A modular approach to shared-memory consensus,
with applications to the probabilistic-write model

James Aspnes
Yale University

July 28th, 2010

PODC 2010 A modular approach to consensus

Consensus Problem definition

Known bounds
Probabilistic-write model

Randomized consensus

Want n processes to agree on one of m
values.

o Validity: each output equals some

input. o0 3 |
e Termination: all non-faulty —]\ /
processes finish with probability 1. ﬁ _ . [0®]
@ Agreement: all non-faulty 2.~
Ny
processes get the same output. — &

Model: Wait-free asynchronous
shared-memory with multi-writer
registers.

PODC 2010 A modular approach to consensus

Consensus Problem definition

Known bounds
Probabilistic-write model

Bounds on consensus

@ Tight bounds for extreme cases:

o Adaptive adversary, processes only have local coins: ©(n?)
expected total operations (Attiya and Censor, 2008), ©(n)
expected operations per process (Aspnes and Censor, 2009).

o Oblivious adversary, global coin, 2 values: Q(1) expected
operations per process with geometric distribution (Attiya and
Censor, 2008), matching upper bound (Aumann, 1997).

@ We want to know what happens in the middle: local coins but
weak adversary.

PODC 2010 A modular approach to consensus

Consensus Problem definition

Known bounds
Probabilistic-write model

Probabilistic-write model

In the probabilistic-write model, after the adversary schedules a
process to do a write, it can flip a coin to decide whether to do so
or not.

@ This is the strong model of (Abrahamson, 1988).

@ Used by (Cheung, 2005) to get O(nloglog n) total and
individual work for 2-valued consensus.

o We'll get O(nlog m) total and O(log n) individual work for
m-valued consensus.

@ O(log n) individual work is similar to bounds for other
weak-adversary models (Chandra, 1996; Aumann, 1997,
Aumann and Bender, 2005).

o No lower bounds better than Q(1).

(All bounds are in expectation.)

PODC 2010 A modular approach to consensus

D _— Ratifiers (adopt-commit objects)
ecomposing consensus T
Conciliators

Recomposing consensus

Decomposing consensus

@ Most known consensus protocols alternate between detecting
agreement and producing agreement.
@ We will make this explicit by decomposing consensus into:
© Ratifier objects, which detect agreement, and
@ Conciliator objects, which produce it with some probability.

o Essentially just refactoring existing code.

PODC 2010 A modular approach to consensus

Ratifiers (adopt-commit objects)
Conciliators
Recomposing consensus

Decomposing consensus

Ratifiers

@ Like ordinary consensus objects, except:

o Output is supplemented with a decision
bit that says whether to decide on the
output (1) or adopt it for later stages of
the protocol (0). 1
o Agreement is replaced by two new
conditions:
© Coherence: If one process decides on ®@®
X, every other process gets x as =
output (but might not decide).
@ Acceptance: If all inputs are equal,
all processes decide.

!l\)

@ These are just Gafni's adopt-commit
protocols (Gafni, 1998) expressed as
shared-memory objects.

PODC 2010 A modular approach to consensus

Ratifiers (adopt-commit objects)
Conciliators
Recomposing consensus

Decomposing consensus

Ratifiers

@ Like ordinary consensus objects, except:

o Output is supplemented with a decision
bit that says whether to decide on the
output (1) or adopt it for later stages of
the protocol (0).
o Agreement is replaced by two new 1
conditions: @0® P
© Coherence: If one process decides on
X, every other process gets x as
output (but might not decide).
@ Acceptance: If all inputs are equal, @\@
all processes decide.

[S—

@ These are just Gafni's adopt-commit
protocols (Gafni, 1998) expressed as
shared-memory objects.

PODC 2010 A modular approach to consensus

Ratifiers (adopt-commit objects)
Conciliators
Recomposing consensus

Decomposing consensus

Conciliators

@ Like ordinary consensus objects, except
agreement is replaced by:

o Probabilistic agreement: All outputs
are equal with probability at least §, for

some fixed § > 0.

@ Conciliator objects have the same role as 2
weak shared coins of (Aspnes and
Herlihy, 1990) (and can be built from
weak shared coins).

@ But can also be built other ways,

e.g. using the first-mover mechanism of
(Chor, Israeli, and Li, 1994).

PODC 2010 A modular approach to consensus

Ratifiers (adopt-commit objects)
Conciliators
Recomposing consensus

Decomposing consensus

Conciliators

@ Like ordinary consensus objects, except
agreement is replaced by:

o Probabilistic agreement: All outputs
are equal with probability at least §, for

some fixed § > 0.

@ Conciliator objects have the same role as
weak shared coins of (Aspnes and
Herlihy, 1990) (and can be built from
weak shared coins).

@ But can also be built other ways,

e.g. using the first-mover mechanism of
(Chor, Israeli, and Li, 1994).

PODC 2010 A modular approach to consensus

Ratifiers (adopt-commit objects)
Conciliators
Recomposing consensus

Decomposing consensus

Recomposing consensus

f@*ﬂﬂ{}

Given infinite alternating sequence of ratifiers and conciliators:
© Validity follows from validity of components.
@ Agreement follows from coherence + validity.

© For termination, we go through at most (1/J) conciliators on
average before one of them produces agreement (probabilistic
agreement); then following ratifier makes all processes decide
(acceptance).

PODC 2010 A modular approach to consensus

Building a ratifier
Building the components Building a conciliator

Building a ratifier

@ Basic idea:

@ Announce my input v (using mechanism to be provided later).

@ If proposal = L, proposal < v; else v < proposal.

© Decide v if no v/ # v has been announced, else output v
without deciding.

o Why it works:
o If some value v is in proposal before any other v/ is
announced, any process with v’ sees and adopts v.
@ Announce-propose-check structure same as in Gafni's
adopt-commit protocol (Gafni, 1998), but we'll exploit
multi-writer registers to reduce cost.

PODC 2010 A modular approach to consensus

Building a ratifier
Building the components Building a conciliator

How to announce a value

@ Assign unique write quorum W, of
k out of 2k registers to each value
v, where k = ©(log m) satisfies

(%) = m.

@ Announce v by writing all registers @@
. -
in W,.

@ Detect v/ # v by reading all
registers in W .

o | always see you if you finish
writing W,/.
Cost of ratifier: O(log m) individual work and O(log m) space.

PODC 2010 A modular approach to consensus

Building a ratifier
Building the components Building a conciliator

How to announce a value

@ Assign unique write quorum W, of
k out of 2k registers to each value
v, where k = ©(log m) satisfies

2k
(k) > m. 5

@ Announce v by writing all registers ©
- y & & \—@ OReO0e ©_/
in W,. ol00

@ Detect v/ # v by reading all
registers in W .

o | always see you if you finish
writing W,/.
Cost of ratifier: O(log m) individual work and O(log m) space.

PODC 2010 A modular approach to consensus

Building a ratifier
Building the components Building a conciliator

Building a conciliator

k<« 0 5
while r = | do
.r . - ok \@ @@
write v to r with probability 5 N
k+— k+1 r
end CICINIOIO,
return r ~ ~

@ Uses Chor-Israeli-Li technique: First value written wins unless
overwritten.

@ Increasing probabilities means a lone process finishes quickly.

@ But other processes will still have low total probability of
overwriting before reading again (or they would have finished
already).

@ Cost: O(log n) individual work, O(n) total work, and 1
register.

PODC 2010 A modular approach to consensus

Building a ratifier
Building the components Building a conciliator

Building a conciliator

k<« 0
while r = | do ©@ o
. . . ok — —
write v to r with probability 5
k+— k+1 !
end CICIIOIO)
return r _— i

@ Uses Chor-Israeli-Li technique: First value written wins unless
overwritten.

@ Increasing probabilities means a lone process finishes quickly.

@ But other processes will still have low total probability of
overwriting before reading again (or they would have finished
already).

@ Cost: O(log n) individual work, O(n) total work, and 1
register.

PODC 2010 A modular approach to consensus

Conclusions

Conclusions

e Ratifier + conciliator = n-process, m-valued consensus in the
probabilistic-write model with
o O(log n+ log m) expected individual work.
o O(nlog m) expected total work.
o O(log m) expected space used.
@ This just says

Tconsensus =0 (Tratifier + Tconciliator) .

@ But: consensus objects are both ratifiers and conciliators. So
we also have

7_consensus =Q (Tratiﬁer + Tconciliator) .

@ These bounds hold for any additive cost measure in in any
model.

@ Moral: If you want upper or lower bounds for consensus, look
for bounds on ratifiers and conciliators.

PODC 2010 A modular approach to consensus

	Consensus
	Problem definition
	Known bounds
	Probabilistic-write model

	Decomposing consensus
	Ratifiers (adopt-commit objects)
	Conciliators
	Recomposing consensus

	Building the components
	Building a ratifier
	Building a conciliator

	Conclusions

