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A sacred geometry of the equilateral triangle
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(Received 8 May 2006)

In this article, we investigate the construction of spirals on an equilateral
triangle and prove that these spirals are geometric. In further analysing these
spirals we show that both the male (straight line segments) and female (curves)
forms of the spiral exhibit exactly the same growth ratios and that these growth
ratios are constant independent of the iteration of the spiral. In particular, we
show that ratio of any two successive radius vectors from the ‘centre’ of the spiral
as we move inwards towards that ‘centre’ is always 1/2. This same elegant result
is also shown to be true for successive chords. All our results are demonstrated
using mostly coordinate and transformational geometry. Finally we look at
two methods for constructing these spirals with ruler and compass to maximum
accuracy.

Keywords: geometric spirals; equilateral triangle; sacred geometry; coordinate
geometry; ruler and compass drawing

1. Binated equilateral triangles

1.1. Introduction

When geometric spirals (also called logarithmic or equiangular spirals) are mentioned, one
generally thinks of the Fibonacci spiral constructed in a golden rectangle, whose long and
short sides are in a � relationship (�¼ the golden proportion¼ð1þ

ffiffiffi
5
p
Þ=2¼ 1.6180339 . . .)

(Figure 1). Such geometric spirals can also be constructed in golden triangles [1].
However, geometric spirals can also be constructed using figures which do not have

a � relationship and this article discusses one such construction using an equilateral
triangle.

As with the Fibonacci spiral we need to start by defining the process for successively
creating the polygons on which the next portion of the spiral will be drawn. In our case this
is a bination process on an equilateral triangle.

1.2. The bination process

The process of binating an equilateral triangle is achieved by joining the mid point of any
side to the mid point of an opposite side. The new equilateral triangle so formed is called
a binated (equilateral) triangle.

*Email: epdoolan@xs4all.nl
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Why is this a bination process? We know that the side of an equilateral triangle is
p
3

and that the height of an equilateral triangle is 3/2. When we join the mid points of
opposite sides, the sides of the new triangle are

ffiffiffi
3
p
=2 and the new height is 3/4 giving a new

perimeter of 3
ffiffiffi
3
p
=2 and an area of 3

ffiffiffi
3
p
=16.

If we continue this process to the nth step then the side of the nth triangle is
ffiffiffi
3
p
=ð2nÞ

and the height 3/2nþ1, giving a perimeter of 3
ffiffiffi
3
p
=ð2nÞ and area 3

ffiffiffi
3
p
=ð22nþ2Þ, where n¼ 0

for our basic triangle �ABC.
In this way we see that for each successive step, the sides and height are half those of

the previous triangle (n� 1). Furthermore, the perimeter is also halved and the area
quartered. Thus, we can meaningfully talk of ‘bination’.

1.3. Bination patterns

If we continue to binate each new binated triangle then there are in principle an infinite
number of bination patterns within the original triangle. We will consider one particular
pattern and look at the two variations of this which we do by defining, what we will choose
to call, the (anti-) clockwise bination process.

We proceed as follows: Take an arbitrary equilateral triangle �ABC and binate this
triangle by bisecting the sides AB at D and AC at E. Join D and E.

Binate the resulting triangle �AED by bisecting the new line segment DE at G and the
side AD at F. Join F and G. See Figure 2.

Continue this process by successively moving in a clockwise fashion and joining, for
each new bination, the mid points of the newest line segment with the mid point of the
adjacent side in anti-clockwise direction. The result of five clockwise binations of an
equilateral triangle is shown in Figure 3.

In the above construction, we started with the vertex A by joining the mid points of the
sides AB and AC. We could also have started with either of the two other vertices B or C,
each of which would give a different pattern. Alternatively, this process can be done in
a counter clockwise direction, starting with any one of the vertices A, B or C. The binated
triangle is formed in this case by joining the mid point of the new side with the mid point
of the adjacent side in clockwise direction. Thus binating successively in clockwise or

Figure 1. The geometric Fibonacci spiral in a golden rectangle.
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anti-clockwise direction leads to six possible bination patterns, three clockwise and three

anti-clockwise. Three anti-clockwise bination patterns are shown in Figure 4.
We will now examine some properties of binated triangles. To assist in this we first

derive the coordinates of our binated triangles.

1.4. Coordinates of vertices of binated triangles

In what follows we consider, without loss of generality, a standard triangle �ABC

whose bottom left hand corner (the vertex A) is situated at the origin (0, 0)

A C

B

D

F G

E

Figure 2. Two successive clockwise binations in an equilateral triangle with initial vertex A.

A C

B

Figure 3. Five successive clockwise binations in an equilateral triangle with initial vertex A.
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and which has a circumradius of 1. The vertices B and C are then given by ð
ffiffiffi
3
p
=2, 1=2Þ

and ð
ffiffiffi
3
p

, 0Þ, respectively. Furthermore, we will always denote the vertex at the lower left
hand corner of an equilateral triangle by A, the vertex at the top by B and the vertex at the
lower right hand corner by C, independent of any rotations and/or reflections carried out.

In successive clockwise binations, the first bination with initial vertex A results in a
binated triangle with a new side (DE in Figure 2) parallel to BC. Similarly, the second
bination results in a new line segment parallel to AC (Figure 2) and the third in the new
line segment parallel to AB. For the fourth bination, the process starts to repeat itself with
a new line segment again parallel to BC, etc.

Thus, if n denotes the nth bination of the base triangle �ABC corresponding to n¼ 0,
we can write n as n¼ 3mþ�, with n, m� 1 and �¼�2, �1 or 0. We call m the bination
cycle and � the orientation.

In Table 1, we give the coordinates of the vertices of the equilateral triangles resulting
from three successive clockwise binations with initial vertex A. In this table, h is the height,
s the length of a side and r the circumradius of the triangle in question.

To describe the coordinates of the general case we introduce the notation
AdZ

n ,BdZ
n and CdZ

n for the vertices of the nth binated triangle where d denotes the direction
(c for clockwise, a for anti-clockwise) and where Z denotes the initial vertex (A, B or C).
We also introduce the commonly occurring quantity �m:

�m ¼

Xm�1

j¼0
23j

23m
ð1Þ

for which we note the following identities that we will use repeatedly:

�m �
1

8
�m�1 þ 1ð Þ ð2Þ

and

�m � �m�1 þ
1

23m

� �
: ð3Þ

These can be proved quite easily as follows:

�m ¼

Xm�1

j¼0
23j

23m
¼

Xm�2

j¼0
23j þ 23ðm�1Þ

� �
23m�3 � 23

¼
1

8

Xm�2

j¼0
23j

23ðm�1Þ
þ 1

0
@

1
A ¼ 1

8
�m�1 þ 1ð Þ

and

�m�1 þ
1

23m

� �
¼

8
Xm�2

j¼0
23j þ 1

� �
23m

¼

Xm�2

j¼0
23ðjþ1Þ þ 1

� �
23m

¼

Xm�1

j¼1
23j þ 20

� �
23m

¼ �m

Figure 4. Successive anti-clockwise binated triangles for each vertex of an equilateral triangle.
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Furthermore, using the above identities, we have:

�m ¼ �m�1 þ
1

23m
)

1

23m
¼ �m � �m�1 ¼

1

8
�m�1 þ 1ð Þ � �m�1 ¼

1

8
1� 7�m�1ð Þ

Hence, limm!1ð1� 7�m�1Þ ¼ limm!1ð1=2
3m�3Þ ¼ 0, and therefore

lim
m!1

�m ¼
1

7
: ð4Þ

Moreover, �m is a monotonically increasing sequence starting at 1/8 for m¼ 1 and

approaching 1/7 as m!1 so that ð1� 7�mÞ � 0 8m � 1.
Another identity we will make regular use of is the following:

1

23ðmþ1Þ

� �2

�
1

64
1� 7�mð Þ

2
ð5Þ

which can be proved using both the identities (2) and (3).
Using Equations (1)–(3) we can now derive the coordinates of the vertices of the nth,

n� 1, binated triangle in clockwise direction with initial vertex A for which

r ¼ 1=23mþ� ¼ 1=2n; h ¼ 3=ð2 � 23�mþ�Þ ¼ 3=2nþ1; s ¼
ffiffiffi
3
p
=23mþ� ¼

ffiffiffi
3
p
=2n.

To derive the coordinates of the other sets of triangles we begin by noting that the

clockwise binated triangle coordinates with initial vertex B or C can be derived by simply

rotating the vertices in Table 2 clockwise 120� and clockwise 240� (equivalent to �120�),

respectively about the point ð
ffiffiffi
3
p
=2, 1=2Þ.

To rotate clockwise about an angle � we need to remap the point of rotation

ð
ffiffiffi
3
p
=2, 1=2Þ to the origin (0, 0), multiply the resulting coordinates by the matrix

Table 1. The coordinates of three successive clockwise binated triangles with initial vertex A.

n m � h s r AcA
n BcA

n CcA
n Centre

0 – – 3
2

ffiffiffi
3
p

1 (0,0)
ffiffi
3
p

2 , 3
2

� � ffiffiffi
3
p

, 0
� � ffiffi

3
p

2 , 1
2

� �
1 1 �2 3

4

ffiffi
3
p

2
1
2 (0,0)

ffiffi
3
p

4 , 3
4

� � ffiffi
3
p

2 , 0
� � ffiffi

3
p

4 , 1
4

� �
2 1 �1 3

8

ffiffi
3
p

4
1
4

ffiffi
3
p

8 , 3
8

� � ffiffi
3
p

4 , 3
4

� �
3
ffiffi
3
p

8 , 3
8

� � ffiffi
3
p

4 , 1
2

� �
3 1 0 3

16

ffiffi
3
p

8
1
8

ffiffi
3
p

4 , 3
8

� �
5
ffiffi
3
p

16 , 9
16

� �
3
ffiffi
3
p

8 , 3
8

� �
5
ffiffi
3
p

16 , 7
16

� �

Table 2. The coordinates of the vertices of the nth clockwise bination with initial vertex A.

� AcA
3mþ� BcA

3mþ� CcA
3mþ� Length of side

�2 ð2
ffiffiffi
3
p
ð8�m � 1Þ, 3ð8�m � 1ÞÞ ð2

ffiffiffi
3
p
�m, 3ð1� 6�mÞÞ ð2

ffiffiffi
3
p
ð1� 6�mÞ, 3ð8�m � 1ÞÞ 4

ffiffiffi
3
p
ð1� 7�mÞ

�1 ð
ffiffiffi
3
p
ð9�m � 1Þ, 3�mÞ ð2

ffiffiffi
3
p
�m, 3ð1� 6�mÞÞ ð

ffiffiffi
3
p
ð1� 5�mÞ, 3�mÞ 2

ffiffiffi
3
p
ð1� 7�mÞ

0 ð2
ffiffiffi
3
p
�m, 3�mÞ

ffiffiffi
3
p

2
ð1� 3�mÞ,

3

2
ð1� 5�mÞ

� � ffiffiffi
3
p
ð1� 5�mÞ, 3�m

� � ffiffiffi
3
p
ð1� 7�mÞ
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cos � sin �
� sin � cos �

� �
and translate the origin back to its original location. Rotating the vertex AcA

3m

for example through 120� and naming the vertices as before, we get the following:

�
1

2

ffiffiffi
3
p

2

�

ffiffiffi
3
p

2
�
1

2

0
BBB@

1
CCCA

ffiffiffi
3
p

2�m �
1

2

� �

3�m �
1

2

� �
0
BBB@

1
CCCA ¼

ffiffiffi
3
p

2
�m, 1�

9�m
2

� �

and translating the origin back to its original location we get:

BcB
3m ¼

ffiffiffi
3
p

2
ð1þ �mÞ,

3

2
ð1� 3�mÞ

� �
:

Tables 3 and 4 show the results of completing the rotations for the other vertices.
To derive the anti-clockwise coordinates we note that reflecting the set of clockwise

binated triangles with initial vertex A through the median y ¼ �ð1=
ffiffiffi
3
p
Þxþ 1 gives the set

of anti-clockwise binated triangles with initial vertex B (Figure 5).
Reflecting vertices in the line y ¼ �ð1=

ffiffiffi
3
p
Þxþ 1 is equivalent to rotating them

through �30� after moving the origin to ð
ffiffiffi
3
p

, 0Þ, reflecting the result in the y axis (changing
the sign of the y coordinate), rotating back through 30� and finally translating the origin
back to its original position. Reflecting the vertex AcA

3m for example in the median
y ¼ �ð1=

ffiffiffi
3
p
Þxþ 1 and naming the vertices as before, gives the following:

Remapping the origin and rotating through �30�:

ffiffiffi
3
p

2
�
1

2

1

2

ffiffiffi
3
p

2

0
BB@

1
CCA

ffiffiffi
3
p

2�m � 1ð Þ

3�m

 !
¼

3

2
�m � 1ð Þ,

ffiffiffi
3
p

2
5�m � 1ð Þ

� �
:

Reflecting in the y-axis gives:

3

2
�m � 1ð Þ,

ffiffiffi
3
p

2
1� 5�mð Þ

� �
:

Rotating back though 30�:ffiffiffi
3
p

2

1

2

�
1

2

ffiffiffi
3
p

2

0
BBB@

1
CCCA

3

2
�m � 1ð Þffiffiffi

3
p

2
1� 5�mð Þ

0
BB@

1
CCA ¼ �

ffiffiffi
3
p

2
1þ �mð Þ,

3

2
1� 3�mð Þ

� �

and translating the origin back to its original location gives

BaB
3m ¼

ffiffiffi
3
p

2
1� �mð Þ,

3

2
1� 3�mð Þ

� �
:

Completing the reflections for the other vertices gives Table 5.
Similarly, rotating these vertices through 120� and 240� as before for the clockwise

vertices gives the coordinates of the anti-clockwise binated triangles with initial vertices
C and A, respectively.
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Table 3. The coordinates of clockwise binated triangles with initial vertex B.

� AcB
3mþ� BcB

3mþ� CcB
3mþ�

�2
2
ffiffiffi
3
p

9�m � 1ð Þ, 6�m

� �
4
ffiffiffi
3
p
�m, 6ð1� 6�mÞ

� �
2
ffiffiffi
3
p
ð1� 5�mÞ, 6�m

� �
�1

4
ffiffiffi
3
p
�m, 6�m

� � ffiffiffi
3
p
ð1� 3�mÞ, 3 1� 5�mð Þ

� �
2
ffiffiffi
3
p
ð1� 5�mÞ, 6�m

� �
0

4
ffiffiffi
3
p
�m, 6�m

� � ffiffiffi
3
p

2
ð1þ �mÞ,

3

2
ð1� 3�mÞ

� � ffiffiffi
3
p
ð1� 3�mÞ, 6�m

� �

Table 4. The coordinates of clockwise binated triangles with initial vertex C.

� AcC
3mþ� BcC

3mþ� CcC
3mþ�

�2
ffiffiffi
3
p

2
ð16�m � 1Þ,

3

2
ð8�m � 1Þ

� �
3
ffiffiffi
3
p

2
ð1� 4�mÞ,

3

2
ð3� 20�mÞ

� � ffiffiffi
3
p

2
ð7� 40�mÞ,

3

2
ð8�m � 1Þ

� �
�1

ffiffiffi
3
p

2
ð16�m � 1Þ,

3

2
ð8�m � 1Þ

� � ffiffiffi
3
p

2
ð2�m þ 1Þ,

3

2
ð1� 6�mÞ

� �
3
ffiffiffi
3
p

2
ð1� 4�mÞ,

3

2
ð8�m � 1Þ

� �
0 9

ffiffiffi
3
p

2
�m,

3

2
�m

� � ffiffiffi
3
p

2
ð2�m þ 1Þ,

3

2
ð1� 6�mÞ

� � ffiffiffi
3
p

2
ð2� 5�mÞ,

3

2
�m

� �

A

B′

B/A′

C

C′

Figure 5. Using reflection through a median to produce an anti-clockwise binated triangle with
initial vertex B.
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1.5. Properties of binated triangles

We will now show that all the corresponding vertices of triangles with the same orientation

are collinear. In other words, all the vertices AdZ
n ,BdZ

n and CdZ
n where n¼ 3mþ� for

a fixed �, initial vertex Z and fixed direction d, are collinear.

Theorem 1: For a fixed orientation � and initial vertex Z, all the corresponding

vertices YdZ
3mþ� of binated triangles with a fixed direction d lie on a straight line 8 m� 1

and Y¼A, B or C.

Proof: We will only prove this for one set of vertices for one direction, one orientation

and one initial vertex A; the proof for the other vertices being analogous.
Take the set of vertices CcA

n , where n¼ 3m� 2, n, m� 1, �¼�2, d¼ c and Z¼A.
Using Table 2, the slope s¼ ðy2 � y1Þ=ðx2 � x1Þ of the line through CcA

3ðm�1Þ�2 and CcA
3m�2

is given by:

s ¼
24�m � 3� 24�m�1 þ 3ð Þ

2
ffiffiffi
3
p
� 12

ffiffiffi
3
p
�m � 2

ffiffiffi
3
p
þ 12�m�1

� � ¼ �2ffiffiffi
3
p :

Similarly the slope s0 of the line through CcA
3ðm�1Þ�2 and CcA

3ðmþ1Þ�2 is given by:

s 0 ¼
24�mþ1 � 3� 24�m�1 þ 3ð Þ

2
ffiffiffi
3
p
� 12

ffiffiffi
3
p
�mþ1 � 2

ffiffiffi
3
p
þ 12�m�1

� � ¼ �2ffiffiffi
3
p :

Therefore, since the slopes of lines joining CcA
3ðm�1Þ�2 with CcA

3m�2 and with CcA
3ðmþ1Þ�2

are the same, these three points must be collinear and we conclude that the set of vertices

CcA
n , where n¼ 3m� 2, n, m� 1, all lie on the same straight line, which completes the

proof. œ

We introduce the notation �AdZ
n , �BdZ

n and �CdZ
n to denote the lines through a set of

vertices with the same direction d, orientation � and initial vertex Z. Figure 6 shows one

set of these lines for �¼�1.

Theorem 2: For a given direction d and a given initial vertex Z, the 9 lines �YdZ
3mþ� joining

the vertices of successive binations for the three different orientations � of an equilateral

triangle meet at a point.

Proof: We will only prove this for clockwise binated triangles with initial vertex A (d¼ c,

Z¼A).
We first compute, as illustrated in Theorem 1 using Table 2, the slopes of the lines

�AcA
3m�2,

�BcA
3m�2,

�CcA
3m�2; these are

ffiffiffi
3
p
=2, �3

ffiffiffi
3
p

and �2=
ffiffiffi
3
p

respectively. Now using Table 2

Table 5. The coordinates of anti-clockwise binated triangles with initial vertex B.

� AaB
3mþ� BaB

3mþ� CaB
3mþ�

�2 ffiffiffi
3
p

10�m � 1ð Þ, 6�m

� � ffiffiffi
3
p
ð1� 4�mÞ, 6 1� 6�mð Þ

� �
3
ffiffiffi
3
p
ð1� 6�mÞ, 6�m

� �
�1 ffiffiffi

3
p

10�m � 1ð Þ, 6�m

� �
3
ffiffiffi
3
p
�m, 3 1� 5�mð Þ

� � ffiffiffi
3
p
ð1� 4�mÞ, 6�m

� �
0

3
ffiffiffi
3
p
�m, 6�m

� � ffiffiffi
3
p

2
ð1� �mÞ,

3

2
ð1� 3�mÞ

� � ffiffiffi
3
p
ð1� 4�mÞ, 6�m

� �
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again for the coordinates of the vertices AcA
3m�2,B

cA
3m�2 and CcA

3m�2 we compute the absissae

of the lines y¼mxþ c as follows:

�AcA
3m�2 : y ¼ ð

ffiffiffi
3
p
=2Þxþ c and this line passes through the point ð2

ffiffiffi
3
p
ð8�m � 1Þ, 3ð8�m � 1ÞÞ,

which gives c¼ 0.
�BcA
3m�2 : y ¼ �3

ffiffiffi
3
p

xþ c and this line passes through the point ð2
ffiffiffi
3
p
�m, 3ð1� 6�mÞÞ, which

gives c¼ 3.
�CcA
3m�2 : y ¼ ð�2=

ffiffiffi
3
p
Þxþ c and this line passes through the point

ð2
ffiffiffi
3
p
ð1� 6�mÞ, 3ð8�m � 1ÞÞ, which gives c¼ 1.

The intersection of the lines �AcA
3m�2 and

�BcA
3m�2 is at the point ð2

ffiffiffi
3
p
=7, 3=7Þ and it can

seen that this point also lies on the line �CcA
3m�2. Therefore, the three lines

�AcA
3m�2,

�BcA
3m�2 and

�CcA
3m�2 meet at a common point.

An exact analogous proof shows that the three lines �AcA
3m�1,

�BcA
3m�1 and

�CcA
3m�1 meet at

the common point ð2
ffiffiffi
3
p
=7, 3=7Þ as do the three lines �AcA

3m,
�BcA
3m and �CcA

3m. This completes the

proof. œ

We now introduce the notation Zd
� to denote the common point at which the lines

�AdZ
n , �BdZ

n and �CdZ
n intersect and we call the point Zd

� a convergence point. Table 6 gives the

six convergence points for clockwise and anti-clockwise binated triangles.

A C

B

Z = B

Z = C

Z = A

Figure 6. The lines �ZcA
3m�1 through the vertices of clockwise binated triangles with initial vertex A.

Table 6. The coordinates Zd
� of the clockwise and anti-clockwise convergence points.

Ad
� Bd

� Cd
�

Clockwise 2
ffiffiffi
3
p

7
,
3

7

� �
4
ffiffiffi
3
p

7
,
6

7

� �
9
ffiffiffi
3
p

14
,
3

14

� �
Anti-clockwise 5

ffiffiffi
3
p

14
,
3

14

� �
3
ffiffiffi
3
p

7
,
6

7

� �
5
ffiffiffi
3
p

7
,
3

7

� �
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By continuously binating triangles we get a series of spiralling triangles which

become smaller and smaller. Ultimately these triangles converge to a single point,

the convergence point just introduced. This can be seen by taking the limm!1 �m
(Equation (4)) of the vertices of the binated triangles as given, for example,

in Tables 2–5.

1.6. Convergence triangles

We call the triangles defined by the three points Ad
�,B

d
� and Cd

� for a fixed direction

clockwise or anti-clockwise convergence triangles, respectively. We now note some

properties of convergence triangles.

Theorem 3: The triangles formed by the convergence points Ad
�,B

d
� and Cd

� for the

clockwise or anti-clockwise binated triangles are equilateral triangles with the same

circumcentre ð
ffiffiffi
3
p
=2, 1=2Þ as the original triangle and with circumradius 1=

ffiffiffi
7
p

.

Proof: We look at the clockwise convergence triangle only. An analogous proof follows

for the anti-clockwise convergence triangle.

Using the formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2
þ ðy1 � y2Þ

2
q

for the distance between two points

ðx1, y1Þ& ðx2, y2Þ and Table 6, the length of any of the sides Ac
�B

c
�,B

c
�C

c
�,C

c
�A

c
� is seen to

be
ffiffiffiffiffiffiffiffi
3=7
p

. ; The triangle �Ac
�B

c
�C

c
� is an equilateral triangle.

The circumcentre of an equilateral triangle is given by the intersection of the lines joining

the mid points of the sides to the opposite vertex. For the clockwise convergence triangle:
The median joining the mid point ð3

ffiffiffi
3
p
=7, 9=14Þ of Ac

�B
c
� and the vertex Cc

� is

y ¼ �ð2=
ffiffiffi
3
p
Þxþ ð3=2Þ, which is actually the line �CcC

3m�1 as computed in Theorem 2.
The median joining the mid point ð17

ffiffiffi
3
p
=28, 15=28Þ of Bc

�C
c
� and the vertex Ac

� is

y ¼ ð1=3
ffiffiffi
3
p
Þxþ ð1=3Þ, which is actually the line �AcA

3m�1.
This is illustrated in Figure 7, which builds on Figure 6.

A C

B

Z = C 

Z = B

Z = A 

cA•

c
C•

c
B•

A3m−1
−cA

Figure 7. The clockwise convergence triangle �Ac
�B

c
�C

c
� within the triangle �ABC, showing the

median �AcA
3m�1.
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The intersection of these two lines is at ð
ffiffiffi
3
p
=2, 1=2Þ, which is the circumcentre of the

original triangle �ABC.
Finally, the distance from the circumcentre to any vertex of the clockwise convergence

triangle is seen to be 1=
ffiffiffi
7
p

. This completes the proof. œ

The convergence triangles are a factor 1=
ffiffiffi
7
p

smaller (side, circumradius, height) than

the original triangle and are rotated clockwise or anti-clockwise about the circumcentre of

the original triangle �ABC. The angle of rotation is computed as follows:
We have just seen that the equation of line joining the mid point ð3

ffiffiffi
3
p
=7, 9=14Þ of Ac

�B
c
�

and the vertex Cc
� is given by:

y ¼ �
2ffiffiffi
3
p xþ

3

2
:

Similarly the equation of the line through the mid point ð
ffiffiffi
3
p
=4, 3=4Þ of AB and the vertex

C is given by:

y ¼ �
1ffiffiffi
3
p xþ 1:

Using the formula for the angle between two lines of slopes m1 and m2,

arc tanððm1 �m2Þ=1þm1m2Þ, we see that �Ac
�B

c
�C

c
� is rotated by arc tan ð

ffiffiffi
3
p
=5Þ, or

approximately 19.1�, in a clockwise direction with respect to �ABC.
Similarly the anti-clockwise convergence triangle �Aa

�B
a
�C

a
� is rotated by approximately

19.1� in an anti-clockwise direction with respect to �ABC.
The fact that the angle arc tan ð

ffiffiffi
3
p
=5Þ is transcendental means that if we continue the

process of bination by successively binating each resulting convergence triangle, no two

convergence triangles ever have exactly the same orientation in space.

2. Equilateral spirals

We are now in a position to define our spirals which we will call equilateral spirals.

We start with the male spiral, which is constructed from straight line segments.

2.1. The male equilateral spiral

In Section 1.3, we have seen that when we binate an equilateral triangle, the new binated

triangle has two sides which overlap with the sides of the existing equilateral triangle and

one new side. In Figure 2, for example, the side DE is the new side. We now define

a segment of the male equilateral spiral as being that side of triangle which is left

(anti-clockwise) for a clockwise binated triangle and right (clockwise) for an anti-clockwise

binated triangle of the new side of the binated triangle in question. Since the bination

process also always bisects the new side created in the previous bination, it follows that the

segments of the male spiral so defined form a continuous set of straight line segments.
Seven segments of a male clockwise spiral with initial vertex A are shown in Figure 8.

2.2. The female equilateral spiral

The female equilateral spiral also uses the binated triangles as its basis. In this case, instead

of simply using the side of triangle to the left or right of the newest side for a female spiral,
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we construct the arc of the circumcircle of that triangle on that side. The centre of the

circumcircle is, as we know, given by the intersection of the medians (lines joining the mid

points of the sides to the opposite vertices) and that they meet in a point. The female

equilateral spiral is formed by constructing the successive circumcircle arcs on the

corresponding line segments of the male equilateral spiral. Since the male spiral is formed

by a continuous set of straight line segments, it follows that the female equilateral spiral is

also a continuous curve.
To be able to construct the arc segments we need to compute the centres of the binated

triangles. For the circumcentre of the nth binated triangle we introduce the notation �dZ
n ,

where d is the direction and Z, the initial vertex. The x coordinate of the centre is given by

the x coordinate of the vertex BdZ
n at the top of the triangle. Since the medians trisect each

other, we need for the y coordinate of the circumcentre only to add one third of the height

to y coordinate of AdZ
n or CdZ

n . For example, for the y coordinate of the nth clockwise

binated triangle (�¼�2, n¼ 3m� 2) with initial vertex A we have, using Table 2:

yn ¼ 3ð8�m � 1Þ þ
1

3
3 1� 6�mð Þ � 3ð8�m � 1Þð Þ ¼ 3ð8�m � 1Þ þ ð2� 14�mÞ ¼ 10�m � 1

We obtain Table 7 by completing the computations for the centres of the other clockwise-

binated triangles.

A C

B

Figure 8. Seven segments of a male clockwise equilateral spiral with initial vertex A.

Table 7. The coordinates of the centres of clockwise-binated triangles.

� Centre �cA
3mþ� Centre �cB

3mþ� Centre �cC
3mþ�

�2 2
ffiffiffi
3
p
�m, 10�m � 1ð Þ

� �
4
ffiffiffi
3
p
�m, 2ð1� 4�mÞ

� �
3
ffiffi
3
p

2 ð1� 4�mÞ,
1
2 ð1� 4�mÞ

� �
�1 2

ffiffiffi
3
p
�m, 1� 4�m

� � ffiffiffi
3
p
ð1� 3�mÞ, 1� �mð Þ

� � ffiffi
3
p

2 ð2�m þ 1Þ, 1
2 ð10�m � 1Þ

� �
0

ffiffi
3
p

2 ð1� 3�mÞ,
1
2 ð1� �mÞ

� � ffiffi
3
p

2 ð1þ �mÞ,
1
2 ð1þ 5�mÞ

� � ffiffi
3
p

2 ð2�m þ 1Þ, 1
2 ð1� 4�mÞ

� �
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For the circumcentres �dZ
n we note the following two properties:

. The triangles i�dA
n �dB

n �dC
n for a fixed n and a fixed direction d, are equilateral

triangles. This can be seen by simply computing the lengths of the sides using

Pythagoras.
. The triangles i�dZ

3m�2�
dZ
3m�1�

dZ
3m for a fixed direction d and an initial vertex Z,

are right angled triangles. Again using Pythagoras, we see that the lengths of

the sides in this case are ð1� 7�mÞ,
ffiffiffi
3
p
ð1� 7�mÞ and 2 ð1� 7�mÞ

ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 7�mÞ

2
þ ð

ffiffiffi
3
p
ð1� 7�mÞ

q
Þ
2
Þ, respectively.

Figure 9 shows the clockwise equilateral spiral with initial vertex A made up of seven

successive arc segments.

We will now show that these female equilateral spirals are smooth.

Theorem 4: Equilateral female spirals are C1 continuous.

Proof: We will only prove this for clockwise spirals, the proof for anti-clockwise spirals
being completely analogous.

Since the constituent segments of any spiral are arcs of circles and since circles are C1

so are the arcs between the two end points. Thus we only need to look at the points where
these arc segments actually connect to each other.

Since by construction (see Sections 2.1 and 2.2) successive arcs form a continuous curve
and are thus C0, we will now look at the continuity of the first derivative of the functions
defined by the arcs at the points at which these arcs meet.

We will do this by looking at the derivatives of the functions defining the arcs
and evaluating these derivatives at the points of connection as we come from the right
and the left to that point of connection. We will show that the derivatives of the
functions defining the arcs and evaluated at the points of connection are in fact
independent of �m.

A C

B

Figure 9. Seven segments of a female clockwise equilateral spiral with initial vertex A.
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For an initial vertex A, the generic points at which successive arc segments of a female

equilateral clockwise spiral are connected are:

AcA
3ðm�1Þ centre �dA

3ðm�1Þ

� �
and AcA

3m�2 centre �dA
3m�2

� �
, BcA

3m�2 centre �dA
3m�2

� �
and BcA

3m�1 centre �dA
3m�1

� �
,

CcA
3m�1 centre �dA

3m�1

� �
and CcA

3m centre �dA
3m

� �
and AcA

3m centre �dA
3m

� �
and AcA

3ðmþ1Þ�2 centre �dA
3ðmþ1Þ�2

� �
:

The equation of a circle with centre (a, b) and radius r is:

ðx� aÞ2 þ ðy� bÞ2 ¼ r2 with the first derivative being
dy

dx
¼

a� x

y� b
:

Using Tables 2 and 7 to compute the first derivative of the equations of the circles with

centres as indicated above and evaluating these derivatives at the corresponding

connection points, we get:

AcA
3ðm�1Þ :

dy

dx
¼

ffiffiffi
3
p
=2

� �
1� 3�m�1ð Þ � 2

ffiffiffi
3
p
�m�1

3�m�1 � ð1=2Þ 1� �m�1ð Þ
¼ �

ffiffiffi
3
p

AcA
3m�2 :

dy

dx
¼

2
ffiffiffi
3
p
�m � 2

ffiffiffi
3
p

8�m � 1ð Þ

3ð8�m � 1Þ � 10�m � 1ð Þ
¼ �

ffiffiffi
3
p

BcA
3m�2 :

dy

dx
¼

2
ffiffiffi
3
p
�m � 2

ffiffiffi
3
p
�m

3 1� 6�mð Þ � 10�m � 1ð Þ
¼ 0

BcA
3m�1 :

dy

dx
¼

2
ffiffiffi
3
p
�m � 2

ffiffiffi
3
p
�m

3 1� 6�mð Þ � 1� 4�mð Þ
¼ 0

CcA
3m�1 :

dy

dx
¼

2
ffiffiffi
3
p
�m �

ffiffiffi
3
p

1� 5�mð Þ

3�m � 1� 4�mð Þ
¼

ffiffiffi
3
p

CcA
3m :

dy

dx
¼
ð
ffiffiffi
3
p
=2Þ 1� 3�mð Þ �

ffiffiffi
3
p

1� 5�mð Þ

3�m � ð1=2Þ 1� �mð Þ
¼

ffiffiffi
3
p

and since all these derivatives, and in particular those evaluated at AcA
3ðm�1Þ and AcA

3m�2, are

constants independent of �m, we can conclude that the first derivatives evaluated at

AcA
3m and AcA

3ðmþ1Þ�2 are also equal. This completes the proof. œ

One of the essential properties of a geometric spiral is that if we draw a line from any

point on the spiral to the centre (the convergence point), then the angle this line makes to

the tangents at all the points at which it cuts the spiral are the same. A geometric spiral is

thus a shape that remains the same regardless of size. We will now show that both the male

and female spirals we have defined are indeed geometric spirals.

Theorem 5: Equilateral female spirals are geometric spirals, i.e. the tangents at the

intersection points formed by any line drawn through the spiral and which also passes through

the convergence point (we call such lines radius vectors), are at a constant angle to the radius

vector.

Proof: We will only prove this for the clockwise spiral with initial vertex A, the proof for

all other equilateral spirals within the triangle being completely analogous.
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The mth iteration of a clockwise female equilateral spiral with initial vertex A consists
of three segments of arc length 2�/3 as follows:

(a) Segment 3m� 2, an arc of the circle with centre �dA
3m�2 which runs from

AcA
3m�2 to BcA

3m�2.
(b) Segment 3m� 1, an arc of the circle with centre �dA

3m�1 which runs from
BcA
3m�1 to CcA

3m�1.
(c) Segment 3m, an arc of the circle with centre �dA

3m which runs from CcA
3m to AcA

3m.

. The vertices YcA
3mþ� are specified in Table 2.

. The centres of the circles, �dA
3mþ�, from which the arc segments of the spiral are

drawn are given in Table 7.
. The convergence point for clockwise spiral with initial vertex A is given in Table 6.

We will now look at the segments 3m� 2, 3m� 1 and 3m and show that the angle the
tangent at any point (x, y) on the segment makes with the radius vector joining this point
to the convergence point is a constant independent of �m, and thus also of m.

Segment 3m� 2

The slope of the radius vector from any point (x, y) on the circle with centre �dA
3m�2 to the

convergence point Ac
� is given by:

m1 ¼
ðy� ð3=7ÞÞ

x� 2
ffiffiffi
3
p
=7

� �� � ð6Þ

The slope of the tangent at any point (x, y) on any circle with centre �dA
3m�2 is given by:

m2 ¼
� x� 2

ffiffiffi
3
p
�m

� �
y� 10�m � 1ð Þð Þ

The angle between the tangent and the radius vector is given by:

arc tan
m1 �m2

1þm1m2

� �
:

We will now show that the argument to the arc tan function is independent of �m:

m1 �m2

1þm1m2
¼
ðy� 3=7Þðy� ð10�m � 1ÞÞ þ x� 2

ffiffiffi
3
p
�m

� �
x� 2

ffiffiffi
3
p
=7

� �
x� 2

ffiffiffi
3
p
=7

� �
y� 10�m � 1ð Þð Þ � ðy� 3=7Þ x� 2

ffiffiffi
3
p
�m

� � ð7Þ

Using identity (5) we can express the equation of the circle with centre �dA
3m�2 ¼

ð2
ffiffiffi
3
p
�m, ð10�m � 1ÞÞ and radius 1=23m�2 as: x2 þ y2 � 4

ffiffiffi
3
p
�mx� 2 ð10�m � 1Þyþ 12�2mþ

ð10�m � 1Þ2 ¼ 16ð1� 7�mÞ
2.

Using this to eliminate the higher powers of x and y in the nominator of Equation (7)
above and simplifying we get:

m1 �m2

1þm1m2
¼
�

ffiffiffi
3
p

x� 5yþ 51� 336�m

5x�
ffiffiffi
3
p

y�
ffiffiffi
3
p : ð8Þ

Taking the point BcA
3m�2 and translating it so that centre of the circle �dA

3m�2 of the arc
on which it lies is at the origin, and rotating it through an arbitrary angle � results in the
polar coordinates ð4ð1� 7�mÞ sin �, 4ð1� 7�mÞ cos �Þ. Translating the origin back to its
original position gives ð4ð1� 7�mÞ sin � þ 2

ffiffiffi
3
p
�m, 4ð1� 7�mÞ cos � þ ð10�m � 1ÞÞ, which
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is then a parameterised coordinate of an arbitrary point on the circle in question.

Substituting this into Equation (8) we get:

m1 �m2

1þm1m2
¼
�

ffiffiffi
3
p

sin � � 5 cos � þ 14

�
ffiffiffi
3
p

cos � þ 5 sin �
,

which is indeed independent of �m, 80� �� 2�.
The proof for the other two circles with centres �dA

3m�1 and �dA
3m is completely

analogous. The resultant arguments to the arc tan function are:

m1 �m2

1þm1m2
¼
�

ffiffiffi
3
p

sin � þ 2 cos � þ 7

�
ffiffiffi
3
p

cos � � 2 sin �

and

m1 �m2

1þm1m2
¼
�

ffiffiffi
3
p

sin � � 5 cos � þ 14

�
ffiffiffi
3
p

cos � þ 5 sin �

respectively, both of which are again independent of �m (and of m).
We have now shown that the angle the radius vector makes with the tangent to all three

segments of the mth iteration are independent of �m and since we have already proved that

the female equilateral spiral is C1 continuous, this completes the proof. œ

That the male spiral is also a geometric spiral has in fact already been proven by

Theorem 2 since the point at which the lines �YdZ
3mþ� converge is by definition the

convergence point itself.
We will now look at some nice properties of equilateral male and female spirals.

To do this we first need to introduce some new notation and derive some intermediate

results.

2.3. Spiral segment intersection points

We start by categorising all the lines �YdZ
n which pass through the vertices of the

corresponding clockwise or anti-clockwise convergence triangles. Table 8 shows the

equations of these lines for the clockwise convergence triangle. For any initial vertex Zd
�

only six of the nine lines �YdZ
n are distinct. These six lines can be divided into two sets of

three lines each:

. One set of three lines for each vertex Zd
�, which we denote by �RdZ

� . If �1 and �2 are
the tabulated orientations of the vertices corresponding to two identical lines then

the orientation � of �RdZ
� is defined set-wise by � ¼ f0, � 1, � 2g� f�1, �2g.

. One set of three lines for each vertex Zd
�, which we denote by �SdZ

� . The orientation

� of �SdZ
� is identical to the orientation of the line to which it corresponds.

Each spiral, be it male or female, is made up of segments joined together to form that

spiral. We have seen that these segments either are, or are formed on, the side of the

corresponding binated triangle which is left (anti-clockwise) for clockwise binated triangles

or right (clockwise) for anti-clockwise binated triangles of the new side of that triangle.

To denote these segments we introduce the notation:

�dZ3mþ�, �¼�2, �1, 0, for the three segments of the mth male spiral iteration and
’dZ3mþ�, �¼�2, �1, 0, for the three segments of the mth female spiral iteration.
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Figure 10 shows these segments, not all of which are annotated, for a clockwise binated
triangle with initial vertex A.

Each of the lines �RdZ
� cuts the corresponding male segments of one complete iteration

(fixed m, �¼�2, �1 and 0) of the spiral at two points. We call the intersection of �RdZ
� and

the segment �dZ3mþ�, the point �
dZ
3mþ�, and its complement � 0dZ3mþmodð��1,�3Þ, the intersection

of �RdZ
� with the other segment of the mth male spiral iteration. Similarly, the intersection of

�RdZ
� with the segments of the mth female spiral iteration are given by the points �dZ3mþ� and

their complement �0dZ3mþmodð��1,�3Þ (see Figure 11 for a picture of these).
Analogously the lines �SdZ

� cut the corresponding segments of the mth male spiral
iteration at �dZ3mþ� and � 0dZ3mþmodð��1,�3Þ and the mth female spiral iteration at
	dZ3mþ� and 	 0dZ3mþmodð��1,�3Þ, respectively.

We will now derive the coordinates of the eight intersection points
�dZ
3mþ�,�

0dZ
3mþ�, �

dZ
3mþ�, �

0dZ
3mþ�, �

dZ
3mþ�, �

0dZ
3mþ�, 	

dZ
3mþ� and 	 0dZ3mþ�.

We look at the intersection points defined by �RcA
�2 with the male and female spiral

segments (Figure 11).
From Table 8, we see that the line �RcA

�2 is given by y ¼ �ð
ffiffiffi
3
p
=5Þxþ ð3=5Þ. We also

know that the arc segment ’cA3m�2 is defined by the centre ð2
ffiffiffi
3
p
�m, ð10�m � 1ÞÞ and

radius 1=23m�2. Solving for the x coordinate of �cA3m�2 of the intersection of these two
we get:

�cA3m�2ðxÞ : x� 2
ffiffiffi
3
p
�m

� �2
þ �

ffiffiffi
3
p

5
x� 10�m þ

8

5

� �2

¼
1

22ð3m�2Þ

) 28x2 � 16
ffiffiffi
3
p

xþ 2800�2m � 800�m þ 64�
25

22ð3m�2Þ

� �
¼ 0:

Table 8. All the lines Y
cZ

n .

Initial fixed vertex

� Line A B C

A
cZ

3mþ� y ¼
ffiffi
3
p

2 x � R
cA

�1 y ¼ 1
3
ffiffi
3
p xþ 2

3 � S
cB

�2 y ¼
ffiffi
3
p

2 x� 3
4 � R

cC

0

�2 B
cZ

3mþ� y ¼ �3
ffiffiffi
3
p

xþ 3 � R
cA

0 y ¼ �3
ffiffiffi
3
p

xþ 6 � R
cB

�1 y ¼ 5ffiffi
3
p x� 3 � S

cC

�2

C
cZ

3mþ� y ¼ � 2ffiffi
3
p xþ 1 � S

cA

�2 y ¼ �
ffiffi
3
p

5 xþ 6
5 � R

cB

0 y ¼ �
ffiffi
3
p

5 xþ 3
5 � R

cC

�1

A
cZ

3mþ� y ¼ 1
3
ffiffi
3
p xþ 1

3 � S
cA

�1 y ¼
ffiffi
3
p

2 x � R
cB

�2 y ¼
ffiffi
3
p

2 x� 3
4 � R

cC

0

�1 B
cZ

3mþ� y ¼ �3
ffiffiffi
3
p

xþ 3 � R
cA

0 y ¼ 5ffiffi
3
p x� 2 � S

cB

�1 y ¼ �3
ffiffiffi
3
p

xþ 6 � R
cC

�2

C
cZ

3mþ� y ¼ �
ffiffi
3
p

5 xþ 3
5 � R

cA

�2 y ¼ �
ffiffi
3
p

5 xþ 6
5 � R

cB

0 y ¼ � 2ffiffi
3
p xþ 3

2 � S
cC

�1

A
cZ

3mþ� y ¼
ffiffi
3
p

2 x � R
cA

�1 y ¼
ffiffi
3
p

2 x � R
cB

�2 y ¼ 1
3
ffiffi
3
p x � S

cC

0

0 B
cZ

3mþ� y ¼ 5ffiffi
3
p x� 1 � S

cA

0 y ¼ �3
ffiffiffi
3
p

xþ 6 � R
cB

�1 y ¼ �3
ffiffiffi
3
p

xþ 6 � R
cC

�2

C
cZ

3mþ� y ¼ �
ffiffi
3
p

5 xþ 3
5 � R

cA

�2 y ¼ � 2ffiffi
3
p xþ 2 � S

cB

0 y ¼ �
ffiffi
3
p

5 xþ 3
5 � R

cC

�1

International Journal of Mathematical Education in Science and Technology 617

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

ta
go

] 
at

 2
3:

41
 0

6 
Se

pt
em

be
r 

20
14

 



A C

B

cA
3m−2ϕ

cA
3m−2

λ

cA
3m−1λ

cA
3mϕ

cA
3m−1

ϕ

Figure 10. Annotated segments of clockwise male and female spirals for initial vertex A.

cA
R −1

cA
R 0

cA
R −2

cA
3m/ h′cA

3m
m ′

cA
3m−2

cA
3m−2

µ

η

Figure 11. Annotated intersection points of the lines �RcA
� with the segments of clockwise male and

female spirals for initial vertex A.
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Using identity (5) to eliminate the reciprocal powers of 2 from the absolute term of the

above equation we have:

2800�2m � 800�m þ 64�
25 � 210

26ðmþ1Þ
¼ 48 �350�2m þ 100�m � 7

� �
and substituting this into the equation for the x coordinate of �cA3m�2 above and solving for

x we get:

28x2 � 16
ffiffiffi
3
p

x�
24

7
10� 70�m þ

ffiffiffi
2
p� �

10� 70�m �
ffiffiffi
2
p� �
¼ 0:

) x ¼
2
ffiffiffi
3
p

7
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

2
10� 70�m þ

ffiffiffi
2
p� �

10� 70�m �
ffiffiffi
2
p� �r !

¼
2
ffiffiffi
3
p

7
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
2þ 10� 70�mð Þ

2
�2

� �r !
¼

2
ffiffiffi
3
p

7
1� 5

ffiffiffi
2
p

1� 7�mð Þ

� �

To determine which of these two values is the one we require, we note that �RcA
�2 passes

through the convergence point ð2
ffiffiffi
3
p
=7, 3=7Þ and that the x coordinate of �cA3m�2 is to the left

of the convergence point. Therefore, without further ado, we can say that

�cA3m�2ðxÞ ¼
2
ffiffiffi
3
p

7
1� 5

ffiffiffi
2
p

1� 7�mð Þ

� �
:

We derive the y coordinate of �cA3m�2 by simply substituting the x coordinate in the equation

for �RcA
�2. We get:

�cA3m�2ðyÞ ¼ �

ffiffiffi
3
p

5

2
ffiffiffi
3
p

7
1� 5

ffiffiffi
2
p

1� 7�mð Þ

� �
þ
3

5

¼
3

7
1þ 2

ffiffiffi
2
p

1� 7�mð Þ

� �
:

The intersection point with the male segment �cA3m�2 is simpler. The �cA3m�2 segment is

defined by the line joining the two points AcA
3m�2 and BcA

3m�2 and is given by:

y ¼
ffiffiffi
3
p

xþ 3 1� 8�mð Þ:

Solving between this line and �RcA
�2 gives:

�cA
3m�2 ¼

2ffiffiffi
3
p 10�m � 1ð Þ, 1� 4�mð Þ

� �
:

By definition �RcA
�2 passes through the points CcA

3m�1 and CcA
3m (Figure 11), which happen to

be coincident for this orientation, direction and initial vertex. Furthermore, this point also

lies on both the male and female segments �cA3m�1=�
cA
3m and ’cA3m�1=’

cA
3m respectively, thereby

giving us the coordinates of � 0cA3m and � 0cA3m .
The combined results after repeating the computations for �RcA

�1 and
�RcA
0 are shown in

Table 9.
The coordinates of the remaining intersection points with the lines �RdZ

� with the spirals

can be found in the usual way by rotation and reflection as demonstrated in Section 1.4.
The intersection points defined by �ScA

� with the male and female spiral segments can be

determined by an identical process.
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2.4. Sacred geometry

We will now look at some special properties of male and female spirals. We will look at the
relative lengths of radius vectors from the corresponding centre at the convergence point
to successive male and female spiral segments and the relative lengths of successive chords
defined by the lines joining the successive intersection points on the spirals we have derived
above. We will also show that the ratio of the radius vector and the associated chord for a
particular set of intersection points are the same for both male and female spirals.

We start by defining the function d(a, b) to be distance between the points a and b and
for convenience define 
m � ð1� 7�mÞ. We then define the length of the radius vector at a
particular intersection point rdZ3mþ� on a male or female spiral segment to be distance
between this point and the corresponding convergence point for the vertex in question,
dðZd

�, r
dZ
3mþ�Þ. We also define the length of the chord at rdZ3mþ� to be the distance between

this point and the next point inwards along the spiral of same type
f�,� 0, �, � 0, �, � 0, 	, 	 0g, dðrdZ3mþ�, r

dZ
3mþ�þ1Þ.

There are four groups of chords and radius vectors whose lengths we wish to compute
corresponding to the lines �RdZ

� and �SdZ
� and their intersections with the spirals, each line

cutting the spiral in two places; the lengths of the corresponding clockwise and anti-
clockwise chords and radius vectors being identical. We will outline the computations only
for one of these groups: �RdZ

� and the corresponding intersection points �dZ
3mþ� and �dZ3mþ�

on the male and female spirals respectively. The computations for the other groups are
completely analogous.

Table 9. Coordinates of the intersection points of �RcA
� and segments of the male and female spirals

with initial vertex A.

�RcA
� Intersection points

�RcA
�2

�cA3m�2 ¼
2
ffiffiffi
3
p

7
1� 5

ffiffiffi
2
p

1� 7�mð Þ

� �
,
3

7
1þ 2

ffiffiffi
2
p

1� 7�mð Þ

� �� �

�cA
3m�2 ¼

2ffiffiffi
3
p 10�m � 1ð Þ, 1� 4�mð Þ

� �

� 0cA3m ¼ �
0cA
3m ¼ CcA

3m�1 ¼ CcA
3m ¼

ffiffiffi
3
p

1� 5�mð Þ, 3�m

� �
�RcA
�1 �cA3m�1 ¼

2
ffiffiffi
3
p

7
1þ 2

ffiffiffi
2
p

1� 7�mð Þ

� �
,
3

7
1þ 2

ffiffiffi
2
p

1� 7�mð Þ

� �� �

�cA
3m�1 ¼

2ffiffiffi
3
p 1� 4�mð Þ, 1� 4�mð Þ

� �

� 0cA3m�2 ¼ �
0cA
3m�2 ¼ AcA

3m�2 ¼ AcA
3ðm�1Þ ¼ 2

ffiffiffi
3
p

8�m � 1ð Þ, 3 8�m � 1ð Þ

� �
�RcA
0

�cA3m ¼
2
ffiffiffi
3
p

7
1þ

ffiffiffi
2
p

4
1� 7�mð Þ

 !
,
3

7
1�

3
ffiffiffi
2
p

2
1� 7�mð Þ

 ! !

�cA
3m ¼

1ffiffiffi
3
p 1� �mð Þ, 3�m

� �

� 0cA3m�1 ¼ �
0cA
3m�1 ¼ BcA

3m�2 ¼ BcA
3m�1 ¼ 2

ffiffiffi
3
p
�m, 3 1� 6�mð Þ

� �
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We first look at the radius vectors. For the clockwise direction c with initial vertex A

we have, using Tables 6 and 9:

d Ac
�,�

cA
3ðm�1Þ

� �
¼

ffiffiffi
2
p

3
d Ac

�, �
cA
3ðm�1Þ

� �
¼

16ffiffiffi
3
p ffiffiffi

7
p 
m

d Ac
�,�

cA
3m�2

� �
¼

ffiffiffi
2
p

3
d Ac

�, �
cA
3m�2

� �
¼

8ffiffiffi
3
p ffiffiffi

7
p 
m

d Ac
�,�

cA
3m�1

� �
¼

ffiffiffi
2
p

3
d Ac

�, �
cA
3m�1

� �
¼

4ffiffiffi
3
p ffiffiffi

7
p 
m

d Ac
�,�

cA
3m

� �
¼

ffiffiffi
2
p

3
d Ac

�, �
cA
3m

� �
¼

2ffiffiffi
3
p ffiffiffi

7
p 
m

d Ac
�,�

cA
3ðmþ1Þ�2

� �
¼

ffiffiffi
2
p

3
d Ac

�, �
cA
3ðmþ1Þ�2

� �
¼

1ffiffiffi
3
p ffiffiffi

7
p 
m,

where we have used identity (2) to transform the quantities below

�cA
3ðm�1Þ ¼

2ffiffiffi
3
p ð1� 4�mÞ, 3ð8�m � 1Þ

� �

�cA
3ðmþ1Þ�2 ¼

1

2
ffiffiffi
3
p ð1þ 5�mÞ,

1

2
ð1� �mÞ

� �

�cA3ðm�1Þ ¼
2
ffiffiffi
3
p

7
ð1þ 2

ffiffiffi
2
p
ð1� 7�mÞÞ,

3

7
ð1� 12

ffiffiffi
2
p
ð1� 7�mÞ

� �
and

�cA3ðmþ1Þ�2 ¼
2
ffiffiffi
3
p

7
1�

5
ffiffiffi
2
p

8
ð1� 7�mÞ

 !
,
3

7
1þ

ffiffiffi
2
p

4
ð1� 7�mÞ

 ! !
:

Thus the ratio of the lengths of successive male radius vectors, for example the quantity

d Ac
�,�

cA
3m�2

� �
d Ac

�,�
cA
3ðm�1Þ

� � ,
is 1/2 as is the ratio of successive female radius vectors as we move inwards along the

spirals.
Similarly for the chords of the male and female spirals for a fixed direction c and initial

vertex A we have:

d �cA
3ðm�1Þ,�

cA
3m�2

� �
¼

ffiffiffi
2
p

3
d �cA3ðm�1Þ, �

cA
3m�2

� �
¼

8ffiffiffi
3
p 
m

d �cA
3m�2,�

cA
3m�1

� �
¼

ffiffiffi
2
p

3
d �cA3m�2, �

cA
3m�1

� �
¼

4ffiffiffi
3
p 
m

d �cA
3m�1,�

cA
3m

� �
¼

ffiffiffi
2
p

3
d �cA3m�1, �

cA
3m

� �
¼

2ffiffiffi
3
p 
m

d �cA
3m,�

cA
3ðmþ1Þ�2

� �
¼

ffiffiffi
2
p

3
d �cA3m, �

cA
3ðmþ1Þ�2

� �
¼

1ffiffiffi
3
p 
m
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We again see that the ratio of the lengths of successive chords for male and female spirals,

for example the quantity

d �cA
3m�2,�

cA
3m�1

� �
d �cA

3ðm�1Þ,�
cA
3m�2

� � ,
as we move inwards towards the convergence point to be 1/2.

Thus, since angles and distances are preserved under rotations and reflections, we see

that, as we move inwards on either the male or female spiral, the lengths of successive radius

vectors and chords both decrease by a factor 1/2 for each successive segment of the spiral.
Moreover, since dð�cA

3m�2,�
cA
3mÞ ¼

ffiffiffi
2
p
=3 dð�cA3m�2, �

cA
3mÞ ¼ 2
m and ð4=

ffiffiffi
3
p
Þ
2
¼

22 þ ð2=
ffiffiffi
3
p
Þ
2, we see that the triangles ��dZ

3m�2�
dZ
3m�1�

dZ
3m and ��dZ3m�2�

dZ
3m�1�

dZ
3m are right

angled triangles (Figure 12) and that the triangle ��dZ3m�2�
dZ
3m�1�

dZ
3m is an enlargement by a

factor 3=
ffiffiffi
2
p

of the triangle ��dZ
3m�2�

dZ
3m�1�

dZ
3m from the convergence point Ac

�.
Doing the same for the other scenarios results in Table 10.
From Table 10 we see in fact that the ratio of the length of any two successive features

of the same nature (radius vector, chord) which belong to the same set of intersection

points f�dZ3mþ�,m ¼ 1, 2, 3, . . .g, � ¼ �,�0, �, �0, �, �0, 	, 	0, as we move inwards along the

male or female spiral is always 1/2.
Furthermore, for the ratio of the length of any chord taken in the inwards direction

towards the convergence point with the length of the corresponding radius vector from

which it originates, we have:

d �dZ3mþ�; �
dZ
3mþ�þ1

� �
d Zd

�; �
dZ
3mþ�

� � ¼

ffiffiffi
7
p

2
; for any � ¼ �;�0; �; �0; �; �0; 	; 	0:

Finally, every right angled triangle formed by a set of intersection points f�dZ3mþ�,� ¼

�2, �1, 0g with m fixed, is such that the angle subtended by the longer of the two sides

with the hypotenuse is always 30�.

Figure 12. Right angled triangles formed by the intersection points of clockwise male and female
spirals for initial vertex A.
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3. Constructing equilateral spirals with ruler and compass

One way to experience sacred geometry is to construct the geometry in question using
ruler and compass only. In this chapter we discuss the construction of equilateral spirals
in this way.

If we start constructing male and female spirals by continuously binating triangles and
each time determining the required circumcentre by constructing the intersection of the
medians, then it is obvious that a lot of work is required and the result is actually neither
aesthetically pleasing or accurate in the long run due to the many construction steps
required. In this section we explore a number of ways to improve the construction
considerably such that the end result is aesthetically pleasing, accurate and executed with
a minimum of effort.

Our objective is to be able to draw both male and female spirals easily, accurately
and with a minimum of lines. For a segment of a male spiral, the two end points of the
line segment that define the segment are required and for the corresponding female
segment the centre of the circle which defines the arc joining these same two end points is
required in addition. Since segments of the male and female spirals are continuous we only
need to construct two additional points to arrive at any successive male and female
segment.

No measurement whatsoever is ever used in ruler and compass constructions, instead
constructions have the quality of being inherently and intrinsically accurate. To retain that
quality in the construction of our spirals, we further require that any two straight lines
whose intersection defines either the end point of a segment or the centre of a circle, must
intersect each other at right angles or very close to right angles as this gives the sharpest
possible definition of the point.

3.1. Method 1

Given the above observations we can now proceed with our first construction method.
This construction has been designed by doing the segmentation process and determining
the circumcentre and then observing which lines define the required points, keeping in
mind the quality we talked about above.

We will only construct three consecutive segments of each spiral. Further segments can
be drawn by continuing the process. Our construction here will be based on a cycle of
segments corresponding to n¼ 3(m� 1), 3m� 2 and 3m� 1, which is different to the work
done in Section 2 where our proofs and derivations were time and again based on the cycle

Table 10. The sacred geometry of equilateral spirals.

Scenarios

Ratio of lengths of
successive

radius vectors

Ratio of lengths
of successive

chords
Enlargement factor
right angled triangles

R
dZ

� �dZ
3mþ� & �dZ3mþ�

1
2

1
2

3ffiffi
2
p

R
dZ

� �0dZ3mþ� & �0dZ3mþ�
1
2

1
2 1

S
dZ

� �dZ3mþ� & 	dZ3mþ�
1
2

1
2

5
3

S
dZ

� �0dZ3mþ� & 	0dZ3mþ�
1
2

1
2 2
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of segments n¼ 3m� 2, 3m� 1 and 3m. We will call our cycle of any three consecutive
segments an iteration of the spiral. We begin as usual with the clockwise male and female
spirals for initial vertex A.

The first step is to draw the circle in which our spirals are to be constructed and
to divide the circumference of this circle into six arcs of equal length in the usual way.
Next we draw the three diagonals through these six points, all of which pass through
the centre of the circle. This process gives us seven points (labelled 1–7 in Figure 13)
from which we can define the first male and female segments: the two ends of the first
segment are marked with small open circles (points 1 and 3) and the centre of the arc
defining the first female segment is marked with a small closed circle (point 7). In all
successive drawings we will continue to mark the ends of segments and the centres of
arcs in this way. We also note in this drawing that the vertical diagonal is not in
fact necessary. However, we will need this in the next step so it is convenient to draw
it now.

For the second segments we need to define two additional points: one segment end (the
start of the second segment is defined by the end of the first) and the centre of the circle
required to draw the female arc. These two points are constructed by drawing the chords
2-4 and 3-5 as indicated in Figure 13. These chords intersect the corresponding diagonals
at right angles at the points we require.

The two points for the final male and female segments require the construction of five
new lines to define them. First we draw two more, in this case horizontal, chords, 1-3 and
4-6, analogous to those in step two. The intersection of these chords with the vertical
diagonal in Figure 14 define required intermediate points 11 and 12. Next, the intersection
of the line segments 3-11 and 4-12 defines the centre, 13, of the circle for the third arc
segment; note that these lines do not quite intersect at right angles (arc tan ð3

ffiffiffi
3
p
Þ 	 79�)

but still acceptably close. The final line 10-12 intersects the diagonal 3-6 at right angles and
defines point 14, the end of the third spiral segment.

We now have constructed all the points (1, 3, 10, 14, 7, 8, 13) required to draw the first
three segments of the male and female spirals by drawing one circle and 10 line segments.

Two further remarks on the construction above are worth making:

. We can draw in the corresponding convergence point. In Figure 14: (a) join the
points 1-5; (b) join the point where this segment cuts the segment 4-6 with the
vertex 3; (c) this segment cuts the segment 4-12 at right angles at the convergence
point.

. Looking at Figure 14 we can see the right angled triangles formed by the start
points of the spiral segments (1-3-10), the end points of the segments (3-10-14) and
the centres of the circles defining the arcs of the female spiral iteration (7-8-13).
This final right angled triangle was discussed in Section 2.2.

We could continue to define spiral segments in this way. For example, starting

from Figure 14, the next male and female segments require five further lines as shown

in Figure 15. However, we see that one of the line segments defining the centre of the circle

for the female segment is very short, which will inevitably lead to inaccuracies in our

construction. This phenomenon only gets increasingly worse as we move inwards defining

new segments as we go.

Therefore, rather than proceeding in this way, we take the complete process for
constructing an iteration of three arcs as shown in Figure 14 as a clockwise unit of
construction which we then propagate repeatedly inwards along the spiral similar to a
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Figure 13. The points required to draw the first and second male and female segments.
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Figure 14. The additional points 13 and 14 required to draw the third male and female segments.
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fractal construction. One further iteration of this unit of construction is shown in Figure 16

and we can see immediately that this leads to more intrinsic accuracy in the drawing.
Looking at Figure 16 we see that the centre of the second clockwise unit of

construction corresponds with point 13 in Figure 14. In general we can easily show
(Section 3.2) that with respect to the previous unit of construction:

. The centre of the unit of construction containing the segments 3m, 3mþ 1 and

3mþ 2 is at �dZ
3m. Thus, while the unit of construction contains all the construction

points for three consecutive segments, each successive construction in fact only
produces the points for two new male and two new female segments.

. The new unit of construction is rotated through an angle of 120� with respect to
the previous one;

. The radius of the circle containing the unit of construction is 1/4 that of the

previous one.

3.2. Method 2

By using method 1 to construct the segment start and end points and arc centres between
these points we see that all of these are located on four circles. These points and the
corresponding circles are shown in Figure 17.

It is interesting to compute the radii of these four circles. To do this we assume without
loss of generality that our unit of construction contains an iteration of the spiral consisting

of the segments 3m, 3mþ 1 and 3mþ 2. Since the points for the clockwise and anti-
clockwise arcs fall on the same circles, we will consider only the clockwise case.
In computing the various radii, remember that the solid points are the centres of arcs

(circumcircles) and the hollow points are terminating points for spiral segments (vertices of
equilateral triangles).

Figure 15. The additional line segments required to construct the next n¼ 3m clockwise male and
female spiral segment.
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Figure 16. Segments of clockwise male and female spirals formed from two iterations of the
clockwise unit of construction.

Figure 17. The four circles on which the construction points for an iteration of male and female
segments lie.
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From Table 7 we see that the generic centre of the four circles lies at

�cA
3m ¼ ðð

ffiffiffi
3
p
=2Þð1� 3�mÞ, ð1=2Þð1� �mÞÞ. Using Table 2 we can now compute the radius

of the outer most circle, using for example the vertex A:

d �cA
3m,A

cA
3m

� �
¼ 
m:

For the circle with the next biggest radius we need to compute dð�cA
3m,�

cA
3ðmþ1Þ�2Þ. Using the

identity (2) to express the different centres in terms of �m, we can show that the four

quantities we require in order of decreasing magnitude are:

�cA
3ðmþ1Þ�2 ¼ 2

ffiffiffi
3
p
�mþ1, 10�mþ1 � 1

� �
¼

ffiffiffi
3
p

4
�m þ 1ð Þ,

1

4
5�m þ 1ð Þ

� �
and

d �cA
3m,�

cA
3ðmþ1Þ�2

� �
¼

1

2

m:

Similarly for the circle with the next biggest radius we need to compute

dð�cA
3m,�

cA
3ðmþ1Þ�1Þ:

d �cA
3m,�

cA
3ðmþ1Þ�1

� �
¼

ffiffiffi
3
p

4

m:

Finally for the inner most circle, we need to compute dð�cA
3m,C

cA
3ðmþ1Þ�1Þ:

d �cA
3m,C

cA
3ðmþ1Þ�1

� �
¼

1

4

m:

Note that for the next iteration for segments 3mþ 2, 3mþ 3 and 3mþ 4 we will need to

compute dð�cA
3m,B

cA
3ðmþ2Þ�2Þ for the inner most circle.

To construct all the points needed to complete a single iteration for our second

construction method we proceed as follows (Figure 18):
Divide the circumference of the circumcircle into six equal segments in the usual way.

Sequentially label these points 1, 2, 3, 4, 5 and 6.
Draw the three diagonals 1-4, 2-5, 3-6.
Draw the six chords 1-3, 2-4, 3-5, 4-6, 5-1, 6-2.
Sequentially label the points 7, 8, 9, 10, 11, 12 where these chords intersect.
The points where the chords cut the diagonals define the points on the second outer

most circle. Label these points 13, 14, 15, 16, 17, 18.
Draw the diagonals 7-10, 8-11, 9-12.
Join, for example 1-15 and 2-18.
Where these two intersect (at almost right angles) on the diagonal 7-10 defines a point

on the circumference of the second inner most circle. The remaining points are given by the

intersection of the diagonals 7-10, 8-11, 9-12 with the circle.
Finally draw, for example, the chord 14-18.
Where this chord intersects the diagonal 1-4 defines a point on the circumference of the

inner most circle. The remaining points are given by the intersection of the diagonals 1-4,

2-5 and 3-6 with the circle.
Whether method 1 or method 2 is better is a matter of personal preference and usually

defined by the application at hand. In terms of construction effort, method 1 requires

24 line segments in the outer circumcircle; method 2 requires 15 line segments and three

circles.
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Figure 18. Using method 2 to construct the points for assembling an iteration of spirals.
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