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INTRODUCTION

The Radar Techndogy Encyclopedia is ajoint product of
leading United Statesand Russian radar experts with decades
of experience on design, developmert, ard test of state-of-
the-art radar sysems ard techndogy. The Encydopedia cov-
ersthe aitire field of radar fundamentals, design, ergineering,
systems, subsysterrs, and maor comporents. It cortains
abou 5000 ertries, each giving the depicted term definition,
and, if applicable, the standard notation, brief description,
evaluation formules, rlevant block dagrams, grformance
summary, and a reference to the literature in which the more
detailed information is available. The purmpose is to provide,
in a single volume the reference material for researchers and
engineers in radar and related disdplines, representing the
most moe@rn informaion awvailabe in bah the former Sovet
Union and in tle West. It includes an extensive bildiography
of sources from both regions. This bibli ography covers practi-
cally all monagraphs and textbooks in radar and related sub-
jects published after World War 11 in English (in the US.A.
and England) and Russian (in the former Sovet Union) lan-
guages that covers the overwhelming maority of the world-
widelibrary of radar books.

The Encyclopedia format is dphabetical by subject. It
consists of topdevel articles, which ae identified with bdd
capta letters (e.g., MAGNETRON), and, if applicable, are
followed by subarticles, which are identified in lowercase
bold (e.g., rising-sun magnretron). The top-leve articles are
arrangea in theway so the key word (typically, a noun) deter-
mines its aphaletical position (e.g., microwave antenna is
cited asANT ENNA, microwave radar targetsasTARGET,
radar, data smoahing asSMO OTHING, data). Subaticles
within a tq-level article are gvenin a convertional word
ordertypically used in literature and alphabetically aranged,
for examge:

AMPLIFIER, microwave
amplifier-attenuator
amplifier chain

aperiodic amplifier
backward-wave tube amplifier
balanced anvplifier

bandpass anplifier

and so foth.

The subatticles are dphabetized withou regard to
whether the qualify ing aljective precedes or follows the main
word: broadband antenna precedes antenna control.

Within each article and subarticle, if apgicabe, the
cross-reference to another sularticle is indicated in lower-
case bod, eg.:

“TheRCS of histype ofclutter iscalculated wsing the
volume of the dutter cell V; andthe vdume rélectiv-
ity n, (see volumeclutter). *

That subarticle is found aphabetically within the same top-
level atticle, eg., CLUT TER. If the cross-reérence refers to
armother top-level article, then the name of this article is given
in capital letters. For example, areaderisreferred to an aticle
NOISE, and wil find that article dphabetically under N.

Paentheses in the nameof an article orsubarticle men
that the word is optiona. For examgde, phased array
(antenna) means that the term is used both as phased array
or phasd array antenna. Square brackets mean tha the
word in the brackets can be usedinstead of the previous one.
For example, bed of spikes [nails] ambiguity function
meansthat theterm is wsed as bed of spikes ambigtty func-
tion or bed of nails ambiguity function.

For definitions of terms, extensive use has been mack of
IEEE Sandad Dictionary of Electrical and Electronics
Terms and |EEE Stardard Radar Definitions The sendard
definitions reproduced from these dictionaries ard other
acknowledged sources are put into quotes. The Encyclopedia
does not contain seperate atticles with the description and
performarce of concrete radar stations ard facilities, because
even brief description of the major radars developed through-
out the world requires to provide adilitiona volume & thick
as this one. This information is systematizedin Jane’'s Radar
andElectronic Warfare Systems updeted and issued amudly,
and the Encydopedia does not duplicate this material. How-
ever, where applicable, extensive exanmplesof modern radars
are provided.



Each atticle and subarticle cortains references, primarily
to textbooks, which are listed alphabetically by author in the
Alphabdical Bibliography at the end of Encyclopedia. The
combination of the surname of the first auithor and a year of
edition idertifies the cited bak:

Ref.: Skolnik (1980)

refersto the bodk listed in the bibliograply as:

Skolnik, M. I., Introduction to Radr Systems McGraw-
Hill, 1980
and the brief reference:
Ref.: Barton (1969)

identifies the book listed with both authors and two edtions
or publishers:

Barton, D. K., and Ward, H. R., Handbook of Radar Mea-
surement, Prentice-Hall, 1969; Artech House, 1984.

In rare cases vhere there is ro applicable textbodk, reference
is made to a pofesdonal journal article. Typically, each ati-
cle is followedby referencesto the major current books, as

Xii

listed in the Alphabetical Bibliography, and for the readers
interested in a full bibliography on a correspondng sulject
the Bibliography by Subject is provided. It contains a full bib-
liography list of the identifiable radar and radar+elated books
pubished duiing the last 50 years and is arrangedin 35 sec-
tions by subject. Within each section the baks are gven in
chronological order, and dphabetically by author within one
year. At the end of Encyclopedia is a list of the most common
radar alboreviations and acronyirs.

The author of each article and subatticle is identified by
the carrespondinginitias following the entry, whentha ertry
exceeds a few lines of definition (see Aboutthe Authors). The
original generation of the list of entries, compiling of the Bib-
liography, and fnd editing of Encyclopedia materia was
dore by David K. Barton and Segey A. Leonov.

David K. Barton and Segey A L eonov,
Editors

Use of HypertextL inks

In this electronic edition of the Radar Techndogy Ency-
clopedia, hypertext links have been adled to tensfer rgpidly
from one atticle to a reéated or eferenced sulpect. The words
or phrases from which links can be exercised appear in blue

text. Clicking on ay blue ertry initiates an inmedate trans-
fer to the related entry. The program keeps track of the higtory
of thesetransfers, and the reader canretrace deps by cdlicking
in either the right or left page margins.



ABSORBER, radar absorber, Dahlenbach 1

A conductivity of the deposition on the film. An example of a
pattern deposited on a CA sheet in shown in Fig. Al.
ABSORBER, radar. The termabsorberrefers to a radar- CA absorbers can be tuned, as with an RLC circuit,

absorbing structure or material (RAS or RAM), the purpos@”ab"ng th_e des_igner to improve the bandwidt_h of the multi-
of which is to soak up incident energy and reduce the energ%heet configuration. In.general, CA absorber is a lossy ver-
reflected back to the radar. Its main objective is to achievelon ©Of a class of printed patterns known fasquency-
reduction in theradar cross section (RC®J radar targets. S€lective surfacedSS).SAL

Other applications are to suppress wall reflectiormmigchoic ~ Ref.: Knott (1993) p. 326; Bhattacharyya (1991), pp-2115.

chambersand reflections from nearby structures at fixed
radar sites.

Absorbers can be classified from the point of view of
scattering phenomena as specular and nonspecular types, and
from the point of view of their bandwidth as narrowband
RAS and wideband RAS. The major representatives of nar-
rowband RAS are th8alisbury screemmnd theDahlenbach
absorber.Wideband RAS are represented joy = €, type
absorberscircuit analogabsorbersfrequency-selective sur-
faces geometric transitiombsorbersJaumann absorbgrand
graded absorbersSome of these types can be combined to
form hybrid absorbers with improved performance. All these
types are specular absorbers designed to reduce specular
reflections from metallic surfaceSlonspecular absorbease
intended primarily for suppression of surface traveling-wave
echoesSAL

shEEEEE
shEEEEE
shEEEEE
shebbhbh

Figure Al Circuit analog absorbers (after Knott, 1993,
Absorbers for anechoic chambersre applied to the internal Fig. 8.18, p. 326).
surfaces of amnechoic chambép absorb the incident radio

waves. The basic requirements are wideband performan . . :
and low reflection coefficient geneous lossy layer backed by a metallic plate. It is a simple

Usually the absorber is a plastic foam frame with fiIIernarrowband absorber that is flexible and can be applied to dif-
that readily absorbs radio waves (microspheres of polyst);-erent kinds of curved surfaces. It is characteristic of single-

rene, teflon, etc.), the density of the material and the concen- €, 1
tration growing with depth. Radar-absorbing material is most

convenient in the form of pyramids with an angle of 89

60° at the apex, which assures multiple re-reflections that 6
increase absorption. To reduce the reflection coefficient to )
20 dB, the height of the pyramids must beNd& 0.6\, but to

reduce it to-50 dB, a height of ¥ to 1Q\ is required. In this

case thinner structures are used, made, for example, from fer-

rite absorbing material$AM

Ref.: Finkel'shteyn (1983), p. 145; Knott, 1993, pp.-S&2®2.

Ch|rosorb absorblng mate”al |s a novel RAM typlca”y Flgure A2 Dahlenbach absorber (aftel‘ Bhattacharyya, 1991,
fabricated by embedding randomly oriented identical chiral Fig. 4.65, p. 211).

microstructures (e.g., microhelices), in an isotropic hosfayer absorbers backed by metal plates that it is impossible to
medium. In comparison with conventional RAMs, it pos-achieve zero reflection because the layer material must be
sesses an excellent low-reflectivity property and may be praguch that low reflection occurs on its front face, and using
tically invisible to radarSAL physically realizable materials it is impossible to force reflec-
Ref.: Bhattacharyya (1991), p. 233. tion from both the front face and the metal backing to zero.

Circuit analog (CA) absorbersare sheets of low-loss mate- The main objective in this case is to choose electrical proper-
rial on which specific conducting patterns have been depodi€s of the layer to make two reflections to cancel each other.
ited. The patterns constitute resistance, inductance, arteflectivity curves for dominantly electrical and magnetic

capacitance. The deposited film can be represented by &er materials are shown in Figs. A3 and A4, respectively.
equivalent RLC circuit, parameters of which can be conJthe optimum layer thickness in the first case is near a quarter

trolled by the geometric configuration, film thickness, and‘é"i‘lielength’ in the second case it is near a half wavelength.

Ref.: Knott (1993), pp. 314320; Bhattacharyya (1991), pp. 2€812.

éOéDahIenbach absorber(Fig. A2) consists of a thick homo-

7

Z=0 Z=L



2 absorber, geometric transition

absorber, dielectric

A dielectric absorberuses dielectric absorbing materials for absorbing wall consisting of individual magnetic rods
its construction. An example of a simple, single-layer dielecarranged vertically and horizontallAM

tric absorber is th8alisbury screerin practical applications,
multilayer dielectric absorbers are used, suchlasmann
absorbersand graded dielectri@bsorbers. Practical graded

dielectric absorbers are made of discrete layers with prope?

ties changing from layer to layeSAL
Ref.: Knott (1993), pp. 3E327.
0

.
—
(=]

20 Log |R|

n
(=]

-30

0.2 0.4 0.6

d

Figure A3 Reflectivity of dominantly electric materials. Solid
trace: §;| = 16, || = 1,5; = 20%, §, = (°; dashed traceg] = 25,

[Me| = 16,8¢ = 3C°, 8, = 20°; diagonal tracee}| = | = 4,8 =9,
=15.¢ = |s,|exp(6£) andy, = | |exp{d,) are the complex per-
mittivity and permeability of the material relative to those of free
space (from Knott, 1993, Fig. 8.12, p. 319).

0
—
A0 \
4
o *
g ,
=R I A N R ) O
& Lo I N
-30
0 0.2 0.4 0.6 0.8 1.0
d/A

Figure A4 Reflectivity of dominantly magnetic materials. Solid
trace:|u | = 16,lg,| = 1,8, = 10, & = (°; dashed tracep| = 25,
l&,| = 16,9, = 20°, &, = 3C; diagonal traceg|| = j,| = 4,5.=9,

= 15 (from Knott, 1993, Fig. 8.13, p. 319).

Ferrite absorbing material provides attenuation of a radio
wave passing through it. Ferrite absorbing coatings ar

Ref.: Stepanov (1968), p. 62; Bhattacharyya (1991), pp. 1772487

Frequency-selective surface (FSSypes of absorbers usu-

lly take the form of a thin metallic patterns etched into or
deposited onto lossless substrates or films. The desired effect
is to pass waves of a given range of frequencies, or all waves
except those in a required band (bandpass or bandstop filter-
ing). Other uses are high-pass or low-pass filtering. Some
configurations used in FSS are shown in Fig. A5. Frequency
selective surfaces find many practical applications: in antenna
reflectors, wave polarizers, RCS control, and so forth. The
Jaumannand circuit analogabsorbers are versions of FSS.
SAL

Ref.: Bhattacharyya (1991), pp. 224, 228.

(b) Circular slot,
mrcular hole

(a) Rectangular slot

//

d) Single loaded slot

( ) Four-legged () Three-legged
symmetrically loaded slot
loaded slot

Figure A5 Frequency-selective surfaces (after Knott, 1993,
Fig. 8.22, p. 330).

A geometric transition absorberis based on geometric tran-
sition from free space to the highly lossy medium that pro-
vides an effective dielectric gradient and minimizes
reflections. The major shapes available are convoluted,
wedge-shaped, twisted-wedge-shaped, rectangular, triangular,
conical, and pyramidal. The pyramidal profile is most often
used, usually having the structure of a planar array of pyrami-
dal absorbers (Fig. A6). Geometric transition absorbers are
used in anechoic chambers to reduce reflection from the

e

marked by their low weight and thickness. Usually they are
used for masking the warheads of ballistic missiles and vari-
ous reflective parts of short-range missiles. They provide an
attenuation of 15 to 30 dB. With a thickness of 5 mm, a
square meter of coating has a weight of up to 5 kg. Ferrite
absorbing materials are used for camouflage in a wide wave-
band, from the meter to the centimeter range.
Ferrite material is used for coatings ariechoic cham-

bers taking the form of a layer of tightly placed tiles or an

Figure A6 Geometric transition absorber (from Knott, 1993,
Fig. 8.18, p. 326).
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walls. This type of absorber can provide reflectivity reduction  Interference materials are made either with metal or non-
in excess of 50 dB and bandwidth from 100 MHz to 100 GHzmetal substrate having a high relative dielectric constant (100
SAL to 200), the latter simplifying the attachment of the coating to

Ref.: Knott (1993), pp. 326, 52632; Bhattacharyya (1991), p. 219. the masked structure.

Multilayer interference materials provide signal attenua-

A graded absorberis constructed from discrete layers with tion from 20 to 40 dB at X-band. and from about 7 to 12 dB at
properties changing from layer to layer. The most COMMOIL o g (Fig. A8)IAM '

use layers of dielectric materials. One commercial example is
. . . . ﬁef.: Stepanov (1968), p. 55; U.S. Patent no. 3,568,195, cl. 343-18, 3-2-71.
a three-layer graded dielectric absorber about 1 cm thick wit

properties shown in Fig. A7. In the commercial productions

of graded dielectric absorbers, five or more layers have be¢ ° ~~—
used. Commercial graded magnetic absorbers appear to he -0}
been limited to three layerSAL g Jaumapn/
Ref.: Knott, (1993), p. 324. s °f —\/
-30 (E .30 }
I N % .Graded Dielectric
-26 \\\ § -40 |
-22 / -50 |
)
3 18 = % 60 . - S - s . s
< Y ™M 2 4 6 8 10 12 14 16 18
g -14 7 . Frequeincy (GHz)
Z Figure A8 Reflection coefficient as a function of frequency for
7 Jaumann, graded dielectric, and hybrid absorbers (from Knott,
N 1993, Fig. 8.28, p. 342).
2 S . .
Jaumann absorberis a wideband multilayer structure. It is
2 4 6 8 10 12 14 16 i8

made from alternating layers of lossy film and relatively thick

layers of low-loss materials. The cascade process used in
multilayer absorbers considerably improves the bandwidth of
the absorption. Figure A9 shows the calculated reflected

Frequency (GHz)
Figure A7 Measured reflectivity of a three-layer graded dielec-
tric absorber (from Knott, 1993, Fig. 8.17, p. 325).

A hybrid absorber combines different types of absorbers to
provide broader bandwidth or improved performance within
the same band. For examplaagnetic and circuit analog
absorbers, olJaumanrandgraded dielectri@bsorbers can be
combined. Reflection coefficients as a function of frequency
for a three-layer Jaumann, a graded dielectric, and a hybric
absorber are shown in Fig. ABAL

Ref.: Knott (1993), pp. 33B43.

Reflected Power (dB)

Interference absorbing materials when used as coatings,
constitute resonant absorbers, consisting of one layer of
dielectric applied to the metal surface that is to be protected.

The thicknessl and the constants (the permittivity) andu Frequency (GHz)

(the permeability) of the material are selected for a given

wavelength), to meet the conditiod :7\/4(€M)1/2 Figure A9 Jaumann absorber (from Knott, 1993, Fig. 8.15,
! ) p. 322).

The coating is usually made of plastic or rubber, filled
with graphite powder or carbonyl iron. Such materials argpower versus frequency for Jaumann absorbers containing
narrowband absorbers and operate well only at angles of inarariable numbers of resistive shee3#L

dence close to normal. Materials of the interference type cagef.: Skolnik (1990), p. 11.48; Bhattacharyya (1991), p. 215; Knott (1993),
also be used for effective absorption over a broad frequency pp. 326-323.

ba}nd, with §everal layers having thlckngss and structure optg magnetic absorberuses magnetic radar absorbing mate-
mized for different wave lengths. This is achieved through g,

metal fiber, filamentary crystals, or fibers made from plasticA

, , s an example, absorption characteristics of a two-layer mag-
with a metal coating.

netic absorber, constructed from a ferrite-resin mixture
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impregnated with short metal fibers, are shown in Fig. A10.

SAL T_f_ 1.0r
Ref.: Bhattacharyya (1991), pp. 217, 218; K. Hatakeyama and T. Inui, “Elec- u:
tromagnetic Wave Absorber Using Ferrite Absorbing Materials Dis- &-‘ 0.8
persed with Short Metal Fibers|EEE Trans.MAG-20, no. 5, Sept. ()
1984, pp. 1261263. O 0.6+
8
ot 0.4
r
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w
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Figure A11 The angular performance pf = €, absorber for
different values ofye| (from Bhattacharyya, 1991, Fig. 4.68,
p. 215).
reduce surface currents (and so to suppress traveling and
creeping waves echoes) and use tapered resistive strips to
suppress edge diffraction retur@sL
Ref.: Knott (1993), pp. 34355.

Absorplion (4B)

Pyramidal absorber is the term sometimes used for a geo-
metric transition absorber with pyramidal profiAL
Ref.: Bhattacharyya (1991), p. 219.

(b)

Atsorprion (dB)

The Salisbury screen absorberis a classical resonator
absorber that is the simplest specular narrowband radar-
absorbing structure (Fig. A12). A Salisbury screen can be
electric or magnetic and usually consists of a resistive sheet
or screen in front of a conducting plane, separated by a dielec-
tric or magnetic slab calledspacer In practice, the resistive

The, = ¢, type absorberhas performance based on the fol- layer is glued to a light plastic foam or honeycomb spacer
lowing theorem: If a target has equal values for relative pePaCked by metal foil.

mittivity and permeability, the far-zone backscattered fields -

are zero if shape and material of the body remain unchanged | |

for a 90° rotation of the body around the direction of inci- Resistive sheet
dence. In the case of tipg = €, absorber, the intrinsic imped-
ance of the medium is equal to that of free space, and so
theoretically there will be no reflection from the interface
with fr