' is equivalent to the disjunction 'Either the car is 
white and has four wheels, or the car is white and does not have four 
wheels', we do not have to know the truth of either of these disjuncts 
before we can know that the car is white. 

The case of conjunctions is analogous to the case of disjunctions. 
The only non-inductive way of knowing the truth of the conjunction 
'The car is white and has four wheels' is to know the truth of both 
conjuncts. 

In contrast to the situation for conjunctions and disjunctions, I 
would propose that a simple proposition is one whose truth can be 
known non-inductively without first coming to know the truth of some 
proposition or propositions which entail it. Thus disjunctions and 
conjunctions are not simple, because to (non-inductively) know a 
disjunction you must infer it from one of its disjuncts, and to (non- 
inductively) know a conjunction you must infer it from its conjuncts. 
But a proposition like 'The car is white' would seem to be simple, 
because it is possible to come to know its truth by proceeding directly 
in ways determined by its meaning and without inferring it logically 
from other propositions that entail it.6 This makes our notion of a 
simple proposition, at base, an epistemological notion. A simple prop- 
osition is one whose truth can be known non-inductively by proceeding 
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in some direct manner which is dictated by the meaning of the 
proposition and which does not involve deducing the proposition 
logically from some simpler (in the order of epistemological complex- 
ity) propositions it is possible for us to know first. Thus my proposal is: 

(3.1) P is simple iff it is logically possible for one to know the 
truth of P non-inductively without first knowing the truth 
of each proposition in some set F which entails P.' 

It is unfortunate that the success of this analysis turns upon the truth 
of certain epistemological theories. Although I have defended those 
theories elsewhere, a person who does not accept them cannot be 
expected to accept the above analysis of a simple proposition either. 
But I do not think that anything can be done about this. The notion of 
a simple proposition is basically epistemological, and hence its charac- 
terization must turn upon one's epistemological theories. 

4. COUNTER-LEGAL CONDITIONALS 

A subjunctive conditional whose antecedent is inconsistent with the set 
G of all true subjunctive generalizations is called a counter-legal 
conditional. Thus far we have been avoiding counter-legals. Now the 
analysis must be extended to include them. We can do this by making 
use of certain conclusions defended in Chapter 11. We still restrict our 
attention to subjunctive conditionals having indicative antecedents and 
consequents. 

To facilitate our discussion, let us now adopt a more complicated 
view of possible worlds. Thus far we have been identifying possible 
worlds with the sets of propositions true in those worlds. It is now 
more convenient to identify a possible world a with the ordered triple 
(Ta ,  Na, Wa)  where Ta is the set of indicative propositions true in a,  Na 
is the set of basic strong generalizations true in a,  and W a  is the set of 
basic weak generalizations true in a. In Chapters V and VI we will 
adopt even more complex representations of possible worlds, but for 
now such ordered triples are sufficient for our purposes. 

Now let us begin by considering strong subjunctive generalizations. 
There is a basic class N whose members are confirmed inductively, and 
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then other strong generalizations are derived logically from those in N. 
Let V N  be the set of material generalizations corresponding to the 
subjunctive generalizations in N. Given two predicates F and G, if the 
supposition "(3x)Fx1 is consistent with V N ,  then "(Fx 3 Gx)' is true iff 
^(x)(Fx => Gx)' is entailed by the generalizations in VN.  But if the 
supposition ^(3x)Fx1 is inconsistent with V N  (so the generalization 
itself is counter-legal), it was argued that "(Fx 3 Gx)' is true iff 
( x ) ( F x  => Gx)' is entailed by every maximal-r('3x)Fx'-consistent sub- 
set of V N .  For present purposes, the best way to think of this is as 
follows. The different maximal-r(3x)Fx1-consistent subsets of V N  rep- 
resent the results of making minimal changes to N in order to 
accommodate the truth of P, which in turn represent the possible 
choices regarding what might be the set of all true basic strong 
generalizations if "('3x)Fx1 were true. In other words, these are the sets 
of basic strong generalizations in different r(Sx)Fxl-worlds. This im- 
mediately suggests a general way to deal with counter-legal subjunctive 
conditionals. If P is inconsistent with V N ,  then the results of making 
different minimal P-changes to N  represent the sets of true basic 
strong generalizations in different P-worlds. Thus to accommodate 
counter-legal conditionals whose antecedents are inconsistent with the 
set of strong generalizations, we impose the following requirement on 
M: 

(4.1) CONSERVATION OF STRONG GENERALIZATIONS: If P is inconsis- 
tent with V N ,  and aMP, then Na, the set of basic strong 
generalizations true in a, must be the result of making a 
minimal {P}-change to N. 

The idea is that P may force us to reject some of our strong generaliza- 
tions, but we are constrained to reject as few as possible. As there may 
be different choices regarding which to reject in order to render the 
resulting set P-consistent, we must look at all of those choices in order 
to determine what would be true if P were true. 

In Chapter 11, we identified the results of minimal P-changes to N  
with the sets of subjunctive generalizations corresponding to the ma- 
terial generalizations in maximal-P-consistent subsets of V N .  This, in 
effect, is to identify minimal P-changes to N with strictly minimal 
P-changes to N, and in light of the discussion of section two, such an 
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identification is at least suspicious. It is plausible to suppose that we 
should instead proceed in a manner analogous to our analysis of 
minimal P-changes to S a ( t ) .  I have been unable to find persuasive 
examples indicating that this level of sophistication is necessary at this 
point, but in the interest of safety, it seems best to follow this course 
anyway. The P-changes to N that arise from indicative propositions 
are simply deletions, so it seems that we can analyze this notion as 
follows: 

(4.2) If X and Y are sets of subjunctive generalizations F is a set 
of propositions, and k is a natural number, then Y is the 
result of making a minimalk F-change to X iff either: 
a )  VY is a maximal-F-consistent subset of VX; or 
(b) there is a sequence A of sets of propositions such that 

F <-Ã UA, and for each i e w, A -+ A,+i,  and there is a 
sequence x such that for each i e QJ, xi+1 c xi and for 
some j <  k, xi is the result of making a minimal, A,- 
change to X, and Y = U x; or 

(c) there is a sequence A of sets of propositions such that 
F <-> SA, and for each i w, A, + Y is the result of 
making a F-change to X, and for some j < k, X is the re- 
sult of making a minimal, Neg F-change to Y. 

(4.3) Y is the result of making a minimal F-change to the set of 
X of subjunctive generalizations iff for some natural 
number k, Y is the result of making a minimalk F-change 
to X. 

Next consider what happens when P conflicts with the class of weak 
generalizations. Weak generalizations have a structure analogous to 
that of strong generalizations. There is a class W of basic weak 
generalizations, and then others are inferred from the basic ones 
together with the strong generalizations. When P conflicts with the 
weak generalizations, or more generally with N U  W, we first modify N 
as above to render it P-consistent, and then we delete as few things as 
possible from W so as to render Wa consistent with VNa U{P}. The 
basic idea is that strong generalizations take precedence over weak 
generalizations, so we first conserve as many of the strong generaliza- 
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tions as possible, and then having done that, we proceed to conserve as 
many of the weak generalizations as possible: 

(4.4) CONSERVATION OF WEAK GENERALIZATIONS: If P is inconsistent 
with VW, then We, the set of weak generalizations true in 
a,  must be the result of making a minimal VNnU{P}- 
change to W. 

If we put all of these restrictions together, we obtain what 1 believe 
is a complete analysis of M for the case of indicative antecedents. Let 
no be the actual world. Then the analysis of M can be stated as follows: 

(4.5) ANALYSIS VII: a M P  iff 
(i) P e Ta; 

(ii) Na is the result of making a minimal P-change to Na,,; 
(iii) Wa is the result of making a minimal VNa U {P}-change 

to Na.; 
(iv) for every time t, (SQ,,(t)ASa(t)) is a minimal 

(VNa U V Wa U{P})-change to Ta,, at time t. 

This analysis, together with the definition: 

(4.6) DEFINITION: rP>Q1 is true iff, for every possible world a,  if 
aMP then Q Ta. 

constitutes my analysis of simple subjunctives for the case in which P 
and 0 are both indicative statements. 

Although our analysis is restricted to the case in which the antece- 
dent and consequent of a conditional are indicative, it is still of some 
interest to see what the analysis entails about the logical properties of 
these conditionals. First, if the analysis is correct, logical necessity, and 
hence logical entailment, can be defined in terms of the subjunctive 
conditional. I have argued that a correct analysis must have the 
consequence that every P-change contains a minimal P-change, and 
this has the result that ^P> -P1 is true iff there are no P-changes. 
Thus, on the as yet unverified assumption that my analysis does satisfy 
my stated criterion of adequacy, we have: 

(4.7) 'UP1 is true iff r(-P > P)' is true. 

Second, the principles 6.1-6.8 of Chapter I1 are all valid. This means 
that the axiomatic theory SS formulated in Chapter I1 is sound. Third, 
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the principle 7.1 of Chapter 11, which distinguished SS from David 
Lewis' theory C l ,  is not valid. Thus Analysis VII is in accord with the 
conclusions defended intuitively in Chapter 11. 

Now what remains is to generalize Analysis VII to include the case 
in which P and Q are not indicative sentences. This is basically a 
matter of turning the analysis into a recursive definition, and will be 
the topic of Chapter VI. We  will also want to combine quantifiers with 
subjunctive conditionals. The groundwork for this will be laid in 
Chapter V, and then the full theory will be developed in Chapter VI. 

Before proceeding with the further analysis of the simple subjunctive, 
let us turn to a different subjunctive conditional which is really a 
variant of the simple subjunctive. In Chapter I, in discussing whether 
subjunctive conditionals are subject to pragmatic ambiguity, we had 
occasion to discuss pairs of conditionals like: 

(A)  If that were gold, it would be malleable. 

(B) If that were gold, some gold things would not be malleable. 

A t  that point it was suggested that the apparent conflict between these 
two conditionals could be resolved by resolving an ambiguity in the 
antecedent. It was claimed that despite appearances, the antecedents 
of these conditionals d o  not have the same meaning. The difference in 
emphasis changes the meaning so that (B) actually means something 
like: 

(B*) If some gold were like that (i.e., had the properties that 
has), then some gold things would not be malleable. 

I believe that as a resolution of the conflict between the members of 
this particular pair of conditionals, this is acceptable. However, this 
pair of conditionals constitutes an example of a more general 
phenomenon which cannot always be  dealt with so simply. Conditional 
(A) is a perfectly straightforward simple subjunctive conditional and is 
to be analyzed in accordance with Analysis VII. But conditional (B) is 
not a simple subjunctive conditional, although it is a close cousin to the 
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simple subjunctive. Conditional (B) is an example of what I will call a 
'preferred subject conditional'. Before considering how preferred sub- 
ject conditionals are to be analyzed, let us consider some additional 
examples. An interesting pair of conditionals is: 

(C) If I were a member of the Lakers, I would be a good 
basketball player. 

(D) If I were a member of the Lakers, they would not have a 
very good team. 

In defense of (C) we simply observe that there is a weak subjunctive 
generalization to the effect that no one could be a member of the 
Lakers unless he were a good basketball player. Thus the truth of (C) 
is entirely in accordance with our analysis of the simple subjunctive. 
But in defense of (D), we observe that I am a lousy basketball player, 
and hence were I a member of the Lakers they would not have a very 
good team. The effect of emphasizing 'I' in the antecedent of (D) 
seems to be to indicate that in evaluating the truth of this conditional 
we seek to preserve my attributes in preference to those of the Lakers. 
We might try to paraphrase (D) as we did (B) to get something like: 

(D*) If some members of the Lakers were like I am (i.e., had the 
properties I have), then the Lakers would not have a very 
good team. 

But we can see that neither (D*) nor (B*) is an entirely adequate 
paraphrase. The difficulty is that, presumably, one of my properties is 
that of not being a member of the Lakers, but we do not want (D*) to 
say anything like 'If there were some members of the Lakers who were 
not members of the Lakers, t hen . .  .'. We are naturally led to amend 
(D*) to talk about 'non-relational properties', but this is not a very 
clear notion and it will turn out below that such a move is not adequate 
to deal with other examples of subject preference anyway. 

As a final e x a m p ~ e , ~  consider the Shah who has a famous collection 
of blue-white diamonds, and consider a grubby little industrial 
diamond. Then we have: 

(E) If that were one of the Shah's diamonds, it would be 
blue-white. 
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(F) If that were one of the Shah's diamonds, not all of the 
Shah's diamonds would be blue-white. 

The antecedent of (E) or (F) is ambiguous between 'If that diamond 
belonged to the Shah,. . .' and 'If that were one of a i , .  . . , a,, (where 
a i , .  . . ,a, ,  are the diamonds belonging to the Shah). . .'. On the 
former reading, this becomes analogous to (C) and (D) above. But let 
us take it instead in the latter, counter-identical, sense. Then we would 
agree that both (E) and (F) are true. However, neither (E) nor (F) 
would be true according to Analysis VII. In order to make the 
antecedent true, we must modify some simple truths regarding either 
the industrial diamond or the Shah's diamonds, but we have a choice 
regarding which to modify. Thus all that the results from Analysis VII 
is the uninteresting conclusion that if the industrial diamond 'were one 
of the Shah's diamonds, it might be blue-white, or it might instead be 
the case that not all of the Shah's diamonds would be blue-white. 

It seems that the effect of emphasizing 'that' in (F) is to give 
preference to the properties of the industrial diamond over the proper- 
ties of the Shah's diamonds in modifying the set of simple truths so as 
to make it consistent with the supposition that the industrial diamond 
is one of the Shah's diamonds. The effect of emphasizing 'Shah's 
diamonds' in (E) is just the opposite - to give preference to the 
properties of the Shah's diamonds. This seems to be what happens in 
general in cases of subject preference. In (B) the effect of emphasizing 
'that' is to give preference to the properties of the piece of cast iron, 
and in (D) the effect of emphasizing 'I' is to give preference to my 
properties. This seems to be the effect in general of preferred subjects. 
In a conditional "If it were true that P then it would be true that Q1, if 
there is no preferred subject, then in constructing P-worlds we treat 
everything on a par with everything else, throwing all simple truths 
into the pot together. But if there is a preferred subject, then we give 
preference to the simple truths regarding that subject. That is, we only 
modify them insofar as they are themselves incompatible with P, and 
then we modify the other simple truths subject to the constraint that 
the result must be compatible with the surviving simple truths about 
the preferred subject. 

Let us symbolize a preferred subject conditional by subscripting the 
connective with the individual term for the preferred subject: ^ P  2 Q1. 
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What is required for this to be true is, not for 0 to be true in every 
P-world, but for Q to be true in every (P, a)-world, where these are 
the worlds constructed by giving preference to the simple truths about 
the preferred subject. How, exactly, do we construct (P, a)-worlds? 
First, let us ignore any effect on the subjunctive generalizations and 
just look at what happens to the simple truths. Letting Sa be the set of 
simple propositions about the preferred subject a, we first set about 
making (So I") Tao) P-consistent and then afterwards we render (S ("I Ta)  
consistent with both P and our decisions regarding ( S o n  Tan). In 
deciding how to modify (Sari TaJ, it may naturally seem that we must 
still take undercutting into account. However, let us reserve our 
opinion on this for the moment, and simply assume that (SanTa) must 
be P-consistent. 

Ignoring any changes in the subjunctive generalizations, it seems 
that we should modify Analysis VII by replacing clause (iv) by the two 
clauses: 

(iv) ((SonTao)A(SanTa)) is a minimal (VNaUVWaU{P})- 
change to (Sa ("I T,J (in the sense of definition 2.20); 

(v) for every time t, (San(t)ASa(t)) is a minimal (VNa U 
V Wa U (Sa I") Ta) ("I {P})-change to Tau at time t. 

So far we are ignoring any effect that the counterfactual hypothesis 
may have on the subjunctive generalizations, but before looking at that 
we must observe that a slight generalization of the above is required in 
order to deal with the example of the Shah's diamonds. We can 
handle (F) as above, but in the case of (E) our preferred subject is not 
an individual but rather a set of individuals (the set of all the Shah's 
diamonds). In evaluating the truth of (E), we consider worlds con- 
structed by giving preference to the simple truths about each of the 
Shah's diamonds. Thus we must define a more general kind of prefer- 
red subject conditional: "^P$Q1 where X is a set of individual terms. 

We can then define 'P 2 Q1 = ̂ P> Q1. Defining: 

we can modify clauses (iv) and (v) above by replacing 'Sa  throughout 
by 'Sx'. 
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Next, let us ask what effect subject preference has on the subjunctive 
generalizations. We might naturally suppose that it has no effect, i.e., 
that clauses (ii) and (iii) of Analysis VII are left unchanged. However, 
examples (B) and (D) indicate that this is incorrect. In (D) we are using 
the simple truths about my athletic prowess to override the weak 
subjunctive generalization that no one could be a member of the 
Lakers unless he were a good basketball player. And in (B) we are 
using the simple truths about the piece of cast iron to override the 
strong subjunctive generalization that all gold is malleable. Thus in a 
preferred subject conditional, the simple truths about the preferred 
subject take absolute precedence over everything else. We first set 
them consistent with the counterfactual hypothesis, and then we pro- 
ceed to make our other modifications to the world in accordance with 
the clauses of Analysis VII. As we deal with the simple truths about 
the preferred subject before we deal with subjunctive generalizations, 
we cannot deal with them in terms of their historical antecedents, and 
hence undercutting cannot be involved. So I propose the following: 

(5.2) a is a (P, X)-world Iff 
(i) P E  Ta; 

(ii) ((Sx fl Tan)A(Sx n To)) is a minimal P-change to (Sx fl 

Ta,,) ; 
(iii) Na is the result of making a minimal ((Sx fl TJ f l  {P} ) -  

change to Nan; 
(iv) Wa is such that (WaU Na)  is the result of making a 

minimal ((Sx fl TJ U {P})-change to ( W^U Nao); 
(v) for every time t, (Sao(t)ASa(t)) is a minimal (VNa U 

V Wa U(Sx fl Ta) U {PI)-change to Tau at time t. 

(5.3) ^P>Q1 is true iff 0 is true in every (P, X)-world. 

One glaring shortcoming of this analysis is that it proceeds in terms 
of the notion of a statement being 'about' a particular object. This is a 
very problematic notion in general, and I am not prepared to give an 
account of it. However, some solace can be gained from the observa- 
tion that the application of this notion seems relatively more obvious 
and transparent in the case of simple propositions than it is for 
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propositions in general. In particular, for the case of simple proposi- 
tions 'about' appears to be extensional: 

This means that we can think of the subscripts on preferred subject 
conditionals as simply picking out individuals or sets of individuals 
rather than thinking of them linguistically as picking out individual 
terms or sets of terms. 

It should be emphasized here that preferred subject conditionals 
constitute a genuinely different kind of subjunctive conditional. They 
are close cousins of simple subjunctive conditionals, but they are not 
the same. We have given a different analysis for preferred subject 
conditionals. Actually, turning things around, we can regard the simple 
subjunctive as a kind of limiting case of preferred subject conditionals, 
viz., the case in which the set of preferred subjects is empty: 

In Chapter I, in arguing against the purported pragmatic ambiguity 
of the simple subjunctive, I maintained that many putative counter- 
identicals are not really counter-identicals. We can now see how that 
claim should be understood. What is true is that many putative 
counter-identicals are not counter-identical simple subjunctive condi- 
tionals, but many of them do turn out to be counter-identical preferred 
subject conditionals. For example, consider: 

(G) If Richard Nixon were Golda Meir, he would be a woman. 

(H) If Golda Meir were Richard Nixon, she would be a man. 

These can be analyzed as: 

(G*) R N  = GMZMRN is a woman. 

(H*) GM = RN>GM is a man. 

In counter-identicals, the preferred subject is often indicated by the 
word order. However, this can often be overridden through the use of 
emphasis. 

We have seen that some putative counter-identicals really are 
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counter-identical preferred subject conditionals. However, there still 
remain a number of putative counter-identicals which are not really 
counter-identicals on any reading, viz., 

(1) If I were Gerald Ford, I would sign the education bill. 

This can only be analyzed in terms of roles as meaning: 

(I*) If I were in the role of Gerald Ford, I would sign the 
education bill. 

It seems that preferred subject conditionals are of some importance 
in understanding a number of our subjunctive locutions. I will not 
pursue their analysis further as we go on to consider quantification and 
the case of non-indicative antecedents and consequents, but it should 
be quite obvious how to extend the analysis to those cases. 

N O T E S  

' My terminology differs from that of David Lewis, who calls any world in which P is 
true a P-world. 

For example, Q is equivalent to "(Q v R )  & ( Q  v - R)'. 
This is defended in Pollock (1974). 
( X A  Y )  is defined to be (XU Y ) - ( X f l  Y ) .  
Notice that we do need the qualification 'non-inductive'. It is quite possible to have an 

inductive reason for believing a disjunction which is not composed of reasons for 
believing each disjunct separately. 

More precisely, in the jargon of Pollock (1974) the justification conditions for the 
statement 'The car is white' include non-conclusive non-inductive logical reasons, 
whereas the justification conditions for conjunctions and disjunctions include only 
conclusive non-inductive logical reasons. 
' This has the effect of excluding subjunctive generalizations more or less arbitrarily. It 
makes no difference to the analysis of subjunctive conditionals whether we count 
subjunctive generalizations as simple, because they are preserved anyway in constructing 
P-worlds. 

I am indebted to Keith Lehrer for this example, and for getting me to think about 
subject preference in the first place. 
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Q U A N T I F I C A T I O N ,  M O D A L I T I E S ,  
A N D  C O N D I T I O N A L S  

In this chapter I want to begin the investigation of what happens when 
we combine quantifiers with subjunctive conditionals. This is a more 
difficult problem than might at first be supposed. It is not entirely 
obvious that quantification into subjunctive conditionals makes sense. 
Part of the problem can be seen as follows. We have seen that if our 
analysis is correct, then logical necessity can be defined in terms of 
subjunctive conditionals: 

Thus quantification into subjunctive conditionals contains as a special 
case that of quantification into modal contexts, and many philosophers 
believe the latter to be illegitimate. 

The difficulty can be made manifest as follows. Ordinarily, r ( x )$ l  is 
taken to mean that every object in the universe satisfies the open 
formula $. Thus if quantification into $ is to be legitimate, it must 
make sense to talk about an object satisfying $. If $ is referentially 
opaque, it seems not to make sense to talk about an object satisfying $. 
For a referring term t, let us write r$tl for the result of replacing the 
free occurrences of x in $ by t. Then it seems that a necessary 
condition for an object to satisfy i,b is that if t is any term denoting the 
object, then r$tl must be true. In other words, if the object itself 
satisfies $, then it must make no difference how we describe the object. 
But this requires that $ be referentially transparent. If $ is referen- 
tially opaque, then it seems that the most we can say is that the objecl 
cum description satisfies 4, which is tantamount to saying that it is not 
objects but rather individual concepts that satisfy $. 

The received view on modal operato s is that they generate referen- 
abw 

tially opaque contexts, so in light of the equ~valence -3& it would follow 
that subjunctive conditionals are also referentially opaque. We can 
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apparently verify this by turning to particular examples. For example, 
Neil Armstrong was the first man to set foot on the moon. It is true 
that if the first man to set foot on the moon had been only three feet 
tall, the rungs on the ladder of the lunar lander would have been close 
together. But it is not true that if Neil Armstrong had been only three 
feet tall then the rungs on the ladder of the lunar lander would have 
been close together - on the contrary, had Neil Armstrong been only 
three feet tall, he would not have been admitted to the astronaut 
training program and someone else of normal height would have been 
the first man to set foot on the moon. 

Are we to conclude then that subjunctive conditionals are referen- 
tially opaque and hence that it is illegitimate to quantify into them? 
The situation is not as clear cut as all that. The difficulty is with the 
notion of referential opacity itself. The customary way of defining 
referential transparency is that a formula qx is referentially transpar- 
ent iff the substitutivity of identity holds for it: 

However, this is an unreasonably strong requirement. A term may 
denote a certain object when taken in isolation, but denote a different 
object in the context of a certain statement. For example, in isolation 
the definite description 'the first man to set foot on the moon' denotes 
Neil Armstrong, but it does not denote Neil Armstrong in the context 
of the subjunctive conditional 'If the first man to set foot on the moon 
had been only three feet tall, then the rungs on the ladder of the lunar 
lander would have been close together'. Let us say that a singular term 
is used rigidly in a statement if, in the context of that statement, it 
denotes the same thing it denotes in isolation. 

Many referentially opaque contexts arise from the fact that terms are 
not used rigidly in those contexts. But this should not be taken as 
showing that quantification into those contexts is illegitimate. In order 
for an object to satisfy a formula rqxl, it is not required that if t is any 
term denoting the object in isolation then rqt' is true. That is much too 
strong a requirement. All that should be required is that if t denotes 
the object in the context rptl then rqt l  is true. Thus referential 
transparency, as traditionally defined, is not required for the legitimacy 
of quantification. 
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What the above considerations really indicate is that the traditional 
definition of referential transparency does not capture the notion it is 
intended to capture. A reasonable course would be to retain the 
requirement that quantification presupposes referential transparency 
but redefine referential transparency in terms of individual terms used 
rigidly: 

(1.1) rqxl is referentially transparent iff it is possible to use a 
term a rigidly in rqal, and for any terms a and b used 
rigidly in rqal  and rqbl, the following is necessarily true: 
r a  = b 3 (qa = qb)'. 

Notice that if rqxl is referentially transparent in this weaker sense, 
then the following principle must hold: 

Are modal and subjunctive contexts referentially transparent in this 
weaker sense? I believe they are. Referential opacity requires the 
failure of substitutivity of identity7 but it requires more than just that - 
it requires such failure even in the case of terms used rigidly. It is easy 
to find cases of the failure of substitutivity in modal and subjunctive 
cases, but it is not so easy to find such cases where the terms are used 
rigidly. The clearest examples of failure of substitutivity involve defin- 
ite descriptions7 and in those cases the terms are rather obviously not 
used rigidly. This is illustrated by the example of Neil Armstrong and 
the first man to set foot on the moon. In contrast to that example, it is 
quite possible to use a definite description rigidly in a subjunctive 
context. For example, 'If the man at the end of the bar were outside 
now, it would be much quieter in here' clearly does not mean 'If it 
were the case that there is a unique man who is at the end of the bar 
and he is outside, t hen . .  .'. Rather, it means, 'There is a unique man 
who is at the end of the bar, and if he were outside now, t h e n . .  .'. In 
this case, the substitutivity of identity goes through without difficulty. 
For example, if the man at the end of the bar is Edward, we can 
conclude, 'If Edward were outside now, it would be much quieter in 
here7. 

The difference between the rigid and non-rigid use of a definite 
description in a subjunctive conditional seems to coincide with a 
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difference in the scope of the definite description. r[q(7x8x)> $1' is 
ambiguous between the following two formulas, which represent wide 
scope and narrow scope respectively: 

(3!x)Ox & (3x)[(8x & (qx > $11 
n 

[(3!x)Ox & (3x)(Ox & 9x1. > +] 

If the conditional is understood in the former way (wide scope), then 
the description is being used rigidly and we can substitute coreferential 
terms for it with impunity. 

Appealing to the scope ambiguity to account for the failure of 
substitutivity does not automatically resolve the problem in favor of 
quantification into subjunctive conditionals, because it begs the ques- 
tion by assuming that such quantification makes sense in the first place. 
But such an appeal does undercut the standard argument against 
quantification by showing, in effect, that it begs the question against 
quantification by assuming that we cannot make the distinction be- 
tween wide scope and narrow scope. To resolve the issue of the 
legitimacy of such quantification we must appeal to other considera- 
tions. 

Considerable support for the legitimacy of quantification into sub- 
junctive conditionals can be mustered by appealing to examples. First, 
we have examples of subjunctive conditionals containing definite de- 
scriptions which seem clearly to have wide scope. We already discussed 
the example, 'If the man at the end of the bar were outside now, it 
would be much quieter in here'. It seems that the definite description 
in this conditional can only be construed as having wide scope, and if 
wide scopes are possible in such contexts it follows that quantification 
into subjunctive conditionals must make sense. We can support this 
same conclusion more directly by appealing to examples which appear 
to be quite straightforward cases of quantification into subjunctive 
conditionals. Two such examples are: 

Somewhere there is a man who would solve a11 our prob- 
lems if he were elected president. 

There is a lion out there who would eat you if he caught 
you. 
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These seem very obviously to be examples of quantification into 
subjunctive conditionals, and they seem to make perfectly good sense. 

I believe that these considerations satisfactorily meet the difficulties 
involving the putative referential opacity of subjunctive conditionals. If 
it were not for the difficulties discussed in the flext section, we could 
leave it at this and assume that quantification into subjunctive condi- 
tionals, and hence into modal contexts, is unobjectionable. But as we 
will see, there are further difficulties for this view. 

The semantics for subjunctive conditionals and modal operators re- 
quire us to look at more than one possible world. '0q1 is true iff q is 
true in every possible world, and 'q > $' is true iff $ is true in every 
q-world. By analogy, it would seem that r(3x)E!q1 is true iff there is 
some object (in the actual world) which satisfies the open formula q in 
every possible world. But it seems that in order to know whether an 
object in one world satisfies a formula in another world, we must 
somehow locate that object in the second world. Thus the legitimacy of 
quantification into modal contexts seems to presuppose that it makes 
sense to talk about an object in one world being the same as an object 
in another world, i.e., it presupposes the meaningfulness of transworld 
identity. 

But what could it possibly mean to say that an object in one world is 
the same object as one in another world? The attempt to answer this 
question has sometimes led philosophers to talk about essences and to 
suppose that objects can be reidentified across possible worlds in terms 
of their essences.' Although this seems at first to be the only way t~ 
make sense of transworld identity, it also seems totally implausible to 
suppose that objects really have such essences. This is not to deny that 
objects might have some essential attributes. For example, it is not 
implausible to suppose that certain basic sortal properties are essential 
(Brody 1973, Pollock, 1974, pp. 157-174). But it is not to be supposed 
that objects have sufficiently many essential attributes to enable us to 
reidentify them across possible worlds in terms of those attributes. 

For many years the above considerations led me to despair of 
making sense of transworld identity and hence to disdain quantification 
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(over individuals) into modal and subjunctive contexts. However, just 
because we reject quantification over individuals, we are not precluded 
from endorsing some other sort of quantification which is related to 
individual quantification and in terms of which we can try to make 
sense of putative examples of quantification into modal and subjunc- 
tive contexts. There are two prime candidates for such alternative 
modes of quantification. 

A simple and safe way of making sense of quantification into modal 
contexts is to let the quantifiers range over individual concepts. For- 
mally, an individual concept can be taken to be a function on possible 
worlds which picks one object out of each world to be the designatum 
of the concept in that world3 (Kanger, 1957, Kaplan, 1964). I can find 
nothing objectionable about quantification over individual concepts. 
The only difficulty is that such a device does not enable us to make 
sense of some statements that seem to be perfectly sensible. Although 
it may be reasonable to interpret quantifiers in terms of individual 
concepts, it is not reasonable to interpret individual terms as expres- 
sing individual concepts. For example, I would be saying something 
true if I were to point to a particular table and say, 'Although that 
table could be red, it could not be the number two.' There are 
infinitely many different individual concepts which designate that table 
in this world. Some of those individual concepts do not designate a red 
object in any world, and others designate the number two in some 
worlds. Thus we cannot interpret the above statement as meaning that 
every individual concept which designates that table in this world is 
such that it designates something red in some world and designates the 
number two in no worlds. Apparently we are not talking about every 
possible individual concept which designates the table in this world. 
Are we then talking about some unique 'privileged' individual concept 
chosen from among those that designate the table in this world? I can 
see no way to pick out such a concept. Such a move would only make 
sense on the kind of essentialism we have already rejected. Thus I 
think we must conclude that the appeal to individual concepts does not 
allow us to make sense of many perfectly sensible modal statements. 
Something more is required. 

The difficulty is that we really do seem to make modal and subjunc- 
tive assertions which are literally about some particular thing, such as 
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the table. The natural way to make sense of such assertions is in terms 
of transworld identity, but that involves us in immense difficulties. 
David Lewis [I9681 has suggested an ingenious alternative. This is that 
although other worlds do not literally contain the same individuals as 
this world, they may contain 'counterparts' of individuals in this world. 
Lewis proposes that if a is an object in one world and b is an object in 
a second world, b is the counterpart of a in the second world just in 
case b bears at least a minimal similarity to a and is more similar to a 
than is any other object in that second world. Then the proposal is that 
to say that something is necessarily true of a is to say that it is true of a 
in this world and true of all counterparts of a in other worlds. Thus, 
for example, the table could be red but could not be the number two 
because there are worlds containing counterparts of the table which 
are red, but there are no worlds containing counterparts of the table 
which are also counterparts of the number two. 

The appeal to counterparts is attractive. It allows us to make sense 
of de re modal statements and quantification into modal contexts while 
absolving us of having to make sense of transworld identity. However, 
as Lewis formulated it, counterpart theory leads to difficulties when we 
consider subjunctive conditionals. Counterpart theory leads us to say 
that a conditional "Fa > G a l  is true iff G is true of the counterpart of a 
in every "Fa1-world, where an "Fa1-world is defined in terms of the 
counterparts of a. But look what happens when we consider a condi- 
tional like 'If I had been born in the place of Richard Nixon, with all of 
his genes, etc., and raised as he was raised, and he in turn had been 
born and raised in my place, then I would have been a president 
threatened with impeachment and he would have been an interested 
bystander'. If we symbolize the antecedent of this conditional as "Fabl, 
where a designates Richard Nixon and b designates me, then to 
evaluate its truth we look at all "Fabl-worlds. But according to 
counterpart theory, there are no "Fabl-worlds. This is because in an 
"Fabl-world, the counterpart of Richard Nixon would be less like 
Richard Nixon than would my counterpart be, and vice versa, in which 
case they could not be Richard Nixon's counterpart and my 
counterpart. 

The above example indicates that it is unreasonable to require that 
the counterpart of an object be more like that object than is anything 
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else existing in the same world as the counterpart. It makes perfectly 
good sense to assert counterfactuals about what would happen if one 
object were quite different than it is and a second object was just like 
the first object is now. We must construct the counterpart relation 
more liberally. But this leads to new difficulties. If we cannot define the 
counterpart relation in the simple way proposed by David Lewis, then 
what we need is a criterion for counterparthood. But what could such a 
criterion be? The difficulties that arise here are precisely the same as 
those that arose in looking for a criterion for transworld identity. It 
seems that the only way to make sense of counterparts is in terms of 
some kind of essentialism, but essentialism is no more plausible now 
than it was before. It appears that the appeal to counterparts in place 
of transworld identity solves nothing. 

Faced with the above difficulties, it would be very tempting to conclude 
that de re modalities and quantification into subjunctive conditionals 
do not make sense. But such a conclusion flies in the face of what 
appear to be clear examples to the contrary. I do not see how anyone 
can deny the meaningfulness of either 'That table could be red, but it 
could not be the number two' or 'There is a lion out there who would 
eat you if he caught you'. Where do we go from here? 

The key to the solution to our problem has been provided by Saul 
Kripke (1971, 1972). Kripke's point is very simple. We are thinking of 
possible worlds in the wrong way. We are thinking of them as being 
given to us 'structurally', by giving a domain of objects and saying what 
properties those objects have, and then leaving it up to us to somehow 
identify the objects in the domain on the basis of those properties. 
Why shouldn't we instead have the identity of the objects be part of 
the specification of the world? 

Recall once more what the basic intuition is behind our analysis of 
subjunctive conditionals. We begin with the set of all true statements, 
and then modify that set as little as possible to accommodate the truth 
of the counterfactual hypothesis. This intuition is in terms of truths, not 
worlds. It was asserted that we could capture this intuition by talking 
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about how possible worlds compare with one another, but in order to 
accomplish this the possible worlds must be closely related to sets of 
propositions. What is important here is that the truths which go into 
the makeup of the possible worlds are truths about particular objects 
in this world. Thus if we identify a possible world with the set of 
propositions true in it, the identity of the objects in that world will not 
be open to question. Their identity will be given by some of those 
truths. The truths are truths about particular objects. Here is a place in 
which the platonistic view of possible worlds is apt to mislead us 
(although it need not), whereas if we construe possible worlds to be 
sets of propositions we will not be led astray. As Kripke puts it, at least 
for present purposes we should think of possible worlds as counterfac- 
tual situations. As such, the identity of the objects which exist in any 
possible world will be given as part of the specification of the world. 
There is no need for a criterion of transworld identity. The search for 
such a criterion was doomed from the start because most any object 
can be most any way, and hence an object described in terms of its 
properties in some possible world could be identified with most any 
object in the actual world. There is no question of getting the identifi- 
cation right. We can identity objects however we choose, and that 
identification will be part of the specification of the world. This follows 
from the simple fact that we can have non-vacuous counterfactual 
hypotheses (and hence counterfactual situations, i.e., possible worlds) 
in which we suppose most anything we like about an object. 

The above considerations seem to show that transworld identity 
makes sense after all, in a trivial sort of way. Instead of solving the 
problem of transworld identity, we have resolved it by showing that 
there isn't really any problem. But in spite of appearances, all is not 
yet smooth sailing. 

Suppose I entertain the counterfactual hypothesis, 'If my house were 
painted b lue . .  .'. This is a hypothesis that is literally about my house. 
Does it follow then that possible worlds in which this hypothesis is true 
contain an object that is literally the same object as my house (in this 
world)? Building this hypothesis into the construction of a possible 
world in some sense fixes the identity of an object in that world, but 
does this really mean that the object in that world is the same object as 
my house? In other words, is the transworld relation between objects 
'of the same identity' literally that of identity? 
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It may seem that the answer to this question is trivially 'Yes'. After 
all, the statement 'My house is painted blue' is literally about my 
house. But it is not clear what this establishes. One must be wary of 
putting too much weight on the word 'about'. After all, the negative 
existential 'My house does not exist' is also about my house, but it 
certainly does not follow that my house exists in any world in which 
the negative existential is true. It may be protested that it is unfair to 
appeal to negative existentials, because everyone knows that they are 
peculiar, but there is another kind of statement which makes it seem 
very suspicious to suppose that objects in different worlds are literally 
identical. This is that kind of counterfactual called a 'counter- 
identical'. We sometimes assert counterfactuals about what would be 
the case if two objects which are in fact distinct were one and the same 
object. For example, I might entertain the counterfactual hypothesis 
that Richard Nixon and Donald Nixon are one and the same person, 
this being brought off through the clever use of makeup, with the 
person in question sneaking away from San Clements occasionally to 
play the role of Donald Nixon, and then sneaking back to play the role 
of Richard Nixon. A counterfactual with this antecedent is just as 
literally about both of the two Nixons as the statement 'My house is 
painted blue' is about my house. One might feel some temptation to 
reply that the conditional is really about one of the two Nixons and the 
other would not exist if the antecedent were true, but this is unsatisfac- 
tory because there is no way to say which of the Nixons it is about and 
which would not exist. I think it must be admitted that the relation 
between the two Nixons in this world and the single Nixon in the world 
in which the counterfactual hypothesis is true is precisely the same as 
the relation between my house in this world and my house in the world 
in which it is painted blue. But in the former case it is a relation 
between two distinct objects in one world and a single object in 
another world. How can this be identity? 

Let us return to Lewis' terminology and call the relation between 
objects of the same identity in different worlds the counterpart relation, 
leaving open for the moment whether the counterpart relation is 
literally a relation of transworld identity. Let us write ' xCy '  for 'x  is a 
counterpart of y'. Counteridenticals indicate that we can have xCy and 
xCz  but y # z. If C is the identity relation, this amounts to having x = y 
and x = z,  but y # z,  which is to deny that identity is transitive. No 
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doubt many philosophers will regard the non-transitivity of identity as 
manifestly absurd, in which case it follows that the counterpart relation 
is not a relation of transworld identity. Personally, I am not so sure. I 
don't really know what to say about putative cases of the non- 
transitivity of identity. At this point I want merely to counsel caution. 
We must not be overly hasty in claiming that the counterpart relation 
is not an identity relation on the grounds that if it were then identity 
would not be transitive. I think the real problem here is that there is no 
clear meaning to the question whether the counterpart relation is or is 
not the relation of identity. Before we can answer this question, we 
must know what it would mean to have two objects in two different 
possible worlds literally identical or not identical. This is a notion I can 
get no clear grasp on. Furthermore, as far as I can see it makes not the 
slightest difference to anything whether the counterpart relation is an 
identity relation or not. It seems far better to simply call the relation 
'the counterpart relation' and not worry about whether it is identity. 

But now what becomes of Kripke's observation that there is no 
problem of transworld identity because the identity of an object is part 
of the specification of the world in which it  is found? We can translate 
this into an observation about the counterpart relation. Lewis' counter- 
part theory floundered on the difficulty of finding a criterion for 
one object being a counterpart of another. We now see that what 
Kripke's observation amounts to is that the identity of an object is 
built into the world in which it is found in the sense that the counter- 
part relation is part of the specification of that world. Starting from the 
actual world, part of the specification of a possible world consists of 
saying what is a counterpart of what objects in the actual world. There 
is no problem of finding a criterion for counterparthood. 

Counteridenticals show that the counterpart relation can converge - 
two distinct objects in the actual world can have a single counterpart in 
some possible world. Can the counterpart relation also diverge? That 
is, can a single object in the real world have two distinct counterparts 
in some possible worlds? To establish this, we would naturally turn to 
what we might call 'counter-nonidenticals'. It is easy enough to formu- 
late counterfactual hypotheses which deny identities that hold in the 
actual world. For example, we can reason about what would be the 
case if the tallest man on the basketball team were not also the worst 
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shot on the team. But this shows nothing about the counterpart 
relation, because the individual terms involved are not being used 
rigidly. What we need is a counter-non-identical in which the terms 
flanking the identity sign are used rigidly to denote the same object. 
Unfortunately, I cannot find an intelligible way of even formulating 
such a counter-non-identical. If we try to do it by telling a story as in 
the Donald and Richard Nixon case, we do not get the desired result. 
For example, if we hypothesize that the elder Nixons had two twin 
brothers, and that they have been fooling people by alternately hiding 
and playing the role of Richard Nixon, this would not be a case in 
which we could literally say that Richard Nixon is two people. On the 
contrary, what would really be the case is that there is no such person 
as Richard Nixon. This seems to be what happens in general when we 
try to formulate counter-nonidenticals with individual terms used 
rigidly. To suppose that one thing is really two things is to suppose 
that that one thing does not really exist. 

I must admit that these examples are not as compelling as we might 
wish. To further muddy the waters, it does seem to be possible to 
formulate counter-non-identicals using proper names, and it has some- 
times been maintained that proper names can only be used rigidly. It 
does not seem possible to maintain the latter thesis with respect to 
negative existentials involving proper names, and I do not really think 
it can be maintained with respect to counter-non-identicals either. But 
the situation here is not clear. For example, what are we to say about a 
conditional which begins, 'If Hesperus and Phosphorus were distinct 
heavenly bodies, then .  . .'? My own intuitions here alternate between 
on the one hand really taking seriously the denotation of the terms 
'Hesperus' and 'Phosphorus' and finding this conditional unintelligible, 
and on the other hand taking 'Hesperus' and 'Phosphorus' as short for 
definite descriptions on the order of 'the first heavenly body regularly 
seen in the morning' and 'the last heavenly body regularly seen in the 
evening'. I think the weight of intuition is thus on the side of denying 
that the counterpart relation can diverge, but these intuitions are not 
clear and are not really compelling. What we need is an argument 
based upon other considerations which will settle the matter. 

Such an argument can be provided. On purely intuitive grounds it 
seems that quantification into modal and subjunctive contexts makes 
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sense. The appeal to the counterpart relation explains how such 
quantification makes sense. But it was argued in section one that a 
necessary condition for quantification into a context r(px' to make 
sense is that the context be referentially transparent in the sense of 1.1. 
This in turn implies that principle 1.2 holds: 

Applying this to modal contexts, because quantification makes sense in 
such contexts, the following must hold: 

( 3 . 1 )  ( x ) ( y ) { x  = y  ^ [ U ( ( 3 z ) x  = z  3 x  = x ) =  n ( ( 3 z ) x  = z  3 x  = y ) ] } .  

( 3 z ) x  = z1 is a way of saying that x  exists. It is clearly true of anything 
in this world that in any other world in which it exists, it is self- 
identical: 

(3.2)  ( x ) U ( ( 3 z ) x  = z  3 x  = x ) .  

This immediately implies: 

( 3 . 3 )  ( x ) ( y ) { x  = y  ^ U [ ( ~ Z ) X  = z  ^x = y ] } .  

Principle 3.3 is precisely the statement that the counterpart relation 
cannot diverge. It says that if x  and y  are the same object in this world, 
then they are the same object in any world in which they exist. Thus it 
seems that the very legitimacy of quantification into modal contexts 
requires that the counterpart relation cannot diverge. The counterpart 
relation must be a many-one relation, i.e., a function.' 

This generates a picture of possible worlds which is rather different 
from the classical one. In the next section I will attempt to make it 
precise and investigate what sort of modal logic results from it. Then in 
the next chapter we will apply these results to an examination of 
quantified subjunctive conditionals. 

Let us begin by constructing a formal language for a first-order modal 
logic. The logical constants are '(', ')', '-' '&', '=', and '0'. We have a 
denumerable set Cn of individual constants, a denumerable set Vr of 
individual variables, and for each n e w ,  a denumerable set !H,, of 
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n-place relation symbols. We define the set Fm of formulas and the set 
Sn of sentences (closed formulas) in the normal way. We define 
' v ' , '~ ' ,  '=', '3', and '0' in the usual way. 

Our semantics will proceed in terms of possible worlds. A possible 
world has two parts - a structure consisting of a domain of objects and 
a determination of what properties each object has, and an identifica- 
tion of some of the objects in the domain with objects in the real 
world. The latter is in terms of the counterpart relation. Before 
considering the details of this, notice that this makes our definition of 
'possible world' always relative to the real world, because the counter- 
part relation must relate objects in the domain of the possible world to 
objects in the real world. This is rather like those semantics which 
contain an accessibility relation together with the ruling that not all 
worlds are possible (or accessible) relative to a given world. 

Notice further that we can have many different possible worlds 
having the same structure. Such worlds will differ only in their counter- 
part relation. Different such worlds correspond to similar counterfac- 
tual hypotheses about different objects. It would be impossible to have 
different worlds with the same structure on the traditional views 
according to which counterparthood or transworld identity is a func- 
tion of the structural properties of the objects in the world. 

A possible world will be an ordered pair (S, C) where S is its 
structure and C the counterpart relation. In specifying a structure, we 
must first specify a domain D. Then we must specify the extensions of 
all relation symbols in this domain. This can be accomplished by a 
function p which assigns to each n-place relation symbol some subset 
of D" (the set of ordered n-tuples of members of D). So let us define: 

(4.1) A structure is an ordered pair (D ,  p )  where D is a set of 
objects and p is a function such that for each n e w  and 
R e %,,, p ( R )  c D". 

Now consider the counterpart relation. Let Do be the set of objects 
in the real world. The domain of C may be a proper subset of Do, 
because some actual objects may not have counterparts in the possible 
world. Thus C may be any function from a subset of Do into D. 

Before giving a precise definition of a possible world, we must 
decide how to represent the actual world. Is it also a possible world? In 
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fact, we can represent the actual world by its structure alone, because 
insofar as there is a counterpart relation in the actual world, it is the 
identity relation. In general, given any structure we can define the 
notion of a possible world relative to that structure, which is to say 
what the set of possible worlds would be if that structure represented 
the actual world: 

(4.2) A possible world relative to a structure (D, p )  is an ordered 
pair (S, C )  where S is a structure (E, p*), and C maps a 
subset of D into E. 

How should we define validity for our modal language? Informally, 
we want a sentence to be valid iff it comes out necessarily true no 
matter how we interpret the non-logical constants of our language.3 
From an informal point of view an interpretation of the language does 
two things. First, it assigns denotations in the real world to the 
individual constants of the language. We are going to want to talk 
about models in which the 'real world' is a world that is just a possible 
world relative to this world, and in such a world some individual 
constants may fail to denote, so we must make provision for this. The 
second function of an interpretation of the language is to assign 
meanings to the relation symbols. Such an assignment has the effect 
that certain structures are ruled out as being 'really inconsistent' given 
the meanings of the relation symbols. This second function can be 
accomplished formally by simply specifying what the actual set of 
permissible structures is. However, a fact which logicians have gener- 
ally overlooked is that not just any set of structures can constitute the 
set of all permissible structures under an assignment of meanings to the 
relation symbols. For example, if we consider a set of structures in 
which no structure has a domain of cardinality 3, to take this as our set 
of permissible structures would be to suppose that the meanings of the 
relation symbols somehow make it logically impossible for there to 
exist just three things in the universe. But the meanings of the relation 
symbols have nothing at all to do with what size universes are logically 
possible. I am supposing that the residents of our possible worlds are 
ordinary contingent objects like tables, chairs, electrons, etc., and for 
such objects it seems that it must be logically possible for the universe 
to have any finite or denumerable size. I don't know whether it should 
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be possible for the universe to be non-denumerably infinite, but 
fortunately, this is a question we can leave undecided as long as we are 
only dealing with first-order logic, because countenancing larger uni- 
verses makes no difference to the satisfiability of any formula. At any 
rate, it is clear that the set of permissible structures must contain 
structures having domains of all finite or denumerable sizes. Further- 
more, in light of the Skolem-Lowenheim theorem, we will only con- 
sider countable structures, i.e., structures having countable domains. 
Should we impose any other restrictions on sets of permissible struc- 
tures? There is no need to do so. The only contingent facts that can be 
expressed in an uninterpreted first-order language are those having to 
do with the size of the universe, so any set of structures satisfying our 
restriction concerning the variety of cardinalities will correspond to 
some assignment of meanings to relation symbols. 

To say that a sentence is necessarily true under every interpretation 
of the language is to say that no matter what structure we start with as 
the actual world, the sentence comes out true under every interpreta- 
tion of the language. So let us define: 

(4.3) A model is an ordered triple ((D, k) ,  T},  H )  where H i s  a set 
of countable structures, (D, k ) e  H, for each a <. w there is 
a structure S in H whose domain is of cardinality a, and T )  

maps a subset of Cn into D. 

Then we define: 

(4.4) A sentence <p is valid iff a> is true in every model. 

What remains is to define truth in a model. This definition is 
relatively straightforward except for the modal case. We first define: 

(4.5) A model (S*, T)* ,  H*) is an a-variant of a model (S, T), H )  
iff a e Cn, S* = S, H *  = H, and T)* agrees with T )  except 
possibly for the value of ?*(a). 

Next we must decide how to handle sentences containing non- 
denoting individual constants. I will adopt what can probably be called 
'the standard procedure' of giving every sentence a truth value, ruling 
that atomic sentences containing non-denoting constants are automati- 
cally false. Given this we can define truth in a model by induction on 
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the length of a sentence. Letting 9 ( q )  be the domain of q :  

(4.6) If M is the model ((D, p) ,  q, H), then: 

(i) if a, b e Cn then "a = b1 is true in M iff a, b e @(q)  and 

q ( a )  = d b ) ;  
(ii) if R 9tn and a l ,  . . . , anâ  Cn, then "Ra1,.  . . an1 is true 

in M iff a l ,  . . . , an @(q)  and (q(a, ,  . . . , q(an))  
d R ) ;  

(iii) "-<pl is true in M iff <p is not true in M ;  
(iv) "(<p & $1' is true in M iff p and >/< are both true in M ;  
(v) V<pl is true in M iff <p is true in every model 

(S, q*, H*) such that H *  = H and for any c, d S)(q), 
if q(c)  = q(d)  and c e @(q*) then q*(c) = q*(d); 

(vi) "(x)<pl is true in M iff, if c is some constant not 
occurring in p, and "<pcl is the result of substituting c 
for every free occurrence of x in <p, then "qcl is true in 
every c-variant of M. 

The only clause of definition 4.6 that needs explanation is clause (v). 
We want rCl<pl to be true in M just in case <p is true in every world 
possible relative to (D, p).  Thus the most straightforward definition of 
truth for modal sentences would be that "0<p1 is true in M iff <p is true 
in every model (S, q*, H )  for which there is a function C such that 
(S, C) is a possible world relative to (D, u,}, and q *  'agrees' with the 
counterpart relation, i.e., if c e 3 ( q )  n 9(q* ) ,  then C(q(c)) = q*(c). 
But this is equivalent to requiring that any identities which hold in 
((D, p), q, H )  continue to hold in (S, q*, H )  provided that the terms in 
the identity continue to denote. This gives us clause (v). 

It will be useful to define an 'existence' predicate as follows: 

(4.7) If t is an individual term, "Etl is "(3x)x = t1 

The modal logic resulting from this semantics has a number of 
peculiar features. Some of these arise out of the fact that our modal 
operator is basically a de re operator. We can quantify into modal 
contexts, and appending 'D' to a sentence yields a sentence that is 
literally about the objects mentioned in the sentence. In effect, the 
modal operator of logical necessity is a de re operator, and although de 
dicto modal statements do occur, they are just limiting cases of de re 
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statements. Let us define: 

(4.8) (p is a de dicto sentence iff (p is a sentence and no subfor- 
mula of (p having the form "El̂  contains occurrences of 
any free variables or individual constants. (p is de re iff (p is 
not de dicto. 

It is easily verified that the logic of de dicto sentences is completely 
normal, satisfying exactly the propositional modal laws of S5. Surpris- 
ingly enough de re sentences behave differently, satisfying only the 
laws of 54. It is trivial to verify that sentences in general satisfy the 
modal laws of S4. The 'characteristic law' of S5 which is not satisfied 
is : 

Given the valid principle r(p 2 O(pl, 4.9 implies: 

Due to the fact that our counterpart relation can converge but not 
diverge (that is, it is a function but not necessarily one-one), it is simple 
to construct counter-examples to 4.10. First, notice that because the 
counterpart relation cannot diverge, both of the following are valid: 

(4.12) (x)(y)[x = y ^O(Ex & Ey. -)I. 
That is, individual constants and variables act as 'rigid designators'. By 
virtue of the validity of 4.11, ^ 0 a  = b. => OD(Ea & Eb. 2 a = b)l is 
valid, and hence rOa  = b. => - 0 0 [ E a  & Eb & a #  b]' is valid. But this 
implies the invalidity of: 

This is a counterexample to 4.10. 4.13 is invalid for the following 
reason. Suppose 'Ea & Eb & a #  b' is true in the real world. There are 
worlds possible relative to the real world in which ^ a  = b1 is true, i.e., 
" 0 a  = b1 is true in the real world. But then "-DOfEa & Eb & a #  bI1 
is true. 

Lest it be thought that the only counterexamples to 4.9 and 4.10 are 
those involving identity, notice that the following is invalid for exactly 
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the same reason 4.13 is invalid: 

(4.14) ( E a  & Eb & Fa & -Fb)=3DO(Ea & Eb & Fa & -Fb). 

Thus our semantics gives us a version of quantified S4. The treat- 
ment of identities is interesting. Because the counterpart relation is a 
function, we get the validity of 4.11 and 4.12. However, because it 
need not be one-one, neither of the following is valid: 

We have a version of quantified S4,  but as we have seen, it is not 
quite the same as any of the familiar versions of quantified S4. This 
results in part from the treatment of identity and the counterpart 
relation. Another source of differences results from our 'variety of 
cardinalities' requirement on models. For each n e w, let rEnl be a 
first-order sentence which says that the universe contains exactly n 
objects. Then "OEnl is valid on our semantics. No doubt some 
logicians will find this objectionable. They will reason that our logic 
should be adequate for dealing with any subject matter, and some 
subject matters will restrict the size of the universe. For example, we 
might want to talk about the natural numbers. Thus, it will be urged, 
we should eliminate the 'variety of cardinalities' requirement. I have 
no particular objection to building a modal logic on such a basis. 
However, unlike ordinary first-order logic, I do not find modal logic 
very useful for talking about anything except contingent objects. As 
long as we are going to take our domains to consist exclusively of 
contingent objects, then we should impose the 'variety of cardinalities' 
requirement on models. Of course, there is nothing to prevent one 
from having both kinds of modal logic, using one for some purposes 
and the other for other purposes. 

Another unusual valid sentence is "Elpa 3 0 ( x ) p 1  (where no indi- 
vidual constants occur in q). This theorem results from the fact that in 
constructing a model, we take the set of structures as basic and then 
look at all the possible worlds that can be built out of those structures 
using different counterpart relations. The more conventional procedure 
is to take the set of possible worlds itself as basic in constructing a 
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model. However, this conventional procedure seems to me quite 
definitely wrong. Insofar as different sets representing the set of all 
possible worlds are supposed to result simply from different assign- 
ments of meanings to the relation symbols, there should be no restric- 
tions on the counterpart relations. If a certain structure is permissible 
in terms of a certain assignmeht of meanings, then it should be possible 
for any object in the real world to have the properties of any object in 
the domain of that structure. Thus given the possibility of one world 
having a certain structure, any other world having that same structure 
but a different counterpart relation should also be possible. Hence the 
validity of '"Ucpa =>D(x)<pl when no individual constants occur in' <p. 

This constitutes a major divergence between the above semantics and 
the conventional semantics for quantified modal logic. 

It would be remiss not to admit that there is one possible exception 
to what I have just argued. The validity of rCl(pa =>D(x}<pl has the 
effect of ruling out essential properties. For the most part, I find this an 
exemplary result. However, as I suggested earlier, there may be certain 
kinds of properties which are essential. These are what might be called 
'basic sortals'. Basic sortals, in some sense, would tell us 'what kind of 
thing' an object is. Basic sortals are going to be properties like 
'physical object', 'person', 'work of art', etc. These basic sortals seem 
to impose restrictions on the counterpart relation, because it seems to 
be the case that an object satisfying one basic sortal could not shed 
that sortal and come to satisfy a different basic sortal. For example, a 
person could not become a table. I am not sure about any of this, and I 
am even less sure about how to accommodate these basic sortals in our 
formal semantics. For this reason I have ignored them, but it must be 
recognized that we may want to modify the semantics at some future 
time so that we can deal with them. 

It is of interest to look at what happens to a few other problematic 
principles of quantified modal logic. The 'Barcan formula', '"(x)<p => 

D(x)<pl fails to be valid for two reasons. First, it can fail to be valid 
when <p contains individual constants. For example r(x)D(Ea 3 x = 

a)  3 D(x)(Ea => x = a)' is invalid. If we eliminate this source of invalid- 
ity by requiring that <p contain no individual constants, the Barcan 
formula is still invalid but only because we can have structures with 
empty domains. The validity of the following weakened version of the 
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Barcon formula: 

(3x)(x = x) 2 [(x)Dq => U(x)q] (where a> contains no indi- 
vidual constants) 

follows immediately from the validity of 'Uqa ='D(x)ql. 
A related formula that is often considered problematic is 'U('3x)9 2 

(3x)Dq1. This formula is valid without restriction on our semantics, 
but this is because r-D(3x)(D1 is valid. This results from the variety of 
cardinalities requirement. 

It would now be a simple matter to add to our language subjunctive 
conditionals with indicative antecedents and consequents and extend 
the semantics to deal with them. This would involve modifying the 
notion of a structure so as to include N and W, the sets of basic strong 
and weak subjunctive generalizations, as part 6f the structure, and it 
would require the introduction of some way to compare the dates of 
simple propositions. There are a number of little intricasies in this, but 
they are all rather straightforward. However, rather than delve into 
these details just for the special case of conditionals with indicative 
antecedents and consequents, let us go on to the full theory in which 
we allow conditionals to have modal and subjunctive antecedents and 
consequents. As we will see, some new problems arise when we 
undertake this. 

N O T E S  

See Chisholm (1967) for a critical discussion of this. 
In trying to convince me of the contrary, philosophers have repeatedly appealed to the 

fact that both fission and fusion are possible in temporal contexts. That, of course, is 
quite true, but I do not see what it has to do with the issue at hand. I do not see any way 
out of the argument given in the above paragraph, so we should conclude that the 
temporal modalities do not work like the alethic modalities. 

See Pollock (1967) for a discussion of this notion of validity. 
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T H E  F U L L  T H E O R Y  

The objective of this chapter is to extend the analysis of subjunctive 
conditionals in such a way as to incorporate both quantifiers and 
conditionals with non-indicative antecedents and consequents. This is a 
matter of combining Analysis VII of Chapter IV with the treatment of 
quantification discussed in Chapter V, and then making the whole 
thing recursive in order to handle non-indicative antecedents and 
consequents. We will begin by constructing an artificial language within 
which to express our conditionals, and then our analysis will take the 
form of a formal semantics for this language. 

Our language must be a temporal language, because in order to 
express Analysis VII we must be able to talk about the dates of simple 
propositions. The simplest way to accomplish this is to make our 
language a two-sorted language with constants and variables for times, 
and a temporal relation '5' between times. Then the 'date' of an 
atomic formula will be indicated by a temporal subscript. In order for 
this to make sense, we must ensure that our atomic sentences always 
express propositions of the sort that have discrete dates. This is easily 
accomplished as follows. We.must have some way of picking out the 
set Sim of simple sentences (those expressing simple propositions). 
Simple propositions are supposed to be those that are not logical 
compounds, so it seems reasonable to require that our atomic sen- 
tences be the simple ones. This will ensure the appropriateness of our 
temporal subscripts in atomic formulas. 

The logical constants of our language will be '(', ')', '-', '&', '=', '>', 
' 3 '  '=>', 'D', 'D', and '5'. We must now have a non-denumerable set 

P a 

Cn of individual constants, a denumerable set Vr of individual vari- 
ables, a denumerable set CT of temporal constants, a denumerable set 
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VT of temporal variables, and for each n w such that n + 0 we have a 
denumerable set '3in of n-place relation symbols. We define the set of 
formulas in almost, but not quite, the usual manner. The difficulty is 
that the account of subjunctive generalizations in Chapter 111 only 
applies to subjunctive generalizations having indicative antecedents and 
consequents and it is not at all obvious how to extend it to the case of 
non-indicative antecedents and consequents. Hence we are led to 
count "((p 9 i f / ) ' ,  "((p + 4)^,  "UI&', and "D$^ as well-formed only when 

P a 

(p and are indicative. This leads, in effect, t o  a two-step syntax. W e  
begin with a two-sorted first-order language with the logical constants 
' ')', '-'. '&', '=', and '5'. W e  define the set of atomic formulas as 
follows: 

(1.1) A n  expression (p is in At iff either: 

(i) there are n e w ,  R e & ,  x,, . . . , x, ,e(VrUCn),  t e  
(VrUCr), such that <p = "Rtx,, . . . , xnl; o r  

i i )  there are x, y e (Vr U Cn),  t e (VT U CT), such that (p = 

x = yl; o r  
t 

(iii) there are t,, t 2 e  (VTU CT) such that (p = "tl <t^. 

W e  define the set Fmo of first-order formulas in the usual way. Then 
we define our full set of formulas recursively as follows: 

(1.2) DEFINITION: 

(i) if ( p e F m o  then ( p e F m ;  
(ii) if (p l Fmo then "Dy' e F m  ; 

P 

i i i )  if (p e Fmo then rDipl F m ;  

(iv) if (p, @ Fmo then "((p 9 î  e Fm ; 
(v) if (p, t+b Fmo then "((p => if/)1 l F m  ; 

(vi) if a> e F m  then "--(p'e F m ;  
(vii) if (p e F m  then r O ~ l e  F m ;  

(viii) if (p e Fm and a e Vr, then "(a)(pl e F m ;  
(ix) if (p, I/J e Fm then "((p & 4)"' Fm ; 
(x) if (p, if/ l F m  then r((p > i f / ) ^  e Fm. 
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In defining 'open formula' and 'sentence' ('closed formula'), we 
proceed in the usual manner except that 'a', '+', and correspond- 
ingly and '0' and '0' are treated as variable binding operators, binding 

P a 

all of the variables in the formula to which they a t t ach .  Sn is the set of 

sentences. We define '3\ 'v', '=", '=', '0' 'O' ,  'O', ' Ã ˆ  ' M ' ,  and 'E' 
P " 

in the normal ways. W e  define ^{ip -+ + ) l  to be 'U((p =' +)^ and 
"(ip <-> +I1 t o  be "D(ip = 4)'. A s  before, "V(pl is the universal closure of 
ip, and let ' 3 ip  be the existential closure (i.e., r-V-ipl). We also 
define: 

(1.3) If G is a set of subjunctive generalizations, then V G  = 

V ( i p  3 W; '(ip 3 $1' G or  '(ip ^> GI. 

V G  is the set of material generalizations corresponding to the subjunc- 
tive generalizations in G. 

(1.4) ip is indicative iff ipeFmo. Znd is the set of indicative 
sentences. 

W e  call '0' '0' '+', '^>', and '>' the subjunctive operators. 
P a 

(1.5) SD(ip), the subjunctive depth of ip, is the maximum number 
of nested subjunctive operators in ip. 

Our  definition of truth will be  recursive on the subjunctive depth of a 
sentence. 

In our  definition of the relation M we will have to make use of 
internal negations, so now we must give a precise definition of that 
notion. It is simple to do  this in the case of atomic sentences: 

(1.6) If (p is an atomic sentence and a , ,  . . . , a,, are the individual 
constants occurring in ip, then 

"-ipl= "{^x)x = a l  & . . . & (3x)x = an & -ipl. 

It is more difficult to extend this definition to  the case of sentences in 
general. The definition must be recursive on the length of the sentence. 
A t  this point it is not worth the effort to carry this out, because it will 
turn out  that we only need internal negation for atomic sentences. 
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Our semantics will be based upon the semantics for quantified modal 
logic developed in Chapter V. As usual, validity will be defined as 
truth in all models, and a model will consist of an interpretation of the 
language and a specification of what possible world is the actual world. 
As in the case of modal logic, an interpretation of the language will 
determine entailment relations between sentences by specifying the set 
of allowable structures. Structures are more complicated than they 
were in Chapter V because our language is now a temporal language. 
We represent times by real numbers. Letting Rl be the set of real 
numbers: 

(2.1) A structure is an ordered pair ( D ,  p )  such that D is a 
countable set of objects and p is a function and: 

(i) for each t E Rl, p(t)  is a set Dt; 
(ii) D =  U D,; 

t e R 1  

(iii) for each t E Rl, n e w, and R e %,,, p(R ,  t )  s D';. 
(iv) for each t e Cr, p(t)  E R 1 .  

In a structure ( D ,  p), D, is that subset of the domain consisting of 
objects existing at time t. If t e Cr, then p( t )  is the time denoted by t. 
Then we define: 

(2.2) An interpretation is a set H of structures such that for each 
n e o and t e Rl, there is a structure (D,  p )  in H for which 
Dt has cardinality n. 

In this definition of an interpretation we have extended our variety of 
cardinalities requirement to the domains at each instant of time. This is 
because in our uninterpreted temporal .language we can express con- 
tingent propositions that we could not express in the language of 
Chapter V. These are propositions describing the size of the domain at 
a particular time. An interpretation of the uninterpreted symbols of 
our language cannot turn such propositions into necessary truths, so if 
the notion of an interpretation is to capture this intuitive notion our 
strengthened variety of cardinalities requirement is required. 

Given an interpretation of the language, we can define the notion of 
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a possible world relative to that interpretation. If we were to follow 
strictly the treatment of possible worlds contained in Chapter V, we 
would require possible worlds to contain four pieces of information: (1) 
a structure S; (2) a counterpart relation relating S to the real world; 
(3) a specification of what basic strong generalizations are true; (4) a 
specification of what basic weak generalizations are true. However, an 
inspection of the definition of truth for quantified modal logic reveals 
that the counterpart relation plays only a heuristic role and does not 
enter into any of the formal definitions. It is replaced there by the 
function q which assigns denotations to individual constants. The same 
thing will be true in our present language. In Chapter V q was taken to 
be part of the interpretation of the language, but I now propose to 
include it in the possible world, using it to replace the counterpart 
relation. Thus a possible world will become an ordered quadruple 

(S, q, N, W). 
Normal procedure would be to require that q maps a subset of Cn 

into the domain D of the structure S. This was the procedure followed 
in Chapter V. However, in the present context we must require instead 
that q map a countable subset of Cn onto D. We must require every 
object to have a name. The reason for this is that in our definition of 
the relation M we want to talk about the set of all simple truths in a 
world, and if we are to  do this by talking metalinguistically about what 
simple sentences are true in the world, we must have every simple 
truth expressed by some simple sentence. This can only be done if 
every object has a name. This is also the reason we require our 
language to have non-denumerably many individual constants. Other- 
wise we could have a world a which uses them all up, in which case 
there could be no worlds (3 possible relative to a (i.e., 'accessible' in 
the sense of 2.9) containing all of the objects of a and some new 
objects in addition. 

We cannot define a possible world to be just any quadruple 
(S, q, N, W) of the appropriate sort. A possible world must be 'coher- 
ent' in the sense that if a subjunctive generalization is included in N or 
W, then the corresponding material generalization is true in the world. 
This seems to put us in the position of having to define truth in a 
model before we can define the notion of a model, which would 
quickly become circular. Fortunately, there is no real difficulty here. 
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The  ordered pair (S, q )  constitutes a first-order model for the indica- 
tive fragment of our  language, and we can define the set T of true 
indicative sentences in the normal way in terms of (S, q) .  

I t  was argued in Chapter 111 that a logically contingent generaliza- 
tion of the form r(x)(q  =Â .x  = a ,  v .  . . v x = a d 1  cannot be  actually 

I 

necessary. This constitutes a constraint on the sets N and W. Combin- 
ing this with the previous observations leads to the following defini- 
tions: 

(2.3) A possible world relative to  an  interpretation H is an  
ordered quadruple (S, q, N, W )  such that: 

(i) S is a structure (D, a);  
(ii) S E  H ;  

(hi) q  maps a countable subset of Cn onto  D ;  
(iv) N is a set of strong generalizations; 
(v) W is a set of weak generalizations; 

(vi) If T is the set of indicative truths, then VN c V W G  T, 
and there is n o  indicative formula (p, individual con- 
stants a } ,  . . . , a,,, and re Cr such that V W entails 
'(x)((p 3 .x = a l  v .  . . v x = a,,)l but 'CI(x)(q => .x 7 

1 t 

a l  v .  . .v x = a,,)' is false in ( S ,  q, N, W ) .  
I 

Clause (vi) looks as though it might be circular because it refers to the 
truth of a modal sentence in the possible world. However, there is no  
circularity because the truth value of such a sentence will be indepen- 
dent of the contents of N and W. 

(2.4) A model is an ordered pair (a,  I )  where I is an interpreta- 
tion and a is a possible world relative to 1. 

W e  will define the notion of truth in a model, and then: 

(2.5) (p is valid iff (p is true in every model. 

Truth will be truth in a model, but for  convenience we will also allow 
ourselves to  talk about a sentence being true in a possible world 
(relative to an interpretation). For  convenience we define the following 
notation: 
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(2.6) I f a = ( s , ~ ) , N , W ) , t h e n S ~ = S , q ~ = ~ ) , N ~ = N , a n d W ~ =  
w. 

(2.7) If a is a possible world, Ta is the set of indicative truths in 
a. 

(2.8) If I  is an interpretation, [ [ I ] ]  = { a ;  a is a possible world 
relative to I } .  

In defining the notion of a possible world, we have ignored the 
relation of the possible world to the actual world. The result is that we 
will have more possible worlds than we really want. A world is not 
'really possible' unless there is a counterpart function from the real 
world into the domain of the possible world such that the denotation 
function T) 'agrees' with the counterpart function. More precisely, let 
us define: 

(2.9) If I  is an interpretation and a, (3 e [ [ I ] ] ,  (3 is accessible from a 
iff for every b, c e 9 ( q a ) ,  if ~ ( b )  = ~ ( c )  and b 9 ( % ) ,  

then %(b) = 'rls(c). 

(2.10) If a e [ [ I ] ] ,  [ [ I l l a  = { p ;  (3 e [ [ I ] ]  and (3 is accessible from a} .  

If a is the real world, then only worlds accessible from a are 'really 
possible'. 

What remains is to define truth in a model. This can be accom- 
plished by generalizing Analysis VII. We will define truth and the 
relation M  by simultaneous recursion on the subjunctive depth of a 
sentence. Up to this point we have taken M  to be a binary relation 
between a possible world and a sentence. But for a general semantics, 
we must construe it to be a ternary relation. If a and (3 are possible 
worlds relative to some fixed interpretation, '(3Ma<p' means 'If a were 
the real world, then (3 would be a world that might be actual if <p were 
true'. We need this ternary relation because we want to define the 
truth of a subjunctive conditional in any world and not just in the 
actual world. 

Consider now how to define the relation '(3Ma<p'. The first require- 
ment is obvious, and is the same as in Analysis VII: 

(i) <p is true in (3. 

Next we must consider what is required of No. In Analysis VII we 
required that No be the result of making a minimal P-change to Na. 
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This is still correct, however our earlier definition of the notion of a 
minimal P-change is no longer-sufficient for two reasons: First, what 
we really wanted in Analysis VII was to ensure that No was the result 
of making minimal changes to Na in order to render it consistent with 
P. We could ensure that as we did by talking about V N o  because we 
were only considering the case in which ip was indicative. In that case, 
(p is consistent with No iff it is consistent with VNa. But in the general 
case, where we can no longer assume that (p is indicative, we cannot 
get by talking about VNo. For example, (p might be the negation of 
some member of N',. In that case, (p would still be consistent with VNa. 
We must instead talk directly about the consistency of N', with P. 
There is a second difficulty. As long as we were only considering an 
indicative (p, the only way the supposition that (p is true could require 
us to alter Na was by being inconsistent with Na, and hence the only 
kind of change that could be required was a deletion. But if (p can be 
non-indicative, then the supposition that (p is true may require us to 
enlarge Na. For example, (p might be of the form r+ 3 01, in which 
case we would have to add generalizations to N', which would be 
sufficient to allow us to derive (p from the enlarged set. Thus in the 
general case, there are two kinds of changes that might be required in 
constructing No. We might have to eliminate some members of Na, 
and we might also have to add some new generalizations not already 
in Na. In either case, we want to require that the changes be as 
small as possible. Just as in the case of changes to simple sentences, we 
can represent the change to Na by the indexed difference ( N a A N a ) .  
We can then take definitions 2.20 and 2.21 of Chapter IV to define the 
notion of a minimal change (replacing sets of propositions now by sets 
of sentences) if we supply a new definition of the notion of a strictly 
minimal change which will make the latter notion applicable to Na. 
This is readily accomplished: 

(2.1 1) X is a strictly minimal (p-change to Na (relative to I and a )  
iff there is a world p e [[!]la in which (p is true such that 
No = N', + X, and there is no Y such that Y c X and there 
is a world 7 e [[!]la in which (p is true such that N-, = 

N', + Y. 

We then require: 
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(ii) (N. A Na) is a minimal <p-change to Na. 

Analogous considerations apply to Wa. We now need the notion of a 
minima1 .T-change (where F is a set of sentences), and we must 
relativize our notion of a minimal change to our choice of No. This can 
again be obtained from definitions 2.20 and 2.21 of Chapter IV if we 
extent the notion of a strictly minimal change as follows: 

(2.12) X is a strictly minimal F-change to Wa (relative to Na) iff 
there is a world 7 e [[Illa in which all members of F are 
true and such that N-, = Na and Wy = W. + X; and there is 
no Y such that Y c X and there is a world 8 e [[I]]. in 
which all members of F are true and such that N5 = Na and 
w x =  W.+Y. 

We then require: 

(iii) ( W a )  is a minimal (VNa U {(p})-change to W. 
(relative to No). 

We seek to preserve the truth values of simple sentences and their 
internal negations, as in Chapter IV. Simple sentences are now iden- 
tified with the atomic sentences, so let us define: 

(2.13) Sim = {(p; (p At f l  Sn or (34)(4 e At f~ Sn and <p = "-+')'. 

Given an atomic formula ip whose temporal subscript is T ,  we will 
define u("-(p^) = u(<p) = ~ ( r ) .  Then we define, for re Rl: 

(2.14) S.(t) = {q; (p 6 (Sim rl T.) and a{<p) 5 t } .  

We want to treat simple sentences just as we did in Analysis VII, 
giving as our final analysis: 

(2.15) DEFINITION: @Maw (relative to an interpretation I )  iff @ E 

[ML 2nd: 
(i) (p is true in 0 ;  
(ii) (Na A No) is a minimal <p-change to No; 

(iii) ( W m )  is a minimal (VNO U{(p})-change to W. 
(relative to No); 

(iv) for every t E Rl, (S.(t) A Sa(t)) is a minimal (VNn U 
V Wa U{q})-change to Ta at time t. 

With this definition, we have completed out account of the relation M. 
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Definition 2.15 makes use of the notion of ip being true in a world y. 
Now we want to define that notion. For subjunctive ip, the definition 
will use the relation M. We want these two definitions to constitute a 
definition by simultaneous recursion on the subjunctive depth of ip. In 
order for this to work, we must ensure that in defining truth for ip, we 
only use the relation "@Ma$' for formulas $ of subjunctive depth less 
than that of ip. 

It is obvious how to define truth for indicative sentences, and for 
conjunctions, negations, universal generalizations, modal sentences, 
and subjunctive conditionals. The first case that is not entirely obvious 
is that of a formula of the form "Dip1. Intuitively, if ip is a sentence 

P 

then "Dip1 is true in a world a (relative to an interpretation I )  iff ip is 
P 

entailed by Na. This can be captured by requiring that ip be true in 
every world j8 for which No includes at least Na. Recalling that if ip is 
an open formula then "Dip1 is supposed to mean the same thing as 

P 

DVipl, we have the general condition: 
P 

"W is true in a (relative to 1) if (Vfl E [[l]]J[if N3 c= No 
P 

then "Vqle To]. 

Truth for "0ip1 is defined analogously. 
P 

A generalization "q 3 i{/' is supposed to be true in a world a iff for 
each world j8 such that (3Ma3ip, the set VNo entails "V(q => 4)'. This 
can be captured by the following definition: 

i p  $ is true in a (relative to I) iff (Vp, y e [[I]Ia)[if 
flMa3q and VNa c T then "V(y 3 $)'E T7]. 

Weak subjunctive generalizations are handled analogously. Putting 
these observations together into a definition, we obtain: 

(2.16) If re Cr and (a, H),  (j8, I )  are models, then (j8, I )  is a 
t-variant of (a ,  H)  iff (a ,  H) and (fl, 1) are identical except 
possibly for the value of q( t) .  

(2.17) DEFINITION: Truth in a relative to I: 
(i) If b,c l Cn and t e Cr then "b 7 c1 is true iff b, c E 

3 i (~ )a )  and ~ l a ( b )  = qa(c) and qa(b) e Da,,,(o; 
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(ii) if tl, t2 l CT then 'ti q1 is true iff q(tl)  5 q(t2); 
(iii) if R e 8,,, t e  CT, and al ,  . . . , an e Cn, then 

R , a 1 . .  . ,  an1 is true iff a l , .  . . ,  an63)(qa)  and 

(qa(a1), . . . , q'x(an)>? u(R, t); 
(iv) r-<pl is true iff <p is not true; 
(v) ^(<p & 4)' is true iff <p and 4 are both true; 

(vi) if x e  Vr, and r<p(c/x)l is the result of substituting a 
constant c for every free occurrence of x in <p, then 
(x)<pl is true in a iff for every c e 31(q), ^<p(c/x)l is 
true; 

(vii) if t e VT, T E  CT and T does not occur in <p and r<p(r/t)l 
is the result of substituting T for every free occurrence 
of t in <p, then ^(t)yl is true in a iff r y (~ / t ) l  is true 
(relative to H) in every (3 such that ((3, H) is a 
T-variant of (a,  I ) ;  

(viii) rCl<pl is true in a iff <p is true in every member of 

[[Ills ; 

i x )  " n y l  is true in a iff (V(3 e [[I]])a[if N3 i= Na thenrVy e 
P 

x )  rCl<pl a is true in a iff (V(3 e [[I]])a [if Wa c Wa then 

'V$e Ta]; 

(xi) " ( q 3  is true in a iff (V (3, -ye [[IllN) [if (3Ma3<p 
and VNa <= Ty then 'V(<p 1 $)l e Ty] 

(xii) "(9 +)"' is true in a iff (V(3, -y l [[Illa) [if (3Ma3q 
and V Wp i= Ty then "V(<p 1 4)' e Ty]; 

(xiii) '((p > +)' is true in a iff (V(3 e [[I]]J [if (3Maq then 4 
is true in (31. 

Definitions 2.15 and 2.17 constitute definitions by simultaneous recur- 
sion on the subjunctive depth of a formula. 

It is customary to define logical entailment both as an object language 
relation between sentences and as a metalinguistic relation between 
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sets of sentences and sentences. W e  define y - +  (̂  to mean that 
^(p => 4' is necessarily true. However, where F is an infinite set of 
sentences, we cannot similarly define T+ $', because there is no 
way to  talk about the set F in the object language. Thus we retreat into 
the metalanguage and define it t o  mean that it is necessarily true that if 
all the sentences in F are true then \li is true. 

In the next chapter, where we construct an analysis of causal 
statements, we will find ourselves in a similar position with respect to 
subjunctive conditionals. W e  will find it necessary to employ subjunc- 
tive conditionals whose antecedents and consequents are infinite con- 
junctions o r  disjunctions. When F is a finite set, then the disjunction 
' Z F '  and the conjunction 'HF.' of the members of F make perfectly 
good sense, and we can express statements like ^ S F >  \lil or  ÎiT>v 
in the object language. However, if F is infinite, this can no longer be 
done.  Our  language does not contain infinite conjunctions o r  disjunc- 
tions, so we must retreat into the metalanguage once more. W e  can 
straightforwardly define the metalinguistic relation '>' between single 
sentences as follows: 

a 

(3.1) y > I,!J iff r(p > is true in the world a. 
a 

Then if F is finite, we can write things like ' I I F  > 4' and ' S F  > ̂ \ 
a a 

But we want to extend our definition of this metalinguistic relation 
to the case in which F is infinite. W e  want, ultimately, to be  able to 
write all of the following: 
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and other similar metalinguistic statements. Unfortunately, it does not 
appear to be possible to give a definition of a single relation ' > ' which 

c, 

will then give us all of the above as special cases. The difficulty is that, 
e.g., (b) does not express a relation between two objects J F  and i f f .  
'.ST' is not an object. F is a set, but as we don't really have infinite 
disjunctions, 'XT' isn't anything. We must instead treat the whole 
expression ' 2 .  . . > . . .' as expressing a metalinguistic relation between 

c, 

r and if). Each of (a)-(i) expresses a different metalinguistic relation 
and must be defined separately. This could be overcome by formalizing 
our metalanguage and then giving a recursive definition in the meta- 
metalanguage, but that is not worth the trouble. Once we have seen 
how to define one of the relations (a)-(& it will be quite obvious how 
to define any of the others. Thus once we have gone through the 
definition of one of these, I will feel free to use other similar relations 
without actually defining them. 

The key to constructing definitions for relations like (a)-(i) is to 
extend the definition of M so that we can write things like ( 3 ~ ~ 2 ~  
and /3MJlP. It is trivial to do this. We simply go back to definition 
2.15 and wherever that definition requires that the sentence (p be true 
in some possible world, we instead require that there is a member of F 
true in that world (in the case of SF) or that every member of F is true 
in that world (in the case of 77F). In the case of each of the antecedents 
of (a)-(i) there is a similarly obvious condition to employ in the 
definition of M. Then we can define our relation (a)-(i) quite 
straightforwardly. For example, we define (a) as: 

for every world 6, if (3Ma/IT then iff is true in 6. 

Analogously, we define (h) as: 

for every world (3, if (3Ma((p & ft JG), then some 
t < ~  

member of A is true in (3. 
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Using these metalinguistic relations we can write anything we could 
write if our language actually contained infinite conjunctions and 
disjunctions, the only difference being that what we write are expres- 
sions of the metalanguage rather than the object language. In addition 
there is the advantage that whereas one could raise philosophical 
difficulties about infinite conjunctions and disjunctions in the object 
language, similar difficulties do not arise for our metalinguistic proce- 
dures. 

We will also want to use infinitary operators in connection with 
necessitation conditionals, writing things like i^^Ã 4'. We can define 

m 

this quite straightforwardly in terms of our use of infinitary operators 
with the simple subjunctive. The object language necessitation condi- 
tional ru> >> 4' is defined to be: 

(<p>$) & [ ( -w  -$)>(<p><A)l. 

Thus we would like to define 'JIT Ã $' to mean something like: 
m 

(nr >> i / f )  & [ ( - n r  & -$) > ( n r  > $11. 
a a 

We cannot write quite this, because the final occurrence of '>' is not 
subscripted. But it is obvious what we want to say here. We want to 
say that '/7r> $' holds for every ( - n r  & -$)-world (3. Thus our 

0 

definition should be: 

(nr> 4)  & (V(3)[if p M m ( - n r  & -$) then nr > $1. 
e 6 

Given our infinitary simple subjunctives, we can define our infinitary 
necessitation conditionals completely generally on the above model: 

(3.1) ( I>>[  ] i f f (  )>[ I a n d ( V ( 3 ) { i f ~ M ~ ( ~ (  I & - [  I) 

then ( I > [  11. 

One of the most important tasks of this chapter will be to prove 
theorems 4.20 and 4.21 of Chapter 111. However, these principles 
cannot yet be formulated in our language. To do this we must augment 
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our language with some set-theoretic notation and extend our seman- 
tics to handle this additional richness. This is not difficult to do. We 
add a new non-denumerable class Vs of set variables, and a non- 
denumerable class Cs of set constants, together with the new logical 
constant ' G  '. We then turn our language into a three-sorted language. 
We add the new atomic formulas rx  e X1 and "X=Y1 where x e 

1 1 

(Cn U VR), t (CT U VT), and X, Y e  (Cs U Vs). Our other syntactical 
definitions remain as before, with the exception that we 
do not allow our set notation to be used in the formulation of 
subjunctive generalizations. Nor do we allow our set notation to be 
used in constructing simple sentences. The set Sim remains as before. 

In formulating the semantics for our extended language, we define 
'structure' and 'interpretation' just as before. We must modify the 
definition of 'possible world' by requiring that T) interpret the set 
constants in addition to the individual constants. Thus we add the 
condition: 

(iii*) T) maps a countable subset of Cs into the power set of 
D. 

We require that T) only interpret countably many set constants in order 
to ensure that there are always plenty of set constants left over to 
denote new sets occurring in worlds possible relative to a. This 
requirement has the effect that if D is denumerable, then most sets will 
not receive names. Thus in defining truth for sentences involving 
quantification over sets, we must proceed conventionally in terms of 
X-variants. We define truth for our new atomic sentences as follows: 

Our definition of accessibility must be made more complicated to 
accommodate our set notion. We want the transworld identity of a set 
to be determined by the transworld identity of its members. Thus if fS 
is a world accessible from a, and A e Cs, then the set denoted by A in 
fS must consist of the counterparts of the members of the set denoted 
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by A in a. Thus our definition becomes: 

(2.9*) If I  is an interpretation and a, (3 e  [ [ I ] ] ,  (3 is accessible from 
a iff: 

(i) for every b, c  e Cn, if b, c  e  9 (qa ) ,  qa(b) = ~ ( c )  and 
b  e  9 ( q a )  then % ( b )  = qp(c); and 

(ii) for every A e Cs, if A e  9 ( ~ )  then A e 2i(qp) iff 
{c ;ceCn & qa(c )eqa (A)}c9(qp) ,  and if 
then qp(A) = {qa(c); c  e (Cn 9(rla)) and qa(c) e  
qa(A)}. 

The rest of our semantics can be left unchanged. One noteworthy 
theorem which results immediately from our interpretation of set terms 
is the following: 

(4.2) A = B 3 Q((3X)X ; A 3 A ; B) .  
t 

That is, set terms are rigid designators. 

Definitions 2.15 and 2.17 constitute both an analysis and a formal 
semantics for subjunctive conditionals. A number of interesting 
theorems result from this analysis. The turnstile is defined as usual: 

(5.1) I-<p iff <p is valid. 

Our logic of subjunctive conditionals contains the quantified modal 
logic of Chapter V. Once again, the propositional fragment of our 
modal logic is S4. As noted before, a necessary condition for the 
correctness of the above analysis is that it have the consequence that 
every P-change contains a minimal P-change. In the present context, 
this should become a provable metatheorem. However, the extreme 
complexity of our language makes it very difficult to prove anything 
about it, and I can do no more than conjecture that this metatheorem 
holds. Assuming that it does, the necessity operator can be defined in 
terms of '>': 
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The axioms of SS are all valid: 

At  the end of Chapter I, it was suggested that there is a closer 
affinity between the linguistic theory of conditionals and the possible 
worlds theory than might be supposed. This can now be demonstrated. 
According to the linguistic theory, '(p > il/)l is true just in case <{/ is 
entailed by a combination of p, some laws, and some truths satisfying 
an as yet unanalyzed condition of 'contenability with p'. I suggested in 
Chapter I that the proper analysis of "0 is contenable with p1 is 
8 E p 1 .  Of course, this does not give an analysis of subjunctive condi- 
tionals until we have an analysis of 'even if', but that it is right as far as 
it goes is indicated by the following theorem: 

(5.11) r (p  > if/)' is true in a model iff for some sentence 0, "{[(p & 
0) 9 $1 & (OEip)r is true in the model. 

Furthermore, Analysis VII proceeds by telling us what must be pre- 
served in a p-world, and so is in effect an analysis of 'even if'. Thus in 
the end, the linguistic and possible worlds approaches to the analysis of 
subjunctive conditionals converge. 

Our logic is also a logic of law statements and physical necessity. All 
of the principles 3.15-3.27 and 4.5-4.16 of Chapter I11 are valid. A 
few other simple principles are: 
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. In Chapter I11 we discussed the possibility of analyzing ^((P 3 $)^ as 
a universally quantified conditional of some sort, but were unable to do 
so because of the difficulty concerning what the quantifier would range 
over in the case of a counter-legal. It was suggested instead that the 
strong subjunctive generalization was analyzable as "OS<p> 

P 

DV(<p > 4)'. We can now prove that this proposed characterization is 
P 

correct. According to our semantics, in deciding whether "(<p 3 4)' is 
true we make minimal changes to N in order to render it " 3 ~ ' -  
consistent, and then we see whether the resulting set entails ^V((P 3 

$)'. But this is the same thing as looking either at each r3q1-world or 
at each "OSml-world a and seeing whether N,, entails "V(<p 3 +)^. 

P 

Thus we have both of the following equivalences: 

Analogously: 

(5.24) ^> 4)  = [3<p > UV(<p $11. 
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An immediate consequence of 5.24 is: 
(5.26) l-(<p => $) =[3<p > ((p 3 $11. 
Now we are in a position to prove theorems 4.20 and 4.21 of 

Chapter 111: 

(5.27) If ip contains no set variables or set constants, and the free 
individual variables of <p are xi, . . . , xn, then l ( < p  =^> $) = 
(=){(x)(x E A = x  = x) & [V(<p 3 $)E3(<p & X I , .  . . , 
xng A)]}. 

Proof: Let A = {x; x = x}. Suppose "3(<p & XI, . . . , xn& A) > V(<p => $)' 
is true in a. Suppose mv & XI, .  . . , xn^A)'. Then in construct- 
ing B, We have added a new object or sequence of objects to the 
domain and made it satisfy <p. A new object or sequence of objects can 
have any set of simple attributes consistent with Wa because there are 
no simple truths in a about new objects which have to be preserved. 
Thus '(Vq => 4)' will be true in every such /3 only if Wa entails 
'V(<p 3 $)I, i.e., 'UV(<p 2 $I1 is true in a. Thus '3(q & 

a 

xl, . . . , xn& A)  >V(<p 2 4)' entails "UV((p=> $)I. Hence by 5.20, it also 
a 

entails '03(<p & xi, . . . , xn& A)  > UV(q 3 $)'. By 5.18, "OS(<p & 
a a a 

XI, . . . , xn& A)' is equivalent to "OSy1. Consequently, "03<p > 
a a 

nV(<p => f l i s  true in a, i.e., "(<p => $)' is true in a. 
a 

Conversely, suppose '(<p => $)' is true in a. Then 'UV(<p => $I1 is true 
a 

in a. By 5.18 and 5.12, "DV(<p =>$) & 03<p1 entails '[3(y & 
a a 

XI , .  . . , xn& A)>V(q 3 $)I1. Thus ' 0 3 ~ U V ( < p  +)' entails " 0 3 ~  
a a a 

[3(<p & xi, . . . , xn& A)>V(<p => $)I1, which is equivalent to '03(<p & 
a 

XI,  . . . , xn& A) > [3(<p & xi, . . . , xn& A) > V(q 3 $)I1, which by 5.19 is 
equivalent to '3(<p & xi , .  . . , xn& A)>V(<p 3 4)'. Thus 'V(<p 3 $)E3(<p 
& XI, .  . . , xn& A)' is true in a. 

As a fairly easy corollary of 5.27, interpreting the sentential quantifier 
in the obvious way, we obtain: 

(5.28) If xi, . . . , xn are the variables free in <p, then 
l-(<p => $) = (3P)(3A){(x)(x e A = x = x) & (<p & P. 3 $) & 

[PE3(<p & XI,  . . . , x,,& A)]}. 
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Consequently, the conjectured characterizations of weak subjunctive 
generalizations turn out to be correct. 

Our language contains five kinds of conditionals. They form a sort of 
heirarchy as follows: 

NOTE 

If ip is an open formula, the interpretation of 'D ip  is to be "DVipl. 
P P 
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C A U S E S  

The concept of a cause pervades the entire framework of concepts in 
terms of which we think of the world. As Ducasse points out, this "is 
made evident by the very large number of verbs of causation in the 
language; e.g., to push, to bend, to corrode, to cut, to make, to ignite, 
to transport, to convince, to compel, to remind, to irritate, to influence, 
to create, to motivate, to stimulate, to incite, to mislead, to induce, to 
offend, to effect, to prevent, to  facilitate, to produce, etc." (Ducasse, 
1966, p. 141). However, despite intensive philosophical labors, the 
concept of a cause has stubbornly resisted analysis. The major difficulty 
has been that talk of causes seems to involve us in a mysterious 
metaphysical kind of contingent necessity, and hence an account of 
causation would seem to call for the kind of metaphysical theory which 
is in disfavor in contemporary philosophy. However, philosophers have 
been equally suspicious about the metaphysical underpinnings of sub- 
junctive conditionals, and as we have seen, it is possible to give a 
straightforward non-metaphysical account of them. Furthermore, it 
seems initially plausible to suspect that causes are intimately bound up 
with laws and subjunctive conditionals, and as such contain a subjunc- 
tive element. Perhaps there is hope that we can analyze the notion of a 
cause with the help of our newfound understanding ot subjunctive 
conditionals. Such an attempt will be made in this chapter. 

In recent years, Donald Davidson, Jaegwon Kim, Zeno Vendler, and 
others have urged repeatedly that we should get clear on the ontology 
of causes before we undertake an analysis of the notion of a cause. The 
traditional supposition has been that causation is a relation between 
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events, and so the ontology of causes has been supposed to be the 
ontology of events. Kim's (1971) review of Mackie (1965) makes it 
clear how much trouble one can unwittingly get into by ignoring 
questions about the nature and individuation of events. For example, 
in analyzing the concept of a cause philosophers have repeatedly found 
themselves talking about conjunctions and disjunctions of events. But 
the relations of conjunction and disjunction are relations between 
sentences or propositions. If these relations are to be used in some 
derivative sense in connection with events, this derivative sense must 
be explained, and such an explanation will very likely presuppose facts 
about the individuation of events. Thus Kim and Davidson have been 
led to propose analyses of the concept of an event. 

However, I think there is a fundamental confusion here. Why do we 
believe that causation is a relation between events? Most philosophers 
take this as just obvious, but I do not think that it is at all obvious. Let 
us consider this question objectively. 

To begin with, most philosophers are quick to point out that they are 
extending the use of 'event' somewhat when they assert that causation 
is a relation between events. Our ordinary understanding of events (it 
is asserted) is that they involve changes, but a cause can sometimes be 
the absence of a change. For example: 'The bell's not ringing caused us 
to remain seated'. But, it is supposed, with this minor extension of the 
concept we can make it true that causes are events. However, the 
extension involved is not really quite so minor as philosophers have 
been apt to suppose. The difficulty is'that the dictum 'Causes are 
events' makes one prone to overlook the great variety of antecedents 
that are possible in causal statements. We can have conjunctive causes: 
'That switch A was closed and switch B was opened caused the light to 
go on'; we can have negative causes: 'The switch's not being closed 
caused the light to remain off'; and (hence) we can have disjunctive 
causes: 'That either switch A was open or switch B was open caused 
the light to remain on'. We can also have existential causes: 'That 
someone entered the room caused the buzzer to sound'. In general, we 
can use logical operators to construct causal antecedents of arbitrary 
complexity. We must not understand 'event' so narrowly that we rule 
out these logically complex causes. 

Given the required extension of the concept of an event, what sorts 
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of things are events? Davidson (1971, p. 217) gives a strangely mixed 
list in answer to this question: Sally's third birthday party, the eruption 
of Vesuvius in 1906 A.D., my eating breakfast this morning, the first 
performance of Lulu in Chicago. What is odd about this list is that the 
terms it contains are not all of the same grammatical category. 'My 
eating breakfast this morning' is a nominalized gerund. This is typical 
of the first term in causal statements, which tend to be expressions like 
'The bell's not ringing', or 'The eight ball's striking the five ball'. But 
'Sally's third birthday party' and 'the first performance of Lulu in 
Chicago' are not of this form. Furthermore, taking all of these terms at 
face value as really denoting things, they must denote different sorts of 
things. For example, there is no way to replace 'Sally's third birthday 
party' with a nominalized gerund which denotes the same thing. We 
cannot say, e.g., that Sally's third birthday party was the same thing as 
Sally's having her third birthday party. This identity sentence is either 
logically false or grammatically illformed. This can be made clearer by 
noting that the birthday party may have attributes inconsistent with 
attributes possessed by Sally's having the party. Perhaps the party was 
horrible - no one enjoyed it, everyone felt self-conscious, but they all 
came and pretended to have fun because Sally had just recovered from 
a serious illness. On the other hand, Sally's having the party was 
wonderful because this signified her recovery from the illness that 
everyone expected to be fatal. If the party was horrible, but Sally's 
having the party was wonderful, then the party cannot be the same 
thing as Sally's having the party. Or to take another attribute, the party 
may have been long and drawn out, but this is not something that can 
even be meaningfully said of Sally's having the party. Switching 
examples, the first performance of Lulu in Chicago is not the same sort 
of thing as the play's being performed for the first time in Chicago. 
Performances of plays cannot be identified with the plays' being 
performed. For example, the performance might have been brilliant, 
but the play's being performed was not brilliant - it was stupid, it caused 
a race riot. 

It seems then that there are two logically different sorts of things 
that philosophers have called 'events'. On the one hand there are the 
referents of these nominalized gerunds (supposing them to really have 
referents), and on the other hand there are things like birthday parties 
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and performances of plays. This disparity becomes particularly impor- 
tant when we realize two things. First, only items of the second 
grammatical category (birthday parties, performances of plays, baseball 
games, etc.) would ordinarily be called events. Second, only items of 
the first grammatical category enter directly into causal statements. 
Our most fundamental causal statements have forms like 'My eating 
breakfast this morning caused me to fall asleep while lecturing'. This 
second point requires elaboration. My claim is that the most funda- 
mental kind of causal statement has the form 

(2.1) ger(P) caused inf(Q). 

where "ger(P)l is the appropriate nominalized gerund constructed from 
P, and "inf(Q)' is the appropriate infinitive construction on 0. I will 
now explain what I mean here by 'most fundamental'. 

We sometimes speak as if physical objects were causes. We say 
things like 'The tree caused the accident (by being too close to the 
road)'. However, it is rather obvious that an object can cause some- 
thing only by being a certain way or having a certain property. In other 
words. 

(2.2) x caused it to be the case that Q. 

is analyzable as: 

(2.3) (3F)[x's being F caused it to be the case that 01. 

This is a rather obvious point which, I think, will be granted by 
everyone. Furthermore, causal statements of the form of 2.1 are more 
fundamental than causal statements of the form 2.2 in the sense that 
the latter can be analyzed in terms of the former, but not conversely. 
The former cannot be analyzed in terms of statements of the form of 
2.2 because the former contain more information. They tell us how x 
caused it to be the case that Q, and that information is not contained in 
statements of the form of 2.2.  

We also speak of events as being causes; 'Sally's third birthday party 
caused her sister to be jealous', 'The baseball game caused a traffic 
jam'. But it is my contention that these causal statements are parallel 
to those of form 2.2 and are to be analyzed analogously. That is, an 
event can only cause something by virtue of having a certain property, 
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and then it is true that the event's having that property was the cause. 
For example, consider: 

(2.4) The duel caused women to faint. 

This might be true simply because the duel's occurring caused women 
to faint. But on the other hand, duels might be everyday events which 
women take in their stride, and it was not the occurrence of the duel 
that caused women to faint, but rather it's being so bloody. This would 
equally make 2.4 true. This indicates that 2.4 is to be analyzed as: 

(2.5) (3F)[the duel's being F caused women to faint]. 

In general, where 'E '  is a term denoting an event, 

(2.6) E caused it to be the case that 0 .  

is analyzable as: 

(2.7) (3F)[E's being F caused it to be the case that 01.  

Thus causal statements of the form of 2.6 are analyzable in terms of 
those of the form 2.1. And once again, causal statements of form 2.1 
do not seem to be analyzable in terms of those of the form 2.6, 
because the former (if they mention an event) tell us how the event 
caused what it caused, but the latter do not. In this sense, causal 
statements of form 2.1 are more basic or fundamental than those of 
form 2.6. 

What this all indicates is that although we do talk about events being 
causes, events are not causes in the most fundamental sense of 'cause'. 
The sense in which events can be causes is precisely the same as the 
sense in which physical objects can be causes. Events play no more 
basic or interesting a role in causal statements than do physical objects. 
If we are to understand causal statements, we must look directly at 
those of the form 'ger(P) caused inf(Q)", and these do not appear to 
say anything directly about events. 

In order to have a simple way of referring to them, let us call 
statements of the form "ger(P) caused inf(Q)^ basic causal statements. 
We can express basic causal statements in a kind of canonical form as 
I t s  being the case that P caused it to be the case that Q1. I have 
argued that basic causal statements are not to be construed as expres- 
sing a relation between events. One is inclined to ask, then, what sorts 
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of entities are related by basic causal statements. But this question is 
premature. It is not obvious that basic causal statements are relational 
statements at all. Their surface grammar is not that of a relational 
statement. The difficulty is that ^inf(Q)^ is not a denoting expression. 
Expressions like 'women to faint' or 'us to remain seated' do not even 
purport to denote anything. In light of this surface grammar, it is a 
little bit mysterious that philosophers have been so quick to take basic 
causal statements as relational statements. 

But perhaps this is too fast. We do talk about causing events: 
'Throwing the switch caused the explosion'; 'Seeding the clouds caused 
the rainstorm'. These causal statements do not have form of basic 
causal statements. However, they are readily seen to be equivalent to 
basic causal statements, viz.: 'Throwing the switch caused the explo- 
sion to occur'; 'Seeding the clouds caused the rainstorm to occur'. In 
general, talk about causing events is equivalent to talk about causing 
the events to occur. Conversely, can basic causal statements always be 
reformulated as statements about the causes of events? If so, then it 
seems we could, after all, regard the second term of a causal relation as 
being an event. But there are difficulties for this proposal. First, there 
are infinitive cons,tructions for which there do not seem to correspond 
events. E . ~ . ,  there does not seem to be any 'event term' E such that 
'The oven's being turned on caused the pie to bake' is equivalent to 
'The oven's being turned on caused event E to occur'. One is apt to 
propose that 'the baking of the pie' is such an event term, but this is a 
nominalized gerund, and as we have seen, neminalized gerunds do not 
designate events. But perhaps all that this shows is that there is no 
term in our language which designates the event and not that there is 
no such event. I do not see how to resolve that question. However, 
there is a more fundamental difficulty. Even when there are natural 
event terms corresponding to infinitive constructions, we do not get the 
simple equivalence we might expect. Consider, for example: 

(2.8) Seeding the clouds caused it to rain today. 

Corresponding to 'it to rain today' is an event - today's rain. Thus it 
might seem that 2.8 is equivalent to: 

(2.9) Seeding the clouds caused today's rain. 
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However, 2.8 and 2.9 are not equivalent. 2.8 entails 2.9, but not 
conversely. For example, suppose the clouds were seeded at 3 : 00 PM, 
and this caused it to rain at 4 : 00 PM. However, meteorological condi- 
tions were such that if it hadn't rained at 4:00 because of the cloud 
seeding, it would have rained naturally at 5 : 00 PM. Then it is not true 
that seeding the clouds caused it to rain today - it would have rained 
anyway. But seeding the clouds did cause today's rain - that is, it 
caused that very rain we actually had today, because if the clouds had 
not been seeded we would have had a different rain (one at 5 :00 
rather than at 4 : 00, involving different clouds, different raindrops, 
etc.). Thus 2.8'and 2.9 are not equivalent. It does not seem that basic 
causal statements can be construed as expressing a relation the second 
term of which is an event. 

As I remarked above, the surface grammar of basic causal state- 
ments is not that of relational statements at all, because the conse- 
quents are not substantival expressions. Still, surface grammar does not 
tell the whole story, and it may be possible ultimately to analyze basic 
causal statements in terms of some relation between entities of some 
sort. In fact, there seems to be one rather simple way of doing this. It 
seems we can always construe basic causal statements as expressing a 
relation between propositions. That is, we can think of "Its being the 
case that P caused it to be the case that Q1 as expressing a relation 
between the proposition-that-P and the proposition-that-0. This sug- 
gests that we symbolize basic causal statements using a sentential 
connective, PCQ l ,  and then interpret this sentential connective as 
expressing a relation between propositions. 

It must be pointed out that the symbolization of basic causal 
statements using a sentential connective does not commit us to inter- 
preting them in terms of a relation between propositions. The use of 
the sentential connective is nothing more than ashorthand device for 
expressing basic causal statements. On the other hand, the assumption 
that this sentential connective can be interpreted as a relation between 
propositions is tantamount to assuming the validity of the following 
two principles: 

(2.10) If the proposition-that-P = the proposition-that-R, then 
PCQ iff RCQ. 
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(2.11) If the proposition-that-Q=the proposition-that-R, then 
PCQ iff PCR. 

Unfortunately, the individuation of propositions is almost as much of a 
problem as is the individuation of events. Philosophers often pretend 
that logical equivalence is a necessary and sufficient condition for 
propositional identity, but it is pretty obvious that this is really too 
weak a criterion. However, it is at least clear that logical equivalence is 
a necessary condition for event identity, and hence 2.10 and 2.11 are 
implied by the following two principles: 

(2.12) I fP<->Â¥R, thenPCQi f  RCQ. 

(2.13) If Q <-> R, then PCQ iff PCR. 

If we can agree that 2.12 and 2.13 are true, then we can safely 
interpret basic causal statements as expressing a relation between 
propositions. 

That 2.12 and 2.13 are true seems almost obvious to me. However, 
Davidson (1967) has given an argument which purports to establish 
their invalidity. By adapting an argument of Frege, Davidson shows 
that principles 2.12 and 2.13 together with the following extensionality 
principle: 

(2.14) If ti and t2 are individual terms and t i  = t2, then (Ftl)CQ 
iff (Ft2)CQ, and PC(Ft,) iff PC(Fr2). 

lead to the absurd result that the connective 'C' is truth-functional. In 
particular, they lead to the result that if any basic causal statements are 
true, then whenever P and Q are true, so is ^PCQ1. The argument is 
as follows. Suppose we have some true causal statement ^RCS1. Then 
R and S are true. But R and S are logically equivalent, respectively, to 
the statements r{x; x e w & R} = w1 and ^{x; x E w & S} = w1 (where w 
is the set of all natural numbers). Thus by 2.12 and 2.13, ({x; x w & 
R} = w)C({x; x w & S} = w). If P and Q are true, then {x; x e w & 
P}={x; x e w  & R},and{x ;  x ~ w  & Q}={x; x e w  & S}. Hence by 
2.14, ({x; x w & P} = w)C({x; x w & Q}= w). But the antecedent 
and consequent of this basic causal statement are equivalent to P and 
Q respectively, so by 2.12 and 2.13, ^PCQ1 is true. Davidson takes 
this absurd conclusion as establishing the incorrectness of 2.12 and 
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2.13, because he thinks that 2.14 is obviously correct. But strictly 
speaking, all the argument shows is that we must reject either 2.12 and 
2.13, or principle 2.14, and in the abstract I do not think that either 
choice is obviously the correct one. 

Davidson thinks that 2.14 is obviously correct because he accepts 
the dogma that basic causal statements express a relation between 
events, and he thinks that events are extensional in the sense of 2.14. 
Personally, I do not think it is all that obvious that events are 
extensional in the appropriate sense, but whether they are or not is 
irrelevant to the validity or invalidity of 2.14 because, as we have seen, 
basic causal statements do not express relations between events. The 
assumption that they do has been responsible for a great deal of 
confusion regarding the logical properties of basic causal statements. In 
particular, this assumption has led a number of authors to endorse 2.14 
and on that basis to reject 2.12 and 2.13. 

The decision whether to reject 2.12 and 2.13 or to reject 2.14 must 
rest upon an appeal to actual examples. At first glance, the appeal to 
actual examples appears to support 2.14, but as we will see on closer 
examination, this appearance is illusory. Suppose we have a group of 
men in a room, just one of whom is red-headed, and the redhead is 
also the most powerful man in the room. Suppose the following is true: 

(2.15) That the most powerful man in the room gave the order 
caused it to be obeyed. 

Does the following follow from 2.15? 

(2.16) That the only redhead in the room gave the order caused it 
to be obeyed. 

It seems that it does. But we must be careful. 2.15 and 2.16 involve 
definite descriptions, and definite descriptions are subject to scope 
ambiguities. In general, '^(FixGx)CQ1 is ambiguous between the nar- 
row scope reading r[Fx](ixGx)CQ1 and the wide scope reading 
r[FxCQ](ixGx)l. In general, the scope notation is defined by stipulat- 
ing that: 

(2.17) "[Fx](ixGx)^ is equivalent to "(3!x)Gx & (3x)(Fx & Gx)' 

Applying this to our causal statements, the narrow scope reading 
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r [ F x ] ( ~ x G x ) C Q 1  is defined as: 

(idiomatically: "that there is a unique G and it is F caused it to be the 
case that Q1).  The wide scope reading r [ ~ ~ C ~ ] ( ~ ~ G x ) l  is defined as: 

(idiomatically: '"there is a unique G, and its being F caused it to be the 
case that Q1).  

Corresponding to the scope ambiguity, where ti and t2 are definite 
descriptions, 2.14 is ambiguous between two principles: 

(2 .14*)  If t l  = t2, then [Fx] ( t l )CQ iff [Fx](t2)CQ, and P C [ F X ] ( ~ ~ )  
iff PC[Fx](tZ). 

(2.14**) If t i  = t2, then [ F x C Q ] ( t I )  iff [FxCQl( t2) ,  and [PCFxI(td 
iff [ P  CFx]( t2) .  

As examination of Davidson's argument shows that in order to make 
the substitution steps which enable him to obtain his disastrous 
conclusions he must have the narrow-scope version of 2.14 ,  viz., 2.14*.  
This is because the term '^{x;  <f ix}1  has the same meaning as the definite 
description '"I x ( y ) ( y  E x = cpy)l. But it is my contention that only the 
wide-scope version, 2.14**, is true. This can be seen by considering 
what happens when we resolve the scope ambiguity in 2.15 and 2.16 .  I 
believe that our intuition that 2.16  follows from 2.15 concerns only the 
wide scope reading of these sentences, and hence supports only 2.14**.  
The narrow- and wide-scope readings respectively of 2.15 and 2.16 
are: 

(2 .15*)  That there was a unique most powerful man in the room 
and the person who gave the order was a most powerful 
man in the room, caused the order to be obeyed. 

(2 .16*)  That there was a unique redhead in the room and the 
person who gave the order was a redhead in the room, 
caused the order to be obeyed. 

(2.15**) There was a unique most powerful man in the room, and 
there was someone such that he was the most powerful man 
in the room and his giving the order caused it to be obeyed. 
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(2.16**) There was a unique redhead in the room, and there was 
someone such that he was a redhead in the room and his 
giving the order caused it to be obeyed. 

Given this disambiguation,' it seems to me that 2.16* is unequivocally 
false and 2.16** is unequivocally true. Thus the example supports only 
2.14** and actually constitutes a counter-example to 2.14*. 

This diagnosis indicates that Davidson's argument does not, after all, 
establish the invalidity to 2.12 and 2.13, and hence we are free to 
interpret 'C' as expressing a relation between propositions. However, 
such an interpretation does not preclude our also interpreting 'C' in 
terms of a relation between some other entities having less stringent 
criteria for individuation. I have argued that there is no reason to think 
causation to be a relation between events, but given the distinctions I 
have made this is probably not what most recent philosophers have 
wanted to maintain anyway. They have really wanted to say that 
causation is a relation between the entities that are denoted by 
nominalized gerunds, and they mistakenly thought that those entities 
are what are commonly called 'events'. An initial obstacle to this 
position would be that the consequents of basic causal statements are 
not nominalized gerunds, but notice that the basic causal statement "Its 
being the case that P caused it to be the case that 0' is convertible 
into the equivalent statement "Its being the case that 0 was caused by 
its being the case that P1, and the latter does seem to express a relation 
between the referents of two nominalized gerunds. There are going to , 

be philosophers who question whether nominalized gerunds denote 
anything at all, but this is not a difficulty I am inclined to take 
seriously. If nothing else, we could always artificially construct suitable 
entities somewhat on the order of Kim's ordered triples (Kim (1970)). I 
think we might reasonably say that nominalized gerunds denote 'states 
of affairs', taking the latter as an explicitly technical term introduced 
for the sole purpose of having a name for these entities. Then it seems 
quite reasonable to say that basic causal statements express a relation 
between states of affairs. However, even if we grant this, it is not at all 
obvious how states of affairs are individuated. In particular, states of 
affairs are much more 'logically strict' entities than are events, and it is 
not obvious that states of affairs have coarser criteria for individuation 
than propositions do. 
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I think this whole attempt to resolve the ontological problems about 
causation before attempting to give an analysis of causal statements is 
essentially backwards. Given a kind E of entity, the question whether 
basic causal statements can be regarded as expressing a relation 
between entities of kind E is equivalent to the question whether, 
whenever P and R 'correspond to' the same entity of kind E and Q 
and S 'correspond to', the same entity of kind E, is true iff 
RCS'  is true. The criteria for individuating entities of kind E can be 
regarded as telling us when two propositions 'correspond to' the same 
entity of kind E. Consequently, the question of what kinds of entities 
can be regarded as the relata of basic causal statements is just the 
question of what relations between propositions make them inter- 
changeable in the context of basic causal statements. In other words, 
what relations St make the following true: 

(2.20) If PWQ thenPCRi f f  QCR,and RCPiff RCQ. 

Putting the question in this way indicates that to attempt to answer the 
ontological question before analyzing basic causal statements is to put 
the cart before the horse. There are really two distinguishable prob- 
lems regarding the concept of a cause. First, there is the ontological 
question, which we have been considering. This is the question what 
sorts of entities are related by causal relations. Distinct from the 
ontological question is the second, and more traditional, problem 
regarding the concept of a cause. This is to give an analysis of 
statements like 'John's striking the match caused there to be an 
explosion' in terms of other notions we already understand. There is 
no reason why we should have to solve the ontological problem before 
we can solve this latter problem. And as we have just seen, the 
ontological question is equivalent to a question about the logical 
properties of basic causal statements (i.e., the question what relations 
9i satisfy 2.20), so any adequate answer to the ontological question 
may actually presuppose a prior analysis of basic causal statements. 

In fact, I have been unable to find any interesting relations 9t (other 
than logical equivalence) which satisfy condition 2.20. This suggests 
that basic causal statements cannot be analyzed as expressing a relation 
between entities having coarser criteria for individuation than logical 
equivalence, and hence that basic causal statements can only be 
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regarded as expressing a relation between propositions or something 
with equally stringent criteria for individuation. I am not sure that this 
is the case, but for lack of any positive results to the contrary I do not 
propose to return to the ontological question. The remainder of this 
chapter will be concerned with an analysis of basic causal statements in 
terms of a relation between propositions. 

I have stated our problem as being that of analyzing the causal relation 
'its being the case that .  . . caused it to be the case that .  . .'. However, 
this is not the only causal relation, and there is reason to believe that it 
is not even the most fundamental or most important causal relation. To 
begin with, this relation only holds between true propositions, but we 
often have occasion to say that something which did not happen would 
have caused something else. This subjunctive notion of cause is inter- 
definable with our indicative notion of cause: 

(3.1) Its being the case that P would cause it to be the case that 
Q, iff, [P>(PCQ)]& O P . ~  

(3.2) PCQ iff, its being the case that P would cause it to be the 
case that Q, and it is true that P . ~ .  

I will frequently abbreviate the long construction "Its being the case 
that P would cause it to be the case that Q1 as "P would cause 0'. 
Similarly, I will abbreviate "Its being the case that P caused it to be the 
case that Q1 as "P caused Q1. These shortened forms are convenient, 
but they are grammatically illformed and must be understood as 
elliptical for the more complicated constructions. 

There is another causal relation different from either of these two 
relations. We might call this the relation of causal sufficiency. Fre- 
quently, its being the case that P may fail to cause it to be the case that 
Q only because there is some third proposition R such that its being 
the case that R has already caused it to be the case that Q. For 
example, suppose we shoot a man twice. Shooting him the first time 
causes his death. Then shooting him the second time may only fail to 
cause his death because something else has already caused it. When 
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this happens, we say that its being the case that P  would be causally 
sufficient for it to be the case that Q  even though it would not or did 
not cause it to be the case that 0. This notion of causal sufficiency 
seems, in some sense, to be the most fundamental causal concept. The 
relation between one proposition and a second proposition which it 
would cause is that of causal sufficiency. Whether the first proposition 
also causes the second depends not just on the relation between the 
two propositions, but also on what other true propositions there are 
that would be causally sufficient for the second proposition. 

The notion of causal sufficiency is also interdefinable with the notion 
of a cause. To say that P  would be causally sufficient for 0 (sym- 
bolized "PCSQ1) is to say, roughly that P  would cause Q  if Q  weren't 
already true for some other reason. This suggests: 

(3 .3 )  P C S Q i f f [ - Q > ( P > P C Q ) ] .  
However, this does not adequately handle the case in which P  actually 
does cause 0. In such a case, if 0 were false, then P  might no longer 
be sufficient to cause 0. For example, suppose we have a light 
operated by two switches in series. If both switches are closed, the light 
is on. Switch A was closed initially, and then switch B was closed. 
Switch B's being closed caused the light to be on. But if the light 
weren't now on, then one of the two switches would be open, but there 
is nothing that determines which switch would be open. In particular, 
switch A might be open. But in that case, switch B's being closed 
would not cause the light to be on. So it is not true that if the light 
weren't on, then switch B's being closed would cause the light to be on. 
The difficulty here is that if P  actually causes 0 ,  it characteristically 
does so in conjunction with certain other collateral truths, so if Q were 
false, we can only conclude that either P  would be false or one of those 
collateral truths would be false. If one of the collateral truths were 
false, then P  would no longer cause 0 .  We can take care of this just as 
we did in the analysis of the necessitation conditional by saying not just 
that 0 is false, but also specifying that it is the failure of P  which is 
involved in Q's being false rather than the failure of one of the 
collateral truths. In other words, our analysis should be: 

We include the final conjuncts to exclude the trivial cases. 
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It is equally simple to define 'cause' in terms of causal sufficiency. 
The most common case in which we want to say that P was causally 
sufficient for Q without causing Q is where there is more than one true 
proposition causally sufficient (in different ways) for Q. The classical 
example is that of two members of a firing squad who fire their 
weapons simultaneously with the result that their bullets hit the victim 
at the same instant and are each causally sufficient to cause death at 
the same instant. We will not happily say that either man's firing his 
weapon individually caused the death of the victim (although, of 
course, the death was caused by the fact that at least one of them fired 
his weapon). This seems to be because, had either man not fired his 
weapon, the victim would have died anyway. This suggests that we can 
analyze 'cause' as: 

(3.5) P C Q i f f [ P & P C S Q & ( - P > - Q ) ] .  

However, counterexamples have been proposed to the condition 
( - P > - Q ) l .  Scriven (1964) gives the example of a man whose state 
of excitation at ~ : O O P M  is such that he would suffer a 
stroke at 4:55 PM which would cause his death at 5 :00 PM were it 
not that a heart attack intervenes at 4 : 50 PM which causes his death at 
5 :00 PM. The heart attack prevents the stroke, and hence is the cause 
of death. But it is not true that if he had not suffered the heart attack 
he would not have died at 5 :00 PM. On the contrary, he would have 
died of the stroke. Thus it seems that the condition r(-P > -0) '  is too 
strong. 

I d o  not think that this is a genuine counterexample. It involves the 
same confusion as was involved earlier in overlooking the distinction 
between causing it to rain today and causing today's rain. To make it 
easier to see this, let us first consider a modified example in which the 
stroke would have caused death at 5 : 10 PM rather than at 5 :00 PM. 
Then it is true both that the heart attack caused the man's death and 
that the heart attack caused the man to die at 5 : 00 PM. But for both of 
these, the condition r(-P> -Q)' is satisfied. First, if he had not had 
the heart attack, the man would still have died, but it would have been 
a different death. It would have been a death occurring at a different 
time and involving quite different processes. Second, if the man had 
not had the heart attack he would not have died at 5 :00 PM. Contrast 
these two true causal statements with the false causal statement that 



160 CHAPTER V I I  

the heart attack caused the man to die today, i.e., caused it to be the 
cause that there was a time today when he died.4 This statement is 
false precisely because he would have died today anyway. 

We have made the example easier to deal with by supposing that the 
stroke would have caused death at a different time than the heart 
attack. Let us return to the original example in which the stroke would 
also cause death at 5 : 00 P M .  We must still distinguish between causing 
the man's death (that very death that actually occurred) and causing 
the man to die at 5 :00. It is still true that the heart attack caused the 
man's death, and that the death would not have occurred had he not 
had the heart attack. The man would still have died, but it would have 
been a different death - one involving quite different processes. On the 
other hand, it is no longer true that the heart attack caused the man to 
die at 5 : 00 - and this is because he would have died at 5 : 00 anyway. 
Thus, rather than constituting a counterexample to 3.5, 1 think that 3.5 
explains the fine structure of the judgments that we make regarding 
this example. Of course, my resolution of this putative counter- 
example presupposes certain judgments about the individuation of 
events, but I think that those judgments are correct. Consequently, I 
believe that 3.5 constitutes a correct analysis of 'causes' in terms of 
causal sufficiency. 

Because of the interdefinability of 'cause', 'would cause', and 'caus- 
ally sufficient', if we can provide an analysis of one of these notions, 
analyses of the others will follow. My strategy below will be to give an 
analysis of causal sufficiency. 

We turn now to the analysis of causal sufficiency. We will build up to 
our final analysis by considering sequentially some plausible sugges- 
tions that have been made in the literature. 

4.1.  Nomic Subsumption 

The simplest approach to the analysis of causal sufficiency is the nomic 
subsumption model. This arises out of the traditional regularity theory 
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or the constant conjunction theory adumbrated by Hume. On the 
nomic subsumption model, P is causally sufficient for 0 just in case 0 
'can be obtained from' P together with some physical laws. Kim (1973) 
has shown how difficult it is to make clear this notion of 'can be 
obtained from'. But this is a problem we have already discussed in 
talking about how laws are derivable from one another. We can 
formulate the nomic subsumption model quite simply as follows: 

(4.1) Nomic Subsumption Model: P is causally sufficient for Q 
iff P+ 0. 

There is a standard objection to the nomic subsumption model. This 
is that it only deals with what John Stuart Mill called 'total causes'. 
For example, consider a house fire that results from faulty insulation. 
We would say that the faulty insulation is the cause of the fire, but 
there is no physical law to the effect that faulty insulation is always 
followed by a fire. In formulating the physical law that is operative 
here, we must mention the presence of oxygen, the temperature of the 
air, the current in the wires, etc. According to the nomic subsumption 
model, all of these together would be causally sufficient for the fire, but 
the faulty insulation would not be. But this is incorrect if taken as a 
remark about the concept of 'cause' that we have set out to analyze. 
The notion of the 'total cause' is probably a useful notion (although, as 
we will see, the nomic subsumption model does not capture it cor- 
rectly), but it is not our ordinary concept of 'cause'. The ordinary 
concept of a cause has much in common with subjunctive conditionals. 
What makes subjunctive conditionals useful, and also difficult to 
analyze, is that under certain circumstances we are allowed to delete 
true conjuncts from the antecedent. The whole problem of analyzing 
subjunctive conditionals was to say when that can be done. Similarly, 
in stating causes, we are not required to state the total cause. Under 
certain circumstances we can delete mention of most of the causal 
factors, reporting simply that the remaining causal factors caused the 
effect. An important part of the problem of analyzing causal sufficiency 
is to say when such causal factors need not be mentioned in stating the 
cause. 

I have been urging that the nomic subsumption model is at best an 
analysis of 'total cause', and not an analysis of causal sufficiency. But 
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there is a more fundamental difficulty with the nomic subsumption 
model which shows that it does not even capture the notion of 'total 
cause'. This is the difficulty, which we will encounter again, of 
'epiphenomena'. When two propositions share a common cause, with- 
out either being causally sufficient for the other, we say that they are 
epiphenomena. We might well have a law statement "P 3 0' which is 
true not because P is causally sufficient for 0, but rather because there 
are physical laws which ensure that anything which would be causally 
sufficient for P would also be causally sufficient for 0. For example, P 
and Q might report the occurrence of astronomical events on a star, 
and we might have cosmological laws which tell us that there is only 
one way that P could be true, and that would also result in Q's 
being true. Under these circumstances, P and Q are epiphenomena 
instead of P being the total cause of Q. 

Apparently the notion of a total cause cannot be defined so simply 
as proposed by the nomic subsumption model. Just because " P  3 Q1 is 
true, it does not follow that P is the total cause of 0. What is required 
in addition is that P cause Q. This suggests that we must define 'total 
cause' as follows: 

(4.2) P is a total cause of Q iff P C 0  and P 3 Q. 

The difference between a cause and a total cause is that the latter is a 
cause which is connected to its effect directly by a physical law. 

Of course, if we define 'total cause' as in 4.2, it will not be of much 
help in analyzing causal sufficiency. In particular, if we try to define 
causal sufficiency directly in terms of 'total cause', our definitions will 
be circular. It might be possible to avoid this circle by defining 'total 
cause' in some other way, but, as we will see, it is possible to break the 
circle anyway at the other end by providing an analysis of causal 
sufficiency which does not use the notion of a total cause. 

4.2. Contingently Sufficient Conditions 

Scriven (1964) and Mackie (1965) have proposed basically similar 
analyses which explicitly recognize that in stating the cause of some- 
thing, we do not have to state the total cause. Scriven formulates the 
analysis succinctly by saying that causes are "contingently sufficient 
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conditions". More precisely: 

(4.3) P is causally sufficient. for Q iff there is a set of true 
propositions R l ,  . . . , R,, such that P together with 
R, ,  . . . , R,, is sufficient for Q (i.e., ( P  & R ,  & . . . & 
Rn)  3 Q), but R l ,  . . . , Rn alone are not sufficient for Q 
. e . ,  (Ri  & .  . . & Rn)  Q). 

By taking the conjunction of the R's, we can simplify this proposal to: 

(4.4) P is causally sufficient for Q iff there is a true proposition R 
such that ( P  & R )  3 Q, but R + Q. 

This analysis is clearly inadequate as it stands. The simplest way of 
demonstrating the inadequacy is to note that it entails that if 0 is true, 
then any proposition at all is causally sufficient for 0 .  To get this 
result, we simply let R by " ( P z  Q)'. For the same reason, a false 
proposition would be causally sufficient for anything at all. This diffi- 
culty seems to be related to the analogous difficulty that arose in 
connection with subjunctive conditionals. There the difficulty was to 
explain under what circumstances we can detach a true proposition R 
from a conditional '"[(P & R )  3 Q]' to obtain a true simple subjunc- 
tive '"(P> Q)'. In that case, the condition required for detachment was 

REP1. This condition also seems to be required in the case of causal 
sufficiency. When a condition R is already true which, when conjoined 
with P would be causally sufficient for 0 ,  in order for us to delete 
mention of R and say simply that P itself would be causally sufficient 
for Q it is at least necessary that R would still be true if P were true. If 
this condition is not satisfied, then P's being true would be no 
guarantee of the truth of 0, and hence P-is not causally sufficient for 
0 .  For example, it is true that natural gas has been flowing from the 
orifice of the pilot light on my furnace for the past hour. That, taken in 
conjunction with the flame on the pilot light's having blown out an 
hour ago and my now lighting a match in the vicinity of the water 
heater, would be causally sufficient for an explosion. But we cannot 
conclude, in accordance with 4.4, that the flame on my water heater 
having gone out an hour ago and my now lighting a match in its 
vicinity, would be causally sufficient for an explosion. This is because it 
is not true that gas would have been flowing from the pilot light for the 
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last hour had it blown out.  There is a safety mechanism designed to 
prevent that. This indicates that we must at least add one further 
condition to 4.4: 

(4.5) P is causally sufficient for Q iff there is a true proposition R 
such that REP and [ (P  & R )  3 Q ]  and R $ Q. 

But now something remarkable has happened. The analysans of 4.5 is 
equivalent to the condition that the simple subjunctive ' ( P >  Q)' be 
true. This leads naturally into the attempt to analyze causal sufficiency 
in terms of subjunctive conditionals. 

4.3. Causal Sufficiency and Subjunctive Conditionals 

That  ' ( P >  Q)' be true is clearly a necessary condition for P to be 
causally sufficient for Q, but I think it is equally clear that it is not a 
sufficient condition. For example, '"(P & Q)' entails ' ( P >  Q)', but we 
certainly d o  not want to  conclude that any two true propositions are 
causally sufficient for one another. W e  must add additional require- 
ments if we are to  obtain a satisfactory analysis of causal sufficiency. 

T o  begin with, it seems clear that causal sufficiency is a special case 
of necessitation: 

(4.6) If P is causally sufficient for 0, then ( P  >> 0). 

If P is causally sufficient for 0, then the truth of P must be sufficient to 
'bring it about' that Q is true, in the sense that ( P  >> 0). Although this 
is still not a sufficient condition for causal sufficiency, I think we are 
now on the right track. From this point the analysis will proceed by 
accumulating additional necessary conditions until finally we have a list 
which is also sufficient. 

The  basic connection between cause and effect seems to be that of 
necessitation. But not all necessitations give rise to  causal relations. If 
P Ã‘ Q, then P >> Q, but it is not usually true in such a case that P is 
causally sufficient for Q. Kim (1973) gives the following two examples: 

(i) Yesterday's being Monday does not cause today to be 
Tuesday. 

(ii) George's being born in 1950 and still being alive in 
197 1 does not cause him to have reached the age of 2 1 
in 1971. 
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It seems reasonable to suppose that causation is a species of contingent 
necessitation, and hence the cause can never entail the effect. How- 
ever, there are what appear to be counterexamples to this supposition: 

(1)  If you heat the metal to a sufficiently high temperature, that 
will cause it to melt. 

(2) His bending the rod over his knee until it broke caused the 
rod to break. 

(3) His being fatally stabbed caused him to die. 

These examples seem a little odd,  but I think the oddness is due  to the 
triviality of the connection between the antecedent and the consequent 
rather than it being the oddness of logical impossibility. It is quite 
possible for statements like ( I ) ,  (2), and (3) to be true, and they seem 
to  be examples of the cause entailing the effect. However, upon closer 
examination this becomes less obvious. The only examples I have been 
able to find in which the cause seems to entail the effect are of the 
same general sort as ( I ) ,  ( 2 ) ,  and (3), and it seems that these state- 
ments can be paraphrased as follows: 

(I*) There  is a temperature such that the metal's being heated 
to  that temperature is causally sufficient for it t o  melt, and 
if you heat it t o  that temperature now, that will cause it to 
melt. 

( 2 * )  He bent the rod to a degree which was causally sufficient 
for it to break, and his bending it to that degree caused it to 
break. 

(3*) H e  was stabbed in a way which was causally sufficient for 
him to die, and his being stabbed in that way caused him to 
die. 

Thus ( I ) ,  (2), and (3) can be regarded as not having the form 'PCQ', 
but instead a more complicated form involving quantification into 
causal contexts. So construed, they d o  not constitute counter-examples 
to  the requirement that causation involves contingent necessitation. 
Consequently, I think that we can build this requirement into the 
analysis of causal sufficiency: 

(4.7) If P is causally sufficient for Q, then P does not entail 0. 
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We have two necessary conditions for causal sufficiency, but these 
conditions are not also sufficient. So far we have overlooked a well 
known problem. This is the problem of epiphenomena. Frequently we 
will have two propositions P and 0 such that P contingently necessi- 
tates 0, but does so because P's being true necessitates the truth of a 
third proposition R which would cause Q without the causal chain 
passing through P. In such a case, we say that Q is an 'epiphenomenal 
effect' of P. To take a simple example, suppose we have a black box 
with a switch and two lights. The box is wired in such a way if the 
switch is thrown, light A comes on and is followed two seconds later 
by light B. In an actual situation in which both lights are off, we might 
well know that if light A were to come on this would be because the 
switch was throwo. Letting P be 'Light A comes on' and 0 be 'Light B 
comes on', we see that P contingently necessitates 0. But it is clear 
that P is not causally sufficient for 0. The connection between P and 
Q is rather that what would cause P to be true would also cause Q to 
be true. 

The case of epiphenomena is to be distinguished from the case in 
which P and Q have a common cause R, but R causes Q by causing P. 
This kind of case gives rise to talk of 'causal chains'. If in the previous 
example, light B came on not as a direct result of throwing the switch 
but rather in response to a photoelectric cell sensing the light output of 
light A, then although throwing the switch would cause both lights to 
come on, we would not have a case of epiphenomena. This is because 
light A's Coming on would itself cause light B to come on. The 
difference between these two cases is that in the epiphenomenal case 
light A's coming on without the switch being thrown would not 
necessitate light B's coming on, whereas in the non-epiphenomena1 
case light A's coming on would necessitate light B's coming on 
regardless of whether the switch is thrown. This suggests a way of 
characterizing the epiphenomenal case. As a first approximation we 
might try: 

(4.8) Q is an epiphenomenal effect of P iff there is a proposition 
R such that ( P  >> R )  and (R >> Q) and -[(P & - - R )  >> 01. 

For example, in the epiphenomenal case of the black box, R is 'The 
switch is thrown'. 



CAUSES 167 

4.8 embodies the right idea, but it is not entirely adequate as it 
stands. The difficulties are those of 'underdetermination' and 'over- 
determination'. First underdetermination: rather than knowing of a 
particular R which would necessitate 0, we may know of a set F such 
that one of the members of F would be true if P were true, but it is not 
determined which member of F it would be, and we may know that no 
matter which member of F would be true, it would also necessitate 0 .  
This gives us: 

Q is an epiphenomenal effect of P iff there is a set F of 
propositions such that (P Ã .SF) and -[(P & -.ST) >> 01, 
and for each R in F, R Ã 0.  

There remains the problem of overdetermination. We might know that 
if P were true then some member of F would be true, but we might 
also know that if P were true and no member of F were true, then 
some member of a second set F* would be true, and each member of 
F* necessitates Q. In this case we might have [(P & -SF) Ã Q] true in 
spite of the fact that Q is an epiphenomenal effect of P. In this case, 
the reason 0 is an epiphenomenal effect of P is that [(P & -^T) Ã 

Sr*] and -[(P & -2r & -SF*) >> 01, and for each R in F*, R Ã 0.  
Generalizing this, we may have a whole sequence Fo, . . . , FQ, . . . (p < 
a )  of sets of propositions such that if P were true then some member 
of Fo would be true, but if P were true and no member of Fn were true 
then some member of F, would be true, and so on. This suggests the 
following definition: 

(4.9) 0 is an epiphenomenal effect of P iff there is a sequence 
rg(B < a )  of sets of propositions such that for each /3 <a,  

[(P & -%) Ã JFp], and for each R in Fa, (R Ã Q), 
and -[(P & &<a --SFy) Ã 01. 

We now have three requirements for causal sufficiency. Let us use 
them to define a notion of 'almost causal sufficiency': 

(4.10) P is almost causally sufficient for Q iff (P Ã 0) and P does 
not entail 0,  and 0 is not an epiphenomenal effect of P, 
and 0(-P & -0) & OP. 

What, if anything, must be added to almost causal sufficiency to obtain 
causal sufficiency? 



168 CHAPTER V I I  

I believe that the one outstanding problem for the relation of almost 
causal sufficiency is that of the direction of causation - in many cases 
the relation of almost causal sufficiency does not discriminate between 
cause and effect. For example, consider a simple electrical circuit with 
a switch which operates a light. Let P be 'The switch is thrown' and Q 
be 'The light comes on'. Clearly, P is almost causally sufficient for Q. 
Unfortunately, this goes the other way too: Q is almost causally 
sufficient for P. That is, if the light were to go on then the switch would 
have been thrown, there is no entailment, and P is not an epipheno- 
menal effect of 0. 

It is considerations like this that have led philosophers to build 
temporal relations into the analysis of causation. The idea is that we 
can distinguish cause from effect by seeing which comes first. Basically, 
I think that this idea is correct, but there a r e  numerous details to be 
worked out. The first difficulty is that it is often unclear what it means 
to talk about temporal relations between a particular causal antecedent 
and causal consequent. Talk of temporal order would seem to presup- 
pose a notion of the date of a proposition, but this is a very problema- 
tic notion. If the content of a proposition is that some object is in a 
simple state at a particular time, then it is clear what to count as the 
date of the proposition. In this case, the date is the time mentioned. 
But it is not so clear what to count as the date of more complex 
propositions. One might suppose that if a proposition asserts that 
something is true at a particular time, then that time should be taken 
as the date of the proposition. But this prima facie reasonable supposi- 
tion leads to the embarrassing conclusion that logically equivalent 
propositions can have different dates. Consider, for example: 

At  3 : 00 PM, x became <p. 

At 2 : 00 PM, it was one hour before x was to become <p. 

In general, I doubt that it makes much sense to talk about the date of a 
proposition even when it is in some sense a temporal proposition. For 
example, what is the date of the proposition that John gave Joe a black 
eye last week? Is the date all of last week, or is it the time when he 
gave him the black eye, or what? Or consider the proposition that one 
of my ancestors was a horse thief. What on earth could count as the 
date of this proposition? 
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If we attempt to date propositions in terms of what dates they 
mention, we will get into all of the above difficulties. But such a notion 
of the date of a proposition will not help us anyway. Consider, for 
example: 

(4.11) The clouds being seeded today caused it to rain today. 

The mentioned dates of this causal antecedent and consequent would 
seem to be all of today. But so construed, this cause and effect have 
the same date and so cannot be discriminated on that basis. However, 
reflection indicates that the dates that are relevant to this example are 
not the dates mentioned by the causal antecedent and consequent, but 
are rather the precise time when the clouds were seeded and the 
precise time when it rained. The clouds were indeed seeded before it 
began to rain. 

The notion of the date of a proposition that is relevant here is, 
roughly, the date of 'what makes the proposition true'. For example, 
what makes it true that the clouds were seeded today is that potassium 
iodide crystals were released into the clouds at certain times today, and 
it is that collection of times which constitutes the date relevant to 
assessing the causal relation. In the case of a causal statement like 
4.11, it seems that what is required is that 'what makes the antecedent 
true' caused 'what makes the consequent true', and that a temporal 
relation is built into this latter causal relation which thereby discrimi- 
nates between cause and effect. For example, in the case of 4.11, the 
clouds being seeded when they were caused it to rain when it did. 

To turn this into a general account, we have to get clear on 'what 
makes the antecedent and consequent true'. If, as in 4.1 1, a statement 
is an existential generalization, then what makes. it true is whatever 
makes some of its instances true. Similarly, if a statement is a disjunc- 
tion, what makes it true is whatever makes one of its disjuncts true. If 
a statement is a conjunction, what makes it true is whatever makes 
both conjuncts true. And so on for each kind of logical compound until 
we get down to propositions 'which are not logical compounds, i.e., 
propositions which are simple in the sense of Chapter IV. What makes 
a simple proposition true is simply it itself. And simple propositions 
have precise dates built into them. This suggests that we proceed as 
follows. First, we define a notion of 'direct causal sufficiency' which 
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holds between simple propositions and which, by making reference to 
time, allows us to discriminate between cause and effect. Then we 
define causal sufficiency something like: 

(4.12) P is causally sufficient for Q iff P is almost' causally 
sufficient for 0, and ,if P were true then there would be sets 
A and B of simple propositions such that A would be what 
makes P true, and B would be what makes Q true, and the 
propositions in A would be directly causally sufficient for 
the propositions in B. 

As it is stated, 4.12 has a great many deficiencies. Let us take them 
one at a time. First, what does it mean to say that A would be what 
makes P true? As a first approximation, it seems reasonable to take 
this as meaning that A is a minimal set of true simple propositions 
adequate to entail P. More precisely: 

A makes P true iff A is a set of true simple propositions, A 
entails P, and no proper subset of A entails P. 

However, the requirement that A entail P is too strong. The difficulty 
arises in the case where P is a universal generalization. Consider: 

That all of the buttons on the console are pushed is causally 
sufficient for the light to go on. 

In this case, what makes it true that all of the buttons on the console 
are pushed is the collection of propositions reporting that each button 
individually is pushed: {'Button 1 is pushed', 'Button 2 is pushed', . . . , 
'Button n is pushed'}. But this collection does not entail that all of the 
buttons are pushed without the addition of a premise telling us that 
these are all the buttons there are on the console. Let us call a 
proposition of the latter form an 'enumerative proposition': 

(4.13) An enumerative proposition is a proposition of the form 
( x ) [ F x ~ . x = a , v . .  . v x = a n ] .  

Then our amended definition of 'makes true' is: 

(4.14) A makes P true in a world p iff A is a set of simple 
propositions true in 8, and there is a set of B of enumera- 
tive propositions true in 6 such that A U B entails P, and 
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there is no proper subset A. of A for which there exists a 
set Bo of enumerative propositions true in Q such that 
(Ao U Bo) entails P. 

Notice that in plugging 4.14 into 4.12, we do not get the result from 
4.12 that the propositions in A and B must be true in the real world. 
All that is required by 4.12 is that some such sets A and B would 
contain true propositions if P were true. We can make this quite 
precise by reformulating 4.12 as follows: 

(4.15) P is causally sufficient for 0 iff P is almost causally 
sufficient for 0, and for each world Q such that BMP, there 
are sets A and B of simple propositions such that: 

(i) A makes P true in Q ;  
(ii) B makes Q true in Q ;  
(iii) in Q, the propositions in A are directly causally suffi- 

cient for the propositions in B. 

However, 4.15 runs into difficulty with a kind of 'causal overkill'. 
Consider: 

(4.16) That someone was in the room was causally sufficient for 
the warning buzzer to sound. 

Let us suppose in fact that both Brown and Robinson were in the 
room. Then there are two distinct minimal sets A making it true that 
someone was in the room, viz., {'Jones was in the room'} and 
{'Robinson was in the room'}. All that 4.15 requires is that at least one 
of these sets be directly causally sufficient for the warning buzzer to 
sound. Suppose, then, that Jones' presence is causally sufficient to set 
off the buzzer, but Robinson's presence is not. In such a case, we 
would not agree that 4.16 is true. What is required for causal suffi- 
ciency is not just that some minimal set A be directly causally sufficient 
for the causal consequent, but that every minimal set A be directly 
causally sufficient. 

On the other hand, if we turn our attention to the causal consequent, 
we only want to require that A be directly causally sufficient for the 
propositions in some minimal set B. If A is directly causally sufficient 
for the propositions in some minimal set B which makes 0 true, then 
A is causally sufficient to make Q true in some way or other, and that 
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is all we want. For example, suppose we have a room lit by three lights 
numbered 1, 2, 3. Suppose the lights are operated by correspondingly 
numbered switches, with switches 1 and 2 being in the room and switch 
3 being at some remote place outside the room. Suppose lights 1 and 3 
are on. Then the following is true: 

That one of the switches in the room is on is causally 
sufficient for there to be a light on in the room. 

What makes it true that there is a switch on in the room is the unit set 
A :  {'Switch 1 in on'}. There are two minimal sets which make it true 
that one of the lights is on, viz., {'Light 1 is on'} and {'Light 3 is on'}. A 
is only directly causally sufficient for the first of these sets B, but 
clearly that is all that is required. This indicates that we must modify 
4.15 to read: 

(4.17) P is causally sufficient for Q iff P is almost causally 
sufficient for 0 ,  and for each world /3 such that PMP: 

(i) there is a set A of simple propositions such that A 
makes P true in p ;  

(ii) for every set A of simple propositions such that A 
makes P true in p, there is a set B of simple proposi- 
tions such that B makes Q true in p ;  and the proposi- 
tions in A are directly causally sufficient in 6 for the 
propositions in B. 

Now what remains is to give an analysis of direct causal sufficiency. 
This is to be a relation of causal sufficiency between sets of simple 
propositions and simple propositions, and is supposed to provide the 
means for discriminating between cause and effect by appealing to 
temporal relations. 

An obvious first attempt at defining direct causal sufficiency would 
be the following: 

(4.18) If A is a set of simple propositions and for each simple 
proposition 0 ,  u(Q) is the date of 0 ,  then A is directly 
causally sufficient for the simple proposition P iff 
A is almost causally sufficient for P and 
(Q)(Q e A ~ ( 0 )  < d ~ ) ) . ~  
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Definition 4.18 embodies the traditional view that a cause must 
precede its effect. This traditional view is connected with the almost 
universally held view that causal relations are asymmetric - if P caused 
0, then 0 could not cause P. The only obvious way to ensure that 
causal relations are asymmetric is to build into them the requirement 
that the cause precede the effect. However, it takes little reflection to 
see that this requirement is unreasonable. At the very least, cause and 
effect can occur simultaneously. For example, the five ball's striking 
the eight ball caused the eight ball to accelerate, and these two events 
occurred simultaneously. Frequently causes do precede their effects, 
but not invariably. 

Apparently, the most we can require is that the effect not precede 
the cause. But is even this reasonable? We do say things like, 'The 
baseball game's being held this afternoon caused the soccer game to be 
cancelled this morning'. However, it seems wrong to say that it is 
literally the occurrence of the baseball game that caused the cancella- 
tion of the soccer game. Rather, it was the prior decision to hold the 
baseball game that caused the cancellation. Other putative examples of 
effects preceding causes can generally be handled in this same way. 
The very idea of an effect preceding its cause seems mindboggling. The 
only argument I have for this is that it seems required in order to 
establish the direction of causation. Without this assumption, it does 
not seem possible to distinguish between cause and effect in many 
causal contexts. Thus I propose to build this into the analysis of direct 
causal sufficiency. But we cannot require that the cause precede the 
effect. 

But what does this do to the supposed asymmetry of causal suffi- 
ciency? It will indeed have the effect, at least on the analysis given 
here, that causal sufficiency is not asymmetric. But I am not convinced 
that it should be asymmetric. It seems to me that there are 'feedback 
examples' in which each of two propositions causes the other. For 
example, consider two boards arranged in an inverted ' V  so that their 
tops are leaning against one another. Each board is holding the other 
one up. What this comes to is that either board's not starting to fall at 
time t prevents the other board from beginning to fall at time t, and 
hence we have a case of symmetric causation. Consequently, the fact 
that asymmetry will not result from my analysis of causal sufficiency 
does not bother me. 
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If we are agreed that cases of symmetric causation are possible, can 
we simply modify 4.18 by requiring that the effect not precede the 
cause, and then accept temporally symmetric cases as cases of symmet- 
ric causation? Unfortunately, things are not that simple. Consider the 
switch and light again, and suppose for the sake of the example that 
closing the switch instantaneously causes the light to come on. Letting 
P be 'The switch is closed' and Q be 'The light comes on', we have, as 
before, that P and Q are each almost causally sufficient for the other, 
and we have that u(P) = o-(Q) and hence that cause and effect cannot 
be distinguished on temporal grounds. But we most assuredly do not 
want to say that the light's coming on causes the switch to be closed. 

In the case in which u(P) < o-(Q), the temporal ordering does enable 
us to distinguish between cause and effect, but as we have seen, it is 
possible for the cause and effect to be simultaneous, in which case the 
temporal ordering by itself is not sufficient to make the distinction. 
However, it will turn out that the distinction in the case of simultane- 
ous cause and effect can be made by making it parasitic on the 
distinction in the non-simultaneous case. First, let us introduce a 
technical term to refer to the non-simultaneous case which we already 
know how to handle: 

(4.19) If A is a set of simple propositions and P is a simple 
. proposition, then ASCSP (A is strictly causally sufficient 

for P) iff A is almost causally sufficient for P and 
(Q)(Q e A =) o-(0) < o-(P)). 

Now we consider the case of simultaneous cause and effect. On what 
basis do we discriminate between the cause P and effect Q? I think we 
do this on the basis of the role P and 0 are able to play in temporally 
extended causal chains. Roughly, in order for P to be causally suffi- 
cient for 0, it must be possible to cause Q by causing P, where these 
latter causal relations involve non-simultaneous causeleffect pairs. For 
example, it is possible to cause the light to go on by causing the switch 
to be closed, but it is not possible to cause the switch to be closed by 
causing the light to go on. This is the basis upon which we say that the 
closing of the switch causes the light to go on but not vice versa. 

But what exactly does it mean to say that it is possible to cause Q by 
causing P. To begin with, the 'possible' in this formula is an existential 
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quantifier. To say that it is possible to cause 0 by causing P is to say 
that there is something which would be causally sufficient for Q by 
being causally sufficient for P. As we are working on the level of simple 
propositions, the 'something' must be a set of simple propositions, and 
the causal sufficiency in question should be strict causal sufficiency. But 
still, what does it mean to say that a set of simple propositions 
is strictly causally sufficient for Q by being strictly causally sufficient 
for P. 

To simplify things initially, let us suppose that the set of simple 
propositions has a single member R .  Then we want to explain what it 
means to say that R is strictly causally sufficient for 0 by being strictly 
causally sufficient for P. Clearly this requires at least that R is strictly 
causally sufficient for P and R is strictly causally sufficient for 0. In 
addition it would seem to require that we do not have ' ( R  & - P ) >  
Q1. That is, although R is sufficient to bring about 0, if ' ( R  & -P)' 
were true, then the way in which R would bring about Q has been 

. undermined. The causal chain from R to 0 passes through P, so if we 
have ' ( R  & -P)', then the causal chain has been broken and there is 
no reason to expect 0 to be true. Can we perhaps take this as our 
analysis and say that R is strictly causally sufficient for Q by 
being strictly causally sufficient for P iff R S C S P  & R S C S Q  & 
- [ ( R  & - P )  > Q]? Unfortunately, this is still too weak to discriminate 
between P and 0. This is because if R is SCS for 0 by being SCS 
for P, then we also have ^ [ ( R  & -0) > PI1. This is because if we had 
( R  & -Q)', this would tell us that the causal chain between R and Q 
had broken down somewhere, but we would not know whether it had 
broken down between R and P or between P and 0. Consequently, if 
we had ' ( R  & -Q)'. then P might be false. For example, in the case of 
the switch and the light, suppose R reports the setting in motion of a 
mechanical contrivance which closes the switch by the activation of 
certain motors and levers. If the mechanical contrivance were set in 
motion but the light did not come on, then something would have gone 
wrong, but the malfunction might have been either in the mechanical 
contrivance or in the wiring between the switch and the light, so we 
cannot conclude that the switch would have been closed. 

Evidently a stronger condition is required to capture what we mean 
by saying that R is SCS for 0 by being SCS for P. The nature of this 
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stronger condition can be seen by realizing that it is always possible to 
choose R such that we have not just ^ - [ ( R  & -P)  > QI1, but ^(R & 
-P)  > -QI1. Again, if R reports the setting in motion of the mechani- 
cal contrivance, then if R is true but the switch is not closed then the 
light will not go on. But we do not have that if R is true but the light 
does not go on then the switch is not closed. On the contrary, if R is 
true but the light does not go on, this might be because something was 
wrong with the circuit rather than with the mechanical contrivance. 

In general, if P and Q are simultaneous and P is causally sufficient 
for 0, then it seems to be the case that we can construct a set A of 
simple propositions which is S C S  for both P and Q and such that 
[ ( H A  & - P )  > - Q ] .  To have the latter condition satisfied, we must 
include in A both propositions sufficient to bring about P and proposi- 
tions sufficient to rule out any other ways of bringing about P. For 
example, suppose our light is connected to two switches 1 and 2, and 
closing either is causally sufficient for the light to be on. Suppose 
further that switch 2 is closed. Then closing switch 1 is causally 
sufficient for the light to be on, although it would not cause the light to 
be on. In this case, in constructing our set A we must include a 
mechanism for closing switch 1, and we must also include propositions 
precluding switch 2's being closed. Thus my proposal becomes: 

(4.20) If P and Q are simple propositions and u ( P )  = o-(Q), then 
P is directly causally sufficient for Q iff P is almost causally 
sufficient for Q and there is a set A of simple propositions 
such that A S C S P  & A S C S Q  & [ ( H A  & -P)> Q ] .  

Notice that in cases of genuinely symmetric causation, like that of the 
two boards leaning against one another, this gives the result that each 
is causally sufficient for the other. Let us call the boards 'board 1' and 
'board 2'. P reports that board 1 does not begin to fall, and 0 reports 
that board 2 does not begin to fall. Then we want to say that P is 
causally sufficient for 0, and also Q is causally sufficient for P. To see 
that it results from 4.20 that P is causally sufficient for Q, we note that 
we can construct an A describing, e.g., building certain braces around 
board 1, such that A is causally sufficient for P and thereby for 0, but 
A is such that if we did build the braces but board 1 began to fall 
anyway, then board 2 would begin to fall. To see that we also have 0 
causally sufficient for P, we note that we can construct another set A *  
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which is analogous to A but involves bracing board 2 rather than 
board 1, and then we have [ ( H A *  & - Q )  > -PI. 

We must generalize 4.20 to include the case in which the causal 
antecedent is a set of simple propositions rather than a single proposi- 
tion P, This involves a few new difficulties. First, when do we apply the 
test? The general case not covered by 4.19 is that in which 
( Q ) ( Q e A ^ u ( Q ) s ; u ( P ) )  and ( 3 Q ) ( Q e A  & u ( Q ) = u ( P ) ) .  But it 
might seem that as long as Q  contains a member having a date earlier than 
P, this is sufficient to distinguish cause from effect and hence we need not 
apply our complex test. However, this is an illusion. For example, A 
might contain a list of conditions under which one member Q  of A 
would be causally sufficient for P, where u ( Q )  = u ( P ) .  We might have 
that under those conditions, Q  would also be almost causally sufficient 
for P  (although not really causally sufficient for P) .  Then letting A* be 
the result of replacing Q  by P  in A, we would have that A *  is almost 
causally sufficient for Q. But we would not want to conclude that A* is 
causally sufficient for 0, even though A *  contains members which 
predate 0. Thus our test must be applied in general if A contains any 
members having the same date as P. 

But what precisely does our test amount to when the causal antece- 
dent is a set rather than a single proposition? We might suppose that it 
requires there to be a set B of simple propositions such that: 

i )  (Q) [Q  A 3 B S C S Q I ;  
(ii) BSCSP;  

(iii) [ ( U B  & -J7A)>-PI.  

The difficulty is with requirement (i). That requirement implies that 
( Q ) ( R ) [ ( Q  e B & R  A ) = > u ( Q ) <  u ( P ) ] .  But there is no reason to 
expect this to be possible. There might be no lower bound to the dates 
of the propositions in A. A might contain propositions with dates 
going back arbitrarily far in time. The solution to this is that in 
deciding whether B  is strictly causally sufficient for A, we do not 
require that all of B be SCS for each member Q  of A, but rather we 
require that that part of B which precedes Q  be SCS for Q.  Let us 
define: 

(4.21) If B is a set of simple propositions and t is a time, then 
B , = { Q ;  Q e B  & u ( Q ) < t } .  
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Then it seems we should replace (i) by: 

Putting all of this together, we obtain our final analysis of direct 
causal sufficiency: 

(4.22) If A is a set of s' pie propositions and P is a simple 
proposition, then A CSP iff A is almost causally sufficient 
for P and either; 

^ 
(i) (Q)(Q e A 3 u(Q) < o-(P)) (i.e., ASCSP); or 

i i )  (Q)(Q e A 3 40) 5 o-(P)) and (3Q)(Q e A )  & u(Q) = 
u(P)), and there is a set B of simple propositions 
such that: 

Finally then, we want to incorporate our analysis of direct causal 
sufficiency into 4.17 to give us an analysis of causal sufficiency. In 
order to do this, we must first become aware of the inadequacy of the 
final clause of 4.17, which requires that if A and B are the sets of 
simple propositions making P and Q true, then (in order for P to be 
causally sufficient for Q) we must have the propositions in A directly 
causally sufficient for the propositions in B. The first difficulty with this 
requirement is that the dates of members of A may overlap with the 
dates of members of B. In analogy to 4.22, all we really want to 
require is that the members of A having dates no later than that of any 
particular proposition R in B be directly causally sufficient for R. That 
is, defining: 

(4.23) If C is a set of simple propositions and t is a time, then 
Cw={Q; Q e C  & o-(Q)<t} 

we require of each R in B that be directly causally sufficient for 
R. However, this is still too strong a requirement. Consider, for 
example: 

(4.24) Its raining for forty days and forty nights would cause it to 
be the case that all the unicorns die. 
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Notice that this does not require that the rain would cause the death of 
each unicorn - only that the rain would cause the death of each 
unicorn who would not die anyway. Suppose there are just three 
unicorns - Mary, Charley, and Vasilly. Let us suppose that the rain 
could not cause Vasilly to die because he is on top of a mountain, but 
he will die anyway of old age. Applying our analysis of causal suffi- 
ciency to 4.24, what would be required is that if A is the set of simple 
propositions describing the rain, then A be directly causally sufficient 
for each member of the set B ={'Mary dies', 'Charley dies', 'Vasilly 
dies'}. But this is too strong a requirement. A need not be (and is not) 
directly causally sufficient for 'Vasilly dies' because this is already true 
and would still be true even if it did rain for forty days and forty nights. 

Thus it seems that in order for P to be causally sufficient for 0, A 
need not be directly causally sufficient for every member R of B. 
There may be propositions R which are already true and would still be 
true even if P were true. Of course, this condition is automatically true 
if P, Q, and hence R, are already true, e.g., if we transform 4.24 into: 

Its raining for forty days and forty nights caused it to be the 
case that all the unicorns died. 

So, in analogy to our analysis of necessitation, what we actually need is 
the requirement that, first, REP, and second, this would still be true 
even if (-P & -Q); i.e., (REP)E(-P & -Q). 

Thus our final analysis of causal sufficiency becomes: 

(4.25) P is causally sufficient for 0 iff P is almost causally 
sufficient for 0 ,  and for each world p such that PMP: 
(i) there is a set A of simple propositions such that A 

makes P true in p ;  
(ii) for every set A of simple propositions such that A 

makes P true in j8, there are sets Bl and B2 of simple 
propositions such that ( B i U  B2) makes 0 true in j3, 
and: 
a )  Bi # 0 and (R)[R e B I  3 (AwH DCSR in p)]; 
(b) (R)(R e B2 3 [(REP)E(-P & - 0 )  in PI. 

Our analysis has become rather complicated, but the basic idea is 
really quite simple. Causal relations between simple propositions are 
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just contingent non-epiphenomena1 necessitations with the appropriate 
temporal order. The causal relations between logically complex prop- 
ositions are just contingent non-epiphenomena1 necessitations under- 
lain by causal relations between the simple propositions which make 
the complex propositions true. 

I have developed an analysis of causal concepts in terms of subjunctive 
conditionals. This analysis may be regarded as a kind of regularity 
theory, although it is more complicated than a simple Humean-type 
theory. Its claim to being a regularity theory comes from the way 
subjunctive conditionals arise out of subjunctive generalizations. Be- 
cause of its additional complexity, the present theory is not subject to 
the traditional difficulties regarding regularity theories. For example, 
consider two popular counterexamples. Many simple regularity 
theories entail that night is the cause of day. Its being night at ti does 
indeed necessitate its being day at t2, but this is not a causal necessita- 
tion because these are epiphenomena. They both are the causal effects 
of certain facts about the earth and the sun, and its being night at t i  
without those facts being true would not necessitate its being day at t2. 

Many regularity theories also entail that birth is the cause of death. 
The reason this does not result from the present theory is more 
complicated than in the case of the previous example. In this case the 
necessitation fails. A person's being born does necessitate that he will 
sometime die, but this is not the necessitation that is required for birth 
to cause death. By principle 4.25, a person's being born in the way he 
is at a certain time ti (i.e., the conjunction of the simple propositions 
describing his birth) must necessitate his dying at the time he does. But 
there is no such necessitation. A person's being born at a certain time 
necessitates that he will sometime die, but it does not necessitate that 
he will die at any particular time. Thus birth does not cause death. 

The literature is full of sophisticated counterexamples to earlier 
analysis (e.g. Scriven, 1966; Kim, 1971, 1973, 1973a). However, the 
present analysis has been designed explicitly to handle those coun- 
terexamples and I believe that it does so successfully. 
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It has frequently been maintained that causal concepts embody a 
contextual element, and that this must be included in any adequate 
analysis of these concepts. Scriven (1974) supposes that 20Â°/ of the 
people exposed to heavy doses of ultraviolet radiation develop skin 
cancer, with certain hereditary factors determining which people will 
develop cancer when exposed to the radiation. Given a man who has 
developed cancer upon exposure to the radiation, if we ask what 
caused him to develop cancer, the answer might be either 'He was 
exposed to heavy doses of radiation' or 'He had the hereditary factors 
making him susceptible to cancer when exposed to radiation'. Which 
answer is appropriate depends upon what we are interested in. The 
difference is that between the two questions, 'Why did he develop 
cancer now when he did not do so before?', and, 'Why did this man 
develop cancer when others who were exposed to the radiation did 
not?' Scriven and Mackie (1965) suppose this to show that a statement 
of the form "X caused Y1 is really elliptical for a more complicated 
statement of the form "X caused Y relative to the contrast class C1. If 
we want to know why the man developed cancer now, the contrast 
class consists of moments of his history, whereas if we want to know 
why he developed cancer when others who were exposed to the 
radiation did not, then the contrast class consists of men exposed to the 
radiation. 

I think that Scriven and Mackie are onto something, but we must be 
careful to distinguish between statements of the form "X caused Y1 
and statements of the form "X was the cause of Y1. The latter locution 
is one I have carefully avoided up to this point. First consider state- 
ments of the form "X caused Y1. If we ask, 'What caused this man to 
develop skin cancer?' the context may make it quite inappropriate to 
reply, 'His being exposed to radiation caused him to develop skin 
cancer'. But the inappropriateness of a reply does not establish its 
falsehood. Frequently, a reply is inappropriate simply because it is not 
helpful. For example, if the question is asked in the context of a 
discussion of people who were exposed to a heavy dose of radiation in 
an industrial accident and some of whom developed skin cancer while 
others did not, then it would be quite unhelpful to reply that the 
radiation caused one of these people to develop skin cancer. But the 
reason it is unhelpful is that we already know that the radiation caused 
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the cancer. The radiation did cause cancer in some of the people, and 
did not cause cancer in others. But what we are looking for is another 
factor which explains this selectivity, i.e., which caused cancer in all 
and only those people (in the group) in whom the factor was present. 

I think that any contextual element in statements of the form "X 
caused Y1 is not part of the meaning of the statement, but rather is 
part of the pragmatics of language in general. However, this changes 
when we turn to the peculiar statement form '"X was the cause of Y1. 
The reason this is peculiar is that there can simultaneously be more 
than one thing which is the cause of something. For example, it may be 
true both that the cause of the explosion was the room's being filled 
with gas, and that the cause of the explosion was Jones' throwing the 
switch. This makes the use of the definite article rather strange. The 
only way I can see to make sense of this is to suppose that statements 
about 'the cause' of something really are elliptical for more compli- 
cated statements involving a contrast class. However, I will not pursue 
this further at this time. 

If the present analysis of causal relations is acceptable, it settles a 
number of questions about the logical properties of these relations. To 
begin with, the analysis leads immediately to interchange principles for 
logical equivalence: 

(6.1) P Ã ‡ - Ã ˆ Q & P C R . = J Q  

(6.2) P Ã‡- Q & RCP. 3 R C Q  

(6.3) P Ã‡- 0 & PCSR.  3 Q C S R  

(6.4) P Ã‡- Q & RCSP.  ̂ RCSQ 

These interchange principles, in turn, imply that substitutivity of iden- 
tity fails for causal contexts. That is, the following two principles fail: 

where if ti or t2 is a definite description, it is understood to have 
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narrow scope. The failure of 6.5 and 6.6 can be seen as follows. 
Suppose "Ftil is causally sufficient for 0 ,  where rFtll and 0 are both 
false. Then let t2 be the definite description "?x(x = t2 & -0)'. Then 
t i  = tyl is true. Hence, assuming 6.5, r(Ft̂ }CSQ1 is true. But F̂t: is 
equivalent to "Fti & -Q1. Hence by 6.3, (Ft, & -0)CSQ. By our 
analysis, this implies "(Ft1 & -Q)> Q1, which within SS implies that 
F t i l  logically entails Q. This result is absurd, so principle 6.5 must fail. 
Principle 6.6 fails for analogous reasons. 

The following two principles are equivalent to one another, and it 
may seem that they should hold: 

(6.7) PC(Q & R )  =>[PC0 & PCR]. 

(6.8) [ P C 0  & Q -  ̂R]  PCR. 

However, neither of these principles holds. For example, it might be 
true that John's hitting Joe caused Joe to have a black eye. That Joe 
has a black eye entails that Joe has an eye. But John's hitting Joe did 
not cause Joe to have an eye. Thus principle 6.8, and hence the 
equivalent 6.7, are both false. Slight modifications of this example 
yieldcounterexamples to the analogous principles regarding 'would 
cause' and causal sufficiency. 

I think that the failure of 6.7 seems particularly surprising because in 
English, if we say, e.g., 'Closing the switch caused both lights to be on', 
this is ambiguous between 'Closing the switch caused it to be the case 
that both lights are on' and 'Closing the switch caused each light to be 
on'. The reason 6.7 fails is that P can cause a conjunction to be true 
simply by causing the truth of that part of it which isn't already true. 
E.g., if one of the lights is already on, and the switch is wired to the 
other light, then closing the switch will cause it to be the case that both 
lights are on (where before only one was on). 

There are some other distribution principles which fail for much the 
same reason. The following both fail: 

(6.9) PC(x)(Fx =i Gx) 2 (x)[Fx 2 PCGx]. 

(6.10) (3x)[Fx & PCGx] 2 PC(3x)(Fx & Gx). 

We have already seen a counterexample to 6.9 in the distinction 
between 'Its raining for forty days and forty nights caused all the 
unicorns to die' and 'Its raining for forty days and forty nights caused it 
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to be the case that all the unicorns died'. The former requires that each 
unicorn was killed by the rain, but the latter only requires that the rain 
killed all the unicorns that wouldn't have died anyway. To generate a 
counterexample to 6.10, suppose we have a room containing two 
lights, one of which is on and the other of which is off and controlled 
by a switch. We throw the switch, thereby causing the second light to 
come on. Then there is a light such that throwing the switch caused it 
to come on, but it is not true that throwing the switch caused there to 
be a light that was on (because one of the lights would have been on 
anyway). 

It has generally been supposed that causal relations are transitive. 
For example, David Lewis (1973b) explicitly builds this into his 
analysis of 'would cause'. But transitivity does not result from my 
analysis. Nor should it. None of the following three principles is 
correct: 

(6.11) [PCSQ & QCSR1-3PCSR. 

(6.12) [ P  would cause 0 & Q would cause R ]  =1 P would cause R. 

(6.13) [PCQ & QCR]  ̂ PCR.  

It is really quite simple to get counterexamples to 6.11 and 6.12. These 
principles fail for the same reason that transitivity fails for subjunctive 
conditionals. For example, let us suppose that it is a chemical process 
C which causes a match in the presence of oxygen to light upon being 
struck. The chemical process C (we can'suppose) can occur with or 
without there being oxygen present, but it is only when oxygen is 
present that the occurrence of the process causes the match to ignite. 
Now consider a match which is in fact in the presence of oxygen and 
which would still be in the presence of oxygen even if chemical process 
C were to occur. Then the following three statements are all true: 

(1) The occurrence of chemical process C would cause this 
match to ignite. 

(2) This match being struck in the absence of oxygen would 
cause chemical process C to occur. 

(3 )  This match being struck in the absence of oxygen would not 
cause this match to ignite. 

Consequently, 'would cause' is not transitive. And this example is also 
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a counterexample to the transitivity of causal sufficiency. Transitivity 
fails for these two causal relations for precisely the same reason it fails 
for subjunctive conditionals. This is because changing causal antece- 
dents involves 'world hopping7. That is, evaluating the truth values of 
causal statements with different antecedents involves evaluating the 
truth values of subjunctive conditionals with different antecedents, and 
that in turn involves our looking at different possible worlds. 

Although it is quite obvious that transitivity fails for both causal 
sufficiency and 'would cause', it may not seem so obvious that it fails 
for 'caused'. This is because in the case of 'caused' we are dealing with 
true causal antecedents and consequents, and hence one is apt to 
suppose that there is no world hopping involved. However, this is a 
mistake. rPCQ' entails r(-,P & - Q) > ( P  > Q)', and so in spite of 
appearances, world hopping is involved. This can be substantiated by 
seeing how our analysis actually leads us to intuitive counterexamples 
to 6.13. Characteristically, Q only causes R because some third 
proposition S is true. In such a case, it is required of S that [(-Q & 
- R )  > (Q > S)]. However, even though P caused Q, if it is not true 
that [(-P & -R)>(P>S)], then there is no reason to expect P to 
have caused R. Let me give two counterexamples that take this form: 

(1) Suppose there are two kinds of gasoline. One kind gives an 
engine extra power, but causes it to overheat if run for a long time. 
The other kind gives less power, but allows sustained running of the 
engine. Suppose there is an engine which was running, and I filled the 
almost empty fuel tank with high-power gasoline. That I filled the fuel 
tank caused the engine to run for five more hours. And the engine's 
running for five more hours caused it to overheat (because it was 
burning high-power gasoline). But, that 1-filled the fuel tank did not 
cause the engine to overheat. Rather, that I filled the fuel tank with 
high-power gasoline caused the engine to overheat. Thus, 'causes' is 
not transitive. This counterexample arises because it is not true that if I 
had not filled the tank and the engine had not overheated, then had I 
filled the tank, the engine would have been burning high-power 
gasoline. 

(2) Consider a 'vacuum oven'. This is a chamber which can be 
evacuated and then heated. Suppose this oven is operated by two 
buttons. Pushing button A results in any gas in the oven being pumped 
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out, and then five minutes after the button is pushed the heating 
element comes on and heats the contents of the oven to a very high 
temperature. Pushing button B results in the gas being left in the oven, 
so that nothing happens for five minutes, and then the heating ele- 
ments come on. Suppose now that the oven is filled with pure oxygen 
and contains a piece of paper. I push button B, after five minutes the 
heating element comes on, and because of the oxygen environment this 
causes the paper to burst into flame. In this case we have the following: 
(1) That the heating element came on, caused the paper to ignite; (2) 
that there was a control button that was pushed, caused the heating 
element to come on; but, that there was a control button that was 
pushed, did not cause the paper to ignite. Rather, that button B was 
pushed caused the paper to ignite. Thus, once again we have a failure 
of transitivity. The reason that there being a button that was pushed 
did not cause the paper to ignite is that it was not true that if no button 
had been pushed and the paper had not ignited, then if some button 
had been pushed then the oven would have been filled with oxygen. 
On the contrary, if it were true that no button was pushed, then had 
some button been pushed it might have been button A that was 
pushed, in which case the oven would not have been filled with 
oxygen. 

Apparently none of our causal relations are transitive. This is 
certainly surprising in light of the almost universally held belief that 
they are transitive, but the conclusion seems inescapable. This has 
important implications for a great many of our favorite beliefs about 
causes. For example, it makes nonsense of our ordinary way to 
thinking about causal chains. The 'received view' of causal chains is 
that they arise when we have, between two propositions P and 
Q, a sequence P I , .  . . , Pn of propositions such that PCPl, 
PlCP2,,  . . , PnCQ, and 'hence', PCQ. But, as we have just seen, the 
'hence' doesn't follow. Does this mean that all talk of causal chains is 
nonsense? It does not seem that it should. We can often talk about the 
'way' in which one proposition P causes another proposition Q to be 
true. This 'way' involves tracing out a sequence of intermediate causal 
links. To take a straightforward example, consider a row of dominoes 
standing on end. Pushing over the first domino causes the final domino 
to fall over, and it does so by causing each intermediate domino to fall 
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in turn. How are we to understand this in light of the failure of 
transitivity for causes? 

I suggest that we can make sense of causal chains by concentrating 
on the notion of P causing Q by causing R.  I propose that what this 
means is that P caused Q, P caused R ,  and that P without R would 
not have been causally sufficient for Q :  

(6.14) P caused Q by causing R iff PCQ & PCR & -[(P & 
- R)=Ql. 

Then in a causal chain, what happens is that the first link causes each 
successive link by causing the preceding links: 

(6.15) A sequence ( P I ,  . . . , P,,) of propositions is a causal chain iff 
PI caused P2, and for each k such that 2 <  k 5 n, PI caused 
Pk by causing (P2 & . . . & Pkp1).  

In summary, philosophers have held a remarkable number of false 
beliefs about the logical properties of causal relations. However, if we 
are careful we are now in a position to sort out what is true and what is 
false. 

N O T E S  

' In point of fact, I do not think that the narrow-scope readings 2.15* and 2.16* are 
plausible interpretations of the English sentences 2.15 and 2.16, but that does not affect 
the logical point being made. 
'The condition rOP7 is included so that we are not forced to say that a contradiction 
would cause everything. 
'It is worth noting that 3.2 is entailed by 3.1 together with the principle that rPCQ7 
entails P. Thus it need not be defended separately from 3.1. 

The statement that the heart attack caused the man to die today is ambiguous between 
the true statement that there was a time today such that the heart attack caused him to 
die at that time, and the false statement that the heart attack caused there to be a time 
today when he died. 

Strictly speaking, definition 4. I8 does not make sense because almost causal sufficiency 
has been defined as a relation between individual propositions and not as a relation 
between sets of propositions and propositions. However, this is trivially rectified by 
simply replacing 'P' by 'HA in definition 4.10. 



CHAPTER VIII 

P R O B A B I L I T I E S  

At this point I must be candid and admit that everything that has come 
before may be just so much science-fiction. This is because there may 
be no true, exceptionless, laws. It may be that all putative laws are 
really just approximations to general probability statements. For exam- 
ple, this is the way much of quantum mechanics has gone. Should it 
come to pass that there really are no true general laws, then the 
counterfactual conditionals, necessitation conditionals, and causal 
statements that we base upon putative general laws will all be false. All 
of the logical framework developed above will become of only theoret- 
ical interest. In this eventuality, our law statements and counterfactuals 
must be replaced by various kinds of probability statements. 

Many philosophers are prone to suppose that the situation I have 
just described in which there are no genera1 laws is almost certainly the 
situation we are really in. They defend this view by pointing in an 
off-hand way to quantum mechanics and observing that the probabilis- 
tically governed behavior of elementary particles must underly every- 
thing else. However, this involves at least a partial misconception of 
the nature of quantum mechanics. l t  is certainly true that some of the 
fundamental laws of quantum mechanics are probabilistic, but it is 
often overlooked that quantum mechanics embodies lots of other laws 
that are not probabilistic. Among these are conservation laws (the 
conservation of energy, momentum, angular momentum, spin, strange- 
ness, etc.), laws regarding relativistic transformations, laws regarding 
the charges, masses, spins, etc., of elementary particles, laws governing 
weak, strong, and Coulomb forces, and so on. There are actually more 
non-probabilistic laws in quantum mechanics then there are probabilis- 
tic laws, and the prospects of this changing seem remote. It would alter 
the entire character of quantum mechanics if it were decided, e.g., that 
the charge on an electron is not fixed but is instead represented by 
some sort of probabilistic distribution centered around what is pres- 
ently believed to be the charge of an electron. 
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The situation I have just described in quantum mechanics, in which 
we have a mixture of probabilistic and non-probabilistic laws, seems 
rather likely to be representative of the true state of the world 
(although I am not totally convinced that the world is not governed 
instead by strictly deterministic laws). It will turn out that even in this 
case some changes are required in our account of subjunctive condi- 
tionals. In Chapters IV and VI I implicitly made the simplistic assump- 
tion that there were no basic probabilistic laws. In this chapter we will 
investigate what happens if we reject that assumption. 

Probability enters into our account of subjunctive conditionals in 
two ways. First, countenancing basic probabilistic laws will force us to 
modify our definition of the relation '/3Mmq9. We must get clear on the 
logical nature of basic probabilistic laws and see how they are involved 
in the relation M. Second, it will turn out that many subjunctive 
conditionals that we are apt to assert are not really true. What are true 
instead are a variety of probabilistic statements like rIf it were true 
that P, then it would probably be true that Q1, rIf it were true that P, it 
would almost certainly be true that Q1, etc. We must get clear on the 
nature of these probability statements and how they are related to 
subjunctive conditionals. These will be the two tasks undertaken in this 
chapter. 

Basic probabilistic laws report 'indefinite probabilities'. An indefinite 
probability statement has the form rThe probability of an A being a B 
is rl. Indefinite probability statements do not report the probability of 
a proposition, but rather concern predicates or open formulas. The 
probability of an A being a B might reasonably be symbolized as 
rprob(Bx/Ax)l. 

2.1. Relative Frequencies 

The traditional view on indefinite probabilities is that they are relative 
frequencies or limits of relative frequencies. If there are just n A's, and 
m of them are B's, then prob(Bx1Ax) = mln. In this case, the indefinite 



190 CHAPTER VII I  

probability is identified with the relative frequency of B's in A's. If 
there are infinitely many A's, and infinitely many of them are B's7 then 
the relative frequency of B's in A's is no longer well-defined? so 
instead the traditional view identifies prob(Bx1Ax) with the limit of the 
relative frequency of B's in larger and larger finite subsets of the set of 
all A's. In this case7 prob(Bx1Ax) is said to be the limit of the relative 
frequencies. 

I suspect that most people find the above view unobjectionable in 
the case in which there are only finitely many A's. But there is a 
well-known problem for the case in which there are infinitely many 
A7s. If there are infinitely many A's, then we are supposed to consider 
a sequence Ao7 Al ,  . . . , A,,, . . . of finite subsets of A such that (1) for 
each i7 j, if i < j then At G A,? and (2) UIEW Al = A, and then letting 
Car(X) be the cardinal of a set X, we define: 

Car(Ai fl B) 
p r o b ( ~ x / ~ x )  = lim 

i+a Car(Ai) ' 

The problem is that the limit of relative frequencies that we get in this 
way depends upon the particular sequence {Ai; i E w }  that we choose. 
It is quite possible to choose another sequence {AT; i E w }  of subsets 
which gives a different limit for the relative frequency. For example? 
consider a very durable coin which lasts forever and? over all time, is 
tossed infinitely many times. Letting H be the set of tosses of this coin 
which comes up heads, and letting Ai be the set of the first i tosses of 
this coin? it is quite plausible to suppose that 

But now, suppose we define A ?  to be the set of the first i tosses 
resulting in heads and the first 2i tosses resulting in tails. Then we still 
have uiEW A ?  = A? but now 

lim 
Car( A ? n H) 

i - + a  
= 113. 

Car(A ?) 

Thus we cannot define prob(Bx1Ax) in terms of just any sequence of 
subsets {Ai ; i E m } .  

Perhaps it is generally supposed that the solution to this p-roblem is 
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that certain sequences of subsets of A are 'natural', and others are 
'unnatural'. For example, it does seem that the sequence {A,; i E m }  

above was natural7 and the sequence {A:; i E c i ~ }  was unnatural. Thus it 
may be felt that if we can somehow characterize which sequences are 
natural, we can solve the problem of how to define prob(Bx1Ax) in 
terms of limits of relative frequencies. 

I think, however7 that there are at least three reasons why this will 
not work. First, in the infinite case again, if the infinitude of A's is of a 
temporal origin, there being only finitely many A's at any one time but 
infinitely many A's over all time, then just as in the case of the coin 
there is a natural sequence of subsets defined by considering all the 
A's existing in progressively broader temporal intervals. But suppose 
instead that there are infinitely many A's at a single instant. For 
example. astronomers once believed that there were infinitely many 
stars, from which it would also follow that there are infinitely many 
elementary particles, probably infinitely many atoms and molecules, 
perhaps infinitely many rocks, trees. clouds, etc. In this case, choosing 
any particular sequence of subsets over all others seems quite arbit- 
rary. Of course, certain sequences of subsets artificially contrived for 
the sole purpose of getting strange limits of relative frequencies do 
seem unnatural, but this rules out very few sequences of subsets. 
Among those sequences of subsets which are not so artificially con- 
trived, we may not be able to prove that they lead to different limits of 
relative frequencies, but there is no a priori reason to think that they 
will not. 

The difficulty in defining the limit of the relative frequency in the 
infinite case is, I suspect? insurmountable. However. surprisingly 
enough7 there is an even more obvious difficulty for the finite case. 
Consider a particular coin which is subjected to very careful physical 
examination and ascertained to be a completely fair coin. That is, we 
may conclude on the basis of our knowledge of physics that the 
probability of a flip of this coin resulting in heads is 112. But suppose 
the coin is never flipped. It is melted down shortly after the examina- 
tion. Then the relative frequency does not exist, but we would still 
regard the probability statement as true. Or suppose the coin is flipped 
just once, resulting in a head7 and then melted down. Then the relative 
frequency is l7  but we would still insist that the probability is 112. It is 
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just not true that in the finite case, the probability of an A being a B is 
the same thing as the relative frequency of B's in A's. What is 
happening here is that, just as in the case of non-probabilistic laws, 
these indefinite probability statements are subjunctive in character. 
They are not just about actual A's, but also about physically possible 
A's. To say that the probability that a flip of our coin will result in 
heads is 112 is to make a statement about all possible flips of the coin, 
and not just about those few flips that actually take place. If the coin is 
only flipped a few times, then the relative frequency will almost 
certainly not be the same as the probability. Furthermore, the proba- 
bility statement supports conclusions about physically possible flips of 
the coin that do not actually occur. E.g., we can conclude from the 
probability statement that if, instead of melting the coin down, we had 
flipped it one hundred more times, out of those one hundred flips we 
would probably have gotten in the vicinity of fifty heads. 

2.2. Subjunctiue Indefinite Probabilities 

What the relative frequency theory overlooks is that our indefinite 
probability statements are subjunctive in the same way subjunctive 
generalizations are. As such, they cannot be identified with summa- 
tions of actual indicative states of the world, any more than subjunctive 
generalizations can be identified with material generalizations. In fact, 
as we will see below, subjunctive generalizations can be regarded as 
limiting cases of indefinite probability statements. 

Just as there is a distinction between strong and weak subjunctive 
generalizations, there is a distinction between two kinds of indefinite 
probability statement. Consider our infinitely durable coin which is 
flipped infinitely many times. Let us suppose that physical examination 
shows it to be perfectly balanced and shaped, etc., so that the probabil- 
ity of a flip yielding a head is 112. Let D be a description of all of the 
relevant physical characteristics of the coin. Thus what we have is that 
the probability of a flip of a coin of description D yielding heads is 112. 
Now let us suppose in addition that there is just the one coin of 
description D. Furthermore, suppose that over the years a secret 
society has grown up which worships this particular coin. It is part of 
their mystical beliefs that only 113 of the flips of this coin should yield 
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heads, and so to ensure this they enclose the coin in an infinitely 
durable coin-flipping machine which, through the use of magnetic 
fields, biases the flips in such a way that the relative frequency of heads 
always hovers right around 113. What are we to say now about the 
probability of a flip of a coin of description D yielding a head? On the 
one hand it is reasonable to say, on the basis of the physical description 
D, that the probability is 112. After all, as I have argued, the probabil- 
ity statement is as much about physically possible tosses of coins of 
description D as it is about actual tosses of such coins, and it is only an 
accident that there is only one coin of description D and it finds itself 
in such peculiar circumstances. On the other hand, it also seems 
reasonable to say that, because there is only one such coin and it is 
enclosed in the sacred machine, the probability is only 113. This is still 
a subjunctive statement because even if the coin had been flipped more 
times that it actually was, it would still have been in the machine and 
hence the relative frequency would still have remained around 113. 

I think that what is happening here is that we must make a 
distinction between two kinds of indefinite probabilities - strong ones 
and weak ones. The distinction is parallel to the distinction between 
strong and weak subjunctive generalizations. The strong subjunctive 
generalization "(Fx 3 Gx)l is about all physically possible cir- 
cumstances in which we might encounter an F. On the other hand, the 
weak generalization "(Fx ^> Gx)' is about a more narrowly cir- 
cumscribed set of circumstances - the 'actually possible' circumstances 
in which we might encounter an F. As we have seen, weak generaliza- 
tions are parasitic upon strong generalizations. "(Fx ^> Gx)l  is true 
because of certain physically contingent facts P about the world, and 
what makes "(Fx ^> Gx)' true is that "[(Fx & P)  3 Gx)' is true. For 
example, given Chisholm's bottle of rat poison, what makes it true that 
anyone who drank from this bottle would be poisoned, is that the 
bottle does contain rat poison and that the strong generalization 
'Anyone who drank from a bottle containing rat poison would be 
poisoned' is true. 

Analogously, there are two kinds of subjunctive indefinite probabil- 
ity statements. On the one hand there are strong indefinite probability 
statements, henceforth symbolized "probs(Gx/Fx) = rl, which take into 
account all physically possible circumstances in which there could be 
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an F. These probability statements are physically necessary - as they 
take into account all physically possible circumstances, they will remain 
true in all worlds having the same physical laws. On the other hand, 
there are weak indefinite probability statements, symbolized 
probw(GxlFx) = r', which rely for their truth on physically contingent 
facts about the world. Just as in the case of weak subjunctive generali- 
zations, weak indefinite probability statements are parasitic upon 
strong indefinite probability statements. In general, if P is the physi- 
cally contingent proposition the truth of which makes the weak proba- 
bility what it is, then probw(Gx/Fx) =probs(Gx/(Fx & P)). For exam- 
ple, in the circumstances described above, the weak probability of a 
flip of a coin of description D yielding a head is the strong probability 
of a flip of a coin of description D yielding a head under the 
circumstances described. Thus in the above circumstances, the strong 
probability of a flip of a coin of description D yielding heads is 112, but 
the weak probability is 113. 

It must be pointed out that there is a third kind of indefinite 
probability statement. For example, consider an urn containing seven 
white balls and three black balls. We want to say that the probability of 
a ball in this urn being black is 3/10. However, this probability is not 
subjunctive. It is about a fixed set of objects (the objects actually in the 
urn), and as such it implies nothing about the probability of other balls 
being black if they were in the urn. This is a material indefinite 
probability statement. Let us symbolize these as rprobM(Gx/Fx) = rl. It 
is worthwhile to compare our three kinds of indefinite probability 
statements with the three kinds of generalizations we have encoun- 
tered. There are strong subjunctive generalizations, weak subjunctive 
generalizations, and material generalizations, and correspondingly 
there are strong indefinite probability statements, weak indefinite 
probability statements, and material indefinite probability statements. 
The generalizations are, in the following sense, limiting cases of the 
corresponding probability statements: 

(2.2) (Fx => Gx) -* probw(Gx/Fx) = 1. 

(2.3) (x)(Fx 3 Gx) -  ̂probM(Gx/Fx) = 1. 
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For familiar reasons, these entailments do not go in the other direc- 
tion. For example, if h is a real-valued function of F's, and the values 
of h are evenly "distributed over some finite interval, then for each 
particular r in that interval, probw(h(x) = r/Fx) = 0, but this does not 
imply that (Fx => h(x) # r). To suppose otherwise would lead to the 
absurd result that ( y)(Fx ̂ > h(x) # y). 

Some unrepentant frequentists, having noted material indefinite 
probabilities, may assert that those are the probabilities they have been 
talking about all along. But they would be wrong. For example, 
consider the urn with seven white balls and three black balls. We can 
talk about the material probability of a ball in the urn being black, but 
that is not the probability concerning that urn which philosophers have 
generally wanted to talk about. It has been far more common for them 
to talk about the probability that drawing a ball from that urn will 
produce a black ball. This is an altogether different probability. To 
begin with, it is subjunctive. It is not just about all actual draws that 
have been performed, but also about what would happen if there were 
more draws. Furthermore, this probability need not be the same as the 
material probability of a ball in the urn being black. For example, if 
the black balls are a different size than the white balls, this may affect 
the probability of a black ball being drawn, but it does not affect the 
probability of a ball in the urn being black. Although material prob- 
abilities make sense (at least in the finite case - the infinite case is 
problematic), I think it must be concluded that they are not of much 
use and that they are not the probabilities in which we are generally 
interested. 

2.3. Strong Indefinite Probabilities 

As we will see in the next section, weak indefinite probabilities can be 
defined in terms of strong indefinite probabilities. So now let us 
examine strong indefinite probabilities. ^probs(Gx/Fx)-' will not be 
defined for all predicates F and G. probs(Gx/Fx) is intended to be an 
indefinite probability, but there are clear examples of predicates F and 
G for which probs(Gx/Fx), if it were defined, would be a definite 
probability rather than an indefinite probability. For example, 
probs(Ha/x = a ) ,  if it were defined, would be the probability of the 
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proposition Ha. Of course, definite probabilities make perfectly good 
sense, and will be discussed in due course, but the point is that they are 
not what the function probs gives us. Probs is an indefinite probability. 
Accordingly, there must be some restrictions placed on the arguments 
of probs. 

Unfortunately, it is not at all obvious what the requisite restrictions 
are, and I will not attempt to elicit them here. But one thing at least 
seems clear. If there is an E such that probs(Ex/Fx) exists, and if there 
is an H such that probs(Gx/Hx) exists, then both probs(Gx/Fx) and 
probs(Fx/Gx) exist. This is to say that there is a-set 77 of predicates 
such that probs(+/<p) exists iff +, <pen. It is worth noting just how 
broad the class J7 really is. For example, at least in the case where 
0(3x)Fx, it is natural to read rprobs(Gx/Fx)l as the proportion of 
D 

physically possible F's that are G's. This would naturally lead us to 
suspect that probs(Gx/Fx) does not exist if -0(3x)Fx. But that would 

P 

be a mistake. For example, 'black holes' are supposed to be astronomi- 
cal phenomena resulting from the gravitational collapse of stars and 
consisting of regions of space from which nothing (not even light) can 
escape. Thus it is supposed to be physically impossible to retrieve 
something from a black hole. Nevertheless, it makes perfectly good 
sense to talk about the probability of heads resulting from a flip of a 
coin of physical description D which was retrieved from a black hole. 
If D ensures that it is a fair coin, then the probability is 112, 

Even in the case in which -O(3x)Fx, probs(Gx/Fx) exists, although 
this is perhaps best viewed as a convention. At least ordinarily, we 
want to say that the logical entailment of Gx by Fx ensures that 
probs(Gx/Fx) = 1. If -0(3x)Fx, then (x)(Fx -> Gx), and so for any G 
at all in IT, we should have probs(Gx/Fx) = 1. 

Our indefinite probabilities are conditional probabilities. They are 
probabilities of certain things given other things. The traditional ap- 
proach to conditional probabilities was to define them in terms of 
non-conditional or absolute probabilities. The absolute probability 
prob(Fx) is supposed to be the probability of anything at all being an 
F. Absolute probabilities can be defined easily enough in terms of 
conditional probabilities: 

prob(Fx) = probs(Fx/Gx v - Gx). 
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The traditional move was to somehow start with absolute probabilities 
and then define conditional probabilities as follows: 

prob(Gx & Fx) 
probs(Gx/Fx) = 

prob(Fx) ' 

The recognized difficulty with this approach is that it does not work in 
the case in which prob(Fx) = 0. In that case, probs(Gx/Fx) would be 
left undefined. Hence this approach cannot handle the case in which F 
is logically impossible, and presumably cannot handle the case in which 
F is physically impossible. But I think it is generally supposed that this 
traditional approach will work for any more normal case. In fact, 
however, I think that absolute probabilities really make very little 
sense. If we define them as above (and really mean what we say so that 
they are not conditional on some additional implicit and non- 
tautological condition like that of being a physical object), then the 
absolute probability for any normal predicate will be zero. For example, 
the probability of a thing being red given that it is anything at all 
(including sets, real numbers, transfinite ordinals, etc.), is surely zero. 
Thus I think it is best if we just forget about absolute probabilities and 
rest content with conditional probabilities. 

Let us look more closely at what it means to say that 
probs(Gx/Fx) = r. As a first approximation, we want to read this as 
saying that the proportion of physically possible F's that are G's is r. 
But what does this mean? To talk about physically possible F's is, 
presumably, to talk about the physically possible ways of being an F. 
We can regard a way of being an F as a maximal consistent set of 
predicates which contains F. Let us define: 

(2.4) fl = {A ; (D)[D is a predicate 3 ( D  e A vr-D1e A)] & 

0(3x)(D)(D e A 3 Dx)}. 
P 

Then the set of all physically possible ways of being an F is: 

Then it is natural to suppose that for each F in J7, there is an additive 
measure function u, defined on (certain) subsets of [F] such that 
probs(Gx/Fx) = p([Fl n [GI). 



198 CHAPTER VII I  

The above approach seems to work as long as 0(3x)Fx, but if 
P 

-0(3x)Fx it would lead to probs(Gx/Fx) being undefined (because 
[F]= 0 ) .  If F is physically possible, then instead of talking about 
physically possible ways of being an F (there aren't any), it seems 
natural to talk counterfactually about what would be physically possi- 
ble ways of being an F if F were physically possible. This is on the 
right track, but is still not quite right. The difficulty is that there might 
be different ways of making F physically possible. For example, if F is 
a disjunction "Fixv  F2x1 where 'Fix1 contradicts one basic law and 
F 2 x 1  contradicts another basic law, then we could make F physically 
possible by rejecting either of these laws. But which of these two laws 
we reject may lead to quite different maximal consistent sets of 
predicates being physically possible, and there may be no such sets 
containing F which would be physically possible regardless of which 
law we reject. Thus we do not want to talk about what maximal 
consistent sets of predicates would be physically possible ways of being 
an F if F were physically possible; instead we want to talk about what 
maximal consistent sets of predicates might be physically possible ways 
of* being an F if F were physically possible. In other words, in 
computing probs(Gx/Fx), we take into account all of the physically 
possible way of being an F that would result from each of the ways of 
making F physically possible. Thus we define: 

(2.6) OF = {A ; (D)[D is a predicate 3 ( D  6 A v "-Dl6 A)] & 

0(3x)(D)(D 6 A 3 Dx) & 

-[O(3x)Fx > -0(3x)(D)(D <= A 3 Dx)]}. 
P P 

(2.7) [GIF ={A; A â OF & G 6 A}. 

Then probs(Gx/Fx) is supposed to be a measure of the proportion of 
things in [FIF that are also in [GIF. This means in particular that for 
each F in J7, there is an additive measure function up such that 
PF([F]F) = 1, and for each G in J7 probs(Gx/Fx) = /.&p([G]p fl [FIF). 
This works for all cases except that where [FIF= 0. It is easily 
demonstrated that IFIF = 0 iff -0(3)Fx, so in this case it seems best 
to simply stipulate that, since (x)(Fx + Gx), probs(Fx + Gx) = 1. 
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We cannot get by with a single measure function p and define 

as has been the traditional assumption when dealing with probability 
measure-theoretically. This is because such a function p would have to 
give a finite value to every subset of {I in its domain, and so in 
particular, p ( [ G v  -G]rGv_o-) = @({I) must be finite. But this will have 
the result that for many logically contingent F's, u([F]F) = 0, and 
hence the above definition will not work. Instead, we must have a 
whole class 8 of measiire functions. For each X c  {I, if X #  0 and X 
lies in the domain of some member of 8, then there should be a unique 
p in 8 such that X is in the domain of p and p (X)  # 0. Let px be this 
unique p. Then we define: 

Finally then, we can define: 

This measure-theoretic characterization of probs looks at least sup- 
erficially like Carnap's 'logical' interpretation of probability (although 
Carnap was working with definite probabilities rather than indefinite 
probabilities). However, there is a very important difference here. This 
is that the class 8 of measure functions is not a priori definable. This 
can be seen as follows. In general, there will be two distinct elements 
that contribute to the value of probs(Gx/Fx). On the one hand, there 
are strong subjunctive generalizations ('deterministic laws'), and they 
contribute by determining what physically possible ways there are of 
being an F, and hence determine membership in [GIF and [FIF. 
Different deterministic laws will leave the class 8 of measures un- 
changed, and will affect probabilities only by altering what sets are 
being measured. But on the other hand, there may also be some 
probabilistic laws. These cannot alter membership in [GIF or [FIF 
because they do not render anything physically impossible - only more 
or less improbable. Consequently, probabilistic laws must alter prob- 
abilities by altering the measure functions themselves. They result in 
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the same physical possibility receiving different weights. For example, 
let us suppose there are no deterministic laws, so that everything that is 
logically possible is physically possible. Then different probabilistic 
laws will all operate on the same sets of possible ways of being an F or 
a G, ([GIF = [GI and [FIp  = [F]), and hence can only result in different 
values for probs(Gx/Fx) by assigning different measures to [GI and 
[F]. This means that the contents of the set 8 are contingent, depend- 
ing upon what probabilistic laws there are, and hence cannot be 
defined a priori. 

On the other hand, if we suppose that all laws are deterministic, that 
there are no probabilistic laws, then 8 becomes fixed, and differences 
in probability can only be generated by differences in membership of 
[GIp and [FIF. In this case, it is not totally implausible to suppose that 
8 really is a priori definable, although I haven't the faintest idea how 
one might set about trying to define it. Let us call this set of measure 
functions the set gL  of logical measure functions. These measure 
functions are intimately connected with Carnap's 'logical conception of 
probability'. Many of the difficulties to which Carnap7s approach led 
can be traced to his supposition that we could define our probabilities 
in terms of a single logical measure rather than employing a whole 
class of measure functions. For example, if X is finite, then it seems 
reasonable that the logical measure should simply count the 
members of X. However, if X is infinite, then we need a different 
measure function, and there is no obvious connection between this 
measure function and the measure functions for smaller sets. We need 
a whole hierarchy of logical measure functions, and they seem to be 
largely independent of one another. The problem of how to define the 
logical measure functions seems extremely difficult. 

Unless we somehow know that there are no probabilistic laws, we 
cannot employ the logical measure functions directly in computing 
probabilities. Probabilistic laws force us to adopt a new set of measure 
functions - the 'empirical' measures. To this extent, the traditional 
'logical conception of probability' is bankrupt. Nevertheless, when we 
turn to the discussion of probabilistic laws, we will find that the logical 
measure functions do play a central role even when our measure 
functions are not those in %=. 

Our measure-theoretic characterization of probs immediately im- 



PROBABILITIES 20 1 

plies that it satisfies all of the following conditions, which will hence- 
forth be called 'the measure-theoretic axioms': 

. P 

(2.10) 0 5 probs(Gx/Fx) 5 1. ,& y 
(2.1 1) (x)(Fx -+ Gx) v o b s ( G x l F x )  = 1. 

(2.12) (x)(Fx - Gx) -3 probs(Hx/Fx) = probs(HxlGx). 

(2.13) O(3x)Fx 3 probs(-Gx/Fx) = l -probs(Gx/Fx). 

(2.14) (x)(Fx + Gx) = ~ ~ ~ o b s ( F x / H x )  <piobs(Gx/Hz). 

It is generally supposed that conditional probability satisfies an addi- 
tional condition, which can be formulated by any of the following 
axioms: 

(2.15) If (x)(Fx + Gx) and (x)(Gx -  ̂Hx), and probs(Gx/Hx) # 
probs(Fx/Hx) 

0, then probs(Fx/Gx) = 
probs (GxIHx) ' 

(2.16) If (x)(Gx -> -Hx), then 
probs(Fx/(Gx v Hx)) = probs(Fx/Gx)-probs(Gx/(Gx v Hx)) 

+probs(Fx/Hx)~probs(Hx/(Gx v Hx)). 

These 'product axioms' are interderivable given the measure-theoretic 
axioms, and together they would give us all of the normal principles of 
the probability calculus. In particular, they imply the axioms of Popper 
(1955) and (1959). Unfortunately, the product axioms are all false. For 
example, consider 2.15. By- our definitions, given the antecedent of 
2.15, we have: 

These are only the same if [F IG  =[FJH and [GIo = [GIH, i.e., if the 
same worlds might be physically possible if r(3x)Gx1 were physically 
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possible and if r(3x)Hx1 were physically possible. This is the same as 
requiring that f la = &. This will be true if r(3x)Gx1 and "(3x)Hx1 are 
already physically possible, or more generally if 

with this qualification, 2.15 becomes true: 

(2.15*) If (x)(Fx + Gx) and (x)(Gx + Hx) and (O(3x)Gx > 
P 

O(3x)Hx) and (O(3x)Hx >0(3x )Gx)  and probs(Gx/Hx) # 
P P 

0, then 

Similar qualifications lead to true versions of 2.16 and 2.17. In 
particular, the product axioms are all true if we suppose that r(3x)Fx1, 
(3x)Gx1, and r(3x)Hx1 are all physically possible. 

It has been remarked that strong subjunctive generalizations can be 
regarded as a kind of limiting case of strong indefinite probabilities. 
Part of the meaning of this claim is provided by principle 2.1, accord- 
ing to which (Fx + Gx) + probs(Gx/Fx) = 1. However, as we re- 
marked earlier, this entailment does not go the other way. The precise 
sense in which generalizations are limiting cases of probabilities is 
provided by the following theorem: 

(Fx & Hx)) = l]}' 

Proof: From left to right follows immediately from theorem 5.20 of 
Chapter VI according to which if "(Fx 3 Gx)' is true then 

O(3x)Fx > [0(3x)(Fx & Hx) 3 [(Fx & Hx) 3 Gxll 
P P 

together with principle 2.1. Conversely, suppose the right side holds. 
Suppose 

(2.19) (H)[0(3x)(Fx & Hx) =>probs(Gx/((Fx & Hx)) = 11. 
P 
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Suppose 'O(Sx)(Fx & - Gx)'. probs(Gx/(Fx & - Gx)) = 0 # 1, which 
P 

contradicts 2.19. Thus 2.19 entails 'U(x)(Fx =' Gx)', and hence the 
P 

right side of 2.18 entails r[0(3x)Fx >\Z\{x)(Fx 2 Gx)]'. By theorem 
P !' 

5.21 of Chapter VI, this is equivalent to '(Fx 3 Gx)'. 

The above remarks have been intended to elucidate the intuitive 
meaning of strong indefinite probability, and to elicit the logical 
properties of probs, but they cannot be regarded as constituting an 
analysis. We gave a measure-theoretic characterization of probs, but 
that is not an analysis because the measure pp is not constructed a 
priori. In fact, the only obvious way to define p~ is in terms of probs 
itself. 

If we cannot analyze probs measure-theoretically, how are we to 
analyze this concept? This is not a problem which I am now prepared 
to solve, although I can make some remarks which may, hopefully, 
point in the direction of a solution. The traditional attempts to define 
indefinite probability in terms of the limit of relative frequencies fail 
because of the subjunctive nature of non-material indefinite prob- 
abilities. Strong indefinite probabilities are intimately connected with 
strong subjunctive generalizations, the latter being a limiting case of 
the former. When it came time to analyze subjunctive generalizations, 
it was almost obviously hopeless to try to give a reductive analyses 
which would state their truth conditions in terms of other simpler 
concepts. Instead we sought an analysis in terms of their justification 
conditions. I argued at great length in Pollock (1974) that those 
intransigent concepts which resist truth-condition analysis can instead 
be analyzed by giving an account of how we operate with them, or 
more precisely, by giving an account of how we become justified in 
holding beliefs involving those concepts. In the case of subjunctive 
generalizations this came down to giving an account, first, of how basic 
subjunctive generalizations are confirmed directly by induction, and 
second, of how other subjunctive generalizations are derived from the 
basic ones. I believe that the same sort of account will work for strong 
indefinite probability. The justification conditions for this concept are 
of basically the same structure as those for its limiting case, the strong 
subjunctive generalization. There are two kinds of strong indefinite 
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probability statements. On the one hand there are those basic indefin- 
ite probability statements that can be confirmed directly by induction, 
and on the other hand there are non-basic indefinite probability 
statements that are derived from the basic ones. 

Let us begin by looking at the basic indefinite probability statements. 
Herein lies the initial plausibility of the frequentist position. It is, I 
think, inescapable that subjunctive indefinite probabilities cannot be 
defined in terms of relative frequencies, but relative frequencies must 
be connected with probabilities somehow. And I think it is rather 
obvious what the connection is: observed relative frequencies provide 
the inductive grounds upon which we base our estimates of prob- 
abilities. As in the case of subjunctive generalizations, basic indefinite 
probability statements must involve pairs of projectible predicates. 
And, as is always the case with inductive grounds, the confirmation is 
defeasible. However, the defeaters involved in the confirmation of 
indefinite probability statements seem to be considerably more compli- 
cated than those involved in the confirmation of subjunctive generali- 
zations. I will not attempt to spell them out here. 

Turning next to the question of how we obtain non-projectible 
indefinite probability statements from the projectible ones, we come to 
an extraordinarily difficult problem. Sometimes we can simply use the 
laws of the probability calculus and calculate the probabilities for 
non-projectible predicates directly, but this is only a very small part of 
the story. It will become apparent in section three that concealed in 
this question are many of the most important and difficult problems of 
probability theory. 

Although I am unable to give an account of the kind required, I do 
want to claim that when such an account is given, we will then have 
given an analysis of the meaning of strong indefinite probability 
statements. This will be no less an analysis than a truth-condition 
analysis would be. However, I am confident that a truth-condition 
analysis is impossible. 

2.4. Weak Indefinite Probability Statements 

Between strong and weak indefinite probability statements, the weak 
ones are commonly of more interest to us. We are generally more 
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interested in how likely an F is to be a G given the way the world 
actually is than we are in how likely an F is to be a G in all physically 
possible worlds. We can give a measure-theoretic characterization of 
probw(Gx/Fx) that is completely analogous to our measure-theoretic 
characterization of probs(Gx/Fx). Just as probs(Gx/Fx) is supposed to 
be the proportion of physically possible ways of being an F that are 
also ways of being a G, so probw(Gx/Fx) is supposed to be the 
proportion of actually possible ways of being an F that are also ways of 
being a G. Thus we can define: 

(2.20) fl%={A; (D)[D is a pred ica tea(DeAvr-D'eA)]  & 
0(3x)(D)(D A 3 Dx) & -[0(3x)Fx > -0(3x)(D)(D e 
A =3 Dx)]}. 

a a 

(2.21) [GI:= {A; A E 0: & G e A} 

Then there is a set fJ* of measures such that for each X, if X #  0 and 
X is in the domain of some member of fJ*, then there is a unique p in 
B* such that X is in the domain of p and p (X)  7'0. Let pg be this 
unique p. In Section 3.2 below, I will argue that in general, $ x - - PX, 
because these measures reflect the same probabilistic laws. It will be 
maintained that there are not two kinds of probabilistic laws, one 
involved in strong probabilities and the other in weak probabilities. On 
this assumption, we have: 

As before, this gives us most of the normal principles of the probability 
calculus for probw. The measure-theoretic axioms are true, and restric- 
tions analogous to those involved in probs give us qualified versions of 
the product axioms. 

There is also another way of characterizing probw which is in many 
ways more interesting. Weak indefinite probability statements and 
weak subjunctive generalizations are very much alike, as indeed they 
should be given that the latter is really a kind of limiting case of the 
former. In each case they are made true by some physically contingent 
facts about the world. We found that weak subjunctive generalizations 
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can be defined in terms of strong subjunctive generalizations: 

(2.24) (Fx => Gx) = (3P)(3A){(x)(x e A = x = x) & 
(Fx & P. 3 Gx) & PE(3x)(Fx & xs^A)}. 

Can we, in some analogous way, define weak indefinite probability 
statements in terms of strong indefinite probability statements? It 
seems we can. Let P be that physically contingent proposition the truth 
of which is responsible for the weak probability being what it is. Then, 
analogous to the condition in 2.24 that '[(Fx & P)  3 Gx]' be true, we 
have the condition that probw(Gx/Fx) = probs(Gx/(Fx & P)). We also 
need a restriction on P analogous to that contained in 2.24. To see 
what this restriction should be, consider the case of a coin whose 
physical characteristics are such as to make it a fair coin. Then we want 
to say that the probability of a flip of this coin at this time yielding a 
head is 112. Let P be the statement describing the physical characteris- 
tics which make the coin a fair coin. Clearly it is required of P that it 
would be true even if the coin were flipped, i.e., ^PE(3x)Fx1 is true. 
However, the condition ^PE(3x)Fx1 is clearly not sufficient by itself. If 
the coin is in fact being flipped at this time, then the condition 
PE(3x)Fx1 is automatically true because both P and ^(3x)Fx1 are 
true. We must require of P that it would still be true even if a different 
flip of the coin occurred. But this just means that ^PE(gx)(Fx & 
xs^ A)' should be true, where A is the set of actually existing things. 
Thus our restriction becomes the same as in 2.24. This suggests that we 
should have the following: 

r & (x)(x e A =x= x) & PE(3x)(Fx & xs^ A)]. 

Principle 2.25 is precisely analogous to 2.24. However, because we are 
now dealing with probabilities rather than strict generalizations, a 
further difficulty remains for 2.25 that did not occur in connection with 
2.24. This is that the function probw is not well defined because there 
could be two propositions P and P*  satisfying the constraints of 2.25 
but such that probs(Gxl(Fx & P)) ?'probs(Gx/(Fx & P*)). In such a 
case we would say that at least one of the two propositions P and P* 
has not taken into account all of the relevant information. Intuitively, 
we want to do something like taking the conjunction of all of the 
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propositions P satisfying the constraints of 2.25, and then look at the 
strong probability of an F being a G given that that conjunction is 
true. However, taking such an infinite conjunction is only a heuristic 
approximation to the right idea. One might question whether such 
infinite conjunctions really make sense. It seems that what we really 
want to require of P is that it be strong enough to take into account all 
of the relevant information, in the sense that if there is another 
proposition P*  also satisfying the constraints of 2.25 but yielding a 
different probability, then P +  P* and hence takes account of its 
information. This condition is still a bit too strong, because given a P* 
of this sort and an arbitrary irrelevant proposition Q such that 
rQE(3x)(Fx & xef A)' is true, we would have probs(Gx/(Fx & 
P*)) = probs(Gx/(Fx & P* & Q)), and hence the above condition 
would require that P + Q. This would lead to the result that P would 
have to entail every irrelevant proposition Q satisfying the constraint 
that "QE(3x)(Fx & xef A)' is true. This is much too strong a require- 
ment. We can avoid requiring P to entail such irrelevant propositions 
by only requiring P to entail P*  if there is no R such that P* entails R 
but R does not entail P *  and ^RE(3x)(Fx & xef A)' is true and 
probs(Gx/(Fx & R)) =probs(Gx/(Fx & P*)). If there is such an R, 
then P*  is an irrelevant strengthening of it. So our analysis becomes: 

(2.26) probw(Gx/Fx) = r = (3P)(3A)[(x)(x A = x = x) 

& probs(Gx/(Fx & P)) = r & (P*){[P*E(3x)(Fx & xe? A )  

& probs(Gx/(Fx & P*)) # probs(Gx/(Fx & P)) 

& PE(3x)(Fx & xef A )  & -(3R)((P* + R )  

& (R 4 P*) & probs(Gx/(Fx & R))  

= probs(Gx/Fx & P*)))} 3 ( P  -Ã P*)]. 

But there remains one final difficulty. There seems to be no logical 
guarantee that there is such a maximally strong P. It seems logically 
conceivable for there to be an infinite progression of stronger and 
stronger P's without limit each giving a different probability.3 In such a 
case, it would be unreasonable to identify probw(Gx/Fx) with the 
probability given by any of the P's. In such an eventuality, there would 
be no P by virtue of which there would be a weak indefinite probabil- 
ity different from the strong indefinite probability, and so we should 
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have probw(Gx/Fx) = probs(Gx/Fx). Thus our final analysis becomes: 

(2.27) probw(Gx/Fx) = r iff either 

(i) (3P)(3A)[(x)(x A = x = x) 

& probs(Gx/(Fx & P) )=  r & PE(3x)(Fx & x e  A )  

& (P*){[P*E(3x)(Fx & xs^ A )  

& probs(Gx/(Fx & P*)) # probs(Gx/(Fx & P)) 

& -(3R)((P* + R )  

& (R M*) probs(Gx/(Fx & R))  

= probs(Gx/(Fx & P*))} 3 ( P  + P*)]; or 

(ii) -(3P)(3A)[(x)(x e A = x = x) & PE(3x)(Fx & x& A )  

& (P*){[P*E(3x)(Fx & xs^ A )  

& probs(Gx/(Fx & P*)) # probs(Gx/(Fx & P)) 

&-(3R)((P* -+ R )  & ( R +  P*) 

& probs(Gx/(Fx & R)) = probs(Gx/(Fx & P*))} 

3 ( P  + P*)] & probs(Gx/Fx) = r. 

One of the major reasons for discussing subjunctive indefinite prob- 
abilities at such length is that it seems they should be relevant to the 
definition of the relation M which is involved in the analysis of 
subjunctive conditionals. We have entertained the hypothesis that 
there are fundamental laws of nature which are essentially probabilis- 
tic. For example, we may have a law which tells us that if an electron is 
in state S ,  at time t, then the probability is 113 that it is in state S2 at 
time t + At. Given such a probabilistic law, it would seem to follow that 
if an electron is in state Si at time t, then it might be in state S2 at time 
t + At. Non-zero probabilities arising from fundamental probabilistic 
laws create 'might be's'. This is a genuinely new source of 'might be's'. 
Without probabilistic laws, the only way a 'might be7 can arise is when 
P counter-implicates a conjunction of true propositions without 
counter-implicating either conjunct. 
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Let us see how we can make all of this precise. We want to say, 
roughly, that if Q is false but prob(Q/P) 7' 0, and this probability arises 
from fundamental probabilistic laws, then QMP, and hence there must 
be a world f l  such that f lMP and Q is true in f l .  The first thing to 
notice here is that the probability prob(Q/P) to which we are appealing 
is not an indefinite probability. It is the probability of a proposition Q 
given a proposition P. This is a definite probability, and is something 
new which we have not yet defined. We must begin by constructing a 
definition of this probability function. 

3.1. Strong and Weak Definite Probability 

The definite probabilities in which we are interested are probabilities 
of propositions and arise directly out of the indefinite probabilities we 
have already discussed. These definite probabilities are based solely 
and exclusively on the indefinite probabilities. We obtain two kinds of 
definite probabilities depending upon whether they are based on strong 
indefinite probabilities or weak indefinite probabilities. We will call 
these 'strong-' and 'weak definite probability' respectively. We will 
symbolize them using the same symbols we used for the indefinite 
probabilities: 'probs(Q/P)' and 'probw(Q/P)^. However, there is no 
danger of confusing the definite probabilities with the indefinite prob- 
abilities, because the arguments for the former must be propositions 
whereas the arguments for the latter must be predicates. 

We want ' p r ~ b ~ ( Q / P ) ~  to be a definite probability based solely on 
what strong indefinite probabilities there are. How is this to  be done? 
In a purely formal way, I think that this is quite simple. First define: 

(3.1) T(P) = the set of all possible worlds in which the proposi- 
tion P is true. 

Then as a first approximation, we can define quite simply: 

In other words, the strong probability of Q given P is simply the strong 
probability of a world in which P is true being a world in which Q is 
true. Thus we reduce the definite probabilities to the indefinite prob- 
abilities in a very simple way. 
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It may seem that we are somehow cheating in this definition. I think 
we are cheating, but the cheating does not occur at this point but 
earlier on when we eschewed the attempt to give an account of how 
non-projectible indefinite probabilities are computed on the basis of 
projectible ones. Just what is concealed in that problem now becomes 
apparent. Hidden there is the whole problem of how one computes 
definite probabilities on the basis of inductively confirmed indefinite 
probabilities. The probability probs(x T(Q)/x e T(P)) is itself a per- 
fectly reasonable indefinite probability. However, it is clearly not an 
indefinite probability whose value is subject to direct inductive confir- 
mation. Thus its value must be indirectly determined by those basic 
strong indefinite probabilities which can be confirmed inductively. I 
will not try to say how this is done, because I do not know how it is 
done. This involves all the traditional problems of randomness, etc. 
Without a solution to this problem, we cannot claim to have given an 
analysis of probability. However, that is not my present purpose. My 
objective in this chapter is not the analysis of probability per se, but 
rather the exhibition of the intimate connections between probability 
and subfunctive conditionals, and we can accomplish the latter without 
a complete analysis of probability. 

Returning now to 3.2, we can see that it does not provide quite the 
definition we want. Intuitively, we want probs(Q/P) to be the propor- 
tion of physically possible worlds making P true which also make Q 
true, but our definition fails to give us this result. This can be seen by 
looking at our measure-theoretic analysis of probs. r x  T(Q)']rXeTfpr 
consists of certain maximal sets of predicates including r x ~  T(QV 
which are such that it is logically possible for something to satisfy them 
all simultaneously. The only things that can satisfy r x ~  T(Q)' are 
possible worlds, so these are maximal consistent set of predicates of 
possible worlds. A predicate of possible worlds picks out a set of 
possible worlds. It is frequently maintained that any set of possible 
worlds determines a proposition. This might be denied on the grounds 
that propositions are 'intensional', and hence are only picked out by 
'definable' sets of possible worlds. However, it is at least clear that any 
set of possible worlds picked out by a predicate does determine a 
proposition. Conversely, any proposition R determines a predicate of 
possible worlds, viz., rx e T(R)'. Consequently, the members of r x  E 
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T(Q)l]rXeT(p)-' correspond one-one to maximal consistent sets of prop- 
ositions, which in turn correspond to possible worlds. Thus we can 
regard r x  â T(Q)l]rx<ET(pr as picking out a set of possible worlds in 
which Q is true. By definition 2.25, a member A of this set of possible 
worlds must satisfy the additional constraint that 

We want this constraint to say that if P were physically possible, then 
A would be one of those worlds that might be physically possible. At 
first it looks like it does say this, but it doesn't. The difficulty is that 
"(3x)x T(PY simply says that there is a possible world in 
which P is true, which is to say "OP". Similarly, "('3x)(R) 
(rx e T(R)" e A 3 x e T(R))' say that there is a world making all of the 
propositions corresponding to A true at the same time, which is just to 
say that A determines a possible world. But we already know this. 
Consequently, our constraint is vacuous. But this means that ["x E 

T(Q)']rxfET(p)7 picks out all logically possible worlds in which Q is true, 
and not just the physically possible ones. Consequently, p r ~ b ~ ( ~ x  
T(Q) l / rxe  T(P)') is the proportion of all logically possible worlds 
making P true which also make Q true, rather than being the propor- 
tion of all physically possible worlds making P true which also make Q 
true. 

Formally, our difficulty arises from the fact that 'O(3x)x e T(Q)' is 
P 

equivalent to "OOQ1, and hence to "OQ1, whereas we would like it to 
P 

be equivalent to "OQ1. The source of our difficulty lies in a strange 
P 

equivocation of which philosophers are frequently guilty in connection 
with possible worlds. First consider possible men. Corresponding to 
each man is his 'diagram' - the set of all the predicates he satisfies. 
Talk about possible men is talk about possible ways men could be, 
which is to talk about all those diagrams which logically could be the 
diagrams of men. No one would confuse a man with his diagram. 
Non-actual men do not exist, but their diagrams do. Hence there is a 
clear distinction between saying that it is physically possible for there 
to be a man of a certain description and saying that it is physically 
possible for there to be a man-diagram containing that description. 
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The latter is equivalent to saying that it is physically possible for it to 
be logically possible for there to be a man of a certain description (i.e., 
it is logically possible for there to be a man of that description) because 
(unlike men) man-diagrams exist just so long as they are logically 
consistent. 

Philosophers tend not to make the analogous distinction between 
worlds and world-diagrams. Instead, they generally identify a world 
with its world diagram. This is the customary procedure, and it has 
been our procedure throughout this book. But now that customary 
procedure has landed us in difficulty. We must distinguish between 
saying "It is physically possible for there to be a world in which Q is 
true1 and "It is physically possible for there to be a world-diagram 
containing Q1. As we have seen, the latter is equivalent to "It is 
logically possible that Q1, and given our identification of worlds with 
their diagrams, it is this rather than the former which is captured by 

It is now clear how to solve our problem. We must replace the 
predicate ^x T(Q)' by another predicate "Q(x)' such that ^(3x)Q(x)' 
says that Q is true (in the actual world) rather than that Q is true in 
some world or other. We can accomplish this without changing our 
formal definition of 'possible world' if we introduce the predicate "x is 
actual1 to mean "x is a (the) actual world1. Then we can define: 

(3.3) probs(Q/P) = probs(x e T(Q)/(x e T(P) & x is actual)). 

This has the desired result that probs(Q/P) is the proportion of 
physically possible worlds making P true which make Q true.4 Analog- 
ously, we can define: 

This gives us the proportion of actually possible worlds making P true 
which make Q true. 

3.2. Probabilistic Laws 

I have talked glibly about probabilistic laws as being probabilistic 
analogues of deterministic laws (subjunctive ge'neralizations). But what 
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does this mean? We might naturally suppose that any strong indefinite 
probability statement expresses a probabilistic law, but it takes little 
reflection to see that such a view is mistaken. As we have seen, there 
are two contributing factors involved in generating strong probabilities 
- deterministic laws, which alter the contents of the sets [GIF by 
determining what worlds are physically possible, and probabilistic laws 
which dictate different weightings to the physically possible worlds. 
Even if there were no probabilistic laws (so our measures would be gL,  
the logical measure functions), there would still be strong probabilities. 
Thus strong probability statements do not automatically express prob- 
abilistic laws. 

To say that there is a probabilistic law operating in a certain case is 
just to say that our measure functions are not those in &. To make 
this precise, let us define a kind of hybrid probability function which 
uses the logical measures on the physically possible worlds. For each 
X, if X #  0 and X is in the domain of some member of BL, let pL,X be 
the unique p in BL such that X is in the domain of p and p (X)  # 0. 
Then we define: 

Analogously, 

Then to say that there is a probabilistic law operating is just to say that 
probs(Gx/Fx) # p r ~ b ~ , ~ ( G x / F x ) .  In such a case, let us say that "Fxl is 
strongly relevant to "Gxl. Analogously, we can define weak relevance, 
and positive and negative relevance: 

(3.7) "Fxl is strongly relevant to "Gxl iff 

probs(Gx/Fx) # probLs(Gx/Fx). 

(3.8) "FX1 is weakly relevant to "Gxl iff 

probw(Gx/Fx) # p r ~ b ~ , ~ ( G x / F x ) .  

(3.9) rFx' is strongly positively relevant to '^Gxl iff 
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(3.10) "Fxl is weakly positively relevant to "Gxl iff 

p r ~ b ~ , ~ ( G x / F x )  < probw(GxlFx). 

(3.11) "Fxl is strongly negatively relevant to "Gxl iff 

orobs(Gx/Fx) < p r ~ b ~ , ~ ( G x / F x ) .  

(3.12) "Fxl is weakly negatively relevant to ^Gxl iff 

probw(Gx/Fx) < p r ~ b ~ , ~ ( G x / F x ) .  

We can extend these definitions to strong and weak definite prob- 
abilities in the obvious way. Then to say that there is a probabilistic 
law operating in probs(Gx/Fx) is just to say that "Fxl is strongly 
relevant to "Gxl. Similarly, a probabilistic law is operating in 
probw(Gx/Fx) iff "Fx1 is weakly relevant to "Gxl. 

We know what it is for there to be a probabilistic law operating in a 
particular case, but what is the nature of the beast itself? What is a 
probabilistic law? What a probabilistic law does is shift our measures 
from the logical measures gL to a new set of empirical measures 8, so 
it seems reasonable to simply identify the probabilistic laws with the 
set of empirical measures. That is, a probabilistic law is any set of 
probability measures other than gL.  This is not entirely in accord with 
our ordinary way of thinking of probabilistic laws according to which, 
e.g., the quantum mechanical equations expressing probability dis- 
tributions for various quantities represent probabilistic laws. However, 
this can be reconciled with the view that a probabilistic law is a set of 
empirical probability measures. In order for the quantum mechanical 
equations to represent probabilistic laws, the distributions they dictate 
must differ from the 'chance' distributions generated by the logical 
measure functions. Insofar as they do differ, in order for the quantum 
mechanical equations to be true the set of empirical measures must 
differ from gL. The quantum mechanical laws do not completely 
determine the set (5 of empirical measures, but they do partially locate 
(5 as being a member of that class of sets of measures which would 
yield the probability distributions expressed by the quantum mechani- 
cal laws. It seems reasonable to call such a partial characterization of (5 
a 'probabilistic law'. A complete specification of (5 is just a maximally 
strong probabilistic law. The weaker probabilistic laws are equivalent 
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to the indefinite probability statements which generate them, so we can 
regard the latter as probabilistic laws too if we wish. 

We have two kinds of subjunctive probability - strong and weak. 
Are there correspondingly two kinds of probabilistic laws? The answer 
to this seems to be, 'No'. A probabilistic law simply selects a set of 
empirical measure functions. There is nothing about such a set of 
measure functions to relate it to one kind of probability rather than the 
other. The difference between strong and weak probability would seem 
to be, not in the measure functions employed, but in the sets meas- 
ured. Strong probability-results from measuring sets of physically 
possible combinations. Weak probability only diverges from strong 
probability by virtue of measuring smaller sets, i.e., by measuring sets 
of actually possible combinations. 

3.3. The Analysis of M 

In our original analysis of M, which overlooked probabilities, the only 
way "QMP1 could be true, where 0 is false in the actual world, is for 
there to be some false proposition R such that P +  ( Q v  R),  but 
P^> R. But if the only true subjunctive generalizations were entail- 
ments, other putative subjunctive generalizations being replaced by 
subjunctive probability statements, this would not in fact diminish the 
set of 'might be' statements. On the contrary, whenever P is positively 
relevant to 0 ,  we would conclude that QMP. Thus it seems that there 
is a second way that 'might be' statements can arise, viz., from the 
positive relevance of P to Q. 

However, we have two kinds of subjunctive probabilities - strong 
and weak. Which kind is involved in generating 'might be's'? It is not 
difficult to see that it is the weak probabilities that are involved, the 
reason being that they take into account more about what is actually 
the case in the world. For example, consider Chisholm's bottle of rat 
poison again, but suppose now that all laws governing the effect of 
poison on the human system are probabilistic rather than deterministic. 
It is clear that the p r ~ b ~ , ~ ( S x / D x )  of the survival Sx of a person who 
drank Dx from the bottle is non-zero - there are numerous physically 
possible circumstances under which a person could do so and survive, 
e.g., by washing the bottle out first and then filling it with clean water. 
Let us suppose further that due to some strange psychological and 
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genetic features of human beings, people who drink from bottles are 
apt to live longer than people who do not drink from bottles. Then 
pr~b~(Sx/Dx)>prob~,~(Sx/Dx), i.e., drinking from the bottle is 
(slightly) strongly positively relevant to surviving. But we can suppose 
that because the bottle is filled with very dilute poison, this is just 
enough to overcome that strong positive relevance that drinking from 
the bottle has to survival, with the result that drinking from the bottle 
is not weakly relevant to surviving. Under these circumstances, if we 
consider a person who died of old age, we would not say that he might 
have lived longer had he drunk from the bottle. If it weren't that the 
bottle contains the poison, the strong probability and the weak proba- 
bility would coincide, there being nothing by virtue of which the weak 
probability would differ from the strong probability, and hence drink- 
ing from the bottle would be weakly positively relevant to survival. In 
that case we would say that the person might have lived longer had he 
drunk from the bottle; but because the bottle does contain the poison, 
it is not true that the person might have lived longer if he had drunk 
from it. Thus the same circumstances (the bottle's containing poison) 
which make the weak probability diverge from the strong probability, 
and hence prevent drinking from the bottle from being weakly posi- 
tively relevant to survival, also determine that -(QMP). This indicates 
that it is weak subjunctive probability and weak positive relevance that 
are involved in the analysis of M and allow additional 'might be' 
statements to be true. 

How, precisely, is weak positive relevance involved in the analysis of 
M? We will start from analysis 2.15 of Chapter VI and see how it must 
be modified. The first thing we must do is modify the definition of a 
possible world so that it contains information on weak positive rele- 
vance. Rather than taking a possible world to be a quadruple 
(5 ,  T), N,  W) as in Chapter VI we will now take it to be a quintuple 
(5, T), N, W, P) where P is the set of all ordered pairs (<p, i / / )  such that <p 

is weakly positively relevant to 4. 
Let us begin with the simplest case - that in which there are no 

deterministic laws, i.e., No, = W.. = 0, and <p is indicative. In this case, 
definition 2.15 requires that if (3Ma <p then: 

for t e Rl, Sa(t)ASp(r) is a minimal <p-change to Ta at t. 
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In this case, noting that we have no contingent subjunctive generaliza- 
tions with which to contend, it should be that case that if ((p, +)e  Pa, 
then +Ma, and hence there is some p such that pMaq and + is true in 
p. We must liberalize the definition of M to allow such a p. This can 
be done very simply by disjoining the following to the above 
requirement: 

(3.13) There is a + such that a &  T(+) and (<p, +)e  Pa and for 
t e R l ,  Sa(t)AS&)isaminimalrip & v-change to Teat t. 

Next, what happens when a contains true contingent subjunctive 
generalizations? Let us still suppose that (p is indicative, and suppose 
that (p is not counter-legal, i.e., <p is consistent with Wa. What happens 
now is that having ((p, + ) e  Pa no longer guarantees that +Mq. This is 
because we can now talk about the historical antecedents of a proposi- 
tion. For example, suppose that getting plenty of vitamin C in your diet 
is positively relevant to living a long life, and consider Jones who dies 
in an auto accident. Although his getting plenty of vitamin C is still 
positively relevant to his living a long life, we would not take this as 
implying that had he gotten plenty of vitamin C, he might have lived 
longer than he did. This is because although getting plenty of vitamin 
C is positively relevant to his not dying when he did, i.e., it is 
negatively relevant to his dying when he did, it is not negatively 
relevant to his dying in an auto accident. In general, given a true 
proposition Q which has historical antecedents going back indefinitely 
far in time, P's being negatively relevant to 0 only ensures (-Q)MP if 
P is also negatively relevant to the historical antecedents of 0. For 
example, supposing that getting plenty of vitamin C is positively 
relevant to living longer because it is negatively relevant to dying of 
certain diseases including pneumonia, given Smith who died of 
pneumonia we would say that he might have lived longer if he had 
gotten plenty of vitamin C; but given Jones who died in an auto 
accident, we would not say that Jones might have lived longer had he 
gotten plenty of vitamin C. 

In order for considerations of relevance to bring it about that 
(-Q)MP, it is not required that P be negatively relevant to all of the 
historical antecedents of 0 .  For example, suppose that getting plenty 
of vitamin C is negatively relevant to dying of pneumonia, but just 
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slightly positively relevant to dying of heart failure. Suppose Smith dies 
from pneumonia, with the actual causal mechanism consisting of the 
pneumonia bringing about heart failure. We would still agree that he 
might not have died when he did had he gotten plenty of vitamin C, 
even though his getting plenty of vitamin C is not negatively relevant to 
his suffering heart failure. The reason we would agree that he might 
not have died had he gotten plenty of vitamin C is that if we trace the 
historically antecedent circumstances implicating his dying back to a 
certain point in time (namely, the time at which he contracted 
pneumonia), we find that from that time back his getting plenty of 
vitamin C is negatively relevant to his being in those circumstances. 

It seems then that the basic condition under which considerations of 
relevance can bring it about that (-Q)MP is the following: 

P is false and 0 is true, P is weakly negatively relevant to 
0 ,  and there is a time r such that P is weakly negatively 
relevant to all historical antecedents of Q predating t. 

However, once we have generated some 'might be' statements in this 
way, we automatically get some more. For example, suppose Q is a 
conjunction ""0, & Q> Then we must have either (-Q,)MP or 
(-QJMP. There is an obvious constraint here. If P is negatively 
relevant to Q because it is negatively relevant to Ql and not relevant 
to Q2, then we should have (-Ql)MP, but we should not have 
( - O m .  More generally, if -Q =^> (-R v-S), we have to have 
either (-R)MP or (-S)MP. If P is negatively relevant to R but not to 
S, then we are constrained from having (-SIMP. When there is a 
choice between two propositions -R and -S, and P is negatively 
relevant to one of them, then that is the one we should choose as being 
one that might be true if P were true. We can capture all of this by 
ruling: 

(3.14) ftMaip if ip is false in a, and there is a true in a such that 
r(<p & -4)' is true in (3, and 

(1) ip is weakly negatively relevant to if/, and there is a t e R l  
such that for all t * <  t and finite X c  SJt*), if J7X is the 
conjunction of X and I7X => 4 then ip is weakly negatively 
relevant to X ;  and 
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(2) for all t e Rl. 

(a) (Sa(r)ASo(r)) is a minimal (VNa U V Wa U ̂<p & -<n)- 
change to Ta at f; and 

(b) there is no indicative 0 and ye[[I]]a such that 
(Sa(f)ASJt)) is a minimal (VN,, U VW,, U r<p & -^})- 
change to Ta at t, and N,, = No and W,, = Wo, and 
0 e (To-Ta) but 0i^ T,, and <p is weakly negatively relev- 
ant to 0. 

Finally, consider what happens when we remove the restriction that 
<p be indicative and not counter-legal. Removing this restriction does 
not seem to make any appreciable change to the analysis other than 
those changes already embodied in definition 2.15 of Chapter VI. The 
new definition becomes the same as the old 2.15 except that clause (vi) 
is replaced by the disjunction of the old clause (vi) and the new 
condition 3.14 above; and finally a new seventh clause must be added: 

(VII) Pa = Pa. 

In defense of this final clause, notice that there is no way we can 
formulate within our language any sentence incompatible with the 
statements of positive relevance reflected in the set Pa. To force 
changes in Pa we would at the very least have to be able to formulate 
probability statements in our language. 

I believe that this new definition of M takes full account of the 
possibility of there being probabilistic laws. The definition of truth 
given in Chapter VI and based upon the definition of M can still be 
used without change. This completes the first of the two basic tasks of 
this chapter, which was to see what changes must be made to the 
definition of M to accommodate probabilistic laws. 

The second major task of this chapter is to examine those probability 
statements like 'If it were true that P, then it would probably be true 
that Q' and '"If it were true that P, then it would almost certainly be 
true that Q' which we are often inclined to make in lieu of asserting a 
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simple subjunctive. The suggestion was made above that in the absence 
of any true subjunctive generalizations (that is, if we had only prob- 
abilistic laws), these probability statements would be all that we would 
be warranted in asserting. 

Statements like "If it were true that P, then it would probably be 
true that Q1 look like simple subjunctive conditionals whose conse- 
quents are probability statements. But I think that this grammatical 
form is misleading. Taken at face value, it would give these probability 
statements the form "(P >prob(Q) 2 1 - e)'. The first difficulty with 
this is that it requires a notion of unconditional probability which 
proves very hard to come by. But supposing for the moment that we 

have  such a probability concept, it would still not be reasonable to 
regard "If it were true that P, then it would probably be true that 0"' as 
having the form ^(P > prob(Q) 2 1 - el1. The latter statement would 
require "prob(Q)? 1 - e l  to be true in every P-world, but that is an 
unreasonably strong requirement. For example, suppose that 
prob(Q)  2 1 - e/2' is true in every P-world with the exception of one, 
0. Suppose further that if P were true, it would be much less probable 
that ft would be the actual world than it would be that any other 
P-world would be the actual world. Surely, in this case, we would 
agree that if it were true that P then it would probably be true that 0, 
although "(P > prob(Q) 2 1 - e)"' would be false. 

These considerations indicate that "If it were true that P then it 
would probably be true that Q1 is not really a conditional. Given that 
it is not a conditional, it seems rather obvious that it must be a 
conditional probability statement. In this section I will define the kind 
of conditional probability which I believe to be involved here, and 
show how it is related to simple subjunctive conditionals. 

4.1.  The Variety of Probabilities 

Philosophers.sometimes make the mistake of supporting that there is 
just one reasonable concept of probability, and then criticize one 
another's pronouncements on probability from that point of view even 
though they are in fact talking about different concepts. We must avoid 
making that mistake. 

The term 'probability' has been used to talk about a number of 
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different concepts. Three such concepts are 'degree of confirmation', 
'degree .of belief', and 'degree of rational belief'. It has never been 
obvious to me that degree of confirmation has the structure of a 
probability concept. Degree of belief (taken literally, and not idealized) 
almost certainly does not have such a structure, simply because people 
can hold irrational combinations of beliefs. However, degree of ra- 
tional belief pretty clearly does have the structure of a probability 
concept, and it is a very interesting kind of probability to investigate. 

I mention degree of rational belief primarily to contrast it with the 
kind of probability which will be investigated here. Let us symbolize 
degree of rational belief as 'probR'. ProbR is primarily of use in 
deciding what actions to take in cases of partial ignorance. If P 
represents everything we know, then probR(Q/P) represents how likely 
it is that Q is true given everything we know. As our state of 
knowledge changes, probR changes (by changing P) .  This is all in 
strong contrast to the kind of subjunctive probability involved in "If it 
were true that P, then it would probably be true that Q1. I will 
symbolize the latter kind of probability simply as 'prob'. 
'probR(Q/P) = r1 is an indicative statement - it is about the probability 
that Q is true given P. On the other hand, 'prob(Q/P)=rl is a 
subjunctive statement - it is about the probability that Q would be true 
if, contrary to fact, P were true. Prob(Q/P) is really only of interest in 
the case where P is now false (this is also true of simple subjunctive 
conditionals). In determining the value of prob(Q/P), we make use of 
everything that is true in the actual world, just as in evaluating the 
truth value of a subjunctive conditional we make use of everything that 
is true in the actual world. Prob(Q/P) looks at all those worlds that 
might be actual if P were true, i.e., at all P-worlds, and gives us the 
proportion of them that would make Q true. This is a weighted 
proportion, the different P-worlds being weighted according to their 
relative likelihood of being actual if P were true. 

4.2. Simple Subjunctive Probability 

The probability concept that will now be defined will be called 'simple 
subjunctive probability'. It is so-called because the simple subjunctive 
conditional is a limiting case of this probability concept. Prob(Q/P) is 
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about what would be the case if P were true, thus it is a measure of the 
proportion of worlds making 0 true, not among all possible worlds 
making P true, but among all worlds that might be actual if P were 
true. We can define it in a way completely analogous to our definitions 
of strong and weak definite probabilities. First, define: 

Then: 

(4.2) prob(Q/P) = probw(x T(Q)/(x M(P) & x is actual)). 

We can also define 'prob' directly in terms of weak definite prob- 
abilities. First we define: 

(4.3) map = (Q)[a T (P  > 0 )  2 Q is true]. 

(4.4) if ay is the actual world, mP = ma0P. 

rmP1 is a proposition which is true in a world just in case that world is 
a P-world. Then we can define: 

(4.5) prob(Q/P) = probw(Q/mP). 

Our simple subjunctive probability is a conditional probability. It is 
of course possible to define a non-conditional probability in the normal 
way: 

However, this turns out to be the same thing as the truth value of P. 
This results from the following two theorems: 

1 if Q is true 
(4.7) If P is true, then prob(Q/P) = 

0 otherwise 

Proof: if P is true, then M(P) = {ao} (where a. is the actual world). If 
0 is true then 0 is true in all members of M(P), and so prob(Q/P) = 1. 
If 0 is false, then 0 is true in no member of M(P), so prob(Q/P) = 0. 

1 if P is true 
(4,8) prob(P) = 

0 if P is false 

Philosophers have often supposed that the connection between 
subjunctive conditionals and conditional probability should be that 
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prob(P> Q) = prob(Q/P). Theorem 4.8 shows that this is not possible, 
at least for our notion of simple subjunctive probability. We will 
always have either prob(P > Q) = 1 or prob(P> Q) = 0, depending 
upon whether rP> Q1 is true or false, but it will not generally be the 
case that either prob(Q/P) = 1 or prob(Q/P) = 0. What then is the 
connection between simple subjunctive probabilities and simple sub- 
junctive conditionals? Just as in the case of subjunctive generalizations, 
the connection should be that the subjunctive conditional is a limiting 
case of subjunctive probability. Part of what this means is contained in 
the following trivial theorem: 

If the situation here were completely analogous to the situation with 
subjunctive generalizations, then the full content of saying that the 
conditional is a limiting case of the probability statement would be 
contained in the following principle: 

(4.10) ( P >  Q) = (R)  prob(Q/(P & R)) = 1. 

Unfortunately, 4.10 is false. From right to left fails because we can 
trivially prove (substituting ^-Q1 for R): 

(4.1 1) (R)  prob(Q/(P & R ) )  = 1 -3(P+ Q). 

The other half of 4.10 fails for the same reason the principle 

fails. The source of both of these difficulties is that when we change 
subjunctive hypotheses, we change the set of possible worlds under 
consideration (from M(P) to M(P & R)), and there may be no simple 
connection between the two sets of possible worlds. In particular, we 
do not generally have that M(P  & R )  = M(P) n M(R). For this same 
reason, it turns out that simple subjunctive probability does not satisfy 
all of the normal axioms for conditional probabilities. The measure- 
theoretic principles automatically hold: 
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However, the following 'product axioms' (which are interderivable 
given 4.12-4.16) all fail: 

(4.17) If P -  ̂Q and Q -> R and prob(Q/R) # 0, 

then prob(P/Q) = 
prob(P/R) 
prob(Q/R) ' 

(4.18) If Q + -R, then 

prob(P/Q v R )  = prob(P/Q)-prob(Q/Q v R )  

+prob(P/R)-prob(R/Q v R). 

As 4.17-4.19 are interderivable, it suffices to give a counter-example 
to just one of them. 4.19 is particularly interesting, because it can be 
viewed as a probabilistic analogue of principle 7.1 of Chapter 111: 

This is the principle which, when added to SS yielded Lewis' C l ,  and 
which expressed the semantical principle that the ordering of possible 
worlds which generates subjunctive conditionals is connected. We can 
generate counter-examples to 4.19 in precisely the same way we gener- 
ated counter-examples to 7.1. All we need is a case in which 
prob(P/R)#0 (so PMR); and P and Q are independent so that 
prob((P & Q)/R) = prob(P/R)-prob(Q/R); and (R > 0 )  so that 
prob(Q/R) = 1, but prob(Q/(P & R)) # 1. Given such a case, 
prob(P/R)-prob(Q/(P & R))<prob(P/R) = prob((P & Q)/R). Such a 
case can be constructed using the same example which was a counter- 
example to 7.1. Let S, T, and U be the three unrelated false state- 
ments 'My car is painted black', 'My garbage can blew over', and 'My 
maple tree died'. Then let P= ^ ( U v  T)', R = '(S v T)', and Q = 

- u: 
Because of the failure of 4.17-4.19, we cannot express the sense in 

which the simple subjunctive conditional is a limiting case of simple 
subjunctive probability statements by asserting principle 4.10. We 
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must resort to more complicated techniques, which will be the topic of 
the next section. 

Theorem 4.7, according to which 

1 if Q is true 
If P is true, then prob(Q/P) = 

0 if 0 is false 

expresses what is perhaps an unfortunate characteristic of simple 
subjunctive probability. By virtue of this theorem, these probabilities 
are really only useful in talking counterfactually about what would 
probably be the case if P (which is now false) were true. But some- 
times we employ a kind of probability statement which seems to 
circumvent this difficulty. For example, suppose a car goes out of 
control in heavy traffic and after careening about for a while collides 
with another car. We might observe that under the circumstances, since 
the car went out of control it was quite probable that there would be a 
collision. This notion of Q's being probable since P was true is an 
important notion that is worth investigating. It seems to be a prob- 
abilistic analogue of the necessitation conditional, which can be expres- 
sed (when it has a true antecedent) as "It was true that Q since it was 
true that P1. The more general form of a necessitation conditional is 
I f  it were true that P, then it would be true that 0 since it would be 
true that P1, and analogously the general form of our probability 
statement is ^If it were true that P, then it would be probable that 0 
since it would be true that P1. Presumably, necessitation conditionals 
are the limiting case of these probability statements, and hence the 
analysis of necessitation conditionals can guide us in the analysis of the 
probability statements. The necessitation conditional is analyzable as: 

Correspondingly, I would suggest that "If it were true that P, then it 
would be probable that Q since it would be true that P1 is analyzable 
as: 

Q would probably be true if P were true, and if " ( -P  & 
-Q)' were true, it would still be the case that 0 would 
probably be true if P were true. 

Presumably, to say that 0 would probably be true if P were true is to 
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say that prob(Q/P) 3- r, for some particular r. Thus the above comes to: 

A reasonable reading of this would be "P's being true would dispose Q 
to be true with at least a degree rl. Let us introduce a short symbol for 
this: 

We clearly have: 

It is worth noting in passing that conditionals like "(-P & -Q)> 
prob(Q/P)s  r1 illustrate that we can have some true counterfactuals 
even if we have only probabilistic laws. 

In 4.20 we introduced the notion of the degree to which P disposes 
Q to be true. It might be supposed that this is another kind of 
probability. It is easy enough to construct measures of this degree. An 
obvious definition would be: 

Actually, I think that a more interesting measure would be one taking 
a weighted average of the values prob(Q/P) might have if "(-P & 
- Q)l were true: 

However, all of this is really rather beside the point, because it is easy 
to see that no matter how we define 'disp', it will not be a probability, 
i.e., it will not satisfy the measure-theoretic axioms of the probability 
calculus. This results from the fact, noted in Chapter 111, that the 
following is not valid: 

and hence we can have cases in which disp(Q/P)=l ,  but 
disp((Q v R)/P)  < 1. 
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4.3. A Probability Algebra 

There is reason to believe that the relation "If it were true that P, then 
it would be more probable that Q than that R1 should have a fine 
structure not reflected in the values of prob(Q/P) and prob(R/P). Let 
us symbolize this relation as "QK~R ' .  We can construct cases in which 
we seem to have Q K ~ R ,  and yet prob(Q/P) = prob(R/P). The simplest 
such cases arise when prob(Q/P) = prob(R/P) = 0. For example, let P 
be 'Joe is taller than six feet'. Let us suppose that if P were true, then 
for any finite interval 5 between 6'2" and 6'4", the probability that 
Joe's height lies in that interval is directly proportional to the length of 
the interval. Then it follows that if Joe were taller than six feet, then 
the probability of his height being any particular value between 6'2" 
and 6'4" is zero. If this were not the case, by adding a single point to an 
interval we could discontinuously increase the probability of Joe's 
height being in that interval. For each x in the interval between 6'2" 
and 6'4", let Qx be the proposition that Joe's height is x. Then for each 
x, prob(Qx/P) = 0. Nevertheless, it seems clear that ( P  & -P)<pQx. 
Similarly, if A is a finite set of points containing x, and QA is the 
proposition that Joe's height lies in A, then Qx<pQA, although 
prob(Qx/P) = prob(QA/P) = 0. Similarly, if B is a denumerable set of 
points in the interval, and A <= B, then it seems clear that QA < p  QB. 

What the above examples illustrate is that among propositions of 
probability zero, the relation 'Kp' has a fine structure not reflected in 
the probability values. But these examples yield additional examples 
concerning propositions having non-zero probability. For example, if 
Q < p R ,  we surely want to say that -R Xp-Q. But if prob(Q/P) = 

prob(R/P) = 0, then prob(-QIP) =prob(-RIP) Â¥ 1. So every example 
of fine structure on propositions of probability zero yields examples of 
fine structure on propositions of probability one. 

It seems that we can go even further. We can construct intermediate 
cases with probability between zero and one. Suppose Q is more 
probable than a contradiction, i.e., ( P  & -P)<pQ, but prob(Q/R) = 0. 
Suppose prob(R/P) # 0, and R -f - Q. Then prob((Q v R)/P)  = 

prob(Q/P) + prob(R/P) = prob(R/P), but it seems that we should 
have R < p(Q v R). In general, it seems we should have: 

However, as we will see, there are some difficulties for this principle. 
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What are we to make of this relation '-+' which exhibits a finer 
structure than our probability function? It turns out that it .is definable 
in terms of our probabilities. It is not definable simply as 

R-+Q iff prob(Q/P) < prob(R/P) 

but it is definable in a more complicated way. 
First consider the case of propositions of zero probability. We may 

have prob(Q/P)= 0 even though Q might be true if P were true, 
because M(P) is so much bigger than M(P) fl T(Q) that any measure in 
S sufficiently coarse to give M(P) a finite measure must give M(P) fl 
T(Q) a zero measure. However, for the purpose of comparing 0 and 
R (on the hypothesis P), we need not employ a measure which gives a 
finite value for M(P). It is not M(P) that we are interested in, but 
rather its two subsets M(P) fl T(Q) and M(P) f l  T(R). We want to 
compare the sizes of these sets, and any measure in 2 which gives 
them both finite values and makes at least one non-zero will do the 
job. This suggests the following definition: 

(4.23) Q<? R iff probw(Q/[mP & (Q v R)]) 

(4.24) Q P̂ iff probw(Q/[mP & ( Q v  R)]) 

= probw(R/[mP & (Q v R)]). 

What this definition does is move us from a finite measure for M(P) to 
a finite measure for the smaller set M(P) f l  T(Q v R),  and this measure 
must give a non-zero measure to at least the larger of M(P)fl  T(Q) 
and M(P) fl T(R). 

Definition 4.23 works for the case of propositions of probability 
zero, but it does not work for the case of propositions of probability 
one. If prob(Q/P) = prob(R/P) = 1, then Q R. However, we can 
rectify this situation easily enough as follows: 

(4.25) Q < ~ R  iff Q < y  R or -R<P-Q. 

(4.26) Q R iff neither Q<g) R nor R<? Q. 

The way in which this second ordering relation works can be seen 
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easily from the following theorems: 

(4.27) Q<$)R iff either: 

(i) prob(Q/P) = prob(R/P) = 0 and Q<:) R ;  or 

(ii) prob(Q/P) = prob(R/P) = 1 and - R<Y - Q; or 

(iii) prob(Q/P) and prob(R/P) are neither both zero nor 
both one, and prob(Q/ P )  < prob(R/P). 

(4.28) Q ^p'R iff either: 

(i) prob(Q/P) = prob(R/P) = 0 and Q ^R ; or 

(ii) prob(Q/P) = prob(R/P) = 1, and -Q =V)-R;  or 

(iii) prob(Q/P) and prob(R/P) are neither both zero nor 
both one, and prob(Q/P) = prob(R/P). 

From this it follows easily that '=g" is an equivalence relation, and 
'<$^ is a linear ordering relative to the equivalence r e l a t i ~ n . ~  

However, clause (iii) of 4.27 shows that '<g" does not make finer 
discriminations than 'prob' in the intermediate case where prob(Q/P) 
and prob(R/P) are neither both zero nor both one. Hence '<g' does 
not satisfy principle 4.22. We can construct a relation which does 
satisfy 4.22; 

The idea behind this definition is that rather than compare the entire 
sets M ( P ) n  T(Q) and M(P)fl  T(R), we only compare those parts 
which they do not have in common: M(P)f lT(Q & - R ) =  
(M(P) f l  T(Q)) - (M(P) fl T(R)); and M(P) f l  T(R & - 0 )  = 

(M(P) n T(R)) - ((M(P) n T(Q)). This new relation does seem to yield 
all of the fine structure we want: 

(4.30) If prob(Q/P) = prob(R/P) = 0, then Q-@ R iff Q<? R. 

(4.31) If prob(Q/P) = prob(R/P) = 1, then Q<?R iff -R<$'-Q. 

(4.32) If T(Q) fl M(P) c T(R)  fl M(P) then Q<? R. 

So far, '< F" looks like a fine relation - just the one we want. But there 
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is a difficulty. The difficulty concerns how we are to define equiproba- 
bility. As far as I can see, the only plausible definition is: 

(4.33) Q *R iff neither Q < ~ R  nor R<? Q. 

Unfortunately, so defined, '=?' is not an equivalence relation. This 
can be seen by employing the following theorem: 

(4.34) If P >  -(Q & R )  is true (i.e., M(P) D T(Q) is disjoint 
from M ( P ) n  T(R)), then Q +R iff prob(Q/P) = 

prob(R/P). 

Given this theorem, we can immediately see that it is possible to have 
Q < ~ R ,  but S =g )Q and S ='p'R. For example, we simply choose 0 ,  
R, and S so that (1) S is disjoint from both Q and R (i.e., '-P>-(S & 
0)"' and "P > - ( S  & R)' are true), and prob(S/P) = prob(Q/P), and (2) 
Q + R, M(P) n T(R & - 0 )  # 0 ,  but prob((R & - Q)/P = 0. This 

result makes ' ̂ /^ a rather peculiar relation. It may be quite useful for 
some purposes, but it is not as useful for our present purposes as is 
'< g)', which is better behaved but agrees with '< g)' at the extremities 
of probability zero or probability one. Thus I shall define: 

(4.35) Q+R iff Q-$)R. 

(4.36) Q z p R  iff Q = ' ~ ' R .  

We have a well-behaved probability algebra which makes discrimi- 
nations beyond those made by 'prob', and in terms of which we can 
explain in precisely what sense simple subjunctive conditionals are a 
limiting case of simple subjunctive probabilities. To be maximally 
probable is to be equiprobable with a tautology. We now have the 
simple theorem: 

(4.37) " (P> Q) l  is true iff Q=p(Qv-Q) .  

Proof: "(P > Q)l is true iff M(P) <= T(Q), iff M(P) f l  T(- 0 )  # 0 = 

M(P) n T(-(Q v -Q)), iff Q +Q v - 0 ) .  

Thus for the conditional to be true is just for Q to be maximally 
probable given P. Similarly, for "QMP1 to be true is for Q not to be 
minimally probable given P: 

(4.38) "QMP1 is true iff Q + p ( Q  & -0 ) .  
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4.4. Simple Subjunctive Probability and Simple Subjunctive 
Conditionals 

Our probability algebra demonstrates the intimate connection between 
simple subjunctive probability and simple subjunctive conditionals. 
The nature of this connection allows us to understand many features of 
subjunctive conditionals which previously seemed puzzling. For exam- 
ple, people often feel some misgivings about the analysis of "QMP1 as 
" - ( P >  -0)'. The first misgiving is that "QMP1 is expressed in English 
as a conditional: ""If it were true that P, then it might be true that P. 
Why, then, is it analyzed as the negation of a conditional? Principle 
4.38 provides the answer by showing that "QMP1 is a kind of condi- 
tional probability statement. It amounts to saying that if P were true, 
then Q would not be totally improbable. 

The second misgiving about the analysis of "QMP1 is that when we 
assert it to be the negation of "If it were true that P, then it would be 
false that Q1 we feel a bit of strain, and are inclined to want to contrast 
it instead with "If it were true that P, then it would definitely be false 
that Q1. The explanation for this hinges upon what I regard as an 
extremely important fact about subjunctive conditionals. This is that 
we frequently assert "(P> Q)' when it is not really true - when all that 
is literally true is something like "If it were true that P, then it would 
almost certainly be true that Q1. It is this careless assertion of 
( P  > -Q)' we are resisting when we insert 'definitely' into the condi- 
tional. 

The observation that we often assert a simple subjunctive when all 
that is really true is a probability statement is, I think, very important, 
partly because it is such a pervasive tendency. Consider an example. 
Suppose we have a cylinder of gas, one end of the cylinder being 
formed by a movable piston, and suppose there is a temperature 
mechanism which holds the temperature of the gas constant as we 
move the piston in and out. We would be very much inclined to say 
that if the pressure of the gas increased, the piston would have been 
depressed. But this subjunctive conditional is not really true. If the 
pressure were to increase, this might be because the temperature 
mechanism went awry. This is so much less probable an alternative 
that we are inclined to ignore it, but all that is strictly warranted here is 
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the statement that if the pressure were to increase then very probably, 
or almost certainly, the piston would have been depressed. 

Lest someone think that perhaps all subjunctive conditionals are 
literally false, and all that is ever really true is a subjunctive probabil- 
ity statement, it is worth pointing out that the converse of the condi- 
tional in the above example is quite literally true. That is, if the piston 
had been depressed, then the pressure would have increased. This is 
because the piston's being depressed would undercut the pressure's 
being what it was, but would not undercut the proper functioning of 
the temperature mechanism. 

The continuum of subjunctive probability statements with subjunc- 
tive conditionals as the upper bound makes it much easier to under- 
stand what is happening in many cases in which, if we are restricted to 
conditionals and not allowed to employ probability statements, we do 
not quite know what to say. For example, consider a person, Joe, who 
is 5'11" tall. If Joe were over six feet tall, how tall might he be? 
Clearly, he might be 6'1", and he might be 6'2", and he might be 6'3", 
and so on for a while. But it seems there must be an upper bound. Isn't 
it true that even if he were over six feet tall, he would not be one 
thousand miles tall? If so, then there must be some point h in between 
such that he might be any height less than h, but he would definitely 
not be any height greater than h. The difficulty is that it is not at all 
clear what the value of h might be. Unless there is some physical law 
which dictates that a man cannot have a height greater than a certain 
magnitude h (and I know of no such law), then it is hard to see how 
any height h could come to constitute a sharp dividing line between 
those heights Joe might be if he were over six feet tall and those height 
that he would not be if he were over six feet tall. Something here 
seems very mysterious. 

I think that the solution to our difficulty lies in re-examining our 
initial supposition that if Joe were over six feet tall, he would not be 
one thousand miles tall. It is of course extraordinarily unlikely that he 
would be one thousand miles tall, so unlikely that for all practical 
purposes we can ignore the possibility altogether, but I doubt that 
there is anything which rules this out beyond all possibility. Because it 
is so extraordinarily unlikely that Joe would be one thousand miles tall, 
we also tend to ignore this possibility in our judgments regarding what 
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would be the case if he were over six feet tall, and so we assert that if 
Joe were over six feet tall, he would not be one thousand miles tall. 
But this conditional is literally false. There is just the slimmest possibil- 
ity that he would be one thousand miles tall, and so all that is literally 
true is the subjunctive probability statement that if Joe were over six 
feet tall, he would almost certainly not be one thousand miles tall. 

I suspect that a similar analysis can be given for many cases which 
might initially appear to be counter-examples to our analysis of sub- 
junctive conditionals in terms of undercutting. For this reason an 
understanding of subjunctive probability is as important for under- 
standing subjunctive conditionals as it is in its own right. 

4.5. Simple Indefinite Probabilities 

We have defined two kinds of indefinite probabilities corresponding to 
the two kinds of subjunctive generalizations. We can define a third 
kind of indefinite probability which corresponds to simple subjunctive 
definite probability. This will be called 'simple indefinite probability'. It 
will be of some importance in the next chapter where we undertake to 
analyze disposition statements. 

We want prob(Gx/Fx) to be the probability of an F being a G, given 
the way the world actually is. It seems natural to suggest that this 
indefinite probability can be defined as being prob((3x)Gx/(3x)Fx). 
This is initially plausible, but that it will not work follows from 
Theorem 4.7 according to which if r(3x)Fx1 is true, 
prob((3x)Gx/(3x)Fx) is either one or zero. .However, I think that this 
general idea can be made to work. 

Let us begin by asking what is the probability of an F being a G 
given that there is just one F ?  That is, taking r(31x)Fx1 to symbolize 
t h e r e  is exactly one F1, we want to know the value of prob(Gx/(Fx & 
(gix)Fx)). It seems to me that this should be: 

What then is the probability of an F being a G given that there are 
exactly two F's? It seems that we should be able to calculate this like 
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an expectation value: 

(6.2) prob(Gx/(Fx & (3g)Fx)) = pr0b((3~x)(Fx & G ~ ) / ( 3 ~ x ) F x )  

+prob(Gx/(Fx & (3ix)(Fx & Gx) & (3zx)Fx)) 

.pr0b((3~x)(Fx & G ~ ) / ( 3 ~ x ) F x ) .  

In general: 

prob(Gx/(Fx & (akx)(Fx & Gx) & (3,,x)Fx)) is the probability of an F 
being a G given that there are exactly n F's and k of them are G's. 
This probability would seem to be k/n, so principle 6.3 can be 
simplified to read: 

(6.4) prob(Gx/(Fx & (3,,x)Fx)) 

Symbolizing the statement that there are infinitely many F's as 
'(3-x)Fx, how should we define prob(Gx/(Fx & ( 3  -x)Fx))? the only 
plausible way I can see to define this is as the limit of the probabilities 
for larger and larger finite sets of F's: 

(6.5) prob(Gx/(Fx & (3-x)Fx)) = lim prob(Gx/(Fx & (3,,x)Fx)). 
n-- 

Letting r( '^^;n~)Fxl symbolize the statement that there are no more 
than n F's, we can next define: 

(6.6) prob(Gx/(Fx & (3an~)Fx) )  

= prob(Gx/(Fx & (gkx)Fx)). ~ ~ O ~ ( ( ~ ~ X ) F X / ( ~ ~ ~ ) F X ) ) .  
O c k s n  

Then it seems reasonable to define prob(Gx/(Fx & -(3-x)Fx)), the 
probability of an F being a G given that there are finitely many F's, to 
be the limit of prob(Gx/(Fx & (3sn~)Fx)) as n becomes indefinitely 
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large, and so finally to define prob(Gx/Fx) as: 

(6.7) prob(Gx1Fx) = prob(Gx/(Fx & (3-x)Fx)) 

-pr0b((3~x)Fx/(3x)Fx) + pr0b(-(3~x)Fx/(3x)Fx) 

- lim prob(Gx/(Fx & (3sn~)Fx)).  
n-- 

Principle 6.7 seems to constitute a reasonable definition of simple 
indefinite probability on the basis of simple subjunctive definite proba- 
bility. However, there are some surprises forthcoming from this defini- 
tion. By virtue of Theorem 4.7 we obtain: 

(6.8) If '(3,,x)Fx1 and "(gicx)(Fx & Gx)' are true, then 
prob(Gx1Fx) = kin. 

That is, if there are finitely many F's, then prob(Gx1Fx) is just the 
material probability probM(Gx/Fx). For many purposes, this is an 
entirely reasonable result. We want to know the probability of an F 
being a G given the way the world actually is, so if there are some F's 
in the world, this probability should be the actual proportion of F's 
that are G's. 

However, for some purposes we would also like a different kind of 
indefinite probability which still reflects the way the world actually is. 
This would reflect not simply the actual proportion of F's that are G's, 
but the likelihood of a new F being a G. For example, if we are 
flipping a coin, we would like to know not just what proportion of flips 
already made have resulted in heads, but how likely it is that a new flip 
would result in heads. This probability can be defined very easily using 
a now-familiar construction: 

& prob(Gx/(Fx & x ei A)) = r ] .  

Prob+(Gx/Fx) is the simple indefinite probability of a new or different 
F being a G. This will turn out to be a very important probability 
concept. In particular, it will be involved in the analysis of dispositions. 

NOTES 

Note that ' ( H ~  = pQ' is an equivalence relation. It will hold iff probs(Gx/(Fx v Gx)) # 0 
and probS(Fx/(Fx v Gx)) # 0. 
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It is worth remarking that the analogous theorem holds for weak indefinite prob- 
abilities, weak subjunctive generalizations, and actual possibility. 

If, as is often maintained, given any set of possible worlds there is a proposition true in 
just those worlds, then it follows that infinite conjunctions of propositions exist, and 
hence that there is always a maximal P. 

More precisely, this is the proportion of worlds making Q true out of those worlds 
which might be physically possible if P were physically possible and which make P true. 
* U p  to this point I have been intentionally vague about whether 'prob(Q/P)^ is a 
metalinguistic relation between sentences or an object-language term-forming operation. 
It is clear that for our present purposes we must opt for the latter alternative. 
T h i s  means that the ordering of the equivalence classes imposed by the ordering '<^" 
of their members is a linear ordering. 
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D I S P O S I T I O N S  

The final kind of subjunctive statement to be considered in this book is 
that of a statement ascribing a disposition to an object. Traditional 
examples of such statements would be: 

(1) That liquid is flammable. 

(2) This vase is fragile. 

(3) That chalk is friable. 

(4) Joe is foolhardy. 

(5) Mary is inquisitive. 

The problem is how to analyze such statements. 
Remarkably little has been written about dispositions in the last 

decade. I suspect that this is due largely to philosophers feeling that 
this problem has been solved, or at least successfully reduced to the 
problem of analyzing subjunctive conditionals. For example, it seems 
initially plausible to suppose that (1) is analyzable as: 

(I*) If that liquid were heated, it would burn. 

Thus the feeling is that the only problem remaining is that of analyzing 
subjunctive conditionals, and there is really no point in further discus- 
sion of dispositions per se. 

We have presented an analysis of subjunctive conditionals, but 
unfortunately we cannot rest content that we have thereby solved the 
problem of dispositions. The traditional view according to which 
disposition statements are analyzable on the model of (I*) is com- 
pletely and unalterably wrong. A first glimmering of difficulty for the 
traditional view was noted by Goodman (1955) who pointed out that 
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(1) does not entail (I*). There are numerous circumstances under 
which (1) would be true but (I*) false. For example, there might be no 
oxygen present. Thus, as Goodman observes, if we are to defend 
something like the traditional view, we must retreat to: 

(I**) If conditions were propitious and that liquid were heated, 
then it would burn. 

But of course, without an account of what it is for conditions to be 
propitious, this is not an analysis. As we will see, following this line of 
thought to its logical conclusion leads ultimately to a completely 
different kind of account of dispositions. 

However, before continuing the discussion of the above difficulty, it 
behooves us to note an entirely different sort of difficulty. Our list of 
disposition statements contains statements about two entirely different 
sorts of dispositions. Ignoring the difficulties about propitious condi- 
tions, (1)-(3) seem to be analyzable roughly on the model of (I**). 
These disposition statements at least seem to entail conditionals to the 
effect that if something were the case then something else would be the 
case. But (4) and (5) are markedly different. They do not entail any 
such conditionals. (4) and (5) report tendencies. They tell us how Joe 
and Mary tend to behave under certain sorts of circumstances. Unlike 
(1)-(3), they do not tell us what definitely would happen under some 
circumstances, but only what would be likely to happen. We have a 
generally overlooked distinction here between what may be termed 
'absolute dispositions' and 'probabilistic dispositions'. I do not know of 
a single discussion of the difference between these kinds of disposi- 
tions, and yet an account of the sort of (I**) is obviously inappropriate 
for probabilistic dispositions. This is a rather remarkable oversight 
because, historically, those dispositions which have most interested 
philosophers have tended to be mental or psychological dispositions, 
and these are perhaps without exception of the probabilistic variety. 

It will turn out that there are definite similarities between the 
absolute and the probabilistic dispositions. These arise from the con- 
nections noted in the last chapter between subjunctive conditionals and 
subjunctive probabilities. Once we have seen how to analyze state- 
ments ascribing absolute dispositions, it will become much clearer how 
to analyze statements ascribing probabilistic dispositions. 
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It is surprisingly difficult to find examples of absolute dispositions. 
Almost all of the dispositions which philosophers customarily discuss 
are of the probabilistic variety. However, the following, picked at 
random from the dictionary, all seem to be of the absolute variety: 
'absorbant', 'addictive', 'adhesive', 'deflatable', 'fissionable', 'flamma- 
ble', 'flexible', 'fluorescent', 'fragile', 'friable', 'magnetized', 'magnetiz- 
able', 'soluble'. 

According to the (modified) traditional view, 'x is q-able' is analyza- 
ble as 'If conditions were propitious and x were i/'-ed, then x would q' ,  
where i/' is the appropriate antecedent for <p-ability. Ignoring for the 
moment the difficulties about what constitutes propitious conditions, 
we can see that this analysis is inadequate for another reason. Where 
does the antecedent i/' come from? If this analysis is to work, i/' must 
be involved in the concept of <p-ability. For certain dispositions, this 
seems plausible. For example, 'x is absorbant' appears to mean some- 
thing like 'If conditions were propitious and x were placed in contact 
with a liquid, x would absorb the liquid'; and 'x is flammable' appears 
to mean something like 'If conditions were propitious and x were 
heated sufficiently, x would burn'. But if we turn to dispositions like 
'deflatable', 'fissionable', and 'friable', this becomes much less plausi- 
ble. What it takes to deflate something depends upon what it is that is 
being deflated. We discover how to make fissionable material fission. 
And many different circumstances will lead to friable material crumbl- 
ing. It is not plausible to regard these antecedents as being built into 
the meaning of the associated dispositions. Consider friability again. 
We might have one kind of friable material which will crumble when 
hit with a hammer, but another kind of friable material which is 
unaffected by a sharp blow but which crumbles when subjected to 
sustained pressure. It is not plausible to regard either of these cir- 
cumstances as being built into the concept of friability. We discover 
what it takes to make friable material crumble, and the world might 
have been other than it is so that different circumstances were in- 
volved. 

The attempt to analyze 'deflatable', 'fissionable', and 'friable' in 
terms of conditionals is, I think, just wrong. These are best construed 
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as capabilities. To be deflatable is to be capable of being deflated; to be 
fissionable is to be capable of undergoing fission; to be friable is to be 
capable of being made to crumble. What about our other dispositions 
for which there are obvious antecedents? Consider 'absorbant'. The 
natural antecedent here is 'x  is placed in contact with the liquid'. But 
this is only natural because we know something about the cir- 
cumstances in which absorbant materials absorb liquids. It is still only a 
contingent fact that these are the appropriate circumstances. It might 
have been the case instead that absorbant materials only absorb liquids 
when there is a slight air space between them, the air somehow 
facilitating the movement of molecules. Turning to 'flammable', there 
is already something peculiar about the antecedent 'x  is heated suffi- 
ciently'. What does 'sufficiently' mean here? And I should think once 
more that it is only a contingent fact that heating flammable objects 
makes them burn. There are other ways to ignite some flammable 
objects, e.g., pouring certain chemicals on them, and I see no reason in 
general why it couldn't have been the case that flammable objects are 
made to burn by cooling them rather than heating them. Heating an 
object just happens to be the most common and generally the simplest 
way to make it burn. But if there is any way to make an object burn, 
then it is flammable. To be flammable is to be capable of being made 
to burn. Similarly, to be absorbant is to be capable of absorbing 
liquids. There are no antecedents built into absolute dispositions. The 
extent to which we are able to supply such antecedents reflects on the 
one hand our knowledge of how these dispositions work, and on the 
other hand the uniformity of the way they work (e.g., there are too 
many different ways of being deflatable for us to be able to supply a 
single antecedent). The ability to supply the antecedents does not arise 
simply from an understanding of the concepts involved. In general, 
absolute dispositions are best regarded as capabilities. Philosophers 
have misappropriated the term 'disposition' in talking about absolute 
dispositions. The term 'disposition' is really only appropriate for 
probabilistic dispositions, which are truly 'tendencies'. 

The observation that absolute dispositions are really capabilities 
explains the difficulty regarding propitious conditions. The reason we 
had to include the propitiousness of the conditions in the antecedent of 
our conditionals is that the antecedents supplied by our common 
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understanding of the functioning of an absolute disposition do not 
generally state a 'total cause' for the actuation of the capability. But 
this becomes irrelevant if the antecedent is not part of the meaning of 
the concept anyway. 

Once it is realized that absolute dispositions are really capabilities, it 
is rather easy to see how they are to be analyzed. For example, to say 
that a certain liquid is flammable is to say that it is capable of burning, 
which seems to be to say that it is physically possible for it to burn. 
Similarly, to say that a piece of chalk is friable appears to be equivalent 
to saying that it is physically possible for it to crumble. In general, 

(2.1) x is (p-able iff 0 ( x  is (p). 
P 

I believe that 2.1 is basically correct, but more must be said about 
how it relates to particular disposition statements. Consider fragility. If 
we try to fit fragility into the format of 2.1, we find that it cannot be 
done. The nearest we can come is something like: 

x is fragile iff it is physically possible for x to break. 

But this is incorrect. This would at best be a definition of 'breakable' 
rather than 'fragile'. To be fragile is not just to be breakable, but to be 
'quite breakable'. We distinguish between degrees of breakability, 
flammability, friability, etc., and many of our 'disposition words' refer 
to particular degrees of having capabilities. For example, a piece of 
'non-flammable' plastic might be made to burn by heating it to a very 
high temperature in a pure oxygen environment. Thus the plastic is 
flammable (i.e., has the capability of burning), but just barely so. 
Because it is so hard to make the plastic burn, it has the capability to 
such a minimal degree that we say it is non-flammable. Our ordinary 
use of the word 'non-flammable' is such that non-flammable objects 
need not be totally non-flammable. 

This indicates that 2.1 should not be taken as the scheme for 
defining disposition words, but rather as the scheme for defining what 
we might call 'basic capabilities'. Then most disposition words refer to 
varying degrees of these basic capabilities. For example, we might 
define the basic capability 'x is breakable' as 'It is physically possible 
for x to break'. The degrees of this basic capability constitute a 
continuum stretching from total non-breakability through extreme 
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fragility, and different disposition words may pick out different regions 
of this continuum. In particular, 'breakable' refers to a rather large 
region including anything which is 'reasonably breakable'. Thus the 
term 'breakable' can be used both to refer to the basic capability and 
to refer to a region in the continuum of degrees of that basic capability. 
This seems to be true of most disposition words which can also be 
regarded as naming basic capabilities. They do double duty. 

Principle 2.1 constitutes an analysis of basic capabilities, but it does 
not yet constitute an analysis of most disposition statements, because 
such statements generally refer to specific degrees of basic capabilities. 
We must explore this notion of the degree to which something has a 
capability. To say that x is more flammable than y is to say that it is 
'easier' to get x to burn than it is to get y to burn. Similarly, to say that 
x is more breakable than y is to say that it is easier to break x than it is 
to break y. In general, the degree to which an object has a capability is 
a measure of the ease with which that capability can be realized in that 
object. But 'ease' in what sense? We might naturally suppose that this 
has something to do with human abilities and how easy it is or hard it 
is for humans to cause the capability to be realized. But this cannot be 
right, because we can talk about a capability whose realization is 
simply beyond human ability. For example, an object which will ignite 
at a temperature of 1 0 ' ~ ' ~  degrees centigrade is more flammable than 
one which will not ignite until it is heated to 1 0 ~ ~ ~ ~ '  degrees centi- 
grade, but it is beyond human ability to heat an object to either 
temperature. A natural second suggestion would be that talk about 
degrees of capabilities is to be analyzed in terms of the amount of 
energy that must be expended to realize the capability. But this cannot 
be right either. The concept of energy only plays the role it does in the 
realization of capabilities because of contingent physical laws, and as 
such it cannot be involved in the very concept of the degree to which 
something has a capability. Furthermore, the amount of energy that 
must be expended is not really a correct measure of the degree to 
which something has a capability anyway. Consider two substances, 
one of which can be ignited by heating it to any temperature above 
100 degrees centigrade in the presence of any gas that would normally 
be considered 'breathable air'. Consider a second substance which can 
only be ignited by heating it to a temperature between 91.333 333 333 



DISPOSITIONS 243 

degrees centigrade and 91.333 333 334 degrees centigrade, holding it 
at that temperature for 37.375 seconds, and then abruptly changing 
the temperature to between 92.334 788 8 degrees centigrade and 
92.334 788 9 degrees centigrade and holding it there for 10 seconds, all 
in the presence of pure oxygen. It takes less energy to ignite the second 
substance than to ignite the first substance, but surely we would 
consider the first substance more flammable than the second substance. 
Items made of the second substance would almost never burn because 
of the critical sequence of steps required to ignite them. 

If an object is flammable, there will generally be infinitely many 
ways to make it burn, e.g., heating it to 100Â° heating it to 101Â° 
heating it to 102O, . . . , dipping it in sulphuric acid and then placing it 
in a pure oxygen environment, etc. To say that one object is more 
flammable than another is to compare how many ways there are to get 
them to burn. Or better, it is to employ a measure function which 
measures the physically possible ways to get the objects to burn. A 
physically possible way to get an object to burn can be thought of as 
picking out a set of physically possible worlds in which the object does 
burn. Thus to say that x is more flammable than y is to employ a 
measure comparing the set of all physically possible worlds in which x 
burns and the set of all physically possible worlds in which y burns. For 
example, if the only relevant difference between x and y is that y has a 
higher kindling point than x, then any way of making y burn is also a 
way of making x burn, so the measure of the set of physically possible 
worlds in which x burns must be greater than the measure of the set of 
physically possible worlds in which y burns. 

But what is the nature of this measure? It is surely inadequate 
simply to say that there is such a measure. Fortunately, the measure 
involved is a familiar one. All it does is measure the size of a set of 
physically possible worlds. Furthermore, if there are probabilistic laws 
which dictate that some possible worlds are less probable than others, 
the measure should reflect this. If all possible worlds in which x would 
burn are highly improbable in light of some basic probabilistic laws, 
then it is correspondingly more difficult to get x to burn, and so the 
measure of physically possible worlds in which x does burn should be 
correspondingly smaller. Thus the measure involved here does pre- 
cisely the same thing as the measures involved in strong definite 
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probabilities. To say that the measure of the set of physically possible 
worlds in which x burns is smaller than the measure of the set of 
physically possible worlds in which y burns is to compare the strong 
probability of x's burning with the strong probability of y's burning. 

Strong probabilities are conditional probabilities, so we cannot talk 
about the probability of x's burning simpliciter. A natural suggestion 
would be that as we are merely interested in comparing the set of 
worlds in which x burns with the set of worlds in which y burns, we 
should have that x is more flammable than y iff: 

probs(y burns/(x burns v y burns)) 

< probs(x burns/(x burns v y burns)). 

But this cannot be quite right. The difficulty is that if it were less likely 
for x to exist than for y to exist, this would correspondingly diminish 
the measure of the set of worlds in which x burns, but this should not 
be relevant to the flammability of x. This suggests that the conditional 
probabilities we should be looking at are instead the probabilities of 
objects burning given that they exist. On this proposal: 

(2.2) x is more flammable than y iff 

probs( y burnsly exists) < probs(x burnslx exists) 

Principle 2.2 is close to being correct, but it runs into a surprising 
difficulty. A piece of asbestos is much less flammable than a piece of 
sodium. So far, principle 2.2 seems to give the correct answer. But now 
consider a brick made of asbestos and a brick made of sodium. We 
want to say that the brick made of asbestos is less flammable than the 
brick made of sodium, but this result is not forthcoming from 2.2. The 
difficulty is that it is within the realm of physical possibility to trans- 
mute the elements in the asbestos into sodium atoms, thereby trans- 
forming the brick made of asbestos into a brick made of sodium. It is 
still the same brick, but it is no longer made of asbestos. Analogously, 
it is physically possible for the atoms of sodium in the second brick to 
be transmuted into the elements that make up asbestos thereby trans- 
forming the second brick into a brick made of asbestos. This has the 
consequence that for every physically possible world in which x, the 
brick originally made of asbestos, exists, there is a physically possible 
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world in which y, the brick originally made of sodium exists and has 
the same attributes as x which are relevant to their burning. Conse- 
quently, despite our judgment that x is less flammable than y, 

probs(x burns/x exists) = probs(y burnsly exists). 

The difficulty arises here because our probability measure simply looks 
at the size of the set of all physically possible worlds in which x burns, 
and does not take into account how likely it is for different members of 
the set to exist. 

It might seem that we could avoid these difficulties by changing the 
antecedent of our probability from rx exists1 to something like rx has 
the nature it presently has1. The latter is obviously a problematic 
notion, but the intention would be to judge x's flammability in terms of 
its present physical makeup. However, insofar as this would rule out 
our looking at those worlds in which transmutation of elements occurs, 
this is now too strong an antecedent. We do not want to rule out 
transmutation altogether; rather we want to take into account the fact 
that it is an unlikely occurrence. If instead transmutation were very 
easy to bring off, we might well find ourselves regarding bricks of 
asbestos as fuel and burning them in furnaces which first transmute 
their elements. In such a case, we would regard them as highly 
flammable. Thus we are not interested simply in the probability that x 
burns given that it has the nature it does. Instead, we are interested in 
the probability of x coming to burn given that it has the nature it does. 
This would allow for the possibility that the nature of x changes before 
it begins to burn. 

But what are we talking about when we talk about x having a certain 
nature? The intention is, among other things, to talk about x's physical 
composition. Thus, for example, x's being composed of asbestos is 
relevant to the computation of the probability measuring x's flamma- 
bility. However, that x is now submerged in water is not relevant to its 
flammability, although including this fact in our antecedent would 
certainly alter the probability of x's coming to burn. Thus some facts 
about x should be included in its 'nature', but not all facts. Can we 
make sense of this? In fact, I think we can. The facts about x which are 
included in x's nature are just those simple truths which are about x. 
That x is composed of asbestos is a simple truth about x, but that x is 
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immersed in water is not a simple truth. Rather, that x is immersed in 
y is a simple truth, and that y is water is a simple truth, but the 
conjunction of these two simple truths is not a simple truth. Thus it 
appears that the probability which measures x's degree of flammability 
is probs(x will come to burn/x has the set of simple attributes it in fact 
has). To make this precise, notice that this probability will be the same 
for any object at all having the same simple attributes as x. What is 
relevant to this probability is not the identity of the object x, but rather 
the set of simple attributes of x. Thus we can recast this as an indefinite 
probability. Let us define: 

(2.3) Ua,t(x)=x has all of the simple attributes possessed by a 
at t. 

Then we have: 

(2.4) a is more flammable than b at time t iff probs(x will come 
to burn/Ut,,,(x)) < probs(x will come to burn/Ua,, (x)). 

Notice that the reference to the time t is essential here. We can make 
an object more flammable at one time than it was at another time by 
altering its nature, e.g., by transmuting its elements. 

Principle 2.4 meets our previous difficulties, but now we encounter a 
new source of complexity in the notion of the degree to which an 
object has a capability. Consider deflatability. To say that one object is 
more deflatable than another would ordinarily be taken as meaning 
that the first object can be deflated more completely, not that it can be 
deflated more easily. Similarly, to say that one object is more fluores- 
cent than another is to say that it fluoresces more, not that it fluoresces 
more easily. 

What is happening here is that the notion of the degree to which an 
object has a capability is a two-dimensional notion. Consider flamma- 
bility again. Suppose that when x is heated to 100Â centigrade it bursts 
into flame, but when y is heated to 90' centigrade it just begins to 
smoulder and no matter how high the temperature of y is raised it 
never does more than smoulder. Assuming that we count smouldering 
as the lower limit of burning, x and y are both flammable. There is a 
sense in which y is more flammable than x - it can be made to burn 
more easily. But there is also a clear sense in which x is more 
flammable than y - y just barely burns whereas x burns brilliantly. 
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For most capab,ilities we can talk about the extent to which an object 
realizes that capability on a particular occasion, e.g., the extent to 
which something burns, fluoresces, dissolves, crumbles, breaks, 
deflates; etc. How this notion is defined will depend upon what 
capability we are talking about. Let us suppose that we have a real 
valued function E+,(x) which measures the extent to which an object is 
ffi-ing. Then in general, 'how ffi-able an object is' cannot be given by 
any single measure. The degree of (p-ability of an object is best 
represented by the probability distribution 

probs(it will be the case that E a ( x ) 2  r/K,,(x)). 

Given such a probability distribution we can generally make sense of 
statements comparing the extent to which two objects have a particular 
capability. For example, to say that one object a is more fragile than 
another object b generally means that it is easier to bring about a 
certain large degree of breaking in a than in b, i.e., for some particu- 
lar r, 

probs(it will be that case that Ebreaks(x)2r/JTb,,(x))< 
probs(it will be the case that Ebreaks(x) 2 r/na,,(x)). 

On the other hand, to say that one object a is more fluorescent than a 
second object b is generally to say that a certain minimal 'amount of 
effort' will result in a greater degree of fluorescing in a than in b, i.e., 
for some particular p, 

1.u.b. {r; probs(it will be the case that Efiuoresces(~)=* 
r/JTb,,(x)) 2 p} < 1.u.b. {r; probs(it will be the case that 
Efluoresces(x) 2 r/fla,t(x)) 2 

In general, it seems that 'comparative capability statements' will be 
analyzable in one of these two ways, the correct analysis being deter- 
mined by the context. For certain capabilities (e.g., fragility, fluores- 
cence, deflatability) it will be more common for one of these analyses 
to be correct than for the other one to be correct, but in general either 
analysis could be correct and the context will determine which is 
appropriate. 

It is generally claimed that absolute dispositions are dispositions to 
have certain 'manifest properties'. In light of our conclusions, this 



248 CHAPTER I X  

should be rephrased by saying that capabilities are capabilities of 
having certain 'manifest properties'. This is probably all right if we do 
not bear down too heavily on 'manifest'. The properties involved in 
capabilities may be extremely complex, and may even be other 
capabilities. For example, the 'manifest property' involved in mag- 
netizability is the property of being magnetic, but the property of being 
magnetic would itself seem to be a capability. It is also worth noting 
how 'non-manifest' the 'manifest properties' of fluorescing and dissolv- 
ing are. We do not say that an object is fluorescing simply because it is 
glowing in the dark. E.g., a burning light bulb is glowing in the dark. 
Nor do we say that something is dissolving just because it is benignly 
disappearing in a liquid. For example, a submerged radioactive sub- 
stance which is rapidly and spontaneously breaking up into elementary 
particles is not thereby dissolving. Fluorescing and dissolving are 
complex processes which only occur if certain microphysical processes 
occur. Thus one must not rely very heavily on this notion of a manifest 
property. 

Now let us turn to probabilistic dispositions. Except for their prob- 
abilistic aspect, they actually come closer to fitting the traditional 
analysis than do absolute dispositions. It is much easier to find examples 
of probabilistic dispositions than it is to find examples of capabilities. A 
random glance at the dictionary yielded the following list: 'abstemi- 
ous', 'acquisitive', 'acrimonious', 'adamant', 'adaptable', 'affable', 'ag- 
gressive', 'courageous', 'cowardly', 'creative', 'credulous', 'critical', 
'curious', 'inquisitive', 'deceitful', 'foolhardy', 'forgetful', 'forgiving'. 
Most of these terms are ambiguous between referring to enduring 
characteristics and (relatively) momentary states. For example, we can 
say either 'Joe is abstemious', or 'Joe is being abstemious'. The latter 
means simply that Joe is eating and drinking sparsely, and does not 
report a disposition. However, 'Joe is abstemious' reports a tendency 
in Joe to be abstemious. This tendency is what is being called 'a 
probabilistic disposition'. We make a similar distinction between 'Joe is 
acquisitive' and 'Joe is being acquisitive'; between 'Joe is acrimonious' 



DISPOSITIONS 249 

and 'Joe is being acrimonious'; between 'Joe is aggressive' and 'Joe is 
being aggressive'; etc. In each case, the former sentence reports a 
tendency to be in the state reported by the latter. It is the 'tendency' 
senses of these words which express probabilistic dispositions. It is 
worth noting that in some cases the momentary states reported by 
these words as used in their non-dispositional senses are themselves 
characterized dispositionally. For example, to say that Joe is pleasant is 
to say that Joe has a tendency to behave in a pleasant manner, and to 
say (non-dispositionally) that Joe is behaving in a pleasant manner on a 
particular occasion is to say that his behavior has the disposition to 
please people. Similar observations apply to 'abusive' and 'adamant'. 

Statements of probabilistic dispositions report tendencies. In the 
common case of character traits these are tendencies to do certain 
things or behave in certain ways. For example, to say that a person is 
foolhardy is to say that he tends to act without sufficient attention to 
his personal safety. This is a probability statement. It amounts to 
saying that the probability of an action of this person being taken 
without sufficient attention to his personal safety is rather high. The 
probabilities in these statements are subjunctive probabilities, and 
hence are conditional probabilities. For example, for S to be abstemi- 
ous is for the probability of S's eating and drinking sparsely on an 
eating and drinking occasion to be high; for S to be acquisitive is for 
the probability of S's trying to acquire a thing when it appeals to him 
to be high; for S to be acrimonious is for the probability of S's manner 
being bitter or harsh to be high; for S to be courageous is for the 
probability of S's actions to be taken without undue attention 
to personal safety to be high; for S to be credulous is for the 
probability of S's believing something he is told to be high; and so on. 
As conditional probability statements, these disposition statements 
have antecedents. Thus statements attributing probabilistic dispositions 
are much more like the traditional model of disposition statements 
than are statements attributing absolute dispositions or capabilities. 
The former have built-in antecedents whereas the latter do not. 

We can talk about the degree to which a person (or object) has a 
probabilistic disposition, and just as in the case of capabilities, these 
degrees are two-dimensional. For example, in the case of foolhardiness 
we can talk both about how apt a person is to act in a foolhardy 
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manner, and about how foolhardy he is apt to act. In general, the 
extent to which a person is foolhardy is best measured by the distribu- 
tion of the probabilities of his acting foolhardy to differing degrees. 
That is, if degfooihardy(x) is the degree to which a particular act x is 
foolhardy, then the measure of the extent to which a person S has the 
disposition of foolhardiness is the distribution of the probabilities of an 
act x of S being such that degfo0ihardy(x) 2 r. 

What kind of probability is involved here? It is a kind of subjunctive 
indefinite probability, but we have isolated several varieties of subjunc- 
tive indefinite probabilities. In judging whether a person is foolhardy, 
what we want to know is the probability of a new action of his being 
taken without sufficient attention to his personal safety. In computing 
this probability, we should take into account everything that is true 
about the person's actual situation. In other words, it is the simple 
subjunctive indefinite probability probe which is in question here. The 
degree to which a person is foolhardy is measured by the probability 
distribution: 

prob+(degfooihardy(x) 2 r/x is an action of S). 

It is worth pointing out that the use of subjunctive probabilities here 
is absolutely essential. It would be nonsensical to try to analyze 
probabilistic dispositions in terms of degree of rational belief or some 
other kind of indicative probability. What is at issue is not how likely 
(on the basis of incomplete knowledge) it is that something is now true 
of S7s actual actions, but rather how likely (on the basis of everything 
about S)  it is that something would be true of non-actual actions of S. 
The tendency of philosophers to connate different kinds of probability, 
no doubt fostered by their fear of subjunctive statements, has hope- 
lessly muddled some earlier discussions of probabilistic tendencies. 

This completes the list of subjunctive concepts to be discussed in this 
book. Analyses have been proposed for subjunctive generalizations, 
subjunctive conditionals, causal statements, statements of subjunctive 
probability, and disposition statements. If these analyses ultimately 
prove successful, this will free philosophers to use subjunctive notions 
in the analysis of other philosophically problematic concepts. In par- 
ticular, I suspect that subjunctive concepts will prove of paramount 
importance in ethics. Judgments about moral responsibility and the 
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rightness and wrongness of actions involve in essential ways judgments 
about what would have resulted had persons acted in ways other than 
they did. I suspect that here and elsewhere, subjunctive concepts will 
prove to be indispensable tools for philosophical analysis. 

N O T E S  

' This implies, contrary to what many people have supposed, that the brick is not 
identical with the asbestos of which it is made. This is a conclusion I have defended at 
length in Pollock (1974), pp. 157-174. The brick is composed of the asbestos, but it is 
not identical with the asbestos. 
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